
Integration of a Java Physics

Framework in a Virtual World
Techniques Applied for Redesigning an Educational 3D

Software to Run in Distributed Environments

Master’s Thesis

at

Graz University of Technology

submitted by

Christian Schratter

Supervisor: Dipl.-Ing. Dr. techn. Christian Gütl

Institute for Information Systems and Computer Media (IICM)

Graz University of Technology

A-8010 Graz, Austria

Co-Supervisor: Professor John W. Belcher

Department of Physics and Center for Educational Computing Initiatives (CECI)

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

© 2013, Christian Schratter

November 4th, 2013

Integration eines Java Physik-

Baukastens in einer Virtuellen Welt
Angewandte Techniken um eine 3D Lernsoftware für

Verteilte Umgebungen zu Adaptieren

Masterarbeit

an der

Technischen Universität Graz

vorgelegt von

Christian Schratter

Betreuer: Univ.-Doz. Dipl.-Ing. Dr. techn. Christian Gütl

Institut für Informationssysteme und Computer Medien (IICM)

Technische Universität Graz

A-8010 Graz, Österreich

Co-Betreuer: Professor John W. Belcher

Department of Physics und Center for Educational Computing Initiatives (CECI)

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

© 2013, Christian Schratter

04. November 2013

Abstract

i

AAbbssttrraacctt

E-learning is a technique on the rise, especially in tertiary education. Nowadays, most universities

offer their students electronic tools to enable or support their learning tasks. The Massachusetts

Institute of Technology (MIT), which is well known for its continuing efforts in this area within

their OpenCourseWare project, is constantly increasing its e-learning portfolio, with its latest joint

project, edX, being one more step towards the goal of making the university’s complete course

catalog available in virtual form. This development provided the initial impetus for the present

master’s thesis, while a further concept developed at MIT, Technology Enabled Active Learning

(TEAL), provided additional motivation. In short, physics professors at MIT use TEAL to change

lectures from a recitation to an interactive format, in which students collaborate in smaller

groups. Initially, a third incentive existed as well: employing virtual worlds as host environment

for educational setups. However, as outlined in the course of this thesis, a substantial amount of

additional work would be required to properly embed the TEAL learning tools in the virtual

world, for which reason this aspect was eventually de-emphasized in the present work.

Starting from these three motivational factors, the question emerged of how existing e-learning

tools could be further developed to support educational efforts. To this end, a concept was

developed which enables one of the TEAL learning aids – the TEAL Simulation Framework

(TEALsim) – to run in distributed environments. The guiding principles for the design were

scalability, flexibility and consistency. To achieve these design goals, TEALsim was converted to a

client-server architecture. In this process, many different areas of the framework had to be

adapted. The most important of these changes, such as the new characteristics of the simulation

engine, are outlined in this document to support the inline documentation of the source code.

These explanations usually include a preceding analyses of the issues encountered that led to the

changes, along with subsequent summaries of the designs implemented.

Ultimately, most of the chapters herein revolve around the topic of how to ensure the

synchronization of the simulation’s calculations, as well as its visual representation. This requires

a comprehensive network package, the essentials of which are discussed in multiple chapters

here, including definitions of the expected system behavior, an analysis of how the network layer

is integrated in TEALsim, and the documentation of the exchangeable connection system. In this

context, the mechanics of the TEALsim OpenWonderland module are also outlined to provide a

reference point for other external projects seeking to utilize the TEALsim framework.

The final section of this thesis offers a brief summary of the personal experiences gained in the

course of this thesis and also provides a list of suggested future projects that would need to be

completed in order to develop the prototype implemented here into a releasable software

product.

Integration of a Java Physics Framework in a Virtual World

ii

Kurzfassung

iii

KKuurrzzffaassssuunngg

E-Learning ist eine Methode die speziell im tertiären Bildungssektor zunehmend an Bedeutung

gewinnt. Heutzutage bieten die meisten Universitäten ihren Studenten bereits elektronische

Hilfsmittel, um die Lehre zu unterstützen oder überhaupt erst zu ermöglichen. Das Massachusetts

Institute of Technology (MIT) ist in dieser Hinsicht schon länger bekannt durch sein

OpenCourseWare Projekt und ständig am Erweitern seines E-Learning Angebots. Eines seiner

letzten Projekte, edX, ist ein weiterer Schritt das gesamte Studienangebot in Form von Virtual

Education verfügbar zu machen. Diese Entwicklung stellt eine der Hauptmotivationen zur

Durchführung dieser Masterarbeit dar. Ein weiterer Anreiz ist das ebenfalls am MIT entwickelte

„Technology Enabled Active Learning“ (TEAL) Konzept. Kurz zusammengefasst handelt es sich

dabei um die Idee, Vorlesungen mit Frontalvortrag durch eine interaktive Variante zu ersetzen,

bei der Studenten in Kleingruppen zusammenarbeiten. Der ursprünglich dritte Anreiz für diese

Arbeit bestand im Bestreben virtuelle Welten als Lernumgebung einzusetzen. Dieser Ansatz

verlor, wie im Laufe dieser schriftlichen Arbeit genauer dargelegt, jedoch an Bedeutung, da es

eines beträchtlichen Aufwandes bedurft hätte die elektronischen Hilfsmittel von TEAL adäquat in

einer virtuellen Welt zu integrieren.

Ausgehend von diesen drei Motivationsfaktoren stellte sich die Frage wie verfügbare E-Learning-

Werkzeuge noch besser für die Lehre eingesetzt werden können. Aus diesem Grund wurde eines

der TEAL Hilfsmittel – das TEAL Simulation Famework (TEALsim) – angepasst um in verteilten

Systemen zu laufen. Der Leitgedanke des neuen Designs basierte dabei auf den Aspekten

Skalierbarkeit, Flexibilität als auch Konsistenz. Um diese Ziele zu erreichen wurde TEALsim mit

einer Client-Server-Architektur erweitert, was umfangreiche Änderungen in vielen Bereichen des

Frameworks erforderte. Die wichtigsten dieser Änderungen, wie zum Beispiel Details des neuen

Algorithmus zur Simulationsberechnung, werden in diesem Dokument genauer erläutert. In der

Regel umfassen diese Darlegungen eine einleitende Analyse der aufgetretenen Probleme welche

die Anpassungen erforderlich machten, gefolgt von einer Zusammenfassung der implementierten

Lösung.

Schlussendlich drehen sich die meisten Kapitel um die Frage wie die Synchronisierung der

Simulationsberechnungen sowie der visuellen Darstellung in verteilten Systemen erreicht werden

kann. Dafür wurde ein umfangreiches Netzwerkpaket entworfen, dessen Details in mehreren

Kapiteln beschrieben werden. Diese Dokumentation reicht von der Definition des erwarteten

Systemverhaltens über eine Beschreibung der integrierten Netzwerkschicht in TEALsim bis hin

zum austauschbaren Connection System. In diesem Zusammenhang werden auch Aspekte des

TEALsim OpenWonderland Moduls erläutert, um als Leitfaden zu dienen wie das TEALsim

Framework in externen Projekten eingebunden werden kann.

Der abschließende Teil dieser Thesis fasst die persönlichen Erfahrungen zusammen die im Laufe

dieser Masterarbeit gesammelt wurden und listet in weiterer Folge Vorschläge auf, welche

zusätzlichen Entwicklungsschritte notwendig wären um den verfügbaren Prototypen zu einem in

der Praxis einsetzbaren Produkt weiterzuentwickeln.

Integration of a Java Physics Framework in a Virtual World

iv

Affirmations

v

AAffffiirrmmaattiioonnss

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the

declared sources / resources, and that I have explicitly marked all material which has been quoted

either literally or by content from the used sources.

 ………………………………... ………………………………...

 (Place, Date) (Signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

 ………………………………... ………………………………...

 (Ort, Datum) (Unterschrift)

Integration of a Java Physics Framework in a Virtual World

vi

Acknowledgments

vii

AAcckknnoowwlleeddggmmeennttss

First, I would like to thank my supervisor at Graz University of Technology, Christian Gütl, for

supporting me with his expertise, input and ideas for how to conduct this thesis so as to produce

useful results. His continued belief in me paved the way for an enduring collaboration over the

course of the last couple of years, which eventually led him to recommend me to his colleagues at

the Massachusetts Institute of Technology (MIT), thereby enabling this university-spanning

project.

In addition, I would like to express my gratitude to all the people who worked with me at the

Center for Educational Computing Initiatives department at MIT: John Belcher for co-supervising

me, Judson Harward and Phil Bailey for all their explanations, input and constructive talks about

how to further develop TEALsim, and of course Meg, Kirky, Maria, Jim and Mark for everything

they did to make my stay in the United States as enjoyable and productive as possible.

Furthermore, I would like to thank the following institutions for funding this thesis, in particular

with regard to my extended stay in the USA: the Marshall Plan Foundation1 for granting a

‘Marshall Plan Scholarship’, the Industriellenvereinigung Kärnten2 for granting an

‘Exzellenzstipendium’, the Internet Foundation Austria for granting a scholarship in the context of

the call for the ‘Netidee 2012’3, the Verband selbstständig Wirtschaftstreibender Kärntens for

granting an ‘Auslandsstipendium’, Dr. Josef Martinz for granting a scholarship for studies in

foreign countries, and the Faculty of Informatics4 at Graz University of Technology for granting a

‘Förderungsstipendium‘.

Last but not least, I would like to take this opportunity to thank my family for supporting my

studies at every point in time and in every way possible, which has allowed me to have a wide

variety of experiences and a great deal of enjoyment during my time as a student.

Christian Schratter

Graz, Austria, October 2013

1 Marshall Plan Foundation – http://www.marshallplan.at
2 IV Kärnten – http://www.iv-kaernten.at
3 Netidee 2012 by Internet Foundation Austria – http://www.netidee.at
4 Faculty of Informatics – http://www.dinf.tugraz.at/

http://www.marshallplan.at/
http://www.iv-kaernten.at/
http://www.netidee.at/
http://www.dinf.tugraz.at/

Integration of a Java Physics Framework in a Virtual World

viii

Contents

ix

CCoonntteennttss

Abstract ... i

Kurzfassung .. iii

Affirmations ... v

Acknowledgments ... vii

Contents .. ix

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Definition of Objectives ... 2

1.3 Structure .. 4

I General Background .. 5

2 Terms and Definitions ... 7

2.1 STEM Education .. 7

2.2 What is TEAL?.. 8

2.3 What is e-Learning .. 9

2.3.1 Formal Definitions.. 9

2.3.2 Different Kinds of e-Learning ... 10

2.4 Different Kinds of Multi-User Environments ... 13

2.5 Examples for Existing e-Learning Instruments .. 15

2.5.1 The TEAL Simulation Framework .. 16

2.5.2 Academic Online Learning Programs Like edX ... 16

2.5.3 Educational Games .. 17

Integration of a Java Physics Framework in a Virtual World

x

2.6 Thin Clients Versus Fat Clients .. 18

2.7 Summary ... 20

3 TEALsim in a Multi-User Environment ..21

3.1 Potential Host Environments for TEALsim ... 21

3.1.1 Stand-alone Version of TEALsim Without Network Features 23

3.1.2 Stand-Alone Java Application with Multi-User Component ... 23

3.1.3 TEALsim Embedded in a 3D Virtual World ... 24

3.1.4 Mixed Mode .. 24

3.2 Previous Network Architecture ... 25

3.2.1 Principles of the Architecture and the Execution Sequence ... 25

3.2.2 Performance Characteristics ... 26

3.2.3 Limitations Introduced by 3rd Party Frameworks .. 27

3.2.4 Recapitulation .. 28

3.3 Alternative Approach Derived from Video Games... 29

3.4 Comparison of Previous Design Versus Alternative Design .. 32

3.4.1 Complexity of TEALsim Framework .. 32

3.4.2 Complexity of OWL Module ... 32

3.4.3 Complexity to Create New Content ... 32

3.4.4 Network Congestion and Scalability .. 33

3.4.5 Code Extensibility and Autonomy ... 33

3.4.6 Versatility .. 34

3.4.7 Server Hardware Requirements .. 34

3.4.8 Client Hardware Requirements .. 34

3.4.9 Recapitulation .. 35

3.5 Synchronization of User Inputs ... 35

3.6 Summary ... 36

4 Designing a Deterministic Simulation Engine ..37

4.1 Idea Behind a Deterministic Algorithm .. 37

4.2 Issues Complicating an Implicit Synchronization Simulation Calculations 39

4.2.1 Double Precision Divergence Across Multiple Clients .. 39

4.2.2 Calculation Divergence Based on Algorithm Step-Sizes .. 40

4.3 Concept of the Configurable Simulation Engine ... 41

Contents

xi

4.4 Design of the Algorithm for Local Simulation Calculation ... 41

4.5 Details of the Simulation Engine Running in State Streaming Mode 45

4.6 Summary... 45

5 Synchronizing Concurrent Clients ... 46

5.1 Use Cases for Most Relevant Design Aspects ... 46

5.2 Details Regarding SimulationTime Calculation .. 51

5.3 Security ... 51

5.4 Summary... 52

II Implementation Details ... 53

6 State of the TEALsim Project .. 55

6.1 Issues with Redundant and Obscure Code ... 58

6.2 Move from CVS to SVN .. 60

6.3 Integration into Netbeans and Rework of the Build Script ... 60

6.4 Addition of JUnit Tests .. 63

6.5 Addition of a Logging Framework ... 65

6.6 Streamlining the User Interface .. 67

6.7 Summary... 70

7 The Underlying Network Layer ... 71

7.1 General Design of the Network Architecture .. 71

7.2 Socket Based Implementation of Connection .. 77

7.3 Implementation of a Connection for Communication Within a Single JVM 78

7.4 Open Wonderland Specific Implementation of Connection .. 79

7.5 Design of Synchronizable Elements .. 79

7.5.1 General Schema of SynchronizableGeneric Classes .. 79

7.5.2 Synchronizable UI Controls ... 81

7.5.3 Usage in TEALsim Applications ... 82

7.6 Summary... 83

8 Starting and Using the TEALsim Framework ... 84

8.1 Options to Start the Desktop Version of TEALsim .. 84

8.1.1 Configuring the Client and Server Component .. 85

Integration of a Java Physics Framework in a Virtual World

xii

8.1.2 Configuring the Log Settings .. 87

8.1.3 Configuring TEALsim for 32bit or 64bit Environments ... 87

8.2 Using TEALsim Framework in a 3rd Party Application like OpenWonderland 87

8.2.1 Adapting the Client Package .. 88

8.2.2 Adapting the Server Package ... 91

8.3 Summary ... 93

III Findings .. 95

9 Lessons Learned ..97

9.1 Conducting Preliminary Research .. 97

9.2 Design and Implementation .. 98

9.3 Usability ... 98

10 Outcome ...99

10.1 Conclusion .. 99

10.2 Suggestions for Further Work ... 100

IV Appendix ... 103

11 References .. 105

12 Remarks .. 110

12.1 Diagram legends ... 110

12.1.1 Class Diagrams ... 111

12.1.2 Flow Chart Diagrams ... 113

12.2 System Diagrams .. 114

12.2.1 Design of the Revamped Simulation Engine .. 114

12.2.2 System Design and Object Ownership in TEALsim ... 114

12.2.3 Application Flow of the Rendering Process ... 117

13 Listings ... 118

13.1 Table of Figures ... 118

13.2 Table of Tables ... 119

13.3 Table of Listings .. 119

13.4 Table of Use Cases .. 119

Contents

xiii

14 Index ... 121

14.1 Glossary ... 121

14.2 Table of the Most Important Software Tools Used ... 122

14.3 Digital assets ... 123

1

CChhaapptteerr 11

IInnttrroodduuccttiioonn

The starting point for this thesis was the results obtained by Scheucher [2010] and Berger [2012].

Their work was primarily based on the TEAL Simulation Framework5 (TEALsim), as well as an

open source framework for 3D virtual worlds called Open Wonderland6 (OWL). The official

definition of TEALsim provides the most succinct explanation of its purpose: “The TEAL

Simulation Framework is an environment for creating, presenting, and controlling simulations that

represent physical and mathematical concepts” [Center for Educational Computing Initiatives

(CECI), 2012]. The vision of OWL is to enable programmers to “Create dynamic learning

environments, collaborative business applications, or interactive, multi-user simulations. Start with a

blank slate, or modify an existing world. […] As a developer, you can extend any part of the system

and add functionality by creating modules, the Wonderland version of plugins.” [Open Wonderland

Foundation, 2012]

11..11 MMoott iivvaatt iioonn

In the course of the development of human society within recent decades, a multitude of

interesting developments have emerged, such as the ongoing globalization, the increase of

women’s rights or the gradual transformation into an information society. Cultural changes

inevitably give rise to the need for new, innovative solutions, which in turn open up further

possibilities to sustainably alter our society into a more just, livable and efficient one. The goal of

this research project is to develop exactly such a solution to tackle some of the aforementioned,

prevailing social challenges, namely to provide a tool(-box) for distributed computer

environments that allows for interactive learning and collaboration between geographically

distributed users.

5 TEALsim project at MIT - http://web.mit.edu/viz/soft/visualizations/tealsim/index.html
6 Open Wonderland - http://www.openwonderland.org/

http://web.mit.edu/viz/soft/visualizations/tealsim/index.html
http://www.openwonderland.org/

1 Introduction

2

Although computers have been used in education for quite some time, due to the lack of

affordable and reliable network capabilities in the first era of the ‘computer age’, initial learning

tools and their concepts were usually built upon the idea that individuals were essentially using

the corresponding hardware and software in isolation. However, the increasing adoption of the

internet in the last decade laid the foundation for the implementation of new systems with a

strong emphasis on social interaction. In this context, the goal of this thesis is not to compare the

pros and cons of these diverging learning paradigms, but rather to focus solely on the traits of

multi-user environments and, in particular, how TEALsim can be used to exploit their potentials.

11..22 DDeeff iinnii tt iioonn ooff OObbjjeecctt iivveess

After an initial, rudimentary analysis of the status quo of TEALsim and OWL, the following topics

were identified as potentially interesting tasks for this thesis:

a) Integrate additional physical simulations of the TEALsim project into OWL. Ideally, the

whole set of existing simulations should run within OWL as well.

b) Create new, game-like interactive applications in TEALsim which can be used in OWL

(either of a collaborative or competitive nature). One example is the multiplayer

version of the electrostatic videogame application in TEALsim, whereby 2 users are

required to drag a point charge through a maze (for a single-player version, see ‘EM

Videogame7’).

c) Further redesign the TEALsim project to allow for a streamlined interchangeability

between the graphical rendering engines jMonkeyEngine8 (JME) and Java3D.

d) Refine the user interface (UI) of TEALsim. Since the 2-dimensional, Swing-based user

interface (the simulation control) is not considered ideally user friendly within the

context of a virtual world, alternate approaches should be evaluated. Currently, three-

dimensional elements for user inputs are considered as a potentially efficient

replacement of the former Swing UI, not least because they are visually native

components of a 3D world. This circumstance would allow the controls to meld

together perfectly with the visualization of the physical experiments (see figure 1.1 for

a screenshot of the prevailing UI at the start of this thesis, and figure 1.2 for a sketch of

a revamped 3D UI).

e) In terms of the redesign of the user interface, there is the intention to evaluate and

implement features of an intelligent guidance system for ease of use. This broad field of

studies ranges from simple guidance mechanisms (e.g. tooltips and hints) to complex

variants (e.g. computer controlled in-game avatars that offer advice). Research in this

field is especially interesting because it is heavily influenced by user perception. With

7 EM Videogame in TEALsim - http://web.mit.edu/viz/EM/simulations/TEALsim/TEALsim.jnlp
8 jMonkeyEngine (JME) - http://www.jmonkeyengine.com/

http://web.mit.edu/viz/EM/simulations/TEALsim/TEALsim.jnlp
http://www.jmonkeyengine.com/

1.2 Definition of Objectives

3

an awareness of the imperative of undisputed comprehensibility and accessibility of

technical system (i.e. to establish a significant user tolerance), this topic would serve to

link this thesis with studies of human-computer interaction.

Figure 1.1: Screenshot of an instance of TEALsim running within OWL

Figure 1.2: Sketch of a potential UI consisting of 3D elements created by Mark Bessette

1 Introduction

4

Constraints of this thesis’ objectives

The constraints already outlined by Berger [2012, p. 41] are also relevant for the present

objectives, such as:

 The maximum possible number of existing simulations for the stand-alone TEALsim

framework should be capable of running in a distributed environment in general, and

OWL in particular. In addition, the maximum possible number of simulation functions

should be usable in the target environment as well.

 In general, the creation of new simulations in TEALsim should not become more

complicated. In particular, the number of effective changes to the application

programming interface (API) exposed by TEALsim should be kept as small as possible, in

order to reduce the amount of training required for established content creators.

 Alterations of the TEALsim framework should impair neither the existing level of the

software design nor the framework’s performance characteristics.

 TEALsim should remain executable as both a stand-alone application and an applet in a

web browser.

11..33 SSttrruuccttuurree

This document is structured into four major parts, beginning on a very formal level and then

becoming increasingly technical and specific, as the document moves into the practical work

performed as a foundation for this thesis.

The first part covers various theoretical topics (e.g. chapter 2 introduces concepts associated with

the programming performed for this thesis). Chapter 3 outlines some potential learning scenarios

and compares the existing software basis with an alternative design suggestion. Chapters 4 and 5

go on to explain the concepts and requirements for achieving an implicit execution

synchronization for software running in a distributed environment.

The second part of this work begins with a summary of organizational adaptations made for the

TEALsim project. Subsequently, chapter 7 provides a detailed technical explanation of the

integrated network layer and the tools available for user input synchronization. This part ends

with chapter 8, which documents the process for running TEALsim as stand-alone application and

explains the concept for embedding the framework in a 3rd-party application such as OWL.

The third part of this thesis provides a brief overview of the personal experiences gathered and

offers ideas for further research and development.

Finally, the appendix contains all relevant references and listings. In addition, chapter 12 provides

an explanation of the notations used in the diagrams, as well as some diagrams that did not fit into

a particular chapter of this thesis, but nevertheless might be interesting for follow-up projects.

5

PPaarrtt II

GGeenneerraall BBaacckkggrroouunndd

7

CChhaapptteerr 22

TTeerrmmss aanndd DDeeffiinniittiioonnss

The main motivation to conduct this thesis was to come up with a suitable software to perform

education in an interactive way by means of connected computers. The commonly used

description for this kind of education is ‘e-learning’. This introduction already indicates the large

range of aspects influencing the objectives of this thesis, reaching from profound engineering

sciences all the way to more elusive fields of research like human sciences.

Although in the end a major fraction of the entire work on this thesis has been spent with

software design and implementation – or in other words activities of rather technical, delicate

nature – the following pages are intentionally kept non-technical and superficial to give a brief

overview of some fundamental concepts which are in one or the other way of relevance.

22..11 SSTTEEMM EEdduuccaatt iioonn

‘STEM9 education’ is the placeholder term for education in those fields of science which are

considered to be supposedly of particular importance for a countries (economical) success that is,

‘Science, Technology, Engineering, and Mathematics’ [Morella, 2012]. Although the use of the

acronym ‘STEM (education)’ to unambiguously refer to this mindset is a rather new phenomenon,

the importance of STEM for a nation’s economical prosperity has been in discussion for a much

longer period of time. For example in the 1950s economist Robert Solom already identified that

“[…] innovation drives more than 50 percent of future economic growth.”, where innovation is

considered to require background knowledge in STEM fields [Trevey, 2008, p. 34]. Apart from

that it is always debatable how to define a nation’s ‘real’ success aside from monetary values,

especially in the face of recent developments where countries like Bhutan introduced new

national performance indicators benchmarking gross national happiness instead of exclusively

9 STEM equals the term ‚MINT‘ used through the German speaking language area

2 Terms and Definitions

8

focusing on financial figures. Nevertheless sciences belonging to these categories are doubtlessly

some of the most lucrative [Anger, Geis, & Plünnecke, 2012, S. 15]. Additionally another

undeniable circumstance is that nowadays – in our technological world – hardly anyone is able to

pursue his main profession and tap his full potentials without profound knowledge in one or more

of the STEM fields. Bybee describes the benefits of STEM in this context by outlining that “A true

STEM education should increase students’ understanding of how things work and improve their use

of technologies.” [Bybee, 2010, p. 996]

In the context of this master’s thesis STEM is of importance because it constitutes the imaginary

foundation (or root) for all the other technical and conceptual models involved. One could also say

that this thesis was conducted to support the idea to foster STEM education.

22..22 WWhhaatt iiss TTEEAALL??

TEAL stands for Technology-Enabled Active Learning. This catch phrase was used to describe the

corresponding project started at Massachusetts Institute of Technology (MIT). More precisely this

project “[…] is a studio format course designed to accommodate large enrollment in freshman

physics at MIT. It is aimed at serving as a model for a new format of undergraduate science courses

for large groups of students at MIT and possibly elsewhere.” [Dori & Belcher, 2005, p. 252]

To briefly summarize the ideas and concepts of the TEAL project: With the aid of modern

technologies (e.g. computers for simulations and visualizations) the way physics was taught at

MIT should be transformed from its previous passive lecture respectively recitation format to a

more collaborative and engaged style where students interact with each other and to some extend

truly ‘experience’ the content of their lecture. Part of this idea was to arrange students in small

workgroups for which reason a specific classroom design was envisioned to support this group-

oriented approach of teaching [Belcher J. W., 2001]. See figure 2.1 for an early rendering of the

proposed classroom design which was later realized at MIT. While the educational results of this

new setup seem rather pleasing (see [Dori Y. J., et al., 2003]) one of the few major drawbacks is

the relatively high up-front cost to adapt such a special teaching environment [Massachusetts

Institute of Technology, 2005]10.

