
Larissa STOISER

Markov Chain Quasi Monte Carlo

MASTERARBEIT

zur Erlangung des akademischen Grades einer Diplom-Ingenieurin

Mathematische Computerwissenschaften

Technische Universität Graz

Betreuer:
Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang WOESS

Institut für Mathematische Strukturtheorie

Graz, Jänner 2012

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .
(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitely marked all material which
has been quotes either literally or by content from the used sources.

. .
date

. .
(signature)

Abstract

This master thesis is about comparing the two main categories of Monte Carlo methods
for simulating random processes and to find combinations of the two methods. At first I
did research into the Markov chain Monte Carlo (MCMC) techniques. Their task is the
approximation of distributions on large but finite sets with the help of Markov chains,
which have the corresponding distribution as invariant measure. The construction of
a Markov chain with the desired properties is usually not that hard. The more tricky
part is to determine how many steps of the Markov chain are needed to converge to the
stationary distribution within an acceptable error. Thereafter I studied the quasi Monte
Carlo (QMC) method. The theory behind QMC is the uniform distribution modulo 1

and deals with the behavior of distributions of real number sequences in the interval
[0, 1]. In conclusion I present versions of MCMC algorithms using quasi Monte Carlo
inputs.

Contents

1 Introduction 1

2 Markov Chains 4
2.1 Introduction . 4
2.2 Ergodicity . 5
2.3 Stationarity . 6

2.3.1 A Markov chain Convergence Theorem 7
2.4 Reversibility . 8
2.5 Recursive Representation . 8

3 Markov Chain Monte Carlo 11
3.1 Motivation . 11
3.2 Metropolis Chains . 13

3.2.1 Symmetric Base Chain . 13
3.2.2 General Base Chains . 14

3.3 Gibbs Sampler . 15
3.3.1 Metropolis Chains in Comparison to Gibbs Sampler 17

3.4 Metropolis-Hastings Algorithm . 17
3.4.1 Example: Ising Model . 19

3.5 Error Analysis for MCMC Simulation . 21
3.5.1 Asymptotic Variance of Estimation 21
3.5.2 Burn-in and Allocating Capacities 28

3.6 Rate of Convergence and Mixing Time 30
3.6.1 Standardizing Distance from Stationarity 32
3.6.2 Bounds on Mixing Time . 32

3.7 Coupling Algorithms and Perfect MCMC Simulation 34
3.7.1 Propp Wilson . 36

3.8 Monotone Coupling Algorithms . 39

ii

3.8.1 Bounding the Coupling Time . 41

4 Quasi Monte Carlo Methods 44
4.1 Introduction . 44
4.2 Random Numbers and Pseudo-Random Numbers 45
4.3 Monte Carlo Method . 45

4.3.1 Convergence of the Monte Carlo Method 47
4.4 Monte Carlo versus quasi-Monte Carlo 48
4.5 Quasi Monte Carlo Method . 49

4.5.1 Discrepancy . 49
4.5.2 Quasi-random numbers . 52
4.5.3 (t,m, s)-Nets and (t, s)-Sequences 54

5 Markov Chain Quasi Monte Carlo 57
5.1 Introduction . 57

5.1.1 Literature review . 58
5.1.2 Preparatory Work . 60

5.2 CUD and weakly CUD sequences . 61
5.2.1 The Consistency Theorem . 62
5.2.2 Weakly CUD Triangular Arrays 66
5.2.3 Lattice Constructions . 69
5.2.4 Liao’s Method . 70

5.3 Example of a Bayesian Model of a Pump System 71
5.4 A Randomized QMC Simulation Method for Markov Chains 74

5.4.1 Example . 77

6 Conclusion 80

iii

1 Introduction

The object of investigation of this master thesis are computer based simulation algo-
rithms for the evaluation of the statistical behavior of objects or processes of scientific
interest. In this context the term Monte Carlo (MC) simulation arises, which summa-
rizes a huge variety of different simulation algorithms. The main ingredients for Monte
Carlo simulation are independent and uniformly distributed random variables on the
unit interval [0, 1]. They build the basis for this kind of algorithms. Since we won’t have
access to truly random numbers we provide a remedy through random number gener-
ators. These random number generators try to imitate the properties of real random
sequences, see Knuth (1981). Based on the fact that there have been huge advances
in random number generation in the last decades, the assumption that computers can
generate such true independent and uniformly distributed random variables won’t cause
any serious failures. The random variables simulated with standard random number
generators are called pseudo-random numbers.

A subclass of the Monte Carlo algorithms is formed by quasi-Monte Carlo (QMC)
simulations. Their basis is built on a deterministic version of random or pseudo-random
sequences. These sequences are called quasi-random. The aim of quasi-random se-
quences is to provide better uniformity on the interval [0, 1] than a random sequence,
and therefore achieving faster convergence, see e.g. Kuipers and Niederreiter (1974),
Niederreiter (1992). The uniformity of a sequence is measured in terms of its discrep-
ancy, which is a distance between a finite point set and the uniform distribution on [0, 1].
Therefore quasi-random sequences are also called low-discrepancy sequences.

The main field of application for QMC simulation is numerical integration. If it
comes to the point, where one wants to simulate more complicated circumstances, e.g.
the evolution of certain objects in time, then more sophisticated simulation methods
are called into action. They become known under the term Markov chain Monte Carlo
(MCMC) simulation. The practice of MCMC goes back to the paper of Metropolis et al.
(1953) and in greater generality to Hastings (1970). The principle behind these MCMC
algorithms is the simulation of time stationary equilibria of objects or processes. More

1

precisely, the Markov chain Monte Carlo algorithms deal with the problem of sampling
on a given finite but huge state space and a given (stationary) distribution in an efficient
way. MCMC is based on an appropriate Markov chain which converges to its stationary
limit distribution. See Gilks et al. (1996) for a broad introduction to the theory and
applications of MCMC.

The theory of Markov chains stands for a theory on its own until the last decades.
As recently as computer performance - in sense of CPU power and memory space - in-
creases, meaningful applications to other various areas of mathematics and other sciences
arise. Nowadays Markov chains are applicable in most parts of mathematics (above all
statistics), image analysis, physics, biology, social sciences, and many more.

The main result of the propaedeutic Chapter 2 will be the fact that there exist Markov
chains which won’t take the information about the initial state into account after suffi-
ciently many steps. Markov chains which forget this information within reasonable time
are called rapidly mixing. Several techniques have been proposed to deal with the prob-
lem of proving whether a Markov chain is rapidly mixing or not, see Behrends (2000) or
the more recent book by Levin et al. (2009).

The reason why one should be interested in knowing these things is that these Markov
chains are well qualified for the MCMC algorithms. Often Markov chain Monte Carlo is
identified with the general Metropolis-Hastings algorithm presented in Chapter 3. The
main concepts and some representative examples of the Metropolis-Hastings algorithm
and Gibbs sampling are given in Chapter 3. The error analysis and convergence rates
involved are specified there as well. Furthermore a general framework for the exact
simulation of Markov chains using the Propp-Wilson coupling from the past approach
introduced by Propp and Wilson (1996) is proposed in Chapter 3.

In Chapter 4 the Monte Carlo method for numerical integration and as a result of this
the quasi-Monte Carlo method is introduced. In the quasi-Monte Carlo method sampling
with pseudo random numbers is replaced by sampling with quasi-random sequences
which approximate the uniform distribution more uniformly.

The main justification of MCMC methods is based on the assumption of using inde-
pendent uniform points. What happens if these points are replaced by a quasi-random
sequence? One may believe that the structure which guarantees the consistency of the
Metropolis-Hastings algorithm would be difficult to maintain through a sequence of cho-
sen points, since the samples are now dependent. Until recently there haven’t been any
publications which handle this problem. Furthermore there seemed to be hardly any in-
tersections between the research done on MCMC and the research on quasi-Monte Carlo

2

methods. This changed a few years ago with the work of Owen and Tribble (2005). Their
paper presents a so-called quasi-Monte Carlo Metropolis algorithm. After that further
papers covering this topic was published. Chapter 5 presents the method of Owen and
Tribble using low-discrepancy sequences as input for the Metropolis-Hastings algorithm.
Further it includes an example where the different Monte Carlo methods are compared
with each other. As you will see, with the hybrid of QMC and MCMC one can obtain
great variance reductions (in comparison with the other Monte Carlo methods).

Finally I give an overview of another hybrid version of Markov chain Monte Carlo and
quasi Monte Carlo. This randomized quasi Monte Carlo simulation method for Markov
chains was introduced first by Lécot and Tuffin (2004). For some problems form queuing
and finance, this hybrid achieves variance reductions of many thousand fold. Again I’ll
give an example to illustrate the variance reductions.

3

2 Markov Chains

2.1 Introduction

This chapter provides the general background on Markov chains which will be needed in
the next chapter. Most of this background can also be found in the book by Behrends
(2000) and in the lecture notes by Schmidt (2010) and Hohendorff (2005). The stochastic
model of a discrete time Markov chain which we consider here will have finitely many
states and consists of three components. The non-void finite state space, the initial
distribution and the transition matrix.

The state space of the Markov chain is the set of all possible states S = {x1, x2, . . . , xl}
where l is an arbitrary but fixed natural number. The initial distribution of the Markov
chain is defined by µ = (µ1, . . . , µl), where each µi is defined as the probability of a
sample to be in state xi at time n = 0, for each xi ∈ S. It is assumed that

µi ∈ [0, 1] and
l∑

i=1

µi = 1.

The transition matrix of the Markov chain is a l × l matrix
P = P(xi, xj) = (pij)i,j=1,...,l containing all the transition probabilities P(xi, xj) for
each pair xi, xj ∈ S. P(xi, xj) is the probability that the Markov chain moves from state
xi to state xj in one step, where

P(xi, xj) ≥ 0 and
l∑

j=1

P(xi, xj) = 1.

A Markov chain is a stochastic process where given the present state, the future states
are independent of the past. More formally let X0, X1, . . . : Ω → S be a sequence of
random variables defined on the probability space (Ω,A,P) which map into the set S.
To simplify matters I will identify the state space S with the first l natural numbers

4

S = {1, 2, . . . , l} for the rest of this introductory chapter. Then

P (Xn = in|Xn−1 = in−1, . . . , X0 = i0) = pin−1in

for any n = 1, 2, . . . and i0, i1, . . . , in ∈ S such that P (Xn−1 = in−1, . . . , X0 = i0) > 0.
This property is called the Markovian property.
We are interested in the distribution of the Markov chain after n steps. One way to

obtain this information is by simple matrix multiplication.

Proposition 1. Consider a Markov chain with transition matrix P and initial distribu-
tion µ(0), and denote the distribution of the Markov chain after the nth transition with
µ(n). Then µ(n) = µ(0)Pn.

2.2 Ergodicity

Definition 1. Denote the transition matrix for n transitions by P(n). Then a Markov
chain with state space S, transition matrix P and corresponding n-step transition matrix
P(n) is called ergodic if the limits

πj = lim
n→∞

p
(n)
ij (2.1)

1. exist for all j ∈ S,

2. are positive and independent of i ∈ S,

3. and form a probability function π = (π1, . . . , πl)
T , i.e.

∑
j∈S πj = 1.

Definition 2. The l × l matrix A = (aij) is called non-negative if all entries aij of A

are non-negative. A non-negative matrix A is called quasi-positive or primitive if there
is a natural number n0 ≥ 1 such that all entries of An0 are positive.

Theorem 1. The Markov chain X0, X1, . . . with state space S = {1, . . . , l} and transi-
tion matrix P is ergodic if and only if P is primitive.

The ergodicity of Markov chains in Theorem 1 was characterized by the primitivity of
the transition matrix P. If the size of the state space gets large it became difficult to show
if the transition matrix P is primitive. Therefore, we will derive another probabilistic
way to characterize the ergodicity of a Markov chain with finite state space. For this
purpose we will need the following definition.

5

Definition 3. Define τj = min{n ≥ 0 : Xn = j} to be the number of steps until the
Markov chain {Xn} reaches the state j ∈ S for the first time. Set τj =∞ if Xn 6= j for
all n ≥ 0.

Definition 4. For arbitrary but fixed states i, j ∈ S, we say that the state j is accessible
from state i, if p(n)

ij > 0 for some n ≥ 1.

Lemma 1. Let i ∈ S be such that P (X0 = i) > 0. In this case j is accessible from i if
and only if P (τj <∞|X0 = i) > 0.

In the case where i is accessible from j and j is accessible from i we say that the states
i and j communicate, i ↔ j. The property of communicating defines an equivalence
relation for the states in S. Therefore the state space S can be completely subdivided
into disjoint equivalence classes of communicating states.

Definition 5 (Irreducibility). A Markov chain {Xn} with transition matrix P is called
irreducible if the state space S consists of only one equivalence class, i.e. all states com-
municate.

Definition 6 (Aperiodicity). The period di of the state i ∈ S is given by
di = gcd{n ≥ 1 : p

(n)
ii > 0}. We define di = ∞ if p(n)

ii = 0 for all n ≥ 1. A state
i ∈ S is called aperiodic if di = 1. A Markov chain {Xn} and its transition matrix
P = (pij) are said to be aperiodic if all the states are aperiodic.

Theorem 2. The transition matrix P is ergodic if and only if P is irreducible and
aperiodic.

Note that this previous statement is only true if the state space is finite.

2.3 Stationarity

Definition 7 (Stationarity). Let π = (π1, . . . , πl) be a probability vector. Then π is
said to be a stationary distribution for the Markov chain {Xn} if π = πP .

Theorem 3. Let X0, X1, . . . be an irreducible and aperiodic Markov chain with finite
state space S. Then there exists exactly one stationary distribution π.

6

Theorem 3 quotes that for an irreducible and aperiodic Markov chain with finite state
space and transition matrix P, there exists exacly one unique solution of the matrix
equation

π = πP. (2.2)

If the Markov chain is not irreducible, there may be more solutions for equation (2.2).

Definition 8. Let {Xn} be a random process on a state space S. Then {Xn} is called a
stationary sequence of random variables if for arbitrary k, n ∈ {0, 1, . . .} and
i0, . . . , in ∈ S

P (X0 = i0, X1 = i1, . . . , Xn = in) = P (Xk = i0, Xk+1 = i1, . . . , Xk+n = in). (2.3)

Theorem 4. A Markov chain {Xn} is a stationary sequence of random variables if and
only if the Markov chain {Xn} has a stationary initial distribution.

2.3.1 A Markov chain Convergence Theorem

We go on to consider the asymptotic behavior of the distribution µ(n) of a Markov chain
with arbitrary initial distribution µ(0). Therefore we state the main result, the Markov
chain convergence theorem (Theorem 5), of this propaedeutic chapter. This convergence
theorem is a version of the ergodic theorem for Markov chains.

Theorem 5 (Markov chain convergence theorem). Consider an irreducible and ape-
riodic Markov chain {Xn} with finite state space S. If we denote the distribution of the
chain after the nth transition by µ(n) we have for any initial distribution µ(0) that

µ(n) −→ π for n→∞, (2.4)

where π is the unique stationary distribution according to Theorem 3.

Theorem 5 states that an ergodic Markov chain tends to forget the information about
the initial distribution after sufficiently many steps. So if one is interested in sampling
from the equilibrium distribution π, one way of doing this is by matrix multiplication.
This is maybe a good thing if the state space is of moderate size. In case where the
state space is huge, Monte-Carlo simulation will be a more efficient method to sample
from the limit distribution π as you will see in the next Chapter 3.
According to Theorem 5, if we run the Markov chain for a sufficiently long time n,

its distribution will be very close to the stationary distribution π, regardless of what

7

the initial distribution µ(0) was. This is often referred to as the Markov chain reaching
equilibrium as n→∞. A proof of Theorem 5, which uses nice coupling-arguments can
be found in Häggström (2002). Another proof of this theorem appears in Levin et al.
(2009).

2.4 Reversibility

Definition 9 (Reversibility). A probability distribution π on the state space S =

{1, . . . , l} is reversible for the Markov chain {Xn} with transition matrix P if for all
i, j ∈ S we have

πiP(i, j) = πjP(j, i).

Proposition 2. If the probability distribution π is reversible for a Markov chain, then
it is also a stationary distribution for the chain.

The statement of this proposition is useful, since it is often easier to show that a
probability distribution is reversible than showing that it is stationary. Moreover most
of the Markov chains we’ll deal with later on are constructed in a way that they are
reversible.

2.5 Recursive Representation

Besides the Markov chain convergence theorem, the representation of a Markov chain in
a recursive manner is the other main result of this chapter.

We will show that a Markov chain can be constructed from a sequence of IID random
variables. Conversely we also show that one can think of a Markov chain as a solution
of a recursive stochastic equation.

Let S = {1, 2, . . . , l} be a finite set and let ([0, 1],B([0, 1]) be the measurable space
with B([0, 1]) the Borel σ-algebra on [0, 1]. Recall that (Ω,A,P) is the probability space
we work with. Let Un : Ω → [0, 1] for n ≥ 1 be a sequence of IID random variables
taking values in [0, 1]. Further on let X0 : Ω→ S be independent of the Un’s.

