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Abstract

In photographs, the three-dimensional world is reduced to a two-dimensional image. In

this master’s thesis, we try to restore some of this lost information for the special case of

human faces. Using the prior knowledge of human heads incorporated in a 3D Morphable

Face Model, it is possible to recover the shape and texture of the displayed face as well

as its pose and lighting in the photograph up to a certain extent. First we show the

building process of this 3D Morphable Model. The base for the model is formed by a

large set of unregistered human 3D head scans. With the Non-Rigid ICP algorithm, the

headscans are brought into correspondence. The result is a high-dimensional Face Space

with a lot of redundancy. On this Face Space a Principal Component Analysis is applied

to reduce dimensionality and extract the more significant base vectors. As outcome we

get a statistical three-dimensional face model that can describe human faces in an elegant

and compact way by only a few parameters. To find the parameters of the 3D Morphable

Face Model for a given face in a photograph, an Analysis-by-Synthesis algorithm is used.

Starting from a reasonable point (e.g. the mean face), the model coefficients are adjusted

incrementally. The randomized residual between input and ajdusted model as well as

the derivative of the residual influence those adjustments. The algorithm stops when

the projection of the 3D model matches the face on the input photograph close enough

and returns the model and rendering parameters. The whole framework described in this

master’s thesis is evaluated both with regard to pose estimation and 3D face reconstruction

on several image databases.
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Kurzfassung

Fotos reduzieren die dreidimensionale Welt auf ein zweidimensionales Bild. In dieser Diplo-

marbeit wird für den speziellen Fall von Gesichtern versucht, einige dieser verlorenen In-

formationen wiederherzustellen. Indem das Wissen über das menschliche Antlitz in ein

3D Morphable Face Model integriert wird, ist es möglich, sowohl die Form und Farbe

des abgebildeten Gesichts als auch seine Ausrichtung und die Beleuchtung im Bild bis

zu einem gewissen Grad zu rekonstruieren. Als Erstes wird die Erstellung des 3D Mor-

phable Models beschrieben. Als Basis für das Modell dient eine große Datenbank von

unregistrierten Scans von menschlichen Köpfen. Der Non-Rigid ICP Algorithmus stellt

die Korrespondenz zwischen diesen Scans her. Das Resultat ist ein hochdimensionaler

Gesichtsraum, der noch viel Redundanz beinhaltet. Auf diesen Gesichtsraum wird eine

Hauptkomponentenanalyse durchgeführt, um die wichtigen Basisvektoren zu extrahieren

und die Dimensionalität zu verringern. Das Ergebnis ist ein statistisches dreidimension-

ales Gesichtsmodell, das mit nur wenigen Parametern menschliche Gesichter kompakt und

elegant beschreiben kann. Um die Parameter des 3D Morphable Face Models zu einem

Gesicht in einem Foto zu bestimmen, wird ein Analyse-durch-Synthese-Algorithmus ver-

wendet. Ausgehend von einem sinnvollen Startpunkt (z.B. dem Mittelwertgesicht) werden

die Modellkoeffizienten inkrementell angepasst. Die randomisierte Differenz zwischen Foto

und angepasstem Modell und deren Ableitung dienen als Richtungsgeber für diese Anpas-

sungen. Der iterative Vorgang stoppt, sobald die Projektion des 3D-Modells dem Gesicht

am Foto ähnlich genug ist, und der Algorithmus liefert die Modell- und Darstellungspa-

rameter als Resultat. Auf mehreren Gesichtsdatenbanken wird das in dieser Diplomar-

beit beschriebene Framework dann sowohl in Bezug auf Pose Estimation als auch auf 3D

Gesichtsrekonstruktion evaluiert.

Schlagwörter. 3D Morphable Model, Hauptkomponentenanalyse, 3D Rekonstruktion
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Chapter 1

Introduction

Photographs capture an image of the reality that is reduced to two dimensions. While

humans can easily reconstruct the lost information of the third dimension in their mind

[53], [32], to recover an objects three-dimensional shape from a two-dimensional image

is a classical problem in computer vision [38], [34], [62]. This information of the third

dimension is of great value for an abundant number of tasks in computer vision. One

special area that has been of interest to researchers is the human face. It is a non-trivial

three dimensional shape with which we humans interact often and easily, but for computers

it poses several challenges.

A first common task concerning human heads is the estimation of their pose. The

orientation of a face transports much information in inter-personal communication, and

humans absorb this information with ease. But for a computer algorithm, having available

only the two dimensions from a photograph, the changing shape of the projected head,

varying illumination and different identities make it difficult to determine the correct pose

of a human head [56].

Even harder it is to identify and to recognize a person seen from different view-

points and under varying illumination, if the computer algorithm can use only the two-

dimensional information of the photograph [31]. In contrast to that, the three-dimensional

representation of the persons face is invariant to changes in light and camera position. Al-

though there are still many factors that impede those tasks (facial expression, occlusions,

. . . ), both identification and recognition as well as the pose estimation can be facilitated

if an exact 3D model of a persons head is available.

With the three-dimensional information at hand, it is also easy to produce virtual

photographs of a person by rendering the 3D head to an image under arbitrary poses and

1



2 Chapter 1. Introduction

with freely configurable illumination conditions. This can be used to generate normalized

pictures that are for example suitable for passports [39] or can be easier compared by tra-

ditional 2D face recognition algorithms [63]. Another important area where those virtual

renderings can be of help is the editing of images that contain human faces. With this un-

derlying shape, adding a hat for example with correctly rendered shadows and occlusions

becomes trivial compared to the traditional image editing process. Furthermore, using

computer animation, realistic movies with human faces can be created on the basis of a

3D head model.

Research in computer vision has opened many possibilities to recover the shape from

two-dimensional photographs. The most obvious way is to use two or more images of

the same object that are taken under different viewpoints [6], [23]. This stereoscopic

reconstruction searches for corresponding points in the images and uses them to compute

the missing information of the third dimension. But also the blur that results from focus

depth gives cues to infer the full shape of a pictured object [44].

Shape from shading is part of the technique that is used in this work to recover 3D

information from a 2D image. Horn [34] first described how to recover an objects normals

(and therefore its shape) from its shading (the perceived color in the 2D image) within

some constraints (one point light source, smooth opaque object, Lambertian illumination

model, . . . ). But for realistic images it is difficult to find unique solutions, and many

directions have been explored starting from seminal work of Horn [80], [24]. Related to

this method is photometric stereo, where illuminating the object with a light from different

directions also allows to infer its normals.

To derive the three-dimensional information from an image, humans use the knowledge

of already seen objects of the same category. Also in computer vision, a database of

examples can provide the basis for an algorithm to perform tasks and decisions. Active

Appearance Models (AAMs) [25] use a set annotated images of a specific category to

match an unseen instance from the same type. The knowledge is captured in a model that

linearly combines and compresses the example images, which guides the fitting of a new

image. Blanz and Vetter introduced the 3D Morphable Model [13], which extends this

idea to the third dimension. They use a number of 3D laser scans as the knowledge basis

for their model.

This master’s thesis is based on the seminal work of Blanz and Vetter [13]. The goal

was to build a 3D Morphable Model of the human face and develop a framework for its

testing and evaluation. One major contribution of this work is a 3D Morphable Model
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that has been created from a large database of head scans. As the optical flow method

to establish correspondence between the raw head scans did not function well for our

database, an Optimal Step Nonrigid ICP algorithm [3] is used to perform the registration

of the database examples. The implementation of the complete framework (from building

the model to image fitting) is another major part of this work. Finally, the model is

examined carefully and evaluated on a number of datasets both for pose estimation and

shape and texture estimation.

The master’s thesis is grouped into four main chapters. The broader topic of Statistical

Shape and Appearance Models and their areas of application are covered in chapter 2. The

creation of a 3D Morphable Face Model from a database of human head scans is shown

in detail in the next chapter 3. In chapter 4 we describe the algorithm to adjust the

parameters of this constructed model to a given two-dimensional human face image. The

last major chapter 5 addresses the evaluation of the built model and the fitting framework.

Experiments are conducted for pose estimation and for shape and texture estimation on

artificial and real datasets. Also the implementation is described in this part. An outlook

as well as a summary are given in the final chapter 6.





Chapter 2

Statistical Shape and Appearance

Models

Contents

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Active Appearance Models . . . . . . . . . . . . . . . . . . . . . . 8

2.3 3D Morphable Models . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Areas of Application . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Computer vision often has to deal with objects that, although pertaining to a common

category, have great variability in both shape and appearance. This wide range is not only

characteristic for categories that are produced by nature (trees, dogs, faces, mountains,

clouds, . . . ) but also for classes of man-made objects (i.e. cars, buildings, cogwheels, etc.).

This diversity introduces difficulties for computers when they try to recognize, detect,

classify or segment objects in images. In contrast to that, humans easily recognize the

objects and classify them into the corresponding category. Only a few examples are needed

by the human visual system to learn a new category. Statistical shape and appearance

models try to adopt this human behavior by describing a category through a combination

of some of its elements.

In this chapter, first some roots of statistical template models are shown. Then two

major approaches in computer vision using those models are presented. The Active Ap-

pearance Model is the most prominent representative and introduced in the first section.

An overview of 3D Morphable Models is given in the next section, and the last part is

5
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concerned with their areas of application.

2.1 History

The basic idea of statistical template models is to describe new members of a category as

linear combinations of samples that are already known. A new face can for example be

specified by

facec = 0.2 ∗ facex + 0.8 ∗ facey (2.1)

Using those prototypes it is possible to span a category vector space, and a category

member is specified by its coordinates in this space. It allows for variability within a class

and furthermore gives a compact representation. A prerequisite for this linear combination

formulation of a class is that its samples are in a corresponding vectorized form.

This first naive approach has some drawbacks. Many base samples are needed to ac-

count for all the possible variation within a category, which results in a high dimensionality

of the category vector space. They furthermore can introduce a lot of redundancy into

the model. And third, it is hard to describe the intra-class variation consistently and

efficiently.

Principal Component Analysis [59] [41] is a classical statistical method that is able to

deal with all three of those mentioned problems. It gives a more compact and statistical

meaningful representation of the category by projecting the original vector space to a new

basis with associated probabilities and plausibilities. Kirby and Sirovich [43] first applied

this method to the domain of human faces by simply vectorizing the training images and

applying a PCA to them. Also Turk and Pentland [74] worked with PCA on faces. They

called the resulting eigenvectors “eigenfaces” as they look like “a sort of ghostly face” ,

and used them to represent, detect and recognize faces in images. As the eigenfaces are

directly calculated from the vectorized images, this approach is prone to changes in shape,

pose and expression.

Those changes in shape were previously addressed by Kass et al. [42]. Their Active

Contour Models are a mathematical formulation where on one hand the bending energy

of a shape defined by splines is to be minimized. On the other hand, the formulation

contains also a term that results in the shape adapting itself to image contours. From this

behavior the method gets its common name “Snakes”, as the contour actively snuggles

into the image-based gradients as real snakes do with obstacles. However, as this model
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does not incorporate any knowledge about the underlying object category.

Cootes et al. [21] incorporate this knowledge of category in their Active Shape Model.

The basis of the knowledge is formed by a set of examples having hand-labeled feature-

points. The rigid and scale deformations between those examples are removed by a Pro-

crustes analysis and then a PCA is computed onto the feature points to generate a Point

Distribution Model. In the paper they show models for a human hand, resistors and heart

ventricles. To match the model to an image, first the strongest edges in the normal direc-

tion are determined for every model point. Then the global parameters (pose, scale) are

adjusted so the distances between the model points and the image contours are as small

as possible. Finally, also the shape parameters are adapted to deform the model towards

the image edges. The disadvantage of this approach is that it incorporates only part of

the gray-level information of the image - just the gradient information along a line in the

neighborhood of the model points is used to fit the model to it.

Ezzat and Poggio [26] generate synthetic new views of a face from a set of example views

by learning linear combinations of the inter-example-correspondences. Using analysis-by-

synthesis, they also fit the model to an unseen view within a stochastic optimization

procedure. However this works reliably only for the same person that the model has been

generated with - it does not generalize to unseen faces.

This is addressed by Vetter and Poggio [75]. First the linear coefficients by which an

unseen input image can be represented through a set of examples with the same orientation

are determined. Those coefficients are then used to generate a synthetic view with a

different desired orientation. Images of the same example objects but with the desired

pose form the basis for the linear combination that finally generates a new synthetic view

of a given input image.

The overview over some of the earlier statistical models shows already some of their

properties: Every model is category-specific. A model trained from a set of examples that

belong to a specific category can not be used for the analysis of objects from different cate-

gories. But as the model is trained for a special class, it pertains its specific characteristics

while still allowing for intra-category variability. And once a model is established for a

specific category, it usually has a quite good representational power for this class, whilst

pertaining a very compact description for a particular instance: A few model parameters

characterize a certain object in a very detailed way. Depending on the fitting algorithm,

their calculation can be quite efficient and fast, whilst providing a good adoption to shape

and texture.
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2.2 Active Appearance Models

Active Appearance Models (short AAM) are the main result of an evolution of different

deformable template models, and their development has mainly been driven by Cootes,

Edwards and Taylor [20].

The basis of an AAM is formed by a set of m labeled training examples with sparse

corresponding feature points x. Using the coordinates of those feature points in the image,

a new shape can be generated by a parametrized model of the form.

xnew = M(b) (2.2)

Instead of using a simple linear combination that has several drawbacks, a PCA is

used to optimize the shape vector space. Given the results of the analysis, a new shape

can now easily be calculated as:

xnew = x̄+
∑

bj x̂j (2.3)

As the PCA furthermore provides information on the statistics of the examples, it is

possible to conclude how probable a shape is or how large its deviation is from the mean.

Using this shape model, the texture of the examples are warped into a shape-free form

(usually the mean shape). For the areas in between the feature points, the warping is

interpolated (piecewise affine transformation, TPS, . . . ). The effect of this warping is that

the shape-free images are now approximately in pixel-wise correspondence. Therefore it is

possible to represent them as vectors by simply rasterizing the warped image. Performing

a PCA on this data results in the texture model:

gnew = ḡ +
∑

aj ĝj (2.4)

To control the complete appearance model with only one unified parameter c, the

correlations between shape and texture are learned by another Eigen-analysis from the

training set. Using this single parameter, ideally the whole range of category items can

be produced.

xnew = x̄+Qsc gnew = ḡ +Qgc (2.5)

The “Active” part of Active Appearance Models is the fitting of an appearance model

as described before to an input image that contains a specific instance of the category.
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This is done by searching for an optimal parameter c, such that a model-generated item

matches the image as close as possible. The Analysis-by-Synthesis method generates a first

model by using initial parameters. Based on those parameters, the shape is calculated,

and the input image gim is back-warped into a shape-free form.

gs = T−1
u (gim) (2.6)

In this domain it is possible to calculate a residual between the generated model

instance and the actual input image

r(c) = gs − gm (2.7)

The goal is to find a parameter update δc that minimizes this residual. In contrast to

usual optimization strategies, the update does not use a derivative of the image residual

that has to be recalculated for every set of parameters, but a simple linear model δc =

Ar(c). This linear relationship is determined in the training phase by perturbing the

model parameters in several ways. As long as the parameter update does not lead to a

satisfactory model (r(c) < ϵ), the model search is continued in an iterative manner.

Active Appearance Models have been successfully applied to many computer vision

tasks (cardiac MRIs [55], human faces [25], X-ray images of bones - robust AAMs [7], . . . )

and have several advantages. They are fast, include a model-specific knowledge and have

few parameters to select by an expert. A drawback is that they need distinctive features

which the model adaption can use - so dealing with amorphous objects like trees or clouds

is hard for AAMs. Another drawback is that they are only defined for two-dimensional

images (although extensions to the third dimension exist [55]), and the used model usually

is a sparse one.

2.3 3D Morphable Models

The 3D Morphable Model was introduced by Blanz and Vetter [13] and is a parametrized

statistical model that has mainly been applied to human faces. With a few shape and

texture parameters it is possible to generate the whole range of plausible objects as high-

resolution 3d models. The basic idea is to build a vector space of objects. Specific instances

of the object category are generated as a linear combination of the basis vectors. The main

difference to Active Appearance Models is the extension to the three-dimensional space

and a much denser model of corresponding points.
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In this section only an overview is given, and the details are treated in the subsequent

chapters.

Building From a large database of raw object examples the morphable model is built.

The essential condition for a usable vector space of objects (in this section we refer to

human faces, although other object categories could be used analogously) is that the basis

faces are in correspondence. This constraint assures that linear combinations generate

valid and plausible faces. Blanz and Vetter employed a hierarchical Optical Flow algo-

rithm on the radial height and texture maps to establish correspondence between the raw

training examples. After this step, every training example can be represented by a shape

vector S̃ = [x1, y1, z1, x2, ..., yn, zn]
T ∈ R3n of n vertices (x, y, z) and a texture vector

T̃ = [R1, G1, B1, R2, ..., Gn, Bn]
T ∈ R3n containing RGB-color for each of the vertices.