10 also stated by Christian Gütl during his presentation at iED Europe Summit in Paris 2012 to be
approximately 1.5 million US Dollars for the particular classroom (see minute ~8:20 at
http://vimeo.com/55862928)

http://vimeo.com/55862928

2.3 What is e-Learning

9

Figure 2.1: Artistic rendering of a classroom suitable for TEAL courses by Mark Bessette11

22..33 WWhhaatt iiss ee--LLeeaarrnniinngg

22..33 ..11 FFoorrmmaall DDeeffiinnii tt iioonnss

As mentioned one of the driving powers to conduct this thesis was the vision to foster e-learning.

To define what e-learning actually is we start with its most striking term that is, ‘learning’.

However, this is also the point where it already gets difficult since ‘learning’ – although nowadays

being an omnipresent term in western civilization’s everyday life – is a very intangible concept for

which no universally accepted definition exists [Domjan, 2009, p. 17]. Apart from this dilemma

Domjan still tries to summarize the most important aspects of learning by defining it to be “[…] an

enduring change in the mechanisms of behavior involving specific stimuli and/or responses that

results from prior experience with those or similar stimuli and responses.” [Domjan, 2009, p. 17]

Subsequently, the logic deduction leads to the self-definition that e-learning is a technical aid to

provide exactly such a stimuli respectively response. A different definition for e-learning by

Juneidi & Vouros backs up this deduction by asserting that “E-learning refers to a wide range of

applications and processes designed to deliver instruction through computational means.” [Juneidi &

Vouros, 2005], which is semantically equivalent and merely uses a different verbalization. The

American Society for Training & Development (ASTD) defines e-learning in a similar but

technically more explicit way by stating that “E-learning (electronic learning): Term covering a

11 TEAL project animation specialist Mark Bessette - http://ceci.mit.edu/people/bessette.html

http://ceci.mit.edu/people/bessette.html

2 Terms and Definitions

10

wide set of applications and processes, such as web-based learning, computer-based learning, virtual

classrooms, and digital collaboration. It includes the delivery of content via Internet,

intranet/extranet (LAN/WAN), audio- and videotape, satellite broadcast, interactive TV, CD-ROM,

and more.” [American Society for Training & Development, 2013]

Difference between distance learning and e-learning

One important thing to keep in mind when talking about e-learning is the fact that at its core this

term refers to something different than ‘distance learning’. Even though the term ‘e-learning’ is

related to the use of technical aids like connected computers which are geographically distributed

(internet/intranet), the deduction that e-learning and distance learning are synonyms is not the

case. The formal definition of distance learning describes it as “[…] a variety of educational

programmes and activities. The major common features are that learner and teacher are physically

separate but that deliberate efforts are made by educators to overcome this separation using a

variety of media.” [Unesco, 1987, p. 5] Thus e-learning is rather a specific application of distance

learning, which is backed up by the definition of ASTD12: “Distance education: Educational

situation in which the instructor and students are separated by time, location, or both. Education or

training courses are delivered to remote locations via synchronous or asynchronous means of

instruction, including […]. Distance education does not preclude the use of the traditional classroom.

The definition of distance education is broader than and entails the definition of e-learning.”

[American Society for Training & Development, 2013]

A compact classification outlining the different characteristics of e-learning and distance learning

is given by Mencke & Dumke:

instruction delivery technology
physical separation

yes
physical separation

no

computational
Distance education &

e-Learning
e-Learning

other Distance education -

Table 2.1: Scope of distance learning respectively e-learning [Mencke & Dumke, 2007, p. 40]

22..33 ..22 DDiiffffeerreenntt KKiinnddss ooff ee--LLeeaarrnniinngg

From a more abstract point of view differing types of computer-aided education systems can be

distinguished by their style of interaction with human users. Soh et al. summarize three different

scenarios [Soh, Miller, Blank, & Person, 2004, p. 2]:

a) “Computer-Assisted Instruction, the system provides drill and practice exercises and

tutorial instruction”

12 ‘distance education’ and ‘distance learning’ are used synonymously in this context

2.3 What is e-Learning

11

b) “Computer-Managed Instruction, the system evaluates and stores student performance

and guides students to appropriate instructional resources”

c) “Computer-Enriched Instruction, the system satisfies student requests such as solving a

mathematical equation, generating data, and executing programs”

From a more technical point of view the utilized technique to ‘transmit’ the information also

allows to specify various different kinds of e-learning. Amongst the categories somewhat related

to this thesis, in the document by Mencke & Dumke are examples such as [Mencke & Dumke,

2007, p. 41]:

Web-based teaching (WBT)

By definition web-based teaching is the “Delivery of educational content via a Web browser over the

public Internet, a private intranet, or an extranet. web-based training often provides links to other

learning resources such as references, email, bulletin boards, and discussion groups. WBT also may

include a facilitator who can provide course guidelines, manage discussion boards, deliver lectures,

and so forth.”[American Society for Training & Development, 2013]

This kind of teaching became very popular within the last years. One of its biggest advantages is

its accessibility requiring nothing else but a web browser and internet. Requirements for special

knowledge on the client side to engage in the technology can therefore be reduced to a minimum;

most of the environment’s complexity can be dealt with on the administration-level. In

conjunction with the worldwide ever increasing penetration rate of internet connections per

capita [Miranda & Lima, 2012] this approach allows to reach a maximum of potential users.

Virtual education

Compared to WBT, virtual education explicitly adds the aspect of interaction between trainer and

trainee. For this purpose virtual classrooms (“The online learning space where students and

instructors interact.” [American Society for Training & Development, 2013]) shall create an

atmosphere humans are familiar with from real-world learning experiences. If implemented to

run within a web browser, virtual education could be considered as a special type of WBT.

Mobile learning

This term has its emphasis on the mobile nature of the utilized devices to access the educational

content. In conjunction with the WBT paradigm this field is of continuously growing interest due

to the thriving success of smart phones and tablet computers [Ericsson, 2012]. Usually such

mobile devices come with limited computational powers and narrow tolerances to run arbitrary

applications, making them an ideal candidate to use for WBT since pretty much all devices come

with a web browser nevertheless. However, a particular challenge within this context is the great

range of differing application-environments (screen size, operating systems, CPU power, etc.),

which is also expressed by Mencken & Dumke by stating that “The appropriateness of technic,

learning content and learning activities need to be taken into account for the application of this e-

Learning type.” [Mencke & Dumke, 2007, p. 44]

2 Terms and Definitions

12

Blended learning

This term denotes the technique to combine respectively enrich traditional style lectures and

courses with electronic tools. Consequently the benefit of this paradigm is that it allows teachers

to gradually adapt their teaching styles and methods to take advantage of modern teaching aids

without overburdening them. [Mencke & Dumke, 2007]

Educational games

Like the term ‘game worlds’ discussed in chapter 2.4 the term ‘educational games’ is also a

somewhat difficult category to define precisely. The notion of gaming – and especially in

conjunction with education – is discussed very controversially in literature. Mencke & Dumke for

example define an educational game to be “[…] a computer-based game that motivates and engages

the player/learner to learn.” [Mencke & Dumke, 2007, p. 45] In contrast, the definition of games by

Salen & Zimmerman referenced in chapter 2.4 actually does not mention anything regarding the

incitements of players to play the game at all.

The problem is that the term ‘educational game’ is not of pure technical nature – which would

make it easier to find an all-purpose definition – but rather an ethical and philosophical concept,

hence highly subjective. Under this preposition it becomes clear that for most assertions given in

literature one may find contradictory counterexamples.

As an example O’Brien [2010] outlines that 4 specific traits of commercial games “[…] are either

not desirable in an educational game or must be minimized: chance, critical competition,

inappropriate material, and advertising.” [O'Brien, 2010, p. 2] Doubtlessly the reasons given to

avoid inappropriate material and advertising seem coherent. However, the two other traits are

rather debatable. The justification to avoid chance is based on the observation that when chance

impacts a player’s possibilities to succeed it would result in unequal (unfair) learning returns for

various players. Nevertheless it gets acknowledged that yet chance is “[…] for many, highly

engaging and highly entertaining, we know them [games involving a certain amount of chance] to

be highly addictive.” [O'Brien, 2010, p. 2] Now the question arises why someone designing an

educational game would not want it to be highly engaging, highly entertaining, and thus highly

addictive? The rule of thumb says practice makes perfect. True, not everyone would take away

exactly the same experience but one common opinion about education is that it has to ensure that

all students meet a certain minimum level of knowledge, neglecting to some extend how many

particular individuals truly excel (and if only due to chance). Without doubt there is (yet) no final

call to this issue. The next trait – critical competition – is justified by gender equality. Based on the

research of Kafai [1996] O’Brien concludes that competitive games are less appealing to girls than

boys. Assuming the soundness of this assertion, it still remains situational whether or not

competition should be part of an educational game. Potential questions to evaluate in this context

are e.g.: Might the game aim for a certain gender intentionally or should it be liked equally by both

genders? Does the assumption that boys prefer competition more than girls hold globally for any

culture?

An interesting approach to deal with the apparent difficulties to properly classify and evaluate

educational games (in this context synonymously referenced to as ‘serious games’) is proposed by

2.4 Different Kinds of Multi-User Environments

13

Jantke [2010]. According to him any game may be seen as a serious game, it only “[…] depends in

many ways on your theoretical point of view and on concepts you rely on.” [Jantke, 2010, p. 859] He

subsumes that research done in the field of educational games is less about finding compact

definitions but rather about creating a comprehensive taxonomy which is “[…] essential to every

scientific communication.” [Jantke, 2010, p. 859] On the basis of an appropriate taxonomy any

game’s benefit for specific groups of users could be evaluated individually (or in other words one

could formulate proper questions to receive the desired answers).

22..44 DDiiffffeerreenntt KKiinnddss ooff MMuulltt ii --UUsseerr EEnnvviirroonnmmeennttss

Based on the key technology ‘internet’ a multitude of multi-user environments have been

established over the course of the past years. To name a few Usenet, social networks, blogs and

virtual worlds would promptly come to one’s mind. Even though nowadays some environments

may be already considered as (technologically) outdated, at least within very specific niches they

still manage to maintain a minimum amount of users. A reason for this situation is that each

environment’s distinct set of system traits ultimately gives them a competitive edge for particular

fields of application explaining their continued use in these areas. Certain advantages might be

difficult to identify at first glance whereas other aspects setting apart one from another system

are immediately evident such as:

 technical requirements

o to run the service (e.g. does it require a single, low-end server or contrariwise a

full-fledged server farm; is auxiliary, proprietary software needed or not)

o which pose as an entrance barrier for new users to join and participate in the

system (e.g. what kind of client hardware is needed; do clients have to install a

special software on their computer; is a reliable, fast and/or permanent

internet connection required)

 user permissions for interaction and participation (e.g. do clients have to register; do

new registrations have to be approved by humans; who is allowed to add content to the

environment and who may only consume it; who may see which information; is every

user allowed and able to get in contact with any other user)

 visual representation (e.g. 2D or 3D; in a web browser or in a special client)

 type of personal rewards for users of a system that is, the incentives which motivate

people to use respectively participate in the system (e.g. increased self-esteem derived

from helping others; pure information gain; simply distraction from real-life)

Amongst the exemplarily mentioned multi-user environments the most important one for this

thesis was the category of ‘virtual worlds’ since OWL, which should serve as host environment to

run the physics experiments of the TEALsim framework (see chapter 2.3.2), constitutes exactly

such a virtual world. Besides this particular focus – predefined at project start – over the course of

the practical work for this thesis eventually other kinds of multi-user environments became of

interest to serve as potential hosts for TEALsim.

2 Terms and Definitions

14

Virtual worlds

Today the term ‘virtual world’ is usually associated with three dimensional game-like computer

programs. According to Bell [2008] this does not precisely address the term ‘virtual world’

though. Based on his definitions, ‘virtual worlds’ are rather a super-category including the

introductory outlined scenario. As summarized in Peachey et al. [2010] virtual worlds have to

meet 4 specific traits [Peachey, Gillen, Livingstone, & Smith-Robbins, 2010, p. xviii]:

a) “Virtual worlds are persistent. They exist regardless of whether any specific individual is

logged in. Typically, there are processes in these worlds such as time and economy that

continue to progress in some real time scale even when an individual user isn’t logged in.”

b) “Virtual worlds exist on wide area networks (WAN). To reach the scale of a “world” rather

than an “environment” or “space” a virtual world must be accessible on a large scale and

not contained behind a firewall or similar limitation.”

c) “Virtual worlds are massively multi-user. This is an important differentiation between

virtual spaces built for a few users and worlds which can accommodate a global scale of

users.”

d) “Virtual worlds employ avatars to represent users. Avatars are semi-autonomous agents

represented in the digital space and capable of performing actions when commanded by a

user. We differentiate avatar from icon or profile which represent a user but cannot

perform actions.”

In other words the concept of ‘virtual worlds’ has to be seen as an archetype of software based on

the definitions above. The main justification for this thought is that none of the 4 traits give the

world a true purpose that is, a motivation for people to use the software. For this reason a more

precise classification of different virtual worlds is proposed in Peachey et al. [2010] with the

exemplary introduction of ‘game worlds’ and ‘social worlds’.

Game worlds

Not least due to the commercial successes of Massive Multi Player Online Role Playing Games

(MMORPG) like Ultima Online, Everquest or especially World of Warcraft this sub-category of

virtual worlds became very prominent within the last few years and accounts for a multibillion

dollar industry nowadays [Zhong, 2011, p. 2352]. Thanks to this recent popularity everybody

would most likely assert to know what game worlds ought to be. On closer inspection from a

scientific point of view it becomes quite difficult though to exactly define this term that is, the

‘game’ component promoting game worlds to be a more specialized form of a ‘virtual world’. The

dilemma is that while there is less debate on what a virtual world is (see the 4 traits in the former

sub-chapter) the notion of games has been discussed for a rather long period of time (and

therefore a multitude of definitions exist). For example the thoughts of philosopher Ludwig

Wittgenstein about the concept of games have already been published in 1953 [Wittgenstein,

1958]. More recent, and also more comprehensible for anyone not into philosophical essays, are

the findings by Salen & Zimmerman [2003]. After analyzing and comparing 8 different

formalizations of the term ‘game’ they conclude with their own definition, which essentially is the

2.5 Examples for Existing e-Learning Instruments

15

aggregation of all their examined ones: “A game is a system in which players engage in an artificial

conflict, defined by rules, that results in a quantifiable outcome.” [Salen & Zimmerman, 2003, p. 80]

Ultimately one has to be aware though that this is just another attempt to formalize a very

intangible concept, something which Salen & Zimmerman indicate to be conscious of themselves

by ironically quoting David Parlett in their introduction who outlined that “[…] the word [game] is

used for so many different activities that it is not worth insisting on any proposed definition. All in all,

it is a slippery lexicological customer, with many friends and relations in a wide variety of fields.”

[Parlett, 1999, p. 1] as cited in [Salen & Zimmerman, 2003, p. 71]

Social worlds

These worlds are a specialization of virtual worlds by providing “[…] strong social tools and

innovative content creation tools […]” [Peachey, Gillen, Livingstone, & Smith-Robbins, 2010, p. xx]

(in contrast to the focus on game play in game worlds). Compared to MMORPG’s the reasons for

the success of worlds falling into this category (such as Second Life or Entropia) are at first glance

much more difficult to specify since social worlds do not offer any of those self-evident incentives

originating from game-like mechanisms. On top of that these worlds are also much harder to

govern. For example user created content will vary in quality and style impacting the in-world

experience for other users.

Social worlds are interesting for this thesis because OWL, the target environment to host

TEALsim, constitutes a social world in its current form. An interesting aspect about social worlds

is the fact that, besides providing a few in real life currently unfeasible technologies like

teleportation, they often try to mimic physical real-world limitations. For example most virtual

social worlds comply with the laws of gravitation (or at least have them switchable). Another

controversial example is OWL’s audio feature which states that “Distance attenuation and spatial

audio provide a sense of immersion in the 3D space.”13 The term ‘controversial’ is used in this

context because the benefit of this feature is questionable in a situation where you would like to

promote social interaction on the one hand (by definition this is one of the goals of social worlds)

but on the other hand restrict respectively decrease the quality of communication in some way.

22..55 EExxaammpplleess ffoorr EExxiiss tt iinngg ee--LLeeaarrnniinngg IInnsstt rruummeennttss

Since any application or process which delivers instructions by computational means may be an

e-learning tool (as specified in chapter 2.3.1), obviously there are a lot of software products

available which meet this definition. Therefore the subsequent list of e-learning tools respectively

platforms is not based on criteria like an exceptional degree of public awareness or particular

innovative and unique features, but rather tries to introduce to a handful of examples which are

13 OWL feature list (accessed 11th July 2013)- http://openwonderland.org/about/features

http://openwonderland.org/about/features

2 Terms and Definitions

16

already somehow related to the practical part of this thesis or could be potentially relevant in a

further project continuing this work.

The mentioned examples of available real world applications also show that the categorization

suggested in chapter 2.3.2 cannot be considered as a strictly delimited schema where each

category is mutually exclusive. Instead real world implementations of e-learning software will

almost certainly inherit characteristics of multiple categories.

22..55 ..11 TThhee TTEEAALL SSiimmuullaatt iioonn FFrraammeewwoorrkk

An auxiliary tool developed to be used within the broad educational concept of TEAL was

TEALsim. This term is the name of a software library programmed in Java which should allow a

rapid setup of virtual (physics) experiments. The framework is intended to expose a user-friendly

and comprehensible API. While it is up to the creator of new content to combine a reasonable set

of elements to create interesting experiments, it is the framework’s task to hide away all of the

underlying mathematics caused by the cross-influence of the simulation’s elements and

furthermore simulate and visualize the system’s evolution over a given period of time.

22..55 ..22 AAccaaddeemmiicc OOnnll iinnee LLeeaarrnniinngg PPrrooggrraammss LLiikkee eeddXX

Currently most universities already established programs to evaluate possibilities to extend their

educational services to the virtual space. In practice these projects are usually some sort of WBT

platforms. For example MIT has been long known for its efforts in this area with their program

called OpenCourseWare (OCW)14. Recently this commitment has been extended by the

introduction of the even more interactive online courses of MITx, which are made available as

part of the new joint-venture project run together with Harvard University called edX15. In this

context MITx courseware is considered “[…] as the ‘movie’ while edX is the ‘theatre’ in which the

movie plays.” [Sarma & Chuang, 2013, p. 11]

These kinds of initiatives are usually also referenced as massive online open courses (MOOCs).

Putting figures for their popularity in relation to their host university’s regular student base it

becomes evident why this term was chosen. For example MIT has approximately 10 000 enrolled

students but almost 155 000 people registered for the 6.002x MITx online course with 7 157 of

them passing it in the end [Hardesty, 2012]. Likewise Stanford University offered a course for

artificial intelligence which was attended by 160 000 students from 190 different countries across

the globe [Zillner, 2012]. Despite the large fraction of registered students often failing these

courses the absolute number of graduates can be, nevertheless, considered as a massive

14 MIT OpenCourseWare – http://ocw.mit.edu
15 edX online-learning platform - https://www.edx.org

http://ocw.mit.edu/
https://www.edx.org/

2.5 Examples for Existing e-Learning Instruments

17

educational success. For instance MIT’s experimental 6.002x online course matches the capacities

of a total of 40 years of regular on-campus education in this field [Hardesty, 2012]. However,

courses on these online platforms are not exclusively intended to be used by a virtual audience

but instead shall also “[…] support parts of courses on campus, augmenting traditional teaching

[…]” [Bradt, 2012].

Figure 2.2: TEALsim game-like application to explore electric potentials

22..55 ..33 EEdduuccaatt iioonnaall GGaammeess

Like outlined by Jantke [2010] in chapter 2.3.2 a multitude of games could be considered as

educational games. However, of particular interest for this thesis are the already available

applications in TEALsim which could be used for a multiplayer game. For example the ‘Exploring

Potential16’ application (figure 2.2) lets users reveal an electric field piece by piece until they are

able to guess the electric potential of the corresponding charge. This scenario could also be used

in a competitive setup where multiple students compete for the lowest amount of hints to come

up with the correct charge.

16 TEALsim Exploring Potential – http://web.mit.edu/viz/EM/simulations/exploringpotential.jnlp

http://web.mit.edu/viz/EM/simulations/exploringpotential.jnlp

2 Terms and Definitions

18

Another example is the electrostatic videogame17 (figure 2.3) where a player has to adjust the

charge of his own point charge accordingly to drag it through a maze. Again this could be

extended to a multiplayer version where multiple players simultaneously race for e.g. the fastest

time, maybe also with possibilities to interfere with other players’ actions for increased

competition.

Figure 2.3: TEALsim electrostatic videogame

22..66 TThhiinn CCll iieennttss VVeerrssuuss FFaatt CCll iieennttss

The concepts of thin and fat clients are outlined in this sub-chapter because for the practical part

of this thesis it was of importance to find the right balance between these two extremes. Usually

these terms are used within the context of distributed computer systems (that is, client-server

architectures) to determine the role and powers of the client software. Fat clients are sometimes

also called thick clients.

17 TEALsim Electrostatic Videogame - http://web.mit.edu/viz/EM/simulations/videogame.jnlp

http://web.mit.edu/viz/EM/simulations/videogame.jnlp

2.6 Thin Clients Versus Fat Clients

19

Generally speaking a thin client is a client who has to handle a minimum amount of application

logic and focuses on the presentation of the program (therefore slow and cheap hardware may be

used) whereas a fat client computes most of the application logic himself (instead of the server),

with a desktop application constituting an ultimate fat client.

Hammerschall [2005] concisely describes the dilemma that existed with the desktop version of

TEALsim by recapitulating that “Under the assumption that a stand-alone, non-distributed

application is secure and offers sufficient performance, the question for the programmer arises how

to distribute the single components of this application to the nodes in a distributed system without

introducing great deficits neither to performance nor to security.”18 [Hammerschall, 2005, S. 24]

This general assertion is at the core of any evaluation leading to the decision how to design the

distributed system.

The common understanding is that “Compared with maintaining a central server, fat client TCO

[total cost of ownership] also is higher, because of initial hardware and software requirements and

the ongoing expense of supporting and updating remote client computers.” [Shelly & Rosenblatt,

2011, p. 464] One has to be careful with this definition though since it assumes the whole

distributed system to be maintained exclusively by a single entity (e.g. a company maintaining

their workstations and server infrastructure). However in educational situations students often

bring their own devices essentially taking over the expenses for client hardware and IT

maintenance. Such scenarios may obliterate one of the major pros of thin client systems.

Even though the true advantages and disadvantages of each concept may be very situational as

mentioned before, Hammerschall proposes a rough guideline for when to prefer one or the other

paradigm:

 fat client thin client
good network connection
bad network connection

high complexity of application logic
low complexity of application logic

high concurrency
low concurrency
web application

Table 2.2: Guidelines for utilization of either thin or fat clients [Hammerschall, 2005, S. 28]

18 English translation from German origin:
“Unter der Prämisse, dass zentrale, nicht verteilte Anwendungen sicher und performant sind, stellt sich für den
Entwickler die Frage, wie bei einer verteilten Anwendung die Komponenten geeignet auf die Knoten des
verteilten Systems zu legen sind, ohne dass zu große Verluste bei der Performance auftreten oder
Sicherheitsrisiken entstehen.”

2 Terms and Definitions

20

22..77 SSuummmmaarryy

This chapter introduced the various concepts which motivated to conduct this thesis in the first

place. Figure 2.4 summarizes the interplay of these concepts with the most conceptual paradigm

at the bottom and getting increasingly technical on the higher levels. In the long run the most

interesting matter would be to evaluate the true efficiency of the entire illustrated system.

However, this would require each level to be completely specified respectively implemented. This

pre-condition holds true for the lower levels, since they have already been discussed and revised

for a longer period of time, but not quite for the top levels.

Therefore, the rest of this thesis focuses almost exclusively on this top tier because all of the

practical work has been spent in an effort to come up with a releasable software product and

notionally ‘complete this pyramid’ to allow empirical studies.

Figure 2.4: Structure of this thesis’ principles

STEM (education)

TEAL

e-learning

e-learning platform

e.g. virtual worlds + TEALsim, …

client/server architecture

e.g. thin or fat clients

n
at

u
re

 o
f

co
n

ce
p

t

technical

formal

TEAL can be used for certain fields of STEM
education

e-learning can be used to support the
concept of TEAL

OWL + TEALsim could be used as concrete
e-learning application for students

How to design TEALsim to run in a
distributed environment

21

CChhaapptteerr 33

TTEEAALLssiimm iinn aa MMuullttii--UUsseerr EEnnvviirroonnmmeenntt

The first pages of this chapter introduce to some scenarios which are potentially interesting

setups to use of TEALsim in the context of e-learning and collaboration of geographically spread

students.

Subsequently, theoretical aspects related to the synchronization of an application (that is, a

TEALsim simulation in this case) between multiple clients across a network are outlined (and in

particular with OWL as host framework). Part of this discourse is a summary of the status quo

which was available at the start of this thesis, a suggestion for a more or less completely

alternative approach finishing with a comparison explaining why the new design was eventually

introduced to the TEALsim framework.

