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Abstract

Interpolation in digital signal processing is essential for procedures like sampling rate con-
version or symbol timing recovery. In this context interpolation algorithms are employed to
calculate signal values at arbitrary times.

In this thesis an implementation of a high performance interpolator and sampling rate con-
verter is investigated, which is used for emulating �ne delay variations on a satellite commu-
nications link. In addition, a timing recovery module, which consists of a timing estimator
and an interpolator, is developed for a software de�ned radio platform. This platform is part
of an experiment for adaptive coding and modulation, carried out by Joanneum Research in
the framework of the ALPHASAT TDP5 - Q/V Band Payload project of the European Space
Agency (ESA).

The basic theory of interpolator structures as well as the detailed description of the funda-
mental algorithm is discussed in this thesis. Furthermore, simulation results are presented
which illustrate the performance of the proposed method. These results are in the sequel
compared to a reference implementation of a cubic interpolator.

For the purpose of symbol timing recovery, an appropriate estimator is introduced and im-
plemented. The architecture of estimator and interpolator is developed in this thesis. This
timing recovery module is additionally implemented on a software de�ned radio FPGA. The
corresponding design and functionality as well as the resulting hardware measurements are
presented.

Finally, a basic overview of the GNU Radio software environment and the Universal Software
Radio Peripheral device by Ettus Research is attached. This also includes instructions for
the design and usage of signal processing blocks on GNU Radio.
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1. Introduction

1.1. Motivation

Interpolation in digital signal processing is used to calculate signal values at arbitrary times.
By using interpolation techniques, sampling rate conversions can be obtained, for example to
reduce the computational e�ort of the following signal processing components.
In this thesis, a speci�c interpolation technique is analyzed and implemented for two di�erent
interpolation applications.
The �rst application is a satellite emulator. Since the round-trip time (RTT) of a satellite
communication link is varying due to the movement of the satellite and the consequential
varying distance to the ground station, this delay variation needs to be performed when
emulating a satellite communication link. One possibility of this delay variation emulation is
by performing an appropriate rate conversion on the input samples.
Another application of the interpolator in this thesis is the recovery of the symbol timing.
In this application, an interpolator is used in the context of an asynchronous sampling clock,
i.e., the sampling grid does not necessarily include the ideal sampling instant. As a con-
sequence, this introduces an impairment in terms of inter-symbol-interference degrading the
performance in digital receivers.

1.2. Use Case Scenarios for the Interpolator

1.2.1. Delay Variations in a Satellite Emulator

Joanneum Research currently works on a project to develop an emulator for a satellite com-
munication link. The movement of a satellite relatively to the ground station leads not only
to a Doppler e�ect, but also to a delay variation due to the varying distance. Therefore the
architecture of this emulator consists of a frequency error block simulating the Doppler e�ect,
a noise block and the mentioned delay variation block. The basic architecture of this satellite
emulator is illustrated in �gure 1.2.1.

Figure 1.2.1.: Architecture of the satellite emulator

19



In the satellite emulator project of Joanneum Research, this delay variation block consists of
a sampling rate changer and a FIFO with di�erent read and write rates, which is illustrated
in �gure 1.2.2. The input sampling rate fs is converted to a new sampling rate f ′s with respect
to the movement of the satellite. The resulting samples are stored in a FIFO. The samples
in the FIFO are then interpreted as samples of the input sampling frequency fs by the DAC
as illustrated in �gure 1.2.1. Since the sampling rates fs and f

′
s are di�erent, the number of

samples in the FIFO increases or decreases according to their ratio.

Figure 1.2.2.: Structure of the delay variation block of the satellite emulator

1.2.1.1. Task of this Thesis

The task of this thesis for the satellite emulator application is to implement an interpolator for
this sampling rate conversion. Additionally, a performance analysis is applied to identify the
capabilities of the implemented interpolator. For the implementation and simulation part, a
simulation environment developed by Joanneum Research is used. These results also provide
the fundamentals for a potential hardware implementation of this delay variation block in the
satellite emulator.

1.2.2. Timing Recovery on a Software De�ned Radio Platform

Another project at Joanneum Research is to develop an SNR estimator for the adaptive coding
and modulation (ACM) experiment TDP5 on the ALPHASAT satellite, which is launched
at the end of 2012 by the European Space Agency (ESA). In this project, a software de�ned
radio (SDR) platform is used to implement the required estimation and synchronization tasks.
It consists of a universal software radio peripheral (USRP) device by Ettus Research which
is connected to a host PC. The basic architecture is illustrated in �gure 1.2.3.
The USRP N210 consists of an analog receiver frontend (WBX daughterboard) which is
responsible for signal ampli�cation, complex mixing and anti-alias �ltering (AAF). The USRP
N210 motherboard converts the analog output of the WBX daughterboard into digital samples
(ADC) and decimates these samples by applying a cascaded integrator comb (CIC) �lter
as well as a half-band �lter (HBF). The motherboard also contains the root-raised-cosine
(RRC) matched �lter and the timing recovery module, which consists of timing estimation
and interpolation. The resulting samples are then used by a di�erential correlator to �nd the
frame start in the transmitted symbols. The symbols and the result of the correlator are sent
to a host PC via Ethernet where the �nal SNR estimation is performed.
The implementation of the SNR estimation part of this project has been detailed in [Tür12].
In �gure 1.2.3 this part is indicated by the red frame. The current thesis investigates the
implementation of the timing recovery task, which is indicated by the green frame. The other
modules illustrated in �gure 1.2.3 are already implemented on the USRP N210.
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Figure 1.2.3.: Basic architecture of the software de�ned radio platform USRP N210

1.2.2.1. Task of this Thesis

The task of this thesis is to implement a timing recovery module on the USRP N210 which
consists of a root-raised-cosine �lter, a timing estimator and an interpolation module. This
module is used to extract the symbols out of the input signal prior to the SNR estimation
process.

1.3. GNU Radio

GNU Radio is an open source toolkit which allows users to combine signal processing modules
in order to generate software de�ned radios (SDR). It is available on the GNU Radio website
http://gnuradio.org1 which also contains all necessary information on the toolkit.
The software is licensed under the GNU GPL version 3 and is available for the platforms
Linux and Windows.
In this thesis GNU Radio was used as a development environment for the high level models
of the modules that are later implemented on the FPGA. Additionally, the toolkit was used
for veri�cation of these models as well as for generating test vectors for the FPGA modules
veri�cation process during the hardware implementation.
This chapter gives a brief introduction to the software environment of GNU Radio and also of
the USRP hardware devices. The usage of GNU Radio as well as the procedure of developing
software modules is described in appendix A.

1.3.1. Hardware

The GNU Radio software works with several hardware components, although hardware com-
ponents are not necessarily required for working with the toolkit. There are many blocks
already provided by the software which allow reading and writing data of di�erent �le formats.

1This URL was checked for validity in March 2012
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Pre-recorded examples are available which allows the user to develop and simulate applica-
tions completely without the need of any additional hardware.
But if working with signals from real applications and not only with simulated or pre-recorded
signals, GNU Radio supports several hardware components.

1.3.1.1. Supported Hardware

The most common and cheapest hardware component is the sound card interface which is
nowadays available on most computers. This hardware component usually provides stereo
input and output which would correspond to two channels for digital signal processing. Many
simple DSP applications can be realized using this common hardware device.
Other supported hardware devices are presented on the GNU Radio website like Perseus and
Comedi. For more information on these devices please visit the GNU Radio website that is
given at the beginning of this chapter.

1.3.1.2. USRP

Some very powerful and capable devices are the USRP series developed by Ettus Research.
USRP stands for Universal Software Radio Peripheral and is a family, which consists of many
di�erent motherboards using either USB or Gigabit Ethernet interfaces for communication
with a host PC. But these boards also can be used as standalone devices or even in a network
of devices for MIMO applications.
These boards support reception and transmission of signals up to 5.8GHz with sampling
rates up to 100MHz.
The practical FPGA part of this thesis is implemented on the USRP N210 device by Ettus
Research. The detailed description of this device is given in chapter 5.
For the support of these USRP devices in GNU Radio, the universal hardware driver (UHD)
is integrated in GNU Radio.

1.3.1.3. Universal Hardware Driver

The universal hardware driver is a project by Ettus Research that enables the usage of every
USRP device in the GNU Radio toolkit. Also other applications like LabView and Simulink
support this driver and can therefore be used with any USRP device. Also the possibility
of using this driver in self-made toolkits is given. The UHD is developed for the platforms
Linux, Windows and Mac.
The usage and installation of UHD is described in appendix A.
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2. Interpolation and Digital Sampling

Rate Conversion

This chapter recaps the theory and implementation of interpolation and digital sampling rate
conversion for the FIR-based interpolation as well as for the polynomial based interpolation,
which is used for the comparison of implementation complexity and performance.

The major goal of interpolation and digital sampling rate conversion is to compute signal
values at arbitrary times in digital signal processing.

2.1. Polynomial Interpolation

First of all, the polynomial-based interpolation technique is discussed. Lots of literature exist
for this kind of interpolation due to its popularity. Therefore, the algorithm is detailed for
comparison purposes with the algorithm presented later in this thesis. Hence, the basic points
of this procedure are presented in this section.

In this class of interpolators the impulse response of the underlying continuous �lter is a
polynomial or a piecewise polynomial, which is �tted to a set of signals samples such that
the value of the polynomial exactly matches the sample values. This polynomial then gets
evaluated at the desired time instance.

In [EGH93] the fundamental interpolation equation is given by the following formula:

y (k · Ti) = y [(mk + µk) · Ts] =

I2∑
i=I1

x [(mk − i) · Ts] · hI [(i+ µk) · Ts] (2.1.1)

where x (m) are the signal samples at intervals Ts, hI (t) is a continuous interpolation �lter,
mk is the basepoint index, µk is the fractional interval and Ti is the sample interval of the
output samples.

When using polynomial �lters for the interpolation, the Lagrange coe�cient formula (equation
2.1.3) can be used to create the interpolating polynomial. So the interpolation polynomial
can be constructed according to [Gar90]

p [(mk + µk) · Ts] = y [(mk + µk) · Ts] =

I2∑
l=I1

Ll [(mk + µk) · Ts] · x [(mk − i) · Ts] (2.1.2)

where

Ll (t) =
N∏

j=0,j 6=l

t− tj
tl − tj

(2.1.3)

Using t = (mk + µk) · Ts , the fact that tl − tj is an integer multiple of the sampling time Ts
and by setting the ranges of the product from I1 to I2, equation 2.1.3 leads to
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Ll (µk) =

I2∏
j=I1,j 6=l

µk + j

j − l
(2.1.4)

Having a look at equation 2.1.2 and comparing it with equation 2.1.1, we observe that the
�lter impulse response can be calculated using the Lagrange formula given in equation 2.1.4.
A very common kind of polynomial interpolator is the cubic interpolator which has a degree
of N = 3. Hence, the resulting �lter has N + 1 = 4 taps. When using this order, we can
interpret equation 2.1.4 as [Gar90]

L1 (µk) = −1
6
· (µk − 2) · (µk − 1) · µk

L0 (µk) = 1
2
· (µk − 2) · (µk − 1) · (µk + 1)

L−1 (µk) = −1
2
· (µk − 2) · µk · (µk + 1)

L−2 (µk) = 1
6
· (µk − 1) · µk · (µk + 1)

(2.1.5)

by using the taps from I1 = −N+1
2

= −2 to I2 = N+1
2
− 1 = 1.

Now we can see that the resulting piecewise polynomial impulse response of the �lter is given
by [EGH93]:

hI [(i+ µk) · Ts] = Li (µk) =
N∑
l=0

bl (i) · µlk (2.1.6)

where bl (i) are �xed coe�cients which are independent from µk.
According to [EGH93], equation 2.1.2 can now be rearranged using equation 2.1.6

y (k) =

I2∑
i=I1

x (mk − i) ·
N∑
l=0

bl (i) · µlk

=
N∑
l=0

µlk ·
I2∑
i=I1

bl (i) · x (mk − i) (2.1.7)

=
N∑
l=0

µlk · v (l)

where

v (l) =

I2∑
i=I1

bl (i) · x (mk − i) (2.1.8)

This de�nes the input-to-output relation for the polynomial interpolator using the Lagrange
coe�cients.

2.1.1. Implementation of the Polynomial Interpolator

For a cubic interpolator, equation 2.1.7 leads to the nested evaluation:

y (k) = {[v (3) · µk + v (2)] · µk + v (1)} · µk + v (0) (2.1.9)

where
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v (l) =
1∑

i=−2

bl (i) · x (mk − i)

The coe�cients bl (i) can be extracted from equation 2.1.5 and are summarized in table 2.1.1
which is also given in [EGH93].

i l = 0 l = 1 l = 2 l = 3

−2 0 −1
6

0 1
6

−1 0 1 1
2

−1
2

0 1 −1
2

−1 1
2

1 0 −1
3

1
2

−1
6

Table 2.1.1.: Coe�cients bl (i) for the cubic interpolator

The corresponding impulse response of the cubic interpolator can be seen in �gure 2.1.1. The
impulse response is piecewise cubic polynomial in Ts which can be seen in this plot. Also the
fact that the impulse response has its zeros at all non-zero integer multiples of Ts ensures the
exact interpolation of the basepoint set.

When looking at the magnitude response of the cubic interpolator shown in �gure 2.1.1, we
can see the broad main lobe that results from the narrow main lobe in the impulse response.
This wide main lobe makes pre�ltering necessary when using this cubic interpolation for
decimation procedures, where unwanted signal components in the spectrum are present and
need to be �ltered to avoid aliasing. On the other hand, these high sidelobes results in a
folding of the spectral images onto the desired signal when resampling is applied. This can
lead to impairments in the resulting output spectrum if the decimation rate is not an integer
value, like for example ρ = 0.4706. An illustration of this occuring e�ect is shown in section
6.2.6.
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Figure 2.1.1.: Impulse response (left plot) and magnitude response (right plot) of the cubic
interpolation �lter
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2.1.1.1. Farrow Structure

In the Farrow structure proposed by [EGH93] which consists of N + 1 = 4 columns of FIR
�lters. Each �lter has a �xed set of �lter coe�cients. This is a very e�cient approach, since
all the computations in equation 2.1.9 are performed online and there is no need for additional
�lter coe�cient memory.
Figure 2.1.2 shows the Farrow structure of the cubic interpolator. The corresponding coe�-
cients bl (i) are listed in table 2.1.1.

Figure 2.1.2.: Farrow structure of cubic interpolator

Since the cubic interpolator is a very popular interpolator in digital receivers, the hardware
implementation of this Farrow structure can be found in literature. For example in [MB07],
the VHDL source code for such an interpolator is given and only the rate change needs to be
adapted.
If we compare this implementation with the FIR implementation, we can see that no coe�cient
table is needed since they are independent from µk. However, 15 (19 multipliers - 4 zero
coe�cients) multiplications are needed, which would be equal to a hardware e�ort for a FIR
�lter with 15 taps.
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2.2. FIR Interpolation

The FIR interpolation is based on the sampling theorem [MMF98] and the basic structure of
the FIR algorithm is presented in [Smi11].

In this respect, x(n · Ts) represents the samples of a continuous signal x(t), where t is the
time, n an integer number and Ts is the sampling period. We assume that x(t) is bandlimited
to ±Fs

2
, where Fs = 1

Ts
is the sampling frequency.

The sampling theorem says that the original signal can be perfectly reconstructed from the
samples x(n · Ts) using the formula:

x(t) =
+∞∑

n=−∞

x(n · Ts) · sinc
(
t− n · Ts

Ts

)
(2.2.1)

where

sinc

(
t

Ts

)
=

sin
(
π · t

Ts

)
π · t

Ts

is the sine cardinal or sinc function.

The sinc function and its Fourier transform are illustrated in �gure 2.2.1. The maximum
amplitude is one and all the zeros are at non-zero integer values of Ts. Shifted to the frequency
domain, the sinc function shows a rectangular shape

rect

(
f

Fs

)
=

{
1 |f | ≤ Fs

2

0 |f | > Fs
2

of an ideal lowpass �lter. The cut-o� frequency is at fc = Fs
2
, hence it is frequently denoted

as a brick-wall �lter, which means that this �lter perfectly cuts o� frequencies higher than fc
and passes all frequencies equal or lower than fc.
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shown) and its corresponding magnitude response (right hand side)
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2.2.1. Interpretation of the Sampling Theorem

Equation 2.2.1 shows the convolution of signal x (n · Ts) with the sinc function sinc
(
t−n·Ts
Ts

)
.

