
Graz University of Technology

Institute for Computer Vision and Graphics

Master’s Thesis

Dynamic Illumination for Robust

Microscopic 3D Metrology

David M. Ferstl
Graz, Austria, May 2011

Thesis supervisors

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Dipl.-Ing. Dr.techn. Matthias Rüther
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Abstract

Traditional microscopic shape from focus reconstruction is often limited by the surface

dynamic and the texture of the analysed specimen. In many real-world applications,

surfaces have a strong varying reflectance leading to saturated image parts, or lack in

detectable texture. In such cases, shape from focus generates incorrect and sparse depth

maps.

In this thesis, we present a novel method to eliminate these vulnerabilities without ad-

ditional reconstruction time. Beyond that, we propose a novel method to further reduce

the computational costs of traditional shape from focus to a minimum. To overcome the

problems of high reflectance differences and lacks in texture we use a projector-camera sys-

tem to compensate the reflectance variations and additionally project measurable texture.

The surface reflection is compensated by a local adaption of the illumination for every ac-

quisition. To reduce measurement time, the compensation pattern is tracked through the

image stack and is updated in a prediction-correction step. The exact projector pattern to

create additional texture is determined through a detailed analysis of the focus measure

operator and the optical effects during the projection.

The additional reduction in measurement time is achieved with a novel focus measure

which calculates the focus through a comparison of an estimated all-in-focus image and

the stack images by normalized cross correlation. Therewith, the depth estimation of each

surface point in the shape from focus algorithm stops if a local focus maximum beyond a

predefined threshold is found.

The experiments show, that our method outperforms the traditional shape form fo-

cus algorithm and is also a performance enhancement to comparable methods like high

dynamic range imaging in terms of speed and accuracy.

Keywords. shape from focus, radiometric compensation, projector-camera system, light

transport, reflectance map, active illumination, integral point spread function, normalized

cross correlation, 3D reconstruction, optical microscopy
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Kurzfassung

Die herkömmliche Shape From Focus (SFF) Rekonstruktion im mikroskopischen Bere-

ich ist beschränkt durch die Oberflächendynamik und durch die Textur der untersuchten

Probe. Vor allem im industriellen Bereich treten häufig großen Unterschieden in der

Lichtreflexion innerhalb der gemessenen Oberfläche auf, was durch die limitierte Grauw-

ertauflösung der Kamera zu Unter- oder Überbelichtungen führen kann. Bei sehr glatten

Objekten kommt es auch zu einem generellen Fehlen von messbarer Textur. In beiden

Fällen führt die SFF Rekonstruktion zu einem fehlerhaften Ergebnis.

In dieser Arbeit wird eine neue Methode vorgestellt, mit der man diese Probleme

mit Hilfe eines Projektor-Kamera Systems verhindern kann. Darüber hinaus wird eine

neuartige Fokusmessung präsentiert, mit der es möglich wird die Rechenzeit des SFF

Algorithmus zu verringern.

Durch ein Projektor-Kamera System ist kann die Beleuchtung lokal adaptieren werden.

Dadurch können die Unterschiede in der Objektreflektion in jeder Aufnahme kompensiert

werden Bei sehr glatten Oberflächen, die keine messbare Textur besitzen, kann mit diesem

System zusätzliche messbare Textur aufgetragen werden.

Eine weitere Beschleunigung des SFF Algorithmus kann erreicht werden indem der

Fokus durch Vergleichen der aufgenommenen Bilder mit einem komplett fokussierten Bild

mit Hilfe einer normalisierten Kreuzkorrelation berechnet wird. Mit diesem Vergleichsmaß

kann die Tiefensuche für jeden Bildpunkt beendet werden, wenn ein lokales Maximum über

einem definierten Schwellwert gefunden wird.

In den Experimenten wird gezeigt, dass dadurch die Genauigkeit und Robustheit der

Rekonstruktion im Vergleich zu herkömmlichen SFF deutlich verbessert wird, wobei die

Aufnahmezeit im Unterschied zu vergleichbaren Methoden wie High Dynamic Range Imag-

ing gleich bleibt.
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Chapter 1

Introduction

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The three dimensional (3D) reconstruction of microscopic objects is of great industrial

importance to get a fast and accurate way for a robust quality inspection. In this work we

present novel methods to increase the accuracy, speed and robustness of 3D microscopic

object reconstruction using shape from focus (SFF). In this chapter we discuss the recon-

struction problems with traditional shape from focus and give a short motivation to our

work. We describe particular achievements and give an outline of the following chapters.

One of the most popular method of 3D reconstruction in optical microscopy is the SFF

algorithm. Here the specimen is moved with respect to the imaging system and a stack

of images with different levels of object focus is acquired. Because the exact movement

is known in every step, the depth is estimated by identification of the focus maximum of

every object point through the image stack. The focus is measured through detection of

high frequency intensity variations in the image domain.

1.1 Problem Statement

In practice, industrial specimen produce a wide range of brightness variations in their

reflection. A typical microscopic camera is limited to a resolution of only 8 − 12bit of

intensity levels at each pixel. As a result, this can easily lead to under exposed or over

saturated parts in the images, where the image information is lost. Therefore, the low

1



2 Chapter 1. Introduction

dynamic range of conventional image detectors limits the accuracy and robustness of the

SFF algorithm, as illustrated in Figure 1.1(a,c). One possible approach to overcome these

limitations is to increase the dynamic range of the sensor through sequential exposure

change [14] or through different hardware [43], commonly addressed as high dynamic

range (HDR) imaging. But these acquisition systems lead either to an essential increase

of the total measurement time or to a major decrease of the camera resolution.

(a) (b)

(c) (d)

Figure 1.1: SFF reconstruction. All-in-focus texture and reconstruction result
for standard SFF (a,c) and SFF with adapted illumination (b,d).

Another limitation of the traditional SFF algorithm is the reliance on enough de-

tectable surface texture on the object. The focus operators in the SFF system measure

the focus through high frequency intensity variations. During defocusing these variations

get blurred. Therefore, this algorithm is only effective if the focused system has enough
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high frequency content to detect a difference between in and out of focus. However, there

exist many surfaces that are smooth even at the microscopic level and consequently are

lacking in detectable texture. This leads to an inaccurate reconstruction and a dense depth

map can not be calculated, as illustrated in Figure 1.2(a,c). Examples of such surfaces

are lenses, silicon wafers or all transparent objects. In [48] it was shown, that texture can

be forced on low-textured objects with a static patterned filter mask which was placed

directly after the light source.

One main disadvantage in SFF depth estimation is its low speed, but due to the small

working range and the small depth of field (DOF) in optical microscopy it is one of the

most common reconstruction method in optical microscopy. In traditional SFF the depth

map is calculated through a focus measurement for every pixel in every acquired image,

resulting in a stack of focus measure images. The focus maximum is searched for every

focus measurement through every stack image. This huge amount of computational cost

leads to a very slow surface reconstruction compared to other methods like shape from

stereo (SFS), where the surface is reconstructed by point correspondences in only two

images, acquired simultaneously. In [1] and [3] the SFF depth estimation improved by a

coarse focus maximum search, e.g. only for every tenth image, to get initial boundaries

for calculating the fine focus maximum, but this leads only to marginal savings.

1.2 Motivation

In this work we present different approaches to overcome the problems mentioned in the

last section with a microscopic projector-camera system.

With the projector as the light source the illumination intensity can be adapted locally.

Therewith, the scene reflectance is compensated to be fully in the representable range of

the camera sensor, which shows the same properties with respect to SFF as an image

with an extended dynamic range, while the measurement speed and the camera resolution

will not decrease. In Figure 1.1 a sample reconstruction of an industrial specimen with

homogeneous illumination and with adaptive illumination is illustrated.

To create additional texture this projector-camera system is also used to project ad-

ditional texture on an arbitrary surface to enhance the natural texture. This projected

texture can be used for SFF reconstruction because the projector and the camera have the

same focus plane. In our work we calibrate a projector pattern, which creates measurable

texture on low textured regions. With this additional texture the sensitivity of the focus

measure operator to depth variations and the robustness of the measurement results are
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(a) (b)

(c) (d)

Figure 1.2: SFF reconstruction of a low-textured surface. All-in-focus texture
and reconstruction result for standard SFF (a,c) and SFF with pro-
jected texture (b,d).

increased. Additionally the intensity can be adjusted according to the natural texture to

achieve optimal reconstruction results. In this work we show that this method increases

the reconstruction accuracy on low-textured specimens and even specimens with no mea-

surable natural texture can be reconstructed. An example of the performance of texture

projection used to enhance the natural object texture is illustrated in Figure 1.2.

Another real advantage of the projector-camera system is to combine the method to

compensate the object reflectance and the method to create additional texture to become

robust to high differences in the object reflectance and to the absence of texture infor-

mation. In this work we present a method for the combination of a calibrated texture

pattern and the adaption of illumination to reduce the scene dynamic range. Therewith,
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the SFF system becomes generally applicable on objects without any previous knowledge

of reflectance and texture. On specimen with both low-textured regions and regions with

changing reflectance, we show that this method is more robust to wrong focus measure-

ments than the compensation algorithm or the texture projection alone.

As mentioned above, for the 3D reconstruction in industrial quality inspection the

measurement time of the reconstruction algorithm plays a major role. Therefore, we

invented a new focus measure to speed up the focus maximum search through the image

stack. This method is based on locally comparing the image intensities to a calculated

all-in-focus image. This all-in-focus image is estimated by a convolution of the integrated

image stack with the integral point spread function (IPSF). The IPSF is the blurring

function of one surface point in an integral focus image and is pre-calibrated. By a patch-

wise normalized cross correlation (NCC) of this texture image with the images from the

image stack, the new focus measure is calculated. Because the NCC delivers normalized

correlation values between −1 and 1 the focus maximum search can be stopped, if a local

maximum above a defined threshold is found. Although the convolution is noise sensitive

and the reconstructions may get less accurate, this method delivers a significant speed up

of the SFF algorithm.

1.3 Overview

In this work we use an optical microscopic projector-camera system for 3D reconstruction

with the SFF algorithm. Therefore we give a general overview of common hardware setups

and algorithms for microscopic reconstruction and an introduction of projector-camera

systems in relation to this work in Chapter 2. The theoretical background of the 3D

reconstruction with SFF is explained in Chapter 3. In this chapter the various focus mea-

surement techniques as well as the different methods for depth interpolation are presented.

Additionally, the HDR imaging algorithm and a method for a radiometric compensation

are explained. In Chapter 4 the projector-camera system used in this work is presented,

where the optical path of the projector and the camera is delineated. Furthermore, both

the geometric calibration that maps the projector-camera pixel correspondences and the

radiometric calibration that maps the projector-camera intensity correspondences, are pre-

sented. In Chapter 5 the methodology of this work is described in detail. This includes the

adaptive illumination, the texture projection and a new SFF measurement - the integral

shape from focus (ISFF) algorithm. These methods are evaluated concerning accuracy,

speed and robustness in Chapter 6. This chapter delivers experiments that shall prove
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the applicability of our system for industrial quality measurements. A detailed discussion

and an outlook to further work is given in Chapter 7.
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The purpose of this project is to reconstruct 3D objects in microscopic dimension for

industrial quality inspection. The main target is to enhance an existing reconstruction

method to increase speed and accuracy. The hardware setup to achieve this enhancements

is a coaxial projector-camera system in optical microscopy, where the projector is used as

a locally adaptive illumination source. Due to the small DOF of microscopic lenses the

reconstruction method used in this project is the SFF algorithm, whereby a resolution

beyond one micrometer is achieved. To give a general view of the possibilities in the

field of industrial microscopic reconstruction and projector-camera systems, an overview

of related projects in a microscopic operation range is given in this chapter. In Section 2.1

the most relevant hardware solutions and methods for microscopic reconstruction are

presented. Section 2.2 outlines a concrete insight in algorithms for object reconstruction for

acquisition setups with small DOF, especially concerning light modification and filtering

to increase the dynamic range and/or accuracy. The projector-camera system in this work

is used to realise local varying illumination intensities, either for compensating the natural

object reflection or for increasing the object texture. Therefore an overview of the existing

fields of application for projector-camera systems is given in Section 2.3.

7
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2.1 Microscopic Systems for 3D Reconstruction

In this section related methods and microscopic setups for 3D reconstruction in small

working ranges, from millimeter down to nanometer range, are presented.

One main type is optical sectioning in confocal microscopes, as presented in Jordan et

al. [28]. In confocal microscopy the depth is measured through the intensity of a reflected

point light source. Due to blurring, the light energy is distributed over a local circular

patch. Therefore, the reflected intensity at the acquisition pinhole is directly related to

the degree of focus. Although the measurement for one point is very accurate, the main

disadvantage is the restriction to the measurement of only one point at the same time.

An overview of applications of confocal microscopy is given in Dixon et al. [15].

Confocal microscopy can also be modelled to reconstruct whole surfaces by measuring

point lights at different positions on the object in parallel, often realized with a rotating

pinhole mask. Through transverse or axial scanning the confocal measurements can be

fused to one dense depth-map, as presented in [28, 64].

Another microscope type for possible reconstructions with a higher magnification

(nanometer range) is the scanning electron microscope (SEM) or the atomic force micro-

scope (AFM). Due to the single projection of one electron ray at each scanning step the

projection is comparable to confocal microscopy with the difference that it has a very large

DOF. This provides the opportunity to use shape from stereo SFS [32] or multi-view [50]

methods for 3D reconstruction. A microscopic multi-view setup is vulnerable to occlu-

sions, but the results can be improved through additional shape from shading (SFSh) as

presented in [5].

Finally also the most common type, the optical microscope, can be used for surface

reconstruction. The traditional optical microscope consists of a single image sensor, e.g.

digital sensor or human eye for acquisition and an illumination source, which is usually

coaxial. There exist lots of methods for the reconstruction of objects in optical microscopy.

Neil et al. [47] presented an optical sectioning approach by projecting a structured light

grid on the object. Greenberg and Boyde [17] presented a method for stereo imaging.

Here, the object is captured by a single sensor but with different illumination directions.

Due to the reflection differences, the acquired images can be used for stereo reconstruction.

Real stereo microscopy with two different objectives is limited by the small DOF of optical

microscopes. Possible solutions of stereo light microscopy are presented by Kim et al. [29]

and more precisely calibrated by Danuser [12].
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2.2 Reconstruction based on Small Depth of Field

In this section an overview of reconstruction methods for acquisition systems with small

DOF is given. The most common types in this field are SFF, the method used in this

project, and shape from defocus (SFD). These two methods are basically passive and

create a depth map out of focus analysis.

First a relation to previous focus analysis is given, where the SFF and SFD algorithms

are derived from. The first focus inspections in computer vision have been used for au-

tomated focusing algorithms as presented by Horn [26], where the high frequency content

in Fourier space was analysed. Tenenbaum [65] developed a method that measures the

sharpness of edges in a gradient magnitude maximization method. This sharpness can be

used as an indicator for the degree of focus. Various automated focusing techniques are

implemented and tested by Schlag et al. [55].

The main principle of SFF/SFD methods is to reconstruct the depth map of a spec-

imen by measuring and analysing the degree of focus when varying either the intrinsic

or extrinsic parameters of the acquisition setup. To understand the degree of focus the

focusing process is considered in detail first.

Figure 2.1: Optical geometry model. Geometry of the optical system for a scene
points P on objects focused in Q and defocused after the image plane.
[40].

Figure 2.1 illustrates the coherence between the degree of focus and the intrinsic and

extrinsic parameters of an acquisition system. The object point P is in focus, when it is

pictured on the image plane in one point Q. If either the distance from the object to the

lens or from the image sensor to the lens varies, the light energy of the object point is

distributed over a local circular patch on the sensor plane. The size of the distribution is

directly dependent on the distance changes. Further analysis of the distribution function
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of defocused object points on the sensor plane are presented in [25, 34].

The SFF method reconstructs the depth through finding a focus maximum, while SFD

estimates the depth with the varying image blur. Pentland [51] first used the degree of

image blur to calculate a focal gradient when changing the distance from an object to

a camera system with fixed intrinsic parameters. From these focal gradients the depth

is roughly derived. Grossmann [19] first discovered the possibilities of depth estimation

in a scene using measurements of the degree of blur. Based on this method Darrel and

Wohn [13] presented the first depth from focus model when using images of one scene with

different focus levels and calculated the depth using Laplacian and Gaussian Pyramids.

Subbarao [61] acquired images with a different degree of focus with a constant distance

from the object to the camera lens, but with changing intrinsic camera parameters, such

as changing the focal length of the lens, changing the distance from sensor to lens or

changing the lens aperture. Nayar and Nakagawa [44, 45] and Nayar [41] presented a

method for SFF reconstruction, where a sequence of images from an object is acquired

with different distances between the object and the camera. The focus was calculated

with a gradient maximization operator for each pixel in the image stack. Therewith, the

depth was determined by finding the focus maximum of each pixel though the image stack.

To get a refined focus maximum, the curve progression was interpolated by a Gaussian

distribution.

More recently, a possible method for a robust estimation of the image surface out of

the focus measures from [45] is the interpolation of a focused image surface (FIS) into

the focus image stack. Subbarao et al. [63] first introduced a method, where a piecewise

planar surface is fitted into the focus image stack. Yun et al. [72] enhanced this method by

replacing the piecewise planar surface with a curved window interpolation using Lagrange

polynomials. A different method for FIS optimization into the focus image stack was

presented by Asif et al. [3] by approximating the shape of the FIS using a feedforward

neural network. The weights of this network are learned such that the focus measure of

the surface through the focus stack is maximized. In order to avoid the computation time

for training the weights in a neural network, Ahmad et al. [1] presented a method to solve

the optimization model (searching optimal focus measure) by a dynamic programming

(DP) approach.

Further work is presented for optimization of focus measure response. Noguchi and

Nayar [48] presented a method where additional texture is created on low textured surfaces

by placing a patterned filter in front of the coaxial light source of the acquisition system
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to increase the robustness and sensitivity of the focus measure operator.

Another method to increase the robustness against object reflection artefacts was pre-

sented by Nayar and Mitsunaga [43]. By placing an optical mask directly in front of the

image sensor array of the camera, a broader range of brightness variations can be cap-

tured. The optical mask is a transparent pattern with spatially varying transmittance.

This gives adjacent sensor pixels different sensitivity to the scene illumination. Through a

high dynamic range (HDR) imaging algorithm this different exposure levels are calculated

to one image which measures a wider range of scene radiances, whereas the resolution of

the resulting image decreases with the number of different exposure levels.

2.3 Projector-Camera Systems

Our hardware setup consists of a camera for acquisition and a projector used as a locally

adaptive light source. In this section an overview of the existing fields of application

for projector-camera systems in relation to our project is given. Usually these systems

have the purpose of changing the projector image to compensate geometry and reflectance

characteristics of the projection screen.

This compensation is used in the context of object reconstruction through structured

light by Gu et al. [21] and Koninckx et al. [30, 31] to compensate reflections and shadows

of the structured light pattern on the object, which leads to a reconstruction robust against

object reflection and ambient light. Another operation area for projector-camera systems

is the projection of multimedia content on arbitrary surfaces in [7, 20, 68] and [16, 18, 42],

where the geometry and the spatially varying reflectance due to object properties was

compensated. Compensation techniques that are content dependent and optimized for

human perception have been described in [2, 66].

Compensation can also be applied when using multiple projectors used as a single

high-resolution monitor to compensate the overlap of projector images, as described in

[27, 35, 52].