Theorem 6. With the setup from above let the random variables X1, X2, . . . : Ω → S

be given by the recursive stochastic equation

Xn = φ(Xn−1, Un), (2.5)

8

where φ : S × [0, 1]→ S is an arbitrary measurable function. Then

P (Xn = in|Xn−1 = in−1, . . . , X0 = i0) = P (Xn = in|Xn−1 = in−1)

holds for any n ≥ 1 and i0, i1, . . . , in ∈ S on the assumption that
P (Xn−1 = in−1, . . . , X0 = i0) > 0.

The transition probabilities

pij = P (Xn = j|Xn−1 = i)

are given by
pij = P (φ(i, Un) = j). (2.6)

Since the U1, U2, . . . are IID, pij does not depend on n. The joint probability
P (X0 = i0, X1 = i1, . . . , Xn = in) is given by

P (X0 = i0, X1 = i1, . . . , Xn = in) = µi0pi0i1 . . . pin−1in ,

where µi0 = P (X0 = i0). Therefore the sequence X0, X1, . . . of random variables defined
by the recursive equation (2.5) forms a Markov chain.

Vice versa, we show now that every Markov chain can be considered as the solution of
a recursive stochastic equation. As before let {Xn} be a Markov chain with state space S,
initial distribution µ and transition matrix P = (pij). By the help of a recursive equation
of the form (2.5) we will construct a Markov chain {X̂n} with initial distribution µ and
transition matrix P such that

P (X0 = i0, X1 = i1, . . . , Xn = in) = P (X̂0 = i0, X̂1 = i1, . . . , X̂n = in)

for all i0, . . . , in ∈ S and for all n ≥ 0.
Let U0, U1, . . . be a sequence of IID uniform random variables on [0, 1]. The random

variable X̂0 can be defined as

X̂0 = k if and only if U0 ∈
(
k−1∑
i=1

µi,

k∑
i=1

µi

]
, (2.7)

9

for all k ∈ {1, . . . , l}. Define the random variables X̂1, X̂2, . . . by the recursive equation

X̂n = φ(X̂n−1, Un), (2.8)

where φ : S × [0, 1]→ S is given by

φ(i, u) =
l∑

k=1

k 1{∑k−1
j=1 pij<u≤

∑k
j=1 pij} (2.9)

One will agree that the probabilities P (X̂0 = i0, . . . , X̂n = in) for the sequence {X̂n} de-
fined by (2.7) - (2.9) are given by the stochastic recursive representation (2.5). Therefore
the Markov chain {Xn} can be considered as a solution of recursive stochastic equation.
This introductory and more general information about Markov chains can be found

in many books and articles containing Markov chain theory, or using Markov chains
for further assignments. Some of the more recent books are by Häggström (2002),
Behrends (2000), and Levin et al. (2009). Most of the definitions and theorems stated
in this chapter are taken from there and from the lecture notes of Schmidt (2010) and
Hohendorff (2005).

10

3 Markov Chain Monte Carlo

The previous chapter taught us that given an irreducible and aperiodic transition matrix
P, there exists exactly one stationary distribution π satisfying π = πP. We will now
have a look at the inverse problem. Given a probability distribution π on a finite set S,
is it possible to construct a transition matrix P for which π is its stationary distribution?
The following Section 3.1 gives an understanding of why this is a natural problem to
consider.

It can be challenging to construct random samples directly. An alternative way of con-
structing random samples is via approaching the samples with Markov chains. Suppose
that {Xn} is an ergodic Markov chain with state space S and equilibrium distribution
π. Then by the convergence theorem, Theorem 5, Xn is approximately π-distributed
when n is large.

3.1 Motivation

We consider the following problem: Given a probability distribution π on S = {x1, . . . , xk},
how to simulate a random object with distribution π? To motivate this problem, we
begin with a very common example, which can also be found in Häggström (2002) and
Levin et al. (2009).

Example (The hard-core model). Consider a graph G = (V,E) with vertex set
V = {v1, . . . , vk} and edge set E = {e1, . . . , el}. Now 0 or 1 is assigned randomly
to every vertex vi ∈ V in such a way that no two adjacent vertices take both value 1.
Assignments of 0’s and 1’s to the vertices of G are called configurations. If a configu-
ration fulfills the above condition that no two 1’s occupy adjacent vertices, it is called
feasible. We now pick a feasible configuration from the set of all feasible configurations
uniformly at random. Let ξ ∈ {0, 1}V be any configuration, set Z to the total number

11

of feasible configurations and define a probability measure µ on {0, 1}V by

µ(ξ) =

1

Z
, ξ is feasible

0 , otherwise.

Häggström (2002) noted that this model (with a graph G being a three-dimensional
grid) was introduced in statistical physics to capture some of the behavior of a gas whose
particles have non-negligent radii and must not overlap. In this model the 1’s represent
particles and the 0’s represent empty locations.
Now one may wonder about the expected number of 1’s in a random configuration

chosen according to µ. Denote the number of 1’s in a configuration by n(ξ) and write
X for a random configuration chosen according to µ. Then we are interested in

E(n(X)) =
∑

ξ∈{0,1}V
n(ξ)µ(ξ) =

1

Z

∑
ξ∈{0,1}V

n(ξ)1ξ is feasible.

Even for moderately sized graphs it is clearly beyond the bounds of possibility to evaluate
this sum, since the number of configurations grows exponentially in the size of the graph.
Note also that the calculation of Z is computationally nontrivial. A good idea to handle
this may be to change course to simulations. If we know how to simulate a random
configuration X with distribution µ, then we can do this many times and estimate
E(n(X)) by the average number of 1’s in the simulations.

In this sort of situation the Markov chain Monte Carlo (MCMC) method comes into
operation. The idea behind Markov chain Monte Carlo is the following. Suppose we
can construct an irreducible and aperiodic Markov chain {Xn} whose unique stationary
distribution is π. Start to run the Markov chain with an arbitrary initial distribution.
The ergodic theorem, see Theorem 5, assures that the distribution of the Markov chain
converges to the stationary distribution π, at time n when n→∞.
An important focus is to determine how large n must be to obtain a sufficient ap-

proximation. But first we will focus on the task of finding Markov chains with a given
stationary distribution.
There will come more examples in the next sections. A very common example is again

from physics and will be the Ising model which is discussed in Section 3.4.1.

12

3.2 Metropolis Chains

Assume we have a Markov chain with state space S and an arbitrary stationary distri-
bution π. Is it possible to construct a new Markov chain out of the given one in such
a way that the new chain has stationary distribution π? The Metropolis algorithm will
take care of this problem. The Metropolis chain was introduced by Metropolis et al.
(1953) for a specific stationary distribution. Hastings (1970) extended the method to
general chains and distributions. Since these papers are fairly old and amongst others
hard to read, I took most of the following information from the more recent book by
Levin et al. (2009).

3.2.1 Symmetric Base Chain

Let Φ be a symmetric transition matrix on the state space S. Φ is therefore reversible
with respect to the uniform distribution on S. Let π be any probability distribution on S.
We will show next how the transitions of the chain according to Φ are transformed such
that a chain with stationary distribution π is achieved. The new Markov chain proceeds
the following way. When at state x, the next step is done by generating a proposal from
the probability distribution Φ(x, ·). Let the proposed new state be y. Then this step
is ignored with probability 1 − a(x, y). This means that with probability a(x, y), the
state y is accepted and the next state of the Markov chain is y. With complementary
probability 1 − a(x, y) the proposed state y is rejected and the Markov chain remains
at x. If many moves are rejected the chain will slow down and in consequence of this
the computational efficiency may be reduced. Nevertheless rejecting moves is sometimes
necessary to achieve the desired distribution. The transition matrix P of the new Markov
chain appears to be

P(x, y) =

Φ(x, y)a(x, y) if x 6= y,

1−
∑
z:x 6=z

Φ(x, z)a(x, z) if x = y.

How to pick the acceptance probability a(x, y) arises from the following data which we
will choose wisely.

We already know that the transition matrix P has stationary distribution π if it holds
that

π(x)Φ(x, y)a(x, y) = π(y)Φ(y, x)a(y, x) (3.1)

13

for all states x 6= y, remember Proposition 2. Since we have assumed that Φ is symmetric,
equality (3.1) holds if and only if

π(x)a(x, y) = π(y)a(y, x). (3.2)

Since a(x, y) ≤ 1, the constraints

π(x)a(x, y) ≤ π(x),

π(x)a(x, y) = π(y)a(y, x) ≤ π(y).
(3.3)

must be obeyed. Rejecting moves from the original chain Φ will be inefficient. Therefore
the largest possible solution πa for (3.2) and (3.3) should be chosen. All solutions
are bounded above by π(x)a(x, y) = min{π(x), π(y)}. For this reason, the acceptance
probability a(x, y) is chosen to be min{1, π(y)/π(x)}.

With the information from above we can define the Metropolis chain for a probability
π and a symmetric transition matrix Φ precisely as

P(x, y) =

Φ(x, y) min

{
1,
π(y)

π(x)

}
if x 6= y,

1−
∑
z:x 6=z

Φ(x, z) min
{

1,
π(z)

π(x)

}
if x = y.

Due to the above discussion one sees that π is in fact a stationary distribution for the
Metropolis chain. One also notices that the Metropolis chain only depends on the ratios
π(x)/π(y). This can be helpful since the π(x) are often of the form h(x)/Z, where the
function h : S → [0,∞) is known and Z =

∑
x∈S h(x) is a normalizing constant. The

explicit calculation of Z is often proved do be difficult, in particular if the state space S
is large. Since the Metropolis chain only depends on the h(x)/h(y), the computation of
the constant Z is not relevant for the simulation.

3.2.2 General Base Chains

We can define the Metropolis chain also if the original transition matrix Φ is a general
matrix, not necessarily symmetric. Let Φ be a transition matrix and let π be an arbitrary
probability distribution on S. Then the Metropolis chain is implemented as follows.
Suppose the chain is at state x. In the next step a state y from the distribution Φ(x, ·)

14

is generated. The state is accepted with probability

a(x, y) = min

{
1,
π(y)Φ(y, x)

π(x)Φ(x, y)

}
. (3.4)

and so the chain moves to state y with acceptance probability a(x, y). With probability
1− a(x, y) the chain stays at state x. The resulting transition matrix P for this Markov
chain is given by

P(x, y) =

Φ(x, y) min

{
1,
π(y)Φ(y, x)

π(x)Φ(x, y)

}
if x 6= y,

1−
∑
z:x 6=z

Φ(x, z) min

{
1,
π(z)Φ(z, x)

π(x)Φ(x, z)

}
if x = y.

(3.5)

Theorem 7. The transition matrix (3.5) constructed above defines a reversible Markov
chain with stationary distribution π.

Proof. First recall that we have to show π(x)P (x, y) = π(y)P (y, x). We assume x 6= y,
since the other case is obvious. We can write

π(x)P (x, y) = π(x)Φ(x, y) min

{
1,
π(y)Φ(y, x)

π(x)Φ(x, y)

}
= min {π(x)Φ(x, y) , π(y)Φ(y, x)}

The fact that this equation is symmetric in x and y completes the proof. �

3.3 Gibbs Sampler

The Gibbs sampler, also known as Glauber dynamics is another commonly used special
class of MCMC algorithms. In practice there are many Markov chains whose state spaces
are subsets of sets of the form AV . We thought about V as a finite vertex set of a graph
and about A as a finite set of attainable values for each vertex. The hard-core model
introduced before in Section 3.1 and the random q-coloring which will be introduced
shortly are just two of them. AV is the set of all possible configurations of the set A
with values of set V (compare with the definition of the hard-core model introduced
before). For the two finite sets V and A let π be the distribution of some random
assignment of values in A to the vertices in V . Now suppose that our state space S is
a subset of AV and let π be a probability distribution on S. Once more our aim is to
obtain π distributed samples. The Gibbs sampler for π produces a reversible Markov

15

chain on the state space S, with stationary distribution π. The transition probabilities
are defined as follows. When at state x, the Gibbs sampler moves on in the following
way. It first chooses a vertex v uniformly at random from V . Next, the Gibbs sampler
chooses the new state according to the distribution π. π will be conditioned on the set
of all states agreeing with x everywhere except maybe at v. Let us define this more
precise. For a state x ∈ S and a vertex v ∈ V , let

S(x, v) = {y ∈ S : x(w) = y(w) for all w 6= v} (3.6)

be the set of states equal to x at all vertices except possibly at v, and define

πx,v(y) = π(y|S(x, v)) =

π(y)

π(S(x, v))
if y ∈ S(x, v),

0 if y /∈ S(x, v)

as the conditional distribution of π with respect to the set S(x, v). The update rule for
a configuration x picks a vertex v uniformly at random, and chooses a new configuration
with respect to πx,v. Note that the distribution π is always reversible and therefore
stationary for the Gibbs sampler. Now have a look at the following example.

Example (A Gibbs sampler for random q-colorings). Let G = (V,E) be a graph, and let
q ≥ 2 be an integer. A q-coloring of the graph G is defined as an assignment of values
from the set of colors {1, . . . , q}, where a feasible q-coloring has no two adjacent vertices
with the same color. By a random q-coloring for G we mean that one q-coloring is chosen
uniformly from the set of all feasible q-colorings for G. Define π as the corresponding
probability distribution on AV , where we have that A = {1, . . . , q}.
For a vertex v ∈ V let x be feasible configuration. The distribution π conditioned on

the set S(x, v) defined in (3.6) is uniform over the set of all colors that are not used in
x for a neighbor of v. For that reason the Gibbs sampler for a random q-coloring is an
AV -valued Markov chain with the following update rule. At time n do the following:

1. Pick a vertex v ∈ V uniformly at random.

2. Pick Xn+1(v) according to the conditioned uniform distribution πx,v.

Note that the colors of all other vertices w 6= v stay unchanged. The resulting Markov
chain is aperiodic and has stationary distribution π. If the chain is also irreducible,
the above construction method became a useful MCMC algorithm. Nevertheless, the

16

irreducibility of the Markov chain depends on G and q, and is a nontrivial problem to
solve (The graph coloring problem is NP-complete.).

3.3.1 Metropolis Chains in Comparison to Gibbs Sampler

Again let A be a finite set, V the vertex set of a graph and π a probability distribution
on the state space AV . Additionally assume that we have a Markov chain which chooses
a vertex v at random and has some arbitrary update procedure for the configuration at
vertex v. In general, the resulting Markov chain won’t have stationary distribution π.
However, Section 3.2 including Metropolis chains teaches us that this Markov chain can
be modified so that the new chain has stationary distribution π.

One may believe that the Metropolis chain coincides with the Gibbs chain described
before. But this isn’t entirely true. The chains may be very similar but won’t coincide
exactly. For a better comprehension consider the following example.

Example (random q-colorings revisited). Take a Markov chain on the state space AV of
all q-colorings. The colorings don’t have to be feasible. Choose a vertex v ∈ V and a
color among all q colors uniformly at random. Then recolor the vertex v with the chosen
color. Now we want to transform this chain into a Metropolis chain. Note that π is the
probability distribution which is uniform over the space of all feasible configurations.
Let the chain be in a feasible configuration. Then the Metropolis update recolors a
chosen vertex with probability 1 if the recoloring with the proposed color keeps the
configuration feasible. Otherwise there is no recoloring.

The Gibbs sampler acts in a different way. The difference between the Gibbs sampler
and the Metropolis chain is the probability that a configuration remains the same. If
there are a admissible colors for a vertex v ∈ V chosen to be updated, the chance that
the coloring remains the same is 1/a for the Gibbs chain. For the Metropolis chain the
probability that the configuration remains the same is 1− (a− 1)/q.

3.4 Metropolis-Hastings Algorithm

The term Metropolis-Hastings is used for the generalization by Hastings (1970) of the
Metropolis algorithm. Again let let S be the finite state space. Let π be a probability
distribution over the state space S. We assume that π(x) > 0 for all x ∈ S. Once more
we want to construct a Markov chain {Xn} with stationary limit distribution π. The

17

transition matrix P = P(x, y) for this Markov chain is given as

P(x, y) = Φ(x, y) a(x, y) ∀x, y ∈ S with x 6= y, (3.7)

where Φ = Φ(x, y) is the arbitrary irreducible and aperiodic transition matrix we want to
modify. The matrix A = (a(x, y)) defines the acceptance probabilities. So when at state
x, a proposed new state y is accepted with probability a(x, y). The matrix A = (a(x, y))

is defined in the most general sense as

a(x, y) =
m(x, y)

1 + t(x, y)
. (3.8)

The matrix M = (m(x, y)) is an arbitrary symmetric matrix bounded by

0 < m(x, y) ≤ 1 + min{t(x, y), t(y, x)}, (3.9)

and t(x, y) is defined as

t(x, y) =

π(x)Φ(x,y)
π(y)Φ(y,x)

if Φ(x, y) > 0.

0 if Φ(x, y) = 0,
(3.10)

Theorem 8. The transition matrix P = P(x, y) made up of (3.7) to (3.10) is ergodic
and the pair (P, π) is reversible.

With this setup in mind, we figure out how the Metropolis-Hastings will proceed.

Algorithm (Metropolis-Hastings Algorithm)
1. Let π to be the stationary distribution on the state space S. Let Φ = Φ(x, y) be an

arbitrary transition matrix on S.

