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Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift





Abstract

This work describes the design of a state of the art Aerial Triangulation (AT) pipeline.

The distinct stages are implemented with the goal of a fast processing speed by exploit-

ing as many information as available, which is crucial for dealing with high resolution

aerial images. Such prior information are camera poses obtained from Global Positioning

System (GPS) and Inertial Navigation System (INS) measurements as well as rough scene

approximations from Digital Elevation Models (DEMs). These terrain data are freely avail-

able and cover nearly the entire earth. At the beginning of the pipeline Scale-Invariant

Feature Transform (SIFT) features are extracted, then the view selection stage utilizes

the afore mentioned prior information to decide, which images display the same part of

the scene and thus should be matched. During the subsequent matching step the same

information is applied to predict corresponding feature locations in an image given the

location in another image. After the triangulation of the obtained feature correspondences

the final bundle adjustment stage refines the 3D structure as well as the camera poses.

Evaluation results on two different image sets are presented, where one set contains also

oblige images.

Keywords. Aerial Triangulation, Bundle Adjustment, Feature Matching, Georeferenc-

ing
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Kurzfassung

Diese Arbeit beschreibt das Design einer dem Stand der Technik entsprechenden Pipeline

für Aerotriangulation. Die einzelnen Stufen sind mit dem Ziel einer schnellen Abarbeitung

unter Ausnutzung aller verfügbaren Informationen entworfen worden, dies ist besonders

bei Verwendung von hochauflösenden Luftbildaufnahmen wichtig. Solch verfügbares Vor-

wissen besteht aus Global Positioning System (GPS) und Inertial Navigation System (INS)

Messungen der Kamera Posen sowie aus einer ungefähren Näherung der Szene mittels

Digital Elevation Model (DEM). Diese Geländedaten sind frei erhältlich und decken fast die

ganze Erde ab. Am Beginn der Pipeline werden Scale-Invariant Feature Transform (SIFT)

Features extrahiert, anschließend nutzt der View Selection Schritt das zuvor erwähnte Vor-

wissen um zu entscheiden, welche Bilder den gleichen Teil der Szene zeigen und deshalb

im Matching Schritt auf übereinstimmende Features untersucht werden sollen. Während

des nun anschließenden Matching Schritts wird die gleiche Information dazu verwendet

um für gegebene Feature Positionen in einem Bild korrespondierende Feature Positionen

in einem anderen Bild zu schätzen. Nach erfolgter Triangulierung der ermittelten Feature

Korrespondenzen verbessert eine abschließende Bündelausgleichung die 3D Struktur und

die Kamera Posen. Es werden bei zwei verschiedenen Luftbild Datensätzen die erzielten

Ergebnisse aufgeführt, wobei ein Datensatz auch schräg aufgenommene Bilder enthält.

Schlagwörter. Aerotriangulation, Bündelausgleichung, Feature Matching, Georeferen-

zierung
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Chapter 1

Introduction

A general prerequisite for the generation of many Geographic Information System (GIS)

products like orthophotos, surface models of cities, etc. are accurately georeferenced cam-

era poses [1, 2]. Direct georeferencing uses very accurate Global Positioning System (GPS)

and Inertial Navigation System (INS) measurements to determine these camera poses [3].

In contrast Aerial Triangulation (AT) can produce a georeferenced output with missing

or less accurate measurements by refining the given or estimated camera positions and

orientations during a bundle adjustment stage [4]. This work concentrates on the case

that imprecise pose measurements are available, which have to be refined for a further

processing. For that purpose an AT pipeline is designed. As side product a sparse scene

reconstruction is obtained.

Another application of bundle adjustment is camera calibration. On the one hand

the intrinsic camera parameters as well as lens distortion coefficients can be computed

[5]. On the other hand the relative offset and orientation between pose measurement

device and camera can be determined, which are known as lever arm offset and boresight

misalignment rotation respectively [6]. Thus bundle adjustment may be also required for

direct georeferencing.

For performing AT, feature points are detected in each aerial image and afterwards

matched. Without any further measures one has to match each aerial image with all

others. For example let’s consider an aerial survey of a quadratic shaped area consisting

of 1000 images obtained with 80% forward overlap and 60% side-lap. When each image

is matched against all others, then 999 · 1000 / 2 = 499500 image pairs are processed in

the feature matching stage. However due to the layout of the survey it is known, that a

image in the center of the region overlaps with 44 other images. Therefore actually only

1
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44 · 1000 / 2 = 22000 image pairs have to be matched, if the border of the aerial survey

is not considered. This results in a saving of more than 95% of the effort compared to

the naive approach. As demonstrated, the naive approach has a complexity of O(n2) in

the number of images, while the other strategy has a linear complexity. So the savings

will be even larger for larger image sets. The calculation of overlapping images for feature

matching is referred to as view selection within this work and essential for a reasonable

performance.

Some aerial camera systems produce large scale images, for example the Microsoft

Super-Large UltraCam generates images with a size of 20000 pixel × 12900 pixel [7]. As

a result fewer flight strips are required to cover a certain terrain and therefore the flight

costs are reduced. Depending on the interest point detector parametrization one obtains

usually a huge amount of feature points for these images due to their large format. This

is in general a desirable behavior, because then the matching stage generates also many

correspondences. That results in a sparse reconstruction consisting of many 3D points.

Note that also the accuracy of the refined camera poses increases with the amount of

correspondences [8]. Obviously also the matching effort increases. For example consider

the matching of two images, each containing 100000 interest points. An exhaustive feature

matching strategy would compare each feature of the first image with each feature of

the second image, resulting in 1000002 = 1010 comparisons and therefore a quadratic

complexity in the amount of features. A more efficient approach is to predict the feature

location in the second image for a feature in the first image and then comparing only

features within a small search region around this prediction [8]. If it is assumed that

about 100 interest points are found within each search region then only 100 ·100000 = 107

comparisons are required, which are just 0.1% compared to the exhaustive method.

Within this work methods for view selection and feature location prediction are inves-

tigated, which exploit the available prior knowledge. The considered prior information are

measured poses, even though they are possibly imprecise and scene approximations like a

ground plane or a Digital Elevation Model (DEM), see Fig. 1.1(a). Note that the elevation

data is freely accessible and available for nearly every place on earth [9]. Furthermore

with the obtained feature correspondences a sparse georeferenced scene is reconstructed

and the scene as well as the camera poses are refined during a bundle adjustment stage,

see Fig. 1.1(b) for an example.
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(a) (b)

Figure 1.1: Example input data and corresponding AT pipeline output. In (a) the
utilized input data are schematically shown, which are aerial images,
imprecise measured camera poses and a DEM. The resulting georefer-
enced sparse scene reconstruction and the refined camera poses are
given in (b).

The next chapter gives a brief overview of recent related work in the area of AT and

Structure from Motion (SfM) pipelines. Afterwards the background chapter describes

components used in a state of the art pipeline. Then the chosen methodology is delineated,

containing alternative realizations for the distinct stages. The experiments chapter gives

detailed evaluation results of the different processing steps. A conclusion summarizes the

gained findings and states the directions for further work.





Chapter 2

Related Work

Contents

2.1 Commercial AT pipelines . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Recent developments . . . . . . . . . . . . . . . . . . . . . . . . . 7

The following work is motivated by recent developments in the field of Visual

Simultaneous Localization and Mapping (SLAM), more precisely by the therein contained

subtask of efficient feature location prediction, cf. [10–13]. SLAM is the problem of

locating a vehicle within an unknown environment and simultaneously building a map

of this environment by evaluating some sensor information. In the particular case of

Visual SLAM, a camera is used as sensor. Here a new camera pose is estimated from

previous observations. This estimated camera pose and the current map are then used

to predict feature locations in the current image. Due to pose uncertainties, the errors

between predicted and true feature locations are correlated. These correlations can

now be exploited to accelerate feature matching. In AT pipelines a similar problem

occurs, also here inaccurate camera poses from GPS and Inertial Measurement Unit (IMU)

measurements are available, which should be exploited for feature matching. In the

following the working principle of commercial AT systems is outlined, afterwards recent

developments in the area of AT and SfM pipelines are given.

2.1 Commercial AT pipelines

Various commercial AT systems with included bundle adjustment stage exist in the mean-

time, for example Inpho MATCH-AT and Inpho inBLOCK from Trimble [14] or LPS with

the ORIMA add-on from Intergraph [15]. Although a recent information about the therein

5
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used algorithms is not easily available, some basic image matching methods used within

these packages are delineated in the following [4].

In general feature based, area based and structural matching methods are applied.

Feature Based Matching (FBM) methods extract points, lines or even more complex objects

from images and match them. Area based matching strategies compare the similarities

of gray values within a reference window located in the first image with those of a search

window in the second image. The location of the search window is modified until the

similarity between both patches is a maximum. Structural matching [16] detects points,

lines and regions as well as their relations and generates a structural description for each

image. The images are then hierarchically matched by comparing their descriptions. The

above mentioned matching methods often apply an image pyramid to perform a coarse to

fine matching, starting with images of lower resolution.

One way to measure patch similarity for area based matching is to apply Normalized

Cross Correlation (NCC), which correlates normalized image gray values. This approach

achieves search window position accuracies of one pixel. Another area based matching

method is Least Squares Matching (LSM) [17], which generates subpixel accurate locations.

In contrast to NCC, the initial search window position for LSM must be already specified

with a maximal deviation of two pixel from the correct location. LSM models geometric and

radiometric distortions of a reference patch for fitting it to the corresponding location in the

second image. This fitting procedure minimizes the gray value differences by adjusting the

parameters of the geometric and radiometric transformations. The geometric distortion

can be approximated by an affine transformation, while the radiometric distortion may

be modeled by a linear relationship. The fitting is performed iteratively by solving least

squares optimization problems. LSM is often used to refine the results of a preceding NCC

matching step and allows the inclusions of constraints like the epipolar constraint. Also a

simultaneous matching of patches in multiple images is possible with LSM, which is known

as multiple image matching. Here the common 3D location of the corresponding object

point is estimated. The location of the object point projection in each image is used as

observation and guides the matching. Due to the inclusion of multiple observations in the

matching process more stable results are achieved.

A common feature of commercial AT systems is their ability to determine various

parameters for modeling imaging distortions. Additionally they are able to consider GPS

shift and drift terms as well as the lever arm offset and the boresight misalignment.

Furthermore they allow an extensive analysis of the results, for example by determining
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the covariances of the calculated values.

In Fig. 2.1 the workflow of the commercial product Inpho MATCH-AT [18] is given

as an example. MATCH-AT applies FBM and LSM within an image pyramid, searches

tie points along epipolar lines and supports multi image matching. After each matching

of an image pyramid level a robust bundle adjustment run is performed to update the

camera poses. The matching stage utilizes either a given DEM or generates a DEM during

the hierarchical matching.

Preparation:

· Parameter editing

· Interior orientation

· Measurement of control points

batch interactive

Initialization of tie point areas

Visual check / Edit

Visual check / Edit

Final block adjustment

Kernelsystem:

· Matching in tie point areas

- LSM method

- FBM method

· Robust bundle adjustment

· DEM refinement (optionally) 

Figure 2.1: Workflow of Inpho MATCH-AT, from [18].

2.2 Recent developments

Some recent approaches for AT and SfM pipelines are proposed in [19–23]. In [22] images

are first grouped to overlapping image sets, then these image sets are incrementally re-

constructed, whereas in each iteration a bundle adjustment step is performed. Because

the sets are reconstructed separately, this can be easily executed in parallel. The obtained

results are then merged together by transforming them into a common coordinate system

via similarity transform. Finally a global bundle adjustment step is applied. This ap-
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proach is suitable for large image sets. There the camera poses are reconstructed solely

from feature matches.

In [21] GPS and INS data is exploited to speed up the feature matching stage by con-

sidering only view pairs, where the corresponding image rectangles projected onto a scene

approximation significantly overlap. They perform a single robust bundle adjustment run,

where the camera centers are initialized with GPS measurements. Feature correspondences

are used to estimate relative camera orientations, which in turn are registered with the

GPS measurements to obtain initial camera orientations for the bundle adjustment step.

The approach in [23] performs at first an exhaustive pairwise feature matching on all

images, whereas the computation time has been reduced by using only features of higher

scale. These matches are utilized to estimate an affine transformation between image pairs.

This transformation is on the one hand applied to calculate the overlap between images

and on the other hand to guide the feature matching. The guidance places a search region

for a feature point in one image into another image, so that the search region is centered

at the transformed feature point location. Only feature points within the search region are

considered for matching. Furthermore they discard interest points within a surrounding

of low contrast.

Further strategies for efficient feature matching in the field of AT are given in [8, 24, 25].

The matching strategy in [24] triangulates world points using in track matches and predicts

search regions for the corresponding tie points in images of neighboring flight strips by

projecting the world points into these images. This is possible because camera positions

and orientations are measured by GPS and INS. Then multi image matching in image space

is performed, using NCC as similarity value. Geometric distortions are partially considered

by a correlation window wrapping. Therefore a horizontal plane passing through the

corresponding world point is utilized and the correlation window is projected onto that

plane and back projected into the other images.

In contrast the matching strategy suggested in [8] back-projects a feature point onto

a DEM. The resulting world point is then projected into the other images to obtain initial

guesses for the feature matching search regions. Ideally this prediction procedure considers

the involved uncertainties, e.g. camera pose inaccuracies, elevation data errors as well as

feature extraction imprecisions, and adapts the size of the search region accordingly. Also

here GPS and INS measurements are exploited.

A new robust feature matching strategy is proposed in [25]. Here interest points are

detected by applying the Difference of Gaussian (DoG) operator on the scale space, similar
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to the Scale-Invariant Feature Transform (SIFT) detector. At first a pairwise matching

is performed by applying NCC on the image patches of the corresponding scale. Then

LSM refines the locations of the interest points. Afterwards the relative pose between

both cameras is estimated and refined by a robust bundle adjustment run. The pairwise

matches between two images are combined to three view matches and afterwards merged

to multi view correspondences. Each linkage step is followed by a multi image LSM to

further refine the interest point locations and a robust bundle adjustment run. They

perform a verification with the trifocal constraint.

Feature matching algorithms applied in the computer vision domain are given in [10,

12, 13, 26–28]. They are described within the background chapter of this thesis in more

detail.
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The goal of this thesis is to obtain a georeferenced 3D structure as sparse point cloud

from high-resolution aerial imagery and simultaneously a refinement of the measured cam-

era poses. This chapter gives first an overview of different geospatial coordinate systems.

Then the applied geometric algorithms and data structures are briefly explained, followed

by a description of the usually utilized camera model and a suitable pose measurement

technique. Finally the processing stages in a typical AT pipeline are given, where for the

distinct tasks alternative methods are listed. The stages of the considered AT pipeline are

as following [19–23], a block diagram is given in Fig. 3.1.

• Feature Extraction

The feature extraction stage finds image points, which are repeatable detectable in

different images.

11
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• View Selection

To speed up the subsequent feature matching stage, view pairs showing the same

scene content are determined.

• Feature Matching

In this stage the previously extracted features are matched across views, so that

each pairwise match corresponds to two observations of the same 3D location in the

scene.

• 3D Structure Computation

The 3D structure consists of triangulated world points and is generated by the usage

of the feature correspondences and the known camera parameters.

• Bundle Adjustment

Uncertainties in the camera parameters and in the positions of the extracted features

lead to imprecise locations of the triangulated world points. The bundle adjustment

stage optimizes the camera parameters and world point locations to obtain a jointly

optimal solution.

Feature Extraction

View Selection

Feature Matching

3D Structure 

Computation

Bundle Adjustment

Figure 3.1: General flow chart of an AT pipeline.

3.1 Geospatial Coordinate Systems

As mentioned above the goal of this work is to obtain camera positions and triangulated

world points within a global coordinate system. Therefore the input data like the measured

camera positions and the elevation data of the processed regions have to be converted

into a common coordinate system suitable for processing within the AT pipeline. So this
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chapter introduces geospatial coordinates first. Then an overview of different types of

map projections is given followed by a discussion of different elevation specifications. The

remaining sections list additional information concerning the coordinate systems used

within this thesis.

3.1.1 Coordinate Reference Systems

In the past a huge amount of different Coordinate Reference Systems (CRSs) emerged,

suitable for different purposes. While some of them are used to define positions on the

whole Earth others describe the location within a specific country. This section gives an

overview of the different methods for defining positions, following mainly [29].

The first way to specify positions is to approximate the Earth surface with an ellipsoid

and give positions onto this ellipsoid. Depending on the purpose, different reference sur-

faces exist, as illustrated in Fig. 3.2. While a globally best fitting ellipsoid is suitable to

describe positions over the whole Earth within a single reference system, local best fitting

ellipsoid are used in regional reference systems.

Figure 3.2: Approximation of the earth surface with ellipsoids, from [29]. While
the globally best-fitting ellipsoid provides a reference surface for the
whole earth, regionally best-fitting ellipsoids are able to give more
accurate approximations within the regions they are designed for.

The position of a point P with respect to the ellipsoid is now given in form of two

angles called latitude φ and longitude λ and additionally the height H above the ellipsoid,

see Fig. 3.3. These angles are defined with the aid of a grid of meridians and parallels.

A meridian is a north-south line of constant longitude, while a parallel is a east-west line

of constant latitude. The prime meridian is that meridian with zero longitude and the

equator is the circle of zero latitude. So the longitude value of a point on the ellipsoid is
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defined as the angle between prime meridian and meridian through the point and usually

given within the ranges 0◦− 180◦ west and 0◦− 180◦ east depending on which hemisphere

the point is located on. Furthermore the latitude value of a point on the ellipsoid is

specified as angle between equatorial plane and the line perpendicular to the ellipsoid

passing through the point. Latitude values are given within the ranges 0◦− 90◦ north and

0◦ − 90◦ south, also depending on the current hemisphere. Finally the ellipsoid height H

is measured along the vector perpendicular to the ellipsoid passing through the point P .

The second way to specify a point on Earth is to use a right handed Cartesian co-

ordinate system with the three orthogonal axes X, Y and Z. Its origin coincides with

the center of the ellipsoid and the XY -plane lies within the equatorial plane. The posi-

tive X-axis points to the prime meridian and the positive Y -axis points to the 90◦ east

meridian.

Figure 3.3: Earth coordinate systems overview, from [29]. The location of a
point P can be given with the two angles latitude φ and longitude λ
and additionally the height H above the ellipsoid. Alternatively the
location of P can be specified within a Cartesian coordinate system.

For the definition of a reference system one has to specify the ellipsoid, that means

center and orientation relative to the Earth, the ellipsoid size and its shape. Fig. 3.3

illustrates one such system. Here the center is located at the Geocentre, which is the

centre of Earth’s mass. Furthermore it is orientated in a way that the semi-minor axis,

the shorter axis of the ellipse used to define the ellipsoid of revolution, coincides with the

Earth rotation axis. Because we are interested in positions of objects on the Earth land

surface such a definition is called a Terrestrial Reference System (TRS) or alternatively a

datum. Examples of TRSs are the European Terrestrial Reference System 1989 (ETRS89),

the International Terrestrial Reference System (ITRS) and the World Geodetic System
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1984 (WGS84). To use a coordinate system in practice, one needs points with known

positions with respect to the TRS, these points are called Terrestrial Reference Frame (TRF).

For example in the case of GPS the exactly known positions of the tracking stations are

used to determine the position of each satellite. The satellites broadcasts now their actual

positions, which in turn are utilized to triangulate the position of a GPS receiver. Therefore

all tracking stations act as TRF used to implement a realization of WGS84, the corresponding

TRS.

3.1.2 Map Projections

As outlined above a point on Earth can be specified either as a pair of angles with a height

above a reference ellipsoid or as a triple of Cartesian coordinates. A third possibility to

give the position of a point on Earth is to apply map projections [30]. Here a point on the

reference ellipsoid is projected onto a map surface, e.g. plane, cylinder or cone. Within

the projection surface the location of a point is given in Cartesian coordinates. A height

component is not handled and must be specified otherwise. Map projections have the

disadvantage of introducing geometric distortions, which depend on shape and size of the

mapping surface as well as on its position and alignment relative to the reference ellipsoid.

Fig. 3.4 gives an overview of different map projections.

3.1.3 Geoids

As mentioned earlier the height of a point can be given relative to a reference ellipsoid,

which is a geometric height. However in every days usage one assumes that between points

of equal height no water flows, e.g. the water of a river runs always downhill, starting form

a point with a given height towards a point with a lower height. This implicitly means,

that points of equal height must have the same potential energy in Earth’s gravitational

field. So they have to be on the same level surface. Therefore the height must be defined

relative to a reference level surface which in principle can be chosen arbitrarily. Note that

the direction of gravity is always at right angle to a level surface [29].

Due to irregular mass distribution on Earth’s surface e.g. mountains and variations of

the Earth’s density, the level surfaces are complex shaped and can be only approximately

represented by an ellipsoid. One common level surface is the Geoid [29, 31], which best

fits the Earth’s oceans average water level. The height above the Geoid is also called

orthometric height. Ellipsoid height H and orthometric height h are related by the Geoid-

ellipsoid separation N according to the simplified formula given in Equation (3.1).
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Figure 3.4: Overview of map projections, from [30]. The categorization is per-
formed according to the shape of the mapping surface, its orientation
which is also called aspect and its size. Tangential mapping surfaces
are given in blue while intersecting one are displayed in red.

H = h+N (3.1)

A Geoid model can be stored as lookup table delivering the Geoid-ellipsoid separation

N for a given latitude longitude pair. Fig. 3.5 shows the Earth Gravitational Model

1996 (EGM96) Geoid-ellipsoid separation for the WGS84 ellipsoid. It can be seen that the

WGS84 ellipsoid approximates the Geoid with an accuracy of about ±100 m. The newer

and improved Earth Gravitational Model 2008 (EGM08) Geoid has not been applied within

this work, because the utilized height data refers to the older EGM96 Geoid.

Beside the global Geoid also local geoids [29], optimized for a specific country, exist.

They are usually defined via the Mean Sea Level (MSL) observed at a single specific coastal
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Figure 3.5: Geoid-ellipsoid separation for the EGM96 Geoid and WGS84 ellipsoid,
from [31].

place and at a given time, forming a national tide gauge datum. Effects like oceanic

currents, tides, wind, variations in water temperature and pressure produce hills and

valleys in the water surface, causing that the utilized MSL differs from the average water

level of all oceans. That means the heights obtained from a local geoid and the heights

related to the global Geoid differ. These deformations of the sea surface are also known as

Sea Surface Topography (SST). Fig. 3.6 summarizes the relationship between the different

heights.

3.1.4 World Geodetic System 1984

WGS84 [29] is used as TRS for global coordinate systems and applied for example for GPS.

The reference ellipsoid and therefore also the associated three dimensional Cartesian co-

ordinate system have its origin at the Geocentre. Furthermore the reference ellipsoid has

the same size and shape as the Geodetic Reference System 1980 (GRS80) ellipsoid, which

best-fits the Earth’s Geoid. Table 3.1 lists semi-major and semi-minor axis of the ellipse

utilized to construct the GRS80 ellipsoid by rotating the ellipse around its semi-minor axis.

Equator and prime meridian of the reference ellipsoid coincide with the definition from
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Figure 3.6: Illustration of the relationship between different heights, from [29].

Parameter Value

Semi-major axis a 6378137.000 m
Semi-minor axis b 6356752.3141 m

Table 3.1: Shape and size of the GRS80 ellipsoid, from [29].

the Bureau Internationale de l’Heure at epoch 1984.0, which is the beginning of year 1984.

Because WGS84 is designed for global usage, the relative motion of continents has to be

considered. This is accomplished by updating the ellipsoid orientation in a way, that the

average motion of all tectonic plates relative to the ellipsoid is zero. This implies that the

WGS84 Cartesian axes are steadily moving relative to a single continent. The International

Reference Pole and International Reference Meridian are defined in the same manner

and coincide with the Z-axis and prime meridian of the WGS84 ellipsoid respectively. An

alternative for mapping tasks is the ETRS89 which is fixed to the Eurasian plate.