Using a linear combination, a new face can be described by its coefficients for shape

ai and texture bi for the q training examples:

S̃new =
∑q

i=1 aiS̃i where
∑q

i=1 ai = 1

T̃new =
∑q

i=1 biT̃i where
∑q

i=1 bi = 1
(2.8)

Valid generated faces are located in the unit-hypersphere of a and b, respectively.

This face vector space is very high-dimensional (q dimensions, as for every example face

in the training database, another dimension is added), and it contains quite a lot of

redundancy. Using a Principal Components Analysis, this vector space is transformed

to a representation where the first dimensions contain the most variation. The least

significant q −m dimensions can be discarded to obtain a lower dimensionality.

Quite similar to 2.8 new faces can be described now through shape coefficients αi

and texture coefficients βi (where Si and Ti are the new shape and texture basis vectors

generated by the PCA):

S = S̄ +
m∑
i=1

αiSi T = T̄ +
m∑
i=1

βiTi (2.9)

Because the initial Optical Flow estimate for correspondence might contain errors, a

bootstrap approach is applied to improve the model. The most significant parameters of

the current model are used to fit the training scans, and these fitted estimates are used as

initialization for a next round of optical flow correspondence estimation. This is repeated

with an increasing number of model coefficients, until the quality of the model is satisfying.
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Fitting Similar to the “Active” part in AAMs, a 3D Morphable Model can be fitted to

a two-dimensional image. This is again done in an Analysis-by-Synthesis manner: The

iterative process is started from a set of initial model parameters. Then a model instance

(an actual face) is calculated from these parameters, and an error between generated

instance and the input image is estimated. Based on this error measure, the parameters

of the model are updated, so it represents the input image more closely. This process is

repeated until the fit is good enough.

A comparison with AAMs shows some major differences. The number of vertices

that define the topology of the object is much higher for 3DMM. Blanz & Vetter use

tens of thousands, while the sparse mesh of Active Appearance Models usually contains

only some dozens of feature points. Furthermore, 3DMMs contain information about the

third dimension of the object, whilst AAMs only model two dimensions. This enables the

separation of appearance, shape and the influence of light, shadow and different poses.

Another difference is how the parameter update is calculated. For 3DMM it is based on

the derivatives of the residual that are recalculated every step, while AAMs use only an

approximated, precalculated linear matrix.

2.3.1 Approaches & Improvements

Stochastic Newton In the original paper ([13]), Blanz and Vetter already proposed an

improvement for the fitting process. Instead of using a simple gradient descent optimiza-

tion, a stochastic variant of Newton’s algorithm is introduced. By randomly selecting only

a subset of all vertices for computing the error measure and the parameter update (and

resampling this selection from time to time), both some local minima are avoided and the

computation is accelerated.

Multiple Feature Fitting Rhomdani proposes in his thesis [68] not only to use the

pixel color feature to calculate the error measure, but also to include the information

extracted from edges, specular highlights and manual anchor points. The advantage is

that the overall cost function has better characteristics for optimization.

Sparse Features → Shape Parameters (and Dense Model) Quite often a set of

sparse feature points at the interesting locations of a face is available. Several works try to

compute the shape and texture parameters and therefore the dense model of the underlying

face from those few points. Hu et al. [37] derive only the shape parameters from some 80

feature points, and refine the resulting mesh using interpolation. The texture is extracted
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only from the input image, and the major shortcoming of their method is that it only

works for a predefined pose.

Blanz et al. [12] provide several improvements. Through regularization the recon-

struction is stable w.r.t. noise in the feature points, and can be calculated directly in one

step. Pose estimation (translation, rotation and scale) is included by adding linear and

linearized (for rotation) coefficients to the model - due to this approximation usually two

iterative steps are needed for the final result. In addition to [37], not only discrete feature

points, but also directional constraints are allowed to describe the face.

Combination with AAM’s Several researchers explored the combination of Active

Appearance Models with 3DMM. Faggian et al. [27] trained two AAM’s with data varying

in pose and identity. Those training examples were synthesized using a 3DMM with

random shape and texture parameters and yaw rotation steps of 5 degrees. Input images

are then fitted by the so-generated AAM’s and the full 3D model is reconstructed using

the method described in [12] and the previous paragraph.

Xiao et al. explore the possibilities of AAMs to encode the same information as 3DMM

do. They come to the conclusion that with at most 6 times more parameters Active

Appearance Models are able to model the same information/objects/faces as 3DMM do.

But furthermore, those models also generate non-plausible instances, and so they use 3D

information (either obtained from a structure-from-motion algorithm or from a 3DMM)

to restrict the fitting of AAMs. The speed for fitting is even faster than for a regular AAM

because of the restricted flexibility.

ICIA applied to 3DMM Baker and Matthews [5] developed a fast algorithm for the

fitting of Active Appearance Models called Inverse Compositional Image Alignment. The

usual parameter update in the iterative fitting step is an additive one. It combines an

incremental parameter update with the current parameter and afterwards computes a

new model instance. In contrast to that, the compositional approach first computes a

model update and composes it with the current model. By furthermore inverting the role

of template (model instance) and input image, it is possible to precompute the Jacobian

and allow faster iterations.

Romdhani and Vetter adopted the ICIA for 3DMM in [69]. They showed that some

simplifications made in [5] do not hold for dense meshes, and modify the original algorithm

w.r.t. those shortcomings. Furthermore, also the texture parameters are included in

the algorithm. The disadvantages of this algorithm are that only weak perspective is
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considered, and only a very simple illumination model (ambient light) is allowed.

2.4 Areas of Application

In this section an overview is given of the areas statistical shape models (and 3D Morphable

Models in particular) are used. For most of those areas also alternative approaches exist

and are therefore mentioned too.

2.4.1 3D Face Recognition

Face recognition is one of the most obvious, but also most challenging tasks that a com-

puter may perform. Humans easily recognize and identify other human faces very fast and

under varying conditions.

For computers two tasks are distinguished: Identification (recognition) is the matching

of an unidentified person against a database that contains a set of registered persons.

Verification (authentication) is the process of checking if a person is the one she claims

to be. Usually a face recognition system is not able to perform well in both scenarios,

because they have oppositional requirements.

Although there exist a lot of algorithms for face recognition [61], [1], most of them

perform well only under standard conditions. A major influence on the performance plays

the illumination of the subject. Recognition at frontal pose works quite well, but if the head

turns by more than a few degrees, a significant performance degradation can be observed

[31]. Also variations of the subject such as expression, aging and facial hair affect most

algorithms. Occlusions of the subject (sun glasses, hats, . . . ) usually have a large impact

on the recognition rate. So the robustness of an algorithm is greatly influenced by these

conditions, and the “ideal” algorithm would perform well under all of them.

In this section, an overview only over 3d recognition algorithms is given. 2d algorithms

work on image data that is “flat” - i.e. the usual images - and are treated in the next

chapter 2.4.2. In contrast 3D algorithms use the three-dimensional information that rep-

resents the shape of a face. For shape-only algorithms, this is the only information they

use to perform recognition, while multi-modal algorithms use both the shape and a 2D

texture (the color of the face).

Most of the face recognition algorithms follow this sequence:

Data acquisition The necessary face data is captured by a 3D scanner. Widely used are

laser scanners, stereo camera pairs and structured light cameras. Laser scanners project a
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laser beam light sheet onto the object, and using a camera the coordinates of the profile can

be triangulated [40]. The stereo camera technique uses two cameras placed slightly apart,

and the 3D coordinates of the viewed object are computed using stereoscopic algorithms

[6]. Structured light scanners project different regular patterns of light on the object and

can derive the shape by the way the patterns are deformed [66].

Preprocessing The raw data obtained from 3d scanners usually contains several arti-

facts. Laser scanners produce spikes and holes that can be cleaned by using (for example)

median cut or radial basis functions respectively. Some algorithms are sensitive to the

data resolution, which requires the resampling of the data to a specified raster. If the

adopted algorithm needs normalized pose, the rigid alignment of the face data is also done

in this step.

Extract information The core part of all algorithms is to extract the metadata from

the preprocessed scans. In the ideal case this metadata characterizes the captured face

uniquely and is robust / invariant to distortions (expression, lighting, facial hair, etc. -

see above). Research literature brought up a wide variety of approaches to address this

topic (see survey [70]). Some examples are:

• Curvature: Based on the Gaussian curvature, the image is segmented and the regions

are characterized by Extended Gaussian Images [72]

• ICP: By using the Iterative Closest Point algorithm (see section 3.4.1.1) the best

match in the database is determined. To account for non-rigid deformations, Thin

Plate Splines have been used [50].

• Profile: Both horizontal and vertical profiles are used for the description of the face.

• Point signatures: The region around some points of interest is characterized by

signatures [18].

• Template matching: The parameters of a deformable template are iteratively ad-

justed to fit the given data. A member of this algorithm family is the 3D Morphable

Model that is detailed in this thesis. Another variant is given by Ansari and Abdel-

Mottaleb [4] where the parameters of the 3D model Candide are tuned.
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Database comparison The information extracted in the previous step is compared to

the samples in the gallery. For recognition (identification), the best match is searched,

whereas for authentication (verification) the match has to surpass a certain threshold.

Many algorithms perform this database search implicitly during the previous step of meta-

data extraction.

3D Morphable Models can be used in a variety of ways for 3D face recognition. The

direct approach to fit a 3DMM directly to the cylindrically parametrized data has been

shown in [13]. In contrast, Amberg et al. [2] use the 3DMM only to regularize a non-rigid

ICP variant (OSNRICP, see section 3.4.4) that matches the data. Another use scenario is

to first reconstruct the 3D shape of a face given in a 2D image by the Morphable Model

Method, and then do the actual recognition with another algorithm. But of course also

the actual model parameters easily lend themselves as the basis for recognition.

2.4.2 Normalization (ICAO) & 2D Face Recognition

Most of the data that represents human faces is available in the form of two-dimensional

images. Having evolved from the analog pin-hole camera to high quality digital cameras

nowadays, the type of devices that produces this kind of data is widely present and lots of

images are readily available. But nevertheless, there are some significant problems when

dealing with human faces in 2d images. Several distortions occur in the process of image

acquisition, which can either be introduced by the subject or the acquisition process [22].

A first variation is introduced by the relative pose of the person and the camera. Also

human expressions add significant differences to portraits (especially around the mouth

occur large deformations), as do accessories such as sunglasses, hats, . . . . If some time

passes between capturing two images of the same person, also aging has an influence.

Illumination is one of the most important conditions in the acquisition process, others are

the sharpness of the photograph, the resolution and representation of the image.

It would be ideal to have the face images in a normalized form. Normalization means

that the pose of the face is defined (usually frontal view), the person presenting a neutral

expression and the scene is shot under specified illumination. The ICAO (International

Civil Aviation Organization) division for Machine Readable Travel Documents laid the

foundations for the ISO/IEC standard 19794-5:2005 [39] that provides a detailed speci-

fication of how facial images should look like. The eyes are taken as fixed points in a

defined coordinate system, and the pose deviation has to be less than 5◦ from frontal.

Furthermore, conditions for valid pictures are concerned with facial expression, lightning



16 Chapter 2. Statistical Shape and Appearance Models

conditions, the eye-looking direction and more.

Normalized faces are used in a wide variety of areas. Their main advantage is that

those photos are easier to compare. Therefore they are deployed in passports and similar

official documents to allow easier recognition and verification both for humans (e.g. border

control, police, . . . ) and computers (automated 2D face recognition).

The computer identification or verification of faces in two-dimensional images can

be roughly separated into 3 key parts: (a) face detection / segmentation, (b) feature

extraction and (c) recognition / identification. Face detection and segmentation finds the

place where the face is located in the 2D photograph and segments it from a probably

cluttered background. Often detection and feature extraction happen simultaneously.

Features are both local characteristics such as lines of fiducial points and facial features

such as mouth, eyes and nose. The extracted features are then used to compare the input

to a database of previously stored templates. The categorization in holistic, feature-based

(local, structural) and hybrid matching methods has been suggested from psychological

studies [73]. The oldest approach is the feature-based comparison, where the locations of

feature points are evaluated and matched against the faces in a database. Bledsoe [15]

for example used the normalized distances between fiducial points such as the corners of

the eyes or the mouth. In contrast the holistic or global approach observes the face as

an entity and tries to match the whole template against the stored database. Examples

of this category are the “Eigenfaces” [74] or “Fisherfaces” [8]. Hybrid methods finally

merge both local and global information of a face to perform a reliable matching to the

database. The Flexible Appearance Model [45] as a representative of this category is

specified both by its overall shape as by local gray-level profiles at the model points.

Most modern face recognition algorithms use hybrid methods as this potentially provides

the most information to identify or verify human faces. An extensive overview of 2D face

recognition is given by Zhao et al. [81], and Abate [1] also tries to compare the performance

of the most important algorithms. To compare current face recognition systems is also

the goal of the Face Recognition Vendor Test [64].

3D Morphable Models can be used both to generate and evaluate normalized faces.

For generation, the model is fitted to an input image. Because the illumination and

pose are separated from the model itself, the generated 3d model can be rendered under

standardized lightning and pose. And if the model also contains expression modalities,

the mimic of the model could be neutralized too. On the other hand, to evaluate whether

an image fulfills standards, only the fitted parameters (expression, rendering, light, pose)
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have to be analyzed.

In face recognition, 3D Morphable Models can be used to provide normalized images

to recognition algorithms, which have problems with variations in illumination, pose, etc.

Tests in the FRVT 2002 show, that this use of 3DMM significantly improves the perfor-

mance of traditional face recognition systems (Phillips et al. [63], report up to 62 percent

better identification performance). But also the direct use of the model parameters that

are determined by fitting a 3DMM to a photograph can be used for face recognition [14].

2.4.3 Pose Estimation & Tracking

The pose of the human head plays an important role in the communication between hu-

mans. From active interaction by nodding to answer somebody’s question, over subcon-

scious signals that signal (dis-)agreement, up to noticing a persons focus of attention by

the pose of her head and eyes, computers are excluded from an essential area of interaction

and observation if they are not able to estimate a humans head pose.

The research community has brought up a lot of algorithms that try to solve the

problem, and the survey of Murphy-Chutorian [56] provides an up-to-date starting point

into this topic.

When a 3D Morphable Model is matched to an image, the pose parameters (position,

rotation angles) are explicitly fitted. This allows a quite exact estimate of the pose, also

because the model accounts for inter-subject differences. One problem can be the region of

convergence of the original fitting algorithm that usually does not span the whole domain

(e.g. vertical rotation from -90◦ to 90◦). Either several initializations from where the

fitting is started, or a fitting algorithm with a broader convergence region should be tried

in this case.

2.4.4 Training & Test Data Synthesis

In computer vision, a lot of algorithms draw the knowledge to identify or discriminate

objects from a training data set. They interpolate between different objects, learn the

common or distinguishing features of object categories and use the data set to account

for varying conditions. Some selected examples are artificial neural networks, Bayesian

learning - also 3D Morphable Models are constructed from a learning data set. But all

these approaches have a large disadvantage in common: It is a tedious and labor-intensive

process to build a training database, especially if the “objects” are humans.

Another equally tedious task is to build databases to test and evaluate algorithms
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- the reader may just think of face recognition algorithms, where several thousands of

individuals can be necessary to assess the quality of an algorithm [64].

3D Morphable Models can be used to generate synthetic images of faces. Via shape

and texture parameters, different identities can be created, and the rendering and light

parameters account for variations in pose and illumination. If the model includes expres-

sion parameters, even images with varying mimics can be synthesized. The advantages

are a very fast creation of such databases, and the known “ground-truth” parametrization

of light and pose.

Heisele et al. [78] used 3DMM to provide images of one person under different pose

and illumination. They fitted the model to three input images of every person, and then

generated many training images under varying pose and illumination. On components of

those training images, a SVM for every person learned to distinguish between the person

and all the other subjects in the database.

2.4.5 3D Face Animation

Three-dimensional animations play a more and more important role in our lives. Most

cinema movies contain at least some animations, realistic images are generated from com-

puter models and instead of doing sports in the real world, people sit on their couches

playing interactive games. To realistically model humans in those virtual worlds, the

animation of the face plays a very important role.

But it is quite difficult to describe expressions in terms that are understandable for

computers. One approach that is taken by the 3DMM is to annotate some images with

the expressions they represent, and let an algorithm learn them. For every expression one

or more coefficients are added to the model. Due to this representation, the model can

not only “fit” the exactly same expressions that it learned, but also their linear variations

and combinations - e.g. a little bit of smiling whilst forming the vocal “o”. By fitting an

unknown face in an image, the computer can therefore derive the expression (and other

modes such as male-female, facial weight, . . . learned by the model) as numeric coefficients.

The next possibility is to transfer such an expression to a different face. This is done by

adding the expression coefficients of the intended “mimic” to the neutral target face. But

also a new expression can be generated by numerically describing its coefficients.