2. Pick a deterministic starting value X0.

3. When at state Xn generate a proposal Yn+1 from Φ(Xn, ·).

4. Perform a Bernoulli experiment with acceptance probability a(Xn, Yn+1). The prob-
ability a(x, y) is defined as in (3.8).

5. If the experiment was successful then accept the proposal and set Xn+1 = Yn+1.
Otherwise reject Yn+1 and stay at state Xn, i.e. Xn+1 = Xn.

6. Increment n by 1 and continue at step 3.

18

This is how the Metropolis-Hastings algorithm works in its most generality. In the
following I will list some more specific examples of the Metropolis-Hastings algorithm
and some typical choices for the transition probabilities Φ.

• The original Metropolis chain arises if we set m(x, y) in (3.9) equal to the upper
bound 1 + min{t(x, y), t(y, x)} for all x, y ∈ S. Compare this result with the chain
constructed in Section 3.2.

• The Barker algorithm, Barker (1965), is obtained by setting m(x, y) = 1 for all
x, y ∈ S. The acceptance rule then results in

a(x, y) =
π(x)Φ(x, y)

π(y)Φ(y, x) + π(x)Φ(x, y)
.

Some common choices for the transition matrix Φ are

• the original Metropolis algorithm (where Φ is supposed to be symmetric):
Φ(x, y) = Φ(y, x),

• the random walk Metropolis-Hastings method: Φ(x, y) = Φ(y − x),

• and the independence sampler: Φ(x, y) = Φ(y) independently of x.

In addition to the above examples of the random q-coloring, and to gain a better
insight of how the algorithms work in practice, another famous example of an important
Markov chain follows.

3.4.1 Example: Ising Model

The following example is a famous problem from physics and is cited from the book by
MacKay (2003). An Ising model is an array of spins (e.g., atoms that can take states
±1) that are magnetically coupled to each other. If one spin is, say in the +1 state, then
it is energetically favourable for its immediate neighbors to be in the same state, in the
case of an ferromagnetic model.

Let the state x of an Ising model with N spins be a vector in which each component
xn takes values −1 or +1. If two spins m and n are neighbors we write m ∼ n. The
coupling between neighboring spins is J . We define Jmn = J if m and n are neighbors
and Jmn = 0 otherwise. The energy of a state x is

E(x; J,H) := −
(

1

2

∑
m,n

Jmnxmxn +
∑
n

Hxn

)
,

19

where H is the applied external field. If J > 0 then the model is ferromagnetic, and if
J < 0 it is antiferromagnetic. We included the factor 1/2 because each pair is counted
twice in the first sum. At equilibrium at temperature T , the probability that the state
is x is

P (x|β, J,H) =
1

Z(β, J,H)
exp(−βE(x; J,H)). (3.11)

The function Z(β, J,H) is a normalizing constant and is defined as

Z(β, J,H) :=
∑
x

exp(−βE(x; J,H)).

The parameter β ≥ 0 determines the importance of the energy function. In the physical
interpretation, β is the reciprocal of temperature.

Monte Carlo Simulation

Here we study two-dimensional planar Ising models using a simple Gibbs sampling
method. Starting from some initial state, a spin n is selected at random, and the
probability that it should be +1 given the state of the other spins and the temperature
is computed,

P (+1|bn) =
1

1 + exp(−2βbn)
, (3.12)

where bn is the local field
bn :=

∑
m:m∼n

Jxm +H.

The factor of 2 appears in equation (3.12) because the two spin states are {+1,−1}
rather than {+1, 0}. Spin n is set to +1 with that probability, and otherwise to −1.
Then the next spin to update is selected at random. After sufficiently many iterations,
this procedure converges to the equilibrium distribution (3.11).

An alternative to the Gibbs sampling formula (3.12) is the Metropolis algorithm, in
which we consider the change in energy that results from flipping the chosen spin from
its current state xn,

∆E = 2xnbn,

and adopt this change in the configuration with probability

P (accept; ∆E, β) =

{
1 ∆E ≤ 0

exp(−β∆E) ∆E > 0.

20

For graphics and a more precise analysis of the Ising model see e.g. MacKay (2003)
or Levin et al. (2009).

3.5 Error Analysis for MCMC Simulation

An ergodic Markov chain converges to its unique stationary distribution after sufficiently
many steps. Since we just have a finite amount of time available, no matter how long the
run of a chain is, the states will never have exactly the stationary distribution. Therefore
one should be interested in the behavior of the error of the Markov chain Monte Carlo
estimation and the variance of the distribution of the chain.

3.5.1 Asymptotic Variance of Estimation

Consider the following general setup of a statistical model. Let X be a discrete random
vector, taking values in a finite state space S = {x1, . . . , xl} of cardinality |S| = l

according to a probability vector π. Moreover define θ = E(ϕ(X)) to be the expected
value of an arbitrary vector ϕ = (ϕ1, . . . , ϕl) of functions ϕi : S → R. So

θ =
l∑

i=1

π(i)ϕi.

Our intention is the simulation of the expectation θ with MCMC simulation. Let the
random variable

θ̂n =
1

n

n−1∑
k=0

ϕ(Xk), ∀n ≥ 1,

be an estimator for θ, where {Xn} denotes an ergodic Markov chain with state space S.
Let µ be an arbitrary initial distribution and let P = P(xi, xj) be the transition matrix
such that π is the stationary limit distribution of the chain.

In general the two distributions µ and π do not coincide. This results in a biased
estimation of the expectation θ. The following representation formula is useful for de-
termining the bias

E(θ̂n)− θ.

Let

E(θ̂n) =
1

n
µT

n−1∑
k=0

P kϕ for all n ≥ 1. (3.13)

21

P is irreducible and aperiodic. With the Markov chain convergence theorem (see Theo-
rem 5) in mind

lim
n→∞

E(θ̂n) = θ

results from equation (3.13). This means that the MCMC estimator θ̂n for the expecta-
tion θ is asymptotically unbiased. Equipped with this setup we now want to investigate
the asymptotic behavior of the variance Var(θ̂n).
The following definition and lemmata are quoted from Schmidt (2010).

Definition 10. Let Π be the l × l matrix consisting of the l identical row vectors π.
Then the inverse matrix

Z = (I − (P− Π))−1 (3.14)

is called the fundamental matrix of P.

Note that matrix I − (P−Π) is always invertible. This is because of the following fact:
For a l × l matrix A with limn→∞A

n = 0 it follows that I − A is invertible.

Lemma 2. Define σ2 :=
∑l

i=1 π(i)(ϕi − θ)2 and let Z = (I − (P−Π))−1 be the funda-
mental matrix of P. Then

lim
n→∞

nVar(θ̂n) = σ2 + 2πTdiag(ϕ)(Z − I)ϕ. (3.15)

The following representation formulae for the fundamental matrix Z are helpful to
prove Lemma 2.

Lemma 3. The fundamental matrix Z = (I−(P−Π))−1 of the irreducible and aperiodic
transition matrix P has the representation formulae

Z = I +
∞∑
k=1

(Pk − Π) (3.16)

and

Z = I + lim
n→∞

n−1∑
k=1

n− k
n

(Pk − Π). (3.17)

(3.16) converges because of the facts that Pk −Π = (P−Π)k and I +A+ . . .+An−1 =

(I − A)−1(I − An) holds for a l × l matrix A. For the complete proof of Lemma 3 see
e.g. Schmidt (2010). The following proof is also taken from there.

22

Proof of Lemma 2. Let us represent the variation Var(θ̂n) as

n2Var(θ̂n) = E

(
n−1∑
k=0

ϕ(Xk)

)2

−
(
n−1∑
k=0

E
(
ϕ(Xk)

))2

. (3.18)

Therefore

n2Var(θ̂n) =
n−1∑
k=0

E
(
ϕ2(Xk)

)
+ 2

∑
0≤j<k≤n−1

E
(
ϕ(Xk)ϕ(Xj)

)
−
(
n−1∑
k=0

E
(
ϕ(Xk)

))2

.

With this representation in mind we will first prove equation (3.15) for the case where
the initial distribution µ = π. In this case we get(

n−1∑
k=0

E
(
ϕ(Xk)

))2

= (nθ)2 and
n−1∑
k=0

E
(
ϕ2(Xk)

)
= n

l∑
i=1

π(i)ϕ2
i .

Furthermore, since the Markov chain {Xn} is stationary,

∑
0≤j<k≤n−1

E
(
ϕ(Xk)ϕ(Xj)

)
=

n−1∑
k=1

(n− k)
∑

0≤j<k≤n−1

E
(
ϕ(X0)ϕ(Xk)

)
,

where

E
(
ϕ(X0)ϕ(Xk)

)
=

l∑
i=1

l∑
j=1

π(i)ϕiP(xi, xj)
(k)ϕj = πTdiag(ϕ)Pkϕ.

where Pk = P(k) = P(xi, xj)
(k) denotes the transition matrix after the kth step. Now

23

we put these results from above together and get

1

n
Var

(
n−1∑
k=0

ϕ(Xk)

)
=

l∑
i=1

π(i)ϕ2
i + 2πTdiag(ϕ)

n−1∑
k=1

n− k
n

Pkϕ− nθ2

= σ2 + 2πTdiag(ϕ)
(n−1∑
k=1

n− k
n

Pkϕ− n− 1

2
Πϕ
)

= σ2 + 2πTdiag(ϕ)
(n−1∑
k=1

n− k
n

(Pk − Π)
)
ϕ.

Note that the second equality holds because of the fact

θ2 = πTdiag(ϕ)Πϕ.

With the representation formula (3.17) for Z − I this implies (3.15).
After proving the statement for µ = π, we move on and prove equation (3.15) for an

arbitrary initial distribution µ. Therefore we introduce a more precise notation. We
write Xµ

0 , X
µ
1 , . . . instead of X0, X1, . . . and θ̂µn instead of θ̂n. The proof is completed if

we show that
lim
n→∞

n
(
Var(θ̂πn)− Var(θ̂µn)

)
= 0. (3.19)

Therefore we denote for 0 < r < n− 1

Y �
r =

r−1∑
k=0

ϕ(X �
k) and Z �

nr =
n−1∑
k=r

ϕ(X �
k).

Due to equation(3.18) the following equation results:

n2
(
Var(θ̂πn)− Var(θ̂µn)

)
=
(
E(Y π

r + Zπ
nr)

2 − E(Y µ
r + Zµ

nr)
2
)
−
(
(EY π

r + EZπ
nr)

2 − (EY µ
r + EZµ

nr)
2
)

=
(
E(Y π

r)2 − (EY π
r)2 − E(Y µ

r)2 + (EY µ
r)2
)

+ 2E
(
(Y π

r − EY π
r)(Zπ

nr − EZπ
nr)
)
− 2E

(
(Y µ

r − EY µ
r)(Zµ

nr − EZµ
nr)
)

+
(
E(Zπ

nr)
2 − (EZπ

nr)
2 − E(Zµ

nr)
2 + (EZµ

nr)
2
)
.

Denote the three summands in the last expression by Ir, IIrn and IIIrn, respectively.

24

Because of the fact that Ir does not depend on n it immediately follows

lim
n→∞

1

n
Ir = 0.

Next set c = maxxi∈S |ϕ(xi)|. Since the state space S is finite it follows that c is finite
too. Therefore we get that

1

n
IIrn ≤ 4rcE

(
1

n

∣∣Zπ
nr − E(Zπ

nr)
∣∣)+ 4rcE

(
1

n

∣∣Zµ
nr − E(Zµ

nr)
∣∣) ,

and
1

n
|Z �

nr − E(Z �
nr)| ≤ 2c with probability 1 ∀n > r.

Now
lim
n→∞

1

n
|Zπ

nr − E(Zπ
nr)| =

1

n
|Zµ

nr − E(Zµ
nr)| = 0

implies that

lim
n→∞

1

n
IIrn = 0 for any r > 0.

For the third summand IIIrn and for n > r > 0 the following estimate holds:

1

n
IIIrn ≤

1

n

l∑
i=1

(
E(Zδi

n−r,0)2 − (EZδi
n−r,0)2

) ∣∣∣π(i)− µ(r)
i

∣∣∣
≤ sup

n>0
max

j∈{1,...,l}

1

n+ r
E
(
Z
δj
n0 − EZ

δj
n0

)2

︸ ︷︷ ︸
<∞

l∑
i=1

∣∣∣π(i)− µ(r)
i

∣∣∣ .
The supremum is finite and because of the fact that the Markov chain Xµ

0 , X
µ
1 , . . . is

ergodic the last sum gets arbitrarily small for sufficiently large r. Therefore (3.19) holds
which completes the proof. �

The mean square error E((θ̂n − θ)2) of the MCMC estimator θ̂n for the estimation θ
is given by the sum of the squared bias (E(θ̂n − θ))2 and the variance Var(θ̂n) of the
estimator θ̂n,

E
(

(θ̂n − θ)2
)

=
(
E(θ̂n − θ)

)2

+ Var(θ̂n). (3.20)

Both summands in equation (3.20) converge to 0 if n → ∞. The convergence rates,
however, differ. The variance Var(θ̂n) converges with a rate of O(n−1), see Lemma
2. Whereas the convergence rate of the squared biases (E(θ̂n − θ))2 converges faster,
at a rate of O(n−2). The consequence for the convergence of the mean square error

25

E((θ̂n − θ)2) of θ̂n is the following. Because of the fact that the convergence rate of
the asymptotic variance is slower than the one for the squared biases, it has a greater
influence on the asymptotic behavior of the mean square error. This is why it makes
sense choose a Markov chain which obtains a small asymptotic variance and to accept
that the bias may increase due to this.

The next theorem characterizes the behavior of the asymptotic variance under certain
conditions for the transition matrix. We therefore introduce the following notation for
the asymptotic variance given in (3.15). For some arbitrary function ϕ : S → R, a
transition matrix P on S and reversible probability distribution π on S let

V (ϕ,P, π) = lim
n→∞

nVar(θ̂n).

Theorem 9. Let P1 = P1(xi, xj) and P2 = P2(xi, xj) be two transition matrices on
S. Let π be a probability distribution on S such that the pairs (P1, π) and (P2, π) are
reversible. Further let P1 and P2 be such that P1(xi, xj) ≥ P2(xi, xj) for all xi, xj ∈ S
with xi 6= xj. This means that all entries of the transition matrix P1 are greater or
equal than the corresponding entries of the transition matrix P2, accept the ones in the
diagonal. Then, for some arbitrary function ϕ : S → R,

V (ϕ,P1, π) ≤ V (ϕ,P2, π).

The following proof is taken from Schmidt (2010).

Proof. Let P = P(xi, xj) be a transition matrix on the state space S and let π be a
probability distribution on S such that the pair (P, π) is reversible. In this proof I’ll
write pij instead of P(xi, xj) for reasons of simplicity, so that the forumlae in the proof
are clearer. Theorem 9 is proven if we can show that

∂

∂pij
V (ϕ,P, π) ≤ 0, ∀xi, xj ∈ S with xi 6= xj. (3.21)

From equation (3.15) in Lemma 2 it follows

∂

∂pij
V (ϕ,P, π) = 2πTdiag(ϕ)

∂Z

∂pij
ϕ. (3.22)

Remember that Z = (I − (P − Π))−1 denotes the fundamental matrix of P. Next we

26

have a look at the partial derivative of ZZ−1 = I. We get that

∂Z

∂pij
Z−1 + Z

∂Z−1

∂pij
= 0

which is equivalent with
∂Z

∂pij
= −Z∂Z

−1

∂pij
Z.

We apply this result to equation (3.22) and get

∂

∂pij
V (ϕ,P, π) = −2πTdiag(ϕ)Z

∂Z−1

∂pij
Zϕ. (3.23)

Now we express Z by its representation formula (3.16), see Lemma 3. Since π is reversible
for P we get that for arbitrary xi, xj ∈ S

π(i)zij = π(i)δij +
∞∑
k=1

(
π(i)p

(k)
ij − π(i)π(j)

)
= π(j)δji +

∞∑
k=1

(
π(j)p

(k)
ji − π(j)π(i)

)
= π(j)zji.

This implies

πTdiag(ϕ)Z =
(l∑
i=1

π(i)ϕizi1, . . . ,
l∑

i=1

π(i)ϕizil

)
=
(
π(1)

l∑
i=1

z1iϕi, . . . , π(l)
l∑

i=1

zliϕi

)
= (Zϕ)Tdiag(π).

If we apply this result to equation (3.23) we get

∂

∂pij
V (ϕ,P, π) = −2(Zϕ)Tdiag(π)

∂Z−1

∂pij
Zϕ = 2(Zϕ)Tdiag(π)

∂P

∂pij
Zϕ. (3.24)

The second equality is a consequence of the fact that

∂Z−1

∂pij
= − ∂P

∂pij

27

which is clear due to the definition of the fundamental matrix Z (3.14).
Since P = (pij) is a stochastic matrix and the pair (P, π) is reversible, only the

probabilities pij where xi < xj (or alternatively the entries pij where xi > xj) can be
chosen arbitrarily. This means that for each pair xi, xj ∈ S such that xi 6= xj the
transition probabilities pji, pii and pjj can be expressed by pij.

For each pair xi′ , xj′ ∈ S the entry (diag(π)(∂P/∂pij))i′j′ of the matrix product
diag(π)(∂P/∂pij) is given by

(
diag(π)

∂P

∂pij

)
i′j′

=

−π(i) if (xi′ , xj′) = (xi, xi) or (xi′ , xj′) = (xj, xj),

π(i) if (xi′ , xj′) = (xi, xj) or (xi′ , xj′) = (xj, xi),

0 else.