Due to the fact that the convolution is commutative, equation 2.2.1 can be interpreted in two
di�erent ways.

The �rst way is to see the equation as the sum of weighted sinc functions. In this case, one
sinc function for every input sample is shifted to its corresponding time position. The sinc
functions then get weighted by the related input sample and the results are added together.
As mentioned before, the sinc function is zero at all non-zero integer values. This means that
if we have a look at a speci�c sinc function in �gure 2.2.2, we can see that there is only an
impact from a single input sample because the value of the sinc function is zero at all other
sample positions. If we �nally sum up all the weighted sinc functions, we get a signal passing
exactly the input samples of the original signal.
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Figure 2.2.2.: Alignment of the weighted sinc functions for signal reconstruction

Another way of looking at equation 2.2.1 is to shift the input samples over one single sinc
function. This means that the input samples are shifted such that the peak of the sinc function
is at the time position for which the output sample is requested. The output is calculated by
multiplying the input samples with the sinc values at the position of the input samples which
corresponds to a �lter operation. Figure 2.2.3 shows the sinc function at three di�erent time
instances where every time instance of the sinc function is indicated with a di�erent colour.
At every time instance the sinc function is multiplied with the input samples and these results
are added together to compute the desired output value. Then the input samples get shifted
by the sampling period before computing the next output.
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Figure 2.2.3.: The sinc function at three di�erent time instances without interpolation

2.2.2. Interpolation using the Sampling Theorem

To compute the signal value at an arbitrary time between two input samples, which is needed
for interpolation and sampling rate conversion, the input samples need to be shifted such,
that the peak of the sinc function is at the time position of the desired signal value. Now
each input sample again gets multiplied with the sinc value at its time position and all the
results are added together to compute the desired output value. If we have a look at �gure
2.2.4, where we want to calculate the signal value at the time P , we observe that every input
sample in�uences the output at the time instance P .
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Figure 2.2.4.: The sinc function at three di�erent time instances with interpolation
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In order to change the sampling rate to F̃s = 1
T̃s
, we need to evaluate the sampling formula

(equation 2.2.1) at integer multiples of T̃s. If the new sampling rate is lower than the original
one (Fs > F̃s), the cut-o� frequency of the ideal lowpass �lter has to be set to the half of the

new sampling rate: f̃c = F̃s
2
. This means in general that the sinc function in equation 2.2.1

needs to be replaced by the new sinc function sinc
(

min
(

1
Ts
, 1
T̃s

)
· t
)
. Figure 2.2.5 shows the

sinc function for three di�erent time instances in case of an conversion factor of ρ = F̃s
Fs

= 1
2
,

which equals a decimation by 2. Now the input samples are shifted by T̃s = Ts
ρ

before
calculating the output sample which is twice the sampling period in this example. As it can
be seen, the time duration of one zero crossing of the sinc function is increased when using
ρ = 1

2
. This means that the cut-o� frequency of the �lter is decreased.
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Figure 2.2.5.: The sinc function at three di�erent time instances with a sampling rate con-
version factor of ρ = 1

2
, without interpolation

Figure 2.2.6 shows the sinc function for three di�erent time instances in case of an upsampling
factor of ρ = F̃s

Fs
= 2. Now the input signal needs to be shifted by T̃s = Ts

ρ
after producing

one output value which is half the sampling period in this example.
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Figure 2.2.6.: The sinc function at three di�erent time instances with an upsampling factor
of ρ = 2, without interpolation

If decimation plus interpolation is requested, the input samples need to be shifted additionally
by P . After computing an output value, the input signal has to be shifted by T̃s = Ts

ρ
which

is twice the sampling period in the example con�guration in �gure 2.2.7.
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Figure 2.2.7.: The sinc function at three di�erent time instances with decimation of ρ = 1
2

and interpolation

In case of upsampling plus interpolation the input samples need to be shifted additionally
by P compared to the pure upsampling case. After computing an output value, the input
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samples need to be shifted by T̃s = Ts
ρ
which is half the sampling period in the example

con�guration in �gure 2.2.8.
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Figure 2.2.8.: The sinc function at four di�erent time instances with an upsampling factor of
ρ = 2 and interpolation

2.2.3. Windowing of the Sinc Function

When working on real systems the ideal impulse lowpass �lter cannot be implemented because
of its non-causal impulse response which extends from negative in�nity to positive in�nity.
In order to cope with this problem, the in�nite impulse response of the ideal lowpass �lter
needs be truncated to become �nite. This can be obtained using windowing methods.

When windowing the ideal lowpass �lter, its impulse response is multiplied with a window
function. There are several di�erent kinds of window functions mentioned in the literature of
digital signal processing for example in [PM96]. Two window functions are explored in this
thesis. First the rectangular window is analyzed, which is a very common window due to
its simplicity since the �lter IR only needs to be truncated. Secondly, the Kaiser window is
presented due to its superior performace proposed in [Smi11].

2.2.3.1. Rectangular Window

The rectangular window is a function which has the value 1 in a speci�c interval [−N,N ] and
the value 0 outside of this interval. Its function is given by:

wrect[n] =

{
1 |n| ≤ N

0 |n| > N

In �gure 2.2.9 an example of the rectangular window and its Fourier transform are shown.

The Fourier transform of the rectangular window is given in [PM96] by

32



Wrect (ω) =
M−1∑
n=0

e−j·ω·n = e−j·ω·
(M−1)

2 ·
sin
(
ω · M

2

)
sin
(
ω
2

)
where M is the number of samples of the window. As can be seen, the abrupt change of the
amplitude in the window results in a narrow main lobe and quite high sidelobe levels in the
spectrum. According to [PM96] and [Lyo11] the main lobe gets narrower the more samples
M are used for the window function. But the height of the sidelobes cannot be a�ected by
increasing M .

Other windows reduce this discontinuities in the amplitude in order to reduce the magnitude
of the sidelobes in the spectrum.
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Figure 2.2.9.: Rectangular window (left hand side) and its corresponding magnitude response
(right hand side)

2.2.3.2. Kaiser Window

The Kaiser window has the parameter β which is de�ned in [Kai74] by

β =


0.1102 · (α− 8.7) α > 50

0.5842 · (α− 21)0.4 + 0.07886 · (α− 21) 50 ≥ α ≥ 21

0 α < 21

(2.2.2)

where α is the sidelobe attenuation in dB.

The parameter β can be used to control the trade o� between the main lobe width and the
sidelobe levels. The window function is de�ned in [Lyo11] by

w[n] =

I0

(
β ·
√

1−
(
n−p
p

)2
)

I0 (β)
(2.2.3)

for n = 0, 1, . . . , N − 1and p = N−1
2
. I0 (·) is the zero-order modi�ed Bessel function of the

�rst kind which can be approximated by the formula given in [Lyo11]
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I0(x) =
24∑
i=0

x2·i

4i · (i!)2
(2.2.4)

As mentioned before, the parameter β can be used to control the sidelobe attenuation as well
as the width of the main lobe. If we have a look at �gure 2.2.10, we can see that for low values
of β the main lobe is quite narrow but the sidelobe attenuation is low. When increasing β
the sidelobe attenuation increases with the drawback of a wider main lobe.

The �nal choice of β depends on the requested speci�cations for the �lter design. This �lter
design is used in section 2.2.5.
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Figure 2.2.10.: Kaiser window (left hand side) and its corresponding magnitude response
(right hand side) for di�erent values of β

2.2.4. Implementation of the FIR Interpolator

As already mentioned in section 2.2.1, one interpretation of equation 2.2.1 is to shift the
signal samples over one �lter IR. Which means that we can shift the input samples such, that
the peak of the �lter function is at the time position of the desired output sample. The input
samples are then multiplied with the �lter values at the sample time positions and all these
results are then added together in order to compute the desired output sample.

Figure 2.2.11 illustrates this computation where the desired output is shifted by P relative
to the input samples. Using this method, any conversion factor of

ρ =
Fout
Fin

(2.2.5)

where Fin is the input sampling frequency and Fout is the output sampling frequency, can be
realized. For ρ = 1 simple interpolation, for ρ > 1 upsampling and for ρ < 1 decimation is
performed.
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Figure 2.2.11.: Illustration of output sample computation for time P

The shift value P ∈ [0, 1) de�nes the position of the desired output sample between two input
samples. P needs to be quantized in order set the number of possible positions between two
successive input samples. This number of possible values for P de�nes also the number of
�lter values that are needed for one zero crossing of the �lter function.

If we have nbP bits to represent P we need to have NP = 2nbP samples of the �lter function
per zero crossing. Due to the fact that for high nbP values the number of �lter taps can get
very high, there is the possibility to add linear interpolation of the �lter function. Therefore
the nbP bits can be separated into nbl and nbη bits so that nbP = nbl + nbη, where nbη is the
number of bits for the quantization of the linear interpolation.

Now there are L = 2nbl �lter samples per zero crossing pre-calculated. The �lter function is
a symmetric function, hence only one half of the samples needs to be stored in a �lter table.

The number of zero crossings in the �lter function is denoted as Nz. These �lter values are
stored in the �lter table h[l]. The variable l ∈ [0, L ·Nz] is used to represent the current
position in the �lter table.

Figure 2.2.12 shows an example content of the �lter table h[l] with nbl = 7 and Nz = 3.
Which means that three zero crossings and 27 = 128 samples per zero crossing are stored in
the table.
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Figure 2.2.12.: Filter table content for nbl = 7 and Nz = 3

In addition a second table is generated, which stores the di�erence values of the �lter table.
This table h̄[l] = h[l+ 1]− h[l] with the endpoint h[Nz ·L] = 0 is used to store the amplitude
di�erence of the �lter function between two successive �lter samples. Using these values, linear
interpolation of the �lter function can be implemented. To do so, the interpolation variable
η ∈

[
0, 2nbη − 1

]
is used to represent the position between two successive �lter samples. By

calculating h[l] + η · h̄[l] the linear interpolation of the �lter samples can be performed.

2.2.4.1. Time Register

In order to control the input sample shifting, the variable n is introduced. This variable
de�nes the current reference input sample index.

The three variables n, l and η can now be combined into one time register t, which is illustrated
in �gure 2.2.13. This time register represents the current time position for the actual output
sample calculation. It can be interpreted as a binary �xed point number which has nn integer
bits and nl + nη fractional bits.

Figure 2.2.13.: Composition of the time register t
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2.2.4.2. Procedure for Upsampling

The paper [Smi11] proposes following procedure for a sampling rate conversion ρ = Fout
Fin

for
ρ ≥ 1 (upsampling / interpolation):
The whole calculation is separated into two parts, because only one half of the impulse
response is stored in the �lter table in order to save memory.
At the beginning the values for n, l and η must be loaded from the time register. This time
register is initialized with the time position of the �rst requested output sample.
The �rst part of the output is calculated using the left part of the �lter impulse response:

v =

hend∑
i=0

x(n− i) ·
[
h(l + i · L) + η · h̄(l + i · L)

]
(2.2.6)

After this calculation, a temporary time register has to be created, so that the values for
l and η for the right part of the �lter impulse response are updated. This can be done by
performing the following operation:

Ptmp = 1− P (2.2.7)

Before calculating the right part of the �lter impulse response, the new values for l and η
must be loaded from the temporary time register Ptmp. If the temporary time register Ptmp
is zero, which means the P was also zero before, the variable l has to be incremented by L.
Then the right part can now be calculated using the following formula:

y(t) = v +

hend∑
i=0

x(n+ 1 + i) ·
[
h(l + i · L) + η · h̄(l + i · L)

]
(2.2.8)

When the calculation of one output sample is �nished, the time register needs to be incre-
mented

t = t+
2nbl+nbη

ρ
(2.2.9)

which performs the shifting of the input signal as well as the calculation of the new time
position for the next output sample.

2.2.4.3. Procedure for Downsampling

If a sampling rate conversion for ρ < 1 is desired, the procedure changes slightly. These
changes are needed since the cut-o� frequency of the �lter needs to be adapted to avoid
aliasing in the output signal.
The initial P has to be replaced by P ′ = ρ · P , which is used to load the values of l and η.
The stepsize through the �lter table also changes:

v =

hend∑
i=0

x(n− i) ·
[
h(l + i · ρ · L) + η · h̄(l + i · ρ · L)

]
(2.2.10)

In order to calculate the values for l and η for the right part of the �lter impulse response, a
temporary time register P ′tmp is created from which the new values for l and η are loaded:

P ′tmp = ρ− P ′ = ρ · (1− P ) (2.2.11)
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If the temporary time register P ′tmp is zero, which means the P ′ was also zero before, the
variable l has to be incremented by ρ ·L. Now again, the �nal output value can be calculated,
but again with a di�erent step size through the �lter table:

y(t) = v +

hend∑
i=0

x(n+ 1 + i) ·
[
h(l + i · ρ · L) + η · h̄(l + i · ρ · L)

]
(2.2.12)

Finally, after calculating one output sample, the time register needs to be incremented by

t = t+
2nbl+nbη

ρ

which performs the input signal shifting as well as the calculation of the new time positions
for the next output sample.

2.2.4.4. Parameter Values for some Example Con�gurations

For the purpose of illustration, the values for n, l and η are listed in three tables for three
example cycles of the algorithm. The examples are shown for a �lter impulse response with
the following parameters: Nz = 2, nbl = 7 and nbη = 4.

Table 2.2.1 shows the variables for a simple interpolation using ρ = 1 with two di�erent initial
values.

step n l η

initial 10 0 0
Ptmp 10 128 0

increment 11 0 0

step n l η

initial 10 64 0
Ptmp 10 64 0

increment 11 64 0

Table 2.2.1.: Values for the variables n, l and η for ρ = 1 and two di�erent initial time registers

Table 2.2.2 shows the variables for an upsampling case using ρ = 2 with two di�erent initial
values.

step n l η

initial 10 0 0
Ptmp 10 128 0

increment 10 64 0
Ptmp 10 64 0

increment 11 0 0

step n l η

initial 10 32 0
Ptmp 10 96 0

increment 10 96 0
Ptmp 10 32 0

increment 11 32 0

Table 2.2.2.: Values for the variables n, l and η for ρ = 2 and two di�erent initial time registers

Table 2.2.3 shows the variables for an decimation case using ρ = 1
2
with two di�erent initial

values.
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step n l η

initial 10 0 0
Ptmp 10 64 0

increment 12 0 0
Ptmp 12 64 0

increment 14 0 0

step n l η

initial 10 16 0
Ptmp 10 48 0

increment 12 16 0
Ptmp 12 48 0

increment 14 16 0

Table 2.2.3.: Values for the variables n, l and η for ρ = 1
2
and two di�erent initial time

registers

2.2.5. Filter Analysis

As already mentioned in section 2.2.3, the ideal lowpass �lter cannot be implemented in real
systems due to its non-causal impulse response. There are several parameters in the �lter
design for the FIR interpolation which will be discussed in this section.

First of all, the number of zero crossings is denoted by Nz in the lowpass �lter impulse
response. The number of taps of the resulting �lter is Ntaps = 2 · Nz + 1, which means the
larger Nz, the more �lter taps are used. The second important parameter is the β value of the
Kaiser window that is used to truncate the length of the ideal lowpass �lter impulse response.

For illustration of the impact of these two parameters, the magnitude response of the �lter
is plotted for two interpolator applications.

2.2.5.1. Decimation Application

The �rst application is the decimation con�guration of the interpolator. In this simulation, the
sample rate conversion factor is set to ρ = 1

2
, which equals a decimation by 2. Figures 2.2.14

to 2.2.16 show the magnitude response of the �lter for di�erent numbers of zero crossings Nz

and di�erent β values. Using β = 0, the Kaiser window equals a rectangular window.

If we compare these three �gures (2.2.14 - 2.2.16) of the decimation application, we can see
that the number of zero crossings Nz has a high impact on the width of the main lobe and
the steepness to the stopband. Also the sidelobe attenuation is increased when more �lter
samples are used. This means that for higher values of Nz, the attenuation of unwanted
spectral components above the new Nyquist frequency fs

4
gets increased, which is highly

desireable.

If we look at the in�uence of the β parameter of the Kaiser window, we can see that a
higher value for β increases the width of the main lobe, but also increases the attenuation
of frequency components above cut-o� frequency. As a result, the passband ripples can be
decreased when using a higher β value with the drawback of a higher passband attenuation.
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Figure 2.2.14.: Magnitude response of the interpolation �lter for di�erent numbers of zero
crossings Nz and β = 0 (top plot). The bottom plot shows a zoom into the
passband of the magnitude response.

