
Masterarbeit

Design and Integration of an adaptive
Information Retrieval System for MS

SharePoint

Julia Gebetsberger

————————————–

Institut für Technische Informatik
Technische Universität Graz

Begutachter: Dipl.-Ing.Dr. techn.Christian Josef Kreiner
Betreuer: Univ.-Ass. Dipl.-Ing. Bakk.techn. Philipp Maria Glatz

Graz, im September 2011

Kurzfassung

Das Produkt SharePoint Customer Service Desk der Firma Solvion information man-
agement GmbH & Co KG dient zur Unterstützung von Service-Mitarbeitern. Das Auffind-
en von Lösungen von einem bestehenden System erweist sich jedoch als schwierig und in-
effizient. Um dieses Problem zu lösen wird ein System benötigt, das automatisch Lösungs-
vorschläge für neu eintreffende Anfragen ermittelt. Ebenfalls stellt das Zuweisen von An-
fragen zu Service-Mitarbeitern ein Problem dar, da dies diese selber oder eine dritte Person
erledigen muss. Dabei gibt es keine Unterstützung oder Information darüber, welche Prob-
lemstellungen für einen Service-Mitarbeiter geeignet sind. Das System sollte von der immer
wachsenden Wissensbasis profitieren und somit adaptiv sein.

Bekannte Methoden zum Lösen dieser Aufgabenstellung sind Information Retrieval
Systeme und Klassifizierungsalgorithmen. Information Retrieval Systeme ermöglichen es
aus einer großen Datenmenge bestehende Information zu extrahieren. Ein Qualitätsmaß
dieser Systeme sind Parameter wie Prediction und Recall. Klassifizierungsalgorithmen
stammen aus dem Bereich der künstlichen Intellegenz und machen es möglich Kategorien
bzw. Klassen zu bestimmten Objekten zuzuweisen.

Die Aufgabe meiner Masterarbeit besteht darin ein System zu verwirklichen, dass
die oben beschriebenen Probleme löst. Dazu wurde eine Literaturrecherche vollzogen und
zwei Implementationen durchgeführt. Eine in Matlab, um die diversen Algorithmen zu
evaluieren und schließlich eine für Microsoft SharePoint 2010, die in den bestehenden
SharePoint Customer Service Desk integriert werden kann.

In meiner Arbeit findet man einen guten Überblick über Information Retrieval Sys-
teme und diverse Klassifizierungsalgorithmen, die sich zum Verarbeiten von Texten eignen.
Ebenso findet man eine kurze Beschreibung zu Mircorosoft SharePoint und dessen Suchal-
gorithmus. Ein Schwerpunkt dieser Arbeit bezieht sich auf vektorbasierende und proba-
bilistische Modelle. Außerdem wird eine fertige funktionierende Lösung gezeigt, die sehr
generell ist und somit für verschiedene Einsatzbereichen verwendet werden kann.

1

Abstract

The company Solvion information management GmbH & Co KG developed a product
called SharePoint Customer Service Desk . The problem exists that the finding of existing
solutions in an existing system is difficult and inefficient. The problem requests should
be assigned to a specific support assistant. Currently this must be done by the support
assistant itself or by a third person. These two different problems should be solved by a new
system, which should be able to aid the support assistants by searching existing solutions
of problem requests and to assign these requests to specific assistants. The performance
of the system should enhance by the growing knowledge base.

Information Retrieval Systems and classification algorithms are convenient methods to
solve such problems. Classification algorithms are from the area of artificial intelligence and
make it possible to assign classes or categories to specific objects. Information Retrieval
Systems are used to extract information from a huge amount of data. Parameters like
precision and recall are used to evaluate such systems.

My exercise is to develop a system that solves the above described problems. There-
fore algorithms that are appropriate are searched, described and evaluated. A Matlab
implementation is developed for that evaluation and finally the system is implemented for
Microsoft SharePoint 2010 and integrated within the SharePoint Customer Service Desk.

This master thesis gives you a good overview of Information Retrieval Systems and
different classification algorithms, that are appropriate for text processing. Probabilistic
and vector based models are focused. Microsoft SharePoint and its search service are also
mentioned. The implemented systems are described and the final system shows a very
generic realisation, which can be used for different areas.

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Danksagung

Diese Diplomarbeit wurde im Studienjahr 2010/11 am Institut für Technische Informatik
an der Technischen Universität Graz durchgeführt.

Die Arbeit ist mit der Kooperation der Firma Solvion information management GmbH
& Co KG enstanden und ich möchte mich hiermit bei DI(FH) Stefan Schnuderl für seine
Idee und Unterstützung bedanken. Ebenfalls gilt der Dank meinen Betreuern Dipl.-Ing.
Bakk.techn. Philipp Maria Glatz und Dipl.-Ing. Dr.techn. Christian Josef Kreiner.

Besonders bedanken möchte ich mich bei meiner ganzen Familie insbesonders bei
meinen Eltern Andreas und Mag. Andrea Gebetsberger, die mir das Studium ermöglichten
und mich finianziell und seelisch dabei unterstützten. Weiters möchte ich mich besonders
bei meiner Schwester Mag. Jennifer Gebetsberger für die Unterstüzung bei der Korrektur
und Tips bei der Masterarbeit bedanken. Ebenfalls gilt der Dank meinem Freund Werner
Arnus für das Verständnis und die Unterstützung während des Studiums.

Widmen möchte ich die Arbeit Maria Arnus, die Großmutter meines Freundes, die
leider während dem Entstehen dieser Masterarbeit verstorben ist.

Graz, im Monat Jahr Name des Diplomanden

4

Contents

1 Introduction 11
1.1 History of Information Retrieval Systems 11
1.2 Motivation of this Work . 11
1.3 Challenges of an Information Retrieval System 12
1.4 Goals of the Thesis . 12
1.5 Outline . 13

2 Related Work 14
2.1 Recommender Systems . 14

2.1.1 Collaboration-based Recommender System 15
2.1.2 Content-based Recommender System 15

2.2 Information Retrieval System . 16
2.2.1 Document Collection Characteristics 16
2.2.2 Vector Space Model . 17
2.2.3 Boolean Information Retrieval . 20
2.2.4 Probabilistic Information Retrieval 20
2.2.5 Inverted Index . 23
2.2.6 Evaluation . 24

2.3 Feedback . 27
2.3.1 Rocchio Relevance Feedback . 27
2.3.2 Probabilistic Relevance Feedback . 28

2.4 Document Classification . 29
2.4.1 Naive Bayes Classifier . 30
2.4.2 K Nearest Neighbour Classification 30
2.4.3 Subspace Model . 30
2.4.4 Decision Tree Classifier . 31
2.4.5 Rocchio Algorithm . 32
2.4.6 Support Vector Machines . 33
2.4.7 Combination of Multiple Classifiers 34
2.4.8 Boosting . 34
2.4.9 Evaluation . 34

2.5 Text Preparation . 35
2.5.1 Keyword Extraction . 36
2.5.2 Feature Reduction . 37

2.6 Microsoft SharePoint . 39

5

2.6.1 Webpart . 39
2.6.2 Features . 40
2.6.3 Event Receiver . 42
2.6.4 Timer Job . 42

2.7 Search Engines . 42
2.7.1 Google Search . 42
2.7.2 Google Scholar . 43
2.7.3 Apache Lucene . 43
2.7.4 Microsoft SharePoint Search 2010 44

3 Design of the Implemented Systems 46
3.1 Context . 46
3.2 Evaluation System . 47

3.2.1 Data . 47
3.2.2 Similarity Evaluation . 49
3.2.3 Classification Evaluation . 51

3.3 SharePoint Information Retrieval System 51
3.3.1 Components . 51
3.3.2 Infrastructure . 52
3.3.3 Content Processor . 55
3.3.4 Trainer . 55
3.3.5 Similarity Measurement . 56
3.3.6 Classifier . 59

4 Implementation 61
4.1 Sparse Vector . 63
4.2 Example . 65
4.3 Installation of the Implemented System . 66

5 Evaluation Results 68
5.1 Similarity Measurement Evaluation . 68

5.1.1 Text Preparation . 68
5.1.2 Weighting Schemas . 69
5.1.3 Dimension Reduction . 70
5.1.4 Similarity Algorithms . 73
5.1.5 Summary . 73

5.2 Classification Results . 74
5.2.1 N-Grams . 74
5.2.2 Weighting Schemas . 74
5.2.3 Dimension Reduction . 75
5.2.4 Algorithms . 76
5.2.5 Summary . 77

5.3 Summary . 77
5.4 Time Evaluation . 77

5.4.1 Search . 81
5.4.2 Classification . 81

6

6 Conclusion 82

A List of Abbreviations 84

Literaturverzeichnis 85

7

List of Figures

1.1 SharePoint Customer Service Desk . 12

2.1 Components of an Information Retrieval System [Got09] 16
2.2 Diagram of Zipf’s Law . 17
2.3 Vector Space Model . 18
2.4 Cosine Similarity . 19
2.5 Posting Lists . 24
2.6 Relevance Feedback . 28
2.7 K Nearest Neighbour Classification . 31
2.8 Decision Tree Classification . 32
2.9 Rocchio Classification . 33
2.10 Support Vector Machine Classification . 34
2.11 Multiclass SVM Classification . 35
2.12 Microsoft Sharepoint architecture . 40
2.13 Microsoft Sharepoint Site Settings . 41
2.14 Feature Receiver Life Cycle . 41
2.15 Google Website . 43
2.16 Ranking Model XML . 45

3.1 Dictionary Size . 47
3.2 Components of the Evaluation System . 47
3.3 Methods to Evaluate . 48
3.4 Evaluation Files . 48
3.5 Generated Microsoft Result File . 49
3.6 Similarity Calculation Evaluation System 50
3.7 Classification Calculation Evaluation System 51
3.8 Components of the Information Retrieval System within Sharepoint 52
3.9 SharePoint Information Retrieval System Overview 52
3.10 Feature Scopes of the different Components 53
3.11 Database Entity-Relationship Model . 54
3.12 Trainer Setting Page . 56
3.13 Suggestion Webpart with Implicit Feedback 57
3.14 Suggestion Webpart with Explicit Feedback 58
3.15 Suggestion Webpart Properties . 58
3.16 Classifier Settings . 60

4.1 Implemented Components . 62

8

4.2 Class Diagram of the DAL . 63
4.3 Class Diagram of the Logic . 64

5.1 Dimension Reduction Graph . 71
5.2 Similarity Algorithm Comparison . 72
5.3 Dimension Reduction Graph of Rocchio Classification 76
5.4 Weighting Calculation Comparison . 78

9

List of Tables

2.1 Different Similarity Measurements . 19
2.2 Confusion Matrix . 25
2.3 Distance Calculation via Similarity Function 32
2.4 Similarity via Distance Calculation . 32

3.1 Mean Word Count and Dispersion of the Test Set 46

4.1 Words Table . 65
4.2 Content Table . 65
4.3 Vector Table . 66
4.4 Similarity Matrix . 66

5.1 Evaluation Datasets . 68
5.2 Hunspell Evaluation . 69
5.3 N- Grams Evaluation for the dataset c . 69
5.4 N- Grams Evaluation for the dataset a . 69
5.5 Weighting Evaluation . 70
5.6 Weighting Evaluation of Local Weighting Schemas 70
5.7 Weighting Evaluation MAP of Global Weighting Schemas 71
5.8 Dimension Reduction Evaluation of Cosine Similarity 71
5.9 Similarity Algorithms Evaluation . 73
5.10 Top Similarity Evaluation Results . 73
5.11 Top Similarity Evaluation Results . 74
5.12 N-Grams Classification Results of Dataset b 74
5.13 Best Classification Weighting Schemas Results 75
5.14 Global Weighting Evaluation of the Classification 75
5.15 Local Weighting Evaluation of the Classification 75
5.16 Dimension Reduction Evaluation of Rocchio Cosine Classification 76
5.17 Classification Algorithms Results . 76
5.18 Best Classification Results . 77
5.19 SVM Classification Results . 78
5.20 Dimension Reduction Evaluation of Rocchio Cosine Classification 78

10

Chapter 1

Introduction

1.1 History of Information Retrieval Systems

Since around the year 3000BC humans started to write down information. With the help of
the first printing press of Gutenberg in the year 1450AD and later with the first invention
of the computer, the amount of information increased vigorously. In 1945 the idea of in-
formation retrieval was born and till 1950 methods to enable text searches were described.
1957 H.P. Luhn showed the idea of using words for indexing documents. To retrieve docu-
ments the overlap was calculated. In 1960 Gerard Salton described the idea of the SMART
(System for the Mechanical Analysis and Retrieval of Text) system. This system defines
different weighting schemes. Also the Cranfield paradigm to evaluate information retrieval
systems was defined by Cyril Cleverdon. Between 1970 and 1980 different developers im-
plemented various models for document retrieval based on the knowledge of 1960 [Sin01].
In the year 1990 and the inventing of the world wide web information retrieval systems
became very important[Got09]. Parallel to these search engines, recommender systems got
developed, which were using information about the users to improve the results. [TH01] To
be able to evaluate all these different realisationsm, the text retrieval Conference TREC
was established in 1992 [Sin01].

1.2 Motivation of this Work

The product SharePoint Customer Service Desk by company Solvion information man-
agement GmbH & Co KG helps support assistants to administrate customer requests.
Customers are able to communicate through different communication channels, like the
telephone or e-mail, with the support assistant. For each new incoming problem a ticket
is created. The communication between the assigned support assistant and the caller is
saved via actions, so the history for every problem is stored and can help to solve new
incoming problems, which are similar to the past ones. A further part of the SharePoint
Customer Service Desk is to enable an incident manager to verify the efficiency of the
support assistance by means of expressive statistics.

The information for solving requests is growing with each enquiry. At the beginning
this is a great advantage for each support assistant, but later this information overload
possibly leads to time lacks. Reviewing different requests to find an appropriate solution

11

CHAPTER 1. INTRODUCTION 12

Figure 1.1: SharePoint Customer Service Desk Overview

wastes a lot of time. Also for new support assistants it is very hard to get along with such
an overloaded and complex system. An intelligent system should be developed to solve
this problem, which is able to find solutions automatically and which assists the support
agents.

1.3 Challenges of an Information Retrieval System

All problems can be described with the help of their tickets and the corresponding actions,
which have a title and body field, containing textual information. Based on that, it should
be possible to classify problems and to retrieve potential solutions. The system should
have following characteristics:

Adaptiveness: the quality of the system should enhance over time

Efficiency: the solutions and the classification should compute fast

Autonomy: the users should not have to set much configurations

General applicability: the system should be as generic as possible to allow it also for
other applications and machine learning parts of the system should not tend to
overfitting

1.4 Goals of the Thesis

The goal of this master thesis is to develop a system to enhance the functionality and us-
ability of the product SharePoint Customer Service Desk of Solvion information manage-
ment GmbH & Co KG. By the implementation of the system the characteristics described
above should be considered. Following goals should be achieved:

CHAPTER 1. INTRODUCTION 13

Classification: A request should automatically be categorised. This should help the sup-
port assistants to find easier solutions for a problem and reduce the complexity of
the system. With the help of this mechanism also support assistants can be assigned
automatically to tickets.

Recommendation: Each request adds proposals for appropriate solutions. These could
then be used to recommend solutions for following requests.

Feedback Function: The retrieval quality of the system can enhance by applying a
feedback function.

Microsoft SharePoint Integration: The system should be integrated completely with-
in Microsoft SharePoint 2010.

1.5 Outline

In the next chapter related work, literature which was studied to build the system, is
described. This includes a description of recommender and information retrieval systems.
Furthermore, algorithms to perform a classification and suggestion for text based items are
shown. Some popular information retrieval systems, as well as methods for the evaluation
of them, are described.

The successive chapter contains the evaluation of the different algorithms, which were
described. This includes the quality of the returned classes accordingly to the suggestion
and the run time behaviours of these algorithms. The design of the evaluation system and
the data, which have been used, are described.

In the chapter Implementation the chosen algorithms and the design of our system
are shown. Also rough comparisons to existing information retrieval systems, which are
described in the related work, are made.

Finally this thesis includes a conclusion, that contains a discussion of completeness
and possible future work.

Chapter 2

Related Work

Nowadays systems, like information retrieval or recommendation systems, are used to find
informations. These systems are able to filter, search or suggest information. The difference
between recommender and information retrieval systems is, that recommender systems are
using user specific information [Bur02]. The experience of other users could also be used
to determine recommendations [TH01].

In this chapter, recommender systems are described at first. After that information
retrieval systems and the different models, that are used to realise them, are shown. The
inverted index is explained, which is used to enhance performance. Implicit and explicit
feedback mechanisms are described, that give the user the chance to influence the be-
haviour of the systems. Classification algorithms for documents are explained and evalu-
ation methods are shown.

2.1 Recommender Systems

The independent research of recommender systems arose in the mid-1990s [AT05].
Items can be recommended by splitting them into two categories. One category defines

the users like, and the other one, that he or she does not like the item. [PB07].
A very popular recommender system is the book recommendation system of Amazon.

Favourite categories are retrieved by the purchasing behaviour of the user [PB07]. Rec-
ommendations are also used within Amazon to personalise the web site to interests of the
users. The algorithms, which have been developed, can handle a large volume of user data
[LSY03]. In the paper of [RV97] a lot of other recommender systems give an overview of
the field of applications.

Different types of recommender systems are known [TH01, AT05, Bur02]:

� Content-based systems: recommend items because of the user history.

� Recommendation support systems: helps people to share recommendations.

� Social data mining system: mining information from computational records of
social activity.

� Collaborative filtering systems: use the information of the preferences of other
users to recommend items to a specific one.

14

CHAPTER 2. RELATED WORK 15

� Demographic-based systems: Demographic information is used for the recom-
mendation.

� Utility-based systems: The features of an item are used to suggest other ones

� Knowledge based systems: With the help of a description of the user needs, items
are recommended.

� Hybrid systems: are combination of different recommendation systems, to profit
from the advantages of each of them.

Items are described with the help of vectors. A matrix which is created out of these
is called vector space model. Each entry contains a feedback value, which can be binary,
numeric or nominal [MS06]. The item vectors can include calculated term weights or
also feedback information. With the help of an utility function, which is based on the
comparison of the document vectors, a value, that represents the similarity, called relevance
ranking, can be computed. Sorted by this ranking a result list of recommended items can
be established [AT05].

Machine learning techniques, like clustering, decision trees and neuronal networks are
also an alternative [AT05, Bur02].

For binary recommender systems the goal is to classify items with the help of a function,
based on the feature vectors, to determine the utility for a user [MS06].

2.1.1 Collaboration-based Recommender System

A collaboration-based recommendation system determines, if an item should be recom-
mended or not for a specific user, with the help of the information about the item ratings
of all other users. For this calculation users with a similar rating scheme are obtained.
Based on their ratings for a particular item, the recommendation for an other user can be
estimated. These ratings can be binary or not. Binary means that an item is suggested or
not, otherwise a ranking value, which indicates the relevance, is calculated. The problems
of such kind of recommendation systems are following [Bur02]:

New user problem: A new user has not rated items and no other users, which have a
similar rating scheme, can be obtained.

New item problem: New items are not recommended because they never have been
rated before.

Sparsity: In recommendation system the rating information of each item is used. Users
in the most cases can hardly rate all existing items and so for a lot of items no
information is available. This case is called sparsity.

2.1.2 Content-based Recommender System

Content-based recommender systems use the history, for example the preferred items from
the past of a user, to suggest new items. Information retrieval systems are often very similar
to this kind of recommendation. Collected user information is used to improve the results
[AT05].

CHAPTER 2. RELATED WORK 16

2.2 Information Retrieval System

Information retrieval systems are used, as the name says, to retrieve information out of a
large collection of data. These data can be available in the web or be a controlled document
collection [SL98].

With the help of a user defined query, comparisons between all existing items can be
made in order to retrieve similar ones. A drawback of that is, that the user has to know
what he or she is interested in, to be able to build an appropriate query. This means that
he or she has to know appropriate keywords, which occur in the documents, designated to
obtain. Query expansions, that means to adding automatically keywords to a query, could
help to obtain a better recall. That keywords can be generated with the help of thesauri,
domain models or feedback informations [GLWW00, Got09].

In Figure 2.1 the important parts of information retrieval systems are shown. For a
defined query of the user, relevant documents have to be retrieved. Therefore a given
document collection has to be processed and represented to be able to calculate matching
between the different documents. To improve the information retrieval process, the user
has the possibility to evaluate the obtained result with the help of a feedback function
[Got09].

Figure 2.1: Components of an Information Retrieval System [Got09]

2.2.1 Document Collection Characteristics

Document collections are called corpus. With the help of Heap’s and Zipf’s law funda-
mental characteristics of document collections can be estimated. Heap’s law says that the
vocabulary size M of a specific corpus grows as shown in Equation 2.1.

M ≈ k ∗ T b (2.1)

T is the amount of tokens in the whole corpus. Tokens are the words, which are extracted
of the documents. Numbers, names and so on are often filtered before. The parameters k

CHAPTER 2. RELATED WORK 17

and b are two constants, which have to be chosen and which are dependent of the corpus. b
is often set approximately to 0,5 and k is a value between 30 and 100. Zipf’s law describes
the occurrence of the terms ti in the whole corpus. Terms are words, that represent the
vocabulary. Therefore the terms have to be sorted by their frequency in the corpus cf .
The corpus frequency is the count of documents in which the term ti occurs. So t1, for
i = 1, is the term with the highest corpus frequency and t2 has the second highest cf and
so on. The Equation 2.2 shows Zipf’s law.

cf(ti) ∗ i ≈ const (2.2)

These two laws imply, that the more documents are added, the less new terms are ap-
pended to the vocabulary. Furthermore they show that terms, which occur very often or
infrequently, have less information value for a document. In Figure 2.2 two bound cfmin

and cfmax are shown. Words occurring very often are called stopwords and can be removed
in most cases. Infrequent words are mostly not deleted for giving the user the opportunity
to search items with the help of these unique ones. Stopwords are below the cfmin bound.
This bound can be defined via a specific list of words, which should be removed, or via a
given threshold [Got09].

Figure 2.2: Diagram of Zipf’s Law, the blue line shows the frequency of a specific word in
the corpus and the red line the expressiveness of it

2.2.2 Vector Space Model

Documents can be represented as vectors. For each entry weights are calculated, which
are indicating the importance of each term in a given document. So a m × n matrix is
created, where m is the vocabulary size and n the amount of items (see Figure 2.3).

These are for example the TF–IDF weights. TF–IDF stands for Term Frequency–
Inverse Document Frequency. A retrieval function calculates the similarity between the
documents via their vectors. The higher the similarity the higher is the relevance for the
given query [Got09].

CHAPTER 2. RELATED WORK 18

Figure 2.3: Vector Space Model, for each word and text item a weight is set [Got09]

Weightings

To build a vector space model different weighting schemes can be used. Three different
factors are relevant for its computation:

� Global weighting gi

� Local weighting li

� Normalisation factor ni

The global weight indicates the importance of a specific term in the corpus. Local weights
are representing the relevance in a specific text and the normalisation factor is used to nor-
malise the vector lengths. The final weight wi is computed with the help of a multiplication
of these three factors (see Equation 2.3) [Got09].

wi = gi ∗ li ∗ ni (2.3)

The so called SMART system contains a definition of possible weightings [Got09, ZG05].
A very common scheme is the TD–IDF weighting. The frequency of the occurrence is
determined in a specific text and the entire collection. In Equation 2.4 the calculation of
the weight for the term i is shown. tfi stands for the number of appearances of the term
in the document. n is the amount of all documents and fi is the number of documents in
which the term occurs [MS06].

wi = tfi ∗ log(
n

dfi
) (2.4)

If a term occurs several times in a document it is more relevant and so the weight wi

is higher. This value is called TF, what stands for term frequency. Terms, which occur in
the corpus very often have a small information value for a specific document. Because of
that, the weights are smaller if a word occurs often in the whole document collection. This
value is the inverse document frequency, short IDF [MS06].

Different types of TF–IDF measurements exist. To weaken terms with a high term
frequency following Equation 2.5 can be used. The highest term frequency of the document
is used for normalisation [Got09].

wlocal(tj , di) = α+ (1− α) ∗ tfdi(tj)

max k = 1, ...,Mtfdi(tk)
(2.5)

CHAPTER 2. RELATED WORK 19

Similarity Measurements

To determine if two documents are similar their vectors are compared via similarity mea-
surements. For instance the cosine similarity for two documents, which are described via
their vector ⃗vec1 and ⃗vec2, can be computed (Equation 2.6).

cos(⃗vec1, ⃗vec2) =
⃗vec1

T ∗ ⃗vec2
∥ ⃗vec1∥ ∗ ∥ ⃗vec2∥

(2.6)

A great advantage of the cosine similarity is its independence of the vector length.
This means that the vector space model must not be normalised. In Figure 2.4 an example
for the cosine similarity for two dimensions is shown. Two dimensions mean that in the
document collection only two words occur, word1 and word2. On the x–axis the weight
for the word1 is assigned and on the y–axis for the word2. The ⃗vec1 shown in Figure 2.4
indicates that the weight for the word1 is larger as for word2 . For instance that can be
if the word1 occurs more often in a specific document. The word weights for the ⃗vec2 are
vice versa. The cosine value can be between minus one and plus one. The number one
means that the angle between the two vectors is null.

Figure 2.4: Cosine Similarity Example

Further similarity equations for the document vectors di with the words wi can be
found in Table 2.1 [Got09].

Pseudo-Cosine Similarity simpseudo(d⃗i, d⃗k) =
∑M

j=1 w
[j]
i ∗w[j]

k∑M
j=1 w

[j]
i ∗

∑M
j=1 w

[j]
k

Dice Similarity simdice(d⃗i, d⃗k) =
2∗

∑M
j=1 w

[j]
i ∗w[j]

k∑M
j=1 w

[j]
i +

∑M
j=1 w

[j]
k

Jaccard Similarity simJaccard(d⃗i, d⃗k) =
∑M

j=1 w
[j]
i ∗w[j]

k∑M
j=1 w

[j]
i +

∑M
j=1 w

[j]
k −

∑M
j=1 w

[j]
i ∗w[j]

k

Overlap Similarity simOverlap(d⃗i, d⃗k) =
∑M

j=1 min(w
[j]
i ,w

[j]
k)

min(
∑M

j=1 w
[j]
i ,

∑M
j=1 w

[j]
k)

Table 2.1: Different Similarity Measurements [Got09]

CHAPTER 2. RELATED WORK 20

2.2.3 Boolean Information Retrieval

Boolean Information Retrieval systems are using a vector space model. For each term of
the vocabulary V an entry exists that indicates if a specific term exists in the document
or not. V is the set of all terms of the document collection. The user has to define a query
with a set of keywords. Also boolean operations like OR, AND, etc. can be added to the
query to define for instance if a keyword must be contained in the searched document or
not. The result of a query is a sub set of the documents of a certain document collection,
which fits the given query. The retrieval function looks like ρ : D × Q ⇒ {0, 1}. D is
the document collection and Q the set of all queries. The retrieval function means that a
document fulfills the query or not [Got09].

2.2.4 Probabilistic Information Retrieval

Probabilistic information retrieval calculates a probability for each document, which in-
dicates the relevance. In this section the binary independence model is described more
precisely to understand the functionality of such kind of systems [Got09].

Binary Independence Model

The probabilistic information retrieval only considers the terms, which describe the query
and the document for the information retrieval (same as boolean information retrieval).
These ones have directly an importance for the obtained result. The result of such an
information retrieval system is also only the information if a document is relevant or
not. It is also assumed that the terms are independent to each other. The probability
P (R = 1|d⃗, q⃗) (Equation 2.7), if a document d⃗ for the given query q⃗ is relevant, R=1 or
not R=0, has to be determined. The document and query are represented as vectors.

P (R = 1|d⃗, q⃗) = P (d⃗|R = 1, q⃗) ∗ P (R = 1|q⃗)
P (d⃗|q⃗)

(2.7)

The result is a sorted list, where the most relevant document with the highest P (R = 1|d⃗, q⃗)
is on top. To consider also the information of the irrelevant documents the so called chance
O can be used. The chance of an event A can be written as Equation 2.8. P (A) is the
probability that the event A occurs and P (Ā), the probability that this event not occurs.
The chance has the advantage that some computations become irrelevant and so it is
easier to compute. Also it can be used for the ranking because if P (A1) > P (A2) also
O(A1) > O(A1).

O(A) =
P (A)

P (Ā)
(2.8)

This value also can be used to rank the documents via their relevance. Equation 2.9 shows
the calculation of the chance for the relevance of the document.

O(R = 1|d⃗, q⃗) = P (R = 1|d⃗, q⃗)
P (R = 0|d⃗, q⃗)

=
P (d⃗|R = 1, q⃗) ∗ P (R = 1|q⃗)
P (d⃗|R = 0, q⃗) ∗ P (R = 0|q⃗)

(2.9)

CHAPTER 2. RELATED WORK 21

The second part of the equation is the chance O(R = 1|q⃗), which is not important for
the ranking, because it is a constant.

O(R = 1|q⃗) = P (R = 1|q⃗)
P (R = 0|q⃗)

(2.10)

The probability P (d⃗|R = 1, q⃗), shown in Equation 2.11, can be written as multiplication
of the conditional probabilities P (ti|R = 1, q⃗) of terms ti, which occur in the document d.

P (d⃗|R = 1, q⃗) = P (t1|R = 1, q⃗) ∗ ... ∗ P (tk|R = 1, q⃗) (2.11)

To consider also the information about all terms of the vocabulary, which are not occurring
in the document, the probability P (d⃗|R = 1, q⃗) can be written as Equation 2.12 and also as
Equation 2.13. P (d⃗|R = 0, q⃗) is shown in Equation 2.14. pti is the conditional probability
for a term ti, if the document is relevant for the given query q⃗. uti is the conditional
probability, if the document is not relevant for the given query.

P (d⃗|R = 1, q⃗) =
∏

iϵT (d)

P (ti = 1|R = 1, q⃗) ∗
∏

i̸ϵT (d)

P (ti = 0|R = 1, q⃗) (2.12)

P (d⃗|R = 1, q⃗) =
∏

iϵT (d)

pti ∗
∏

i ̸ϵT (d)

(1− pti)) (2.13)

P (d⃗|R = 0, q⃗) =
∏

iϵT (d)

uti ∗
∏

i ̸ϵT (d)

(1− uti) (2.14)

So Equation 2.10 can be written as Equation 2.15.

O(R = 1|q⃗) =
∏

iϵT (d) pti ∗
∏

i̸ϵT (d)(1− pti)∏
iϵT (d) uti ∗

∏
i̸ϵT (d)(1− uti)

∗O(R = 1|q⃗) (2.15)

In Equation 2.15 every word of the document is considered (iϵT (d)). This is not re-
quired because it can be assumed that the probability for terms, which do not occur in the
query is the same. If a term does not occur and if it is relevant or not, the probabilities
pti and uti are equal. The new Equation 2.16 considers that.

O(R = 1|q⃗) =
∏

iϵT (q)
∩

T (d)

pti
uti

∗
∏

iϵT (q) T (d)

(1− pti)

(1− uti)
∗O(R = 1|q⃗) (2.16)

With the help of Equation 2.17 the chance can be written as Equation 2.18.∏
iϵT (q) T (d)

(1− pti)

(1− uti)
=

∏
iϵT (q))

(1− pti)

(1− uti)
∗

∏
iϵT (q)

∩
T (d)

(1− uti)

(1− pti)
(2.17)

O(R = 1|q⃗) =
∏

iϵT (q)
∩

T (d)

pti ∗ (1− uti)

uti ∗ 1− pti)
∗

∏
iϵT (q))

(1− pti)

(1− uti)
∗O(R = 1|q⃗) (2.18)

CHAPTER 2. RELATED WORK 22

The second product in Equation 2.18 and O(R = 1|q⃗) can be ignored in the retrieval
function, because they are constant. To make the computation more efficient the multi-
plication could also be written as summation of logarithms. The logarithm has no impact
on the ranking. The retrieval function is shown in Equation 2.19.

ρ(d, q) =
∑

iϵT (q)∩T (d)

log(
pti ∗ (1− uti)

uti ∗ (1− pti)
) =

∑
iϵT (q)∩T (d)

w(t, d) (2.19)

w(t, d) can be interpreted as the weighting for a term t in a document d. It is assumed
that the collection of relevant documents for a query is known and so the probabilities pt
and ut can be estimated, see Equation 2.20 and 2.21.

p̂ti =
si
S

(2.20)

ûti =
df(ti)− si
N − S

(2.21)

si is the amount of relevant documents for the term ti. S are all relevant documents.
N is the number of all documents in the corpus and df(ti) is the document frequency of
term ti. The retrieval function can be written as Equation 2.22.

ρ(d, q) =
∑

iϵT (q)∩T (d)

log(
si ∗ (N − S − df(ti) + si)

(df(ti)− si) ∗ (S − si)
) (2.22)

If si is null, that means that the specific term is not relevant in any document, the
logarithm can not be computed. Also if the term (df(ti)− si) is null, what happens when
a term only occurs in relevant documents or if (S− si) is null (when the term occurs in all
relevant items), the divisor is null and the retrieval function is undefined. To avoid these
problems a constant is added to si, which is called smoothing parameter. In the most
applications it is set to 0.5. Equation 2.22 describes only a model because S, the amount
of relevant documents for a query, can only be estimated. Therefore different probability
estimations can be computed. A common variant is the BM25 model [Got09].

w(t, d) = log(
pt ∗ (1− ut)

ut ∗ (1− pt)
) = log(

pt
1− pt

) + log(
1− ut
ut

) (2.23)

To estimate w(t, d), Equation 2.23 and following assumptions should be considered.
The number of relevant documents is very small compared to the amount of all documents
of the corpus. Considering that, the calculation of ut can be reduced to Equation 2.24. The
probability of a term, that occurs in a not relevant document, can be written as shown in
Equation 2.25.

ût =
df(t)

N
(2.24)

In the most cases the amount of documents is much larger than the number of doc-
uments, where a specific term occurs and so the document frequency df(t) is very small
compared to N . Because of that it is possible to neglect df(t) in the numerator and the
equation can be approximated, see Equation 2.25.

log(
1− ût
ût

) = log(
N − df(t)

df(t)
) ≈ log(

N

df(t)
) (2.25)

CHAPTER 2. RELATED WORK 23

This approximated probability is similar to the IDF- weight. A popular weighting scheme
is the BM25 algorithm [Got09]. The BM25F is an extension of this algorithm.

Okapi BM25F

This algorithm is a newer version of the BM25 algorithm. BM25F considers the document
structure, that means different fields, for instance an anchor text, body and so on to
calculate a ranking value. In the paper [CZR05] the algorithm is explained for searching
e-mails. Different field types are distinguished:

� Subject

� Body

� Quoted

For each field f a normalised term frequency x̄d,f,t is calculated, see Equation 2.26.

x̄d,f,t =
xd,f,t

(1 +Bf (
ld,f
lf

− 1))
(2.26)

xd,f,t is the term frequency of the term t in a specific field within a document d. ld,f
is the field length of the specific field f an lf the average field length within the corpus.
B is a specific function for the normalisation of a field type. If Bf is null the term is not
normalised. If it is one, the average field length is used for normalisation. The pseudo
frequency x̄d,t is calculated as a linear combination of the different term frequencies of the
various field types, see Equation 2.27.

x̄d,t =
∑
f

Wf ∗ x̄d,f,t (2.27)

Wf is a weighting parameter for the respective field type. The ranking value for each
document is calculated with the help of Equation 2.28.

BM25F (d) =
∑

tϵq
∩

d

x̄d,t
K1 + x̄d,t

∗ w(1)
t (2.28)

The w
(1)
t is the so called RSJ relevance parameter, which is used to reduce the IDF weight,

if no relevance information for a specific term exists. Static features can be added via linear
combination to the BM25F ranking value. With the help of exploration and gradient
descent the parameters for different test- and trainings- sets are obtained [CZR05].

2.2.5 Inverted Index

To obtain relevant documents it is not very efficient to compare all documents in a corpus.
Only documents should be compared, which have any similarity with the given query
[Got09]. The index process is independent of the query. An advantage is that the documents
could be processed parallel and so a very high efficiency can be achieved [GLWW00]. To
build an inverted index, following steps have to be made:

CHAPTER 2. RELATED WORK 24

At first terms are extracted from the documents and duplicates are removed. For each term
a posting list is created which contains the document IDs, which including that term, see
Figure 2.5. The number of these document IDs is the so called document frequency, which
is used for instance for the IDF calculation.

Figure 2.5: Posting Lists [Got09]

With the help of posting lists and search trees an inverted index can be created. The
search trees make it possible to get the appropriate posting lists for a given query. Different
operations like AND and OR can be performed to combine posting lists and to retrieve a
set of documents, which is matching a given query. An AND operation will compute the
difference between these lists and an OR operation will merge these ones. That means, if
you want to obtain all document IDs, which are containing for instance any word of the
query, an OR operation will be executed. The law from Zipf, see Equation 2.29, estimates
the occurrence probability of each term. The terms are sorted descending via their term
frequency in the corpus. cf(ti) is the frequency of a term ti in the corpus and K is a
constant.

cf(ti) ∗ i ≈ K (2.29)

Words which occur very often, called stopwords, and which occur very seldom are not
proper terms to extract [Got09].

2.2.6 Evaluation

For the evaluation of document retrieval systems test collections are required, which are
containing the possible queries and their results. The results are a set of relevant documents
with a relevance weight for the given query. A very popular method to create such a test
collection is the Cranfield paradigm [Got09].

Cranfield Paradigm

The results of a given query of the information retrieval systems are evaluated from a jury.
Each juror appoints a relevance for each document. This relevance weighting is done by
each juror individually. The opinions of these jurors differ very often. This has an effect
to the absolute evaluation schema, but not to the relative one. That means if a system is
evaluated as a bad or good system, it is a bad or good one. In the most cases it is not
possible to evaluate all documents, so that the so called pooling method is used [Got09].

CHAPTER 2. RELATED WORK 25

Pooling Method

Different information retrieval systems are delivering k result documents for a given query.
These results are merged together to a document pool. Each of these documents are
evaluated by the relevance with the help of the jurors [Got09].

Different evaluation parameters exist like precision, recall, MAP and further ones
[Got09].

Precision and Recall

Precision and recall are common parameters for evaluating information retrieval applica-
tions. Equation 2.30 and 2.31 show the calculation of these parameters. |relevant

∩
positive|

is the set of correct retrieved relevant items [Rij79]. relevant is the set of known relevant
items. positive is the set of items, which are retrieved from a query.

precision =
|relevant

∩
positive|

|positive|
(2.30)

recall =
|relevant

∩
positive|

|relevant|
(2.31)

The relevance and precision are values between null and one. The recall indicates how
many items are retrieved from the system which are relevant. All relevant items can be
retrieved if all items of the system are returned, so the recall would be one. The precision is
high if all obtained items are relevant. Not relevant retrieved items minimise the precision.

With the help of the so called confusion matrix (Table 2.2) the calculation of precision
and recall can be written as Equation 2.32 and 2.33. TP stands for true positives, which
means items occurring in the result being relevant. FN are the false negative ones, which
are not retrieved from the systems but are relevant [Got09].

relevant relevant

result TP FP

result FN TP

Table 2.2: Confusion Matrix

recall =
TP

TP + FN
(2.32)

precision =
TP

TP + FP
(2.33)

Accuracy

A further evaluation parameter is the accuracy. In Equation 2.34 the calculation of this
value is shown. |D| means the number of documents of the corpus. This parameter is
not very suitable for information retrieval system evaluation because the number of non

CHAPTER 2. RELATED WORK 26

relevant items is very high. Very high results can be obtained by assigning all documents
as irrelevant [Got09].

acc =
TP + TN

TP + TN + FP + FN
=

TP + TN

|D|
(2.34)

F- Measure

Precision and Recall alone do not give a clear understandable information about the
information retrieval system. Via a combination of these parameters the so called F-
Measure can be calculated, see Equation 2.35.

Fβ =
(β2 + 1) ∗ recall ∗ precision
(β2 ∗ precision+ recall

(2.35)

With the help of the constant β, a weighting of the precision and recall can be applied.
Commonly β is set to one (Equation 2.36).

Fβ =
2 ∗ recall ∗ precision
precision+ recall

(2.36)

Micro- and Macroaveraging

If the precision and recall are calculated for more than one query the values have to be
averaged. This can be done in two different ways. The first one, the macroaveraging, is
to add the determined evaluation parameters for each query and to average them. The
other method, microaveraging, is to merge all retrieved items and after that, calculate
the evaluation parameters. In Equation 2.37 and 2.38 these methods are shown for the
precision value [Got09].

pmicro =

∑k
i=1 |relevanti

∩
positivei|∑k

i=1 |positivei|
(2.37)

pmacro =
1

k

k∑
i=1

pi =
1

k

k∑
i=1

|relevant
∩

positive|
|positive|

(2.38)

Precision at k

Precision at k, short p@k, is used to calculate the precision for a ranked result list. That
means that the first k items from this list are used to determine the precision. If the amount
of relevant items is smaller than this value k, a precision of one can not be established. To
avoid that, k is set to the amount of relevant items [Got09]. This calculated precision is
called R- Precision.

Precision Recall Graph

Another possibility to see the relation between precision and recall is the precision recall
graph. To get a smooth result the retrieved values are interpolated in the most cases. With
the help of the eleven point recall precision graph it is possible to combine multiple of such
graphs. This is done by averaging the precision values for each recall between null and one
with a step size of 0.1 [Got09].

CHAPTER 2. RELATED WORK 27

Mean Average Precision

Mean Average Precision, short MAP, represents the information of a precision recall graph
with only one number. For a given set of queries Q the MAP value can be calculated. For
each query a ranked result list is obtained. |Q| is the number of queries. p@ki,j is the
precision for the query i to the position j. The calculation of the MAP value is shown in
Equation 2.39 [Got09].

MAP =
1

|Q|

|Q|∑
i=1

1

mi

mi∑
j=1

p@ki,j (2.39)

2.3 Feedback

User feedbacks are often used to describe the interest of the user. A feedback can be
explicit or implicit [TH01].

Explicit Feedback: the user rates items actively

Implicit Feedback: extracted from the behaviour of the user

Explicit feedback is made from the user and depends on him or her motivation. Implicit
feedback is harder to implement [MS06].

2.3.1 Rocchio Relevance Feedback

A very common method for the vector space model is the Rocchio Relevance feedback.
From the result list of an initial query q⃗0, selected relevant and non-relevant items can be
used to calculate a new query vector q⃗1. This new query will rank these previous selected
relevant items higher and the non-relevant lower. It is achieved that the new generated
query vector is than more similar to the relevant ones. The computation of q⃗1 is shown in
Equation 2.40. This method only adds or modifies the term weights of the original query
via additions and subtractions [SB90].

q⃗1 = α ∗ q⃗0 + β ∗ 1

|relevant|
∑

diϵrelevant

d⃗i − γ ∗ 1

|notrelevant|
∑

dkϵnotrelevant

d⃗k (2.40)

The parameters α, β and γ are application dependent. In the most cases it should be that
α > β > γ [Got09].

In the article [SB90] different feedback approaches have been tested and evaluated.
The results of the less effective probabilistic feedback schemes are shown as not completely
competitive to the vector space methods. Different Rocchio methods were evaluated. That
means that the weights α, β and γ, the number of iterations and the amount of relevant and
not relevant items was changed. The ”Ide dec-hi” method was the best overall approach.
This method uses only one not relevant document vector, see Equation 2.41 .

Qnew = Qold +
∑

allrelevant

d⃗i −
∑

onenonrelevant

d⃗k (2.41)

In the most cases only one iteration leads to the best results. That means, that the
first calculated query vector is not modified afterwards [SB90].

CHAPTER 2. RELATED WORK 28

In Figure 2.6 an example for a two dimension Rocchio relevance feedback is shown. If a
cosine similarity would be computed in this example, v⃗ec1 would be the most similar one.
The user might mark v⃗ec1 as not relevant and v⃗ec3 as relevant The new vector ⃗Querynew,
which is created with the help of the summation and subtraction, is much closer to the
relevant one than the original query vector ⃗query.

Figure 2.6: Relevance Feedback Example for two Dimensions

2.3.2 Probabilistic Relevance Feedback

Based on the selected set of relevant and irrelevant documents the probabilities pt and ut
can be estimated, which are required for the probabilistic information retrieval. Following
factors are needed to compute the probabilities:

� R the amount of relevant documents

� N the amount of not relevant documents

� dfR(t) the document frequency of the term t in the set R

� dfN (t) the document frequency of the term t in the set N

In Equation 2.42 the computation of pt is shown.

p̂t =
dfR(t)

R
(2.42)

In the most cases the amount of relevant documents is very small and with that also
dfR(t). Terms, which are not contained in the feedback, are not considered. To avoid this
problem, smoothing is used, see Equation 2.43. That means that to all relevant documents
a ”half document” (0.5) is added.

This ”half document” is added to documents in which the term exists and in which
not. So all together one whole document is added and because of that, 1.0 has to be added
in the dividend.

The same can also be assumed for the not relevant ones, see Equation 2.44.

p̂t =
dfR(t) + 0.5

R+ 1
(2.43)

CHAPTER 2. RELATED WORK 29

ût =
dfN (t) + 0.5

N + 1
(2.44)

A problem of these assumptions is that the not relevant documents, which were defined
by the prior estimation functions, are not considered. To solve that the so called pseudo
relevance feedback can be used. Therefore the top k documents of the initial query are
relevant and the others are not.[Got09].

2.4 Document Classification

Document classification is a content based assignment of documents to predefined cat-
egories [GLWW00]. That classification can be single- or multi label task [Seb05]. That
means each document can be assigned to one or more categories [GLWW00].

Document retrieval can also be treated as a classification problem, for instance by
separating the documents into two classes. The classes are indicating if a document is
relevant or not.[LJ98].

Automatic document classification is realised via supervised machine learning methods.
Algorithms like Nearest Neighbour, Rocchio Centroid are state of the art classifiers. SVMs,
support vector machines often establish better results [GLWW00].

Two phases are required for supervised machine learning [GLWW00]:

� Learning Phase

� Classification Phase

In the learning phase following different data sets are required [Seb05]:

� Training Set

� Validation Set

� Test Set

Those sets are created by a user, who has to select documents and assign them to categories
by hand. Some classification algorithms need counter examples, what implies more effort
for the user [GLWW00]. With the help of a given training set, which consists of sample
documents that are assigned to defined categorises, a model can be learned. A validation
set can be used to tune required parameters. The result of the learning phase is a model for
each category. The test set is used to evaluate the under- or overfitting of the classification.
If the model complexity is very high, overfitting can be a problem [Seb05].

In the classification phase categories are assigned automatically to new documents.
This phase has to be efficient [GLWW00].

All algorithms that are used to classify documents have to use extracted features.
Feature vectors have to be constructed, which are representing the documents. Different
types of features can be extracted out of a document, like n-grams or morphological
analysis features. The amount of features is in the most cases very high and with that
the originated feature space. To get rid of unimportant features, a feature reduction can
be applied [GLWW00]. Further problems, like the high dimension feature space exist. It

CHAPTER 2. RELATED WORK 30

is very difficult to get all the information from a few keywords because of the complexity
of the natural language. Also document characteristics like variable length and quality are
known challenges. Classifiers should also be as efficient and accurate as possible [LJ98].

2.4.1 Naive Bayes Classifier

If a document should be assigned to a specific class is computed with the probability
calculation given in Equation 2.45. c∗NB is the class, which should be assigned to the
document with the help of the naive Bayes classifier (NB).

c∗NB = argmax
cjϵC

P (cj)

d∏
i=1

P (wi|cj) (2.45)

cjϵC are the different document classes. For each document D a word list W is dedicated,
that is containing words wi. P (cj) is the a priori probability for a class cj and P (wi|cj) the
conditional probability of a word wi to a class cj . The assumption is that the probability
of the words, which are occurring in the document are independent. If a word does not
appear in a training set, the conditional probability is null. To avoid that the Laplace law
of succession can be used (Equation 2.46). It makes a uniform prior assumption, that the
words which are corresponding to a class, are equally probable.

P (wi|cj) =
nij + 1

nj + kj
(2.46)

nij is the word frequency of wi in cj . kj is the vocabulary size of cj and nj the number of
words in class cj [LJ98].

2.4.2 K Nearest Neighbour Classification

Each class is represented via its training documents, which are assigned to this one. The
distance between a new document and all documents of the training set is calculated.
Then the nearest K documents are selected and the class, which is referred to most of
these documents, is chosen. To determine K a test set can be used [Got09].

Each document refers a feature vector which contains a weight for each word. This
weight for instance can be the TF–IDF weight. To compare the similarity S(D1, D2) of
two documents D1 and D2 the cosinus similarity can be computed, see Equation 2.6.

In Figure 2.7 the algorithm is illustrated. If the black point is the new document and K
is four, the documents, which are within the light blue circle, would be retrieved as most
similar ones. Three of them are members of the ”red star” class and so this one would be
assigned [LJ98].

2.4.3 Subspace Model

The entire feature space is divided into m sub regions, which are representing the feature
spaces for each class. The feature space of a class is for instance a vector of words. With
the help of a projection matrix, the vector given in the original vector space is translated

CHAPTER 2. RELATED WORK 31

Figure 2.7: K Nearest Neighbour Classification

to a sub region. If a word occurs in a certain class, the entry in the projection matrix is
assigned with the weight δkj , see Equation 2.47, otherwise it is null.

deltakj =
CLASSFREQjk

log2(DOCFREQj + 1)
(2.47)

CLASSFREQjk is the ratio of the count of documents which are corresponding to the
class ck and contain the word wj , to the number of all documents, which are labelled with
ck. DOCFREQj is the ratio of the number of all documents of the training set containing
the word wj to the count of all documents. Each document is projected to each feature

vector. The projected feature vector is called T⃗k. The sub space decision rule assigns the
class, which has the largest euclidean norm ∥T⃗k∥, see Equation 2.48 [LJ98].

∥T⃗k∥ =

√
T⃗k

T ∗ T⃗k (2.48)

2.4.4 Decision Tree Classifier

The decision tree classifiers are robust to noisy data and suitable for learning disjunctive
expression. Decision tree algorithms are for instance ID3 and it’s successors called C4.5 and
C5. Recursively a decision tree is constructed with the help of a top-down approach. At
each level the attribute with the highest information gain is selected. C5 has the advantage
of the so called rule- sets, which make the computation faster and less memory is used. Also
adaptive boosting can be used to enhance the results. This means n classifiers are used to
examine the errors of the (i− 1)th classifier with the help of the ith one. This n classifiers
build a voting scheme, which obtains the class to which the document corresponds [LJ98].

In Figure 2.8 a decision tree is shown. The leaves of the decision tree are the classes,
that should be assigned. The nodes contain the attributes and with the help of specified
rules an appropriate child node can be selected. The classification process starts at the
root and based on the attribute and the corresponding rules the next node is selected, till
a leave is reached [R.86].

CHAPTER 2. RELATED WORK 32

Figure 2.8: Decision Tree Classification

2.4.5 Rocchio Algorithm

The documents are represented as vector d⃗ containing weights, for instance TF–IDF ones.
The centre of the given training data for each class j is the centroid zj of the documents
Dj that correspond to that class. The calculation of zj is shown in Equation 2.49.

z̄j =
1

|Dj |
∗
∑
dϵDj

∗d⃗ (2.49)

To assign a class to a new document the distances to these centroids are calculated. This
distance for instance can be the number of hyperlinks or a similarity function (see Section
2.2.2). In Table 2.4 possible distance measurements, via the similarity function, are shown.

dist(d1, d2) = 1− sim(d1, d2)
dist(d1, d2) = −log(sim(d1, d2))

Table 2.3: Distance Calculation via Similarity Function

It is also possible to get similarity parameters from a distance measurement (see Table
2.1).

sim(d1, d2) = 1− dist(d1,d2)
distmax

sim(d1, d2) = e−dist(d1,d2)

sim(d1, d2) =
1

1+dist(d1,d2)

Table 2.4: Similarity via Distance Calculation

The distance between two documents can be for instance the euclidean metric λ(d1, d2),
see Equation 2.50 [Got09].

λ(d1, d2) =

√√√√ M∑
i=1

(w
[i]
1 − w

[i]
2)2 (2.50)

CHAPTER 2. RELATED WORK 33

After the distance calculation, the centroid with the shortest distance is chosen and
the corresponding class is assigned therefore.

In Figure 2.9 an illustration of the rocchio classification is shown. The green star and
the cross indicate the centroids of their classes. If a new document, the green circle, should
be classified the distances to these centroids are determined. In this picture the star class
is closer and would be assigned [Got09].

Figure 2.9: Rocchio Classification

2.4.6 Support Vector Machines

SVMs, support vector machines, are obtaining the best results for document categorisation.
The algorithm determines, in a high dimensional space among all surfaces, a separation
by the widest possible margin between positive and negative training examples. This sep-
aration is called maximum-margin hyperplane and accomplishes that the general error is
minimised. A great advantage of this algorithm is that dimension reduction is not required
[Seb05]. Support vector machines are appropriate for high dimensional classification tasks
[Joa98]. It is also very robust against overfitting [Seb05].

In Figure 2.10 the maximum-margin hyperplane is shown. The vectors, which are very
near to that, are called support vectors [Got09].

Normally, SVMs are used for binary classification, but recently also for multi-class
classifications [Seb05]. To be able to use more classes, following methods can be used.

The method ”One versus All” means, that for n classes n SVMs are used. The docu-
ments which are not referred to a specific class are combined into one class. Each SVM is
trained with a specific class and the rest. A SVM can return the certain class or the one
of the rest. A resulting class is obtained, if one SVM returns a specific class and the other
SVMs the class of the rest. The methods are illustrated in Figure 2.11 [bDK05].

The second method is called ”Winner Takes All”. Therefore (n−1)∗n
2 SVMs are trained

with the data of two different classes. Each class is compared to each other. The class,
that was classified most, is chosen. An example is shown in Figure 2.11 [bDK05].

CHAPTER 2. RELATED WORK 34

Figure 2.10: Support Vector Machine Classification

2.4.7 Combination of Multiple Classifiers

To combine the results of various classifies, different methods exist. Via a weighted linear
combination, where the weights are defined by a user, more classifiers can be considered.
A further approach is called ”single voting”. The class, that is assigned by the majority
of the classifiers, is chosen. The method dynamic classification selects the class with the
highest local accuracy for the given test samples. For instance the k-nearest neighbour
algorithm is applied to find the neighbours of a document. The leave one out method is
used for the training data to find the local accuracy by calculating the soft measure. This
measurement determines the weight of each neighbour by the cosinus similarity to the
document. Adaptive classification combination uses the highest accuracy among all used
classifiers to determine the to assigning class [LJ98].

2.4.8 Boosting

Boosting is also an approach, which accomplishes better classification results with the help
of more classifiers. These classifiers have to be from the same learning type. Each classifier
is trained sequentially. The n-th classifier retrieves the results of the previous classifiers
and tries to get the worst classified samples. Each document class pair is assigned to a
weight, which indicates the effort for classifying a document to its correct class. The result
of the boosting process is a weighted linear combination rule [Seb05].

2.4.9 Evaluation

Classifiers can be evaluated with the help of different parameters.

� Training Efficiency: time to build the classifier with the help of the given training
set

� Classifier Efficiency: average time to classify documents

� Effectiveness: correctness of the classification

CHAPTER 2. RELATED WORK 35

Figure 2.11: Multiclass SVM

For Single- labelled text categorisation the so called accuracy is used to measure the
effectiveness. It is the percentage of correct classification decisions. Multi- labelled cat-
egorisations are evaluated with the help of precision and recall. Two different kinds of
averaging among the different classes have to be considered, what is done via micro- and
macro- averaging [Seb05].

2.5 Text Preparation

Text often must be preprocessed because of following problems[FHM08]:

Spelling mistakes

Polysemy: word with multiple meanings, for instance bank

Synonyms: words with the same meaning

Inflection: for instance park and parking

Following methods can be used to reduce these problems.

N-Grams: N-grams can be used to avoid problems like spelling mistakes and inflection.
Instead of splitting the text into words, it is divided into more parts, that are used as
features. The N defines the length of the created string parts. Trigrams, N = 3, are
often used for similarity measurements in the information retrieval. The trigrams,
for example for the text test software are: te tes est st t s so, sof, oft, ftw, twa,
war, are, re . The underline represents a white space [MMC02].

Stemming: Stemming is used to reduce inflected words like play, playing and so on to
their stem. For instance the word playing should be reduced to its root play. The

CHAPTER 2. RELATED WORK 36

Porter stemming is a common algorithm. Stemming algorithms must not reduce a
word to its morphological stem. The created stems only have to indicate related
words [MS06, Got09].

Thesaurus and Dictionary: Dictionaries can be used to correct spelling mistakes. A
thesaurus helps to get the synonyms for a specific word. With the help of query
expansion, these words are added and a similarity computation can be improved
[Got09].

Stopwords: Luhn said that words, which occur in a corpus too frequent or rarely, are
not important for the search. The words, which are very frequent, are called stop-
words [Got09]. These words should be removed from a text, because they are often
irrelevant and so the noise of a text. Words like is and a are common stopwords
[MS06]. The amount of stopwords in retrieval systems can be very different. Google
for instance defines only 36 stopwords, in contrast a MySQL database declares 550.
Stopwords removal can also lead to poor information retrieval. For instance, if a
word like no is removed, the resulting text has a different meaning [Got09].

2.5.1 Keyword Extraction

Keywords can be extracted with the help of several approaches [oel09]:

Statistical Approaches: With the help of different statistical measurements, like the
word occurrence in the document, keywords can be extracted. Familiar methods
are TF–IDF and N–Grams. These methods are simple and don’t need linguistic
knowledge, so that they can be applied to different languages.

Linguistic Approaches: These mechanisms extract keywords with the help of linguis-
tic knowledge. For instance, stopwords list, linguistic features-like the syntactical
structure and thesauruses are used to improve the quality of statistical methods.

Machine Learning Approaches: With the help of a training set containing documents
and a set of keywords per document, a model can be learned, which makes a keyword
extraction possible.

Keyword Extraction Evaluation

In the paper [Ass07] a data set called DUC2002 is used. With the help of a tool, called
ROGUE, they have evaluated the results. ROGUE is a toolkit for evaluation of document
summation applications. It counts the overlapping units like n-gram, word phrases and so
on. To test the keyword extraction, they used 34 documents from the data set and extracted
manually about ten keywords per document (average 6.8 keywords per document). Via
different keyword extraction methods, they obtained ten keywords per document. With
the help of WordNet they reduced each word to it’s basic form. Precision, Recall and
F-Measure, see Equation 2.51, were calculated to evaluate the methods.

F −Measure =
2 ∗ precision ∗ recall
(precision+ recall)

(2.51)

CHAPTER 2. RELATED WORK 37

In the paper [MI03] manually extracted keywords are used to evaluate their results.
20 authors where asked to select important keywords form their documents. They also
obtained 15 terms by different keyword extractors and calculated the precision and recall
to evaluate their results. Via Equation 2.52 the precision is calculated.

precision =
termsimportant

termsobtained
(2.52)

To determine the coverage, the authors were asked to select five or more indispensable
keywords.

coverage =
termsindispensable
termsobtained

(2.53)

Similar evaluation approaches could be found in [vdPPRG04] and [Dep].

2.5.2 Feature Reduction

Feature reduction is used to lower the dimension of the feature space. This can help to
avoid overfitting and to reduce the computation time [Seb05]. Different kinds of feature
reduction techniques exist. A possibility is the selection of terms, which have the highest
weights. This approach is called individual best feature. The weights can be calculated
via mutual information. Other well known approaches are sequential ”forward/backward”
and ”plus l-take away r” selection. These methods have a better performance, but the
computation costs are high.

A further one is the feature extraction [LJ98]. To reduce the dimension of the features,
PCA, principal compound analysis, which is called latent semantic indexing for document
retrieval, can be used [GLWW00]. Words are correlating within a group of documents. So
for instance k-means clustering can be applied within a category to find different classes of
words. This approach is called term grouping in subspace [LJ98]. Supervised approaches,
like the term clustering, often achieve better results [Seb05].

SVD

Singular value decompostion (SVD) can be used to perform a feature reduction.

B = UΓV ′ (2.54)

Equation 2.54 shows the computation of a SVD (singular value decomposition). Γ is
a diagonal matrix, which includes the sorted eigenvalues of B, see Equation 2.55. Sorted
means, that eig1 > eig2 > ... > eigm.

Γ =

eig1 0 0 ...
0 eig2 0 ...
...
0 0 ... eigm

 (2.55)

The columns of V contain the eigenvectors of B′ ∗ B. If B is a m × n matrix, the
components of the SVD would be following ones:

� Size of U is m×m

CHAPTER 2. RELATED WORK 38

� Size of Γ is m× n

� Size of V ′ is n× n

To reduce the dimension of B from m to k, the bottom rows, which are containing the
smallest singular values, are deleted from Γ and V and the corresponding columns from
U , so that the sizes are as following:

� Size of Ũ is m× k

� Size of Γ̃ is k × k

� Size of Ṽ ′ is k × n

The data can be projected by the multiplication of Ũ ′ with B. The size of the resulting
matrix of the multiplication of this k × m matrix and the m × n data is k × n. So the
dimension is reduced from m to k [PWWB09].

In an information retrieval system B is the vector space model of a document collection,
see Section 2.2.2.

PCA

Principal component analyse helps to reduce the dimension of feature spaces without the
loss of much information. That means that data with the dimension n will be reduced to
the dimension m. In the case of a vector space model the whole data is represented as n×k
matrix, where n would be the number of features and k the amount of text items. After the
PCA, this matrix can be reduced to a size of m× k where m < n. To perform a PCA, at
first the mean value of each dimension has to be subtracted, so that the data is unbiased.
After that the covariance matrix of the dataunbiased is calculated, see Equation 2.56, and
the eigenvalues eigi and eigenvectors veci are computed. High eigenvalues indicate that the
specific dimension has a high contribution. So the corresponding eigenvectors are called
principal components. To reduce the dimension of the data only large eigenvalues are
chosen. With the help of these, a feature vector, see Equation 2.57 and an eigenvector
matrix can be created.

Covariance =
1

n− 1
∗ dataunbiased ∗ data′unbiased (2.56)

FeatureV ector = [eig1, eig2, eig3, ..., eign] (2.57)

FeatureMatrix = [vec1, vec2, vec3, ..., vecn] (2.58)

The feature vector is a row vector with the length m and the feature matrix has the size
n×m. The unbiased data has the size n× k. The dimension reduction can be performed
via Equation 2.59. The resulting matrix size of the multiplication of a m × n and n × k
matrix is m× k and so the dimension is reduced [Smi02].

datareduced = FeatureMatrix′ ∗ dataunbiased (2.59)

CHAPTER 2. RELATED WORK 39

If Y is calculated via the Equation 2.60 and the SVD is computed the resulting V
would be the FeatureMatrix. This is because V are the eigenvectors of Y ′ ∗ Y and this
is the Covariance, see Equation 2.61.

Y =
1√
n− 1

∗ data′unbiased (2.60)

Y ′ ∗ Y =
1

n− 1
dataunbiased ∗ data′unbiased = Covariance (2.61)

Following steps have to be performed to calculate the PCA:
1. Subtract the mean of each dimension
2. Calculate covariance of the unbiased data
3. Calculate the eigenvectors and eigenvalues of the covariance
4. Select the eigenvectors with the highest eingenvalues and create the

Feature Matrix, see Equation 2.58
5. Project the data, see Equation 2.59

The PCA can also be calculated with the help ofthe SVD:
1. Subtract the mean of each dimension
2. Calculate Y, see Equation 2.60
3. Calculate V via the SVD, see Equation 2.54
4. V is equal to the FeatureMatrix and the data can be projected,

see Equation 2.59

2.6 Microsoft SharePoint

Microsoft SharePoint is a web platform for business collaboration. SharePoint interacts well
with Microsoft Office, which is a great advantage for the end user. The creation of new sites,
for instance blogs, wikis, teamsites and many more, is very simple. Lists can be modified
easily, like adding columns or changing the current view. The view of a list defines which
list items should be displayed. Files, for instance documents, can be uploaded with the help
of document libraries. Workflows that are representing processes, can be created. This ones
can for instance send an e- mail if a list item has changed. A great advantage of SharePoint
is, that a lot can be modified and adjusted to the requirements you need.[MB10] A new
feature of SharePoint 2010 is the possibility of rating and tagging [RAS+10]. SharePoint
can also be seen as developer platform. Common tools are Visual Studio and the SharePoint
Designer. The Visual Studio 2010 provides templates for SharePoint directly. Web and .Net
technologies build the foundation of SharePoint. Linq and CAML can be used to query
lists [RAS+10].

The architecture of a Microsoft SharePoint has a tree like structure, see Figure 2.12.
Within each web list, content types and so on, can be created [RAS+10].

2.6.1 Webpart

Webparts are custom elements, which can be added to each page. Each webpart can be
personalized, this means that properties can be set, which influence its appearance and

CHAPTER 2. RELATED WORK 40

Figure 2.12: Microsoft Sharepoint architecture

can be saved. Custom webpart controls can be created by deriving from the base WebPart
control. Also existing ASP.Net–, standard Web server–, custom server– and user controls
can be used as webpart control [RAS+10].

2.6.2 Features

With the help of features the user can modify and enhance the functionality of Share-
Point. Different tasks like adding items, copying files and so on, can be executed with
the help of features. Physically features are placed within the Program Files \Common
Files \Microsoft Shared \Web Server Extensions \14 \TEMPLATE \FEATURES folder.
In each folder under that path, different files are contained, which provide the function for
each specific feature. The feature is defined via an XML file [LMV08]. With the help of a
scope attribute, the level, where the feature should be available can be adjusted. Features
with the scope farm are available from the SharePoint central administration and within
the entire farm. They can be activated or deactivated under the manage farm features
setting, which is placed in the system setting in the central administration. Web applica-
tion features can be set within the web application configuration, which is available under
the Application Management Õ manage Web Applications page. After the selection of a
specific web application, the Manage Feature page can be opened from the ribbon. Site
feature can be adjusted under the site collection settings and web features under the site
settings. These site settings can be opened via the site actions, which are normally placed
at the top left of each site, see Figure 2.13 [RAS+10].

Dependencies between features can also be declared within the feature xml. This means
that a feature can only be activated, if other declared features, which are at the same or
higher level, are activated first. A feature receiver can be added to each feature, which
makes it possible to add a code to different events:

� FeatureInstalling

� FeatureActivated

� FeatureDeactivating

� FeatureUninstalling

The life cycle of a feature is shown in Figure 2.14 [LMV08].

CHAPTER 2. RELATED WORK 41

Figure 2.13: Microsoft Sharepoint Site Settings

Figure 2.14: Feature Receiver Life Cycle [LMV08]

CHAPTER 2. RELATED WORK 42

2.6.3 Event Receiver

With the help of event receivers a custom code can be added to different events. Following
types of event receivers can be implemented:

� List Events

� List Item Events

� List Email Events

� Web Events

� List Workfow Events

List Item Events are for instance ItemUpdated, ItemAdded and so on.

2.6.4 Timer Job

A timer job is executed at a specific time or within a time span, which is defined with the
help of a schedule. The intervals can be defined minutely, hourly, daily, weekly or monthly
[RAS+10].

2.7 Search Engines

Different kinds of search engines exist like enterprise and web search engines. Information
retrieval in the web or for a controlled collection differs. The data, that is available on
the web, is much more various. The language can be any of the human or programming
one. The text can be machine generated, like log files, and the file formats can differ,
like images, HTML and so on. Also web search engines have to deal with manipulations.
Numerous companies are trying to influence the rank because of profit. Metadata, that is
not visible to the user, is abused. Algorithms, which are working very well for a controlled
collection, often achieve bad results for the web search [SL98].

In this section, some search engines are described. Only few are listed, because it is
not easy to find specific information about their relevance ranking algorithms.

2.7.1 Google Search

Google is a very effective web search engine. An essentially used algorithm is the PageRank,
which was developed by Larry Page and Sergey Brin, the Goolge founders, on the Standford
University. By determining the link structure in the WWW, it brings order into the web
[Mol09].

Major components are the crawler, indexer and the search unit. The list of the URLs,
which is obtained from the different distributed crawlers, is saved. To each crawled URL
an ID (docID) is assigned. After that, these new pages are indexed. Each document is
represented by a set of word occurrences, the so called hits. Each hit also contains infor-
mation, like the position of the word in the text, the font size and capitalisation. Then the
indexer creates a partially forwarded index with these sorted hits. Important information
of the links, which occur on the page, are also saved in a separate anchor file. With the

CHAPTER 2. RELATED WORK 43

Figure 2.15: Google Website

help of this information, the anchor text and the information about the link points, can
be determined. An URL resolver stores the information, which is available in the anchor
file, in a link database, that is later used to calculate the PageRank. The anchor text is
also added to the forward index with its corresponding docID. A so called sorter generates
an inverted index out of the forward index [SL98].

With the help of the inverted index, the web search engine obtains documents, which
are matching a given query. For each of these documents a relevance score is calculated
and an output page is generated, which shows the documents sorted with their title and
a short summary. Also a spell- checking and an ad-serving system is executed. The ad-
serving system determines relevant advertisements. To provide a short computation time
the search is highly parallelized. The inverted index is randomly divided into the so called
index shards. Each of them contains a subset of documents of the full index [BDH03].

2.7.2 Google Scholar

Google Scholar is a search engine for academic literature for all academic disciplines. A
citation extraction is performed and with the help of the autonomous citation indexing
(ACI), the ranking of the papers is influenced. Papers, which are cited often, are ranked
higher. Google Scholar also executes a full text index. The relevance ranking considers the
full text, the author, the publications in which the paper is cited, and how often it was
cited generally [MW06].

2.7.3 Apache Lucene

Apache Lucene is an OpenSource information retrieval system. It is implemented in Java.
A document is prepared via different kinds of parsers. These parsers can be applied to
different document types. The unstructured text is filtered and added to the index. These
language dependent filters can remove stop words, perform stemming or transform the text

CHAPTER 2. RELATED WORK 44

to lower case. After that, a tokenizer splits the text with the help of specific tokens, for
instance white space. The inverted index can be created ad hoc or incremental. Incremental
means that the existing index is upgraded. Information like the local term frequency, the
term position, the field name and the term are also saved. The Lucene ranking function is
shown in Equation 2.62. tfd(t) is the rooted term frequency of the term t in the document
d. idf(t) is the inverse document frequency of the term t. The boostd(f(t)) is a factor for
a field f in the document d. normd(f(t)) is a normalisation value for the field f by the
amount of terms in that specific field. This value is calculated during the indexing phase.
coord(q, d) is a factor, which is based on the term frequency in the document d and q.
normq(q) is also a normalisation value for the query q, see Equation 2.63 [Kür06].

rank(q, d) = coord(q, d)∗normq(q)∗
∑
tinq

(tfd(t)∗idf(t)2∗boostd(f(t))∗normd(f(t))) (2.62)

normq(q) =
boostq(q)

2∑
tinq(idf(t) ∗ boostq(f(t)))2

(2.63)

2.7.4 Microsoft SharePoint Search 2010

Microsoft Sharepoint provides a search application, which consists of three different parts.

Crawler

The Crawler browses the given content sources, which can be added in the central admin-
istration. For each site collection a content source is automatically created. With the help
of defined rules it determines the URL addresses of the sub webs and the content below
[RAS+10].

Indexer

Each content, which is found by the crawler, is indexed. Indexing is used to make queries
faster. Different content, like images, documents and so on, are represented as text. There-
fore different IFilters are used, which extract the textual information from the various file
types. Wordbreaker and stemming are also used to filter the obtained data. When a query
is executed, this data is used to search relevant items [RAS+10].

Query

Two different query types are implemented:

KeywordQuery: With the help of a set of keywords relevant items are computed.

FullTextSQLQuery: A specific SQL syntax helps to search relevant items. This type of
query enables a more specific search opportunity.

For each item a rank value is calculated, which indicates the relevance for the given
query.

CHAPTER 2. RELATED WORK 45

Ranking Models

Static and dynamic information is used to retrieve relevant items. Static information is
provided before the query is executed, like the filetype, language, click distance and URL
depth. The anchor text, text representation, property weighting and the URL matching
are used for the dynamic ranking. The base of the content rank relevance calculation is
the so called Okapi BM25F algorithm, which is described in Section 2.2.4 [MSD09]. It’s
a state of the art TF– IDF algorithm. The adjustable parameters, like weights, can be
adjusted in the ranking models. These are defined XML data, which are saved on the SQL
Search Service Application database in the MSSRankingModels table. In Figure 2.16 a
part of such a xml data is shown.

Figure 2.16: XML Ranking Model of MS SharePoint

Wordbreaker

The wordbreaker is used to divide a given text into words. Also stemming, noisy words
(stopwords) filtering and a thesaurus can be applied. If stemming is enabled, the word
stems are also added to the query. Noisy words and the thesaurus for different languages
are defined via files , that are saved on the server. These files can be edited [RAS+10].

Chapter 3

Design of the Implemented
Systems

In this chapter the context and the design of our implementation are described. The
system for the evaluation of the different kinds of algorithms is implemented in Matlab.
The chosen algorithms are implemented with the programming language C# .Net. The
system is also integrated within Microsoft SharePoint 2010. The components, which have
to be realised, are described within this chapter.

3.1 Context

The information retrieval system must be implemented within MS Sharepoint 2010 and
integrated within the SharePoint Customer Service Desk of the company Solvion. Admin-
istrators and normal users can use this system. The administrators have to configure the
system and can remove feedback information.

Most of the available data sets of SharePoint Customer Service Desk contain only
about 50 tickets, except one other which contains 1370. This one is used to evaluate the
system.

Each ticket has a title, description and category field. The mean word count and
dispersion are shown in Table 3.1.

25 different categories are assigned, for instance ’Windows’, ’Office’, ’Hardware’ and so
on. To generate a second test set, a subset of 255 tickets is extracted and eight categories
are assigned by hand.

Field Mean Word Count Dispersion

Title 4.8584 1.6997
Body 6.1920 4.1181
Title and Body 11.0504 4.0761

Table 3.1: Mean Word Count and Dispersion of the Test Set

In Figure 3.1 the dictionary size corresponding to the ticket count is shown. Also the
approximation of Heap, see Equation 2.1, is plotted with b = 0.7324 and k = 3.3492.

46

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 47

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

3000

3500

4000

ticket count

di
ct

io
na

ry
 s

iz
e

Zipf
real

Figure 3.1: Dictionary Size of Data Set

3.2 Evaluation System

The classification and similarity measurement for a given data set have to be evaluat-
ed. The MAP value and the percentage of the correct classified correct[%] queries are
calculated to compare the different implemented algorithms, see Figure 3.2.

Figure 3.2: Components of the Evaluation System

The correct percentage is determined by a ”one to n cross validation” . That means
that n− 1 items are used to train the system and one item, which is not a member of the
training subset, is classified. After that the result is compared to the real assigned class
and over all items a percentage of ”correct classified” can be calculated.

In Figure 3.3 the methods that are evaluated, are shown.

3.2.1 Data

For the similarity and classification evaluation two different files are needed. One file
includes per row the text of the ticket and the other one the assigned class to the cor-
responding ticket, see Figure 3.4. In that example, the classes are described by different
numbers. It is also possible to set a name like ”Telefon” as class name.

To evaluate the SharePoint Search a file is generated. Therefore the list is crawled and
indexed with the help of the Search Service Application. After that, each list entry is used

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 48

Figure 3.3: Methods to Evaluate

Figure 3.4: Evaluation Files

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 49

to create a query. Therefore the user has to set the list name and the field. This extracted
query is executed with the help of the KeywordQuery with the option, that any of those
words should be contained in the result. Only results are accepted, which are within the
source list. The result list contains a ranking value and the URL to the item. The item ID
is extracted from the URL. Each row of the result file, which is used for the evaluation,
represents a query and contains those retrieved IDs, see Figure 3.5.

Figure 3.5: Generated Microsoft Result File

3.2.2 Similarity Evaluation

The structure of the implementation of the similarity calculation evaluation is shown in
Figure 3.6. The red arrows indicate the control flow and the black ones the functions, that
are executed. The file evaluationSimilarity performs following steps:

1. TestDefintions: This Matlab script contains the paths to the text files, which contain
the tickets and class assignments. Also the weighting schemes and the folder, to which
the results should be written to, are declared.

2. Init: This function reads the ticket file, creates the vector space model and can nor-
malise the given data.

3. DimensionReduction: In the folder dimension reduction different scripts, for in-
stance MyPCA, exist. Those can be called and the vector space model will be mod-
ified.

4. ReadMicrosftSearchResultFile: To evaluate the MS SharePoint Search a file is cre-
ated, which contains the information of the query index and the retrieved document
IDs. This file is read with the help of this function.

5. EvaluateMicrosoftSearchMAP: After reading the file, this function is used to cal-
culate the MAP value.

6. EvaluateSimilarityMethodMAP: This function can execute different similarity cal-
culations and return the MAP value.

At first we used the TMG- toolbox, which is described in [ZG05], to build the vector
space model. To be able to evaluate N-grams also, an own calculation was implemented.
The p@k value, which is used for the MAP calculation, is determined with the help of the
knowledge about the assigned classes. If a retrieved item has the same class as the query,
it is assumed to be relevant.

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 50

Figure 3.6: Similarity Calculation Evaluation System

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 51

3.2.3 Classification Evaluation

The classification is congeneric to the similarity evaluation. Instead of the MAP value
the correct classified percentage is calculated. In Figure 3.7 the system without the initial
components is shown.

Figure 3.7: Classification Calculation Evaluation System

The implemented k nearest neighbour (KNN) algorithm first calculates a similarity
measurement for all items, then obtains the class by getting the k most similar items
and the most common class is selected. The Rocchio calculation also uses the similarity
measurement to get the nearest centroid.

3.3 SharePoint Information Retrieval System

After the evaluation of the different algorithms the information retrieval system must be
implemented in SharePoint and integrated within the SharePoint Customer Service Desk.

Following use cases are exist:

� A ticket arrives and it is automatically assigned to a support assistant or to a cate-
gory.

� Possible solutions for an incoming problem should be retrieved automatically.

� By interacting with the system, it should enhance the quality of the receipt solution
and classification.

To realise the system following components have to be implemented.

3.3.1 Components

The system is divided into different components, see Figure 3.8. In this figure it is observ-
able that the infrastructure is a central component, that access the data for the information

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 52

retrieval. The content processor is application dependent, that means it must be imple-
mented if an other list type, for instance a task list should be used. The other components
should be as generic as possible, to be able to use it also for other applications.

Figure 3.8: Components of the Information Retrieval System within Sharepoint

The interaction of the components is shown in Figure 3.9. An incoming ticket is handled
by the content processor and the text information is represented. The trainer also modifies
that representation and saves information of the classes. The text representation is used
for the similarity and classification process. The feedback functionality, which is based on
the similarity measurement, also influences the text representation.

In Figure 3.10 the different SharePoint features and their scopes are shown. The log-
ging feature provides the infrastructure for the logging. The password generator creates
the password for the SQL database login and saves it to the farm property bag. The
functionality of the other features are described later in this chapter.

3.3.2 Infrastructure

The infrastructure creates and deletes the environment, where the required data for the
information retrieval are saved. Tables, users and schemas are created within a Microsoft
SQL database with the help of a web scoped SharePoint feature receiver. When it is
activated the tables are created and by the deactivation all tables are removed. A login
user is required to avoid permission problems by connecting to the database. At first we
used windows authentication. With that the problem occurred, that only the user, who
had activated the feature, was able to connect and save data to the SolvionKIDatabase

Figure 3.9: SharePoint Information Retrieval System Overview

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 53

Figure 3.10: Feature Scopes of the different Components

database. Because of that, a login user was created, with the name SKILoginUser. The
required password is a GUID, which is saved in the farm property bag. The infrastructure
is a web scoped feature. For each web a schema is created. The name of that schema is
the web GUID. To be able to switch between that schemas, the default schema of a user,
called SKIUser, which executes the queries, has to be changed. That user also must be
created before the specific tables are established. The steps which should be executed are
following ones:

1. Create login user SKILoginUser.

2. Create database SolvionKIDatabase

3. Create ”global” tables

4. Create schema

5. Create user SKIUser

6. Alter schema and create web dependent tables

In Figure 3.11 the relations between the tables are shown.
Tables which are not ”global” are following ones:

� Content Processors: Contains the information about the installed content proces-
sors. The information of the web and list are saved. Also an ID is created to be able
to get particular items from different lists.

� Trainer Settings: In the training settings the URLs of the webs are saved which
should be trained.

The tables, which are unique for each web, are:

� Classifier Settings: The classifier setting include information which are required
to perform the classification.

� Contents: The content table contains the preprocessed text. The content is not
required for further computations, but is helpful for debugging and demonstration.

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 54

Figure 3.11: Database Entity-Relationship Model

� Words: That table contains the dictionary that means words with a generated ID
and the global word count.

� Index: The inverted index contains for each word the text IDs, which include it.

� Normal Vectors: The feature vector and local word count vector are saved within
this table, referred to a specific ID.

� Feedback Vectors: This table includes the vectors which are generated with the
help of the feedback function.

� Classes: In this table the classes and their vectors which are created during the
training phase are saved.

When a new content processor is created, it has to register in the ContentProcessors
table. That means the URL of the web and the list GUID have to be saved. It is possible
that a processor is attached to more than one list, for instance for a specific list type. For
each of the saved lists an ID is generated automatically. With the help of that ID, it is
possible to obtain within the Contents, NormalVector, FeedbackVector and Index table,
data from a specific list. The relations are shown in Figure 3.11 with the blue lines. The
black lines which point to the ID of a specific entry show the relationships between the
tables. With the help of that ID, which corresponds to the item ID of the SharePoint list,
the required data of a specific list item can be determined.

For each SharePoint list more than one classifier can be applied. The required settings
are saved within the ClassifierSettings table. The centroids, which are required for the
Rocchio classification algorithm are placed within the Classes table. With the help of the
ID, which is generated for the classifier setting, the corresponding class information can
be obtained.

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 55

The red lines in Figure 3.11 are indicating that the IDs of the source list are contained
within the pointed text field. This is used for the index and vector tables. These item IDs
are saved in the inverted index to each word and content processor ID and indicate if this
word occurs in the text or not. The words table, more precise ”dictionary” includes the
word referred to an ID and the global word count.

3.3.3 Content Processor

The content processor has to transform and save the data, which should be available for
the information retrieval, to the infrastructure. It is realised as a list event receiver and
fired if a list item is added, updated or deleted.

Following calculations have to be executed:

1. If a ticket or action is added or modified the ID of a ticket is obtained and the
subjects and descriptions texts are concatenated and saved in the content database.

2. Calculate word count vector and save it to normal vector table with the ticket and
content processor ID:

(a) Split text into words

(b) If the word does not exist in the dictionary (word table), insert it and set the
global word count to null

(c) Get the word ID and count the words in the text

(d) Create a vector with the help of the IDs and counts and save it

3. Add ID to the inverted index.

4. With the help of the global word counts and word count vector calculate and save
the feature vector.

If the ticket is removed its entries are deleted from the content and vector tables and the
ID is removed from the inverted index.

Very important to mention is the fact, that the global vector counts of existing words
in the dictionary are not changed. This is not done, because otherwise all feature vectors
would have to be recalculated. The global word counts are updated during the training
phase.

3.3.4 Trainer

The trainer includes the computationally intensive calculations. A schedule defines when
it should be executed. It is realised as SharePoint timer job. Following calculations are
performed:

� update the global word count in the word table by counting the IDs in the inverted
index,

� delete words form the word table with a global word count of null,

� recalculate the feature vectors of the vector tables, and

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 56

� calculate the class centroids for the Rocchio classification.

In Figure 3.12 the configuration page is displayed. This page is used to add web URLs
and to set the schedule. It can be opened within the Central Administration Ý Monitoring
Ý Timer Jobs Ý AI Trainer Settings.

Figure 3.12: Trainer Setting Page

3.3.5 Similarity Measurement

The similarity measurement is used to search possible solutions. Therefore the saved data
of the content processor are used. With the help of the item ID and the list GUID an entry
is obtained in the MS SQL database. It is also possible that the vector with the feedback or
the normal one can be obtained. To search similar entries the similarity between vectors
is calculated and the IDs of the most similar ones are returned. These operations are
implemented with a WSP web service, which has following interfaces:

� int[] GetNearestNeighbors(int itemId, string sourceListGuid, string destListGuid,
bool includeFeedback, int num, string webUrl);

� void Feedback(int itemId, string listGuidSource, int[] relevantItemIds, int[] notRele-
vantItemIds, string listGuidDest, string webUrl);

� void ClearFeedback(int itemId, string listGuid, string webUrl);

� string GetWebUrl(string listGuid, string webUrl);

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 57

The method string GetWebUrl(string listGuid, string webUrl) searches the listGuid in
the content processor table and returns the saved web GUID. The webUrl of the method
parameters is used to get information of the used SQL database.

The GUI for information retrieval system is realised via a SharePoint webpart. This
one communicates with the web service and displays the results. The presentation of the
webpart can be modified via an xslt file. Also implicit and explicit feedback functionalities
are provided. In Figure 3.13 the web part is shown for the implicit feedback. There the
user can rate items and apply feedback. In Figure 3.13 the rating and the result after
the button click are shown. In the result the relevant item is ranked higher and the not
relevant item falls out of the range of visible items.

Figure 3.13: Suggestion Webpart With Implicit Feedback

In Figure 3.14 the suggestion webpart with explicit feedback functionality is shown.
The star controls can’t be used for the rating like in the implicit variant. They only show
the rating information of the list entry, which has no influence on the relevance ranking.
If a user clicks on the action or answer button the corresponding item is used for the
feedback calculation. Also a popup window is opened by clicking on the action, info or
answer button.

In Figure 3.15 the webpart properties are displayed. The information about the item,
which should be searched within the database, is retrieved over the URL:
”http://url/site.aspx?List=LISTGUID&ID=ItemID”. The field name of the list or id
parameter can be adjusted in the properties.

The list, in which an item is searched, is defined via its GUID, the ”Search List GUID”.
The ”Number” defines the amount of displayed results and the dialog height and width

define the size of the popup window, which is opened, if you click on an info, mail or action
button.

Within the administrator section users can be added, which should be able to delete
existing feedback information.

The Action, Mail and Info URL settings define the URL, which should be opened
within the popup dialog box. The expressions within the curly brackets are replaced with
the field of the source or destination list item.

When a suggestion webpart is displayed, following steps are performed:

1. get similar IDs via the web service,

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 58

Figure 3.14: Suggestion Webpart With Explicit Feedback

Figure 3.15: Suggestion Webpart Properties

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 59

2. get the data from the destination list as DataTable,

3. add columns, which are containing the IDs for controls with events, to the table,

4. get the DataTable as XML text,

5. transform the XML with XSLT style sheet, and

6. find controls and attach events

3.3.6 Classifier

The classifier is used to classify items with the help of the data saved in the infrastructure.
Computational intensive calculations, which are required from this component, are handled
by the trainer. The trainer saves for each classifier setting the Rocchio centroids in the
class table.

The classifier is realised as list event receiver, which fires if an item is added or updated.
With the help of a configuration page, see Figure 3.16, which is available through the
configuration site of each list, following settings have to be made:

� Class list: the list contains the classes that should be classified

� Class field: the field in the class list where the different classes are saved

� List view: the list view which should be used to get the list items

� Input field: the field where the assigned classes are saved

� Output field: the field where the result of the classifier should be written to

The class, which is set from the user, will not be overwritten. If the output field change
its value, a class will be assigned.

CHAPTER 3. DESIGN OF THE IMPLEMENTED SYSTEMS 60

Figure 3.16: Classifier Settings

Chapter 4

Implementation

In this chapter the implementation is described and some details are mentioned.
The system is implemented with the programming language C# .Net as Visual Studio

2010 solution. Following projects are created:

SolvionKI: Contains the Business Logic.

KIInfrastucture: Feature that creates the SQL Infrastructure in the Microsoft SQL
database.

KIContentProcessorFAQ: Content Processor for FAQ entries.

KIContentProcessor: Content Processor for the SharePoint Customer Service Desk
entries

KIClassifier: Contains the event receiver that assigns the classes and classifier setting
page.

KIClassifierServiceDesk: Implementation of an event receiver that is used to update
the ticket list if an action is added or changed (Ticket and Action List).

KITrainer: Contains the trainer setting page and the timing job implementation.

KIWebservice: Webservice that communicates with the webpart.

SuggestionWebpart: Webpart that shows the search results.

KILogging: Feature that creates the Logging Infrastructure.

In Figure 4.1 the components and interactions, that are realised in the projects, are
shown.

The implementation of the SolvionKI is divided into two parts, the DAL (data access
layer) and the logic. The DAL is used to communicate with the Microsoft SQL database.
In Figure 4.2 the class diagram of the DAL is shown. The SQLDALManager creates with
the SQLConnectionCreator an appropriate connection and instantiates the classes, which
are used to communicate with the individual tables. The SQLInfrastructure creates or
deletes the required database and tables. Two different kinds of an ISQLConnection are
implemented. The SQLNormalConnection is used to connect to the MS SQL server and

61

CHAPTER 4. IMPLEMENTATION 62

Figure 4.1: Implemented Components

CHAPTER 4. IMPLEMENTATION 63

to create the database, the schema and so on. The SQLSchemaConnection opens a normal
connection and executes the SQL statements as SKIUser to alter the default schema.

Figure 4.2: Class Diagram of the DAL

The class diagram of the information retrieval logic is shown in Figure 4.3. Via the
SQLDALManager the logic communicates with the SQL server. The Trainer and the
TextProcessor are using the Weighting class to build or update the feature vectors. The
methods of the Text class, that filter the text and split it into words, are used from the
TextProcessor. The Similarity and the TextProcessor are using the Index to achieve a
higher performance. The Feedback class creates a new feature vector by a combination of
other ones. To apply new global word counts the word count vector must be determined
via the Weighting class.

4.1 Sparse Vector

Each item is represented as vector. These vectors are very sparse, that means only a few
values are not equal to null. Only maximal the number of words in the text values have
to be saved. In the vector space model the length of the vectors would be the amount of
words n in the dictionary, see Equation 4.1.

v⃗ecnormal = [v1, v2, v3, ...vn] (4.1)

Because of that the saved vectors in the tables only contain values, which are not equal
to null. For that, the indices and their corresponding values are saved.

v⃗ecsparse = (i1, v1)(i2, v2)... (4.2)

CHAPTER 4. IMPLEMENTATION 64

Figure 4.3: Class Diagram of the Logic

For this purpose a class was implemented which has following functions:

� List <int >GetAllIndizes()

� void SetValue(int index, double value)

� double GetValue(int index)

� void AddVector(SparseVector vec)

� void SubstractVector(SparseVector vec)

� double ScalarProduct(SparseVector vec)

� void Divide(double value)

� double GetDistance()

With the help of these functions the cosine similarity is computed:

CHAPTER 4. IMPLEMENTATION 65

public double CosineSimilarity(SparseVector vec1, SparseVector vec2)
{

double scalar = vec1.ScalarProduct(vec2);
double dist1 = vec1.GetDistance();
double dist2 = vec2.GetDistance();
return scalar / (dist1 * dist2);

}

4.2 Example

Following text entries are saved:

� Das ist ein Test.

� Das ist kein Test.

� Das ist ganz was anderes.

The content preprocessor saves the text items in the content table with a given ID.
After that the words are saved into the dictionary and the word count and feature vectors
are created. Also the text IDs are saved to the inverted index. After the first training
phase the global word count is set and not equal to null.

word global word count id

das 3 1
ist 3 2
ein 1 3
test 2 4
kein 1 5
ganz 1 6
was 1 7
anderes 1 8

Table 4.1: Words Table

content id

das ist ein test 1
das ist kein test 2
das ist ganz ganz was anderes 3

Table 4.2: Content Table

In the vector table you can see that the words das and ist are not occurring in the
feature vector. This is because these words appear in all texts in the corpus. The feature
weights are calculated via the Equation 4.3 and because of that the weight of these words
is null.

CHAPTER 4. IMPLEMENTATION 66

id word count vector feature vector

1 (1,1)(2,1)(3,1)(4,1) (3,1.5850)(4,0.5850)
2 (1,1)(2,1)(5,1)(4,1) (5,1.5850)(4,0.5850)
3 (1,1)(2,1)(6,2)(7,1)(8,1) (6,3.1699)(7,1.5850)(8,1.5850)

Table 4.3: Vector Table

wi = termFrequencyi ∗ log2(
documentCount

globalCounti
) (4.3)

The similarities between these vectors are shown in Table 4.4. There you can see that
doc1 and the doc2 are similar, but doc1 and doc2 to doc3 not.

doc 1 doc 2 doc 3

doc 1 1.0 0.1199 0
doc 2 0.1199 1.0 0
doc 3 0 0 1.0

Table 4.4: Similarity Matrix

4.3 Installation of the Implemented System

The information retrieval system is installed, integrated within the SharePoint Customer
Service Desk and developed within a Sun Virtualbox image. This image is a Microsoft
Server 2008 and the SharePoint 2010 installation. Visual Studio 2010 is the used develop-
ing environment. Following steps have to be executed to install the information retrieval
system:

� Deploy wsp packages with the help of the console command stsadm or with the
Visual Studio 2010.

� Activate Features in the correct order on the different sites (scopes).

� Place the Suggestion Webpart on an appropriate page.

� Set Configurations (Trainer, Webpart, Trainer)

The features should be activated in following order:

� Logging Feature (enables logging infrastructure)

� Infrastructure Password Generator Feature (creates password for the SQL database)

� Infrastructure Feature (creates user, database and tables)

� Trainer Feature (installs trainer timer job and configuration page)

� Content Processors Feature

CHAPTER 4. IMPLEMENTATION 67

� Classifier Feature (installs the event receivers and configuration pages for lists with
a content processor)

� Service Desk Classifier Feature (adds an event receivers, that updates the corre-
sponding ticket list)

� Suggestion Webservice Feature (installs suggestion webservice)

� Suggestion Webpart Feature (adds suggestion webpart)

Chapter 5

Evaluation Results

In this chapter the results of the evaluation of the different kinds of algorithms for the
similarity measurement and the classification are shown.

For the evaluation three different datasets are used, see Table 5.1.

ticket count mean word count div word count dictionary size categories count

a 255 11.5961 4.4047 1201 8
b 250 11.608 4.299 1180 8
c 1370 10.4146 4.0137 3439 25

Table 5.1: Evaluation Datasets

The categories of the datasets a and b are assigned by hand. The dataset c uses cate-
gories from an existing service desk application of the company Solvion.

5.1 Similarity Measurement Evaluation

Different kinds of text preparation methods, weighting schemas and algorithms are eval-
uated. The MAP value is calculated to compare the results. The result list contains the
top five ranked items.

5.1.1 Text Preparation

Different text preparation methods are evaluated. Hunspell, a spell checking tool, is used
to make spelling correction, find stems and synonyms. Also the calculation of N- Grams
is evaluated.

Hunspell

Hunspell is used to add stems, synonyms and spelling suggestion to the text to perform
a kind of query expansion. It is an open source toolbox, which is also used from Open
Office [PL10]. To evaluate these methods the weighting scheme TF–IDF and the cosine
similarity are used. The result list contains the five most similar items. The MAP value
of that list is calculated and shown in table 5.2. The dataset a, see Table 5.1, is used.

68

CHAPTER 5. EVALUATION RESULTS 69

MAP

Spelling Correction 0.46617
Stems 0.47551
Synonyms 0.46743
Spelling Correction and Synonyms 0.46759
Spelling Correction and Stems 0.46659
Spelling Correction, Synonyms and Stems 0.46723
without 0.62248

Table 5.2: Hunspell Evaluation

N-Grams

For the N-Grams evaluation only one weighting scheme is used, the TF–IDF. Also only
one similarity measurement (cosine) is used. N is a number from one to seven. The MAP
values for the dataset a are calculated. In Table 5.13 and 5.4 the sizes of the dictionaries
and the MAP values for the best five results are shown.

N Dictionary Size MAP

1 60 0.57156
2 1143 0.61853
3 6278 0.61539
4 16483 0.61052
5 27916 0.60661
6 38271 0.60324
7 46774 0.60039

words 3439 0.6088

Table 5.3: N- Grams Evaluation for the dataset c

N Dictionary Size MAP

1 59 0.57681
2 805 0.64979
3 3461 0.64972
4 7005 0.63873
5 9938 0.62602
6 12113 0.62007
7 13647 0.61284

words 1201 0.62248

Table 5.4: N- Grams Evaluation for the dataset a

5.1.2 Weighting Schemas

To evaluate the weighting schemes following similarity algorithms are used:

� Cosine

CHAPTER 5. EVALUATION RESULTS 70

� Tanimoto

� Euclidean

� Pseudo-cosine

� Dice

� Overlap

The dataset c is used as input. The mean value of the MAP value is calculated for each
weighting schema over all similarity measurements. In Table 5.5 the evaluation results are
shown.

rank global weighting local weighting MAP

1. a g 0,6166
2. t g 0,61603
3. l g 0,61581
4. n g 0,61561
5. l x 0,60818
6. a x 0,6076
7. t x 0,60727
8. n x 0,60645
9. b g 0,60120
10. b x 0,60120
11. t e 0,59431
12. a e 0,5943
13. l e 0,59418
14. t f 0,59404

Table 5.5: Weighting Evaluation

In Table 5.6 the mean MAP values of the different local weightings are shown.

local weighting MAP

x 0,606
f 0,592
g 0,612
n 0,572
p 0,559
e 0,592

Table 5.6: Weighting Evaluation of Local Weighting Schemas

In Table 5.7 the mean MAP values of the different global weightings are shown.

5.1.3 Dimension Reduction

For the dimension reduction evaluation the weighting schema TF–IDF and the cosine sim-
ilarity are used. The dimension reduction algorithms PCA, LDA and SVD are evaluated.

CHAPTER 5. EVALUATION RESULTS 71

global weighting MAP

t 0,5906
b 0,5848
l 0,5909
n 0,5894
a 0,5907

Table 5.7: Weighting Evaluation MAP of Global Weighting Schemas

In Table 5.8 the MAP values for different dimensions and algorithms for the dataset a are
shown. In Figure 5.1 the MAP values for the different dimensions are plotted.

50 100 150 200 250

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

dimension

M
A

P

PCA
SVD
LDA

Figure 5.1: Dimension Reduction Graph

Method Dimension MAP

LDA 31 0.6340
PCA 31 0.6302
SVD 34 0.6324

1201 0.6225

Table 5.8: Dimension Reduction Evaluation of Cosine Similarity

In Figure 5.2 the behaviours of the different similarity algorithms are shown. The
similarity between two vectors is computed. In Measurement 1 the distance and in Mea-
surement 2 the angle of the compared vector grow linearly. In Measurement 3 both, angle
and distance, are increasing linearly. It is shown that all algorithms change their value if
the angle between the compared vectors is changing. The overlap and cosine algorithm
behaves the same. If only the distance is modified the cosine, pseudo– cosine and overlap
algorithm are constantly equal to 1.0. By changing the distance and angle linearly the
pseudo– cosine and overlap algorithm compute the same results. The cosine and pseudo–
cosine algorithm yield the same functions if only the angle or if the angle and distance are
changing.

CHAPTER 5. EVALUATION RESULTS 72

Figure 5.2: Similarity Algorithm Comparison

CHAPTER 5. EVALUATION RESULTS 73

5.1.4 Similarity Algorithms

In Table 5.9 the MAP results of the different similarity measurements for the set c are
shown. Microsoft SharePoint Search 17.3 means that the MAP value for the result list,
which contains about 17.3 items, is calculated. For the Microsoft SharePoint Search 5
only the top five result items are used. In Table 5.9 the mean MAP values of all different
weighting schemas for each algorithm are shown.

algorithm MAP

cosine 0,60266
tanimoto 0,60237
euclidean 0,54300
pseudo-cosine 0,59265
dice 0,60087
overlap 0,59419
Microsoft SharePoint Search 17.3 0.5668
Microsoft SharePoint Search 5 0.6125

Table 5.9: Similarity Algorithms Evaluation

In Table 5.10 the best ten results of the different similarity algorithms and weighting
schemas are shown.

rank global weighting local weighting algorithm MAP

1. a g cosine 0,62756
2. l g cosine 0,62711
3. t g cosine 0,62653
4. n g tanimoto 0,62638
5. n g dice 0,62631
6. n g cosine 0,62610
7. l g tanimoto 0,62604
8. a g tanimoto 0,62525
9. t g tanimoto 0,62464
10. a x cosine 0,62393

Table 5.10: Top Similarity Evaluation Results

5.1.5 Summary

In Table 5.11 the results of the different evaluations are shown. The best resulting weighting
schema is the a g. In the combination with the cosine similarity it produces the best
results for the dataset c and achieves a better MAP value than the Microsoft Sharepoint
Search. Different types of algorithms are evaluated with the help of the TF–IDF weighting
schema and a cosine similarity. The 2-Grams method obtained the best result of this
combination. By the evaluation of the dataset c it also achieves better results than the
Microsoft Sharepoint Search result.

CHAPTER 5. EVALUATION RESULTS 74

Dataset algorithm MAP

c 2–Grams, TF–IDF, cosine 0.61853
c a g cosine 0.62756
c a g weighting schema mean 0.6166
c Microsoft Sharepoing Search 5 0.6125

a Spelling Correction and Synonyms, TF–IDF, cosine 0.46759
a TF–IDF , cosine 0.62248
a 2–Grams, TF–IDF, cosine 0.64979
a LDA, TD–IDF, cosine 0.6340

Table 5.11: Top Similarity Evaluation Results

5.2 Classification Results

N- Grams, different weighting schemas and classification algorithms are evaluated. The
percentage of the correct classified items of a 1-n cross validation is used to compare the
results.

5.2.1 N-Grams

N- Grams are also evaluated for the classification. The used algorithms are the KNN– and
the Rocchio Cosine. The t p weighting scheme is used to calculate the vector space model.
In Table 5.12 the results of the evaluation for N one to seven are shown. For the KNN
algorithm the best value of k is dynamically determined.

KNN Cosine Rocchio Cosine

N Dictionary Size k correct correct

1 59 24 0,392 0,044
2 803 16 0,580 0,564
3 3434 8 0,620 0,640
4 6921 7 0,628 0,640
5 9789 9 0,584 0,624
6 11911 13 0,600 0,608
7 13402 32 0,616 0,572

Table 5.12: N-Grams Classification Results of Dataset b

5.2.2 Weighting Schemas

To evaluate the different weighting schemas the mean correct value over the following
algorithms is calculated:

� Bayes

� 10NN (dice, cosine, tanimoto, overlap)

� Rocchio (dice, cosine, tanimoto, overlap)

CHAPTER 5. EVALUATION RESULTS 75

The dataset c is used. In Table 5.13 the top 10 and the worst result of the mean correct
values are shown.

rank local weight global weight correct

1. a g 0,47502
2. t g 0,47437
3. a f 0,46740
4. a e 0,46691
5. t f 0,46691
6. l g 0,47072
7. l f 0,46286
8. l e 0,46204
9. a x 0,46569
10. l x 0,46423
30. b p 0,40227

Table 5.13: Best Classification Weighting Schemas Results

In Table 5.15 the mean correct values for the local and in Table 5.14 for the global
weighting schemas are shown.

global weighting correct

t 0,45311
b 0,43889
l 0,45077
a 0,45362
n 0,44611

Table 5.14: Global Weighting Evaluation of the Classification

local weighting correct

x 0,45992
f 0,46107
g 0,46621
n 0,43366
p 0,40928
e 0,46086

Table 5.15: Local Weighting Evaluation of the Classification

5.2.3 Dimension Reduction

In Figure 5.3 the different dimension reduction methods are plotted and in Table 5.16
the best results are shown. The Rocchio Cosine classification algorithm, the t p weighting
schema and the dataset b are used for the evaluation.

CHAPTER 5. EVALUATION RESULTS 76

Method Dimension correct

LDA 77 0.5320
PCA 112 0.3840
SVD 129 0.6080

1201 0.6080

Table 5.16: Dimension Reduction Evaluation of Rocchio Cosine Classification

50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

dimension

M
A

P

PCA
SVD
LDA

Figure 5.3: Dimension Reduction Graph of Rocchio Classification

5.2.4 Algorithms

In Table 5.17 the mean correct values of the different algorithms of all weighting schemas
are shown of the dataset c. In Table 5.18 the best ten correct classified values and the

algorithm correct

Bayes 0,00219
10 NN dice 0,58759
10 NN cosine 0,58774
10 NN tanimoto 0,58681
10 NN overlap 0,58122
Rocchio dice 0,34010
Rocchio cosine 0,58397
Rocchio tanimoto 0,43092
Rocchio overlap 0,33297

Table 5.17: Classification Algorithms Results

result of the rocchio cosine with a TF– IDF weighting schema are shown of the dataset c.

Support Vector Machines

The evaluation of the support vector machines is very time expensive. The used data set is
b and weighting schema is t p. The vector space computation of the TMG toolbox is used.
The data are normalised before. That means that a uniform distribution of the assigned
classes is aimed. The mean count of the items per class is calculated. This mean value
defines the max items count of each class, the remaining items are deleted. In Table 5.19
the results of the SVM and of the other classification methods are shown. The sigma for

CHAPTER 5. EVALUATION RESULTS 77

rank local weighting global weighting algorithm correct

1. t g 10 NN cosine 0,64745
2. a g 10 NN cosine 0,64599
3. a g 10 NN tanimoto 0,64161
4. l g 10 NN cosine 0,64161
5. l g 10 NN tanimoto ,63942
6. t g 10 NN tanimoto 0,63796
7. l g 10 NN dice 0,63723
8. a x 10 NN cosine 0,63577
9. a x 10 NN tanimoto 0,63504
10. t x 10 NN cosine 0,63358
31. a e Rocchio cosine 0,62190
41. t f Rocchio cosine 0,61752

Table 5.18: Best Classification Results

the rbf kernel is set between 0,5 and 0,9 with a step of 0,1. The order of the polynomial
kernel is set between one to five.

5.2.5 Summary

In Table 5.20 the best evaluation results are shown. The SVM classification algorithmn
achieved bad results on the dataset b. The best results are obtained by 4–Grams with and
a Rocchio Consine classification. The best weighting schema is also the a g, same as in the
similarity evaluation, see Table 5.5.

5.3 Summary

The results fall off in quality by applying different text prepossessing methods with Hun-
spell. Contrary to that the N–Grams calculation with N = 2 improved the similarity
calculation results. An advantage of this approach is also that the dictionary size is small-
er. The best performing self implemented similarity algorithm is the cosine similarity.
The Microsoft SharePoint Search achieves better results than the cosine similarity but are
interior to the N–Grams results.

The a g (alternate log – GfIdf) weighting schema established the best results for the
classification and similarity evaluation. In Figure 5.4 the TF–IDF and a g weighting calcu-
lations is shown. The alternate log weakens high local term frequencies. The GfIdf is high
if a word occurs often in few documents. If a word occurs often overall and is contained in
almost documents, the GfIdf is small (for instance stopwords). The IDF does not consider
the global word frequencies. That means that words are equally important if they occur
in few documents, even if one of them is contained more often.

5.4 Time Evaluation

Following attributes are influencing the execution times:

CHAPTER 5. EVALUATION RESULTS 78

Algorithm correct

Bayes 0,206
20NN dice 0,578
20NN cosine 0,561
20NN dice 0,578
20NN tanimoto 0,583
20NN overlap 0,544
Rocchio dice 0,594
Rocchio cosine 0,628
Rocchio dice 0,594
Rocchio tanimoto 0,600
Rocchio overlap 0,550
pairwise SVM linear 0,478
pairwise SVM Polynomial order = 1 0,478
pairwise SVM quadratic 0,328
oneAgainstAll SVM Polynomial order = 1 0,233
oneAgainstAll SVM linear 0,233
oneAgainstAll SVM quadratic 0,056
pairwise SVM Rbf sigma = 0.5 0,500
oneAgainstAll SVM Rbf sigma = 0.5 0,500

Table 5.19: SVM Classification Results

dataset algorithm correct

b 4–Grams, t p weighting schema, KNN Cosine 0.628
b 4– and 5–Grams, t p weighting schema, Rocchio Cosine 0.640
b t p weigthing schema, Rocchio Cosine 0.6080
b SVD, t p weigthing schema, Rocchio Cosine 0.6808
b t p weigthing schema, TMG toolbox, Rocchio Cosine 0.628
b t p weigthing schema, TMG toolbox, SVM Rbf sigma = 0.5 0.5
c a g weighting schema mean 0.47502
c t g weigthing schema, 10NN cosine 0.64745

Table 5.20: Dimension Reduction Evaluation of Rocchio Cosine Classification

Figure 5.4: Weighting Calculation Comparison

CHAPTER 5. EVALUATION RESULTS 79

� Eord count (n)

� Ticket count (m)

� Class count (k)

� Dictionary size (l)

� Feedback vector counts (p)

To add or update a text entry, following steps are executed:

� Delete existing entry

� Create new content entry

� Create vector entry

Delete existing entries

If a ticket entry has to be deleted, at first the entries of the feedback and vector table are
determined. After that the corresponding inverted index entries are removed. Then the
content, feedback vector and normal vector entries are deleted. Following SQL executions
and time complexities (worst case) occur:

1. Select WHERE ... (Feedback table) O(p)

2. Delete from INDEX

3. Select WHERE ... (Vector table) O(m)

4. Delete from INDEX

5. Delete FROM feedback table WHERE ... O(p)

6. Delete FROM content table WHERE ... O(m)

7. Delete FROM vector table WHERE ... O(m)

The delete from INDEX contains for each word of the text entry following operations:

f o r each word o f the text item
id s = SELECT WHERE . . . (Index tab l e)

i f { conta in s own id }
remove own id from id s
i f { i d s count == 0}

DELETE from index tab l e
e l s e

UPDATE index
end

end
end

CHAPTER 5. EVALUATION RESULTS 80

The SELECT and DELETE operations within the index table for a specific word need
in the worst case O(l). Because this has to be done for each word that occurs in the ticket,
the complexity of deleting a vector from the index needs O(l∗n). Because of that the time
complexity to delete a text entry from the database needs O(p + m + l ∗ n). p maximal
can be equal to m and so the complexity is O(m+ l ∗ n).

Create new content entry

Before a text entry is saved the text is filtered. At first a regular expression is used to
remove HTML syntax. To filter signs, the text is spitted to words with the help of given
signs like !?() and concatenated again (O(n)). After that the system tries to update the
text entry (O(m)). If the entry does not exist(O(m)), a new one is created. So the overall
time complexity of creating a new content entry is O(m+ n).

Create vector entry

For each word of the the text item following steps are executed:

1. SELECT COUNT where = word (search if word exists) O(l)

2. INSERT word O(1) (if it not exist)

3. SELECT word O(l)

4. Weighting.getWordCount() (calculate TF) O(n)

5. Set word count vector O(1)

6. Set global word count vector O(1)

7. Add entry to Index Table O(l)

After that the global and local word count vectors are calculated. These two vectors
are used to determine the feature vector:

1. Weighting.calculateTFIDF O(n)

2. UPDATE vector O(m)

3. INSERT vector O(1)

Weighting.calculateTFIDF iterates the global and local word count vectors and calcu-
lates the TF– IDF value.

To add an entry to an index following steps are executed:

1. SELECT Index Table where O(l)

2. Check if item is already added O(l)

3. If the entry not exists, add it (UPDATE Index Table) O(l)

The time complexity of adding one entry to the index is O(l). So the overall time com-
plexity is O((l + n) ∗ n+ n+m).

CHAPTER 5. EVALUATION RESULTS 81

5.4.1 Search

The search has to select the feature vector of the query, that was saved before. If feedback
information is variable it is possible to select it from the vector or feedback table. After
that the inverted index is used to get item IDs for the comparison. Therefore each word of
the source text is selected and the inverted index IDs are collected and the distinct ones
are returned. For each of these IDs the corresponding feature vector is selected from the
database. If a feedback vector is available, it is selected, otherwise the normal vector is
chosen. For each of these vectors the cosine similarity with the source vector is calculated
and saved in a list. At last this list is sorted and the top n IDs are returned. So following
steps are executed:

1. Get feedback or normal vector O(p+m)

2. Get IDs form inverted index O(n+m)

3. For each id (max n):

(a) Get feedback or normal vector for id O(p+m)

(b) Calculate cosine similarity O(l)

4. Sort similarity list O(m ∗ log(m))

5. Return a amount of the most important ids

To calculate the cosine similarity of two vectors at first the scalar product has to be
calculated. This value is divided by the product of the distances of the vectors. To calculate
the scalar product and the distances the overall time complexity is O(l).

The hole complexity is O(n ∗ (p+m+ l) +m ∗ log(m)).

5.4.2 Classification

To get the to assigning class, at first, the Rocchio centroids are selected from the database.
In the worst case O(kAll), if kAll is the amount of all classes saved in the table, is needed.
After that for each class the cosine similarity (O(l)) is calculated. The ID of the highest
most similar class is saved (O(k ∗ l)).

Chapter 6

Conclusion

A system to evaluate different information retrieval algorithms was implemented in Mat-
lab. Also a solution for the SharePoint Customer Service Desk to retrieve similar problems
respectively their answers and to assign classes to a ticket was created.

The implemented SharePoint Customer Service Desk system is adaptive because of
the feedback mechanism and the training for the classification. An implicit and explicit
feedback mechanism is implemented. The implicit feedback has the advantage, that the
users have no additional effort.

The system can be used for different kind of Microsoft SharePoint lists. Therefore
only a new content processor has to be created. The presentation of the search results
can be changed via the XSLT file and the configuration settings. If a completely other
representation should be implemented it is also possible because the communication with
the information retrieval system can be established via the webservice. The classification
can also be applied on different lists by setting the appropriate classier settings.

The TF–IDF algorithm is implemented because it is common. The a g (Alternate log–
GfIdf) weighting achieved the best evaluation results, see 5.5 and 5.10.

The Rocchio cosine algorithm was chosen for the classification, it achieves good results
and is more time efficient than the NN neighbour approach. For the nearest neighbour
algorithm the distance to each item has to be calculated. The Rocchio classifier only re-
quires a computation of the distances to the class centroids. This can be computed during
the training phase by iterating the list once. A possible disadvantage of the classification
is that data have to be available for the training. If a new class is created and no training
data are available for this class, this class will not be assigned to incoming tickets. Also
as more items are assigned to a certain class correctly, as better this one is described and
a better classification is possible. Also no similar text items for a new one can be found,
if it only includes new words. That means that no intersection with other documents and

82

CHAPTER 6. CONCLUSION 83

so no similarity measurement can be done.

The cosine similarity is used to search similar text items. This approach achieved the
best test results and a second advantage is, that the same computation is also used for
the Rocchio classification.

The text preparation mechanism N–Grams is also implemented. This mechanism achieved
the overall best results and has also the advantage to control the size of the dictionary.
With the help of a factory pattern it is possible to use the word based or N–Grams mecha-
nism within the Content Processor. The N–Grams overcome also the well known problem
of the similarity measurement, the synonymy, polysemy and inflection of words.

No dimension reduction mechanism is implemented because a computation of a SVD
is time consuming and the results N–Grams results are better.

The efficiency of the DAL can be improved in future. It turned out, that SQL con-
nection and queries to the MS SQL database, used in this implementation, did not work
highly efficient. With the help of stored procedures the communication can be improved.
The TF–IDF weighting schema is used to calculate the vector space model. To improve
the results the a g weighting schema should be used.

Appendix A

List of Abbreviations

SMART System for the Mechanical Analysis and Retrieval of Text

TF–IDF Term Frequency – Inverse Document Frequency

Corpus Document Collection

Document frequency Count of Terms in a Document

MAP Mean Average Precision

TP True Positives

FN False Negatives

p@k Precision at k

SVM Support Vector Machines

SVD Single Vector Decomposition

PCA Prinicipal Compontent Analysis

KNN k Nearest Neighbour

GUID Globally Unique Identifier

84

Bibliography

[Ass07] Association of Computational Linguistics. Towards an Iterative Reinforce-
ment Approach for Simultaneous Document Summarization and Keyword
Extraction, 2007.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA EN-
GINEERING, 17:734–749, 2005.

[BDH03] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web Search for a Planet:
The Google Cluster Architecture. 2003.

[bDK05] Kai bo Duan and S. Sathiya Keerthi. Which is the best multiclass SVM
method? An empirical study. In Proceedings of the Sixth International Work-
shop on Multiple Classifier Systems, pages 278–285, 2005.

[Bur02] Robin Burke. Hybrid Recommender Systems: Survey and Experiments. In
User Modeling and User-Adapted Interaction, pages 331 – 370, California
State University, Fullerton, USA 92834, 2002. Department of Information
Systems and Decision Sciences, Kluwer Academic Publishers.

[CZR05] Nick Craswell, Hugo Zaragoza, and Stephen Robertson. Microsoft Cam-
bridge at TREC-14: Enterprise Track. 2005.

[Dep] Department of Research and Development NACSIS. Evaluation of keyword
extraction task. NTCIR Workshop TMREC Group.

[FHM08] Ingo Feinerer, Kurt Hornik, and David Meyer. Text Mining Infrastructure
in R. Journal of Statistical software, March 2008.

[GLWW00] Christoph Goller, J. Löning, T. Will, and W. Wolff. Automatic Document
Classification - A thorough Evaluation of various Methods. In ISI, pages 145
– 162, 2000.

[Got09] Dr. Thomas Gottron. Information Retrieval, 2009.

[Joa98] Thorsten Joachims. Text categorization with support vector machines: learn-
ing with many relevant features. In Claire Nedellec and Céline Rouveirol,
editors, Proceedings of ECML-98, 10th European Conference on Machine
Learning, pages 137–142, Heidelberg et al., 1998. Springer.

85

BIBLIOGRAPHY 86

[Kür06] Jens Kürsten. Systematisierung und Evaluierung von Clustering-Verfahren
im Information Retrieval. 2006.

[LJ98] Y. H. Li and A. K. Jain. Classification of text documents. The Computer
Journal, 41:537 – 546, 1998.

[LMV08] Kevin Laahs, Emer McKenna, and Veli-Matti Vanamo. Microsoft® Share-
Point 2007 Technologies Planning, Design and Implementation. Digital
Press is an Imprint of Elsevier, 2008.

[LSY03] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-
item collaborative filtering. Internet Computing, IEEE, 7(1):76–80, 2003.

[MB10] Marty Matthews and Nancy Buchanan. Microsoft SharePoint 2010 Quick-
Steps. cGraw-Hill Osborne Media, 2010.

[MI03] Y. Matsuo and M. Ishizuka. Keyword Extraction from a single document
using Word Co-Occurrence statistical information. International Journal on
Artificial Intelligence Tools, 13(1 (2004) 157169), 2003.

[MMC02] P Majumder, M Mitra, and B. B. Chaudhuri. N-gram: a language indepen-
dent approach to IR and NLP, 2002.

[Mol09] Cleve Moler. Experiments with MATLAB. 2009.

[MS06] Robin Van Meteren and Maarten Van Someren. Using content-based filtering
for recommendation. In Proceedings of MLnetECML2000 Workshop (2000),
volume 4203/2006, pages 312 – 321. Citeseer, 2006.

[MSD09] Relevance in SharePoint Search. http://blogs.msdn.com/b/kundut/archive/
2009/10/15/relevance-in-sharepoint-search.aspx 14.09.2010, 2009.

[MW06] Philipp Mayr and Anne-Kathrin Walter. Abdeckung und Aktualität des
Suchdienstes Google Scholar. . Information - Wissenschaft & Praxis,
57(3):133–136, 2006.

[oel09] Automatic Keyword Extraction for Database Search. Association for Com-
putational Linguistics, 2009.

[PB07] Michael J. Pazzani and Daniel Billsus. Content-based recommendation sys-
tems. In The adaptive web: methods and strategies of web personalization,
pages 325 – 341. Springer-Verlag, 2007.

[PL10] Tommi Pirinen and Krister Lindén. Creating and Weighting Hunspell Dic-
tionaries as Finite-State Automata. Investigationes Linguisticae, 21:1–16,
2010.

[PWWB09] Rhonda D. Phillipsa, Layne T. Watsona, Randolph H. Wynnec, and Chris-
tine E. Blinnc. Feature reduction using a singular value decomposition for
the iterative guided spectral class rejection hybrid classifier. In ISPRS Jour-
nal of Photogrammetry and Remote Sensing, pages 107 – 116, 2009.

BIBLIOGRAPHY 87

[R.86] Quinlan J. R. Induction of decision trees. Machine Learning, 1(1):81–106,
March 1986.

[RAS+10] Tom Rizzo, Reza Alirezaei, Paul J. Swider, Scot Hillier, Jeff Fried, and Ken-
neth Schaefer. Professional SharePoint® 2010 Development. Wiley Pub-
lishing, 2010.

[Rij79] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 1979.

[RV97] Paul Resnick and Hal R. Varian. Recommender systems. In Communications
of the ACM, volume 40, pages 56 – 58, 1997.

[SB90] Gerard Salton and Chris Buckley. Improving retrieval performance by rel-
evance feedback. Journal of the American Society for Information Science,
41:288–297, 1990.

[Seb05] Fabrizio Sebastiani. Text categorization. In Text Mining and its Appli-
cations to Intelligence, CRM and Knowledge Management, pages 109–129.
WIT Press, 2005.

[Sin01] Amit Singhal. Modern information retrieval: a brief overview. BULLETIN
OF THE IEEE COMPUTER SOCIETY TECHNICAL COMMITTEE ON
DATA ENGINEERING, 24:2001, 2001.

[SL98] Brin Sergey and Page Lawrence. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the seventh international conference
on World Wide Web 7, WWW7, pages 107–117. Elsevier Science Publishers
B. V., 1998.

[Smi02] Lindsay I Smith. A Tutorial on Principal Component Analysis, February
2002.

[TH01] Loren Terveen and Will Hill. Beyond Recommender Systems: Helping People
Help Each Other. In HCI in the New Millennium, pages 487 – 509. Addison-
Wesley, 2001.

[vdPPRG04] Lonneke van der Plas, Vincenzo Pallotta, Martin Rajman, and Hatem Ghor-
bel. Automatic Keyword Extraction from Spoken Text. A Comparison of
two Lexical Resources: the EDR and WordNet. Procedings of the LREC
2004 international conference, pages 2205 – 2208, 2004.

[ZG05] Dimitrios Zeimpekis and Efstratios Gallopoulos. TMG: A MATLAB Tool-
box for Generating Term-Document Matrices from Text Collections, 2005.