This implies that the matrix diag(π)(∂P/∂pij) is non-negative definite. Therefore it
holds that for all x ∈ Rl

xTdiag(π)
∂P

∂pij
x ≤ 0.

Hence this implies for equation (3.24) that for all xi, xj ∈ S with xi 6= xj

∂

∂pij
V (ϕ,P, π) = 2(Zϕ)Tdiag(π)

∂P

∂pij
Zϕ ≤ 0.

Which was to be proven. �

A consequence of Theorem 9 is the following: Given an arbitrary but fixed transition
matrix Φ = Φ(xi, xj), the Metropolis chain introduced in Section 3.2 has the smallest
asymptotic variance amongst all other Metropolis-Hastings algorithms.

3.5.2 Burn-in and Allocating Capacities

As discussed in the previous section, the mean square error of the MCMC estimator θ̂n
for θ depends not only on the asymptotic variance but also on the bias E(θ̂n − θ). The
bias decreases if the first k samples of the estimating expectation formula (3.13), which
are still affected by the initial setting, are skipped for the estimation of θ. But how much
of a run of the Markov chain should be thrown away on grounds that the chain may not
yet have reached equilibrium and therefore E(θ̂n − θ) not yet has vanished.
The term burn-in time is to be understood as the period of time which should elapse to

the beginning of the simulation in order to eliminate the crudest errors and distribution

28

Figure 3.1: Three possible MCMC ways of
obtaining twelve samples. The
time is represented in horizontal
lines, and the samples by white
circles. (1) A single run having
a long burn-in period followed
by a long sampling period. (2)
Four medium-length runs and a
medium-length burn in period.
(3) Twelve short runs.

variances caused by the initial setup for the simulation. After the burn-in, the recording
of the simulation starts.

Once we have decided how many samples N are required for the estimation of θ, the
next question arises. How can the available computer capacities be utilized well in view
of obtaining these samples. A typical Markov chain Monte Carlo experiment has an
initial period in which the parameters for the simulation, e.g. the initial states, are
adjusted. Thereafter a burn-in period follows. During this time the simulation should
start to forget about the initial information and should get closer to equilibrium so that
the bias of the simulation E(θ̂n − θ) vanishes. After the burn-in, as the simulation
continues, we start gathering the data of the simulation. Let {Xn}Nn=1 be the list of
states after the burn-in. We hope that those states in the list are roughly independent
samples from our state space. There are several strategies for recording this data (see
Figure 3.1, taken from MacKay (2003)):

1. Start one Markov chain and do a long run. After a long burn-in period, start to
obtain all N samples from it.

2. Start a couple of Markov chains and do some medium length runs with different
initial conditions. After a medium length burn-in time, start to obtain a few
samples from each of the chains.

3. Start N Markov chains and make some short runs on each of them. Each chain is
started from another initial state and the only state that is used for our estimation
is the final state of each simulation.

The first strategy has the best chance of reaching equilibrium. The last method may
have the advantage of less correlations between the recorded samples, since each sample

29

comes from another chain, with an initial state independent of the other chains. The
second strategy is popular for Markov chain Monte Carlo simulation. It combines the
benefits of the first and third method and avoids their drawbacks of not being able to
spot bad convergence rates if just one chain is started and discarding a lot of samples of
the burn-in period for many chains. See Gilks et al. (1996). After determining the right
strategy of simulating, one may be interested in the convergence rate of the simulation.

3.6 Rate of Convergence and Mixing Time

There exist Markov chains which will ‘forget’ the information of the starting position
and converge to their stationary distribution. This is the case if the Markov chain is
irreducible and aperiodic and when this happens within a reasonable time, the chain is
called rapidly mixing. It is obvious that the faster the chain ‘forgets’ the information
about the initial distribution, the faster it converges to its equilibrium distribution and
consequently the more exact will the result of the simulation be. Therefore this section
deals with the question how close the distribution of the chain is to equilibrium. Further
subjects of interest are the convergence rate of the simulation, the mixing time of the
chain and determining some bounds of these parameters.

Consider a primitive transition matrix P with l different eigenvalues λ1, . . . , λl ∈
[−1, 1], stationary distribution π = (π1, . . . , πl)

Ton S and initial distribution µ(0) on S.
The assumption that P has l different eigenvalues is quite natural. To convince yourself
see for instance Behrends (2000). Order the eigenvalues as follows 1 = |λ1| ≥ |λ2| ≥
. . . ≥ |λl|.

Theorem 10 (Perron-Frobenius). With the setup from above

sup
xj∈S
|µ(n)
j − π(j)| = O(|λ2|n).

If the aperiodic and irreducible transition matrix P is in addition reversible one can
show the more accurate upper bound

max
xi∈S

|µni − π(i)| ≤ 1√
minxi∈S π(i)

|λ2|n. (3.25)

A precise derivation of (3.25) can be found in Schmidt (2010). However, the practical
benefit of the estimate (3.25) is quite limited, since it can be difficult to determine the
eigenvalue λ2 if the number of states is large. Furthermore, the factor in front of |λ2|n

30

does not depend on the choice of the initial distribution µ(0). Therefore we consider an
alternative convergence estimate, the so called χ2-constrast, Schmidt (2010). For the
explanation of this concept some more definitions are needed.

Definition 11. Let P be a transition matrix of an ergodic Markov chain with stationary
distribution π. The matrix M := PP̃ is called the multiplicative reversible version of
the transition matrix P if we set

P̃(xi, xj) :=
π(j)P(xj, xi)

π(i)

For M the multiplicative reversible version of P it holds that M is reversible.

Definition 12. The χ2-constrast of µ given ν is defined as

χ2(µ, ν) :=
∑
i∈S

(µi − νi)2

νi

where we require νi > 0 for all i ∈ S.

Definition 13 (Distance in Variation). Let S be a countable space and let µ and ν
be probability distributions on S. Then the total variation distance dTV(µ, ν) between µ
and ν is defined by

dTV(µ, ν) =
1

2
|µ− ν| = 1

2

∑
i∈S

|µi − νi|.

An upper bound for the variation distance dTV(µ(n), π) between the distribution of the
Markov chain after the nth transition and the stationary distribution is given in the next
proposition.

Theorem 11. For any initial distribution µ(0) and for all n ∈ N it holds that

d2
TV(µ(n), π) ≤ χ2(µ(0), π)

4
λnM,2,

where λnM,2 denotes the second largest eigenvalue of the matrix Mn, where M is defined
as in Definition 11. The reader is referred to Schmidt (2010) for the proof of Theorem
11.

31

Markov chains converge (under the right conditions, see Convergence Theorem 5) to
their stationary distribution. The key tools for quantifying this convergence are the total
variation distance and the mixing time.

3.6.1 Standardizing Distance from Stationarity

A natural thing one might want to know is how far apart is the Markov chain from the
desired distribution after n steps of simulation in the worst case. We therefore define

d(n) := max
x∈S
‖Pn(x, ·)− π‖TV .

Often it is possible to bound ‖Pn(x, ·)−Pn(y, ·)‖TV , uniformly over all pairs of states
(x, y). We therefore define

d̄(n) := max
x,y∈S

‖Pn(x, ·)−Pn(y, ·)‖TV .

The relation between d(n) and d̄(n) can be seen in the following lemma.

Lemma 4. Let d(n) and d̄(n) be defined as above. Then

d(n) ≤ d̄(n) ≤ 2d(n). (3.26)

The proof of the inequality (3.26), and further inequalities related to the distances
d(n) and d̄(n) are given in Levin et al. (2009).

3.6.2 Bounds on Mixing Time

Both in the introductory chapter and later the terms ‘rapidly mixing’ and ‘mixing time’
have arisen. Now it is time to define these parameters. The mixing time is the time a
Markov chain needs for being near to stationarity. This parameter can then be used to
determine the running time for the MCMC simulation.

Definition 14. The mixing time is defined by

tmix(ε) := min{n : d(n) ≤ ε} and tmix := tmix(1/4). (3.27)

The 1/4 in (3.27) is arbitrary, but a value of ε less than 1/2 is needed for the following.

32

Levin et al. (2009) give some upper bounds for the mixing time tmix. It holds that for
every non-negative integer k

d(ktmix(ε)) ≤ d̄(ktmix(ε)) ≤ d̄(tmix(ε))k ≤ (2ε)k.

By taking ε = 1/4 above yields d(ktmix) ≤ 2−k and

tmix(ε) ≤ dlog2 1/εe tmix.

The better the upper bounds on the mixing the higher is the confidence that the
simulation algorithm performs well. So the question arises if a given upper bound is as
good as possible. Therefore one is also interested in lower bounds on the mixing time.

Counting Bound

One idea to obtain lower bounds on the mixing time is the following. Let {Xn} be
an irreducible and aperiodic Markov chain on the state space S and transition matrix
P. For reasons of simplicity suppose that the stationary distribution π is uniform over
S. Let the chain run for n steps. If after this run the reachable states don’t form a
significant fraction of the state space, the distribution of the chain cannot be close to
uniform. Define the number of states reachable from x as

dout(x) := |{y : P(x, y) > 0}| ,

and set
∆ = max

x∈S
dout(x).

Define Sxn to be the set of states reachable from x in n steps, and note that |Sxn| ≤ ∆n.
If ∆n < (1− ε)|S| holds, it follows from the definition of total variation distance that

‖Pn(x, ·)− π‖TV ≥ Pn(x, Sxn) ≥ 1− ∆n

|S| > ε.

This implies that

tmix(ε) ≥ log(|S|(1− ε))
log ∆

.

33

Diameter Bound

Let P be an irreducible and aperiodic transition matrix on S. Let the graph G = (S,E)

have the vertex set equal to the state space S and edge set

E = {(x, y) : P (x, y) + P (y, x) > 0, ∀x, y ∈ S}.

The shortest path between two vertices x and y is a path from x to y of minimal
length. The diameter of a graph is defined as the length of the longest of all shortest
paths between two distinct vertices. Define the diameter of the Markov chain to be the
diameter of the graph G.
Suppose L to be the diameter of the Markov chain, and let x0 and y0 be states at

maximal distance L. Then Pb(L−1)/2c(x0, ·) and Pb(L−1)/2c(y0, ·) are both positive on
strictly disjoint vertex sets. Therefore d̄(b(L− 1)/2c) = 1 and for any ε < 1/2,

tmix(ε) ≥ L

2
.

These bounds for the mixing time are model-specific bounds and were taken from
Levin et al. (2009), where more bounds on the mixing time can be found. For explicit
examples the bounds can be calculated more precisely. Furthermore, the mixing time
collaborates with another time called coupling time, introduced in the next section.

3.7 Coupling Algorithms and Perfect MCMC

Simulation

One of the main drawbacks in Markov chain Monte Carlo simulation is the difficulty
of determining the burn-in time, see Section 3.5.2. Another drawback is determining
the correlation between Xn and Xn+1 in terms of variance calculation of the estimate,
see Section 3.5.1. The exact sampling method introduced in this section avoids both
problems by producing independent samples which are exactly π distributed.

As mentioned above this section will explain algorithms that are still based on Markov
chains, but this class of algorithms simulates a given distribution π not only approxi-
mately but in a certain sense exactly. Therefore, these techniques are called perfect or
exact MCMC methods.

As already remarked, these algorithms didn’t have the main drawbacks of the classical
MCMC algorithms. As we have seen in the previous section, some practical problems

34

of the Markov chain Monte Carlo method appear. The desired distribution can just be
reached approximately. Therefore it requires a lot of work to show that the distribution
which we want to simulate is approximated with given accuracy. Furthermore the opti-
mal choice of the stopping time requires huge theoretical investigation or much intuition
and practical experience.

The algorithm presented in this section produces an exact sample, and has a clear
stopping criterion. In general the exact sampling algorithms won’t be faster and will
need a huge amount of memory space. The basic principle is again an irreducible and
aperiodic Markov chain, with a stationary limit distribution π which we want to simulate.
Instead of starting the Markov chain at time 0 and run to the future, the algorithm starts
far away in the past and stops at time 0. A main aspect is that for each state in the
state space a copy of this Markov chain is started and that the paths will couple in
an adequate way. In most of the applications the state space will be large, so that the
implementation of the algorithm will fail. For a more precise mathematical model of
this procedure we need the following definition and notation.

Definition 15 (Coupling). Let {X ′n} and {X ′′n} be two stochastic processes taking
their values in the same countable (or finite) state space S. The two processes are
said to couple if there exists an almost surely finite random time τ such that

n ≥ τ ⇒ X ′n = X ′′n.

The random variable τ is called the coupling time for the two processes.

Once two Markov chains are in the same state at the same time, they stay together and
pass through the same path, we say that coalescence has occurred.

We can define the coupling time not only for two but also for finitely many Markov
chains. Let S = {x1, . . . , xl} be a finite state space. Define for each state xi ∈ S an
irreducible and aperiodic Markov chain

X(m,i) = (X(m,i)
m , X

(m,i)
m+1 , . . .)

where m ∈ {−1,−2, . . .} denotes the initial time (starting position) of the chain.
Let X(m,i)

m = xi be the deterministic initial state and let P be the transition matrix of
the chain, such that π is the equilibrium distribution of X(m,i). Let U = (U0, U−1, . . .)

be a sequence of independent and uniformly distributed random variables on the inter-
val [0, 1]. The Markov chain X(m,i) can be constructed recursively through an update

35

function φ : S × [0, 1]→ S, see Section 2.5. So let X(m,i) be given by

X(m,i)
n = φ(xk, Un) if X

(m,i)
n−1 = xk.

Definition 16. The random variable τ = min{−m ≥ 1 : X
(m,1)
0 = . . . = X

(m,l)
0 } is

called coupling time. Set τ =∞ if there is no integer −m such that coalescence can be
reached.

Theorem 12. Suppose that P (τ <∞) = 1. Then for all m ≤ −τ ,

X
(m,1)
0 = . . . = X

(m,l)
0 .

Moreover, for arbitrary m ≤ −τ and i, j ∈ {1, . . . , l}, X(m,i)
0 = X

(−τ,j)
0 and X

(m,i)
0 is

distributed according to the ergodic measure π.

3.7.1 Propp Wilson

We use the setup of a finite state space S, the IID random numbers, and an increas-
ing sequence N1, N2, . . . of positive integers from above. A commonly used sequence is
{1, 2, 4, 8, . . .}. Propp and Wilson (1996) showed that the choice 2m−1 for Nm results in
an almost optimal run of the algorithm. With this information in mind we now formulate
the Propp Wilson algorithm, first introduced by Propp and Wilson (1996). An inter-
ruptible version of Propp and Wilson’s perfect sampling algorithm is Fill’s algorithm,
given by Fill (1998).

Propp and Wilson’s algorithm is based on the idea that if a chain was started at time
n = −∞ in any state X−∞ it would be in equilibrium by time n = 0. So X0 would be
an exact sample of the ergodic limit distribution π. For the implementation of this idea
we make use of the coupling arguments defined before. We first find a time −N such
that X0 does not depend on X−N , and then we determine X0 by starting chains from all
states at time n = −N and following them to time n = 0. The Propp-Wilson algorithm
is a procedure for finding −N and X0. Since the procedure gets successively deeper into
the past and the coupling process, this sort of algorithm is also called Coupling from the
Past (CFTP). Here is how the algorithm proceeds.

Algorithm (Propp-Wilson Algorithm)
1. Set m = 1

2. For each state xi ∈ S start a Markov chain in state xi at time −Nm and let it run

36

until time 0. Update the chain by successively applying the update function φ and
the random numbers U−Nm+1, . . . , U−1, U0.

3. If all l chains have coalesced and have reached the same state x̃ at time 0 then stop
the algorithm and use x̃ as a sample. Otherwise increase m by 1 and go on with
step 2.

An important fact is that the random numbers U−Nm+1, . . . , U−1, U0 and the update
function φ have to be the same for all l chains started at time −Nm. It is also crucial,
when going back in time (from −Nm to −Nm+1), to reuse the same random numbers
U−Nm+1, . . . , U−1, U0 already drawn. These conditions have to be considered so that the
algorithm produces correct results.

The questions one can ask now are: Will the algorithm terminate? And if so, will it
give a correct and unbiased sample? The answers to this are given in the next section.

Correctness and Termination of the Propp Wilson algorithm

Theorem 13 (0− 1-Law for Termination). If there exists an m∗ ∈ N, x̃ ∈ S and
random numbers U−Nm∗ , . . . , U−1 ∈ [0, 1] with

φ(φ(. . . φ(φ(xk, U−Nm∗), U−Nm∗+1), . . . , U−2), U−1) = x̃

for all k ∈ {1, . . . , l}, then the Propp-Wilson algorithm terminates with probability 1,
and the CFTP coupling time is finite. Otherwise the algorithm never terminates.