There are a lot of practical applications that emerge from this use of 3DMM. The

animation of still images is one of the most obvious. Who has not tried to capture a group

photograph where on each image, a person has its eyes closed or another looks grimly. But
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having an animated 3D model of a person, it is also possible to produce a whole movie

without her personal attendance (e.g. after her dead). In interactive games, the animated

alter ego is generated from one captured image. By using this technique also for video

conferences, it has another advantage: the representation of a face and its expression by

3DMM coefficients is also very compact and can therefore be transmitted very effectively.

2.5 Conclusion

In this chapter we give an overview over Statistical Shape and Appearance Models, and

point out some historical stations on the way of their evolution. Then the concept of

both Active Appearance Models and the 3D Morphable Model is laid out, and some of

their properties are compared. Finally, the some of the many areas where 3D Morphable

Models prove to be useful are elaborated.

3D Morphable Models are studied in detail in the rest of this work, because they have

some interesting and promising properties: The extension to the third dimension allows to

explicitly describe and calculate the pose and lighting of a face. This is not only important

for the generation and rendering of a new face, but especially for the analysis and the fitting

of a persons photograph with unknown pose and illumination. Furthermore the curvature

of a persons face (an implicit property of a three-dimensional model) is useful for its

identification and characterization. In contrast to several other 2D and 3D models, the

level of detail of 3DMMs (density of the underlying triangle mesh) is much higher, which

makes the creation of very realistic faces possible. The holistic approach allows a very

efficient representation of a complete human face with only a few numerical coefficients.

This representation can also be used to transfer and modify identities or expressions from

one head to another.
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The statistical model is one basic pillar of the 3DMM framework. It contains the

condensed knowledge learned from the samples that it is built of. The goal of this chapter

is to describe the algorithm to automatically construct an accurate and well-formed 3D

morphable face model from a database of raw 3D scans of human heads.

The complete procedure from the raw scans to the final model involves several areas

of computer vision. It begins with the collection of raw head data in form of shape

coordinates and a corresponding texture (section 3.1). The raw data is preprocessed for

artifact correction in the next section. The triangle mesh defining the topology of a head

scan is cropped and simplified in section 3.3. The main step in constructing a 3DMM

consists of establishing dense and accurate 3D correspondence (section 3.4) between all

the head scans. Using the registered head scans, mean shape and texture are calculated.

Further statistic properties are determined by the Principal Component Analysis in section

3.5, which removes redundancy from the data and transforms the model to a new, more

efficient coordinate system.
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Figure 3.1: Building a 3D Morphable Model

3.1 Head Scan Database

The basis of the 3D Morphable Model is formed by a large database of human head scans

that comprises more than 9.000 subjects.

As part of the “Steirische Landesausstellung 2000 comm.gr2000az”, a Cyberware 3030

laser scanner∗ was used to capture high-resolution models. This device produces radial

range maps r(h, ϕ) with 512 angle steps ϕ and 512 height steps h. Furthermore, for each

data point RGB color information R(h, ϕ), G(h, ϕ), B(h, ϕ) is given. Figure 3.2 shows an

example of a height and texture map. The resolution of the scan per data point is 8 bit

for the height map and 8 bit per color channel and data point.

(a) (b) (c)

Figure 3.2: (a) Height map, (b) the corresponding texture and (c) a rendering of a head
scan

∗Cyberware 3030 3D Color Scanhead http://www.cyberware.com/products/scanners/3030.html.
Accessed on November 7, 2008

http://www.cyberware.com/products/scanners/3030.html
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This laser scanner obtains the data by projecting a laser light stripe on the facial

surface and capturing the resulting profile using a digital camera. Along the stripe it

calculates the 3D locations of points, and simultaneously extracts the texture color for

each of these points under uniform illumination.

There are two main alternative techniques to the laser scanner for 3D face data acqui-

sition. Using a pair of cameras, the stereoscopic system captures images of the face from

two different viewpoints and calculates the 3D shape by a triangulation of corresponding

points. The Geometrix system† uses this method. The other option for capturing three-

dimensional images of faces uses varying structured light patterns. These patterns are

projected on the face and can be used to deduce its 3D shape. The Minolta scanner‡ is

a representative of this category. To improve the quality and density of corresponding

points, the 3dMD face system§ uses both structured light patterns and a pair of cameras

to derive the shape of a face.

Our database contains one sample of every subject. These subjects vary with respect

to age (from child to grandpa), color skin (majority is white) and gender. Some of the

male subjects have beard or mustache, and some subjects wear ear rings or studs. Only

a small minority is smiling or has the mouth opened, the majority poses with neutral

expression and closed mouth. Eyeglasses are taken off during the scan acquisition.

Due to the radial (cylindrical) way of capturing the data, some problems can not

be avoided. Subjects that are displaced from the radial axis are sampled non-uniformly.

Another issue occurs with non-convex structures, which can not be sampled completely by

a radial laser beam. This is intuitively understandable for the region of nostrils or the ear.

For our model, the region behind the chin (called “submandibular triangle”) has greater

influence, but is not recorded correctly for some persons with a pointy chin (see Fig. 3.3).

Hair influences the scans in two ways. It is nearly impossible to be captured correctly

due to its fine structure. And some subjects cover parts of their facial region because of a

special hairstyle (fringes, emo-style, . . . ).

Another inaccuracy occurs due to the movement of subjects during the capture pro-

cess. If the subjects head is displaced when the scan head rotates around it, incorrect

measurements are made. Sometimes this can be detected, if the vertical scan line at the

start and end (0◦ and 360◦ respectively) are not equal.

†Geometrix. http://www.geometrix.com/. Accessed on March 24, 2010
‡KONICA MINOLTA VIVID 9i-Non-contact 3D Digitizer. http://www.konicaminolta.com/

instruments/products/3d/non-contact/vivid9i/index.html. Accessed on March 24, 2010
§3dMDface System: http://www.3dmd.com/3dmdface.html. Accessed on March 24, 2010

http://www.geometrix.com/
http://www.konicaminolta.com/instruments/products/3d/non-contact/vivid9i/index.html
http://www.konicaminolta.com/instruments/products/3d/non-contact/vivid9i/index.html
http://www.3dmd.com/3dmdface.html
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Figure 3.3: Incorrectly captured chin due to its non-convexity and the radial sampling
method of the laser

The scans are stored in the proprietary echo file format¶. The first part of an echo file

is constituted by an ASCII header that describes the parameters of the scan. The angular

increments between the horizontal scan profiles, the height of horizontal start, end and

increment of the data points, and meta data such as recording date, scan name etc. are

stored. The second part (following the DATA tag in the header) contains the actual

measurements. For every angular increment there is a group of data points describing the

profile of the object. The radius in microns at a data point consists of a 4 byte long integer

(big-endian) that is compressed by cutting off the last two bytes. For further processing,

a simple cylinder mesh was used to tessellate the laser scan.

3.2 Preprocessing

The raw result given by the scanner contains artifacts such as spikes and holes in the mesh.

Spikes are mostly caused by highly reflective areas (e.g. the eyeball or earrings), while

holes occur both in the area of non-reflective parts and regions that can not be reached by

the laser beam. Although there exist algorithms for automated correction of those errors

([28], [79], . . . ), they have been removed manually after the scanning process using a mesh

editing tool in this case.

¶Echo File Format. ftp://ftp.cyberware.com/pub/echoFormat.tar.gz. Accessed on June 28, 2009

ftp://ftp.cyberware.com/pub/echoFormat.tar.gz
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3.3 Mesh Simplification

The data points constituting the mesh of the head scan are more or less spatial uniformly

tessellated (see section 3.1). To reduce the computational effort in the following steps, the

mesh can be simplified at regions with little details.

Most algorithms work by iteratively merging vertices, and thereby simplify not only

the mesh but also the topology. The used qslim [30] is an iterative algorithm. First for all

vertex pairs that can be merged, an optimal new vertex location v̄ is determined by using

a quadric error norm ∆(v̄).

∆(v̄) = v̄TQv̄ (3.1)

The vertex pair with lowest cost of contraction (error at the optimal location) is merged

and for all neighboring vertices, we update their error measures. This error norm represents

the squared sum of the distances between the vertex and a set of relevant planes. Its matrix

Q is initially calculated for all vertices using their adjoining planes. The update of the

error measure is approximated by summing up the Q-matrices:

Q̄ = Q1 +Q2 (3.2)

This contraction of vertices is repeated until the desired level of detail is reached.

Figure 3.4 shows the simplified mesh of a head with 20.000 triangles and 10.424 vertices.

The higher density of the mesh at important regions such as mouth and eyes can be seen

clearly.

qslim has been chosen because the algorithm preserves structural details (“high quality

simplification”), is fast, fully automatic and there exists a free implementation∥.

This algorithm is applied to one head scan that is chosen as the template for es-

tablishing correspondence in section 3.4. The disadvantage of this approach is that the

simplification is based on one actual template. Therefore the final model may contain a

dense mesh at regions that are characteristic only for that specific instance (e.g. birth-

mark), but can have a sparse mesh at other regions that are specific to various samples in

the database (e.g. at the cheek, where other persons may have dimples). This shortcoming

can be adressed by basing the simplification on all subjects in the database [77], although

the technique described there requires manual labeling for every scan.

∥QSlim Simplification Software. http://mgarland.org/software/qslim.html. Accessed on March 24,
2010

http://mgarland.org/software/qslim.html
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Figure 3.4: Simplified mesh with 20.000 triangles and 10.424 vertices .

3.4 3D Correspondence

Two head scans (represented by a number of vertices) can informally said to be in corre-

spondence, when all the vertices in these two scans lie at the same semantic position of

the face - e.g. in both scans the fiftieth vertex is located exactly at the tip of the nose.

Then a scan can be represented by a shape vector S̃ = [x1, y1, z1, x2, ..., yn, zn]
T ∈

R3n where xi, yi and zi are the coordinates for all n vertices, and a texture vector T̃ =

[R1, G1, B1, R2, ..., Gn, Bn]
T ∈ R3n that contains the red, green and blue color values for

each vertex. The topology of the vertices is defined by a generic mesh for all scans.

A more formal definition first requires the introduction of landmark points. They are

prominent characteristic locations that can be identified in every instance of an object. In

the category of faces for example, the corners of eyes and the mouth, and the tip of the

nose lend themselves to be used as landmarks.

Based on those landmarks, correspondence can be defined as the spatial mapping of

landmark vertices between two scans. To find this elastic transformation of one prototype

onto the other, several approaches have been developed. In the following subsections,

Thin Plate Splines, Optical Flow and a non-rigid variant of the Iterative Closest Point

algorithm are discussed. For building a 3D Morphable Model, it is necessary to not only

establish the correspondence between the sparsely distributed landmark points, but also
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a dense correspondence (i.e. between all the vertices of a densely sampled model) in all

regions of the face. Therefore the Thin Plate Splines are not usable for our task. The

dense correspondence can be difficult to determine exactly for structures that have no

counterpart in another face (like birthmarks, scars, . . . ) or for “low contrast areas” (as

the cheek). The algorithm chosen (OSNRICP, section 3.4.4) smoothly interpolates the

correspondence field for such cases. Optical Flow can also be adapted to provide this

interpolation, but the data of the head scans proved to be to noisy (dangling hair, etc.)

for this approach. In contrast, the non-rigid ICP variant works well also for those distorted

samples and has therefore been used in the practical implementation.

3.4.1 Rigid Alignment

Most algorithms that establish correspondence between two scans need a rough initializa-

tion, and rigid alignment provides a sufficient starting point. A transformation denoted

as rigid is constituted only from translation and rotation. In our case, the framework’s

rigid alignment step also includes a scaling transformation, which by the exact definition

is not a rigid transformation. But the non-rigid correspondence finding that follows after

the rigid alignment needs the two scans to resemble each other up to a certain degree,

which can be only achieved by bringing them to the approximately same scale.

The raw head scans in the used database are coarsely aligned with respect to the

vertical position, but are arbitrarily rotated around the vertical axis. So in a first step a

face detector that employs AdaBoost [71] has been applied onto the texture of the scans

to determine the facial region (eyes and mouth). In this region the nose can be identified

in the range map as the point with maximum elevation and serves as a first landmark

point for rough alignment.

Starting from this rough initialization, the Iterative Closest Point Algorithm (ICP) is

used to provide a finer rigid alignment and a good estimate of scale.

3.4.1.1 Iterative Closest Point Algorithm

The Iterative Closest Point algorithm (ICP) is a popular algorithm to align two free-form

surfaces (S1, S2) that are represented by a set of points (X1, X2). It has first been

described by Besl and McKay [10].

The algorithm consists of two steps. First, for every point x1 in the template mesh

X1, the closest point to it on the target surface S2 is searched by finding the point x2

with minimal Euclidean distance min(∥ x1 − x2 ∥). To speed up the search time, usually
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a k-d-tree is built from the template points X1 and used to discover the closest points.

The second step is to find a rigid / affine transformation A that minimizes the squared

distance between the two point sets based on the temporary correspondence (closest

points) established in the first step. The Procrustes alignment 3.4.1.2 can be used to

compute this transformation. It is then applied to the target surface S2,new = A(S2).

Those two steps are iterated until the distance between the two surfaces falls below a

predefined threshold. All the iterative transformations in the second step are combined

to determine the absolute transformation that best aligns the two surfaces. The ICP

algorithm has a very fast convergence, but the region of convergence is limited - it is not

guaranteed to find a global minimum. Therefore either a rough initialization (the nose

was used for the head scans in our case) or multiple runs with different starting points

have to be used.

3.4.1.2 Procrustes Algorithm

The algorithm named after a cruel Greek legend is used to determine the rigid transforma-

tion A that minimizes the Procrustes distance d between two sets of corresponding points

X1 and X2 (usually those correspondening points have been determined in the previous

step of the ICP algorithm 3.4.1.1).

d =
√
(x1,1 − x2,1)2 + (x1,2 − x2,2)2 + . . .+ (x1,n − x2,n)2 (3.3)

The Procrustes analysis is often used as second step in the ICP algorithm. First both

point sets X1 and X2 are aligned to their center of mass.

X1,centered = X1 −mean(X1) X2,centered = X2 −mean(X2) (3.4)

Then a Singular Value Decomposition (SVD) is used to extract the rotation that

minimizes the distance d. It is computed on the covariance matrix H of the two centered

point sets

H = XT
1,centeredX2,centered (3.5)

SVD decomposes this matrix H into an orthonormal matrix U , a diagonal matrix Σ

that contains the singular values of H in the main diagonal and the transpose of another

orthonormal matrix V
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svd(H) = UΣV T (3.6)

The rotation R that minimizes the Procrustes distance between the two point sets

(best alignment in a least squares sense) can then be computed using the matrix

D = diag([1, 1, det(V ∗ UT )]) (3.7)

as follows

R = V ∗D ∗ UT (3.8)

In our case not only the rigid alignment is determined, but also a similarity transform

(uniform scaling s)

s =

∑
RX1,centeredẊ2,centered∑
X1,centeredẊ1,centered

(3.9)

To complete the Procrustes Analysis (in the original analysis, scale s is not used here),

the translation t can finally be computed by

t = mean(X2)− sRmean(X1) (3.10)

3.4.2 Thin Plate Splines

Thin Plate Splines (TPS) [17] provide a smooth interpolation of a deformation defined at

some fixed points. The technique is inspired by the physical analogon of bending a thin

metallic plate that is clamped to a few anchors. For our 3D correspondence, those anchors

pi are an otherwise (i.e. through manual labeling) given set of sparse correspondences.

Between them, the TPS generates a smooth field of intermediate correspondences.

The smoothness constraint of the displacement field is fulfilled by minimizing a func-

tional u(x) of the following form (for the 3-dimensional case):

u(x) =

4∑
ν=1

aνϕν(x) +

n∑
i=1

wiU(x,pi) (3.11)

This functional represents the added bending energy of thin plates that are fixed at the

defined sparse correspondence points. The kernel U(x,pi), a special radial basis function,

is the central part of this formulation. The other part of the functional is constituted by
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the affine transformations ϕν . For further details see the chapter on TPS in [67].

The big advantage of this formulation is that there exists a closed-form solution for

the minimization, that therefore can be calculated efficiently.

But TPS need a sparse set of correspondence points to interpolate the dense mapping.

A first approach would be to manually define the landmark points in all examples. But for

large databases, this method is not feasible. Therefore, for our framework it has not been

used. Patel et al. [58] nevertheless did that manual work. They located the landmark

points in all scans they use for the construction and build the dense correspondence using

the here described Thin Plate Splines. The approach of Chui and Rangarajan [19] is much

more robust with respect to outliers in the correspondence points by using deterministic

annealing. Therefore it could probably be applied to a set of unreliable correspondence

points that have been automatically located by a feature detector.

3.4.3 Optical Flow

Optical Flow estimates the correspondence between two images by making the basic as-

sumption, that pixel intensity does not change over time and motion. It has been used

to track the motion of an object through a time-series of images, or to determine the

deformation of an object between two images. The basic assumption can be formulated

as follows (where I is the image intensity at a given pixel location x, y at a given time t):

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (3.12)

The problem with this basic formulation is that it is underconstrained and can therefore

not be solved in a deterministic way. There exist two major algorithmic directions that

introduce additional constraints to allow the Optical Flow problem to be solved.