For the timing recovery application in this thesis, the �lter parameters are set to Nz = 2
and β = 4 which is shown in �gure 2.2.15. In this �gure the cut-o� frequency of the root-
raised-cosine-�lter at fs

8
is also indicated. Here we can see that the attenuation of the signal

bandwidth is lower than 0.1 dB. Only the excess bandwidth of the root-raised-cosine �lter is
attenuated slightly. This trade-o� had to be made since the FPGA resources are very limited
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and therefore the number of �lter taps is needed to be kept as small as possible.
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Figure 2.2.15.: Magnitude response of the interpolation �lter for di�erent numbers of zero
crossings Nz and β = 4 (top plot). The bottom plot shows a zoom into the
passband of the magnitude response.
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Figure 2.2.16.: Magnitude response of the interpolation �lter for di�erent numbers of zero
crossings Nz and β = 8 (top plot). The bottom plot shows a zoom into the
passband of the magnitude response.

2.2.5.2. Satellite Emulator Application

A second application of the interpolator is the satellite emulation. Here we want to introduce
short delays by performing a sample rate with conversion factor ρ ≈ 1. Therefore, the next
�lter analysis shows the resulting �lter of a conversion factor ρ = 0.99. Figures 2.2.17 to
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2.2.19 show the magnitude response of the resulting interpolation �lter for di�erent numbers
of zero crossings Nz and di�erent values of the Kaiser window parameter β.

It can be observed that more zero crossings Nz lead to a steeper decay of the magnitude
response and therefore also to a smaller passband attenuation. Unfortunately, this higher
number of �lter taps also leads to passband ripples. These passband ripples can be decreased
by a higher β value. But the drawback of this higher β value is the resulting wider main lobe,
which also induces a higher passband attenuation.

Since the goal in this application is to maximize the usable bandwidth of the input spectrum
and a minor passband ripple in a certain range is acceptable, e.g. up to ±0.05 dB, it is
recommended to use a higher number of zero crossings Nz and a lower value for β. For
example in �gure 2.2.18 where β = 4 and Nz = 15, we have only passband ripples smaller
than 0.01 dB and a nearly constant passband gain up to f = 0.45 · fs. For example, if the
sampling rate is fs = 100MHz like it is in the GNU Radio platform, the usable bandwidth
would be up to f = 0.45 · fs = 45MHz. At higher frequencies, the attenuation does not
exceed 0.9 dB.
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Figure 2.2.17.: Magnitude response of the interpolation �lter for di�erent numbers of zero
crossings Nz and β = 0

43



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

f/fs

M
ag

ni
tu

de
 (

dB
)

 

 

N
z
 = 15, β = 4

N
z
 = 10, β = 4

N
z
 = 5, β = 4

Figure 2.2.18.: Magnitude response of the interpolation �lter for di�erent numbers of zero
crossings Nz and β = 4
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Figure 2.2.19.: Magnitude response of the interpolation �lter for di�erent numbers of zero
crossings Nz and β = 8
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3. Timing Estimation

This section discusses the timing estimation procedure which is needed for the task of timing
recovery.
In most digital receivers the analog input signal is sampled at a �xed rate. These resulting
samples are used for all further processing. Unfortunately, the receiver's sampling clock may
not be in phase with the clock of the transmitter, which leads to a sample timing error and
therefore to ISI. To cope with this error, this timing o�set needs to be estimated. Using this
estimated timing o�set, an interpolator can be used to produce the samples at the desired
sampling time position to minimize the ISI.

3.1. Oerder and Meyr Algorithm

Since no data of the received signal is known, a non-data-aided algorithm for the timing
estimation must be chosen. Due to its simplicity and therefore common usage, the feed-
forward Oerder and Meyr algorithm presented in [OM88] is used for timing estimation in this
thesis.
The mentioned paper proposes a method to estimate the timing o�set for linear modulation
schemes like QAM, PAM or PSK. The model of the received signal of digital data transmission
is

r(t) =
∞∑

n=−∞

an · gT (t− n · T − ε(t) · T ) + n(t) = u(t) + n(t) (3.1.1)

where an are the complex valued symbols, gT is the transmission signal pulse, T is the symbol
duration, n(t) is additive white Gaussian noise and ε(t) is the unknown time delay which
needs to be estimated. ε(t) is slowly varying and therefore the input signal can be separated
into sections in which ε is assumed to be constant.
The received signal is �ltered with the matched �lter at the receiver, that is

r̃ (t) = r (t) ∗ gR (t) (3.1.2)

where gR (t) is the impulse response of the receiving �lter, and then sampled at a �xed rate
fs = 1

Ts
= N

T
to produce the samples

z (l · Ts) = r̃

(
l · T
N

)
(3.1.3)

When inserting equation 3.1.1 and 3.1.2 into equation 3.1.3, we obtain

z (l · Ts) =
∞∑

n=−∞

an · g
(
l · T
N
− n · T − ε · T

)
+ ñ

(
l · T
N

)
where g (t) = gT (t) ∗ gR (t) and ñ

(
l·T
N

)
is the �ltered and sampled noise.

The objective function for the timing estimation as now de�ned as [MMF98]
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L (ε) =
L−1∑
l=0

|z (l · T + ε · T )|2 (3.1.4)

which is to be maximized. The detailed derivation is given in [MMF98]. This objective
function is a time average over the interval [0, L− 1] of the squared samples at the output of
the matched �lter.
The squared samples at the output of the matched �lter |z (l · T + ε · T )|2 have the following
Fourier series representation:

|z (l · T + ε · T )|2 =
∞∑

n=−∞

c(l)
n · ej·

2·π
T
·n·T ·ε =

∞∑
n=−∞

c(l)
n · ej·2·π·n·ε (3.1.5)

where the Fourier coe�cients c
(l)
n are random variables.

When inserting equation 3.1.5 into equation 3.1.4 we get

L−1∑
l=0

|z (l · T + ε · T )|2 =
L−1∑
l=0

∞∑
n=−∞

c(l)
n · ej·2·π·n·ε =

∞∑
n=−∞

cn · ej·2·π·n·ε (3.1.6)

where

cn =
L−1∑
l=0

c(l)
n (3.1.7)

Due to the fact that the received and squared signal |z (l · T + ε · T )|2 in equation 3.1.5 is a
real valued signal such that cn = c∗−n. Hence, equation 3.1.6 can be rewritten as

L−1∑
l=0

|z (l · T + ε · T )|2 = c0 +
∑
|n|≥1

2 · <
{
cn · ej·2·π·n·ε

}
In [MMF98] it is proved that only the three coe�cients c−1, c0 and c1 have a nonzero mean,
so that all other coe�cients can be omitted for the estimation of the timing parameter ε.
Now we want to maximize our objective function which can be done by applying

ε̂ = arg max
ε

(
c0 + 2 · <

{
c1 · ej·2·π·ε

})
But since c0 and the absolute value of c1 are independent of ε which is shown in [MMF98],
the maximum can also be established by calculating

ε̂ = − 1

2 · π
· arg (c1) (3.1.8)

So the aim of the algorithm is to calculate the complex Fourier coe�cient c1 and determine
the angle of c1. Equation 3.1.7 tells us that c1 is the average of all Fourier coe�cient c

(l)
1 in

the interval [0, L− 1].

In order to calculate the Fourier coe�cient c
(l)
1 the sampling rate must be chosen such that

the spectral component can still be represented by the DFT. When looking at the bandwidth
of the signal z (t) at the matched �lter output, we can see that it is bandlimited to Bz = 1+α

2·T .

Since the sampling theorem must also be ful�lled for the signal |z (t)|2 which doubles the
bandwidth of the signal, the sampling frequency must be chosen by
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B|z|2 =
1 + α

T
<

1

2 · Ts
where Ts = T

N
is the sampling period.

When setting N = 4, we can ful�ll the requirement of representing the spectral component
c1 and we obtain a quite simple implementation of the Fourier coe�cient calculation for the
implementation.
In paper [OM88] the algorithm is summarized using the nomenclature xk = z (k · Ts) and
X = c1.
The spectral component X(l) can be calculated as

X(l) =
N−1∑
k=0

x
(l)
k · e

−j·2·π· k
N

Now the spectral component X can be determined for every section m of length L ·Ts, which
corresponds to L ·N samples, using the following summation:

Xm =

(m+1)·L·N−1∑
k=m·L·N

xk · e−j·2·π·
k
N (3.1.9)

where for N = 4 the exponential function becomes e−j·2·π·
k
4 = (−j)k which leads to a imple-

mentation without the need of multiplication.

3.1.1. Lower Bounds for the Timing Estimator

In [MdJ92] the Modi�ed Cramér-Rao Lower Bound (MCRLB) is given by the formula

MCRLB =
1

−2 · L · T 2 · g̈ (0) · Es
N0

(3.1.10)

with

−T 2 · g̈ (0) =
1

3
· π2 ·

(
1 + 3 · α2

)
− 8 · α2

where L is the window size, Es is the symbol energy, N0 is the noise power spectral density
and α is the roll-o� factor of the root-raised-cosine �lter.
Especially for the Oerder and Meyr algorithm there is another lower bound (MOLB) which
is given in [MdJ92] for non-data-aided maximum likelihood estimators:

MOLB =
1

α · L · π2 · Es
N0
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3.2. CORDIC Algorithm for Angle Calculation

The CORDIC (coordinate rotation digital computer) algorithm is a common way to compute
e�ciently trigonometric functions such as [Xil11]:

• Vector Rotation

• Vector Translation

• Sine and Cosine

• Square Root

• etc.

The following part describes the functionality of the algorithm for vector rotation and angle
calculation where the basic formulas can be looked up in [Xil11]. Initially the CORDIC
algorithm was designed to perform vector rotations where the initial vector v = x + j · y is
rotated through the angle Θ to the desired vector v′ . This vector rotation can be written as

v′ = (x+ j · y) · ej·Θ

= (x+ j · y) · (cos (Θ) + j · sin (Θ))

= (x · cos (Θ)− y · sin (Θ)) + j · (y · cos (Θ) + x · sin (Θ))

(3.2.1)

where x = < (v) is the real part and y = = (v) is the imaginary part of the initial vector v.
The new vector v′ also consists of a real part x′ = < (v′) and and imaginary part y′ = = (v′).
According to equation 3.2.1, the real and the imaginary part can also be written as

x′ = x · cos (Θ)− y · sin (Θ)

y′ = y · cos (Θ) + x · sin (Θ)
(3.2.2)

Using the relation

tan (ϕ) =
sin (ϕ)

cos (ϕ)
→ sin (ϕ) = cos (ϕ) · tan (ϕ)

we can rewrite the real and imaginary part of v′ in equation 3.2.2 as

x′ = cos (Θ) · (x− y · tan (Θ))

y′ = cos (Θ) · (y + x · tan (Θ))
(3.2.3)

The algorithm now restricts the values of tan (Θ) = ±2−k and uses the identi�er tan (ϕ) ≡
− tan (ϕ) and cos (−ϕ) ≡ cos (ϕ) to create a micro-rotation which de�nes one iteration:

xk+1 = Kk ·
(
xk − yk · dk · 2−k

)
yk+1 = Kk ·

(
yk + xk · dk · 2−k

)
zk+1 = zk − dk · arctan

(
2−k
) (3.2.4)

with the loop condition

dk =

{
−1 zk < 0

+1 zk ≥ 0
(3.2.5)

where Kk = cos
(
arctan

(
2−k
))

is the scale factor, dk = ±1 de�nes the direction of the
rotation, k = 0 . . . n− 1 is the iteration index and z0 is the rotation angle.
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When looking at the micro-rotation in equation 3.2.4 combined with the loop condition in
equation 3.2.5, we can see that the initialized angle z0 gets minimized during the iterations
since the rotation consists of a sequence of smaller micro-rotations. In every iteration of the
CORDIC algorithm, the output gains one bit of resolution, hence the number of iterations n
controls the accuracy of the vector rotation.
The values for arctan

(
2−k
)
can be stored in a small look-up table and as it can be seen in

equation 3.2.4, each iteration only consists of simple binary shifts, additions and subtractions.
When using the CORDIC algorithm for angle calculation, the loop condition has to be altered
to

dk =

{
+1 yk < 0

−1 yk ≥ 0
(3.2.6)

where z0 = 0. In this con�guration, the algorithm minimizes the value of the imaginary part.
In every iteration the vector gets rotated by a smaller angle and the number of iterations
again de�nes the accuracy of the calculation. The �nal value of z is the calculated angle Θ.
Unfortunately, these two methods only work in the range of ±π

2
. To achieve full operational

range of ±π, a pre-rotation has to be performed according to the angle's sector. This pre-
rotation can be performed by manipulating the initial values of the algorithm:

x0 =

{
−x x < 0

+x x ≥ 0

y0 =

{
−y x < 0

+y x ≥ 0

z0 =

{
−180 x < 0

0 x ≥ 0

3.3. Implementation of the Timing Estimator

For the implementation of the timing estimation algorithm, the basic block diagram is visu-
alized in �gure 3.3.1.

Figure 3.3.1.: Block diagram of the Oerder and Meyr algorithm

First of all the received signal is sampled at the rate T
N
. Then these complex valued samples

are �ltered by the receive matched �lter gR[n]. In this thesis, this is a root-raised-cosine �lter
which is used for matched �ltering in order to minimize ISI (see chapter 4).
In order to calculate xk, the �ltered complex valued samples get squared according to

xk = <{r̃k}2 + ={r̃k}2 (3.3.1)
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To realize the calculation of the Fourier coe�cient in equation 3.1.9, a section of L·N samples,
where N = 4 (see section 3), is extracted. A closer look at the summation shows that for
the extracted section k runs from 0 to L · N − 1. Observing the exponential term in the
summation, we can see that the argument −j ·2 ·π · k

N
only results in four possible values due

to the 2 · π periodicity of the unit circle. These possible values are presented in table 3.3.1.

k e−j·2·π·
k
N

0 1
1 −j
2 −1
3 j

Table 3.3.1.: Phasor values for Fourier coe�cient calculation using N = 4

This means that instead of complex calculation of the Fourier coe�cients, the squared samples
only need to be multiplied by ±1 and ±j, according to their position in the section. The angle
of the resulting complex valued Fourier coe�cient Xm needs to be normalized by applying
equation 3.1.8 in order to get the estimate ε̂ for the current section.
This means that ε̂ is an estimate that can take values in the interval ε̂ ∈ [−0.5, 0.5]. As a
result and due to the oversampling rate of N = 4, the estimated sampling time lies in between
±2 samples. Figure 3.3.2 illustrates this result.
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Figure 3.3.2.: Illustration of the timing estimator result
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3.4. Combination of Timing Estimation and

Interpolation for Timing Recovery

Timing recovery in a demodulator can be achieved in three di�erent modes according to
[Gar90]. The �rst one is the analog recovery, where the symbol timing is adjusted by analog
circuits and a controlled sampling clock. This method achieves an output whose samples are
synchronized to the symbol timing. The corresponding block diagram can be seen in �gure
3.4.1.

Figure 3.4.1.: Analog timing recovery

A second method is the hybrid recovery where the symbol timing is recovered from the digi-
tal samples and a controlled sampling clock. Just like the �rst method, the hybrid recovery
produces samples that are synchronized to the symbol timing. Figure 3.4.2 shows the corre-
sponding block diagram.
This �rst two methods are based on the adjustment of the sampling clock which is simpler to
implement according to [Gar90], but depending on the used architecture not always possible.

Figure 3.4.2.: Hybrid timing recovery

For digital architectures the third method is suggested. In this method a �xed clock controls
the sampling of the input signal where no adjustment can be implemented. So the whole
process of timing adjustment is performed in the digital domain after the sampling procedure.
A basic block diagram of this digital recovery method can be seen in �gure 3.4.3.

Figure 3.4.3.: Digital timing recovery
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Since in the given architecture for this thesis the input samples are provided with a �xed
sampling clock, the digital recovery method is applied. In this case the timing recovery
is implemented using a timing estimator which produces a timing control signal and an
interpolator which adjusts the delay to perform synchronization with the symbol timing.
Figure 3.4.4 shows the basic block diagram of the timing recovery described in this section.
The timing estimator obtains the symbol timing out of the samples from a sampler with a
�xed sampling frequency. Then the timing estimator produces a timing control signal which is
the input of the interpolator. The interpolator then performs the delay to synchronize to the
symbol timing and also does the proper symbol extraction out of the interpolated samples.
The delay block in front of the interpolator is needed since the timing estimator needs some
time to produce the output and therefore the interpolator needs to be synchronized to the
timing estimator.

Figure 3.4.4.: Block diagram of the implemented timing recovery

The algorithm presented in the section 3.3 uses a N = 4 times oversampled input signal
to estimate the sampling time. This means that fs = N · fSymbol = 4 · fSymbol. Hence the
result of this timing estimator can then be used in an interpolator which then does the proper
interpolation and symbol extraction.
Since the estimator result lies in a range of ±2 samples, this result has to be separated �rst
into an integer part µint and a fractional part µfrac before it can be used by the interpolator.
The integer part de�nes the shift of samples from the timing estimator reference point to the
nearest sample in the past (on the left side in �gure 3.3.2) of the estimated sampling time.
The fractional part then de�nes the residual µ to the estimated sampling time.
For the illustrated example in �gure 3.3.2 the values are: µint = −2 and µfrac = µ.
This separation can be calculated using the following formulas:

µint =



−2 −0.5 ≤ ε̂ < −0.25

−1 −0.25 ≤ ε̂ < 0

0 0 ≤ ε̂ < 0.25

1 0.25 ≤ ε̂ < 0.5

2 ε̂ = 0.5

(3.4.1)

µfrac =



ε̂+ 0.5 −0.5 ≤ ε̂ < −0.25

ε̂+ 0.25 −0.25 ≤ ε̂ < 0

ε̂ 0 ≤ ε̂ < 0.25

ε̂− 0.25 0.25 ≤ ε̂ < 0.5

ε̂− 0.5 ε̂ = 0.5

(3.4.2)
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With these two values, the interpolator is able to calculate the symbol value at this speci�c
time position. This combination can also be seen in the GNU Radio �ow graph illustrated
in �gure 3.4.5. This �gure shows that the integer and the fractional output of the timing
estimator are connected to the µ input ports of the interpolator. The GNU Radio environment
ensures that the input samples of the interpolator are delayed by the time the estimator needs
to provide one estimation value.
The interpolator now shifts the input samples such that the center of the �lter impulse
response is at the exact position of the estimated timing value. Therefore, the input samples
are shifted by µint samples and the impulse response is applied according to the µfrac value.

Figure 3.4.5.: GNU Radio �ow graph of the combination of interpolator and estimator for
timing recovery

3.4.1. Update of µ

The timing estimator provides an estimation of the symbol timing after every L ·N samples.
Di�erences in the fractional part can be implemented quite easily by simply changing the
µfrac value and therefore changing the initial �lter table index l.
When the integer value µint changes, the time register t has to be incremented by

2nbl+nbη

ρ
+ 2nbl+nbη · (µintnew − µintold)

instead of
2nbl+nbη

ρ

3.4.2. Problems with the Update of µ

Due to estimation variance and sampling frequency mismatches, the estimator value can
change signi�cantly between two successive estimation results.
If the values of µintnew and µintold di�er too much, e.g. if the estimated value changes from
ε̂old = −1.9 to ε̂old = +1.9 which is shown in �gure 3.4.6, the possibility of missing one symbol
is given, which is then called a cycle slip. This results from a moving stable operation point of
the estimator. An example is illustrated in �gure 3.4.6 where the missed symbol is indicated
in a four times oversampled signal. Also the possibility of duplicating one output symbol is
given, e.g. from ε̂old = +1.9 to ε̂old = −1.9.
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Figure 3.4.6.: Timing update from ε̂old = −1.9 to ε̂old = +1.9

These missed or duplicated symbols need to be detected in order to calculate the right output
symbol, since most following processes depend on a continuous symbol stream where no
symbol must be duplicated or missing.
To cope with this high estimator variations, the estimator output needs to be corrected
accordingly. In this implementation this is done by comparing the old and the new values of
µint. Since in this application the input signal is four times oversampled, the timing estimator
reference points are spaced by four samples. So if no update needs to be done, the input signal
is simply shifted by four samples.
But if a new µint arrives, the shift can be calculated by:

Nshift = 4 + µintnew − µintold
If this new shift is too small or too big, the probability of missing or duplicating one symbol
(cycle slip) is given. Therefore the shift value Nshift needs to be kept in a certain range. In
this implementation this range is chosen by:

Nshiftcorrected =


Nshift − 4 Nshift > 6

Nshift + 4 Nshift < 2

Nshift else

Using this procedure, some of these cycle slips can be avoided. But if the variance of the
timing estimator is too high, there are still some cycle slips occurring due to ambiguity of the
estimator result which cannot be prevented by this procedure.
An extended variation of this procedure is given by the unwrapping algorithm presented in
[MD97], which should lead to a better performance. More information on the source and
e�ects of cycle slips can be found in [MMF98].
The integration of this extended unwrapping algorithm into this implementation would be a
major task for future work.
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4. Nyquist Pulse Shaping

For the timing recovery application on the software de�ned radio, matched �ltering is neces-
sary to optimize the signal-to-noise ratio. Due to the fact that for the application a DVB-S2
(see [Tür12] and [ETS05]) signal is used which implies root-raised-cosine �ltering, the fun-
damentals of Nyquist pulse shaping and the root-raised-cosine pulse are summarized in this
chapter.
Since bandwidth is very valuable in digital communications and especially in satellite commu-
nications, the transmitted signal needs to be �ltered in order to limit the occupied bandwidth.
Due to �ltering, successive symbols can overlap and interfere with other symbols, which is
called ISI (intersymbol interference) as mentioned in [Skl01]. This means that at the decision
point the signal is not only a�ected by the current symbol, but also by adjacent symbols
which will lead to a degradation of the error performance. In [Skl01] it is shown, that by
using an ideal Nyquist �lter, which has a rectangular transfer function with the single-sided
bandwidth of W = 1

2·T (minimum Nyquist bandwidth), no ISI occurs at the receiver. This is
exempli�ed in �gure 4.0.1. At every decision point n · T the received signal is only given by
the current pulse and by no other adjacent pulses if the timing is perfect. This is because the
rectangular transfer function leads to a sinc pulse in the time domain which is zero at every
non-zero integer multiple of T .
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Figure 4.0.1.: Receive impulse sequence with Nyquist pulse shaping

Unfortunately this ideal Nyquist �lter cannot be implemented in real systems due to its non-
causal impulse response. In [BLM04] it is claimed that in real systems the minimum Nyquist
bandwidth, which is established by the ideal Nyquist �lter, can be extended toW = 1+α

2·T where
0 ≤ α ≤ 1 is called excess-bandwidth or roll-o� factor. If α = 1, the spectrum of the pulse
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occupies 100% more bandwidth than the ideal Nyquist pulse. The increase of the bandwidth
leads to a less complex implementation due to simpler �ltering. A common pulse shape with
a nonzero excess bandwidth which satis�es ISI-free transmission is the raised-cosine pulse.

4.1. Raised-Cosine Pulse

The raised-cosine pulse is de�ned in [BLM04] by the function

gRC (t) =

(
sin
(
π · t

T

)
π · t

T

)
·

(
cos
(
α · π · t

T

)
1−

(
2 · α t

T

)2

)
and its Fourier transform

GRC(f) =


T |f | ≤ 1−α

2·T
T · cos2

[
π·T
2·α ·

(
|f | − 1−α

2·T

)]
1−α
2·T < |f | ≤ 1+α

2·T
0 1+α

2·T < |f |

where T is the symbol duration.
This pulse satis�es ISI-free transmission because its zero crossings are at nonzero integer
multiples of the symbol duration T . Unfortunately the raised-cosine pulse also has an in�nite
impulse response. Hence the pulse has to be approximated by truncating at a multiple of T
for practical implementation.

4.2. Root-Raised-Cosine Pulse

In practice the raised-cosine �lter function gets separated into two root-raised-cosine �lters
GRRC =

√
GRC which are located at the transmitter for pulse shaping and at the receiver for

matched �ltering. The root-raised-cosine �lter itself does not exhibit zero ISI, but the product
of both receiving and transmitting �lter is again a raised-cosine �lter which will result in zero
ISI if the timing is perfect.
In DVB-S2, which is used for the SNR estimation experiment, the transmit �lter is a root-
raised cosine �lter with the choice of three di�erent roll-o� factors which is presented in
[ETS05]. Hence a root-raised-cosine �lter is implemented for matched �ltering in the timing
recovery application.
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5. Implementation on the Software

De�ned Radio Platform

For implementing the matched �lter, the timing estimation and the interpolation module for
timing recovery on an FPGA, the USRP N210 Software De�ned Radio by Ettus Research is
used as the prototype device. An overview on the hardware features of this SDR are presented
in [Resb] and [Resa]. Some important features of the hardware component for this thesis are
listed here brie�y:

• USRP N210

� Two 100 MS
s

14-bit analog-to-digital converters

� Digital down converters with programmable decimation rates

� Gigabit Ethernet interface

� Xilinx Spartan 3A-DSP3400 FPGA

• Daughterboard WBX

� Frequency Range: 50MHz to 2.2GHz

For the practical implementation this SDR is used for mixing, sampling and decimation of
the received input signal as well as for the transmission of the data to the host PC.
This chapter is concerned with the existing hardware structure of the USRP N210 and the
FPGA implementation of the root-raised-cosine �lter, the timing estimator and the interpo-
lator.
The RF input signal is connected to the daughterboard representing the analog receiver
frontend. This component is responsible for �ltering, mixing and ampli�cation of the input
RF signal. The output of the daughterboard is then AD converted. These samples are in the
sequel sent to the FPGA where the digital signal processing is performed. The �rst two blocks
on the FPGA (�gure 5.1.1) are responsible for digital down-conversion and decimation. The
timing estimation and interpolation module is placed after the decimation stage providing a
four times oversampled signal. Using this signal, the symbols are produced by applying the
presented procedures for timing estimation and interpolation developed in this thesis. This
output is connected to the existing modules that are responsible for generating packets, which
are then sent to the host PC using UDP packets over the Gigabit Ethernet interface. On the
host PC further signal processing can be performed.
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5.1. Existing Structure of the USRP N210

Figure 5.1.1 shows a simpli�ed block diagram of the SDR structure. The timing estimation
and interpolation block that is developed in this thesis is indicated in bold style.
The basic function of the �rst two blocks in the FPGA are brie�y explained in this chapter in
order to give an overview on the functionality of the existing receiver structure. Figure 5.1.2
shows the block diagram of these two modules implemented in FPGA on the USRP N210,
which are located prior to the timing estimation and interpolation module.

Figure 5.1.1.: Simpli�ed block diagram of the USRP N210 and WBX daughterboard including
the implemented block for timing recovery
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Figure 5.1.2.: Block diagram of existing receiver structure on the USRP N210
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5.1.1. Analog Receiver Frontend

As already mentioned, the analog receiver frontend consists of the WBX daughterboard. It
it responsible for �ltering, ampli�cation and mixing of the RF input signal prior to the AD
conversion. This daughterboard has a frequency range from 50MHz to 2.2GHz. The 14 bit
AD converted samples are then the input of the receiver frontend, which is implemented on
the FPGA of the USRP N210.

5.1.2. Receiver Frontend

The �rst part of the receiver structure is the receiver frontend module rx_frontend imple-
mented on the FPGA, which gives the opportunity to remove unwanted DC components from
the input signal as well as to compensate for I/Q imbalance due to non-ideal mixers in the
analog receiver frontend.
The two input signals are the outputs of the AD converters which are extended to a 16
bit two's complementary number and represent the real part and the imaginary part of the
complex valued input signal.
First of all, the possibility of swapping the real and the imaginary part of the input signal
is implemented using two multiplexers. The enable signal for these multiplexers is stored in
a settings register. The value of the settings register is set by the �rmware running on the
USRP N210 which can be controlled by the host PC.
For removing the unwanted DC component of the input signal, a DC removal �lter is im-
plemented which uses �xed-point quantization to avoid data over�ow. Figure 5.1.3 shows
the basic block diagram of the implemented DC removal �lter which is taken from [Lyo11].
Additional information on the DC removal �lter can also be found in [Lyo11].

Figure 5.1.3.: DC removal �lter using �xed-point quantization[Lyo11]

The �nal part of the module is used to compensate for any I/Q imbalance. This feature
was added by the developers of Ettus Research during the end of this thesis and is still in a
testing state and therefore the I/Q imbalance compensation part is omitted by default in the
proposed architecture by Ettus Research.

5.1.3. DSP Core

The second part of the receiver structure is the DSP core module dsp_core_rx, which is
implemented to apply �ne tuning as well as the decimation of the input signal.
This module also gives the opportunity to swap the real and the imaginary part of the input
signal using simple multiplexers. The value of the enable signal for the multiplexers is again
stored in a settings register which is controlled by the �rmware.
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5.1.3.1. Digital Down-Conversion

Due to the limited resolution of the local oscillators on the analog receiver frontend (25 kHz
steps) which is responsible for the mixing procedure, the desired frequency shift may not be
realized at once. So if the desired center frequency cannot fully be achieved by the analog
mixing stage, the residual frequency shift is implemented using a CORDIC DDC (Digital
Down-Converter). This module is controlled by a simple counter which is used in an NCO
where the phase increment is again stored in a settings register. The �rmware calculates
the residual frequency that could not be realized by the analog mixer and generates the
corresponding phase increment in order to achieve the residual tuning in the CORDIC DDC.
This phase increment then is stored in the settings register that is the input of the NCO.

The successive clipping module is used to reduce the bit width of the signals. If the input
value is higher than the desired maximal output value, the output is set to the maximal
output value. For negative input values, the output is set to the minimal output value if
the input is smaller than the desired minimal output value. Otherwise the input value is not
altered. This procedure leads to a bias-free output.

5.1.3.2. CIC Decimation

For the �rst part of the decimation, a four-stage CIC �lter is used as a decimation �lter. CIC
stands for cascaded integrator comb which is a computationally e�cient way of implementing
lowpass �lters, which is in this case used as an anti-aliasing �lter prior to decimation. Due to
its non-�at passband magnitude response and its low sidelobe attenuation which is claimed in
[Lyo11], two half-band �lters are followed by the CIC decimation stage in order to compensate
for these drawbacks. Bene�ts of this CIC �lters are the narrow-band lowpass characteristic
and the absence of any multiplication which is proposed in [Lyo11]. Only additions and
subtractions are used in CIC �lters which can be seen in �gure 5.1.4 which is taken from
[Lyo11]. This �gure shows a single stage CIC �lter followed by a downsampling block. The
simple arithmetic makes it quite popular in hardware devices and the downsampling also
reduces the computational e�ort of the successive �lter structures.

The CIC �lter implemented in the existing block performs a decimation factor in the range
of 1 to 128. The value of the decimation parameter is stored in a settings register which is
calculated and set by the �rmware according to the sampling frequency parameter set on the
host PC.

Figure 5.1.5 shows the magnitude response of the four stage CIC �lter with a decimation
factor of 25. In this con�guration the CIC �lter is used for the measurements, since a 1 MS

s

signal needs to be four times oversampled which leads to a decimation of 100MHz
4MHz

= 25.

Figure 5.1.4.: Single stage decimation CIC �lter[Lyo11]
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Figure 5.1.5.: Magnitude response of the four stage CIC �lter with decimation factor of 25

When we take a closer look at the magnitude response of the four stage CIC �lter with a
decimation factor of 25, we can see that at the cut-o� frequency of a root-raised-cosine �lter
with a symbol rate of 1MBaud and a sampling frequency of fs = 100MHz, the attenuation
is approximately 1 dB.
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Figure 5.1.6.: Zoom into the magnitude response of the four stage CIC �lter with decimation
factor of 25

5.1.3.3. Half-Band Decimation

The second decimation module is a small half-band decimator. This small half-band �lter
must be able work at quite high sample rates and has therefore only 7 taps and decimates
the input signal by 2. Another half-band �lter is following which consists of 31 �lter taps and
also decimates the input signal by 2.
The magnitude responses of these two �lters can be seen in �gure 5.1.7 and 5.1.8 respectively.
As it can be seen in these �gures, the 3 dB attenuation is at half the sampling frequency
and therefore they are called half-band �lters and can be used as anti-alias �lters prior to
decimation by 2. When comparing the two magnitude responses, we can see that the larger
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number of taps in the second half-band �lter leads to steeper decay of the magnitude response
as well as to higher sidelobe attenuation, but with the drawback of higher computational
e�ort. Hence the second �lter with the higher e�ort is placed at the lower sampling rate.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−50

−40

−30

−20

−10

0

10

f/f
s

M
ag

ni
tu

de
 (

dB
)

Figure 5.1.7.: Magnitude response of the small half-band �lter
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Figure 5.1.8.: Magnitude response of the second half-band �lter

A strober module is also included to generate strobe signals which indicate valid input samples
during the decimation procedure. This is necessary since the clock frequency is no longer equal
to the sample frequency and the decimation modules need to know when a valid sample is at
the input.
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The combination of these three decimation modules leads to a minimum decimation factor of
4 and a maximum decimation factor of 512. The two half-band �lters can also be bypassed
separately to achieve every possible decimation rate in the valid range of [4, 512]. The setting
of the decimation rate for the strober and the CIC decimation as well as the bypass signals
are calculated and set by the �rmware and depend on the desired decimation factor set on
the host PC.
Finally the output of the decimation modules is rounded to achieve the 16 bit output signal
using the round modules. These modules apply bias-free rounding towards zero.
This output is now the 16 bit two's complement input of the timing estimation and interpo-
lation module that is developed in this thesis and presented in the next section.