Proof. For sure, the algorithm will never terminate if there are no realizations which
fulfill these conditions. So the second part of the proof is trivial. Let

φ(N)(xk, (U)−1
−N) := φ(φ(. . . φ(φ(xk, U−N), U−N+1), . . . , U−2), U−1)

for N ∈ N and U−Nm∗ , . . . , U−1 ∈ (0, 1]. We take a look at the vector

Φ1 = (φ(Nm∗)(xk, (U)−1
−Nm∗

))xk∈S ∈ SS,

which contains the position of all chains at time 0, if the algorithm was started at time
−Nm∗. Suppose that the stepfunction φ(xk, .) has just nontrivial steps. The condition
of the theorem implies that there exists an ε > 0 such that P (Φ1 ∈M) > ε, where M is
the set of all constant mappings from S → S. The probability that the coupling time τ

37

of the Propp-Wilson chain is larger than Nm∗ is therefore ≤ 1− ε. The mappings

Φr = (φ(Nm∗)(xi, (U)
−(r−1)Nm∗−1
−rNm∗

))xi∈S ∈ SS r ∈ N

are independent copies of Φ1. Let R∗ = inf{r ∈ N : Φr ∈ M} be the smallest r ∈ N,
such that Φr gets coupled. Then R∗ is bounded above by a geometric random variable
with parameter ε. R∗ thus has a finite expected value. If we insert the first R∗ chains
into each other we get the mapping Φ1 ◦ Φ2 ◦ . . . ◦ ΦR∗ = (φ(R∗Nm∗)(xk, (U)−1

−R∗Nm∗
))xk∈S

which lies in M, and is therefore coupled. Because of τ ≤ R∗Nm∗ also τ has got a
finite expected value. If we choose m large enough such that Tm ≥ R∗Nm∗ then the
Propp-Wilson algorithm terminates after the mth step. �

Corollary 1. If we have an irreducible, aperiodic and reversible Markov chain, then
the Propp-Wilson algorithm terminates and returns a random sample distributed exactly
according to the equilibrium distribution of the Markov chain.

For more details about the perfect sampler and for the proof of Corollary 1 see Casella
et al. (2001).

Theorem 14 (Correctness). Consider an ergodic Markov chain with finite state space
S = {x1, . . . , xl} and stationary distribution π. Suppose that φ : S × [0, 1] → S is an
update function for the Markov chain and let N1, N2, . . . be an increasing sequence of
positive integers. If the perfect sampler terminates, then we have

P (x̃ = xi) = π(i) ∀i ∈ {1, . . . , k}

where x̃ represents the state in which all l chains ended up at time 0, i.e. x̃ is the output
of the algorithm.

Proof. For fixed ε > 0 and xi ∈ S one have to show that

|P (x̃ = xi)− π(i)| < ε

holds. By assumption, the algorithm terminates with probability 1. So if we choose m
large enough we can achieve that

P (after Nm steps at most the algorithm has terminated) ≥ 1− ε.

38

For such an m we start a Markov chain at time −Nm and run it up to time 0. By
using the same update function and random numbers, we run a second Markov chain
with initial distribution equal to the stationary distribution π. Suppose that this second
chain ends up in a state ỹ at time 0. Note that ỹ is also distributed exactly according
to π, since this is the stationary distribution. Furthermore,

P (x̃ 6= ỹ) ≤ ε

since we chose m large enough. Therefore

P (x̃ = xi)− π(i) = P (x̃ = xi)− P (ỹ = xi)

≤ P (x̃ = xi, ỹ 6= xi)

≤ P (x̃ 6= ỹ) ≤ ε.

Similarly, one gets that π(i)− P (x̃ = xi) ≤ ε. By combining these two results we get

|P (x̃ = xi) = π(i)| < ε.

�

The proof of Theorem 13 is taken from König (2003) and the proof of Theorem 14
from Hohendorff (2005).

3.8 Monotone Coupling Algorithms

If the state space S is large, it is nearly impossible to implement a Markov chain for
each state of the state space and the practical usage of the CFTP algorithm introduced
in the previous Section 3.7.1 fails. In many applications there are possibilities to make
use of structural characteristics, such that the number of the required chains enormously
decreases. One of these instances is monotonicity.

Suppose now that the state space S of our Markov chain has a natural partial ordering
≤. Furthermore suppose that the update rule φ has the nice characteristic that x ≤ y

implies φ(x, U) ≤ φ(y, U) almost surely with respect to U and x, y ∈ S. If a Markov
chain has this property, we say that it is monotone. Note that the property of preserving
the partial ordering depends only on the randomizing operations and not on the Markov
chain itself. The appropriate coupling algorithm for the monotone Markov chain is then
called monotone CFTP algorithm.

39

If there exists an ordering on the state space S, then there also exists a smallest
element 0̂ and a greatest element 1̂ with 0̂ ≤ x ≤ 1̂ for all x ∈ S. Suppose we can
construct a Markov chain for which x ≤ y implies φ(x, U) ≤ φ(y, U) almost surely with
respect to U . Then coalescence is reached if and only if the chain started in 0̂ is coupled
with the chain started in 1̂.

Figure 3.2: Illustration of a monotone coupling. Pictured are the heights of the upper and lower
trajectories started at various starting times in the past.

If we take a look at the last N steps of the Markov chain, we can figure out what
would happen if the Markov chain were in state 1̂ at time −N , and determine where it
would be at time 0. The Markov chain admits a partial ordering and therefore it is for
sure in a state which is ≤ 1̂ at time −N , and since the randomizing operations respect
the partial order, we obtain an upper bound on the state at time 0. In the same way
one can get a lower bound on the state at time 0 by applying the last N steps of the
Markov chain to the state 0̂. If it happens that the upper and lower bounds coincide,
then we are done since we have determined the state at time 0. If this is not the case, we
can go deeper into the past and start a chain at time e.g. −2N . This gives us new and
better upper and lower bounds for the state at the present time. Repeat this procedure
of going deeper into the past as long as the upper and lower bounds are equal. When
the algorithm goes back in time, it reuses the randomizing operations for the period of
time already passed in the previous runs, i.e. it uses the same update function and the
same Ui’s. For an illustration see Figure 3.2 taken from Levin et al. (2009).
A more mathematically formal description of the above is given now. Define

φba(x, U) = φb−1(φb−2(. . . φa+1(φa(x, Ua), Ua+1), . . . , Ub−2), Ub−1),

40

where U = (. . . , U−1, U0) and a < b integers. If for a sequence of random numbers
(U−N , U−N+1, . . . , U−2, U−1) with Ui ∈ [0, 1] the equation

φ0
−N(0̂, U) = φ0

−N(1̂, U), (3.28)

is satisfied, then (3.28) implies that φ0
−N(x, U) takes on the same value for all x ∈ S.

This is because of the monotonic random operations and the fact that the upper and
lower bounds coincide. This means that it is suffices to consider two trajectories and
that there is no need to start trajectories in all |S| possible states. Let N∗ denote the
smallest value of N for which φ0

−N(0̂, U) = φ0
−N(1̂, U).

Some applications of the (monotone) CFTP technique are illustrated in Propp and
Wilson (1996), Propp and Wilson (1998) and Levin et al. (2009), including examples
like the hardcore model and the Ising model, already mentioned in previous sections.

3.8.1 Bounding the Coupling Time

This section is about determining the coupling time of a monotone Markov chain by dint
of upper and lower bounds. The expected run time of the perfect sampling procedure
is related to both the coupling time, see Section 3.7, and the mixing time defined in
Section 3.6. So one may guess that the coupling time is linked to the mixing time of
the Markov chain , which means that if the monotone Markov chain is rapidly mixing,
then coalescence is also reached quite quickly. If the mixing time is not known, it can be
estimated from the coupling time. Further we want to bound the probability that the
algorithm takes much longer than the estimates told us.

For reason of simplicity define ft(x) = φ(x, Ut) and let F 0
t be

F 0
t = f−1 ◦ f−2 ◦ . . . ◦ ft.

Recall that the random variableN∗ denotes the smallestN such that F 0
−N(0̂) = F 0

−N(1̂)

which is equal to the smallest N for which F 0
−N is constant. Define N∗ to be the smallest

N such that
F n

0 (0̂) = F n
0 (1̂).

Note that the probability that F 0
−n(·) is not constant equals the probability that F n

0

is not constant, P (N∗ > n) = P (N∗ > n). Although the running time of the CPFT
procedure depends on N∗ we will switch from N∗ to the theoretically simpler N∗. This
hasn’t any effect on the following calculations since N∗ and N∗ are governed by the same

41

probability distribution.
Since we want to identify the coupling time with the mixing time, we will consider

the following three measures of progress related to the equilibrium distribution π. The
measures are

E(N∗),

P (N∗ > k) for particular or random k, and

d̄(k) = max
µ1,µ2

||µ(k)
1 − µ(k)

2 || for a particular k.

Here µ(k) denotes the distribution of the Markov chain after the kth step when started
at time 0 in a random state given by the initial distribution µ(0).

Lemma 5. Let s be the length of the longest chain (totally ordered subset) in the partially
ordered state space S. Then

P (N∗ > k)

s
≤ d̄(k) ≤ P (N∗ > k).

Next we note that P (N∗ > k) is submultiplicative. To check this see Propp and Wilson
(1996).

Lemma 6. Let k1 and k2 be two nonnegative integer variables which might be constant.
Then

P (N∗ > k1 + k2) ≤ P (N∗ > k1) · P (N∗ > k2).

The next lemma gives an estimate of the tail probabilities for N∗ with respect to the
expected value of N∗, and vice versa.

Lemma 7.
kP (N∗ > k) ≤ E(N∗) ≤ k

P (N∗ ≤ k)

It was mentioned before that the mixing time and the coupling time go hand in hand
with each other. Here follows the formal characterization of the statement. The mixing
time tmix is defined to be the smallest k for which d̄(k) ≤ ε. Define s to be the length of
the longest chain in the partially ordered state space. Because of the fact that d̄(k) is
submultiplicative (a proof of this statement can be found in Section 4.4 of Levin et al.

42

(2009) or in Aldous and Diaconis (1987)), after k = tmix(1 + ln s) steps, it holds that
d̄(k) ≤ ε/s. Hence P (N∗ > k) ≤ ε by Lemma 6. According to Lemma 7 it follows that

E(N∗) ≤ k/(1− ε) < 2k = 2tmix(1 + ln s).

Many Markov chains have a sharp threshold phenomenon also known as ‘cutoff phe-
nomenon’. This means that after running the chain for a duration of length (1− ε)tmix

the states are far apart from being random, but after a duration of length (1 + ε)tmix the
states are very close to being random. For such chains it holds that the coupling time
is less than O(tmix log s). Further information on this topic as well as the proofs of the
previous lemmata can be found in Propp and Wilson (1996).

43

4 Quasi Monte Carlo Methods

4.1 Introduction

The Monte Carlo (MC) simulation is a method from stochastics. The basis of this
method are random experiments repeated for many times. Problems which are too com-
plicated to be solved analytically can be solved numerically by Monte Carlo simulation.
The foundation is built by theorems from probability theory and first of all by the law
of large numbers. With the help of todays computer power, sufficiently many random
experiments can be produced. The Monte Carlo method is used for the simulation of
problems of statistical behavior, e.g. the simulation of complex processes, where the
straight analysis isn’t possible, or the numerical integration of functions which can’t be
solved directly. The focus here is on numerical integration. Monte Carlo is a very popu-
lar method and is in wide use ranging from finance to atomic physics. This is because it
is a simple method which is easy to use and still robust. The robustness is also reflected
in the convergence rate of the method. The convergence rate of Monte Carlo integration
is O(N−1/2) which is independent of the dimension of the integral. On the other hand
the Monte Carlo method can be extremely slow.

It is possible to accelerate the convergence rate by using variance reduction methods,
which reduce the constant in front of the O(N−1/2). Some of these variance reducing
methods are outlined in Caflisch (1998). Another approach for improving the conver-
gence rate is a subclass of Monte Carlo algorithms and is called quasi-Monte Carlo
(QMC). This sort of algorithms use deterministic sequences instead of pseudo-random
sequences. These deterministic versions of random sequences are called quasi-random
sequences or low-discrepancy sequences. The aim of quasi-random point sequences is
not the imitation of true random point sequences but to provide a better uniformity
of the points. Therefore the points are correlated to each other. This results in an
acceleration of the convergence rate. The quasi-Monte Carlo method converges faster
than Monte Carlo integration using pseudo-random points, at a rate of O(N−1 logkN)

for some constant k.

44

4.2 Random Numbers and Pseudo-Random Numbers

The foundation of Monte Carlo simulation is built on random numbers and random
sampling, respectively. The success of the Monte Carlo method depends not only on
the appropriate choice of the statistical model, but also on the proper choice of the
random numbers, which will simulate the random variables in the stochastic model.
Generating random numbers means that given a distribution function F on the interval
[0, 1], we want to produce a sequence of real numbers in [0, 1] that reflects the behavior
of an independent and identically distributed (IID) random variable with distribution F .
Actually, if we talk of random numbers, we mean pseudo-random numbers generated on
the computer by a deterministic algorithm with rather few input parameters. This fact
implies that therefore reproducing the pseudo-random numbers and storage of them
is reasonably viable. To see if the generated pseudo-random numbers perform in a
reasonable manner, they should pass a number of statistical tests for randomness. Since
pseudo-random numbers are produced deterministically, they can not pass each arbitrary
test of randomness. Therefore they should be generated according to the needs of every
single stochastic model and its special statistical properties to pass the corresponding
statistical tests. Different requirements on random numbers and tests for randomness
are defined and presented in Knuth (1981).

After we got to know something about random numbers and pseudo-random numbers,
which built the core of Monte Carlo simulation, we continue with the method itself.

4.3 Monte Carlo Method

The object or process to be simulated will be seen as a statistical model. Therefore it
can be estimated by random sampling. In this thesis, I will focus on the problem of
numerical integration.

A main ingredient for Monte Carlo simulation is the rearrangement of the numerical
problem into a stochastic model. In case of numerical integration this won’t be too tricky,
since each integral can be interpreted as the expectation of some random variable. The
statistical properties of these random variables should be considered and analyzed as
well, e.g. one should know about the statistical dependence or independence of the
variables. The next important step is producing random samples which imitate these
properties. To guarantee a sort of accuracy of the simulation-result one should repeat
the calculation for a considerable amount of time with new modified random samples.

45

The quantity to be simulated is seen as a statistical model and is then estimated by
random sampling, as mentioned above. Consider the integral∫

Ω

f(u) du.

with integration domain Ω ⊆ Rs and 0 < λs(Ω) <∞, where λs denotes the s-dimensional
Lebesgue measure. If we want an approximation of this integral we can interpret it as
follows. Define Ω as a probability space with measure dµ = du/λs(Ω) and let f be
Lebesgue-integrable. Then we have∫

Ω

f(u) du = λs(Ω)

∫
Ω

f dµ = λs(Ω)E(f), (4.1)

where E(f) is the expectation of the random variable f . Our goal is to estimate the
expectation θ = E(f) via Monte Carlo integration. Therefore the problem of numerical
integration is transformed into the problem of estimating an expectation.

Consider f to be a random variable on an arbitrary probability space (Ω,A, λ). The
Monte Carlo estimation for the expected value θ is obtained as follows. Let a1, . . . , aN ∈
Ω be N independent λ-distributed random samples and

θ̂n =
1

N

N∑
n=1

f(an). (4.2)

Then the strong law of large numbers assures that θ̂n converges almost surely to θ,

lim
N→∞

1

N

N∑
n=1

f(an) = E(f) λ∞-almost everywhere. (4.3)

λ∞ defines the product measure of denumerable many copies of λ.
Now let us have a look back at the initial situation and the aim to approximately calcu-

late the integral
∫

Ω
f(u) du. As an immediate consequence of (4.3) we get the following:

When applying (4.2) to (4.1) we obtain the Monte Carlo estimate

∫
Ω

f(u) du ≈ λs(Ω)

N

N∑
n=1

f(xn), (4.4)

where x1, . . . , xN are independent µ-distributed random samples from Ω.
In the following we assume Ω to be the normalized integration domain [0, 1]s. This is

for reasons of simplicity.

46

4.3.1 Convergence of the Monte Carlo Method

After estimating θ with θ̂n we want to concretize the integration error

εN(f) = θ(f)− θ̂(f).

Define the bias as E(εN(f)) and the mean square error as E(εN(f)2)1/2. With the
central limit theorem (CLT) as theoretical background, the following assertion can be
made, see e.g. Feller (1968). Recall that the CLT says that for finite variance, the
sum of independent and identically distributed random variables converges to a normal
distribution. The next theorem describes the size and statistical properties of the Monte
Carlo integration error.

Theorem 15. Suppose that f has finite variance σ2. Then

εN(f) ≈ σN−1/2ν for large N,

where ν is N(0, 1)-distributed and the constant σ = σ(f) is the square root of the variance
of f . That is

σ(f) =

(∫
[0,1]s

(f(x)− θ(f))2dx

)1/2

.

More precisely it holds that

lim
N→∞

P

(
a <

√
N

σ
εN < b

)
= P (a < ν < b)

=

∫ b

a

(2π)−1/2e−x
2/2dx.