The optical flow algorithm developed by Lucas and Kanade [51] assumes, that the

intensity not only of one pixel but also of the region around it stays constant over an

incremental time and motion step. Using this constraint, the optical flow field can be

computed in a non-iterative manner between two images. The problem of this approach

is that at areas with little intensity variation, the correspondence is not very well defined.

Horn and Schunk [35] on the other hand tackle the aperture problem by introducing

a smoothness condition for the optical flow field. This has the advantage of providing a

dense correspondence field also at regions with low contrast.

In practice, both algorithms are applied in a coarse-to-fine manner to avoid being

trapped in local minima and for faster computation. This solves some of the problems of
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Optical Flow with large displacements and aliasing. But other conditions such as varying

illumination or heavy noise pose difficulties for many OF approaches. Hair dangling in

the face was one of the main “noise” sources in the scans of our database, and therefore,

another algorithm detailed in the next section is used to establish 3D correspondence in

our framework.

Blanz and Vetter [13] use a hierarchical optical flow algorithm [9] to establish corre-

spondence between their scans. This algorithm is based on the idea of Lucas and Kanade,

but applies the aforementioned coarse-to-fine steps. Furthermore, Blanz and Vetter apply

a smoothing step in every iteration to the flow field to obtain a continuous correspon-

dence. From a first temporary correspondence, a model is built, the scan is approximately

matched, and the optical flow is computed again to get a more precise model.

3.4.4 Optimal Step Non-Rigid ICP

In search for an algorithm to establish a dense 3D correspondence between a 3D template

V and a target T that is also robust to holes, Amberg et al. [3] extended the idea of the

Iterative Closest Point algorithm to non-rigid deformations.

The main idea is to assign an affine transformation Xi to every vertex vi of the template

V – instead of one global transformation for all vertices in case of the conventional ICP.

Those transformations should warp the template in a way such that it matches the target

surface T as close (defined by an error norm, see equation 3.13) as possible. At the same

time, the transformations have to fulfill some constraints such as minimizing a landmark

term and a smoothness regularization. The main steps of the algorithm are presented

here, but for a more detailed description see the original paper [3].

As the regular ICP algorithm, OSNRICP consists of two steps that are iteratively

repeated. The first step is to establish a temporary point correspondence (ui, vi) between

the target vertices ui ∈ T and the template vertices vi ∈ V . This is again done by a nearest

neighbor search, assisted by a k-d-tree built from the template points. The second step is

to deform the template based on this temporary correspondence in the most optimal way.

The error measure E(X), parametrized with the local affine transformations X, needs to

be minimized to find this optimal deformation.

E(X) = Ed(X) + Es(X) (3.13)

The first part of this error function Ed describes the distance between the two surfaces.

The reliability of each correspondence between two points is denoted by wi or W =
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diag(w1, . . . , wn) for all of them.

Ed(X) :=
∑
vi∈V

wi ∥ Xivi − ui ∥2= ∥(W ⊗ I3)




X1

. . .

Xn




v1
...

vn

−


u1
...

u2


∥2

(3.14)

Using this formulation, it is not easy to differentiate the error function (for minimiza-

tion). By reformulating it, it is easier to compute the first derivative, from which the

minimum can be determined by setting it to 0.

D :=


vT1

vT2
. . .

vTn

 (3.15)

Ed(X) = ∥W (DX − U)∥2F (3.16)

The second part of the error function is an adjustable stiffness term that regularizes

the difference of transformations in the vertices neighborhood. Thereby, the deformation

changes are smoothed out.

Es(X) = α
∑

i,j∈edges
∥(Xi −Xj)G∥2F (3.17)

By varying the stiffness parameter α the regularization can be adjusted. A high value

only allows low local deformations and therefore the behavior converges to the traditional

ICP algorithm. Lowering this value allows the template to fit the target more accurately.

The equation can again be reformulated to simplify differentiation.

Es(X) = α∥(M ⊗G)X∥2F (3.18)

The matrix M describes the mesh of the template (one column per vertex, one row

per mesh edge, edge r connects vertices i and j: Mri = −1, Mrj = 1). The matrix

G = diag(1, 1, 1, γ) can be used to weight the rotational against the translational part by

a factor γ.

So the overall error function that has to be minimized can be written as
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E(X) = ∥

[
αM ⊗G

WD

]
X −

[
0

WU

]
∥2F = ∥AX −B∥ (3.19)

Given that the matrix A has full rank (for a proof see [3]), its pseudoinverse is

(ATA)−1AT and the optimal transformations are X = (ATA)−1ATB.

The procedure is started using a high stiffness value α, and iterating over the two

described steps until there are no significant changes anymore. Then α is gradually lowered

whilst carrying out the described iterations until the template resembles the target as close

as needed.

The advantage of this formulation is that for every iterative step (and temporary fixed

correspondence), the optimal local deformations have a closed form solution. Disadvantage

are the huge sparse matrices that are computationally costly with a growing number of

vertices.

Another nice property is that for areas that are missing in the target surface, the

corresponding areas in the template are deformed only by the existing neighbor vertices

through the regularization term. That allows a nice hole-filling characteristic that pre-

serves the prior shape of template. Furthermore, automatic downsampling is carried out

if the template mesh has a lower resolution (less points) than the target.

The formulation also allows the easy inclusion of a landmark term. This can be useful,

when the data has already some labeled feature points.

Disadvantages of the algorithm are the huge sparse matrices and the therefore costly

computations on them.

After applying this algorithm to the heads in the database, we obtain a set of registered

scans that form the basis of a face space.

3.4.5 Face Space

When face i is brought into correspondence, it can be described by shape vector

S̃i = [x1, y1, z1, x2, ..., yn, zn]
T ∈ R3n of n vertices (xi, yi, zi), a texture vector

T̃i = [R1, G1, B1, R2, ..., Gn, Bn]
T ∈ R3n containing RGB-color for each of the vertices and

a generic triangle mesh that represents the topology of the vertices. Using all the q faces

in correspondence, it is possible to span a space of faces. Every registered training face i

from the database adds another dimension to the space, and a valid new synthetic face

(shape and texture vector) is created by barycentric coordinates in it.
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S̃new =
∑q

i=1 aiS̃i where
∑q

i=1 ai = 1

T̃new =
∑q

i=1 biT̃i where
∑q

i=1 bi = 1
(3.20)

These linear combinations of the original faces create realistic synthetic ones.

Figure 3.5 shows some examples from the two-dimensional face space formed by the faces

at the left and right. The second face from the left in Figure 3.5 with the face space

coordinates a = b = (0.75, 0.25) is formed by

S̃new = 0.75 · S̃1 + 0.25 · S̃2 =



0.75x11 + 0.25x21

0.75y11 + 0.25y21

0.75z11 + 0.25z21

0.75x12 + 0.25x22
...

0.75y1n + 0.25y2n

0.75z1n + 0.25z2n


(3.21)

Figure 3.5: Examples from the two-dimensional face space formed by the faces at
the left and right. The coordinates a and b of the faces (equal for this figure) are
(1, 0); (0.75, 0.25); (0.5, 0.5); (0.25, 0.75); (0, 1)

To remove the constraint of the barycentric coordinates, the space can be slightly

modified by removing the mean from the dimensions. Then realistic faces are in the unit

sphere, and coordinates with greater distance from the center represent caricatures.

Disadvantages of this representation are its high dimensionality and the redundancy

it contains - if two similar faces form the basis of two separate dimensions, the same face

can be generated by the contribution of either one or the other dimension. A solution to

both of these problems is presented in the next chapter.
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3.5 Principal Component Analysis

Principal Component Analysis is a technique to reduce the dimensionality of data whilst

preserving as much information as possible. This is achieved by transforming the data to

a set of new orthogonal basis vectors and discard the most insignificant dimensions in the

new coordinate system (those dimensions where the data contains the least variance). It

has been invented independently by Pearson [59] in 1901 and Hotelling [36] in 1933 and

generalized by Karhunen-Love [49]. The book of Jolliffe [41] provides a comprehensive

treatment of the subject.

In science, it happens quite often that the data gathered is of very high dimensionality.

This can be inconvenient, because the computational cost and complexity rises with every

additional dimension. Furthermore, the data in some dimensions is often highly correlated,

so those dimensions add little information. Figure 3.6 shows a two-dimensional example

where the two variables are clearly correlated.

Figure 3.6: Dataset with two correlated variables

The principal components (PC) describe the directions in which a data set contains

the highest variance. In our example, the first PC is clearly the diagonal direction shown

in the diagram. The principal components are ordered by the amount of variation the

data contains in their respective direction, with the first PC containing most and the last

PC containing the least information. An important property of the principal components

is that they are orthogonal. They form the basis vectors of a new coordinate system to

which the data is transformed.

To find the principal components, several steps are necessary. First the mean has to

be removed from the data.

S̄ =
1

q

q∑
i=1

S̃i Ŝi = S̃i − S̄ (3.22)

Then these centered measurements Ŝi are combined into a matrix X
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X =


x̂1,1 ŷ1,1 ẑ1,1 x̂1,2 . . . ŷ1,n ẑ1,n

x̂2,1 ŷ2,1 ẑ2,1 x̂2,2 . . . ŷ2,n ẑ2,n
...

...
...

...
. . .

...
...

x̂q,1 ŷq,1 ẑq,1 x̂q,2 . . . ŷq,n ẑq,n


(3.23)

This matrix X contains our q observations (faces from the database that have been

brought into correspondence) with each 3n variables (mean-stripped vertex coordinates x̂,

ŷ and ẑ). The main step in calculating the Principal Components is done by a Singular

Value Decomposition. It factorizes X into

svd(X) = UΣV T (3.24)

The columns of the matrix V T , the eigenvectors of X, are the principal components

that we are interested in. Those Principal Components form the basis of the new coordi-

nate system that our data is transferred to. The variance of the data σ2 is proportional

to the square root of the diagonal elements of Σ, the singular values of X. By convention,

those singular values are in descending order. Therefore, the first Principal Component

(first column of V T ) is the most descriptive, as the data contains the most information

(variance) in its direction.

σ2
i =

(
Σi,i√
q − 1

)2

(3.25)

To calculate the coordinates of the original faces X in the space of the principal compo-

nents, they are multiplied by the principal components V T . The same coordinates result

from weighting U by the singular values in Σ.

A = XV T = UΣ (3.26)

The main goal of PCA is to reduce dimensionality without loosing too much informa-

tion. Before the transformation, the variance in the data is usually more or less equally

distributed. That means the different faces contain a lot of redundancy. After the PCA

transformation the most variance of the data is now represented by the first PC and the

least by the last PC. So we can discard the last few q −m Principal Components, while

making as little error as possible for the reconstruction ŷ.

a = x̂V T
1...m ŷ = aV1...m (3.27)
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Principal Component Analysis theoretically (assumptions at the end of this section)

finds the optimal transform for a given dataset X and a given dimensionality m with

respect to the error made in a least-squares sense.

e = x̂− ŷ (3.28)

How big this reconstruction error is for new data can be estimated using the singular

values of the corresponding dimensions

E(e) =

q∑
j=m+1

σ2
j e = ∥e∥2 (3.29)

To find a tradeoff between information loss (due to leaving out the last PCs) and a

lower dimensionality of the data representation, the usual method is to inspect the diagram

of variances. Figure 3.7(a) shows LEV-diagram (logarithmic eigenvalues) of the shapes of

our database.

An empirical method to chose the number of dimensions is to find the point where

the decrease of variance changes from exponential to polynomial (i.e. the point where the

LEV graph goes over in a more or less straight line) (see Jolliffe [41], chapters 6.1.3 and

6.2.2). But those methods rely only on the data and may not capture and encode the

information that is needed for a specific task. This is the reason why Meytlis and Sirovich

[54] try to determine the number of dimensions needed for face identification by making

experiments with humans. They suggest the use of about 100 dimensions.

In the case of our 3D Morphable Model, PCA was performed separately on shape and

texture of the registered 3D head scans (see Figure 3.8). The mean face (that is subtracted

from the dataset before performing the SVD) is shown at the left. The variance of the

data decreases sharply after a few components. The first and second principal component

are shown also in Figure 3.8. The first PC of texture gives the face either a light or a

dark complexion, whereas the second texture PC surprisingly models the gender of the

face. The main shape principal component varies the “fullness” of the face and the size

of the nose, and the third component generates narrow or round faces. A new face (S̃new,

T̃new) can be transformed into the PCA-Face-Space by removing the mean from it and

multiplying it with the m first model components Si that are stacked in the matrix V T
1...m.

αnew = (Snew − S̄)V T
1...k (3.30)

PCA is based on several premises. The assumption of linearity is made, and if the data
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Figure 3.7: Logarithmic eigenvalue diagram of both (a) shape and (b) texture
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Figure 3.8: Overview over the first two modes of the generated 3D Morphable Model

does not support this assumption, the analysis can not produce useful results. Consider

the measurements of a persons position on a ferris wheel - this could be easily described by

the phase of the wheel - but is a nonlinear combination of the original basis (Figure 3.9(a)).

Also if the data does not fulfill the orthogonality constraint, PCA has difficulties to gen-

erate a satisfying new basis (Figure 3.9(b)). The distribution of the data needs to be

Gaussian, or else the transformation may not be optimal in a least-squares sense. Finally

PCA fails too, if the importance of the data can not be derived from the variance.

But using PCA we were able to significantly reduce the dimensions in the “Face Space”

described in section 3.4.5. This reduces both computational costs and storage size of the

model, and emphasizes important modes. Other advantages of the Principal Component

Analysis are that it does not have any parameters to adjust, and it gives a plausibility

value for a face. How probable a face is can be calculated combining the variance (singular

values) with the coordinates of a face in the principal components space.
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(a) (b)

Figure 3.9: Cases for which PCA fails: (a) nonlinearly dependent variables, (b) non-
orthogonal variables

3.6 Conclusion

In this chapter we show how to build a 3D Morphable Face Model from a database of

raw head scans. Except for the preparation of the template face (mesh simplification,

cropping) and the choice of some parameters (number of PCA modes, stiffness parameters

for OSNRICP, . . . ) this is done in a completely automated manner - manually dealing

with every single head scan (e.g. selection of landmark points, . . . ) is not necessary. Using

the model, it is possible to generate realistic 3D models of human faces by choosing only

a few parameters for shape and texture.
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The goal of this chapter is to find a three-dimensional model that represents a face

given in a two-dimensional image as close as possible. Per se this is an ill-posed problem,

as during capture both depth-information is lost and also special lighting can result in

unrecognizable faces. But by using a 3D Morphable Model it is often possible to recover

this information. The “Fitting” in our 3DMM framework tries to estimate the model

coefficients α for shape and β for texture, along with the illumination of the scene and

the pose of the head with respect to the camera. This is done in an Analysis-by-Synthesis

manner. Starting with an initialization (the mean face), the actual estimate of the face

is rendered (section 4.1). The residual between the input image and the rendered face

(section 4.2) is calculated not on the whole face, but only on a randomly selected subset

of the face triangles. This randomized residual is derived with respect to the shape and

texture parameters, illumination and pose (section 4.3). An optimization routine (section

4.4) uses those derivatives and updates the model and rendering parameters, iteratively

41
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generating a model that approximates the input face more and more. For a further re-

finement of the generated face, an illumination-corrected texture (last section, 4.1.5) is

extracted from the input image and blended with the estimated model.

Figure 4.1: Structure diagram of 3DMM fitting process

4.1 Rendering Process / Image Synthesis

The Rendering Process generates a two-dimensional pixel image from a set of 3D vertices

under some given conditions. Its first step is the Modeling Transformation, where the

vertices are moved into the world coordinate system. Then the color of the 3d points is

determined given some light and reflectance properties. The rendering process tries to

model a pinhole camera, so a perspective projection makes more distant objects smaller in

the Viewing Transformation, which also “squeezes” the image into the desired dimensions

/ format. Still represented by a list of vertices, the “Rasterisation” step transforms our

model into the pixel image format. The color of all those pixels is determined in the final

Fragment Shading step.

In general, rendering can be quite an involved topic, if the result is intended to be very

realistic. From lens distortions over global illumination (ray tracing) up to more authentic

reflectance models, there are a lot of details that one has to deal with. In this work, a

simpler way was chosen because of easier mathematical handling (see derivatives), faster

computation and also because it gives sufficient realistic results.

In our framework a face or head is represented by a shape vector S calculated from a

linear combination of the shape components Si
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S =

m∑
i=1

αiSi =


x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn


of n three-dimensional vertices given in local coordinates, a triangle mesh

M =


v11 v12 · · · v1n

v21 v22 · · · v2n

v31 v32 · · · v3n


that defines the topology of the head and a texture vector T

T =
m∑
i=1

βiTi =


R1 R2 · · · Rn

G1 G2 · · · Gn

B1 B2 · · · Bn


containing a RGB color for every vertex (also calculated as a linear combination of the

texture components Ti.

