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Abstract

Longitudinal studies refer to investigations where measurements are collected at multiple
follow-ups and it is always a matter of interest to access the change in these measurements.
Our research has been focused on studying the effect of growth on Forced Expiratory Flows
and Volumes outcomes such as FEV0.5, FEV0.75, FEV1, FEF25−75 in healthy children. It
is studied that to what extent these values track within and between each individual, i.e.
is it possible to predict FEV1 at school age from FEV0.5 measures in infancy or childhood?
Healthy infants between 3 weeks to 2.5 years were recruited applying the RV RTC tech-
nique and 3 to 12 years children were recruited in other research units of Great Britain to
collect the spirometry measurements. Results from these healthy controls were expressed
as z-scores using published prediction equations of Jones et al. (2000) and Stanojevic et al.
(2008). To address change in FEF lung function parameters between between different
growth stages, the Bland-Altman technique is applied. These were further explored using
multilevel regression modelling (MLwiN version 2.12 and R version 2.15) to study the
within and between subjects variability for various important respiratory parameters in
growth.

Zusammenfassung

Longitudinale Studien sind Untersuchungen bei denen Messungen an aufeinander folgen-
den Zeitpunkten erfolgen, um Änderungen im Zeitverlauf zu studieren. In unserer Arbeit
wird der Einfluss des Wachstums von gesunden Kindern auf forcierte Atemflüsse und Volu-
mina wie FEV0.5, FEV0.75, FEV1 und FEV25−75 studiert. Es wird untersucht in welchem
Ausmaß diese Werte innerhalb der Individuen und zwischen den Individuen variieren. D.h.
ist es zum Beispiel möglich die Einsekundenkapazität FEV1 im Schulalter auf Grund von
FEV0.5-Messungen im Säuglings– und Kleinkindalter zu prognostizieren? Dafür wurden
gesunde Babies im Alter zwischen 3 Wochen und 2.5 Jahren ausgesucht und an ihnen
Messungen mit Hilfe der RV RTC–Technik durchgeführt. Spirometrische Messungen von
Kindern im Alter von 3 bis 12 Jahren wurden an verschiedenen Forschungseinrichtungen
in Großbritannien vorgenommen. Die Resultate dieser Messungen werden als z–Scores
der von Jones et al. (2000) und Stanojevic et al. (2008) publizierten Vorhersagegleichun-
gen ausgedrückt. Zur Erfassung der Unterschiede von FEV -Lungenfunktionsparametern
zwischen verschiedenen Wachstumsstufen wird die Bland-Altman Technik angewandt. Die
Variabilität von wichtigen respiratorischen Parametern in Abhängigkeit vom Wachstum
innerhalb und zwischen Individuen wird durch einen mehrstufigen Regressionsansatz (ML-
wiN version 2.12 und R version 2.15) modelliert.
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Abbreviations

Abbreviation Definition

PFT Pulmonary Function Test

RV RTC Raised Volume Rapid Thoracic Compression

FEV1 Forced Expiratory Volume in 1 Second (l)

FEV0.5 Forced Expiratory Volume in 0.5 Second (l)

FEV0.75 Forced Expiratory Volume in 0.75 Second (l)

FV C Forced Vital Capacity (l)

FEF Forced Expiratory Flow at specific lung volumes (l)

FEF25−75 Forced Expiratory Flow at volumes 25–75%

CF Cystic Fibrosis

LLN Lower Limit of Normal

ULN Upper Limit of Normal

CV Coefficient of Variation (between-subject variability)

PSA Preschool age

SA School age

ICH Institute of child health
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Chapter 1

Introduction

Globally the respiratory diseases causing long term illnesses, which decreases the quality
of life of patients and also brings a lot of financial pressure on families and health care
systems. Respiratory diseases in early childhood such as Asthma and Cystic Fibrosis can
leave critical problems and permanent damages in the respiratory system later in life [1].

1.1 Diagnosis of respiratory diseases in children

A complete understanding of the normal growth and development of the respiratory sys-
tem is necessary in order to distinguish the effects of the disease from those of normal
physiology. Besides, availability of longitudinal observations from birth to adulthood can
provide insight into how the disease progresses throughout different stages of growth and
development.

Pulmonary function tests (PFTs) are an integral part of the clinical assessment of res-
piratory diseases, providing an objective means of measuring the airways and the function
of the respiratory system [1].

The aim of this chapter is to describe briefly the forced expiratory flow volume curves
and different methods and techniques of measuring these values from infancy to school-age.
Then the normative values, interpretation of results being expressed as z-scores and the
potential applications of these techniques for the various age groups will be discussed.

1.2 Pulmonary function tests (PFTs)

Pulmonary function testing has been a major step forward in assessing the functional status
of the lungs and is a valuable tool for evaluating the respiratory system, representing an
important supplement to the patient history and various lung imaging studies [1].

1.2.1 Pulmonary function tests in infants

Since infants are not able to perform forced expiratory manoeuvres, the partial forced
expiratory flow-volume (PEFV ) curves can be produced by wrapping an inflatable jacket
around infant’s chest and abdomen, while allowing them to breath through a face mask

1



Chapter 1 Introduction

and flow meter. This technique is referred to Tidal Rapid Thoraco-abdominal Compression
(RTC). After at least five regular tidal breaths, an initial jacket pressure (Pj) of 2-3 kPa
is usually applied at the end of inspiration, which provides a pressure around the chest
and abdomen to force expiration. This trial will regenerate with incremental pressure of
1-2 kPa until a maximum Pj has reached at which the highest flow is obtained [1].

The raised volume RTC (RV RTC) technique is an adaptation of the tidal RTC tech-
nique, where the infant’s lung are passively inflated toward total lung capacity (TLC) using
a preset pressure before applying RTC. This enables full forced expiratory manoeuvres to
be obtained in infants as in adults [1].

1.2.2 Pulmonary function tests in preschool and school age children

Preschool children (aged 3 to 6 years) are the challenging cases. These children are gen-
erally too old to sedate for pulmonary function testing (PFT ), as is done with infants,
and measurement of lung function under anaesthesia is neither ethically acceptable nor
physiologically relevant to clinical management. Children in this age group are not able
to voluntarily perform many of the physiological manoeuvres required for the pulmonary
function tests used in older children and adults. They have a short attention span and
are easily distracted. Due to these issues, the children need to be engaged and encouraged
by the operator to participate in the test [2]. There has been a substantial increase in
the number of studies designed to evaluate and apply PFTs to preschool children. Amer-
ican Thoracic Society (ATS)/ European Respiratory Society (ERS) paediatric pulmonary
function test task force published recommendations for PFTs for children aged 3–6 [2].

School age children (more than 6 years old) can perform many of the tests available to
adults and the majority of these children can perform these tests to meet international
quality standards.

1.3 The use of reference ranges to interpret results

The interpretation of many medical observations, including PFTs, relies on the availability
of normative reference data. To recognize the effects of disease from normal variability in
the population and also to interpret the medical measurements, normative reference data
are required. The main reason for having normative reference data is that it can be used to
represent the range of values expected in a healthy population. As a result, it is important
to choose ”healthy” subjects to make the reference population that defines normal.

Since the human respiratory system is growing in childhood, the reference data in this
area depends on growth, therefore the height and weight could be the two main indicators
of reference range. The reference data should have a uniform distribution across the height
or weight range studied [3].
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1.4 Interpreting reference data

To interpret results appropriately, the reference sample should be large enough to ensure
that the extreme limits of “normal” can be estimated with reasonable precision. In order
to be able to interpret the reference ranges, the assumption that 95% of the values will
fall within approximately two standard deviations (mean± 2sd) is needed. Values outside
this range are not necessarily abnormal, these observations are unusual as they lie outside
of the reference range within approximately 95% of the population lies.

In respiratory medicine, the percent predicted [(observed/predicted)*100] is the most
commonly used term to describe an individual spirometric observation, in relation to the
reference population, however percent predicted does not consider the variability of values
around the mean.

A better approach to reporting lung function rather than percent predicted is to express
the results as z-scores (also commonly known as Standard Deviation Score (SDS)). The
z-score is a mathematical combination of the percent predicted and between subject vari-
ability to give a single number that accounts for age, sex, and height related lung function
variability expected within comparable healthy individuals.

In terms of representing a healthy population, 95% of population should fall into ap-
proximately ±1.96 z-scores. z-scores are useful for tracking changes in lung function with
growth or treatment, as they allow comparison of lung function results obtained with
different techniques.

The SDS or z-score of a child’s measurement y is calculated from the L(skewness),
M(Median) and S(coefficient of variation) curves, using values appropriate for the child’s
sex, age and height [4]. The following two equations are relevant depending on the value
of L:

z =
(y/M)L − 1

L× S
, L 6= 0, (1.1)

z =
log(y/M)

S
, L = 0. (1.2)

The LMS method provides a way of obtaining normalized growth centile standards, and
deals quite generally with skewness in the distribution of the measurement like age and
height.

It assumes that the data can be normalized by using a power transformation, which
shrinks one tail and stretches the other therefore removing the skewness. The optimal
power to obtain normality is calculated for each of a series of age groups and the trend
summarized by a smooth (L) curve. Trends in the mean (M) and coefficient of variation (S)
are similarly smoothed. The resulting L, M and S curves contain the information to draw
any centile curve, and to convert measurements (even extreme values) into exact Standard
Deviation Scores [4].

Figure 1.1 illustrates the relationship between centiles and z-scores.
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Figure 1.1: z-score centile comparison plot.
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Chapter 2

Longitudinal Data Analysis

2.1 Basic Concepts of Longitudinal Data Analysis

This chapter covers some of the main characteristics of longitudinal data and the models
designed for these family of data [5]. With longitudinal data, one can measure and compare
the outcomes for each individual over time. This property provides the ability of studying
the changes over time within subjects and changes over time between groups. Statistical
models for this type of data estimates both individual-level regression parameters and
population-level regression parameters.

In longitudinal data the set of measurements on each subject are correlated and mea-
surements on the same subject close in time tend to be more highly correlated than mea-
surements far apart in time and also the variance of longitudinal often changes over time.
These potential patterns of correlation and variation may combine to produce a compli-
cated covariance structure. This covariance structure must be taken into account to draw
valid statistical inferences. Therefore, standard regression and ANOV A models may not
be the appropriate choice since it will produce invalid results because two of the parametric
assumptions (independent observations and equal variances) may not be valid [6].

2.2 Features of Longitudinal Data

As mentioned in the previous section, in a longitudinal study participants are measured
repeatedly at different occasions or times. If the number and timing of the repeated
measurements are the same for all individuals, regardless of whether the occasions of the
measurements are equally or unequally distributed throughout the duration of the study,
this studies refers as being ”balanced” over time. On the other hand it is an almost
inescapable feature of longitudinal studies in the medical sciences, especially in those were
the repeated measurements extend over relatively long duration, that some individuals will
miss their scheduled visit or date of observation, or even the test occasions were different
between the subjects. Therefore the sequence of observation times is no longer equal in all
individuals. This case refers to the data as being ”unbalanced” over time [5].
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2.2.1 Dependence and Correlation

Let Yij indicate the response variable of the ith (i = 1, . . . , N) individual at its jth (j =
1, . . . , n) measurement occasion. The mean or expectation of each response Yij is denoted
by µij = E(Yij). A double letter subscript is used for mean, in order to allow the changes
in mean response to vary between individuals as a function of individual level covariates.

In longitudinal studies, the response of an individual in one occasion is very likely to
be predictive of the response of the same individual at a future test occasion, therefore
the assumption of independent observations in linear regression models is not appropriate
anymore. The conditional variance of Yij is defined as,

σ2
j = E(Yij − E(Yij))

2 = E(Yij − µij)2,

where µij indicates a measure of the location of the center of the distribution of Yij, while
the variance provides us a measure of spread of the value Yij around their conditional mean.
Because of dependency between response variables in a longitudinal study, the conditional
covariance between the responses at two different test occasions, say Yij, Yik, is defined by

σjk = E ((Yij − µij)(Yik − µik)) .

Degree of dependence between the Yij and Yik and also their units of measurements
defines the significance of the covariance. However this is quit difficult to interpret without
comparison to the variability of the two variables. The sign of the covariance shows the
positive or negative dependence between the two variables.

Correlation between Yij and Yik indicates the linear dependence between the two. This
is denoted by:

ρjk =
E ((Yij − µij)(Yik − µik))

σjσk
,

where σj, σk are the conditional standard deviations of Yij and Yik, respectively. In longitu-
dinal study, the repeated measures on the same individual are predicted to be positively cor-
related. When n repeated measures are collected into a vector Yi, the variance-covariance
matrix can be defined as

Cov

 Yi1
...
Yin

 =


V ar(Yi1) Cov(Yi1, Yi2) . . . Cov(Yi1, Yin)

Cov(Yi2, Yi1) V ar(Yi2) . . . Cov(Yi2, Yin)
...

...
. . .

...
Cov(Yin, Yi1) Cov(Yin, Yi2) . . . V ar(Yin)

 =


σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n


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2.2.2 Between-Individual Heterogeneity

In clinical trials, observing heterogeneity among individuals is a norm. Some individuals
consistently respond higher or lower than average. Thus, the variability between individuals
can be seen as a source of the positive correlation of the repeated measurements. It means
for individuals with a high response value at one test occasion, it is expected to have
a high value in the following time points. In many cases, these personal characteristics
may be unobservable, leading to unexplained heterogeneity in the population. Modelling
this unobserved heterogeneity in terms of variance components that describe subject-level
effects is one way to provide the correlation of the repeated responses over time and to
better describe individual differences in the statistical characterization of the observed data.
Between-individual variability can be answered by the introduction of individual-specific
”random effects” (e.g. randomly varying intercept and slopes.) in statistical models for
longitudinal data.

2.2.3 Within-Individual Variation

Many health outcomes of interest in the clinical laboratory can vary over an individual’s
lifetime, simply because of natural biological factors (within-individual biological variabil-
ity). A sequence of repeated measures on any particular individual will vary around some
homoeostatic set points in a random manner. Many of these variables can be thought of
as realization of some biological process or combination of biological processes operating
within the individual that vary over time. This variability is sometimes referred to as the
inherent within-individual biological variability [7].

2.2.4 Errors of Measurements

In addition to heterogeneity in the population that leads to subject-specific deviations
from the overall response pattern, there are also often short-term correlated errors of
measurement. This describes the unexplained variability in the response variable, caused
by the measurement process. For example if simultaneously two measurements taken from
a subject but divided to smaller samples to get analysed separately such as blood test,
the resulting values will be different with the amount of random error. This can clearly
interpret the reason to the unexplained bias from 1 in correlation of two closely measured
variables. Generally, the greater the measurement error, the weaker the correlation between
repeated observations.

2.3 A Model for Longitudinal Data

Often longitudinal data are highly unbalanced. Due to this unbalanced characteristics,
many longitudinal data sets cannot be analysed using multivariate regression techniques.
However in many cases subject specific profiles can be estimated by linear regression func-
tions. First, the vector of repeated measurements for each subject can be summarized by a
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vector of a relatively small number of estimated subject-specific regression coefficients. In
a second stage, multivariate regression techniques can be used to relate these estimates to
known covariates such as treatment, baseline characteristic and so forth. This so-called two
stage analysis [5] will be introduced in this section. Afterwards in section 2.5 the general
linear mixed model as a result of combining the two stage model into one single statistical
model will be over viewed.

2.4 A Two-Stage Analysis

Stage 1

For the ith individual, let the random variable Yij represent the response of interest for
i = 1, · · · , N , j = 1, . . . , ni. Let Yij be measured at time tij and for the ith subject, let
Yi = (Yi1, Yi2, . . . , Yini

) be the vector representation of all repeated measurements.
Assume that Zi is a (ni × q) matrix of known covariates which describes how response

variables for ith subject change over time. In the first stage, we assume that Yi satisfies
the linear regression model [5]

Yi = Ziαi + εi, (2.1)

where, the q-dimensional vector αi = (αi1, . . . , αiq)
′

is the set of unknown subject-specific
regression coefficients, and the residual components εi = (εi1, . . . , εini

)
′

is a ni-dimensional
vector for j = 1, · · · , ni. Let Ini to be the ni-dimensional identity matrix. We often assume
that residuals are independent and normally distributed with mean zero, and covariance
matrix σ2Ini

[5].

Stage 2

After the first step, we use a multivariate regression model to analyse the observed vari-
ability between the subjects, with respect to their subject-specific regression coefficients
αi as

αi = Kiβ + bi, (2.2)

where Ki is a (q × p) matrix of known covariates, and the p-dimensional vector β =
(β1, . . . , βp)

′
is a the unknown regression parameters and the q-dimensional vector of cor-

related random effects is bi = (bi1, . . . , biq) [5].
In order to fit these models in equation (2.2), we first estimate the 1st stage (2.1) and

obtain αi values. Then we come back to estimate β for (2.2).

2.5 The General Linear Mixed Effect Model

If we combine the models from the previous stages by replacing the αi in (2.1) by (2.2),
we have [5]

Yi = Zi(Kiβ + bi) + εi
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2.5 The General Linear Mixed Effect Model

= (ZiKi)β + Zibi + εi

= Xiβ + Zibi + εi. (2.3)

We call this model (2.3) a linear mixed effect model with fixed effects [5]. Note that β
relates to the population as a whole and is the same for all subjects while bi is a specific to
each subject and is assumed to be random (and hence, we often call this random effects).
In this equation Xi = ZiKi is the (ni × p) matrix of known covariates.

2.5.1 Random Effects Covariance Structure

In general a linear mixed effects model is any model which satisfies [8]:
Yi = Xiβ + Zibi + εi,
bi ∼ N(0, D),
εi ∼ N(0,Σi),
b1, . . . , bN , ε1, . . . , εN

(2.4)

This equation reflects the assumptions on the covariance structure of random effect bi and
the measurement error εi. It assumes that random effects bi are independent and normal
distributed with E(bi) = 0 and covariance matrix Cov(bi) = D. D is a positive definite
(q × q) covariance matrix with (i, j) element dij = dji. The error components εi are also
normal distributed with E(εi) = 0 and Cov(εi) = Σi where Σi is a (ni × ni) covariance
matrix depending only on i through its dimension, i.e. the set of unknown parameters in
Σi will not depend upon i. In some cases the assumption on error parameters is limited to

εi ∼ N(0, σ2Ini
), (2.5)

with Ini
(ni × ni) identity matrix. The resulting model is referred to as a conditional

independence model. Therefore, it is assumed that the ni observations of the ith individual
given bi and β are independent from each other and have the same variance σ2. In this
case correlation is generated only by the random effects.

The general form of the model (2.3) can be written as

Y = Xβ +Zb+ ε (2.6)

where Y = (Y1, . . . ,YN )
′

and the design matrix of fix and random effects are:

X =

 X1
...
XN

 Z =

 Z1 0
. . .

0 ZN

 .
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Random effects and residual components have normal distribution of the form(
b
ε

)
∼ N

((
0
0

)
,

(
D 0
0 Σ

))
. (2.7)

The covariance matrix D is a diagonal matrix with dimension (N ∗ q ×N ∗ q) and Σ is
also a diagonal matrix of (N ×N)-dimension with the form

D = diag(D, . . . , D, . . . , D) Σ = diag(Σ1, . . . ,Σi, . . . ,ΣN).

Inference for linear mixed models is usually based on maximum likelihood or restricted
maximum likelihood estimation under the marginal model for Yi, i.e., the multivariate
normal model with mean Xiβ, and covariance Vi = ZiDZ

′
i + Σi [5, 8]. Thus, the two

different views on the linear mixed model, the conditional and marginal model can be
combined. The conditional model is specified by

Yi|bi ∼ N(Xiβ + Zibi,Σi).

It follows from (2.4) that, conditional on the random effect bi, Yi is normally distributed
with mean vector Xiβ + Zibi and with covariance matrix Σi,

E(Yi|bi) = Xiβ + Zibi, Cov(Yi|bi) = Cov(εi) = Σi.

Further, bi is assumed to be normally distributed with mean vector 0 and covariance
matrix D.

Let f(Yi|bi) and f(bi) be the corresponding density functions. The marginal density
function of Yi is then given by

f(Yi) =

∫
f(Yi|bi)f(bi)dbi, (2.8)

which can easily be shown to be the density function of an ni-dimensional normal distri-
bution with mean vector Xiβ and with covariance matrix Vi = ZiDZ

′
i + Σi.

Yi|bi ∼ N(Xiβ, ZiDZ
′
i + Σi),

The marginal mean includes the information about the whole population and not about
each individual. However from the marginal covariance of Yi it can be seen that the
inclusion of random effects induced additional correlation in the model.

2.6 Estimation and Statistical Inference

Different estimation methods for the parameters in model (2.6) have been proposed over
the years [9], but the most commonly used methods today are maximum likelihood (ML)
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and restricted maximum likelihood (REML) [10].

The marginal model is used in a likelihood based approach. The estimation of the fixed
effect parameter β can be performed independently from random effects bi. Inferences
based on the marginal model do not explicitly assume the presence of random effects rep-
resenting the natural heterogeneity between subjects. Although usually the most interest
is in estimating the parameters of the marginal model (fixed effects β and the variance
components in D and in all Σi), it is also useful to calculate the estimates for the random
effects bi, since they reflect how much the subject-specific profile deviates from the overall
average profile. These estimations are needed whenever interest is in prediction of subject
specific evolutions. This section will cover the inference for parameters in the marginal
distribution and in the next sections the estimation method for hierarchical models will be
investigated.

As discussed previously, the general linear mixed model (2.4) implies the marginal model

Yi ∼ N(Xiβ, ZiDZ
′
i + Σi). (2.9)

Let us define α to be the vector of all variance and covariance parameters in ZiDZ
′
i+Σi,

it means α consists of the q(q+1)/2 different elements in D and all parameters in Σi. Then
if θ = (β′,α′)′ denotes the s-dimensional vector of all parameters in the marginal model for
Yi, and let Θ = Θβ×Θα denote the parameter space for θ, with Θβ and Θα the parameter
spaces for the fixed effects and for the variance components respectively. Note Θβ = Rp,
and Θα equals the set of values for α such that D and all Σi are positive (semi-)definite
[5]. The maximum likelihood method can be used to estimate the fixed effect, and the
restricted maximum likelihood method provides an estimate of the covariance parameters
in the model.

2.6.1 Fixed Effects Estimation with Known Covariance Parameter

The classical approach of inference is based on estimators obtained from maximizing the
marginal likelihood function with respect to θ. Considering E(Y i) = Xiβ and Cov(Y i) =
Vi = ZiDZ

′
i + Σi, one can write

LML(θ) =
N∏
i=1

{
(2π)−ni/2|Vi(α)|1/2 exp

(
−1

2
(Yi −Xiβ)′V −1i (α)(Yi −Xiβ)

)}
(2.10)

= (2π)−
N
2 |V (α)|−

1
2 exp{−1

2
(y −Xβ)

′
V −1(α)(y −Xβ)}.

Getting the logarithm of the likelihood function, we have the log-likelihood

lML(θ) = −1

2
log(|V (α)|)− 1

2
(y −Xβ)

′
V −1(α)(y −Xβ). (2.11)
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By taking the derivatives of β and setting them to zero, yields

∂lML(θ)

∂β
= X

′
V −1(α)(y −Xβ) = 0,

which results to
X
′
V −1(α)y = X

′
V −1(α)Xβ.

Since in this caseα is known, the maximum likelihood estimator MLE of β can be obtained
as

β̂(α) =
( N∑
i=1

X ′iWiXi

)−1 N∑
i=1

X ′iWiyi, (2.12)

whereWi equals V −1i and β̂(α) is the best unbiased linear estimator of β which is dependent
on covariance parameter vector α.

2.6.2 Fixed Effects Estimation with unknown Covariance Parameter

If α is not known, but an estimate α̂ is available, we can set V̂i = Vi(α̂) = Ŵi
−1

, and
estimate β by using expression (2.12) in which Wi is replaced by Ŵi.

β̂(α̂) =
( N∑
i=1

X ′iŴiXi

)−1 N∑
i=1

X ′iŴiyi. (2.13)

This estimator is called the empirical best linear unbiased estimator EBLUE [11].

Two frequently used methods for estimating α are maximum likelihood estimation and
restricted maximum likelihood estimation, which will be discussed and compared later.

2.7 Restricted Maximum Likelihood Estimation

In 1971 Patterson and Thompson formally described the Restricted Maximum Likelihood
method [12]. REML estimators maximize the likelihood of the parameters after correcting
for the fixed effects. It is a ML method that accounts for the loss of degrees of freedom
due to fitting fixed effects (which is not the case for traditional ML).

2.7.1 Variance Estimation in Normal Populations

As an introductory example to introduce the REML method, we can go back to parameter
estimation in regression models. A ML estimation for the variance of N observations from
a normal distribution with mean µ and σ2 is

σ̂2 =
∑
i

(Yi − µ)2/N

12



2.7 Restricted Maximum Likelihood Estimation

If we assume that µ is known, then it is an unbiased estimate of σ2. In case that µ is not
known, we replace µ by the sample mean and get

E(σ̂2) =
N − 1

N
σ2. (2.14)

Due to the estimation of µ, the MLE is now biased downward. An unbiased estimate is
easily obtained from expression (2.14), yielding the classical sample variance

S2 =
1

N − 1

N∑
i=1

(Yi − Ȳ )2

One method to obtain directly an unbiased estimator for σ2, is the restricted maximum
likelihood estimation (REML estimation)[12, 13].

Let Y = (Y1, · · · , YN)′ denote the vector of all measurements, and let 1N , be the N -
dimensional vector containing only ones. The distribution of Y is then N(µ1N , σ

2IN)
where, IN denotes theN -dimensional identity matrix. Let A be anyN×(N−1) matrix with
N−1 linearly independent columns orthogonal to the vector 1N. We then define the vector
U of N − 1 so-called error contrasts by U = A′Y which now follows a normal distribution
with mean vector 0 and covariance matrix σ2A′A. Maximizing the corresponding likelihood
with respect to the only parameter σ2 yields

σ̂2 = Y′A(A′A)−1A′Y/(N − 1), (2.15)

which can be shown to be equal to the classical sample variance S2 previously derived
from expression (2.14). Note that any matrix A satisfying the specified conditions leads
to the same estimator for σ2. The resulting estimator for σ2 is often called the restricted
maximum likelihood (REML) estimator since it is restricted to (N−1) error contrasts [14].

2.7.2 Estimation of Residual Variance in Linear Regression

The MLE for the residual variance σ2 in a linear regression model is

σ̂2 = (Y −X(X ′X)−1X ′Y)′(Y −X(X ′X)−1X ′Y)/N, (2.16)

which can be easily shown to be biased downward by a factor (N−p)/N . Similarly, σ2 can
be estimated using a set of error contrasts U = A′Y where A is now any N×(N−p) matrix
with N − p linearly independent columns orthogonal to the columns of the design matrix
X. We then have that U ∼ N(0, σ2A′A), in which σ2 is the only unknown parameter.
Maximizing the corresponding likelihood with respect to σ2 yields

σ̂2 = (Y −X(X ′X)−1X ′Y)′(Y −X(X ′X)−1X ′Y)/(N − p), (2.17)
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which is the mean squared error, unbiased for σ2, and classically used as estimator for the
residual variance in linear regression analysis.

2.7.3 REML Estimation for the Linear Mixed Model

As already been introduced the REML estimator is a maximum likelihood estimator based
on a linearly transformed set of data Y∗ = AY such that distribution of Y does not depend
on β. One way to achieve this is, to take A as a matrix which converts Y to a ordinary
least squares (OLS) residuals,

A = I −X(X
′
X)−1X

′
(2.18)

with Y∗ having a normal distribution with E(Y∗) = 0 and independent from β̂. Since A
is not a full rank matrix, Y has a singular distribution. In order to get a non-singular dis-
tribution one can choose N−p rows of matrix A. It turns out that the resulting estimators
for σ2 and V (α) do not depend on which rows we use. Let A be the matrix defined in
(2.18) and B a N − p matrix, so that BB′ = A and B′B = I where I indicates an Identity
matrix with dimension (N − p)× (N − p) [15, 14].

Let U = B′Y and α to be fixed. The density function of Y is,

f(y) = (2π)−
N
2 |V |−

1
2 exp

(
−1

2
(Y −Xβ)

′
V −1(Y −Xβ)

)
. (2.19)

The MLE estimator of β is the generalized least squares estimator,

β̂ = (X
′
V −1X)−1X

′
V −1y = Gy.

and

f(β̂) = (2π)−
p
2 |X ′V −1X|

1
2 exp

(
−1

2
(β̂ − β)

′
(X

′
V −1X)(β̂ − β)

)
. (2.20)

Now we can show for U = B′Y, E(U) = 0 and U and β̂ are independent

E(U) = B
′
E(Y ) = B

′
Xβ = B

′
BB

′
Xβ = B

′
AXβ,

since B
′
B = IN−p. But we already know BB

′
= A, therefore,

AX = (IN−p −X(X
′
X)−1X

′
)X = X −X(X

′
X)−1X

′
X = 0

hence E(U ) = 0. In order to prove that U and β̂ are independent, we prove that
Cov(U , β̂) = 0. We can write

Cov(U , β̂) = E(U(β̂
′

− β′))
= E(B

′
Y (Y

′
G
′ − β′))
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= B
′
E(Y Y

′
)G
′ −B′E(Y )β

′

= B
′
[
V ar(Y ) + E(Y )E(Y )

′
]
G
′ −B′E(Y )β

′

= B
′
[
V +Xββ

′
X
′
]
G
′ −B′Xββ′

= B
′
V G

′
+B

′
Xββ

′
X
′
G
′ −B′Xββ′

and B
′
V G

′
is,

B
′
V G

′
= B

′
V V −1X(X

′
V −1X)−1

= B
′
X(X

′
V −1X)−1

= B
′
BB

′
X(X

′
V −1X)−1

= B
′
AX(X

′
V −1X)−1 = 0

because B
′
X = B

′
AX = 0 as in proof for E(U) = 0 and also

X
′
G
′
= X

′
[(X

′
V −1X)−1X

′
V −1]

′
= X

′
V −1X(X

′
V −1X)−1 = IN−p.

Therefore now we could show that Cov(U , β̂) = 0, hence U and β̂ are independent.

Further, the probability density function of U, expressed in terms of Y, is proportional
to the following ratio,

f(u) = |X ′X|
1
2
f(y)

f(β̂)
,

where f(y)

f(β̂)
can be obtained by substituting (2.19) and (2.20) [15]. The proportion will be,

f(y)

f(β̂)
= (2π)−

N−p
2 |V |−

1
2 |X ′V −1X|−

1
2 exp

(
−1

2
(Y −Xβ̂)

′
V −1(Y −Xβ̂)

)
.

To obtain the explicit form of this ratio, we can use the following result for the GLM ,

(y −Xβ)
′
V −1(y −Xβ) = (y −Xβ̂)

′
V −1(y −Xβ̂) + (β̂ − β)

′
(X

′
V −1X)(β̂ − β).

Therefore the probability density function of U is,

L(α) = f(y) = (2π)−
N−p

2 |X ′X|
1
2 |V |−

1
2 |X ′V −1X|−

1
2 exp

(
−1

2
(y −Xβ̂)

′
V −1(y −Xβ̂)

)
.

Finally, we can show that the likelihood function equals

L(α) = C
∣∣∣ N∑
i=1

X ′iV
−1(α)Xi

∣∣∣ 12LML(β̂,α), (2.21)

where C is a constant not depending on α, and where LML(β,α) = LML(θ) is the maxi-
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mum likelihood function given by (2.10).
Because |

∑N
i=1X

′
iV
−1(α)Xi| in (2.21) does not depend on β, it follows that the REML

estimators for α and for β can also be found by maximizing the REML likelihood function

LREML(θ) =
∣∣∣ N∑
i=1

X ′iV
−1(α)Xi

∣∣∣ 12LML(θ), (2.22)

with respect to all parameters simultaneously (α and β). The REML estimator, α̂, max-
imizes the log likelihood function,

lREML(α) = −1

2
log |V (α)| − 1

2
log |X ′V −1(α)X| − 1

2
(y −Xβ̂)

′
V (α)−1(y −Xβ̂). (2.23)

The ML estimator (2.11) simply differs from the REML estimator (2.23) by the term
−1

2
log |X ′V −1(α)X|, which is independent from β. Therefore the REML estimator can

be written as

lREML(β,α) = lML(β,α)− 1

2
log |X ′V −1(α)X|.

2.7.4 Justification of REML Estimation

Patterson and Thomson (1971) proved that when inference is based on U instead of Y,
no information about α is lost in the absence of information on β. More precisely, U is
marginally sufficient for α [16, 17]. Further, it has been shown that, from a Bayesian point
of view, using only error contrasts to make inferences on α is equivalent to ignoring any
prior information on β and using all the data to make those inferences [17].

Several methods have been introduced to calculate ML and REML estimates by applying
optimization techniques like EM , Newton−Raphson and Fisher − scoring algo-
rithms. In 1977 the ExpectationMinimization (EM) have been introduced by Laird and
Rubin. The EM algorithm is only used to estimate the random effects bi. The main advan-
tage of the EM algorithm is that the general theory assures that each iteration increases the
likelihood [18] but Laird and Ware (1982) report slow convergence of the estimators of the
variance components, especially when the maximum likelihood is on or near the boundary
of the parameter space. Usually it is better to use Newton-Raphson-based procedures to
estimate all parameters in the model [19].

2.8 Inference for the Marginal Model

2.8.1 Inference for the Fixed Effects

As discussed in previous sections, the vector of fixed effects β is estimated by

β̂(α) =
( N∑
i=1

X ′iV
−1
i Xi

)−1 N∑
i=1

X ′iV
−1
i yi = (X

′
V −1(α)X)−1X

′
V −1(α)y, (2.24)
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in which the unknown vector α of variance components is replaced by its ML or REML
estimate. β̂(α) has a multivariate normal distribution with

E(β̂(α)) = (X
′
V −1(α)X)−1X

′
V −1(α)E(y)

= (X
′
V −1(α)X)−1X

′
V −1(α)Xβ = β,

, and because of
V ar(y) = V (α) (2.25)

V ar(β̂(α)) = (X
′
V −1(α)X)−1X

′
V −1(α)V ar(y)V

′−1(α)X(X
′
V −1(α)X)

′−1

= (X
′
V −1(α)X)−1.
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Chapter 3

Data Management

3.1 Data collection

741 healthy subjects (49% boys) were recruited in various studies using Pulmonary Func-
tion Tests (PFTs) from early months after birth to school age within different projects. In
total 1188 observations had been collected between the years 1998 and 2010. The PFTs
were performed in infants using either RASP (home made) or JAEGER (commercial) de-
vices and for school age children JAEGER. The age range for girls was 7.8 weeks to 11.97
years and in boys it was 3.12 weeks to 11.67 years. Corresponding values for height were
54 to 158 cm in girls and 59 to 151 cm in boys.

3.1.1 Infants

Healthy infants born in the maternity units at the Homerton and University College Hos-
pitals, London were recruited up to their second birthday. These healthy controls were
excluded if they had gestational age (GA)1 less than 37 weeks or birth weight less than 2.5
kg. It has been shown that infants born small for gestational age (SGA) are at higher risk
of wheezing and respiratory disease in early childhood. Furthermore, infants with low birth
weight (less than 2.5 kg) may have reduced airway function in their adulthood [20],[21].
These healthy children were ineligible also if they had a hospitalization history for respira-
tory illnesses or had wheeze or any congenital abnormalities before recruitment. The age
range of these recruited infants is 3.12 weeks to 1.98 years.

3.1.2 Pre school age

Data were collected from 3 to 5 years old children in various research projects. Families of
children recruited above were also invited to return for follow up, when the child was in
its pre school age. These healthy controls were also excluded if they had been hospitalized
for respiratory disease, had doctor diagnosed asthma or were currently consuming any

1Gestational age is the common term used during pregnancy to describe how far along the pregnancy is.
It is measured in weeks, from the first day of the mother’s last menstrual cycle to the date of delivery.
A normal pregnancy can range from 38 to 42 weeks of GA. Infants born before 37 weeks of GA are
considered as preterm. Infants born after 42 weeks of GA are considered postmature.
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asthma medication or other respiratory illnesses. On the day of test, parents were asked
about the family history, including whether the mother currently smoked or smoked during
pregnancy. Any signs of wheeze or cough in the preceding week were also ascertained. The
minimum age of PSA (pre school age) children recruited was 2.73 years and maximum age
5.95 years.

3.1.3 School age

Children from 6 to 12 years were recruited in different research studies and children re-
cruited in infants and preschool age study projects mentioned in sections 3.1.1 and 3.1.2
were invited to return for the follow up as well, when the child was in its school age. The
same selection criteria were applied to these children in terms of their health at time of test
and parental smoking habit at time of test. They have been asked for signs of wheeze or
coughed in the preceding week as well. The age range of SA (school age) children recruited
in this study was 6.04 years to 11.53 years.

3.2 Data selection

Despite recent advances and availability of some spirometric reference data from healthy
black and Hispanic children, there remains a paucity of suitable equations for ethnic groups
other than those of white European descent, especially among young children. As demon-
strated recently, previous attempts to correct for ethnic differences have been over simplis-
tic [22][23], therefore all children from white mothers are presented in this study. In our
study population overall 489 from 741 children were from white mother descent. Applying
birth weight and gestational age health criteria briefly described in previous sections on
these children, the study population ended up with 416 healthy control subjects with total
of 749 number of observations. Initially, scatter plots of each of PFT outcomes were vi-
sually inspected for outliers and data transcription errors. Any unlikely values were coded
as missing and exclusion of an outlier or implausible value was based on agreement with
Dr. Sooky Lum. There were 5 observations with extreme FEFV values which have been
considered as outliers and removed from the data set.
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741 subjects
1188 observations

Children with white mothers 
489 subjects 

878 observations

 Birth weight > 2.5 kg 
Gestational age > 37 

416 subjects 
749 observations

No symptom of asthma or 
wheeze at time of test

    412 subjects 
      727 observations

    5 outliers
 410 subjects

722 observations

Figure 3.1: Flow chart of data cleaning procedure.
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Table 3.1 presents the frequency of repeated measurements within subjects. The first
column represents the number of repeated measurements, the second column is the total
number of measurements obtained per number of tests (e.g. there were 268 measurements
from subjects who attended two times). The last column stands for the fraction of boys in
study population in terms of number of tests (e.g. 48.50 % of subjects who attended two
times were boys). As expected sex was uniformly distributed during the study except for
the few cases with 5 or 6 repeated measurements.

Number of tests Number of observations (%) Boys
1 208 52.4
2 268 48.5
3 123 41.4
4 60 53.3
5 45 11.1
6 18 100.0

Total 722

Table 3.1: Repeated measurements of individuals in data set with all the measurement
instruments present.

Summary of population characteristics at time of first test occasion is given in Table 3.2.

Healthy children n
Total number 410
%Boys 49%
Test age 1.68y(1(m) - 11.97(y))
Gestational age(w) 39.78(37.00 - 43.00)
Birth weight (kg)* 3.35(0.43)
SDS test height* 0.29(1.10)
SDS test weight* 0.02(1.00)
% Maternal smoke in pregnancy 24%

Table 3.2: Details of children at time of first test occasion. In order to make the age range
easier to understand, minimum age is presented in months and maximum age
in years. Information of weight and height presented as *mean(sd).
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3.3 Reference equations and z-score calculations

3.3.1 All age reference equations

A reliable interpretation of pulmonary function test results requires the availability and
use of appropriate reference equations data to help to identify between health and disease.
The ”all age spirometry” study investigated different methods to develop more appropri-
ate reference ranges which could describe the relationship between lung function, height
and age more accurately during childhood. These equations can also be applied on adults
and the transition between childhood and adulthood stages [24]. These equations provide
smoothly changing reference curves during periods of rapid growth and transition to pro-
duce a single reference across a wide age range (5–80yrs) in people of European descent
[23].

Improvements in spirometry measurements techniques have made it possible to also
collect measurements in children as young as 3 years old. Therefore new available predic-
tion equations are extended across the preschool years and are also joined to established
reference equations for older children and adults. Since year 2008, a large collection of
preschool data have been added to this to extend the all age models from 3 to 8 years
without changing the equations in children aged more than 10 years [25]. These equations
describe a multiplicative and allometric relationship, where FEV1, forced vital capacity
(FVC) and forced expiratory flow at 25–75% of FVC (FEF25–75) are proportional to
height raised to the power 2.5 [24] [23]. In addition to extending the outcomes already
reported, reference equations were developed for FEV0.75 for preschool and school age
range. The equations are also available as an Excel add-in and can be downloaded from
http://www.lungfunction.org/index.php.

3.3.2 Infants reference equations

As briefly discussed in the previous sections a reliable interpretation of pulmonary function
tests relies on appropriate reference data, which remain very limited for infants. In the
data collection process for this research study, the Jaeger Master screen Baby Body (v4.67)
equipment and an ”in house” instrument was used to perform partial and raised volume
FEFV manoeuvres in healthy infants.

The need to assess whether selected prediction equations are appropriate for a given
population or specific equipment is well recognized but has rarely been done in infants due
to the time consuming nature of these tests and need for sedation [25].
Measurements obtained from Jaeger Master screen were showing significantly lower value
than published reference data, which could lead to over diagnosis of lung disease in children
with Cystic Fibrosis or other respiratory diseases. Therefore applying the published refer-
ence data for infant’s FEFV manoeuvres are not suitable for measurements collected by
Jaeger Master screen equipment [26]. Application of an appropriate adjustment factor may
minimize such errors until sufficient multi center data are available to construct reliable
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equipment-specific reference ranges in this age group [26].

When using original ”in-house” equipment and software (RASP), published reference
data for both partial and full FEFV manoeuvres appeared to be appropriate for use in
ICH laboratory, as demonstrated by the mean (sd) z-scores for FEFV outcomes which
approximated by 0 and 1 in their local healthy controls [27] [26]. Furthermore data col-
lected from ICH using the homemade RASP system were in close agreement with that from
other centers and were included in the collated dataset for V’maxFRC prediction equa-
tions [27][26]. Given that the mean V’maxFRC z-score for data collected in ICH laboratory
using the RASP system higher than that from our recent Jaeger data, it is likely that the
observed differences reflect differences in hardware and software rather than population
differences or changes in practice. However later, direct comparison of a limited number of
infants, using an identical jacket, suggested that flows were lower when using the Jaeger
system [28], and as further healthy controls were studied using this equipment they became
increasingly aware of a potential bias [26]. Equipment-specific differences in lung function
have been also reported previously in older subjects, [29][30], and it has been suggested
that such discrepancies may be due to device-dependent characteristics such as in the inte-
gration of flow to volume, which, together with body temperature, pressure, and saturated
corrections, may be inaccessible to the end-user. In contrast to adult spirometers, there
are currently no accepted wave forms with which to compare outcome measures for infant
FEFV equipment. Therefore we can not be sure whether the previous ”in-house” systems
or new commercially available devices best approximate the ”truth”. Consequently before
driving an equipment specific adjustment factor, we have chosen to use available prediction
equations adjusted for sex, age and height until enough multi center data collated. Also
we have two options to face the home made system (RASP) measurements discrepancies:
1. To exclude all the data measured by home made instrument from the study. 2. Un-
til further multi-center data can be collated, we can choose to use available prediction
equations.

3.3.3 Population Characteristics

Table 3.3 expresses our data as z-scores applying Jones reference equations (2009) for 3 to
80 years and Jones adjusted equations to height for infants. It shows the mean and standard
error (in brackets) for selected function outcomes. As expected the mean of FEF75 and
FEF25−75 is close to zero, and their standard error is approximately 1. However, we observe
a high discrepancy from zero for mean of FEV0.5 z-score. This is because of the lack of
appropriate reference equations for ”in house” instrument and RASP software which was
discussed comprehensively in the previous section.

If we exclude the data measured by ”in house” instrument which covers only the infants,
we can see the mean of FEV0.5 z-score of the population is now closer to zero and sd near to
1. Table 3.4 represents the study population characteristics at time when values measured
by RASP instrument is excluded.
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3.4 Exploratory data analysis

Controls n %Boys %Girls
Observations 722
Subjects 410 49 51
Current smoking exposure 171 41 59
Test Age † 4.17(1(m)-11.97(y))
SDS weight * 0.059(1.05)
SDS height * 0.39(1.10)
FEV0.5 z-scores * -0.40(1.36)
FEF75 z-scores * 0.18(1.23)
FEV1 z-scores * 0.15(0.95)
FEF25−75 z-scores * 0.03(1.29)
FV C z-scores * -0.07(1.15)

Table 3.3: Population characteristics at time of test, when all observations measured by
Jaeger and Rasp instruments are both present in data set. In order to make
the age range easier to understand, minimum age is presented in months and
maximum age in years. All variables in this table are presented as *mean(sd).

Controls n %Boys %Girls
Observations 366
Subjects 227 45 55
Current smoking exposure 127 35 65
Test Age, y † 4.17(1.6(m)-11.97(y))
SDS weight* 0.26(1.10)
SDS height* 0.45(1.15)
FEV0.5 z-scores * -0.04(0.99)
FEF75 z-scores * -0.06(0.99)
FV C z-scores * 0.19(1.07)
FEF25−75 z-scores * -0.45(0.94)
FEV1 z-scores * 0.15(0.95)

Table 3.4: Population characteristics at time of test covering data measured by Jaeger
instrument. † Median(range),* Mean(sd)

3.4 Exploratory data analysis

First and before starting any statistical analysis, we conduct descriptive exploratory anal-
yses of our data. Exploratory analyses of longitudinal data can reveal general patterns,
provide insight into functional form, and identify individuals whose data do not conform
to the general pattern.
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3.4.1 Visualization of raw FEFV outcomes

Figures 3.2 to 3.6 present the relationship between FEFV outcomes (FEV0.5, FEV0.75,
FEV1, FV C, FEF25−75) and age at time of test. This figures visualize the data when
all measurement instruments (Jaeger and RASP ) are presented in the dataset, i.e. 722
observations. Clearly they indicate a positive linear relation between FEFV variables with
age. Gender can be identified by colours. Evidently there is a gap between 2 to 3 years old
and another gap between 7 to 10 years old which shows lack of collected measurements in
these age ranges. Please see Appendix for more visualization on mean of FEFV outcomes
against test height and test age breakdown by gender and different ethnicity.

3.4.1.1 Visualization of raw FEFV outcomes against test age in years.

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

● ●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●

●

●
●

●
●

●
●

●●●
●●

●

●
●●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●●

●
●●

●

●
●

●
●

●

● ● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●●●●

●

●

●●

●

●

●

●

●

●
●

●●●●●

●

●●
●

●

●●●●
●

●
●●●●●
●
●●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Test age (years)

F
E

V
0.

5 
(l)

●

●

Boys
Girls

Figure 3.2: Scatter plots of raw FEV0.5 against test age in years
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Figure 3.3: Scatter plots of raw FEV0.75 against test age in years
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Figure 3.4: Scatter plots of raw FEV1 against test age in years
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Figure 3.5: Scatter plots of raw FV C against test age in years
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Figure 3.6: Scatter plots of raw FEF25− 75 against test age in years
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3.4 Exploratory data analysis

3.4.1.2 Visualization of raw FEFV outcomes against test height in centimetres.

Figures 3.7 to 3.11 reflect the behaviour of FEFV outcomes against test height. FEFV
outcomes show a curvilinear relationship with increasing height, which reflects changes in
body proportions and shape during adolescence with lung growth lagging behind growth
in standing height.
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Figure 3.7: Scatter plots of raw FEV0.5 against test height in centimetres
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Figure 3.8: Scatter plots of raw FEV0.75 against test height in centimetres
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Figure 3.9: Scatter plots of raw FEV1 against test height in centimetres
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Figure 3.10: Scatter plots of raw FV C against test height in centimetres
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Figure 3.11: Scatter plots of raw FEF25− 75 against test height in centimetres
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3.4.2 Visualization of FEFV z-scores

Fitted z-scores were calculated for each individual in the dataset, applying Jones all age
reference equations 2009 for 3 to 80 years and Jones adjusted equations to height for
infants. Each of these equations are adjusted for sex, height, and age, therefore in theory
the resulting z-scores should be free of any trends in sex, height or age.

Figures 3.12 to 3.20 cover plots of the individual z-scores for each spirometric parameter
against height in centimetres and test age in years. For FEV0.5 measurements the available
reference equations cover only the infancy (up to 2.5 years old) and the available reference
equations to calculate the FEV0.75 z-scores are also covering the age range after infancy,
i.e. preschool and school age only. For this reason figures 3.12 and 3.14 comprise only a
limited age range.

We can see that for FEV0.5, FV C and FEF25−75 there are a few z-scores out of normal
range which their absolute value is out of the normal range (|z−score| > 1.96sd). Referring
to our discussion in section 3.3.2, this clearly shows that the reference equations used to
calculate the z-scores is not adjusted for the home made instrument (RASP) and causing
the bias from mean value of 0 and standard deviation of 1.

This can wrongly guide us to misclassify these infants as subjects with abnormal re-
sults. These discrepancies can be the result of device dependency characteristics which
is inevitable due to the integration of flow to volume together with the BTS correction.
There are currently no accepted wave-forms with which to compare outcome measures for
infant FEFV equipment. We therefore cannot ascertain whether the previous ”in-house”
systems or new commercially available devices best approximate the ”truth”.
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Figure 3.12: Scatter plots of FEV0.5 z-scores in infancy against test age in years. The
available, published reference equations for FEV0.5 only covers the infancy.
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Figure 3.13: Scatter plots of FEV0.5 z-scores in children against test height. The available,
published reference equations for FEV0.5 only covers the infancy.
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Figure 3.14: Scatter plots of FEV 0.75 z-scores in children against test age in years. The
available reference equations are covering preschool and school age children.
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Figure 3.15: Scatter plots of FEV 0.75 z-scores against test height. The available reference
equations are covering preschool and school age children.
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Figure 3.16: Scatter plots of FEV 1 z-scores against test age in years. Since infants are
not able to produce FEV in 1 second, the published and accessible reference
equations for FEV1 are only covering preschool and school age.
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Figure 3.17: Scatter plots of FEV 1 z-scores against test height. Since infants are not able
to produce FEV in 1 second, the published and accessible reference equations
for FEV1 are only covering preschool and school age.
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Figure 3.18: Scatter plots of FV C z-scores against test age in years. Available reference
equations for FV C cover the age range from infancy up to school age.
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Figure 3.19: Scatter plots of FV C z-scores against test height. Available reference equa-
tions for FV C cover the age range from infancy up to school age.
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Figure 3.20: Scatter plots of FEF25−75 z-scores against test age in years. Available refer-
ence equations for FEF25−75 cover the age range from infancy up to school
age.
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Figure 3.21: Scatter plots of FEF25−75 z-scores against test height. Available reference
equations for FEF25−75 cover the age range from infancy up to school age.
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3.4.3 Visualization of FEFV z-scores without observations measured
by RASP

Figures 3.22 to 3.31 cover the individual z-scores for each spirometric parameter against
height in centimetres and test age in years, when the home made instrument measurements
(RASP) are excluded. Data were available from 227 subjects with 366 observations. We
saw in the previous section that the reference equations used to express the measurements
as z-scores were not adjusted for in-house instrument and it was causing a bias from
normal range which was leading to misclassification of some of the subjects as not normal
or unhealthy children. In this section the z-scores are visualized without the data measured
by home made instrument (RASP) involved in the analysis. The data measured by the
Jaeger Master screen instrument are within the normal range. However, there seem to be
some downward shift for ages > 1 year.
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Figure 3.22: Scatter plots of FEV0.5 z-scores in infancy against test age in years. The
available reference equations for FEV0.5 only cover the infancy.
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Figure 3.23: Scatter plots of FEV0.5 z-scores in children against test height. The available
reference equations for FEV0.5 only cover the infancy.
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Figure 3.24: Scatter plots of FEV0.75 z-scores in children against test age in years. The
available reference equations are covering preschool and school age children.
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Figure 3.25: Scatter plots of FEV0.75 z-scores against test height. The available reference
equations are covering preschool and school age children.
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Figure 3.26: Scatter plots of FEV1 z-scores against test age in years.
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Figure 3.27: Scatter plots of FEV1 z-scores against test height.
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Figure 3.28: Scatter plots of FV C z-scores against test age in years.
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Figure 3.29: Scatter plots of FV C z-scores against test height.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

● ●

●●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●●

0 2 4 6 8 10 12

−
4

−
2

0
2

4

Test age (years)

F
E

F
25

75
 z

−
sc

or
es

●

●

Boys
Girls

Figure 3.30: Scatter plots of FEF25−75 z-scores against test age in years. Available refer-
ence equations for FEF25−75 cover the age range from infancy up to school
age
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Figure 3.31: Scatter plots of FEF25−75 z-scores against test height.
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3.4.4 Group means over time

The following box-plots display differences between age groups. The spacings between the
different parts of the box helps to indicate the degrees of dispersion and skewness in data,
and identify outliers. Yellow box plots display the population when both measurements
by RASP and Jaeger are involved and the blue ones are representing the data measured
by Jaeger only. We were expecting to have the mean of z-scores to be around 0, which
regarding to these figures and also to results presented in Table 3.4 is not true for some
variables like zFEV0.5 and zFEF25−75.

(a) (b)

Figure 3.32: FEV0.5 z-scores cover only infancy. As we can see in both plots we have
discrepancy from mean 0, specifically around age 2 years old. After exclusion
of RASP from data we do not see the outliers any more. The upper quartile
and lower quartile is less dispersed than the yellow box-plot and median seems
to deviate from zero, however referring to table 3.4, overall mean is shifted
towards 0.
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(a) (b)

Figure 3.33: Box plots of z-scores of zFEV0.75 with respect to test age in years. FEV0.75 z-
scores cover preschool age up to school age. However we can see a gap between
7 to 10 years old, which can be seen as a large gap in Figure 3.3. Since infants
are not able to produce zFEV0.75, presence or absence of measurements from
RASP did not affect the zFEV0.75 values.
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(a) (b)

Figure 3.34: Box plots of z-scores of zFEV1 with respect to test age in years. FEV1 z-
scores cover preschool age up to school age. We can see a gap between 7 to
10 years old, which is also displayed as large gap in Figure 3.4. There is no
change in FEV1 z-scores before and after deletion of RASP data. The reason
is that infants are not able to produce FEV1, therefore exclusion did not have
any effect on FEV1 z-scores.
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(a) (b)

Figure 3.35: Box plots of z-scores of zFV C with respect to test age in years. The upper
quartile and lower quartile is less dispersed after the exclusion of the RASP,
in comparison to the yellow box-plots. However in both plots we see a down
shift from zero in two years old infants.
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(a) (b)

Figure 3.36: Box plots of z-scores of zFEF25−75 with respect to test age in years. Exclusion
of RASP measurements from data had a significant effect on FEF25−75 z-
scores and as we can see the median have a down shift from zero in infancy
population.
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3.4.5 Individual profile plots

In previous sections an over all insight of collected data is presented. Since the nature of
the data set is longitudinal, looking at how each person changes over time would help to
see how much variation a person have had during his/her growth. The individual profile
plots of the z-scores changes of our test subjects are displayed in Figure 3.37 to Figure 3.41.
Since all the subjects did not recruited in test at the same time or at the same age, the time
of the first occasion is set to be zero in order to define a baseline time. All other subsequent
test occasions are calculated with respect to this baseline time.Most of the infants had two
visits within 1 year of time, while only five of them followed up the test after 1 year.

Time in months
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0
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Figure 3.37: Profile plots of individual’s FEV0.5 z-scores against time (in months).
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Figure 3.38: Profile plots of individual’s FEV0.75 z-scores against time (in months).
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Figure 3.39: Profile plots of individual’s FEV1 z-scores against time (in months).
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Figure 3.40: Profile plots of individual’s FV C z-scores against time (in months).
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Figure 3.41: Profile plots of individual’s FEF25−75 z-scores against time (in months).
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Chapter 4

FEFV Relationships

4.1 Relationships of FEFV outcomes from infancy to
pre-school and school age.

Infants and pre-school children normally have large airways in relation to their lung volume
[31], thus they empty their lungs more rapidly than older children and adults do. There-
fore the forced expiratory volume in one second (FEV1) measurement may be difficult to
achieve. Even when FEV1 is available its clinical value remains questionable because it
is often roughly equal to the forced vital capacity (FVC). In this case it may be more
appropriate to report forced expiratory volume of 3/4 of a second (FEV0.75), or forced
expiratory volume of half a second (FEV0.5) as a means for distinguishing abnormality
in this age group [32]. The idea of using FEV0.75 in young children was first introduced
by Polgar et al. and Cogswell et al. in the 1970s. Subsequently it has been shown that
FEV0.75 provides similar information to FEV1. For the same reasons, infant studies use
FEV0.5, which may prove to be a useful outcome measure in pre-school children and may
facilitate longitudinal assessment from birth.

In this study we are interested to find the degree of agreement between measures in
infancy and measures in pre-school age or school age. Evaluation of change in FEV
outcomes between infancy and pre-school will be compared by the paired t test, as well
as with a Pearson correlation comparing the former and the later values.

Another method to assess the agreement between two methods using repeated measure-
ments are Bland-Altman plots, which in the following section is briefly introduced.

4.1.1 Bland-Altman plots

A visualization method for assessing the agreement between repeated measurements are
so called Bland-Altman plots. For example, one might compare two scales this way, or
two devices for measuring particulate matter [33]. The Bland-Altman plot is more widely
known as the Tukey Mean-Difference Plot. Agreement between two methods of clinical
measurement can be quantified using the differences between observations made using the
two methods on the same subjects. The 95% limits of agreement, estimated by mean
difference ±1.96 standard deviation of the differences, provide an interval within which

53



Chapter 4 FEFV Relationships

95% of differences between measurements by the two methods are expected to lie. The
results show the bias, or the average of the differences. The bias is computed as the
value determined by one method minus the value determined by the other method. If
one method is sometimes higher, and sometimes the other method is higher, the average
of the differences will be close to zero. If it is not close to zero, this indicates that the
two assay methods are producing different results [34]. The standard deviation value is
used to calculate the limits of agreement, computed from equation: (d−1.96sd, d+1.96sd).

To interpret Bland-Altman plots one should answer three questions from the result:

• Of which order is the average difference between methods (the bias)? However this
is more a clinical question than a statistical one.

• Is there a trend? Does the difference between methods tend to get larger (or smaller)
as the average increases?

• Is the variability consistent across the graph? Does the scatter around the bias line
get larger as the average gets higher?

4.2 In case of unavailability of FEV1, is FEV0.75 or FEV0.5

an alternative?

As already discussed in previous sections, producing the full expiratory volume in 1 sec-
ond using RV RTC techniques is not feasible in infancy. However although in pre-school
age, children can perform reliable spirometry but because of having short expiratory time,
FEV1 can not always be determined, therefore FEV0.5 and FEV0.75 will be proposed as
alternative measures.
The opportunity for comparing measurements made in infancy with those in later child-
hood have been limited, and type of investigations at different ages may not be strictly
comparable.

4.2.1 Does FEV0.5 in infancy relate to FEV0.75 in pre-school age?

A comparison between FEV0.5, measured during infancy, and FEV0.75, measured during
the pre-school years, is illustrated by a line plot in Figure 4.1. In total 45 children had data
for both test occasions in infancy and pre-school age. Pearson correlation test indicates
no significant correlation between these two measurements with a p–value of 0.08 and
Pearson’s correlation coefficient of r = 0.17.

Paired t-test is driven to compare the change in mean between infancy and pre-school
age. p–value of 0.001 and the 95% confidence interval of (−0.73, −0.17) show a significant
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change in mean between these two growth periods. Since the confidence interval does not
contain 0 it implies that there is a statistically significant change between FEV0.5 and
FEV0.75 in infancy through pre-school age. The estimated mean difference was 0.45.

Figure 4.1 shows that 8 (32.6%) infants have z-score values outside the LLN (-1.96 z-
scores) and ULN (1.96 z-scores) range. However for 2 subjects FEV0.75 falls out of the
normal range in their pre-school age.
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Figure 4.1: Longitudinal values for time forced expiratory volumes: FEV0.5 (z-score) mea-
sured during infancy and FEV0.75 (z score) measured during pre-school years.
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Chapter 4 FEFV Relationships

4.2.1.1 Bland-Altman analysis

The Bland-Altman plot of the difference between the outcomes of FEV0.5 z-scores and
FEV0.75 z-scores against their mean is presented in Figure 4.2. As we can see the difference
between the outcomes tend to get slightly larger as the average increases. Each point in
this plot corresponds to one of the lines in Figure 4.1.

Individual FEV0.5 z-scores for infants (0 - 2.5 years) were calculated using the raised
volume technique (RTC) and the FEV0.75 z-scores in pre-school age by using pre-school
pulmonary function testing (PFT). These were compared using Bland-Altman analysis to
identify any systematic biases and differences between the two.
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Figure 4.2: Bland-Altman plot

Comparison of the z-scores demonstrated a systematic bias where FEV0.5 z-scores were
on average 0.45 higher than the FEV0.75 z-scores in pre-school. There is no obvious rela-
tion between the difference and the mean. Under these circumstances we can summarise
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4.2 In case of unavailability of FEV1, is FEV0.75 or FEV0.5 an alternative?

the lack of agreement by calculating the bias, estimated by the mean difference d and the
standard deviation of the differences sd for pairs of FEV0.5 and FEV0.75 measurements. If
there is a consistent bias we can adjust for it by subtracting d from the new method. In
our data the mean difference is -0.45 and sd is 1.62. We would expect most of the differ-
ences to lie between d− 1.96sd and d+ 1.96sd. If the differences are normally distributed
(Gaussian), 95% of the differences will lie between these limits (or, more precisely, between
d− 1.96sd and d+ 1.96sd) presented in the plot by solid black lines.
If provided differences within d ± 1.96sd would not be clinically important, we could use
the two measurement methods interchangeably. We shall refer to these as the ”limits of
agreement”.

UCL = d+ 1.96sd = 2.54 LCL = d− 1.96sd = −3.45 (4.1)

4.2.2 Does FEV0.5 in infancy relate to FEV1 in pre-school age?

In total 37 children had data for both test occasions in infancy and pre-school age. The
Pearson correlation test shows a slightly positive correlation between FEV0.5 in infancy
and FEV1 in pre-school age with correlation coefficient r = 0.23 and a p–value of 0.03. A
comparison between FEV 0.5 measured during infancy and FEV 1 measured during the
pre-school years is illustrated as a line plot in Figure 4.3.

The paired t-test is used to establish if the correlation coefficient is significantly different
from zero, and, hence that there is evidence of an association between the two variables.
The null hypothesis of true difference in means is equal to 0 is rejected with a p–value of
0.00003. The estimated mean difference of 0.65 shows a significant change when infancy
and pre-school evaluations were compared. Figure 4.3 indicates that 11 subjects having
FEV1 z-scores inside the normal limit range, had FEV0.5 z-scores outside of the LLN and
ULN.
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Figure 4.3: Longitudinal values for timed forced expiratory volumes: FEV0.5 (z-score)
measured during infancy and FEV1 (z-score) measured during pre-school years.

4.2.2.1 Bland-Altman analysis

Bland-Altman analysis is used to identify any systematic differences between the two val-
ues. Comparison of the z-scores demonstrated a systematic bias where the FEV0.5 z-scores
in infancy were on average 0.65 z-scores higher than the FEV1 in pre-school age. Figure
4.4 displays that these differences tend to get slightly larger as the average increases. We
would expect most of the differences to lie between d − 1.96sd and d + 1.96sd. The limit
of agreements is plotted by solid lines.

UCL = d+ 1.96sd = 2.02 LCL = d− 1.96sd = −3.33 (4.2)
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Figure 4.4: Bland-Altman plot of FEV0.5 z-score in infancy and FEV1 z-score in pre-school
age.
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Chapter 4 FEFV Relationships

4.2.3 Does FEF25−75 in infancy relate to FEF25−75 in school age?

In total 23 children had FEF25−75 recorded in both age groups. Pearson correlation test
indicates no significant correlation between these two outcomes with r = 0.18 and p–value
of 0.23. The result of paired t test indicates the estimated mean difference of 0.42. This
shows a significant change when infancy and school age evaluations are compared.
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4.2 In case of unavailability of FEV1, is FEV0.75 or FEV0.5 an alternative?

Figure 4.5 displays the Bland-Altman plot of comparing FEF25−75 in infancy with
FEF25−75 in school age. There was an obvious systematic bias in FEF25−75 z-scores,
the mean differences increased as the mean z-score increased with the mean difference of
0.45, and 95% limits of agreement (-4.16, 0.96).
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Figure 4.5: Bland-Altman plot of FEF25−75 z-score in infancy and FEF25−75 z-score in
school age
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Chapter 5

Between and Within Subjects
Variabilities

5.1 Variation among individuals

In chapter 4 the behaviour of the Forced Expiratory Volumes and Forced Expira-
tory Flows is visually studied. In chapter 5 the relationships of these volumes and flows
is investigated between infancy to pre-school and school age to explore between and within
subjects variability. Between subject variability is a measure of the extent to which sub-
jects, on average, perform differently from each other and within subject variability is the
measure of average change for an individual in his/her growth path.

As discussed in chapter 3 a particular set of techniques which is useful to study individ-
ual’s behaviour are multilevel models (Random intercept or random slope models). These
models allow each individual to have a different intercept and a different slope, so it allows
the explanatory variable to have different effect for each group (individuals).

Yij = β0 + β1Xij + u0j + u1j + eij

eij ∼ N(0, σ2
e)[

u0j
u1j

]
∼ N(0,Ωu), Ωu =

[
σ2
0 σ01

σ10 σ2
1

]
β̂0 and β̂1 are estimates of the fixed effect which are the estimations of intercept and slopes
of overall population. σ2

e is the level one variance which is the residual variance across all
occasions of measurements for individuals. In the variance matrix, σ2

0 is the variance in
intercept between individuals and σ2

1 is the variance in slope between individuals and at the
end σ01 indicates the covariance between intercept and slope. In the following we present
the results of fitting a linear mixed effect model (random intercept model) on z-scores of
FEFV outcomes with the help of the lme4 package in R and MLwiN software developed
in University of Bristol (http://www.bristol.ac.uk/cmm/software/mlwin/).

Graphical methods can also be used to explore the magnitude of person-to-person vari-
ability in outcomes over time. One approach is to create a panel of individual line plots
for each study participant. These plots can then be inspected for both the amount of
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Chapter 5 Between and Within Subjects Variabilities

variation from subject-to-subject in the overall ”level” of the response, and the magnitude
of variation in the ”trend” over time in the response.

We are interested to investigate between subject variability for the measure of the extent
to which subjects, on average, perform differently from each other irrespective of the ex-
periment condition. The outputs of fitting a random intercept model to data is presented
in next section. Since FEFV outcomes are expressed as z-scores and been adjusted in
terms of test age, height and gender, we would expect to get the estimation of β0 and β1
to be approximately zero but also showing a high inter-subject variability.
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5.1 Variation among individuals

5.1.1 Z-score of Forced Expiratory Volume in 0.5 second (FEV0.5)

Due to space limitations, the results of the model is presented in tables and the output
of the software is skipped and plots are presenting the trajectories of model with Jaeger
instrument data.

Parameter Estimation(SE)
(all instruments, n = 273) (Jaeger, n = 54)

Fixed Effects
Initial status Intercept(β0) -0.252(0.074)* -0.080(0.103)

Rate of change Slope(β1) -0.028(0.012)* -0.094(0.014)*

Variance Comp.

Level 1 Within Person(σ2
e) 0.890(0.098)* 0.460(0.100)*

Level 2 Between Person(σ2
0) 0.680(0.127)* 0.342(0.131)*

In initial status

Goodness-of-fit
IGLS Deviance
−2× loglikelihood 1317.105 479.727

Table 5.1: Fitting multilevel model for change in z-scores of FEV0.5. Results are presented
as estimation of the parameters model and significant results are showed by *.
Standard errors are in brackets.

Interpretation of outcome:
1. Having all observations measured by Jaeger and RASP involved in the analysis, the
overall intercept and slope estimations are −0.25 and −0.03 respectively. To check the
significance for each of these estimations, we can easily perform |estimate| − 2 × sde. If
this is higher than zero (i.e. the estimate is more than two standard errors away from
zero), it is very unlikely that the true value is zero, i.e. it is statistically significantly non
zero. As a result we can see the estimated intercept and variance for the model having all
instruments involved are significantly different from zero. This is again a confirmation for
the lack of device adjusted reference equations that leads to bias the expected estimation.
The estimation of σ2

e , the level one residual variance across all occasions of measurements
(within subject variability) is 0.89, this means individual’s FEV0.5 z-scores varies signifi-
cantly during their infancy with standard error of 0.11. σ2

0 the variance between individuals
(between subjects variability) is significant and estimated as 0.68 with standard error 0.13.

65



Chapter 5 Between and Within Subjects Variabilities

2. Having only observations measured by Jaeger involved in the analysis, the estimate of
the overall intercept and slope are −0.08 and −0.09 respectively. They are statistically not
significantly different from zero. However the within individual variance is significantly non
zero and estimated as 0.46 with standard error 0.10. The between individuals variability
is estimated as 0.34 with standard error 0.13.

To make it easier to explore we posit a linear change trajectory on data and define a
base line time. Time of the first test occasion set to be zero and then the time difference
between consecutive tests is calculated in month scale. In Figure 5.1 we can see the
predicted individual lines from a random slope model and the pattern of the individuals
summary lines.

Figure 5.1: Random slope model predictions versus consecutive time difference between
tests in months.
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5.1 Variation among individuals

5.1.2 Z-score of Forced Expiratory Volume in 75 second (zFEV0.75)

Table 5.2 shows results of fitting a random slope model to FEV0.75 z-scores.

Parameter Estimation(SE)
(all instruments, n = 113) (Jaeger, n = 100)

Fixed Effects
Initial status Intercept(β0) -0.049(0.114) -0.049(0.114)

Rate of change Slope(β1) 0.001(0.003) 0.001(0.003)

Variance Comp.

Level 1 Within Person(σ2
e) 0.573(0.101)* 0.740(0.118)*

Level 2 Between Person(σ2
0) 0.382(0.180)* 0.611(0.191)*

In initial status

In rate of change(σ2
1 ) -0.008(0.006) -0.01(0.006)

Goodness-of-fit
IGLS Deviance
−2× loglikelihood 574.562 564.78

Table 5.2: Results of fitting a multilevel model for change in z-scores of FEV0.75, results in
this table are presented as estimation of the parameters and standard error in
brackets. * represents statistical significance.

Interpretation of outcome:
1. Involving all observations measured by Jaeger and RASP in the analysis, the overall
estimations of intercept and slope are −0.05 and −0.001 respectively. They are not statis-
tically significant different from zero. The level one residual variance across all occasions
of measurements σ2

e is estimated as 0.57 with standard error of 0.10. The estimation of
σ2
e shows a significant change within the individual’s FEV0.75 z-scores in their pre school

and school age. Besides σ2
0, the variance in intercept between individuals shows a sig-

nificant difference between individuals. It is estimated as 0.38 with standard error 0.18
and furthermore the estimation of the between individual variance in rate of change (slope)
is not significantly different from zero and is estimated as −0.008 with standard error 0.006.

2. Involving only observations measured by Jaeger in the analysis, the estimation of
overall intercept and slope are −0.05 and 0.001 respectively. This shows a non significant
difference from zero similar to the case when all instruments were presented. The within
individual variance is estimated as 0.74 with standard error 0.12 and analogue to the
previous condition FEV0.75 z-scores of individuals change significantly in their preschool
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and school age. The estimated value of between individuals variability in intercept shows
a significant difference and is estimated as 0.61 with standard error 0.19. However the
estimation of the between individual variance in rate of change (slope) does not show a
significance difference between individuals; it is −0.011 with standard error 0.006.
Figure 5.2 shows the predicted individual lines from a random slope model.

Figure 5.2: Random slope model predictions versus consecutive time difference between
tests in months.
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5.1 Variation among individuals

5.1.3 Z-score of Forced Expiratory Volume in 1 second (zFEV1)

Table 5.3 shows the results of summary table of fitting a random slope model to zFEV1.

Parameter Estimation(SE)
(all instruments, n = 103) (Jaeger, n = 90)

Fixed Effects
Initial status Intercept(β0 ) 0.161(0.099) 0.16(0.100)

Rate of change Slope( β1) -0.002(0.003) -0.001(0.003)

Variance Comp.

Level 1 Within Person(σ2
e) 0.7113(0.11)* 0.511(0.093)*

Level 2 Between Person(σ2
0 ) 0.190(0.134) 0.470(0.159)*

In initial status

In rate of change(σ2
1 ) -0.011(0.005)* -0.016(0.005)*

Goodness-of-fit
IGLS Deviance
−2× loglikelihood 490.738 479.72

Table 5.3: Results of fitting a multilevel model for change in z-scores of FEV1, results in this
table are presented as estimation and standard error in brackets. * represents
statistical significance.

Interpretation of outcome:
1. Having all observations measured by Jaeger and RASP in the analysis, the estimations
of the overall intercept and slope are 0.16 and −0.002 respectively. This means the esti-
mated intercept and slope are not significantly different from zero. The estimated value
for σ2

e , the level one residual variance across all occasions of measurements is 0.71 with
standard error 0.11, which presents a significant change in FEV1 z-scores from preschool to
school age within individuals. The estimation of σ2

0 the variance in intercept between indi-
viduals is not significantly different from zero and is estimated as 0.19 with standard error
0.13. Estimation of the between individual variance in rate of change (slope) is −0.011
and standard error 0.005.

2. Having only observations measured by Jaeger in the analysis, the estimations of over-
all intercept and slope is 0.16 and -0.001 respectively that implies there is not a significant
difference to zero for the overall intercept and slope estimation. In this case the within
individual variance estimation (0.51) with standard error (0.09) shows a significant change
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in individual’s FEV1 z-scores from preschool to school age. The between individuals vari-
ability in intercept is estimated as 0.47 with standard error 0.15 and the estimation of the
between individual variance in rate of change (slope) is −0.016 with standard error 0.005.
Plot 5.3 shows predicted individual lines from a random slope model.

Figure 5.3: Random slope model predictions versus consecutive time difference between
tests in months.
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5.1 Variation among individuals

5.1.4 Z-score of Forced Expiratory Flow 25-75% (zFEF25−75)

Table 5.4 shows results of the summary table of fitting a random slope model to zFEF25−75.

Parameter Estimation(SE)
(all instruments, n = 347) (Jaeger, n = 149)

Fixed Effects
Initial status Intercept(β0) -0.280(0.066)* -0.78(0.077)*

Rate of change Slope(β1) 0.004(0.004) 0.004(0.004)

Variance Comp.

Level 1 Within Person(σ2
e) 0.881(0.078)* 0.644(0.083)*

Level 2 Between Person(σ2
0) 0.840(0.083)* 0.418(0.100)*

In initial status

In rate of change(σ2
1) -0.009(0.003)* -

Goodness-of-fit
IGLS Deviance
−2× loglikelihood 2084.365 915.49

Table 5.4: Results of fitting a multilevel model for change in z-scores of FEF25−75, results
in this table are presented as estimation and standard error in brackets. *
represents statistical significance.

Interpretation of outcome:
1. When all observations measured by Jaeger and RASP are involved in the analysis, the
overall intercept and slope estimations are −0.28 and 0.004 respectively. The intercept is
significantly different from zero. However the estimated slope is not statistically signifi-
cant. Similar to the rest of the analysis individuals show a significant variability in their
FEF25−75 z-scores in their growth path with the estimated value of 0.88 with standard
error 0.07. σ2

0 the variance in intercept between individuals is estimated as 0.84 with stan-
dard error 0.13. Estimation of the between individual variance in rate of change (slope)
is −0.009 with standard error 0.003. Both estimations for variance in intercept and slope
between individuals show a significant difference between subjects.

2. Analogue to the first analysis when involving only observations measured by Jaeger,
the estimated value for overall intercept and slope shows that intercept is statistically sig-
nificant, however the estimated value for slope is not significant. The within individual
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variance estimation is 0.64 with standard error 0.08 that means overall individuals have
a significant change in their FEF25−75 z-scores from their infancy to school age. The be-
tween individuals variability in intercept is estimated as 0.41 with standard error 0.10 and
the estimation of the between individual variance in rate of change (slope) is −0.009 with
standard error 0.003.

Figure 5.4 presents the plot of predicted individual lines of the fitted model.

Figure 5.4: Random slope model predictions versus consecutive time difference between
tests in months.
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5.1.5 Z-score of Forced Vital Capacity (zFV C)

Table 5.5 shows results of summary table of fitting a random slope model to zFV C.

Parameter Estimation(SE)
(all instruments, n = 348) (Jaeger, n = 153)

Fixed Effects
Initial status Intercept(β0) -0.241(0.057)* 0.058(0.074)

Rate of change Slope(β1) 0.006(0.002)* -0.001(0.002)

Variance Comp.

Level 1 Within Person(σ2
ε ) 0.930(0.079)* 0.82(0.106)*

Level 2 Between Person(σ2
0) 0.461(0.099)* 0.400(0.139)*

In initial status

In rate of change(σ2
1) -0.003(0.002) -0.013(0.004)*

Goodness-of-fit
IGLS deviance
−2× loglikelihood 2019.350 960.43

Table 5.5: Results of fitting multilevel model for change in z-scores of FV C, results in this
table are presented as estimation and standard error in brackets. * represents
statistical significance.

Interpretation of outcome:
1. Involving all observations measured by Jaeger and RASP in the analysis, the overall
intercept estimation and slope are −0.24 and 0.006 respectively. σ2

ε , the level one residual
variance across all occasions of measurements is 0.93 with standard error of 0.07. σ2

0 the
variance in intercept between individuals is estimated as 0.46 with standard error 0.09.
Estimation of the between individual variance in rate of change (slope) is −0.003 and stan-
dard error 0.002.

2. Having only observations measured by Jaeger in the analysis we get the estimation
of overall intercept and slope as 0.06 and −0.001 respectively. The within individual vari-
ance estimation is 0.82 with standard error 0.11. The between individuals variability in
intercept is estimated as 0.40 with standard error 0.14 and the estimation of the between
individual variance in rate of change (slope) is −0.01 and standard error 0.004.
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Figure 5.5 shows the plot of predicted individual lines of the fitted model.

Figure 5.5: Random slope model predictions versus consecutive time difference between
tests in months.
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Chapter 6

Conclusions and Future Works

In this final chapter, we will conclude by describing the progress made towards the goals
we described in abstract. We suggest some future research directions that could provide
the next steps along the path to more precise and applicable techniques.

6.1 Conclusions

In this study, we investigated the change in Forced Expiratory Volumes from infancy to
school age and also the within and between subjects variability. In order to accomplish
this goal, we used only the measurements of white European descent babies as the Jones
reference equations (2009) used in this study are not adjusted for other ethnics. However
we adjusted the data to age, gender and height. In the next steps we cleaned the data to
get all the healthy babies.

Plots of calculated z-scores of FEV0.5 in infants, showed that the z-scores of FEV ′s
measured by the home-made instrument RASP are lower than z-scores of FEV ′s measured
by Jaeger. In this phase of study we decided to continue the research with two cases: 1.
All measurements of both instruments were involved 2. Only measurements of Jaeger
instrument involved.

We applied the paired t-test and Bland-Altman plots to this data in order to analyse
the agreement between FEV0.5 in infancy with FEV0.75 and FEV1 in preschool and also
FEF25−75 in infancy to school age. The results of the paired t-test showed a significant
change in mean between these two growth periods and the Bland-Altman method cal-
culated the mean difference and its standard deviation. These analyses on this data set
showed a significant variation from infancy to preschool or school age which make tracking
the children from their infancy measures not applicable.

Additionally we were interested to find the intra subject variability for various respiratory
parameters in healthy children. Applying multilevel regression analysis using R package
”lme4” and also using the software ”MLwin” we estimated the between and within individu-
als variation from their first measured FEV to their last measurements. The results of this
analysis showed that individuals have a statistically significant variation within themselves
and also there is also a significant change and difference between the individuals as well.
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6.2 Future works

Following the investigations described in this thesis, a number of projects could be followed:
1. Collection of additional data from each individual: one severe limitation we were

facing along this study was lack of enough data for each child to help us completely un-
derstand how the individuals change along their growth.

2. Further refinement of reference equations: since there are organizations such as Por-
tex unit that are applying their own home-made instrument to measure the lungs forced
expiratory flows specially in infancy, a research to find better reference equations adjusted
for different instrument is a key step for all other spirometry studies that involve tracking
the infants from their early ages to their preschool and school age.

3. Overcoming ethnic differences: a 3D approach to body physique for predicting lung
function in children. This is a new on going research project at Portex unit. The study
aims to determine which measurements of body physique, such as sitting height, chest
depth, chest width or fat free mass, are the most predictive of lung function in children.
This will help create reference ranges for paediatric spirometry that are based on body
physique rather than ethnicity, allowing earlier diagnosis and treatment of lung disease in
all children.
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Plot .1 to .8 are presenting the change in mean of FEFV outcomes for different ethnicity.
Only white children are studied in this thesis, due to lack of generalized reference equations
applied to different ethnicities, an overall view of change in mean for different ethnicity
would be beneficial for future research. Numbers on the lines show the size of population
in each age or height group.

Figure .1: Mean plot of raw FEV0.5 against test age in years for different ethnicity.

Plot .9 to .16 are presenting the change in mean of FEFV outcomes for boys and girls
against age and height. Numbers on the lines show the size of population in each age or
height group.
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Figure .2: Mean plot of raw FEV0.75 against test age in years for different ethnicity.

Figure .3: Mean plot of raw FEV1 against test age in years for different ethnicity.
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Figure .4: Mean plot of raw FV C against test age in years for different ethnicity.

Figure .5: Mean plot of raw FEV0.5 against test height in centimetres for different ethnicity.
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Figure .6: Mean plot of raw FEV0.75 against test height in centimetres for different
ethnicity.

Figure .7: Mean plot of raw FEV1 against test height in centimetres for different ethnicity.
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Figure .8: Mean plot of raw FV C against test height in centimetres for different ethnicity.

Figure .9: Mean plot of raw FEV0.5 against test age in years for different gender.
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Figure .10: Mean plot of raw FEV0.75 against test age in years for different gender.

Figure .11: Mean plot of raw FEV1 against test age in years for different gender.
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Figure .12: Mean plot of raw FV C against test age in years for different gender.

Figure .13: Mean plot of raw FEV0.5 against test height in centimetres for different gender.
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Figure .14: Mean plot of raw FEV0.75 against test height in centimetres for different gender.

Figure .15: Mean plot of raw FEV1 against test height in centimetres for different gender.
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Figure .16: Mean plot of raw FV C against test height in centimetres for different gender.
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