An Earth-Centered, Earth-Fixed (ECEF) [32] coordinate system is a three dimensional

Cartesian coordinate system, where the center coincides with the Geocentre of the Earth.

Furthermore it is rotating with the Earth. So the WGS84 Cartesian coordinate system is

also an ECEF coordinate system. In this work all ECEF coordinate values refer to the WGS84

Cartesian coordinate system.

3.1.5 Universal Transverse Mercator

Universal Transverse Mercator (UTM) [29, 30] is a map projection scheme applying cylinders

with transversal aspect as projection surfaces. The Earth’s longitude range is subdivided

into 60 zones, each having a width of 6◦. Therefore the central meridians of each zone are

separated by 6◦ longitude. To reduce the maximal scale distortion, each zone utilizes a
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projection surface with a radius slightly smaller than the length of the semi-minor ellipsoid

axis. Distances along the central meridian are hence by the factor 0.9996 lower than their

real value. Due to the orientation of the projection cylinders, the first Cartesian axis within

the map surface points in east direction, while the second axis points in north direction. In

practice different reference ellipsoids are used in combination with UTM, within this work

only the WGS84 ellipsoid is utilized. Furthermore within this thesis the zone is denoted by

the zone number followed by the letter N or S indicating the north or south hemisphere,

e.g. 33N denotes zone 33 north hemisphere.

3.1.6 East North Up Coordinate System

The East North Up (ENU) [32] coordinate system consists of the three orthogonal axes

east north and up. It is defined relative to an arbitrarily chosen reference point on the

reference ellipsoid. At the reference point a plane tangential to the reference ellipsoid

is placed. The plane contains the two axes east E and north N , which point into their

corresponding directions. The third axis up U is orthogonal to the tangential plane and

points away from the Earth’s Geocentre. One usually selects the reference point as center

of the Region of Interest (ROI). Fig. 3.7 shows schematically an ENU coordinate system

nearby the given point P . An advantage over map projection is, that no distortions are

introduced, because the ENU system is just a translated and rotated ECEF system.

N

E
U

Figure 3.7: ENU coordinate system, adapted from [29, 32]. The two axes east E
and north N lie in the blue marked tangential plane while the axis
up U is perpendicular to the plane.
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3.1.7 Example

To illustrate the application of different geospatial coordinate systems, a point near

Uhrturm Graz has been selected and its coordinate values have been determined for

different CRSs. Fig. 3.8 shows the selected point in an orthophoto and Table 3.2 lists the

corresponding coordinates. Note that the UTM and ECEF values are related to the WGS84

ellipsoid.

Figure 3.8: Orthophoto of Uhrturm Graz, from [33]. The marker depicts the
horizontal location in WGS84 format.

Parameter Value

WGS84 latitude 47.073685◦ north
WGS84 longitude 15.437692◦ east

UTM 33N east 533230 m
UTM 33N north 5213445 m

Height H above WGS84 ellipsoid 472.3 m
Height h above EGM96 Geoid 424.8 m
Height h above local geoid 425.2 m

ECEF X 4194996.2 m
ECEF Y 1158464.1 m
ECEF Z 4647693.5 m

Table 3.2: Geospatial coordinates of the point shown in Fig. 3.8, from [33].
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3.2 Geometric Algorithms and Data Structures

Within this work some geometric algorithms and data structures are used to efficiently

process the distinct stages in the AT pipeline. This section gives a short overview about

them.

3.2.1 kD Tree

For performing range queries in a k dimensional Cartesian space on point like data one

can apply kD trees [34]. The input data is recursively split into halves by the usage

of hyperplanes orthogonal to one coordinate axis. While the internal nodes store the

separating hyperplanes the leaf nodes contain the data points. More precisely the tree

construction procedure is as following. The root node splits the given data points into

two equally sized sets by using a hyperplane orthogonal to the first dimension. Then the

data is forwarded to both generated child nodes and the separating plane is stored at the

root node. Now each child node splits the forwarded data along the second dimensions

into equally sized sets and stores again the corresponding separating plane. The newly

generated partitions are forwarded to the next level and split along the next dimension.

When the depth k is reached the subdivision starts again with the first dimension. This is

repeated until each leaf node contains only a single point. Fig. 3.9 shows an example for

two dimensional input data pi including the separating lines `i and the corresponding kD

tree. It can be seen that each node represents a region within the input space, for node

`9 the region is indicated by the gray shaded area in Fig. 3.9.

A range search is performed by traversing the tree downwards and comparing a nodes

region with the search window. Is the region of a node entirely within the search window,

all leaf nodes belonging to the investigated node are returned without any further checks.

In the opposite case, when a nodes region is completely outside, then the node isn’t further

analyzed. For all other cases the tree is traversed down until either the nodes region is

completely inside or outside the search window or a leaf node is reached. When a leaf node

is reached it is tested, whether the corresponding point is within or outside the window.

While a nodes region is always rectangular shaped, this is not necessarily the case for the

search window.
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Figure 3.9: kD tree built from two dimensional point data, adapted from [34].
The points pi in (a) are subdivided into partitions by using axis
parallel lines `i, (b) shows the resulting kD tree.

3.2.2 Range Tree

When rectangular axis aligned search windows are used for range queries on point data,

one can also use range trees [34]. They have the advantage that the performed queries are

asymptotically faster in comparison to kD trees, but have the drawback of an increased

memory consumption. A range tree can be seen as extension of a binary search tree to

higher dimensions.

Binary search trees store data points in leaf nodes, while internal nodes contain thresh-

old values. Data points with a value below or equal to the threshold stored in an internal

node are located on the left subtree of the internal node, while all others can be found

on the right subtree. Fig. 3.10 illustrates the result obtained from a range search in the

interval [x, x′] on a binary search tree T . The search starts at root node root(T ) and leads

to the leaf nodes µ and µ′ for the lower and upper bounds x and x′ respectively. The

traversals for both bounds take the same path through the tree until the internal node

vsplit is reached, there the search path branches. The search result consists of all subtrees

directly connected to one of both search paths having a depth higher than that of vsplit.

They are gray shaded in Fig. 3.10. The leaf nodes of one subtree with root node v are

called the canonical subset and denoted with P (v). If such a subtree is discovered during

the traversal it can be directly reported without any further checks. Whether the result

contains also the nodes µ and µ′ must be checked separately.
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root(T )

vsplit

m m’

Figure 3.10: Illustration of the result from a one dimensional range query per-
formed on a binary search tree, from [34].

Now let’s examine a range tree for performing two dimensional queries with a window

[x, x′]×[y, y′]. For the search along the first dimension a binary search tree is applied again

to obtain all canonical subsets P (v) with points in the range [x, x′]. Instead of reporting

each subset, a range search within the interval [y, y′] along the second dimension has to

be performed. Therefore each node v in the binary search tree T of the first dimension

points to an associated structure formed by another binary search tree Tassoc(v) operating

on the second dimension. The second search tree now reports all points of P (v), where

the second dimension is in the range [y, y′]. Note that for each node v in the binary search

tree of the first dimension another binary search tree containing P (v) and operating on

the second dimension exists, see Fig. 3.11.

The extension to higher dimensions is straight forward, for example in a three dimen-

sional range tree one node v of the first binary search tree points to a two dimensional

range tree handling P (v). Query time improvements are possible by applying a technique

called fractional cascading, which replaces the binary search trees of the last dimension

by sorted arrays and exploits the fact, that each array is searched for the same range, e.g.

[y, y′] in the above example.

To handle data other than points within a range query, one can represent the input

data as points in a higher dimensional space [34]. For example the problem of searching

all triangles entirely within an axis aligned rectangular window in a two dimensional space

can be replaced by the problem of searching points in a four dimensional space, where the

first two dimensions represent the top left corner of the triangles bounding box and the
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Figure 3.11: Range tree for two dimensional point data, from [34]. The Figure
shows the linkage between one node in the binary search tree oper-
ating on the first dimension and the associated binary tree operating
on the second dimension.

last two dimensions contain the bottom right corner of the triangles bounding box.

3.2.3 dD Segment Tree

Segment trees [34, 35] can be used to perform the following queries on d-dimensional

intervals i.e. axis aligned bounding boxes in d-dimensional space:

• Inverse Range Query Given a query point, determine all intervals containing that

point.

• Enclosing Query Given a query window, determine those intervals which enclose

the given window.

• Window Query Given a query window, determine those intervals which are con-

tained in the given window or overlap with the window.

At first let’s consider the one dimensional case. To build a segment tree, the start and

end points pi defining the given intervals are sorted in ascending order. Then elementary

intervals between each two consecutive points [pi : pi+1] are generated. They split the

given intervals into smaller parts, for example the segment s1 in Fig. 3.12 is divided into

the two elementary intervals [p1 : p2] and [p2 : p3]. From the elementary intervals a

balanced binary search tree is built bottom up, where each node stores the interval range
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it represents. Furthermore the leaf and internal nodes store their assigned segments si.

A segment is always assigned to the top most node, which has an interval range entirely

contained within the segment. That means, when a node v contains a segment, all child

nodes do not hold the segment. The segments S(v) owned by a node v are called the

canonical subset of node v.

An inverse range query is now performed by traversing the segment tree top down,

passing all nodes with an interval range containing the query point and reporting their

assigned segments. Note that one usually takes an interval tree to perform an inverse

range query on one dimensional intervals due to their lower memory consumption. A

disadvantage of the interval tree is, that no generalization to higher dimensions exists.

s1
s3

s4

s2
s5

s1

s3s3

s3,s4

s4s2

s2

s2,s5

p1

-¥ +¥
p2 p3 p4 p5 p6 p7 p8 p9

Figure 3.12: Segment tree for one dimensional intervals, adapted from [34, 35].
The given segments s1, s2, s3, s4, s5 with their start and end points pi
and the resulting elementary intervals [pi : pi+1] are shown below the
tree. Furthermore the assigned segments are listed beside the nodes.

The same approach used to extend the range tree to multidimensional point data can

be applied to extend the segment tree to multidimensional intervals, e.g. axis aligned

bounding boxes within a plane. Fig. 3.13 illustrates a segment tree for two dimensional

intervals. Here each node v of the segment tree T operating on the first dimension points

to another associated segment tree Tassoc(v) operating on the second dimension of the

corresponding canonical subset S(v). Note that it is possible to combine range and segment

trees, for example T might be a segment tree while Tassoc(v) could be a range tree.
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Figure 3.13: Segment tree for two dimensional axis aligned bounding boxes,
adapted from [35]. The Figure illustrates the linkage between one
node in the segment tree operating on the first dimension and the
associated segment tree operating on the second dimension.

3.2.4 Axis-Aligned Bounding Boxes Tree

Axis Aligned Bounding Box (AABB) trees [36, 37] represent models assembled by geometric

primitives e.g. triangles or polygons with a hierarchy of minimum sized AABBs. Starting

from the root node containing the bounding box of the whole model, the tree is generated

top down by subdividing the nodes bounding box into two smaller ones. This process is

repeated until each leaf node contains only a single primitive, yielding to a binary tree.

The subdivision is performed by utilizing a plane orthogonal to the largest box dimension.

Primitives are now assigned according to their center location to either one of the two

newly generated boxes. One can position the plane in a way that both boxes contain the

same amount of primitives leading to a balanced tree. Another common method is to

place the plane in the middle of the bounding box to generate equally sized child boxes.

One advantage of hierarchical bounding volume representations is, that intersection

computations are performed with a divide and conquer strategy against the bounding

volumes. When a bounding box does not intersect with a query object, all child boxes with

the corresponding leaf nodes and the therein contained primitives also do not intersect and

are therefore not further analyzed. In the opposite case, the tree is traversed downwards to

those leaf nodes which intersect. Finally the test is repeated for those primitives contained

in the found leaf nodes to verify, whether the intersection really exists. So the amount of

costly primitive intersection tests is minimized.

Beside AABB trees there exist other hierarchical bounding volume representations, uti-

lizing a different bounding volume representation like Oriented Bounding Boxes (OBBs)
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or spheres. The example in Fig. 3.14 shows an AABB tree generated from a triangulated

surface.

(a) (b)

Figure 3.14: AABB tree representation of a triangulated surface mesh, from [37].
The AABB tree in (b) is built by using the triangles of (a) as input
primitives.

The AABB tree implementation of [37] supports different intersection queries, e.g. return

all points located on a surface mesh intersecting with a given ray or return all line segments

defining the intersection between the model and a plane. Furthermore distance queries

are supported, e.g. search the point p on a surface mesh closest to a given query point

q. These distance queries are implemented as intersection queries of the AABB tree with

a sphere centered at q, where the sphere radius is steadily decreased during the search to

the distance of the actual nearest intersection, discarding all bounding boxes outside the

sphere. The implementation of [37] builds a kD tree from points located on the models

surface to obtain an initial guess of the sphere radius.

3.2.5 Triangulated Surface Mesh Simplification

Triangulated surface meshes obtained from regularly sampled points often consist of a huge

amount of triangles making further processing time consuming and memory intensive. By

applying surface mesh simplification the number of triangles can be significantly reduced,

while the volume, shape and boundary of the original surface is retained as much as

possible. Within this thesis the approach implemented in [38] is used, it simplifies the
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amount of triangles by performing edge collapses. An edge collapse replaces an edge by a

single vertex and therefore removes the two triangles containing the edge. The process is

controlled by a placement and a cost function. While the placement function returns the

optimal position for the vertex resulting from the collapse, the cost function calculates an

error describing the deviation from the surfaces actual volume, shape and boundary when

the vertex is positioned according to placement function. In the first step of the algorithm

a mutable priority queue is initialized with the costs for each edge collapse. Then the edge

with the lowest cost is collapsed and the priority queue is updated. This is repeated until

a specified stop criterion is met e.g. the target face count is reached. Note that here the

error is measured as the deviation from the actual surface instead of the deviation from

the original surface. Beside this method also global error tracking algorithms exist, which

measure the deviation from the original surface.

3.2.6 2D Regularized Boolean Set-Operations

The 2D regularized Boolean set-operation implementation of [39] supports the following

calculations defined on two point sets P and Q. These points sets are described as combi-

nations of general polygons, which are polygons allowing edges other than straight lines,

for example arcs. However within this work polygons are only formed by straight lines.

• Intersection R = P ∩Q

• Union R = P ∪Q

• Difference R = P \Q

• Symmetric Difference R = P ⊕Q = (P \Q) ∪ (Q \ P )

• Complement R = P̄

• Intersection predicate P ∩Q ?
= ∅

A regularization step removes isolated vertices and antennas by taking the interior of the

result obtained from an ordinary binary operation and returning the closure of the interior.

3.3 Camera Model

This section describes the imaging process by first introducing the finite projective camera

and then extending it to incorporate common types of distortion. Afterwards the mea-
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surement of camera positions and orientations is explained by the combined usage of GPS

and strapdown INS.

3.3.1 Projection Equation

Within this work the aerial imaging device is described by a finite projective camera [40],

which is based on the pinhole camera model. In the following the imaging process is

briefly explained. The image x of a world point X is determined by the intersection of a

ray with the image plane. As can be observed in Fig. 3.15(a) the ray passes through X

and the projection center C. The projection center C is placed at the origin of the camera

coordinate frame, which has the axes Xcam, Ycam and Zcam. Furthermore the image plane

is perpendicular to the Zcam axis and placed at a distance f from the projection center,

this distance is called focal length. The Zcam axis is also known as principal axis and

the intersection of principal axis with image plane is called principal point p. The view

vector is a vector pointing in positive Zcam direction. As illustrated in Fig. 3.15(b) the y

coordinate of the image point x can be obtained by the usage of similar triangles, the x

coordinate is calculated similarly.

Zcam

Ycam

Xcam

p

x

y

x

X

C

principal axis

image plane

camera

center

(a)

C

Ycam

Zcam

Y

Zp

f

f Y / Z

(b)

Figure 3.15: Pinhole camera model, from [40]. In (a) the camera frame with the
axes Xcam, Ycam and Zcam is shown, while (b) illustrates the similar
triangles occurring in the projection of one world point onto the image
plane.

Fig. 3.16 illustrates the relation between the involved coordinate frames. The world

coordinate frame consists of the coordinate axes Xworld, Yworld, Zworld and the origin O.

It describes point locations by a Cartesian CRS. Camera and world coordinate frames

are related by a 3 × 3 rotation matrix R and a translation vector t, given as 3-vector.
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Furthermore the image coordinate frame with the axes ximg and yimg usually originates

at an image corner, so it is shifted against the principal point.

R,t

O

Xworld

Yworld

Zworld

Zcam

Ycam

Xcam

p

ximg

yimg

x

X

C

Figure 3.16: Relation between world, camera and image coordinate frame, adapted
from [40].

According to [40] the following conventions will be applied. Locations within the world

or camera coordinate frames are indicated by variables named with upper case letters in

opposite to image frame positions which are denoted with lower case letters. Moreover

inhomogeneous positions are denoted with the tilde symbol, e.g. the homogeneous world

point X = [X,Y, Z, 1]T has the inhomogeneous counterpart X̃ = [X,Y, Z]T .

The imaging process is mathematically described by the projection equation, see

Equation (3.2). While this is common in the Computer Vision community, photogram-

metrists usually apply the collinearity equations [41], which are just a rewriting. The

camera orientation and position are described by the above mentioned rotation matrix R

and the translation vector t respectively, the adaption to the interior properties of the

camera is achieved by the camera calibration matrix K. It is an upper triangular matrix

containing the scaled focal lengths αx = mx f and αy = my f , the location of the principal

point p = [x0, y0, 1]T relative to the image coordinate frame and the skew s. The scal-

ing factors mx and my convert metric distances into pixel units. They are different from

each other, if the camera has non square pixels. Skew s is usually zero unless the pixels

are neither square nor rectangular shaped, which might occur as the result of taking an

image from a photo. Now the 3 × 4 projection matrix P is calculated from the camera

calibration matrix K and from the rotation matrix R and translation vector t. While the
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calibration matrix contains the intrinsic parameters, the extrinsic parameters are stored

in R and t. The translation vector in turn is calculated from the center of projection,

given in inhomogeneous coordinates C̃.

x = PX P = K[R|t] K =


αx s x0

0 αy y0

0 0 1

 t = −RC̃ (3.2)

3.3.2 Distortions

In practice the above introduced finite projective camera model is only an approximation

to the real imaging process due to distortions, even when the camera is laboratory cal-

ibrated. That is because different environmental conditions, like distinct flying heights,

cause different distortions. One approach is to modify the camera calibration, so that the

distortions occurring at the expected operating conditions are compensated [42]. Another

method is to extend the above imaging equations to model the distortions. In [41] three

distortion types are considered for aerial images. While radial and decentering distortions

occur within the camera, atmospheric effects outside the camera cause a bending of the

ray of light, which is known as atmospheric refraction. Also camera manufacturer specific

distortion models exist. However, in the following only radial and decentering distortions

are inserted into the camera model.

Therefore Equation (3.2) is split into Equation (3.3) and Equation (3.5) similar to

[43]. The radial distortion components ∆xradial, ∆yradial and the decentering distortion

components ∆xdecen, ∆ydecen are added to xp before the conversions to pixel coordinates

is performed. Note that also other formalisms for integrating the distortion terms can be

found in the literature.

xp =


xp

yp

zp

 =


f 0 0

0 f 0

0 0 1

 [R|t] X (3.3)

x̃p =
xp
zp

ỹp =
yp
zp

r =
√
x̃2p + ỹ2p (3.4)

x =


mx s x0

0 my y0

0 0 1



x̃p + ∆xradial + ∆xdecen

ỹp + ∆yradial + ∆ydecen

1

 (3.5)
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Radial distortion is modeled by a polynomial depending on the distance r of an image

point from the principal point. For the above calculated image point xp = [xp, yp, zp]
T the

distance r is calculated according to Equation (3.4). The distortion components ∆xradial

and ∆yradial are calculated by Equation (3.6) using the coefficients k1, k2 and k3, where

k3 is often neglected. With the radial terms it is possible to model pincushion and barrel

distortions, see Fig. 3.17(a) and Fig. 3.17(b) respectively.

∆xradial = x̃p
(
k1r

2 + k2r
4 + k3r

6
)

∆yradial = ỹp
(
k1r

2 + k2r
4 + k3r

6
) (3.6)

(a) (b)

Figure 3.17: Radial distortion, adapted from [44]. In (a) the effect of radial dis-
tortion with positive k1 and k2 = k3 = 0 is given, while (b) illustrates
radial distortion with negative k1 and k2 = k3 = 0.

Decentering distortion is modeled by Equation (3.7) and uses the coefficients p1 and

p2. An illustration is shown in Fig. 3.18.

∆xdecen = p1 (2x̃pỹp) + p2
(
r2 + 2x̃2p

)
∆ydecen = p1

(
r2 + 2ỹ2p

)
+ p2 (2x̃pỹp)

(3.7)

3.3.3 Epipolar Constraint

The epipolar constraint [40] limits the possible locations of a world point projection in one

image, if the corresponding projection into another image is known. On the one hand the

epipolar constraint can be used to reduce the search region during feature matching, on
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(a) (b)

Figure 3.18: Decentering distortion, adapted from [44]. In (a) the effect of de-
centering distortion with positive p1 and p2 = 0 is given, while (b)
illustrates decentering distortion with negative p1 and p2 = 0. For
p1 = 0 and positive or negative p2 the figures are similar, only the
horizontal and vertical axes are swapped.

the other hand it enables the detection of false matches.

Let’s consider two cameras where the projection centers of camera 1 and 2 are denoted

with C and C′ respectively. The line between both camera centers is called baseline and

the projection of one camera center into the other camera is known as epipole. A world

point X and both camera centers C and C′ define a plane, see Fig. 3.19. Given the

camera point x in camera 1 a ray can be constructed onto which the world point X must

be located. This ray is coplanar with the before mentioned plane and the projection of

the ray into camera 2 is called an epipolar line. This epipolar line l′ passes through the

epipole e′ and contains the corresponding camera point x′.

The fundamental matrix F contains the whole information for calculating the epipolar

line l′ from a camera point x, see Equation (3.8). Note that x and x′ are 3-vectors

representing the camera points in homogeneous coordinates. Also the line l′ is defined as

3-vector, so that only points x′ on the line fulfill x′T l′ = 0. From that follows directly

Equation (3.9).

l′ = Fx (3.8)

x′TFx = 0 (3.9)

When the camera calibration matrices K and K ′ as well as the relative rotation matrix
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Figure 3.19: Epipolar Geometry, adapted from [40]. The camera centers C, C′

and the world point X form a plane, whereas the intersection of this
plane with the image plane is called epipolar line, e.g. l′. Furthermore
the epipoles e and e′ are shown.

R and the relative translation vector t = [t1, t2, t3]
T between both cameras are known,

then the fundamental matrix can be directly calculated according to Equation (3.10). For

example assume the projection matrices P = K[I|0] and P ′ = K ′[R|t], then the relative

pose is immediately given with R and t.

F = K ′−T [t]×RK
−1 [t]× =


0 −t3 t2

t3 0 −t1
−t2 t1 0

 (3.10)

Alternatively it is possible to estimate the fundamental matrix from point correspon-

dences. The essential matrix E is similar to the fundamental matrix, whereas here the

influence of the calibration matrices is removed, e.g. K = K ′ = I. Equation (3.11) shows

the calculation of the essential matrix from the relative pose R and t between two cam-

eras. For three cameras a concept similar to the fundamental matrix exists, which is called

trifocal tensor.
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E = [t]×R (3.11)

3.3.4 Exterior Orientation Measurement

The position and orientation of the camera coordinate frame relative to the world coor-

dinate frame is known as exterior orientation. It is usually measured by the combined

usage of GPS and INS [6, 41, 45, 46]. Direct georeferencing applications use only these pre-

cisely determined exterior orientations, so depending on the accuracy requirements neither

Ground Control Points (GCPs) nor a AT are necessary. The target product, e.g. a 3D re-

construction of a city, can be directly computed. The following describes the measurement

of camera positions and orientations suitable for direct georeferencing using a strapdown

INS, e.g. Applanix POS AV 610.

3.3.4.1 Working Principle

The INS consists of a IMU and a processing unit. While the IMU measures acceleration

and orientation changes by accelerometers and gyros, the processing unit integrates the

obtained IMU data to achieve position, velocity, and orientation angles relative to the world

coordinate frame. A process called initial alignment is used to determine the north and

vertical axis of the world frame, so that the integration starts at the correct values. The

initial alignment should last about 15 to 20 minutes and requires that the aircraft does

not move. It exists also an in-flight alignment, requiring that at least all 10 to 30 minutes

a maneuver is carried out by the aircraft. INSs have the advantage of providing pose

information at high rates and they are independent from any external signals. Furthermore

relative positions and orientations within short time spans are very precisely determinable.

A major drawback is, that sensor errors accumulate and therefore the INS frame drifts

relative to the world frame. Errors in the INS are unbounded and in principle noise free.

In opposite GPS receiver measure positions at lower rates and the errors in position and

velocity are bounded but noisy. As can be seen, both systems are complementary and are

therefore usually combined.

Fig. 3.20 depicts the relationship between GPS antenna, INS coordinate frame and

camera coordinate frame. The vectorial position differences rinsgps and rcamins between the

corresponding sensor origins are known as lever arm offsets. Here the subscript indicates

the source coordinate frame and the target coordinate frame is given by the superscript.

The origin of the GPS antenna is given by its phase center, while the origin of the INS
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coordinate frame is determined by the intersection of the three IMU sensitivity axes. As

mentioned above the origin of the camera coordinate frame is defined by the center of pro-

jection. In practice the INS axes and camera axes are not perfectly aligned, the remaining

relative orientation Rcamins between them is known as boresight misalignment. Note that

for the rotation matrix the same notation is applied as for the offsets. To achieve a good

GPS signal quality, the GPS antenna is placed outside aircraft, preferable above the cameras

center of projection. In contrast, the IMU is tightly mounted on the camera housing, at a

small distance between IMU origin and center of projection.

Zcam

GPS Antenna

Xcam

Ycam

Yins

Zins

Xins

Xworld

Yworld

Zworld

rgpsr
ins

rinsr
cam

Figure 3.20: Relationship between GPS antenna, INS and camera coordinate frame,
adapted from [41]. The lever arm offsets rinsgps and rcamins indicate the
shifts in sensor origins.

A Differential Global Positioning System (DGPS) [3] improves the accuracy by using

one or more stationary GPS receiver as base stations, whereas their locations have been

previously surveyed, so they are known exactly. During a mapping mission each base

station evaluates the GPS signal and correction data is transmitted to the aircraft in real

time. By using this data in the GPS receiver of the airplane, the position uncertainties

can be significantly reduced. Real Time Kinematic (RTK) is an improved version of the

standard DGPS [47]. Beside sending the DGPS correction data in real time, it is also possible

to store them at each base station and perform the evaluation later in a post processing
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step after the flight.

Fig. 3.21 illustrates the processing steps for a combined evaluation of GPS and IMU data.

The measured GPS and IMU data are usually forwarded to a Kalman Filter (KF), which

estimates IMU errors by incorporating the GPS observations and outputs the corrected

exterior orientation. Two different application scenarios are in use, the real time and the

post processing scenario. While in real time processing the Kalman filtering is performed

only forward in time, in post processing also a backward in time Kalman filtering is

applied. The result of the post processing step is the smoothed best estimated flight

trajectory [45–47].
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Optional Real Time Differential GPS

(RT-DGPS)

GPS/INS

Kalman Filter

GPS

IMU

Corrected

Output

P

P

V

V

A

Position (P)

Velocity (V)

Attitude (A)

Figure 3.21: Combined GPS and IMU evaluation, from [41].

3.3.4.2 Accuracy

The achievable exterior orientation accuracy depends on the following factors [6, 47]:

• Lever arm offset calibration

The lever arm offsets rinsgps and rcamins can be determined by measuring them, whereas

rcamins is usually given by the system manufacturer. Alternatively rinsgps can be esti-

mated in real time or during post processing by the KF, which evaluates the IMU

and GPS data. A further possibility is to introduce an additional parameter in the

bundle adjustment step, although this approach is not optimal due to correlations

with the adjusted camera positions. A wrong calibrated lever arm offset causes flight

direction dependent errors.

• Boresight misalignment calibration

The preferred way for calibrating the boresight misalignment is to use an additional
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parameter during bundle adjustment.

• Time synchronization between INS, GPS receiver and imaging device

Time synchronization is usually calibrated in lab environments, also a poor time

synchronization causes flight direction dependent errors.

• Initial and in-flight alignment quality

As mentioned above, a long INS initial alignment period and periodically performed

flight maneuvers improve the obtained INS alignment accuracy.

• Base station usage

The usage of base stations improves drastically the accuracy of the GPS position,

see Table 3.3. These base stations can be either user operated or a already existing

Continuously Operating Reference Station (CORS) network can be utilized. Note that

the position accuracy drops with increasing distance between aircraft and nearest

base station. So instead of real base stations one can also use a Virtual Reference

Station (VRS) [47], which acts as if it would be closely located to the airplane.

This is achieved by a set of sparsely distributed true reference stations and a server

calculating the VRS and sending the correction data to the airplane.

• GPS signal quality

Partial or full GPS signal outages can be caused by flying turns with bank angles

larger than 40◦ or 50◦ respectively. Therefore additional errors can be induced in

these cases, which depends on the utilized equipment and the therein implemented

algorithms.

Table 3.3 gives the specification values of the Applanix POS AV 610 direct georeferenc-

ing system to illustrate the achievable exterior orientation accuracies of a GPS aided INS.

Only evaluating the transmitted Coarse/Acquisition code from the satellites leads to large

position errors. By the usage of base stations in standard DGPS and in the improved RTK

mode the position uncertainties can be significantly reduced. Obviously the best result is

obtained after post processing.

3.4 Feature Extraction

The feature extraction stage of the AT pipeline detects salient points in all images. Salient

points are for example corners or blob like image regions. They can be repeatable detected
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Coarse/Acquisition
DGPS RTK Post Processing

Code GPS

Position 4 m - 6 m 0.5 m - 2 m 0.1 m - 0.3 m 0.05 m - 0.3 m
Velocity 0.03 m/s 0.02 m/s 0.01 m/s 0.005 m/s
Roll & Pitch 0.005◦ 0.005◦ 0.005◦ 0.0025◦

True Heading 0.03◦ 0.03◦ 0.02◦ 0.005◦

Table 3.3: Applanix POS AV 610 absolute accuracy specification (RMS), from
[45]. The accuracy values are given depending on the operation mode,
whereas the values of the first three columns are achievable in real
time.

in images of the same scene obtained from different camera poses. For example an interest

point on the rooftop in one aerial image is very likely to be present in another aerial

image displaying the same rooftop. Depending on the detector, it is possible to obtain

the image positions with subpixel resolution. Some detectors return beside interest point

locations also additional information like the image scale on which a point was detected,

a orientation or a detector confidence.

A feature descriptor is often applied to ease or rather enable the feature matching

between different images. It specifies the surrounding of a feature point by a vector.

Note that a simple stacking of intensity values of the pixels within a patch centered at

the interest point would lead to a poor matching performance. That is, because neither

geometric distortions caused by different camera poses nor different illumination conditions

are considered.

There exist many interest point detectors and descriptors e.g. [48–51], however in

the following only SIFT features are used. This detector and descriptor combination has

already been successfully applied on aerial images, e.g. in [2, 23, 52].

3.4.1 Scale-Invariant Feature Transform Detector

The SIFT detector [49] is covariant to image scale and rotation, meaning that the scale and

orientation of the detection result varies with the scale and rotation of the investigated

image to produce a consistent result. At the beginning of the detection procedure, the

scale space L(x, y, σ) of the given image I(x, y) with coordinates x, y is generated for

different discrete scales σ. That is achieved by convolving the image with a Gaussian

kernel G(x, y, σ) according to Equation (3.12). To speed up the scale space generation,

the convolution is performed recursively, so that L(x, y, σ) is used as input to compute

L(x, y, kσ).
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L(x, y, σ) = G(x, y, σ) ∗ I(x, y) G(x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(3.12)

Then the convolution of the image with the DoG kernel [G(x, y, kσ) − G(x, y, σ)] is

determined for all considered scales σ, resulting in D(x, y, σ). This can be efficiently

performed for each scale by calculating the difference between neighboring scale space

images L(x, y, kσ) and L(x, y, σ), see Equation (3.13). Note that the DoG approximates

the scale-normalized Laplacian of Gaussian (LoG) σ2∇2G, which is well suited for feature

detection.

D(x, y, σ) = [G(x, y, kσ)−G(x, y, σ)] ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(3.13)

Now locations x = [x, y, σ]T with extrema of D(x) are searched over the entire scale

space. This search is performed by investigating the neighboring pixels of each possible

location. An extremum is found, if all neighboring pixels have lower or higher values than

the examined one, see Fig. 3.22.

scale

Figure 3.22: Scale space neighbors examined by the SIFT detector, adapted from
[49]. The cross depicts the pixel to check for a maximum or minimum,
while the circles indicate the 26 neighbors to be compared.

In the next step the positions of the maxima and minima are refined by evaluating a

locally interpolated D(x) leading to subpixel accurate locations x̂. Interest points with

low |D(x̂)| or those which are likely to be an edge response are discarded. Finally the

orientations of the obtained interest points are computed. Therefore an orientation his-

togram is built for each feature using the gradients of that L(x, y, σ) with the scale σ

nearest to the scale of the detected interest point. The orientation histogram accumulates
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weighted gradient magnitudes according to their orientation, whereas the weight is given

by a Gaussian window centered at the detection. Now a single feature point is reported

at x̂ with an orientation according to the global maximum of the histogram. When lo-

cal maxima with magnitudes similar to the global one exist, then further detections are

reported for the same location with orientations corresponding to the local maxima.

3.4.2 Scale-Invariant Feature Transform Descriptor

The surrounding of a SIFT interest point is usually represented by a 128 dimensional SIFT

descriptor [49]. For each feature point multiple orientation histograms are generated, then

concatenated to a single descriptor vector and finally normalized to reduce the sensitivity

to illumination changes. In the following the distinct steps carried out for a single feature

point are stated more precisely.

At the beginning a patch is centered at the location of an interest point, which is

further subdivided into smaller non overlapping regions. Within each region the weighted

gradients are used to build an orientation histogram, whereas the weighting is performed

according to a Gaussian kernel centered at the interest point, see Fig. 3.23. This is per-

formed at the detected scale, and the individual histograms are orientated according to

the detected feature point orientation.

(a) (b)

Figure 3.23: SIFT descriptor, from [49]. In (a) a 8×8 pixels patch with associated
gradient vectors is illustrated. Furthermore a Gaussian window is
symbolized by a blue circle. The subdivision of the patch into 2 ×
2 orientation histograms is depicted in (b). Each histogram has 8
orientation bins.

Then the individual histograms are concatenated to a single descriptor vector, which

is normalized to unit length. Afterwards the descriptor vector elements are limited to
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0.2 and the whole vector is renormalized. In contrast to Fig. 3.23, usually 16 × 16 pixels

patches are used to describe the surrounding of an interest point. This results in 4 × 4

histograms each having 8 orientations leading to a 128 dimensional descriptor vector.

3.4.3 Feature Reduction Strategies

Sometimes it is useful to reduce the amount of features to lower the computational effort

in finding feature correspondences between two images. An example where it is sufficient

to use only a subset of the generated features is the determination of views showing the

same scene content in a set of unordered images. The following list gives an overview of

feature reduction methods [19].

• Image shrinking

Instead of using the full resolution images the detector is applied on images of reduced

size. As a result only features at a higher scale are obtained and their location

accuracy is lowered. An equivalent measure for the SIFT detector would be to

change the parameterization so that all scale space images L(x, y, σ) with a scale σ

below a certain value are ignored.

• Modification of the detector parameterization

Also the feature detector parameterization can be changed to obtain fewer features.

In the case of the SIFT detector the threshold for suppressing weak interest points

with low |D(x̂)| can be increased to obtain stronger interest points. On the one hand

these feature points are likely to be detected in different images showing the same

part of a scene, on the other hand interest points containing valuable information

may be suppressed. For example consider aerial images, where cars usually cause

strong interest points due to the high contrast to their surrounding, while old road

markings raise weak interest points. In opposite to road markings, cars are movable

objects and therefore not suited for AT.

• Detector result filtering

Additional feature detector output data like the scale of an interest point may be

exploited to perform filtering after feature detection. For example instead of chang-

ing the detector parameterization to obtain only features of a certain scale range

the same effect is achieved, when the scale filtering is performed on the detection

result. This approach has the advantage, that the detector must only run once when

different feature set sizes of the same image are required.
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• Descriptor filtering

The method proposed by [19] reduces the features in query and testing image by

restricting the allowed value range for each descriptor dimension, see Fig. 3.24. This

approach works only, when the centers of the descriptor vectors in the distinct images

are similar.

N features pN features p2N features pdN features

sorted by

first

dimensional

elements

sorted by

second

dimensional

elements

select central

100.p% features

select central

100.p% features

Figure 3.24: Feature reduction by descriptor filtering, adapted from [19]. To re-
duce the amount of features the descriptor vectors are sorted along
one dimension and all features, except the central 100p%, are dis-
carded, where p is in the range [0, 1]. That is repeated for all dimen-
sions.

• Bucketing technique

A further method is to select randomly a subset of features in the query image

which is then matched against a testing image containing all features. For some

tasks it is required that the randomly selected features have a certain distance to

each other. This can be achieved by applying the bucketing technique proposed in

[53]. The query image is overlain by a grid where each grid cell represents a bucket,

see Fig. 3.25(a). A feature is selected by first randomly selecting a bucket and then

randomly choosing a feature within the bucket. As illustrated in Fig. 3.25(b) the

buckets are selected with a probability corresponding to the number of the therein

contained features, empty buckets are not considered.
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Figure 3.25: Bucketing technique for feature reduction, adapted from [53]. In (a)
the grid overlaying a query image is shown. Each grid cell corresponds
to a bucket. The feature points are indicated by black dots. For
each bucket the number of the contained features are counted and
a uniform distributed random variable in the range [0, 1] selects a
bucket with a probability according to its feature count, see (b).

3.5 View Selection

The goal of the view selection stage in the AT pipeline is to reduce the effort in the

subsequent feature matching stage by determining for each image all other images showing

the same part of the scene. Then the following feature matching stage has not to match

each image with all other images, which results in a significant performance gain. One

possible approach for view selection is to compare the image content of one image with all

other images, for example by evaluating their features. To achieve an overall performance

improvement only a small feature subset is evaluated [19, 22, 23]. Another possibility is

to exploit additional information like camera position and orientation from GPS and IMU

measurements [21].

3.5.1 View Similarity Measure

As suggested above one way to determine views showing the same part of the scene is to

detect features for each image and perform a pairwise matching of them [19]. From the

obtained matches, a view similarity value Sim(Vi,Vj) between views Vi and Vj is calculated

according to Equation (3.14). The first term relates the number of matched features

N(Vi,Vj) between view Vi and view Vj to the maximum number of matched features

over all image pairs Nmax. The second term determines the reliability of the matches by
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evaluating the mean position difference d̄(Vi,Vj) between a feature in view Vi and the

corresponding feature in view Vj , d̄max is the maximum mean position difference over all

view pairs, α relates both terms and is in the range [0, 1]. The match reliability is high,

when the mean feature distance d̄(Vi,Vj) between both views is low, which indicates similar

images. Furthermore a feature reduction technique can be used to lower the computational

effort. Also other measures have been applied for view selection, see for example [22].

Sim(Vi,Vj) = α
N(Vi,Vj)
Nmax

+ (1− α)
d̄max − d̄(Vi,Vj)

d̄max
(3.14)

3.5.2 Vocabulary Tree

A vocabulary tree [54] is an efficient realization of the Bag of Words (BoW) [55] concept

which is used for image classification. It can be applied to compare the content of one

image with all others and therefore finds views showing the same part of a scene [21].

At first the BoW model is briefly explained. Here a set of training images is given, each

containing one object. The task is now to determine the object displayed in a testing image.

To achieve this, features are extracted from the training images and similar descriptors

are clustered. The clustering process can be performed for example with the k-means

algorithm and is also known as vector quantization. Each cluster center represents a so

called visual word, so one training image can be described by a histogram counting the

occurrences of such words. Also the testing image can be described by such a histogram

using the previously learned quantization. Now the histogram of the testing image is

compared with the histograms of all training images. The testing image is classified

according to the most similar training image, which passes a final geometric verification

step. Beside simple histograms, also other representations of visual word collections are

possible.

In the case of a vocabulary tree the vector quantization is performed by a hierarchical

k-means tree, which is built in the following way. All descriptors of all training images

are subdivided into k clusters by applying the k-means algorithm. Then each cluster is

recursively split into k smaller ones. Splitting stops when the configured hierarchy level

L is reached. Each node in the hierarchical k-means tree represents a cluster center at

the corresponding level. Fig. 3.26 illustrates a two dimensional hierarchical k-means tree

generated with two levels and a branching factor k = 3.

Now the descriptors of each training image are quantized by the learned tree. During

this procedure each descriptor takes a certain path through the tree. The sum of the paths
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(a) (b)

Figure 3.26: Hierarchical k-means tree built from two dimensional point data,
adapted from [54]. The solid lines in (a) illustrate the hierarchi-
cal splitting of the two dimensional space into disjoint regions. Each
region of each subdivision level corresponds to a single node in the
resulting tree, which is given in (b).

obtained from the descriptors of one image is called a population of the tree. To classify a

testing image its descriptors are also passed through the tree. Tree populations between

testing and training images are compared and the classification is performed according

to the most similar population. This comparison can be performed efficiently. A variant

of the algorithm compares the population only at leaf nodes, which is essentially the

histogram comparison in the BoW model.

3.5.3 View Overlap Criterion

Are the poses of the used cameras and the scene known, then overlapping views can be

calculated without evaluating the image content [21]. For example poses can be measured

by GPS/INS, while the scene might be approximated by a ground plane or a DEM. In this

cases the image rectangle of a view j is back projected onto the scene leading to a region

Rj , which is subsequently projected into view i. The overlap between the image rectangle

of view i and the projection of Rj into the same view can be used to identify cameras

sharing same content.

For unknown scenes one can assume a maximum scene depth S for each camera. Then

the scene is approximated for view i by a plane Πi parallel to the image plane, placed

at a distance S in front of camera i, see Fig. 3.27. The image rectangles of camera i and

another camera j are projected onto Πi leading to the regions Ri and Rj respectively.
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Figure 3.27: View overlap between two cameras, adapted from [21]. The scene is
approximated for camera i with a plane Πi at a distance S parallel to
the image plane of the same camera. The measured camera centers
are denoted with Ci and Cj respectively. Furthermore the corre-
sponding view vectors are given with vi and vj . To determine the
view overlap, the projected image rectangles Riand Rj are evaluated.

Now the overlap ratio Oij between camera i and j is calculated according to

Equation (3.15), where a(·) denotes the area of a region. So in the feature matching stage

only view pairs with an Oij value above a certain threshold are considered. Furthermore

it is required that the angle between the view vectors vi and vj of both cameras is below

another threshold, e.g. for SIFT ≈ 30◦, otherwise feature matching would fail anyway.

Oij =
a(Ri ∩Rj)
a(Ri ∪Rj)

(3.15)

3.6 Feature Matching

The feature matching stage establishes feature correspondences between a query image

and a testing image. These correspondences can be used to find neighboring views in

an unordered set of views. Furthermore they are required to generate feature tracks

across multiple images, which are used to triangulate world points in the 3D structure

computation stage of the AT or SfM pipeline [19, 20].

One strategy is to exhaustively compare the descriptor vectors of the query image with

the descriptor vectors of the testing image. Correspondences are generated between those

features, which have the most similar descriptors measured by some metric. Afterwards

the matches are verified against some expectation to remove outliers. Obviously, for large
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feature sets the computational effort for comparing each feature from one image with all

features of another image is high. So more efficient methods have been developed. This

section first gives an overview of efficient feature matching algorithms and then presents

methods to verify the obtained matches.

3.6.1 Approximate Nearest Neighbor Search

A common way to perform exact Nearest Neighbor (NN) search in low dimensional space

is to utilize the above introduced kD tree [27], however the applied tree is built slightly

different. Instead of performing the split in a fixed order by selecting cyclically one dimen-

sion after another, here the dimension along which the feature descriptors have the highest

variance is chosen at each level. Recall that the leaf nodes in the kD tree correspond to

cells in the k dimensional space and contain exactly one point.

In the first step for obtaining the NN of a query point q the cell containing q is searched

by traversing the tree top down. Then the distance between q and the point stored

within the cell is computed. Now all neighboring cells within this distance are visited by

backtracking to find a possible closer point. This is performed by using a priority search,

which examines the nearest cells first. The priority search is realized by a priority queue,

which stores the neighboring cells discovered during the search as well as their distances

to the query point q. As soon as a new potential NN is found, the search radius is reduced

to the distance between q and the new best match, see Fig. 3.28. When all cells within

the actual search radius have been visited, the search terminates and the algorithm is sure

that the true NN has been found.

The outlined method has the disadvantage that in high dimensional feature spaces

the obtained performance degrades to nearly linear in the number of feature points due

to the high number of nodes needed to be investigated. To reduce the query time one

can apply Approximate Nearest Neighbor (ANN) methods which return the true NN only

with a configurable probability. In the case of kD trees one can achieve a performance

improvement by terminating the search either if the algorithm is sure that the true NN is

found or after a certain maximum amount of nodes has been explored. In [28] different

algorithms are compared and they found that the randomized kD trees algorithm and

the hierarchical k-means tree method perform best among the tested. Both are briefly

introduced in the following sections.
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Figure 3.28: Priority search in a two dimensional kD tree, adapted from [27]. The
distance between a query point q and the point within the same cell
is used to initialize the search region. During backtracking the search
region is updated to the actual best match.

3.6.1.1 Randomized kD Trees

The randomized kD trees [27] algorithm uses multiple randomly generated kD trees and

aborts the search after the maximum number of examined cells has been reached. Let’s

consider the following example to reason why multiple randomly generated kD trees im-

prove the search performance compared to one single tree. If one has a feature database

of N = 220 ≈ 1000000 features with 128 dimensional descriptors, then the resulting kD

tree has a depth of log2(N) = 20. That means the starting cell for backtracking is found

by comparing only 20 descriptor values, while the remaining dimensions are completely

ignored. This can be approximately seen as projecting the 128 dimensional vector into

a 20 dimensional space and then searching within this space. The true NN is now not

necessarily the NN in the lower dimensional space, because other points might be projected

closer to the query location. So depending on the underlying projection many points may

have to be investigated until the true NN is found. Now by using multiple trees with dif-

ferent random projections, the probability that a tree is built in which the true NN is close

to the starting point increases. That is, because the true NN is always relative close to the

starting point, independently from the applied projection.

Trees with different random projections can be constructed by randomly rotating the

feature descriptors in the high dimensional space before constructing the tree. As men-

tioned above the applied kD-tree splits the data along the dimension at which the de-

scriptor subset has the highest variance. Usually always more than one dimension exist
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with high variance. Therefore trees with different random projections can be also built by

randomly selecting a split dimension from those with high variance.

For handling multiple trees the search procedure is modified in the following way.

At first the cell corresponding to the query point q is determined for each tree. Then

the obtained cells with their true distances between the interior point and q are inserted

into one common priority queue. The radius of the priority search is initialized with the

smallest distance stored in the queue and the search starts at that tree, at which the

smallest distance has been discovered. Now backtracking always continues on the tree, to

which the cell with the smallest distance to q belongs, found in the queue. Also here the

search terminates if either the true NN is surely found or the maximum number of explored

nodes is reached.

The performance can be further improved by applying a Principal Component Analysis

(PCA) on the descriptors before building the kD trees. It orientates the coordinate axis

with the principal axes. In this case any subsequent random rotation should be performed

within the subspace of the principal axis with the largest principal moments.

3.6.1.2 Hierarchical k-Means Tree

A hierarchical k-means tree can be utilized in a similar way for ANN searching [28]. Instead

of multiple kD-trees a single hierarchical k-means tree is built. For that purpose the feature

set is split into k clusters using the k-means algorithm. Now each cluster is recursively

subdivided into k smaller clusters until they contain less than k points. From the obtained

hierarchical partitioning of the space a tree is built, where each node corresponds to one

cluster. Fig. 3.26 illustrates the partitioning on the basis of a two dimensional space for

k = 3 and shows the resulting tree after two clustering steps. It can be observed that each

node in the tree corresponds to a cell within the two dimensional space.

At the beginning of the ANN search the cell belonging to the query point q is determined

by traversing the tree top down. The discovered cells along the path with their distance

between the corresponding cell center and q are added to a priority queue. The initial

radius for the following priority search is the smallest distance between one point in the

determined leaf node and the query point q. Now the ANN is searched by backtracking

using always the cell with the center nearest to q from the queue. The search stops

after a certain amount of cells are examined, depending on the required approximation

accuracy. In contrast to above, multiple randomized k-means trees don’t improve the

query performance.



3.6. Feature Matching 51

3.6.2 Simultaneous Localization and Mapping Methods

SLAM is the problem of localizing a vehicle or robot and at the same time building a map

of the environment by the usage of some observations. In Visual SLAM these observations

are images of the scene in which a robot or camera operates. A subtask in Visual SLAM

[10] is to refine an already uncertain available camera pose by first matching the current

observed features with an existing map of features and then updating the camera state,

see Fig. 3.29. This feature matching problem is similar to that occurring in the considered

AT pipeline, where also the camera poses are uncertainly known. Therefore some of these

matching methods are presented in the following.
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Figure 3.29: Visual SLAM processing diagram, adapted from [10]. The predicted
camera pose and the 3D feature map are used to generate 2D feature
predictions ¬. These predictions are applied in the guided feature
matching step  leading to the matching result ®. A Bayesian update
step actualizes the 3D feature map and the camera state for the
current image. Now a camera motion model generates a prediction
for the next image.

3.6.2.1 Joint Compatibility Branch and Bound

Joint Compatibility Branch and Bound (JCBB) [13] has been developed for that part of

the SLAM problem, where m measurements {E1, . . . , Em} have to be assigned to n land-

marks {F1, . . . , Fn}. It searches those correspondence hypothesisHm = {j1, . . . , jm} which

assigns the highest number of measurements {E1, . . . , Em} to landmarks {Fj1 , . . . , Fjm}.
Spurious measurements are assigned to F0 and not counted. In general it is allowed that

multiple measurements are assigned to one landmark resulting in an exponential hypoth-

esis space. This hypothesis space can be represented by an interpretation tree in which

each node represents an assignment of one measurement Ei to one landmark Fji . The
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Branch and Bound (BB) search algorithm traverses this tree, concentrating on the most

promising hypotheses and early discarding those establishing too few correspondences.

For the traversal of the interpretation tree it is required to generate hypotheses Hi =

{j1, . . . , ji} involving only the first i measurements. The assignment problem for one

specific hypothesis Hi is formulated in a probabilistic way using the implicit joint mea-

surement function fHi(x,y) = 0, which depends on the systems actual state x and on

idealized measurements y. Systems state x is composed of the true robot pose xR and the

true landmark positions xF1 , . . . ,xFn , the idealized measurement vector y contains each

observations location. Now the implicit joint measurement function states, that the posi-

tion differences between corresponding idealized observations and true landmark positions

must be zero, when the true robot pose is accounted. In reality only a state estimate x̂

with covariance Σx and a noisy measurement vector ŷ = y + u with noise u ∼ N (0,Σu)

and covariance Σy = Σu are available, see Equation (3.16).

x̂ =


x̂R

x̂F1

...

x̂Fn

 ŷ =


ŷE1

...

ŷEm

 (3.16)

To simplify the evaluation of the joint measurement function a linearization at the

current state estimate x̂ and at the current measurement ŷ is performed according to

Equation (3.17).

fHi(x,y) ' vHi + FHi(x− x̂) +GHi(y − ŷ) (3.17)

with

vHi = fHi(x̂, ŷ) FHi =
∂fHi

∂x

∣∣∣∣
(x̂,ŷ)

GHi =
∂fHi

∂y

∣∣∣∣
(x̂,ŷ)

For checking, whether a hypothesis is possible, the Mahalanobis distance D2
Hi

is calcu-

lated by utilizing the inverse joint innovation covariance Σ−1vHi
, which can be built efficiently

using the incremental approach given in [13]. The test in Equation (3.18) ensures Joint

Compatibility (JC) of the correspondences in Hi, whereas α denotes the confidence level

and d = dim(fHi). If it is passed, the number of assignments in the hypothesis is used as

quality measure for the BB algorithm, otherwise the hypothesis is discarded.
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D2
Hi

= vTHi
Σ−1vHi

vHi < χ2
d,α (3.18)

JCBB does not necessarily find the JC set with the smallest Mahalanobis distance,

because the search stops as soon as the largest JC set is found. The proposed extension in

[10] continues searching until the best and largest JC hypothesis is found, which is essential

in difficult tracking applications.

In opposite to the Individual Compatibility Nearest Neighbor (ICNN) algorithm, which

assigns measurements independently of the others to landmarks, JCBB considers the corre-

lation between measurements and therefore produces more robust results in noisy environ-

ments. Also the Sequential Compatibility Nearest Neighbor (SCNN) approach accounts for

correlations between observations by sequentially establishing correspondences between

measurements and landmarks with regard to all previous made assignments. But this

strict sequential behavior limits the hypotheses search too much, so that JCBB outper-

forms SCNN. The main disadvantage of JCBB is the higher computational effort compared

to ICNN and SCNN.

3.6.2.2 Joint Compatible Pair Linking

Following [10], the above matching problem can be reformulated in image space by cal-

culating the estimated image location ẑFj for landmark Fj with measurement model hFj

according to Equation (3.19). Instead of the robot pose x̂R, the camera pose x̂C is used

here. The resulting location uncertainty ΣzFj
is composed of one term resulting from

the state estimate uncertainty Σx and another term ΣrFj
handling model imprecision by

adding White Gaussian Noise (WGN) N (0,ΣrFj
).

ẑFj = hFj (x̂C , x̂Fj ) ΣzFj
= HFjΣxH

T
Fj

+ ΣrFj
HFj =

∂hFj

∂x

∣∣∣∣
x̂

(3.19)

In contrast to the previous section ŷEi describes the measurement Ei in image coor-

dinates, resulting in a deviation vij = ẑFj − ŷEi from the expected landmark position Fj .

For checking the Individual Compatibility (IC) of assigning observation Ei to landmark

Fj the following test is applied, as defined above ΣyEi
denotes the measurement noise

covariance.

D2
ij = vTijΣ

−1
vij

vij < χ2
2,α Σvij = ΣzFj

+ ΣyEi
(3.20)
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The vector ẑ containing the estimated image locations of all landmarks {F1, . . . , Fn}
is built by stacking the image location estimates ẑFi . Then the resulting location uncer-

tainty Σz can be calculated according to Equation (3.21), where Σr = diag(ΣrF1
, . . . ,ΣrFn

)

considers any model imprecision.

ẑ = h(x̂) =


hF1(x̂C , x̂F1)

...

hFn(x̂C , x̂Fn)

 Σz = HΣxH
T + Σr H =

∂h

∂x

∣∣∣∣
x̂

(3.21)

Now a hypothesis H = {i1, . . . , in} for assigning measurements Eij to landmarks Fj

leads to the subset ŷH of measurements with corresponding covariance ΣyH as given in

Equation (3.22).

ŷH =


ŷEi1

...

ŷEin

 ΣyH = diag(ΣyEi1
, . . . ,ΣyEin

) (3.22)

To test the JC of a the hypothesis H, the Mahalanobis distance D2
H is evaluated for

the deviation vH = ẑ− ŷH according to Equation (3.23).

D2
H = vTHΣ−1vHvH < χ2

d,α ΣvH = Σz + ΣyH (3.23)

Instead of modeling the measurement noise ΣyEi
and model imprecision ΣrFj

sep-

arately, these influences are usually summarized in ΣrFj
, which is also assumed in the

following, e.g. ΣyEi
= 0.

For early discarding wrong hypotheses one can take advantage of the monotonicity

property of the Mahalanobis distance D2, which states that D2 cannot decrease, if the

length of a hypothesis is increased [10]. For example D2
Ha
≤ D2

Hb
is always true for the

hypotheses Ha = {i1, i2} and Hb = {i1, i2, i3}.

Joint Compatible Pair Linking (JCPL) [10] is proposed within a three stage tracking

algorithm based on Visual SLAM. In the first stage the landmarks are split into two groups,

a small primary set and a larger secondary set by applying a heuristic rule. Within

the second stage JCPL searches the largest JC hypothesis with the lowest Mahalanobis

distance for the small primary set. This hypothesis is determined by first testing JC for all

landmark pair combinations of the primary set. Afterwards the final hypothesis is found
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by combining the pairwise results and exploiting the monotonicity property of D2. In

the third stage the vector with estimated landmark image coordinates ẑ is sorted into a

part ẑp containing the expected positions of the primary landmarks and a part ẑs with

the expected positions of the secondary landmarks. Also the covariance matrix Σz is

rearranged, see Equation (3.24).

p(z) ∼ N (ẑ,Σz) = N

([
ẑp

ẑs

]
,

[
Σzpp Σzps

Σzsp Σzss

])
(3.24)

Now the matching results of the primary features are used to reduce the uncertainty

about the secondary landmarks image location by applying Equation (3.25), where vector

zp contains the measured positions of the primary landmarks. Vector ẑs|p provides the

estimated positions of the secondary landmarks given the matching result of the primary

ones, the final uncertainty regions are specified by Σz s|p. Finally the best IC measurements

within the reduced search regions are chosen for each secondary landmark.

p(zs|zp) ∼ N (ẑs|p,Σz s|p)

ẑs|p = ẑs + ΣzspΣ
−1
zpp(zp − ẑp)

Σz s|p = Σzss − ΣzspΣ
−1
zppΣzps

(3.25)

This algorithm improves the prediction of secondary landmark locations by exploiting

correlations between primary and secondary landmark observations. Such correlations

exist at least, because they are observed by the same camera, whose pose is not exactly

known.

3.6.2.3 Active Matching

Active Matching (AM) [12] sequentially searches the landmarks uncertainty regions in image

space for establishing correspondences with at most one measurement per landmark. After

each search step the uncertainty regions of the remaining landmarks are updated. The

search is guided by an information efficiency score, which is designed to minimize the effort

for establishing a global consensus set. More precisely the score is built by considering

how much the correspondence search on one landmark is expected to reduce the search

region sizes of the other landmarks and how many image operations are required for this

search.

AM maintains multiple hypotheses, each one is represented by a multivariate Gaussian

Gk with weight λk, all K hypotheses form the Gaussian Mixture Model (GMM) given in
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Equation (3.26). Initially the GMM consists only of one hypothesis formed by the estimated

prior distribution, for example obtained from an Extended Kalman Filter (EKF).

p(x) =
K∑
k=1

λkG(x̂k,Σxk
) =

K∑
k=1

λkGk x =



xC

xF1

...

xFn

zF1 = hF1(xC ,xF1)
...

zFn = hFn(xC ,xFn)


(3.26)

Each measurement zC provides a likelihood p(zC |x), indicating the probability for a

landmark Fi to be located at a specific position given the system state x. This likelihood

is also modeled by a mixture of multivariate Gaussians Hm depending on x. Each single

Gaussian Hm represents one found match in the search region. In addition two uniform

distributions are used, one with height µout to model the case that the true match is

outside the search region and one with height µin for modeling that the true match is

within the search region but not found, see Fig. 3.30 for a 1D illustration.

A new refined system state p(x|zC) is calculated from the measurement p(zC |x)

and the actual system state p(x) by approximately evaluating Bayes’ Rule according

Equation (3.27). The term p(zC) performs a normalization of the weights λk, so that

they sum up to one. For M matches within the search region, the resulting GMM contains

K +M hypotheses, in a subsequent step weak hypotheses are removed.

p(x|zC) =
p(zC |x)p(x)

p(zC)
(3.27)

In the next search operation the refined system state p(x|zC) is used as prior p(x) and

the corresponding search region is determined by that landmark Gaussian combination

{Fi, Gk}, which is expected to have the highest information efficiency score. The original

algorithm stops when all iteratively refined search regions are investigated.

A beneficial property of AM is, that not all measurements are required in advance, in

opposite to JCBB and JCPL. Extensions of AM are Chow Liu Active Matching (CLAM) and

Subset Active Matching (SubAM), which reduce the computational effort by approximating

p(x) [11]. They are therefore suitable for a higher amount of landmarks.
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Figure 3.30: 1D illustration of AM update step due to a single match H1 within
search region, from [12].

3.6.3 Restricted Spatial Order Constraint

Restricted Spatial Order Constraints (RSOC) is a graph matching based algorithm designed

for aerial image registration [52]. It requires initial one-to-one correspondences between

a point set P = {p1, . . . , pn} in one image and another point set Q = {q1, . . . , qn} in the

other image. Based on this initialization, outliers are removed by enforcing a spatial order

constraint followed by iteratively solving a cost minimization problem.

For each point pi in P the K Nearest Neighbors (KNN) N(pi) =
{
pNp1 , . . . , pNpK

}
and

the corresponding points
{
qNp1 , . . . , qNpK

}
in Q are determined. Fig. 3.31 gives an example

for a single point pi with the angular ordering O(pi) = {Np2, Np1, Np6, Np4, Np5, Np3} in P

and the corresponding angular ordering O′(qi) = {Np2, Np5, Np6, Np4, Np1, Np3} in Q. A

distance measure between the orderings O(pi) and O′(qi) is determined by a cyclic string

matching algorithm and denoted as Dif1(i). After determining the ordering distances

for all KNN in P the procedure is repeated for all KNN in Q resulting in Dif2(i). In the

first step of RSOC, all correspondences with high distance values Dif1(i) and Dif2(i) are

removed.

Now the correspondences which decrease an global transformation error E at most are

removed iteratively until the error change ∆E is lower equal than a predefined threshold

and the total error E reaches a target value. The global transformation error E is cal-

culated according to Equation (3.28) for the remaining correspondences by estimating an

affine transformation T from P to Q with parameters θ, Nr denotes the number of the

correspondences.
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Figure 3.31: Angular spatial order of pi’s KNN in P (left) with corresponding points
in Q (right), from [52].

E =

√∑Nr
j=1 ‖T (pj , θ)− qj‖2

Nr
(3.28)

Other feature matching methods for image registration tasks are Graph Transformation

Matching (GTM) and Spatial Order Constraints (SOC).

3.6.4 Match Verification

The obtained matches usually contain false matches, e.g. due to repetitive image structure

like similar roofs on aerial images. To improve the results of the subsequent processing

steps, these matches should be detected and removed as soon as possible. One possibility

to identify these matches is to apply the distance ratio test [49]. It calculates the distance

ratio between best and second best match, and discards those matches with a ratio above a

certain threshold e.g. 0.8 for SIFT. In the following further methods for verifying matches

are listed.

3.6.4.1 Epipolar Constraint

Matches between two views can be verified by checking whether they fulfill the epipolar

constraint [40]. This can be achieved by estimating the fundamental matrix F from a set of

point correspondences {(xi,x′i)} with the Random Sample Consensus (RANSAC) algorithm

and simultaneously determining an inlier set. Beside match verification, the obtained

fundamental matrix can also be used to perform guided matching. In the following a brief

overview of the algorithm is given.

At first a hypothesis for the fundamental matrix F is computed from a few randomly

selected correspondences. Then the distances d⊥ of the point correspondences to their

epipolar lines are calculated. Now all matches supporting the hypothesis with a d⊥ below
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a predefined threshold are determined, they are called the inlier set. That is repeated N

times, whereas only the largest inlier set is stored. The value of N depends on the expected

amount of outliers and can be adaptively adjusted during execution of the algorithm.

Finally the largest set of inliers is used to re-estimate F . Alternatively the fundamental

matrix with the largest inlier set can be refined by performing a non-linear optimization

step. Further point correspondences can be found by performing guided matching along

the epipolar lines calculated from the refined fundamental matrix.

The geometric error d⊥(xi,x
′
i) of two point correspondences xi = [xi, yi, 1]T and x′i =

[x′i, y
′
i, 1]T from their epipolar lines can be approximately calculated by applying the

Sampson error according to Equation (3.29). Here (Fxi)
2
j denotes the square of the j-th

element from the vector Fxi.

d2⊥(xi,x
′
i) =

(x′Ti Fxi)
2

(Fxi)21 + (Fxi)22 + (F Tx′i)21 + (F Tx′i)22
(3.29)

To verify matches across three views the trifocal constraint can be applied, see for

example [40]. Also there, a guided matching step can be used to find additional corre-

spondences.

3.6.4.2 Similarity of Neighboring Features

In [19] an outlier detection method is proposed, which assumes that neighboring features

have a similar behavior across multiple views. To ease the evaluation a global affine trans-

formation is estimated between two images by using only matches which are verified by

the epipolar constraint. Now each epipolar verified correspondence is tested, whether the

position difference between the feature location in one image and the transformed feature

location of the other image is consistent with the position differences of the neighboring

features. A similar test can be performed for the other feature detector output values like

scale and orientation.

3.7 3D Structure Computation

Within this work the only reconstructed structure are world points. They are obtained

by performing a triangulation using the previously determined feature correspondences

and the approximately known projection matrices. Due to the georeferenced projection

matrices a metric reconstruction within a CRS is possible, leading to georeferenced world
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points. The camera parameters and the world points are later refined during a bundle

adjustment step. In the following the basic steps for building the 3D structure are given.

3.7.1 Feature Track Generation

Feature tracks are multi-view correspondences, which are generated by merging the already

determined two view matches. They are used during the triangulation stage to obtain

world point locations. The usage of feature tracks instead of two view matches avoids

redundant world points and improves the triangulation accuracy [56, 57]. To improve the

accuracy of the 3D structure further, one can discard those feature tracks in which all rays

triangulating a single world point are nearly parallel [20].

For example the feature track generation algorithm in [19] uses previously generated

two view feature correspondences to built feature correspondences across three views.

These feature triples are tested by their consistency checks, followed by a verification of

the trifocal constraint. Finally the feature triples are combined to multi-view matches.

3.7.2 Linear Triangulation

The linear triangulation [40] algorithm can be used to compute world point locations

from corresponding feature tracks and known projection matrices. In general it has to be

considered that the rays through the individual observations of a single world point do

not intersect in practice. That is on the one hand reasoned in measurement errors of the

features, causing that the observations are not exactly on the epipolar lines, see Fig. 3.32.

On the other hand the projection matrices itself are inexact. To account for that, the

presented linear triangulation method computes a least squares solution.

In the following the procedure for triangulating the world point X from the correspond-

ing feature track, consisting of n observations
{
xi
}

, and the associated set of n projection

matrices
{
Pi
}

is explained. The i-th observation xi of the world point X can be calculated

up to scale by applying the projection equation xi = P iX. Then the scale ambiguity is

removed by computing the cross product between observation and each side of the projec-

tion equation, leading to 0 = xi × (P iX). An expansion leads to Equation (3.30), where

two lines of Ai are linear independent, so one line can be discarded. It can be seen that

the resulting equation system is linear in the world point location X.
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Figure 3.32: Triangulation example with two cameras, from [40]. Due to inac-
curacies the rays from the camera centers C and C′ through the
observations x and x′ do not intersect in space, see (a). That is rea-
soned in the circumstance that the observations are not exactly on
the corresponding epipolar lines l = FTx′ and l′ = Fx, compare (b).
The epipoles are denoted with e and e′.

0 = AiX =


xipi3T − pi1T

yipi3T − pi2T

xipi2T − yipi1T

X xi =


xi

yi

1

 P i =


pi1T

pi2T

pi3T

 (3.30)

Now the individual Ai from each observation xi are stacked to A, leading to the

homogeneous equation system AX = 0. Due to the above mentioned inaccuracies this is

solved in a least squares manner by minimizing ‖AX‖ w.r.t. ‖X‖ = 1. A solution can be

obtained by applying a Singular Value Decomposition (SVD). Note that a normalization

of A is strongly suggested to improve numerical stability. Alternatively a rewriting as

inhomogeneous equation system is possible by representing X as [X,Y, Z, 1]T = [X̃T , 1]T ,
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resulting in an equation of typeBX̃ = b. A least squares solution is obtained by minimizing∥∥∥BX̃− b
∥∥∥.

3.8 Bundle Adjustment

Following the definition from [5] bundle adjustment is a method in visual reconstruction to

refine 3D structure and camera parameters so that a jointly optimal solution is obtained.

The following sections define the optimality criteria and show how such a optimization

problem is solved.

3.8.1 Problem Formulation

In general bundle adjustment can be used to refine any 3D structure like points, edges

and curves in space. Within this work only the location of triangulated points as well

as the exterior and interior camera parameters are adjusted. Remember that previous

pipeline stages have already extracted feature points from all images, matched them and

the resulting correspondences were used to triangulate world points. Due to errors in the

camera parameters and imperfections in the feature extraction and matching step, the

triangulation is performed in a least squares manner.

Here the reprojection error [40] is evaluated to measure how well image observations,

camera parameters and world points fit together. The reprojection error dre is defined

as the geometric distance between an observed camera point x and the location of the

corresponding world point projection x̂ = P̂ X̂ into the same image, see Equation (3.31).

The projection is calculated using the estimated projection matrix P̂ and the estimated

world point location X̂. These estimates have to be properly initialized and are refined

during the bundle adjustment step. For example initial camera poses can be obtained from

GPS and INS measurements, the interior camera parameters from a calibration report and

the world point locations from the mentioned triangulation.

dre = d
(
P̂ X̂,x

)
(3.31)

When camera positions are measured, then the geometric distances dC = d
(
Ĉ,C

)
between estimated center of projection Ĉ and measured center of projection C can also be

added to the bundle adjustment problem [2]. This has the benefit of achieving a georefer-

enced metric reconstruction, implicitly resolving the inherent scale ambiguity. Otherwise

the scale of the 3D structure may be fixed by choosing a suitable parametrization for the
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involved camera translation vectors t, see [40]. Fig. 3.33 illustrates the reprojection errors

caused by one world point in two views. Furthermore the deviations from the measured

camera positions are shown.

x’

C’

d’re

e’e

x

C

dre

^ x

x’^

X
^

^

C
C’

^

dC d’C

Figure 3.33: Basic bundle adjustment problem, adapted from [40]. The reprojec-

tion errors dre and d′re of one world point X̂ within the two views are
illustrated. Additionally the distances dC and d′C between estimated
and observed projection centers are given. The epipoles are denoted
with e and e′.

In summary the goal of the considered bundle adjustment step is to optimize the

world point locations as well as the interior and exterior camera parameters, so that the

reprojection errors dre and the deviations from the measured camera positions dC are

minimized. The process of adjusting the interior camera parameters is also known as self

calibration and is not always performed [5].

3.8.2 Probabilistic View

One view onto the bundle adjustment problem is to regard it as a non-linear least squares

optimization task, where the sum of the squared residuals of each observation is minimized,

e.g. d2re and d2C . Note that the non-linearity is introduced by the camera projection

equation. Another view onto the bundle adjustment problem is to treat it probabilistically

as Maximum Likelihood Estimation (MLE) or Maximum-A-Posteriori (MAP) problem, which

is detailed within this section [5].

From now on the state vector containing all parameters is denoted as x. It contains the

world point locations and the camera parameters. Each feature point location and each

camera position measurement is represented by a single observation vector zi. Further-

more the parameters x are used to calculate predictions zi(x) for the measurements. The
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difference between a single measurement and its prediction is given by the residual pre-

diction error ∆zi(x) = zi − zi(x). Now assume n independent noisy measurements, each

with a distribution pmodel(zi|x). Then the probability pmodel(z|x) of occurring a specific

set of measurements z given the parameters x follows according to Equation (3.32).

pmodel(z|x) =

n∏
i=1

pmodel(zi|x) (3.32)

The MLE is found by choosing that parameter vector x with the highest probability,

whereas no prior knowledge about x is considered, see Equation (3.33). When also a

prior distribution pprior(x) over the parameters x is known, then the MAP estimate can be

determined by Equation (3.34).

x̂ = arg max
x

pmodel(z|x) (3.33)

x̂ = arg max
x

pmodel(z|x) pprior(x) (3.34)

In the first step lets determine the MLE and assume that the measurement process can

be modeled by additive N dimensional Gaussian noise with covariance Σi and zero mean

deviation from the prediction zi(x) according to Equation (3.35).

pmodel(zi|x) = (2π)−N/2det
(
Σ−1i

)1/2
exp

(
−

∆zi(x)TΣ−1i ∆zi(x)

2

)
(3.35)

To simplify subsequent calculations the log-likelihood L(x) is determined from

pmodel(z|x) by applying the logarithm.

L(x) = ln (pmodel(z|x)) =
n∑
i=1

ln (pmodel(zi|x))

=

n∑
i=1

ln
(

(2π)−N/2det
(
Σ−1i

)1/2)− 1

2

n∑
i=1

∆zi(x)TΣ−1i ∆zi(x)

(3.36)

In the above log-likelihood formulation only the second term depends on x. Therefore

the first part can be omitted during the minimization of −L(x), which is equivalent to

maximizing pmodel(z|x). The resulting cost function f(x) is given in Equation (3.37). It

can be observed that in the case of Gaussian noise the MLE solution is found by solving a

weighted non-linear least squares optimization problem with weight Wi = Σ−1i .
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x̂ = arg min
x

−L(x) = arg min
x

f(x) f(x) =
1

2

n∑
i=1

∆zi(x)TΣ−1i ∆zi(x) (3.37)

Similarly the MAP solution can be obtained by extending f(x) with the corresponding

prior cost term. This term is additive and in the case of a Gaussian prior the resulting

optimization problem is still a weighted non-linear least squares problem.

3.8.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) [5, 40] algorithm is a common method to solve bundle

adjustment problems and is based on a modified Newton iteration. It provides a faster

convergence than the Newton iteration and can solve over parameterized problems. A

optimization problem is called over parameterized, when the state vector x has more

elements than the problem has Degrees of Freedom (DoF). In general it is not guaranteed

that the global cost minimum is found.

At first the Newton iteration is described, which calculates small state updates δx,

trying to minimize the cost function f(x) iteratively until convergence. For calculating

δx the cost function is approximated by the following Taylor expansion

f(x + δx) ≈ f(x) + gTδx +
1

2
δxTHδx (3.38)

at the current state x with gradient vector g and Hessian matrix H

g = ∇f(x) =

[
∂f

∂xi

]
i

H = ∇2f(x) =

[
∂2f

∂xi∂xj

]
i,j

The Newton step is now determined by setting the first derivative of Equation (3.38)

to zero and solving for δx.

∂f(x + δx)

∂δx
≈ Hδx + g

!
= 0 H δx = −g (3.39)

In the case of the LM algorithm a Damped Newton step is calculated according

Equation (3.40). Here the regularization term λI with the scalar value λ and the identity

matrix I has been added compared to Equation (3.39).

(H + λI) δx = −g (3.40)
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For small values of λ the regularization has no influence and the Damped Newton step

is approximately equal to the Newton step. In opposite for large λ values the influence

of the Hessian matrix H can be neglected and one gets the gradient descent step with

λ δx = −g.

Similar to Newton iteration, also the LM algorithm applies iteratively state updates

until a local minimum is found, but this is now done by adapting λ for each step. At the

beginning λ is typically initialized with 10−3 times the average diagonal element of H.

Now a state update δx is calculated and the cost function is evaluated at x + δx. When

the cost has decreased, then the state vector is updated x → x + δx, λ is divided by a

factor e.g. 10 and a new iteration starts. Otherwise λ is multiplied by the same factor, a

new step δx is computed and f(x + δx) is compared with f(x). That repeats until a δx

is found which decreases the cost.

As mentioned above the problem might be accidentally over parameterized, which

causes that H becomes singular. Usually the update step δx can still be calculated due

to the regularization term λI. There exist also other LM implementations using a different

augmentation of the Newton step.

Now let’s consider the weighted non-linear least squares cost function from

Equation (3.37). By using the weights Wi = Σ−1i and assembling them to the block

diagonal matrix W , one can rewrite f(x) according Equation (3.41).

f(x) =
1

2
∆z(x)TW∆z(x) (3.41)

Then the cost gradient vector g and cost Hessian matrix H can be formulated by the

usage of the Jacobian matrix J .

g = JTW∆z J =

[
∂∆zi
∂xj

]
i,j

(3.42)

H = JTWJ +
∑
i

(∆zTW )i

[
∂2∆zi
∂xk∂xl

]
k,l

(3.43)

A common simplification of the Hessian is the Gauss-Newton approximation H ≈
JTWJ , which neglects the second term in Equation (3.43). The Jacobian J and the

HessianH are usually sparse, which is illustrated in Fig. 3.34 for a small bundle adjustment

problem with five world points and four images made by two different cameras. To see how

the sparseness arises consider for example world point A projected into image 1 leading to

the camera point A1. Here the residual for camera point A1 depends solely on the location
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of world point A, the camera pose at the exposure moment for image 1 and the camera

calibration matrix K1. As one line of the Jacobian contains the partial derivatives of one

observation residual ∆zi w.r.t. the state vector elements xj , only the former mentioned

parameters cause non zero entries in the Jacobian. The sparseness of H results from

applying the Gauss-Newton approximation and exploiting the block diagonal structure

of W . Due to the sparse structure of H the update step δx in Equation (3.40) is not

calculated by inverting (H + λI), because this would result in a dense matrix. Instead

methods exploiting the sparseness are used, for example symmetric matrix factorization.

More details can be found in [5, 40].
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Figure 3.34: Illustration of sparse Jacobian and Hessian matrices for a small bun-
dle adjustment problem, adapted from [5]. The given problem con-
sists of five world points A−E and four camera images 1−4 obtained
from two different cameras with calibration matrices K1,K2. The ob-
servation error of a camera point is denoted by the combination of
world point letter and image number, e.g. C3 means world point C
in image 3. The difference between observed and predicted center of
projection are indicated by P1− P4.
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3.8.4 Robust Loss

To see the influence when the observations zi are drawn from another distribution p0(zi)

than the designed one, assume that the observations are modeled by n independent iden-

tical distributions pmodel(zi|x). Then the expected log-likelihood for a given parameter x

is as given in the following equation.

E {L(x)} = E

{
n∑
i=1

ln (pmodel(zi|x))

}
= n

∫
p0(zi) ln (pmodel(zi|x)) dzi (3.44)

For interpreting the result consider the relative entropy, also known as Kullback-Leibler

divergence d(p0, pmodel), between both distributions as given in Equation (3.45).

d(p0, pmodel) =

∫
p0(zi) ln

p0(zi)

pmodel(zi|x)
dzi

=

∫
p0(zi) ln p0(zi) dzi −

∫
p0(zi) ln pmodel(zi|x) dzi

(3.45)

It can be observed that the first term is independent from the chosen model distribu-

tion, while the second term is−1/n times the expected log-likelihood. As mentioned above,

MLE selects the parameter x, corresponding to a distribution from the family pmodel(zi|x),

with the maximum log-likelihood. This is equivalently in choosing the distribution with

the smallest Kullback-Leibler divergence d(p0, pmodel) w.r.t. p0. Furthermore it can be

seen that the result is in general sensitive to not modeled outliers, because regions with

high p0 and low pmodel have a huge impact on d(p0, pmodel). The opposite case influences

d(p0, pmodel) only slightly. Therefore a distribution pmodel(zi|x) which accounts for outliers

should be chosen [5].

When a radial distribution is selected for pmodel(zi|x), one obtains a cost function

according to Equation (3.46), which uses loss functions ρi (si) for each observation error

∆zi(x). The loss function depends on si = ∆zi(x)TWi∆zi(x) and accounts for the shape

of the underlying distribution [5].

f(x) =
1

2

n∑
i=1

ρi
(
∆zi(x)TWi∆zi(x)

)
(3.46)

In the following some commonly used loss functions are listed and Fig. 3.35 depicts

their shape and the basic shape of the underlying distribution [40].
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• Squared Error

It is assumed that measurement errors are Gaussian distributed and this loss function

should be only used, when outliers have been removed in advance.

ρ(s) = s (3.47)

• Corrupted Gaussian

Inliers and outliers are modeled by a mixture of two Gaussians, where each Gaussian

represents one group. Here α gives the probability of an inlier and ω is the multiplier

for the standard deviation of an outlier.

ρ(s) = − ln
(
α exp(−s) + (1− α) exp(−s/ω2)/ω

)
(3.48)

• Blake-Zisserman

Inliers are assumed to be Gaussian distributed, while outliers are expected to be

uniform distributed. The inlier threshold is s = − ln(ε).

ρ(s) = − ln (exp(−s) + ε) (3.49)

• Cauchy

The Cauchy loss approximates the squared loss for small s/b2 and down weights the

influence of higher s. It is based on the Cauchy distribution.

ρ(s) = b2 ln
(
1 + s/b2

)
(3.50)

• Huber

The Huber loss has an asymptotically linear characteristics, while the squared loss

is approached for
√
s < b. Parameter b gives the outlier threshold and only the first

derivative of ρ(s) is continuous.

ρ(s) =

s
√
s < b

2b
√
s− b2 otherwise

(3.51)

• Pseudo-Huber

This loss is similar to the Huber loss, but here all derivatives are continuous.
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ρ(s) = 2b2
(√

1 + s/b2 − 1
)

(3.52)

The losses Squared Error, Huber and Pseudo-Huber are convex, while the others are

not. When a convex ρ(s) is used in Equation (3.46), also the resulting cost is convex

in ∆z. But be beware of that it is not convex in x, because the predictions zi(x) are

non-linear in the state vector x. Nevertheless convex loss functions should be preferred to

avoid local minima.

Asymptotically linear loss functions achieve their robustness by approximating the L1

norm, instead of modeling the inlier and outlier distributions. The L1 norm loss function

has the property that the resulting cost function has its minimum at the median value of

the data points, e.g. for a set of scalar data points {ai} the simple cost function
∑

i |x− ai|
has its minimum at x = median({ai}) [40].
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Figure 3.35: Comparison of different loss functions, adapted from [40]. In (a) the
loss functions ρ(s), which are listed in the above text, are given for
scalar observations s = ∆z2i , b = 1, α = 0.8, ε = 0.05 and ω = 5.
The basic shape of the underlying distributions are shown in (b)
by plotting exp(−ρ(s)). Note that the area under the curves does
not sum up to 1, therefore they are actually not Probability Density
Functions (PDFs).

There exist different strategies to take account for the above loss functions within

the LM algorithm. One way is to use the robustified Gauss-Newton approximation [5],

which uses the first and second derivatives ρ′i(si) and ρ′′i (si) of ρi(si), see Equation (3.53)

and Equation (3.54). To shorten the equations, the dependence of ρ′i(si) and ρ′′i (si) on

si = ∆zi(x)TWi∆zi(x) is omitted.
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g =
n∑
i=1

gi gi = ρ′iJ
T
i Wi∆zi (3.53)

H =

n∑
i=1

Hi Hi ≈ JTi
(
ρ′iWi + 2ρ′′i (Wi∆zi)(Wi∆zi)

T
)
Ji (3.54)

3.8.5 Parameterization

In this context the representation of 3D structure, camera poses and camera calibrations

by the state vector x is known as parameterization [5, 40]. A good parameterization is

a one-to-one mapping, meaning one physical state should be represented by exactly one

value of the state vector x. Furthermore zi(x) should be locally continuous, differentiable

and as linear as possible.

As mentioned above, the only 3D structure utilized in this work are points in three

dimensional Euclidean space R3. A homogeneous parameterization represents the points

with 4-vectors and allows the specification of locations at infinity with finite coordinate

values e.g. X = [X,Y, Z,W ]T with W = 0. As a consequence very distant positions can be

reached within few LM update steps. This representation has four DoF although only three

DoF are necessary to state any location in three dimensional space, which results in a scale

ambiguity. To resolve this ambiguity, a spherical normalization e.g. X2+Y 2+Z2+W 2 = 1

is required after each state update. When all world points have relatively small coordinate

values a representation by 3-vectors is also sufficient, making a normalization unnecessary.

To ease computations, rotations in R3 are often represented by 3 × 3 matrices hav-

ing nine DoF, although only three DoF would be necessary. Alternatives avoiding over

parameterization are the angle-axis representation and unit quaternions. The angle-axis

representation uses a 3-vector r = [r1, r2, r3]
T to specify a rotation around an axis r by

an angle ‖r‖. A given angle-axis rotation r can be converted to a rotation matrix R by

applying Equation (3.55), where I denotes the identity matrix.

R = I +
sin ‖r‖
‖r‖

[r]× +
1− cos ‖r‖
‖r‖2

[r]2× [r]× =


0 −r3 r2

r3 0 −r1
−r2 r1 0

 (3.55)

For ‖r‖ = 2π the resulting rotation matrix is the identity matrix, independently of the

orientation of r, causing a many-to-one mapping. Therefore the following normalization
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is suggested after each parameter update, when ‖r‖ > π.

r = (‖r‖ − 2π)
r

‖r‖

A unit quaternion q is 4-vector with ‖q‖ = 1 and can be calculated from an angle-axis

representation r according to Equation (3.56). It is a two-to-one mapping, because q and

−q represent the same rotation. It is required to perform a normalization to unit length

after each parameter update.

q =
[
sin(‖r‖/2)
‖r‖ rT cos(‖r‖ /2)

]T
(3.56)

Up to now state updates in the LM algorithm are always performed by simple vector

additions x → x + δx. Alternatively one can reformulate the state update procedure by

a generalized vector addition �(x, δx), where �(x,0) = x is valid for all x, leading to an

update step x → �(x, δx) [58]. With this modification, it is allowed that δx is of lower

dimension than x. For example in a subset parameterization some of the elements in x

are forced at constant values, regardless of the current state, e.g.

�(x, δx) = x +

[
δx

0

]
In contrast local parameterizations consider the current state. For example they can

perform a linearization at the current state or state updates δx can act in a lower dimen-

sional tangent space placed at the current state x. Furthermore any normalization can be

directly included into �(x, δx).
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This chapter delineates the chosen design of the AT pipeline. Special attention is paid

on a fast processing of the distinct stages by exploiting as many information as available.

More precisely the considered prior knowledge is obtained from measured camera poses

and from scene approximations like a DEM or a ground plane. A flow chart is given in

Fig. 4.1. The purpose of the distinct pipeline stages is given in the following:

• Configuration

A graphical configuration utility assists the user in preparing the input data for

the AT pipeline. Additionally a visualization of the camera arrangement with cor-

responding back-projected image borders onto a specified ground plane is included,

see Fig. 4.3.

• Feature Extraction

Many different feature detectors and descriptors are available, e.g. [48–51]. Within

this work only SIFT is applied for feature extraction, which has already been success-

fully applied in AT pipelines, for example in [2, 23, 52]. More precisely the SiftGPU

73
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Feature Extraction

View Selection

Guided Matching

3D Structure 

Computation

Bundle Adjustment

Configuration

Figure 4.1: Flow chart of the AT pipeline.

[59] implementation is chosen, which performs feature extraction on a Graphics Pro-

cessing Unit (GPU).

• View Selection

View selection is used to determine images showing the same scene content, so that

the subsequent guided matching stage has not to exhaustively match each image

with each other. A common method is to perform the exhaustive matching only

on a small feature subset and then to decide which images show the same part of a

scene [19]. Here a different approach is applied, where the measured camera poses

and a given DEM are evaluated to identify these views [21].

• Guided Matching

Instead of comparing each feature in one image with each feature in another image a

more efficient method is utilized. The measured camera poses and a specified DEM are

used to predict the location of a feature point in one image given the corresponding

location in another image. Then the feature correspondence is searched in a small

window around the prediction [8].

• 3D Structure Computation

The only 3D structure computed within this work are sparse point clouds. To

triangulate these world points from image observations, the above introduced linear

triangulation algorithm is utilized. The same algorithm has been previously used

for the same task, e.g. in [2].
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• Bundle Adjustment

Depending on the precision of the camera pose measurement the obtained 3D struc-

ture may be very inaccurate. Therefore a bundle adjustment stage is applied to

refine the locations of the world points as well as the camera poses [5, 40].

The subsequent section gives an overview of the configuration stage. Then the DEM

processing is described. Afterwards the view selection, guided matching and bundle ad-

justment stages are detailed.

4.1 Configuration

Within this work Check Points (CPs) are used to evaluate the accuracy of the recon-

struction [4, 42, 60]. That are world points with known coordinates, each observed by at

least two cameras. The user configures the world point coordinates and the correspond-

ing observations in the images. Then the camera points are handled as normal feature

correspondences from which the pipeline triangulates a world point location, which is re-

fined during the bundle adjustment step. Finally the computed world point coordinates

are compared with the configured ones to assess the accuracy. Furthermore it is pos-

sible to specify GCPs, which are known world points each associated with one or more

image measurements. In opposite to CPs, GCPs are not triangulated. But they also add

cost terms to the optimization problem and introduce ground truth information into the

bundle adjustment stage. Therefore GCPs influence how camera parameters are changed.

To configure the CP and GCP observations, the user has to precisely locate them within

the aerial images. These images are possibly large, for example the Microsoft UltraCamX

generates images with a size of 14430 pixel × 9420 pixel. Here it would be very time

consuming and error-prone to search the world point observations in each image without

any guidance. Therefore a configuration utility has been designed, which suggests the

projection of the previously configured world point as observation. However due to inac-

curacies in the camera poses, the initial guess has to be refined by the user. Fig. 4.2 shows

the user interface for adjusting camera points.

Depending on the aerial survey size, the processing of the remaining pipeline stages

may last many hours. Therefore as many checks as possible should be performed in the

configuration stage to avoid repeated executions of the whole pipeline. So on the one

hand the utility has the ability to perform tests on the configuration and to generate an

error report. Such a test is for example the check, whether each CP is observed by at least
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Figure 4.2: Image view of the configuration utility. Green markers indicate pro-
jections of the configured world points, while cyan markers depict
configured camera points.

two cameras. This particular test is necessary, because otherwise it would not be possible

to triangulate a world point location. On the other hand a visualization of the camera

poses, image border back-projections onto a ground plane as well as CP and GCP locations

is included, see Fig. 4.3. Therefore the user can immediately verify, whether the correct

aerial survey will be processed and if the CPs and GCPs are well distributed within the

surveyed region.

The input data used for evaluating the implemented AT pipeline is given in different

coordinate systems. While the horizontal and vertical camera positions are supplied in

WGS84 coordinates, the Shuttle Radar Topography Mission (SRTM) data from [9] for gen-

erating the DEM uses horizontal WGS84 coordinates and heights above the EGM96 Geoid. In

contrast the applied SfM procedure requires a Cartesian coordinate system, so the hor-

izontal WGS84 coordinates have to be converted anyway. Possible choices for the world

coordinate system of the pipeline are amongst others the UTM and the ENU system. The

aerial images within this work cover only a small region and therefore the distortions in-

troduced by applying the UTM map projection can be neglected. In addition UTM is widely

supported in different GIS products, e.g. [33]. So it has been decided that the AT pipeline
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Figure 4.3: Camera view of the configuration utility. Crosses indicate world
points, pyramids show camera poses and polygons depict image bor-
der back-projections onto a configured ground plane.

operates directly on UTM coordinates. Furthermore WGS84 heights are used, because they

are geometrically defined and not gravity based.

4.2 Digital Elevation Model

The pipeline uses a scene approximation in the following stages:

• View Selection

The measured camera poses and the scene approximation are utilized to determine

the overlap between images of different cameras within the view selection stage.

• Guided Matching

In the guided feature matching step the world point location of a single given camera

point is estimated by back-projecting the camera point onto the scene approximation.

• Bundle Adjustment

During the bundle adjustment stage world points likely to be outliers are removed

by evaluating their distance to the scene approximation.
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Within this work two different scene approximations are evaluated, the first is a ground

plane and the other is a DEM. While the ground plane assumption allows fast and easy

computations, the DEM leads to more precise results in terrains with significant height

variations. Note that nearly for the entire earth elevation data is available and freely

accessible [9]. The next sections describe the chosen procedures for applying a DEM as

scene approximation in detail.

4.2.1 Representation

The elevation data in this work is obtained from [9], they publish a refined version of the

SRTM data grid with a 3-arc seconds resolution, corresponding to an approximately 90 m

grid spacing at the equator. An example tile is shown in Fig. 4.4. The horizontal datum

is given in WGS84 format, while the height information is stored in meters above the EGM96

Geoid.

Figure 4.4: SRTM elevation data tile given in WGS84 horizontal datum and EGM96

vertical datum [9].

In the following the elevation surface is represented as triangle mesh, like in [34].

Therefore points are extracted from those grid cells lying within a previously defined ROI.

Then these points are converted into horizontal UTM and vertical WGS84 coordinates and

triangulated. Finally the mesh simplification algorithm given in [38] and also introduced

in Section 3.2.5 is applied. Fig. 4.5 shows the resulting surface from the blue marked

region in Fig. 4.4.
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Figure 4.5: Triangulated DEM from the region marked with the blue box in
Fig. 4.4. The surface is given in UTM 33N horizontal and WGS84 ver-
tical coordinates.

To enable an efficient access to the terrain triangles, a 2D segment tree is built once for

the whole DEM, containing the XY-bounding boxes of all triangles. Furthermore a bottom

and top plane parallel to the XY-plane are calculated. This planes touch the triangulated

surface at the points with the lowest and highest Z-coordinate values respectively.

4.2.2 Visible DEM Region

The above mentioned distance computations between a given world point and the triangu-

lated surface are performed by utilizing the AABB tree implementation of [37]. While this

distance computations operate on the whole surface, the camera point back-projection and

image overlap calculations are performed only on those triangles visible in a given camera.

In the following it is described how these triangles are determined.

At first the view frustum of a given camera is approximated by a minimal sized axis

aligned bounding box. When the camera center is above the top touching plane of the DEM,

then the bounding box contains the corner points of the image border back-projections

onto the top and bottom touching planes, see Fig. 4.6 for an illustration. Otherwise the

bounding box contains only the camera center and the corners of the image border back-

projected onto the bottom touching plane. Fig. 4.7 shows the determined bounding boxes

for two different camera locations. Additionally the projections of the image borders are

displayed.
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X
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C

bottom plane

top plane

Figure 4.6: Worst case approximation of the space occupied by the camera
view frustum. The green polygons indicate the image borders back-
projected on the bottom and top plane respectively, while the blue
cuboid depicts the axis aligned bounding box built from both poly-
gons.

(a) Camera 1 (b) Camera 2

Figure 4.7: Examples of axis aligned bounding boxes for approximating the view
frustum. In (a) the camera is above the top plane, while in (b) the
camera is below it.

To determine the visible triangles, the 2D segment tree associated with the whole DEM

is queried for triangles overlapping with the XY-range of the view frustums bounding box.

The returned triangles are clipped with the cameras near clipping plane to remove vertices

behind the camera. In the next step the resulting polygons are projected into the camera

image. Finally polygons with all points outside the image are discarded, if these points

are all located on one side of the image border, for example when all polygon points are

on the left of the image, see Fig. 4.8.
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Figure 4.8: Illustration of triangle removal based on the Cohen-Sutherland line
clipping algorithm. Removable polygons are marked with a green
cross.

Fig. 4.9 shows the images of the remaining polygons for the same cameras as defined

above. Such an image is called a view onto the DEM in the following sections. Additionally

Fig. 4.7 displays the back-projected polygons in world frame coordinates. Finally a seg-

ment tree containing the bounding boxes of the projected polygons is built, to speed up

further view related processing.

(a) Camera 1 (b) Camera 2

Figure 4.9: Images of potential visible polygons for the same cameras as in
Fig. 4.7.

4.2.3 Camera Point Back-Projection

The feature matching stage in the AT pipeline requires that camera points from one view

can be back-projected onto the DEM. The obtained world points are then projected into

another view to determine initial guesses for feature locations. To back-project a camera

point, the segment tree of the related view is queried for all polygons potentially containing

this point. For each returned polygon it is checked, whether the point is within the

polygon. Then the point is back-projected onto all found polygons. The obtained world
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frame location nearest to the camera center is the resulting world point location. Fig. 4.10

shows the determined world point locations of camera points arranged in a grid. An

alternative approach would be to use the ray intersection calculation capability of the

AABB tree implementation in [37].

(a) Camera 1 (b) Camera 2

Figure 4.10: Camera points back projected onto a DEM for the same cameras as in
Fig. 4.7.

4.2.4 Image Overlap Computation

The goal of the image overlap computation is to determine the region within one image,

visible in another image by exploiting the DEM. To achieve this the computation is divided

into two parts. The first part determines the portion of the DEM visible in the first view,

while the second part calculates the visible area of this portion in the second view. The

polygon operations in this section are performed with the 2D Regularized Boolean Set-

Operations [39].

More precisely the following procedure is applied in part one. A view onto the DEM

is generated for the first camera by using the approach given in Section 4.2.2. Due to

the possibility of oblique views onto the DEM the polygons projected into an image may

overlap. Therefore for each polygon projected into the first camera the segment tree of

this view is queried for potentially overlapping polygons. The regions which are hidden

by other polygons in front of the investigated one are removed by applying the Boolean

set difference operation. Now the investigated polygon is clipped by the image rectangle.

Finally all resulting polygons are back-projected onto the DEM by using the planes of the

original polygons. Fig. 4.11 displays the obtained polygons for the same cameras as defined

above.
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(a) Camera 1 (b) Camera 2

Figure 4.11: Visible DEM polygons in blue for camera 1 and in green for camera 2.
The cameras are defined as in Fig. 4.7.

In part two the previously obtained 3D polygons visible in the first camera and existing

in the view of the second camera are clipped with the near clipping plane of the second

camera. Then these polygons are projected into the second camera. Now the segment tree

of the second view is queried for each projected polygon to obtain potentially overlapping

polygons. In the next step the visible portion of one projected polygon is determined

by removing regions, hidden from polygons in front of it by applying the Boolean set

difference operation. The resulting polygon is finally clipped with the image rectangle.

Fig. 4.12 shows the polygons visible in both above defined cameras back-projected onto

the DEM.

Figure 4.12: Camera 1 and 2 with their visible DEM regions. The region seen in
both cameras is shown in red.
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In addition Fig. 4.13 displays the overlapping region within the corresponding images.

While the overlap occupies a large area in camera 2 the opposite situation occurs for camera

1. Therefore both images will share only few feature correspondences, this circumstance

must be considered in the view selection stage by calculating a bad view similarity value.

(a) Camera 1 (b) Camera 2

Figure 4.13: Image of the overlap region for the above defined cameras given in
red.

4.3 View Selection

The view selection stage determines images showing at least partly the same scene con-

tent, therefore only these images must be matched during the feature matching stage.

This results in a huge performance gain compared to matching each image with all others,

as already illustrated in the introduction. One way to perform view selection is to exhaus-

tively compare the image content of all images. This can be achieved by using a subset

of the detected features for matching each image against all others and calculating a view

similarity value [19]. Alternatively view selection can also be performed by applying a

vocabulary tree on the detected features [21, 54]. A disadvantage of the image based view

selection approach is, that it generates erroneous results, when visually similar images

display different parts of a scene [21].

To avoid any confusion between images, the applied view selection stage determines

pairwise cameras i and j displaying the same part of a scene by exploiting GPS and INS

data based on the approach given in [21]. More precisely a view overlap Oij is calculated

according Equation (4.1), where Rij denotes the scene region seen in camera j projected

into camera i and clipped with the image rectangle of camera i. Furthermore Ai gives

the area of the image rectangle of camera i and the function a(·) calculates the area of a
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given image region. The same notation applies for the other camera, for an illustration

see Fig. 4.14. This overlap criterion is image based and symmetric, e.g. Oij = Oji. Note

that in general the regions Rij and Rji have different areas meaning a(Rij) 6= a(Rji ). Also

the angle αij between the view vectors vi and vj of both cameras is evaluated, so that the

images from cameras with very distinct viewing directions are not considered for matching.

So for the subsequent guided matching step, αij must be below a given threshold and Oij
must be above another threshold.

Oij = min

(
a(Rij)

Ai
,
a(Rji )

Aj

)
(4.1)

Two different strategies for computing the regions Rij and Rji are evaluated within this

work. The first approximates the scene by a ground plane, while the second uses a DEM as

scene representation. Both methods are briefly explained in the following.

4.3.1 Ground Plane Based View Selection

A fast way to perform view selection is to approximate the scene with a single ground

plane. For computing the region Rij the image rectangle of camera j is back-projected

onto a ground plane and then projected into camera i. Afterwards it is clipped by the

image rectangle of camera i resulting in Rij , see Fig. 4.14.

image i

im
ag

e 
j

RjRi

Figure 4.14: Ground plane based view selection. The gray shaded region Ri
j indi-

cates that part of the ground plane which is seen from the cameras i
and j.

For oblique imagery one has to consider two particular cases. The first case is when

the horizon of the ground plane is visible in the image. Then instead of back-projecting

the whole image rectangle onto the ground plane only a clipped rectangle is used, where
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the clipping operation removes all parts above the horizon. The second problematic case

exists when a part or the whole back-projected image border is behind camera i. This can

be handled by clipping the back-projected border with the near clipping plane of camera

i.

4.3.2 Digital Elevation Model Based View Selection

Another more involved view selection approach is to use a DEM as scene approximation,

yielding to more accurate values for the regions Rij and Rji . At first a fast check is

performed to determine whether it is possible that cameras i and j are displaying the

same region of the DEM. For this test the view frustum of each camera is approximated by

a minimum sized axis aligned bounding box, as specified in Section 4.2.2. If these bounding

boxes are not overlapping, then it is impossible that both cameras are displaying the same

part of the scene and the corresponding regions Rij and Rji are set to empty. Otherwise

the image overlaps Rij and Rji are determined according to Section 4.2.4, see Fig. 4.13 for

an example.

4.4 Guided Matching

ANN feature matching is widely used in SfM pipelines, e.g. in [19, 20, 22]. While it re-

duces the computational effort compared to exhaustive feature matching, it completely

ignores any prior knowledge. Neither measured camera poses nor any scene knowledge

are exploited. As consequence the time consumption for matching large scale images be-

comes quite large, which will be demonstrated in the experiments chapter. Recall also

the numerical example given in the introduction, it illustrates the enormous performance

advantage of predicting feature locations.

Within this work three different feature matching approaches are evaluated, which use

the mentioned prior information to reduce the feature correspondence search region in

one image for a given feature in the other image. After determining the search region an

exact NN comparison selects the best matching feature within the region. Then the feature

matches are checked by the distance ratio test and verified by the epipolar constraint.

The query for features within a two dimensional area is efficiently performed by applying

a kD tree containing all feature positions of the image. On the one hand the processing

performance is improved, because a feature in one image is only compared with a small

subset in the other image. On the other hand the probability for false matches due to
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repetitive image structure is reduced, because any similar image region outside the search

region is ignored. For example in aerial images of cities, rooftops and streets can cause

many similar feature descriptors, which may confuse a feature matching procedure.

As stated in [8] the search region size depends on the uncertainty of the camera poses

and on the accuracy of the scene approximation. These pose uncertainties cause corre-

lations between feature locations in an image. Visual SLAM based methods exploit these

correlations during feature matching to achieve a performance gain, cf. JCPL in Sec-

tion 3.6.2.2.

To improve the above outlined procedure a matching with a small primary set is

performed at first. With the obtained matches camera pose uncertainties are reduced,

resulting in lower feature location prediction errors. Then matching with tighter search

bounds for a large secondary set is performed, whereas the secondary set contains all

extracted features. In the following the three evaluated matching strategies are given in

more detail.

4.4.1 Homography Based Matcher

This approach is similar to that given in [23]. In their work they use only a few initial SIFT

features of higher scale for an initial pairwise feature matching step between two images

i and j. From the obtained feature correspondences an affine transformation between the

two images i and j is estimated and this transformation is used to predict search regions

for one image given feature positions in the other image.

In contrast to their work, here a homography is calculated between two images by using

only the measured camera poses and a ground plane assumption. This homography is then

used to guide the feature matching of the primary set. More precisely the following steps

are applied for matching the features of image i with the features of image j. At first the

region in image i, which is overlapping with image j is determined. This is performed by

back-projecting the image j border onto the ground plane and then projecting the result

into image i. The projected image j border is finally clipped by the image i border. Note

that also here the two problematic cases mentioned in Section 4.3.1 must be considered

to handle oblique imagery.

Then from the features within the overlapping region in image i a primary set is

selected. For that purpose the bucketing technique for feature reduction proposed in [53]

has been adapted, cf. Section 3.4.3. The bounding box of the overlapping region is overlain

with a rectangular grid, where each cell corresponds to a bucket. Now randomly a non
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empty bucket is selected and from that bucket randomly a feature point is chosen. That

is repeated until the required amount of features for the primary set is reached, whereas

each feature is selected at most once. For each primary set feature of image i a search

region is calculated in image j by applying the previously calculated homography H, see

Fig. 4.15. As mentioned above, the exact NN within the search region is determined and

selected as match, if it fulfills the distance ratio test. When the distance ratio test fails,

then no match can be determined for that feature in image i. Here a constant sized search

region is applied for each feature.

image j
H

image i

im
ag

e 
j

selected
position
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Figure 4.15: Homography based feature matching. The border of image j is back-
projected onto an assumed ground plane and then the back-projected
border is projected into image i. The features within the gray shaded
region are used for matching. For each selected feature point in image
i a homography H is applied to calculate a corresponding position in
image j.

With the obtained primary set matches a homography and a fundamental matrix

are robustly estimated by applying the RANSAC algorithm. Because the primary set is

small, all features in the overlapping region of image i are used as secondary set for

the subsequent matching, discarding the already existing correspondences. The estimated

homography reduces the feature location prediction error, which allows to choose a smaller

search radius. The search region area is further reduced by evaluating the estimated

fundamental matrix. This is done by excluding features from matching, if their distance

to the corresponding epipolar line is too large. Finally all matches are verified by the

epipolar constraint.
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4.4.2 Digital Elevation Model Based Matcher

The method introduced in the previous section uses a ground plane as scene approxima-

tion, which is reasonable for flat areas but not for mountainous regions. For the method

described in this section the accuracy of the scene approximation is improved by applying

a DEM as suggested in [8], see Fig. 4.16. So a feature point in image i is back-projected

onto the DEM and then the resulting world point is projected into image j to determine

the corresponding search region center for feature matching.

image i

image j

predictedposition

selected
position

projected position
in object space

Figure 4.16: DEM based feature matching, from [8]. A selected feature point in
image i is back-projected onto a DEM and afterwards projected into
image j to obtain a predicted location. The sphere illustrates the
uncertainty of the world point location.

Also here a primary set is used to reduce feature location prediction errors. There-

fore the adapted bucketing technique of the previous section is applied to those image i

features, which are projected into the visible region of image j. The primary set is now

matched against the features in image j by utilizing a large search radius. For refining

the relative poses between both cameras and DEM a bundle adjustment run is performed

using the primary set correspondences. The bundle adjustment cost function formulation

contains beside reprojection and camera pose error terms also a scene error component,

cf. Section 4.5.2. Furthermore the fundamental matrix is robustly estimated by applying

the RANSAC algorithm, although it would be also possible to calculate it from the refined

camera poses in principle, see Equation (3.10). The separate estimation of the fundamen-

tal matrix has the advantage, that the computation is neither influenced by camera pose
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measurements nor by the applied DEM.

The secondary set consists of all image i features projected into the visible region of

image j, whereby the projections are performed with the refined camera poses. Therefore a

smaller search radius can be used for the subsequent matching. By excluding those features

from matching, which have a distance larger than some threshold from the corresponding

epipolar line, the area of the search region is further reduced. The resulting matches are

checked by the distance ratio test and an epipolar verification procedure.

4.4.3 Reconstructing Matcher

Also the method described in this section applies a DEM as scene approximation. Addition-

ally the feature matching procedure is now performed incrementally instead of pairwise.

So at the beginning two images are matched and the obtained correspondences are used

to triangulate world points. Furthermore the remaining feature points are back-projected

onto the DEM. Now a third image, displaying the same scene content as at least one of the

other two images, is matched against the sparsely reconstructed scene by projecting the

world points into the third image. Triangulated world points are more precisely known

than the back-projected ones and therefore smaller search regions can be applied for them.

The newly determined feature correspondences with already triangulated world points are

used to refine the existing triangulation by using three view correspondences. Feature

correspondences with back-projected world points are used to replace the back-projected

points by triangulated ones. Now the unmatched features of the third image are again

back-projected onto the DEM. That is repeated until all images are matched. Finally

the world points seen in only one camera are removed from the scene. The order of the

matching process is determined by the results obtained from the view selection stage.

That means only images are matched showing a scene content, which is also visible in an

already matched image. This approach is similar to the Visual SLAM methods, where also

a feature map is maintained.

To consider feature correlations within this method, the following procedure is applied

at each incremental matching step. At first the primary set is computed. Therefore the

world points are projected into the image selected for matching, where any point lying

outside the image border is ignored. Note that only those world points are projected into

the image, which are visible in images showing the same scene content as the current

image, as determined in the view selection stage. For each projected world point a quality

value is assigned, which is the number of observations used for triangulating the world
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point. It is assumed that world point locations triangulated with more camera points are

more precisely known than others [56, 57]. Then the image is overlain by a grid, where

each grid cell corresponds to a bucket. Now randomly a bucket containing projected world

points is select. From this bucket a projected world point is randomly chosen, whereas only

the world points with the highest quality value within the selected bucket are considered.

That is repeated until the desired primary set size is reached, whereas each projected

world point can be selected at most once. Then the primary set is matched, followed by a

bundle adjustment run. In the bundle adjustment run only the pose of the current camera

and the triangulated world points seen in the current camera are allowed to be refined.

Also here a scene error is included in the bundle adjustment cost formulation. In the

next step the secondary set is determined, where all projected world points visible in the

image to be matched are selected. The few primary set matches are discarded. Finally the

secondary set is matched using search regions of reduced size. The distance ratio test and

the epipolar verification procedure are applied for matching the primary and secondary

set.

4.5 Bundle Adjustment

The bundle adjustment stage within this work has a modular design, so individual cost

terms and parameters are selectable, depending on the requirements of the current task.

This flexibility in defining the optimization problem as well as some user experience are

necessary to achieve good results [60, 61]. For example when GCPs are used for aligning

the scene reconstruction, then it is useful to apply a GPS shift parameter [60]. This

parameter allows a reconstruction with zero mean error in the world coordinate frame,

because the whole reconstruction can be freely shifted to achieve GCP observations with

low reprojection error. The scale ambiguity is always resolved by including the deviation

between measured and adjusted camera position [2].

For solving the bundle adjustment problem the Ceres Solver library [58] has been se-

lected. It is a non-linear least squares solver supporting different algorithms, whereas here

the commonly used LM algorithm is applied. The Ceres Solver can be applied to small

and large sparse problems and supports robust loss functions as well as local parameter-

izations. Beside a numeric differentiation also an automatic analytical differentiation of

the cost function is possible. The following sections give an overview of the state vector

components including their initialization, the utilized cost function terms and the outlier

removal step.
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4.5.1 State Vector

In this work the lens distortion parameters are precisely known, so the distortion can be

removed from the images before they are processed in the pipeline. Therefore the pro-

jection equation without distortion is applied in calculating the reprojection error, see

Equation (3.2). When the lens distortion parameters are unknown, then they can be de-

termined during the bundle adjustment stage by applying projection equations including

distortion terms, see for example Equation (3.3) and Equation (3.5). The distortion pa-

rameters are in this case additional variables to be determined during bundle adjustment,

which is known as self-calibration [5].

As illustrated in Fig. 4.17 the observed GPS position value is not identical to the pro-

jection center of the camera. On the one hand the lever arm offsets rinsgps and rcamins must be

considered, which are specified in INS frame coordinates within this work. On the other

hand the returned GPS position can contain systematic errors like the depicted constant

GPS bias bgps as well as a time dependent GPS drift dgps ·(t−t0), which is calculated relative

to t0 [62]. Here the time dependent drift is neglected. Furthermore the measured INS ori-

entation differs from the camera orientation by the boresight misalignment rotation Rcamins .

Recall the notation introduced in Section 3.3.4.1, where the source coordinate system is

given in the subscript and the target coordinate system is placed in the superscript.

The state vector x contains all parameters, which are allowed to be refined during the

bundle adjustment stage. For cases where not all elements of the state vector are optimized,

the Ceres Solver offers the possibility to force those parameters constant. In general only

the needed parameters should be optimized to avoid possible correlations between them.

In the following the state vector elements and their initialization are listed.

• World Point Locations

All world point locations are added to the state vector. To initialize these locations

the previously introduced linear triangulation algorithm is applied. The required

feature correspondences are either obtained from the guided feature matching step

for the automatically detected interest points or they are obtained from a manual

configuration in the case of CPs. The purpose of CPs is to evaluate the accuracy

of the bundle adjustment result by comparing the refined triangulated world point

locations with the previously surveyed ground truth locations. In contrast GCPs are

used improve the accuracy of the bundle adjustment result by adding fixed world

points to the problem formulation. The GCP locations are obtained from a previous

surveying step.
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Figure 4.17: Modeled relationship between obtained position value, GPS antenna,
INS and camera coordinate frame, adapted from [41]. The lever arm
offsets rinsgps and rcamins indicate the shifts in sensor origins, while bgps

denotes a constant GPS bias.

• Camera Poses

Furthermore the camera centers Cj and orientations Rj
cam
world for all camera poses j

are added to the state vector. They are initialized from measurements by considering

the lever arm offsets rinsgps and rcamins , an eventually estimated GPS shift bgps and the

boresight misalignment Rcamins , see Fig. 4.17. This thesis handles the case, where

obtained pose values are not accurate enough for skipping the bundle adjustment

step to perform direct georeferencing.

• Camera Intrinsics

Within this work laboratory calibrated cameras with accurately known intrinsics

are used. However for the sake of completeness the intrinsics Kj for each camera

pose j are added to the state vector. So an individual refinement of the intrinsics is

possible, which allows the usage of different cameras within an aerial survey.
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• Calibration Parameters for Pose Measurement

If the lever arm offsets and the boresight misalignment are only approximately

known, then they can be refined during the bundle adjustment stage. Therefore

lever arm offset rinsgps and boresight misalignment Rcamins are included into the state

vector and initialized with the approximations. The lever arm offset rcamins is always

fixed due to a correlation with rinsgps and thus not inserted into the state vector. This

correlation exists, because both vectors are given with respect to the same INS co-

ordinate frame within this work. Furthermore the GPS shift bgps is included into the

state vector and initialized with an estimate, for example zero. Be aware of, that

depending on the concrete camera poses contained in a given dataset a correlation

between rinsgps and bgps may exists. For example if the camera view vectors are all

perpendicular to a ground plane, then a correlation between the height components

of rinsgps and bgps exists.

World point positions and camera projection centers are represented by inhomogeneous

coordinates, which is sufficient, because these locations are far from infinity. The camera

orientations Rj
cam
world and the boresight misalignment Rcamins are parametrized by the angle-

axis representation with the normalization mentioned in Section 3.8.5. An alternative

would be the quaternion representation with the corresponding parametrization [5, 40].

4.5.2 Cost Function

The cost terms si depend on the state vector x and are of the type si = ∆zi(x)TWi∆zi(x),

where the prediction error ∆zi(x) = zi − zi(x) is calculated as difference between an ob-

servation vector zi and the corresponding modeled prediction vector zi(x). The prediction

error is weighted by a matrix Wi, which is a diagonal matrix within this work for sim-

plicity. Recall the earlier mentioned equivalence between weight matrix Wi and inverse

covariance matrix Σ−1i for Gaussian distributed prediction errors. Note that the weights

can be freely parametrized and therefore also set to zero to disable cost contributions.

The following prediction errors ∆zi(x) are used to calculate the cost terms in the general

case, whereas not always all terms are used for a concrete task.

• Reprojection Error

To calculate the reprojection error of a world point in an image, the world point

is projected into the image and the vectorial difference between projection and cor-

responding image observation is used as two dimensional prediction error. The
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reprojection error is computed for all world point observations in each image. That

means the world points obtained from triangulations of automatically determined

feature correspondences as well as the world points triangulated from manual con-

figured CP observations are used for reprojection error computations. Furthermore

the reprojection errors of the surveyed GCP positions are also calculated.

• Camera Pose Error

The scale ambiguity is implicitly resolved by adding prediction errors handling the

deviations from measured position values and corresponding predicted position val-

ues, according Fig. 4.17. The predicted value is not directly contained in the state

vector x, therefore it must be calculated from the state vector elements. The compu-

tation is performed for a camera pose j by using the camera center Cj and considering

the involved offsets as well as the camera rotation Rj
cam
world and the boresight mis-

alignmentRcamins . Furthermore the difference rotation between measured and adjusted

camera orientation is used as prediction error. This difference rotation is calculated

from the measured and predicted INS frame orientations Rj
ins
world = (Rcamins )−1Rj

cam
world.

• Calibration Parameter Deviations

To avoid an arbitrary change of the calibration parameters lever arm offset rinsgps and

boresight misalignment Rcamins the deviation between measured and adjusted values

are added as prediction errors to the bundle adjustment problem. Similarly the

change of an initially estimated GPS bias bgps is controlled by adding a prediction

error formed by the difference between initial estimation and adjusted value. Fur-

thermore the change of bgps can be limited by adding GCPs to the bundle adjustment

problem.

• Camera Group Error

In some datasets groups of camera poses may exist, where the relative poses within

the same group are very precisely known, while the relative poses between two dif-

ferent groups are imprecisely given. To exploit this information, it is possible to add

prediction errors, which penalize deviations from the initial relative poses within a

group.

• Scene Error

For relating the position and orientation of the triangulated sparse structure to a

scene approximation like a DEM, the distances between reconstructed points and scene

approximation can be optionally included in the bundle adjustment problem. This
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is mainly used in some of the above mentioned guided matching algorithms to refine

camera poses relative to the DEM. Note that the usage of a DEM for reducing the

number of GCPs is in general possible and has been theoretically investigated in [63].

Whenever difference rotations are used as prediction errors within this work, a com-

puted difference rotation matrix is converted into the angle-axis representation, resulting in

a three dimensional residual. Additionally a diagonal weight matrix Wi = diag {wi, wi, wi}
with identical entries wi is applied, meaning that the error is determined by the weighted

rotation angle and that the rotation axis is not considered.

4.5.3 Outlier Removal

In general outliers can deteriorate the accuracy of the final sparse reconstruction of a

scene, so on the one hand their amount should be reduced and on the other hand robust

algorithms should be applied. To reduce the amount of outliers the feature correspondences

are verified by the epipolar constraint, as mentioned in Section 4.4. In addition multiple

bundle adjustment runs are performed, where each run is followed by an outlier removal

step [20]. Outliers are identified by comparing the reprojection errors of a world point

with a threshold. Is one of the associated reprojection errors above the threshold, then

the world point and its observations are removed from the bundle adjustment problem.

Furthermore the distances between world points and DEM are computed, see Section 4.2.

If the calculated distance of a world point is above a fixed threshold, then again the world

point with the corresponding image observations are removed. Finally the utilized Ceres

Solver supports robust loss functions ρ(s) for correctly considering the observation PDFs,

therefore the bundle adjustment stage is robust against outliers.

4.6 Discussion

In the following the most important aspects of the designed AT pipeline are discussed.

At the beginning of the pipeline the user is assisted in preparing the input data for the

subsequent stages by an configuration utility. This utility provides already a guidance

for parametrizing CPs and GCPs by suggesting approximate locations of their observations

within the images. In future versions the usability can be further improved, when only

one observation has to be specified by the operator. All other observations should then be

automatically determined by an area based image matching algorithm leading to subpixel

accurate locations as suggested in [64]. Sometimes CPs and GCPs are explicitly indicated



4.6. Discussion 97

in a scene, for example with white rectangles. Here an automatic or semi-automatic fitting

algorithm would on the one hand ease the configuration and on the other hand improve

the accuracy.

The above outlined AT pipeline is focused on a fast processing of the distinct stages,

where special attention is paid on the feature matching stage. One way to accelerate

the matching step is to apply view selection, therefore it is not necessary to match each

aerial image with all others. Within this work view selection is performed by exploiting

the measured camera poses and a scene approximation. This avoids a time consuming

image based view selection. Camera pose imprecisions can be considered by lowering the

threshold for the image overlap Oij . Additionally the matching of images obtained from

cameras with very different view vectors is prevented. Therefore the applied view selection

strategy fits the requirements for AT.

A further way to speed up the feature matching stage is to reduce the number of

features to be compared. Here feature location prediction is applied to place a search

region into an image to be matched and only the features within the search region are

compared. Furthermore it is attempt to reduce the size of the search region by exploiting

the correlations between feature locations within one image, like in the Visual SLAM based

methods. Additionally the epipolar lines are evaluated to reduce the search region sizes

further. As shown in the following experiments chapter relatively few cross track matches

are generated, which results in non radial symmetric reprojection error distributions. Also

the average number of observations per reconstructed world point is relatively low. A well

known property of the SIFT detector/descriptor is its sensitivity to perspective distortions.

Consider for example a camera with a view vector perpendicular to a ground plane imaging

the wall of a building. Depending on the camera position different amounts of perspective

distortion occur, although the view vector orientation does not change. Here a more robust

method should be applied to generate more cross track matches and to increase the average

number of observations, see for example [25, 65]. The applied matching strategy tries to

match all image features, so as side product one obtains a sparse scene reconstruction

after the bundle adjustment stage. When only the camera poses should be determined, a

feature matching within some predefined image regions would be sufficient, cf. von Gruber

positions [64].
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As mentioned earlier the applied feature matching strategies utilize some ideas of the

Visual SLAM methods. However a direct usage of these algorithms without any modifica-

tions is not practicable due to the following reasons.

• While the Visual SLAM algorithms are designed for real time processing on images

containing comparatively few feature points, in AT a batch processing on large scale

images with huge amounts of interest points is performed, e.g. 100000 feature points

per image. For example it is reported in [11] that the AM approach scales poorly with

the number of features.

• Usually Visual SLAM methods estimate the camera poses, see Fig. 3.29. This estima-

tion would fail at the beginning of a new flight line due to missing images during the

turn of the aircraft. So the camera motion model cannot be applied here, instead

GPS and IMU measurements must be evaluated to obtain camera pose estimates.

• Sweeping camera systems may produce images without significant overlap, cf. the

VisionMap A3 aerial camera system in section Section 5.2.1. So each image within

a sweep shows a different part of the scene. In these cases the incremental map

building approach would fail, because it is not possible to triangulate world points

from two subsequent images.

• Visual SLAM algorithms do not exploit scene approximations like a DEM and therefore

neglect valuable information.

Finally the modular design of the bundle adjustment stage provides the flexibility for

the user to select individual parameters, cost terms and loss functions. Therefore the

pipeline can be applied to many different aerial survey datasets. A useful extension of the

bundle adjustment stage would be the covariance calculation of all estimated parameters

and their visualization with confidence spheres [61].
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This chapter presents the evaluation results of the outlined AT pipeline on two different

datasets. The first dataset consists of large format aerial images generated with the

Microsoft UltraCamX camera pointing straight downwards to the earth. In contrast the

second dataset contains much smaller aerial images obtained from the VisionMap A3

camera, where also oblique images are included.

5.1 Microsoft UltraCamX

At first the design of the large format Microsoft UltraCamX camera is briefly outlined.

Afterwards the dataset description section gives an overview of the covered terrain. Finally

major components of the AT pipeline are evaluated, which are the view selection, guided

matching and bundle adjustment stages.

5.1.1 Camera Design

Microsoft UltraCamX [66] is a high resolution digital aerial camera system based on a multi

cone multi sensor concept, see Fig. 5.1. It is built up of eight independent camera cones,

whereas four of them are used to generate a high resolution panchromatic (gray scale)

image. The other four cones generate a lower resolution multispectral image, consisting of

99
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the channels Red, Green, Blue and Near Infrared. In total 13 Charge Coupled Device (CCD)

sensors are installed, nine for the panchromatic image.

Figure 5.1: Microsoft UltraCamX camera cone placement, from [66]. The four
cones with color filters are used for the multispectral channel, while
the others are utilized for the panchromatic channel.

Fig. 5.2 illustrates the stitching procedure for combining the images of the nine sensors.

The four CCD sensors of the Master Cone are combined with the CCD sensors of the other

three cones to form the high resolution panchromatic image. Furthermore a temperature

compensation is performed within this step to reduce geometric distortions. The obtained

panchromatic and multispectral images are finally merged to a high resolution color image

by applying a process called pan sharpening.

Figure 5.2: Microsoft UltraCamX stitching scheme for the panchromatic channel,
from [57]. It is depicted how the individual CCD sensors of the Master
Cone (M) and those of the three other camera cones are combined to
a high resolution panchromatic image.

The camera is already manufacturer calibrated. Nevertheless a self calibration during
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bundle adjustment is recommended due to small radial symmetric distortions introduced

by atmospheric refraction while operation. Furthermore special UltraCamX self calibra-

tion parameters have been designed [57]. Table 5.1 summarizes the technical data of the

UltraCamX used for the evaluation of the pipeline. While the UltraCamX uses an external

GPS receiver, newer improved UltraCam versions are optionally equipped with an embed-

ded GPS receiver. Furthermore the newer cameras generate images of higher resolution

[7].

Panchromatic Channel

Multi cone multi sensor concept 4 camera heads

Image size in pixel (cross track/along track) 14430 pixel × 9420 pixel

Physical pixel size 7.2 µm

Physical image format (cross track/along track) 103.9 mm × 67.8 mm

Focal length 100 mm

Lens aperture f = 1/5.6

Angle of view (cross track/along track) 55◦ × 37◦

Multispectral Channel

Four channels (Red, Green, Blue, Near Infrared) 4 camera heads

Image size in pixel (cross track/along track) 4992 pixel × 3328 pixel

Physical pixel size 7.2 µm

Physical image format (cross track/along track) 34.7 mm × 23.9 mm

Focal length 33 mm

Lens aperture f = 1/4

General

Shutter speed options 1/500 s - 1/32 s

Forward motion compensation Time delayed integration
controlled, 50 pixels

Frame rate per second 1 frame in 1.35 s

ADC resolution 14 bit (16384 levels)

Radiometric resolution > 12 bit/channel

Table 5.1: Microsoft UltraCamX technical data, from [66].

5.1.2 Dataset Description

To evaluate the distinct pipeline stages with the UltraCamX imagery, a small set of 21

images with a Ground Sampling Distance (GSD) of 8 cm has been utilized, see Fig. 5.3.

CPs and GCPs are configured for determining the accuracy of the whole pipeline, where

the ground truth locations were obtained from [33].
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(a) (b)

Figure 5.3: Microsoft UltraCamX dataset. In (a) an orthophoto of the test site is
shown, which has been obtained from Google Maps. The blue border
depicts the area covered by the generated DEM while the red rectangle
indicates the region contained in the images. (b) shows the individual
image borders projected onto a ground plane as green polygons. The
green crosses mark the CP locations while the red ones depict the GCP

locations. The camera poses are given by the black symbols.

The images cover a flat region within the city Graz in Austria. Either the DEM shown

in Fig. 5.4 or a ground plane with a height of 410 m above the WGS84 ellipsoid is used

to approximate the scene in the individual processing stages. The Tagged Image File

Format (TIFF) tags of the images contain directly the corresponding camera poses, but

without the post processing step mentioned in Section 3.3.4.1, therefore they are imprecise

[42]. Section 3.3.4.2 contains an overview of factors influencing the accuracy of the camera

pose measurement.

5.1.3 View Selection

Two view selection methods are compared within this work, one approximates the scene

with a ground plane and the other operates on a DEM. The view overlap Oij between two

images i and j is calculated according to Equation (4.1), additionally the angle between the
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Figure 5.4: DEM applied for the Microsoft UltraCamX dataset. The region covered
by the images is characterized by the following height values above
the WGS84 ellipsoid: min. 393.5 m, max. 471.4 m and median 416.4
m. The entire DEM has the following heights above WGS84: min. 387.5
m, max. 516.5 m and median 415.4 m.

corresponding view vectors αij is computed. Now a image pair is matched in the following

guided matching step, when Oij > 0.3 and αij ≤ 30◦. The result can be represented either

by an adjacency matrix [21], where the entry (i, j) is set to 1 when image i and j have

to be matched, or set to 0 in the opposite case. Another representation is the geometry

graph [22], where each node corresponds to an image and the edges connect the images

with overlap. For this dataset the results of the ground plane based view selection are

identical to the DEM based, due to the flat terrain, see Fig. 5.5.

(a) (b)

Figure 5.5: View selection results for the Microsoft UltraCamX dataset. (a)
shows the adjacency matrix, where the images i and j have to be
matched when the entry (i, j) is white. (b) depicts the corresponding
geometry graph.
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5.1.4 Guided Matching

The considered pipeline uses SIFT features, which are extracted by the SiftGPU implemen-

tation [59]. On average ≈ 85000 features per image are obtained by the applied setting.

To assess the performance of the three implemented guided matching methods, they are

compared with the FLANN library [28]. This library contains ANN feature matching algo-

rithms and additionally provides an auto tuning option to select the best suited method

and corresponding parameters for a given dataset. For the evaluated UltraCamX imagery

the hierarchical k-means tree algorithm has been selected by the auto tuning procedure.

All evaluated matchers use the Euclidean distance for descriptor comparisons and apply

the distance ratio test to eliminate correspondences likely to be outliers. More precisely

for a positive feature correspondence the distance between both feature descriptors must

be lower than 0.5 and the distance ratio between best and second best match has to be

lower than 0.6. The obtained matches are verified by the epipolar constraint requiring

an Sampson error d⊥ below 0.25 pixel. The implemented pairwise matcher restrict the

secondary set search region along the epipolar line, allowing an Sampson error d⊥ of up

to 15 pixel during the search.

Ground plane and DEM matcher use a primary set search radius of 200 pixel, while the

reconstructing matcher applies a search radius of 750 pixels. For the pairwise matchers

the primary set prediction error is determined by the accuracy of the scene approximation

as well as the relative poses between both involved cameras and scene approximation [8].

In contrast the primary set prediction error for the reconstructing matcher depends beside

the accuracy of the scene approximation on the relative poses between the camera to be

matched, partial reconstruction and scene approximation. Furthermore the orientation

and location of the partial reconstruction depend on the initial pairwise matching and the

course of the incremental matching, so the prediction errors for the primary sets are in

general larger. All implemented matcher use a secondary set search radius of 100 pixels.

Assuming an ideal refinement procedure, the secondary set prediction error is determined

by inaccuracies of the scene approximation, e.g. DEM, which of course doesn’t consider

buildings, trees, etc. . A too small secondary set search radius would therefore limit the

height of the reconstructed 3D structure measured relative to the scene approximation, for

example roofs of high buildings are possibly not reconstructed. The applied search region

sizes are summarized in Table 5.2.

Table 5.3 summarizes the processing times obtained on an Intel Core i7 − 3930K

CPU @ 3.20GHz, where the matching task is always performed by a single thread, only
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Primary Set Secondary Set
Method Radius Radius Epipolar Distance

Ground Plane Matcher 200 pixel 100 pixel 15 pixel
DEM Matcher 200 pixel 100 pixel 15 pixel
Reconstructing Matcher 750 pixel 100 pixel −

Table 5.2: Parametrized search region sizes of the different matcher for the Mi-
crosoft UltraCamX dataset.

bundle adjustment and verification are implemented multithreaded. It can be seen that the

time consumption of the implemented matcher is one magnitude lower than the baseline

method. Note that the FLANN library is already highly optimized, while the implemented

matcher have potential for further improvements.

Processing Time Correspondences
Method Matching Bundle Adj. Verification All Verified

FLANN Auto Tuned 28.33 min − 1.55 min 1235446 260159
Ground Plane Matcher 1.72 min − 1.81 min 1475062 355782
DEM Matcher 2.48 min 0.32 min 1.81 min 1431911 349015
Reconstructing Matcher 1.77 min 0.09 min 1.24 min 365681 97241

Table 5.3: Performance comparison of different matching methods for the Mi-
crosoft UltraCamX dataset.

FLANN returns fewer verified feature correspondences than the ground plane and DEM

matcher. On the one hand only an ANN search is performed, while the other matcher

perform an exact NN search within their search regions. On the other hand the imple-

mented matcher predict feature locations and exclude features located far away from the

predicted position from the matching process, so the probability for false matches is re-

duced. Further experiments showed, that the second reason has the largest impact on the

amount of obtained correspondences. The amount of resulting correspondences for the re-

constructing matcher is not directly comparable to the other, because here an incremental

reconstruction is performed instead of a pairwise matching.

As mentioned earlier the three implemented matcher perform at first a primary set

matching and improve their prediction afterwards by either estimating a homography or

performing a bundle adjustment run. To see the effect of this refinement process the veri-

fied secondary set correspondences have been used to calculate the prediction errors. For

the ground plane matcher the prediction errors obtained from the calculated homographies

are compared with the prediction errors obtained from the estimated homographies. Sim-

ilarly for the DEM matcher and the reconstructing matcher the prediction errors obtained
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from the original camera poses are compared with that obtained from the refined camera

poses. Table 5.4 summarizes the results. It can be seen that all matcher improve their

prediction to the same error. Furthermore the requirement of a larger primary set search

radius for the reconstructing matcher is confirmed.

Method Before Refinement After Refinement

Ground Plane Matcher 95.7 pixel 15.9 pixel
DEM Matcher 94.5 pixel 15.6 pixel
Reconstructing Matcher 306.5 pixel 13.5 pixel

Table 5.4: Median prediction errors of the different matcher for the Microsoft
UltraCamX dataset.

Table 5.5 compares the average number of image observations per world point. All

matcher perform equally well, except the reconstructing matcher, which has a lower value.

Note that a higher number of observations per world point improves the triangulation

accuracy [56, 57].

Method Avg. Number of Observations

FLANN Auto Tuned 2.43
Ground Plane Matcher 2.50
DEM Matcher 2.49
Reconstructing Matcher 2.07

Table 5.5: Average number of observations per world point for the Microsoft
UltraCamX dataset.

5.1.5 Bundle Adjustment

The bundle adjustment stage is evaluated by the usage of CPs. Therefore ground truth

world point locations and their observations within the images are configured. These ob-

servations are used to triangulate world points, which are then refined during the bundle

adjustment stage and afterwards compared with the ground truth locations. In the follow-

ing the resulting position differences are termed as CP errors. In contrast GCPs are used to

include ground truth information into the bundle adjustment stage, for example to align

the result. Also there world point locations and corresponding observations are configured.

Usually markers like painted white rectangles are placed into a test area, whereas their

locations are precisely surveyed, for example with an accuracy of 1 cm. These marker are

then automatically fitted in the images to achieve observations with subpixel accuracy [60].

Within this work a less involved and more imprecise procedure is applied. The world point

locations are obtained from [33] and their image observations are manually configured.
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As mentioned earlier the camera coordinates are only approximately known [42], so

two different experiments are performed to see the effect of GCPs. In the first one, all 48

configured points are used as CPs, while in the second experiment 9 points are used as

GCPs and the remaining 39 points are utilized as CPs, see Fig. 5.3(b).

5.1.5.1 Results without Ground Control Points

For the following evaluation without GCPs the bundle adjustment cost function contains

the deviations between measured and adjusted camera positions as well as the reprojection

errors. Experiments showed that depending on the used feature matcher different numbers

of bundle adjustment iterations with subsequent outlier removal steps lead to the minimum

CP error. Therefore the evaluation has been performed with three iterations for the FLANN

and ground plane matcher and only two iterations for the DEM and reconstructing matcher.

In all cases a squared loss has been applied.

At first mean, standard deviation and maximum value of the reprojection error x- and

y-component have been evaluated. Let’s denote the observation of the i-th camera point

with xi = [xi, yi, 1]T and the projection of the corresponding world point into the same

camera by x̂i = [x̂i, ŷi, 1]T . For the overall m camera points observed in the different

images the mean value µrex and the standard deviation σrex of the reprojection error

x-component are determined as stated in Equation (5.1). The corresponding maximal

difference is computed as maxi |x̂i − xi|. Calculations for the y-component are performed

accordingly.

µrex =
1

m

m∑
i=1

(x̂i − xi) σrex =

√√√√ 1

m

m∑
i=1

(x̂i − xi − µrex)2 (5.1)

Afterwards mean, standard deviation and maximum CP error have been evaluated

for the X-, Y - and Z-component as well as for the L2 norm of the whole error vector.

Therefore the i-th measured CP ground truth location is denoted with Xi = [Xi, Yi, Zi, 1]T

and the adjusted position is given with X̂i = [X̂i, Ŷi, Ẑi, 1]T . Mean µcpx and standard

deviation σcpx for the X-component of the n CPs are computed as given in 5.2, while

the maximum difference is determined by maxi

∣∣∣X̂i −Xi

∣∣∣. The calculations for the other

components as well as for the vector norm are performed accordingly.

µcpx =
1

n

n∑
i=1

(X̂i −Xi) σcpx =

√√√√ 1

n

n∑
i=1

(X̂i −Xi − µcpx)2 (5.2)
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Table 5.6 lists the obtained reprojection error mean, standard deviation and maximum

values per x- and y-component. It can be observed, that the maximum reprojection error is

larger for the DEM and reconstructing matcher, due to fewer bundle adjustment iterations.

Feature Matcher Mean Std. Dev. Max. Diff.

FLANN Auto Tuned
x 0.00 pixel 0.10 pixel 0.35 pixel
y 0.00 pixel 0.05 pixel 0.35 pixel

Ground Plane Matcher
x 0.00 pixel 0.09 pixel 0.34 pixel
y 0.00 pixel 0.05 pixel 0.34 pixel

DEM Matcher
x 0.00 pixel 0.12 pixel 0.47 pixel
y 0.00 pixel 0.07 pixel 0.47 pixel

Reconstructing Matcher
x 0.00 pixel 0.14 pixel 0.46 pixel
y 0.00 pixel 0.04 pixel 0.46 pixel

Table 5.6: Comparison of reprojection errors for the Microsoft UltraCamX
dataset without GCPs.

The resulting mean, standard deviation and maximum CP errors for the X-, Y - and

Z-component as well as for the L2 norm ‖·‖ are listed in Table 5.7. It can be seen that the

mean and median length of the CP error vectors are similar for all four matcher, however

the error is very large. This is originated in the less precisely configured CPs and the only

approximately known camera poses.

Feature Matcher Mean Median Std. Dev. Max. Diff.

FLANN Auto Tuned

X −3.184 m −3.413 m 1.239 m 5.653 m
Y 0.572 m 0.656 m 1.452 m 4.236 m
Z −4.991 m −4.976 m 2.107 m 8.828 m
‖·‖ 6.368 m 6.579 m − 9.318 m

Ground Plane Matcher

X −2.972 m −3.117 m 1.125 m 4.945 m
Y −1.922 m −1.998 m 1.371 m 6.737 m
Z −5.331 m −5.508 m 2.368 m 9.561 m
‖·‖ 6.778 m 6.591 m − 11.244 m

DEM Matcher

X −2.714 m −2.989 m 1.404 m 5.837 m
Y 2.315 m 2.346 m 1.507 m 5.016 m
Z −4.970 m −4.989 m 1.257 m 7.863 m
‖·‖ 6.473 m 6.715 m − 8.416 m

Reconstructing Matcher

X −3.371 m −3.926 m 1.763 m 6.407 m
Y 1.953 m 1.758 m 2.003 m 5.603 m
Z −3.500 m −3.416 m 2.474 m 9.251 m
‖·‖ 6.092 m 6.318 m − 9.794 m

Table 5.7: Comparison of CP errors for the Microsoft UltraCamX dataset with-
out GCPs.
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In the following only one matcher is evaluated in more detail, because the outcomes

for the others are similar. For that purpose the DEM matcher has been selected, due

to its applicability for flat and mountainous terrains. Fig. 5.6 shows the reprojection

error histogram after the bundle adjustment stage, it can be observed that the error is

orientated along the image x direction. This is reasoned in the fact, that the vast majority

of correspondences are located on epipolar lines orientated nearly parallel to the y axes

of the images. To see why this circumstance causes such a histogram, consider a pairwise

match between two images. When both measured feature points are located on the epipolar

lines, then the bundle adjustment stage can modify the world point location in a way, that

the reprojection error becomes zero. In contrast when the features are not located on the

epipolar lines, then it is not possible to achieve a zero reprojection error without a relative

movement between both cameras. Now there are usually many correspondences between

two images, therefore there exists no single movement to achieve zero reprojection error for

all correspondences. Furthermore camera position deviations are penalized, which causes

that such movements are avoided. So one reason for remaining reprojection errors are

the perpendicular distances between feature points and corresponding epipolar lines. The

observed reprojection errors are perpendicular to the epipolar lines.

(a) (b)

Figure 5.6: Reprojection error histogram and scatter plot for the Microsoft Ul-
traCamX dataset without GCPs. While (a) shows the reprojection
error histogram, (b) displays the corresponding scatter plot.

In Fig. 5.7 histograms of the reprojection error x- and y-component after the bundle

adjustment stage are given. It can be observed that the reprojection error x-component can

be roughly approximated by a Gaussian distributed Random Variable (RV). So a squared
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loss is a reasonable choice for the observed reprojection errors. A better approximation

would be a Laplace distribution, which would lead to a Huber or Pseudo-Huber loss

function. Note that the obtained standard deviation σ = 0.12 is about half the threshold

applied for the epipolar verification, which is 0.25 pixel.

(a) (b)

Figure 5.7: Reprojection error histograms of the x- and y-component for the
Microsoft UltraCamX dataset without GCPs. In (a) the histogram
of the reprojection error x-component is given, while (b) shows the
corresponding histogram for the y-component. Additionally mean µ
and standard deviation σ are given. The red and green curves depict
PDFs of Gauss and Laplace distributed RVs respectively. They have
been generated as MLEs for the shown errors.

Fig. 5.8 displays the mean reprojection error vector depending on the image location.

The plot has been generated by using all 21 images. There are small systematic errors

observable, like a small radial component for large distances from the center of projection.
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Figure 5.8: Reprojection error depending on the image location for the Microsoft
UltraCamX dataset without GCPs. The upper part shows the mean
reprojection error vector for each image tile, while the lower part
displays the reprojection error in radial direction dr depending on
the distance r from the principal point.

5.1.5.2 Results with Ground Control Points

To reduce the large CP errors observed in the last section, 9 CPs are used as GCPs. Also

here the bundle adjustment cost function contains reprojection errors and camera posi-

tion residuals. In contrast to the previous experiment the GPS shift parameter bgps is

now allowed to be freely adjusted. More precisely a single arbitrarily bgps value for all

involved cameras is allowed to be selected from the optimizer. For the FLANN and ground

plane matcher correspondences three bundle adjustment iterations with subsequent outlier

removal steps have been applied, while for the DEM and reconstructing matcher correspon-

dences two and one iterations have been used respectively. The resulting reprojection

errors for the automatically detected feature points are summarized in Table 5.8. Stan-

dard deviation and maximum reprojection error differ for the individual matcher, due to

the different number of outlier removal steps. Furthermore the reprojection errors are

larger than in the experiment without GCPs, because the configured weight for the GCP
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reprojection errors is much larger than the corresponding weight for the other reprojection

errors and the GCP observations are only imprecisely given.

Feature Matcher Mean Std. Dev. Max. Diff.

FLANN Auto Tuned
x 0.01 pixel 0.50 pixel 1.64 pixel
y −0.03 pixel 0.26 pixel 1.63 pixel

Ground Plane Matcher
x 0.01 pixel 0.51 pixel 1.70 pixel
y −0.03 pixel 0.28 pixel 1.70 pixel

DEM Matcher
x 0.01 pixel 0.74 pixel 2.51 pixel
y −0.05 pixel 0.36 pixel 2.49 pixel

Reconstructing Matcher
x 0.00 pixel 0.99 pixel 4.28 pixel
y −0.02 pixel 0.37 pixel 4.27 pixel

Table 5.8: Comparison of reprojection errors for the Microsoft UltraCamX
dataset with 9 GCPs.

Table 5.9 compares the CP errors obtained for the different matcher with a result

published in [42]. All matcher achieve a similar accuracy, however the results of [42] are

superior. One major reason for the difference is, that they use CPs and GCPs with precisely

determined coordinates.

Feature Matcher Mean Median Std. Dev. Max. Diff.

FLANN Auto Tuned

X 0.047 m 0.010 m 0.827 m 3.218 m
Y −0.470 m −0.255 m 1.717 m 8.067 m
Z 0.235 m 0.175 m 1.805 m 6.125 m
‖·‖ 1.657 m 0.656 m − 9.471 m

Ground Plane Matcher

X 0.053 m 0.027 m 0.828 m 3.202 m
Y −0.416 m −0.246 m 1.704 m 7.965 m
Z 0.313 m 0.057 m 1.518 m 5.482 m
‖·‖ 1.565 m 0.735 m − 9.157 m

DEM Matcher

X 0.051 m 0.099 m 0.838 m 3.201 m
Y −0.346 m −0.242 m 1.694 m 7.531 m
Z 0.522 m 0.099 m 1.320 m 4.979 m
‖·‖ 1.563 m 0.730 m − 8.364 m

Reconstructing Matcher

X 0.097 m 0.098 m 0.867 m 3.386 m
Y −0.247 m −0.197 m 1.726 m 7.032 m
Z 0.764 m 0.299 m 1.706 m 6.562 m
‖·‖ 1.757 m 0.773 m − 7.826 m

Results from [42]

X 0.033 m − 0.008 m 0.061 m
Y 0.037 m − 0.01 m 0.067 m
Z 0.048 m − 0.005 m 0.059 m

Table 5.9: Comparison of CP errors for the Microsoft UltraCamX dataset with
9 GCPs.
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The corresponding reprojection error histograms for the DEM matcher are given in

Fig. 5.9 and Fig. 5.10. As already mentioned the error has increased, additionally the

reprojection error x-component cannot be approximated by a Gaussian RV anymore, while

the approximation with a Laplacian distribution is still valid.

(a) (b)

Figure 5.9: Reprojection error histogram and scatter plot for the Microsoft Ul-
traCamX dataset with 9 GCPs. While (a) shows the reprojection error
histogram, (b) displays the corresponding scatter plot.

(a) (b)

Figure 5.10: Reprojection error histograms of the x- and y-component for the
Microsoft UltraCamX dataset with 9 GCPs. In (a) the histogram
of the reprojection error x-component is given, while (b) shows the
corresponding histogram for the y-component. Additionally mean µ
and standard deviation σ are given. The red and green curves depict
PDFs of Gauss and Laplace distributed RVs respectively. They have
been generated as MLEs for the shown errors.
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Of course the reprojection error depending on the image location has also increased,

see Fig. 5.11. Furthermore the orientation of the error vectors has changed.

Figure 5.11: Reprojection error depending on the image location for the Microsoft
UltraCamX dataset with 9 GCPs. The upper part shows the mean
reprojection error vector for each image tile, while the lower part
displays the reprojection error in radial direction dr depending on
the distance r from the principal point.
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Fig. 5.12 displays the resulting sparse scene reconstruction obtained from the DEM

matcher experiment. It can be observed that the buildings are well reconstructed, es-

pecially in the center of the scene where many images overlap.

Figure 5.12: Reconstructed scene for the Microsoft UltraCamX dataset with 9
GCPs. The red crosses indicate the GCP locations, while the green
crosses within the scene show the CP positions. The green crosses
beside the cameras indicate the centers of projection as given in the
TIFF tags.

5.2 VisionMap A3

This section starts with a short introduction of the VisionMap A3 camera design followed

by a dataset description. The same AT pipeline elements as for the UltraCamX camera are

also evaluated here, that are the view selection, guided matching and bundle adjustment

stages.
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5.2.1 Camera Design

The VisionMap A3 aerial camera system [67] consists of two lenses, each having one RGB

CCD sensor, see Fig. 5.13. Both lenses are mechanically coupled and mounted onto a

sweep mechanism. The camera is usually orientated in a way that the sweep direction is

perpendicular to the flight direction. A large focal length of f = 300 mm allows high flying

altitudes for a given ground resolution, while a mirror based folding optical system reduces

the lens dimensions. The orientation of the interior mirror is controlled to compensate

the sweep motion of the lenses during the exposure as well as the forward motion and

vibrations of the aircraft.

(a) (b)

Figure 5.13: VisionMap A3 aerial camera system, from [67, 68]. A photo of the
camera is given in (a), while (b) shows a drawing of the sweep mech-
anism.

During the flight the lenses sweep from one side to the other and generate up to 27

double frames, as illustrated in Fig. 5.14. All double frames within one sweep can be

combined to a Super Large Frame. That leads to a large total Field Of View (FOV) of

104◦ cross track and allows therefore large distances between flight strips. Table 5.10

summarizes the technical data of the VisionMap A3 aerial camera system. As stated, the

camera contains already an integrated GPS receiver.
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Figure 5.14: Illustration of the VisionMap Super Large Frame consisting of all
images obtained during a single sweep. The red polygons indicate
the last double frame of the sweep.

CCD 2 × Kodak KAI-11002

Single frame size 4006 pixel × 2666 pixel

Double frame size ∼ 7812 pixel × 2666 pixel

Single frames overlap (along track) ∼ 100 pixel

Synthetic Super Large Frame ∼ 62517 pixel × 7812 pixel

Single lens FOV 6.9◦ × 4.6◦

Max. sweep FOV 104◦

Number of double frames per max. FOV 27

Sweep time 3− 4s

Color RGB

Radiometric resolution 12 bit/channel

Pixel size 9 µm

Optics Dual reflective lens system

Focal length 300 mm

Aperture f/4.5

Forward motion compensation Mirror based
Sweep motion compensation optical compensation
Vibration (Stabilizer) and stabilization

Frame rate 7 fps

Readout rate 155 MB/s

On-Board compression Jpeg2000 (lossless)

Data collection capacity 5 hours

Storage type Flash Drive

Storage capacity 500 GB

GPS (Omni Star supported) Dual-frequency GPS + L-Band

Total weight ∼ 30 kg

Camera unit size 70 cm × 70 cm × 30 cm

Operating temperature −30◦C to +45◦C

Table 5.10: VisionMap A3 technical data, from [67].
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5.2.2 Dataset Description

A subset of 116 images with a GSD of 6 cm from the dataset examined in [60] has been

used to evaluate the pipeline with the VisionMap A3 imagery, see Fig. 5.15. Here mainly

the matching performance is assessed, so neither CPs nor GCPs are used.

(a) (b)

Figure 5.15: VisionMap A3 dataset. In (a) an orthophoto of the test site is shown,
which has been obtained from Google Maps. The blue border depicts
the area covered by the generated DEM while the red rectangle indi-
cates the region contained in the images. (b) shows the individual
image borders projected onto the ground plane as green polygons.
The camera poses are given by the black symbols. The 116 cameras
are grouped into 8 blocks.

Camera center Cj and rotation Rj for camera j are given in a report file. These poses

are already precisely available, as shown in the following sections. The images cover a

terrain with some height variations at Vaihingen in Germany. Either a ground plane with

a height of 330 m above the WGS84 ellipsoid or the DEM displayed in Fig. 5.16 is applied to

approximate the scene.
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Figure 5.16: DEM applied for the VisionMap A3 dataset. The region covered by
the images is characterized by the following height values above the
WGS84 ellipsoid: min. 247.5 m, max. 349.5 m and median 266.5 m.
The entire DEM has the following heights above WGS84: min. 244.5 m,
max. 364.5 m and median 273.5 m.

5.2.3 View Selection

For the view selection stage a minimum view overlap Oij of 0.2 and a maximal angle

between view vectors αij of 30◦ is parametrized. The ground plane based and the DEM based

algorithm achieve slightly different adjacency matrices, see Fig. 5.17. This is reasoned in

the larger height variations of the terrain compared to the previous dataset, leading to

inaccurate results for the ground plane based overlap calculation. Therefore the adjacency

matrix of the DEM based view selection procedure is applied in the subsequent stages.

5.2.4 Guided Matching

The individual VisionMap A3 images are relatively small compared to the Microsoft Ultra-

CamX images, therefore the SIFT detector threshold has been lowered to achieve a higher

amount of features for the matcher evaluation. With this modification on average ≈ 40000

features are extracted per image. The FLANN auto tuning algorithm selected also here

the hierarchical k-means tree algorithm for the VisionMap A3 images. The settings of all

matchers are equal to that used in the UltraCamX experiment, only the search region sizes

differ as can be seen in Table 5.11. The ground plane matcher uses a large primary set

search region, because the initial ground plane is a bad scene approximation. Nevertheless

the homography estimation procedure within the matcher chooses indirectly planes locally

better approximating the scene, therefore the secondary set search region is still small. In

contrast the primary set search regions for the DEM matcher and reconstructing matcher
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(a) (b)

Figure 5.17: View selection results for the VisionMap A3 dataset. (a) shows the
adjacency matrix for the ground plane based view selection, while
(b) displays the adjacency matrix for the DEM based view selection
procedure.

are already as low as the secondary set search regions due to the precisely known camera

poses and the good scene approximation by the applied DEM.

Primary Set Secondary Set
Method Radius Radius Epipolar Distance

Ground Plane Matcher 750 pixel 100 pixel 15 pixel
DEM Matcher 100 pixel 100 pixel 15 pixel
Reconstructing Matcher 100 pixel 100 pixel −

Table 5.11: Parametrized search region sizes of the different matcher for the Vi-
sionMap dataset.

In Table 5.12 the performance evaluation results for the different matcher are sum-

marized. The matching time differences are mainly reasoned in the different primary set

search radii. Because of a higher feature density compared to the UltraCamX experiment,

the search radius has a huge impact on the query times of the utilized kD tree and the

subsequent matching procedure. It can be observed that the DEM matcher is the fastest,

followed by the reconstructing matcher. The reconstructing matcher has a higher time

consumption for the included bundle adjustment run, because the cameras within a sweep

are handled as a camera group, assuming that the relative poses of the cameras within

a group are more precisely known than between groups. Therefore always the cameras

of the whole group are optimized, which consumes more time than optimizing a single

camera. The count of verified features differ due to the same reasons as mentioned in the
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UltraCamX experiment.

Processing Time Correspondences
Method Matching Bundle Adj. Verification All Verified

FLANN Auto Tuned 30.62 min − 5.59 min 2447922 734556
Ground Plane Matcher 19.80 min − 5.79 min 2552365 797030
DEM Matcher 6.15 min 0.18 min 5.88 min 2593432 805062
Reconstructing Matcher 5.58 min 8.94 min 5.73 min 1103030 493860

Table 5.12: Performance comparison of different matching methods for the Vi-
sionMap dataset.

The feature location prediction errors are given in Table 5.13. It can be observed,

that after the refinement all matcher are able to predict feature locations with low error.

Furthermore due to accurately known camera positions and orientations and the good

scene approximation by the applied DEM, the primary set prediction errors are low for the

DEM and reconstructing matcher. Although the median prediction error before refinement

for the ground plane matcher is much lower than the corresponding primary set search

radius, the search radius cannot be further reduced. That is reasoned in the circumstance

that the prediction error between some image pairs is much larger than the median value.

So a matching between those pairs would become impossible, which would result in a poor

scene reconstruction.

Method Before Refinement After Refinement

Ground Plane Matcher 148.6 pixel 1.4 pixel
DEM Matcher 10.2 pixel 3.9 pixel
Reconstructing Matcher 15.4 pixel 2.1 pixel

Table 5.13: Median prediction errors of the different matcher for the VisionMap
dataset.

5.2.5 Bundle Adjustment

For the VisionMap dataset the bundle adjustment cost function contains reprojection

errors, camera position residuals and camera group errors. A camera group is composed

of all camera poses within one sweep. Only the reprojection errors are considered for

evaluating the bundle adjustment stage, so neither CPs nor GCPs are used. For all feature

matcher three bundle adjustment iterations have been performed and a squared loss has

been chosen for the reprojection error. Table 5.14 lists the resulting reprojection errors for

the investigated feature matchers, which are all similar. In the following the DEM matcher



122 Chapter 5. Experiments

is evaluated in more detail.

Feature Matcher Mean Std. Dev. Max. Diff.

FLANN Auto Tuned
x 0.00 pixel 0.05 pixel 0.29 pixel
y 0.00 pixel 0.10 pixel 0.29 pixel

Ground Plane Matcher
x 0.00 pixel 0.06 pixel 0.29 pixel
y 0.00 pixel 0.10 pixel 0.29 pixel

DEM Matcher
x 0.00 pixel 0.04 pixel 0.26 pixel
y 0.00 pixel 0.10 pixel 0.26 pixel

Reconstructing Matcher
x 0.00 pixel 0.03 pixel 0.22 pixel
y 0.00 pixel 0.09 pixel 0.23 pixel

Table 5.14: Comparison of reprojection errors for the VisionMap A3 dataset.

The reprojection error histogram obtained after three bundle adjustment iterations is

given in Fig. 5.18. It has the same shape as for the Microsoft UltraCamX dataset, but in

contrast the vast majority of epipolar lines corresponding to feature matches are orientated

parallel to the x-axis. That results in reprojection errors orientated along the y-axis.

(a) (b)

Figure 5.18: Reprojection error histogram and scatter plot for the VisionMap A3
dataset. While (a) shows the reprojection error histogram, (b) dis-
plays the corresponding scatter plot.

In Fig. 5.19 the histograms for the reprojection error x- and y-component are given.

It can be seen that the Gaussian distribution approximates the y-component well, so also

here a squared loss is selectable.



5.2. VisionMap A3 123

(a) (b)

Figure 5.19: Reprojection error histograms of the x- and y-component for the
VisionMap A3 dataset. In (a) the histogram of the reprojection error
x-component is given, while (b) shows the corresponding histogram
for the y-component. Additionally mean µ and standard deviation
σ are given. The red and green curves depict PDFs of Gauss and
Laplace distributed RVs respectively. They have been generated as
MLEs for the shown errors.

Fig. 5.20 shows the reconstructed scene. It can be observed that the sparse structure

is split into two parts. The empty region originates from the circumstance that in this

area few images overlap and those which are overlapping are oblique with varying scale.

As consequence too few feature correspondences are obtained.

(a) (b)

Figure 5.20: Reconstructed scene for the VisionMap A3 dataset. In (a) an
overview containing the 116 camera poses is given, while (b) displays
a close-up view of the scene.
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The reconstruction of a larger VisionMap dataset containing 3450 images is given in

Fig. 5.21. It contains also the 116 images of the smaller dataset described above. Also

here exist holes, which are located mainly in the boundary regions.

Figure 5.21: Reconstructed scene for a larger VisionMap dataset composed of 3450
images.
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In the following the main findings gained during the work on this thesis are summarized.

Afterwards the contributions are outlined. Finally suggestions for the directions of future

work are given.

6.1 Conclusions

Within this thesis a state of the art AT pipeline based on SIFT features is presented. It

consists of the steps configuration, feature extraction, view selection, guided matching, 3D

structure computation and bundle adjustment. The configuration utility assists the user

in preparing the input data for the processing within the subsequent stages. Additionally

the operator is able to specify CPs and GCPs, perform plausibility checks and visualize the

configuration. Within the feature extraction stage only SIFT features are utilized, because

they have been previously successfully applied in AT pipelines, for example in [2, 23, 52].

Both implemented view selection strategies are suitable for oblique aerial images. While

the ground plane based view selection is faster, the DEM based one can also be applied for

terrains with significant height variations.

Three different matching strategies have been realized and evaluated. They perform

a prediction of the corresponding feature location in an image for a given feature point

125
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in another image. Two of them match images pairwise and use a ground plane or a

DEM as scene approximation. Also here the ground plane based matcher is restricted to

flat terrains, because otherwise a large feature search radius would be required, leading

to a poor performance. The third implemented matcher performs a incremental scene

reconstruction, so the 3D structure computation stage is not necessary. This matcher uses

also a DEM as scene approximation.

Due to the feature location prediction the amount of compared features is lowered and

becomes independent of the image size. So these matcher are especially well suited for

large scale images. A comparison with the FLANN library showed a performance gain

of one magnitude for the Microsoft UltraCamX images. Note that the speed advantage

depends on the chosen search radii. Another advantage of feature location prediction is

the higher number of obtained features, because only the features within the search radius

are considered for matching. So a confusion with similar features outside the search region

is prevented.

The bundle adjustment stage is based on the Ceres Solver library [58] and allows the

inclusion of CPs and GCPs. Additionally an unknown GPS shift can be determined and

the calibration of lever arm offset and boresight misalignment rotation are possible. The

following recommendations can be given as summary of the outcomes from the experiments

chapter.

• The AT pipeline should use a DEM based view selection and a DEM based guided

matching stage due to their universal applicability for different terrain types. In

general also the reconstructing matcher may be a suitable matcher, but here larger

primary set search radii are required. For images with high feature point densities

these large search regions deteriorate the performance.

• As shown in the experiments section the usage of GCPs improves the accuracy of the

scene reconstruction. When GCPs are applied, it is suggested to use also the GPS

shift parameter [60].

6.2 Contributions of the Thesis

The main contributions of this thesis are the design, implementation and evaluation of a

state of the art AT pipeline. Special attention has been paid on a fast processing of high

resolution aerial images by exploiting as many prior information as available. Such prior

knowledge includes GPS/INS measurements as well as scene approximations via DEM. The
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most important libraries utilized for performing the individual tasks of the pipeline stages

are listed in Table 6.1.

Library Major Tasks

Ceres Solver [58] Bundle adjustment
CGAL [69] DEM geometry processing
FLANN [28] kD tree implementation, base line method for feature

matching
OpenCV [70] Robust fundamental matrix and homography estima-

tion, image undistortion
ICG SfM library Epipolar verification, scene representation, ...
SiftGPU [59] Feature extraction

Table 6.1: Overview of used libraries.

6.3 Direction for Future Work

Although the implemented configuration utility has already a guidance for the

parametrization of CPs and GCPs included, the time required for adjusting them is still

large. Furthermore it is not possible to achieve subpixel accurate observations. To

overcome this an area based feature matching algorithm could be applied. Here the

operator would specify only one observation and the others are found automatically with

high precision [64].

In the experiments chapter it has been shown that the reprojection error is not radial

symmetric, which is reasoned in the low amount of cross track matches. Also the average

number of observations per world point is small, see Table 5.5. One reason for that

behavior is the sensitivity of the SIFT detector/descriptor against perspective distortions.

Here a more robust approach would generate more cross tracks, cf. [25, 65].

The implemented pairwise matchers use a circular shaped search region for the kD

tree queries. The epipolar geometry is considered by discarding those features returned

from a kD tree query, which have a distance above some threshold to the corresponding

epipolar line. A more efficient way would be to directly use rectangular shaped search

regions, which are orientated along the corresponding epipolar lines. To ease the query,

a rectifying transformation [40] could be applied onto the extracted features, so that the

epipolar lines are orientated parallel to either the image x- or y- axis. As result the

rectangular search regions would be aligned with the image axes. This would especially

improve the performance for images with high feature point densities. Currently the

obtained two view feature correspondences are verified by the epipolar constraint. In the
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future additionally three view feature matches should be identified and verified with the

trifocal constraint. As result the amount of outliers would be further reduced.

Within this work only a first rough accuracy evaluation of the AT pipeline has been

performed using imprecise CP and GCP locations. A more involved analysis with precisely

surveyed CP and GCP locations as well as subpixel accurate image observations should be

performed to achieve results comparable with published ones, cf. [42, 60]. Nevertheless

a check with synthetic data has already been successfully carried out. A useful extension

of the bundle adjustment stage would be the estimation of camera pose and world point

location covariances including a visualization of the confidence spheres as given in [61].

With this information one can easily identify regions with low accuracy within the sparse

reconstruction.
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Acronyms and Symbols

List of Acronyms

AABB Axis Aligned Bounding Box

ADC Analog Digital Converter

AM Active Matching

ANN Approximate Nearest Neighbor

AT Aerial Triangulation

BB Branch and Bound

BoW Bag of Words

CCD Charge Coupled Device

CLAM Chow Liu Active Matching

CORS Continuously Operating Reference Station

CP Check Point

CRS Coordinate Reference System

DEM Digital Elevation Model

DGPS Differential Global Positioning System

DoF Degrees of Freedom

DoG Difference of Gaussian

ECEF Earth-Centered, Earth-Fixed

EGM96 Earth Gravitational Model 1996

EGM08 Earth Gravitational Model 2008

EKF Extended Kalman Filter

ENU East North Up
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ETRS89 European Terrestrial Reference System 1989

FBM Feature Based Matching

FOV Field Of View

GCP Ground Control Point

GIS Geographic Information System

GMM Gaussian Mixture Model

GPS Global Positioning System

GPU Graphics Processing Unit

GRS80 Geodetic Reference System 1980

GSD Ground Sampling Distance

GTM Graph Transformation Matching

IC Individual Compatibility

ICNN Individual Compatibility Nearest Neighbor

IMU Inertial Measurement Unit

INS Inertial Navigation System

ITRS International Terrestrial Reference System

JC Joint Compatibility

JCBB Joint Compatibility Branch and Bound

JCPL Joint Compatible Pair Linking

KF Kalman Filter

KNN K Nearest Neighbors

LM Levenberg-Marquardt

LoG Laplacian of Gaussian

LSM Least Squares Matching

MAP Maximum-A-Posteriori

MLE Maximum Likelihood Estimation

MSL Mean Sea Level

NCC Normalized Cross Correlation

NN Nearest Neighbor

OBB Oriented Bounding Box

PCA Principal Component Analysis

PDF Probability Density Function

RANSAC Random Sample Consensus

RMS Root Mean Square
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ROI Region of Interest

RSOC Restricted Spatial Order Constraints

RTK Real Time Kinematic

RV Random Variable

SCNN Sequential Compatibility Nearest Neighbor

SfM Structure from Motion

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SOC Spatial Order Constraints

SRTM Shuttle Radar Topography Mission

SST Sea Surface Topography

SubAM Subset Active Matching

SVD Singular Value Decomposition

TIFF Tagged Image File Format

TRF Terrestrial Reference Frame

TRS Terrestrial Reference System

UTM Universal Transverse Mercator

VRS Virtual Reference Station

WGN White Gaussian Noise

WGS84 World Geodetic System 1984
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List of Symbols

E Expectation operator

N (µ, σ) Normal distribution

χ2 (n, σ) Chi-square distribution

∇ Nabla operator
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[42] U. Mansholt and R. Ladstädter, “Geometrical analysis of Vexcel Imaging UltraCamX

test flights,” in Proceedings of the XXI ISPRS Congress, 2008.
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