Another approach of performing a radiometric compensation is to directly connect the

projector input image with the camera output image via acquiring the full light trans-

port between the projector and the camera. This method computes the influence of one

projector pixel to the whole camera image. Seitz et al. [56] first explored the impact

of inter-reflections in photographs of real scenes with unknown and arbitrary geometry

and illumination for scenes with arbitrary spatially varying bidirectional reflectance dis-

tribution functions (BRDFs). Sen et al. [57] presented a method to calculate the full
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light transport used for dual photography to relight and synthesize a scene using a light

transport matrix. This method was adapted by Wetzstein et al. [67–69] where this light

transport was used for radiometric compensation of screen imperfections.
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In this chapter an overview of the algorithmic and theoretical background for our

work is given. The main reconstruction method is the shape from focus (SFF) algorithm,

described in Section 3.1 for 3D reconstruction. To avoid illumination artefacts with a

static illumination source a method called high dynamic range imaging is presented in

Section 3.2. Reflection artefacts are compensated by adding a projector to the acquisition

system used as light source, presented in Section 3.3.

3.1 Shape From Focus

Our method for 3D reconstruction is based on a method called SFF, according to Nayar

[41, 44] and Nayar and Nakagawa [45]. On the supposition that in practice all objects

have a rough surface at some level of detail, high frequency texture indicates focused

image parts. On the other hand the defocus of an imaging system plays the role of a

low-pass filter. Since optical microscopy has a very small depth of field (DOF), which

causes high focus variances at slight depth differences, SFF is the most popular method

for reconstruction.

The method requires a stack of images acquired at different distances from an object

13



14 Chapter 3. Theoretical Background

with unknown geometry. The depth of an object point is estimated from the image where

it has its focus maximum. In Section 3.1.1 the image formation process of an object point

from defocused to its focus maximum is described. The SFF methodology is explained

in detail in Section 3.1.2. Section 3.1.3 gives an overview of the different focus measures.

Due to the defined step distance between consecutive images we have a limited resolution

for calculating the depth. In Section 3.1.4 methods for interpolating focus measures to get

a sub-stepsize depth resolution are presented.

3.1.1 Point Spread Function

The point spread function (PSF) describes the distribution of one object point in the

camera image at different focus. Figure 3.1 shows that every light ray that is reflected

by an object point P and is imaged by the lens converges in one point Q on the focused

image plane. Therefore each point on the object is projected onto a single point on the

Figure 3.1: Geometry of the optical system for points on objects focused and
defocused on the image plane. (according to [44])

focused image plane. The sum of these focused object points cause a focused image. If

the sensor plane diverges from If the energy of the light rays is distributed over a circular

patch on the defocused image plane Id.

The relationship between the distance from the object to the lens o, the distance from

the lens to the focused image plane i and the focal length of the lens f is described by the

Gaussian lens law:

1

o
+

1

i
=

1

f
(3.1)
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As illustrated in Figure 3.1, the defocused patch of our sample point increases by the

distance between the sensor and the image plane. Assume that the distance between

sensor and image plane is d. The radius of the patch r is calculated as

r =
dR

i
, (3.2)

where R is the radius of the lens. The uniform distribution of the light energy over the

circular patch with radius r referred to as the PSF, is ideally modelled with the pillbox

function

h(x, y) =


1
πr2

if x2 + y2 ≤ r2

0 otherwise.
(3.3)

But in the presence of optical aberrations the PSF deviates from the pillbox function and

is often approximated by a bivariate Gaussian model depending on i and o as described

in Pentland [51] and Nayar [44]. An example of the bivariate Gaussian distribution model

is illustrated in Figure 3.2.

The blurred image Id is calculated by convolution of the focused image If with a

Gaussian blurring function h by

Id(x, y) = h(x, y) ∗ If (x, y), where h(x, y) =
1

2πσ2
h

e
−x

2+y2

2σ2
h (3.4)

In the frequency domain the defocusing process is described as

ID(u, v) = H(u, v)IF (u, y), where H(u, v) = e−
u2+v2

2
σ2
h (3.5)

IF , ID and H are the Fourier transforms of If , Id and h.

In the frequency domain it can be seen that in H(u, v) the attenuation of the high

frequencies is dependent on the spread parameter σh of the Gaussian function. This

parameter increases with the distance of the sensor to the focused image plane d. When

considering that the distance between the lens and the sensor is constant in an optical

image acquisition system, one way to defocus an image is to move the object with respect

to the object plane. Li and Agathoklis [34] presented a detailed measurement and analysis

of the PSF and the optical transfer function (OTF) in a microscope.



16 Chapter 3. Theoretical Background

−2

0

2

−2−1012
0

1

2

3

x 10
−4

xy

h(
x,

y)

Figure 3.2: Bivariate Gaussian distribution model h(x, y) for approximating the
PSF.

3.1.2 Shape From Focus

In the system illustrated in Figure 3.3 the unknown object has to be placed in front of

the sensor plane, to reconstruct depth with SFF. A translational stage moves the object,

starting from the reference plane in ∆d steps along the optical axis. As mentioned in

Section 3.1.1, the optical system defines one plane where each object point is in focus.

The position d of the translational stage and the position df of the focused plane are

known in every step. To illustrate the reconstruction in detail we take a closer look on a

single object point S. Considering d is increasing and the translational stage is moving

towards the focused plane, the degree of focus of the object point S on the sensor will also

increase, until it is directly ”in focus”. An additional movement of the stage towards the

Figure 3.3: System setup for shape from focus acquisition, according to [45].

sensor will again decrease the degree of focus. As mentioned above, the stage translation

d and the distance between the reference and the focused plane df is known. We can now

easily calculate the height of our sample point S in our object with ds = df − d.
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The depth of every point on the object is calculated independently, resulting in a dense

surface reconstruction.

3.1.3 Focus Measures

Usually focus measure algorithms are aimed on finding high frequency parts in an image.

The algorithms for detecting these high frequency parts analyse the intensity variations

in sub-windows and calculate the focus measure for the center of the sub-window. In [23]

and [37] a good overview of the different methods is given.

Laplacian Focus Measure

The Laplacian operator, as presented in [53], calculates the second derivative, which gives

the gradient magnitude and highlights therefore the intensity variations:

FML(x, y) =
∂2I(x, y)

∂x2
+
∂2I(x, y)

∂y2
. (3.6)

The focus measure for the point x, y is then calculated by the sum of the second derivatives

of the image grey-values I(x, y) in x and y direction. A discrete approximation of the

second derivative is given by convolving the image with the 3× 3 Laplace Operator:

H =


0.5 0 0.5

0 −2 0

0.5 0 0.5

 . (3.7)

When using the simple Laplace operator as focus measure operator in context of textured

images, the second derivatives in x and y directions can have opposite signs. In this case

they would cancel each other and the focus measure yields no response. To overcome this

problem a slightly modified Laplace measure, called Modified Laplacian, was introduced.

Modified Laplacian

To avoid the cancellation of Laplace components when Ixx = −Iyy we the second deriva-

tives of (3.6) are squared:

FMML(x, y) =

(
∂2I(x, y)

∂x2

)2

+

(
∂2I(x, y)

∂y2

)2

. (3.8)
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For the discrete model a separate convolution of the Modified Laplacian operator with the

image in x and y direction is required. The Modified Laplacian is computed as:

FMML = (2I(x, y)− I(x−∆x, y)− I(x+ ∆x, y))2 (3.9)

+ (2I(x, y)− I(x, y −∆y)− I(x, y + ∆y))2 , (3.10)

where ∆x and ∆y are the pixel step size in x and y direction. The discrete operator is a

3× 1 respectively 1× 3 filter mask for the two dimensions:

hx =


−1

2

−1

 hy =
(
−1 2 −1

)
(3.11)

Sum of the Modified Laplacian

For rich textured images with high variability at each pixel, a focus measure can be cal-

culated with the Modified Laplacian for a single pixel. Problems occur when the operator

has to deal with weakly textured images. Nayar [44] first introduced a focus measure as

the sum of modified Laplacian values in a local window to improve the robustness:

FMSML(x0, y0) =
∑

p(x,y)∈U(x0,y0)

(
∂2I(x, y)

∂x2

)2

+

(
∂2I(x, y)

∂y2

)2

(3.12)

Variable p(x, y) declares a pixel in the local neighborhood U around the center coordinates

x0, y0. Typically a small window size of 3× 3 or 5× 5 is used.

Tenengrad Focus Measure

Another popular method for calculating the degree of focus is the Tenengrad Focus mea-

sure, first introduced by Tenenbaum [65]. It first calculates the approximated gradients

in x and y direction by applying Sobel operators (see (3.13)) in the horizontal (Sx) and

vertical (Sy) direction separately.

Sx =


1 0 −1

2 0 −2

1 0 −1

 Sy =


1 2 1

0 0 0

−1 −2 −1

 (3.13)
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To avoid the cancellation of the x and y components the sum of squared responses after

applying the Sobel masks is built, similar to the calculation of the FMML, as declared

in [70]. With the additional requirement for robustness at weak-textured images the

summation in a local window around the center-pixel (x0, y0) is built:

FMT (x0, y0) =
∑

p(x,y)∈U(x0,y0)

Gx(x, y)2 +Gy(x, y)2, (3.14)

whereas Gx and Gy are the convolutions of the input image I(x, y) with the Sobel masks

in x and y direction.

Variance Focus Measure

In the case of a focused image region the variance of gray-values is higher than in case of

unfocused regions. Therefore the degree of focus can be measured out of the variance in

a local image region. The resulting focus criterion function is given by:

FMVar (x0, y0) =
1

N − 1

∑
p(x,y)∈U(x0,y0)

(
I(x, y)− µU(x0,y0)

)2
, (3.15)

where I(x, y) are the gray values in the image region U(x0, y0) around the pixel (x0, y0)

and µU(x0,y0) denotes the mean of the grey values in U .

Mean Focus Measure

Helmli and Scherer [23] first presented a method for calculating the focus measure from the

ratio of the mean grey value to the center grey value. The principle behind this method

is similar to the variance focus measure: If an image is getting sharper the variance of the

grey values increases. A ratio of 1 implies a constant gray-level or absence of texture. The

ratio is higher in the case of high variations.

FMmean(x0, y0) =
∑

p(x,y)∈U(x0,y0)


µU(x0,y0)

I(x,y) µU(x0,y0) > I(x, y)

I(x,y)
µU(x0,y0)

else.
(3.16)

To be more robust against weak-textured images, the focus measure is summed in a local

window.
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Focus Measure based on Chebyshev Moments

A relatively new method for measuring image focus is computing the focus based on

discrete orthogonal Chebyshev moments. The low and high spatial frequencies of an

image are represented as the low- and high-order Chebyshev moments. Consequently, the

focus measure itself is calculated out of the ratio of the norm of the high-order moments to

the low-order moments, presented by Yap and Raveendran [71]. The Chebyshev moment

of order (m+ n) for an image I(x, y) with size M ×N is therefore defined as:

Tm,n =

M−1∑
x=0

N−1∑
y=0

t̃m(x;M)t̃n(y;N)I(x, y) (3.17)

where t̃m(x;M) and t̃n(y;N) are the normalized Chebyshev polynomials defined by

tm(x;M) =
M−1∑
k=0

ak,mx
k, (3.18)

t̃m(x;M) =
tm(x;M)√
ρ(m;M)

and t̃n(y;N) =
tn(y;N)√
ρ(n;N)

(3.19)

Term ρ(m;M) is the normalisation for

ρ(m,M) = (2n)!

(
N + n

2n+ 1

)
. (3.20)

To speed up the computation time, the three-term recurrence relation can be used to

calculate tn(x,N) with

tn(x;N) = [(2n− 1)(2x−N + 1)tn−1(x;N)− (n− 1) (3.21)

×(N2 − (n− 1)2)tn−2(x;N)]/n (3.22)

where n = 2, 3, . . . , N − 1 and t0(x;N) = 1, t1(x;N) = 1−N + 2x.

3.1.4 Depth Estimation - Interpolation Methods

As mentioned in Section 3.1.2, a stack of images of the object with different distances d

to the optical system is acquired, whereas distance between two consecutive images ∆d

is known. To get a focus vector F(d), the focus values f(x, y, d) for every image pixel
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(x, y) over the whole acquired image stack (∀d ∈ D where D is the number of images) is

calculated. This vector can be calculated for every pixel separately, therefore we will focus

our attention on a single image point. The discrete number of frames and the discrete

stage displacement between two images results in a loss of depth accuracy.

In the following section we will describe the main techniques to get a maximum ap-

proximation of the focus vector F(d).

Maximum Method

A simple approach to find a coarse maximum of the focus vector is to take the discrete

depth index d where the focus vector F (d) has its maximum, as illustrated in Figure 3.4.

The maximum is therefore calculated as

Figure 3.4: Maximum Method. Finding the depth of the maximum focus through
the index of the discrete maximum value in the focus vector.

Fmax = max[F (d)],where d = 1, . . . , D (3.23)

dmax = d : F (d) = Fmax. (3.24)

Linefit Method

An depth interpolation method presented by Malik and Choi [36] is the line fitting algo-

rithm. This method first identifies the discrete focus maximum Fmax. With this maximum

it separates the focus vector into two datasetsDS1(t) and DS2(t), which contain j elements
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before and after dmax including Fmax, calculated as:

DS1(t) = F (dmax − t),where t = 0, 1, . . . , j | j < d0 (3.25)

DS2(t) = F (dmax + t),where t = 0, 1, . . . , j | j < dend (3.26)

After generating the two datasets a least squares linear regression of DS1 and DS2 is ap-

plied to approximate two lines. The approximated new focused depth dlinemax is calculated

as

d1 = |di − dc|, d2 = |di − dmax| (3.27)

dsum =d1 + d2 (3.28)

dlinemax = w1dc + w2dmax, where w1 =
d2

dsum
, w2 =

x1

dsum
. (3.29)

The variable di is the intersection distance of the two lines and dc is the closest point in the

dataset DS1 and DS2 to di. With w1 and w2 the sum of the points is weighted depending

on their distance to the intersection point. In Figure 3.5 the maximum interpolation

Figure 3.5: Linefit method. The depth is calculated image focus based on the
linear regression model.

through the focus vector calculated with the linefit method is illustrated.
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Gaussian Interpolation

In experimental verifications by Subbarao [62] and Pentland [51] it was shown that the peak

of F (d) can be approximated by a Gaussian curve, with mean value dmax and standard

deviation σF . To find an approximate focus maximum a Gaussian interpolation on the

focus vector is applied. To save computation time only three focus measures are used

to interpolate the Gaussian, namely Fm−1, Fm and Fm+1, that lie on the largest mode

of F (d), such that Fm > Fm− 1 and Fm > Fm+1. The focus measure vector can be

Figure 3.6: Approximation of the focus maximum by interpolating focus points
with a Gaussian curve, according to [45]

expressed using the Gaussian model with:

F (d) = Fmax exp

{
−1

2

(
d− dmax

σF

)2
}

(3.30)

where dmax is the mean value and σF the standard deviation of the Gaussian distribution.

To get dmax (3.30) is rewritten as:

ln(F (d)) = ln(Fmax)− 1

2

(
d− dmax

σF

)2

(3.31)
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Thus, after substituting the function with the three sample points, three equations can be

obtained. This equation system is solved for dmax and σF to:

dmax =
(ln(Fm)− ln(Fm+1))(d2

m − d2
m−1)− (ln(Fm)− ln(Fm−1))(d2

m − d2
m+1)

2∆d ((ln(Fm)− ln(Fm−1)) + (ln(Fm)− ln(Fm+1)))
(3.32)

σF =
(d2
m − d2

m−1) + (d2
m − d2

m+1)

2 ((ln(Fm)− ln(Fm−1)) + (ln(Fm)− ln(Fm+1)))
(3.33)

With dmax and σF found in (3.32) and (3.33), Fmax is calculated by substituting one of

the sample points Fm, dm in Equation (3.30) as:

Fmax =
Fm

exp

{
−1

2

(
dm−dmax

σF

)2
} (3.34)

With the found result we can characterize the image content at point (x, y). If the peak

of the Gaussian model is high and the standard deviation is small it can be implied that

there is high texture content in the vicinity of the point (x, y) and vice versa. Therefore

one can also divide the image content into regions of different texture content.

3.2 High Dynamic Range Photography

Image processing often suffers from the problem of a limited dynamic range. When ac-

quiring an image, a range of irradiance values that are of interest and a suitable exposure

time have to be chosen to measure these irradiance values correctly with the image sensor.

Scenes with illumination artefacts due to different reflections or different luminance within

a scene have extreme differences in irradiance values. These differences are impossible to

be captured without under- or overexposed parts in the image, as shown in Figure 3.7. A

straight forward idea to solve this problem would be to capture more than one image of

a scene with different exposure times. But taking images with different exposure times

leads to the problem that the brightness values are rarely true measurements of the rel-

ative irradiance in the scene. It has to be assumed that the mapping between irradiance

and pixel intensities is non-linear due to several non-linear mappings in the photographic

process in conventional cameras.

A method for recovering HDR radiance maps from photographs was first presented in

[38] and [14]. There, image data is composed from one camera with different exposure
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Figure 3.7: Scene with illumination artefacts. Due to illumination artefacts the
scene produces a wide range of brightness variations. It is not possible
for the image sensor to capture this high dynamic range.

times or image data is merged from images obtained by different cameras. This method

provides a convenient and robust way of determining the overall response curve of an

imaging process, allowing also images from different processes to be used consistently as

radiance maps.

Nayar and Mitsunaga [43] first presented a method for acquiring high dynamic range

images by placing an optical mask directly in front of the image detector array of a cam-

era. The mask is divided into patterns with different spatially varying pixel transmittance.

This gives adjacent pixels different sensitivity to the scene illumination. Hence, one high

resolution image can be divided into images with a smaller resolution and different expo-

sures, from which the HDR radiance map can be calculated.

In the following sections the algorithm to recover the camera response function and a

method of reconstructing the high dynamic range irradiance image from multiple images

are presented.

3.2.1 Recovering the Camera Response Function

In this section a method for calibrating the characteristic curve of a camera is presented.

The characteristic curve maps incoming radiance values to pixel intensities, and hereby

models the image acquisition process. To understand the non-linearities of this function

the image acquisition process has to be considered first (see Fig. 3.8). The exposure X is

the product of the irradiance E at the film and the exposure time ∆t. In this context the

non-linearities in the acquisition process are represented in a characteristic curve which

is only determined by the exposure and therefore by X = E∆t. This assumption only
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breaks down for extrema in the exposure time (very large or very low ∆t).

Figure 3.8: Process of image acquisition of digital cameras. Non-linearities can
occur during exposure, scanning, digitization and remapping [14].

After the sensor output is digitized, we get the final digital values Z, which are calcu-

lated by a discrete non-linear function f of the original exposure X at one pixel. Knowing

that f is monotonically increasing, we can compute X at each pixel with X = f−1(Z).

The irradiance can be recovered as E = X/∆t. It can be assumed that the function f

is a composition of the characteristic curve of the image sensor and the non-linearities

introduced by further processing steps.