5.2. Root-Raised-Cosine Module

In order to implement the root-raised-cosine �ltering, a �lter module needs to be implemented.
Since �lter operations are a fundamental procedure in digital signal processing, Xilinx provides
an IP core especially for FIR �lters.
Due to the fact that these available IP cores are highly optimized for the given FPGA archi-
tecture in terms of area, this IP core from Xilinx is used in this thesis instead of implementing
a separate �lter module.
Therefore the �lter taps for the root-raised-cosine �lter are produced using the Matlab
fdatool. Due to the fact that the �lter works with a N = 4 times oversampled signal
and the �ltering is performed over 8 symbols a root-raised-cosine �lter with N · 8 + 1 = 33
taps is generated. The roll-o� factor for the �lter is chosen with α = 0.35 since no bandwidth
limitations are given.
These coe�cients are then quantized to 16 bit two's complementary binary numbers which
leads to a deviation compared to the ideal impulse response. Additionally, the option of
scaling the coe�cients for better range utilization is enabled, which leads to a passband gain
in the magnitude response of the �lter. The impulse response and the magnitude response of
this realized root-raised-cosine �lter are shown in the �gures 5.2.1 and 5.2.2.
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Figure 5.2.1.: Impulse response of the implemented root-raised-cosine �lter
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Figure 5.2.2.: Magnitude response of the implemented root-raised-cosine �lter

5.3. Timing Estimation Module

The timing estimator module is the hardware module that calculates the value of the timing
estimates presented in section 3. The latter are separated into an integer part and a fractional
part. The integer part de�nes the delay to the optimal sampling time in integer values of
samples and the fractional part de�nes the delay in fractional values of samples as mentioned
in section 3.4.

Figure 5.3.1 shows the timing estimator module which consists of �ve input signals. clk

is the clock signal and reset is the reset signal which is used to bring the module in an
initial state. Due to better representation, these signals are not shown in the �gures of this
section. The signal clk_en is an enable signal which indicates valid data at the input buses
real_i and imag_i. These two signals are 16 bit signed values in two's complement binary
representation. real_i is the real part and imag_i is the imaginary part of the complex
valued input sample.

Three output signals are produced in this module. The �rst one is the int_frac_rdy_o signal
which indicates valid data on the data buses frac_o and int_o. frac_o is a 7 bit unsigned
value from 0 to 127, which indicates the fractional delay to the optimal sampling time. int_o
is a three bit signed value from −2 to 2, which indicates the integer delay to the optimal
sampling time. The input and output signals are also summarized in table 5.3.1.

The detailed description of the containing submodules is handled in the next sections.
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Figure 5.3.1.: Block diagram of the timing estimator module

Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -
real_i input 16 2's complement
imag_i input 16 2's complement
int_o output 3 2's complement
frac_o output 7 unsigned

int_frac_rdy_o output 1 -

Table 5.3.1.: Input and output signals of the timing estimation module

5.3.1. Complex Square Module

This module is used to compute the square of the absolute value which is needed in equation
3.1.4. It squares the real part and the imaginary part separately and adds the two products.
So the output of the module is given by

y[i] = |x[i]|2 = x2
real + x2

imaginary

Figure 5.3.2 shows the basic structure of this module. It consists of �ve input signals. clk_en
indicates valid data on the data buses real_i and imag_i which represent the complex valued
input sample. Both signals are in 16 bit two's complement binary representation. The two
data signals get squared using two multipliers and the two products are added and stored in
a 32 bit register x_reg. The register stores the new input values at the positive edge of clk
and when clk_en is high. The reset signal is used to reset the register.

The output is a 32 bit signed value using two's complement.
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Figure 5.3.2.: Block diagram of the complex_square module

Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -
real_i input 16 2's complement
imag_i input 16 2's complement
x_o output 32 2's complement

x_en_o output 1 -

Table 5.3.2.: Input and output signals of the complex_square module

The hardware estimation for the module is shown in table 5.3.3.

Register 1 x 32 bit 1 x 1 bit
Adders 1 x 32 bit

Multipliers 2 x 16 bit

Table 5.3.3.: Hardware estimation of the complex_square module

5.3.2. Fourier Module

The Fourier module is responsible for the calculation of the spectral component of the signal
at the symbol rate (see equation 3.1.9). Figure 5.3.3 shows the block diagram of this module
which consists of four input signals and three output signals. The signal clk is the clock
signal and clk_en indicates valid data on the in_i signal. The reset signal is used to bring
the module into a de�ned initial state. The input signal in_i is in 16 bit two's complement
representation.
The control block basically consists of two counters. The �rst one is a two-bit counter from 0
to N − 1, which is used to select the addresses of the two multiplexers as well as to send the
enable signals to the two registers real_acc and imag_acc. This counter decides whether
the input signal is multiplied with ±1 or ±j. The second counter is a six bit counter from
0 to L− 1 for counting the number of samples per section. During one section, the registers
real_acc and imag_acc store the intermediate results of the summation in equation 3.1.9.
If a section has passed, the output_rdy_o signal is set high, which indicates that the signals
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real_o and imag_o have valid data and the two accumulator register are set to zero. Now
these two output signals represent the complex valued Fourier coe�cient.

Figure 5.3.3.: Block diagram of the Fourier module

Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -
in_i input 16 2's complement
real_o output 20 2's complement
imag_o output 20 2's complement

output_rdy_o output 1 -

Table 5.3.4.: Input and output signals of the Fourier module

The two multipliers in �gure 5.3.3 are only used to perform a sign switch. This sign switch and
the following addition can also be realized using two adders/subtractors on which addition
or subtraction can be selected. The resulting hardware estimation for the Fourier module is
shown in table 5.3.5.

Register 2 x 20 bit 1 x 1 bit
Adders/Subtractors 2 x 20 bit

Multipliers 2 x 16 bit
Counters 1 x 2 bit 1 x 6 bit

Table 5.3.5.: Hardware estimation of Fourier module

5.3.3. CORDIC Module

After calculating the complex valued Fourier coe�cient, equation 3.1.8 requires the calculation
of the argument of this complex number. The angle Θ of a complex valued number x = I+j ·Q
is given by
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Θ = arctan

(
Q

I

)
One method of calculating the arc tangent is using look-up tables. The value of Q

I
can then

be used as an address to this look-up table which contains an approximate value for Θ. If
high accuracy is requested in the arc tangent calculation, this look-up table may require a
large amount of memory.
Another method is the CORDIC (coordinate rotation digital computer) algorithm where
only binary shifts and additions are used. Unfortunately this algorithm requires more time
than reading from a look-up table. But since time is not the optimization goal in this thesis,
this algorithm is very suitable. More information on this algorithm is presented in section
3.2.
Since the CORDIC algorithm is a very common way of calculating trigonometric functions,
Xilinx provides an IP core for this algorithm. The description of the IP core is provided in
[Xil11].
In the arc tangent con�guration, the CORDIC module consists of four input signals and two
output signal. The signal clk is the clock signal and nd is the signal that indicates valid data
at the inputs real_i and imag_i. Where real_i represents the real part and imag_i the
imaginary part of the complex valued input signal. The block diagram can be seen in �gure
5.3.4 and the overview on the input and output signals is summarized in table 5.3.6.

Figure 5.3.4.: Block diagram of the CORDIC module

Name Type Bit Width Format

clk input 1 -
nd input 1 -

real_i input 16 2's complement
imag_i input 16 2's complement

phase_out output 8 signed 2Q5
rdy output 1 -

Table 5.3.6.: Input and output signals of the CORDIC module

5.3.4. Phase Normalization Module

The result of the CORDIC output is the angle of the complex Fourier coe�cient. This
angle now needs to be normalized according to equation 3.1.8. Additionally, the resulting
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normalized phase has to be separated into an integer part and a fractional part as presented
in equation 3.4.1 and 3.4.2 in order to use the result in the interpolator module.

The module consists of four input signals and three output signals. The signal clk is the
clock signal of this module and clk_en indicates valid data at the input phase_i. The reset
signal is used to reset the registers in the module.

The input signal phase_i gets multiplied with either mult_factor or neg_mult_factor

according to the sign of the input signal, which is indicated by the leftmost bit of phase_i
and the signal prod_sign. The two signals mult_factor and neg_mult_factor have the
value of the normalization factor ± 1

2·π ·4 quantized to the signed 0Q7 format. The additional
factor of 4 is used to fully utilize all bits of these two signals. The reason for distinguishing
between a positive and negative normalization factor is that a positive multiplication result
leads to easier separation in hardware. Therefore a negative input signal gets multiplied with
a negative normalization factor and a positive input signal gets multiplied with a positive
normalization factor to achieve a positive product. This multiplication results therefore in
a 16 bit signed 3Q12 signal prod which gets then rounded to obtain the signed 3Q7 signal
prod_rnd.

This signal prod_rnd is e�ectively a signed 1Q9 number due to the additional multiplication
factor of 4 which equals a binary shift to the left by 2. Hence the signal prod_rnd consists
of 1 sign bit, 1 integer bit and 9 fractional bits. The integer bit is always zero because the
result is always in the interval [−0.5, 0.5]. Using this knowledge, the �rst two fractional bits
can be used to distinguish the range of the value, because the �rst fractional bit indicates
the value 2−1 = 0.5 and the second fractional bit indicates the value 2−2 = 0.25. Using these
two fractional bits and the prod_sign signal, the fractional value and the integer value are
then calculated according to equation 3.4.1 and 3.4.2 and �nally stored in the two registers
int and frac. The rdy register is needed since the clk_en signal needs to be delayed by one
clock cycle until the output value is valid.

The block diagram of the phase_norm module can be seen in �gure 5.3.5 and the resulting
hardware estimation is shown in table 5.3.8.

Figure 5.3.5.: Block diagram of the phase_norm module
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Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -

phase_i input 8 signed 2Q5
frac_o input 7 unsigned integer
int_o output 3 2's complement
rdy_o output 1 -

Table 5.3.7.: Input and output signals of the phase_norm module

Register 2 x 20 bit 1 x 1 bit
Adders/Subtractors 2 x 20 bit

Multipliers 2 x 16 bit
Counters 1 x 2 bit 1 x 6 bit

Table 5.3.8.: Hardware estimation of the phase_norm module

5.3.5. Rounding Module

Since a high bus width leads to high e�ort on hardware, rounding is needed. Simple truncation
of the additional bits would lead to a bias, because there is no discrimination between positive
or negative input value. In this case, truncation would equal a rounding towards negative
in�nity. In order to avoid adding a bias to the signal, the modules in this thesis use symmetric
rounding towards zero. Which means that if a value x ∈ R is greater than 0, it gets rounded
down and if it's less than 0, it gets rounded up:

y =


bxc x > 0

x x = 0

dxe x < 0

In the hardware module this means that if the input value is negative and the truncated bits
are not zero, 1 is added to the input value and the residual bits get truncated. This can be
implemented by XOR-ing all the bits that would be truncated to check if they are unequal to
zero and then AND it with the sign bit of the input signal in_i. If this results in a true value,
a 1 gets added to the input signal an then the output signal out_o is the truncated result.
If the input signal is positive or all the truncated bits are zero, the output signal out_o is
simply the truncated input signal in_i. The block diagram can be seen in �gure 5.3.6.
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Figure 5.3.6.: Block diagram of the rounding module

5.4. FIR Interpolation Module

The interpolation module consists of two submodules. First of all, the delay_line is needed
since the input samples need to be delayed until the result of the timing estimator module
is ready. The second submodule is the sinc_�r module which computes the �lter operation
that is used for interpolation. Also the control logic is integrated in the interpolation module.

This module consists of eight input signals and three output signals. The input signals clk
and reset are used for the clock signal and resetting the whole module for reaching an initial
state. The signal clk_en indicates whether valid data is at the input signals real_i and
imag_i, while the input signal mue_rdy_i is used to indicate valid data at the input signals
mue_frac_i and mue_int_i.

The data signals real_i and imag_i represent the real part respectively the imaginary part
of the complex valued input sample. mue_frac_i and mue_int_i represent the fractional
value and the integer value of the timing estimation result.

Figure 5.4.1 shows the block diagram of this module and table 5.4.1 summarizes the input
and output signals. Due to better representation the signals clk and reset are excluded in
this �gure.
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Figure 5.4.1.: Block diagram of the interpolation module

Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -
real_i input 16 2's complement
imag_i input 16 2's complement

mue_int_i input 3 2's complement
mue_frac_i input 7 unsigned
mue_rdy_i input 1 -
real_o output 16 2's complement
imag_o output 16 2's complement

out_rdy_o output 1 -

Table 5.4.1.: Input and output signals of the interpolator module

5.4.1. Delay Line Module

Since the timing estimator module presented in section 5.3 needs some time until the result
is available, the input signal needs to be delayed so that the result of the timing estimator
matches to the corresponding input samples. This delay D is implemented in the mod-
ule delay_line using shift registers for the signals real_i and imag_i. The output signals
delay_real and delay_imag are therefore the input signals delayed by D samples. The out-
put signal delay_rdy is equal to the input signal clk_en which indicates valid input data.
The block diagram of the delay_line module can be seen in �gure 5.4.2 and the input and
output signals are summarized in table 5.4.2.
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Figure 5.4.2.: Block diagram of the delay_line module

Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -
real_i input 16 2's complement
imag_i input 16 2's complement
real_o output 16 2's complement
imag_o output 16 2's complement

out_rdy_o output 1 -

Table 5.4.2.: Input and output signals of the delay_line module

5.4.2. Control Logic of the Interpolator

The key function of the interpolator module is to apply the output of the timing estimator
module to calculate the desired output symbol. Therefore an own process is implemented in
which the controller stores the current mue_int_i and mue_frac_i values from the timing
estimator every time the mue_rdy_i signal is high. Also the previous mue_int value is stored
in a register because the di�erence between the old and the new mue_int value is needed
when an update of the symbol timing is performed which is explained in section 3.4.1.

5.4.2.1. State Machine

For setting the control signals for the sinc_�r module there is also a state machine imple-
mented which consists of three states.

INIT State

In this state the controller counts the number of samples that arrive from the delay_line
module which is signalled by a high delay_rdy signal. Every time a sample arrives, the
controller sets the filt_inp_en and the filt_en signals high so that the sinc_�r module
stores the incoming samples from the delay_line module.
When the reference sample from the timing estimator module arrives at the sinc_�r mod-
ule, the controller sets the filt_addr signal to the current mue_frac value and sets the
filt_addr_rdy signal high. After that the controller jumps to the next state CONT_OUTPUT.

CONT_OUTPUT State

In this state the controller sets the signals filt_inp_en and filt_en high every time a new
input sample arrives from the delay_line module. When the sinc_�r module has �nished
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the �lter operation, it sets the signal filt_out_rdy high. The controller counts these �lter
outputs and sets the out_rdy_o signal high on every N = 4'th sinc_�r output.

When new values arrive from the timing estimator, the controller jumps to the next state
UPDATE_MUE.

UPDATE_MUE State

This state is needed since new values from the timing estimator have to be considered. The
filt_addr signal is set to the new mue_frac value and the filt_addr_rdy signal is set high.
The controller stays in this state until the new reference sample of the timing estimator is at
the sinc_�r module and then the controller jumps back to the state CONT_OUTPUT.

5.4.3. FIR Module

This module implements the �lter procedure presented in section 2.2.4. Due to the small
number of available slices in the used FPGA, only eight taps are stored of the �lter impulse
response. Also the possibility of linear interpolation between successive �lter taps is dis-
carded due to the high complexity and low number of available slices, because for the linear
interpolation function an additional table of di�erences would be necessary. Also instead of
calculating the table index online, there is a �lter function stored for every possible µ value.

Since only interpolation and no actual decimation is needed, the �lter is designed such that
the cut-o� frequency of the resulting �lter is fs

4
. This ensures that also a signal with an excess

bandwidth, like it is the case when using a root-raised-cosine �lter, is only slightly attenuated
by the �lter. Therefore the interpolation �lter is designed with the parameters Nz = 2 and a
decimation of ρ = 1

2
.

For implementing Nz = 2 and a decimation of ρ = 1
2
, a �lter of length 2 ·Nz · 1

ρ
+ 1 = 9 �lter

taps is needed for every µ value. Since the last tap of all these impulse responses is always
zero, only NTaps = 8 taps are needed. The interpolation value µ is stored in a 7 bit signal,
hence there are 27 = 128 possible values for µ. This means that the �lter taps are stored in
a ROM with 27 ·NTaps = 128 · 8 = 1024 16 bit values.

The basic impulse response of the implemented �lter is shown in �gure 5.4.3. Figure 5.4.4
shows the corresponding magnitude response.
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Figure 5.4.3.: Impulse response of the implemented Kaiser windowed sinc �lter with Nz = 2
and β = 4
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Figure 5.4.4.: Magnitude response of the implemented Kaiser windowed sinc �lter withNz = 2
and β = 4

One possibility for the implementation on the FPGA would be to use the FIR IP core from
Xilinx, just like in the case of the root-raised-cosine �lter module. This core also provides
reloadable �lter coe�cients which is necessary for this application. But since the IP core uses
�lter architectures which need some time until the output engages to new �lter coe�cients
(transposed form), the decision was made to implement this module without the use of the
Xilinx core generator.
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This FIR module consists of eight input signals and three output signals. clk and reset are
the clock signal and the reset signal correspondingly, which is used to de�ne an initial state
of the registers. Figure 5.4.5 shows the simpli�ed block diagram of this module where the
clock signal (clk), the enable signals (clk_en, inp_en), the ready signal (out_rdy_o) and
the reset signal are omitted due to better illustration. Also only the real part path is shown,
since the imaginary path is equal to the real one.

The registers for the input samples are enabled on the inp_en signal and the registers for
storing the addition results are enabled on the clk_en signal. This means that if the inp_en
signal is high, the input samples are stored and shifted in the input registers. And if the
clk_en signal is high, the results of the additions are stored in the registers.

The signal addr_i is used to select the address of the �lter taps that are used for the current
�lter operation. When the �lter output calculation is �nished, the signal out_rdy_o is set
high to indicate valid data at the signals real_o and imag_o.

Figure 5.4.5.: Block diagram of the sinc_�r module

Name Type Bit Width Format

clk input 1 -
clk_en input 1 -
reset input 1 -
inp_en input 1 -
addr_i input 7 unsigned

addr_rdy_i input 1 -
real_i input 16 2's complement
imag_i input 16 2's complement
real_o output 33 2's complement
imag_o output 33 2's complement

out_rdy_o output 1 -

Table 5.4.3.: Input and output signals of the sinc_�r module
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5.5. Device Utilization

The utilization of the FPGA was one major issue in this thesis, since the implemented modules
on the USRP N210 FPGA already occupy a large number of slices. Some of these modules
could be removed, like the transmitter module or the second receiver module, but the existing
device utilization was still high.

During the Place&Route process of the FPGA image creation, this high utilization leads to
a much higher e�ort. If the utilization is too high, the timing constraints cannot be ful�lled
and the created FPGA image is corrupted.

Figure 5.5.1 shows the device utilization summary where the number of occupied slices is
highlighted. This 74% device utilization leads to no failing constraints and a working FPGA
image. Hence it was necessary to keep the implemented module as small as possible in order
to achieve a succeeding Place&Route process and a working FPGA image.

Figure 5.5.1.: Device utilization of the FPGA generated by Xilinx ISE Design Suite

A detailed utilization of the implemented modules is shown in �gure 5.5.2. The interpolator
instance inst_interp which is the top module of the interpolator interp and the timing
estimator timing_est, as well as the root-raised-cosine �lter rrc_filt is highlighted. It is
shown in �gure 5.5.1 that the number of available slices on the FPGA is 23872. Since the
interpolator and the root-raised-cosine module occupy 1585 + 828 = 2413 slices, the device
utilization for the implemented modules is 10.1%.
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Figure 5.5.2.: Module level utilization of the FPGA generated by Xilinx ISE Design Suite
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6. Simulation Results

For the simulation results presented in this chapter, the implemented software modules are
adapted to a simulation environment developed by Joanneum Research. By using this simu-
lation environment, the generation of desired output values for di�erent parameters like SNR
is simpli�ed compared to the GNU Radio environment.

6.1. Timing Estimation

6.1.1. Variance of the Timing Estimator

The variance of the timing estimation result is a suitable measurement for the quality of
the estimator. Figure 6.1.1 shows the variance of the timing estimator for di�erent window
lengths L as a function of the signal-to-noise ratio. As it can be seen, the variance gets lower
the higher the window size L and the SNR get. Since the higher SNR leads to less noise
on the signal and the higher window size leads to more samples that are available for the
estimation, this result is no surprise.

Worth mentioning is the high di�erence in the variance between low window lengths. If we
have a look at the L = 64 and the L = 128 curve, we can see that the di�erence in the variance
is signi�cant. Whereas the di�erence between the curves for L = 832 and L = 1024 is much
smaller. As a result, it can be seen that in practice it is recommended to use higher window
lengths. But when reaching a certain window length, an increase is not reasonable when
looking at the high computational e�ort compared to the quite low decrease of the variance.
For practical implementation a trade-o� between a acceptable variance and possible hardware
e�ort must be found.
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Figure 6.1.1.: Variance of the timing estimator for di�erent SNR values and window lengths
L
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In �gures 6.1.2 - 6.1.3 the variance of the timing estimator is compared with the modi�ed
Cramér-Rao lower bound (MCRLB) and with the lower bound for the Meyr and Oerder
algorithm (MOLB) presented in section 3.1.1 for di�erent window lengths L.

−2 0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

σ2

 

 

L = 64
MCRLB
MOLB

−2 0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

σ2

 

 

L = 256
MCRLB
MOLB

Figure 6.1.2.: Variance of the timing estimator compared to the lower bounds for window
lengths L = 64 (left plot) and L = 256 (right plot)
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Figure 6.1.3.: Variance of the timing estimator compared to the lower bounds for window
lengths L = 512 (left plot) and L = 1024 (right plot)

When looking at the �gures 6.1.2 - 6.1.3, it can be seen that for higher window lengths L the
variance curve converges towards the lower bound for the Meyr and Oerder algorithm.
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6.2. FIR Interpolator

The most important parameters of the interpolator module and its impact on the output
signal are discussed in this section.

6.2.1. In�uence of Tap Resolution on a Single Carrier Signal

When implementing the interpolator module in real hardware, the resolution of the sinc
�lter samples is important. When more bits are used for the number representation, the
quantization noise gets lower. But also the computational e�ort is increasing. Additionally,
more bits for the �lter coe�cients results in larger �lter tables and the multiplications and
additions of the �lter operations are getting more complex.
For illustrating the in�uence of the �lter tap resolution of the stored �lter function, the
spectrum of the interpolator output is shown in a couple of �gures. The quantization of
the �lter samples leads to additional quantization noise that a�ects the signal. By sending
a complex valued sinusoidal signal to the interpolator and calculating the spectrum of the
output of a decimation by ρ = 0.984 when using Nz = 4 zero crossings, the additional noise
due to the quantization can be visualized. By using this decimation factor, the spectral
component of the input signal can be visualized by one spectral component of the DFT after
the decimation. Additionally, it is one possible use case for the satellite emulation application.
In the simulations the binary two's complement is used for the representation of the �lter
coe�cients, just like in the hardware implementation.
The spectrum of the input signal for this simulation can be seen in �gure 6.2.1.
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Figure 6.2.1.: Spectrum of the complex sinusoidal input signal

Figure 6.2.2 shows the spectrum of the output signal when �oating point values are used for
the �lter samples. The highest spectral component is the complex valued sinusoidal input
signal. For comparison reasons, the SNR is estimated for the output signal. Therefore the
ratio of the power of the spectral component and the sum of the other spectral components
is calculated. This SNR is calculated by:
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SNR = 10 · log10

(
XkSignal∑NFFT−1

k=0,k 6=kSignal Xk

)

In the �oating point case, the SNR value is SNRfloat = 84.4 dB. This value can be seen as
the maximal possible value for the following simulations.
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Figure 6.2.2.: Spectrum of the interpolator output signal using �oating point values for the
�lter tap resolution

For the hardware implementation we don't want to use the �oating point case due to its
high complexity. Therefore we need to quantize these �lter coe�cients to a certain bit width.
Figure 6.2.3 shows the output spectrum of the �lter when only 4 bit are used for the �lter tap
representation. We can see that the additional noise due to this quantization is extremely
high. In fact, the estimated SNR is only SNR4bit = 13.5 dB. This low value is mostly
undesired in real applications.
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Figure 6.2.3.: Spectrum of the interpolator output signal using an amplitude resolution of 4
bit

When using 8 bit for the �lter tap resolution, the SNR increases considerably. Now the SNR
value is about SNR8bit = 44.8 dB. Figure 6.2.4 show the corresponding output spectrum of
the interpolator.
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Figure 6.2.4.: Spectrum of the interpolator output signal using an amplitude resolution of 8
bit

When increasing the �lter tap resolution again, the SNR also increases due to the lower
quantization noise. This can be seen in �gure 6.2.5, where 12 bit are used for the �lter taps
representation and a SNR of SNR12bit = 69 dB is estimated.
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Figure 6.2.5.: Spectrum of the interpolator output signal using an amplitude resolution of 12
bit

In the hardware implementation 16 bit are used for the binary representation of the �lter
coe�cients. The SNR value of this quantization is almost as high as in the �oating point
case. Figure 6.2.6 shows the corresponding output spectrum and the estimated SNR value of
SNR16bit = 84.1 dB.
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Figure 6.2.6.: Spectrum of the interpolator output signal using an amplitude resolution of 16
bit

So the used �lter tap resolution of 16 bit is a good choice in terms of quantization noise,
because it almost approaches the �oating point case. The resulting hardware e�ort is ac-
ceptable since the 16 bit multiplication can be achieved by built in multiplication units. For
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the �lter table, which stores the �lter taps, an internal ROM module is used where enough
memory for the 16 bit taps is available.

6.2.2. In�uence of Tap Resolution and the Number of Zero
Crossings on a QPSK Signal

Another important parameter of the interpolation module is the number of zero crossings Nz

which de�nes the number of �lter taps. As mentioned in section 2.2.5, the number of zero
crossing has a major in�uence on the suppression of the unwanted frequency components
for avoiding aliasing after the resampling. In this section, a QPSK signal is generated and
root-raised-cosine �ltered. This input signal is then resampled only by slight decimation of
ρ = 0.992, which is a possible scenario for the satellite emulator application.

The following �gures visualize the output spectrum of the interpolation module with di�erent
�lter tap resolutions as well as with di�erent numbers of zero crossings Nz. Since the input
signal is bandlimited and therefore no unwanted frequency components are present, the impact
of the resulting �lter and therefore the quantization noise and the number of �lter taps is
visible in the output spectrum.

If we choose such a decimation factor near 1, the cut-o� frequency of the resulting �lter is
near fs

2
. When using only a small number of zero crossings, there is a slow decay of the

magnitude response in the passband as it can be seen in �gure 2.2.17 for low numbers of
zero crossings. The more zero crossings are used, the less passband attenuation occurs. Also
the quantization noise gets higher, the lower the �lter tap resolution gets. As it can be seen
in �gure 6.2.6 of the previous simulation, the quantization noise shows a wavelike spectrum.
Since for low numbers of zero crossings a passband attenuation is given, the quantization
noise in this band gets also suppressed. Therefore the noise level is lower for low numbers of
zero crossings in this simulation.

The spectrum of the according QPSK and root-raised-cosine input signal can be seen in �gure
6.2.7.
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Figure 6.2.7.: Spectrum of the QPSK input signal
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If we have a look at the comparison of three and 11 zero crossing for the 8 bit resolution case
in �gure 6.2.8, we can see that the noise ripples are visible in the spectrum. In the case of
the lower number of zero crossings, the spectrum apart from the QPSK band gets decayed
smoothly due to the passband attenuation and therefore the noise level is lower than in the
Nz = 11 case.
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Figure 6.2.8.: Spectrum of the interpolator output signal using a �lter tap resolution of 8 bit
and three zero crossings for the left plot and 11 zero crossing for the right plot

Finally the output spectrum of the 16 bit case in shown in �gure 6.2.9. Just like in the
previous simulation case with a single sinusoidal input signal, the high �lter tap resolution
leads to a low quantization noise. When comparing the Nz = 3 and Nz = 11 plots, the noise
ripples are no longer visible due to the lower quantization noise. Additionally we can see a
higher noise �oor due to the lower number of �lter taps in the Nz = 3 case.
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Figure 6.2.9.: Spectrum of the interpolator output signal using a �lter tap resolution of 16 bit
and three zero crossings for the left plot and 11 zero crossing for the right plot

When the application gets more complex and unwanted frequency components are present
in the input signal, the higher number of zero crossings leads to a better suppression of
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these frequencies. Also the hardware e�ort needs to be taken into account. The more zero
crossings Nz are used, the more �lter taps need to be stored in the �lter table. As well as the
higher complexity of �ltering for more �lter taps due to more multiplications and additions
for producing one output sample.

6.2.3. In�uence of the Number of Zero Crossings for the Decimation

When the interpolator is used for decimation like in the timing recovery application, the cut-
o� frequency and the steepness of the resulting �lter is important. According to section 2.2.4,

the cut-o� frequency is set to fc =
fsin

2
· ρ in the case of decimation. In this simulation, the

rate conversion is set to ρ = 1
2
which results in a cut-o� frequency of fc =

fsin
2
· 1

2
=

fsin
4
. Since

the new sampling rate equals fsnew = fsin · ρ =
fsin

2
, the cut-o� frequency is at the borders of

the illustrated output spectra. Figure 6.2.10 shows the input spectrum of the interpolator,
where a single complex valued sinusoidal signal plus a SNR of 10 dB is used.
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Figure 6.2.10.: Spectrum of the sinusoidal input signal for the decimation process a�ected by
noise

This input signal is now decimated by 2, which results in a re-scaling of the frequency axis for
the output spectrum. This can be seen by the shift of the input signal frequency component
in the spectrum. In �gures 6.2.11 - 6.2.13 the resulting output spectra are visible. Since the
number of zero crossings and therefore the number of �lter taps in�uences the steepness of
the magnitude response (see �gure 2.2.18), this e�ect can be observed in the output spectra.

It can be seen that a higher number of zero crossings results in a lower passband attenuation
as well as in a steeper decay of the noise at the spectral borders. Hence a higher number of
zero crossings is desired when using the interpolator in the decimation application, since the
usable frequency band is higher. We can see that for Nz = 1 in �gure 6.2.11 the attenuation
at f = 0.2 · fs is already about 1 dB. When using for example Nz = 11 zero crossings like
shown in �gure 6.2.13, this point has moved to approximately f = 0.45 · fs which expands
the usable frequency band considerably.
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Figure 6.2.11.: Output spectrum of the decimator using one zero crossing (left plot) and three
zero crossings (right plot)
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Figure 6.2.12.: Output spectrum of the decimator using �ve zero crossings (left plot) and
seven zero crossings (right plot)
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Figure 6.2.13.: Output spectrum of the decimator using nine zero crossings (left plot) and 11
zero crossings (right plot)
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If we simulate the same decimation procedure with the cubic interpolator, we can see that
there is no attenuation at the spectral borders of the output signal. Since the magnitude
response of the cubic interpolator (see �gure 2.1.1) shows no �ltering in order to avoid alias-
ing for decimation, pre�ltering would be necessary when using the cubic interpolator for
decimation purpose.
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Figure 6.2.14.: Output spectrum of the cubic interpolator for decimation by 2

6.2.4. SFDR Analysis for the Filter Parameters

The spurious free dynamic range (SFDR) describes the ratio of the signal power to the
strongest spurious frequency component. This measure is used to demonstrate the inter-
polator performance at a sampling rate conversion of ρ = 0.99. A single complex valued
sinusoidal signal is used as input. This conversion factor is chosen such that it leads to a
resulting spectral component that can be represented by the DFT without leakage.

The resulting output spectrum of the interpolator is used to measure the SFDR. Figure 6.2.15
shows such an example output spectrum for the SFDR calculation.
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Figure 6.2.15.: Example of an interpolator output spectrum for the measurement of the SFDR
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6.2.4.1. SFDR for Cubic Interpolator

The same sampling rate conversion of ρ = 0.99 is applied using the cubic interpolator. The
resulting output spectrum can be seen in �gure 6.2.16. The SFDR for the cubic interpolator
is SFDRcubic = −44.38 dB. Since this result is quite low and the FIR interpolator can achieve
much higher values which is shown in the next section, the cubic interpolator is not suited
for the satellite emulator application.
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Figure 6.2.16.: Example of a cubic interpolator output spectrum for the measurement of the
SFDR

6.2.4.2. SFDR as a Function of the Amplitude Resolution and the Numbers of Zero
Crossings

In Figure 6.2.17 this SFDR is shown for di�erent amplitude resolutions of the �lter impulse
response in dependency of the number of zero crossings Nz of the �lter. It can be seen that the
number of zero crossing has a major impact on the SFDR, but for Nz = 9 zero crossings, the
result is already at its maximum value. Also the amplitude resolution a�ects the SFDR only
up to 14 bit. This means that for an amplitude resolution of 14 bit and Nz = 9 zero crossing,
the maximum SFDR can be reached in this simulation which is at SFDR = −76 dB.
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Figure 6.2.17.: SFDR for di�erent amplitude resolutions in dependency of the number of zero
crossings Nz

6.2.4.3. SFDR as a Function of the Number of Bits for Filter Resolution and Linear
Resolution

The same simulation is used to measure the SFDR for di�erent linear resolutions nbη of the
�lter impulse response in dependency of the �lter resolution nbl in bit. As already explained
in section 2.2.4, nbl de�nes the number of �lter taps per zero crossing. This means that the
delay µ can be quantized with nbl bit by the �lter impulse response. Additionally the �lter
impulse response can be linearly interpolated by nbη bit. This means that the delay µ can
e�ectively be quantized with nbl + nbη bit.
If we have a look at �gure 6.2.18 where Nz = 4 zero crossings are used, we can see that the
SFDR is highly in�uenced by nbl, but only up to 7 bit. The linear interpolation resolution
nbη has only a minor in�uence on the SFDR in this simulation. The result shows that the
maximum value of SFDR = −71 dB for Nz = 4 zero crossings can be achieved by using
nbl = 7 bit for the �lter resolution.
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Figure 6.2.18.: SFDR for di�erent linear resolutions nbη in dependency of the �lter resolution
nbl
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6.2.4.4. SFDR as a Function of the Filter Resolution and the Number of Zero
Crossings

From the two �gures 6.2.17 and 6.2.18 we can see that the �lter resolution and the number
of zero crossings have the strongest in�uence on the SFDR. Therefore the same procedure is
used to measure the SFDR of di�erent numbers of zero crossings Nz in dependency to the
�lter resolution nbl. This result is visualized in �gure 6.2.19. Here we can see that the SFDR
gets better for higher numbers of zero crossings up to Nz = 9, just like shown in �gure 6.2.17.
For this simulation the �lter resolution nbl a�ects the SFDR only up to 7 bit like in �gure
6.2.18. This means that the best SFDR of −76 dB for this simulation can be achieved by
using Nz = 9 zero crossing and a �lter resolution of nbl = 7 bit.

When comparing this result to the SFDR of the cubic interpolator which is SFDRcubic =
−44.38 dB, we can see that for Nz = 3 and nbl = 5 the result of the FIR interpolator is
already better than for the cubic interpolator.
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Figure 6.2.19.: SFDR for di�erent numbers of zero crossings Nz in dependency of the �lter
resolution nbl

6.2.5. Symbol Error Rate

Another useful measurement for the performance of the interpolator and timing estimator
is the bit error rate that results from the timing recovery process. Therefore a four times
oversampled QPSK signal is generated on which timing recovery is performed using the
interpolator and timing estimator implemented in this thesis.

For the �rst plot in �gure 6.2.20, L = 64 and di�erent number of zero crossings Nz are used
to show the in�uence on the symbol error rate. As it can be observed, the number of zero
crossings has no major in�uence on the symbol error rate. Only for Es

N0
= 15 dB a small

deviation is visible, where the higher number of zero crossings shows a better result.
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Figure 6.2.20.: Symbol error rates of a QPSK signal using the implemented timing recovery
for di�erent numbers of zero crossings Nz

In �gure 6.2.21, the timing recovery is performed for di�erent window lengths L of the timing
estimator. In this simulation, the window length L has no major in�uence on the symbol
error rate. Again, only for Es

N0
= 15 dB the curves deviate due to the di�erent window lengths

L of the timing estimator. It can be observed that for a higher window length L, the symbol
error rate improves for high Es

N0
values due to the better variance of the timing estimator.
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Figure 6.2.21.: Symbol error rates of a QPSK signal using the implemented timing recovery
for di�erent window sizes L of the timing estimator and Nz = 4
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6.2.6. Folding of Spectral Images when using Cubic Interpolator for
Decimation

The high sidelobes in the continuous magnitude response of the cubic interpolator (see �gure
2.1.1 and [EGH93]) results in folding images according to [Gar93]. So if the decimation rate
is chosen badly (decimation rate is a non-rational number), this impairment e�ect is visible
in the output spectrum of the cubic interpolator.

This simulation shows this e�ect and uses a root-raised-cosine �ltered QPSK signal which is
eight times oversampled as the input signal. This input spectrum can be seen in �gure 6.2.22.
In �gure 6.2.23 the output spectra of the cubic interpolator and the FIR interpolator are
illustrated with a sampling rate conversion factor of ρ = 1

2
, which equals a decimation rate of

1
ρ

= 2. Due to the choice of this conversion factor, the spectral images at the new sampling
rate f ′s = ρ ·fs get highly suppressed by the magnitude response of the cubic interpolator and
no impairments occur.

But if a sampling rate conversion of ρ = 0.4706 is chosen as an example (non-rational decima-
tion factor), the spectral components at integer multiples of the new sampling rate f ′s = ρ · fs
are no longer at integer multiples of the original sampling rate fs and therefore these spectral
images fold onto the output signal of the cubic interpolator. This e�ect can be seen in �gure
6.2.24, which also shows the output of the FIR interpolator where the spectral images get
suppressed su�ciently.
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Figure 6.2.22.: Input spectrum for the aliasing illustration of the cubic interpolator
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Figure 6.2.23.: Output spectrum of the cubic interpolator (left plot) and FIR interpolator
(right plot) using a sampling conversion factor of ρ = 1
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Figure 6.2.24.: Output spectrum of the cubic interpolator (left plot) and FIR interpolator
(right plot) using a sampling conversion factor of ρ = 0.4706
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7. Practical Measurements

7.1. Measurement Setup

For performing the measurements of the implemented hardware modules, the USRP N210 is
integrated into a measurement setup. A block diagram of this setup is illustrated in �gure
7.1.1. Since the implemented hardware is used in an environment for demodulating a DVB-S2
signal, the Newtec EL470 is used to generate this DVB-S2 signal. The payload is generated by
an application on a PC which is also used for the con�guration of the modulator (PC_TX).
For the demodulation process another Newtec modem is integrated in the measurement setup.
Additionally a second PC is necessary for con�guration of the demodulator as well as for
optional packet error rate calculations (PC_RX). The modulator generates a DVB-S2 signal
from the payload provided by PC_TX using the following parameters:

• Center frequency fcenter = 1GHz

• Symbol rate fsym = 1MBaud

• Output level of −20 dBm

This con�guration can also be seen in �gure 7.1.2 which shows the parameters of the modu-
lator. Additionally the demodulator state is illustrated in �gure 7.1.3.

A programmable noise generator is used to add AWGN to the signal. The input signal as
well as the noise source can be attenuated here in order to achieve a desired SNR value. A
power splitter is used to connect the noisy signal with the demodulator. Combined with the
signal directly from the modulator, the PC_RX can now optionally be used to determine
packet error rates.

Another power splitter is used to connect the signal with the Rohde&Schwarz signal analyzer.
This analyzer is used to visualize the spectrum of the signal that is sent to the USRP N210
by Ettus Research. An example spectrum is shown in �gure 7.1.4. This spectrum analyzer is
used to measure the SNR of the signal for the measurements in this section. Due to inaccuracy
in this measurement, the SNR values in this section should only be seen as guidance values.
Another problem was the non �at spectrum of the programmable noise generator which results
in an additional error.

The USRP N210 which contains the implemented hardware modules is connected via Ethernet
to the host PC where GNU Radio is used for further signal processing. Also some debug
signals are sent to a logic analyzer. Figure 7.1.5 shows a screenshot of this logic analyzer
where the clock and the strobe signals of the implemented hardware modules are illustrated.
In �gure 7.1.6 the output waveform of the ADC on the USRP N210 is shown.
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Figure 7.1.1.: Setup of the components for the measurements on the implemented modules in
hardware

Figure 7.1.2.: Con�guration overview of the modulator
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Figure 7.1.3.: Demodulator state

Figure 7.1.4.: Screenshot of the signal analyzer showing a spectrum of a fsym = 1MBaud
DVB-S2 signal at a center frequency of fcenter = 1GHz
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Figure 7.1.5.: Screenshot of the logic analyzer showing clock and strobe signals of the imple-
mented hardware modules on the USRP N210

Figure 7.1.6.: Screenshot of the logic analyzer showing the output of the ADC on the USRP
N210
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7.1.1. Measurement Points

In order to calculate the signal-to-noise ratio, the power in the signal band is measured �rst
without and then with the actual carrier. By subtracting these two values which are given
in dB, we get the signal-plus-noise-over-noise ratio xdB = 10 · log10

(
S+N
N

)
. The actual SNR,

which is SNRdB = 10 · log10

(
S
N

)
, can now be calculated using the following formula

SNRdB = 10 · log10

(
10

xdB
10 − 1

)
(7.1.1)

For all the measurements points in this section the con�guration of the programmable noise
generator is shown in table 7.1.1.

(
S+N
N

)
dB

SNRdB NoiseAttenuationdB Signal AttenuationdB

45 45 OFF 0
29 29 20 0

15, 1 15 6 0
10, 4 10 6 5
7, 8 7 2 4, 3
6, 2 5 2 6, 1
5, 5 4 2 7, 3
4, 7 3 2 8, 3
4, 1 2 2 9, 1
3, 5 1 2 10, 2
3 0 2 11, 2

Table 7.1.1.: Con�guration of the programmable noise generator and the corresponding SNR
values

7.2. Output Spectra of the USRP N210

For these measurements a special FPGA image is generated, which implements the existing
receiver structure of the USRP and also the root-raised-cosine �lter used for Nyquist pulse
shaping. So the image provides two output signals which can be used to illustrate the spec-
trum before and after the root-raised-cosine �lter. The existing receiver structure can be seen
in �gure 5.1.2. Figure 7.2.1 shows the spectrum a DVB-S2 input signal with SNR = 5 dB
before and after the root-raised-cosine �lter.
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Figure 7.2.1.: Spectrum of the received QPSK signal before (left) and after (right) the root-
raised-cosine �lter at a signal-to-noise ratio of SNR = 5 dB

When looking at �gure 7.2.2 where only noise is sent to the USRP, the left plot shows the
in�uence of the CIC �lter which is used for the decimation process. Since the input sampling
frequency is fsin = 100MHz and the output frequency is fsout = 4MHz the decimation

factor is
fsin
fsout

= 25 which is implemented only by the CIC �lter where the half-band �lters

are bypassed. The magnitude response of the four stage CIC �lter with a decimation of 25
is already shown in �gure 5.1.5. At the indicated cut-o� frequency of the root-raised-cosine
�lter the attenuation is approximately 1 dB which also corresponds to the observation in
�gure 5.1.5.
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Figure 7.2.2.: Spectrum of a noise-only-signal before (left) and after (right) the root-raised-
cosine �lter
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7.3. Timing Estimator

The variance of the timing estimator for a window size of L = 64 is already simulated
in section 6.1.1. Now these simulation results are compared with the actual variance of
the timing estimator implemented in hardware. Additionally, a bit-accurate simulation is
performed. These variances are illustrated in �gure 7.3.1 where also the lower bounds are
presented. When looking at this �gure, we can see that the performance of the implemented
estimator in hardware is similar to the simulation results. Since the variance of the hardware
module is only measured once for some SNR values, the curve is just a qualitative information
of the performance. The variance curve of the measured hardware module shows a self-noise
�oor for higher SNR values just as expected.
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Figure 7.3.1.: Timing estimator variance of the hardware module and the simulation

7.3.1. In�uence of the Clock Mismatch

Due to the mismatch of the internal clock of the USRP N210, the symbol rate of the modem
and the symbol rate of the USRP N210 di�er. Hence TsTX 6= TsRX which results in a time
varying optimal sampling point. As a result, the estimated value of the sampling time is also
time varying. For the illustration of the in�uence of this clock mismatch this time drift is
analyzed in this section.
The following measurement was done without any external clock reference but with the
internal clock which mismatches the clock from the TX modem.
Figure 7.3.2 shows the averaged drift of the estimated timing value µ where TL equals the
time duration of one window L. Since the symbol rate in this measurement was set to
fsym = 1MBaud and the window length is set to L = 64, we can calculate the window
duration which results in TL = L

fsym
= 64µs . Hence the duration of the illustrated drift is

about 18000 · TL = 1.15 s.
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The variation of µ in this time is approximately4µ = 90 which can now be used to determine
the speed of the drift. Since the sampling duration Ts equals a estimated time value of µ = 128
due to the 7 bit resolution of Ts, the estimated value of µ drifts by approximately

4µ
1.15 s · 128

= 0.61
samples

s

which means that in
1.15 s

4µ
· 128 = 1.63 s (7.3.1)

the estimated sampling time is drifted by one sample.
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Figure 7.3.2.: Averaged drift of µ due to the clock mismatch

In order to avoid this clock mismatch, the USRP N210 can be connected to an external
reference clock. This external clock (10MHz) is generated by the modem which generates
the input signal. Figure 7.3.3 shows the averaged drift of the timing estimation value µ when
the external reference clock is used. As it can be seen, no drift is occurring in this time
duration of about 1.15 s.
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Figure 7.3.3.: Averaged drift of µ using the external reference clock reference
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7.4. Output Symbols

The constellation diagrams for some speci�c SNR values are plotted in this section. Since no
phase correction is applied to the signal, the constellation points are rotated by this phase
error.

The symbols at the output of the hardware module are illustrated in the constellation diagram
in �gure 7.4.1 where an SNR of 29 dB is applied. A QPSK signal is shown in the left plot and
a 16-APSK signal is shown in the right plot. When using 16-APSK as modulation scheme,
DVB-S2 sends additional pilot symbols with π

2
-BPSK modulation scheme. Hence it looks like

there is an additional QPSK constellation in the right plot. When setting this quite high
SNR value, the certain constellation points can be seen clearly.
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Figure 7.4.1.: Constellation diagram of the received QPSK (left) and 16-APSK (right) sym-
bols with external clock reference and SNR = 29 dB

When setting an SNR of 15 dB, the constellation points in �gure 7.4.2 are still distinguishable
whereas in �gure 7.4.3 where a SNR of 10 dB is applied, there are only the two rings of the
16-APSK signal visible.
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Figure 7.4.2.: Constellation diagram of the received QPSK (left) and 16-APSK (right) sym-
bols with external clock reference and SNR = 15 dB

−1000 −800 −600 −400 −200 0 200 400 600 800 1000

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Im
ag

in
ar

y 
P

ar
t

Real Part
−1000 −500 0 500 1000

−1000

−500

0

500

1000

Im
ag

in
ar

y 
P

ar
t

Real Part

Figure 7.4.3.: Constellation diagram of the received QPSK (left) and 16-APSK (right) sym-
bols with external clock reference and SNR = 10 dB

7.4.1. In�uence of the Clock Mismatch

Earlier in this thesis, the in�uence of the clock mismatch to the timing estimation was men-
tioned. Unfortunately this mismatch also leads to a carrier frequency o�set due to wrong
mixing in the analog stage of the USRP N210. This leads from the fact that the mixing
frequency is also derived from the internal clock. This carrier frequency o�set leads to a
rotation of the symbols by the angular speed ϕ = 2 ·π ·4f , where 4f is the carrier frequency
o�set. Since the estimation and correction of this o�set is not part of this thesis, but it might
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be interesting to see the performance of the USRP N210, only an approximate estimation of
the carrier frequency o�set is done here.
Therefore the constellation diagram of a QPSK signal, where no external clock reference is
attached, is used to demonstrate this rotation.
For the plot in �gure 7.4.4, N = 2000 symbols are illustrated and a phase rotation of about
0.4688 rad can be observed in the left plot where a QPSK signal is used. Since this rotation
is no exact measurement for the phase rotation, this gives only a rough estimation of the
carrier frequency o�set.
The observation results in a rotation approximately given by

ϕ =
0.4688 rad

N
= 234 · 10−6 rad

symbol

The input symbols cin are rotated by the angular speed ϕ which leads to

cout [n] = cin [n] · ej·ϕ·n

Now the carrier frequency o�set 4f can be calculated using the following rearrangement

ϕ = 2 · π · 4f →4f =
ϕ

2 · π
= 37.3 · 10−6 1

symbol

When multiplying this result with the symbol rate of fsym = 1MBaud we get a frequency
o�set of 4f = ϕ · fsym = 37.3Hz.
If we have a look at the right plot in �gure 7.4.4, where the modulation scheme is 16-APSK, we
can see that the rotation due to the carrier frequency o�set results in constellation points that
are not distinguishable with the naked eye. Only the two amplitude levels of the 16-APSK
signal are visible.
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Figure 7.4.4.: Constellation diagram of the received QPSK (left) and 16-APSK (right) sym-
bols with no external clock reference and SNR = 29 dB
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8. Conclusion

This thesis presents and analyzes a sampling rate conversion technique that can be employed
for fractional conversion rates near 1 using a FIR interpolator. The implementation of this
sampling rate converter uses a pre-calculated FIR �lter which reduces the e�ort for online
computation of the required �lter coe�cients. This FIR structure is highly oversampled
providing this way a good quantization for the delay of the output sample. Additionally, a
linear interpolation is introduced which improves this quantization even more. Using both
high oversampling and linear interpolation, very �ne delays can be applied to the input signal.
Several simulations illustrate the performance of the FIR interpolator showing better results
than a cubic interpolator.
It has also been shown that the �lter design is very important for this sampling rate conversion
technique. Hence, the most important �lter parameters are analyzed and illustrated to present
reference values for the delay variation application.

For the timing recovery procedure, the simulated modules provided good results in terms
of the symbol error rate. The FPGA implementation of the investigated FIR interpolator
requires less multiplications than the cubic interpolator in Farrow structure, but needs an
additional table for the �lter coe�cients instead. Hence, there is no real advantage in using
the FIR interpolator instead for the purpose of timing recovery.
The practical measurements on the implemented FPGA modules showed no signi�cant dif-
ferences to simulation results and in the actual SNR estimation experiment the whole system
worked properly.
For the timing estimation, several improvements are suggested for future work. Since cycle
slips occurred quite often in the �nal system, an improved unwrapping algorithm is recom-
mended. Also the window length of the estimator algorithm can be increased in order to
minimize the jitter variance. But to apply a larger window length, a larger FPGA should
be available on the SDR, because the hardware e�ort also increases. Another possibility for
future work is to consider a tracking algorithm for timing recovery.

One of the biggest issues in this thesis was the implementation of the modules on the USRP
N210 FPGA. Since the number of available slices was very low, several trade-o�s in terms of
area had to be made to ensure a working system. When using a larger FPGA, more �lter taps
of the interpolator and a larger window length for the timing estimator might lead to a better
performance. However, for the mentioned ALPHASAT TDP5 experiment the performance is
su�cient.
The lack of documentation on the existing hardware structure of the USRP N210 also com-
plicated the insertion of appropriate modules and made an intensive study of the existing
sources necessary.
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A. GNU Radio and UHD

A.1. Installation

For the installation of GNU Radio and UHD (Universal Hardware Driver) both projects
need to be downloaded from the GNU radio website http://gnuradio.org1. Any sources
or scripts that are mentioned in this section as well as more detailed instructions can also be
found on this website.
There are pre-built binaries of GNU Radio available for the Linux distributions Ubuntu and
Fedora. But when using the USRP devices, which require also the installation of UHD, the
most common way is to manually compile everything directly from the sources.
When installing from the sources, it is mandatory to start with UHD before GNU Radio
since the latter checks for the presence of UHD on the system. The installation is based on
make�les which are, in case of UHD, created by using CMake.
Fortunately, there is an install script available for the Linux distributions Ubuntu and Fedora.
This script downloads the newest required sources, checks for dependencies and, if necessary,
installs missing packages. The manual installation on a Linux platform will be described in
the next section.

A.1.1. Installation of UHD on Linux

When using the GNU Radio toolkit with UHD, the latter has to be installed previously to the
actual GNU Radio installation. Since Linux Ubuntu 10.10 was used for the implementation
in this thesis, the following instructions refer to this operating system. The UHD sources can
be downloaded using the git version control tool by entering the command:

git clone git://code.ettus.com/ettus/uhd.git

Now enter the new directory uhd by typing the command:

cd uhd

create a build directory, enter it and start the CMake script by entering the commands:

mkdir build

cd build

cmake ../

This will generate the necessary make�les and the build process can now be started with the
commands:

1This URL was checked for validity in February 2012
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make

sudo make install

sudo ldconfig

The directories /usr/local/share/uhd and /usr/local/bin now contain all the installed
�les. Also the �rmware and the FPGA image are available in the git directory.

A.1.2. Installation of GNU Radio on Linux

For this thesis the Linux distribution Ubuntu 10.10 was used and therefore this installation
guide refers to this operating system. First of all, the required packages for building the
source need to be installed. On the GNU Radio website these packages are listed and they
can be installed using the Synaptic Package Manager. Please note the indicated versions of
these packages.
In order to download the sources, GNU Radio can be downloaded from the using git version
control system by typing the command:

git clone http://gnuradio.org/git/gnuradio.git

This will create a directory called gnuradio. Now enter this directory by entering the com-
mand:

cd gnuradio

Now the source can be con�gured and built by typing the commands:

./bootstrap

./configure

make

make check (this is an optional self-check of GNU-Radio)
sudo make install

sudo ldconfig

All �les will be installed into the directories /usr/local/share/gnuradio and /usr/local/bin.
After the ./configure part of the installation, make sure that the component gr-uhd is en-
abled if you want to use UHD.
For instructions on special con�gurations like enabling individual components please visit the
GNU Radio website.

A.2. UHD Tools

There are three very useful tools that are worth mentioning when working with the USRP
devices.

A.2.1. UHD Find Devices

This tool can be used to �nd all USRP devices that are connected to the host PC. The tool
can be called by typing the command:
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/usr/local/bin/uhd_find_devices

A.2.2. UHD USRP Probe

In order to get all necessary information of the attached USRP board and of the daughter-
boards, this tool can probe the device. To execute this tool enter the following command:

/usr/local/bin/uhd_usrp_probe

A.2.3. UHD USRP Net Burner

This Python script is a tool which is used to burn new �rmware and FPGA images onto the
USRP devices:

/usr/local/share/uhd/utils/usrp_n2xx_net_burner.py

There is also a graphical tool which can be used for the same purpose:

/usr/local/share/uhd/utils/usrp_n2xx_net_burner_gui.py

A.3. GNU Radio Companion

When starting with GNU Radio, the easiest way of working with the toolkit is the graphical
tool GNU Radio Companion (GRC). The basic concept of GNU Radio are the �ow graphs
where nodes are called blocks and the edges between these blocks represent the data �ow
direction. The blocks are responsible for the actual signal processing and are written in the
programming language C++, whereas the actual application is written in Python. These
blocks should be kept as modular as possible to keep the software �exible, which means that
each block should ideally perform one single signal processing operation.

GRC now gives users the opportunity to create such �ow graphs without the need of any actual
programming work. A large number of common signal processing block are already provided
by GNU Radio, such as many di�erent kinds of sources, sinks, synchronizers, modulators and
�lters.

Figure A.3.1 shows an example �ow graph containing an USRP source, a root-raised-cosine
�lter and a FFT sink for displaying the spectrum of the signal. This three main blocks
are connected by arrows which also indicate the direction of the data �ow. For passing the
data between blocks, many data types can be de�ned, like complex �oating point, or short
values. The data types are indicated by speci�c colours of the sockets. On the right side of
the window the available blocks can be selected and inserted into the current graph. At the
bottom of the window, console prints are displayed and at the top there are shortcut symbols
for creating and starting the graph as well as for common operations like saving graphs and
deleting blocks.
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Figure A.3.1.: Sample graph of GNU Radio Companion

A.3.1. USRP Source

The �rst block UHD: USRP Source is responsible for the communication with a USRP device
that is attached to the system. In case of the USRP N210, which is used in this thesis,
UDP packets over the Gigabit Ethernet interface are used for the communication between
the host PC (UHD) and the USRP device. Figure A.3.2 shows the property window of this
block where all the necessary parameters can be selected appropriately. When a parameter
is set, the UHD sends the corresponding command to the USRP. The �rmware running on
the USRP then receives this command and reacts correspondingly, like setting the values of
particular registers of its hardware.

The parameters are now presented in a brief manner to explain the functionality of the USRP
N210.

• ID represents a unique identity name for the block in the current graph.

• Output Type de�nes the type of data passed to the connected blocks. Valid types are
complex, which corresponds to complex �oating point, and short, which corresponds to
a vector of two short values. The �rst one indicates the real part and the second one
indicates the imaginary part of the complex valued output signal.
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• Device Addr is used to specify the IP address of the USRP device. The pre�x addr=

is mandatory for this parameter. Also a list of addresses can be entered if more than
one USRP device is used.

• Ref Clock is used to de�ne whether the clock of the USRP is set to the internal oscillator
or to an external clock that can be connected to the device. If more than one USRP
device is connected, they need to be synchronized. This can be set by the parameter
Sync.

• Clock Rate can be used to set the clock rate of the FPGA on the USRP device.

• Num Mboards de�nes the number of USRP motherboards that are used in the current
con�guration.

• Subdev Spec is used to set the speci�cations for the daughterboards that are attached
to the USRP devices used in the current con�guration. To see the valid speci�cations,
run the Python script usrp_probe in order to probe the USRP and see its con�guration.
This script is included in the installation of GNU Radio.

• Num Channels de�nes the number of receive channels of the attached devices. The
USRP N210 can be used to receive up to two channels.

• Samp Rate de�nes the sampling rate of the received signal. When using the USRP
N210 the 100MSps are decimated to the desired sampling rate.

• Center Freq de�nes the frequency of the mixer and therefore the center frequency of
the signal that is mixed into the baseband.

• Gain can be used to set the gain in dB of the ampli�ers and attenuators of the daugh-
terboard.

• Antenna de�nes the name of the antenna that is used for the current channel, if multiple
antennas are available. To see the list of all available antennas run the Python script
usrp_probe.

• Bandwidth can be used to con�gure the bandwidth �lters available on the daughter-
boards that are attached to the USRP devices.
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Figure A.3.2.: Parameters for USRP source block

A.4. Developing in GNU Radio

As already mentioned, there are a large number of existing blocks already included into the
GNU Radio toolkit. But if one needs to develop a signal processing block that is not available
in the existing toolbox, GNU Radio allows you to add your own blocks to the existing ones.
The main signal processing of one block can be implemented in C++, whereas the connection
between these block, the �ow graph, is implemented in Python. When writing a block, it has
to be compiled into a shared library object. This way the block can be imported into Python.
We will now talk about the main points of adding own blocks into GNU Radio. For a detailed
manual and code examples please visit the GNU Radio website http://gnuradio.org2.
In GNU Radio, each block will be executed by one thread. Therefore, the order of execution
is not �xed. Especially for debugging a �ow graph, this fact needs to be considered.
The data passing between the blocks is performed by the data bu�ers gr_buffer for each
connection of the blocks.

A.4.1. Writing Signal Processing Blocks in GNU Radio

The basic structure of a signal processing block is the corresponding C++ class (.cc and .h

�le) that needs to be implemented. Templates of the source- and make�les can be found in
the downloaded directory of GNU Radio:

2This URL was checked for validity in March 2012
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gnuradio/gr-howto-write-a-block

The directory layout can also be seen in this template. This new class needs to be derived
from the mother gr_block of all signal processing blocks. This base class contains several
methods and member variables that need to be implemented in order to work in the GNU
Radio toolkit and communicate with the other blocks in the �ow graph.

gr_make_io_signature

First of all, the signature of the new block needs to be de�ned. The signature describes the
input port and output port of the new block. It is stored in the class gr_io_signature,

which de�nes the number of input streams as well as the data size of the input streams.
Pointers to these objects can be created by the function

gr_io_signature_sptr gr_make_io_signature(int min_streams,

int max_streams, int sizeof_stream_item)

One object of this class needs to be created for the input port and one object for the output
port by calling this function passing the resulting pointers to the constructor of the new block
class.

general_work

For the execution of the actual signal processing, the virtual method

int general_work(int noutput_items, gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)

needs to be implemented. This method will be executed by the scheduler of GNU Radio when
enough input data are available.

The �rst parameter noutput_items is an integer value that de�nes the number of output
samples that can be produced in the current call of the method. This means that, if the
method is called with noutput_items=1024 for example, the function can return at most
that amount of output samples. Producing less samples is also possible.

The second parameter is the pointer to the vector ninput_items which de�nes the number
of available input samples for each input port. A pointer to a vector of input items is the
third parameter input_items. It contains a pointer to a vector for each input stream. Using
this input samples, the output samples can be calculated. These output samples then are
stored into a vector for each output stream. The pointer to this vectors is given by the last
parameter output_items.

When the output samples are produced, the scheduler needs to know how many of them are
produced and also how many input samples are consumed. The number of produced output
samples can be set by the return value of the method general_work. When −1 is returned
by the method, the system aborts the execution of the whole �ow graph. For telling the
scheduler of GNU Radio how many input items are consumed, the next function needs to be
called.
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consume

The function

void consume(int which_input, int how_many_items)

is used to tell the GNU Radio system how many input items are used on which input port.
If every port consumed the same amount of input samples, the function

void consume_each(int how_many_items)

can be called instead. These consumed input samples are then removed from the bu�er and
are no longer available in the next call of the general_work method.

forecast

Another important virtual method that needs to be implemented is

void forecast(int noutput_items, gr_vector_int &ninput_items_required)

The call of this function is needed to tell the GNU Radio system the input-to-output re-
lation of the signal processing block. This function is also called by the GNU Radio sys-
tem in order to check how many input items are required. Therefore, the function has the
parameter noutput_items just like the method general_work. In the second parameter
ninput_items_required which is a pointer to a vector, the programmer has to tell the
required number of input samples for each input stream when noutput_items need to be
produced. Hence, the system can always provide enough input samples on each call of the
general_work method.

set_output_multiple

Another function worth mentioning is

void set_output_multiple(int multiple)

This function is the setter method of the member variable d_output_multiple. In signal
processing the calculation in sample blocks is sometimes required for easier calculations. If
blocks of output samples have to be produced, this can be done by calling this setter function.
After this call, the scheduler will ensure that the argument noutput_items for the methods
general_work and forecast is an integer multiple of this given value. The default value is
set to one, but for certain computations other values are much more desirable.

A.4.2. SWIG

In case the C++ class for this signal processing block is implemented by creating the corre-
sponding .cc and .h �le, another �le is necessary to tell the system how Python can use the
implemented C++ code. This can be done by creating a .i �le, which contains all necessary
information for a special wrapper called SWIG (Simpli�ed Wrapper and Interface) that does
the binding between C++ and Python. The most easy way of creating this �le is to alter an
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existing template �le.

When the �ow graph with this new block is executed, the system �rst checks the input-to-
output relation by calling the forecast method. Then it waits until enough samples are
available on each input stream to produce a certain amount of output items. When enough
items are available, the method general_work is called and the produced items are sent to
the bu�er of the following block.

A.4.3. GNU Radio Applications

Applications or �ow graphs can either be created by using the graphical interface provided
by GRC, or by writing suitable Python classes. In these Python classes, signal processing
blocks can be added and connections between these block can be created.
When creating �ow graphs, loop calls of the graph can be performed automatically which is
not possible in GRC. This makes several calls of the same graph with di�erent parameters
possible without the need of a manual start of the whole graph. Also the reaction to speci�c
return values can be implemented.
Especially for complex simulations with lots of parameters, this kind of creating �ow graphs
is preferred. A corresponding template of such a Python class �le (.py) can also be found in
the directory

gnuradio/gr-howto-write-a-block/apps

A.4.4. Building and Installation of Blocks

The creation, installation and linking of the new signal processing block into the existing
toolkit is again done by calling make�les. This means that after altering the source, the
commands:

make

sudo make install

sudo ldconfig

need to be executed from the source directory of the current block in order to build and install
all the necessary shared object �les.
When installing GNU Radio, a lot of example �les are included, which can either be used as
manuals or as templates for creating the signal processing blocks.
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