So the assertion of this theorem is that the Monte Carlo integration error εN(f) is
of size O(N−1/2) and is influenced by a constant σ which is the square root of the
variance of f . The more precise statement says that the Monte Carlo integration error
is approximately normal distributed. The fact that the bounds are tight, since the result
is an equality, can be seen as an advantage. As one may have noticed, the given bound
is of probabilistic nature, so the result is no absolute upper bound for the integration
error. This is a drawback since if one handles sensitive data, one may wish to have
exact results and not just probabilistic ones. Another fact is that the probabilistic error
bound for Monte Carlo integration holds under the condition that the function f is
square integrable. If f fulfills additional regularity conditions, they won’t influence the

47

integration error. Practical experience has shown that this is not quite true and that a
more regular function leads to a faster convergence rate and therefore to a smaller error
εN . This can be seen as another drawback of Monte Carlo integration.
As already mentioned in the introductory section there are two methods for the error

reduction of Monte Carlo integration. The first consists in variance reduction meth-
ods which transform the integrand with the result of decreasing the variance of f and
therefore the constant σ. The second is to replace the pseudo-random points by a quasi-
random sequence. This second method is discussed in Section 4.5 more deeply.

4.4 Monte Carlo versus quasi-Monte Carlo

Quasi random sequences are constructed in a way such that they are more uniform than
pseudo-random numbers which are independent and uniformly distributed. This fact of
more uniformity is easily seen in Figure 4.1. This figure shows a pseudo-random sequence
in contrast to a quasi random sequence, namely a Sobol sequence in two dimensions,
and is taken from Caflisch (1998). Pseudo-random numbers are used for standard Monte
Carlo methods. Numerical integration methods which use Monte Carlo converge at a
rate of O(N−1/2) where N is the number of samples. The problem with pseudo-random
points in Monte Carlo simulations is the clumping of the points. This clumping of the
points is clearly evident in Figure 4.1. It occurs because the points of the pseudo-random
sequence are independent and know nothing about each other. As opposed to this, the
points of a quasi random sequence are dependent of each other. These correlations of
the points prevent clumping. The better uniformity is well seen in Figure 4.1. This
better uniformity has an effect on the convergence rate. Quasi Monte Carlo integration
using quasi random sequences converges at a rate of O(N−1(logN)k).
The field of application for Monte Carlo methods reaches from optimizing problems

via simulation problems right through to numerical integration. In contrast, quasi Monte
Carlo methods are limited to numerical integration due to the correlation between the
quasi random points. Nevertheless, simulation resultings can often be represented as ex-
pectations. These are integrals and therefore quasi Monte Carlo methods are applicable.

After outlining several characteristics of the quasi Monte Carlo method the time has
come to become more concrete.

48

Figure 4.1: 2-dimensional projection of a pseudo-random sequence (left) and a Sobol sequence
(right)

4.5 Quasi Monte Carlo Method

Now I give an introduction to quasi Monte Carlo (QMC). More detailed information may
be found in Niederreiter (1992). The quasi Monte Carlo method is used in numerical
integration. It approximates integrals over the closed s-dimensional unit cube [0, 1]s, for
s ∈ N. The quasi Monte Carlo estimation for

θ(f) =

∫
[0,1]s

f(u) du is θ̂n(f) =
1

n

n∑
i=1

f(xi), (4.5)

where x1, . . . , xn ∈ [0, 1]s. Up to now this looks like plain Monte Carlo. The difference of
these two methods lies in the sequence of points xi. These xi are well-chosen deterministic
points such that their distribution is close to the continuous uniform distribution on
[0, 1]s. To have a measure of how far apart a sequence of deterministic points is from
uniformity, the concept of discrepancy is introduced next. It measures the deviation of
the points xi to the uniform distribution.

4.5.1 Discrepancy

Suppose the following situation. Let f be an integrable function. We want to estimate
θ(f) =

∫
[0,1]s

f(u) du with the quasi Monte Carlo estimate θ̂n(f) defined in (4.5). We
have

49

θ(f) =

∫
[0,1]s

f(u) du ≈ 1

N

N∑
n=1

f(xn) = θ̂N(f). (4.6)

with x1, . . . , xN ∈ [0, 1]s. For approximating θ(f) exactly, we would need an infinite
sequence of points x1, x2, . . . ∈ [0, 1]s. Suppose we have such a sequence at hand. Then
we can replace the finite sequence x1, . . . , xN by the infinite one and get again that

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1]s

f(u) du. (4.7)

We want this infinite sequence to be such that (4.7) is fulfilled for a whole class of func-
tions f , e.g. all continuous functions. Uniform distributed sequences will accomplish
this. So the advisable points x1, . . . , xN for (4.6) should be chosen such that the dis-
crete probability distribution is close to the continuous distribution U [0, 1]s. But which
sequences are uniformly distributed? To get an answer, have a look at the following
definitions of discrepancy, taken from Niederreiter (1992).

Let P be a point set consisting of x1, . . . , xN ∈ [0, 1]s. For an arbitrary subset B of
[0, 1]s let A(B;P) be the number of xn with 1 ≤ n ≤ N for which xn ∈ B. So A(B;P)

is defined as
A(B;P) = #{xn : xn ∈ B, 1 ≤ n ≤ N}

Let B be a nonempty family of Lebesgue-measurable subsets of [0, 1]s. A general defini-
tion of the discrepancy of the point set P is then given by

DN(B;P) = sup
B∈B

∣∣∣∣A(B;P)

N
− λs(B)

∣∣∣∣ .
Definition 17. Let J ∗ be the family of all subintervals of Is = [0, 1)s of the form
[0, u] =

∏s
i=1[0, ui]. Then the star discrepancy D∗N(P) = D∗N(x1, . . . , xN) of the point set

P is defined by D∗N(P) = DN(J ∗;P).

Definition 18. Let J be the family of all subintervals of Is of the form [u, v] =
∏s

i=1[ui, vi].
Then the (extreme) discrepancy DN(P) = DN(x1, . . . , xN) of the point set P is defined
by DN(P) = DN(J ;P).

The star discrepancy D∗N and the discrepancy DN are associated with each other in
the following way:

D∗N(P) ≤ DN(P) ≤ 2sD∗N(P).

50

These discrepancies define an L∞ norm on the elements in J ∗ and J . The next
discrepancy is an L2 norm on the elements in J ∗ and is given by Halton and Zaremba
(1969). The practical experiences with these discrepancies have shown that the extreme
discrepancy DN and T ∗N are ordinarily of the same size.

Definition 19. The discrepancy T ∗N of the point set P is defined by

T ∗N(P) =

(∫
[0,1]s

(
A([0, u];P)

N
− λs ([0, u])

)2

du

)1/2

.

Definition 20 (Uniformly distributed sequence). A uniformly distributed sequence
is one for which D∗N → 0 as N →∞.

The next theorem is the famous Koksma-Hlawka Theorem and gives an upper bound
for the integration error ε = |θ̂n − θ|. For that we need the following definition, taken
from Caflisch (1998).

Definition 21. Define the variation (in the Hardy-Krause sense) of f , a differentiable
function of a single variable, as

VHK =

∫ 1

0

∣∣∣∣dfdt
∣∣∣∣ dt.

In s dimensions, the variation is defined as

VHK =

∫
Is

∣∣∣∣ ∂sf

∂t1 · · · ∂ts

∣∣∣∣ dt1 · · · dts +
s∑
i=1

VHK

(
f

(i)
1

)

in which f (i)
1 is the restriction of the function f to the boundary xi = 1.

For properties of VHK and other multidimensional variation measures see Owen (2005).

Theorem 16 (Koksma-Hlawka Theorem). For any sequence {xN} and any func-
tion f with variation VHK(f) < ∞, the integration error ε = |θ̂(f) − θ(f)| is bounded
as

ε ≤ D∗N VHK(f). (4.8)

The upper bound on the integration error in (4.8) consists of the discrepancy, which
measures the quality of the points and the variation which measures the smoothness of

51

the integrand. As pointed out later, one can construct sequences of points x1, . . . , xN

where D∗N = O(N−(1−ε)) holds for any ε > 0. So if the variation is finite the Koksma-
Hlawka Theorem indicates that quasi Monte Carlo performs better than plain Monte
Carlo. Anyway, computing the star discrepancy is very hard, see Gnewuch et al. (2009),
and computing VHK(f) is harder than integrating f itself and so the upper bound in
(4.8) is impractical for estimating the integration error ε.

Practical applications have shown that the discrepancy of quasi random sequences is
a more significant measure for QMC performance than the variation. The next result by
Woźniakowski (1991) is independent of the variation and characterizes the mean square
error E(ε(f)2)1/2 of quasi Monte Carlo integration.

Theorem 17. It holds that
E(ε(f)2)1/2 = T ∗N(f), (4.9)

where the expectation is taken with respect to the function f which is distributed according
to the Brownian sheet measure.

Caflisch (1998) defines the Brownian sheet measure as a measure on a function space. It
is a natural generalization of a Brownian motion in one dimension to multi-dimensional
time. A proof of Woźniakowski’s identity (4.9) can be found in Caflisch (1998).

After defining the discrepancy and determining some error bounds for QMC we go on
with some further properties of low-discrepancy sequences.

4.5.2 Quasi-random numbers

The inventors of quasi random sequences where number theorists who did research on
the uniformity properties of numerical sequences, see Kuipers and Niederreiter (1974).

Let x1, x2, . . . , xN ∈ [0, 1]s be a sequence of points. For the moment let us consider
the one-dimensional case where s = 1 and let us fix N . With these restrictions in mind,
it is easy to determine the minimum of the discrepancy DN(x1, . . . , xN) and the star
discrepancy D∗N(x1, . . . , xN) and to give sequences for which these minima are attained,
see Niederreiter (1992). For the star discrepancy it holds that

D∗N(x1, . . . , xN) ≥ 1

2N
,

and equality holds for the sequence xn = (2n − 1)/2N for 1 ≤ n ≤ N . An analogous

52

result can be shown for the discrepancy. It holds that

DN(x1, . . . , xN) ≥ 1

N
,

and equality holds for the sequence xn = (2n− 1)/2N for 1 ≤ n ≤ N .
In words this means that for fixed N it is possible to reach a discrepancy of order of

magnitude O(N−1) for point sets x1, . . . , xN ∈ [0, 1]. In contrast to this, it can be shown
that there exists no sequence of points in [0, 1] where DN(S) = O(N−1) is true for all
N ≥ 1. So loosen the condition of fixing N at the beginning impairs the magnitude of
the discrepancy. Schmidt (1972) gives a more precise result which states that for any
point-sequence S in [0, 1] it holds that

DN(S) ≥ cN−1 logN

for infinitely many N and an absolute constant c. This implies that the best possible
discrepancy for a sequence S has order of magnitude DN(S) = O(N−1 logN). Therefore
quasi-random sequences are defined in the following way.

Definition 22. A sequence of points x1, x2, . . . , xN ∈ [0, 1]s is called quasi-random or
a low-discrepancy sequence if

DN ≤ c(logN)kN−1

where c and k are constants independent of N , but may be dependent on the dimension
s. As a matter of fact sequences can be constructed in a way such that k = s.

The next step is the explicit construction of low-discrepancy sequences. A very clear
and popular quasi-random sequence is the van der Corput sequence in one dimension
first published by van der Corput (1935). Even though the one-dimensional case isn’t of
great interest in practice, the van der Corput sequence builds a basis for other sequences
in higher dimension, e.g. the Halton sequence, introduced by Halton (1960).
The van der Corput sequence in base b ≥ 2 is constructed by writing out n ∈ N in

base b.
n = amam−1 . . . a1a0 (base b).

The nth point xn of the sequence is then obtained by a symmetric reflection of the bits

53

of n around the decimal point, so

xn = 0.a0a1 . . . am−1am (base b).

Halton sequences generalize the one-dimensional van der Corput sequences. A Halton
sequence in a given dimension s is constructed as follows. Let p1, . . . , ps be the bases
for the sequence where the bases are chosen to be pairwise relatively prime. Write out
n ∈ N in base pk for 1 ≤ k ≤ s. Let ψp(n) be the symmetric reflection of the expansion
of n in base p around the decimal point. So, if n = amam−1 . . . a1a0 (base p), then

ψp(n) =
m∑
i=0

ai(n)p−i−1.

Now the nth point xn of the Halton sequence in dimension s is given by

xn = (ψp1(n), . . . , ψps(n)) ∈ [0, 1]s.

Suppose S is a Halton sequence. We already know that the discrepancy is bounded
below by

DN(S) ≥ cN−1 logsN.

An upper bound on the star discrepancy of a Halton sequence S is given in Niederreiter
(1992)

D∗N(S) ≤ csN
−1 logsN +O(N−1 logs−1N).

for all N ≥ 2 and a constant cs dependent on the dimension s and also dependent
on the bases p1, . . . , ps. For dimension s the constant cs is minimal when choosing
p1, . . . , ps to be the first s prime numbers. Nevertheless, one can show that cs grows
superexponentially as s → ∞, which means that this bound is practically useless for
larger dimension s. For more details and the proofs of these statements see Niederreiter
(1992).

Next I will give an introduction into a group of point sets and sequences, which have
discrepancy bounds with much smaller constants.

4.5.3 (t,m, s)-Nets and (t, s)-Sequences

The first (t,m, s)-nets and (t, s)-sequences in base 2 where introduced by Sobol’. The
general definitions for (t,m, s)-nets and (t, s)-sequences given here are from Niederreiter

54

(1992) but first introduced in the earlier work Niederreiter (1987).
Let b ≥ 2 be the basis and s ≥ 1 be the dimension and fix them.

Definition 23. Let E ⊂ [0, 1)s be of the form

E =
s∏
i=1

[
aib
−di , (ai + 1)b−di

)
with ai, di ∈ N and 0 ≤ ai ≤ bdi for 1 ≤ i ≤ s. Then E is called an elementary interval
in base b.

Definition 24. Let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base b is a point set P
consisting of bm points in [0, 1]s such that A(E;P) = bt for every elementary interval E
in base b with measure bt−m, i.e. the discrepancy Dbm(E,P) = 0 for every elementary
interval E in base b with measure bt−m.

Definition 25. Let t ∈ N. A sequence x1, x2, . . . of points with xi ∈ [0, 1]s is called a
(t, s)-sequence in base b if, for all integers k ≥ 0 and m > t, the point set consisting of
the xi with kbm ≤ i < (k + 1)bm forms a (t,m, s)-net in base b.

With this definitions the one-dimensional van der Corput sequence in base b explained
before is a (0, 1)-sequence in base b.
After doing piles of calculation and proving, which is found in e.g. Niederreiter (1992),

an upper bound for the star discrepancy D∗N(S) for a (t, s)-sequence S eventuates.

Theorem 18. The star discrepancy D∗N(S) for a (t, s)-sequence S is base b satisfies

ND∗N(S) ≤ C(s, b)bt logsN +O(bt logs−1N) (4.10)

for all N ≥ 2 and a constant C(s, b) depending on the dimension s and the basis b.
Explicitly

C(s, b) =
1

s

(
b− 1

2 log b

)s
if either s = 2 or s = 3, 4 and b = 2. Otherwise

C(s, b) =
1

s!

b− 1

2 bb/2c

(bb/2c
log b

)s
.

The bound in (4.10) shows that the (t, s)-sequences and therefore also the (t,m, s)-nets
are most evenly distributed when choosing t = 0. The construction of those special nets

55

and sequences and also the general construction principles of (t,m, s)-nets and (t, s)-
sequences is too time consuming to be demonstrated here and so the interested reader
is referred to Niederreiter (1992).

For the moment we have collected enough information about the quasi Monte Carlo
method and low discrepancy sequences. Some classic books for a deeper understanding
of uniform distribution of sequences are by Kuipers and Niederreiter (1974), Hlawka
(1979), Niederreiter (1992), Drmota and Tichy (1997). In the next chapter, we shall
proceed by combining Markov chain Monte Carlo methods introduced in Chapter 3
with quasi random sequences. This hybrid of MCMC and quasi Monte Carlo seems
obvious and reasonable; nevertheless, except for a few papers, the combination of these
two methods has not become popular until recently.

56

5 Markov Chain Quasi Monte Carlo

5.1 Introduction

The MCMC method has an extended field of application compared to the simple Monte
Carlo method. Sampling from sophisticated distributions or distribution functions which
are difficult to calculate is implemented via Markov chains. The desired distributions
are modeled by Markov chains which converge to their stationary distribution. After
sufficiently many steps of the Markov chain the stationary distribution is approximately
reached and statements about the original problem can be made. To move from one
state of the Markov chain to the next the MCMC method uses random variables as
help. In more detail, this means that when at state Xn to generate a proposal Yn+1

and to accept or reject this proposal a sequence of uniformly independent distributed
random variables are called in action, see Chapter 3.

As we have seen in the last Chapter 4, quasi Monte Carlo methods can also have an
enormous benefit towards plain Monte Carlo in some fields of application. Furthermore,
quasi Monte Carlo gains a higher accuracy, since the sampling points used are elements
of a quasi-random sequence which are more uniformly spread than ordinary uniformly
and independent pseudo-random numbers. Therefore our interest lies now to combine
the advantages of MCMC and quasi Monte Carlo and apply quasi-random sequences
to an MCMC sampler. Our hope is that the replacement of the uniformly IID random
numbers with a quasi-random sequence also brings a benefit and moreover, that the
MCMC sampler remains consistent. As we will see in a little while this is true for
some, though not all low-discrepancy sequences. The appropriate sequences have to
satisfy a further property. In particular they have to be (weakly) completely uniformly
distributed (CUD), which is defined a little further below. The elements of a (weakly)
CUD sequence will be even more balanced, as its name implies.