To recover f , we have to take a number of digital sample photographs captured with a

static camera with different known exposure times. We assume that the irradiance values

at each pixel are constant through this process. The reciprocity equation is written as:

Zi,j = f(Ei∆tj), (3.35)

where i is the pixel index of image j. As mentioned above, it is possible to invert this

equation to

f−1(Zi,j) = Ei∆tj . (3.36)

For linearisation we define g = ln f−1 and get

g(Zi,j) = ln f−1(Zi,j) = lnEi + ln ∆tj . (3.37)

The pixel intensities Zi,j and the exposure times ∆tj are known. The unknowns of (3.37)

are therefore the irradiance values Ei and the inverse response function g, which has to be

smooth an monotonic. Letting N be the number of pixels and P the number of images,

we now have a set of N × P equations. To recover the function g and the irradiances Ei

the set of equations has to be rewritten to a least-squared error solution to:

argmin
g


N∑
i=1

P∑
j=1

[g(Zi,j)− lnEi − ln∆tj ]
2 + σ

Zmax−1∑
z=Zmin+1

g′′(z)2

 . (3.38)
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Zmin and Zmax are the minimum and maximum pixel intensity values (e.g. for 8bit

0− 255). The first term of (3.38) includes a set of equations from (3.37) in a least squares

sense, whereas the second term ensures that the function g is smooth, through penalizing

the sum of squared second derivative of g. The variable λ is a scalar weighting term for

the smoothness relative to the data fitting term. It should be chosen dependent on the

amount of noise expected in the Zi,j measures. Because of the discrete setting the second

derivative is approximated by

g′′(z) = g(z − 1)− 2g(z) + g(z + 1). (3.39)

The over determined equation system 3.38 is solved using the singular value decomposition

(SVD). An additional offset factor α is introduced to set the unit exposure to the pixel

intensity in the middle of the range between Zmin and Zmax, mathematically expressed

as:

g(Zmid) = 0, where Zmid =
1

2
(Zmax − Zmin). (3.40)

Therefore, the logarithmic irradiance lnEi and the function g are replaced by lnEi+α and

g + α. Further on, since g(z) typically has a steep slope near Zmin and Zmax, it should

be expected that g(z) is less smooth and fits the data more poorly near the minimum

and maximum values. A weighting function w has to be introduced, which weights pixel

intensities near the middle intensity Zmid the most and decreases towards the extremes:

w(z) =

z − Zmin for z ≤ 1
2(Zmin + Zmax)

Zmax − z for z ≥ 1
2(Zmin + Zmax).

(3.41)

Plugging in these weights in (3.38), the quadratic least squares solution becomes:

argmin
g


N∑
i=1

P∑
j=1

{w(Zi,j) [g(Zi,j)− lnEi − ln∆tj ]}2 + σ

Zmax−1∑
z=Zmin+1

[
w(Zi,j)g

′′(z)
]2 .(3.42)

Debevec et al. [14] evaluated that a set of P = 11 photographs with a choice of N = 50

pixel is more than adequate for calibrating g over a pixel range of 255 (Zmax − Zmin). In

Figure 3.9 twelve images of a sample scene with different exposure times are illustrated.

The pixel locations for reconstruction should be chosen to be evenly distributed between

Zmin and Zmax. In Figure 3.10 the response function recovered from the sample scene is

illustrated.
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Figure 3.9: HDR Grayscale photographs. Twelve images of an sample scene with
different exposure times ∆t are acquired for calibrating the response
function g.

Figure 3.10: Example response function. The response function g is reconstructed
form P = 12 photographs and N = 50 pixel from each photograph.
The ◦ symbol marks the pixel samples of the input images.

3.2.2 HDR irradiance Reconstruction

With the camera response function g, the high dynamic range radiance map is calculated

easily through (3.37), assuming the exposure times ∆tj are known:

lnEi = g(Zi,j)− ln ∆tj . (3.43)
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To reduce noise in the recovered irradiance values, all the available exposures should be

used. The weighting function from (3.41) is reused, to give higher weight to exposures

in which the pixel intensity is closer to the middle of the response function. The HDR

irradiance image is reconstructed through

lnEi =

∑P
j=1w(Zi,j) (g(Zi,j)− ln∆tj)∑P

j=1w(Zi,j)
. (3.44)

To fully recover the radiance map, the number of images should be chosen, so that every

part of the scene is imaged correctly in at least one photograph. The HDR reconstruction

Figure 3.11: Image reconstruction with HDR imaging. A HDR image recon-
structed using N = 5 images.

result with N = 5 differently exposed images is shown in Figure 3.11.

3.2.3 Disadvantages of HDR Imaging

Although an image including a high dynamic range can be generated with HDR imaging

it also has its problems. One main problem - especially in amateur photography - is that

HDR imaging requires a static camera and a static scene during acquisition. Another

problem relevant to industrial inspection, where speed is important, is the number of

photographs. Depending on the dynamic range in the scene, two or more images need

to be acquired, and the quality increases with the number of images, so the time for

acquisition and calculation of HDR images also rises.
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3.3 Radiometric Compensation

Acquiring images of an object with a constant illumination source often leads to the

problem of high variations of the reflectance on the object surface. This reflectance depends

on the surface texture, the material properties and the angle of the surface to the optical

axis. It can lead to over and under saturated image-parts. The concept of radiometric

compensation (RC) addresses this problem. With the assistance of a projector, the RC

tries to compensate spatially varying reflectance properties to get a desired camera image.

Furthermore, it enables the projector to display images onto an arbitrary surface, while

the influence of the projection surface itself is compensated.

Before calculating a compensation pattern for the projector, a radiometric model has

to be built to be able to determine the radiometric chain from projector values to image

intensities, as described in Section 3.3.1. Further, the geometric mapping between camera

and projector pixels has to be known. In Section 3.3.2 a method for calculating the

radiometric model is described, whereas the simple radiometric compensation through

known geometric correspondences is described in Section 3.3.2. Another approach is to

calculate the radiometric compensation through inverse light transport. Here, a model

of the influence of projector pixel to camera pixel is calibrated directly, as described in

Section 3.3.4.

3.3.1 The Projector-Camera Radiometric Chain

As elaborated in Section 3.2, the mapping between irradiance and pixel intensities in a

camera is typically non-linear. Similar, the radiant flux generated by the projector is also

non-linear with respect to the applied pixel intensity. According to Koninckx et al. [30, 31]

these non-linearities tend to boost the perceptual quality, but concurrently complicate the

calculation of correct projector irradiance from given pixel intensities, as compared to a

linear model.

There, the projector-camera radiometric chain for a single projector pixel was devel-

oped (see Fig. 3.12(a)). The same model is used for all other points equally. The response

curves for camera and projector map an irradiance value E to a discrete pixel intensity

Z (8bit: f : R+ → [0, 255]). The transition between the projector pixel intensity to the

projected irradiance value is calculated through:

Ep = f−1
p (Zp). (3.45)
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Note that in this case, the non-linear mapping between the input and output of the

projector includes multiple non-linearities in the projection process and also depends on

the wavelength λ. The projector screen irradiance is then reflected by an object with the

reflectance properties R. The reflected irradiance in the viewing direction of the camera

can be written as

Ec = R(Ep). (3.46)

The reflected irradiance Ec is measured by the camera for an exposure time ∆t. The

discrete camera pixel intensities are calculated with

Zc = fc(Ec∆t), (3.47)

where fc is the non-linear mapping between camera irradiance Ec and the acquired pixel

intensities Zc. With this correspondences, we have built a relation between the input

(a) Projector-camera chain for a single
pixel, according to [42]

(b) Radiometric model,
according to [30]

Figure 3.12: Projector-camera radiometry model. The projection value is trans-
formed by f−1

p , reflected by the scene and acquired by the camera by
transformation with fc.

pixel-values of the projector to the output pixel-values of the acquired camera image (see

Fig. 3.12(b)).
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3.3.2 Calibration of the Projector Response Function

The determination of the camera response function fc is done by the algorithm presented

in Section 3.2, respectively in [14]. To calculate the projector response function fp we go

the inverse way from the camera image Zc to the projector irradiance Ep:

Ep = R−1

(
f−1
c (Zc)

∆t

)
. (3.48)

The reflectance model R is eliminated by projecting a known uniform pattern onto a pla-

nar diffuse surface. The projector response fp is estimated by mapping projected uniform

patterns with different intensity levels with their corresponding projector irradiances cal-

culated with (3.48). The exposure time ∆t has to be adjusted properly to avoid over or

under exposed camera images.

3.3.3 Compensation Algorithm through Geometric Correspondence

In this section the radiometric compensation through the camera and projector response

functions is developed for a direct geometric projector-camera pixel correspondence. It is

assumed that each projector pixel only influences one corresponding camera pixel. The

complete mapping from camera to projector intensities is now represented using a single

non-linear response function including the camera and the projector response function:

Zc = h(R,Zp) = fc
(
R
(
f−1
p (Zp)

)
∆t
)

(3.49)

Projector pixel intensities for a desired camera image brightness can be theoretically de-

termined through h with an unknown reflectance R which should be compensated.

When projecting a novel display pattern Zp,n the camera acquires an uncompensated

image Zc,n. The compensation requires that the measured image exactly equals the original

projector image. The calibrated inverse response h−1 is used to compute the compensation

image Z̃p,n. This image is projected to get the final compensated output image Z̃c,n.

3.3.4 Compensation through Light Transport Matrix

In this section a method of a radiometric compensation for a projector-camera system,

which has no direct mapping between projector and camera pixels is presented. One

method to calculate the correspondence between the two coordinate frames is through a

geometric calibration of the pixel correspondences as presented in Nayar et al. [42, 46]. In
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this method the pixel correspondence is modelled through a transformation of second-order

polynomials between the two coordinate frames. The final mappings between projector

and camera coordinate frame are stored as look-up tables, where each point in one domain

is used as an index to obtain the corresponding point in the other. A problem with this

direct mapping is that global illumination effects such as reflections, scattering, refractions,

dispersion or diffraction are ignored. One pixel only affects its corresponding pixel in the

other system.

Another approach of performing a radiometric compensation with an unknown

projector-camera pixel correspondence is to directly connect the projector input image

with the camera output image via acquiring the full light transport between the projector

and the camera. This method computes the influence of each projector pixel to the whole

camera image a light transport matrix (LTM), as used in [67–69].

The camera image Zc has a resolution of m×n and the projector pattern Zp a resolution

of p× q. Therefore, the LTM T has a size of mn× pq. To calculate the matrix, Sen et al.

[57] presented a method where a set of illumination patterns is projected onto the scene

and captured with the camera. The projector patterns are designed to refine the matrix

hierarchically. With the calculated light transport matrix T the camera image can then

be calculated with

z̃c = Tz̃p + e, (3.50)

where z̃c is the vectorized camera image, z̃p is the vectorized projector image and e is a

vectorized camera image at the projector’s black level. The radiometric compensation can

than easily be calculated by solving 4.11 for Z̃p where Z̃c is the desired camera image by

z̃p = T−1 (z̃c − e) . (3.51)

The biggest problem when calculating the RC through the LTM is its enormous size

(mn × pq). T has a high level of sparsity but this does not infer that its inverse T−1

has also a high level of sparsity. When calculating the inverse matrix the memory of

normal personal computer comes to its limitations (with full-hd projector, a 2megapixel

(MP) camera and float notation ∼ 14GB). Therefore Wetzstein et al. [68, 69] clustered

the equation system into independent subsystems that are solved individually. In this

algorithm another main problem is that the LTM has to be acquired for every scene

separately, because the exact light transport varies with the scene.
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3.4 Summary

In this chapter the theoretic and algorithmic background for our work was given. First, the

SFF reconstruction method with the different focus measure operators was explained in

detail. Because the SFF algorithm acquires images at defined depth steps, the resolution

of the reconstruction result is limited. To achieve a resolution beyond one depth step

various interpolation methods were presented.

Second, two methods to avoid illumination artefacts when capturing scenes with a

higher dynamic range were presented. The first one is high dynamic range photography,

where the static scene is captured with different exposure times. These images are fused

to get one image where the whole dynamic range is illustrated. The second method uses

an additional projector to compensate the illumination artefacts of a scene. Through a

correspondence between the projected pattern and the acquired camera image the scene il-

lumination can be adjusted locally to compensate high differences in the object reflectance.
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In this chapter an overview of the projector-camera system for the acquisition of shape

from focus images is given. Section 4.1 gives an introduction in the hardware specification

of the acquisition system. The optical path through the projector camera system is de-

scribed in Section 4.2. Calibration algorithms for radiometry and geometry are presented

in Section 4.3.

4.1 Hardware System

A traditional SFF system uses a constant light source to illuminate the object. Since

the SFF algorithm calculates focus information out of high frequencies in texture, this

global illumination leads to a loss of information when it comes to great differences in the

object reflectance within an image. This occurs, when the object reflectance reaches the

maximum or the minimum of the displayable range of the sensor. Another problem occurs

if the object surface itself is lacking in detectable texture (see Fig. 4.1). To overcome these

problems we use a projector as an adaptive light source instead of constant illumination.

35
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(a) Saturated and under-
exposed image parts

(b) Low textured surface

Figure 4.1: Lack of focus information due to saturated or under-exposed image
parts (a) and low-textured surfaces (b).

On the one hand, in the case of under-exposed or saturated parts on the object, the

projector can adapt the light intensity locally. On the other hand, the projector can

be used to project a strong texture on the focused object surface to create a texture on

homogeneous objects.

In the hardware setup, the camera and the projector are placed coaxial, as illustrated

in Fig. 4.2. The reason for the coaxial illumination is that the focus plane of the camera

(a) Sketch (b) Real

Figure 4.2: Coaxial camera projector system. The light rays from the projector
to the object and from the object to the camera are parallel.



4.1. Hardware System 37

has to be exactly the same plane where the illumination pattern of the projector is in

focus. To achieve a coaxial setup we use a beam-splitter (BS1 in Fig. 4.2) to redirect the

light rays from the projector to the camera axis. A beam-splitter is an optical device that

splits the incoming beam of light in two light rays with the half of the incoming intensity

(see Fig. 4.3).

Figure 4.3: Schematic representation of a beam-splitter. I1 incoming light 100%,
I2 - 50% transmitted light and I3 - 50% redirected light.

The technology of our projector is a spatial light modulator (SLM) based on a liquid

crystal on silicon (LCoS) display. The LCoS is a reflective micro-display which consists of

a silicon backplane, where the liquid crystals are directly mounted. This whole plane is

coated with a highly reflective surface, as illustrated in Figure 4.4. With this technology

(a) (b)

Figure 4.4: LCoS Display. A field effect transistor (FET) controls the reflection,
whereas the liquid crystal acts as a SLM for illumination passing
through. In (a) a schematic illustration of one LCoS pixel and in
(b) the LCoS display used in this project is shown.

the phase of the reflected light can be modulated spatially [4, 24]. The LCoS display

technology has some key advantages for microscopic solutions compared to other micro

projector technologies. One main advantage compared to the liquid crystal display (LCD)

technology is its high fill factor (∼ 92%) with nearly no loss of brightness. Another

advantage compared to direct light processing (DLP) projectors is the continuous light

projection. DLP projectors generate pixel values by a sequence of tilting micro mirrors to



38 Chapter 4. Microscopic Projector-Camera System

the light source and away form it.

The SLM system consists of a light source, a twisted nematic LCoS display and a po-

larizer P before and an analyzer A after the display, as illustrated in Figure 4.5. A light

Figure 4.5: Spatial light modulation with a LCoS display. Light from a light
source Ein if filtered to a single polarization by P , reflected with a
shift of the light phase according to the pixel values. The analyzer A
converts the light intensity according to this shift.

beam sourcing from a halogen cold light source is first polarized by P . This polarizer

converts the unpolarized light beam into a beam with a single linear polarization angle

ϕP .

This polarized light is then reflected by the LCoS display. It changes the polarisation

of the incoming light by an angle α, proportional to the 8bit grey value of the projected

pixel. The angle is therefore between 0 and αmax at grey values between 0 and 255. The

analyzer A is another polarization filter, which filters the light beam corresponding to

the difference between its angle ϕA and the polarization angle of the incoming light. The

intensity of the transmitted light is proportional to the difference between the polarization

of the light beam and the angle of A. This intensity can be calculated with the Malus’

law by

E = Ein cos2(θ), (4.1)

where Ein is the incoming intensity and θ the angle between the incoming polarisation

ϕp +α and the angle ϕA of the analyzer. Therefore the theoretical optimal angle between

polarizer and analyzer is αmax, as presented in [10]. To calibrate the polarizer and the

analyzer, uniform patterns with maximum 255 and minimum values 0 are projected. The

angles of P and A are adjusted iteratively to get the radiance maximum on the object
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at the projector’s maximum intensity and the radiance minimum when projecting the

minimum intensity.

4.2 Optical Path

The optical path and its lens system are designed to project a focused illumination pattern

on the object which is captured on a focused camera image. The optical system can

be roughly divided into two main parts, the camera path and the projector path. The

projector path defines the optical system from the light source to the specimen whereas

the camera path defines the optical system from the specimen to the camera. The focus

plane of the projector and the camera have to be coplanar. A model of the optical system

is shown in Figure 4.6.

Figure 4.6: Optical path and lens system. The camera sensor is focused by AC1
and the microscope lens on the object. The light beam of the cold
light source is focused through BX1 and BX2, reflected by the LCoS

and focused by AC2 and the microscope lens. The focus of both
camera and projector path is coplanar.

The projector path starts with the light rays of the cold light source which are far

away from parallel. Therefore they are focused by two biconvex lenses BX1 and BX2 so
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that the light rays falling on the LCoS display are approximately parallel. The polarizer

P and the analyzer A are part of the SLM system as described in Section 4.1 and have

no influence on the light ray focus. Afterwards, from the projector display, the light rays

pass trough an iris diaphragm. With this diaphragm the intensity of the projected light

can be dimmed. After this regularization the light beams are refracted by the positive

achromatic lens AC2 to become parallel. At normal biconvex lenses the refraction of

light beams differ with their distance to the optical axis and their wavelengths (colors)

(see Figure 4.7). An achromatic lens compensates this effect. This lens doublet consists

(a) (b)

Figure 4.7: Simple biconvex lens with aberration, according to [59]. (a) Spheri-
cal aberration: rays closer to the optical axis have their focus farer
from the lens. (b) Chromatic aberration: short wavelengths are more
strongly refracted, the focus is closer to the lens.

of a positive lens with an additional negative element in order to balance out both the

spherical and the chromatic aberration. The parallel light rays are reflected by the beam

splitter BS1 and focused on the specimen by an infinity corrected objective (Mitutoyo

M Plan Apo 10 ). The parallelism of the light rays before the objective is necessary to

avoid artefacts as a result of converging light rays passing through the beam splitter. The

M Plan Apo 10 infinity corrected lens is designed to focus on objects with an increased

distance from objective nose-piece to the specimen than normal microscopic objectives

and performs an additional spherical and chromatic compensation. The working distance

is 33.5mm at a magnification of 10×. This is necessary to have enough free space to move

an object in front of the objective.

The light rays reflected by the specimen are refracted by the same infinity corrected

objective in the inverse way. Therefore, the light rays are again parallel afterwards. These

parallel light rays are transmitted by the beam splitter BS1 and refracted by the achromatic

lens BX1 which focuses the light rays directly on the image sensor of the camera.
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The parts of the object that are on the focus plane are sharp in the image. And,

because the camera and the projector system have the same focal length, the projected

pattern is also in focus on the parts of the object that are on the focused plane.

Figure 4.8: Camera image of a textured plane, perpendicular to the optical axis,
which is in focus. On the left side a pattern is projected sharp on the
surface, while the left side is homogeneous illuminated.

In Figure 4.2 a camera image of a focused textured plane, perpendicular to the optical

axis, is illustrated. The right side of the surface is homogeneous illuminated while on the

left side a checker pattern is projected. Because both sides are focused in the image one

can infer that the focal planes of camera and projector are coplanar.

4.3 Calibration

This section explains the calibration of the projector-camera system. In order to capture

the object by a camera and use the projector as light source, the influences of the projector

on the camera images has to be known. The system has to be calibrated in two ways: First,

the radiometric influence of focused projector intensities on focused camera intensities have

to be mapped (see Section 4.3.1). This includes all the radiometric non-linearities during

the projection and the acquisition process. Second, a geometric mapping between the

camera and the projector coordinate frame in the focused case has to be defined, to get

correspondences between projector and camera pixels (see Section 4.3.2). Additionally,

the calibration of a scatter matrix is explained in Section 4.3.4. This matrix maps both,

the radiometric and geometric correspondence between projector and camera system.
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4.3.1 Radiometric Calibration

This section gives the theoretical overview of the radiometric calibration of a camera and

a projector. Hence, we use a method similar to Debevec et al. [14] for camera response

calibration and Koninckx et al. [30] and Nayar et al. [42] for projector response calibration.

Camera Response Function

The radiometric calibration of the camera results in a correspondence between the incom-

ing light irradiance Ec and the pixel values at the camera image Zc. As presented in

Section 3.2, the camera is handled as a black box where the exposure time ∆t and the

discrete pixel values of the output images are known and the incoming irradiance values Ec

are unknown. The definition of the non-linear mapping of the camera response function

(crf ) is given by

Zc = fc(Ec∆t), where Zc : R+ → [0, 255] (4.2)

crf (Zc) = ln(f−1
c (Zc)) = ln(Ec) + ln(∆t). (4.3)

To calculate the camera response function crf we define a quadratic optimization problem

from (4.3) to

argmin
crf


N∑
i=1

P∑
j=1

{w(Zi,j) [crf (Zi,j)− lnEi − ln∆tj ]}2 + σ

Zmax−1∑
z=Zmin+1

[
w(Zi,j)crf ′′(z)

]2 ,(4.4)

where i is the pixel- and j the image-index as specified in Section 3.2. The first term

includes an equation system of N points in P images in a least squares sense. The second

term in (4.4) ensures the smoothness of crf .

To get enough sample pixels at different exposure times, we acquire an image series of

a static scene with constant illumination. This is necessary to calculate the mapping of

the direct pixel differences in a scene where only the exposure times vary. The scene is

an uniform plane normal to the optical axis. To model the curve over the whole working

range, we captured the calibration images with an exposure time from 500µs to 100000µs

in 500µs steps. The optimization result of the crf is illustrated in Figure 4.9. With

this camera response function the discrete 8bit pixel brightness values with an assigned

exposure time can be easily converted into radiance values with

Ec =
exp(crf (Zc))

∆t
. (4.5)
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Figure 4.9: Camera Response Function. Mapping between pixel values of camera
images and the camera exposure X = ln(E∆t).

Projector Response Function

The projector response function (prf ) is a mapping which includes all non-linear effects

during the projection process. This is necessary to calculate the correct projector irradi-

ances from given input pixel values. This function incorporates all non-linearities which

occur during the projection process. It gives a direct relation from the discrete pixel

intensity to the irradiance on the object.

Zp = prf (Ec), for Zp(x, y) : R+ → [0, 255] (4.6)

The calibration is similar to the determination of the crf . The projector can be interpreted

as an inverse camera. Hence, the camera only detects the grey values of the irradiance

intensities Ec reflected by the object. We can calculate these intensities via the previous

defined crf . The prf is estimated with a mapping of the camera irradiance values Ec with

the pixel values of the projected pattern Zp and the reflectance map of the surface R.

The projector radiance values are calculated with

Ep = R−1(Ec). (4.7)

Normally, the reflection of objects has unknown local differences due to different texture,

color or geometry. In our projector irradiance calculation, the linear reflection model R

is basically eliminated by projecting uniform patterns onto a planar, uniform and diffuse

surface, as figured out in [31].

To calibrate this mapping, uniform patterns with different intensity levels are projected
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onto the surface and acquired by the camera. The intensity levels i of the projector pattern

Zp,i range from 0 to 255. To avoid under-exposed or saturated images the exposure time

has to be set according to this intensity. It ranges from ∆tmin (exposure time for minimal

intensity) to ∆tmax (exposure time for maximal intensity) in logarithmic steps. This can

be calculated with

a = ln(∆tmax) b = ln(∆tmin)

∆ti = exp

(
a+

b− a
255

i

)
, where i = 0, 1 . . . 255. (4.8)

The camera radiance image Ec,i at the projected intensity i can be calculated according to

(4.6). The value in the projector response function corresponding to the image intensity i

is calculated as the mean of the radiance image normalized by the radiance image at the

maximum intensity 255 with

prf (i) = µ

(
Ec,i

Ec,255

)
. (4.9)

The calculated projector response function is illustrated in Figure 4.10.
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Figure 4.10: Projector Response Function. Mapping between pixel intensity levels
i of projector pattern Zp,i and the projected radiance Ep,i

With the crf and the prf we have a radiometric connection from projector pixel in-

tensities to their radiance values and from camera pixels to camera radiance values. This

gives us the opportunity to derive the radiance map from an arbitrary object and to adapt

the projector intensity to achieve a desired camera intensity.
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4.3.2 Geometric Calibration

In this section the calibration of the geometric mapping between camera and projector

coordinate systems is presented. This mapping is necessary to correctly perform a radio-

metric compensation between projector and camera. In contrast to Brown et al. [8] who

calculated a geometric correspondence through a homography matrix with a homography

estimation presented in [22], we store a fixed geometric pixel mapping in look-up tables

(LUT). This direct method gives the opportunity of a very accurate mapping including

all possible small variations of non-linearities in the optical system (e.g. lens distortion).

Hence, the point correspondences between the projector and the camera coordinate sys-

tem are stored in both ways. Each point coordinate in one domain is used as an index to

obtain the corresponding point coordinate in the other.

To record the coordinates of the direct pixel mapping, we capture a camera image for

each activated projector pixel separately. To get the point representation of the projector

pixels in the camera image as sharp and accurate as possible, a mirror plane normal

to the optical axis is chosen as the reflecting object. A sample projector-camera pixel

correspondence is shown in Figure 4.11.

(a) Projector Pattern (b) Camera Image

Figure 4.11: Geometric projector-camera pixel correspondence. One sample pro-
jector point is activated in (a). The corresponding camera image is
shown in (b).

Because one projector point influences more than one camera point and is not ideally

rectangular in the camera image, both the direction of the axis and the pixel scatter have

to be incorporated in our mapping. The approximate position of the camera image in the

projector pattern on the object is shown in Figure 4.12. Here we can see that the x-axis of

the projector roughly corresponds to the inverse y-axis of the camera and the y-axis of the
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projector roughly corresponds to the inverse x-axis of the camera. These differences occur

due to the mechanical setup of the system. Also one reflected projector pixel is shown

Figure 4.12: Geometric position of the camera image in the projector pattern.

on more than one camera pixel because of the different scale, where 1 × 1 pixel on the

projector are ∼ 3.4× 3.4 pixel on the camera image. This leads to the problem of finding

the exact center of each projector pixel in the camera image. We extract a sub-image of

the activated camera pixels (see Fig. 4.13). The coarse center of this patch in the camera

Figure 4.13: Patch of one projector pixel in the camera image

image is found by calculating the center of mass of a thresholded binary camera image.

The width and height of the patch is also determined through a binary image with a lower

threshold, to make sure that all influenced camera pixels are included. Therewith, the

sub-pixel center is calculated through a weighted arithmetic mean of the pixel values in

both x and y direction calculated with

x̄ =

∑
i∈I(x,y) x̂iIi∑
i∈I(x,y) I(i)

and ȳ =

∑
i∈I(x,y) ŷiIi∑
i∈I(x,y) I(i)

, (4.10)

where Ii is the grey value at index i. The variables x̂ and ŷ are weights ascending in x

respectively y direction. The resulting variables x̄ and ȳ are the new centroid coordinates
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of a projector pixel in the camera image and are stored in the projector look-up tables

(one for x and one for y direction). On the other side, the coordinates of the activated

projector pixel in the projector pattern are stored in the camera look-up tables.

This procedure has to be done for every projector pixel that is shown in the camera

image. To speed up this process, we project a grid where multiple projector pixels are

activated at the same time. In this grid we have to pay attention on the distance between

the activated pixels so that the pixels into the camera image would not influence each

other. A sample projection gird is shown in Figure 4.14(a) with the corresponding camera

image shown in Figure 4.14(b). With these geometric correspondences we can directly

(a) Projector Pattern (b) Camera Image

Figure 4.14: Projection of a grid for correspondence calculation. The calibration
grid pattern (a) is projected on a mirror plane, normal to the optical
axis. The distance between consecutive projector points is selected
to avoid interactive influence in the camera image (b).

map each projector pixel in the camera coordinate system.

The results were compared to an ideal rectangular grid and to a grid calculated through

a homography. The evaluation results in a slight skew of 0.1 degree of the projector grid

to the camera grid. Furthermore, the comparison of the LUT to coordinates calculated

through a homography results in an absolute mean deviation of 0.266 pixel with a stan-

dard deviation of 0.084 pixel. The error of the look-up table (LUT) to the calculated

homography is illustrated in Figure 4.15. The pixel error is very low for the center pixel

and increases towards the edges. With a restriction to map only a central region of corre-

sponding pixels, the homography is also a possible model. The increasing distance error

towards the edges is a consequence of the radial lens-distortion of the optical path in the

microscope. This barrel distortion can also be modelled in a radial distortion model, in



48 Chapter 4. Microscopic Projector-Camera System

400450500550600650700750

0

200

400

600

0

0.05

0.1

0.15

0.2

0.25

y

x

er
ro

r(
x,

y)

Figure 4.15: Error of Homography vs. LUT. Pixel error of coordinate correspon-
dences calculated directly through LUT and through homography.

addition to the homography.

Although the mapping through a homography and a radial distortion is faster, we

choose the calibration of a direct projector-camera mapping through a LUT, because we

have no time restriction in the calibration process and this calibration is robust against

all sorts of changes in the optical path. Furthermore, the calibrated mapping is more

accurate over the whole acquisition area than a calculated distortion model.

4.3.3 Calibration of the Point Spread Function

In this section the response of the optical system to a point light source, namely the PSF, is

determined. This response function is important in the characterization of the acquisition

system. The theoretical background of the PSF is described in Section 3.1.1.

In our projector-camera system the determination of the real PSF is important to

calculate the distribution of light energy of one projector pixel on the specimen. In lit-

erature the ideal PSF is described as a pillbox function, according to [40, 41]. Where

the spatial size of the PSF depends on the radius of an ideal blur circle according to the

optical system. The PSF of a focused point is an ideal point response. But due to optical

aberrations and a finite size of the point light source the ideal PSF can not be realized. In

SFF algorithms this pillbox function is approximated as a bivariate Gaussian distribution

function, as presented in [40, 41, 45]. In Figure 4.16 a cross-section through theoretical

PSF functions is illustrated. Its Fourier transform, the OTF, describes the PSF in the fre-

quency domain. The analytical form of the OTF was further developed and calculated in
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Figure 4.16: Cross-section through PSF approximations. The ideal PSF is rep-
resented as a pillbox function. Analytical calculations for the OTF
with a circular aperture result in a first order Bessel function. For
SFF algorithms this function was approximated with a Gaussian dis-
tribution.

[25] and [60] for an optical system with a circular aperture as a first order Bessel function.

In more complex optical systems the PSF and the OTF can not be calculated so

easily, because necessary information such as the exact focal length, the exact aperture

and the exact optical aberrations are unknown. In our hardware system another problem

for the exact calculation of the PSF arises. The smallest possible projection spot in our

system is one projector pixel. This illumination source is bigger than one camera pixel so

that it could not be considered as a point light source per definition (according to [34]).

Furthermore, this projector pixel is rectangular which also influences the appearance of

the real PSF in the optical system. Hence, instead of calculating the PSF through an

approximation the PSF is calibrated through the acquisition of one activated projector

pixel through the blurring process. The acquired scene is a planar surface normal to the

optical axis. To compensate the object texture the mean of the circular patch at different

surface position is taken.

In Figure 4.17 and Figure 4.18(a) the acquired PSF at different depth steps is shown.

In the PSF calibration it can be seen that for slight defocus the PSF can be approximated

with a Gaussian distribution function, but at higher blur the PSF converges to the Fourier

series approximation of a pillbox function. But in the frequency domain the OTF can be

coarsely approximated with a first order Bessel function, as illustrated in Figure 4.18(b).

4.3.4 Construction of the Scatter Matrix

As presented in Section 3.3.4 and in Wetzstein et al. [69], both the radiometric and

geometric mapping can be represented through a full light transport matrix. A modelled
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(a) Focused PSF
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(b) PSF offset 4µm
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(c) PSF offset 8µm
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(d) PSF offset 10µm

Figure 4.17: Acquired PSFs at different depth steps. The focused and slightly de-
focused PSFs can be roughtly approximated with a bivariate Gaus-
sian distribution (a,b) but at higher defocus the PSF converges to a
Fourier series of the pillbox function (c,d).
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Figure 4.18: Cross-section through calibrated PSF and OTF at different blur.
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camera image can be calculated through a simple multiplication of the LTM with the

projected pattern with

z̃c = T z̃p + e, (4.11)

where z̃c is the vectorized camera image, z̃p is the vectorized projector image and e is a

camera image at the projector’s black level. Through this matrix the full light transport

between projector and camera can be calculated at once. The matrix also includes any

kind of reflections on the object and during the projection process. A projector pattern for

a desired camera image can be calculated with the inverse of this matrix. In Wetzstein et

al. [69] this leads to a huge matrix with very low sparsity with an immense computation

time of the matrix.

The scatter matrix, proposed in this work, is very similar to the full light transport

matrix with the difference that we assume that each projector pixel has only an influence

on a local patch around its exact position in the camera image. This is necessary because

a single projector pixel, which is ideally rectangular, always affects several camera pixels

and has no sharp border due to defocus and scattering, as described in Section 4.3.3.

Neighbouring projector pixels influence each other in the camera image as illustrated in

Figure 4.19. During the radiometric compensation, these influences have to be taken into

account. The scatter matrix has the same size as the LTM but here only the point scatter

for each projector pixel is saved. With this restriction the matrix has a high sparsity and

can be calculated very fast compared to the method presented in [67].
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Figure 4.19: Profile of the camera image values of three neighbouring projector
pixels

The computation of the scatter matrix is very similar to the geometric calibration and

is calculated in three steps:
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(a)
patch

(b) scatter matrix

Figure 4.20: The scatter patch in x and y direction is put into the scatter matrix
as vectorized camera image.

1. Each projector pixel is projected and captured individually. The specimen is a

diffuse plane which lies normal to the optical axis and is in focus. In order to

eliminate the object texture each projector pixel position is captured several times

while moving the object and the mean image is taken. Again we can project a grid

where multiple unaffected projector pixels are activated at the same time to speed

up the computation.

2. The patches have to be cut out of the acquired image. Therefore we can use the

spatial look up tables calculated during the geometric calibration to set the centroids

of the patches. To separate the patch from the projector black level, the background

has to be subtracted first. The remaining non-zero values of the patch are converted

into radiance values with the camera response function (see (4.5)). A model of a

scatter patch is illustrated in Figure 4.20(a).

3. This scatter patch Pi, which represents each activated projector pixel at index i in

the camera image Ic,i, has to be put into the scatter matrix A. The scatter matrix

is constructed like the LTM. The ordinate represents the index of each activated

projector pixel whereas the corresponding vectorized camera image is inserted along

the abscissa, as shown in Fig. 4.20(b). The coordinates of the patch have to be
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converted back into the camera image system to place it in position.

The scatter matrix A has a high level of sparsity, since a single projector pixel only

influences a small region of the observed scene. In our implementation the computation

time of the scatter matrix A is approximately one hour, whereas the density of the matrix

is 0.00065%. After the construction of the scatter matrix, the camera radiance image Êc

can be modelled out of any radiance corrected projector pattern Ep with

êc = Aep, (4.12)

where êc and ep are the vectorized irradiance images form Êc and Ep.

(a) real image (b) estimated image

Figure 4.21: Comparison of the camera image of a projected sample pattern. (a)
illustrates the real camera image and (b) the estimated camera image
by multiplication of the scatter matrix with the projected pattern.

To illustrate the function of our scatter matrix, we project a sample code pattern on

an uniform plane normal to the optical axis and compare it with the calculated camera

image. In Figure 4.21 we can see that the real camera image versus the estimated camera

image calculated with the scatter matrix. The calculated absolute average error is roughly

6% of the maximum image intensity.

4.4 Summary

In this chapter an overview of the projector-camera system to acquire a SFF image stack

was presented. A coaxial LCoS display to project a pattern on the object was used. The

optical path was designed to achieve a coplanar focus of the camera and the projector.
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Therewith, the projected pattern is in focus on the parts of the object that are on the

camera focus plane.

To use the projector as an illumination source the camera and the projector were

calibrated radiometrical and geometrical. At the radiometric calibration the direct re-

lationship between discrete projector pixel values and discrete projector pixel intensities

was established. With this calibration a projector intensity can be calculated to achieve a

desired camera intensity. At the geometric calibration a mapping between the camera and

the projector coordinate system was established to get a geometric mapping between cam-

era and projector pixels. These calibrations can be used to create a scatter matrix, which

enables an estimation of the camera image through a multiplication with the projector

pattern.
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In this chapter our methods for increasing the accuracy and the robustness of shape

from focus (SFF) reconstruction and a new way of focus measurement are presented.

The instrument we use to achieve the accuracy improvements is a projector used as local

adaptive light source. The projector focus plane is exactly coplanar with the focus plane

of the camera. Therewith the projector patterns are sharp on the surface which is focused

in the camera image.

To enhance the reconstruction results from traditional SFF we have to address the

following problems. One major problem, especially in industrial inspection, is the infor-

mation loss due to great differences between dark and bright pixels in the object reflection,

that exceed the resolution of the camera sensor. This leads to under-exposed or saturated

image regions. The focus is not measurable in such image regions. To overcome this

problem we introduced a method where the illumination is adapted locally to equalize the

reflection intensity over the whole object region which is captured by the camera. The ra-

55
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diometric differences are compensated to achieve a largely uniform camera image without

under- or over-exposed parts. This method is presented in Section 5.1.

Another problem is the failure of a dense focus calculation of low textured objects.

Many microscopic objects especially at the inspection of very small electronic components

such as semiconductors or micro processors have a very smooth surface. Due to the loss of

detectable texture it is also very hard to calculate an accurate reconstruction. To conquer

this problem we use a method, first introduced by Noguchi and Nayar [48], where a high

frequency pattern is projected on the object. Because the focus plane of camera and

projector are equal, this pattern is imaged sharp on the focused image region and is used

as object texture, which is detected by the focus measure operator. The methodology of

this texture enhancement is presented in Section 5.2.

By merging these two methods both the dynamic range of the reflectance is reduced

and the focus is calculated more accurately especially in low textured regions, as presented

in Section 5.3.

Thirdly, we present a novel focus measure operator based on a normalized cross cor-

relation (NCC) of the acquired image stack with a precalculated focused texture image of

the scene. The all-in-focus texture image is calculated through an integral image of the

image stack deconvolved with a previously calibrated integral point spread function. The

result of the NCC is a correlation map, where the focus is expressed through the similarity

of an image part with the same part of the focused image. The correlation map is further

used to calculate a depth map like in traditional SFF, as presented in Section 5.4.

5.1 Adaptive Illumination

As mentioned above, one problem in traditional SFF methods is that high differences

in the irradiance values which exceed the radiometric resolution of a camera sensor can

not be displayed in one image. This overrun of the dynamic range of the sensor leads to

under-exposed or saturated image regions. To overcome this problem, a method for the

illumination adaption through a projector is presented in this section.