In the end follows a confrontation of the principles and constraints of two distinct

synchronization paradigms respectively their corresponding technical implementations. These

were identified as the fundamental ways to synchronize user interactions for toolbox-like

frameworks (like TEALsim) where less-versed programmers coming from other fields of science

are confronted with the additional complexity induced by parallel, distributed execution of

software.

33..11 PPootteenntt iiaall HHoosstt EEnnvviirroonnmmeennttss ffoorr TTEEAALLssiimm

As mentioned in chapter 2.2 and 2.5.1 TEALsim is the tool of choice at the MIT to support their

concept of teaching physics. Currently TEALsim consists of two principal areas with content of

divergent dimensional level (sketched in figure 3.1):

a) an inner pane used to display the three dimensional visualization of the simulation flow

b) an outer pane used to accommodate all controls to influence the simulation (that is, two

dimensional buttons, sliders, text fields, etc.)

3 TEALsim in a Multi-User Environment

22

Figure 3.1: Sketch of TEALsim window highlighting areas of interest

Initially the software package was designed to run as a single, autonomous process on one

computer. Given this objective, a stand-alone desktop version of TEALsim was provided as well as

a specialized built to be used within a Java Web Applet19. Eventually projects have been conducted

which explored ways to use TEALsim within a multi-user host environment (that is OWL - see

[Scheucher, 2010], [Berger, 2012] and [Pirker, 2012]). However, besides OWL in particular, other

multi-user setups would be conceivable as well. Depending on the concrete scenario there is a

varying degree of features of TEALsim’s current version which would fit out-of-the-box (e.g. the

3D content would be an ideal candidate to get integrated into a virtual world, but contrariwise the

2D controls would need a replacement in this case to provide an overall coherent user

experience). Therefore, when planning to adapt TEALsim for a specific multi-user setup several

aspects become relevant, such as:

 Degree the last stable, major release of TEALsim fits to the outlined use case

 Expectable complexity of code

 Dependency on 3rd-party projects

 Suitability to run on mobile devices

 Potential for interesting multi-user simulations

19 Java Web Applet Tutorial – http://docs.oracle.com/javase/tutorial/deployment/applet/

3D content

2D controls

http://docs.oracle.com/javase/tutorial/deployment/applet/

3.1 Potential Host Environments for TEALsim

23

 Requirements on network reliability, speed and responsiveness

To inspire the imagination in which context TEALsim could be used the following sub-chapters

summarize some of the possibilities. It is up to the reader to evaluate to which degree the

previously mentioned aspects are of relevance for the corresponding scenarios.

33..11 ..11 SSttaanndd--aalloonnee VVeerrss iioonn ooff TTEEAALLssiimm WWii tthhoouutt NNeettwwoorrkk FFeeaattuurreess

While probably not up to one’s expectations of a contemporary multi-user system, nevertheless,

this scenario could be used to set up multiplayer applications. In fact this method was in place in

real classrooms for the last couple of years. Students gathered around a single computer and

mutually shared its controls.

33..11 ..22 SSttaanndd--AAlloonnee JJaavvaa AAppppll iiccaatt iioonn wwii tthh MMuull tt ii --UUsseerr CCoommppoonneenntt

Derived from the original TEALsim project this would be the most logical next step for any

intentions aiming to add more comprehensive multi-user features to the framework. In this

context TEALsim running as an independent process or as a Java Web Applet can be considered as

an analog use case. Most convenient for clients would be a client-server architecture where an

educational entity maintains the server side. However, a peer-to-peer based architecture would

be feasible as well.

Exemplary use case: in a client-server architecture client A would start a multi-user application on

his computer. During boot up client A connects with the server and finally waits for other users.

Eventually client B starts up the same application on his computer and connects via the server

with client A. Furthermore, they are able to mutually use the particular simulation via network

(e.g. compete or collaborate).

For WBT initiatives like edX (see chapter 2.5.2) this configuration could be an option when

coupled together with team collaboration solutions like Sococo20 to create integrated working

areas. Unlike virtual worlds explained in the succeeding chapter these environments would not

provide a rich 3D experience focused on an avatar but would instead only provide means for

communication (chat, audio, video, etc.), for exchange of information (like application sharing)

and to organize teamwork (management of user permissions, managed communication channels,

etc.).

20 Sococo - https://www.sococo.com

https://www.sococo.com/

3 TEALsim in a Multi-User Environment

24

33..11 ..33 TTEEAALLssiimm EEmmbbeeddddeedd iinn aa 33DD VVii rr ttuuaall WWoorrlldd

This is the logically next advancement to a stand-alone networking-capable TEALsim version.

TEALsim could be integrated in the virtual world e.g. via a plug-in system (like in OWL). Although

in theory the virtual world could provide certain functions which are otherwise of no use for the

stand-alone no-network version, in reality this single-user version has to be adapted to the

principles of multi-user applications nevertheless because superimposing a client-server

architecture on a single-user application will introduce serious design inconsistencies (as

explained in the chapters hereafter). Additionally, new elements and concepts would have to be

developed as well to truly take advantage of the possibilities a 3D virtual world offers. That said,

while the implementation of certain features could supposedly be outsourced to external virtual

world projects (e.g. the network protocol), overall it would require more work to create a

releasable version compared to the scenario outlined in the previous chapter 3.1.2.

From a conceptual point of view, embedding TEALsim into a virtual world opens up various

interesting use cases. Implemented properly, a 3D world definitely offers a more immersive

experience compared to 2 dimensional environments. In an oral discussion one of the principal

investigators of the TEAL project, John W. Belcher, for example expressed the desire of expanding

the game-related capabilities of TEALsim. He liked the idea to tap the innate motivation of games

– e.g. when shooting around point charges like projectiles in a first-person shooter – to unfold

within the boundaries of an educational setting.

33..11 ..44 MMiixxeedd MMooddee

Another conceivable use case would be a mix of clients running TEALsim as stand-alone version

alongside clients using TEALsim from within a virtual world. At first glance this does not make

sense because chapter 3.1.3 outlined that additional elements would be required in TEALsim to

truly take advantage of a virtual world’s immersive potential. Then again these elements would

most likely not be available for the stand-alone version which appears rather inconsistent.

However, seen from a different perspective a mixed setup could also serve as transitional solution

as long as it is unclear which scenario (see 3.1.2 and 3.1.3) to prefer.

In this context TEALsim could be used from within the virtual world identical to the way it is used

from the stand-alone version. In fact this is how Scheucher [2010], Berger [2012] and Pirker

[2012] integrated TEALsim into OWL, with the exception that they did not intend to provide

outgoing connections to non-OWL clients.

3.2 Previous Network Architecture

25

33..22 PPrreevviioouuss NNeettwwoorrkk AArrcchhii tteeccttuurree

The fundamental intention behind the formerly existing client-server architecture was to keep the

main project of TEALsim as unchanged as possible, essentially leaving it as a real desktop

application while packaging everything related to a network architecture into the separate

TEALsim OWL module. Inherent to such an approach is the circumstance that for the development

of the module in-depth knowledge about TEALsim’s design is required because core components

have to be rebuilt to enable the framework’s executability in the distributed environment.

Another aspect is the resulting complexity of the module which is owed to the fact that

superimposing a client-server architecture on an underlying desktop system usually causes

design inconsistencies and requires considerable hacks to make both worlds work together.

33..22 ..11 PPrriinncciipplleess ooff tthhee AArrcchhii tteeccttuurree aanndd tthhee EExxeeccuutt iioonn SSeeqquueennccee

For TEALsim’s OWL module the simulation engine was outsourced from the client to the server.

To understand the implications of this decision, one has to be aware that – while there are in

general many threads running, like in any other modern-day application with a GUI – the

simulation-part of the framework adheres to a single-threaded design. In simple terms there is

only one thread which is responsible to calculate the state of all of the simulation’s elements for

the next frame. Upon completion of the calculation the simulation thread informs the rendering

package (which can be considered as black-box consisting of an arbitrary amount of threads) to

render the view based on the updated states of the elements. Since everything – simulation

thread, rendering package, etc. – operates on the same set of states, the simulation thread has to

wait for the rendering process to finish before resuming its duty and repeating the same

procedure again.

Due to the fact that some possible (usually tricky) use cases were not specified (let alone being

implemented – e.g. a satisfying solution to slider synchronization) inevitably no final, thorough

explanation outlining every detail of the proposed synchronization mechanism can be given in

this place. Nevertheless, for the purpose of understanding the mechanism’s general concept this

factor of uncertainty shall be disregarded in this place and any yet unspecified problems related

to this design are assumed to be solvable hereafter.

Now, the basic idea was to achieve synchronization of the simulation elements amongst all clients

by putting that part of the simulation logic onto the server side which was responsible for

calculating the dependent values of these elements. Subsequently, these values were broadcasted

to all clients who finished any outstanding, auxiliary calculations based on them before triggering

the render process. As a result of this design the simulation had to be kept, more or less

completely, in memory on both sides – the server as well as on the clients.

In the end this lead to a situation where clients were sort of streaming the simulation states like a

video stream.

3 TEALsim in a Multi-User Environment

26

33..22 ..22 PPeerrffoorrmmaannccee CChhaarraacctteerriiss tt iiccss

To illustrate the effects of this design on bandwidth requirements table 3.1 summarizes the

occurring network congestion for 3 basic simulations. Measurement of these figures was done by

logging the size of EngineMessages being sent from the server to the client (that is, after the

serialization of a message and before it was handed over to the OWL/RedDwarf Server

infrastructure for transmission). For this reason the values may only be considered as a rough

estimation since any further processing of the message on the layers below – possibly increasing

or decreasing the total amount of bytes to transmit, e.g. by compressing the messages or adding

meta information, etc. – is not reflected in the table. Besides, an important detail is the fact that

the table relates to a single client receiving the stream of dependent values. Because OWL

currently does not utilize any techniques like multicast [Kaplan, 2012], any successive client

joining the simulation increases network congestion by the denoted figures. Additionally, the

EngineMessages are only dispatched when the simulation is in a running state.

Table 3.1 serves as the basis to analyze three aspects of the discussed network design with regard

to the visual appearance of TEALsim and its performance characteristics:

a) First of all the simulations used to run with a target frame rate of 20 frames per

second (fps). “Motion picture film originates at 24 frames per second.” [Poynton, 2002, p.

429] Wide spread standards for television broadcasting like PAL or NTSC clearly exceed

the 20 fps level as well, usually yielding an effective frame rate of 25 fps respectively close

to 30 fps [Poynton, 2002], whereas more recently developed systems like the Sony

Playstation console seem to run with even higher target frame rates21. While the human

eye is a sophisticated and complex device where – especially for a computer scientist – it

seems difficult to come up with one final value outlining its capabilities in terms of

distinctively perceivable frames per second, depending on the underlying test scenario

various studies in this field of science uniformly report of a required frame rate greater

than 20 fps. In [Dahm, 2005, p. 46] the value is estimated to 22 fps for example. Assuming

this estimation to be applicable to most of the in practice occurring scenarios, the hard-

coded maximum frame rate of 20 fps is suboptimal. Therefore table 3.1 contains two

columns which show figures with extrapolations of the 20 fps measurements for a frame

rate of 30 fps. This value was chosen as a target figure to reach in case of the event that the

simulation engine gets revamped, since it seems to be a fair tradeoff between increased

computational load and improved visual presentation.

b) The second aspect to mention is the last column of table 3.1 which is an indicator for the

leeway to enhance TEALsim’s simulation capabilities in the future based on the underlying

network design. Considering that the simulation engine was capable of calculating at least

200 point charges simultaneously on a personal computer dating from September 2009

21 John Carmack from Id Software and Cliff Bleszinski outlining their expectations on console target frame
rates - http://www.tomshardware.com/news/30fps-John-Carmack-Next-Generation-Console-
Framerate,19864.html

http://www.tomshardware.com/news/30fps-John-Carmack-Next-Generation-Console-Framerate,19864.html
http://www.tomshardware.com/news/30fps-John-Carmack-Next-Generation-Console-Framerate,19864.html

3.2 Previous Network Architecture

27

(Intel Core i5 2.66 GHz Quad-Core CPU, 4 GB RAM, Nvidia GeForce 260 GTX, Windows 7 64

bit), which would result in approximately 600 kb/s bandwidth utilization for each client

streaming such a simulation, network performance can be considered as one of the major

bottlenecks of the framework (unless bandwidth is considered to be unlimited, which

could hold true for LAN-only scenarios). As a solution to this issue Berger [2012, p. 69]

suggested three potential techniques to reduce bandwidth utilization, which are:

1) Change data for transmission from double values to float (reducing bandwidth

utilization by 50%, but also reducing simulation accuracy to a certain extend)

2) Transfer only data relating to changed simulation elements

3) Transfer only those attributes of simulation elements which cannot be omitted to

render the frame on the client side

c) Last but not least table 3.1 also outlines that not every simulation takes advantage of the

available server-side processing power (and it is open if this could be changed in a way

which makes sense). The Falling Coil simulation for example, which is a very resource

hungry application in its current, low-optimized state, causes very little network traffic

after all.

Simulation name
bytes
per

frame*

kb/s with
20fps

kb/s with
30fps

point
charges

(PC)

resulting
bytes per

PC**

kb/s per PC
with 30fps

Capacitor 1312 26 38 12 109 3

Capacitor 1888 37 55 18 105 3

Charge by Induction 1328 26 39 10 133 4

Charge by Induction 2288 45 67 20 114 3

Falling Coil 224 4 7 - -

 * approximate values; based on the size of a message dispatched from server to client

 ** disregarding any overhead potentially caused by e.g. message header, etc.

Table 3.1: Bandwidth usage of OWL module for different simulations

33..22 ..33 LLiimmii ttaatt iioonnss IInnttrroodduucceedd bbyy 33 rrdd --PPaarr ttyy FFrraammeewwoorrkkss

Besides the already mentioned, expectable issues caused by superimposing a client-server

architecture on a desktop system, the underlying RedDwarf Server22 used by OWL introduced

another set of limitations, further intensifying the difficulties. Following is a consolidated list of

constraints which are of potential relevance for the TEALsim OWL module, taken from [Berger,

2012, p. 70]:

22 RedDwarf Server homepage - http://www.reddwarfserver.org/

http://www.reddwarfserver.org/

3 TEALsim in a Multi-User Environment

28

“Code run on PD [Project Darkstar] has to follow several guidelines [RedDwarf Server Application

Tutorial, 2010]:

a) All objects must implement the serializable interface. Without that the mentioned

atomicity of a task can not be provided. PD throws an exception if an object not being

serializable.

b) A single managed object must not contain too much data. Otherwise the de-serialization

and re-serialization process would take too much time and the task will be thrown away

very often.

c) All inner classes should be static since the time taken for the serialization increases

significantly if they are not.

d) Synchronization blocks must not be used among managed objects and their members.

Since PD uses it’s own locks those can conflict with the ones the user defined code uses.

This can easily lead to a deadlock.

e) Static fields which are not constant vanish on re-serialization. Although this problem can

be solved with Java semantics another problem with this fields appear. Such fields are

specific to a single Java virtual machine. This behavior undergoes the feature of PD to run

on more than one virtual machine.

f) Java’s exception base class java.lang.Exception should never be caught. This is because PD

uses its own exceptions which would in this case be caught by the user code. This is

especially important for debugging and testing new functionality since the exception base

class is often used together with such approaches.

g) No objects except managed objects themselves should be referenced by more than one

managed object. After the first serialization process they will not be identical any more

since a new object is created on re-serialization.”23

33..22 ..44 RReeccaappii ttuullaatt iioonn

Evidently the design explained in this chapter comes with certain limitations which are difficult to

overcome based on minor reiterations of respectively mere tweaks to the whole concept. For

example none of the suggestions by Berger [2012] to reduce bandwidth utilization (as

summarized in chapter 3.2.2) are straight forward to implement, where two of them yield an

unpredictable net performance gain (item 2 and 3). It is even more likely that the idea to transfer

only changed simulation data does not result in a significant performance improvement at all,

since in a realistically simulated physics environment everything somehow interacts with

everything else at every given point of time, and by doing so causing changes (and it does not

23 This quote was cited as a whole because it is already a recapitulation of the RedDwarf Server Application
Tutorial with a very high information content which would be very difficult to exceed on the one hand, and
where any further summary would inevitably omit important pieces of information.

3.3 Alternative Approach Derived from Video Games

29

matter if the impacts caused by the mutual interactions may be just infinitesimal after all because

in general a very tiny floating-point number has the same memory footprint compared to a large

number).

Another side effect of the discussed design constitutes the fact that individual system

requirements for simulations considerably diverge because certain simulations are capable of

taking full advantage of the available ‘server-side acceleration’ whereas other simulations are

denied this aid and therefore still require a decent computer to run with an acceptable frame rate.

Put another way the design is inconsistent in its effort to establish a system requiring fairly ‘thin’

clients and a ‘fat’ server eventually enforcing an environment where both – the clients and server

alike – have to be ‘fat’.

Additionally complexity of the code turned out to be rather high, for which reason a different

approach to handle synchronization will be discussed in the succeeding chapter 3.3.

33..33 AAlltteerrnnaatt iivvee AApppprrooaacchh DDeerriivveedd ff rroomm VViiddeeoo GGaammeess

Starting point for a reconsideration of the existing design is an analysis of what has to be

synchronized. In its former state the TEALsim OWL module had to synchronize two things

between server and client(s):

a) user inputs (such as button clicks or text field inputs)

b) simulation states (of the simulation elements – via EngineMessages)

Out of these two mentioned items, user inputs are always going to be unpredictable and will

therefore require a mechanism for synchronization. Hence only simulation states remain as a

candidate for potential optimization.

Techniques used to build multiplayer video games could help to find the right approach for this

issue – after all simulations built upon the TEALsim framework can be regarded as a kind of game

as well (particularly since ideas exist to evolve TEALsim into a direction where it allows for even

more game-like simulations to be created). For a very popular title in this area that is, the first-

person shooter Half-Life, its developer Valve Corporation24 published a series of articles on its

Developer Community web page25, describing various aspects of their technology. Most

interestingly their engine and network logic does not synchronize each frame, but rather expects a

certain kind of determinism in the game flow (which equals to the ‘simulation flow’ with regard to

TEALsim). This determinism usually only gets violated by user input. Due to this reason a lot of

brainpower was invested to optimize methods for game flow prediction, e.g. by extrapolating and

interpolating client states, with one overall goal being to decrease perceivable network latency

24 Valve Corporation - http://www.valvesoftware.com/
25 Valve Developer Community page - https://developer.valvesoftware.com

http://www.valvesoftware.com/
https://developer.valvesoftware.com/

3 TEALsim in a Multi-User Environment

30

(subsumed under the term ‘lag compensation’ – see [Bernier, 2001]). Since a competitive

multiplayer game is always prone to hacking attacks by individuals trying to gain an unfair

advantage, their system comprises a supervising server instance computing the game flow in

parallel to the clients, verifying that user events stay within the boundaries of possible. Still,

communication between client(s) and server basically consists of user inputs influencing the

game in a way which alter the predictable future, or in other words: only new impulses, changing

the ‘direction’ the game converges to, are transmitted. This is possible because all of the involved

parties (server and clients) share the same set of algorithms which calculate the same output

based on the same input.

Apply best practices

Applying this paradigm to TEALsim creates the requirement for the simulation engine to become

deterministic. Formally, the engine’s responsibility is to calculate the next, future state for all

simulation elements (= output) based on their former states and a specified amount of time to

forward the scenery (= input).

Naturally, computational intensive tasks from other, in parallel running processes on the same

machine are able to delay the computation of new frames for TEALsim (by racing for

computational resources). Previously, there existed no specified logic to ensure that the engine

made up for the time it was lagging behind after such a delay occurred. Put simply, the most

important thing that has to be changed to make the engine predictable is its behavior from

calculating new outputs on a best effort basis to a stricter specification forcing it to produce

defined outputs in certain intervals with the option to fill in supplementary outputs depending on

available processing power (and furthermore skip in-between steps/frames as long as it is lagging

behind). More details on how the engine is supposed to work will be given in chapter 4.

Assuming that this requirement for determinism can be met, in general no additional

synchronization would be required on that score. Just like in the case of Half-Life synchronization

could be restricted to mere user inputs, drastically reducing bandwidth utilization. Above all no

imperative need for server-side calculations exists for the TEALsim framework because it is

currently not intended for use in a real competitive environment hence the issue how to ensure

that integrity is maintained is of no concern. For this reason the sever could resemble a

lightweight broker service responsible to interconnect its clients, resolve race conditions

occurring between clients trying to change the same simulation element within a short time

interval as well as store an up-to-date version of the current simulation state (which could be

queried from one of the connected clients) for persistence purposes .

Impacts on TEALsim’s design

As mentioned adoptions to the simulation engine are necessary to ensure its determinism.

Beyond that the integral part of the proposed design is the shift of TEALsim’s design from desktop

to client-server architecture, regardless of the actual environment the simulation is intended to

run in. The background for this paradigm change is the notion that it is easier – and from a design

point of view more consistent – to emulate a distributed environment for a desktop application

than it is to superimpose a client-server architecture on a desktop application.

3.3 Alternative Approach Derived from Video Games

31

For technical details how this aspect was realized in TEALsim see chapter 7. In general the

framework references a minimalistic connection interface for which an appropriate

implementation gets instantiated depending on the prevailing host environment. The

client-server architecture itself is of an authoritative nature, which means that the client (the

TEALsim simulation) indispensably requires a server to authorize user inputs. Though, due to the

abstraction of the connection the client does not care whether the server runs in parallel on the

local machine (either as independent process or in the same Java virtual machine) or remotely – it

is the concrete connection’s responsibility to close the gap between client and server.

Besides the need for a package containing the network layer and changes to the simulation

engine, the third mentionable effect of the new design on TEALsim is its requirement to slightly

adapt all existing simulations. Similar to the concept of multi-threaded programming, where the

Java language provides standardized constructs to synchronize concurrent threads on various

levels of scope (e.g. via synchronized methods and blocks, reentrant locks, etc.), equivalent

decisions have to be made when designing applications for distributed execution. To reduce the

amount of work required to adjust the whole project to adhere to the new paradigm two major

types of objects will be part of the network package (for detailed technical information regarding

these properties see chapter 7.5):

a) A generic property which meets the requirement to set its value asynchronously only

after server authorization. Furthermore, it will also be used to provide synchronization

on block level.

b) A package of classes referencing Swing UI elements which can be synchronized across

all other concurrent clients and furthermore linked to generic properties.

Recapitulation

The proposed alternative design is based on paradigms successfully used for proprietary

multiplayer games. It will inevitably increase the amount of TEALsim’s code base (and

consequently also the complexity by a certain degree), since the network capabilities become

integral part of the framework instead of being outsourced to secondary projects. In return any

project aiming for distributed execution will become more comprehensible and more consistent

in design by a magnitude. The optimization of the system for client-server architecture will

provide considerably improved performance in this area while suffering – if at all – from

negligible performance hits in the desktop scenario. Once adapted to the new architecture,

simulations built on the TEALsim framework can be used with little to no adjustments in

frameworks like OWL. Beyond that no noticeable additional work to create new simulations

should derive from the new architecture due to the availability of simple-to-use properties which

encapsulate the synchronization logic.

3 TEALsim in a Multi-User Environment

32

33..44 CCoommppaarriissoonn ooff PPrreevviioouuss DDeessiiggnn VVeerrssuuss AAll tteerrnnaatt iivvee DDeessiiggnn

In this chapter the term ‘previous design’ relates to the concept explained in chapter 3.2, whereas

the term ‘alternative design’ references the ideas depicted in chapter 3.3. Various general aspects

which are of importance when it comes to adding network features to TEALsim respectively the

associated OWL module get discussed hereafter. This analysis shall outline each concept’s

corresponding strengths and weaknesses.

33..44 ..11 CCoommpplleexxii ttyy ooff TTEEAALLssiimm FFrraammeewwoorrkk

Considering TEALsim’s codebase isolated from all other related projects, the client-server

architecture of the alternative design doubtlessly adds in a certain amount of complexity

compared to the previous design. In this context it is important not to mix code and complexity

reducing effects of the cleanup duties described in chapter 6.1 with the consequences to the

framework’s code caused by the new design. Instead the former activity has to be seen

independently and it would have benefited both designs alike. Therefore TEALsim seen isolated

from any derived project was certainly less complex based on the previous design.

33..44 ..22 CCoommpplleexxii ttyy ooff OOWWLL MMoodduullee

Different to the reduction of code in TEALsim’s main project (as discussed in the previous chapter

3.4.1) is the decreased size and complexity of TEALsim’s OWL module (see chapter 6.1) directly

related to the introduction of the new client-server architecture. This is due to the downgrade of

OWL’s role to something resembling a media player.

In fact everything that was needed to make the TEALsim simulations run in OWL was to create a

specific implementation of the connection system as well as provide adapted classes to allow

embedding the viewer into the OWL world (which already existed for the module based on the

previous design).

Currently there are still some classes with redundant/obsolete code left in the module; further

work in this area with the goal to completely take away the requirement to know any TEALsim

framework internal details would make it even easier to embed TEALsim in 3rd-party applications.

33..44 ..33 CCoommpplleexxii ttyy ttoo CCrreeaattee NNeeww CCoonntteenntt

Complexity to create new simulations should stay equal regardless of the underlying design of the

TEALsim framework. The documentation of the previous design owes detailed answers to certain

use cases which require synchronization. For this reason it is sensible to assume that eventually

similar mechanisms like those described in chapter 7.5 would have to be implemented for the

previous design as well to cover the fundamental types of synchronization (see chapter 3.5). The

3.4 Comparison of Previous Design Versus Alternative Design

33

tools to synchronize user inputs introduced with the alternative design give content developers a

fine-grained control over the things they want to be synchronized on an easy-to-use basis.

33..44 ..44 NNeettwwoorrkk CCoonnggeesstt iioonn aanndd SSccaallaabbii ll ii ttyy

Network congestion caused by synchronization of user inputs should be almost identical for both

designs. Beyond that the flexible operation mode of the alternative design (see chapter 4.3)

requires a distinction of the expectable benefits depending on the situation:

a) Compared to the previous design, network traffic is reduced by a magnitude in the

alternative design’s standard mode, since synchronization amongst all clients is

generally done implicitly by a deterministic simulation flow. For one (capable) client

little bandwidth usage will arise from the server’s subscription to receive regular

updates of the simulation state (to share with connecting clients).

b) In this context the worst case scenario occurs with computational weak clients (like

smartphones or tablet computers) who could switch into a mode of operation similar

to the previous design (where they will receive a stream of simulation states to avoid

having to compute the simulation flow themselves).

33..44 ..55 CCooddee EExxtteennssiibbii ll ii ttyy aanndd AAuuttoonnoommyy

With the previous design TEALsim’s network capabilities originated solely from the (tight

integration into the) OWL framework. This situation could be described as a vendor lock-in

because no easy integration of TEALsim in any other 3rd-party multi-user framework was

conceivable.

Furthermore extension of the main project itself was challenging, not least due to the split engine

design used for the OWL module. When trying to change the TEALsim framework this setup made

it difficult to entirely comprehend and anticipate the consequences on dependent projects like the

OWL module. In absence of extensive tests to verify the code’s functionality this issue becomes

especially severe.

The alternative design packages everything into one coherent project. As a result verification of

the correct operation of all features becomes more centralized and consequently testing becomes

easier and more reliable. Furthermore, the development of new features for TEALsim should

become more rapid due to isolating changes to one (small) project instead of having to work with

multiple interconnected projects, which all come with their own set of limitations and rules

regarding e.g. debugging, compilation, etc.

3 TEALsim in a Multi-User Environment

34

33..44 ..66 VVeerrssaatt ii ll ii ttyy

Not least due to its flexibility to switch between operating modes, the alternative design opens up

additional possibilities for future developments and fields of operation for TEALsim. On the one

hand focus could be put on the simulation core to cover more physics experiments or even other

fields of science again (e.g. biochemistry). In line with such developments would be the tasks to

add more sparkle and improve performance on the visualization side. This direction would

especially benefit computational powerful computers like laptops or workstations.

On the other hand attention could be directed to work on use cases relating to the execution of

TEALsim on slower devices streaming the simulation flow. Such devices often come with a unique

set of constraints to mind, like reduced screen sizes which would need special adjustments to the

user interface to allow for a good user experience.

While the previous design operated similar to the streaming mode of the alternative design and

thus shares the same set of possible future fields of operation, its tolerance for more graphical

brilliance is potentially limited by the available network capacity.

33..44 ..77 SSeerrvveerr HHaarrddwwaarree RReeqquuiirreemmeennttss

Hardware requirements for the server are on its bare minimum for the alternative design. In its

current conception this design does not offload any computational intensive tasks from the client

side onto the server side. Instead the server merely has to decide if incoming requests are

admissible. Consequently a server running the alternative design’s service should be capable of

handling a vast amount of clients and simulations simultaneously.

With the previous design the threshold for concurrent clients and simulations was much lower.

For the maximum amount of clients the available network bandwidth was a major factor (see

chapter 3.2 and in particular table 3.1) whereas the maximum amount of concurrently running

simulations was mostly restricted by the available computing power. Finding a feasible set of

simulations the server could handle was quite complex. Auxiliary tasks which were running in

parallel had a much higher influence on the perceivable, visual experience for clients executing a

simulation since any spike in CPU load by another process immediately delayed the computation

of the subsequent simulation frames.

33..44 ..88 CCll iieenntt HHaarrddwwaarree RReeqquuiirreemmeennttss

In theory the previous design was based on the concept that computational intensive tasks – like

calculation of the simulation flow – should be delegated from the client to the server, thereby

relieving the client. In practice not all simulations were equally suitable for such a divided

computation model (see table 3.1 and the related discussion), hence slow clients could only run a

subset of the available simulations whereas fast clients were not always able to take full

advantage of their computing power but were often forced to idle waiting for the server to

3.5 Synchronization of User Inputs

35

provide missing parts of the calculation. In this context clients running TEALsim in the streaming

mode of the alternative design obviously do not experience any difference compared to the

previous design.

The true benefit of the alternative design lies in its better utilization of otherwise untapped

resources for computational capable clients. In this regard the client hardware requirements

could be considered to be higher, which becomes irrelevant though due to the possibility to

switch over to the streaming mode if really necessary.

33..44 ..99 RReeccaappii ttuullaatt iioonn

Each design concept comes with certain – sometimes mutual – pros and cons. The following table

gives a brief overview of the discussed aspects, and shall serve as a simple and quick reference to

the conclusions which can be drawn from the explanations in the corresponding chapters. In this

case a check means that one design could be considered superior to the other design for this

particular trait.

aspect
superiority

previous design alternative design

3.4.1 Complexity of TEALsim Framework

3.4.2 Complexity of OWL Module

3.4.3 Complexity to Create New Content

3.4.4 Network Congestion and Scalability ()

3.4.5 Code Extensibility and Autonomy

3.4.6 Versatility

3.4.7 Server Hardware Requirements

3.4.8 Client Hardware Requirements ()

Table 3.2: Pros and cons for the previous versus the alternative synchronization design

33..55 SSyynncchhrroonniizzaatt iioonn ooff UUsseerr IInnppuuttss

As explained, the alternative design for TEALsim assumes that the framework itself executes in a

deterministic way, thus reducing synchronization requirements to events triggered by external

entities that is, a human user in most cases. Referencing the example given in listing 3.1, the most

manifest solution for this requirement would be to try to synchronize the call to the

actionPerformed(…) method of the button’s ActionListener instead of individually synchronizing

each TextField’s call to the setValue(…) method. Besides, considering that TEALsim is intended to

be a toolbox which should be easy to use even for non-versed programmers (creating new

3 TEALsim in a Multi-User Environment

36

applications), it would be handy to provide a very generic solution to this issue which operates

more or less hidden to the application creators.

In this context attempts have been made e.g. with marker interfaces along with JDK 5’s

instrumentation26 features to detect and dynamically augment corresponding events in need of

synchronization. Even though certain related problems can be solved with this technique (and

additional code in the simulation definition files is reduced to a minimum), a couple of unsolvable

problems remained which eventually resulted in the requirement to create specific objects for

every single Swing UI element (see chapter 7.5).

Listing 3.1: Pseudo code declaring a basic UI and the relation of its elements

33..66 SSuummmmaarryy

This chapter introduced to the fundamentals related to the execution of TEALsim in a distributed

environment. Initially several scenarios were outlined to give an idea about how to utilize

TEALsim in various multi-user environments. Subsequently followed a theoretical disquisition on

the software design used by former, related projects ([Scheucher, 2010], [Berger, 2012] and

[Pirker, 2012]) in contrast to an alternative approach. After recapitulating each concept’s

mechanics subsequently several autonomous aspects were identified to highlight each design’s

pros and cons. In the end followed a short introduction to the principles of synchronizing user

inputs.

After this chapter pointed out reasons why to adapt TEALsim to utilize a client-server architecture

as a whole, the following chapter explains the ideas to attain a deterministic simulation flow. This

discussion starts out specifying the general runtime characteristics of the simulation engine,

leading to encountered issues on the road to meet these requirements and finally closes with

details about the developed algorithm.

26 Java instrumentation example - https://today.java.net/pub/a/today/2008/04/24/add-logging-at-class-
load-time-with-instrumentation.html

1
2
3
4
5
6
7
8
9

10

Button btn = new Button("Increment");
TextField field1 = new TextField(0);
TextField field2 = new TextField(0);

btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 field1.setValue(field1.getValue() + 1);
 field2.setValue(field2.getValue() + 1);
 }
});

https://today.java.net/pub/a/today/2008/04/24/add-logging-at-class-load-time-with-instrumentation.html
https://today.java.net/pub/a/today/2008/04/24/add-logging-at-class-load-time-with-instrumentation.html

37

CChhaapptteerr 44

DDeessiiggnniinngg aa DDeetteerrmmiinniissttiicc SSiimmuullaattiioonn EEnnggiinnee

This chapter familiarizes with the idea of a deterministic simulation engine and the problems

which have to be dealt with. The initial simulation engine algorithm was not predictable

respectively configurable enough to use it in an environment with the requirement to reach an

exactly defined simulation state at an exactly defined point of real-world time to execute arbitrary

tasks. Since the former algorithm additionally lacked thorough design-documents specifying the

in place procedures a complete redesign of the simulation algorithm was preferred over an – as

minimalistic as possible – adaption of the existing one.

After a very general summary of the new algorithm’s concept and the encountered technical

issues, the execution flow of the algorithm gets outlined in more detail explaining its different

modes and particular steps of the execution.

44..11 IIddeeaa BBeehhiinndd aa DDeetteerrmmiinniiss tt iicc AAllggoorrii tthhmm

In chapter 3.3 it was mentioned that – in simple terms – all clients should compute a simulation

identical to avoid the need for explicit synchronization. Even though all clients will execute the

same Java bytecode, and therefore they all might eventually compute the same result when

hard-coding the execution flow, they will inevitably require a distinct amount of real-world time

to do so. This is one reason that causes clients to run out of sync (until they hit this defined final

state) without any other precautionary design decisions.

Now the main idea behind the new engine algorithm is to implement it in a flexible way which is

capable of computing more or less sub-steps (so called in-between frames) depending on the

underlying hardware capabilities. However a fixed minimum frame rate of so-called key frames

shall be maintained, which serve as reference states to implicitly achieve synchronization across

all concurrent clients. Formally there exist the following parameters:

a) ∆T is the amount of virtual simulation time to forward the simulation from one key

frame to the next key frame.

4 Designing a Deterministic Simulation Engine

38

b) ∆step is the amount of simulation time from one in-between frame to the next

in-between frame. In general this value is used as the time factor in the equations

calculating the physical correct behavior of all simulation’s elements during the

integration phase.

c) A SimulationSpeed value which serves as multiplier for ∆T. During runtime this value

can be adjusted via the available slider (see figure 6.10). For the algorithm itself this

value has no relevance because ∆T and ∆step are multiplied alike.

For a given simulation ∆T is either set to a specific value by the simulation creator or otherwise a

standard value from the AbstractEngine is used. In other words, when setting up new simulations

the creator may specify that two distinct simulations ‘run’ with a different pace even though the

SimulationSpeed slider is set to the same value. In execution mode the algorithm (or ‘engine’)

advances the simulation by ∆step for each calculation round.

Figure 4.1 visualizes the new algorithm’s behavior in an exemplary distributed system. It shows 2

clients running in parallel. Client A is in general capable of running the simulation with 8 fps

whereas client B only manages to compute 4 fps on average. Starting from an identical state both

clients compute the next in-between frame(s). Once the 1st second is over both clients compute

their first key frame (marked with a star and letter in bold) based on the initial simulation state.

Subsequently both clients compute the next in-between frames. Figure 4.1 also indicates what

happens when one client experiences unexpected difficulties to maintain the frame rate. When

calculating the 6th frame after the 1st key frame client A faces a delay (e.g. a virus scanner process

running in parallel to the TEALsim simulation used up a severe amount of processing power). Due

to this delay client A does not manage to compute a 7th in-between frame anymore but instead

immediately calculates the next key frame. This is the fundamental concept at the heart of the new

algorithm. Only the most common use case was covered in this explanation, but there are several

other situations which have to be considered as well. These situations and the algorithm itself are

covered in more detail in the diagrams in chapter 4.4.

Figure 4.1: Schema of deterministic simulation engine

real-world time [seconds]

1 2 3

frames computed by client B

1 2 3 4* .1 .2 .3 .4* ..1 ..2 ..3 ..4*

frames computed by client A

2 3 4 5 6 7 8* .1 .2 .3 .4 .5 .6 .7* ..1 ..2 ..3 ..4 ..5 ..6 ..7 1 ..8*

4.2 Issues Complicating an Implicit Synchronization Simulation Calculations

39

44..22 IIssssuueess CCoommppll iiccaatt iinngg aann IImmppll iiccii tt SSyynncchhrroonniizzaatt iioonn

SSiimmuullaatt iioonn CCaallccuullaatt iioonnss

There are several issues which have to be considered when trying to achieve an implicit

synchronization of concurrently running programs. Some of these problems are of logical nature

whereas others originate from technical constraints. This sub-chapter introduces to the technical

reasons why key frames were introduced as reoccurring states to ensure implicit synchronization,

breaking the simulation flow up into a stream of in-between frame intervals.

44..22 ..11 DDoouubbllee PPrreecciiss iioonn DDiivveerrggeennccee AAccrroossss MMuull tt iippllee CCll iieennttss

A serious challenge impeding the task to create a flexible but still deterministic simulation engine

emanates from the definition of floating point numbers. Since computers can only handle two

different types of values on their lowest level – zero and one – ultimately everything has to be

mapped to a binary presentation. The same holds true for floating point numbers. Mathematical

operations which appear easy to solve for a human in his head might effectively return

unexpected results once executed on a computer. An example for such an issue is given in listing

4.1 [Stack Overflow, 2008], where two mathematical operations lead to results which are not

representable double-precision values.

Listing 4.1: Code sample to demonstrate precision issue with floating point numbers

This problem intensifies when using multiplications and in particular with divisions since they are

increased likely to require rounding. Therefore, two separated systems computing an anticipated

identical end result with a different amount of sub-steps (each time causing small rounding to

occur) will return divergent results. Listing 4.2 illustrates this issue by computing a value once in

a single step and subsequently computing the supposedly same figure in a series of smaller sub-

steps.

1
2
3
4
5
6
7
8
9
10
11

public class doublePrecision {
 public static void main(String[] args) {
 double total = 0;
 total += 5.6;
 total += 5.8;
 System.out.println(total); // prints 11.399999999999

 double three = 33.33333333333333 / 100;
 System.out.println(three); // prints 0.33333333333333326
 }
}

4 Designing a Deterministic Simulation Engine

40

Listing 4.2: Demonstration of diverging results based on amount of calculation steps

44..22 ..22 CCaallccuullaatt iioonn DDiivveerrggeennccee BBaasseedd oonn AAllggoorrii tthhmm SStteepp--SSiizzeess

Besides rounding occurring due to floating point numbers which exceed the amount of

information storable in their associated objects in computer memory, also the underlying

algorithms describing physical effects may produce slightly varying results depending on the

amount of sub-steps used to compute an aggregated end result.

An example for this is the Runge-Kutta method employed in TEALsim to numerically integrate

ordinary differential equations. The algorithm splits the ‘distance’ between a starting point and an

end point into an interval of intermediate steps [Weisstein, 2013]. Based on this interval an

approximation of the true solution is calculated as well as an estimated accuracy for this result.

The result’s accuracy is then compared with a target accuracy. If a certain threshold is not met an

adaptive step-size control breaks up the interval and reruns the algorithm on these smaller

intervals. This is a recursive process which decreases the intervals until all of their

approximations meet the target accuracy. An approximation’s result will slightly vary depending

on its starting point. For this reason when the simulation engine computes one frame based on a

larger time delta the simulation's state will be unequal to the final state by way of computing two

successive frames each with half the time delta.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

public class doublePrecision {
 public static void main(String[] args) {
 double distance1 = 0;
 double distance2 = 0;
 final double TIME = 1.0; // hours
 final double SPEED = 30.0; // km/h

 distance1 = SPEED * TIME;
 System.out.println(distance1); // prints 30.0

 final int STEPS = 7;
 for(int i = 0; i < STEPS; i++)
 distance2 += SPEED * (TIME / STEPS);

 System.out.println(distance2); // prints 29.999999999999996
 }
}

4.3 Concept of the Configurable Simulation Engine

41

44..33 CCoonncceepptt ooff tthhee CCoonnffiigguurraabbllee SSiimmuullaatt iioonn EEnnggiinnee

One design goal of the new simulation engine was to make it flexible in a way that it can adapt to

the actual hardware available on the client side. Computational potent devices should be able to

tap their capabilities whereas slow devices should receive aid from the server. Figure 4.2 outlines

the implemented concept as a flow chart. In general there exist two possible strategies a client

may pursue: either the simulation can be retrieved as a stream from the server (similar to the

previous design) or alternatively it gets computed locally. Both strategies are self-contained

cycles, although there are optional checks which allow switching from one to the other mode.

Figure 4.2: Diagram of the concept of a switchable simulation engine

44..44 DDeessiiggnn ooff tthhee AAllggoorrii tthhmm ffoorr LLooccaall SSiimmuullaatt iioonn CCaallccuullaatt iioonn

Figure 4.4 outlines the algorithm in place to adapt the frame rate to the hardware capabilities.

Variables suffixed with a ‘t_’ are figures dealing with time values which are measured in

milliseconds. The algorithm itself should be comprehensible without any further written

explanation by studying the flowchart, possibly backed up by calculating one or the other cycle

with pen and paper. Furthermore figure 4.5 shows that part of the algorithm in more detail which

4 Designing a Deterministic Simulation Engine

42

is responsible to compute the next simulation step, export the simulation state and update the

currently achievable frame rate. One thing to keep in mind is that scheduled tasks are usually only

executed immediately after a key frame as a method to deal with race conditions and ensure

synchronization.

Figure 4.3 roughly outlines the concept where the server registers with a client to receive its

calculation results of the simulation (to share with other clients requesting the simulation as a

stream). This part has not yet been implemented in the prototype version.

Figure 4.3: Logic to export engine states to the remote computers (most notably the server)

4.4 Design of the Algorithm for Local Simulation Calculation

43

Figure 4.4: Overall design of the deterministic algorithm for local simulation calculation

4 Designing a Deterministic Simulation Engine

44

Figure 4.5: Computational part of the algorithm doing simulation calculation locally

4.5 Details of the Simulation Engine Running in State Streaming Mode

45

44..55 DDeettaaii llss ooff tthhee SSiimmuullaatt iioonn EEnnggiinnee RRuunnnniinngg iinn SSttaattee

SSttrreeaammiinngg MMooddee

Figure 4.6 summarizes the execution flow when a client runs in the streaming mode. Like the

steps illustrated in figure 4.3, this part of the algorithm has not yet been implemented in the

prototype.

Figure 4.6: Execution flow for simulation engine when streaming simulation states

44..66 SSuummmmaarryy

This chapter introduced to the algorithm utilized to run TEALsim’s simulations in a deterministic

way. It was kept on a rather formal level and did not cover any implementation related details

(such as class diagrams). After explaining certain variables which can be used to influence the

simulation’s pace, based on a short example the concept which keeps simulations with varying

frame rates in sync was explained. Furthermore, two reasons were discussed which required the

introduction of key frames as an implicit mechanism of synchronization. Ultimately the chapter

closed with various flowcharts which illustrated the algorithms execution flow.

Assuming that the mechanism outlined in this chapter removes the requirement to explicitly

synchronize the simulation calculations, the second area requiring means for synchronization are

user inputs. This topic is covered in the next chapter where multiple use cases specify the client-

server architecture’s expected system behavior.

46

CChhaapptteerr 55

SSyynncchhrroonniizziinngg CCoonnccuurrrreenntt CClliieennttss

A key benefit of the new client-server architecture is its reduced bandwidth utilization due to

reducing network traffic to events triggered by human interactions for most scenarios. However,

this requires these user inputs to be dealt with in an appropriate way to ensure that all clients

apply these changes in exactly the same way (respectively at the same point of time). For this

purpose the server has to act as authoritative instance to validate user inputs and to forward

them to all concurrently running clients. The consecutive chapter specifies the expected behavior

for this validation logic as a sequence of use cases.

55..11 UUssee CCaasseess ffoorr MMoosstt RReelleevvaanntt DDeessiiggnn AAssppeeccttss

Unless explicitly specified in another way the expression ‘client’ refers to the TEALsim client-side

implementation whereas the expression ‘server’ refers to the TEALsim server-side

implementation.

The expression ‘ControlState’ serves as a placeholder term for something which may be changed

by the user but which has to be synchronized between all clients (and therefore has to be

previously authorized by the server). An example for this would be the simulation’s running state

(running or paused). Furthermore, by using the term ControlState to describe something which

has to be synchronized implies that changes to this element (after authorization) will also change

all of its associated elements (e.g. if ‘ControlState’ relates to the value of a text field, which is used

to specify the charge value of an arbitrary amount of point charges, changing this ControlState will

subsequently also change the point charges).

‘SimulationTime’ is defined as the sum of |ΔT| the simulation engine progressed the simulation,

hence a paused simulation does not change its SimulationTime.

5.1 Use Cases for Most Relevant Design Aspects

47

Use case 5.1: Multiple clients running with out-of-sync SimulationTime

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is paused

Story

Client A requests to start the simulation. Due to the authoritative role of the server,
the request to start the simulation is forwarded to the server before anything may
happen.

Subsequently, the server verifies whether or not the requested ControlState change
may be authorized (see the succeeding use cases for more details). Assuming that
the change is authorized, all of the clients connected to the server are notified about
the new state (that is, to start the simulation). Due to differing latencies between the
server and its connected clients, all of the clients will ultimately start running their
simulation at a different point of (real world) time.

Post-
condition

All clients are running but ultimately they might be out of sync assuming an
omniscient supervisor capable of tracking such marginal differences.

Remark

Assuming latencies to be in the area below 1000 [ms] for modern networks, having 2
clients next to each other connected e.g. via LAN to a local server, the overall
difference of alternating SimulationTimes between both clients should not be visible
with the human eye.

While it probably may never be possible to achieve a 100% synchronization, certain
techniques could be implemented to decrease the effective difference in
SimulationTime amongst all clients. For example clients could be slightly fast
forwarded at simulation start depending on their corresponding latencies.

Use case 5.2: Change of ControlState without user input collisions and running simulation

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story

Client A causes a change to a ControlState (e.g. by user input). Client A logs the
SimulationTime and sends a ControlState change request to the server.

The server receives the ControlState change and verifies in its internal lookup table
that the changed element was not changed by any other client at a later
SimulationTime. Upon successful validation of this constraint the server broadcasts
the ControlState change to all connected clients and updates its internal ControlState
(that is, record the state and timestamp of the last change). The broadcasted
ControlState change message contains a field telling the clients at which
SimulationTime to execute the state change. For details regarding the calculation of
this SimulationTime value, see chapter 5.2.

All of the connected clients receive the broadcast message and react on it depending
on which of the following two possible scenarios applies:

a) For example if they have a fast connection to the server (that is, low latency)
their internal SimulationTime might be before the timestamp in the ControlState
change message specifying the point of time to update the simulation. In this case
the particular client caches the received order and executes the change as
scheduled.

5 Synchronizing Concurrent Clients

48

b) Contrariwise, if they would have a slow connection to the server their
simulation will be beyond the point of time specified in the ControlState change
message. In this case they have to record their current SimulationTime and roll
back the simulation by negating ΔT until the point of time the ControlState
change has to be executed. Then the change gets applied and the simulation is
fast forwarded to the original SimulationTime.

Post-
condition

All clients and the server share the same ControlState.

At a global point of time X (that is, real world time) it is not guaranteed that clients
display exactly the same rendered view because it is not guaranteed that their
internal SimulationTime is exactly the same relative to point X. It is guaranteed
though that at a given SimulationTime clients will eventually show exactly the same
rendered view.

Use case 5.3: Change of ControlState without user input collisions and paused simulation

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is not running

Story

Client A causes a change of a ControlState and sends a request to the server.

The server receives the ControlState change, runs the verification process (which
will always succeed – see use case 5.6 for additional details) and sends a broadcast
message to all clients with SimulationTime set to:

 (SimulationTime from change request)

All of the connected clients receive the broadcast message and apply the contained
change.

Post-
condition

All clients and the server share the same ControlState.

Remark
This use case is related to use case 5.2 – due to this reason some technical details
have been omitted.

Use case 5.4: Change of ControlState with user input collisions – case 1 – trailing client B

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story

Client A causes a change U of ControlState X. Client A logs the SimulationTime Y and
sends a change request to the server.

The server receives, (successfully) verifies and broadcasts the ControlState change
to all connected clients.

Client B causes a change V of ControlState X before receiving respectively applying
the broadcasted change U from the server. Client B logs the SimulationTime (Y - Z)
[where Z > 0] and sends a change request to the server.

The server receives the ControlState change but the verification process fails causing
the change not to be authorized (that is, not sent back).

Eventually all (including client B) connected clients will receive the broadcasted

5.1 Use Cases for Most Relevant Design Aspects

49

change U originating from client A and update their simulation accordingly.
Additionally client B might receive a notification that he is lagging behind compared
to other clients which caused one change to be dropped.

Post-
condition

All clients and the server share the same ControlState based on the change U caused
by client A.

Remark

Constraint: in general, clients’ SimulationTime is assumed to be not too far off
amongst each other (see use case 5.1).

This use case is related to use case 5.2 – due to this reason some technical details
have been omitted.

Use case 5.5: Change of ControlState with user input collisions – case 2 – advanced client B

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story

Client A causes a change U of ControlState X. Client A logs the SimulationTime Y and
sends a change request to the server.

The server receives, (successfully) verifies and broadcasts the ControlState change
to all connected clients.

Client B causes a change V of ControlState X before receiving respectively applying
the broadcasted change U from the server. Client B logs the SimulationTime (Y + Z)
[where Z > 0] and sends a change request to the server.

The server receives the ControlState change and verifies it. In this case the server’s
verification process will succeed, causing it to save the new state V and issue a new
broadcast to all clients with the state of client B.

Eventually all clients will receive the broadcasted change U originating from client A
and update their simulation accordingly. Subsequently, all clients will receive the
change V originating from client B. Regular rules apply with regard to the way clients
deal with simulation changes; that is, they will – if needed – roll back their
simulation state to the timestamp value contained in the change message, apply the
change and fast forward the simulation to the former point of time.

Post-
condition

All clients and the server share the same ControlState based on the change V caused
by client B.

Remark

Constraint: messages are expected to arrive in fixed order.

This use case is related to use case 5.2 – due to this reason some technical details
have been omitted.

Use case 5.6: Change of ControlState with user input collisions – case 3 – equal SimulationTime

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story
Client A causes a change U of ControlState X. Client A logs the SimulationTime Y and
sends a change request to the server.

5 Synchronizing Concurrent Clients

50

The server receives, (successfully) verifies and broadcasts the ControlState change
to all connected clients.

Client B causes a change V of ControlState X before receiving respectively applying
the broadcasted change U from the server. Client B logs the same SimulationTime Y
and sends a change request to the server.

The server receives the ControlState change, runs the verification process and reacts
on it depending on which of the following two possible scenarios applies:

1. The simulation is in the state ‘running’ with both clients causing a
contradicting change at exactly the same point of SimulationTime, but for
example client B’s latency is greater than client A’s. This issue is resolved by
applying a first-come, first-serve paradigm on the server resulting in the
rejection of client B’s change and preferring the change arriving sooner.

2. The simulation is currently paused (therefore the SimulationTime is
temporarily constant). Since successive changes will always have the same
timestamp none of them may be dropped. Therefore any change will overwrite
prior ones (resulting in new change broadcasts).

Post-
condition

1. If the simulation is in running state all clients and the server will share the
same ControlState based on the change U caused by client A.

2. If the simulation is in paused state all clients and the server will share the
same ControlState based on which change was received last by the server.

Remark
This use case is related to use case 5.2 – due to this reason some technical details
have been omitted.

Use case 5.7: Change of ControlState with user input collisions – case 4 – equal ControlState

Pre-
condition

2 clients (A and B) opened the same simulation, connected (and therefore
synchronized) with the server, and the simulation is running

Story

Client A causes a change Y of ControlState X. Client A logs the SimulationTime and
sends a change request to the server.

The server receives, (successfully) verifies and broadcasts the ControlState change
to all connected clients.

Client B causes a change Y of ControlState X before receiving the broadcasted change
from the server. Client B logs the SimulationTime and sends a ControlState change
request to the server.

The server receives the ControlState change and runs the verification process. Since
the state of ControlState X on the server is equal to the requested change by client B,
the request by client B gets dropped silently.

Eventually all (including client B) connected clients will receive the broadcasted
change originating from client A and update their simulation accordingly.

Post-
condition

All clients and the server share the same ControlState based on the change caused by
client A which is equal to the change requested by client B.

Remark
This use case is related to use case 5.2 – due to this reason some technical details
have been omitted.

5.2 Details Regarding SimulationTime Calculation

51

55..22 DDeettaaii llss RReeggaarrddiinngg SSiimmuullaatt iioonnTTiimmee CCaallccuullaatt iioonn

Calculating the points of time to apply requested ControlState changes, which are used in the

broadcast messages sent from the server to all clients, is a sensible task since inappropriate values

will have a clearly visible negative feedback on running simulations. Too early figures will force

clients with slow connections to excessively roll back the simulation and therefore cause a jerky

visual experience. Too late time values will circumvent this particular issue. However, they will

give the feeling that the whole system is unresponsive. In the end, supposedly a lot of brainpower

and time could be invested to come up with a sophisticated formula to deal with this problem

which was beyond the scope of this thesis. For this reason the following formula is suggested as

an initial approach which can be improved at a later point of time:

 (SimulationTime from change request)
 + (originating client’s 1-way latency)
 + (median 1-way latency of all connected clients)
 = SimulationTime to apply changes, rounded up to the next key frame

While this formula naturally causes some delay for user inputs, it may reduce the amount of

simulation roll-back computation required on other clients (and therefore graphic ‘stuttering’).

Additionally, this design pays tribute to the idea to reward “high efforts” in a sense that clients can

directly influence the perceived feeling of input lag by improving their own network connection

and therefore reduce one of the delay factors.

The second factor which influences the delay of user interactions can be regarded as some kind of

social parameter to improve the experience for slower clients. While theoretically this value could

be abused for fraud (in a sense of disturbing the experience for other clients), its practical security

relevance is supposedly minor since it requires approximately as much evil clients as those who

are present with good ambitions.

55..33 SSeeccuurrii ttyy

The system was designed to be used in a non-competitive environment which was assumed to be

free of aggressors (that is, there are no incentives to cheat). Due to this reason security concerns

did not influence the design of the implementation in general. Evident security risks were tried to

be addressed as good as possible unless it involved a serious effort of redesign or increase of

complexity. Throughout this thesis known security issues are mentioned purely for the sake of

documentation. For the purpose of building a secure system an independent, in-depth analysis

would be required which presumably would require a huge amount of work.

5 Synchronizing Concurrent Clients

52

55..44 SSuummmmaarryy

This chapter summarized the expected system behavior when simulation elements are changed

by clients. In other words it is a high level specification outlining the decision algorithms required

on the client side and the server side to ensure a coherent execution flow. For this purpose

various likely use cases were covered on a formal level along with their proposed resolutions. The

overall goal of the design is to achieve a smooth visual experience for users employing the

software not under lab conditions but instead in a real, rather large, distributed network e.g. the

internet. In general the design builds upon the idea that changes by users are not executed

immediately but are slightly delayed. This delay comes from sending a change request to the

server to get permission for the user input. If authorization is granted the server informs all

clients about the change and orders them to apply this change at some point of time in the future.

Calculating this future point of time is critical to ensure a smooth visual representation of the

simulation. A first approach for this calculation is outlined, explaining the involved parameters.

This chapter completed the formal introduction to this thesis’ work. Subsequently more

implementation specific chapters follow, with the next chapter explaining the less technical steps

perform, which are nevertheless important for a large scale project. In this discussion topics are

covered such as a summary of the quality level of TEALsim’s code base or which auxiliary tools for

version control, programming and logging were used.

53

PPaarrtt IIII

IImmpplleemmeennttaattiioonn DDeettaaiillss

55

CChhaapptteerr 66

SSttaattee ooff tthhee TTEEAALLssiimm PPrroojjeecctt

At the point of time when programming activities - as part of this thesis’ scope - were stopped,

TEALsim [Massachusetts Institute of Technology, 2012] was not in a releasable state. As a matter

of fact this situation held true at the beginning of the work for this thesis and did not change until

its completion due to various reasons. While there was certainly a point of time in history when

the framework appeared to people – at least those who were not intensely engaged in the project

– to work pretty well (see the binaries compiled with older code27), several factors negatively

impacted the project and pushed the trunk of the source code step by step back into a state

resembling a demonstration version instead of something which could be used reliably in a real

teaching environment.

Amongst others the following reasons can be identified which lead to the current situation:

a) Student projects – over the course of the last couple of years a lot of the work to

enhance TEALsim has been done in the form of student projects. Taking into

consideration output limiting constraints like those listed hereafter it becomes evident

that the intrinsic desire of students to come up with a maximum amount of interesting

findings – to support an extensive thesis like this one – inevitably results in a

conceivable low quality of the created source code. In other words, in the case of

TEALsim students usually preferred the pursuit of ideas for new features (and thus

documentable results) at the expense of software quality. Factors which limit the

possible output of mature code are for example:

 an approximate length of only 6 months for a student project

 the considerable size of TEALsim paired with its lack of high-quality in-depth

(design-) documentation

27 TEALsim binaries based on older code - http://web.mit.edu/viz/EM/simulations/

http://web.mit.edu/viz/EM/simulations/

6 State of the TEALsim Project

56

 seriously complicated code deriving from the inconsistent software design and

abandoned, broken or deferred features

 substantial amount of time required to properly test a software which shall be

released to a public user base

b) Lack of (paid,) continued work on the framework – this item has been partially

suggested in the former paragraph. The lack of paid and therefore continuing,

dedicated work to funnel deviating feature branches, created by temporary

collaborators, back into the trunk to match a unified style and design paradigm

exacerbated the problem of diminishing software quality. While the absence of detailed

documentation or system specification itself indicates that the framework’s design was

mostly defined on-the-fly (and therefore was condemned to eventually become

inconsistent over the years – see the Lava Flow AntiPattern [Brown, Malveau,

McCormick III, & Mowbray, 1998]), the missing authority to evolve and watch over the

code ultimately amplified the lava-flow like situation.

c) Changing client hardware/software – naturally software and hardware is evolving

rapidly over the years. Given the fact that the TEAL project was started in the year

2000 [Scheucher, 2010] where Java version 1.3 was the most recent library available,

TEALsim has faced more or less comprehensive new client environments at least a

couple of times throughout its lifetime. This circumstance implies the requirement for

code maintenance activities of various scales, which in turn becomes an issue in

absentia of dedicated workforce (see the former paragraph).

As mentioned TEALsim appears as a perfect example for a project which evolved over time

matching the explanations for the Lava Flow AntiPattern given in [Brown, Malveau, McCormick III,

& Mowbray, 1998]. To further stress the significance of this AntiPattern, following is a quote of

the most evident consequences (that is, drawbacks in the case of an ‘anti’ pattern) with a

subsequent check whether or not the particular assertion also held true for the TEALsim

framework:

a) “Lava Flows are expensive to analyze, verify, and test. All such effort is expended entirely

in vain and is an absolute waste. In practice, verification and test are rarely possible.”

b) “Lava Flow code can be expensive to load into memory, wasting important resources and

impacting performance.”

c) “As with many AntiPatterns, you lose many of the inherent advantages of an

object−oriented design. In this case, you lose the ability to leverage modularization and

reuse without further proliferating the Lava Flow globules.” [Brown, Malveau,

McCormick III, & Mowbray, 1998]

57

Brief check of existence of Lava Flow AntiPattern issues in TEALsim source code:

assertion
applicable

to TEALsim?
description

a)

Dozens, if not hundreds, of hours were spent analyzing program flow
and object creation to trace bugs or find out a way to extend the
software. Like mentioned in chapter 6.4 for example, prior to this
thesis hardly any more comprehensive and centralized (J)unit tests
were available.

b)
A good example for this behavior was the rendering system which was
fed a list of objects to render which contained every item twice.

c)

Cascades of interfaces assigning roles to classes which made no sense
and were not used, e.g. the SimPlayer ultimately was also a
TElementManager thus forced to implement all its methods while in
fact they were never used (or if so, it was an erroneous usage)

Table 6.1: Lava Flow AntiPattern issues found in TEALsim source code

Figure 6.1: Illustration of the Lava Flow AntiPattern – Source: [Brown, Malveau, McCormick III, &
Mowbray, 1998]

6 State of the TEALsim Project

58

Consequentially one part of the practical work for this thesis was to clean up as many dead

‘features’ and design inconsistencies as possible. To illustrate the results of this effort the next

chapter 6.1. summarizes and comments the changes to the code base of TEALsim. Although this

task arguably changed the code base to the better, the description for the Lava Flow AntiPattern in

[Brown, Malveau, McCormick III, & Mowbray, 1998] also gives a hint why the framework

seemingly worked worse after the end of this thesis than it did before:

“As suspected dead code is eliminated, bugs are introduced. When this happens, resist the urge to

immediately fix the symptoms without fully understanding the cause of the error.”

In simple terms, the time spent coding was too short to reach the break-even point where the

runtime behavior of the framework inarguably exposed apparent improvements compared to its

former state.

66..11 IIssssuueess wwiitthh RReedduunnddaanntt aanndd OObbssccuurree CCooddee

As mentioned one of the big challenges encountered during the course of this project was to

understand the ‘design’ of the TEALsim framework and track down its execution flow. Code

artifacts of abandoned features and inconsistent design decisions bloated the amount of code to

analyze. The following table 6.2 summarizes the work performed to clean up the framework’s

code based on approximate figures.

files
blank
lines

lines of
comment

lines of
code

feature branch of TEALsim with SVN revision 150 602 17629 31286 74852

network, command-line argument and test packages
added after original check-in to SVN repository

46 772 1930 2654

resulting leftover from original check-in 556 16857 29356 72198

original check-in to SVN repository (revision 2) 582 17902 29534 76205

variance of leftover to original content of check-in -26 -1045 -178 -4007

Table 6.2: Overview of evolution of LoC respectively amount of files of TEALsim project28

Most mentionable for table 6.2 is the reduction in lines of code by approximately 4 kLOC which

would equal to ~5% of the whole project. Usually such code consisted of classes forced to

implement unused methods due to them implementing inappropriate interfaces, or derived

28 Figures calculated with the tool CLOC - http://cloc.sourceforge.net/

6.1 Issues with Redundant and Obscure Code

59

classes repeatedly re-implementing the same methods instead of calling into their base class. As

reference for ‘new code submits’ the packages containing TEALsim’s new network capabilities,

the command-line argument parser and the JUnit test suite were chosen, since these were

definitely non-existent previous to this thesis. While a magnitude of changes to files in other

packages were applied as well, taking them into exact consideration is arguably quite challenging,

for which reason it was assumed that the measurable effects of these changes would even out

each other.

files

blank
lines

lines of
comment

lines of
code

lines of comments
per line of code

network and command-line argument
pack-
ages added after original check-in

42 645 1813 2102 0,862511893

resulting leftover from original check-
in

556 16857 29356 72198 0,406604061

Table 6.3: Overview of amount of in-line documentation of TEALsim project29

To emphasize the improving quality of the framework’s code emanating from this thesis’ practical

work, table 6.3 summarizes the ratio of lines of comments to lines of code for old code versus new

code submits. Apparently a degree of documentation more than twice as comprehensive as prior

outlines the improving software quality.

Despite the fact that at this thesis’ start it was of importance to provide means to effectively test

the code base, eventually the attention shifted over to eliminate design flaws and implement new

features (e.g. for network capabilities) which left behind the testing suite mainly as a solid starting

point for future work in this area. Therefore code comprising the JUnit tests is rather

unsophisticated in its current state, generally consisting of copied and pasted boilerplate code,

which is the reason why the test package code was not included in table 6.3.

files blank lines

lines of
comment

lines of
code

lines of comment
per line of code

feature branch of OWL TEALsim
module with SVN revision 150

21 437 547 1475 0,370847458

original check-in of OWL
TEALsim module

23 783 810 2731 0,296594654

change of project contents
from check-in to rev. 150

-2 -346 -263 -1256 0,074252804

Table 6.4: Overview of evolution of OpenWonderland TEALsim module project30

29 Figures calculated with the tool CLOC - http://cloc.sourceforge.net/

6 State of the TEALsim Project

60

For the sake of completeness table 6.4 confirms that changes to the TEALsim framework did not

come at the cost of increased complexity in related projects like the Open Wonderland module.

Correlative to the developments in the TEALsim code base, the TEALsim OWL module code base

was reduced in complexity while getting slightly more thoroughly documented alike. Effectively

the changes turned the module into a real player-like wrapper, responsible to embed TEALsim

into OWL without redefining single, technical aspects or even whole parts of the design of the

simulation framework.

66..22 MMoovvee ff rroomm CCVVSS ttoo SSVVNN

One of the first activities was the migration from the formerly used CVS revision control system to

the more recent SVN31 system. Performing this step before anything else was a logic consequence,

since experience has shown that the move from one revision system to another one often implies

the loss of various information while additionally the necessary amount of time to accomplish the

migration increases with the amount of information contained in the former system. Motivations

for this task were amongst others:

 The extended functionality of SVN, which allowed for example to easily move folders

(e.g. via drag and drop within Windows Explorer using TortoiseSVN32).

 A unified workflow while developing TEALsim in parallel to OWL and the

corresponding module (since OWL used SVN as well).

 In general the broader personal experience with SVN compared to CVS of people

involved in this project.

The SVN host of choice was Sourceforge where currently all of the source code is publically

available33.

66..33 IInntteeggrraatt iioonn iinnttoo NNeettbbeeaannss aanndd RReewwoorrkk ooff tthhee BBuuiilldd SSccrriipptt

Next on list was the migration of the TEALsim project from Eclipse to Netbeans. Motivation for

this work was again the desire to create a more streamlined development workflow, since Open

Wonderland itself (and all of its related projects created respectively maintained by the Open

Wonderland Foundation), the TEALsim OWL module as well as one of its most important

30 Figures calculated with the tool CLOC - http://cloc.sourceforge.net/
31 Subversion revision control system - http://subversion.apache.org/
32 Tortoise SVN client - http://tortoisesvn.tigris.org/
33 TEALsim project hosted on Sourceforge - http://sourceforge.net/projects/tealsim/

http://subversion.apache.org/
http://tortoisesvn.tigris.org/
http://sourceforge.net/projects/tealsim/

6.3 Integration into Netbeans and Rework of the Build Script

61

frameworks – the MTGame Graphics Engine34 – are also Netbeans projects. Unifying the amount of

required integrated development engines (IDE) to a minimum not only decreases the amount of

time required to setup a working station and get involved in the project, but also leverages

productivity with the concrete IDE by allowing usage of advanced features such as step-by-step

debugging including stepping into code of separated projects maintained within the same IDE.

Getting everything right to allow usage of all of Netbeans’ features usually becomes a serious

challenge without profound knowledge of Ant35 build scripts in general and Netbeans’ way to deal

with things in particular. Adding into this consideration the complex structure of the former build

script (see figure 6.3), which existed without any documentation or any formal system

specification for the deliverables, a serious amount of time was required to achieve a tight and

properly working integration with Netbeans. Figure 6.2 shows the final build.xml file used by

Netbeans to build, debug and profile the TEALsim project.

Figure 6.2: Dependency graph of the streamlined TEALsim build file

34 MTGame Graphics Engine - http://code.google.com/p/openwonderland-mtgame/
35 Ant software build tool - http://ant.apache.org/

http://code.google.com/p/openwonderland-mtgame/
http://ant.apache.org/

6 State of the TEALsim Project

62

Figure 6.3: Dependency graph of the former TEALsim build script

6.4 Addition of JUnit Tests

63

Figure 6.4: Illustration of TEALsim’s OWL module build sequence

Besides the TEALsim project, also the TEALsim OWL module project was adapted slightly. Most

mentionable the module’s build script became considerably smarter by usage of a custom

Ant-Contrib Tasks36 build, which allows to check if the module uses the most recent TEALsim

library file. In this process the script checks if compiling TEALsim would yield a more recent

binary and if so triggers the build and fetches the new library. Figure 6.4 outlines this sequence

based on the recommended folder structure to setup a working environment for development of

all involved projects.

66..44 AAddddii tt iioonn ooff JJUUnniitt TTeessttss

Integral part of any project but maybe very experimental R&D prototypes is the testing suite.

Since TEALsim did not include any extensive package for this task prior to this thesis, an

inevitable duty was to introduce a suitable framework for this purpose. The library of choice was

JUnit37 since it “[…] is the de facto standard for Java unit testing.” [Burke & Coyner, 2003, p. 59]

Another advantage of JUnit is its tight integration into the Netbeans IDE (see figure 6.5 for an

example) which allows for a smooth workflow while working on the TEALsim code. Due to the

amount of time required for other areas of this thesis, unfortunately the testing aspect ultimately

ended up being treated rather poorly again. One major issue currently limiting the usefulness of

tests was a problem with the JME38 graphics library which refused to close its canvas between

single tests, making it impossible to test TEALsim with this particular graphics setting.

36 Ant-Contrib Tasks - http://ant-contrib.sourceforge.net/
37 JUnit project page - http://junit.sourceforge.net/
38 JME graphics framework (see the Wonderland branch) - http://code.google.com/p/jmonkeyengine/

TEALsim

OWL
modules

Open
Wonderland

stable
TEALsim

OWL module

<<workspace containing folders>>
1) initialize build
4) build

2) check if TEALsim library is up to date
3b) [OPTIONAL] copy updated library

3a) [OPTIONAL] build TEALsim

http://ant-contrib.sourceforge.net/
http://junit.sourceforge.net/
http://code.google.com/p/jmonkeyengine/

6 State of the TEALsim Project

64

Presumably the root for this error is way down in the source code of the JME framework.

Eventually search for this bug was postponed because of its complexity.

One of the currently available tests resembles a black-box style test39, checking the proper,

exception-free startup of TEALsim based on 2 lists of simulations: one comprehensive list,

covering almost all available simulations and one subset of the former list consisting of a selection

of important simulations used by John Belcher in his classes at MIT. A few other tests exist as well,

checking the correct execution of command-line arguments or the determinism of the simulation

engine, but definitely more work in this area would be required.

Figure 6.5: Screenshot taken in Netbeans IDE showing the result of a JUnit test run

39 “A test that does not have access to the internals of the object being tested. Also known as a 'functional test.'”
[Hamill, 2005, p. 185]

6.5 Addition of a Logging Framework

65

Addition of a Mocking Framework

To enable very generic testing of certain components an additional framework providing mocking

features was also added to TEALsim. The library of choice was EasyMock40. An example of its

usefulness is the test which checks the soundness of the algorithm responsible to execute the

RuntimeArguments according to the declared specifications (e.g. fail if a developer accidentally

declared arguments depending on each other, creating a circular reference). In the concrete test

an instance of each available type of RuntimeArguments gets generically created, and this set of

arguments is fed to the execution logic. Since the algorithm will eventually execute every single

argument – where certain arguments might try to interact with an environment unavailable

within the particular test run – the called method on the RuntimeArgument has to be mocked to

prevent exceptions breaking the test. A mocking library like EasyMock takes care of this task,

providing e.g. functions to record calls to mocks. In the test mentioned above every argument has

to be executed exactly once to pass the test. Adding mocking capabilities to the test suite enables

very elegant, precise tests without the need to create a huge amount of hacks to instantiate an

emulation of an expected environment hosting the elements to test.

66..55 AAddddii tt iioonn ooff aa LLooggggiinngg FFrraammeewwoorrkk

Another missing component indispensable for any larger project was a capable logging facility to

allow dynamic adjustment of log settings via e.g. helper windows. Previously there existed a

rudimentary class providing static methods which essentially allowed printing various types of

objects to System.out. This approach suffered from several drawbacks:

a) Analogous to the rest of the project hardly any documentation of the available methods.

b) Similarity to old-style C code by parameterization via plain integers instead of e.g.

enum types, making it even more difficult to guess the right usage in absence of (inline)

documentation.

c) Due to the fact that everything related to logging constituted real source code,

recompilation was required when changes to the log output should be made.

To solve these issues any new code written consistently utilized the standardized logging facilities

included in the Java framework since JDK 1.441. Many of the former debugging messages were

changed to do so as well. In the face of the amount of code constituting the TEALsim framework

unfortunately not all of the debugging messages utilizing the former debug system could be

changed to use the JDK version – this should be done incrementally as further work is done to

enhance the framework.

40 EasyMock project - http://www.easymock.org/
41 JDK logging facilities - http://docs.oracle.com/javase/6/docs/api/java/util/logging/package-
summary.html

http://www.easymock.org/

6 State of the TEALsim Project

66

Apparently the JDK logging utilities tackle all of the three mentioned problems of the self-made

debugging system, adding on top the benefits of outsourcing the whole logging package (thus no

work for maintenance respectively further development to extend it has to be done) as well as

being a widely recognized standard which allows to use other 3rd-party applications to plug into

the logging system for even more sophisticated log analyses. As an example for this serves the

currently included LogGui [InforMatrix GmbH, 2007] library, which opens up a separate logging

window (see figure 6.6) to allow adjustments to the logging output at application runtime. For

details on how to start TEALsim with the LogGui window see chapter 8.1.2.

Figure 6.6: TEALsim being started up with a tool for adjusting debugging output at runtime

Besides the mentioned possibility to plug 3rd-party applications into the logging system, one of its

other key features is the dynamic configurability without recompilation. In TEALsim’s case this is

currently achieved via a configuration file in the project root folder called logging.properties. An

example for a couple of instructions can be seen in listing 6.1, with a sample of the corresponding

logging output in Netbeans shown in figure 6.7.

6.6 Streamlining the User Interface

67

Listing 6.1: Example for instructions found in logging.properties file

Figure 6.7: Log messages from customized formatter

66..66 SSttrreeaammlliinniinngg tthhee UUsseerr IInntteerrffaaccee

Another part of the work comprised a slight redesign of the user interface to align certain

functions of TEALsim with other everyday tools providing a similar functionality. For a screenshot

of TEALsim running with its original UI see figure 6.9. The screenshot shows the Capacitor

simulation running on a Microsoft Windows machine. Identical to almost all of the other available

simulations for TEALsim, the fundamental interaction with this simulation is similar to the

interaction with a movie; that is, basically it can be controlled via a set of playback controls

familiar from media players (at this place neglecting special controls provided by e.g.

ControlGroups, since they were not changed during the course of this project). Figure 6.8 shows a

close-up of the previously used playback control (which was called ‘EngineControl’) annotated

with the purpose of the particular buttons.

Figure 6.8: The former simulation controls and their associated properties – Source: [Belcher,

McKinney, Bailey, & Danziger, 2007]

1
2
3
4
5
6
7

Set the standard Loglevels
.level= INFO
this tells the handler to use our custom formatter
java.util.logging.ConsoleHandler.formatter = teal.util.CustomLoggingFormatter
you don't need to specify the next line, which demonstrates a very terse log
format
teal.util.CustomLoggingFormatter.format =[%t] %L: %m [%C.%M]

6 State of the TEALsim Project

68

Figure 6.9: Screenshot of an older version of TEALsim showing the former user interface

For a sketch outlining the proposed look of the new UI for the stand-alone desktop version of

TEALsim see figure 6.10. Consecutively is a brief break down of the ideas behind the new buttons:

a) Most evidently the new UI emulates modern media player’s style to merge the play and

pause button to one toggle button, since both states are mutually exclusive.

b) The underlying behavior of ‘Reset’ should change from its former concept of setting

everything back to a random value to setting everything back to a defined state (thus

repeated resets would always return to the same state). This would be more consistent

with the common understanding of what a ‘reset’ in everyday life usually does.

Inevitably this may create the need to provide the means for a real randomized restart

for certain simulations. For this purpose a dedicated button could be placed on demand

next to reset, clearly describing its effect.

c) The former ‘Stop’ button was removed since its main purpose was to pause the

simulation and prevent it from being started again. For most simulations – e.g. in the

case of the capacitor – this did not make much sense after all. Those few simulations

6.6 Streamlining the User Interface

69

which really need this kind of behavior could simply trigger pause and disable the

controls themselves.

d) Because a button to forward the simulation by a predefined time value ΔT existed ever

since, a logic consequence was to provide a button with an inverse behavior as well.

e) Last but not least a slider was added to give users control over the pace of the

simulation, essentially multiplying the predefined time value ΔT.

Figure 6.10: Sketch of the proposed refurbished user interface created with the free online
version of Balsamiq Mockup tool42

42 free online version of Balsamiq Mockup tool - http://builds.balsamiq.com/b/mockups-web-demo/

randomize reset

play /
pause

step
back

step
forward

set simulation speed as
multiple of simulation ΔT

http://builds.balsamiq.com/b/mockups-web-demo/

6 State of the TEALsim Project

70

66..77 SSuummmmaarryy

This chapter constitutes a documentation of all the ordinary tasks carried out as part of this

thesis. It is rather intended to give long time contributors to the TEALsim project an overview of

what has changed why, since novel contributors might take most of the integrated features for

granted anyway (for large projects like TEALsim).

Initially the current state of TEALsim’s code base was discussed along with some potential

reasons which supposedly have led to this situation. This included some basic metrics highlighting

the effects of the programming activities performed. The rest of this chapter was split into

sub-chapters each highlighting a single feature introduced to respectively changed in the

framework.

After this chapter summarized the very general tasks performed, the next chapter becomes more

technical explaining the included network package in TEALsim. This discussion starts with a

summary of the package’s layer hierarchy leading to its general schema, which is analyzed based

on the relations between the classes. Subsequently follows an exemplary startup sequence for a

multi-user system. Furthermore, the different available connection types are explained as well.

Finally the chapter closes with a documentation of the implemented classes which provide means

for synchronizing objects across the network.

71

CChhaapptteerr 77

TThhee UUnnddeerrllyyiinngg NNeettwwoorrkk LLaayyeerr

One of the fundamental differences between the software design previously used to embed

TEALsim in 3rd-party applications like OWL (see chapter 3.2) and the design proposed in this

thesis is the integration of a complete network layer in TEALsim. The following chapter outlines

the various aspects and considerations of the implemented network package. It shall give a high

level overview of the existing classes and their corresponding tasks and interactions without

discussing concrete technical details like available methods or fields in-depth. For such details on

such a low level see the inline documentation.

77..11 GGeenneerraall DDeessiiggnn ooff tthhee NNeettwwoorrkk AArrcchhii tteeccttuurree

The whole network package added to TEALsim has to be seen as a hierarchy of software layers

which are in general based on each other although sometimes the boundaries amongst them are

not strict and somewhat debatable. Irrespective of this ambiguity there are basically 4 layers (see

figure 7.1):

a) application layer -> On the client side this is more or less the former TEALsim framework

(albeit enhanced with the deterministic simulation engine, UI elements adapted to

synchronization, etc.). On the server side this layer would comprise the

SimulationSynchronizer object. This SimulationSynchronizer encapsulates the whole logic

and data required to keep multiple concurrent clients synchronous. For each distinct

simulation the TEALsim server creates a new SimulationSynchronizer object – for this

reason only one server instance is required to handle an arbitrary amount of different

simulations with any amount of clients.

b) message dispersion layer -> This layer is responsible to select the appropriate Connections

for transmission of outgoing messages respectively forwards incoming messages to the

application layer. SynchronizationClient and SynchronizationServer are threads. The client

thread is started when a simulation is created – every simulation has its own

SynchronizationClient. During its construction the SynchronizationClient is responsible to

7 The Underlying Network Layer

72

perform the handshake with the server (that is, amongst other things fetch the current

simulation status and pass the data to the simulation engine thread). The

SynchronizationServer is currently a singleton (thread) which has to run within one

TEALsim process, for which reason it is created as one of the first things when starting

TEALsim as desktop application. This thread owns an arbitrary amount of Connections

which can be used by TEALsim clients to connect with the server. Currently there exist ~3

different types of Connections (InnerProcessConnection, SocketConnection and

WonderlandConnection).

An exemplary configuration could look like this: one TEALsim process with a

SynchronizationClient (plus the host simulation) using an InnerProcessConnection; within

the same process the SynchronizationSever thread running with an InnerProcessConnection

and an additional SocketConnection. Another process running only with a

SynchronizationClient (plus the host simulation) using a SocketConnection. Since the

network package is currently designed as a client-server architecture (that is, peer-to-peer

communication is not yet implemented), one SynchronizationClient instance

communicates with the SynchronizationSever via the InnerProcessConnection whereas the

other SynchronizationClient uses the SocketConnection to communicate with the

SynchronizationSever.

c) abstract Connection layer -> As the name suggests, this layer keeps the concrete technical

implementation of the real connection transparent to the SynchronizationClient and

SynchronizationServer threads.

d) concrete Connection layer -> Concrete implementations of different point-to-multipoint

connection types. As mentioned, currently exist 3 different types which differ in the

degree of their technical sophistication. The SocketConnection (also see chapter 7.2) for

example requires multiple threads to:

 listen for connecting clients on the server side

 maintain a channel for incoming data for each connected peer

 dispatch messages to remote peers

On the other hand the InnerProcessConnections (see chapter 7.3) is rather straightforward

by only maintaining one worker thread to pass data forth to the connected peer (to avoid

deadlocks).

As mentioned, the whole network package is currently designed and implemented as client-server

architecture. In other words, communication between clients always goes through the server

instance. In view of use cases where peer-to-peer communication would be an interesting option

(e.g. one client streaming the simulation to another client to save server bandwidth) it seems

feasible to extend the layer schema without the need for a complete rework.

7.1 General Design of the Network Architecture

73

Figure 7.1: layers of TEALsim’s network architecture

7 The Underlying Network Layer

74

Like explained in the paragraph recapitulating the message dispersion layer (see page 71), the

SynchronizationServer and SynchronizationClient objects are threads responsible to coordinate the

asynchronous communication between nodes in a network (that is, a client and a server node). As

shown in figure 7.2 both threads derive from a common super class (the SynchronizationSkeleton),

thus both sub-classes are in some measure individual strategies to deal with a remote node. In

theory each SynchronizationSkeleton may maintain an arbitrary amount of Connections. However,

clients will usually only instantiate one implementation of Connection to connect to the server.

In a TEALsim multi-user system each remote endpoint of a Connection is referenced via a

NetworkNode. The concrete implementations of Connection are responsible to create and store the

corresponding implementations of NetworkNodes when two distinct Connections connect with

each other. For example will the SocketConnection’s thread which is listening for new clients on

the server side add a new NetworkNode (or SocketNode in this particular case) to the

SocketConnection’s list of connected nodes. Likewise will the client add a NetworkNode referencing

the server to its list of connected nodes.

Naturally, messages exchanged between nodes in the network have to implement the Serializable

interface. It is important to bear in mind that the fields in messages which are referencing

NetworkNodes (source and target nodes) are not serialized and transmitted (-> they are transient

fields) but have to be set by the receiving Connection on demand. This is logical since only the

Connection receiving a message has access to the NetworkNode referencing the outgoing

Connection.

To summarize the network design up this point: Besides possibly forwarding initial configuration

parameters, TEALsim simulations basically do not know much about their underlying network

architecture. When users change elements of the simulation (e.g. click a button or change a text

field value) the simulation hands over the change request to the SynchronizationClient thread.

This thread is responsible to further forward the message and issue new tasks for the simulation

on incoming orders. The SynchronizationClient does in turn not care about specific technical

details of the underlying network connections. For this duty the concrete implementations of

Connection encapsulate all technical aspects and provide a slim API for the

SynchronizationSkeleton. That said the TEALsim server side works approximately identical.

In case the network package shall be extended: apart from the fact that the current

implementation is still a prototype version with many methods yet waiting to be properly finished

and tested, the only components required when intending to implement e.g. a secure socket based

connection are:

a) a concrete implementation of Connection

b) a corresponding implementation of NetworkNode

c) and <optional> a ConnectionParameter used to create instances of the related Connection

7.1 General Design of the Network Architecture

75

Figure 7.2: Class diagram of TEALsim’s network layer

Figure 7.3 shows an exemplary sequence diagram outlining the most important activities which

happen when TEALsim is started (with regard to network activities). After a user selected a

simulation eventually the network layer on the client side has to initiate the handshake procedure

with the server (sending “Connect” and receiving the “ConnectionEstablished”). Since the client in

figure 7.3 is the first one to use the particular simulation, no further updates have to be sent from

7 The Underlying Network Layer

76

the server to the client. Indicated in parentheses is the case where a client connects to a running

simulation and the server has to provide the current simulation state. After the connection is

established the server registers with the client to receive newly calculated EngineStates when the

simulation is running. This has to happen since the server does in general not compute the

simulation itself but relies on the clients to do the calculations themselves. This way the server

can provide the current simulation state to new clients which connect during simulation

execution. Once the user clicked to start the simulation and the request was authorized by the

server, the client with the EngineState subscription repeatedly sends the updated EngineState to

the server until the simulation is paused.

Figure 7.3: Standard start up sequence of TEALsim’s client-server architecture

ServerClientUser

can be triggered locally

by the user when

starting the application,

or remotely by another

user (on another system)

the EngineState could

be implemented as an

unsynchronized property

PropertyChange is

abbreviated with PC

select simulation A

create Engine,
EngineControl,...

send "Connect" for simulation A

start up server instance

start TEALsim

create a new SimulationSynchronizer
for simulation A

reply "ConnectionEstablished"

set simulation live

send PCAuthorizationRequestMessage
for PC with SimulationTime = 0

apply PC (=run simulation)

start up client instance

run simulation (= PC)

send EngineState for key frame
(and maybe all frames if streaming
is required)

update Property state

update EngineState

send PCCommandMessage
for EngineState subscription

apply PC

send current simulation state

authorize PC with SimulationTime = 0
(= broadcast PC)

loop [while has subscription]

7.2 Socket Based Implementation of Connection

77

77..22 SSoocckkeett BBaasseedd IImmpplleemmeennttaatt iioonn ooff CCoonnnneecctt iioonn

The SocketConnection allows clients to communicate with a server via Java’s sockets over a TCP

connection. This covers use cases with network nodes connected via WAN, LAN or even multiple

local processes using the operating system’s loopback network interface ‘localhost’.

Figure 7.4 shows the rough schema of the whole package: The server-side SocketConnection is

created with a port to listen for incoming connections. For this purpose a ListenThread is

spawned. This thread spawns in turn new ClientWorkerThreads for each connecting client (which

is represented via a SocketNode containing a field referencing the socket of the corresponding

client). The client-side implementation creates the SocketConnection with a port and hostname.

This will immediately create one ClientWorkerThread handling the connection to the server.

Currently clients do not spawn a ListenThread because they are not intended to establish

connections with anything but the remote server. However, SocketConnections on client and

server alike spawn a DeliveryThread which is responsible to dispatch outgoing messages via each

SocketNode’s socket field.

Figure 7.4: Schema of the socket based implementation of Connection

7 The Underlying Network Layer

78

77..33 IImmpplleemmeennttaatt iioonn ooff aa CCoonnnneecctt iioonn ffoorr CCoommmmuunniiccaatt iioonn

WWiitthhiinn aa SSiinnggllee JJVVMM

One of the goals of this thesis was to maintain TEALsim’s existing application spectrum, in this

case the possibility to run simulations self-contained as a single-user process. For this purpose the

InnerProcessConnection (IPC) exists which allows to retain the client-server architecture also for

single-user scenarios. The IPC acts like a joint between the SynchronizationServer and

SynchronizationClient threads running within the same JVM. Figure 7.5 is a schema of IPC’s design.

At construction time an IPC is set as server or client instance. This is the point of time when the

client IPC establishes connectivity between both instances of IPC via the server IPC’s static

reference (thus the server IPC has to exist beforehand). Messages handed over to an IPC are

buffered in the IPC’s worker thread. Eventually this IPCWorkerThread hands over the message

reference to the connected IPC.

Figure 7.5: Schema of the Connection used to run client and server within one JVM

7.4 Open Wonderland Specific Implementation of Connection

79

77..44 OOppeenn WWoonnddeerrllaanndd SSppeecciiff iicc IImmpplleemmeennttaatt iioonn ooff CCoonnnneecctt iioonn

Besides the InnerProcessConnection and the SocketConnection, currently there also exists a 3rd

implementation of Connection which can be used by TEALsim when it is embedded as module in

OWL. This OWL specific Connection is part of the OWL module and as such is explained in detail in

chapter 8.2.

77..55 DDeessiiggnn ooff SSyynncchhrroonniizzaabbllee EElleemmeennttss

As mentioned, TEALsim is a toolbox framework with the goal to provide easy to use classes to

enable a wide range of people to put together new and interesting simulations. Considering the

goal of this thesis to enable TEALsim to run in distributed environments there is the need for an

object which provides a mechanism to stay synchronized amongst all concurrent clients but hides

away the complexity of the related synchronization process. This is one of the issues tackled with

the SynchronizableGeneric class.

Another key feature of SynchronizableGeneric is the possibility to link multiple instances together.

This feature was previously provided by a concept called ‘Routes’. An advantage of

SynchronizableGenerics over Routes is the compile-time type safety because

SynchronizableGenerics do not reference each other via String ID’s but instead use ‘real’ references

to the particular objects.

77..55 ..11 GGeenneerraall SScchheemmaa ooff SSyynncchhrroonniizzaabblleeGGeenneerriicc CCllaasssseess

Figure 7.6 shows the general schema of the SynchronizableGeneric class. First thing to mention is

that each instance holds a reference to the running simulation. Via this reference the simulation’s

SynchronizationClient instance can be accessed to dispatch change requests to the server. In this

context it becomes evident that SynchronizableGeneric’s type has to extend Serializable because

the type’s value field is transferred to the server. Since the whole concept to ensure

synchronization amongst concurrent clients builds upon a deterministic execution flow, changes

to a value are not immediately set but have to be approved by the server (see chapter 5 for more

details). Due to this authoritative principle the SynchronizationClient might in effect set the new

value at a later point of time.

7 The Underlying Network Layer

80

Figure 7.6: Schema of synchronizing values in TEALsim

The mechanism to link multiple SynchronizableGenerics together is based on a tree43 data

structure. Altering one of the tree’s vertices will change all other vertices as well. Changes will

propagate based on a snowball schema. Initially all vertices directly connected to the source of the

change are notified (if existent the parent vertex and all direct child vertices). This process is

reiterated until the whole tree is updated with the new value. Since in almost all reasonable use

cases linked properties are in some way distinct from each other, there exists the possibility to

add Relations which allow conversion from one property’s value to the other (and the other way

around). To maintain the tree-like data structure 3 fields exist:

a) a PropertyChangeSupport object which holds references to all objects interested in

changes of the corresponding SynchronizableGeneric. While any object (that is,

PropertyChangeListener) may register itself to receive notifications about changes, this

PropertyChangeSupport object will also reference

 all direct child vertices

 the parent vertex

43 “A graph without cycles, or acyclic graph, is called a forest. A connected forest is called a tree [...] Thus, a
forest is a family of trees and a tree is a connected graph without cycles.” [Kheyfit, 2010, p. 110]

7.5 Design of Synchronizable Elements

81

b) a HashSet containing all vertices of the tree. This HashSet object is shared between all

linked SynchronizableGenerics. When linking new SynchronizableGenerics to a tree this

HashSet makes it easy to verify that the new elements are not already part of the tree in

some other place. Having the same SynchronizableGeneric twice (or more times) in the

tree data structure would imply circles, resulting in a simple graph data structure instead

of a tree!

c) a Map, also shared between all linked SynchronizableGenerics, containing all edges (that is,

Relations between vertices) of the tree. It is possible to completely omit a relation between

two vertices in which case a direct relation is assumed (one value is identical to the other

value). Another option is to only set a one-way relation (e.g. a TextField linked with the

property specifying the color of point charges in an application; a user may type ‘blue’ into

the TextField and the Relation object takes care to convert this string into something

usable by the point charge object). When creating one-way relations it is important to

ensure that the tree of linked SynchronizableGenerics never gets traversed in a way where

missing relations are encountered (e.g. referencing the former example -> there is no

other way to change the color of the point charges which would then require the linked

TextField to be changed as well).

To avoid PropertyChangeEvents (PCE) to echo back from notified SynchronizableGenerics, causing

an infinite loop, the source of a PCE is deregistered from the PropertyChangeSupport object before

firing a new PCE and reregistered afterwards.

77..55 ..22 SSyynncchhrroonniizzaabbllee UUII CCoonntt rroollss

Based on the fundamental functionality provided by SynchronizableGenerics, custom objects were

introduced to TEALsim to deal with the different available controls included in the Java Swing

toolkit. Currently not for every Swing control a corresponding Synchronizable.XYZ.UI.Element

exists though (in this place ‘XYZ.UI.Element’ is used as a placeholder term to reference any

member of the related package). The idea behind the whole concept is that each

javax.swing.XYZ.UI.Element has an internal state of some sort. The associated

Synchronizable.XYZ.UI.Element mirrors this state and implements methods to update the Java

Swing control respectively intercept changes to this control by the user. Since most Swing

controls are very different from each other there has to be a specialized

Synchronizable.XYZ.UI.Element for most of them. Figure 7.7 illustrates this design.

7 The Underlying Network Layer

82

Figure 7.7: Generic schema of TEALsim’s UI synchronization model

77..55 ..33 UUssaaggee iinn TTEEAALLssiimm AAppppll iiccaatt iioonnss

Using the Synchronizable.XYZ.UI.Elements requires little additional code. For example listing 7.1 is

a snippet taken from teal.sim.engine.EngineControl.java. The code lines 1 to 15 already existed

before the introduction of the network layer to TEALsim. A slider is created there with 5 ticks,

where the first tick label is set to 20 = 1 and for each successive tick label the exponent is

incremented.

Line 17 and 18 create a new SynchronizableSlider object which is constructed with a reference to

the Java Swing JSlider object. This SynchronizableSlider object keeps in sync with the state of the

JSlider.

Since the slider is supposed to do something the SynchronizableSlider object is linked with the

SimulationSpeed object of the simulation engine on line 26. For demonstration purposes the

engine is cast to an AbstractEngine without any further checks. However, linking the slider’s value

to the SimulationSpeed requires a Relation because the internal value of the JSlider (and therefore

also the mirrored value in the SynchronizableSlider) is different to its labels (1 to 5 – see line 1).

For this reason a Relation is created on lines 20 to 25 converting from an integer value to an

integer value, however taking the input integer as the exponent to a base of 2.

In this case a Relation converting from the SimulationSpeed to a value usable for the slider is

omitted. Therefore the programmer has to ensure that no changes to the SimulationSpeed may

originate from anything else but the slider!

7.6 Summary

83

Listing 7.1: Usage of SynchronizableGenerics in TEALsim applications

77..66 SSuummmmaarryy

This chapter introduced to the network architecture added to the TEALsim framework. After

outlining the various network layers an exemplary start up sequence for a TEALsim multi-user

environment was analyzed. Furthermore, some details regarding the implementations of

Connection were discussed which are part of the TEALsim package (with a 3rd implementation,

which is part of the OWL TEALsim module, being discussed in the succeeding chapter). Finally this

chapter closed with an analysis of the implemented tools to synchronize user controls

respectively arbitrary properties. In this regard this chapter constitutes a reference point for

further developments on the network layer as well as efforts to create new, multi-user enabled

TEALsim applications. In the end, this chapter concluded the documentation of technical aspects

related to the changes done to the TEALsim framework. Therefore the succeeding chapter covers

rather configurational aspects of the TEALsim project as well as an insight into the independent

project maintaining the TEALsim OWL module.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

JSlider speed = new JSlider(1, 5, 3);
speed.setName("SimSpeedSlider");
speed.setMajorTickSpacing(1);
speed.setMinorTickSpacing(1);
speed.setPaintLabels(true);
speed.setPaintTicks(true);
speed.setSnapToTicks(true);
//Create the labels which are 2^(i-1), that is they start with 1x and
//increase exponentially
Dictionary labelTable = new Hashtable();
for (int i = 1; i <= 5; i++) {
 labelTable.put(new Integer(i),
 new JLabel((int) Math.pow(2, (i - 1)) + "x"));
}
speed.setLabelTable(labelTable);

final SynchronizableSlider ss;
ss = new SynchronizableSlider(parentSimulation, speed);

Relation<Integer, Integer> rel = new Relation<Integer, Integer>() {
 @Overrride
 public Integer convertFrom(Integer fromValue_) {
 return (int) Math.pow(2, (fromValue_ - 1));
 }
};
ss.addLinkedProperty(
((AbstractEngine) parentSimulation.getEngine()).simulationSpeed, rel);

84

CChhaapptteerr 88

SSttaarrttiinngg aanndd UUssiinngg tthhee TTEEAALLssiimm FFrraammeewwoorrkk

The programming work done in the course of this thesis introduced several new possibilities to

start up TEALsim’s desktop version respectively changed the way the framework may be

embedded in other projects. For this reason the command-line arguments for the desktop version

are outlined at first, with some more detailed explanations following afterwards. Finally the

TEALsim OWL module is explained to serve as reference point for similar projects.

88..11 OOpptt iioonnss ttoo SSttaarr tt tthhee DDeesskkttoopp VVeerrss iioonn ooff TTEEAALLssiimm

When starting TEALsim’s desktop version the following arguments can be used to alter the

applications behavior:

a) -a ⟶ populates the window’s menu bar with a comprehensive set of simulations

b) -n <Simulation> ⟶ starts up TEALsim with the specified simulation (and no other

options in the menu bar; e.g. “-n tealsim.physics.em.Capacitor”)

c) -gfx <Engine> ⟶ specifies which graphics engine to use; currently “J3D” and “JME” are

supported

d) -debug ⟶ starts up TEALsim together with a 3rd-party debugging framework (see

chapter 8.1.2)

e) -noserver <Hostname> <Port> ⟶ starts up TEALsim without server instance and makes

it connect to the server running on at the specified address (via a TCP connection that is,

an instance of SocketConnection). See chapter 8.1.1 for more details.

f) -server <Port> ⟶ starts up TEALsim with a server instance running locally, listening for

remote clients on the specified port (using a SocketConnection). See chapter 8.1.1 for more

details.

8.1 Options to Start the Desktop Version of TEALsim

85

88..11 ..11 CCoonnffiigguurriinngg tthhee CCll iieenntt aanndd SSeerrvveerr CCoommppoonneenntt

By setting the corresponding command-line arguments TEALsim’s desktop version may be

started in different ways. Especially the behavior when no server instance is configured to run in

the JVM may seem odd at first glance but it is owed to the way the RuntimeArgument mechanism

is implemented. Basically the possible ways to start TEALsim’s desktop version are:

a) with no particular command-line arguments at all

This will cause TEALsim to start with a local server instance running with exactly one

associated Connection of the sub-type InnerProcessConnection. Instances of simulations

will create SynchronizationClient instances utilizing themselves a Connection of sub-type

InnerProcessConnection. This behavior ensures a minimum amount of conflicts which may

be caused for example by firewalls when the socket based implementation of Connection

would be used for desktop use of TEALsim. Furthermore, the InnerProcessConnection

performs much better compared to the socket based Connection type due to the fact that

messages are exchanged directly between client and server package by handing over

pointers.

b) with arguments for the server part of TEALsim but no special arguments for the client part

This will cause TEALsim to start with a local server instance running with all of the

specified Connections plus one additional of the sub-type InnerProcessConnection.

Instances of simulations will create SynchronizationClient instances utilizing themselves a

Connection of sub-type InnerProcessConnection. Remote clients may connect to the local

server by means of any of the additionally instantiated Connection types.

c) with a ‘no server’ argument for the server part of TEALsim and a specific server for the client

part

This will cause TEALsim to start with a local server instance running with an instance of

InnerProcessConnection. After this instance is created the command-line argument will

cause the server to shut down. Instances of simulations will create SynchronizationClient

instances utilizing a sub-type of Connection matching the given command-line argument

(currently only socket based connections are used in the desktop version of TEALsim).