Figure 4.2: Structure diagram of rendering process
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4.1.1 Modeling Transformation

The modeling transformation scales the face and moves it to a pose defined in world

coordinates. It only affects the shape vector S. First, the size of the face is modified

by the uniform scaling factor s - this operation can be represented as a homogeneous

multiplication matrix SC.

SC =


s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1

 (4.1)

Then the orientation is determined by three rotations. The first rotation around the

x-axis is also known as yaw (ϕx), pitch (ϕy) denotes the second rotation around the y-

axis, and the rotation with respect to the z-axis is called roll (ϕz). Those three rotations

are applied to the scaled shape vector by multiplying it with the following homogeneous

matrices.

Rx =


1 0 0 0

0 cosϕx − sinϕx 0

0 sinϕx cosϕx 0

0 0 0 1

 (4.2)

Ry =


cosϕy 0 sinϕy 0

0 1 0 0

− sinϕy 0 cosϕy 0

0 0 0 1

 (4.3)

Rz =


cosϕz − sinϕz 0 0

sinϕz cosϕz 0 0

0 0 1 0

0 0 0 1

 (4.4)

The last step in the modeling transformation is the translation. It moves the scaled

and rotated face to its final position. The translation again can be written as a matrix,

with tx, ty and tz being the movements along the x-, y- and z-axis respectively.
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T =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (4.5)

Homogeneous coordinates allow the combination of transformations by multiplying

their matrices. So the whole modeling transformation can be combined into one matrix

that is multiplied with the vertices homogeneous coordinates

Sh =

[
S

11×n

]
(4.6)

to perform all of the scaling, rotation and translation steps at once.

MV = T ·R · SC R = Rz ·Ry ·Rx (4.7)

The final shape in the world coordinate system Sw is then obtained by

Sw = MV · Sh (4.8)

4.1.2 Vertex Lighting / Shading / Lighting / Reflection Models

For a realistic rendering, the next important step is to add light to the scene and model

its interaction with the face. Two major approaches are distinguished: While local illumi-

nation only considers the interaction of the light that comes directly from the light source,

global illumination also includes the light that is reflected from other objects.

The Blinn-Phong reflection model is a local illumination model easy to model and to

compute, and it produces reasonable results. The color of a lit vertex is constituted of

three terms.

T ill
i = T a

i + T d
i + T s

i (4.9)

The first term T a
i represents the influence of the ambient lighting on the ith vertex.

It depends neither on the position of the viewer nor on the position of the light sources

and models the ambient light that results from diffuse, scattered light in the scene. The

resulting color is influenced both by the color of the ambient light La = diag(La
R, L

a
G, L

a
B)

and the texture color Ti = [Ri, Gi, Bi]
T .
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T a
i =


La
R 0 0

0 La
G 0

0 0 La
B

Ti (4.10)

The second term T d
i models the diffuse properties of the surface. The diffuse lighting

is independent of the viewer’s position, but depends on both the direction of the light

d and the surface normal n around the vertex. Lambert observed the diffuse part to be

brightest, if the normal vector and the light direction are identical, and that no diffuse

reflection happens if they are perpendicular. Between these two extremes the reflection

intensity decreases with the cosine of the angle between light and surface normal vector

(see equation 4.12). The color is influenced by the color of the directional light Ld and

again the texture color Ti.

T d
i =


Ld
R 0 0

0 Ld
G 0

0 0 Ld
B

(
< n, d > Ti

)
(4.11)

< n, d >= |n||d|cos(^(n, d)) (4.12)

The specular reflectance T s
i is influenced by all three of light direction d, viewers

direction v and surface normal n. An ideal specular (mirror-like) surface would reflect the

light only when the incidence angle is the same as the emergent angle: ^(d, n) = ^(v, n).
Rougher surfaces tend to have broader reflection cones. The specular coefficient ν describes

how sharp the drop-off is. So for dull surfaces this parameter is rather small, and bigger

for more mirror-like surfaces. In the original Phong model [65] the specular reflectance

term is modeled by

T s
i =


Ld
R 0 0

0 Ld
G 0

0 0 Ld
B

(
ks < r, v >ν 13×1

)
(4.13)

where the angle of the emergent light r = 2 < n, d > n − d is calculated exactly.

In contrast to this original model, the “halfway vector” h = (d+v)
∥d+v∥ has been introduced

by Blinn [16] for a more efficient computation if light and viewer are placed at infinity.

Nowadays, this method is still widely used in basic 3D renderings (e.g. OpenGL) and also

used in our framework.
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T s
i =


Ld
R 0 0

0 Ld
G 0

0 0 Ld
B

(
ks < h, n >ν 13×1

)
(4.14)

The specular material ks describes how big the contribution of the specular reflection

to the overall vertex color. Its color is determined only by the color of the directional light

Ld.

In Figure 4.3 the influence of all three terms can be observed both combined and

separately.

Figure 4.3: Ambient + Diffuse + Specular Component = Blinn-Phong reflection model

4.1.3 Viewing Transformation, Projection and Viewport Transforma-

tion

The Viewing Transformation moves the scene into the camera coordinate system. It only

includes translations and rotations. In the framework, this step is omitted as the world

and camera coordinate system are the same, with the camera located at the origin looking

in the direction of the negative z-axis.

Projection is the process of mapping a three-dimensional model on a two-dimensional

surface. Various techniques have been developed to model the reality more or less closely.

The simplest approach is the orthographic projection, where all lines of projection are

orthogonal to the projection plane. The results are not that realistic, but the method is

often used in technical drawings because it preserves parallel lines.

Using perspective projection, the lines of projection emanate from the center of pro-

jection (focal point). As a result, distant objects are smaller than near objects. This

model resembles more closely our experience (pin-hole camera, human eye). The distance
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between the projection plane and the focal point is called focal length.

In computer graphics, projections are realized by transforming the viewing volume

(frustrum) to the unit cube and omitting the z-coordinates. For the perspective transfor-

mation, the homogeneous multiplication matrix that transforms the frustrum to the unit

cube is the following:

PR =


f
a 0 0 0

0 f 0 0

0 0 zN+zF
zN−zF

2zNzF
zN−zF

0 0 −1 0

 (4.15)

The viewing frustrum is defined by the field of view fovy in the y direction (f =

cot(fovy/2)) and by the ratio of width (x direction) to height (y direction) a. In z-

direction this pyramid is truncated by the planes located at zN (near plane) and zF (far

plane). Primitives outside of the volume are not displayed on the final projection, and

those on the border are clipped against it.

For displaying the scene in a window on a screen, the viewport transformation includes

a translation along the x- and y-axis (tx,offset, ty,offset) and scaling (vx, vy). All four

parameters are already in pixel units.

V P =


vx/2 0 0 vx/2 + tx,offset

0 vy/2 0 vy/2 + ty,offset

0 0 1 0

0 0 0 1

 (4.16)

To finally obtain the coordinates in the Cartesian system again, every vertex xh,i,

which is still represented in the homogeneous coordinate system, is normalized by its

fourth homogeneous component wi:

xi = norm (xh,i) =


xi
wi

yi
wi

zi
wi

 xh,i =


xi

yi

zi

wi

 (4.17)

All the previously explained transformations are applied to the original shape Sh of

the head and summarized in the following function:
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P (α, δ) = norm (V P · PR ·MV · Sh) (4.18)

The function P describes the combination of modeling, projection and viewport trans-

formation and a following homogeneous coordinate normalization. These transformations

are applied to the vertices of the head using matrix multiplication. The shape, as detailed

in the previous chapter, is generated by S = S(α) = S̄ +
∑n

i=1 αiŜi and extended to

homogeneous coordinates. The parameter δ is a stacking of the rotation angles ϕx, ϕy and

ϕz, the translation parameters tx ,ty and tz, the scale s, the projection parameters fovy,

a, zN and zF and the viewport parameters vx, vy, tx,offset and ty,offset.

4.1.4 Rasterisation

The rasterisation step finally transforms the vertex list into a pixel image. For every

pixel it is determined to which triangle it belongs and where its relative position in the

triangle is. As our face is already defined as a set of triangles, every pixel has to be

checked against all triangles. This method called Ray Casting is very time and resource

consuming. Therefore in Computer Graphics the rasterisation usually is done not in image

order (pixel by pixel) but in object order (triangle by triangle).

A popular rasterisation algorithm is the scanline conversion. It is somewhere in be-

tween image and object order as a scanline moves down the rows of the image and is

intersected with the triangles. Pixels between consecutive intersections belong to the

respective triangle and are filled with the adequate color in the next step.

As a lot of different problems can occur in this step (triangle border, sub-pixel-size

primitives, aliasing, . . . ), a lot of research and development has been done on the topic.

For a more-in-depth treatment the reader is referred to [29].

In the rasterisation step, also the visibility of the triangles needs to be determined. One

of the standard algorithms, the z-buffer-algorithm, also stores for every pixel the depth-

value of the corresponding primitive. If another primitive would correspond to the same

pixel, the depth value in the z-buffer is compared, and if the new primitive is closer to the

camera than the already stored one, the pixel gets updated. Another algorithm renders

primitives in back-to-front-order. Therefore, closer objects are automatically painted over

the more distant ones.

Our heads are non-convex objects, and depending on the position of the light, parts

of the face (nose, etc.) cast shadows over other parts. In the shaded regions, the color

of the pixels is governed only by the ambient term of equation 4.9. Those regions can be
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determined using a modified z-buffer-algorithm, where a fictive camera is placed at the

position of the light. The areas that are not visible by the fictive light camera are the ones

in shade.

4.1.5 Pixel Shading, Illumination Correction

Shading is the process of calculating the pixel colors. Up to this step, it is known to

which triangle a pixel belongs, and also the colors of the vertices have been determined.

For coloring all the pixels, there exist three main shading algorithms. Using flat shading,

each pixel corresponding to a triangle gets the same color - the mean of the three vertex

colors. When this technique is used for objects with non-flat surfaces, they may look

faceted, as the triangle borders are visible as hard color changes. Gouraud shading avoids

those sharp edges by interpolating the corner vertex colors. A pixels location in the

triangle is calculated and then the color is bilinearly interpolated. This technique produces

smoother looking objects compared to flat shading whilst still being reasonable fast. The

disadvantage of Gouraud shading is that, as lighting is only calculated at the vertices,

some special specular highlights (small ones in the middle of a triangle) are not rendered

correctly and appear to be varying in intensity when moving. This problem is addressed

by Phong shading (not to be confused with Phong lighting). The algorithm recalculates

the complete lighting not only at the vertices but for every pixel by interpolating the

surface normals over the triangle.

Further illumination correction for the now rasterized image of the face is necessary as

real images often vary in contrast and have different color gains and offsets. For example

images captured under the light of fluorescent lamps often have a blue tint. Grayscale

images, as another example, have no color contrast.

T illc = MT ill + o (4.19)

M =


gr 0 0

0 gg 0

0 0 gb

 ·

cI + (1− c)


0.3 0.59 0.11

0.3 0.59 0.11

0.3 0.59 0.11


 (4.20)

gr, gg and gb are the gains for red, green and blue, o = [orogob] is the color offset for

each of the color channels and c varies the color contrast of the image. The luminosity

coefficients 0.3, 0.59 and 0.11 are chosen for typical RGB primary colors.

At the end of the whole rendering process, we obtain a two-dimensional pixel image
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from a three-dimensional head model seen under a defined pose with specified illumination.

In the next section this image is compared to a real input image.

4.2 Residual Function

For finding the model parameters of a 3D face that resembles an input image as close

as possible, the first step is to define a (dis)similarity measure. This measure allows the

algorithm to judge the quality of the current parameter estimate by comparing the input

image and the generated image.

It is defined as the sum of squared differences between input image and the rendered

face based on current model parameters. The first intuitive approach is to calculate this

error in the domain of the two-dimensional input image for all visible face pixels H.

ec(x) = Iin(x)− T illc(P−1(x, α, δ), α, β, γ) (4.21)

E =
∑
x∈H

∥ ec(x) ∥2= eTc (H)ec(H) (4.22)

T illc(x̃, α, β, γ) is the color of a 3D point x̃ that assigned to it during the synthetic

rendering. P−1(x, α, δ) is the inverse projection that, for a given 2D pixel x, results to the

location on the 3D head which is rendered to that pixel. This formulation brings up several

difficulties that, although not making it impossible to work with nevertheless make it more

involved. First the computation of the domain of head pixels H in the synthetic image is

required to calculate the inverse projection. Further difficulties occur in the calculation

of the inverse projection derivatives. By simply calculating the error measure in the 3D

vertex domain instead of the 2D image space, most of the foregoing problems are avoided.

Furthermore to obtain a cleaner formula for the derivative, the error function is scaled by

a factor of 1/2.

ec = Iin(P (u, α, δ))− T illc(u, α, β, γ) (4.23)

E =
1

2

∑
u∈U

∥ ec(u) ∥2=
1

2
eTc (U)ec(U) (4.24)

U is the set of vertices u that are visible under the current parameters and would get

rendered in the synthetic image. Iin(P (u, α, δ)) represents the input image back-warped
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into the domain of the three-dimensional head under the actual parameters. This formu-

lation is fundamentally the same as 4.21, but it is evaluated at different locations (vertices

u rather than pixel centers H). The projection function P (u, α, δ) usually does not result

in integral pixel locations, so the image Iin is sampled using bilinear interpolation.

The illuminated texture function T illc(u, α, β, γ) takes both the vertices S(α) and their

color T = T (β) = T̄ +
∑n

i=1 βiT̂i as arguments. In the parameter γ, all the illumination

variables are pooled.

The computation of the preceding formula (and especially its derivatives in the next

section) is still expensive. It is evaluated for all visible vertices on one hand, and on the

other hand, the normal of each vertex depends on all surrounding triangles. Therefore two

further simplifications are introduced: First, the error measure in equation 4.24 is com-

puted at the center of the triangles instead at the vertices. This simplifies the calculation

of the normals and especially the deduction of the formulas derivatives. Second, as using

all visible triangles introduces a lot of redundance, only a randomly selected subset is used

in the determination of the residual. So the computational cost of the error function is

reduced significantly. Another advantage of selecting only the subset (easier optimization)

is explained in chapter 4.4.3.

4.3 Derivatives

As we want our generated face to resemble the input image as close as possible, the error

measure 4.24 has to be minimized. The derivative of the error measure can be used to

guide the optimization described in the next chapter. The derivatives are deduced with

respect to shape, texture, pose and illumination parameters, as all of them need to be

adjusted. Only an overview is given here, some more details can be found in Appendix A.

4.3.1 Shape

The shape parameters do not only influence the first part Iin(P (u, α, δ)) of the residual

function, but also the second part T illc(u, α, β, γ), because the illumination depends on

the normal vectors, which themselves change as the shape is deformed.

So the derivative of the error measure 4.24 with respect to the shape components α is

the following

∂E

∂α
=

1

2

∂(eTc ec)

∂α
=

1

2
(
∂eTc
∂α

ec + eTc
∂ec
∂α

) =
∂eTc
∂α

ec (4.25)
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For the derivative of the cost function, it is necessary to use the chain rule

∂ec
∂α

=
∂I in(P (U,α, δ))

∂α
− ∂T illc(U,α, β, γ)

∂α
(4.26)

∂I in(P (U,α, δ))

∂α
=

∂I(x̄, ȳ)

∂(x̄, ȳ)
|P (U,α,δ)

∂P (U,α, δ)

∂(U)
|S(α)

∂S(α)

∂α
(4.27)

The first part of the derivation are the image gradients in both x̄ and ȳ direction

of the input image, evaluated at the locations of the triangle centers of the head image

coordinates rendered with the current parameter estimates α and δ. The next part derived

using the chain rule is the derivative of the transformation P (equation 4.18) with respect

to the triangle centers in 3D. The last one is the derivative of the shape derived with

respect to the shape parameters α.

In the derivative of the illuminated texture the ambient term falls out completely, as

it only depends on the parameter β. It is mainly based on the derivative of the normal

vectors.

∂T illc(u, α, β, γ)

∂α
= M

(
Ld∂ < n, d >

∂α
T + Ldksν < h, n >(ν−1)< h,

∂n

∂α
>

)
(4.28)

4.3.2 Texture

The only terms that vary with the texture parameters are the ambient and the diffuse

illumination. So the simple derivation of the cost function with respect to the parameters

β is

∂ec
∂β

= −∂T illc(u, α, β, γ)

∂β
(4.29)

∂T illc(u, α, β, γ)

∂β
= M

(
La∂T

∂β
+ Ld < n, d >

∂T

∂β

)
(4.30)

4.3.3 Pose

Both the I in(P (u, α, δ)) and the T illc(u, α, β, γ) part of the residual function depend on the

pose parameters ρ. For the first part it is obvious that it depends on the pose parameters,

but also the illuminated texture varies with changes in pose. If the light direction is given

in world coordinates, the diffuse reflection term is influenced by a pose change, as the angle



54 Chapter 4. Fitting a 3D Morphable Model to an Image

between the normal vectors and the light direction changes. The specular term depends

also on the viewers direction with respect to the face - also this relation changes as the

pose is altered. Here the derivatives with respect to the rotation angles are shown. For

the other pose parameters, they are similar.