A previous method for increasing the dynamic range of sensors is high dynamic range

(HDR) imaging (according to Debevec and Malik [14]). This method leads to more robust

texture models for SFF reconstruction. But the main disadvantage especially for industrial

inspection is its high acquisition time. To obtain one radiance image, several camera

acquisitions with different exposure times are necessary to get an acceptable result. This

increases the measurement time also by a minimum of two. Furthermore the potential
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acquisition of extremely over-exposed images may cause blooming effects which degrades

the quality of HDR images.

Because the projector is able to change the illumination locally, the adaptive illumi-

nation is used to compensate the reflection properties, whereas the measurement time

does not increase. This leads to an equalisation of the reflected radiance which indirectly

reduces the dynamic range of the reflectance for the camera sensor. Consequently this

algorithm converts regions on the object which are outside the acquirable dynamic range

back into regions with measurable focus by adapting its illumination.

(a) Normal illumination (b) Adapted illumination
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Figure 5.1: Radiometric Compensation. A projector used as adaptive light source
is used for adaptive illumination to compensate the reflection differ-
ences. Under-exposed or saturated regions in the image were com-
pensated and are again in a measurable range for the camera sensor.
The scene is a star of a two Euro coin, approximately 0.83×1.12mm.

There are many reasons why the dynamic range of the camera exceeds the representable
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range:

• Different materials: When high reflective and diffuse parts of an object are constantly

illuminated, the high reflective parts can get either over-saturated or the diffuse parts

under-exposed in a camera image (According to [11]).

• Different surface texture: When the texture of the surface changes also the degree of

reflection will change. This leads to the same problem as different materials. Dark

regions are less reflective than bright ones.

• Material roughness changes: If the roughness within an object changes also the

degree of reflection changes. A reflection model to calculate and represent this was

presented by Oren and Nayar [49].

• Different angles of the object surface to the optical path: The reflected radiance

which reaches the camera sensor differs with the angle between the optical axis

and the surface normal. These differences in reflection can be calculated by the

Lambertian cosine law.

With the knowledge of the occurrences of the illumination artefacts we built the theo-

retical image formation process. This process models the pipeline from projector pattern

to camera image in Section 5.1.1. With the knowledge of the physical image formation,

we calculate the radiometric model to adapt the projector pattern in Section 5.1.2. To

reduce the computation time of the compensation we present a method to predict a possi-

ble initial projector pattern in each step, as described in Section 5.1.3. This will lead to a

reduction to one camera iteration per step of the stage, which is equal to traditional SFF.

Figure 5.1 shows an example of light adaption for radiometric compensation the object

reflection to a desired value.

5.1.1 Image Formation Process

In this section the image formation process within the SFF image acquisition is described.

This is necessary to understand the adaption process of the projector pattern. Figure 5.2

models this image formation from the input projector pattern to the discrete camera

image.

The discrete projector pattern Zp is mapped to an irradiance pattern Ep by the projec-

tor response function prf , as determined in Section 4.3.1, which models the non-linearities
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Figure 5.2: Image formation pipeline: The discrete projector image Zp is pro-
jected via irradiance pattern Ep. The projector irradiance undergoes

a geometry dependent defocusing on the object to Ẽp and is reflected
on the scene surface. The reflected irradiance Es undergoes the de-
focus again and is finally mapped to a discrete camera image Zc.

between the pattern gray value and the projected irradiances.

Ep = prf (Zp). (5.1)

Due to a non planar surface geometry not every pixel of the projected pattern is in focus.

This defocus is expressed as a blurring with a Gaussian filter, whereas the amount of

defocus is relative to the offset from the projector focus plane. Furthermore, the amount

of defocus depends on the surface depth at each pixel. This surface depth G is previously

unknown and leads to the defocused pattern Ẽp. The object reflection R models the

factor of the reflection of incoming light at each pixel. It can be assumed that it is linear

to incoming irradiance on materials following the Lambertian or Phong reflectance model

as declared in [30] and [42]. Consequently, the reflected irradiance Es is calculated with

Es = RẼp. (5.2)

As the focus planes of projector and camera are coplanar, the reflected irradiance Es

undergoes the same amount of defocus according to G, which leads to the defocused

camera irradiance Ec. The camera acquires the image through the exposure Xc which is

defined as the integral of the incoming irradiance over an exposure time ∆t. We assume
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a constant irradiance over the exposure time to simplify the calculation to

Xc =

∆t∫
0

Ec(t) dt ≈ Xc = Ec∆t. (5.3)

The non-linearities in the camera acquisition process are taken into account by the camera

response function crf . Because the crf is monotonic increasing (inverse is well defined)

the discrete camera image is calculated with

Zc = crf −1(ln(Xc)), (5.4)

according to the definition of the camera response function in Section 4.3.1.

Based on the physical model of the projection-acquisition process, a projector image is

estimated in the following section that compensates the different reflection factors of the

reflectance map R in a closed loop system.

5.1.2 Compensation of the Reflection

From the image formation process we know the influence of the projector illumination on

the camera image. By adjusting the projector illumination we are able to radiometrically

compensate the unknown object reflectance R. The compensation should lead to an ob-

ject illumination that results in a predefined uniform reflectance which avoids exceeding

the dynamic range of the camera. The compensating illumination is optimized to obtain

a desired camera image Ẑc. To eliminate the over- and under-exposed parts in the same

degree, Ẑc is typically an uniform image of grey value 128. The input for the estimation

algorithm are the projector pattern Zp and the camera image Zc resulting from the im-

age formation as declared above. The camera response function (crf ) and the projector

response function (prf ) are estimated in a previous calibration step (see Section 4.3.1)

without the exact knowledge of the surface properties. Because of the unknown object

geometry this optimization leads to an ill-posed problem. Therefore we have to estimate

the reflectance map iteratively from an initially acquired image Zc,0 and the initial illu-

mination pattern Zp,0. The initial pattern is also an uniform image with a grey value of

128. This initial value leaves enough range to correct the illumination in both positive

and negative direction.

Before we start the compensation we make some simplification for the ill-posed prob-

lem:
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• It is neither possible nor necessary to compensate the illumination of the entire

image in the microscopic setup. Due to the co-planarity of the focus plane of camera

and projector, only those parts of the image that are roughly in focus have to be

compensated radiometrically.

• The illumination must not eliminate high frequency parts in the image which are

necessary for focus calculation. Therefore the projector pattern has to be of consid-

erably lower spatial resolution compared to the camera resolution.

An illustrative model of the iterative radiometric compensation is shown in Figure 5.3.

Because the connection of camera and projector is the object, two crucial parts in our

system are unknown, the scene geometry G and its reflectance R. For the adaptive

illumination we have to compensate the scene reflectance R out of projector pattern Zc

and camera image Zp. For simplification we will consider a single pixel first. According to

Figure 5.3: Iterative pattern adaption. Estimation of the reflectance R through
calculation of the camera and the projector irradiance. Through cal-
culated R and desired camera irradiance Êc a compensating projector
pattern Ep,i+1 is estimated. The iteration leads to a stepwise refine-
ment of the pattern.

(5.2), the reflectance map is calculated with the camera irradiance Ec,i and the projector
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irradiance Ep,i with

Ri =
Ec,i
Ep,i

. (5.5)

This connection between the projector and the camera intensity is illustrated in Figure 5.4.

With this reflectance estimation the compensated projector irradiance is estimated through

Figure 5.4: Projector-camera model. The projector intensity Zp is transformed
by prf and reflected by the scene reflectance R. The reflected irradi-
ance is transformed to the pixel intensity via the crf .

Ep,i+1 =
Êc
Ri
, (5.6)

where the irradiance value E is mapped from the according grey value Z through the

response functions crf and prf . Because of possible non-linearities in the reflectance

function, or bad initialisation of Ip,0, the compensated camera intensity Ic,1 may differ

from the desired camera intensity Îc. To get to an optimized solution the iteration process

is repeated until the compensation is accurate enough or the reflectance correction reaches

its optimum, whereas ||Ec − Êc|| or ||Ri−1 −Ri|| falls below a predefined threshold.

To transform this theory in the 2D case we have to consider the different resolution

and mapping of camera and projector. As described in Section 4.3.2, a single projector

pixel, which is ideally rectangular, directly affects several camera pixels. Furthermore, the

affected area is not a sharp region due to slight defocus and scatter. We model this system

response of a single projector pixel on the object surface through a point spread function:

Es(xc, yc) = psf (xc, yc, xp, yp, Ep(xp, yp)). (5.7)

This function models the response to one projector pixel (xp, yp) with the irradiance Ep



5.1. Adaptive Illumination 63

in the camera pixel (xc, yc). We determined the scatter matrix A where the point spread

of all projector pixels in the camera image is mapped, according to Section 4.3.4. This

matrix is calculated in a previous calibration step. Therewith the influence of all projector

pixels on the surface of the specimen is calculated through the linear relationship

es = Aep, (5.8)

where ep is the vectorized projector irradiance image

ep = [Ep(0, 0), . . . , Ep(xp,m, yp,n)]Tmn×1 (5.9)

and es the vectorized scene irradiances in camera space

es = [Es(0, 0) . . . , Es(xc,u, yc,v)]
T
uv×1 . (5.10)

Hence, the size of the projector pattern is m×n and the size of the camera image is u×v.

The inverse problem of mapping scene irradiance to the projector irradiance is more

complex, since the inverse of the sparse scatter matrix A is required for this calculation.

Since A is not invertible the compensation projector pattern is calculated with the pseudo

inverse by

ep =
(
ATA

)−1
ATes. (5.11)

Due to the huge size of the matrix A (mn×uv) this inversion can lead to memory problems.

To overcome this problem the inverse calculation can be theoretically solved with a linear

least-squares solution, as presented in [31]. Where the calculation of ATA and ATes

is made without any problems. An approximation of the inverse matrix is calculated

iteratively through a conjugate gradient method, as presented in [58].

The calculation of the optimized projector pattern is only correct for radiometric com-

pensation of perfectly focused objects. In practice, this assumption is not correct for

non-planar surface geometry. In defocused surface regions the illumination pattern is also

defocused. One projector pixel illuminates a bigger patch of the surface depending on the

scene depth, which leads to inaccurate compensation.

For extremely defocused image regions, a bad illumination is of lesser concern, but on

slightly defocused surface regions high-frequency artefacts could be introduced through

compensation, which influence the focus measurement in SFF calculation. To avoid these
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high frequency artefacts, the projector irradiance pattern is low-pass filtered before esti-

mating the defocused reflectance maps.
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Figure 5.5: One iteration of the radimetric adaption process. The reflectance
map R is calculated out of initial projector pattern Zp,0 and initial
camera image Zc,0. The new projector pattern Zp,1 is estimated
through the desired camera image (uniform 128 grey value) and the
calculated radiance map R, resulting a new camera image Zc,1.

In Figure 5.5 an example adaption process through one iteration is illustrated on an one

dimensional example. The reflectance map is estimated with the initial projector pattern

and the resulting camera image. With this reflectance map and the desired camera image

a projector pattern is calculated for radiometric compensation, resulting a compensated

camera image. The radiometric compensation for the two-dimensional case is illustrated

in Figure 5.6 in a real-world example.
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(a) Initial projector il-
lumination

(b) Initial camera image

(c) Calculated reflectance map (d) New projector illu-
mination

(e) Improved camera image

Figure 5.6: Radiometric compensation in one iteration. Calculate reflectance
map R out of initial projector irradiance Ep,i and initial camera irra-
diance Ec,i. The new projector pattern Ep,i+1 is calculated through
the desired camera image and the reflectance map R.
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5.1.3 Predicted Adaptive Illumination

The SFF algorithm takes the focus measures of at least three consecutive images out of

the stack to interpolate the sub-image focus maximum. To ensure that this calculation

leads to an optimal solution, every object point has to be slightly in focus on at least three

images. The step-size of the translational stage has to be small enough to ensure this

constraint. From this constraint we can infer, that direct neighbours in the image stack

just slightly differ from each other. Therefore, also the adapted illumination of the actual

step just slightly differs from the illumination pattern of the previous step.

In the iterative adaption at least two iterations are necessary if the initial pattern is

uniform. Consequently the acquisition of three frames is necessary in every step and the

measurement time will also increase by a factor of three, which is prohibitive for most

practical applications. This would not be a real improvement compared to high dynamic

range imaging.

But we can take advantage of the similarities of the sequenced frames, because the

scene appearance only changes a little bit between neighbouring images. First we take the

illumination pattern from a previous step as initial illumination in the optimization of the

actual step. This typically leads to an optimized solution in one iteration. Furthermore, we

track the compensation mask through the image stack in a prediction-correction approach.

There, the step prediction is computed through

Ep,i+1 = Ep,i + λ (Ep,i −Ep,i−1) , (5.12)

where the variable λ is a scaling factor for the prediction. Therewith the illumination

pattern for the next step is predicted with the information of the previous and the last

step. The correction is calculated through the iterative compensation in one iteration.

With this prediction-correction approach only one camera acquisition is necessary in each

step. Additionally two initialisation frames are needed, which are negligible on a typical

shape from focus acquisition where about sixty frames are needed.

Figure 5.7 shows an example reconstruction with standard shape from focus with ho-

mogeneous illumination compared to SFF with adapted illumination through the image

stack.
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(a) Traditional SFF (b) SFF with adaptive illumination

Figure 5.7: Depth reconstruction of the presented sample in Figure 5.6. (a) SFF
depth with homogeneous illumination, (b) the same object recon-
structed with adapted illumination.

5.2 High Frequency Texture Projection

An essential problem of traditional shape from focus is the requirement of enough measur-

able texture all over the acquired surface. On many objects, the surface is very smooth or

shaded which leads to a lack of detectable texture. Examples of such surfaces are solder

joints or silicon wafers, which are especially of practical importance.

This leads to the idea of projecting a strong texture on the object to create texture

through projection. Because the focus of both camera and projector are coplanar in our

hardware setup the projector pattern is sharp on the regions of the object, that are in

focus on the camera image. The high frequencies of the pattern are detectable when the

specimen is in focus and get equally defocused with the specimen. In Figure 5.8 a sample

texture pattern is projected on a smooth surface without own detectable surface texture.

Therewith the degree of focus is again measurable.

Noguchi and Nayar [48] presented a similar approach for the reconstruction of shape

from focus using active illumination. There, a static patterned filter mask was placed

directly after the light source. The problem of this method is the loss of the remaining

object texture, because the filter mask only sets surface regions to fully illuminated or

absolutely not illuminated.

The main challenge in texture enhancement is to find an optimal pattern, which creates

perfect measurable texture on untextured regions. Ideal is a maximisation of the sensitivity

of the focus measure to depth variations, maximizing the robustness and reducing the size
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(a) Without forced texture (b) With forced texture

Figure 5.8: Sample texture enforcement on a glass surface. Image (a) has no
detectable texture information, where in (b) the same scene was illu-
minated by a rough texture pattern. The focus and defocus is again
detectable.

of the focus operator to achieve a maximum spatial resolution. The estimation process of

finding this pattern is presented in Section 5.2.1. The application of the texture pattern

to support the natural object texture to increase the spatial resolution or the robustness

is presented in Section 5.2.2.

5.2.1 Calibration of the Optimal Pattern

In this section the calibration of the best pattern for the reconstruction of surfaces that

lack in detectable texture is presented. We assume that the projected pattern is stronger

than the natural object texture of the surface. Our evaluation emanates from traditional

focus measure operators that detect high frequencies by gradient maximization through a

filter kernel and sums up the detections over a local patch (e.g. sum of modified Laplacian,

Tenengrad, ...). In [48] an optimal illumination filter pattern is found to be a checkerboard

whose pitch is the same size as the distance between adjacent elements in the discrete

Laplacian kernel. This results a checkerboard frequency tx, ty of 2 or 4 times the size of

the Laplacian focus measure operator px, px in x and y direction:

tx = λpx (5.13)

ty = λpy, where λ = {2, 4} . (5.14)

Because in our hardware setup we have a larger projector-to-camera pixel ratio, we
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follow a more intuitive way to get the optimal size and appearance of the projection

pattern. In the following, we assume an absolutely smooth surface and therefore ignore

the object texture. To get a high frequency pattern it will be only composed of pixel

intensity extrema of 0 and 255.

With this assumption and according to [48] we want to optimize the pattern in three

ways in order to get the best possible response from the focus measure operator:

• Maximization of sensitivity: Get high focus measure variation on small focus varia-

tions.

• Maximize robustness: The same degree of focus leads to the same focus measure

response.

• Maximize spatial resolution: Reduce smoothing through minimizing the size of the

focus measure operator.

Because we want the texture to be as dense as possible on the specimen we first have to

take the scatter influences of neighbouring focused projector pixels into account. Projected

texture can only be measured through illumination differences in neighbouring camera

image pixels. The influence of one projector pixel in the camera image can be roughly

modelled as a thin-plate spline. An influence radius σp is set, where the illumination

Figure 5.9: Influence radius σp of one projector pixel in the camera image with
sub-pixel center of (xp, yp) in the camera image.

intensity has lost ∼ 95% compared to the center value, as shown in Figure 5.9. It is

depending on the projector-to-camera pixel ratio, which defines how many camera pixels

are directly illuminated with one projector pixel, and the surface characteristics, which

defines the scatter and the reflections around directly illuminated camera pixels. This

influence deviation defines the minimal distance between two illumination peaks where a

difference in the sharp texture can be detected, to 2σp.
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To get a dense depth reconstruction we also have to determine the maximum distance

between two illumination peaks. This is necessary to recognize the texture on every

pixel to get a more robust focus map over the whole camera image. Therefore we have

to take a closer look on the focus measure operator. The focus measure operator in

traditional SFF detects high frequencies through an approximation of the first or second

derivative, usually in a 3 × 3 discrete sliding window through each image pixel. These

focus measures are summed up in a local window mx ×my (see Section 3.1.3), whereas

the spatial resolution decreases with the size of this local summation window. Figure 5.16

illustrates the influencing area of the focus measure operator for one image pixel. For a

Figure 5.10: Focus measurement area of a focus measure operator. The traditional
focus measure operator calculates the gradient in a local 3× 3 patch
which is summed up in a local mx×my window. To get a dense focus
measurement the distance between neighbouring texture elements has
to be less than mx,y + 2.

5× 5 summation window the frequency variations are effectively measured in a 7× 7 pixel

window.

Subsequently the periods tx and ty of the illumination pattern in x and y direction are

defined as

2σp <
1

2
tx =

1

2
ty < mx,y + 2. (5.15)

The periods tx and ty are calculated in the camera coordinate system. Thus, the resolution

of the projector and the projector-to-camera pixel resolution difference have also to be

incorporated. We assume that camera and projector pixels are quadratic (tx = ty) and we

choose a quadratic focus measurement window (mx = my).

When we take a closer look at the most common focus measures we see that the

gradient is calculated in both principal directions. To create an illumination pattern
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with the highest spatial resolution in a given periodicity while considering the scatter of

projected pixel we evaluated a periodic checker board as optimal pattern. The illumination

period of this pattern is tx/2 and ty/2 according to (5.15).

(a) (b)

(c) (d)

Figure 5.11: Reconstruction results of a planar surface, illuminated with different
patterns. A textureless plane is illuminatied with different projected
texture pattern. Standard homogeneous illumination (a), random
pattern (b), stripe pattern (c) and checkerboard pattern (d).

In Figure 5.11 a transparent plane is reconstructed with different illumination patterns.

The surface of this plane is texture-less, which produces many outliers in traditional SFF

reconstruction. The checkerboard pattern illumination produces more accurate shape

information that is superior to that produced by a random pattern or a stripe pattern.

The different reconstruction results with different pattern frequencies at a fixed focus

measure operator size are illustrated in Figure 5.12.

In a given system with a projector-to-camera pixel ratio of ∼ 3.4 the influence diameter
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(a) txy = 3.4 (b) txy = 6.8 (c) txy = 10.2

(d) txy = 13.6 (e) txy = 20.4 (f) txy = 27.2

Figure 5.12: Reconstruction of a glass lens with illumination patterns of different
frequencies. One projector pixel directly influences ∼ 3.4×3.4 camera
pixels, 2σp ≈ 8.4 at a Tenengrad window size of 9× 9.

2σp for a focused projector pixel is ∼ 8.4. The possible pattern frequencies in the camera

image are also determined to be a multiple of projector-to-camera pixel ratio to tx,y =

{3.4, 6.8, 10.2, 13.6, . . . , n3.4}). Therefore, we chose the lowest possible focus measure size

of mx,y = 9 to fulfil the constraint form (5.15). If the illumination period of the pattern

is beneath σp the illuminated texture can not be measured correctly and if it is above

mx,y + 2 the distance between two pattern peaks is too big to reconstruct a smooth

surface. In Figure 5.12 the reconstruction with different illumination pattern frequencies

is illustrated.

5.2.2 Application of a HF Pattern for Illumination

In this section the application of the optimal illumination pattern to create additional

texture on an object is presented. On the one side, this texture enables a reconstruction

of low textured objects and on the other side, the spatial resolution and the robustness
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can be increased in textured objects. The intensity variations of the optimal illumination

pattern, as calibrated in Section 5.2.1, have to be adapted according to the natural texture.

The illumination pattern should create additional texture, whereas the natural texture, if

existing, should remain detectable.

The checkerboard pattern is expressed as a two-dimensional grid. The intensities of

the illuminating checkerboard are calculated with

ZHF (x, y, γ) =

255 γ, if CB(x, y, tx, ty) = 1

255 (1− γ), if CB(x, y, tx, ty) = 0,
(5.16)

where CB(x, y, tx, ty) is the binary checkerboard pattern with frequency tx, ty. The in-

tensity term γ : R+ → [0, 0.5] weighs the projected texture pattern. This value is chosen

according to the natural object texture. If the surface has no detectable texture γ is 0

and if it has enough natural texture γ is 0.5. In Figure 5.13 the focus measurement of
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Figure 5.13: Focus measure improvement with HF pattern illumination. Focus
measure of one point through the SFF image stack, with natural
texture only, and with a projected texture pattern. The dataset of
the focus measurement was multiplied by 20 to increase the visibility
in the plot.

one pixel with and without projected texture through the image stack is illustrated. The

focus measurement with projected texture produces a higher maximum when the pixel

is in focus and is lower when it is defocused, which maximizes the sensitivity and the

robustness of the focus measure operator.

In Figure 5.14 a reconstruction of a sample plane is shown. The surface texture is

supported by pattern illumination. Therewith both the robustness and the sensitivity
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(a) Stack image with standard illu-
mination

(b) Stack image with HF pattern
illumination

(c) Low natural texture mx,y = 5 (d) Supporting texture mx,y = 3, txy = 6.8

Figure 5.14: Support of the natural texture by a frequency pattern to increase
accuracy and spatial resolution. The intensity term γ is 0.2.

are increased, while minimizing the size of the focus measure operator. The minimum

and maximum irradiance values of the projected pattern are adapted to be not stronger

than the natural texture, in this case to intensity term γ is 0.2. The additional texture

increases the accuracy, whereas the size of the focus measure operator can be reduced to

the minimum of 3× 3.
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5.3 Combination of Adaptive Illumination with High Fre-

quency Pattern

In this section a combination of the radiometric compensation from Section 5.1 and the

enhancement of natural texture with texture pattern projection from Section 5.2 is pre-

sented. As the radiometric compensation does not handle lack in measurable texture and

the projected texture pattern can easily lead to under-exposed or over-saturated image

parts due to high dynamic range we combined these two methods to overcome both prob-

lems. In Figure 5.15 the advantages of this combination is illustrated. On surfaces with

(a) (b)

(c) (d)

Figure 5.15: Combination of intensity adaption and HF pattern projection. Tex-
ture pattern projection alone leads to over exposed parts (b), whereas
intensity compensation does not create additional texture (c). The
combination creates additional texture and compensates the object
reflectance, which leads to an increasing image contrast (d).

high reflection differences and low texture, standard texture pattern projection leads to

extremely over exposed parts, whereas standard compensation does not create additional
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texture. A combination leads to additional texture while the natural surface reflectance

is compensated, which increases the contrast of the image.

In the following two possible combinations of the adaption and the high frequency (HF)

pattern are presented. In Section 5.3.1 an approach is presented, where the illumination

pattern is created by a slightly modified HF pattern added to the compensation pattern.

Another approach is to modify the adaption process itself, and optimize for a desired HF

pattern instead of a desired constant illumination, as presented in Section 5.3.2.

5.3.1 Adaption with Added HF pattern

In this section a combination of standard adaption for radiometric compensation and a

modified HF pattern for texture enhancement through addition is presented. The com-

Figure 5.16: Iterative pattern adaption Zp,i combined with a high frequency pat-
tern ZHF to get the final projector pattern Zp,HF .

bination of the iterative pattern adaption and the high frequency pattern is shown in

Figure 5.3.1. To merge the results of both techniques a high frequency pattern ZHF ,mod

which has to be slightly modified from the pattern calculated above ZHF ,norm is added to

the calculated iterative adapted pattern, where

ZHF ,mod (ψ) =

255ψ, if ZHF = 255,

255(−ψ), if ZHF = 0.
(5.17)

The influence variable ψ : R+ → [0, 1] controls the weighting between the high frequency

pattern and the adapted pattern. The resulting pattern is calculated with

Zp,HF = Zp,i+1 + ZHF ,mod (ψ), where Zp,HF : R+ → [0, 255]. (5.18)
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In the experimental evaluations we determined the weighting variable ψ to be between 0.25

and 0.3. The exact value of ψ is set so that the percentage of under- or over-exposed image

regions is beneath one percent over the whole surface. Generally, the higher the difference

in the surface reflectance, the lower is ψ and vice versa. The problems of this method

are that the HF pattern and the adapted pattern cancel each other out in some degree.

On the one hand, the intensity of the HF pattern is reduced through ψ. On the other

hand, the adapted pattern loses the amount of adaptivity through the HF pattern. For

example if a region of the surface has to be fully illuminated to compensate the reflectance

an additional texture pattern results in a worse compensation.

(a) (b) (c)

(d) (e) (f)

Figure 5.17: Example of a specimen with different illumination. In (a-c) the pro-
jection pattern and in (d-f) the camera images of a specimen with dif-
ferent illumiation are shown. (a,d) homogeneous illumination, (b,e)
adapted illumination and (c,f) combination of adapted and high fre-
quency illumination with ψ = 0.2.

In Figure 5.17 the combination of the projector pattern and the corresponding camera

images are shown. In Figure 5.18 the reconstruction results of the surface which is illumi-

nated with an addition of the adapted pattern and the HF pattern. It can be seen, that
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(a) (b) (c)

Figure 5.18: SFF reconstruction of a surface with homogenious illumination (a),
with HF texture projection (b) and with an adaption with an added
HF pattern (c). The low textured plane and the under- or over-
exposed parts of the surface are reconstructed more accurately.

the HF part of the illumination pattern creates texture on the low-textured plane parts,

which can be measured more accurate (fewer outliers than in standard SFF). Through the

compensation the under- and over-exposed parts are better illuminated which also leads

to a more accurate focus measurement in these regions.

5.3.2 Adaption of a HF pattern

In this section a method where the high frequency pattern for texture enhancement is used

as the desired camera irradiance Êc in the adaption process is presented (see Fig. 5.3).

There, the HF pattern does not directly influence the adaption pattern but indirectly

through the optimization process. In Figure 5.19 a sample iterative adaption process is

shown. Because each projector pixel influences more than one camera pixel the frequency

of the desired HF camera image has to be set according to the considerations made in

Section 5.2.1. Therefore it has to be set to a value higher that the constant influence

radius 2σp and lower than boundary from the focus operator 2 +mx,y. For instance at an

influence radius of σp = 4.2 and a focus operator with the summation in a 9× 9 window

the frequency has to be set to be 8.4 < 1/2tx,y < 11. The low and the high value of the

desired HF camera image have to be set to avoid over- or under-exposed image parts due

to inaccurate compensation. To ensure this we set to set the low and high intensity of

the checkerboard pattern to 25% and 75% of the maximum intensity (8bit gray-scale →
Ẑc,min = 60 and Ẑc,max = 190).

In Figure 5.20 the difference between homogeneous illuminated, HF pattern projection

and the combination of reflectance compensation and HF pattern projection is illustrated.
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(a) New desired image Ẑc (b) According adapted
pattern Zp,i+1

(c) camera image from
adapted pattern Zc,i+1

Figure 5.19: Example of the adapted illumination with a HF pattern as desired
camera image. The projector pattern (b) is calculated through the
iterative pattern adaption process with the HF pattern (a) as desired
image, which results in a camera image (c) with adapted illumination.

(a) Standard illumination (b) Standard HF pattern
projection

(c) Zp,i+1 + ZHF ,mod

Figure 5.20: SFF reconstruction of a surface with homogeneous illumination (a),
with HF pattern projection (b) and with an adapted HF pattern (c).
Both the low textured and the under- or over-exposed parts of the
surface are reconstructed with fewer outliers.

With a forced texture illumination a dense focus measurement in low-textured surface

regions is enabled, whereas the amount of measurable texture in the over- and under-

exposed image regions is increased, resulting in a more accurate and more robust depth

reconstruction with less outliers than standard illuminated SFF.

5.4 Integral Shape From Focus

In this section a novel focus measure method for calculating a shape from focus recon-

struction with the assistance of a focused texture image is presented. The basic principle
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behind this approach is to compare the gray values of each image from the image stack

with a known all-in-focus texture image.Through this comparison we get a similarity value

for each pixel in the image stack to the focused image through correlation. This similarity

value is comparable with the focus measure operator in traditional SFF. After the calcu-

lation of all similarity values through the stack the maximum value can be interpolated

through an interpolation method, as presented in Section 3.1.4.

The advantage of this novel method is the characteristic of the NCC. Because the

correlation value is normalized between −1 and 1 the focus calculation through the focus

stack can be stopped at a local maximum above a predefined threshold. If the focused

surface points are evenly distributed in the image stack, this increases the reconstruction

speed by an average factor of two compared to traditional depth reconstruction.

The most challenging problem of this approach is to calculate a focused texture image

out of the image stack without any knowledge of depth. Nagahara et al. [40] presented a

method for extending the range of scene depths that appear focused in an image, known

as the depth of field (DOF). In this method the position of the image detector to the lens

varies during the integration time of a single photograph. This photograph is called the

integral image. In this image, each scene point is captured under a continuous range of

focus settings, including perfect focus. Applying a deconvolution to this integral image

with a calibrated integral point spread function (IPSF) results an image where the entire

scene appears focused.

We use this method to calculate an all-in-focus image out of an image stack. The IPSF

is calibrated in Section 5.4.1. The application of the IPSF to calculate a focused texture

image and the reconstruction of the surface using a correlation based focus measure is

presented in see Section 5.4.2.

5.4.1 Calibration of the IPSF

The IPSF is a two-dimensional function which aggregates the point spread function (PSF)

of one image point through the image stack. Thus, it models the defocusing of one focused

surface point. Conversely, if an integral image is convolved with the IPSF, the all-in-focus

image can be restored. We assume that the IPSF is constant in different image stacks and

equal for every pixel in an image and is calculated in a previous calibration step.

To calibrate the IPSF we use a set of blurred images Ib,i without any knowledge of

the amount of defocus and a focused image It of a known a scene and want to know the

blurring function h. If the calibration surface is a plane, normal to the optical axis, It
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is the image of the stack, where the plane is perfectly in focus. Otherwise, the focused

texture image It is calculated through traditional SFF. The blurred images from the image

stack are summed up to an integral image Iint that incorporates different degrees of focus

through the whole stack, including perfect focus (according to [40]). This is necessary

to calculate a robust blurring function h. To model a simple estimation of the blurring

function we first look at the simple filtering, which is calculated with

Ib(x, y) = It(x, y) ∗ h(x, y) + n(x, y) spatial domain (5.19)

IFb (u, v) = IFt (u, v)H(u, v) +N(u, v) frequency domain, (5.20)

where n(x, y) and N(u, v) is the image noise and h(x, y) and H(u, v) are the degrada-

tion function of the spatial and frequency domain. Ib is the blurred image of the scene.

Therewith, a simple approach for calculating the degradation function is

H(u, v) =
IFb (u, v)

IFt (u, v)
(5.21)

The main problem of the filter estimation from (5.21) is the ignorance of noise, which is

normally unknown. To overcome this problem we transform this linear filter estimation

into an optimization problem. We want to optimize the IPSF in order to minimize the

error between the known focused texture image It and the calculated focused image Ît.

The optimization problem can be expressed through a minimization of the quadratic error

between the calculated focused image and the real focused image:

argmin
ipsf

{
||Iint(x, y) ∗ ipsf (x, y)− It(x, y)||2

}
. (5.22)

This optimization problem is solved through non-linear least squares optimization which

is presented in [39]. A more robust way of solving this problem is the total variation

[54] where an additional smoothing term is introduced. A special algorithm for blind

deconvolution based on total variation is presented in [9]. Figure 5.21 shows a cross-

section of the optimized IPSF with different optimization methods, whereas the TV-L1

optimization approach delivers the best result. These optimized IPSFs are compared to

the integration of the calibrated PSFs of the projector-camera system, as calibrated in

Section 4.3.3. With this optimized IPSF, the focused texture image is calculated.
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Figure 5.21: Cross-section of IPSF optimization results. The IPSF optimized with
TV-L1 regularisation and with a TV-L2 approach compared to the
integration of the calibrated PSFs.

5.4.2 Application of the IPSF for Correlation Based SFF Reconstruction

This section explains the calculation of a focused texture image out of an image stack

without any information about depth and degree of defocus, which is used for a correlation

based focus measure for SFF reconstruction.

Calculation of a Focused Texture Image

(a) reference focused image It (b) integral image Iint (c) restored focused image Ît

Figure 5.22: After optimization of the IPSF with the focused texture image It
and the integral image Iint the focused image Ît is calculated by
convolution with the IPSF.

The IPSF is optimized with the reference focus image and the integral image. With

the calculated IPSF the focused texture image Ît is restored out of the integral image Iint,
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according to (5.22), through

Ît(x, y) = Iint(x, y) ∗ ipsf (x, y). (5.23)

Because the IPSF is constant for different specimen, it is used to recover a sharp texture

image out of every acquired image stack by convolution of the integral image from the

stack with the degradation function. In Figure 5.22 the focused image is calculated from

the calibration scene.

Focus Measurement through Cross Correlation

By correlation of the focused texture image with the grey value information of the acquired

images a SFF focus measure is calculated. This is done by a patch-wise correlation of

every image pixel through the image stack with the corresponding patch in the all-in-

focus image. The correlation result is our new focus measurement. The correlation focus

Figure 5.23: Corresponding correlation patches. The patch wi(x, y) from image
i in the image stack around the pixel (x, y) is correlated with the
corresponding patch t(x, y) at the same position in the all-in-focus
image.

measure algorithm calculates the cross correlation of a patch wi of the size M ×N around

a stack image pixel Ii(x, y) with the patch t of the calculated focused image Ît with the

same size and pixel position (see Fig. 5.23). This is done for every pixel and each image

of the SFF image stack, resulting in a stack of correlation images C. The cross correlation

is calculated with:

Ci(x, y) =
∑
m

∑
n

wi,x,y(m,n)tx,y(m,n) (5.24)
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With the calculation of the traditional cross correlation several disadvantages occur, ac-

cording to [33]:

• The simple cross correlation is not invariant to changes in amplitude. But, due to

the integration of the images the focused image varies in image amplitude and mean

compared to normal stack images.

• If the image energy
∑
w2(x, y) varies between w and t the matching can fail. E.g.

correlation between equal patches may be less than the correlation between a patch

and a bright spot.

Instead we use the normalized cross correlation (NCC). The normalized correlation coef-

ficients are calculated with

γ(x, y) =

∑
m,n[wx,y(m,n)− w̄x,y]

∑
m,n[tx,y(m,n)− t̄x,y]{∑

m,n[wx,y(m,n)− w̄x,y]2
∑

m,n[tx,y(m,n)− t̄x,y]2
}1/2

, (5.25)

where w̄x,y and t̄x,y are the mean values of the patch around (x, y). The calculated

correlation coefficients γ(x, y) are in the range [−1, 1] and are thus normalized to changes

in amplitude and energy of w and t. The maximum value occurs when normalized w and

normalized t are identical, which in our case is, when the patch w is in focus.

(a) restored focused image Ît (b) sample image Ii form im-
age stack

(c) normalized correlation co-
efficient result Ci

Figure 5.24: Calculating the normalized correlation coefficients of the calculated
focused texture and a sample stack image. The resulting correlation
image delivers a map of similarity values of each pixel region between
the images.

In Figure 5.24 the normalized correlation coefficient result of a skew plane is illustrated.

The sample image Ii from the image stack is correlated with the calculated focused image
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Ît. The values in the resulting correlation matrix Ci correspond to the focus. When

calculating the normalized correlation coefficients for each stack image Ii we get a stack

of correlation results. Like in traditional SFF, the depth is calculated with the maximum

value of each pixel through this stack. To speed up the depth estimation of the image
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(a) Tenengrad focus measure
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(b) Correlation based focus measure-
ment

Figure 5.25: Focus measurement through the image stack. The focus measurement
is calculated for a cross-section of an surface with the same depth
through the image stack with the Tenengrad focus measure (a) and
the NCC based focus measure (b).

which is in focus, the NCC focus measure has the advantage that it is normalized between

−1 and 1. Therefore a global threshold can be set to define the focus maximum. After a

local maximum above the threshold is found, the depth calculation for this image point

is finished. This additional constraint reduces the computation time in average by half.

This method can not be used in traditional focus measures, because the focus values have

no common dimension, as seen in Figure 5.25. To avoid holes in the depth map the global

maximum is calculated if the maximum of correlation coefficients through the stack is

beneath the threshold.

To increase the robustness to outliers, the correlation results are additionally summed

up in a local window similar to other focus measure operations with

FMcorr(x0, y0) =
∑

p(x,y)∈U(x0,y0)

(C(x, y) + 1) , (5.26)

where p(x, y) a pixel in the summation patch around the center pixel (x0, y0). The addition

of one has to be made to transfer the correlation results into R+. Otherwise positive and

negative values within a patch would cancel each other out.
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With this focus measure the depth map is calculated by interpolating the pixel vector

of each image position through the stack, according to Section 3.1.4.

Figure 5.26: Reconstruction of a plane with correlation based SFF.

In Figure 5.26 a plane is reconstructed using correlation based SFF with a texture

image calculated with a calibrated IPSF.

5.5 Summary

In this chapter novel methods to increase speed, accuracy and robustness of the SFF object

reconstruction were presented. The SFF acquisition system was supported by a projector

used as a locally adaptive light source.

Homogeneous illumination during the image acquisition often leads to over- or under-

saturated regions in the image. In these regions an exact focus measurement is not possible.