Condensing these configuration possibilities, TEALsim’s behavior can be summed up with the

following two statements:

a) If not explicitly specified in a different way the client side of TEALsim (that is, the

SynchronizationClient) will use a Connection instance of the sub-type

InnerProcessConnection.

b) Unless specified via the ‘no server’ argument a local server instance will be created with at

least one Connection of sub-type InnerProcessConnection.

For example if someone would like to start a multi-user demonstration system of TEALsim’s

desktop version with 2 TEALsim clients running on one computer and an additional TEALsim

client on a different machine, the first thing to start would be an instance of TEALsim providing

the server functionality. Therefore the run configuration in NetBeans would look similar to figure

8.1. This configuration starts TEALsim running with J3D as graphics engine for the simulation

8 Starting and Using the TEALsim Framework

86

client and an additional SocketConnection for the SynchronizationServer listening for remote

clients on port 5000.

Figure 8.1: Exemplary run configuration for a TEALsim instance with client and server

Next to start are the TEALsim clients who would like to mutually use the server instance running

inside the previously started TEALsim process. The run configuration in NetBeans for these

clients would look something like figure 8.2. Again, TEALsim clients would render the simulation

with the J3D graphics engine. In figure 8.2 the TEALsim instance would connect to a server

instance running on the same machine (therefore ‘localhost’ as host name) via port 5000. On a

remote computer within the same network ‘localhost’ could be replaced e.g. with the IP address.

Figure 8.2: Exemplary run configuration for a TEALsim instance connecting to a remote server

8.2 Using TEALsim Framework in a 3rd-Party Application like OpenWonderland

87

88..11 ..22 CCoonnffiigguurriinngg tthhee LLoogg SSeett tt iinnggss

Different ways to adjust the logging output have been introduced to the TEALsim project. The

basis for all these methods constitutes the continuous utilization of the standardized JDK logging

framework.

a) The first method to change the log settings is to change the logging properties file. Figure

8.2 shows the switch for the VM options in NetBeans to set a specific configuration file

(-Djava.util.logging.config.file=”.\logging.properties”). Changes to this text file change the

resulting logging output without the need to recompile the whole project.

b) The second method to alter the logging output is to change the formatter referenced in the

logging properties file. Currently a custom formatter is used

(teal.util.CustomLoggingFormatter) which prints each log message on a single line (see

figure 6.7 for a screenshot of the resulting log messages).

c) The last method to influence the logging output is to start up TEALsim along with an

additional logging framework. For this purpose the ‘-debug’ switch may be set as TEALsim

command-line argument (without any additional parameters) which – for demonstration

purposes – will launch an instance of LogGui to provide means to adjust the logging output

during application runtime (see figure 6.6 for a screenshot).

88..11 ..33 CCoonnffiigguurriinngg TTEEAALLssiimm ffoorr 3322bbii tt oorr 6644bbii tt EEnnvvii rroonnmmeennttss

When starting TEALsim from NetBeans the IDE has to be told where to find the required native

library files. Different library bundles have to be used for the various existing host systems

(currently only Windows 32bit and Windows 64bit are available). However, this configuration is

not set dynamically yet. For this purpose the -Djava.library.path property has to be configured to

point to the correct folder containing the native libraries (figure 8.1 shows a configuration

running with a 32bit Windows environment). The two available bundles are:

a) \lib\!runtime-libs4debug\win_x64 -> for Windows 64bit Systems

b) \lib\!runtime-libs4debug\win_x86 -> for Windows 32bit Systems

88..22 UUssiinngg TTEEAALLssiimm FFrraammeewwoorrkk iinn aa 33 rrdd--PPaarrttyy AAppppll iiccaatt iioonn ll iikkee

OOppeennWWoonnddeerrllaanndd

The current OWL module, which allows embedding TEALsim in OWL, is a quick adaption of the

formerly used module. In this regard it is far from being optimized design (and code) but shall

demonstrate that with the new client-server architecture it became easier and more

comprehensible to integrate TEALsim in 3rd-party applications.

OWL comes with a comprehensive set of restrictions for external modules (see chapter 3.2.3)

which forced this former module to be very complex since it built upon a powerful server

8 Starting and Using the TEALsim Framework

88

component. TEALsim’s new client-server architecture, outlined in this thesis, comes with a much

more light-weight server component which is essentially only brokering between the clients, but –

most importantly – is in its current state not computing the mathematical complex simulations.

However, this behavior could be changed in future versions to deal with situations where no

computational capable client is available. In such scenarios the server could spawn a thread to run

the simulation itself and send the stream of EngineStates to all clients.

88..22 ..11 AAddaapptt iinngg tthhee CCll iieenntt PPaacckkaaggee

Figure 8.3 shows the general schema of the OWL module’s client package. Generally speaking,

most of TEALsim remains unchanged and currently only a few components have to be replaced

with OWL compatible versions (that is, classes related to the visualization of TEALsim). On the

whole, the new TEALsim design turned OWL into just another type of container to display the

simulations, not very different to the scenario where they run as stand-alone application in a Java

Swing JFrame.

As it stands, the JME version of TEALsim – which is required for OWL, since JME is used to render

the virtual world as well – is very immature code. It is very likely that with a clean and consistent

implementation in TEALsim the following required components would probably be unnecessary.

Disregarding this issue, the currently adapted components for OWL are mainly:

a) a viewer – used to hold respectively render the 3D visualization of the simulations; for a

schema of the regular TEALsim rendering system see figure 12.6

b) a GUI component – which takes the 2D controls

c) a player container – which contains all simulation components

Naturally an OWL compatible version of Connection has to be provided as well which gets

explained hereafter.

The OWL specific implementation of TEALsim’s Connection builds on top of OWL’s channel system

to exchange data between client and server. For this purpose a message receiver has to be

registered with the TEALsim cell’s channel. This so called ClientTealMessageReceiver intercepts all

of the TealMessages transferred over this particular OWL channel. The TealMessage class is itself

just a wrapper class containing the actual TEALsim framework message since any message sent

over OWL’s channel system has to extend the abstract class CellMessage. The

WonderlandClientsideNode contains a reference to the cell containing the TEALsim simulation. Via

this cell’s utility routine (sendCellMessage(…)) messages are transmitted to the server. Figure 8.4

visualizes this design with the most important components involved and annotated with their

corresponding interactions. In this figure also the ChannelActivityMessage is mentioned which is a

8.2 Using TEALsim Framework in a 3rd-Party Application like OpenWonderland

89

current workaround for the issue that the underlying framework does not offer a solution based

on the Observer pattern44 to register for channel activities.

Figure 8.3: Schema of required client-side components to integrate TEALsim into OWL

44 Intent of Observer pattern: “Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.” [Gamma, Helm, Johnson, &
Vlissides, 2004]

8 Starting and Using the TEALsim Framework

90

Figure 8.4: Schema of the client-side implementation of Connection for OWL

8.2 Using TEALsim Framework in a 3rd-Party Application like OpenWonderland

91

88..22 ..22 AAddaapptt iinngg tthhee SSeerrvveerr PPaacckkaaggee

For the time being OWL module’s server package is implemented as CellMO. A potential (better)

alternative would be to implement it as service, however, this task turned out to be beyond the

remaining resources for this thesis. The RedDwarf Server infrastructure used by OWL ensures

that processing power is split evenly amongst all available modules. As technical consequence of

this paradigm all objects used in the server package must implement the Serializable interface

(see chapter 3.2.3). In general this technique becomes an issue when classes shall be used which

are not intended to be serialized (e.g. sockets or threads).

A manifest solution for this issue for the SynchronizationServer thread was to manually run the

SynchronizationServer runtime logic (executeRuntimeLogic()) each time the CellMO received a new

message via OWL’s channel system. In the end, this workaround mimics the original

SynchronizationServer behavior very accurately since the only thing the thread’s run() method

does is to consistently call the runtime logic and idle in absence of messages to process. On the

other hand no practical solution was found to enable sockets in CellMOs, for which reason e.g.

SocketConnections are currently not available in the TEALsim OWL module.

Figure 8.5 shows the general schema of the module’s server package. Basically no changes to

TEALsim’s design are required besides extending the SynchronizationServer to implement the

Serializable interface.

Figure 8.5: Schema of required server-side components to integrate TEALsim into OWL

8 Starting and Using the TEALsim Framework

92

Like the client-side Connection explained in the previous chapter 8.2.1 the server Connection also

registers a TealMessageReceiver to listen for TealMessages on the cell’s channel. The

MessageReceivers hold a reference to the SynchronizationServer(MO). Each time a message is

received via the cell’s channel a MessageReceiver sets the source node in the message (which is a

transient field – see the explanation to figure 7.2) and calls the executeRuntimeLogic() in the

SynchronizationServer. See figure 8.6 for a graphical schema of this design.

Figure 8.6: Schema of the server-side implementation of Connection for OWL

8.3 Summary

93

88..33 SSuummmmaarryy

Currently there are two possible ways to run TEALsim. Either the framework can be started as a

standalone process or it can be used via the available OWL module (within OWL). Running the

simulations in OWL currently does not allow for any specific user customizations. However, the

general concept of the TEALsim OWL module was explained to serve as starting point for further

developments in this package. As it stands TEALsim appears and works in OWL the same way as

the desktop version which uses a Java JFrame. In this regard the module does not return any

additional advantages itself but solely benefits from any auxiliary features the virtual world

provides.

For the desktop version of TEALsim various options are available to customize its behavior. Most

important are switches to adjust the client and server features, the logging output and the

graphics engine, which were explained in detail to allow setting up a demonstration system. When

parameters are used to start the application a tokenizer creates the appropriate commands

including any given parameters. The command-line argument parser (and executor) is quite

comprehensive itself. For example dependencies can be defined between arguments. However,

documentation of these features relies on the inline documentation of the corresponding classes.

Since this chapter finished documenting a large fraction of the work performed and how to use it,

what remains for the subsequent chapters is a personal résumé of the experiences gained during

the course of this thesis as well as recommendations where future projects could tie in.

95

PPaarrtt IIIIII

FFiinnddiinnggss

97

CChhaapptteerr 99

LLeessssoonnss LLeeaarrnneedd

This thesis was conducted in multiple stages. It began with initial research into potentially

relevant topics (which was conducted in Austria), and then moved on to the programming phase,

which occurred during a 6-month stay at MIT. The final phase was the composition of the present

document. Although a detailed account of the many lessons learned by the author in the course of

the rather prolonged process of researching and composing this thesis is beyond the scope of the

present work, the following sub-chapters summarize some of the more significant findings based

on different perspectives and phases of the project.

99..11 CCoonndduucctt iinngg PPrreell iimmiinnaarryy RReesseeaarrcchh

Finding relevant information for this thesis proved to be challenging. Although the idea to use

TEALsim in a distributed environment (along with the concepts outlined in this thesis to achieve

this goal) was not a brand-new idea, literature on the relevant topics is sparse. Part of the

problem is that, in general, there is no comprehensive, one-size-fits-all solution for multi user

systems because each software project is somewhat customized. In addition, the applicability of

any existing guidelines is also limited because such guidelines normally assume that a project is

starting from scratch. However, this prerequisite does not apply for this thesis, since it is based on

an existing, complex physics simulation project of considerable scale, which introduced various

predetermined constraints.

Furthermore, it turned out to be quite difficult to gather information about the current status of

TEALsim in order to determine the most reasonable next steps to achieve the present objectives.

Other than some older documents describing the last major, official release of the framework, the

only source of information beyond the in-line documentation was a limited number of other

student theses. Naturally, experimental code is not a very accessible source of information. This

experience demonstrated that proper documentation is not simply a desirable “extra”, but rather

an essential component of a good product.

9 Lessons Learned

98

99..22 DDeessiiggnn aanndd IImmpplleemmeennttaatt iioonn

As the reader can see, there is a difference between the thesis’ conclusion (see chapter 10) and the

initial objectives (see chapter 1.2). The reason for this is that, lacking in-depth knowledge of the

available software tools, objectives were defined based on assumptions that proved to be

incorrect. Although the concept initially appeared to work quite well, deeper examination

revealed that the framework was in many cases quite experimental and included many design

aspects that were unable to meet the defined goals. For this reason, as work on this thesis

progressed, the focus gradually shifted from the higher-level objectives to lower level

fundamentals. In essence, the research work for this thesis ended up getting bogged down in a

wide variety of specific problems that no individual could hope to address within the scope of a

master’s thesis. From this experience, the author learned that technical concepts are often much

more complicated than they initially appear, and it is better to define small deliverables rather

than grand visions, since such visions can lead to situations where many problems are identified,

but few, if any, are solved.

99..33 UUssaabbii ll ii ttyy

One of the main driving forces behind this thesis was to enable the use of virtual worlds in the

context of e-learning. Ultimately, however, one sobering key question remains: Does deploying the

TEALsim framework within a virtual environment provide sufficient measurable benefits in terms

of improved teaching to justify the significant work required to properly adapt TEALsim for such

an environment. Unfortunately, a large-scale test run of the prototype implementation presented

here with real students was beyond the scope of this paper. Since this was recognized at an early

stage, the focus here was on maintaining maximum software architecture flexibility, so that it

could eventually be run in any given distributed host environment (e.g. a 2D-browser-based

learning platform, virtual worlds).

Even though new technologies that enable previously unfeasible technical implementations may

seem very alluring to subject-specific experts, one important thing to bear in mind is their

ultimate accessibility true benefit for less versed end-users. Belanger and Jordan nicely

summarize this principle specifically for the context of distance education by asserting that

“Distance teaching […] involves delivering education or training material while not being physically

present at the same location as the students. Distance learning, on the other hand, […] is closely tied

to distance teaching, but learning may not occur in the distance environment if barriers exist from

the learners' point of view, such as difficulty in using the technology, or lack of instructor interaction

when answering questions.” [Belanger & Jordan, 2000, p. 9]

99

CChhaapptteerr 1100

OOuuttccoommee

The following two chapters present the final results. The overall status quo is first summarized in

a few paragraphs, and the subsequent chapter then lists remaining open issues and questions

which could be tackled by future projects.

1100..11 CCoonncclluussiioonn

The practical work performed for this master’s thesis resulted in a prototype that demonstrates

how TEALsim can be altered to allow it to run in distributed environments. To achieve this

objective, it was necessary to become acquainted with many different scientific fields in order to

identify and implement solutions for issues in areas such as the design of graphics engines,

software tools to synchronize concurrent computer programs, and network infrastructures.

The major initial objective, the deployment of TEALsim in a 3D virtual world and an investigation

of this combination’s potential for e-learning, eventually shifted to adapting TEALsim’s design so

that it could not only cope with such a task, but would also feature the characteristics that are

generally associated with the concept of “good software design”, such as:

 Consistency

 Comprehensibility

 Scalability

 Extensibility

 Making effective use of available resources (e.g. network bandwidth or CPU load)

However, in the end, the possibility to embed TEALsim in a virtual world like OWL was the

inevitable side-product of a well-thought-out design. In the long run, the extensive changes

necessary to adapt the simulation framework resulted in a list of open issues, since the concepts

outlined in this thesis went beyond what could be fully implemented within the scope of this

10 Outcome

100

master’s thesis. For this reason, the subsequent sub-chapters summarize several topics that will

require additional investigation and development.

1100..22 SSuuggggeesstt iioonnss ffoorr FFuurrtthheerr WWoorrkk

This sub-chapter describes other projects that could supplement the work done for the current

thesis and thereby finish the prototype implementation described herein.

Important issues to be resolved

 The network protocol defining the communication between clients and server has to be

specified and implemented in greater detail. Currently, only a rudimentary handshake

procedure exists, whereby the client says ‘hello’ to the server and is thereafter regarded as

being connected. However, many more use cases have to be considered, such as the need

for clients connecting to running simulations to receive the current state, or a routine

which ensures that all clients run with an approximately identical SimulationTime (see

use case 5.1).

 A concept is needed to synchronize the use of randomized values in the TEALsim

framework.

 An analysis is required to identify all low-level parts defining a simulation’s state. The set

of all of these values is the variable referenced as ‘EngineState’ in this thesis. TEALsim

needs some means to read and write the EngineState. On the server side, the EngineState

has to be stored with the corresponding SimulationTime so it can be provided to newly

connecting clients. In the work done by Berger [2012], the workaround for this

requirement was to serialize the whole simulation. However, this approach leads to

serious issues in multi user systems in which peers rely on locally installed libraries (e.g.

the JRE). With regard to the JRE, it becomes difficult to ensure that all peers’ libraries

provide the same versions of the classes used in simulations. For example, it happened

that a client used a JRE with a different update version than the server, which caused the

client to fail when deserializing the simulation data.

 Once EngineStates can be read and written, the simulation engine has to be adapted to

store the states for key frames and use them as a basis for computing subsequent key

frames.

 While stepping forward in a paused simulation works, the inverse action of stepping

backward currently does not work.

 A bug in the JME library seems to prohibit the canvas from being closed. This is

particularly problematic because it prevents effective unit testing of the TEALsim desktop

application.

 The JME version of TEALsim is generally in need of maintenance to meet the same level of

visual quality and stability the J3D version offers.

10.2 Suggestions for Further Work

101

 An analysis is required to evaluate how the concepts outlined in this thesis conform to any

constraints imposed by the Google Web Toolkit45. This is important because the MITx:

8.02x Electricity and Magnetism course uses cross-compiled TEALsim simulations to

support its curriculum.

Issues in need of a redesign

The issues outlined below are not as severe as the topics discussed in the previous section.

However, resolving the following problems would definitely make the prototype implementation

more comprehensible and efficient:

 The SimulationEngine algorithm would need improvements to become more stable in

situations where the required computing power exceeds the available hardware

capacities. The current logic has the drawback that in situations where the hardware is

unable to calculate at least the key frame within the given KEY_FRAME_INTERVAL, period

delays are accumulated. This causes the algorithm to remain unresponsive for an

increased amount of time, even if, for example, the simulation was changed by the user to

a state which could be calculated faster (e.g. the amount of elements in the simulation was

decreased).

 The simulation engine has a single-threaded execution flow which computes the next

frame more or less on demand (that is, when it is required for rendering). A better

solution would be a consumer/producer scenario where EngineStates are calculated (that

is, “produced”) in advance and eventually “consumed” by the rendering engine. This

would presumably also help to change the engine’s design to a true multi-threaded

execution model, which would in turn yield increased performance on virtually any

hardware.

 ID generation of SynchronizableGenerics currently has to be performed manually by

content developers. It would be interesting to determine if there is a generic (automatic)

way to do this, or if it must always be up to the user to set unique IDs.

 Currently, TEALsim still contains a significant amount of inconsistent design, which

creates a redundant, bloated codebase. For example, factory methods that could be

configured to produce the right type of objects are not utilized throughout the TEALsim

(and its correlated OpenWonderland module) project. In this context, the ClientPlayer

class in the OWL module might be cleaned up considerably – potentially up to the point

where it would become a featureless shell. Other examples include classes such as

teal.ui.swing.JTaskPaneInfo or teal.ui.swing.JLinkButtonBeanInfo, which are not used at all.

 The TEALsim OWL module is currently implemented as a CellMO object. It would be worth

investigating whether or not it would be more efficient to run it as an OWL service.

45 GWT framework – http://www.gwtproject.org/

http://www.gwtproject.org/

10 Outcome

102

List of “nice-to-have” features

During development of the prototype implementation, the following topics were recognized as

helpful features, which, however, have no immediate impact on the concepts outlined in this

thesis:

 Selecting, picking and dragging simulation elements via the mouse.

 Verification of simulations’ soundness via unit tests.

 Formal specification of Ant build scripts deliverables.

 Changing the remaining parts of TEALsim to utilize the java.util.logging framework.

 Fixing the broken unit test which searches for circular dependencies in the set of existing

derivations of RuntimeArgument. Since such derived classes are no longer inner static

classes of RuntimeArgument, the technique to query for all declared classes in

RuntimeArgument obviously no longer yields results.

103

PPaarrtt IIVV

AAppppeennddiixx

105

CChhaapptteerr 1111

RReeffeerreenncceess

American Society for Training & Development. (2013). ASTD Glossary. Retrieved June 13, 2013,

from http://www.astd.org/Publications/Newsletters/Learning-Circuits/Glossary

Anger, C., Geis, W., & Plünnecke, A. (2012). MINT – Frühjahrsreport 2012. Institut der deutschen

Wirtschaft Köln, Köln. Abgerufen am 21. June 2013 von

http://www.iwkoeln.de/_storage/asset/86135/storage/master/file/1898328/download

/MINT_Fr%C3%BChjahrsreport_2012-05-20.pdf

Belanger, F., & Jordan, D. H. (2000). Evaluation and Implementation of Distance Learning:

Technologies, Tools and Techniques. London: Idea Group Publishing.

Belcher, J. W. (2001). Studio Physics at MIT. MIT Physics Annual 2001, pp. 58-64. Retrieved May

29, 2013, from http://web.mit.edu/jbelcher/www/PhysicsNewsLetter.pdf

Belcher, J., McKinney, A., Bailey, P., & Danziger, M. (2007, December 16). TEALsim: A Guide to the

Java 3D Software (Version 1.1). Cambridge, Massachusetts, USA.

Bell, M. W. (2008, July). Toward a Definition of “Virtual Worlds”. Journal of Virtual Worlds

Research, 1(1). Retrieved June 1, 2013, from

http://journals.tdl.org/jvwr/index.php/jvwr/article/view/283/237

Berger, S. (2012, April 12). Virtual 3D World for Physics Experiments in Higher Education(Master's

Thesis). Graz, Austria: Graz University of Technology. Retrieved August 6, 2013, from

http://www.iicm.tugraz.at/thesis/Berger,_Stefan_Masterarbeit.pdf

Bernier, Y. W. (2001). Latency Compensating Methods in Client/Server In-game Protocol Design and

Optimization. Retrieved April 14, 2013, from Valve Developer Community:

https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Se

rver_In-game_Protocol_Design_and_Optimization

Bradt, S. (2012, November 20). Sanjay Sarma appointed as MIT’s first director of digital learning.

Retrieved August 15, 2013, from MIT News Office:

11 References

106

http://web.mit.edu/newsoffice/2012/sanjay-sarma-director-of-digital-learning-

1120.html

Brown, W. J., Malveau, R. C., McCormick III, H. W., & Mowbray, T. J. (1998). Anti Patterns. New

York: John Wiley & Sons, Inc.

Burke, E. M., & Coyner, B. M. (2003). Java Extreme Programming Cookbook (1st ed.). Sebastopol:

O'Reilly & Associates, Inc.

Bybee, R. W. (2010, August 27). What Is STEM Education? Science, 329(5995), 998-1112.

doi:10.1126/science.1194998

Center for Educational Computing Initiatives (CECI). (2012, April). TEALsim Project at MIT.

Retrieved from Massachusetts Institute of Technology:

http://web.mit.edu/viz/soft/visualizations/tealsim/index.html

Dahm, M. (2005). Grundlagen der Mensch-Computer-Interaktion (2te ed.). Pearson Studium.

Domjan, M. (2009). The Principles of Learning and Behavior (6th ed.). Wadsworth Inc Fulfillment.

Dori, Y. J., & Belcher, J. (2005). How Does Technology-Enabled Active Learning Affect

Undergraduate Students' Understanding of Electromagnetism Concepts? Journal of the

Learning Sciences, 14(2), 243-279. doi:10.1207/s15327809jls1402_3

Dori, Y. J., Belcher, J., Bessette, M., Danziger, M., McKinney, A., & Hult, E. (2003, December).

Technology for active learning. Materials Today, 6(12), pp. 44-49. Retrieved May 23, 2013,

from http://web.mit.edu/edtech/casestudies/pdf/teal2.pdf

Ericsson. (2012). Traffic and market report - On the pulse of the networked society. Stockholm:

Ericsson AB. Retrieved June 23, 2013, from

http://www.ericsson.com/res/docs/2012/traffic_and_market_report_june_2012.pdf

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2004). Design Patterns: Elements of Reusable

Object-Oriented Software. Pearson Education.

Hamill, P. (2005). Unit Test Frameworks (1st ed.). Sebastopol: O'Reilly Media, Inc.

Hammerschall, U. (2005). Verteilte Systeme und Anwendungen: Architekturkonzepte, Standards und

Middleware-Technologien. München: Pearson Studium.

Hardesty, L. (2012, July 16). Lessons learned from MITx’s prototype course. Retrieved August 15,

2013, from MIT News Office: http://web.mit.edu/newsoffice/2012/mitx-edx-first-course-

recap-0716.html

Holub, A. I. (2011, September 26). Allen Holub's UML Quick Reference. Retrieved April 14, 2013,

from Hollub: http://www.holub.com/goodies/uml/index.html

InforMatrix GmbH. (2007). InforMatrix LogGui. Retrieved April 14, 2013, from

http://www.informatrix.ch/informatrix/loggui/index.html

107

Jantke, K. P. (2010). Toward a Taxonomy of Game Based Learning. 2010 IEEE International

Conference on Progress in Informatics and Computing. 2, pp. 858-862. Shanghai: IEEE.

doi:10.1109/PIC.2010.5687903

Juneidi, S. J., & Vouros, G. A. (2005). Engineering an E-learning Application Using the ARL Theory

for Agent Oriented Software Engineering. 2005 AAAI Fall Symposium (pp. 87-92).

Arlington, Virginia: The AAAI Press. Retrieved June 13, 2013, from

http://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-08/FS05-08-014.pdf

Kafai, Y. B. (1996). Gender differences in children's constructions of video games. In P. M.

Greenfield, & R. R. Cocking, Interacting with video (p. 218). Norwood: Ablex Publishing

Corporation. Retrieved June 18, 2013, from

http://www.gse.upenn.edu/~kafai/paper/pdfs/GenderDifferences.pdf

Kaplan, J. (2012, March 28). Open Wonderland Forum: Utilization of Multicast in OWL. Retrieved

April 14, 2013, from Google Groups:

http://groups.google.com/group/openwonderland/browse_thread/thread/5a6cdec9ca7

2fd75

Kheyfit, A. (2010). A Primer in Combinatorics. Berlin: Walter de Gruyter GmbH & Co. KG.

Massachusetts Institute of Technology. (2005). Educational Transformation through Technology at

MIT - TEAL. Retrieved August 14, 2013, from MIT Educational Technology:

http://web.mit.edu/edtech/casestudies/teal.html

Massachusetts Institute of Technology. (2012, March 1). TEALsim Project at MIT. Retrieved April

14, 2013, from http://web.mit.edu/viz/soft/visualizations/tealsim/index.html

Mencke, S., & Dumke, R. R. (2007). Agent-Supported e-Learning. Magdeburg: Otto-von-Guericke-

Universität Magdeburg.

Miranda, L. C., & Lima, C. A. (2012, May). Trends and cycles of the internet evolution and

worldwide impacts. Technological Forecasting and Social Change, 79(4), 744–765.

doi:10.1016/j.techfore.2011.09.001

Morella, M. (2012, Jule 26). U.S. News Inducts Five to STEM Leadership Hall of Fame. Retrieved June

21, 2013, from U.S. News & World Report: http://www.usnews.com/news/blogs/stem-

education/2012/07/26/us-news-inducts-five-to-stem-leadership-hall-of-fame

O'Brien, D. (2010). A Taxonomy of Educational Games. In Gaming and Simulations: Concepts,

Methodologies, Tools and Applications (Vol. 1, p. 2164). London: Information Science

Reference.

Open Wonderland Foundation. (2012, October 16). Home: Open Wonderland. Retrieved April 14,

2013, from Open source 3D virtual collaboration toolkit | Open Wonderland:

http://openwonderland.org/index.php

Parlett, D. S. (1999). The Oxford History of Board Games (1st ed.). Oxford: Oxford University Press.

11 References

108

Peachey, A., Gillen, J., Livingstone, D., & Smith-Robbins, S. (2010). Editors' Introduction: The

Physical and the Virtual. In A. Peachey, J. Gillen, D. Livingstone, & S. Smith-Robbins (Eds.),

Researching Learning in Virtual Worlds (pp. xv-xxviii). London: Springer. doi:10.1007/978-

1-84996-047-2

Pirker, J. (2012, December). Design and Implementation of Virtual Three-Dimensional E-Learning

Scenarios of Physics Simulations. (Master's Thesis). Graz, Austria: Graz University of

Technology.

Poynton, C. (2002). Digital Video and HDTV. Morgan Kaufmann.

RedDwarf Server Application Tutorial. (2010, March). Retrieved April 14, 2013, from RedDwarf

Server Project:

http://sourceforge.net/apps/trac/reddwarf/attachment/wiki/Documentation/RedDwarf

%20ServerAppTutorial.odt

Salen, K., & Zimmerman, E. (2003). Rules of Play: Game Design Fundamentals. Cambridge,

Massachusetts: The MIT Press.

Sarma, S. E., & Chuang, I. (2013, May / June). The Magic Beyond the MOOCs. MIT Faculty

Newsletter, XXV(5), pp. 1; 10-12. Retrieved August 15, 2013, from MIT Faculty Newsletter:

http://web.mit.edu/fnl/volume/255/fnl255.pdf

Scheucher, B. (2010, March). Remote Physics Experiments in 3D(Master's thesis). Graz, Austria:

Graz University of Technology. Retrieved April 14, 2013, from

http://www.iicm.tugraz.at/thesis/MA_%20Bettina_Scheucher.pdf

Shelly, G. B., & Rosenblatt, H. J. (2011). Systems Analysis and Design (9th ed.). Boston: Course

Technology.

Soh, L.-K., Miller, L. D., Blank, T., & Person, S. (2004). ILMDA: Intelligent Learning Materials

Delivery. Computer Science and Engineering. University of Nebraska-Lincoln. Retrieved

June 18, 2013, from

http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1104&context=csetechreport

s

Stack Overflow. (2008, November 27). Retain precision with Doubles in java. Retrieved August 8,

2013, from Stack Overflow: http://stackoverflow.com/questions/322749/retain-

precision-with-doubles-in-java

Trevey, M. T. (2008, October). STEM Education - The JASON Project is One Innovation. State News,

51(9), 34-35. Retrieved June 23, 2013, from

http://www.csg.org/pubs/capitolideas/capitolideas_archive/statenews_archive_pdfs/sn_

2008/sn0810.pdf

Unesco. (1987). Distance Learning Systems and Structures: Training Manual : Report of a Sub-

regional Training Workshop, Colombo, Sri Lanka, 5-18 July 1984. Regional Office for

Education in Asia and the Pacific and Asia and the Pacific Programme of Educational

109

Innovation for Development. Bangkok: Unesco Regional Office for Education in Asia and

the Pacific.

Weisstein, E. W. (2013). Runge-Kutta Method. Retrieved October 28, 2013, from Wolfram

MathWorld: http://mathworld.wolfram.com/Runge-KuttaMethod.html

Wittgenstein, L. (1958). Philosophical Investigations (2nd ed.). (G. E. ANSCOMBE, Trans.) Oxford:

Basil Blackwell Ltd. Retrieved June 1, 2013, from http://ebookbrowse.com/ludwig-

wittgenstein-philosophical-investigations-pdf-d71272821

Zhong, Z.-J. (2011, November). The effects of collective MMORPG (Massively Multiplayer Online

Role-Playing Games) play on gamers’ online and offline social capital. Computers in Human

Behavior, 27(6), 2352-2363. doi:10.1016/j.chb.2011.07.014

Zillner, C. (2012, May). Editorial. Falter Heureka(21/12), p. 3.

110

CChhaapptteerr 1122

RReemmaarrkkss

1122..11 DDiiaaggrraamm lleeggeennddss

The diagrams, schemas, charts, etc. in this thesis do not strictly adhere to any specific standard

(like the UML standard46). Basically there are 2 reasons for this decision:

a) The chapters of this thesis related to TEALsim and the TEALsim Open Wonderland

module do not intend to serve as a full technical documentation in the narrow sense,

but shall rather give an overview of the performed programming work and the ideas

and concepts behind the implemented features.

b) Almost all diagrams were created manually (instead of automatic generation from

source code), not least because no suitable, affordable tools were available during the

course of the project.

For this reason the diagrams sometimes mix different sets of graphical notations, even though

effort was taken to stick with familiar and wide spread norms. After all, the careful selection of

content by a human being – to keep the drawings as minimalistic as possible while maximizing

their pictured information – should outweigh the loss of standardization by far. Subsequently

follow descriptions of the most commonly used notations in class diagrams and flow chart

diagrams.

46 Specification of the UML standard - http://www.omg.org/spec/UML/

http://www.omg.org/spec/UML/

12.1 Diagram legends

111

1122..11 ..11 CCllaassss DDiiaaggrraammss

Figure 12.1: Drawings with UML class diagram like content

a) Usually class/interface/etc. representations (during the course of this sub-chapter

referenced as ‘elements’) are kept as minimalistic as possible, hiding most or all

methods/fields/etc. (during the course of this sub-chapter referenced as ‘properties’).

12 Remarks

112

Therefore a simple box without any other information but its name does not imply that

there is no functionality contained in this element, but it shall rather be seen as a black

box fulfilling all of the tasks which can be logically derived from the name. If a

particular property may be of special interest or may further help to clarify the purpose

of the element, it may be included in the drawing.

Usually access levels of properties are omitted, but generally one can assume that all

properties included in drawings are publically accessible, either directly or via access

methods.

b) If something may not be immediately evident out of the drawing but might be

necessary or useful for its understanding (respectively to understand the context of the

pictured elements), a box with an orange to yellow gradient was used to add more

details in a textual form.

c) Inheritance of one element from another is indicated with a solid line and an arrow,

usually without the textual hint attached to the line.

d) A class implementing an interface is indicated with a dashed line and an arrow, usually

without the textual hint attached to the line. In some places a stereotype notation is

used to indicate that a box constitutes an interface (for example if a class relates to

other classes via an aggregation and requires the related classes to implement a certain

interface – for instance the next item e)).

e) Since composition and aggregation symbols are very often controversially defined in

literature, little effort was taken to align all diagrams with one final, strict rule. Usually

a composition in this thesis indicates that the part-element may (or at least should) not

exist without the owner-element. Due to the blurry difference between composition

and aggregation, without doubt one notation may be substituted by the other

occasionally.

Additionally, in this thesis a specialty of Java – Inner Classes – are usually connected to

their parent class with a composition. While there exist various recommendations for

non-standardized symbols like [Holub, 2011], for the sake of simplicity this approach

was chosen.

If omitted, then multiplicity is assumed to be 1

f) As indicated in item e) aggregations usually outline related elements which may exist

independently. Again, if omitted, then multiplicity is assumed to be 1.

g) Shows a class which uses another class in some way. Usually additional textual

information is available indicating the purpose of this interaction.

h) Shows a class which relates to another class in some way. Usually additional textual

information is available indicating the purpose respectively nature of this relation.

i) Shows an element where at least two methods seem to be of particular interest for its

understanding. While the setString(…) method has a void return type, the toString()

method returns an object of type ‘String’

j) Shows a class where at least the ‘name’ field seems to be of particular interest for its

understanding.

12.1 Diagram legends

113

k) Classes showing an italicized name are definitely abstract.

l) Shows two associated, abstract generic classes. Usually the representation style of the

AGenericClass is preferred, with the parameter in a separate box above the class.

However, the second representation form of AlsoGenericClass might be used

analogously as well.

Additionally group nodes were used in various places to give a hint about how classes belong

together in a broader sense, but this notation should be self-explanatory.

1122..11 ..22 FFllooww CChhaarrtt DDiiaaggrraammss

Figure 12.2: Flow chart diagrams

a) Termination symbols are boxes with round corners. They are used to mark the start

and end point of an algorithm.

b) Ellipses are used to outline important variables which are changed. Sometimes

multiple variables are contained within one ellipse to shrink the diagram size.

c) Diamonds indicate a condition check. Usually this is a true/false evaluation where true

conditions are connected to the diamond’s left corner and false conditions connect to

the right corner.

12 Remarks

114

d) Simple actions are usually annotated directly next to an arrow leading from one symbol

to another. If a more comprehensive task has to be executed then a square box is used

briefly describing what shall happen in this place (like a black box).

e) Specifies steps which cause the algorithm to idle for a specific time.

f) Shows buffers which contain multiple instances of the denoted variable.

g) Clouds indicate a remote entity like other computers in network.

1122..22 SSyysstteemm DDiiaaggrraammss

This chapter covers various technical aspects of TEALsim which did not particularly fit to any of

the main chapters of this thesis but might be interesting for someone wanting to get involved with

TEALsim and continue its development.

1122..22 ..11 DDeess iiggnn ooff tthhee RReevvaammppeedd SSiimmuullaatt iioonn EEnnggiinnee

The former simulation engine was able to enter 5 different states and switch forth and back

amongst them, resulting in a rather complex state diagram. A byproduct of the work on this thesis

was the reduction of possible states to two as shown in figure 12.3.

Figure 12.3: State diagram of the deterministic simulation engine

1122..22 ..22 SSyyss tteemm DDeessiiggnn aanndd OObbjjeecctt OOwwnneerrsshhiipp iinn TTEEAALLssiimm

Figure 12.4 visualizes the execution flow and object ownership of the TEALsim framework in

place at the start of this thesis. The mutually entangled object references already indicate the

absence of clear rules of conduct for object ownership which rendered the whole system very

12.2 System Diagrams

115

sensible to changes in its design. For this reason substantial changes were introduced leading to

the design visualized in figure 12.5 (automatically generated class diagram).

Figure 12.4: Execution flow and object ownership of former simulation construction

12 Remarks

116

Figure 12.5: Design of TEALsim (based on client-server architecture)

12.2 System Diagrams

117

1122..22 ..33 AAppppll iiccaatt iioonn FFllooww ooff tthhee RReennddeerriinngg PPrroocceessss

To better comprehend TEALsim’s design of the rendering process figure 12.6 visualizes the most

important components involved in this procedure.

Figure 12.6: Schema of the rendering process in TEALsim

118

CChhaapptteerr 1133

LLiissttiinnggss

1133..11 TTaabbllee ooff FFiigguurreess

Figure 1.1: Screenshot of an instance of TEALsim running within OWL .. 3

Figure 1.2: Sketch of a potential UI consisting of 3D elements created by Mark Bessette 3

Figure 2.1: Artistic rendering of a classroom suitable for TEAL courses by Mark Bessette 9

Figure 2.2: TEALsim game-like application to explore electric potentials ... 17

Figure 2.3: TEALsim electrostatic videogame .. 18

Figure 2.4: Structure of this thesis’ principles.. 20

Figure 3.1: Sketch of TEALsim window highlighting areas of interest .. 22

Figure 4.1: Schema of deterministic simulation engine ... 38

Figure 4.2: Diagram of the concept of a switchable simulation engine ... 41

Figure 4.3: Logic to export engine states to the remote computers (most notably the server) 42

Figure 4.4: Overall design of the deterministic algorithm for local simulation calculation 43

Figure 4.5: Computational part of the algorithm doing simulation calculation locally 44

Figure 4.6: Execution flow for simulation engine when streaming simulation states 45

Figure 6.1: Illustration of the Lava Flow AntiPattern – Source: [Brown, Malveau, McCormick III, &

Mowbray, 1998] .. 57

Figure 6.2: Dependency graph of the streamlined TEALsim build file .. 61

Figure 6.3: Dependency graph of the former TEALsim build script ... 62

Figure 6.4: Illustration of TEALsim’s OWL module build sequence .. 63

Figure 6.5: Screenshot taken in Netbeans IDE showing the result of a JUnit test run 64

Figure 6.6: TEALsim being started up with a tool for adjusting debugging output at runtime 66

Figure 6.7: Log messages from customized formatter .. 67

Figure 6.8: The former simulation controls and their associated properties – Source: [Belcher,

McKinney, Bailey, & Danziger, 2007] ... 67

Figure 6.9: Screenshot of an older version of TEALsim showing the former user interface 68

Figure 6.10: Sketch of the proposed refurbished user interface created with the free online

version of Balsamiq Mockup tool .. 69

Figure 7.1: layers of TEALsim’s network architecture ... 73

13.2 Table of Tables

119

Figure 7.2: Class diagram of TEALsim’s network layer ... 75

Figure 7.3: Standard start up sequence of TEALsim’s client-server architecture 76

Figure 7.4: Schema of the socket based implementation of Connection ... 77

Figure 7.5: Schema of the Connection used to run client and server within one JVM 78

Figure 7.6: Schema of synchronizing values in TEALsim .. 80

Figure 7.7: Generic schema of TEALsim’s UI synchronization model .. 82

Figure 8.1: Exemplary run configuration for a TEALsim instance with client and server 86

Figure 8.2: Exemplary run configuration for a TEALsim instance connecting to a remote server . 86

Figure 8.3: Schema of required client-side components to integrate TEALsim into OWL 89

Figure 8.4: Schema of the client-side implementation of Connection for OWL .. 90

Figure 8.5: Schema of required server-side components to integrate TEALsim into OWL 91

Figure 8.6: Schema of the server-side implementation of Connection for OWL 92

Figure 12.1: Drawings with UML class diagram like content .. 111

Figure 12.2: Flow chart diagrams ... 113

Figure 12.3: State diagram of the deterministic simulation engine.. 114

Figure 12.4: Execution flow and object ownership of former simulation construction 115

Figure 12.5: Design of TEALsim (based on client-server architecture) .. 116

Figure 12.6: Schema of the rendering process in TEALsim.. 117

1133..22 TTaabbllee ooff TTaabblleess

Table 2.1: Scope of distance learning respectively e-learning [Mencke & Dumke, 2007, p. 40] 10

Table 2.2: Guidelines for utilization of either thin or fat clients [Hammerschall, 2005, S. 28].......... 19

Table 3.1: Bandwidth usage of OWL module for different simulations .. 27

Table 3.2: Pros and cons for the previous versus the alternative synchronization design 35

Table 6.1: Lava Flow AntiPattern issues found in TEALsim source code ... 57

Table 6.2: Overview of evolution of LoC respectively amount of files of TEALsim project 58

Table 6.3: Overview of amount of in-line documentation of TEALsim project .. 59

Table 6.4: Overview of evolution of OpenWonderland TEALsim module project 59

1133..33 TTaabbllee ooff LLiisstt iinnggss

Listing 3.1: Pseudo code declaring a basic UI and the relation of its elements .. 36

Listing 4.1: Code sample to demonstrate precision issue with floating point numbers 39

Listing 4.2: Demonstration of diverging results based on amount of calculation steps 40

Listing 6.1: Example for instructions found in logging.properties file .. 67

Listing 7.1: Usage of SynchronizableGenerics in TEALsim applications .. 83

1133..44 TTaabbllee ooff UUssee CCaasseess

Use case 5.1: Multiple clients running with out-of-sync SimulationTime .. 47

Use case 5.2: Change of ControlState without user input collisions and running simulation 47

13 Listings

120

Use case 5.3: Change of ControlState without user input collisions and paused simulation 48

Use case 5.4: Change of ControlState with user input collisions – case 1 – trailing client B 48

Use case 5.5: Change of ControlState with user input collisions – case 2 – advanced client B 49

Use case 5.6: Change of ControlState with user input collisions – case 3 – equal SimulationTime . 49

Use case 5.7: Change of ControlState with user input collisions – case 4 – equal ControlState 50

121

CChhaapptteerr 1144

IInnddeexx

1144..11 GGlloossssaarryy

API – application programming interface

ASTD – American Society for Training & Development

CECI – Center for Educational Computing Initiatives

CVS – Concurrent Versions System or Concurrent Versioning System

fps – frames per second

GWT – Google Web Toolkit

IPC – InnerProcessConnection

IT – Information technology

JRE – Java Runtime Environment

JVM – Java virtual machine

kLOC – lines of code x 1000

LAN – Local area network

MIT – Massachusetts Institute of Technology

MMORPG – Massive Multi Player Online Role Playing Games

NTSC – National Television System Committee

OWL – Open Wonderland

PAL – Phase Alternating Line

PCE – PropertyChangeEvent

PD – Project Darkstar

STEM – science, technology, engineering, and mathematics

TCO – total cost of ownership

TEAL – Technology Enabled Active Learning

TEALsim – TEAL Simulation Framework

14 Index

122

UI – user interface

WAN – Wide area network

WBT – Web-based training

1144..22 TTaabbllee ooff tthhee MMoosstt IImmppoorrttaanntt SSooff ttwwaarree TToooollss UUsseedd

TEAL Simulation Framework

http://web.mit.edu/viz/soft/visualizations/tealsim/index.html

http://sourceforge.net/projects/tealsim/

Open Wonderland

http://www.openwonderland.org

Netbeans IDE

http://www.netbeans.org

IntelliJ Idea Ultimate (evaluation version)

http://www.jetbrains.com/idea/

yEd Graph Editor

http://www.yworks.com

Balsamiq Mockups

http://www.balsamiq.com

CLOC

http://cloc.sourceforge.net

EasyMock

http://www.easymock.org

Ant-Contrib Tasks

http://ant-contrib.sourceforge.net

InforMatrix LogGui

http://www.informatrix.ch/loggui/index.html

TopThreads JConsole plug-in

http://lsd.luminis.nl/top-threads-plugin-for-jconsole/

http://web.mit.edu/viz/soft/visualizations/tealsim/index.html
http://sourceforge.net/projects/tealsim/
http://www.openwonderland.org/
http://www.netbeans.org/
http://www.jetbrains.com/idea/
http://www.yworks.com/
http://www.balsamiq.com/
http://cloc.sourceforge.net/
http://www.easymock.org/
http://ant-contrib.sourceforge.net/
http://www.informatrix.ch/loggui/index.html
http://lsd.luminis.nl/top-threads-plugin-for-jconsole/

123

1144..33 DDiiggiittaall aasssseettss

	Abstract
	Kurzfassung
	Affirmations
	Acknowledgments
	Contents
	Chapter 1 - Introduction
	1.1 Motivation
	1.2 Definition of Objectives
	1.3 Structure

	Part I - General Background
	Chapter 2 - Terms and Definitions
	2.1 STEM Education
	2.2 What is TEAL?
	2.3 What is e-Learning
	2.3.1 Formal Definitions
	2.3.2 Different Kinds of e-Learning

	2.4 Different Kinds of Multi-User Environments
	2.5 Examples for Existing e-Learning Instruments
	2.5.1 The TEAL Simulation Framework
	2.5.2 Academic Online Learning Programs Like edX
	2.5.3 Educational Games

	2.6 Thin Clients Versus Fat Clients
	2.7 Summary

	Chapter 3 - TEALsim in a Multi-User Environment
	3.1 Potential Host Environments for TEALsim
	3.1.1 Stand-alone Version of TEALsim Without Network Features
	3.1.2 Stand-Alone Java Application with Multi-User Component
	3.1.3 TEALsim Embedded in a 3D Virtual World
	3.1.4 Mixed Mode

	3.2 Previous Network Architecture
	3.2.1 Principles of the Architecture and the Execution Sequence
	3.2.2 Performance Characteristics
	3.2.3 Limitations Introduced by 3rd-Party Frameworks
	3.2.4 Recapitulation

	3.3 Alternative Approach Derived from Video Games
	3.4 Comparison of Previous Design Versus Alternative Design
	3.4.1 Complexity of TEALsim Framework
	3.4.2 Complexity of OWL Module
	3.4.3 Complexity to Create New Content
	3.4.4 Network Congestion and Scalability
	3.4.5 Code Extensibility and Autonomy
	3.4.6 Versatility
	3.4.7 Server Hardware Requirements
	3.4.8 Client Hardware Requirements
	3.4.9 Recapitulation

	3.5 Synchronization of User Inputs
	3.6 Summary

	Chapter 4 - Designing a Deterministic Simulation Engine
	4.1 Idea Behind a Deterministic Algorithm
	4.2 Issues Complicating an Implicit Synchronization Simulation Calculations
	4.2.1 Double Precision Divergence Across Multiple Clients
	4.2.2 Calculation Divergence Based on Algorithm Step-Sizes

	4.3 Concept of the Configurable Simulation Engine
	4.4 Design of the Algorithm for Local Simulation Calculation
	4.5 Details of the Simulation Engine Running in State Streaming Mode
	4.6 Summary

	Chapter 5 - Synchronizing Concurrent Clients
	5.1 Use Cases for Most Relevant Design Aspects
	5.2 Details Regarding SimulationTime Calculation
	5.3 Security
	5.4 Summary

	Part II - Implementation Details
	Chapter 6 - State of the TEALsim Project
	6.1 Issues with Redundant and Obscure Code
	6.2 Move from CVS to SVN
	6.3 Integration into Netbeans and Rework of the Build Script
	6.4 Addition of JUnit Tests
	6.5 Addition of a Logging Framework
	6.6 Streamlining the User Interface
	6.7 Summary

	Chapter 7 - The Underlying Network Layer
	7.1 General Design of the Network Architecture
	7.2 Socket Based Implementation of Connection
	7.3 Implementation of a Connection for Communication Within a Single JVM
	7.4 Open Wonderland Specific Implementation of Connection
	7.5 Design of Synchronizable Elements
	7.5.1 General Schema of SynchronizableGeneric Classes
	7.5.2 Synchronizable UI Controls
	7.5.3 Usage in TEALsim Applications

	7.6 Summary

	Chapter 8 - Starting and Using the TEALsim Framework
	8.1 Options to Start the Desktop Version of TEALsim
	8.1.1 Configuring the Client and Server Component
	8.1.2 Configuring the Log Settings
	8.1.3 Configuring TEALsim for 32bit or 64bit Environments

	8.2 Using TEALsim Framework in a 3rd-Party Application like OpenWonderland
	8.2.1 Adapting the Client Package
	8.2.2 Adapting the Server Package

	8.3 Summary

	Part III - Findings
	Chapter 9 - Lessons Learned
	9.1 Conducting Preliminary Research
	9.2 Design and Implementation
	9.3 Usability

	Chapter 10 - Outcome
	10.1 Conclusion
	10.2 Suggestions for Further Work

	Part IV - Appendix
	Chapter 11 - References
	Chapter 12 - Remarks
	12.1 Diagram legends
	12.1.1 Class Diagrams
	12.1.2 Flow Chart Diagrams

	12.2 System Diagrams
	12.2.1 Design of the Revamped Simulation Engine
	12.2.2 System Design and Object Ownership in TEALsim
	12.2.3 Application Flow of the Rendering Process

	Chapter 13 - Listings
	13.1 Table of Figures
	13.2 Table of Tables
	13.3 Table of Listings
	13.4 Table of Use Cases

	Chapter 14 - Index
	14.1 Glossary
	14.2 Table of the Most Important Software Tools Used
	14.3 Digital assets