When the IID random numbers for selecting a proposal and acceptance or rejection
of the proposal are replaced by a (weakly) CUD sequence, we get a quasi Monte Carlo
version of the Markov Chain Monte Carlo method. The application of these quasi-

57

random sequences is similar to using the whole period of a moderately sized random
number generator. Therefore the random number generators should be chosen in an
adequate way, such that the produced random numbers are well balanced. Further they
need to be small enough such that the whole period can be used.

Just a few years ago Owen and Tribble (2005) proved that the consistency of a
Metropolis-Hastings sampler is preserved, when the IID random numbers which drive
the process are replaced by a CUD or a weakly CUD sequence. The proof of this consis-
tency statement is built on a result by Čencov (1967). It gives conditions on the (weakly)
CUD sequence used for the sampling algorithm, with the result that the consistency is
preserved.

The replacement of IID random numbers by a quasi-random sequence for driving
the sampling process of the MCMC method was titled Markov chain quasi Monte Carlo
(MCQMC) by Owen and Tribble (2005). A crucial fact, which I want to point out at the
beginning, is that the use of a quasi-random sequence in MCMC simulation is not done
to accelerate the convergence to equilibrium. It’s rather a question of obtaining more
balanced samples by using low-discrepancy sequences and as a result of this to improve
the accuracy of the simulation, similarly as with using quasi Monte Carlo instead of
plain Monte Carlo.

Hereafter a listing of all past efforts of combining quasi Monte Carlo with Markov
chain Monte Carlo is given. If one starts searching for literature which applies quasi
MC sampling to MCMC problems it may take a while before the effort is rewarded.
Although I did a lot of literature search, I want to cite the well structured literature
review by Chen et al. (2009).

5.1.1 Literature review

The probably fist article which deals with this topic appears in the 1960s by Čencov
(1967), followed by a paper by Sobol (1974). Both papers assume that the Markov
chain has a discrete state space and that the transitions are sampled by inversion. Un-
fortunately, QMC methods usually bring no large performance improvements on such
unsmooth problems and inversion is not a very convenient method. Čencov replaces IID
samples by one long CUD sequence. Sobol uses what is conceptually an n×∞ matrix
of values from the unit interval. Each row is used to make transitions until the chain
returns to its starting state. Then the sampling starts using the next row. It is like
deterministic regenerative sampling.

These methods were not widely cited and, until recently, were almost forgotten, prob-

58

ably due to the difficulty of gaining large improvements in discrete problems, and the
computational awkwardness of inversion as a transition mechanism for discrete state
spaces.

The next attempt is that of Liao (1998). Liao takes a set of QMC points in [0, 1]d

shuffles them in random order, and uses them to drive an MCMC samper. He reports 4−
to 25−fold efficiency improvements, but gives no theory. An analysis of Liao’s method
is given in Tribble and Owen (2008) and Tribble (2007). Later Chaudhary (2004) tried
a different strategy using QMC to generate balanced proposals for Metropolis-Hastings
sampling, but found only small improvements and did not publish the work. Lemieux
and Sidorsky (2006) report variance reduction factors ranging from about 1.5 to about 18

in some work using QMC in conjunction with the perfect sampling method of Propp and
Wilson (1996). Craiu and Lemieux (2007) consider the so-called multipletry Metropolis,
which is a modified Metropolis algorithm that allows larger step sizes, and find variance
reductions of up to 30%, which is still not that much.
Really large benefits from combining quasi Monte Carlo and Markov chain Monte

Carlo have first arise a few years ago by Owen and Tribble (2005) and later in the
dissertation by Tribble (2007). Tribble’s best results come from Gibbs sampling problems
computing posterior means.

There is another line of research in which large improvements have been obtained by
combining QMC with MCMC. This is the so-called array-RQMC method described in
Lécot and Tuffin (2004), L’Ecuyer et al. (2008) and L’Ecuyer and Sanvido (2010). That
method simulates numerous chains in parallel using quasi-Monte Carlo to update all
the chains. It requires a complicated method to match the update variables for each
step to the various evolving chains. This method has achieved variance reductions of
many thousand fold on some problems from queuing and finance. Very few properties
have been established for it, beyond the case of heat particles in one dimension that was
considered by Morokoff and Caflisch (1993). Finally, Jim Propp’s rotor-router method
is a form of deterministic Markov chain sampling. It has brought large efficiency im-
provements for some problems on a discrete state space and has been shown to converge
at better than the Monte Carlo rate on some problems. See for example Doerr and
Friedrich (2009).

First I will present the method by Owen and Tribble (2005) who uses weakly CUD
sequences to drive the Metropolis-Hastings sampler. This method has a huge practical
advantage compared to e.g. the rotor-router model or the array-RQMC method. It only
replaces the IID random numbers used as driving sequence in a typical MCMC sampler

59

by another sequence of numbers, namely a (weakly) CUD sequence. After outlining
the MCQMC method I will explain briefly the array-RQMC method by L’Ecuyer et al.
(2008).

5.1.2 Preparatory Work

The use of quasi-random sequences instead of pseudo-random numbers in the Monte
Carlo method appears as an obvious idea from the beginning. Each element of the
quasi-random sequence is used as a sample point. When using quasi-random points
instead of IID random numbers in the Metropolis-Hastings algorithm, this may seem less
reasonable. So here is how we will handle this. Recall the Metropolis-Hastings algorithm
defined in Section 3.4. Random variables are needed for moving from state Xn to the
next sample point Xn+1. When at state Xn, a proposal Yn+1 is generated at random.
Assume that each generation of a proposal needs at most (d− 1) IID random variables
uniformly distributed in [0, 1]. This proposal Yn+1 is either accepted or rejected. This
can be implemented by a simple Bernoulli experiment using another random variable
in [0, 1]. So altogether at most d random variables are needed to generate a sample
from a Markov chain. Therefore this is called a d-dimensional MCMC algorithm. When
sampling with another MCMC method, the way of proceeding is quite similar and one
can also assume that there is a bounding number d of IID random variables, uniformly
distributed in [0, 1], needed for moving forward one step from Xn to Xn+1.
Now suppose we want N samples. Then we need to run the Markov chain for N steps,

and Nd uniformly distributed random variables u1, u2, . . . , uNd ∈ [0, 1] are required.
These random variables are the driving sequence of the MCMC algorithm and are stored
in the variable matrix, in the following way:

u1 u2 · · · ud

ud+1 ud+2 · · · u2d

...
...

ud(N−1)+1 ud(N−1)+2 · · · uNd

 (5.1)

Hereafter we will look at the rows of the variable matrix. Therefore we will define
blocks of size d of the driving sequence as d-dimensional random variables. Let 1 ≤ n <

N and denote by zn = (ud(n−1)+1, ud(n−1)+2, . . . , udn) the d-dimensional point in [0, 1]d.
Then zn gives the nth row of the variable matrix. Let {Xn} be a Markov chain. Then
the nth step of the Markov chain can be constructed by the nth row of the variable

60

matrix and the update function φ as

Xn = φ(Xn−1, zn). (5.2)

5.2 CUD and weakly CUD sequences

As we have learned from the previous Chapter 4 quasi-random sequences are those with
discrepancy Dn = 0 for n → ∞. If we want to use points from quasi-random se-
quences instead of IID points for MCMC sampling this condition will be unrewarding
and a sharper condition is needed. This leads us to the definition of completely uni-
formly distributed sequences and weakly completely uniformly distributed sequences.
The property of completely uniformly distribution of a sequence is an important prop-
erty for quasi-random sequences and is a definition of randomness by Knuth (1981). The
idea behind completely uniformly distributed sequences originated in Korobov (1948). I
took the following definitions from Tribble (2007).

Definition 26. A sequence u1, u2, . . . ∈ [0, 1] is completely uniformly distributed (CUD)
if for every integer d ≥ 1, the sequence z1, z2, . . . of d-blocks zi = (ui, . . . , ui+d−1) ∈ [0, 1]d

satisfies
D∗n(z1, . . . , zn) −→ 0 as n→∞. (5.3)

This definition holds for deterministic sequences. A similar definition can be given for
random sequences.

Definition 27. A sequence of random variables u1, u2, . . . ∈ [0, 1] is weakly completely
uniformly distributed (WCUD), if for every integer d ≥ 1, the sequence z1, z2, . . . of
d-blocks zi = (ui, . . . , ui+d−1) ∈ [0, 1]d satisfies

P
(
D∗n(z1, . . . , zn) > ε

)
= 0 as n→∞ (5.4)

for every ε > 0.

CUD sequences are defined for overlapping blocks zi = (ui, . . . , ui+d−1) of length
d ≥ 1. When sampling with MCMC for each step in the Markov chain (5.2) we
consider one row of the variable matrix (5.1). Each row is a non-overlapping d-block
ẑi = (ud(i−1)+1, . . . , udi) for i ≥ 1 of the sequence u1, u2, . . . ∈ [0, 1]. Čencov (1967)
proved the following result:

61

D∗n(z1, . . . , zn)→ 0,

⇐⇒
D∗n(ẑ1, . . . , ẑn)→ 0.

(5.5)

Knuth (1981) proved the generalization of this result.

Lemma 8. The sequence u1, u2, . . . ∈ [0, 1] is CUD if and only if for arbitrary integers
1 ≤ k ≤ d, the sequence zi of d-tuples defined by zi = (uid−k+1, uid−k+2, . . . , uid−k+d)

satisfies
D∗n(z1, . . . , zn)→ 0 for n→∞. (5.6)

An analogous result holds for WCUD sequences.

This means that if a sequence has the CUD property it is uniformly in its overlapping
blocks as well as in its non-overlapping blocks.
As already mentioned the use of CUD sequences in MCMC is comparable to the use

of the whole period of a random number generator, which shouldn’t be too large. For
more details see Niederreiter (1986). Tribble (2007) uses small versions of multiplicative
congruential generators and linear feedback shift register generators. I will give an
example of this later. But first we will see that using a CUD sequence in a Metropolis-
Hastings algorithm leads to consistency.

5.2.1 The Consistency Theorem

For proving consistency of the Metropolis-Hastings sampler driven by a CUD sequence
we assume a finite state space S and the following regularity conditions on the proposal
mechanism. The next definition and the following lemma are from Tribble (2007).

Definition 28. The proposals of a d-dimensional Metropolis-Hastings algorithm are
regular if and only if for any two states xk, xl ∈ S and time i, the set of proposals
defined as

Akli :=
{

(uid+1, . . . , uid+d−1) ∈ [0, 1] | Yi+1 = xl when Xi = xk
}

(5.7)

is Jordan measurable.

Remember that a Jordan measurable set is one whose indicator function is Riemann
integrable. When at state xk at time i, then the hypercube [0, 1]d−1 can be divided

62

into regions Akli of (d− 1)-dimensional random variables which will choose xl to be the
next proposal. As a result from the regularity condition, each of these Akli is Jordan
measurable. If the proposals are homogenous, which we assume most of the time, then
the Akli are the same for all i. The regularity condition can be extended from the set
of proposals to the set of transitions, since unions, complements and tensor products of
Jordan measurable sets are again Jordan measurable.

Lemma 9. If regularity of proposals holds, then for any two states xk, xl ∈ S and time
i, the set of transitions defined as

Ekli :=
{

(uid+1, . . . , uid+d) ∈ [0, 1] | Xi+1 = xl when Xi = xk
}

(5.8)

is Jordan measurable.

Note that these regularity conditions aren’t a restriction since they are satisfied by all
feasible Markov chain Monte Carlo methods anyway.

The main theorem of this section provides information about when CUD sequences
preserve the consistency of a Metropolis-Hastings sampler. Remember that consistency
holds if for any state x in the state space S and for any starting state X0 = x0

πn(x) =
1

n

n∑
i=1

1Xi=x → π(x) for n→∞, (5.9)

where π is the stationary limit distribution of the Markov chain {Xn}. Weak consistency
holds if for any state x ∈ S and for any starting state X0 = x0

P (|πn(x)− π(x)| > ε : X0 = x0)→ 0 for n→∞. (5.10)

holds for any arbitrary but fix ε > 0.
The following theorem is a generalization of a result of Čencov. This generalization

and also the proof of it is given in Owen and Tribble (2005) and Tribble (2007).

Theorem 19. Suppose S = {x1, . . . , xK} is a finite state space and a sequence u1, u2, . . . ∈
[0, 1] is used to run a Metropolis-Hastings sampler with regular homogenous proposals.
Assume the resulting sample is weakly consistent if the ui are IID U [0, 1], such that
(5.10) holds. If the ui form a CUD sequence, consistency holds.
If the ui are replaced by a weakly CUD sequence, weak consistency holds.

63

Proof. Let u1, u2, . . . ∈ [0, 1] be a completely uniformly distributed sequence. Given
X0 = x0 the empirical measure πn(x) is a function of u1, . . . , und. Next we look at bad
regions in [0, 1]nd where the empirical measure of a state x is not close to its equilibrium
distribution π(x). Therefore we define for each starting state xk ∈ S and target state
xl ∈ S sets of consecutive ui for which this bad convergence is seen.

τnkl(ε) =
{

(u1, . . . , und) : |πn(xl)− π(xl)| > ε when X0 = xk
}

(5.11)

where ε > 0 is a given tolerance limit. Since the proposals are Jordan measurable, these
regions are also Jordan measurable as they are the finite unions of Jordan measurable
sets.
The volume of τnkl(ε) is the probability under IID sampling that |πn(xl) − π(xl)| > ε

when X0 = xk. Since we have assumed weak consistency when using independent and
uniformly distributed ui ∈ [0, 1] it follows that for any xk, xl ∈ S

Vol(τnkl(ε)) −→ 0 as n→∞.

Suppose m large enough such that for all xk, xl ∈ S

Vol(τmkl (ε)) <
ε

K

where K is the finite number of states.
Define

τml (ε) =
⋃
xk∈S

τmkl (ε)

to be the region which samples xl poorly for at least one starting state xk. This set is
also Jordan measurable and Vol(τmj (ε)) < ε. For xl ∈ S, i = 1, . . . , n and an integer m
define an indicator Zi ∈ 0, 1 in the following way

Zi = 1τm
l (ε)(u(i−1)d+1, . . . , u(i−1)d+md).

Next we define the empirical measure πmi (xl), where m steps of sampling are done and
which corresponds to (u(i−1)d+1, . . . , u(i−1)d+md), as

πmi (xl) =
1

m

m−1∑
j=0

1Xi+j=xl
.

Note that |πmi (xl) − π(xl)| < ε whenever Zi = 0. One can show that for the empirical

64

volume Voln(τml (ε)) it follows that

Voln(τml (ε)) =
1

n

n∑
i=1

Zi −→ Vol(τml (ε)), (5.12)

which we will need a little bit later. First we split the overall empirical measure πn(xl)

on n points in the following more complicated way

πn(xl) =
1

n

n∑
i=1

πmi (xl) +
1

n

m−1∑
j=1

(
1Xm−j=xl

− 1X(n+m−j)=xl

)
. (5.13)

Note that the second term from (5.13) is smaller than m/n. Therefore

|πn(xl)− π(xl)| <
1

n

n∑
i=1

|πmi (xl)− π(xl)|+
m

n

≤ 1

n

n∑
i=1

Zi|πmi (xl)− π(xl)|

+
1

n

n∑
i=1

(1− Zi)|πmi (xl)− π(xl)|+
m

n

≤ 1

n

n∑
i=1

Zi + ε+
m

n

→ Vol(τml (ε)) + ε as n→∞
≤ 2ε.

(5.14)

As ε is arbitrary, (5.9) proves our result for completely uniformly distributed ui. If
u1, u2, . . . is a WCUD sequence, the third inequality in (5.14) still holds in probability.
Also the result (5.12) about the empirical volume still holds for ui WCUD, but the
convergence is in probability, so that

1

n

n∑
i=1

Zi
P−→ Vol(τml (ε)). (5.15)

Now let n > m/ε. Then it holds that

P (|πn(xl)− π(xl)| > 3ε) < P (
1

n

n∑
i=1

Zi > ε)→ 0

and so (5.10) is true for weakly CUD sequences ui. �

65

Maybe you have noticed that the consistency theorem, Theorem 19, does not explicitly
make assumptions about the aperiodicity or the irreducibility of the Markov chain and
you wonder if those properties wouldn’t be necessary for the Metropolis-Hastings sam-
pler. They are indeed very important, but they are already embedded in the assumption
that the samples are weakly consistent (5.10). So if the used Metropolis-Hastings algo-
rithm produces consistent samples for an uniformly IID driving sequence, the use of a
completely uniformly distributed sequence or a weakly CUD sequence in the Metropolis-
Hastings sampler won’t change anything about the consistency. The task after choosing
a suitable proposal mechanism for our Metropolis-Hastings sampler is to find a com-
pletely uniformly distributed sequence or a weakly CUD sequence to run the MCQMC
sampler smoothly. Therefore the next section discusses CUD and WCUD sequences
more deeply and gives some broader definitions for these sequences, so-called triangular
arrays.