To avoid these illumination artefacts we used the projector to adapt the illumination

intensity locally. The compensation algorithm equalizes the reflected irradiance over the

whole acquired surface to achieve a largely uniform camera image without over- or under-

exposed parts.

A second problem in traditional SFF reconstruction is the failure of a dense focus

calculation of low textured objects. To overcome this problem we used the projector to

create additional texture on the object by projecting a high frequency texture pattern.

Through this additional texture the degree of focus becomes measurable again. Because

these two methods did not address both problems at once we invented a combination of the

illumination adaption and the texture projection, where both illumination artefacts due to

differences in the object reflection and the absences of measurable texture are eliminated.

To increase the speed of the traditional SFF algorithm we introduced a novel depth

focus measurement which is calculated through a patch-wise NCC of the images from the

image stack with calculated all-in-focus texture image. This all-in-focus texture image is
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calculated through the accumulated image stack, the integral image, convoluted with a

calibrated deblurring function, the IPSF. Because the NCC result is normalized between

−1 and 1 the focus calculation through the image stack can stop when a local maximum

above a predefined threshold is found.
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In this chapter the experiments and evaluations of our work are presented in detail.

The accuracy and robustness of the presented algorithms are compared to traditional SFF

reconstruction. All experiments are performed on a microscope prototype exhibiting a

2MP 8bit grey scale charge coupled device (CCD) camera and a 1280 × 720 pixel liquid

crystal on silicon (LCoS) display as light source. To move the object through the focus

plane we use a translational stage with an accuracy of ±0.1µm. The calibrated depth

step is 5.059µm and the lateral resolution in the camera image is 0.740 × 0.740µm per

pixel. The SFF algorithm calculates the reconstruction with a Tenengrad focus measure

operator with a window size of 7× 7. For the depth step interpolation a Gaussian model

is used. No pre- or post-processing is performed, and parametrization is identical for all

evaluations.

In the following sections, the methods presented in Chapter 5 are evaluated. In Sec-

tion 6.1 the evaluation of the adaptive illumination is presented. The texture enhancement

by projecting a HF texture pattern on the specimen is evaluated in Section 6.2. In Sec-

tion 6.3 the experimental results for the combination of an adapted illumination with HF

pattern projection is presented. The integral shape from focus (ISFF) method is evaluated

89
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in Section 6.4.

6.1 Adaptive Illumination

In this section we want to evaluate the reconstruction results of the adaptive illumina-

tion, presented in Section 5.1. In this method, the reflectance of an arbitrary surface is

compensated to get the same level of focus information over the whole acquired surface,

because both saturated and under-exposed image regions do not deliver enough variations

to calculate a dense focus measure.

The adapted illumination pattern is calculated and refined iteratively in every step.

To increase the speed of this adaption process and to decrease the number of camera

acquisitions per step, the compensation pattern is tracked through the image acquisition

and an additional pattern prediction is calculated. This leads to a reduction to one camera

acquisition and one adaption iteration per step. To show that the predictive adaption

gives the same compensation results as the standard iterative adaption we evaluate the

compensation differences in Section 6.1.2.

Through the evaluation of accuracy and robustness we show, that on industrial spec-

imen with high dynamic range the adaptive illumination (ADAPT ) delivers superior re-

sults compared to traditional SFF with homogeneous illumination (STD). Furthermore,

we want compare ADAPT to comparable reconstruction methods like HDR imaging con-

structed from varying numbers of input images, where the dynamic range of the camera is

extended. The reconstruction results for these evaluations are presented in Section 6.1.3.

In Section 6.1.1 the different specimen used for our evaluation are presented.

6.1.1 Reference Specimen

In this section the specimen used for accuracy evaluation are presented. These objects

have a varying reflectance in order to analyse the performance of our work in various

scenarios.

The main reference specimen are six regions on three cutter blades, namely CUT1

- side, CUT1 - front, CUT2 - side, CUT2 - corner, CUT2 - edge and CUT3 - edge, as

illustrated in Figure 6.1. These cutter blades are examples of industrial fields of application

for quality inspection. The angle of the surface normal to the optical axis and the texture

on the cutter blades vary within the regions. For these specimen no external groundtruth

is available. Because we want to evaluate the compensation of high dynamic ranges we use
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(a) Cutter blade 1 (b) Cutter blade 2

(c) Cutter blade 3

Figure 6.1: Reference cutter blade specimen. Three different cutter blades are
chosen for quality inspection. The evaluated regions of the cutter
blades are highlighted.

a filtered SFF reconstruction result of scans from HDR images with ten different exposure

times (HDR10 ), because this reconstruction ensures that the whole dynamic range is

mapped on the acquired images.

In addition to these industrial specimen, two defined specimen are used to calculate the

geometric consistency. The specimen are two solid wolfram-carbide samples, resembling

a Wedge and a Campfer. The geometric information is provided from an external mea-

surement protocol, from a DIN EN ISO 5436-1 geometric inspection. With this certified

geometric measurement we can exactly compare the geometric reconstruction to a known

groundtruth profile. In Fig. 6.2 the profiles of the groundtruth samples are illustrated.

These groundtruth profiles are compared against reference scans of reconstructed profiles.

Because the geometric consistency of our reconstruction is independent from the illumina-
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(a) (b)

Figure 6.2: Cross-section of reference scans. Profiles of two ss, namely Wedge (a)
and Chamfer (b). Geometric groundtruth exists for the planes P1,
P2, P3.

tion, the profiles are calculated with a reconstruction using the high dynamic range SFF

method with ten exposure times per image (HDR10 ). The reference profile measurement

is computed by taking the mean of more than 900 profiles through the reconstruction.

α (error) β (error) d (error)
[deg] [deg] [µm]

W 119.70 (0.53) 59.91 (-0.07) 437.34 (-1.66)
C 120.15 (0.06) 60.52 (0.33) 440.14 (-0.86)

Table 6.1: Comparison of the dense reference profiles and geometric groundtruth
for Wedge (W ) and Chamfer (C ).

In Table 6.1, the angles in the groundtruth object α = P1∠P2, β = P2∠P3, and

the distance d from the intersection of P2 and P3 to P1 are given, and compared to the

groundtruth measurement from the measurement protocol. This result determines the

geometric correctness of the depth reconstructions.

6.1.2 Predictive Adaption

In this section the illumination adaption in a prediction correction step to increase the

compensation speed is evaluated and compared to the iterative adaption. Therefore, we

acquired two SFF image stacks. One with an iterative compensation (ADAPT-IT ) , where

the compensation is calculated in each step separately, and the predictive compensation

(ADAPT ), where the pattern is tracked and predicted through the stack. To measure the
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quality of the compensation, the grey value progress of the images of these two stacks are

compared.
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(a) CUT2 - side
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(b) CUT2 - corner
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(c) CUT3 - edge

Figure 6.3: Quality evaluation of predictive compensation. Evaluation of mean
and standard deviation in the image stack for homogeneous illumina-
tion (STD), iterative compensation in three iterations (ADAPT-IT )
and predictive adaption (ADAPT ) for the reconstruction of three dif-
ferent specimen. Solid lines indicate the mean progress and dashed
lines the standard deviation over the first i = 1 . . . 20 acquired images.

To determine the best possible compensation result we set the number of iterations

to 3 (4 image acquisitions required) for iterative adaption, where the iterative compensa-

tion pattern refinement converges to the optimum. We compare mean image grey value

and the standard deviation of every acquired image through the image stack of both it-

erative compensation and predicted compensation. These values indicate the quality of

the compensation. Therefore, the mean value of the compensated camera images should

converge to the desired camera image Ẑ, which is set to an uniform image with grey value



94 Chapter 6. Evaluation and Experiments

128. Furthermore, the standard deviation of the image grey values should be minimized.

In Figure 6.3 the progress of mean and standard deviation of the stack images are illus-

trated. In this Figure it is shown, that ADAPT starts at the mean and standard deviation

values of the reconstruction with homogeneous illumination (STD) and converges to the

ADAPT-IT in at least three steps.

6.1.3 Reconstruction with Adaptive Illumination

In this section the relative improvement of the reconstruction results for an adaptive illu-

mination (ADAPT ) of the specimen is evaluated. These SFF results are evaluated against

SFF on an image stack with homogeneous illumination (STD), on HDR images constructed

from two (HDR2 ), three (HDR3 ), four (HDR4 ) and five (HDR5 ) different exposure times.

We followed the method in [14] for selecting suitable exposure times for HDR imaging,

but changed the original set of the exposure times ∆t = {∆t0 ∗ 2n : n = −k, . . . , k} to

a narrower stepping, individually adapted to the specimen, because the original expo-

sure stepping did not give satisfactory results, except of the three-exposure case (HDR3 ).

Table 6.2 shows the relative exposure times for all HDR evaluations, where ∆t0 is the

manually selected exposure time for the single view case (STD).

Method Relative ∆t [%]

STD 100
HDR2 50, 150
HDR3 50, 100, 200
HDR4 25, 75, 150, 200
HDR5 25, 50, 100, 200, 400

HDR10 10, 25, 50, 75, 100, 125, 150, 175, 200, 400

Table 6.2: Relative exposure times ∆t for image acquisition during constant
illumination. HDR(X) designates HDR imaging with X exposure
times. HDR10 is only used for the generation of dense reference
data.

The initial projector pattern for the illumination adaption is always a homogeneous

uniform pattern with gray value 128 (half of the maximum intensity). To ensure the same

possibilities also for standard and HDR approaches, the exposure time was selected to

result in a mean intensity close to 128 in the camera image.

To calculate the exact difference of every reconstruction to the reference scan (HDR10 ),

the result is rigidly registered to the reference scan using a robust variant of the iterative
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closest point algorithm, according to [6]. Therefore the degree of error can be expressed

through the standard deviation of the surface height difference.

Wedge Chamfer CUT1 - front CUT1 - side
Method σ #imgs σ #imgs σ #imgs σ #imgs

STD 3.694 73 3.195 65 6.220 40 79.939 61
HDR2 1.255 146 1.429 130 3.661 80 18.133 122
HDR3 1.215 219 1.371 195 1.921 120 18.140 183
HDR4 1.173 292 1.339 260 1.675 160 2.957 244
HDR5 1.178 365 1.325 325 1.478 200 3.175 305
ADAPT 1.219 75 1.345 67 1.664 42 2.443 63

CUT2 - side CUT2 - corner CUT2 - edge CUT3 - edge
Method σ #imgs σ #imgs σ #imgs σ #imgs

STD 13.100 78 37.960 58 14.30 79 21.6 70
HDR2 7.900 156 6.4294 116 6.1294 158 4.7861 140
HDR3 7.6840 234 4.0276 174 6.0273 237 4.1931 210
HDR4 1.9510 312 3.2380 232 5.5419 316 3.5216 280
HDR5 1.9406 390 2.1125 290 4.8792 395 1.9546 350
ADAPT 2.6046 78 1.9721 58 4.9082 79 2.7244 70

Table 6.3: Reconstruction errors (standard deviation of depth errors) for all ap-
proaches over the specimen in [µm]. One reconstruction consists of
approximately 1.4e6 depth estimates. The number of image acquisi-
tions for each approach is stated as #imgs. HDR results closest to
our approach are highlighted.

Table 6.3 gives the reconstruction errors for all reconstructed specimen and all ap-

proaches. The reconstruction results of the reference specimen are illustrated in Figure 6.4

and Figure 6.5, whereas the corresponding focused texture images for standard and adap-

tive illumination are illustrated in Figure 6.6 and Figure 6.7.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.4: Reconstruction results of specimen Wedge (a-c), Chamfer (d-f),
CUT1 - front (g-i) and CUT1 - side (j-l). SFF results calculated
by STD (a,d,g,j), HDR3 (b,e,h,k) and ADAPT (c,f,i,l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.5: Reconstruction results of specimen CUT2 - side (a-c), CUT2 - corner
(d-f), CUT2 - edge (g-i) and CUT3 - edge (j-l). SFF results calculated
by STD (a,d,g,j), HDR3 (b,e,h,k) and ADAPT (c,f,i,l).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: All-in-focus images. The focused images are compared between STD
(a,c,e,g) and ADAPT (b,d,f,h) for the specimen Wedge (a,b), Cham-
fer (c,d), CUT1 - front (e,f) and CUT1 - side (g,h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: All-in-focus texture images. The focused images are compared be-
tween STD (a,c,e,g) and ADAPT for the specimen CUT2 - side (a,b),
CUT2 - corner (c,d), CUT2 - edge (e,f) and CUT3 - edge (g,h).
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6.2 Projected Texture

In this section the HF texture projection, as presented in Section 5.2 (TEXTURE ), is

evaluated. The purpose of this pattern projection is to create additional texture on low

textured objects to increase the accuracy and robustness of the SFF reconstruction. There-

fore we chose low textured objects to evaluate this method. The reference specimen are

presented in Section 6.2.1. The calculated optimal HF pattern for texture enhancement

is evaluated in Section 6.2.2. Finally, the reconstruction results of the reference speci-

men with projected high frequency pattern are compared to traditional SFF results in

Section 6.2.3.

6.2.1 Reference Specimen

In this section the specimen for the reconstruction evaluation of smooth low textured

objects are presented.

• Transparent polypropylene plane - HF-PLANE

• Planoconvex cylindric optical lens - HF-LENS

• Planoconvex diffusor lens - HF-DIFFLENS

• Mirror - HF-MIRROR

• Planar region of a polished coin - HF-COIN

The texture content on these specimen ranges from absolutely no measurable texture

on the HF-DIFFLENS, HF-LENS and HF-MIRROR specimen to sufficient measurable

texture on the HF-COIN specimen. In Figure 6.8 the different specimen for reconstruction

are illustrated.

For HF-PLANE, HF-MIRROR and HF-COIN the reconstruction error is defined as

the depth standard deviation to a rigidly registered plane and for HF-LENS we have built

a groundtruth model, according to the lens specifications. For the polypropylene diffuser

lens HF-DIFFLENS we have no exact groundtruth. Because the surface of this lens is

smooth with a spherical shape, the groundtruth for this object is calculated as a filtered

HF texture reconstruction result with a focus measure operator twice the size we use for

evaluation (15× 15).



6.2. Projected Texture 101

(a) Polypropylene Plane - HF-
PLANE

(b) Planoconvex Lens - HF-
LENS

(c) Polypropylene Diffuser Lens -
HF-DIFFLENS

(d) Mirror - HF-MIRROR

(e) Polished Coin - HF-
COIN

Figure 6.8: Reference specimen with low texture. The specimen (a) plane, (b)
planoconvex cylindric lens (c) polypropylen diffusor lens, (d) mirror
and (e) coin need additional texture projection for robust reconstruc-
tion.
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6.2.2 Optimal Pattern Calibration

In this section the frequency of the projected texture pattern, used to enhance the natural

object texture, is evaluated. As presented in Section 5.2, the calculated optimal frequency

is 2σp <
1
2 tx = 1

2 ty < mx,y + 2, where σp is the point spread of one projected pixel and

mx,y is the size of the focus measure operator. In this evaluation we want to prove that

the calculated optimal frequency delivers also the optimal reconstruction results for real

specimen.

Pattern Frequency tx,y/2
mx,y 3.4 6.8 10.2 13.4 20.4

3 41.1660 17.4190 7.9267 8.5767 12.8890
5 55.3710 17.7840 3.9098 6.2270 12.5340
7 56.4720 14.3830 1.6297 4.2421 9.9441
9 59.1490 10.3760 0.7194 3.2119 8.2591
11 57.7680 7.3985 0.4521 1.8536 7.6662

Table 6.4: Evaluation of optimal HF pattern frequency. Reconstruction errors
of the HF-LENS object for different HF pattern frequencies tx,y/2
reconstructed with different size of the focus measure operatormx,y in
[µm]. The calculated optimal HF pattern frequencies are highlighted.

In Table 6.4 the reconstruction errors of the HF-DIFFLENS object are

shown. The object is illuminated with HF pattern of different frequencies

(tx,y/2 = {3.4, 6.8, 10.2, 13.4, 20.4}) and reconstructed with different sizes of the focus

measure operator (mx,y = {3, 5, 7, 9, 11}). In Figure 6.9 the reconstruction results of the

specimen with HF pattern illumination are illustrated.

6.2.3 Reconstruction with HF pattern projection

In this section the evaluation results of SFF reconstructions with projected HF texture pat-

tern (TEXTURE ) are presented. The focus measure operator has a size of 9× 9, whereas

the frequency of the HF pattern is 3× 3 projector pixels, which results in approximately

10.2× 10.2 camera pixels.
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(a) txy = 3.4 (b) txy = 6.8 (c) txy = 10.2

(d) txy = 13.6 (e) txy = 20.4 (f) txy = 27.2

Figure 6.9: Reconstruction of the HF-DIFFLENS specimen with HF texture pat-
terns of different frequencies. One projector pixel directly influences
∼ 3.4 × 3.4 camera pixels, 2σp ≈ 8.4 at a Tenengrad window size of
9× 9. The calculated optimal HF pattern frequency is highlighted.

HF-PLANE HF-LENS HF-DIFFLENS HF-MIRROR HF-COIN

STD 18.9890 n.m. n.m. n.m. 6.5291
HF Pattern 5.7553 2.9322 1.7194 7.4574 2.4865

Table 6.5: Reconstruction errors of texture pattern projection. Reconstruction
errors (standard deviation of depth errors) for low textured objects
with homogeneous illumination (STD) compared to the illumination
of a HF pattern (TEXTURE ) in [µm]. (n.m. not measurable)

In Table 6.5 the reconstruction errors for all reference specimen are shown, whereas

the reconstruction results of HF-LENS, HF-DIFFLENS and HF-MIRROR did not lead

to a measurable reconstruction result with STD, because no texture could be detected.

The reconstructed depth maps of the reference specimen are shown in Figure 6.10 and

Figure 6.11.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Reconstruction results of specimen HF-PLANE (a,b), HF-LENS
(c,d) and HF-DIFFLENS (e,f). SFF results calculated by STD
(a,c,e) and with TEXTURE (b,d,f).
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(a) (b)

(c) (d)

Figure 6.11: Reconstruction results of specimen HF-MIRROR (a,b) and HF-COIN
(c,d). SFF results calculated by STD (a,c) and with TEXTURE
(b,d).
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6.3 Combination of HF Pattern with Adapted Illumination

In this section the results for the combination of illumination adaption (ADAPT ) and HF

texture pattern TEXTURE according to Section 5.3 are presented. The problem in this

case is that we have no usable groundtruth data. This is caused by the operation area of

this method. On the one side the reconstruction object has to be smooth enough for the

usage of a HF pattern and on the other side it has to contain differences in the dynamic

range for adaption. Therefore, both the use of planar objects and the comparison to HDR

results are senseless for accurate quality measurement.

To define the quality of this method we evaluate the robustness of the reconstruction

results. This is done by the calculation of an outlier percentage in our reconstruction,

whereas an outlier is defined as a depth variation higher than 20µm between consecutive

pixels. This outlier percentage is calculated for specimen with both low textured parts and

parts with varying reflectance. To compare this illumination to other methods, the results

are calculated for traditional SFF with homogeneous illumination (STD), HF pattern

projection TEXTURE, predictive adaption ADAPT, predictive adaption with added high

frequency pattern HF+ADAPT and predictive adaption with a HF pattern used as desired

camera image ADAPTED-HF. Additionally, to evaluate the robustness of this method to

previous reconstructions, the reconstruction of the reference objects from Section 6.1 is

compared to the a reconstruction with standard adaption and the groundtruth.

The reference specimen to evaluate the robustness are illustrated in Section 6.3.1,

whereas the evaluation results are presented in Section 6.3.2.

6.3.1 Reference Specimen

To test the robustness of this method, the evaluation objects must contain both regions

with a high dynamic range and very smooth and low-textured regions. Therefore we

selected different regions on a polished coin, namely COIN1, COIN2 and COIN3, as

illustrated in Figure 6.12. In these regions both, parts with low texture and with reflection

differences occur which makes them ideal for the evaluation of this method.

6.3.2 Robustness Evaluation

In this section the combination of HF projection pattern and adapted illumination is eval-

uated. Therefore different specimen, as illustrated in Section 6.3.1 are reconstructed with

the different illumination possibilities. In Table 6.6 the reconstruction error is measured
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Figure 6.12: Reference specimen for combination of HF pattern with adaption.
The regions on the polished coin have both low-textured regions and
regions with a high dynamic range in the reflectance.

by the percentage of outliers in the scene.

COIN1 COIN2 COIN3
Method outlier [%] outlier [%] outlier [%]

STD 4.1525 5.3718 6.1728
TEXTURE 2.5003 3.8086 5.7613
ADAPT 3.0499 3.5301 3.7403
HF+ADAPT 1.8322 2.4307 3.2458
ADAPTED-HF 1.6366 2.6554 3.4522

Table 6.6: Outlier for reconstruction of HF pattern combined with adaption.
The outlier percentage calculated for the reconstruction of regions
on a polished coin for the different illumination methods. The best
results are highlighted.

The reconstructed depth maps of the specimen are illustrated in Figure 6.13 (COIN1 )

and Figure 6.14 (COIN2 and COIN3 ).

To compare the reconstruction of HF+ADAPT and ADAPTED-HF to the reconstruc-

tion results of Section 6.1.3, the reconstruction error is calculated for CUT2 - side and

CUT2 - corner specimen, as listed in Table 6.7.
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CUT2 - side CUT2 - corner
Method σ #imgs σ #imgs

STD 13.100 78 37.960 58
HDR3 7.6840 234 4.0276 174
ADAPT 2.6046 78 1.9721 58
HF+ADAPT 2.2515 78 2.1825 58
ADAPTED-HF 2.4006 78 3.3317 58

Table 6.7: Reconstruction errors (standard deviation of depth errors) for the
specimen CUT2 - side and CUT2 - corner of previous methods com-
pared with the combination of adaption and HF pattern projection
in [µm]. The best results are highlighted.

(a) (b)

(c) (d)

Figure 6.13: Reconstruction result for COIN1 specimen with STD (a), TEXTURE
(b), HF+ADAPT (c) and ADAPTED-HF (d).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.14: Reconstruction result for COIN2 (a-d) and COIN3 (e-h) speci-
men with STD (a,e), TEXTURE (b,f), HF+ADAPT (c,g) and
ADAPTED-HF (d,h).
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6.4 Integral Shape From Focus

In this section the evaluation of the integral shape from focus (ISFF) method is presented.

This method calculates an IPSF for the reconstruction of a focused image out of the

SFF image stack as presented in Section 5.4. After calculation of the focused image, the

focus measure is calculated with a patch-wise correlation of the images from the image

stack with the restored focused image. Because the equality value from this correlation is

normalized between −1 and 1, the focus calculation can be stopped at a local maximum

above a predefined threshold.

For evaluation we use the IPSF calibrated with the TV-L1 approach on a textured plane

(see Fig. 6.15) normal to the optical axis (PLANE-NORM-GT ). The NCC is calculated

in a correlation window of 7× 7.

In Section 6.4.2 the influence of noise on the IPSF focused image reconstruction is

evaluated. The depth reconstruction using the ISFF method is compared to traditional

SFF method (STD) in Section 6.4.3. The speed improvements of the thresholded focus

calculation (ISFF-FAST ) are evaluated in Section 6.4.4. The reference specimen for ISFF

evaluation are presented in Section 6.4.1.

6.4.1 Reference Specimen

To evaluate the ISFF method on real objects, we chose regions on a defined measurement

object, as illustrated in Figure 6.15. It consists of two planes with a defined height dif-

ference of 1µm. The surface has enough measurable texture to get a depth map with

the traditional SFF. To evaluate the ISFF method, three different regions are chosen on

Figure 6.15: Planar Specimen. Object with two defined planes in 1µm height
difference.

this plane and are acquired where the object is placed in front of the acquisition system

with different angles to the optical axis, namely PLANE-NORM (normal to the opit-
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ical axis), PLANE-SKEW5 (skew with rotation of ∼ 5 degrees about the y axis) and

PLANE-SKEW10 (skew with rotation of ∼ 10 degrees about the y axis).

To measure the influence of noise on the IPSF focused image convolution, we chose

a synthetic object (CHESS ). For this object an exact texture image and an exact

groundtruth is available. The synthetic SFF image stack is generated by applying a

Gaussian blur according to the level of focus in each image. Therewith a stack of 25

images is generated. In Figure 6.16 the synthetic specimen and sample stack images are

shown.

6.4.2 Noise Influence on the Focused Image Reconstruction

The reconstruction of a focused image by deconvolution of the IPSF with the integral

image out of the image stack is noise sensitive. Therefore we evaluate the reconstruction

of the focused image under the influence of defined noise. To get a defined noise on the

acquired images we use a synthetic scene (CHESS ), where the degree of noise can be

specified exactly.

For evaluation, white noise with a standard deviation σw ranging form 0 to 0.02 is

applied on the stack images. The integral image is calculated by the mean of the sum

of the image stack. To calculate the restored focused image, the integrated image stack

is convolved with the IPSF estimated from the synthetic groundtruth without noise and

with the IPSF from the textured reference plane (PLANE-NORM-GT ). In Figure 6.17

the error of the restored images with two different IPSF estimations is shown. The error

is calculated as the difference in mean and standard deviation to the groundtruth texture

image. It can be seen that the standard deviation error is very low when no noise was

applied and steeply rises with increasing noise. The resulting restored focus images are

illustrated in Figure 6.18.

6.4.3 ISFF Depth Reconstructions

In this section the SFF depth reconstruction calculated with the correlation based focus

measure is evaluated. The depth map is reconstructed for the normal plane PLANE-

NORM, the skew planes PLANE-SKEW5 and PLANE-SKEW10 specimen. The correla-

tion focus measure is calculated with both a known focused image from the groundtruth

(ISFF-GT ) and restored focused images with the IPSF from PLANE-NORM (ISFF ),

whereas the results are compared with standard SFF reconstructions (STD). The recon-

struction errors are measured as a standard deviation of depth errors to a rigidly registered
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(a) Scene depth map (b) Depth map with texture

(c) Synthetic stack, image 5 (d) Synthetic stack, image 12

(e) Synthetic stack, image 17 (f) Synthetic stack, image 21

Figure 6.16: Synthetic specimen. For robust evaluation of the influence of noise in
the reconstruction of the focused image a reference scene is generated.
The SFF stack for the synthetic specimen is calculated by applying
Gaussian noise to the texture image according to the level of focus.
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(a) IPSF calibrated on the synthetic model
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(b) IPSF calibrated with PLANE-NORM-GT

Figure 6.17: Influence of Noise on IPSF convolution. The difference between the
all-in-focus texture and the restored focused texture under the in-
fluence of noise. The error is measured with the difference of mean
and standard deviation between the images. In (a) the focused im-
age is restored with an IPSF calibrated at the noise-free synthetic
model (CHESS ) and (b) is restored with the standard IPSF from
PLANE-NORM-GT.

plane in [µm]. One reconstruction consists of approximately 1.4e6 depth estimates. In

Table 6.8 the reconstruction error results are listed and the reconstructed depth maps are

illustrated in Figure 6.19. The corresponding focused image restorations by convolution

through the IPSF are illustrated in Figure 6.20.

STD ISFF-GT ISFF
Specimen σ σ σ

PLANE-NORM 1.6577 1.8820 2.6573
PLANE-SKEW5 1.7505 3.9738 3.6144
PLANE-SKEW10 2.3648 3.9862 16.675

Table 6.8: ISFF reconstruction results. The reconstruction error of the specimen
is calculated by the standard deviation σ of the difference to a rigidly
registered reference plane in [µm].



114 Chapter 6. Evaluation and Experiments

(a) Groundtruth texture (b) Restored σw = 0

(c) Restored σw = 0.005 (d) Restored σw = 0.01

(e) Restored σw = 0.015 (f) Restored σw = 0.2

Figure 6.18: Restored all-in-focus images. The texture is restored by convolution
of the integral image with different noise levels in the image stack
and the IPSF from PLANE-NORM-GT.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.19: ISFF reconstruction results of specimen PLANE-NORM (a-c),
PLANE-SKEW5 (d-f) and PLANE-SKEW10 (g-i). The depth maps
are calculated with STD (a,d,g), correlation based focus measure with
groundtruth texture as NCC template (ISFF-GT ) (b,e,h) and corre-
lation based focus measure restored all-in-focus image using the IPSF
(ISFF ) (c,f,i).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: IPSF all-in-focus image recovery. The original texture (a,c,e) is
compared with the restored texture using the IPSF (b,d,f) for the
specimen PLANE-NORM (a,b), PLANE-SKEW5 (c,d) and PLANE-
SKEW10 (e,f).
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6.4.4 Speed Improvements of ISFF

The speed of the focus calculation for the ISFF can be increased by an additional con-

straint to stop the maximum search, when a local maximum in the focus vector is found

above a predefined threshold (ISFF-FAST ). In this section the speed improvements and

the reconstruction results with different thresholds are evaluated on the PLANE-SKEW5

specimen.

First, the reconstruction result of the ISFF with the speed improvements at different

threshold values is compared to the reconstruction of the specimen without speed im-

provements. To evaluate if a focus maximum is found with ISFF-FAST, the percentage

of wrong focus maxima is recorded. To evaluate the speed improvement, the relative time

differences for each threshold level is compared to the depth estimation of the focus max-

imum estimation of traditional SFF. Additionally, the reconstruction error is calculated

for the ISFF-FAST result calculated through the standard deviation of the reconstruction

difference to a rigidly registered groundtruth plane. In Table 6.9 and Figure 6.21 the eval-

uation results are illustrated. To measure the relative time improvement the mean of the

computation time for ten iterations is calculated. The reconstruction results are shown in

Figure 6.22. The best reconstruction result is calculated at a threshold of 0.9 with 1.63

percent outliers compared to ISFF and a standard deviation of depth errors of 8.5687µm

with a time improvement of 31.9 percent.

ISFF-FAST
Threshold wrong maxima [%] time improvement [%] σ [µm]

0.750 25.7359 43.927 27.7370
0.775 18.9226 43.280 23.3090
0.800 13.2364 42.575 18.8750
0.825 8.6745 38.517 14.8740
0.850 5.2509 35.869 11.4490
0.875 2.8909 35.692 8.8679
0.900 1.5799 31.906 8.5687
0.925 1.6264 29.881 13.4190
0.950 6.0163 25.041 28.8700
0.975 38.5443 18.435 63.9810

Table 6.9: Evaluation of speed improvements in ISFF. To evaluate the recon-
struction results of ISFF-FAST, the percentage of wrong focus max-
ima compared to ISFF reconstruction is recorded. Furthermore the
relative computation time differences are included. The best results
are highlighted.
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Figure 6.21: Error perfomance of ISFF-FAST. The wrong maxima percentage of
ISFF-FAST compared to ISFF and the standard deviation of depth
errors (σ) to a rigidly registered plane is calculated at different thresh-
olds.

6.5 Summary

In this chapter the different methods to increase speed, robustness and accuracy of the

SFF reconstruction were evaluated. To test the performance of adaptive illumination

the SFF reconstruction results of homogeneous illumination, HDR image acquisition and

the adaptive illumination was compared to groundtruth data. To evaluate the texture

projection method the SFF reconstructions with and without additional texture of different

textured specimen were compared to a known groundtruth. This delivered exact results

of the performance of this method compared to traditional SFF. The combination of

adaptive illumination and texture projection was tested at different specimen with both

local differences in the object reflection and low textured regions. Since groundtruth was

not available for this specimen, we measured the number of outliers in the reconstruction

result, whereas an outlier was defined as a significant change in depth between consecutive

pixels of the reconstruction result. To evaluate the ISFF method we first tested the

influence of noise on the all-in-focus texture image creation on a synthetic model. The

quality of the ISFF reconstruction was tested with a planar specimen captured at different

angles to the optical axis. The error was calculated with the difference to planarity and

was compared to reconstruction errors of traditional SFF. Furthermore we evaluated the

speed improvements and the error influence at different thresholds.
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(a) Threshold 0.75 (b) Threshold 0.80

(c) Threshold 0.85 (d) Threshold 0.90

(e) Threshold 0.95

Figure 6.22: Reconstruction results of ISFF-FAST. The depth map was recon-
structed with the correlation based focus measurement where the
maximum search through the correlation stack stops if a local maxi-
mum is found beyond a predefined threshold.





Chapter 7

Discussion and Outlook

In this work a SFF acquisition system with a microscopic projector-camera system was

realized. The optical system was constructed to use the projector as coaxial and locally

adaptive light source to illuminate the specimen. Traditional microscopic SFF reconstruc-

tion systems with a homogeneous light source have problems to detect the degree of focus

when the dynamics in the specimen reflectance are higher than the radiometric sensor

resolution or when the specimen lacks in detectable texture, since it measures the focus

through pixel intensity variations. The projector-camera system was designed to overcome

these problems. On the one side, with the assistance of a projector as illumination source,

it is possible to locally adjust the illumination intensity according to the local reflectance.

Therewith, the high dynamic differences can be compensated. On the other side, when re-

constructing low textured objects, the projector can be used to project additional texture

on the object, which has the same characteristics as the natural texture.

A different problem in SFF focus reconstruction is its computation time. In the algo-

rithm, multiple images have to be acquired with varying distances from the camera to the

specimen. To get a dense reconstruction, each point on the specimen has to be in focus on

at least one image. A focus measure operator calculates the level of focus for every pixel

in every acquired image. The depth is estimated by searching through the focus levels of

every pixel in every image. In this work we invented a new focus measure which enables

a reduction of the computational cost for depth reconstruction. In this novel method an

all-in-focus texture image was restored out of the image stack. Every pixel in this focused

image texture was compared to the corresponding pixels in the image stack through NCC.

Because the NCC correspondence values are normalized between −1 and 1 the search for

a focus maximum can be stopped, when a local maximum beyond a predefined threshold

121
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is found.

In Chapter 6 these methods were analysed concerning their performance, speed and

accuracy through different experiments and evaluations. In this section, the results of

this analysis and the advantages and disadvantages of the different methods presented in

Chapter 5 are discussed.

To compensate a variety of object reflections in the adaption process, we calculated a

compensation pattern for the projector in a prediction-correction manner. This reduces

the number of required acquisitions to a single compensation. These results were compared

to the iterative adaption, where the projection pattern was iteratively calculated in every

depth step separately, where four camera acquisitions were necessary in every step. In the

experiments it was shown, that the acquisition of an entire stack requires at least three

additional depth steps for initialisation of the predictive adaption, which is negligible on

a typical stack of sixty images.

The reconstruction results with an adaptive scene illumination were compared to the

classical, single image approach, and with reconstruction from HDR imaging. According to

our experiments, we obtained a robust reconstruction for all specimen while the standard

SFF approach inevitably fails. When comparing the reconstruction errors, HDR imaging

requires at least three measurements per image to reach the accuracy level of adapted

illumination. Furthermore, for more difficult scenes with higher dynamic ranges even

reconstructions with five acquisitions did not reach our level. Therewith we can say that

the reconstruction result of our method really competed with methods like HDR imaging

while the measurement time of HDR was at least three times higher. Of course, our

approach was limited by the dynamic ranges of camera and projector. For a scene dynamic

which exceeds the product of both ranges, a full compensation of the scene reflectance can

not be guaranteed with a single camera exposure time.

We have also proposed the projection of texture on objects to increase the reconstruc-

tion accuracy. With the assistance of a projected texture the accuracy and the robustness

was increased for low textured objects compared to standard illumination. Even objects

without any measurable texture could be geometrically reconstructed. Furthermore, on

objects with natural texture, the additional texture projection increased the robustness

and accuracy of the SFF algorithm. The main disadvantage of this method was the strict

dynamic range which was created with this method. Because the texture pattern only

projects projector values of 0 and 255 it was very vulnerable to differences in the object

reflectance. At high reflectance and a projected value of 255, the pixel region easily became
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over exposed.

Therefore we invented a method which combines the properties of these methods. It

merged the creation of texture through projection with the radiometric compensation

of the scene reflectance. This enabled the projector-camera system to reconstruct low-

textured objects with varying reflection properties. Although, this method did not have

the same performance as the single methods in their field of application, it was generally

applicable on different objects without any previous knowledge of object texture and

reflectance.

For acceleration of the depth map reconstruction a new focus measurement was pre-

sented in this work. The focus was calculated through a gray value comparison of the

acquired SFF images and an all-in-focus image, which was calculated through deconvo-

lution of the integrated image stack with a previously calibrated IPSF. The experiments

had shown that the reconstruction time for this method could be reduced by more than

30 percent compared to the traditional SFF algorithm with a degradation in accuracy of

1.58 percent. One major problem of the ISFF method was that the convolution of the all-

in-focus image was very noise sensitive. On just a slight amount of noise, the all-in-focus

image could not be recovered accurate enough to calculate an acceptable depth map. In

our experiments we found out, that especially on high defocus of the surface points in

the images stack, the reconstruction of the all-in-focus image gets inaccurate. Another

problem in the IPSF calibration were the magnification shifts of surface points during the

defocusing. Because, when the distance from the object to the specimen varied, also the

magnification changed. Although, this led to a change of a surface point in the camera

image of a few pixels, Nagahara et al. [40] mentioned that this effect is imperceptible for

image reconstruction.

For the texture projection, future work will be to increase the projector to camera

pixel ratio to increase the projector resolution on the acquired specimen. This will lead do

a smaller PSF of one projector pixel. Therewith, also the texture can be projected with

a higher resolution, where the focus measure operators detect more intensity variations,

which increases the sensitivity and the spatial resolution of the focus measurement.

For the ISFF method future work will be to include a robust noise estimation in the

IPSF convolution. With improvement toward noise sensitivity, the ISFF will deliver better

all-in-focus images, which lead to better correlation results with the NCC. Therewith,

three dimensional (3D) reconstructions results with the same performance as traditional

SFF are possible in less computation time. Furthermore, if a perfect all-in-focus texture
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reconstruction is possible, a correlation can be estimated with more simple approaches

e.g. the sum of absolute differences (SAD) algorithm. It only calculates the absolute pixel

differences instead of using the NCC. With this very fast algorithm the computation time

of ISFF can be further decreased.



Appendix A

Acronyms and Symbols

List of Acronyms

3D three dimensional

AFM atomic force microscope

CCD charge coupled device

crf camera response function

DLP direct light processing

DOF depth of field

DP dynamic programming

FFT fast Fourier transform

FIS focused image surface

HDR high dynamic range

HF high frequency

IPSF integral point spread function

ISFF integral shape from focus

LCD liquid crystal display

LCoS liquid crystal on silicon

LTM light transport matrix

LUT look-up table

ML modified Laplacian

MP megapixel

NCC normalized cross correlation

OTF optical transfer function
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PDF probability density function

prf projector response function

PSF point spread function

RC radiometric compensation

SEM scanning electron microscope

SLM spatial light modulator

SFF shape from focus

SFD shape from defocus

SFSh shape from shading

SFS shape from stereo

SML sum of modified Laplacian

SAD sum of absolute differences

WGN white Gaussian noise
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