∂ec
∂ρ

=
∂I(x̄, ȳ)

∂(x̄, ȳ)
|P (ρ,S(α))

∂P (ρ, x, y, z)

∂ρ
|S(α) −

∂T illc

∂ρ
(4.31)

∂P (ρ, x, y, z)

∂ρ
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 ∂P x̄

∂ρx
∂P x̄

∂ρy
∂P x̄

∂ρz
∂P ȳ

∂ρx
∂P ȳ

∂ρy
∂P ȳ

∂ρz

 (4.32)

∂T illc

∂ρ
= M

(
Ld <

∂n

∂ρ
, d > T + Ldksν < h, n >(ν−1)< h,

∂n

∂ρ
>

)
(4.33)

4.3.4 Illumination

Just the illuminated corrected texture term T illc has to be concerned for changing lighting

conditions. Here is its derivation with respect to the direction of light d. The derivatives

for the other illumination parameters are similar.

∂T illc

∂d
= M

(
Ld∂ < n, d >

∂d
T + Ldksν <

(d+ v)

∥ d+ v ∥
, n >(ν−1)<

(d+v)
∥d+v∥

∂d
, n > 13×1

)
(4.34)

4.4 Optimization

The goal of our framework is to minimize the residual E (equation 4.24) between the

given input image and our estimated model. Within the vocabulary of optimization this

function is called the “objective function”. Optimization is the process of finding the

parameters for the objective function where it reaches a minimum (or maximum). Various

algorithms exist for different types of objective functions (linear vs. non-linear, discrete

vs. continuous, . . . ) and side criteria (robustness, global vs. local optimization, . . . ).

On the residual function described in section 4.2 several observations can be made: It

is a very high-dimensional function - the residual depends on the pose parameters (ρ, 7

dimensions), illumination parameters (γ, up to 18 dimensions), and up to several hundreds

of shape and texture parameters (α, β). The residual is also not linear (illumination, input

image, SSD, . . . ) and not convex.

In this section first the Gradient Descent optimization (section 4.4.1) is described,
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and then an overview over alternative algorithms is given. Stochastic optimization is

introduced in section 4.4.3, and finally some specialties of the 3DMM fitting are covered

in the last part.

4.4.1 Gradient Descent

One of the simplest optimization techniques is the gradient descent algorithm. For finding

a local minimum xmin of a function f(x), iterative steps into the direction of the steepest

gradient at the current position xi are taken.

xi+1 = xi − λ ∗ ∇f(xi) (4.35)

∇f(x) is the gradient of the objective function evaluated at xi. An important param-

eter in this algorithm is the step size λ. Its value is always a trade-off between speed of

convergence and stability. With a small λ, small steps towards the minimum cause a slow

convergence. But if the step size is chosen too big, the steps can produce an oscillating

behavior.

Usually, the iterations are halted when the difference of the objective function at two

consecutive parameter sets is falling below a fixed threshold, and the current parameter

set is assumed to be roughly the minimizer. An alternative is to stop the optimization

after a predetermined number of steps within which the minimum is reached under all

starting conditions.

The gradient descent algorithm is very simple, but also has some disadvantages. It is

not guaranteed that the global minimum is found - the algorithm very often gets trapped

in a local minimum. Only if the objective function is convex, the convergence to the global

minimum is ensured. The speed that the minimum is approached with is only linear, and

can be even slower for some pathological function (e.g. in a valley of the Rosenbrock

function)

4.4.2 Alternative Optimization Algorithms

There exists a vast amount of optimization algorithms for different areas of application,

with various advantages and shortcomings. Only a few of them are mentioned here.

Newton’s Algorithm is based on the observation, that the first derivative is zero at

an extrema of a function. Assuming that the objective function can be approximated by

a quadratic function, the Taylor expansion for the gradient is ∇f(x + ∆x) = ∇f(x) +
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∆xH(f(x)). ∇f(x) is again the gradient, and H(f(x)) is the Hessian (the second-order

partial derivatives) of the objective function evaluated at x. The optimal parameter update

can be computed as

xn+1 = xn − λ[H(f(xn))]
−1∇f(xn) (4.36)

This approach shows quadratic convergence near the minimum, but when starting

far away from the solution, the Newton’s method might not even find the final solution.

Another problem is the expensive computation of the inverse Hessian.

Quasi-Newton As the computation of the Hessian in the Newton’s algorithm is ex-

pensive, several algorithms try to avoid its update. Instead the Hessian is approximated

from function evaluations and the Jacobian around the current point. One example of

this family of algorithms is the L-BFGS algorithm [57].

Gauss-Newton is a modification of Newton’s method that can be applied to a least-

squares-problem when the objective function is given as a sum of squared function values.

A first advantage of the formulation is that the costly Hessian does not need to be com-

puted. And near the solution it has, similar to the Newton’s method, quadratic conver-

gence, whilst away from the solution, it takes steps like the steepest descent method with

a bigger region of convergence. Nevertheless, it is not guaranteed to converge to a (local)

minimum.

xn+1 = xn − (∇f(x)T∇f(x))−1∇f(x)T f(x) (4.37)

Levenberg-Marquardt is a method that interpolates between Gradient Descent and

Gauss-Newton. It has the advantage of being more robust than the Gauss-Newton algo-

rithm, trading a bigger region of convergence for a lower convergence speed. A damping

value is adjusted at each iteration, and regulates the influence of the Gradient Descent and

the Gauss-Newton influence according to the previous steps made. It has first been intro-

duced by Levenberg [46] and rediscovered and improved by Marquardt [52] and belongs

to the trust-region approaches.

Lipschitz Optimization An optimization method that finds the global minimum of a

function is the Lipschitz optimization. It basically optimizes the brute-force method of

sampling the function over the complete parameter domain and is based on observations
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on the objective function. The iterative method evaluates the objective function and

compares the resulting value with a previously determined temporary minimum. Using

the knowledge about the maximum gradient the function can have (requires smoothness),

an area around the currently evaluated parameter can be guaranteed to not contain a

minimum smaller than the temporary minimum. An overview over this branch-and-bound

method is given by Hansen et al. in [33].

In this framework the Lipschitz optimization has been used to make a rough pose

estimation for an input image is given. The implementation loosely follows the ideas given

in [47].

4.4.3 Randomized Optimization

Stochastic (or randomized) optimization was introduced to deal with cost functions that

contain a lot of local minima (as does the residual formulated in this framework, see

section 4.2). By adding random noise to the objective function, the optimization process

is (metaphorically speaking) being “pushed” out of the unwanted basins that we do not

want to get stuck within.

A common method that has been proposed by Viola in his thesis [76] to add this noise

to the objective function is to use only a subset of the available data points. The error

made by leaving out a part of the datapoints can be used as this noise. In order to avoid

overfitting of the optimization w.r.t. special subset, it is newly selected every or every few

iterations.

In the case of the 3D Morphable Model, we randomly choose a set of triangles from

those that are visible under the current parameters. The difference between the full

and the reduced residual is the random noise that helps the optimization to avoid the

local minima. A new subset of triangles has to be selected every few iterations to avoid

overfitting. Ideally, this subset would be renewed every iteration, but its selection is

computationally expensive. For every triangle, its visibility needs to be checked. So the

number of iterations, after which a new combination of contributing triangles is randomly

chosen, is a tradeoff between the point where overfitting happens (and no progress towards

the final solution is made) and the time necessary to determine the new subset.

In our case this stochastic method has two further advantages: First, the contribution

of all (visible) triangles would be redundant, and secondly, the computational effort is

significantly lower if the cost function (and the gradient) is evaluated only at a few vertices.

Stochastic optimization sometimes does not take the optimal steps toward the min-
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imum, and therefore has a convergence properties a bit slower than the equivalent “de-

terministic” method. Risk of overfitting exists if the selection of the datapoint subset is

not optimal (non-uniform selection of datapoints) or to small. Also the stopping criteria

has to be modified sometimes, as after a subset variation the optimized parameters may

change again after coming to rest for a previous set.
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Figure 4.4: Stochastic vs. normal optimization example (reduced vs. full image space
residual) (selection of new triangles every 2nd iteration)

4.4.4 Further details on the optimization procedure

The objective function E(α, β, ρ, γ) of our 3D Morphable Model Framework has several

peculiarities. One of the main observations is that the impact of pose and illumination on

the residual are larger than the influence of shape and texture parameters. Therefore it

is difficult to estimate correct values for α and β if the rough pose and light estimation is

wrong. Also, pose and illumination have a high grade of interdependence. For this reason,

a sequential optimization strategy was used to first search for rough pose and illumination

parameters based on a mean shape and texture face. Only after that, the first ten shape

and texture parameters are adjusted. Finally, for all parameters the optimal values are

determined within the closer neighborhood.
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The election of the triangles used to calculate the derivatives and guide the optimization

process is weighted by their visible size. The probability for triangles in areas important

for the distinctiveness of a face (nose, mouth, eyes) to be selected can be increased by

adding a weight mask to them. When adjusting the rough shape (first ten components of

α), another area of focus is on triangles at the silhouette (determined by the dot product

between triangle normal and view direction).

4.5 Inverse Texture Extraction

Ideally, the 3D Morphable Model fits an exact three-dimensional face to a given 2D face

image with all its peculiarities. But to do this successfully, all peculiarities have to be

in the training set of the model, and the PCA needs to embrace and include them. This

would result in a large and complex 3D Morphable Model. It can be observed that almost

all of those specialties of individuals occur in the texture domain. So instead of using a

complex model that captures all exceptional features, the input image is used to extract

a corrected texture that obviously includes all those anomalies.

Inverse Texture Extraction first determines the location of all the visible vertices in the

input image (P (u, α, ρ)) and then inverts both illumination correction (4.1.5) and vertex

lighting (4.1.2).

T ill(u) = M−1(Iin(P (u, α, δ))− o) (4.38)

T e(u) =
T ill(u)− Ldks < h, n >ν 13×1

La+ < n, d > Ld
(4.39)

The extracted texture T e includes all visible peculiarities and fine details from the

input image. It is illumination-invariant, and the face can be synthesized under any new

light and pose conditions. It gives a more realistic 3D model of the given image (see

Figure 4.5).

But as the texture can only be extracted for visible regions, the hidden parts of the face

in the input image need to be improved otherwise. To avoid sharp borders between the

extracted and the fitted texture, they can be interpolated based on the relation of normal

vector and view direction. Furthermore the albedo can be mirrored from the visible side

of the face, if there are no special features on this side - this is the case if the fitted and

the extracted texture do not differ substantially.

Other problems occur if the estimated pose, shape or light parameters are wrong -
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(a) (b)

(c) (d) (e)

Figure 4.5: (a) Subject from the CVL database and (b) the face fitted to it. The second
row shows the fitted face with extracted texture at (d) the same pose, (c) a rotated yaw
angle (-20◦) and (e) another rotated yaw angle (20◦)

then for example the background is included in the extracted texture, the real color is

mis-estimated and misplaced (the texture of the nose is used for the mouth, etc.). Also

the compact representation of a face only by its parameters α and β can not be used

anymore with the extracted texture.

4.6 Conclusion

In this chapter, it is shown in detail how the parameters of a previously built 3D Morphable

Model (chapter 3) are fitted to a given input image. This is done in an Analysis-by-

Synthesis approach, iteratively adapting the parameters of the model and other conditions

(light, pose) until the generated face resembles the template close enough. A stochastic

variant of the gradient descent algorithm makes this optimization more robust and also

speeds up the algorithm, and if a more detailed model is needed, an illumination-invariant

texture is extracted from the input image. To judge the quality of the whole fitting

approach, in the next chapter evaluations on several datasets are conducted.
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In computer vision usually it is hard to prove that an approach to solve a problem

is completely correct. This is because the data we deal with is usually of very high

dimensionality and has a lot of variance. But it is possible to demonstrate examples where

a technique succeeds to solve the problem statement. And if not only a few examples but

a large, realistic dataset is used for evaluation, those thorough tests can provide enough

evidence that the algorithm works well for the specified task.

To judge how well an approach performs for a specific example, an error measure is

needed. This makes the experiments comparable and provides the basis for a quantitative

evaluation.

In this chapter, the building step of the 3D Morphable Model is given a close exami-

nation in the first section 5.1. Then the pose estimation capabilities of the 3D Morphable

Model framework are tested (section 5.2), and also the shape and texture estimation for

artificial and real 2D input images are inspected (section 5.3). Finally we show some

details of the implementation (section 5.4).

61
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5.1 3DMM evaluation

The different stages of building a morphable model are evaluated separately. On 8532

texture images of the head scan database (section 3.1) that were evaluated by the AAM

face detector, 7370 face regions have been successfully detected. The scans where no face

has been found are not used in the following stages, as there are abundant scans. One face

detection needs about 1.4 seconds on a system with an Intel Core2 Duo CPU @ 2.6GHz

(T9550) and 4GB of main memory on Microsoft Windows Vista x64 SP2. Figure 5.1

shows the detection of the face region with eyes and the mouth highlighted.

Figure 5.1: Face detection on the texture of a head scan

Then the Optimal-Step Non-Rigid ICP algorithm found dense 3D correspondence for

the scans. One run of the Matlab implementation for a head with 230400 vertices against

the template with 10424 vertices needs about 1 minute. The stiffness was lowered in steps

of 20 from 100 to 10 and then with a step size of one down to α = 1. Figure 5.2 shows

the residual over the course of iterations.

The quality of the OSNRICP correspondence finding was evaluated using the recon-
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Figure 5.2: Residual and stiffness for the registration of one head scan.

struction error. Every face is approximated by forming a linear combination of all the

other registered scans. The mean distance between corresponding vertices of the recon-

structed faces and the original is at about 9e-5. By itself this reconstruction error is not

very meaningful, but on one hand it can be compared with the minimum distance 1.6e-3

between two faces. On the other hand, if we observe the histogram of the reconstruction

error (see Fig. 5.3), it can be seen that there are some clear outliers. A visual inspection of

those faces for which a linear combination fails to model them, shows that the algorithm

did not succeed to correctly register them with the template face. In the following step of

constructing the 3DMM using PCA those faces are not included.

On the 507 scans that were successfully brought into dense 3D correspondence during

the previous step, a Principal Components Analysis is performed to build the final 3DMM.

For both of shape and texture the computation time of the principal components in Matlab

is about 21s on the previously mentioned system.

PCA is used to reduce the dimensionality of data by discarding the least important

components. The decision of how many components to discard is a tradeoff between

loosing important information and lower dimensionality. In the case of our head scans,

half of the minimal difference between two faces in this set serves as a hint on how much
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Figure 5.3: Histogram of the reconstruction error for all OSNRICP registered faces.
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Figure 5.4: Plot of the logarithmic eigenvalues of the shape, with exponential and poly-
nomial fitting.
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Figure 5.5: Plot of the logarithmic eigenvalues of the texture, with exponential and poly-
nomial fitting.

information is needed to distinguish between two persons in this set. It can be compared

to the estimated reconstruction error made when leaving out N − n components.

min
i,j∈faces

i ̸=j

∥ Si − Sj ∥2

2
≥

N∑
j=n

σ2
j (5.1)

min
i,j∈faces

i ̸=j

∥ Ti − Tj ∥2

2
≥

N∑
j=n

σ2
j (5.2)

The squared minimum distance between two faces in our set of 507 faces is 16.41. The

expected reconstruction error for 27 Principal Shape Components lies with 8.14 just under

half of this difference. So at least 27 PCs are needed to reconstruct a face sufficiently from

our set of 507 persons and distinguish it from the others. For the texture modes, the

minimal difference is 2043484, and the reconstruction error of 91 modes lies a bit under

half of this value.

But as the main goal of our model is not discrimination but the reconstruction of a

persons face, this minimal distance can serve only for orientation.

Another method is to analyze the LEV-diagram (logarithmic eigenvalues) (see Fig. 5.4,
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Fig. 5.5). The cutoff usually is made at the point where the decrease of the eigenvalues

changes from exponential to polynomial (i.e. the point where the LEV graph goes over in

a more or less straight line) - see section 3.5. For the shape eigenvalues this happens after

the 172th eigenvalue, for the texture, the decrease is getting polynomial from the 161th

component on.

Nevertheless neither the minimal face difference compared to the PCA reconstruction

error nor the LEV analysis consider the specific details and needs of our model. When

fitting the model to an 2D input image for pose estimation, the number of PCA components

used can be quite low - 10 shape and texture dimensions of the model are enough to

approximate the face sufficiently for this application. For reconstruction of a visually

plausible model, 100 shape and texture coefficients have shown to be adequate by visual

inspection and comparison. With 100 shape coefficients, 97.8% of the total variance is

kept, while the 100 texture components represent 87.29% of the texture eigenvalue energy

spectrum.

A closer inspection of the first few PCA components shines light on some interest-

ing details. The first texture component is related to the complexion of the face, while

astonishingly the second mode is clearly related to the gender. On the other hand, the

results of the shape components are easier to expect. They model the non-uniform scaling

and shearing of the face geometry. With the predominance of those shearing and scaling

components, probably also the small step in the LEV diagram of the shape components

around the modes 5 to 10 can be explained.

The optimal step non-rigid ICP algorithm does a good job for establishing dense cor-

respondence between the raw 3D scans. A disadvantage is the high computational effort,

that furthermore does not scale with respect to the number of vertices of the template face.

Although the possibility exists that the algorithm fails on a few scans, those exceptions can

be easily figured out by inspection of the reconstruction error. Advantages of this approach

are the smooth interpolation of registration for regions with ill-posed correspondence and

the intrinsic capability to resample the surface and fill in missing areas.

Although not all prerequisites for the Principal Component Analysis are fully satisfied

(linearity, etc.), it nevertheless generates a good 3D Morphable Model from the provided

data. And furthermore, PCA extracted some interesting particularities from the dataset

such as the “gender texture component” (2nd texture component).

This successfully constructed model is used in the next two sections and evaluated

along with the fitting algorithm.
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5.2 Pose estimation

In the interaction between humans and computers, a very important task is the deter-

mination of the head pose. For the successful identification or verification of a face the

position and orientation of a persons head in a captured image is a prerequisite. Using the

Analysis-by-Synthesis algorithm detailed in chapter 4, in this section the 3D Morphable

Model is used to estimate the orientation of faces in various databases.

5.2.1 Databases

CUbiC FacePix(30) [11], [48] is a freely available database that consists of 30 individu-

als. Each individual is represented by three sets of photographs. The first set shows

the person with varying yaw angle from -90◦ to +90◦ (in incremental steps of 1◦).

Those images are taken under the illumination of two stationary diffuse light sources

to simulate ambient lighting. The second and the third set are images with different

lighting. For both, a spotlight is rotated around the person in one degree steps from

the left to the right (-90◦ to +90◦ ). While for the second set, the diffuse lights from

set one are also added to the scene, the third set is only illuminated by the spotlight

and therefore the face images in this set contain harsh shadowing.

USF Human ID 3D face database [13] includes recordings of 136 individuals cap-

tured using a CyberwareTMlaser scanner. The 3D laser scans consist of more than

90,000 vertices and 180,000 triangles. To evaluate the pose estimation capabilities

of the framework, the 3D scans from this database are rendered with arbitrary pose

and random textured background to 2D images. From the 50 first individuals and

the combination of [-16◦ 0◦ 16◦] yaw and [-8◦ 0◦ 8◦] pitch angle, 450 test images are

generated.

5.2.2 Error measures

During the evaluation of an algorithm for pose estimation, a measure to judge the quality

of the estimate is needed. The mean absolute error is used for this task. It is calculated for

both yaw and pitch angles comparing the ground truth GT with the estimated angle Φ.

E = |GT−Φ|. The ground truth for images often is not easy to establish - it is for example

influenced by different head geometries. Easier is the determination of the relative pose

between two images. By capturing a subject multiple times (with a moving camera or

multiple cameras) from predefined angles, the difference of the pose of consecutive images
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absolute yaw error

mean std median Q.25 Q.75
4.89 3.15 4.48 2.15 7.06

Table 5.1: Evaluations for the FacePix database. Mean, standard deviation, median,
upper- and lower quartile of the absolute yaw angular error

is known exactly. The other possibility to establish a well-known ground-truth is to render

images from 3D models. Here the parameters can be adjusted and are known exactly.

5.2.3 Evaluation

The evaluation of the framework for pose estimation has been done on two sets of images.

First from the FacePix database the images with varying yaw angle are used as input. The

input angles in range from -16◦ to +16◦ were covered in steps of 4◦ - so all in all the pose of

270 images has been calculated. No initialization was applied (except for setting the size

of the faces once for all images in the database) - the optimization started at the middle

of the input image with a rough light adaption. Then preliminary translation parameters

were optimized, and in the next step also the three rotation angles are adjusted. In the

two final parts of the optimization, also 10 shape and texture parameters are added to

the set of the fitted parameters. Empirical observation has shown that in the stochastic

optimization, a set of 500 triangles newly selected every 30 iterations provides a good

tradeoff between computational effort and added random noise. The average runtime

sums up to 33.5 seconds per face fitted.

For the cases with bad performance of the pose estimate, an inspection shows that

either the estimate of the face size is wrong (Fig. 5.7(a), (b)) or that hair occludes a

significant part of the face (Fig. 5.7(c)). But for some other cases visual observation

shows that the fitted faces resemble the pose quite well (Fig. 5.7(d)) - here the problem

of determining an “absolute” pose becomes obvious.

One example of the FacePix database and the fitted 3D heads are shown in Figure 5.6.

The same procedure has been applied to 450 image renderings of the USF Human ID

database with combinations of [-16◦ 0◦ 16◦] yaw and [-8◦ 0◦ 8◦] pitch angle. The fitting

followed the same steps as for the FacePix database: rough light adaption - preliminary

translation - pose - 10 shape and texture parameters. The diagrams in Figure 5.9 show

the mean absolute error for both the yaw and the pitch angle for the different poses.

In Figure 5.8 it can be observed that for both datasets the absolute yaw angle error

does not increase a lot for non-frontal images. This supports the assumption that the
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Figure 5.6: Pose estimation for one subject captured with yaw angles from −16◦ to +16◦

Figure 5.7: Examples from the FacePix database with bad pose estimates. Errors yaw
angle estimate: (a) -13.4◦, (b) -13.5◦, (c) 14.1◦, (d) 12.7◦
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Figure 5.8: Mean and standard deviation of the absolute yaw angle error for the (a)
FacePix and the (b) USF Human ID 3D face database

absolute yaw error absolute pitch error

mean std median Q.25 Q.75 mean std median Q.25 Q.75
3.90 3.31 2.81 1.55 5.21 5.14 3.66 4.08 2.11 7.55

Table 5.2: Evaluations for the USF Human ID 3D face database. Mean, standard devia-
tion, median, upper- and lower quartile of the absolute yaw and pitch angular error
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(a) (b)

Figure 5.9: Mean absolute error for (a) yaw and (b) pitch angle for the USF Human ID
3D database

Figure 5.10: Pose estimation for one subject of the USF Human ID 3D face database
captured with combination of yaw angles [-16◦ 0◦ 16◦] and pitch angles [-8◦ 0◦ 8◦]

quality of pose estimation with 3DMM, unlike some other pose estimation methods, does

not decrease for images that deviate from the frontal pose.

For both datasets, a very rough initialization for the location of the face in the image is

given. This is realistic as face detection algorithms provide a similar initialization. Only if

the face initialization and the target face have enough overlap, the fitting process succeeds

to estimate the pose correctly.

Difficulties emerge in combination with illumination, as pose and illumination parame-

ters have a strong interdependence. For the two datasets this is tackled by starting with a

rough light adaption that is followed by the determination of the translation parameters.

Only then the correct rotation angles are searched. This sequential strategy - first starting
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relative yaw error

mean std median Q.25 Q.75
2.27 2.97 1.27 0.56 2.64

Table 5.3: Evaluations for the FacePix database. Mean, standard deviation, median,
upper- and lower quartile of the relative yaw angular error

with only a few parameters and then including more and more - proves to work well both

for pose estimation as for shape and texture estimation in the next section.

Another problem becomes obvious within the search for a database with ground truth.

The exact pose of the head is hard to determine and depending on the subject. Further-

more there are differences between the person turning her head and the camera being

moved. For the pose estimations of the FacePix database, the relative error has also been

determined. In the FacePix database, the exact pose change between two images of one

subject is known. The absolute difference between this pose change and the pose change of

the corresponding fittings is named relative error. Table 5.3, showing the absolute relative

error for the yaw angles, exhibits that those errors are much smaller than the absolute

errors.

To summarize, pose estimation using a 3D Morphable Model works quite satisfying.

One drawback of the method is its relatively slow speed of computation. But in contrast

to that, the accuracy of the pose estimate is quite high.

5.3 Shape and texture estimation

The fitting of a 3DMorphable Model to an input image is the main scope of this framework.

To test its capabilities, faces of several datasets are used as input to the algorithm.

5.3.1 Databases

Model-generated examples The first test set consists of 250 model-generated images

with a resolution of 640x480 pixels. Random shape and texture coefficients are

chosen within σS = ±1, σT = ±1. Using those coefficients, the 3D shape and its

texture are calculated. Under a predefined light and fixed pose, two-dimensional

image renderings are created from those 3D heads. The advantage of this dataset is

that the ground truth (3D shape and texture) of the images is known.

Rendered 3D head scans 250 scans from the original database (see section 3.1) that

are not used to build the 3DMM form the basis for another artificial data set. The
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full-resolution scans are rendered under predefined pose and illumination to 2D im-

ages with a size of 640x480 pixels.

CVL database The CVL database [60] contains 2D images (640x480 pixels) of 114 per-

sons that are mostly of male gender and of younger age. Some subjects wear glasses.

Of every person 7 images are taken - full profile, half profile and one frontal image

are with neutral expression, while on two further frontal captures the persons are

smiling (not used for the experiments). To provide a uniform illumination, the pho-

tographs are taken without flash. But additionally to the non-directional ambient

also a soft light source illuminates the persons face from the left side of the images.

5.3.2 Error measures

To assess the quality of a fitted 3D model of the face is much more difficult than the

quality of a pose estimation. Visual inspection by a human is not very satisfying as it is

not easily reproducible and needs a lot of time and resources.

If only one image of the fitted person is available, the residual in the image space

(difference of input image and rendered 3D model) gives a hint how well the model fitted

the image.

ec(x) = Iin(x)− T ill(P−1(x, α, δ), α, β, γ) ∀x ∈ face (5.3)

E =
∑
x∈H

∥ ec(x) ∥2= eTc (H)ec(H) (5.4)

The disadvantage of this measure is that it can not describe how well the model fitted

the underlying 3D shape of the head shown in the input image. Therefore it provides no

measure whether over-fitting has occurred or if the entanglement of light and texture has

been solved correctly.

So for artificial test examples (model-generated heads or actual 3D scans rendered to

an image), the reconstructed 3D model and the ground truth 3D data can be compared

directly. A very common measure for this comparison is the Euclidean distance of the

respective vertices.

E =∥ x− y ∥2 (5.5)

For the second dataset (rendered scans from the full database) no vertex-wise cor-
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respondence between the fitted model and the original scan exists. Therefore a nearest-

neighbor search is performed for every vertex in the fitted model to provide the calculation

basis for the Euclidean distance.

The Euclidean distance can be calculated for both of the shape and texture. For shape

it is obviously the distance between the corresponding vertices. For the the texture the

error measure is the Euclidean distance between the color of the corresponding vertices in

the RGB space.

5.3.3 Evaluation

The first evaluation is performed on the model-generated images. The fitting is initialized

with known pose and illumination. As the underlying faces are within the model range,

it is expected that those images are fitted well and without problems. The fitting of

the 3DMM is performed in three steps. First only the 10 primary shape and texture

components are calculated, then 50 and finally all 100 modes of the model are determined

for the given input image. One fit takes just under 2 minutes of computation time on a

system with an Intel Core2 Duo CPU @ 2.6GHz (T9550) and 4GB of main memory on

Microsoft Windows Vista x64 SP2.

The details of one exemplary input image (Fig. 5.11(a)) are inspected. Figure 5.12

shows the image space residual over all iterations for the randomly selected triangles.

On the course of fitting, new triangles are selected every 50 iterations. The spikes in

Fig. 5.12 result from those triangle changes. This shown residual is used by the framework

to calculate the derivatives and therefore the parameter updates. The same figure also

displays the residual calculated over all image pixels of the rendered head for some specific

iteration points during the fitting. Interesting for this dataset is that the model coefficients

α and β of the input faces are not recovered in the fitting, although their shape and texture

are accurately matched. The final fitted model of the input image can be observed in

Fig. 5.11(b).

The next test set consists of images that are artificially rendered from full 3D scans.

Thus as in the previous dataset, pose and illumination are known. But in contrast to

the previous heads those faces have not been used to build the model, and therefore the

generalization capabilities of the model can be judged. The number of modes fitted starts

with 10, and is, after every 200 iterations, increased to 50 and then the full 100 components

respectively. The fitting takes about the same time per image as it does for the previous

dataset (just under 2 minutes). The yaw angle of the input images is 20◦, and the pitch
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(a) (b)

Figure 5.11: (a) One model-generated example from the first dataset and (b) the head
fitted to the input image (a)

rotation is 10◦.

One specific example of this second database is shown in Figure 5.14(a). Both the

residual that is used for the optimization (only calculated at randomly selected triangles)

and the residual calculated over all pixels of the fitted region are compared in Figure 5.15.

The fitted head model that is the result of the process after the 600 iterations can be

observed in Figure 5.14(b).

Figure 5.13 shows the Euclidean distance for the fittings of both datasets. Interestingly,

the median error for the shape is slightly lower for the real head scans, whilst for the texture

the median Euclidean distance is significantly smaller for the model-generated examples.

This can be explained by observing that 100 shape coefficients cover more of the total

variance than the 100 texture components do (97.8% versus 87.29%).

Real-world images from the CVL database are fitted in the third row of experiments.

Here the three-dimensional shapes of the faces are not known, and the only error-measure
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Figure 5.12: Image space residuals calculated over the triangles selected at the respective
iterations and the full image space residual for the input image in Figure 5.11(a)
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Figure 5.13: Euclidean distance between the ground truth and the fitted result for (a)
shape and (b) texture
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(a) (b)

Figure 5.14: (a) Rendering of a head scan from the second dataset and (b) the head fitted
to the input image (a)

that can be evaluated are the image-space residuals. For this database, only a very rough

initial pose is given. The initial illumination has been determined once using a few exem-

plary images from the database. As for the previous experiments, the number of modes

is increased after every 200 iterations from 10 to 50 to 100.

The boxplot of the image space residual for the five rough poses in the CVL database

(Fig. 5.16) shows that the error for images with negative yaw angle is slightly higher than

for the frontal and right looking poses. In theory the error should be the same for similar

absolute yaw angles. But the illumination source in this dataset shines from the left side of

the image. Therefore this asymmetry of the residuals can have two roots, both connected

with the light. One can be the illumination initialization that is calculated only once for

the whole dataset, and by coincidence is more accurate for images with increased yaw

angle. The second source of error can be that the illumination model (see section 4.1.2)

is not able to exactly represent the real light source used in the CVL database.
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Figure 5.15: Image space residuals calculated over the triangles selected at the respective
iterations and the full image space residual for the input image in Figure 5.14(a)
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Figure 5.16: Image space residuals for the CVL database for different yaw angles
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This asymmetry of the image space residual also shows the close entanglement of

illumination, pose, shape and texture during the generation of an image, which is hard to

separate during the fitting process. If one parameter is initialized substantially wrong, it

is not possible to estimate the other parameters correctly.

As for the two foregoing examples, one specific input example is shown in Figure 5.17.

The image space residual (selected triangles and all pixels) can be observed in Figure 5.18,

and the resulting face has been rendered under the same pose in Figure 5.17(b).

(a) (b)

Figure 5.17: (a) One photo of the CVL database and (b) the face fitted to it

Apart from the initial illumination, it is also necessary to adjust the step size parameter

λ for the gradient descent optimization. This parameter is fixed at a value where the

descent is fast enough, but where still no oscillation occurs. Figure 5.19 shows the search

for an optimal λ during the fitting of only the first shape parameter. In the first test

(Fig. 5.19(a)), it is too low, the last one (Fig. 5.19(c)) clearly is too high, and the middle

graph (Fig. 5.19(b)) shows a satisfying result.

Figure 5.20 shows some examples where the framework failed to fit a face with sufficient

quality. For those images with a high error measure, it can be observed that most of them

have hair occluding a larger part of the fitted face area. As the modeled residual is

not robust with respect to outliers, those areas misguide the fitting resulting in a badly

deformed model.

On the other hand, if the occlusions do not cover too many pixels of the input image,

the holistic approach manages to recover a well-fitted model and, as a side effect, eliminates

the occlusion. Figure 5.21(a) shows a subject wearing glasses. The result after the fitting
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Figure 5.18: Image space residuals calculated over the triangles selected at the respective
iterations and the full image space residual for the input image in Figure 5.17(a)
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Figure 5.19: Adjustment of the parameter λ for the gradient descent: (a) value too low
→ slow convergence (b) well-chosen λ (c) value too high → oscillation occurs

is shown in Figure 5.21(b) - the “occluding” glasses are eliminated.

As several persons in the head scan database (section 3.1) that forms the basis of our

3DMM wear a beard, the framework also succeeds to model facial hair. Of course the

successful beard fitting depends on the random triangle selection. If the beard-covered

area is very small, there is only a minor probability that the elected triangles lie in there

and the fitting process considers it. So for example in Figure 5.22(a) the person wears a
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Figure 5.20: Input images from the CVL database (upper row) where the fitting failed
(lower row)

(a) (b)

Figure 5.21: (a) One subject of the CVL database wearing glasses and (b) the fitted face
with automatically removed glasses

very narrow beard on the chin. This beard is not captured during the adoption of the

model to the input image and the final rendering shows the same person without facial

hair (Figure 5.22(b)). The same happens with other small details such as birthmarks (see

Figure 5.23(a) and the rendered fitting in Figure 5.23(b)). For the framework, those cases

are the same as the minor occlusions in the foregoing example of the glasses. But if the

area covered by facial hair is large enough, the beard is well reconstructed. Some successful

examples (mustache, partial and full beard) are shown in Figure 5.24.

Another interesting detail is the mouth of the subjects. Only very few training samples



5.3. Shape and texture estimation 81

(a) (b)

Figure 5.22: (a) One subject of the rendered 3D scans database with a narrow “soul patch”
beard and (b) the fitted face without facial hair

(a) (b)

Figure 5.23: (a) One subject of the rendered 3D scans database with a birthmark and (b)
the fitted face with the mark removed

have an opened mouth, and therefore, the fitted 3D head has a closed mouth even if a

person poses with open mouth (see Figure 5.25(a) and Figure 5.25(c)). On the other

hand, many happily smiling subjects are in the head scan database and are used for the

generation of the 3DMM. So the smiling expression in a subjects face (Fig. 5.25(b)) is

successfully reproduced in its three-dimensional model (Fig. 5.25(d)).

The final Figure 5.26 compares the evaluation of all three datasets. Of course the ex-

amples from the first dataset are best reconstructed, as they are generated by the model.

The reconstruction error from the second dataset is nearly as low as the reconstruction

error from the first one. This result shows that the model can generalize well for unseen

faces. Generalization capabilities with respect to new faces under different recording con-
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(a) (b) (c)

(d) (e) (f)

Figure 5.24: Three examples from the rendered 3D scan database (upper row) where the
facial hair is successfully fitted (lower row)

ditions are shown only by the third dataset - real input images from the CVL dataset. Here

the image space residuals are not as low, because illumination and pose errors contribute

a proportional big share to the residual.

From the evaluation of shape and texture estimation using our 3D Morphable Model,

it can be seen that the framework is able to successfully model unseen faces. Also the

adoption to varying pose and illumination conditions works well. Interestingly, for the

first dataset (model-generated images), the original coefficients could not be recovered.

Difficulties arise for the fitting process because of the close entanglement of illumination,

pose, shape and texture. If the adoption starts with either a significantly wrong pose or

light, the search for the parameters is more likely to be trapped in a wrong minimum. But

on the other hand, the framework has surprising properties with respect to some details

in the human face. Small or fine structures (birthmarks, glasses, . . . ) are eliminated in

the fitted model, while larger specialties such as a beard or a smile that are present in the

training database are recreated.
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(a) (b)

(c) (d)

Figure 5.25: Subjects smiling / with an open mouth and their fittings (lower row)

5.4 Implementation

Most of the framework for building and fitting a 3D Morphable Model has been imple-

mented in Matlab. The first part of the framework covers the construction of the 3DMM

from the raw laser scans. The second part is concerned with fitting the model to input

images.

Building the model begins with importing the raw laser scans, stored in the echo file

format, into Matlab by the I/O-function readecho. One scan is chosen as template face for

the correspondence establishment. The shape of this face is cropped in the 3D modeling



84 Chapter 5. Evaluation, Experiments, Discussion

Model generated database Rendered 3D scan database CVL database

0

100

200

300

400

500

600

700

800

Im
ag

e 
sp

ac
e 

re
si

du
al

Figure 5.26: Box plot of image space residuals for fitted models of all three databases.

software “Blender”∗ (import/export through the the 3D file format OBJ† using readobj

and writeobj). The following mesh simplification of the template face is done by “qslim”.

The data exchange with this program happens through the SMF file format‡, for which

the I/O-functions readsmf and writesmf were implemented.

The rough pose estimation for the laser scans is done by an external face detection

program (see section 3.4.1). It provides the base ground for a finer alignment that is done

by the ICP algorithm (section 3.4.1.1). Crucial to this algorithm is the nearest neighbor

search. Unfortunately this search can not be easily optimized in Matlab. Therefore a

C++ implementation of a kd-tree provided at the Matlab central file exchange§ is used in

Matlab through the mex interface. This interface is also used to speed up some routines

such as multi-dimensional matrix multiplication (e.g. equation 4.27) in C.

The OSNRICP algorithm (section 3.4.4) for establishing dense 3D correspondence

between the template face and a rigidly aligned laser scan uses huge matrices. They

are implemented as sparse matrices, as it would not be feasible otherwise to carry out

computations on them.

∗Blender http://www.blender.org/. Accessed on January 28, 2010
†OBJ File Format http://local.wasp.uwa.edu.au/∼pbourke/dataformats/obj/. Accessed on Jan-

uary 28, 2010
‡SMF file format. http://people.sc.fsu.edu/∼burkardt/data/smf/smf.txt. Accessed on January

28, 2010
§KDTree Nearest Neighbor and Range Search - MATLAB Central. http://www.mathworks.com/

matlabcentral/fileexchange/7030-kd-tree-nearest-neighbor-and-range-search. Accessed on Jan-
uary 28, 2010

http://www.blender.org/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/obj/
http://people.sc.fsu.edu/~burkardt/data/smf/smf.txt
http://www.mathworks.com/matlabcentral/fileexchange/7030-kd-tree-nearest-neighbor-and-range-search
http://www.mathworks.com/matlabcentral/fileexchange/7030-kd-tree-nearest-neighbor-and-range-search
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convert head scan to JPEG 0.8s
face detection 1.4s

rough pose detection 0.2s
ICP 8s

OSNRICP 83s
PCA 0.1s

Table 5.4: Computation times per face

The final step in building the model is a Principal Component Analysis on the reg-

istered data. The Matlab internal function princomp is used with the ’econ’ switch to

calculate the important dimensions in the face space.

At this step, the “Morphable Model Explorer” (Figure 5.27) can visualize a 3DMM

up to a certain degree and allows the user to inspect and judge the model. The rendered

face can be adjusted through 10 slider controls for the shape components and another

10 controls for the texture components. Interactively the face is adapted as the sliders

are moved. For close inspection the face can be rotated, dragged and zoomed. In the

implementation of the Explorer, the Matlab-integrated routine “patch” has been used

extensively. It uses the OpenGL capabilities of the graphics card and therefore provides

fast rendering of the calculated face.

The second main part of the framework consists of fitting a 3DMM to an input image.

The basis for the parameter updates of the model is provided by the derivatives of the

residual function. They are calculated by different functions (“cost*”) that only compute

the relevant parts (w.r.t. shape, texture, pose etc.) of the derivatives. The optimization

routine utilizes a standardized interface so that in various stages of fitting the derivative

residuals can be easily exchanged.

As the residual is only calculated on the visible triangles of the face, the set of non-

occluded areas is determined by the “visibleTriangles” function. Its decision on which

triangles are not occluded from the viewer rests upon the preliminary parameters that

have been adjusted so far. From this set, the function “selectTriangles” elects the triangles

that are actually used in the randomized optimization. The probability that a triangle

is used in the fitting is on one hand proportional to the area it occupies in the rendered

image. On the other hand the probability increases for important regions such as nose,

eyes and mouth or the silhouette.

The parameters of the model are structured in four objects. “alpha” contains the

shape coefficients α, while “beta” stores the texture components β of the current face.

The illumination parameters are grouped in the structure ill. “specular material” sets the
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(a) (b)

(c)

Figure 5.27: Morphable Model Explorer

Matlab patch property SpecularStrength, which is Ldks from the formula 4.14 (intensity

of the specular component). The exponent ν that defines the size of the specular reflection

is stored in “shininess” (Matlab patch property SpecularExponent). Finally the pose and

projection parameters are aggregated within rho.
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color contrast 1 c (formula 4.20)
color gain [1 1 1] [gr gg gb] (formula 4.20)
color offset [0 0 0] o (formula 4.19)

ambient light [0.6 0.6 0.6] La (formula 4.10)
directional light [1 1 1] Ld (formula 4.11)
light direction [0 0 -1] d (formula 4.11)

specular material 0.1 Ldks (formula 4.14)
shininess 70 ν (formula 4.14)

view direction [0 0 -1] v (formula 4.14)

Table 5.5: Variables in the illumination structure ill

rx 0 ϕx (formula 4.2)
ry 0 ϕy (formula 4.3)
rz 0 ϕz (formula 4.4)
s 0 s (formula 4.1)

tx 0 tx (formula 4.5)
ty 0 ty (formula 4.5)
tz -20 tz (formula 4.5)

viewport x 640 input image size (formula 4.16)
viewport y 480 input image size (formula 4.16)

fovy 10 field of view y (formula 4.15)
zNear 30 first clipping plane (formula 4.15)
zFar 2 second clipping plane (formula 4.15)

Table 5.6: Variables in the pose structure rho
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6.1 Summary and Contributions

In this master’s thesis a framework for building and fitting a 3D Morphable Model has

been developed. In section 2.1 first some views on the historical development of statistical

shape and appearance models is given, and then we present some details on the popular

Active Appearance Models. Section 2.3 introduces the concept of 3D Morphable Models,

and then an overview over the many areas where they can be employed is given.

From a large database of raw three-dimensional head scans we construct a full 3D Mor-

phable Face Model. The full correspondence between the scans is obtained by adapting

the Optimal-Step Non-Rigid ICP algorithm. Using all the registered scans, we explain

the idea of the Face Space. The following Principal Component Analysis removes redun-

dancy from the data and orders the dimensions with respect to their importance. Some

alternatives for the determination of the number of Principal Components are shown.

In the fitting chapter 4 the steps of adapting a 3D Morphable Model so it resembles a

given input image as close as possible are shown. We first explain in detail the rendering

of a three-dimensional head to a two-dimensional image, and then establish a residual

measure using a slight variation of this rendering process. The derivatives of this residual

measure (section 4.3) are used as a basis for the optimization process that is at the core
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of the Morphable Model Fitting. For a visually pleasing result, an illumination-corrected

texture from the input image is merged with the fitted model.

An experimental evaluation is done in the last major chapter 5. The generated 3D

Morphable Model is inspected closely, and the few cases where registration failed are

identified through the reconstruction error. Then the 3DMM is evaluated in two types

of experiments. First the framework is used to determine the pose of human heads in

two-dimensional photographs. The results (section 5.2.3) show high accuracy for those ex-

periments. Second, the frameworks performance for fitting input images under controlled

and uncontrolled conditions is inspected. Three datasets are used for this performance

evaluation: model-generated images, rendered 3D head scans and the CVL database. Fi-

nally some details of the implementation are given.

6.2 Conclusions

For the use of 3D Morphable Models in various areas we see both advantages and disadvan-

tages: The effort for the construction of a 3DMM is quite high, although it has to be done

only once. 3D scans of many examples of the underlying category need to be captured.

Establishing the dense three-dimensional correspondence between the raw scans is timely

and computationally consuming. The building of a model has to be done for every new

category - the learned knowledge can not be transfered. But the big reward is a model

with which a complete category can be represented in an efficient and very elegant way.

Also the fitting process shows some difficulties, but has also many positive sides. There

are a number of constants that have to be determined manually for a type of input images

(focal length, specular coefficient, etc.). The optimization of a parameter space with such

a high dimensionality is tedious and it is not easy to find a globally optimal solution. This

problem is further complicated, as several parameters such as pose, light and shape have

a high inter-dependence. But on the other side, the 3D model gives us the possibility, in

contrast to other statistic deformation models, to explicitly describe and model illumina-

tion, pose and shape. The stochastic approach to the optimization introduces robustness

and as a nice side effect also speeds up the computation.

6.3 Directions for Future Work

This framework can be enhanced and developed further in several directions. The possible

improvements can roughly be split belonging to the model building and to the fitting
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process.

Depending on the field of application (e.g. identification, but not pose estimation),

it may be useful to support the foundation of the model with more samples. Those can

be faces with expressions (smiling, anger, . . . ), samples with greater diversity in race,

and also just additional faces from the same spectrum. Only a few studies (e.g. Meytlis

[54]) have been conducted on how many dimensions are needed in the face space. This

consideration can be done using mathematical data (minimum distance between two faces,

LEV diagram, . . . ) or on comparing it with the human visual system (which faces can be

distinguished by a human observer). As high-resolution photographs become more and

more common, it is also useful to have a model at hand that represents the underlying

category with an equally high detail. In this work we observed that the computational

load for the Optimal Step Non-Rigid ICP algorithm increases non-proportionally with a

higher number of vertices. So a possible direction could be the combination of Optical

Flow with this algorithm. If it can be assured, that the model fitted a new input image

successfully, this input image gives probably also some new information that can be used

to update the model. This would not be very difficult for the texture, but could be more

involved for the shape direction.

The fitting of a 3D Morphable Model to an input image also provides room for improve-

ment. Several examples (see section 5.3.3) showed that occlusions like hair can distort the

optimization towards a correct solution. Instead of using the sum of squared differences for

the error measure, a more robust cost function (Huber norm, Lorentzian norm, . . . ) that

tolerates outliers better could improve the quality of a parameter estimate significantly.

But also an algorithm that excludes detected outliers from the ongoing fitting process is

promising better results. Apart from the quality of the parameter estimation, the speed

of the optimization could preferably be faster. The adoption of the Inverse Compositional

Image Alignment by Baker [5] to 3D Morphable Models (Rhomdani and Vetter, [69]) that

is quite fast could be expanded to include strong perspective and a more realistic illumi-

nation model. In our framework, the calculation of the Jacobian consumes most of the

time, so another direction of improvement lies in the precalculation or approximation of

the derivatives of the error measure. Another option is to reduce the high dimensionality

of the face space. The illumination model restricts accurate fitting to photographs taken

with only one main light source. The quality of the shape estimate could probably be in-

creased by including more lights and expanding the calculations for a more sophisticated

illumination model than the Blinn-Phong. Finally more features in addition to the simple
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pixel color might both speed up the calculation and add accuracy to the fitting process.

For example strong image gradients - edges - could provide a good guidance for the shape

estimation.
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A.1 Derivatives with respect to shape coefficients

The derivative of the error measure 4.24 with respect to the shape coefficients α is the

following

∂E
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For the derivative of the cost function, it is necessary to use the chain rule

∂ec
∂α

=
∂I in(P (U,α, δ))

∂α
− ∂T illc(U,α, β, γ)

∂α
(A.2)

∂I in(P (U,α, δ))
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∂P (U,α, δ)
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|S(α)

∂S(α)
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(A.3)

The first part of the derivation are the image gradients in both x̄ and ȳ direction

of the input image, evaluated at the locations of the triangle centers of the head image

coordinates rendered with the current parameter estimates α and δ. The next part derived

using the chain rule is the derivative of the transformation P (equation 4.18) with respect
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to the triangle centers in 3D. The last one is the derivative of the shape derived with

respect to the shape parameters α.
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∂S(α)

∂αi
= Si (A.6)

In the derivative of the illuminated texture the ambient term falls out completely, as

it only depends on the parameter β. It is mainly based on the derivative of the normal

vectors.

∂T illc(u, α, β, γ)
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To derive the triangles normal vector the two vectors vec1 and vec2 from the definition

of the normal product are used. Those two vectors point from one vertex v1 of the triangle

to the other two corners v2 and v3. The final normal n result from the transformation by

the modelview transformation (equation 4.7 of the original normal ñ4.

n = MV ñ (A.9)
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The derivative of the cross-product is as follows
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vec1 = v2 − v1 (A.13)

vec2 = v3 − v1 (A.14)
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All the homogeneous coordinates of the vertices have to be normalized after the mul-

tiplication with all the transformation matrices united in P . The derivatives of this nor-

malization are
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A.2 Derivatives with respect to texture coefficients

The only terms that vary with the texture parameters are the ambient and the diffuse

illumination. So the simple derivation of the cost function with respect to the parameters

β is

∂ec
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= −∂T illc(u, α, β, γ)

∂β
(A.24)

∂T illc(u, α, β, γ)

∂β
= M

(
La∂T

∂β
+ Ld < n, d >

∂T

∂β

)
(A.25)

The derivative of the texture with respect to the j-th texture parameter is the j-th

Principal Component.

∂T

∂βj
= Tj (A.26)

A.3 Derivatives with respect to pose parameters

Both the Iin(P (u, α, δ)) and the T illc(u, α, β, γ) part of the residual function depend on the

pose parameters ρ. For the first part it is obvious that it depends on the pose parameters,

but also the illuminated texture varies with changes in pose. If the light direction is given

in world coordinates, the diffuse reflection term is influenced by a pose change, as the angle

between the normal vectors and the light direction changes. The specular term depends

also on the viewers direction with respect to the face - also this relation changes as the

pose is altered. Here the derivatives with respect to the rotation angles are shown. For

the other pose parameters, they are similar.
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In the modelview matrix MV (equation 4.7) only the rotation matrix R depends on

the rotation angles. The normal is transformed by this modelview matrix.
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A.4 Derivatives with respect to illumination parameters

Just the illuminated corrected texture term T illc has to be concerned for changing lighting

conditions. Here is its derivation with respect to the direction of light d. The derivatives

for the other illumination parameters are similar.
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