5.2.2 Weakly CUD Triangular Arrays

In this section I will define extensions of (weakly) CUD sequences and give some basic
characteristics of them which will have a relevance when doing MCMC sampling with
them. Those extensions will be triangular arrays which contain (weakly) CUD sequences.
In Theorem 19 we assume an infinite driving sequence u1, u2, But actually, when
sampling on a computer, the driving sequence will be of finite length N .
We assume that the simulation of a Markov chain consumes d 1-dimensional random

variables per transition. If we want to run the simulation for n1 times we therefore need
a driving sequence of length N1 = dn1. For getting more than n1 samples we need to
renew the driving sequence. Suppose the new sequence has length N2 > N1. In general
it cannot be assumed that the shorter driving sequence is nested in the longer one.
Therefore we need to consider a concept that handles this issue in the right way.

Let N ∈ N where N is a non-random set of infinite size containing positive integers.
We define a triangular array with elements uN,1, . . . , uN,N ∈ [0, 1] in the Nth row. The
points in row N = dn will generate πn. The (weak) consistency conditions now look as
follows. For all xi ∈ E, the πn(xi) (weakly) converges to π(xi) for n = bN/dc and N

going through the elements N ∈ N (write N →∞).
The following definition of (weakly) completely uniformly distributed triangular array

is taken from Tribble and Owen (2008).

Definition 29. Let uN,1, . . . , uN,N ∈ [0, 1] for an infinite set of positive integers N ∈ N .

66

Suppose that N →∞ through the values in N , such that

D∗N−d+1((uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N))→ 0 (5.16)

holds for any d ≥ 1. Then the triangular array (uN,i) is said to be completely uniformly
distributed. If the uN,i are random and

P (D∗N−d+1((uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N)) > ε)→ 0 (5.17)

as N →∞ holds for all integers d ≥ 1 and all ε > 0, then the triangular array (uN,i) is
called weakly CUD.

Note that this definition of a (weakly) CUD triangular array broadens the general def-
inition of (weakly) CUD sequences. Let u1, u2, . . . ∈ [0, 1] be a (weakly) CUD sequence.
Define a triangular array by taking uN,i = ui, for all rows N ≥ 1. Then this triangular
array is also (weakly) CUD.
The next theorem is the generalization of the consistency theorem, Theorem 19, for

(weakly) CUD triangular arrays and is taken from Tribble and Owen (2008).

Theorem 20. Let S be a finite state space for the Markov chain {Xn}. For n ≥ 0 let
Yn+1 be a regular proposal generated from Xn by (udn+1, . . . , udn+d−1). Xn+1 is deter-
mined by acceptance or rejection of the proposal Yn+1 decided by udn. Suppose that these
transitions are weakly consistent for uniformly IID random variables ui. Each transi-
tion consumes d elements of the ui. If the ui are replaced by elements uN,i of a CUD
triangular array then

lim
n→∞

πn(xi) = π(xi) for all xi ∈ S, (5.18)

for n = bN/dc. If the ui are replaced by elements uN,i of a WCUD triangular array then

lim
n→∞

P (|πn(xi)− π(xi)| > ε) = 0 for all xi ∈ S. (5.19)

The proof of this theorem is very similar to the proof of Theorem 19. A sketch of it is
given in Tribble and Owen (2008).
To investigate the behavior of a sequence in terms of discrepancy, it may be useful to

study the local behavior first. Therefore we define the local discrepancy of a sequence.

67

Definition 30. Given n points z1, . . . , zn ∈ [0, 1]d the local discrepancy function is
defined as

δn(z) = δn(z; z1, . . . , zn) =
∣∣∣ 1
n

n∑
i=1

1zi∈[0,z] − λs([0, z])
∣∣∣, (5.20)

for each z ∈ [0, 1]d.

With this definition in mind we go on and define a pointwise (weakly) CUD property
for triangular arrays.

Definition 31. The triangular array uN,i ∈ [0, 1] is pointwise CUD, if

lim
N→∞

δN−d+1(z; (uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N)) = 0 (5.21)

holds for every integer d ≥ 1 and every z ∈ [0, 1]d. The triangular array of random
variables uN,i ∈ [0, 1] is pointwise weakly CUD, if

lim
N→∞

P (δN−d+1(z; (uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N)) > ε) = 0 (5.22)

holds for every integer d ≥ 1 and every z ∈ [0, 1]d and every ε > 0.

Fortunately, as we will see next, it turns out that the pointwise (weak) CUD property
implies the (weak) CUD property.

Lemma 10. If uN,i are pointwise CUD then they are CUD. If the uN,i are pointwise
WCUD then they are WCUD.

A proof of this result appears in Tribble and Owen (2008).
Up to now the given (weakly) CUD characteristics hold for consecutive blocks of size

d which overlap for d > 1. For our circumstances it would now be helpful if these
characteristics remained true for non-overlapping blocks, since e.g. when doing MCMC
sampling such non-overlapping blocks are of interest. The next theorem, which might
not seem reasonable at first, shows this property for triangular arrays.

Theorem 21. Let N and D be infinite sets of nonnegative integers. Let N ∈ N be
the length of the sequence ui and d ∈ D the dimension of the MCMC sampler. Suppose
that a triangular array satisfies for any dimension d, number of samples n = bN/dc and
ε > 0 that

P
(
D∗n
(
(uN,1, . . . , uN,d), (uN,d+1, . . . , uN,2d), . . . , (uN,(n−1)d+1, . . . , uN,nd)

)
> ε
)
→ 0,

(5.23)

68

where N →∞. Then the triangular array is WCUD.

This result is taken from Tribble (2007). A proof of it is given in Tribble and Owen
(2008).

In the sequel I will give a construction rule for triangular arrays by using lattices.
Furthermore an upper bound for the discrepancy of those lattice points is given. For
appropriately chosen input parameters this bound won’t contain constants which grow
exponentially in the dimension of the points, as it was the case for Halton sequences in
Chapter 4.

5.2.3 Lattice Constructions

The following construction of completely uniformly distributed triangular arrays goes
back to a result by Niederreiter (1977) and uses lattice points.

For a prime number N let u0 = 1/N and ui for i > 0 be ui = aui−1/N mod 1 where a
is a primitive root modulo N . Denote xi = (ui, . . . , ui+s−1) for s ≥ 2 and 1 ≤ i < N − 1.
This lattice construction is also known as Korobov lattice. With this setup Niederreiter
(1977) proved the following upper bound on the discrepancy.

Lemma 11. For any prime N and any given dimension s ≥ 2, there exists a primitive
root a mod N such that the discrepancy DN of the associated sequence x1, . . . , xN−1 ∈
[0, 1]s satisfies

DN−1(x1, . . . , xN−1) <
1

N − 1

(
1 +

(N − 2)(s− 1)

φ(N − 1)

)(
2

π
log(N) +

7

5

)s
. (5.24)

Note that φ(N) denotes the Euler totient function which counts the number of positive
integers less than or equal to N that are relatively prime to N . One can show that for
an N0 <∞ and N ≥ N0

φ(N) >>
N

log logN
. (5.25)

Therefore there exist a constant A < ∞ which do not have to grow exponentially in
s and an N0 <∞ such that for N ≥ N0

DN−1 = (x1, . . . , xN−1) <
A

N
s log logN logsN (5.26)

holds uniformly in s ≥ 1.
The next theorem gives a construction rule for completely uniformly distributed tri-

angular arrays and appears in Tribble and Owen (2008).

69

Theorem 22. Let N be an infinite set of prime numbers. Let s(N) be a nondecreasing
integer function of N ∈ N satisfying s(N) = o((logN/ log logN)α) for some positive
α < 1. For each N ∈ N let a(N)be a primitive root modulo N for which (5.24) holds.
Form a triangular array via uN,1 = a(N)/N mod 1 and uN,i = a(N)uN,i−1/N mod 1

for i = 2, . . . , N − 1. Then the triangular array (uN,i) is CUD.

One can show that if an s-tuple of points is prepended to an s-dimensional CUD
sequence of overlapping s-tuples the CUD property remains valid. Also, when shifting a
CUD sequence by a finite amount the CUD property remains valid, see Čencov (1967).
These features are called into action in practice, as you will see later, when examples
are presented in Section 5.3.

As already mentioned, the use of a CUD sequence as driving sequence for a MCMC
sampler can be compared with the usage of a whole period of a pseudo-random number
generator. The generator which fulfills the above conditions of the Korobov lattice is also
known as multiplicative congruential generator (MCG). To randomize the lattice points,
generally a Cranley-Patterson rotation by Cranley and Patterson (1976) is implemented.

Definition 32. Let a ∈ [0, 1]s and U uniformly distributed by U [0, 1]s. A Cranley-
Patterson rotation of a is defined as x = a+ U mod 1 (which is done componentwise).

So no matter what a was, after rotating a the result x is uniformly distributed on [0, 1]s.
Each row of the variable matrix (5.1) is randomized by a Cranley-Patterson rotation.

Note that when doing a Cranley-Patterson rotation the lattice points are randomized
but the spacing between the points is preserved. This is because doing a Cranley-
Patterson rotation on each row of the variable matrix is equivalent to rotating each
column independently of the others by a one-dimensional uniformly distributed random
variable.
Furthermore it can be shown that doing a Cranley-Patterson rotation on a (weakly)

CUD triangular array, the outcome is again a (weakly) CUD triangular array, see Tribble
and Owen (2008).
Tribble and Owen (2008) and Tribble (2007) study Liao’s proposal, see Liao (1998),

which is another method for producing a randomized weakly CUD driving sequence for
the MCMC computation.

5.2.4 Liao’s Method

Suppose a1, . . . , an ∈ [0, 1]s to be s-dimensional quasi Monte Carlo points. Let τ be
a random permutation of the integers {1, 2, . . . , n}. Denote by wi the permuted low-

70

discrepancy points aτ(i). The driving sequence for the MCMC simulation is built by a
vector u = u1, . . . , uns, containing all the wi, in a way that the one-dimensional point ui
comes from wk where k = di/se, specifically it is the i− s(k− 1)th component of wk, so

ui = w
(i−s(k−1))
k .

Suppose the MCMC sampler needs d points of the driving sequence for one transition
of the Markov chain and note that it is not necessary to use s = d. Regroup the ui into
d-dimensional blocks z1, . . . , zm ∈ [0, 1]d where m = bsn/dc, specifically

z(i) = (u(i−1)d+1, . . . , uid. (5.27)

The next result seems obvious and is essential for our reasons of finding weakly CUD
sequences. It is cited from Tribble (2007) and its proof appears in Tribble and Owen
(2008).

Theorem 23. Suppose D∗n is the s-dimensional star discrepancy of the sequence a1, . . . , an ∈
[0, 1]s. Then for arbitrary dimension d ≥ 1, the sequence z1, . . . , zm ∈ [0, 1]d which comes
from the permuted and regrouped sequence a1, . . . , an ∈ [0, 1]s satisfies the following. For
arbitrary z ∈ [0, 1]d and ε > 0 it holds

P
(
δm(z; z(1), . . . , z(m)) > ε

)
= O(n−1 +D∗n). (5.28)

The conclusion of Theorem 23 is the following.

Corollary 2. Weak consistency for Markov chain quasi Monte Carlo method holds when
the driving sequence is generated by Liao’s method.

Proof. Apply that weakly CUD follows from pointwise weakly CUD, Lemma 10, to
Theorem 23. So Liao’s proposal generates weakly CUD points and with Theorem 20
weak consistency holds. �

5.3 Example of a Bayesian Model of a Pump System

This example already originated in Liao (1998) and its data come from Gelfand and
Smith (1990). Owen and Tribble (2005) and Tribble (2007) took this example up again.

71

It contains 10 pumps and records the number of failures sk of each pump k in tk × 1000

hours. These failures occur according to independent Poisson processes with failure rates
λ1, . . . , λ10, so

Pλktk(X = m) =
(λktk)

m

m!
exp(−λktk).

The λk have a Gamma(α, β) distribution where α = 1.802 is the shape parameter and
β the scale parameter with Gamma(γ, δ) prior distribution where γ = 0.1 is the shape
parameter and δ = 1 is the scale parameter. A table of the recorded data of the number
of failures sk at time tk for pump k is given in Gelfand and Smith (1990) and Tribble
(2007).
They stated that for a rate λ, the number of failures at time t is Poisson(λt) dis-

tributed. So the distribution of λk given β and the data are independent of the other
λ values and is Gamma(α + sk, β + tk) distributed. The distribution of β given all the
λ values is independent of the data and has a Gamma(γ + 10α, δ +

∑
λk) distribution.

These conditional distributions are used to run a Gibbs sampler whose values converge
to the joint posterior distribution. For the Bayesian model, which we consider here,
we are interested in the posterior distributions of the λk and β and moreover in the
construction of the estimates of these parameters. For the joint posterior distribution π
of the λk and β, the Monte Carlo estimates of Eπ(λk) and Eπ(β) will be the parameter
estimates we are interested in.
We want to determine the square error of the sample means from the Gibbs sampler

to estimate the true average values of the parameters. The simulations were done by
Tribble (2007) in the programming language R.
They did 100 replications of the simulations of size approximately 210 and 214 using

pseudorandom numbers from the Mersenne Twister, lattice points randomly permuted
via Liao’s method and the multiplicative congruential generator. The MCG are of size
N = 1021 with primitive root 65 and N = 16381 with primitive root 665. A table
of these generators of different sizes with a good lattice structure is given in L’Ecuyer
(1999). For randomization a Cranley-Patterson rotation was applied to all 11-tupel of
the driving sequence u11i−10, . . . , u11i for 1 ≤ i ≤ N .
To estimate the variance for the MCQMC method, a number r of replications of the

sampling procedure are done. Producing r independent copies of the IID sampler gives
the empirical variance which is used as the unbiased variance estimator. The following
tables show the sample variances of these 100 posterior mean estimates.

72

N ≈ 210

IID Liao MCG
λ1 6.21e-07 3.72e-09 3.79e-09
λ2 9.21e-06 4.88e-08 4.86e-08
λ3 1.89e-06 8.23e-09 7.86e-09
λ4 1.22e-06 4.13e-09 5.52e-09
λ5 9.00e-05 9.02e-07 7.69e-07
λ6 1.63e-05 1.05e-07 7.76e-08
λ7 3.19e-04 1.17e-05 9.34e-06
λ8 4.14e-04 1.37e-05 1.99e-05
λ9 3.74e-04 9.34e-06 3.92e-06
λ10 1.61e-04 1.35e-06 9.99e-07
β 9.00e-04 1.37e-05 1.04e-05

N ≈ 214

IID Liao MCG
λ1 3.96e-08 2.48e-11 2.20e-11
λ2 4.62e-07 1.01e-09 1.37e-09
λ3 8.46e-08 5.81e-11 4.67e-11
λ4 6.95e-08 2.30e-11 2.67e-11
λ5 5.44e-06 3.34e-08 6.35e-09
λ6 1.02e-06 1.02e-09 6.96e-10
λ7 2.18e-05 7.57e-07 3.73e-08
λ8 2.65e-05 7.46e-07 5.33e-08
λ9 3.13e-05 4.63e-07 2.89e-08
λ10 1.07e-05 2.52e-08 1.09e-08
β 7.04e-05 8.58e-07 5.79e-07

The next table gives the minimum and the maximum variance reduction factors (VRF)
of each MCQMC sampler over the IID sampler, where the extremes are taken over all
11 parameters.

N ≈ 210 N ≈ 214

Method min VRF max VRF min VRF max VRF
Liao 27 296 29 3016

MCG 21 241 121 2603

73

As one may notice, the variance reduction of the MCQMC methods with respect to
the IID method gets quite large and gets even larger when the sample size increases. The
accurate bias of the MCQMC methods is unknown, but if one expects the true mean to
be near the mean of the 100 unbiased IID samples, then it can be shown that the bias
is much lower than the variance of the estimates by IID sampling and has therefore no
effect on the output.

5.4 A Randomized QMC Simulation Method for

Markov Chains

Once more our aim is to estimate expectations of the form

θ =

∫
Ω

c(x) dπ(x), (5.29)

where π is a probability measure over some measurable space (Ω,F), and c : Ω → R

is a measurable function, often interpreted as cost function. For the estimation of the
expected average cost θ by a Markov chain {Xi} we use an estimate

Y =
1

τ

τ∑
i=0

ci(Xi) for a stopping time τ, (5.30)

where ci is the cost function at step i.
When simulating θ by a Markov chain where at each move state-dependent costs

ci(Xi) are paid, the forthcoming technique gives a low-variance unbiased estimator for
the expectation θ. Furthermore it turns out that this method is even more effective if
there is a natural order on the states which comes along with the cost function.

The previous randomized QMC (RQMC) method for Markov chains presented at the
beginning of this chapter uses randomized low-discrepancy point sets as driving sequence
with the consequence of variance reductions compared to the classical IID version. The
new RQMC method presented here, first appeared in Lécot and Tuffin (2004). It is
called array RQMC and operates roughly in the following way. The method simulates n
copies of the Markov chain in parallel. To generate the ith sample of each copy, a d+ 1-
dimensional randomized low-discrepancy point set P ′ of cardinality n is used, where d

74

is the dimension of the Markov chain. P ′nj is defined in L’Ecuyer et al. (2008) as

P ′nj =
{
u′ij =

(i+ 0.5

n
, uij

)
, for 1 ≤ i ≤ n

}
(5.31)

with the properties that

• