
Master’s Thesis

Formal Methods for the Analysis of
Program Mutations

Heinz Riener

Institute for Applied Information Processing and Communications
Graz University of Technology, Austria

Advisor: Prof. Roderick Bloem

Graz, August 2011

Masterarbeit

Formale Methoden zur Analyse von
Programm-Mutationen

Heinz Riener

Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie
Technische Universität Graz, Österreich

Begutachter: Prof. Roderick Bloem

Graz, im August 2011

Diese Arbeit ist in englischer Sprache verfasst.

Abstract

Mutation testing is a powerful testing methodology: the source code of a program is system-
atically seeded with syntactic changes (faults) and tested. Undetected faults indicate insufficient
testing and can be used to improve the test bench. Some syntactic changes do not affect the
program semantics — a program with this kind of faults is functionally equivalent to the original
program. Deciding whether two arbitrary programs are functionally equivalent is undecidable,
even if they are closely related and differ only in a single syntactic change. The impossibility
to decide whether a seeded fault affects the program semantics circumvents counting how many
faults remain undetected. This obstacle limits the practical applicability of mutation testing. A
tester will always wonder whether the undetected faults cannot be found because they do not
affect the program semantics or the test bench is insufficient in uncovering them.

In this thesis, we focus on the problem of deciding whether a seeded syntactic change affects
the program semantics with the aid of formal methods.

We present a mutation testing approach that seeds faults into the intermediate representation
of a compiler and, thus, is independent from the programming language of the compiler front-
end. We show the construction of a meta-mutant for the intermediate representation that serves
as an effective data-structure to represent a set of mutants. The meta-mutant collects a set of
seeded faults in a single program with additional control logic which provides mechanisms to
enable and disable the individual faults.

We develop two orthogonal approaches to decide functional equivalence for special cases of
programs that differ in a single syntactic change. First, we propose a new code optimization
approach using compiler construction techniques based on static analysis to decide functional
equivalence of some seeded faults. Second, we present a bounded model checking approach which
builds a model of the program and searches for counterexamples of finite length in the model.
Each counterexample proves functional non-equivalence of a seeded fault. From a counterexam-
ple a test case can be extracted which results in different externally observable outputs for the
original program and the program with the seeded syntactic change.

Finally, we present experimental results of our approaches for ANSI-C with a prototype
implementation.

Keywords: Mutation Testing, Formal Methods, Functional Equivalence, Bounded Model Check-
ing.

i

Kurzfassung

Mutationstesten ist eine mächtige Testmethodologie: In ein Programm werden systema-
tisch, syntaktische Änderungen (Fehler) eingestreut und das Programm wird dann getestet.
Unentdeckte Fehler deuten auf unzureichendes Testen hin und können zur Verbesserung der
Testmenge verwendet werden. Einige syntaktische Änderungen wirken sich nicht auf die Pro-
grammsemantik aus — ein Programm mit dieser Art von Fehlern ist funktional äquivalent zum
Originalprogramm. Die Entscheidung, ob zwei beliebige Programme funktional äquivalent sind,
ist unentscheidbar, auch wenn die Programme in einem engen Zusammenhang stehen und sich
nur in einer einzigen syntaktischen Änderung unterscheiden. Die Unmöglichkeit zu entscheiden,
ob sich ein eingestreuter Fehler auf die Programmsemantik auswirkt, verhindert es, exakt zu
bestimmen, wie viele Fehler nicht gefunden wurden. Dieses Problem limitiert die praktische
Einsatzfähigkeit von Mutationstesten. Ein Tester kann sich nicht sicher sein, ob die unent-
deckten Fehler nicht gefunden werden können, weil sie sich nicht auf die Programmsemantik
auswirken, oder ob die Testmenge unzureichend testet, um die Fehler zu finden.

In dieser Arbeit befassen wir uns mit Hilfe von formalen Methoden mit dem Problem zu
entscheiden, ob eine eingestreute syntaktische Änderung Einfluss auf die Programmsemantik hat.

Wir präsentieren einen Ansatz für Mutationstesten, der Fehler in die Zwischenrepräsentation
eines Compilers einschleust, und deshalb unabhängig von der Programmiersprache des Compiler
Front-Ends eingesetzt werden kann. Wir zeigen, wie ein Meta-Mutant auf der Ebene der Zwi-
schenrepräsentation konstruiert wird. Der Meta-Mutant dient als effiziente Datenstruktur, die
eine Menge von Fehlern in einem einzigen Programm sammelt, und mit Hilfe von zusätzlicher
Kontrolllogik erlaubt einzelne Fehler ein- und auszuschalten.

Wir entwickeln zwei orthogonale Ansätze, um die funktionale Äquivalenz von Spezialfällen
von Programmen zu entscheiden, die sich nur in einer einzigen syntaktischen Änderung unter-
scheiden. Erstens schlagen wir einen neuen Code-Optimierungsansatz vor, der Techniken aus
dem Compilerbau basierend auf statischer Analyse verwendet, um funktionale Äquivalenz für
einige eingestreute Fehler zu entscheiden. Zweitens präsentieren wir einen ”beschränkten“ Mod-
ellprüfungsansatz (bounded model checking), der ein Modell eines Programmes baut und nach
Gegenbeispielen endlicher Länge in dem Modell sucht. Jedes Gegenbeispiel beweist, dass ein
eingestreuter Fehler die Semantik des Originalprogramms beeinflusst. Aus einem Gegenbeispiel
kann ein Testfall extrahiert werden, der verschiedene extern beobachtbare Ausgaben für das
Originalprogramm und das Programm mit dem eingestreuten Fehler bedingt.

Schließlich präsentieren wir experimentelle Ergebnnisse für unsere Ansätze für ANSI-C mit
einer Prototyp-Implementierung.

Schlüsselworte: Mutationstesten, formale Methoden, funktionale Äquivalenz, gebundene Mo-
dellprüfung.

ii

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Acknowledgments

I am very grateful to my advisor Roderick Bloem, who continuously sup-
ported my work and has spent numerous hours for discussing and reviewing
my premature ideas.

I would like to thank my colleague and friends at Graz, University of
Technology for having a great time during studying.

Last but not least, I would like to thank my parents (and family) for their
moral and financial support. They always believed in me and my decision to
study Telematics.

Heinz Riener
Graz, Austria, August 2011

Danksagung

Ich möchte meinem Betreuer Roderick Bloem danken, der meine Arbeit
stets unterstützt und zahlreiche Stunden geopfert hat, um unausgereifte Ideen
zu diskutieren und zu kritisieren.

Auch sehr herzlich möchte ich meinen Kolleginnen und Kollegen an der
Technischen Universität Graz für eine tolle Zeit während des Studiums danken.

Zu guter Letzt will ich meinen Eltern und meiner Familie für die moralische
und finanzielle Unterstützung danken. Sie haben immer an mich und meine
Entscheidung Telematik zu studieren geglaubt.

Heinz Riener
Graz, Österreich, August 2011

iv

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Background . 2

1.2.1 Test Criteria . 2
1.2.2 Mutation Testing . 3
1.2.3 Formal Methods . 4

1.3 Problem Addressed in the Thesis . 5
1.4 Outline of the Solution . 6
1.5 Structure of the Document . 7

2 Preliminaries 9

2.1 Introduction . 9
2.2 Software Testing . 9

2.2.1 A Formalization of Testing . 9
2.2.2 Test Reliability and Test Adequacy . 10
2.2.3 Mutation Adequacy . 11

2.3 Mutation Testing . 12
2.3.1 Mutation Analysis . 12
2.3.2 Underlying Hypothesis . 14
2.3.3 Test Process . 14
2.3.4 Mutation Operators . 15
2.3.5 Meta-Mutant . 17

2.4 Bounded Model Checking . 17
2.5 LLVM Intermediate Language . 19

2.5.1 Overview of LLVM . 19
2.5.2 Structure of an LLVM program . 19
2.5.3 LLVM Instruction Set . 20
2.5.4 LLVM Metadata . 24
2.5.5 A Simple Fault Model for LLVM . 24
2.5.6 Meta-Mutant Construction . 26

2.6 Summary . 27

v

3 Detecting Equivalence 29

3.1 Introduction . 29
3.2 Early Attempts and Motivation . 29

3.2.1 Design Considerations . 30
3.3 Detecting Equivalent Mutants using Code Optimization 32

3.3.1 Optimizer Procedure . 32
3.3.2 Optimizing Source-to-Source Transformations 33
3.3.3 Optimization Pipeline . 34

3.4 Detecting Redundant Mutants using Code Optimization 35
3.4.1 MetaOptimizer Procedure . 35

3.5 Summary . 36

4 Detecting Non-Equivalence 37

4.1 Introduction . 37
4.2 Symbolic Bounded Model Checking . 37

4.2.1 Simplified Symbolic Procedure . 37
4.2.2 Unwind the Program . 38
4.2.3 Encoding the Unrolled Program . 38
4.2.4 Symbolic Procedure . 40

4.3 Related Work . 41
4.4 Summary . 43

5 Experimental Evaluation 45

5.1 Introduction . 45
5.2 Environment Setting . 45
5.3 Benchmark Programs . 46
5.4 Experimental Evaluation . 46
5.5 Experimental Results . 49

5.5.1 Results of Experiment 1 . 49
5.5.2 Results of Experiment 2 . 50
5.5.3 Results of Experiment 3 . 51

5.6 Summary . 51

6 Conclusion and Future Work 55

Bibliography 57

vi

Chapter 1

Introduction

1.1 Motivation

Computer systems are an important and integral part of our everyday lives. Malfunctions of
safety critical systems, e.g., in medical devices or automobiles, cause high costs in form of claims
for damages, undermine a company’s image, or endanger human lives. Some malfunctions, that
had serious consequences, are the FDIV bug of the Intel R© Pentium R© P5 floating point unit
which has infected some of the floating point calculations carried out by the processor [Pra95],
and the launch failure of the Ariane 5 rocket which has led to its destruction only 37 seconds
after start [Lio96]. In both cases a technical defect caused a financial damage of several hundred
million US dollars. Another example is the malfunctioning of the Therac-25 medical accelerator
which has demonstrably killed six people and injured several others [LT93]. The higher the
importance of computer systems, the higher the price when they fail. Better techniques to
derive confidence in the correct functioning of computer systems are desirable.

Testing and simulation techniques are the predominant methods used today to increase the
confidence in the quality and reliability of complex digital systems. They examine the functional
behavior of a system by stimulating the inputs of the system and observing the outputs and
the behavior of the system during execution. If either an output or the observed behavior of
the system does not conform to the expectations of the developers (or testers), a failure in the
implementation of the system is found. The developers then deal with the tasks of localizing
and correcting the corresponding faults in the implementation that caused the failure.

Testing and simulation examine “some” input stimuli from a huge (or even infinite) domain
and, thus, they may miss failing executions of an implementation. This incompleteness property
of testing and simulation has been expressed by Dijkstra’s claim: “testing [and simulation] can
show the presence of bugs but never their absence” [DDH72].

In this thesis, we focus on the testing of software systems. Testing software is a complicated
and costly task. Already in the late 1970s and early 1980s software testing was recognized to
account for more than half of the total development costs [Mye79, Boe81]. Nonetheless software
systems are often inadequately tested. For instance, the annual costs of inadequate testing in
the US is estimated to range from 22 to 59 billion US dollars. It is believed that over one half
of these costs can be saved by the introduction of better testing infrastructure [Tas02].

One of the first places to detect faults in an implementation of a software system is unit
testing. In unit testing a developer writes some selected test cases to check the functional
behavior of an individual unit of the implementation, i.e., a single function or a module. The

1

CHAPTER 1. INTRODUCTION

1 TriType f(float a,float b,float c){
2 if (a == b && b == c)
3 return Equilateral;
4 if (a == b || b == c || b == a)
5 return Isosceles;
6 return Scalene;
7 }

a b c Expected Output

2.0 2.0 2.0 Equilateral
3.0 4.0 5.0 Scalene
2.0 2.0 3.0 Isosceles

Figure 1.1: The function f (on the left side) decides for three given side-lengths a, b, and c of a
triangle whether the corresponding triangle is equilateral, isosceles, or scalene. The table (on the
right side) shows three test cases which are fully adequate with respect to the statement coverage,
branch coverage, and path coverage criteria. The source code of the function f , however, has a
typo. The third decision b == a in line 4 should read c == a.

expectations of the developer serve as an implicit, partial specification.
However, the decision when the software unit under test has been adequately tested, i.e.,

when to stop writing new test cases cannot be taken without a formal test criterion. The test
criterion provides a quantitative measure of the quality of the test cases. Thus, the test criterion
serves as a stopping rule for test case generation.

1.2 Background

1.2.1 Test Criteria

Only exhaustive testing, i.e., the execution of an implementation on all possible inputs can guar-
antee functional correctness of the implementation. The number of possible inputs of computer
systems, however, are enormous or even infinite when input-dependent data-structures are used.
Thus, generally, exhaustive testing is impossible [DDH72].

The notion of test criteria [GG75] has been introduced to support the selection of test cases
by measuring how well a system is tested. A test criterion imposes a set of test requirements on
the test bench that “good” test cases should examine, and measures in terms of test coverage
how many of them are actually satisfied. The coverage measure (or coverage score) is the ratio of
fulfilled test requirements to the total number of test requirements. It quantifies the fulfillment
in form of a real value in the interval [0, 1], which is commonly expressed as a percentage. The
test bench is said to be fully adequate to the test criterion if the test bench achieves a coverage
measure of 1.0 (100%) and partially adequate otherwise.

Academics provided a large variety of different test criteria each having their own advantages
[AO08]. Classical test criteria are statement coverage, branch coverage, and path coverage. The
test requirements of the classical test criteria necessities the execution of particular parts of a
program during testing. The classical criteria, however, have been criticized because they do not
force the individual test cases to examine the functional behavior of the program code executed
during testing. For instance, consider the example code shown in Figure 1.1. The function f
(on the left side) decides for the given three side-lengths a, b, and c of a triangle whether the
corresponding triangle is equilateral, isosceles, or scalene. We assume a data type TriType
has been declared and a variable of this data type can take one of the values equilateral,
isosceles, and scalene. The source code of the function is taken from Renieris and Reiss
[RR03]. The table (on the right side) shows three test cases (inputs and expected outputs)

2

1.2. BACKGROUND

which are fully adequate with respect to the statement coverage, branch coverage, and path
coverage criteria, i.e., all statement, branches, and paths are examined when all three test cases
are executed in testing. However, the source code of the function f has a typo, i.e., a programmer
erroneously has used the check b == a rather than c == a in the last decision of the condition
in line 4. Thus, the function f returns scalene rather than isosceles when executed on inputs
va, vb, and vc, with va = vc and va 6= vb, e.g., va = 2.0, vb = 3.0, and vc = 2.0.

1.2.2 Mutation Testing

Mutation testing [DLS78, Ham77] is a powerful testing methodology based on the idea of mak-
ing changes to a syntactic description of a computing task and deriving test cases from these
changes. The changes mimic mistakes programmers or designers make during the description
of the computing task. In the context of program-based mutation testing, the source code of a
program, written in a high-level programming language, is seeded with artificial faults and then
systematically executed on each test case of a test bench. Undetected faults indicate holes in
the test bench and can be used to improve it.

We stick to the common mutation testing terminology: a program is seeded with faults,
where a fault is a single syntactic change relative to the original program. For instance, an
addition operator is turned into a subtraction operator. The unchanged program (without the
seeded faults) is called the original program. A mutant is a duplicate of the original program
containing exactly one fault. For the sake of simplicity, we use the terms fault and mutant
interchangeable when the exact meaning is clear from the context. In the literature, faults and
mutants corresponding to single syntactic changes are sometimes called first order faults and
first order mutants. In this thesis, we focus on mutation testing considering only first order
mutants.

Mutation testing provides a fault-based test criterion, called mutation adequacy, which at-
tempts to quantify the fault-finding abilities of a test bench by measuring the number of faults
detected by the test bench relative to the number of faults seeded into a program. The cor-
responding coverage measure is called mutation score. A test case detects (or kills) a fault if
it results in a different externally observable behavior when executed on the mutant and the
original program, respectively. Consequently, the corresponding mutant (and fault) is then said
to be detected (or killed) by the test case. The meaning of “externally observable behavior”
depends on the application of mutation testing. For instance, an externally observable behavior
is the return value of a function or the value of a global program variable.

Mutation adequacy is a “stronger” test criterion compared to classical coverage criteria
[AO08]. A test case only contributes to the mutation score if it is able to distinguish the mutant
from the original program. Thus, the test case must examine the value of at least one variable
affected by a seeded fault to detect a mutant.

A fault which changes the syntax of a program may not affect the semantics of the program,
i.e., the corresponding mutant is functionally equivalent to the original program. We call these
faults and the corresponding mutants functionally equivalent (or equivalent for short). Thus, a
seeded fault which affects the program semantics is non-equivalent. Moreover, a mutant may
also be functionally equivalent to another mutant. We call these mutants and the corresponding
faults redundant. Functionally equivalent and redundant mutants are obstacles in mutation
testing which we would like to avoid. A functionally equivalent mutant corresponds to an
unsatisfiable test requirement because it is impossible to find a test case that detects the mutant.
A redundant mutant corresponds to a redundant test requirement. A test case that detects one

3

CHAPTER 1. INTRODUCTION

1 while (C) {
2 B;
3 }

1 if (C) {
2 B;
3 if (C) {
4 B;
5 assert(!C);
6 }
7 }

Figure 1.2: The pseudo code of a loop (on the left) and a two-times unrolled version of the loop
(on the right).

of a set of pairwise mutually redundant mutants will also detect the other mutants from the
same set.

The effectiveness of mutation testing has been shown by analytic comparison to other criteria
[MW94b, OV96, AO08] and is additionally supported by numerous empirical studies [FW93,
MW94a, OPTZ96, LPO09].

1.2.3 Formal Methods

Besides traditional testing, several formal methods have been proposed to detect failures in
implementations of systems. One of these methods is model checking [CGP99]. Given a finite
state-transition system M representing the implementation under test and a logic formula ϕ in
temporal logic (a specification), a model checking algorithm proves whether the state-transition
system M is a model for the formula ϕ, i.e., M |= ϕ. The algorithm exhaustively explores the
state space of the implementation and verifies whether one of the states violates the property
to be checked.

In general, model checking suffers from the large number of potential execution states which
is typically referred to as the state explosion problem. Explicitly representing each state is
possible but it was not until the introduction of symbolic algorithms that model checking became
practical. Symbolic algorithms compress larger state sets into a symbolic representation to make
the approach applicable to larger systems. McMillan [McM94] suggested the usage of Ordered
Binary Decision Diagrams (OBDD) [Bry86] to represent and manipulate the state-transition
system. Biere et al. [BCCZ99] proposed SAT-based Bounded Model Checking (BMC) as a
complementary approach to OBDD-based model checking.

In BMC, the state-transition system is first unfolded for a fixed number of steps k and then
encoded in conjunction with the negated specification ¬ϕ as an instance of the satisfiability
problem (SAT), i.e., a logic formula in Conjunctive Normal Form (CNF) which is checked for
satisfiability. A satisfying assignment corresponds to a counterexample of finite length (smaller
or equal k) that refutes the specification. If the formula is unsatisfiable, no such counterexamples
exists in the unfolded model. Then, either the number of unfolding steps k was chosen too small
or the implementation conforms to its specification.

BMC is an effective technique to find counterexamples of finite length. However, proving
the correctness of a property with BMC means to increase k until a completeness threshold is
reached, i.e., an upper bound k′ such that if no counterexample of length k < k′ is found, the
property holds. Finding the completeness threshold, however, is complicated and the resulting
value is often quite large (in case of software even infinite) and, thus, BMC can be considered
an inherently incomplete approach.

4

1.3. PROBLEM ADDRESSED IN THE THESIS

BMC was originally proposed as a hardware verification technique but it was later extended
to software verification [CKOS04, ISGG05]. In software, unfolding the program corresponds to a
recursive unrolling of the loops in the program, i.e., the body of each loop is k-times replicated,
where k is a finite loop bound, and each time guarded by a conditional statement that checks
whether the loop condition is fulfilled. Figure 1.2 [BHvMW09] schematically illustrates loop
unrolling. The loop on the left side is two-times unrolled and results in the unrolled version on
the right side. We denote the loop condition and the loop body by C and B, respectively. After
unrolling the loop two-times, we add an assertion that checks whether the loop is left after two
iterations. This assertion ensures that in case of insufficient unrolling, the spurious branch is
not reachable.

More recently, Armando et al. [AMP09] used an Satisfiability Modulo Theories (SMT) solver
rather than a SAT solver to encode BMC which improves the scalability in case of software
programs with complex arithmetic or array manipulations. The SMT solver implements an
efficient decision procedures for large instances of constraint satisfaction problems according to
some specific background theories. An SMT solver either operates on top of a SAT solver (eager
approach) or uses a solver specialized for the background theory (lazy approach). SMT provide
high-level semantics to directly encode and manipulate word-level operations (e.g., addition,
if-then-else, etc.). The resulting formulae are more compact and allow for a better maintenance
of their meaning. For instance, an integer multiplication results in a set of complex constraints
when encoded into a SAT formula because only Boolean operators are allowed. Contrarily,
SMT theories often directly support integer multiplication (e.g., theory of bit-vectors or theory
of non-linear integer arithmetic).

1.3 Problem Addressed in the Thesis

The obstacles in mutation testing are twofold [OU00, JH10]: (1) the number of possible faults
to be seeded is infinite and an effort to check a reasonable finite subset by explicitly enumerating
each fault is costly. (2) Equivalent mutants do not affect the program semantics. They show
the same externally observable behavior as the original program and, thus, no test case exists
that can detect an equivalent mutant.

Equivalent mutants cause a systematic under-estimation of the mutation score, i.e., the total
number of mutants is, in general, higher than the number of mutants which can be detected
during testing.

Most of the research in mutation testing focuses on the first problem [OU00, JH10] which
deals with the computational expense of mutation testing. Generally, the proposed techniques to
overcome the computation expense target either the reduction of the number of created mutants
or the reduction of the execution cost that is caused by running the test cases on each individual
mutant.

A pragmatic solution to the first problem is the usage of more or faster computers. The
second problem is more significant because it describes a theoretical limitation of mutation
testing: without the detection of equivalent mutants a mutation score of 100% is not possible
and a test engineer will always wonder whether the undetected mutants are equivalent to the
original program or the test bench is insufficient in detecting them.

In this thesis, we focus on the detection of equivalent mutants. We call the problem to
decide whether a mutant is functionally equivalent to its original program the equivalent mutant
problem. The equivalent mutant problem is a decision problem which can be answered with

5

CHAPTER 1. INTRODUCTION

either ‘Yes’ or ‘No’. Unfortunately, deciding the equivalent mutant problem, i.e., giving the
correct answer is a subtle task: on the one hand, studies have shown that manually separating
a given set of mutants into the categories “equivalent” and “non-equivalent” is time-consuming
[Acr80] and complicated [SZ10]. The participants of the studies tend to put the mutants into
the wrong category and they needed a significant amount of time to make their decisions. On
the other hand, deciding the equivalent mutant problem algorithmically is impossible, i.e., the
equivalent mutant problem is undecidable [BA82]. Thus, generally, no decision procedure exists
to decide whether a mutant is functionally equivalent to its original program.

A (first order) mutant, however, is per definition derived from its original program by seeding
a single syntactic change into the source code of the program. The mutant and the original
program are closely related. They differ only in a single syntactic change and, thus, by neglecting
completeness the equivalent mutant problem has the potential of being decidable in several cases.

1.4 Outline of the Solution

We address the equivalent mutant problem from two sides: firstly, we use methods from compiler
construction based on static analysis that aim to detect some equivalent mutants. Secondly, we
use a counterexample generation approach to decide which mutants are guaranteed to be non-
equivalent.

The first attempt reduces the total number of seeded faults by the number of detected
equivalent mutants, i.e., the denominator of the mutation score is decreased. The second attempt
detects mutants to be non-equivalent, i.e., the numerator of the mutation score is increased. The
difference between the numerator and denominator gives a quality indication of our approach.
We refer to the two approaches to partially solve the equivalent mutant problem as the code
optimization approach and the counterexample approach.

The code optimization approach uses an optimization pipeline to transform the original
program and a mutant into optimized program versions. The optimization pipeline consists of a
sequence of optimizing source-to-source transformations which are consecutively applied to the
original program and the mutant. We conclude functional equivalence of the original program
and the mutant if the obtained optimized versions are syntactically equivalent.

The counterexample approach uses BMC to generate a finite model of the original program
and a mutant. Both programs are unfolded for a fixed number of steps and then encoded into
a single logic formula. In the resulting formula, we constrain the variables corresponding to the
program inputs of the original program and the mutant, respectively, to be equal and assert the
variables corresponding to the outputs of the original program and the mutant to be different.
A satisfying assignment (if one exists) serves as a counterexample that effectively disproves
functional equivalence of the original program and the mutant.

We present two decision procedures, MetaOptimizer and SymBMC, corresponding to the
code optimization and the counterexample approach. The decision procedures take their equiv-
alence and non-equivalence decisions for the original program and a set of mutants (rather than
a single mutant) encoded in a meta-mutant [UOH93]. The meta-mutant serves as an effective
data-structure to reason about a set of mutants.

We built prototype implementations of the MetaOptimize and the SymBMC procedures. The
implementations operate on the Low Level Virtual Machine (LLVM) intermediate representation
[Lat02], i.e., a programming language with a RISC-like assembly instruction set. We use an
ANSI-C language front-end compiler (llvm-gcc) from the LLVM infrastructure to transform

6

1.5. STRUCTURE OF THE DOCUMENT

ANSI-C code to LLVM. However, our implementation is not tied on the programming language
ANSI-C but can handle any language an LLVM front-end compiler exists (in particular also C++
programs). The prototype implementation of the MetaOptimizer procedure generates a logic
formula over the theory of bit-vectors from the program and uses an SMT solver (in particular
Boolector [BB09] and Z3 [MB08]) as back-end to find a satisfying assignment for the formula.

The contribution of the thesis is as follows:

• We present a simple fault model for the LLVM intermediate representation and show how
a meta-mutant is constructed in LLVM.

• We give a new code optimization approach that attempts to detect some equivalent and
redundant faults for the LLVM meta-mutant.

• We apply symbolic bounded model checking to the LLVM meta-mutant to construct one
counterexample (test case) for each non-equivalent fault represented in the meta-mutant.
The counterexample disproves functional equivalence of the original program and the cor-
responding mutant. This counterexample approach is based on the work in [RBF11].

• We implement both approaches into a tool and show initial results of the equivalence and
non-equivalence detections provided by the code optimization approach and the counterex-
ample approach.

1.5 Structure of the Document

The remainder of the thesis is organized as follows: in Chapter 2, we explain the techniques
underlying our approaches and establish notation. We start with a formalization of software
testing. Then, we introduce mutation testing and bounded model checking in detail. We discuss
a subset of the LLVM intermediate representation which is used in the later chapters. We give
a simple fault model for LLVM and show the construction of the meta-mutant specific for the
LLVM language.

In Chapter 3, we describe an approach to detect equivalent and redundant mutants using
static analysis methods leveraging source-to-source transformations from an optimizing compiler.
We give an initial motivation for this approach using the GNU Compiler Collection (GCC) and
the Unix tool diff. We present the Optimizer and MetaOptimizer procedure. The Optimizer
procedure attempts to show functional equivalence of a program and one of its mutants. The
MetaOptimizer procedure generalizes the approach and aims to detect equivalent and redundant
faults encoded as a meta-mutant. Both procedures are built on optimizing source-to-source
transformations provided by the LLVM compiler infrastructure.

In Chapter 4, we describe an approach that searches for a counterexamples that shows non-
equivalence of the original program and its mutants. We present the procedure SymBMC which
uses bounded model checking to generate a finite model by unfolding the meta-mutant and
then encodes model into an SMT formula. We start the description with a simplified version of
SymBMC, called SimplifiedBMC, which searches for a counterexample of a program and one of
its mutants. We then discuss unfolding and encoding of the program as a bit-vector formula.

Chapter 5 presents experimental results for the procedures MetaOptimizer and SymBMC.
First, we list the numbers of detected equivalent and non-equivalent faults for each procedures
separately. Then, we give experimental results when both procedures are applied one after
another.

7

CHAPTER 1. INTRODUCTION

Chapter 6 concludes the thesis. We summarize the code optimization and the counterexample
approach and outline future work.

8

Chapter 2

Preliminaries

2.1 Introduction

In the following section, we explain the techniques underlying our equivalence and non-equivalence
detection approaches and establish notation: we start with the formalization of testing (Sec-
tion 2.2.1) and discuss two testing perspectives (Section 2.2.2). We then present mutation
adequacy (Section 2.2.3), i.e., the fault-based test criterion underlying mutation testing which
attempts to quantify the fault finding abilities of a test bench. We discuss mutation testing in
detail (Section 2.3). We introduce mutation analysis (Section 2.3.1), i.e., a fault-based method
to measure the quality of a given test bench. We discuss why (Section 2.3.2) and how (Sec-
tion 2.3.3) mutation testing works and, lastly, introduce the concept of a mutation operator
(Section 2.3.4) and the idea of a meta-mutant (Section 2.3.5).

Next, we present SAT-based Bounded Model Checking (BMC) (Section 2.4). BMC is an
effective formal technique to find counterexample of finite length which we will use to generate
test cases in later chapters.

Lastly, we introduce the LLVM intermediate representation (Section 2.5): We give an
overview of LLVM and its characteristics (Section 2.5.1). Then, we discuss the structure of an
LLVM program (Section 2.5.2) and the syntax and semantics of individual LLVM instructions
(Section 2.5.3). We present LLVM metadata (Section 2.5.4) which is used to attach additional
information on LLVM programs, e.g., source locations from the front-end language to simplify
debugging or in our case information about the seeded faults. We then show the fault model used
for LLVM programs (Section 2.5.5). Finally, we deal with the construction of the meta-mutant
from an LLVM program (Section 2.5.6) and summarize the chapter (Section 2.6).

2.2 Software Testing

2.2.1 A Formalization of Testing

We focus on deterministic, transformational programs. These programs have two characteristics:
firstly, for given input values, transformational programs aim to calculate a final result (output
values) at the end of a terminating computation. We assume, however, that transformational
programs may fail to terminate due to a fault in the program. Secondly, the programs under
consideration are deterministic, i.e., repeated executions of a program on the same input values
yield the same output values. We denote the universe of all deterministic, transformational

9

CHAPTER 2. PRELIMINARIES

programs by P.
The semantics of a transformational program P ∈ P are described by its semantic function

P̂ : I→ O, where I and O are the input domain and the output domain of P . The elements of I
and O are recursively enumerable. We write P̂ (i) = o to denote that the execution of P on the
input values i ∈ I yields the output values o ∈ O.

A formal specification of a program P ∈ P defines a (binary) input-output relation Spec ⊆
I×O, where I and O are the input domain and the output domain of the program P . We do not
distinguish between a formal specification and the input-output relation defined by the formal
specification. The domain dom(R) of a set (or a binary relation) R ⊆ X × Y is the set of all
x ∈ X for which there is a y ∈ Y such that (x, y) ∈ R.

Suppose P ∈ P is a program and Spec is a formal specification over the same input domain
I and output domain O. The program P and the formal specification Spec agree on a subset
I′ ⊆ I of the input domain if and only if (iff) for all i ∈ I′ there are output values o ∈ O in
the output domain such that P̂ (i) = o and (i, o) ∈ Spec. Otherwise, we say that P and Spec
disagree on I′. The program P is correct with respect to Spec (or P conforms to Spec) iff P and
Spec agree on dom(Spec). For all i 6∈ dom(Spec) the formal specification makes no assumptions
on the correct output values of the program. A formal specification is complete if dom(Spec) = I
and partial otherwise.

A test case of a program P ∈ P is a pair t = (i, o), where i and o denote inputs and outputs
from the input domain and the output domain of P . A test case t = (i, o) is said to pass on P
if the execution of i on P yields the outputs o. Otherwise, the test case is said to fail on P . A
test bench is a set of test cases. The definition of pass and fail are naturally extended on test
benches: a test bench T passes on P if all test cases t ∈ T pass on P and otherwise the test
bench fails on P . A test bench T defines a (possibly partial) formal specification SpecT , where
SpecT is the set of all pairs (i, o) ∈ T .

2.2.2 Test Reliability and Test Adequacy

Research in software testing [GG75, How76, BA82, DO91a] has established two testing per-
spectives: test reliability and test adequacy. Test reliability [How76] relates testing to program
correctness, i.e., the passing of a reliable test bench implies program correctness. Test adequacy
[GG75] attempts to make a test bench fail on incorrect programs, i.e., testing becomes a process
of eliminating faulty programs. In this case testing has a tight relation to program equivalence.

Definition 1 (Test reliability [How76]). Consider a program P ∈ P that implements a computing
task described by the formal specification Spec. The test bench T is reliable for P and Spec iff
the test bench T passes on P implies P is correct with respect to Spec.

A reliable test bench fails whenever a program does not conform to its specification. The
exhaustive test bench T for which dom(SpecT) = I is reliable but such a test bench is hardly
useful in practice. Howden [How76] argued that for all programs P ∈ P and formal specifications
Spec a finite reliable test bench exists. If P conforms to Spec any test bench, e.g., the empty
test bench T = {}, is reliable. If P does not conform to Spec then a test bench consisting of
a single test case t = (i, o) for which P̂ (i) = o and t 6∈ Spec is a reliable test bench for P and
Spec. Although reliable test benches always exist, generally, it is neither possible to decide that
a test bench is reliable nor to generate one [How76].

Notice that for all programs P ∈ P and each finite test bench T a formal specification Spec
exists such that P and Spec agree on dom(T) but disagree on dom(Spec)\ dom(T). Thus, test

10

2.2. SOFTWARE TESTING

reliability depends on both a program and a formal specification. As a consequence, a procedure
to generate test data needs knowledge about the program P and its formal specification Spec.

Definition 2 (Test adequacy [GG75]). Consider a program P ∈ P that implements a computing
task (described by the formal specification Spec). The test bench T is adequate for P iff the test
bench fails on all faulty programs P ′ ∈ P which are not functionally equivalent to P .

An adequate test bench distinguishes all faulty program P ′ from P , i.e., for each P ′ there
exists at least one test case t = (i, o) ∈ T such that P̂ (i) 6= P̂ ′(i). The definition of test adequacy
makes no use of a formal specification. However, the formal specification is implicitly required to
determine the “correct” output values of the test bench. Budd and Angluin [BA82] proved that
a finite adequate test bench not always exists. In practice a restricted version of test adequacy
is often of interest which is discussed in the next section.

2.2.3 Mutation Adequacy

Mutation adequacy is a test criterion which approximates test adequacy by restricting the do-
main of faulty programs under consideration to the set of all first order mutants of a program.

Definition 3 (Mutation adequacy [DLS78]). Consider a program P ∈ P that implements a
computing task (described by the formal specification Spec) and the set N of all first order
mutants of P under a fixed fault model. The test bench T is mutation adequate for P with
respect to the fault model iff the test bench fails on all programs P ′ ∈ N which are not functionally
equivalent to P .

For every program P ∈ P and finite set N of mutants of P a finite adequate test bench T
exists. Suppose T is an empty test bench. A program P ′ ∈ N is either functionally equivalent
to P or there are input values i ∈ I for which P̂ (i) 6= P̂ ′(i). We add these input values and their
output values to T . The resulting test bench T is adequate by construction and finite because
N is finite.

Given a program P and a finite set of mutants N , generating a finite adequate test bench
and deciding adequacy of a given finite test bench is decidable iff functional equivalence for all
pairs of programs of N is decidable. This is stated by the following theorem [BA82].

Theorem 1. For a given program P ∈ P and a set N of first order mutants of P under a fixed
fault model, the following three statements are equivalent:

(a) Determining adequacy of a given test bench T is decidable.

(b) Generating some adequate test bench for P is computable.

(c) The functional equivalence problem for all programs in N is decidable.

Proof. It suffices to show the following directions:

“(a) ⇒ (b)” Given a procedure A to determine whether a test bench is adequate for P
and N , then an adequate test bench is generated as follows. Suppose Ti is the test bench
containing the first i test cases from the domain I×O. Since an adequate test bench for
P and N always exists, Ti is adequate for some value i. Thus, we successively create Ti

for all i starting by 0 and use A to decide whether Ti is adequate. If A returns ‘Yes’ then
we return Ti as an adequate test bench.

11

CHAPTER 2. PRELIMINARIES

“(b) ⇒ (c)” Given a computable procedure G to generate an adequate test bench for P
and N , we want to decide equivalence of two program P,Q ∈ N . We use G to obtain a
finite adequate test bench for P and execute the test bench on P and Q. If P and Q return
the same values for all inputs from dom(T) then P and Q are equivalent and otherwise
they are non-equivalent.

“(c)⇒ (a)” Given a program P , the set of mutants N , and a procedure S that determines
whether two programs from N are equivalent. We can use S to decide whether T is
adequate. We use S to decide whether P and Q are equivalent and verify that their is
a test case that returns different outputs for at least one i ∈ dom(T) in case they are
non-equivalent.

Theorem 2.2.3 states that there is a close relation between the problem of generating adequate
test benches and proving functional equivalence of programs, i.e., the former is decidable iff the
latter is decidable. Proving functional equivalence, however, is for most programming systems,
e.g., Turing-complete programming languages, undecidable. Thus, generating adequate test
benches is undecidable.

2.3 Mutation Testing

2.3.1 Mutation Analysis

Mutation adequacy can be used to analyze the fault-finding abilities of a test bench. The
analysis steps are as follows: firstly, a program is seeded with artificial faults according to a
fixed fault model. Each seeded fault is kept in an individual copy of the original program source
(the mutant). The mutants are generated by applying mutation operators to the program. A
mutation operator is a rule that describes how a particular syntactic pattern of the program is
changed. When the mutation operator is applied to a source program, it parses the program
source top-down. For each syntactic part of the program which matches the pattern of the
mutation operator the source program is duplicated and the matched part of the source code is
replaced by syntactically different source code resulting in new mutants of the program. Thus, a
mutation operator defines a mapping from a program to a finite set of mutants of the program.

For instance, Figure 2.1 illustrates the effect of a mutation operator applied to a fragment
of ANSI-C program source. Each box is labeled with a number from 0 to 6. The box on top
labeled with 0 (in blue color) represents the original program code. The six boxes below labeled
with 1 to 6 (in green and gray color) are mutants of the original program code. Each mutant
is a copy of the original program source with a single syntactic change relative to the original
program. In the example, the mutation operator has replaced arithmetic operators with other
arithmetic operators. The box on the bottom right labeled with 4 (in gray color) denotes an
equivalent mutant because the replacement of a = 2 * 2 by a = 2 + 2 does not affect the
semantics of the program fragment, i.e., in both program fragments the resulting value assigned
to the program variable a is 4. All other mutants labeled with 1 to 3, 5 or 6 (in green color) are
non-equivalent to the original program.

Secondly, each test case from the test bench is executed on the original program and on the
mutants. Initially, all mutants are per-definition stubborn. A mutant M of the program P is
said to be detected (or killed) by the test case t if t effectively distinguishes the mutant from

12

2.3. MUTATION TESTING

if(a > b + c){
a = 2 * 2;

}

if(a > b - c){
a = 2 * 2;

}

if(a > b * c){
a = 2 * 2;

}

if(a > b / c){
a = 2 * 2;

}

if(a > b + c){
a = 2 / 2;

}

if(a > b + c){
a = 2 - 2;

}

if(a > b + c){
a = 2 + 2;

}

0

1

2

3

6

5

4

Figure 2.1: The effect of a mutation operator applied to a fragment of ANSI-C program code.

the original program, i.e., either the test case t fails on M and passes on P or the test case t
passes on M and fails on P .

Thirdly, the number of detected mutants is used to quantify the fault-finding abilities of the
test bench by means of the mutation score.

Definition 4 (Mutation Score). Suppose P ∈ P is a program and N is a set of mutants of
P , the mutation score of a test bench T is the ratio of mutants detected by T to the number of
mutants in N which are not functionally equivalent to P .

The higher the mutation score, the more artificial faults are detected by the test bench. Recall
that we call mutants which are functionally equivalent to P equivalent mutants. Determining
the functional equivalence of two arbitrary programs of N is for most sets N impossible.

In order to overcome this problem in practice, the definition of the mutation score is weak-
ened, i.e., the number of mutants in N not functionally equivalent to P is over-approximated
by the total number of mutants in N .

Definition 5 (Estimated Mutation Score). Suppose P ∈ P is a program and N is a set of
mutants of P , the estimated mutation score of a test bench T is the ratio of mutants detected
by T to the number of mutants in N .

As a result, the estimated mutation score under-approximates the “real” mutation score.
The estimated mutation score, however, can be calculated in practice because the undecidable
functional equivalence detection is avoided. As an optional step, equivalent mutant detection
targets the correction of the estimated mutation score by identifying some equivalent mutants
allowing a variety of trade-offs in the calculation. A detected equivalent mutant adds no in-
formation to mutation testing and is discarded from future analysis. Each detected mutant
improves the approximation of the estimated mutation score. When all equivalent mutants are
detected, the estimated and the “real” mutation score become equal.

13

CHAPTER 2. PRELIMINARIES

2.3.2 Underlying Hypothesis

Mutation adequacy is based on two fundamental assumptions [DLS78], the competent program-
mer hypothesis and the coupling effect hypothesis. The competent programmer hypothesis ex-
presses that developers typically write almost correct program code but they may introduce
some minor mistakes. The coupling effect hypothesis states that complex failures are the result
of several interacting simple faults, i.e., the simple faults are coupled together.

These two assumptions legitimate the restriction to consider first order faults: firstly, a
competent programmer makes simple mistakes similar to first order faults. A test bench which
is trained to detect seeded first order faults will, thus, detect real faults too. Secondly, complex
faults are similar to coupled simple faults. A test bench which detects a significant number of
simple faults will detect several complex faults too. The effects of several simple faults may
mask each other. Fault masking, however, is rare [Off89]. Intuitively, adding faults to a faulty
program will more likely result in a program which fails when executed than make the program
correct.

The hypothesis have been confirmed empirically [Off92, ABL05] and analytically [Wah03]
with a simple mathematical model which represents a program as a composition of finite func-
tions.

2.3.3 Test Process

Figure 2.2 shows a test process which is driven by the quality estimation of a test bench. The
process uses mutation adequacy as the quality measure. Thus, a high-quality test bench is good
in the detection of seeded faults according to a fixed fault model.

The process is started with a program P and a test bench T and proceeds in the following
steps: firstly, the test bench is executed on the program. If the test bench fails either the
program or the test bench is faulty. The program and the test bench then needs to be analyzed
to localize and fix the inconsistency between them. The test process is then restarted with the
corrected versions of the program and the test bench. For the sake of simplicity, in Figure 2.2
we assume that the test bench is correct.

Secondly, the mutation adequacy of the test bench is calculated using the estimated mutation
score. If the resulting mutation score is lower than a predefined threshold, the test bench is
insufficient in detecting artificial faults. Then, the test bench is analyzed and improved. The
test process is restarted with the improved test bench. Each time the process is restarted either
the original program or the test bench is improved until eventually the mutation score of the
test bench exceeds the predefined threshold. The resulting test bench passes on P and is partial
mutation adequate with respect to the predefined threshold.

Mutation systems typically automate the execution of the test bench and the calculation of
the estimated mutation score. However, the mutation systems do not support testers in analyzing
and fixing the program or analyzing and improving the test bench. Moreover, mutation adequacy
is calculated on basis of estimated mutation score, i.e., the mutation system assumes that each
seeded fault is non-equivalent.

In this thesis, we attempt to improve the estimation of mutation adequacy, i.e., we will
present two approaches: one to detect some equivalent mutants and one to detect non-equivalent
mutants. The two approaches can be used to tighten the approximation of the estimated muta-
tion score.

14

2.3. MUTATION TESTING

Program P

Test
bench T

Run test
cases on P

Correct?
Analyse

and fix P

Estimate
mutation
adequacy

Adequate?Quit

Analyse
and

improve
test cases

Yes

No

Yes No

Mutation analysis

Figure 2.2: Test processes driven by the mutation score to generate a high-quality test bench.
Blue boxes indicate process inputs. Green boxes refer to generic actions performed on process
inputs.

2.3.4 Mutation Operators

A mutant is a duplication of the original program source containing one syntactic change. For
instance, an addition operator is turned into a subtraction operator. A fault model defines a set
of mutation operators, that are, rules describing possible syntactic changes when applied to the
source code of a program. Fault models are defined with respect to a particular programming
language.

The set of mutation operators has a large influence on the mutation score and the underlying
quality indication of mutation analysis and mutation testing. Different mutation operators have
been design for a variety of descriptive formalism for specifying and implementing a computing
task including database schemata, specification languages, and programming languages. We
focus on program-based mutation testing.

Research in program-based mutation testing mostly targets fault seeding at the unit-level
[KO91]. A particular software unit is seeded with artificial faults and tested. Delamaro et
al. [DMM96] and Ghosh and Mature [GM01] introduced interface mutation as a technique for
scalable fault-based integration testing. In interface mutation, faults are seeded into interfaces
which connect two or more units, i.e., the mutation operators introduce syntactic changes into
method and function calls used to communicate between different unit. Mateo et al. [MUO10]
applied mutation testing to an entire program as a system-level testing method. Their mutation

15

CHAPTER 2. PRELIMINARIES

operators, however, are a mixture of mutation operators proposed for unit testing [KO91] and
integration testing [DMM96].

In the following, we focus on mutation operators proposed for unit testing. King and Of-
futt [KO91] originally designed 22 mutation operator for Fortran. They argued that these muta-
tion operators can be used for any imperative programming language. The mutation operators
were chosen such that test cases generated in mutation testing likely catch typical programming
mistakes and subsume test cases generated by other test criteria (e.g., statement or branch
coverage). For instance, a mutation operator generates two mutants for each expression in the
program, where the expression is increased by 1 in the first mutant and decreased by 1 in the
other mutant. This is an example of a mutation operator which mimics programming mistakes,
namely off-by-one faults. Another mutation operator generates two mutants for each condition
in the program, where the condition is replaced by true in the first mutant and replaced by false
in the other mutant. This mutation operator generates mutants such that a test bench which
detects these mutants subsumes branch coverage.

Offutt et al. [OLR+96] reduced the 22 mutation operators to five key mutation operators.
The reduction technique is referred to as constraint mutation and the five key mutation operators
are called expression-selective mutation operators. Offutt et al. [OLR+96] showed by experi-
mentation on 10 small example programs that a test bench which detects all mutants generated
from the expression-selective mutation operators, detects 99.5% of the mutants generated from
all 22 mutation operators.

Agrawal et al. [ADH+06] provided a comprehensive set of 77 mutation operators for ANSI-
C. The mutation operators are designed to cover all features of the syntax of the ANSI-C
programming language. Research tools often consider a subset of those mutation operators
because implementing all 77 mutation operators is expensive and cumbersome. Usually, the
mutation operators corresponding to the expressive-selective mutation operators are considered.

A more recent trend when considering more expressive languages like Java, C#, or C++ is
to design mutation operators for the Compiler’s intermediate language rather than for the more
expressive source language. Gruen et al. [GSZ09] applied mutation operators to Java bytecode.
Dereziska and Kowalski [DK11] applied mutation operators to the .NET Common Intermediate
Language (CIL) to cope with C#, whereas Riener et al. [RBF11] provided mutation operators
for Low Level Virtual Machine (LLVM). This approach, however, changes the granularity of a
fault, i.e., due to the expressiveness of languages like Java, C#, or C++ a first order fault in a
program at the level of the original source language may correspond to a complex fault in the
translated program at the intermediate level. Moreover, a mutation at the intermediate level
may not correspond to a syntactic valid mutation at the level of the source language.

Moreover, the implementation of mutation operators in different research tools vary. King
and Offutt [KO91] found that trivial equivalent mutants can be determined when applying
mutation operators to a program. For instance, a variable with value 0 will always result in
an equivalent mutant when replaced by the constant 0. As a consequence, a powerful static
analysis can avoid the creation of several equivalent mutants. King and Offutt [KO91] and Hu
et al. [HLO11] target the avoidance of the generation of equivalent mutants. They provided
equivalence conditions for mutation operators for imperative and object-oriented programming
languages, that are, conditions which when satisfied result in the generation of an equivalent
mutant.

The variety in the set of mutation operators used in research (and in their implementation)
makes the comparison of experimental results complicated. Mutation scores depend on the set

16

2.4. BOUNDED MODEL CHECKING

of mutation operators and their specific implementation. Details on the mutation operators and
their implementation is rarely available in publications.

In this thesis, we apply mutation operators to the intermediate representation LLVM similar
to Riener et al. [RBF11]. We discuss the fault model, the mutation operators, and outline the
relation between ANSI-C and LLVM in Section 2.5.5.

2.3.5 Meta-Mutant

Early mutation testing systems interpreted the program under test and its mutants. Since
building an interpreter for programming language is complicated and interpreting programs
is slow, one improvement over the interpretative approach is to compile each mutant to an
executable. The number of mutants, however, is typically very high and the compilation then
becomes the bottleneck of mutation testing. Untch et. al. [UOH93] proposed the idea of a
meta-mutant (or mutant schemata), i.e., a single program that encodes a set of mutants and
additional control logic for testing purpose into one source-level program. The additional control
logic provides a special input variable, e.g., a global variable FAULT ID which is used to enable
and disable individual faults. The source-level meta-mutant is then compiled only once and the
behavior of one of the encoded mutants is selected at run-time by assigning a value to the global
variable FAULT ID.

For instance, consider the program fragment in Figure 2.3 that encodes the mutants from
Figure 2.1 into one program. We assign an id to each mutant by consecutively numbering the
mutants in Figure 2.1 from left to right. The id 0 is reserved for the original program. The
value of the variable FAULT ID is controlled by the tester denoted by the pseudo-code function
input() and either enables the behavior of one of the encoded mutants (if the value is between
1 and 6) or disables all mutants (if the value is 0 or greater than 6).

unsigned long FAULT_ID = input ();
[...]
if (FAULT_ID == 1 ? a > b - c :

(FAULT_ID == 2 ? a > b * c :
(FAULT_ID == 3 ? a > b / c :

a > b + c))){
a = (FAULT_ID == 4 ? 2 + 2 :

(FAULT_ID == 5 ? 2 - 2 :
(FAULT_ID == 6 ? 2 / 2 :

2 * 2)));
}

Figure 2.3: Meta-mutant encoding the mutants from Figure 2.1.

2.4 Bounded Model Checking

In this section, we describe SAT-based Bounded Model Checking (BMC). BMC was originally
introduced by Biere et al. [BCCZ99] as a symbolic model checking approach complementary to
BDD-based symbolic model checking [BL92]. It searches for counterexamples of finite length
in a given state-transition system which serves as a model of the system under design. If
none exist the system is proven correct. The focus of BMC lies typically on “hunting bugs”,

17

CHAPTER 2. PRELIMINARIES

i.e., falsifying properties of a formal specification rather than proving correctness of a state-
transition systems with paths of finite length. More recently, BMC was applied to software
programs [CKOS04, ISGG05]. We borrow from Kroening [BHvMW09] in terms of terminology
and the conceptual framework to introduce BMC, where BMC is described to verify sequential
software programs.

Definition 6 (State-Transition System). A state-transition system is a triple (S, S0, R), where
S is a set of states, S0 ⊆ S is a set of initial states, and R ⊆ S × S is a transition relation.

A state s ∈ S consists of a valuation of the program counter, a valuation of the (global
and local) program variables, and a valuation of a function call stack. The program counter
is a special variable pointing to the program location which is executed next. The function
pc : S → L maps a state to its program location, where L is the set of all program locations.
We denote the program’s entry point — typically the first instruction of the main function of
a program — by the distinguished program location lentry ∈ L. The program variables form a
finite set V over the domain D. The valuation of the program variables is partial, i.e., not all
program variables are defined in each state. We use the symbol ⊥ to denote an undefined value.
The function call stack is an unbounded stack which is used to handle function calls. Thus, the
elements of the function call stack are either valuations of the program counter or valuations of
local variables.

The initial states s ∈ S0 represent all valuations of the program variables, where the function
call stack is empty and the program counter points to the label lentry. The transition relation
R(s, s′) encodes the program semantics, i.e., R(s, s′) holds iff the state s′ is the successor of the
state s when the instruction at location pc(s) is executed.

The state-transition system serves as a model of a program which is checked for correctness
with respect to a formal specification. Typically, the formal specification is a reachability prop-
erty, i.e., it describes a set of bad states in the state-transition system that should not be reached
if the implementation conforms to the specification. We use a set of error locations LE ⊆ L to
denote the program locations of the bad states described by the formal specification.

Definition 7 (Counterexample). A counterexample is a sequence of states s0, s1, . . . , sn which
ends in a bad state, where s0 ∈ S0, sj ∈ S for 0 ≤ j ≤ n, R(si, si+1) holds for 0 ≤ i ≤ n − 1,
and pc(sn) ∈ LE.

Given a natural number k called unrolling bound. BMC searches for counterexample of finite
length. Due to input-dependent loops, the length of a path in a given state-transition system
may be infinite. Thus, BMC uses an unfolding technique to transform the state-transition
system into a model with finite paths. A straight forward unfolding approach is to replicate
the transition relation k-times. The size of the resulting state-transition system is k-times
the original state-transition system. A more space-efficient approach is loop unrolling, i.e., a
restricted state-transition system is constructed, where the loop body is (k+1)-times replicated,
the true-edge of the loop condition in the i-th replicate is directed to (i + 1)-th replicate for
0 ≤ i ≤ k, and the false-edge of the loop condition in the i-th replicate is directed to the next
instruction to be executed after the loop. The source locations of the (k + 1)-th replicate of the
loop body are marked as bad state.

In SAT-based BMC, both the state-transition system and the formal specification are trans-
formed into a conjoined logic formula ϕ = ϕP ∧ ϕS in a formal logic, e.g., propositional logic.
The first part ϕP of the logic formula encodes the paths of the state-transition system. The

18

2.5. LLVM INTERMEDIATE LANGUAGE

second part ϕS of the logic formula encodes the formal specification which describes a set of bad
states that should not be reached.

The logic formula is then handed to a theory solver with respect to the logic theory in use
which checks whether the formula is satisfiable. A satisfying assignment obtained from the theory
solver corresponds to an assignment to all input and program variables to force an execution
along a particular path which reaches a bad state. From the assignment a counterexample
(or test case) can be extracted which leads to the violation of the formal specification. If no
satisfying assignment exists the formal specification holds.

2.5 LLVM Intermediate Language

2.5.1 Overview of LLVM

Low Level Virtual Machine (LLVM) is a strongly typed, RISC-like assembly language and pro-
vides a virtual instruction set which abstracts from machine-specific details such as the number
of registers, the organization of data in the memory, the instruction set provided by the target
architecture, etc.

The main characteristics of LLVM are as follows: (1) LLVM provides an infinite number of
(virtual) registers. The registers can be used to store data of a particular data type. LLVM is
a strongly typed language, i.e., it is only allowed to store data in a register if their data types
conform. (2) The registers exhibit the single-assignment property [AWZ88], i.e., each register is
assigned only once. (3) The transfer between the registers and the memory is accomplished by
load and store instruction.

LLVM is a complete programming language, however, it was designed as an intermediate
representation for the LLVM compiler framework. The LLVM compiler framework provides a
set of compilers for a variety of programming languages and target architectures. Similar to the
GNU compiler collection, the LLVM compiler framework is organized in compiler front-ends and
compiler back-ends. Each compiler front-end translates programs from a specific programming
language to LLVM programs. Each compiler back-end translates LLVM programs to code for a
specific target architecture. The concept of compiler front-ends and compiler back-ends reduces
the combinatorial explosion when n programming language are allowed to be compiled to m
target architectures. Instead of n ·m compilers only n compiler front-ends and m compiler back-
ends are needed. LLVM serves as a unique, intermediate representation in between the compiler
front-ends and the compiler back-ends. We refer to this stage as the compiler middle-end.

LLVM comes with a rich tool support which allows for disassembling (llvm-dis), debugging
(lldb), interpreting (lli), and optimizing (opt) of LLVM programs.

2.5.2 Structure of an LLVM program

An LLVM program is built from instructions. The instructions are organized in basic blocks.
Each basic block is a maximal sequence of consecutive instructions with a unique label, where
control flow enters the basic block at the first instruction and leaves the basic block at the last
instruction. The last instruction of a basic block is a terminator instruction which defines the
transfer of the control flow to one or more successor basic blocks.

The basic blocks are organized in functions. The Control Flow Graph (CFG) of a function
is a (directed) graph. The nodes of the CFG denote the basic blocks of the function with two

19

CHAPTER 2. PRELIMINARIES

entry

l1 l2

l3 l4

l5 l6

exit

entry

l1

exit

f g

Figure 2.4: The control flow graphs of a program consisting of two function f and g. Solid edges
denote control edges and dashed edges denote call edges.

additional basic blocks entry and exit. The edges of the CFG represent function calls and the
control flow within the function. There is a control edge from basic block X to basic block Y if
control transfers from X to Y defined by the terminator instruction of X. Additionally, there is
a control edge from the basic block entry of a function to each basic block at which the function
can be entered and there is a control edge to the basic block exit from each basic block the
function is left.

The call edges are defined as follows. Consider a function call, where function g is called
from an instruction in basic block X in function f . There is a call edge from basic block X to
the basic block entry of function g and a call edge from the basic block exit of function g to
basic block X.

Figure 2.4 shows the control flow graphs of a program consisting of two functions f and g.
The labels on the nodes of each graph are unique. Solid edges denote control edges and dashed
edges denote call edges. The dashed edge from basic block l2 of function f to basic block entry
of function g denotes a function call and the dashed edge from basic block exit of function g to
basic block l2 of function f denotes the return to the caller-site, i.e., basic block l2 in function f.

2.5.3 LLVM Instruction Set

In the following, we define the syntax and semantics of a simplified, subset of the LLVM in-
struction set. LLVM is a strongly typed language, i.e., each register has a particular type and
each assignment and value is preceded by a type specifier which explicitly names the type of
the values and registers used. For the sake of simplicity, we omit the type specifiers in our
description. Additionally, we do not discuss function and parameter attributes, linkage types,
calling conventions and LLVM’s intrinsic functions because these features are only useful in very
specific situations. For a detailed description of those language features, we refer to the LLVM
Language Reference Manual [LA10].

LLVM instructions are built from values. A value denotes either denotes a constant or the
address of a register. We use Value to denote the set of all values. Suppose rdest denotes a
register, v, vop1 , vop2 , . . . , vopn denote values, addr denotes the address of a register, ty denotes
a type, and l, ltrue, lfalse denote labels. We define the syntax and semantics of the subset of
LLVM instructions used in the following sections.

20

2.5. LLVM INTERMEDIATE LANGUAGE

Memory Access and Allocation

The unlimited number of strongly-typed registers in LLVM can be interpreted as program vari-
ables. The LLVM language, however, additionally uses a load-store architecture to access the
main memory. In the following, we define the syntax and semantics of the instructions used to
dynamically allocate, read, and write memory.

• The alloca instruction is of the form

rdest = alloca ty, v.

The instruction allocates memory on the stack frame of the currently executed function.
The register rdest is a new register. The type ty specifies the type of the data stored in
the register and the value v specifies the number of elements stored in the register. After
the alloca instruction was executed, the register rdest can be used like any other virtual
register. The allocated memory is automatically released when the function is left.

• The load instruction is of the form

rdest = load addr.

The register rdest is assigned the value at memory address addr when the load instruction
is executed.

• The store instruction is of the form

store v, addr.

The value at memory address addr is assigned the value v when the store instruction is
executed.

Control Flow Manipulation

Terminator instructions are used to manipulate the control flow of a function. The last in-
struction of each basic block is a terminator instruction. The terminator instruction defines
the successors of the basic block, i.e., the set of basic blocks from which one is executed when
the current basic block is finished. Most frequently the terminator instruction is a branching
instruction.

• The branching instruction is either of conditional

br v, label ltrue, label lfalse

or unconditional form

br label l.

The conditional branching instruction sets the value of the program counter to the address
of ltrue when v equals 1 and otherwise to the address of lfalse. The unconditional branching
instruction sets the program counter to the address of label l when executed.

Additionally, the switch instruction is a terminator instruction. For the sake of simplicity,
we do not discuss switch instructions but assume they have been replaced by a sequence of
branching instructions with equal semantics.

21

CHAPTER 2. PRELIMINARIES

Binary Operators and Comparison

• The binary operator instruction is of the form

rdest = binop vop1, vop2 ,

where binop is one of the mnemonics add, sub, mul, div, rem, shl, shr, and, or, or
xor. The binary operator instruction assigns the register rdest the value of the function
fbinop(vop1 , vop2) when executed, where fbinop is a binary function representing the seman-
tics of the binary operation denoted by the mnemonic, respectively.

We define

fbinop(x, y) =

x + y, binop = add
x− y, binop = sub
x/y, binop = div
x%y, binop = rem
x << y, binop = shl
x >> y, binop = shr
x&y, binop = and
x|y, binop = or
x ∧ y, binop = xor

where the assigned expression should be interpreted as ANSI-C expressions.

• The comparison instruction is of the form

rdest = icmp cond vop1, vop2 ,

where cond is one of the mnemonics eq, ne, gt, ge, lt, or le. The comparison instruction
assigns the register rdest the value of the function fcond(vop1 , vop2) when executed, where
fcond is a binary function representing the semantics of the comparison instruction denoted
by the mnemonic, respectively.

We define

fcond(x, y) =

x == y, cond = eq
x! = y, cond = ne
x > y, cond = gt
x >= y, cond = ge
x < y, cond = lt
x <= y, cond = le

where the assigned condition should be interpreted as ANSI-C conditions.

Function Calls

• The call instruction is of the form

rdest = call f([vop1, vop2, ..., vopn]).

The call instruction assigns the register rdest the return value of the function f executed
on the sequence of arguments vop1 , vop2 , . . . , vopn . The brackets [,] denote that the
sequence of arguments may be optional and depends on the declaration of the function f,
respectively.

22

2.5. LLVM INTERMEDIATE LANGUAGE

• The ret instruction is of the form

ret v.

Assume the ret instruction is defined in a function f and function f is called by a function
g. The instruction then returns the value v from function f to the caller side, function g,
when executed.

Call and ret instructions define the call edges of the CFG of functions.

Static Single-Assignment Form and Phi Nodes

The (virtual) registers of LLVM exhibit the single-assignment property, where each register is
assigned only once. Programs with this property are said to be in static single-assignment (SSA)
form [AWZ88].

We say a register (or value) is defined if it is assigned by an instruction and a register (or
value) is referenced if it is used in an instruction. Usually, all registers and values on the left-
hand side of an instruction are defined and all registers and values on the right-hand side of
an instruction are referenced. However, one exception is the store instruction, where the left
operand is referenced and the right operand is defined. Additionally, we call the instruction
that defines a register (or value) a definition of the register (or value) and the instruction that
references an instruction a use of the register (or value). A program is in SSA-form if each register
is defined at most once. SSA-form is desirable because it simplifies the design of algorithms for
analyzing and manipulating LLVM programs.

The virtual registers of LLVM are always in SSA-form but registers allocated with the alloca
instruction are generally not in SSA-form, i.e., they are defined more than once. However, LLVM
provides standard mechanisms to transform memory accesses into SSA-form, called memory-to-
register promotion. Memory-to-register promotion is easy in case of a straight-line program
without conditional branching instructions. Then, registers that are used more than once are
replicated and renamed such that each replicate has a unique name. In case of programs where
multiple definitions from different branches reach a specific use of a register, phi instructions
are introduced to merge the values of the definition from the different branches. Suppose k
definitions of a register reach a particular use of the register, the registers are renamed such
that each definition has is unique. Finally, a phi instruction is added to merge the values of
the definitions. The phi instruction chooses one value from the all definitions dependent on the
branch which was executed before. An efficient algorithm for the transformation of a program
into SSA-form was given by Cytron et al. [CFRW91].

• The phi instructions enable the transformation of LLVM programs into SSA form because
the instructions merge data from different branches. A phi instruction is of the form

rdest = phi [vop1,l1],[vop2,l2],. . . ,[vopn,ln].

We say that the current basic block is the basic block containing the phi instruction. The
basic blocks with labels l1, l2, . . . , ln are direct predecessors of the current basic block.
The phi instruction assigns the register rdest the value vopi if the basic block labeled with
li, 1 ≤ i ≤ n, was immediately executed before the current basic block.

23

CHAPTER 2. PRELIMINARIES

2.5.4 LLVM Metadata

The LLVM language1 provides support for metadata, i.e., arbitrary values that can be attached to
individual LLVM instructions. Metadata is a mechanism to communicate specific information
from a front-end to the optimizer or debugger. For instance, a compiler front-end may tag
variables that are guaranteed not to alias which is exploited in optimizations. Another example
is the usage of metadata to encode source locations into the LLVM intermediate representation
which can be used during debugging.

In particular, metadata is an umbrella term for metadata nodes and named metadata nodes.
Suppose vn, v1, v2, and vk denote values, and str is an identifier, a metadata node is a structure-
like value of the form

!vn = metadata !{v1}.

Notice that a metadata node vn itself is a value such that metadata nodes can be recursively
nested. The named metadata node represents a collection of metadata nodes. It is of the form

!str = metadata !{v1, v2, ..., vk}.

The identifier str gives the named metadata node a unique, global name which can be used
to look up a collection of metadata nodes by the unique name assigned to the corresponding
node.

Individual metadata nodes can be attached to LLVM instructions which is denoted by the
pattern

instruction, metadata !vn,

where instruction represents an arbitrary LLVM instruction and vn is a metadata node. We
will use metadata nodes and named metadata nodes to attach information about seeded faults
to an LLVM program.

2.5.5 A Simple Fault Model for LLVM

For mutation, we use a fault model similar to the fault models proposed in [OLR+96] and
[GSZ09]: we introduce syntactic changes into arithmetic, relational, and bitwise operators, and
inject values into expressions used in load instructions. Our decision procedures for the detection
of equivalent and non-equivalent mutants, however, are not tied on this fault model.

We formalize the fault model using mutation operators applied to the level of the LLVM
intermediate representation. The fault model considers four mutation operators: the replace-
ment of arithmetic and bitwise binary operators, the replacement of comparison instructions,
and the manipulation of values used in load instructions. Each mutation operator is denoted by
a three-letter acronym. We use the acronyms AOR, BOR, RCI, and IVI — a detailed description
follows below.

The RCI mutation operator, for instance, replaces each occurrence of a mnemonic of a
comparison instruction by another valid mnemonic, e.g., the mutation operators replaces the
mnemonic for lower than (lt) against the mnemonics for equality (eq), inequality (ne), greater

1The metadata feature was incorporated into LLVM version 2.7.

24

2.5. LLVM INTERMEDIATE LANGUAGE

than (gt), lower than (le), and greater equal (ge), resulting in five mutants of the source
program.

Next, we describe the technical details of the mutation operators AOR, BOR, RCI, and IVI.
Suppose the source code of a program is a sequence of strings separated by white-spaces. We
call these strings tokens and denote the set of all tokens by Tokens. We use Occ(T, P) to denote
the set of occurrences of the tokens T ⊆ Tokens in the source code of program P , where T is a
set of tokens which are searched and replaced by a mutation operator. The replacement of the
token t by the token t′ in program P is denoted by the expression P [t/t′].

• Replacement of Arithmetic Operators (AOR): The AOR mutation operator is a
mapping

tAOR :P → 2P ,

P 7→ {P [t/t′] | t ∈ Occ(AOp, P), t′ ∈ AOp \t}

which mimics a mistake in an arithmetic binary operator, where AOp := {add, sub, mul,
div, rem}.

• Replacement of Bitwise Operators (BOR): The BOR mutation operator is a mapping

tBOR :P → 2P ,

P 7→ {P [t/t′] | t ∈ Occ(BOp, P), t′ ∈ BOp \t}

which mimics a mistake in a bitwise binary operator, where BOp := {and, or, xor, shl,
shr }.

• Replacement of Comparison Instructions (RCI): The RCI mutation operator is a
mapping

tRCI :P → 2P ,

P 7→ {P [t/t′] | t ∈ Occ(ROp, P), t′ ∈ ROp \t}

which mimics a mistake in a relational operator, where ROp := {eq, ne, gt, ge, lt, le}.

• Integral Value Injection (IVI): The IVI mutation operator is a mapping

tIVI :P → 2P ,

P 7→ {P [t/t + 1], P [t/t− 1], P [t/0] | t ∈ Occ(Value)}

which mimics off-by-one faults and the injection of zero values. In order to encode the
off-by-one faults for values representing register addresses, the syntax of LLVM requires
the insertion of additional add and sub binary operator instructions.

The four mutation operators used are similar to Offutt’s set of expression-selective mutation
operators [OLR+96, KO91] for Fortran and the mutation operators used in [GSZ09]. Some of the
operators in [GSZ09] are only marginally described which prevents us from making an in-depth
comparison. We took the AOR and RCI mutation operators from [KO91] and adapted them for
the LLVM instruction set. Moreover, we supplemented the BOR mutation operator because in
[KO91] no bitwise operators for Fortran are described. The IVI mutation operator is similar to
Offutt’s UOI mutation operator and covers all mutations from the category “replace numerical
constants” in [GSZ09].

25

CHAPTER 2. PRELIMINARIES

l1: r1 = load i1
r2 = icmp lt i2, i1
br r2 label l2 , label l3

l2: r1 = load i2
br label l3

l3: o1 = load r1

Figure 2.5: An example program conforming to the subset of LLVM described in Section 2.5.3,
that calculates the minimum of two given variables i1 and i2 and saves the resulting output in
the variable o1.

2.5.6 Meta-Mutant Construction

Given a program P and a list of faults to be seeded into the program according to a fixed
fault model, first, each fault gets a unique id, e.g., by consecutively numbering the faults. We
start numbering at 1 and reserve the id 0 for the original program behavior. The faults are
systematically seeded into the program. For each fault, the basic block that is seeded with the
fault is duplicated and then mutated. Thus, the meta-mutant contains the original and the new,
mutated basic block.

We add a global variable FAULT ID and additional control logic per fault to the program.
The control logic enables one mutated basic block at a time if the value of FAULT ID is equal to
the id of the fault and the original basic block otherwise.

Figure 2.5 gives a short example program that conforms to the subset of LLVM described in
Section 2.5.3. The example program calculates the minimum of two given program inputs and
returns the result as program output. We denote the program inputs by the input registers i1,
i2, and the program output by the output register o1. For the sake of simplicity, the example
program is not in SSA form (the register r1 is assigned twice).

Suppose a potential fault in the basic block l1 with id 1, where the mnemonic of the com-
parison instruction lt (lower than) is turned into the mnemonic le (lower equal). In order to
construct the meta-mutant, the basic block l1 is duplicated and mutated. The meta-mutant is
shown in Figure 2.6. The basic block mut1 corresponds to the faulty duplicate of basic block
l1 and the basic block chk serves as control logic, which, based on the value of the variable
FAULT ID, either enables the mutant in basic block mut1 or the original program behavior in
basic block l1.

We use metadata nodes to mark a seeded fault in the program with its fault id. In our meta-
mutant construction, a seeded fault corresponds to a basic block. However, LLVM offers no
mechanism to add metadata to a basic block. Thus, we add a metadata node to the terminator
instruction of the basic block instead. In the example, in Figure 2.6, the terminator instruction
of the basic block mut1 is marked with the metadata node !1. The metadata node !1 shown at
the bottom of Figure 2.6 contains a single value 1 corresponding to the fault id of the seeded
fault.

Figure 2.6 contains only a single mutant, however, the meta-mutant construction can be
extended to an arbitrary number of faults by adding more basic blocks, where each basic block
contains one fault (similar to the basic block mut1) and control logic (similar to the basic block
chk). However, we use a more subtle construction using the switch instruction contained in the
full LLVM instruction set. The size of the resulting meta-mutant is linear in the size of the
original program.

26

2.6. SUMMARY

chk: r1 = load FAULT_ID
r2 = icmp eq r1 , 1
br r2 label mut1 , label l1

mut1: r3 = load i1
r4 = icmp le i1 , i2
br r4, label l2 , label l3, metadata !1

l1: r3 = load i1
r5 = icmp lt i1 , i2
br r5 label l2, label l3

l2: r3 = load i2
br label l3

l3: o1 = load r3

!1 = metadata !{1}

Figure 2.6: A meta-mutant of the example program given in Figure 2.5 with a single fault: the
mnemonic of the comparison instruction lt in basic block l1 is replace with mnemonic le.

2.6 Summary

In this chapter, we have introduced mutation testing, bounded model checking, and the LLVM
intermediate representation. We have discussed a subset of the LLVM instruction set and
have shown a simple fault model for LLVM using four mutation operators. The mutation
operators seed faults into arithmetic, relational, and bitwise operators, and inject values into
load instructions. Our fault model, however, is not explicitly tied on these mutation operators.

Moreover, we have presented the concept of a meta-mutant, i.e., a single program containing
a set of mutants and additional control logic to enable and disable the individual behavior
corresponding to the mutants. We have shown how to encode the meta-mutant into a single
LLVM program. The meta-mutant construction uses LLVM metadata to mark the locations of
the seeded faults in the program with their fault ids.

The consideration of mutation testing for LLVM programs and the construction of the meta-
mutant is new. We use the discussed subset of LLVM and the meta-mutant construction in
the remainder of the thesis and present approaches for the identification of equivalent and non-
equivalent mutants.

27

CHAPTER 2. PRELIMINARIES

28

Chapter 3

Detecting Equivalence

3.1 Introduction

In the following chapter, we describe an approach to detect equivalent (Section 3.3) and redun-
dant mutants (Section 3.4) using static analysis methods leveraging optimizing source-to-source
transformations.

Recall that equivalent mutants correspond to programs which are functionally equivalent
to the original program and redundant mutants are functionally equivalent to another mutant.
Equivalent mutants cannot be detected, whereas the afford to detect more than one of a set of
redundant mutants is wasted.

We motivate our approach showing how the GNU Compiler Collection (GCC) and the Unix
tool diff can be used to detect equivalent mutants (Section 3.2). Then, we present the Optimizer
procedure (Section 3.3.1) that attempts to prove functional equivalence of a given program and
one of its mutants using a sequence of optimizing source-to-source transformations. We give a
brief description of some optimizing source-to-source transformations (Section 3.3.2) provided
by the LLVM compiler infrastructure and present a standard optimization pipeline based on
these transformations (Section 3.3.3). Afterwards, we present the MetaOptimizer procedure
(Section 3.4.1) that generalizes Optimizer and, thus, detects redundant and equivalent mutants
in a meta-mutant using a similar approach. Lastly, we summarize the chapter (Section 3.5).

3.2 Early Attempts and Motivation

In this section, we present a simple approach to detect functional equivalence of similar programs.
This approach serves as motivation for the equivalence and redundancy detection procedures
described in later parts of the chapter.

Consider two implementation of the same function min shown in Figure 3.1. The functions
calculate the minimum of two given integer arguments denoted by the variables a and b: first,
both functions arbitrarily assume that the value of b is the smallest input argument and initialize
the value of a local variable m with the value of b. Then, the functions overwrite the value of
the local variable m with the value of a if the value of a is actually smaller than the value of
b. The two implementations differ only in the condition that checks whether the value of a is
smaller than the value of b. The functions min shown in Figure 3.1 on the left and the right
side use the conditions a < b and a <= b, respectively. However, both implementations are

29

CHAPTER 3. DETECTING EQUIVALENCE

int min(int a, int b){
int m = b;
if (a < b) {

m = a;
}
return m;

}

int min(int a, int b){
int m = b;
if (a <= b) {

m = a;
}
return m;

}

Figure 3.1: Two implementation of a function min that calculates the value of two given inputs
arguments a and b.

$ gcc -c -O1 org/min.c
$ gcc -c -O1 mut/min.c
$ diff -s org/min.o mut/min.o
Files org/min.o and mut/min.o are identical

Figure 3.2: Unix commands to decide whether the function min in Figure 3.1 are functionally
equivalent using the GNU compiler collection (GCC) and diff.

functionally correct, i.e., the return value of the function min is in both cases min{a, b}. The
two implementation are functionally equivalent because in case of equal input values a = b, it
does not matter whether the function returns a or b.

We motivate our approach by using the GNU compiler collection (GCC) and the standard
Unix tool diff to decide that the two min functions are functionally equivalent: let us assume
that the function in Figure 3.1 on the left side corresponds to the original program and the
function on the ride side is a first order mutant of the original program. We save both programs
in separate source files, both called min.c but locate them in different directories org/ and
mut/, respectively. First, we use GCC to optimize the original program and the mutant. We
specify the optimization level 1 with the flag -O1 and enforce the compiler with the flag -c to
not link the programs because they have no entry functions. GCC compiles and optimizes the
source code of the two programs saving the results as object files org/min.o and mut/min.o.
Finally, we compare the object files with the diff tool and request diff to output a message if
the object files do not differ (with the flag -s). When the diff tool reports “identical files”, we
conclude that the two given programs are functionally equivalent. Otherwise, we do not know
whether the programs are actually different or GCC is not able to optimize them sufficiently.

Figure 3.2 lists the exact sequence of Unix commands executed. We choose the same name for
both source files because GCC encodes the file name into the object file (but not the directory
name). Thus, two functionally equivalent programs with different file names will always be
reported as different.

3.2.1 Design Considerations

For the trivial example in Figure 3.1, GCC and diff are sufficient to prove that the mutant
is functionally equivalent to the original program. In the following, we call this approach the
simple approach. On basis of the simple approach, we give some design considerations for an
equivalence detection procedure which leverages a standard compiler.

1. Completeness: The equivalent mutant problem is undecidable and thus the simple ap-

30

3.2. EARLY ATTEMPTS AND MOTIVATION

8b 45 08 mov 0x8(%ebp),%eax
8b 55 0c mov 0xc(%ebp),%edx
39 c2 cmp %eax ,%edx
0f 4e c2 cmovle %edx ,%eax

8b 55 08 mov 0x8(%ebp),%edx
8b 45 0c mov 0xc(%ebp),%eax
39 d0 cmp %edx ,%eax
0f 4d c2 cmovge %eax ,%edx

Figure 3.3: Two fragments of x86 assembly source code: the usage of the registers eax and edx is
exchanged in the left and right code fragments. Thus, the two source fragments are functionally
equivalent.

proach is obviously incomplete. For instance, assume the two x86 assembly code fragments
in Figure 3.3 are obtained from compiling two functionally equivalent but syntactically dif-
ferent programs. The two code fragments are functionally equivalent. However, we cannot
prove this by syntactically comparing the object files with diff. The registers eax and
edx are used in different order and thus the object files are syntactically different.

2. Soundness: Concluding functional equivalence with GCC and diff is correct iff the op-
timizations are correct, i.e., if the source program and the target program resulting from
optimizing the source program are functionally equivalent. Moreover, aggressive optimiza-
tions are allowed to exploit undefined behavior in the semantics of a programming language
to generate faster or smaller code, i.e., the optimizations can choose any suitable behavior
for a program part that is undefined, e.g., in case of a division by zero. In mutation test-
ing, we want to know whether a seeded fault affects the program semantics. An aggressive
optimization, however, (arbitrarily) chooses one behavior in case of undefined behavior
in the program. The optimization may choose behavior such that the mutant becomes
functionally equivalent to the original program, although an other choice for the undefined
behavior whould indeed affect the program semantics. As a result undefined behavior
exploited by aggressive optimizations may lead to false-positives in detecting equivalent
mutants.

3. Robustness: GCC is not designed for detecting functional equivalence but for code gen-
eration. The detection results may vary with different GCC versions. Moreover, future
improvement to GCC may conflict with the goal of the simple approach, i.e., the develop-
ment in GCC need not care about creating similar target code for similar source programs.

4. Controllability : In the simple approach, GCC is used as a black-box. It is hardly possible
to improve the results when GCC and diff are unable to conclude functional equivalence.

5. Scalability : In the Figures 3.1 and 3.2 we consider one mutant. A generalization of the
simple approach to detect equivalent mutants in sets of mutants requires one compilation
for each mutant and a pairwise comparison of the resulting object files. However, since in
mutation testing the number of mutants is typically high, such an approach will not scale
for larger programs.

Due to the undecidability of program equivalence in general, there is no method to give a
complete decision procedure for the detection of functional equivalence of arbitrary programs.

Notice that we have used optimization level 1 in Figure 3.2 rather than the more aggressive
optimization levels 2 or 3. Optimization level 1 offers moderate optimizations which do not
require a significant time overhead at compile-time and are safe in the sense that they do not
exploit undefined behavior in the program [StGDC10]. Typically programmers omit undefined

31

CHAPTER 3. DETECTING EQUIVALENCE

behavior in their programs. However, when we seed faults into a program, we cannot guarantee
that a seeded fault may result in undefined behavior. Thus, we use a set of optimizations
considered less aggressive. The avoidance of aggressive optimizations is an strategy to overcome
the soundness problem caused by undefined behavior.

In the next section, we present a decision procedure that attempts to fulfill the other three
design considerations (robustness, controllability, and scalability).

3.3 Detecting Equivalent Mutants using Code Optimization

3.3.1 Optimizer Procedure

In this section we present the Optimizer procedure that attempts to prove functional equivalence
of a program and one of its mutants using static analysis methods implemented as a sequence
of optimizing source-to-source transformations.

Procedure 1 gives the Optimizer procedure in pseudo code. For a given program P , one of
its mutants M , and a sequence of optimizing source-to-source transformations T1, T2, . . . , Tn,
Optimizer decides whether P is syntactically equivalent with respect to the sequence of trans-
formations. First, Optimizer applies the sequence of optimizing transformations T1, T2, . . . , Tn

consecutively to the program P and the mutant M shown in line 2 and 3, respectively. The ob-
tained transformed programs P ′ and M ′ are then syntactically compared denoted by the pseudo
code function Compare in line 4, i.e., the object files of the programs P ′ and M ′ are compared
line by line. The procedure Optimizer returns ‘Yes’ if the programs P and M are syntactically
equivalent and ‘Don’t Know’ if P ′ and M ′ are different. In case of a ‘Don’t Know’ decision, we
do not know whether P and M are different or the optimizing source-to-source transformations
applied are not sufficient to optimize P and M to the syntactically equivalent programs P ′ and
M ′.

Procedure 1: Optimizer
Input : a program P , a mutant M of the program, and a sequence T1, T2, . . . , Tn of

optimizing source-to-source transformations
Output: ‘Yes’ if P and M are functionally equivalent and ‘Don’t Know’ otherwise

1 begin
2 P ′ = T1(T2(. . . Tn(P) . . .));
3 M ′ = T1(T2(. . . Tn(M) . . .));
4 if Compare(P ′,M ′) then
5 return ‘Yes’;
6 else
7 return ‘Don’t Know’;
8 end
9 end

The Optimizer procedure is similar to the simple approach presented in Section 3.2. However,
the procedure does not rely on GCC as a black-box but uses a set of standard optimizing source-
to-source transformations.

32

3.3. DETECTING EQUIVALENT MUTANTS USING CODE OPTIMIZATION

3.3.2 Optimizing Source-to-Source Transformations

The sequence of optimizing source-to-source transformations Ti, 1 ≤ i ≤ n, applied to the
original program and one of its mutants is an input parameter of the Optimizer procedure. We
leverage optimizing source-to-source transformations from the LLVM compiler infrastructure.
These transformations are applied to LLVM source code. The implementation of a source-
to-source transformation in LLVM is called a compiler pass or simply a pass. LLVM’s list of
analysis and transformation passes [SH11] shows all transformations supported by the LLVM
compiler infrastructure. In the following, we discuss the standard optimization pipeline of LLVM
for optimization level 1 because we want to avoid aggressive optimizations which may exploit
undefined behavior.

The effectiveness of the Optimizer procedure depends on the ability of an optimizing source-
to-source transformation to produce syntactically similar code from semantically similar code,
i.e., an effective optimizing source-to-source transformation attempts to canonize the source
code. On the one hand, for a given optimization criterion, e.g., code size, finding a globally
optimal representation of a source program is undecidable. Additionally, in general there is
no unique global optimal representation of a source program with respect to a fixed optimiza-
tion criterion. Suppose we consider code size as optimization criterion, the x86 assembly code
fragments in Figure 3.2 are both optimal with respect to the code size criterion. On the other
hand, optimizing source-to-source transformations are designed to turn arbitrary source code
into more structured code, i.e., compiler passes are usually applied in a particular order to find
a locally optimal representation of a program.

We consider a fixed pipeline of optimizing source-to-source transformations. The pipeline
is standard when optimization level 1 is considered. However, we are not tied to exactly these
pipeline of transformations. In the remaining part of this section, we give a short description of
each considered compiler pass based on [SH11] but without discussing technical or implementa-
tion details.

1. Promote Memory to Register. The pass implements a standard algorithm to construct
Static Single Assignment (SSA) form from a given program, i.e., the pass removes alloca
and load instruction, transforms store instructions to registers and adds phi instructions to
the program when needed. The resulting program is in SSA form and thus each variable is
assigned only once which simplifies the implementation of further analysis and optimization
passes.

2. Combine Redundant Instructions. The pass combines instructions based on simple
algebraic simplification patterns. For instance, two additions %y = add %x,1 and %z =
add %y,1 are transformed to %z = add %x, 2 assuming that value %y is not referenced in
later parts of the program.

3. Simplify the Control Flow Graph. The pass implements dead code elimination and
basic block merging. It removes basic blocks with no predecessors, merges a basic block
with its predecessor if there is only one predecessor and the predecessor has no other succes-
sors, eliminates phi instructions for basic blocks with a single predecessor, and eliminates
a basic block that contains only an unconditional branch.

4. Re-Associate expressions. The pass re-associates commutative expression by changing
their order such that the new order allows better constant propagation. For instance,
an expression 1 + (x + 2) is transformed to x + (1 + 2) exploiting associativity of the

33

CHAPTER 3. DETECTING EQUIVALENCE

Promote
Memory to
Registers

Combine
Redundant
Instructions

Simplify
Control

Flow Graph

Combine
Redundant
Instructions

Simplify
Control

Flow Graph

Re-
Associate

expressions

Global
Value

Numbering

Combine
Redundant
Instructions

Sparse
Conditional

Constant
Propagation

Aggressive
Dead Code
Elimination

Combine
Redundant
Instructions

Simplify
Control

Flow Graph

Figure 3.4: Optimization pipeline: a sequence of optimizing LLVM source-to-source transfor-
mation used to optimize our programs.

integer addition. Associative and commutative binary operators which can be re-associated
in this way are add, mul, and, or, and xor when applied to integer types.

5. Global Value Numbering. The pass uses a global map to assign values to variables
and expressions such that provable equivalent variables and expression are mapped to the
same value. The mapping is then used to simplify variables and expressions by substituting
them against the simplest representative from the map with respect to the value.

6. Sparse Conditional Constant Propagation. The pass propagates constants using
abstract interpretation of the code. Each value that is proved constant is substituted by
this constant.

7. Aggressive Dead Code Elimination. The pass removes instructions calculating values
that are never used. The dead code elimination assumes each variable dead until proven
otherwise. The compiler pass is recursively repeated until all values are proven to be used.

3.3.3 Optimization Pipeline

We have chosen an optimization pipeline consisting of 12 optimizing source-to-source transfor-
mations shown in Figure 3.4. The individual optimization passes are briefly described in the
previous section.

Firstly, we transform the LLVM program into SSA form by applying the “Promote Memory
to Registers”-pass. Secondly, we combine redundant instructions and simplify the control flow.
Notice that the optimization pipeline uses the “Combine Redundant Instructions”-pass and the
“Simplify Control Flow Graph”-pass more than once. Reapplying these transformations after
other transformations may result in additional code reduction. We then re-associcate expressions
and apply global value numbering, followed by constant propagation and dead code elimination.
Lastly, we again combine redundant instructions and simplify the control flow graph.

The considered optimization pipeline is based on the standard LLVM optimization pipelines
using optimization level 1. However, we are not tied on exactly these optimizations and, thus,
the optimization pipeline allows for easy customization.

Recall that the Optimizer procedure is sound iff the optimizing source-to-source transforma-
tions do not affect the program semantics. We have chosen the standard LLVM optimization
pipeline for optimization level 1 to avoid soundness problems of optimizations that exploit un-
defined behavior.

34

3.4. DETECTING REDUNDANT MUTANTS USING CODE OPTIMIZATION

The decision procedure can be considered more robust that the simple approach in the
sense that the sequence of optimizing source-to-source transformations is fixed and does not
change with future LLVM releases. We assume that the task and the implemented algorithm
of a particular compiler pass does not change in future LLVM releases but may be improved
in precision or fixed when faulty. On contrast to the simple approach, the optimizations are
applied to program code at the middle-end, i.e., Optimizer does not leverage target-specific
optimization.

The Optimizer procedure is better controllable than the simple approach by customizing the
optimization pipeline. Moreover, it is possible to implement new optimization passes to specif-
ically improve the equivalence detection results. In the next section, we address the scalability
issue and generalize the Optimizer procedure to take equivalence decisions for a set of mutants
rather than for a single mutant of the original program.

3.4 Detecting Redundant Mutants using Code Optimization

3.4.1 MetaOptimizer Procedure

Procedure 2 shows the MetaOptimizer procedure, an extension of the Optimizer procedure. The
MetaOptimizer procedure attempts to detect equivalent and redundant mutants encoded in a
meta-mutant. The inputs of MetaOptimizer are a meta-mutant M and a sequence T1, T2, . . . , Tn

of optimizing source-to-source transformations. The procedure maintains a map Φ that collects
the information of detected equivalent and redundant faults. The map Φ maps a fault id i to
a set of fault ids j1, j2, . . . , jm, where the faults represented by the fault ids jk, 1 ≤ k ≤ m,
are functionally equivalent to the fault represented by the fault id i. The map is implemented
using a union-find data-structure which effectively keeps track of partitions of a set of elements.
The union-find data-structure provides two operations: Find and Union. In the following Φ is
a union-find data-structure over the set of all fault ids. Given a specific fault id, the Find(Φ,
id) operation looks up the set of fault ids in Φ to which id belongs. The Union(Φ, S1, S2)
operation merges two sets of fault ids S1 and S2 into new a set and updates the map Φ.

Firstly, the procedure MetaOptimizer creates a map of all fault ids denoted by the pseudo
code function SetupMap in line 2. Secondly, the procedure optimizes the meta-mutant M in
line 3 using the transformations Ti, 1 ≤ i ≤ n, similar to the Optimizer procedure. Then,
the procedure compares each basic block bb line by line with each other basic block bb′, where
bb′ 6= bb, denoted by the pseudo code function Compare in line 8. We denote the fault ids of the
basic blocks bb and bb′ by id and id′, respectively. The mapping from a basic block to its fault id
corresponds to a look up of the metadata attached to terminator instruction of the basic block,
which is denoted by the pseudo code function GetID in line 5 and 7. If the two basic blocks bb
and bb′ are syntactically equivalent, we look up the sets of fault ids the corresponding ids id and
id′ belong, and merge the two sets of fault ids which is shown in line 9. Finally, the procedure
returns the symmetric map Φ in line 13. The map contains the information of the detected
redundant mutants. Recall that the fault id 0 is reserved for the original program behavior.
Thus, the operation Find(Φ,0) returns the set of fault ids of detected equivalent mutants.

35

CHAPTER 3. DETECTING EQUIVALENCE

Procedure 2: MetaOptimizer
Input : a meta-mutant M and a sequence T1, T2, . . . , Tn of optimizing source-to-source

transformations
Output: a map Φ that maps each fault id to a set of fault ids representing detected

redundant faults

1 begin
2 Φ = SetupMap();
3 M ′ = T1(T2(. . . Tn(M) . . .));
4 foreach basic block bb in M ′ do
5 id = GetID(bb);
6 foreach basic block bb′ 6= bb in M ′ do
7 id’ = GetID(bb′);
8 if Compare(bb,bb′) then
9 Union(Φ, Find(Φ, id), Find(Φ, id’));

10 end
11 end
12 end
13 return Φ;
14 end

3.5 Summary

In this chapter, we have shown a simple approach that attempts to detect equivalent and re-
dundant mutants using source-to-source transformations. We have started with a motivation
showing that the GNU compiler collection (GCC) and the Unix tool diff can be used to show
functionally equivalence of similar programs. From this idea, we have developed two procedures
Optimizer and MetaOptimizer. The first aims to show functionally equivalence of a program and
one of its mutants. The latter generalizes the idea and attempts to detect equivalent and redun-
dant faults encoded as a meta-mutant. Both procedures use static analysis techniques leveraging
source-to-source transformations. Then, we have presented a standard optimization pipeline us-
ing source-to-source transformations provided by the LLVM compiler infrastructure. Finally,
we have discussed some implementation details that need to be dealt with when the MetaOpti-
mizer procedure is implemented using the LLVM compiler infrastructure and the meta-mutant
construction from the previous chapter.

36

Chapter 4

Detecting Non-Equivalence

4.1 Introduction

The following chapter is based on Riener et al. [RBF11]. We present a symbolic procedure,
called SymBMC which attempts to disprove functional equivalence of a program and a set of its
mutants (Section 4.2). The set of mutants is represented by a meta-mutant. Our approach uses
bounded model checking to search for one counterexample for each fault. The procedure unrolls
the meta-mutant and encodes the equivalent mutant problem into a logic formula over the theory
of bit-vectors. We start the description with a simplified version, called SimplifiedBMC which
proves non-equivalence of a single mutant and the original program (Section 4.2.1). We then
discuss unwinding (Section 4.2.2) and the encoding of an LLVM program as logic constraints
(Section 4.2.3) in detail. Next, we present a complete procedure, called SymBMC (Section 4.2.4).
Lastly, we discuss related work (Section 4.3 and summarize the chapter (Section 4.4).

4.2 Symbolic Bounded Model Checking

4.2.1 Simplified Symbolic Procedure

In Procedure 3, we give the pseudo code of the symbolic procedure “SimplifiedBMC” which
attempts to show non-equivalence of the original program P and one of its mutants M with
respect to a given unrolling bound k. The procedure first generates a model of the original
program P and a model of the mutant M . Both programs are unrolled with respect to the
unrolling bound k and then translated into the bit-vector formulae fk and f ′k, respectively. In
Procedure 3, the encoding task and translation into bit-vector formulae is denoted by the pseudo
code function Encode in the lines 2 and 3. We denote the program inputs and outputs by fixed-
length sequences of LLVM values. The sequences (iPj) and (iMj), 1 ≤ j ≤ n, denote the program
inputs of the original program and the mutant, where n is the number of program inputs. The
sequences (oP

l) and (oM
l), 1 ≤ l ≤ m, denote the program outputs, where m is the number of

program outputs.
Next, SimplifiedBMC generates a formula g, called propagation condition, shown in line 4.

The propagation condition asserts equal inputs of the program and the mutant, i.e., iPj = iMj for
all j, and at least one pair of different outputs, i.e., oP

l 6= oM
l for some l. We call the conjunction

of the propagation condition g and the encoded models fk and f ′k, the miter formula s. The
construction of the miter formula is shown in line 5.

37

CHAPTER 4. DETECTING NON-EQUIVALENCE

Finally, we solve the miter formula s with an SMT solver represented by the pseudo code
function Solve in line 6. A satisfying assignment corresponds to a distinguishing test case which
results in a different external observable outputs for the original program P and the mutant M if
executed. We extract the test case from the satisfying assignment by collecting the values of the
program inputs and outputs, respectively, denoted by the pseudo code function ExtractCEX.
If no satisfying assignment exists, i.e., the miter formula is unsatisfiable, then the mutant is
functionally equivalent to the original program with respect to the unrolling bound k. Then,
no counterexample of length k exists that shows non-equivalence of the original program and
the mutant. In such a case, we generally have no knowledge whether the unrolling bound k was
chosen too small or the mutant is functionally equivalent.

Procedure 3: SimplifiedBMC
Input : a program P , a mutant of the program M , and a maximum unrolling bound k
Output: a test case that kills the mutant M with respect to the maximum unrolling

bound k if P and M are non-equivalent and EQUIVALENT otherwise

1 begin
2 ((iPj), (oP

l), fk) := Encode(P, k);
3 ((iMj), (oM

l), f ′k) := Encode(M,k);

4 g :=
n∧

j=1

(iPj = iMj) ∧
m∨

l=1

(oP
l 6= oM

l);

5 s := fk ∧ f ′k ∧ g;
6 if Solve(s) = SATISFIABLE then
7 return ExtractCEX(s);
8 else
9 return EQUIVALENT;

10 end
11 end

4.2.2 Unwind the Program

We follow a bounded model checking approach that generates counterexamples of finite length,
specified by the maximum unrolling bound k. Program unwinding is standard in software
BMC. The procedure SimplifiedBMC unwinds the program by recursively unrolling loops in
the program. Loop unrolling is implemented by the LLVM infrastructure as a compiler pass.
However, the compiler pass unrolls loops iff the pass is able to determine the maximum unrolling
number which in case of input-dependent loops is not possible. In the current implementation,
the symbolic procedure quits if unrolling a loop entirely is impossible. In such a case, the
implementation of the symbolic procedure is unable to check functional non-equivalence. During
loop unrolling, we inline function calls. Thus, after unwinding the program consists of a single
entry function with no loops.

4.2.3 Encoding the Unrolled Program

In the encoding task, we formulate logic constraints that represent the semantics of the un-
rolled program. In order to simplify the encoding, we first translate the unrolled program into

38

4.2. SYMBOLIC BOUNDED MODEL CHECKING

SSA form. Recall that the translation into SSA form is provided by the LLVM compiler in-
frastructure as a standard source-to-source transformation , called promote memory to registers
(Section 3.3.2). We encode the program into a logic formula over the theory of quantifier-free
bit-vectors. A symbolic variable is either a bit-vector variable or a binary decision variable. A
bit-vector variable is a finite sequence of Boolean values with a fixed length. A binary decision
variable is a single Boolean value. Bit-vector variables can be used to encode arbitrary infor-
mation of finite length. We solve the bit-vector formula with an Satisfiability Modulo Theories
(SMT) solver which supports the theory of bit-vectors. Such an SMT solver operates on top
of a Satisfiability (SAT) solver and provides additional word-level operations (e.g. addition,
if-then-else, etc.) for the manipulation of bit-vector variables.

For each program variable x, we introduce a bit-vector variable bvx of corresponding size. For
instance, a integer variable is encoded as a bit-vector of length 32 assuming a 32-bit processor
architecture. For each basic block with label l in the program, we introduce a binary decision
variable bbl. The vale of the variable bbl is 1 if and only if the basic block labeled with l has
been executed.

Suppose bvrdest
, bvv, bvvop1

, bvvop2
, bvc1 , bvc2 , . . . , bvcn are bit-vector variables denoting the

register rdest and the values v, vop1 , vop2 , c1, c2, . . . , cn, respectively. The encoding of the
individual instruction types is straightforward.

• The load instruction

rdest = load v

in a basic block labeled with l is mapped to an implication

bbl → (bvrdest
= bvv).

• The binary operator instruction

rdest = binop vop1, vop2

in a basic block labeled with l is encoded by mapping the mnemonic binop of the instruc-
tion to its SMT counterpart bvbinop resulting in an implication

bbl → (bvrdest
= bvbinop(bvvop1

, bvvop2
)).

• The branching instruction

br v label ltrue, label lfalse

in a basic block labeled with l is encoded into a conjunction of implications

((bbl ∧ v) → bbltrue) ∧ ((bbl ∧ ¬v) → bblfalse
).

• The phi instruction

rdest = phi [vop1,l1],[vop2,l2],. . . ,[vopn,ln]

39

CHAPTER 4. DETECTING NON-EQUIVALENCE

in a basic block labeled with l is encoded into a sequence of nested logic ite (if-then-else)-
operations

bbl → (ite(bvc1, bvrdest
= vop1,

ite(bvc2, bvrdest
= vop2,

...

ite(bvcn−1, bvrdest
= vopn−1, bvrdest

= vopn)

...

)))

where the value ci, 1 ≤ i ≤ n, denotes the logic condition under which the control flow
transfers from the basic block labeled with li to the basic block labeled with l. The value
ci is calculated from the branching instructions of the basic block labeled with li.

Finally, we constrain the binary decision variable corresponding to the initial basic block of
the program to be true which forces each execution of the program to enter the initial basic
block. The resulting logic formula is satisfiable if and only if there is an execution path from
the initial basic block to the program’s exit and the unrolling bound k is sufficient to unroll the
program.

4.2.4 Symbolic Procedure

The symbolic procedure SymBMC is shown in Procedure 4. The procedure is similar to Simpli-
fiedBMC but decides the functional equivalence for a set of mutants and the original program:
the inputs of the procedure are a meta-mutant M and a maximum unrolling bound k. The
meta-mutant contains a set of faults each guarded by a condition that checks whether the spe-
cific fault should be enabled. The output of SymBMC is a set Ψ of test cases. The procedure
generates a test bench from scratch, assuming that Ψ is initially empty, which is shown in line 2.

Firstly, SymBMC unrolls the meta-mutant M twice, shown in lines 3 and 4. The bit-vector
variables idP and idM denote the value assigned to the global variable FAULT ID in the logic
formulae fP

k and fM
k . The formula fP

k encodes the semantics of the original program and, thus,
we fix idP to 0. Consequently, in the formula fP

k all seeded faults are disabled. The formula
fM

k encodes the semantics of all faulty programs considered by the meta-mutant. The symbolic
variable idM is kept unconstrained, which corresponds to an existential quantification of the
variable idM .

We then construct a miter formula s shown in lines 5 and 6 similar to the construction used
in the procedure SimplifiedBMC. The miter formula s encodes the equivalent mutant problem.
The formula is satisfiable if a counterexample exists that proofs non-equivalence of any of the
faults represented by the meta-mutant. We hand the formula to an SMT solver that aims to
produce a satisfying assignment. From the assignment, we extract the counterexample denoted
by the pseudo code function ExtractCEX shown in line 8. A counterexample is an assignment
for the symbolic variables denoting the program inputs and outputs. Additionally, we extract
the fault id that has been detected, denoted by the pseudo code function ExtractFaultID in
line 9.

We collect the counterexamples in Ψ. Actually, we strive for one satisfying assignment for
each possible value of idM . Thus, we add constraint to the miter function that forces a different
value for idM for the next satisfying assignment. The miter formula is then solved again in order

40

4.3. RELATED WORK

to detect another fault. Finally, the miter formula becomes unsatisfiable and no remaining fault
can be detected. The unsatisfiability of the formula proofs functional equivalence of all remaining
faults with respect to the unrolled model, i.e., none of the remaining faults result in a different
externally observable output with respect to the maximum unrolling bound k.

Procedure 4: SymBMC
Input : a meta-mutant M and a maximum unrolling bound k
Output: a list of test cases Ψ that guaranteed kills all non-equivalent mutants of the

meta-mutant M with respect to the maximum unrolling bound k

1 begin
2 Ψ := ∅;
3 ((iPj), (oP

l), fP
k) := Encode(M,k) ∧ (idP = 0);

4 ((iMj), (oM
l), fM

k) := Encode(M,k);

5 g :=
n∧

j=1

(iPj = iMj) ∧
m∨

l=1

(oP
l 6= oM

l);

6 s := fP
k ∧ fM

k ∧ g;
7 while Solve(s) = SATISFIABLE do
8 Ψ = Ψ ∪ ExtractCEX(s);
9 s = s ∧ (idM 6= ExtractFaultID(s));

10 end
11 return Ψ;
12 end

4.3 Related Work

The procedures SimplifedBMC and SymBMC are based on BMC and SMT. BMC is an effective
technique to generate counterexamples of finite-length, which we interpret as test cases. SMT
comes with efficient decision procedures to search for satisfying assignments.

Offutt et al. [Off88, DO91b] proposed a similar approach to automatically generate test cases
based on solving a Constraint Satisfaction Problem (CSP). They formulated three conditions
(reachability, necessity, and sufficiency) for each fault which need to be satisfied to detect it. The
reachability condition describes the domain of assignments to the program variables which reach
the location of the seeded fault. The necessity condition expresses the domain of assignments
to the program variables that results in a different program state when executed on the original
program and the mutant, respectively. These assignments are said to infect the program state.
The sufficiency condition describes the domain of assignments to the program variables that
propagate the infected program state to an externally observable output. The three conditions
are encoded as algebraic constraints over the program variables. A satisfying assignment for
the conjoined algebraic constraints (if one exists) is a distinguishing test case which results in
a different externally observable output. However, CBT was proposed as an approximation
technique that does not exploit the sufficiency condition [DO91b]. Thus, CBT is sound but
incomplete, allowing the construction of “false negative” test cases that do not lead to the
detection of a seeded fault. Experiments for CBT were applied to Fortran focusing on small
programs [Off88, DO91b].

41

CHAPTER 4. DETECTING NON-EQUIVALENCE

Our SymBMC procedure is sound and complete with respect to the given unrolling bound.
The procedure generates a finite model of the meta-mutant of the program, i.e., the original
program which contains all seeded faults and additional control logic to enable and disable the
individual faults. The meta-mutant is encoded as a set of logic constraints over the theory of
bit-vectors. We use an SMT solver to decide whether the logic constraints are satisfiable. The
SMT solver reasons incrementally, i.e., the solver re-uses (learns) knowledge of the structure of
the logic constraints when called more that ones.

Clarke et al. [CKOS04] implemented the C Bounded Model Checker (CBMC), i.e., a tool
that uses bounded model checking to proof whether an ANSI-C program conforms to its spec-
ification given as a set of local assertions in the source code. CBMC was used in lots of ap-
plications including fault localization, functional equivalence checking, determining worst-case
execution time, and test case generation. For instance, Clarke and Kroening used CBMC to
check functional equivalence of an ANSI-C program and a VHDL description. Sinz and Post
[PS09] attempted to prove functional equivalence of two difference ANSI-C implementations of
the Advanced Encryption Standard (AES) cipher using CBMC. In both cases the programs are
actually semantically equivalent and CBMC is queried to provide prove. Only in case of a real
bug CBMC would find a counterexample. We use BMC to show the presence of bugs, i.e., we
iterative check symbolic equivalence between the original program and one of the mutants en-
coded in a meta-mutant and collect the counterexamples as test cases. Our implementation of
BMC is different from CBMC: we use a standard compiler to transform the source language into
the Compiler’s intermediate representation and transform the intermediate program into logic
constraints. Thus we avoid issues like building a language parser. Moreover, our implementation
can not only process ANSI-C programs but programs written in any source languages an LLVM
front-end compiler exists (especially C++).

Our procedures combine testing and formal methods, i.e., a combination which is occasionally
made: Ammann et al. [ABM98] presented a mutation testing approach which injects faults into
specifications. A model checker is then used to produce a counterexample which serves as a test
case. In this spirit, Okun et al. [OBY02] discusses two approaches to obtain a counterexample
that propagates to an externally observable output. One of their approaches is state-machine
duplication which is similar to our SymBMC procedure. State-machine duplication creates a
duplicate of a given state-transition system, injects a fault into the transition graph, i.e., a change
to a single transition, and adds a temporal logic formula asserting equal externally observable
outputs for the original and the mutated state-transition system. A counterexample generated
by a model checker is a distinguishing test case. State-machine duplication doubles the number
of states for each seeded fault. We encode a set of mutants into a single meta-mutant. The size
of the meta-mutant grows linearly with the size of the original program and linearly with the
number of mutants.

Wotawa et al. [WNA10] generate distinguishing test cases from an ANSI-C program with a
constraint solver and use the test cases for fault localization. However, the formalization of the
logic constraints is different to our formalization. We use an SMT solver with a standardized
input language [RT06, BST10]. Thus our implementation can be customized by replacing the
SMT solver back-end. Any SMT solver can be used that supports the theory of bit-vectors.
Constraint solvers support a much richer input language which makes the modeling of CSP
simple but prevents a possible replacement of the solver back-end.

42

4.4. SUMMARY

4.4 Summary

In this chapter, we have discussed symbolic bounded model checking to generate counterexamples
that disprove functional equivalence of a mutant and the original program. Our procedure
SymBMC unrolls a meta-mutant and encodes the unrolled model of the meta-mutant into a
logic formula over the theory of bit-vectors. We incrementally solve the formula and constraint
the symbolic variables to detect in each iteration another fault. Finally, the formula becomes
unsatisfiable which corresponds to a prove of functional equivalence of all undetected faults.

43

CHAPTER 4. DETECTING NON-EQUIVALENCE

44

Chapter 5

Experimental Evaluation

5.1 Introduction

In the following chapter, we present experimental results obtained with our prototype imple-
mentations of the procedures MetaOptimizer and SymBMC. Firstly, we briefly describe the
environment setting (Section 5.2), the benchmark programs (Section 5.3), and the experimen-
tal evaluation of our case study (Section 5.4). We then list and discuss experimental results
for the procedure MetaOptimizer (Section 5.5.1) and the procedure SymBMC (Section 5.5.2),
where each procedure is separately applied to the meta-mutant of the benchmark programs,
respectively. Finally, we describe experimental results (Section 5.5.3) when both procedures are
applied to the meta-mutants of the benchmark programs one by another.

5.2 Environment Setting

All the experiments were conducted on a PC with an AMD AthlonTM 64 X2 Dual Core Processor
6000+ with two 3 GHz cores and 4 GB RAM. The operating system was Linux 2.6.34.

We implemented the MetaOptimizer and the SymBMC procedure in two prototype tools
written in C++ using the libraries Low Level Virtual Machine (LLVM) 2.8 [LA10] and Boost
1.46.0 [BCL10]. Additionally, the prototype implementation of SymBMC is based on an SMT
solver. We present experimental results for the SMT solvers Boolector 1.4 [BB09] (with the
PicoSAT back-end) and Z3 2.15 [MB08].

We use the API interface to exchange information between our prototype tool and the SMT
solvers. Our interface to the SMT solvers is implemented as a generic wrapper class which
respects the SMT library standard 1.2 [RT06] or 2.0 [BST10]. However, we do not exploit
SMT commands provided by the individual solvers that extend the SMT library standard, e.g.,
Z3 provides the bit-vector and operation for an arbitrary number of operands but we rather
use a sequence of nested bit-vector and operations with two operands when needed. Thus,
our implementation can be extended to use any SMT solver which respects the SMT library
standard.

45

CHAPTER 5. EXPERIMENTAL EVALUATION

5.3 Benchmark Programs

The benchmark programs are similar to the benchmark programs considered by Offutt et al.
[OP97]. However, we have translated the programs from Fortran-77 to ANSI-C. The character-
istics of the benchmark programs are listed in Table 5.1. The first column name the benchmark
program. The next three columns give the number of symbolic input variables, the number of
LLVM instruction, and the number of basic blocks of the original program, respectively. The
last two columns focus on the meta-mutant. They list the number of instructions of the meta-
mutant containing all faults with respect to our fault model and the number of seeded faults.
We have not mentioned time for the construction of the meta-mutant because the construction
took only a few seconds for each benchmark program.

In the following, we briefly describe the individual benchmark programs.

• The benchmark program min determines (and returns) the minimum of two given input
variables.

• The program islower checks whether a given input value is lower cased.

• The benchmark program findmin searches the minimum value within an integer array
of fixed size. Currently, our prototype tool does not support arrays. We use a custom
transformation to rewrite the integer array into a set of individual integer variables. The
numbers 3, 5, and 10 give the size of the array.

• Given three input values, the benchmark program minmax determines the minimum min
and the maximum max of the given inputs and returns the third value in between of min
and max.

• The benchmark program trityp classifies the type of a triangle: given three input values
denoting the side lengths of a triangle, the program determines whether the triangle is
equilateral, isosceles, scalene, or not a triangle, which is denoted by the constant integer
values 1 to 4.

• The benchmark program mult calculates a 2x2 matrix multiplication C = A · B, where
A and B are matrices. The elements of A and B are provided as input parameters. The
programs returns the sum of all elements of C.

We have not considered programs with recursion, arrays, pointers or floating point arithmetic.
None of these ANSI-C constructs are currently supported by our prototype implementation of
the SymBMC procedure.

5.4 Experimental Evaluation

Figure 5.1 sketches the experimental evaluation. We evaluate the procedures MetaOptimizer
and SymBMC in three experiments which is represented in the figure by a set of boxes arranged
in a tree-like structure. Each box denotes an action in an experiment and each maximal sequence
of boxes (from top to bottom) denotes a complete experiment. In the figure, we number the
experiments form 1 to 3.

We translate each program first into the LLVM intermediate representation and then con-
struct the meta-mutant by seeding a set of artificial faults into the LLVM program with respect

46

5.4. EXPERIMENTAL EVALUATION

Name #
V

ar
ia

bl
es

#
In

st
ru

ct
io

ns
(O

ri
gi

na
l

P
ro

gr
am

)

#
B

as
ic

B
lo

ck
s

#
In

st
ru

ct
io

ns
(M

et
a-

M
ut

an
t)

#
Se

ed
ed

Fa
ul

ts

min 2 24 4 144 17
islower 1 20 6 91 19
findmin3 3 40 8 238 33
findmin5 5 58 12 342 49
findmin10 10 103 22 602 89
minmax 3 52 12 189 46
trityp 3 116 30 1061 206
mult 8 40 2 1345 53

Table 5.1: Characteristics of the benchmark programs.

to our fault model. The translation to LLVM and the construction of the meta-mutant is
represented in the Figure 5.1 by the box with label “fault instrumentation”.

We have used the fault model from Section 2.5.5 which provides four mutation operators.
Detailed numbers are given in Table 5.1. The size of the resulting meta-mutant is linear in the
size of the original LLVM program and linear in the number of seeded faults.

The number of seeded faults is lower than the number of instructions for most of the bench-
mark programs. The trityp benchmark program has several binary operator instruction which
significantly increase the number of seeded faults according to our fault model.

In Figure 5.1, the MetaOptimizer procedure is denoted by the two boxes labeled “Optimize”
and “Remove and count redundant faults” and the SymBMC procedure is denoted by the box
labeled “Create Counterexamples”.

In our case-study, i.e., all three experiments, we attempt to classify the seeded faults for each
program into three categories: “equivalent”, “non-equivalent”, and “redundant”. The faults in
the category “equivalent” do not affect the program semantics. They are functionally equivalent
to the original program. The faults in the category “non-equivalent” are guaranteed to affect
the program semantics, i.e., we can effectively disprove functionally equivalence by generating
a counterexample. Each fault in the category “redundant” is functionally equivalent to another
fault, i.e., we need not determine functional equivalence or non-equivalence for the particular
fault but we discard the fault from mutation testing. Moreover, when we detect two redundant
faults it does not matter which fault is discarded from mutation testing. According to the
definition of redundancy, the two faults are syntactically equivalent and differ only in the value
of the fault id.

In general, a fourth category “unknown” is required because of the inherent incompleteness
of BMC and our SymBMC procedure, respectively. For each fault in the category “unknown”,
we do not know whether the fault is non-equivalent or functionally equivalent to the original
program. However, for the benchmark programs under consideration, the number of paths is
finite and unrolling yields a model containing the complete path information. Thus, after the
SymBMC procedure has been applied to the meta-mutant, we exactly know whether a mutant

47

CHAPTER 5. EXPERIMENTAL EVALUATION

Program P

Fault Instru-
mentation

Meta-
Mutant M

Optimize

Remove
and count
redundant

faults

Create
Counterex-

amples

Optimize

Remove
and count
redundant

faults

Create
Counterex-

amples

1 2 3

Figure 5.1: High-level overview of the experimental evaluation consisting of three experiments. A
box either refers to an inputs (or a products) of the evaluation process or to an action performed
on the inputs.

is functionally equivalent or can be detected by a test case.
Detecting redundant faults decreases the computational expense of mutation testing. From

a maximal set of redundant faults, we generate only one test case. Moreover, notice that func-
tionally equivalent faults are a special case of redundant faults, where the faults are functionally
equivalent to the original program. Thus, detecting redundant faults, as well, decreases the
number of equivalent faults. For instance, consider an equivalent fault and assume we have yet
not proved that the fault is actually equivalent. We may not be able to decide functionally
equivalence of this particular fault but when we determining that the fault is redundant, i.e., we
show that the fault is functionally equivalent to another fault, we discard one of the faults from
the mutation testing process. Consequently, the total number of functionally equivalent faults
is decreased by one.

In the first experiment (marked in Figure 5.1 with number 1), we apply MetaOptimizer
individually to the source code of the meta-mutant to find functionally equivalent and redundant
faults. In the second experiment (marked in Figure 5.1 with number 2), we apply SymBMC
individually to the source code of the meta-mutant to find non-equivalent faults. Finally, in
the third experiment (marked in Figure 5.1 with number 3), we apply both procedures, first
MetaOptimizer and then SymBMC, to the source code of the meta-mutant, which may change
the results because MetaOptimizer transforms the meta-mutant into an optimized program.
Intuitively, the optimized meta-mutant has fewer instructions and is, thus, encoded into a shorter

48

5.5. EXPERIMENTAL RESULTS

Name #
In

st
ru

ct
io

ns
(A

ft
er

O
pt

im
iz

at
io

n)

C
om

pa
ct

io
n

#
Se

ed
ed

Fa
ul

ts

#
R

ed
un

da
nt

Fa
ul

ts

#
U

nc
la

ss
ifi

ed
Fa

ul
ts

min 92 0.639 17 0 17
islower 66 0.725 19 2 17
findmin3 146 0.613 33 3 30
findmin5 216 0.632 49 3 46
findmin10 391 0.650 89 3 86
minmax 189 0.612 46 3 43
trityp 625 0.589 206 23 183
mult 891 0.662 48 0 48

Table 5.2: Detected redundant faults with the MetaOptimizer procedure.

logic formula which makes solving the formula easier.
We check the validity of the experimental results obtained from MetaOptimizer and SymBMC

with two approaches. Firstly, by comparing the detected faults of the MetaOptimizer and the
SymBMC procedures. A fault proven to affect the program semantics with SymBMC must not
be detected with MetaOptimizer. A fault detected as functionally equivalent with MetaOpti-
mizer needs to remain undetected with SymBMC. An inconsistency would indicate a problem
with one of our approaches. Secondly, we extract from each counterexample generated by
SymBMC a test case, simulate the test case on the original program, and compare the outputs
obtained by simulation with the outputs predicted by the test case. Our procedures passed both
validity checks on each of the benchmark programs, respectively, i.e., the results of the SymBMC
and MetaOptimizer procedures are consistent and the inputs of the test case result in outputs
consistent with the test case when executed on the program.

5.5 Experimental Results

5.5.1 Results of Experiment 1

Table 5.2 shows the results of our first experiment where we apply the MetaOptimizer procedure
using the optimization pipeline described in Section 3.3.3 to the meta-mutant. The table is simi-
lar to Table 5.1. The first column names the benchmarks program and the next two columns list
the number of remaining instruction of the meta-mutant after optimization and the compaction
of the meta-mutant, i.e., the ratio of the number of remaining instructions after optimization
to the number of instructions before optimization. The last three columns give the number of
seeded faults FS , the number of detected redundant faults FR and the number of unclassified
faults FU = FS − FR. The procedure MetaOptimizer detected some redundant faults but did
not find any equivalent faults. We have omitted the column of detected equivalent faults. The
time required for the static analysis accounts on average for less than a second and, thus, we
have not reported the time in the table.

49

CHAPTER 5. EXPERIMENTAL EVALUATION

Name FS Cex TBoolector TZ3

[s] [s]

min 17 16 0.47 0.43
islower 19 18 0.26 0.41
findmin3 33 23 6.56 23225.20
findmin5 49 37 31.76 ?
findmin10 89 72 278.45 ?
minmax 46 43 8.11 3.99
trityp 206 196 207.10 3259.70
mult 48 48 66.57 ?

Table 5.3: Counterexample generation with the SymBMC procedure.

In contrast to the motivation from Section 3.2, we have not found any equivalent faults with
MetaOptimizer. A possible reason is that the optimizing transformations provided by the LLVM
compiler infrastructure are not effective enough. Effective optimizing transformations exploit
several corner cases, e.g., the GCC was improved over years and there are still several reports
on missing optimizations.

5.5.2 Results of Experiment 2

Table 5.3 gives the results for our second experiment that uses the SymBMC procedure. SymBMC
leverages an SMT solver as back-end using the theory of bit-vectors, particularly, Boolector 1.4
[BB09] and Z3 2.15 [MB08].

The table from left to right names the benchmark program, gives the number of seeded faults
FS , the number of generated counterexamples (test cases) Cex, and the time TBoolector and TZ3

required to generate the counterexamples in seconds with the SMT solvers Boolector and Z3,
respectively.

A question mark in the table denotes that the SMT solver was not able to classify all faults
within 7 hours (25200 seconds). We do not report the time needed to encode the programs
into bit-vector formulae which takes on average less than one second for each of the benchmark
programs.

For the benchmark programs, SymBMC precisely detects all non-equivalent faults. The
remaining faults are functionally equivalent to the original program. Thus, the differences
between the number of seeded faults and the number of test cases generated equals the number
of equivalent mutants. For, instance 10 of 206 seeded faults in the meta-mutant of the benchmark
program trityp do not affect the program semantics.

Both SMT solvers generated counterexamples for the same set of faults. However, for some
of the benchmark programs Boolector was significant faster in solving the SMT formulae. One
possible reason for such a time gap is the heuristic used to select variables by the SMT solver. If
the heuristic initially chooses the right variables and assigns values to them, solving the formula
becomes polynomial in the number of variables. The existence of such backdoor variables has
been shown in the context of the satisfiability problem [WGS03].

Figure 5.2, Figure 5.3, and Figure 5.4 present details for the counterexample generation with
the procedure SymBMC for the benchmark program trityp. Figure 5.2 shows the counterexam-
ple generation over time. The solid and dashed lines denote the solving process with Boolector

50

5.6. SUMMARY

Name FS FR FU Cex TBoolector TZ3

[s] [s]

min 17 0 17 16 0.35 0.39
islower 19 2 17 16 0.17 0.29
findmin3 33 3 30 23 4.74 82.61
findmin5 49 3 46 37 45.92 ?
findmin10 89 3 86 72 219.46 ?
minmax 46 3 43 40 3.09 3.05
trityp 206 23 183 174 130.99 3120.67
mult 48 0 48 48 326.65 ?

Table 5.4: Fault classification with MetaOptimizer and SymBMC.

and Z3, respectively. The t-axis gives the accumulated time needed by SymBMC to solve the
individual SMT formulae. The FD-axis give the total number of counterexamples generated by
SymBMC. Figures 5.3 and Figure 5.4 concentrate on the SMT solver Boolector. Figure 5.3 is
similar to Figure 5.2 but shows the time interval from 0 to 200 seconds in more detail. Figure 5.4
gives the time required to generate the individual counterexamples. We separated the t-axis into
continuous intervals of one second. On the FD-axis, we count the number of individual logic for-
mulae solved by the SMT solver. For instance, for 124 seeded faults (60.19%) of the benchmark
program trityp, solving the individual logic formulae takes less than or equal to one second
per fault. Moreover, for only five faults (2.46%) the solving of the logic formulae takes five or
more seconds per fault.

5.5.3 Results of Experiment 3

Table 5.4 gives hte results for our third experiment when both procedures, MetaOptimizer and
SymBMC, are applied to the meta-mutant. We use the MetaOptimizer procedure to detect some
redundant faults, then we constrain the detected redundant faults, and generate counterexamples
for the optimized meta-mutant with the SymBMC procedure. The table shows results for both
procedures and, thus, is built similar to Table 5.2 and Table 5.3.

Notice that solving the SMT formulae obtained from the optimized meta-mutant is faster.
For instance, the time required to solve the SMT formulae of the benchmark program trityp
with Boolector is reduced by 37%. Moreover, the time to solve the SMT formulae of the bench-
mark program findmin3 is reduced by 99.6%. However, the time may significantly increases for
some examples too, e.g., solving the SMT formulae of mult requires 4.9x more time than solving
the SMT formulae before optimization.

5.6 Summary

In this chapter, we have presented empirical results for the MetaOptimizer and SymBMC pro-
cedures. We have applied each procedure separately to a set of benchmark programs and both
procedures one by another to the same benchmark programs. The experimental results for
MetaOptimizer are inconclusive, i.e., the procedure has not detected any equivalent fault but
several redundant faults. The MetaOptimizer procedure, however, is reasonable fast and on
none of the benchmark programs did MetaOptimizer need more than a second to detect the

51

CHAPTER 5. EXPERIMENTAL EVALUATION

FD

t
0 600 1200 1800 2400 3000

0

50

100

150

200
Boolector
Z3

Figure 5.2: Counterexample generation for the benchmark program trityp over time. The
t-axis shows the accumulated time needed by the procedure SymBMC in seconds. The FD-axis
gives the total number of faults detected by SymBMC.

FD

t
0 50 100 150 200

0

50

100

150

200
Boolector
Z3

Figure 5.3: Detailed counterexample generation over time. The figure zooms the time interval
from 0 to 200 seconds of Figure 5.2.

t

FD

20
40
60
80
100
120
140 124

0 <
t ≤

1

43

1 <
t ≤

2

13

2 <
t ≤

3
2

3 <
t ≤

4

6

4 <
t ≤

5
1

5 <
t ≤

6
0

6 <
t ≤

7
2

7 <
t ≤

8
0

8 <
t ≤

9
1

9 <
t ≤

10
1

t >
10

Figure 5.4: Counterexample generation for the benchmark program trityp over time. The
t-axis separates the time into continues intervals of one second. The FD-axis shows the number
of the logic formulae solved by the SMT solver in the individual continues time intervals.

52

5.6. SUMMARY

redundant faults.
The experimental results obtained with SymBMC are promising. We have generated coun-

terexamples for all non-equivalent faults. The results, however, indicate that the SymBMC
procedure may not scale to larger programs and its performance strongly depends on the SMT
solver in use.

Moreover, using the optimized meta-mutant obtained from MetaOptimizer has sometimes a
positive impact on the solving step of the procedure SymBMC, i.e., solving the SMT formula is
faster. However, there are as well some cases in which the solving of the SMT formulae obtained
from the optimized meta-mutant is more complicated.

53

CHAPTER 5. EXPERIMENTAL EVALUATION

54

Chapter 6

Conclusion and Future Work

In this thesis, we have focused on the equivalent mutant problem, i.e., deciding whether a single
syntactic change relative to the original program affects the program semantics.

The problem is essential in mutation testing because without detecting equivalent mutants,
we cannot determine how many faults remain undetected after testing. Consequently, the quality
assessment by mutation analysis is in general under-estimated.

The equivalent mutant problem is undecidable and, thus, no sound and complete decision
procedure exists to overcome the equivalent mutant problem. However, by sacrificing complete-
ness, we can attempt to decide functional equivalence and non-equivalence for several cases.

We present two ideas to attack the equivalent mutant problem: a new code optimization
approach which leverages optimizing source-to-source transformations of an optimizing compiler
and the counterexample approach which uses symbolic bounded model checking to encode the
equivalent mutant problem of the k-times unrolled model into a quantifier-free logic formula
using the theory of bit-vectors. The resulting formula is then checked for satisfiability with the
aid of an SMT solver.

The first approach, described by the MetaOptimizer procedure, attempts to detect equivalent
and redundant faults, whereas the second approach, described by the SymBMC procedure,
generates counterexamples which disprove functionally equivalence for particular seeded faults.
For each counterexample a test case can be extracted that distinguishes the corresponding
mutant from the original program. Thus, the second approach is a test case generation strategy
which aims to creating a mutation adequate test bench.

We have implemented the procedures MetaOptimizer and SymBMC into C++ applications.
Both procedures operate on the LLVM intermediate representation, i.e., a RISC-like assembly
language. We show how to encode a set of faults into a meta-mutant on the level of the LLVM
intermediate representation. Our prototype implementations of the two decision procedures then
take their equivalence and non-equivalent decisions directly for the meta-mutant which serves
as an effective data-structure to reason about a set of seeded faults.

The MetaOptimizer procedure is reasonable fast but can only detect some simple equivalent
and redundant faults. However, in our case study, we have not detected any equivalent faults.
One reason for this may be insufficient source-to-source transformations provided by the LLVM
compiler infrastructure. Our approach was motivated by an experiment in which we have com-
pared object files compiled with GCC and successfully detected functionally equivalent faults. In
our experiments, we used GCC as a black-box. The MetaOptimizer procedure is a more flexible
implementation based on the LLVM compiler framework but the optimizations are less effective

55

CHAPTER 6. CONCLUSION AND FUTURE WORK

in detecting equivalent and redundant faults. If we repeat the experiment from Section 3.2 with
the LLVM C front-end compiler, we are unable to detect the equivalent mutant.

The GCC Dragonegg plugin allows for the replacement of GCC’s optimizer and code gener-
ator by the optimizer and code generator provided by the LLVM framework. An extension of
our tool which uses Dragonegg may result in better equivalent and redundant fault detection
results when the code optimization approach is used. Additionally, by modifying Dragonegg,
we may be able to leverage GCC’s optimizer. The fault injection, i.e., the construction of the
meta-mutant, then should be implemented on C source code rather than the LLVM intermedi-
ate representation. This conflicts with the idea of having a single mutation testing tool for all
programming languages an LLVM compiler front-end exists.

The SymBMC procedure precisely generates counterexample for all non-equivalent faults.
However, the procedure may not scale to larger programs but still appears reasonable when
paired with an abstraction technique or in the local context of the program.

A major limitation of SymBMC is the restriction to a subset of the LLVM language. The
procedure currently is unable to encode instructions using pointer and arrays. In order to
allow studying of larger applications, the encoding needs to be extended. The SMT solvers
currently in use by SymBMC (Boolector and Z3) support, additionally to the theory of bit-
vectors, the theory of arrays which can be exploited to encode LLVM instructions operating on
arrays directly. In order to support C pointer expressions the implementation of an untyped
(C-like) memory model is needed. This memory model is easily implemented as a byte array
and encoded in a formula using the theory of arrays. The resulting formula, however, grows fast
when the array is manipulated by an instruction and is harder to solve.

Moreover, we have not considered simulation. A counterexample generated to detect a
particular fault has the potential to disprove functionally equivalence of several other faults, too.
Thus, simulating the generated counterexamples may improve the performance of the SymBMC
procedure and meanwhile reduce the size of the number of generated counterexamples.

Possible future work includes the implementation of optimizing source-to-source transforma-
tions specialized to detect functionally equivalent faults. Offutt and Craft [OLR+94] presented
some simple transformations. In Section 3.3.2, we have mentioned the source-to-source transfor-
mation Global Value Numbering (GVN). GVN implements an algorithm which assigns a number
to each variable and expression of the program. Variables and expressions proven functionally
equivalent are assigned with equal numbers. This information is then used to remove redun-
dant code from the program. GVN is a light-weight method to detect functionally equivalent
expressions based on a simple abstract interpretation mechanism. The abstract interpretation
mechanism is kept simple because compiler optimizations should be reasonable fast. We use
GVN in our optimization pipeline but do not exploit the information provided by its internal
mapping of expressions to numbers. Additionally, replacing the light-weight abstract interpre-
tation mechanism by an SMT solver makes GVN a more powerful tool for equivalence detection.
This approach has the potential to result in much better equivalence detection results.

56

Bibliography

[ABL05] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool
for testing experiments? In Proceedings of the 27th International Conference on
Software Engineering, pages 402–411, 2005.

[ABM98] P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to generate
tests from specifications. In IEEE International Conference on Formal Engineering
Methods, pages 46–54, 1998.

[Acr80] A. T. Acree. On Mutation. PhD thesis, Georgia Institute of Technology, 1980.

[ADH+06] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J.
Martin, A. P. Mathur, and E. Spafford. Design of mutant operators for the C
programming language. Technical Report SERC-TR-41-P, Georgia Institute of
Technology, 2006. Revision 1.04.

[AMP09] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software
using SMT solvers instead of SAT solvers. International Journal on Software Tools
for Technology Transfer, 11(1):69–83, 2009.

[AO08] P. Ammann and A. J. Offutt. Introduction to Software Testing. Cambridge Uni-
versity Press, Cambridge, 2008.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In Symposium on Principles of Programming Languages, pages 1–11,
1988.

[BA82] T. A. Budd and D. Angluin. Two notions of correctness and their relation to
testing. Acta Informatica, 18(1):31–45, 1982.

[BB09] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 174–177, 2009.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Fifth International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS’99), pages 193–207, Amsterdam, The Nether-
lands, March 1999. LNCS 1579.

[BCL10] The Boost C++ library, 2010. Available from http://boost.org/. Last visit on
22nd of December, 2010.

57

http://boost.org/

BIBLIOGRAPHY

[BHvMW09] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-
bility. IOS Press, 2009.

[BL92] J. R. Burch and D. E. Long. Efficient boolean function matching. In Proceedings
of the International Conference on Computer-Aided Design, pages 408–411, Santa
Clara, CA, November 1992.

[Boe81] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, 1981.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[BST10] C. Barett, A. Stump, and C. Tinelli. The smt-lib standard: Version 2.0,
2010. Available from http://combination.cs.uiowa.edu/smtlib/papers/
smt-lib-reference-v2.0-r10.12.21.pdf. Last visited on 22nd of December,
2010.

[CFRW91] R. Cytron, J. Ferrante, B. K. Rosen, and M. N. Wegman. Efficiently computing
static single assignment form and the control dependence graph. ACM Transac-
tions on Programming Languages and Systems, 13(4):451–490, 1991.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999.

[CKOS04] E. Clarke, D. Kröning, J. Ouaknine, and O. Strichman. Completeness and com-
plexity of bounded model checking. In Verification, Model Checking, and Abstract
Interpretation, pages 85–96, Venice, Italy, January 2004. Springer. LNCS 2937.

[DDH72] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. Aca-
demic Press, 1972.

[DK11] A. Dereziska and K. Kowalski. Object-oriented mutation applied in Common
Intermediate Language programs originated from C#. In International Conference
on Software Testing, Verification and Validation Workshops, 2011. To Appear.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, 11(4):34–41, 1978.

[DMM96] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An
approach for integration testing. IEEE Transactions on Software Engineering,
27(3):228–247, 1996.

[DO91a] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900–910, 1991.

[DO91b] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900–910, 1991.

[FW93] P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineering,
19(8):774–787, 1993.

58

http://combination.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://combination.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf

BIBLIOGRAPHY

[GG75] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. In
Proceedings of the International Conference on Reliable Software, pages 493–510,
1975.

[GM01] S. Ghosh and A. P. Mathur. Interface mutation. International Conference on
Software Testing, Verification and Validation, 11(4):227–247, 2001.

[GSZ09] B. J. M. Gruen, D. Schuler, and A. Zeller. The impact of equivalent mutants. In
International Conference on Software Testing, Verification and Validation, pages
192–199, 2009.

[Ham77] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, SE-3(4):279–290, 1977.

[HLO11] J. Hu, N. Li, and J. Offutt. An analysis of OO muation operators. In International
Conference on Software Testing, Verification and Validation Workshops, 2011. To
Appear.

[How76] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Transactions
on Software Engineering, 2(3):208 – 215, 1976.

[ISGG05] F. Ivancic, I. Shlyakhter, A. Gupta, and M. K. Ganai. Model checkign C prorams
using F-SOFT. In International Conference on Computer Design, pages 297–388,
2005.

[JH10] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions of Software Engineering, To Appear, 2010.

[KO91] K. N. King and A. J. Offutt. A Fortran language system for mutation-based
software testing. Software — Practice & Experience, 21(7):685–718, 1991.

[LA10] C. Lattner and V. Adve. LLVM language reference manual, 2010. Available from
http://llvm.org/docs/LangRef.html. Last visit on 22nd of December, 2010.

[Lat02] C. Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
University of Illinois at Urbana-Champaign, 2002.

[Lio96] J. L. Lions. Ariane 5 flight 501 failure. Technical report, European Space Agency,
1996. Available from http://www.esrin.esa.it/htdocs/tidc/Press/Press96/
ariane5rep.html.

[LPO09] N. Li, U. Praphamontripong, and A. J. Offutt. An experimental comparison of four
unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In Inter-
national Conference on Software Testing, Verification and Validation Workshops,
pages 220–229, 2009.

[LT93] N. Leverson and C. S. Turner. An investigation of the Therac-25 accidents. IEEE
Computer, 26(7):18–41, 1993.

[MB08] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.

[McM94] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
MA, 1994.

59

http://llvm.org/docs/LangRef.html
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html

BIBLIOGRAPHY

[MUO10] P. R. Mateo, M. P. Usaola, and J. Offutt. Mutation at system and functional lev-
els. In International Conference on Software Testing, Verification and Validation
Workshops, pages 110–119, 2010.

[MW94a] A. P. Mathur and W. E. Wong. An empirical comparison of data flow and
mutation-based test adequacy criteria. Software Testing, Verification and Reli-
ability, 4(1):9–31, 1994.

[MW94b] A. P. Mathur and W. E. Wong. A theoretical comparison between mutation
and data flow based test adequacy criteria. In 22nd Annual ACM Conference on
Computer Science, pages 38–45, 1994.

[Mye79] G. J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.

[OBY02] V. Okun, P. E. Black, , and Y. Yesha. Testing with model checker: Insuring fault
visibility. In Proceedings of 2002 WSEAS International Conference on System Sci-
ence, Applied Mathematics & Computer Science, and Power Engineering Systems,
pages 1351–1356, 2002.

[Off88] A. J. Offutt. Automatic Test Data Generation. PhD thesis, Georgia Institute of
Technology, Atlanta GA, 1988.

[Off89] A. J. Offutt. The coupling effect: Fact or fiction. ACM SIGSOFT Software
Engineering Notes, 14(8):131–140, 1989.

[Off92] A. J. Offutt. Investigation of the software testing coupling effect. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 1(1):5–20, 1992.

[OLR+94] A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An experimental
determination of sufficient mutant operators. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 5(2):99–118, 1994.

[OLR+96] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental
determination of sufficient mutant operators. In ACM Transactions on Software
Engineering and Methodology, pages 99–118, 1996.

[OP97] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification, and Reliability, 7(3):165–192, 1997.

[OPTZ96] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An experimental evaluation of
data flow and mutation testing. Software — Practice & Experience, 26(2):165–176,
1996.

[OU00] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the orthogonal. In Mutation
2000: Mutation Testing in the Twentieth and the Twenty First Centuries, pages
45–55, 2000.

[OV96] A. J. Offutt and J. M. Voas. Subsumption of condition coverage techniques by
mutation testing. Technical Report ISSE-TR-96-100, Department of Information
and Software Systems Engineering, George Mason University, 1996.

[Pra95] V. R. Pratt. Anatomy of the pentium bug. In Proceedings of the 6th International
Joint Conference CAAP/FASE on Theory and Practice of Software Development,
pages 97–107, 1995.

60

BIBLIOGRAPHY

[PS09] H. Post and C. Sinz. Proving functional equivalence of two AES implementations
using bounded model checking. In International Conference on Software Testing,
Verification and Validation, pages 31–40, 2009.

[RBF11] H. Riener, R. Bloem, and G. Fey. Test case generation from mutants using model
checking techniques. In International Conference on Software Testing, Verification
and Validation Workshops, 2011. To Appear.

[RR03] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries.
In International Conference on Automated Software Engineering, pages 30–39,
Montreal, Canada, October 2003.

[RT06] S. Ranise and C. Tinelli. The smt-lib standard: Version 1.2, 2006. Available
from http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.
08.30.pdf. Last visited on 22nd of December, 2010.

[SH11] R. Spencer and G. Henriksen. LLVM’s analysis and tranform passes, 2011. Avail-
able from http://llvm.org/docs/Passes.html. Last visit on 4th of March, 2011.

[StGDC10] R. Stallmann and the GCC Developer Community. Using the GNU compiler
collection, 2010. Available from http://gcc.gnu.org/onlinedocs/. Last visit
on 22nd of December, 2010.

[SZ10] D. Schuler and A. Zeller. (Un-)covering equivalent mutants. In International
Conference on Software Testing, Verification and Validation, pages 45–54, 2010.

[Tas02] G. Tassey. The economic impacts of inadequate infrastructure for software testing.
Technical report, National Institute of Standards and Technology, 2002.

[UOH93] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using mutant
schemata. ACM SIGSOFT Software Engineering Notes, 18(3):139–148, 1993.

[Wah03] K. S. H. T. Wah. An analysis of the coupling effect I: Single test data. Science of
Computer Programming, 48(2-3):119–161, 2003.

[WGS03] R. Williams, C. Gomesa, and B. Selman. Backdoors to typical case complexity. In
International Joint Conference on Artificial Intelligence, pages 1173–1178, 2003.

[WNA10] F. Wotawa, M. Nica, and K. Aichernig. Generating distinguishing tests using
the Minion constraint solver. In International Conference on Software Testing,
Verification and Validation Workshops, pages 325–330, 2010.

61

http://combination.cs.uiowa.edu/smtlib/papers/fo rmat-v1.2-r06.08.30.pdf
http://combination.cs.uiowa.edu/smtlib/papers/fo rmat-v1.2-r06.08.30.pdf
http://llvm.org/docs/Passes.html
http://gcc.gnu.org/onlinedocs/

	Introduction
	Motivation
	Background
	Test Criteria
	Mutation Testing
	Formal Methods

	Problem Addressed in the Thesis
	Outline of the Solution
	Structure of the Document

	Preliminaries
	Introduction
	Software Testing
	A Formalization of Testing
	Test Reliability and Test Adequacy
	Mutation Adequacy

	Mutation Testing
	Mutation Analysis
	Underlying Hypothesis
	Test Process
	Mutation Operators
	Meta-Mutant

	Bounded Model Checking
	LLVM Intermediate Language
	Overview of LLVM
	Structure of an LLVM program
	LLVM Instruction Set
	LLVM Metadata
	A Simple Fault Model for LLVM
	Meta-Mutant Construction

	Summary

	Detecting Equivalence
	Introduction
	Early Attempts and Motivation
	Design Considerations

	Detecting Equivalent Mutants using Code Optimization
	Optimizer Procedure
	Optimizing Source-to-Source Transformations
	Optimization Pipeline

	Detecting Redundant Mutants using Code Optimization
	MetaOptimizer Procedure

	Summary

	Detecting Non-Equivalence
	Introduction
	Symbolic Bounded Model Checking
	Simplified Symbolic Procedure
	Unwind the Program
	Encoding the Unrolled Program
	Symbolic Procedure

	Related Work
	Summary

	Experimental Evaluation
	Introduction
	Environment Setting
	Benchmark Programs
	Experimental Evaluation
	Experimental Results
	Results of Experiment 1
	Results of Experiment 2
	Results of Experiment 3

	Summary

	Conclusion and Future Work
	Bibliography

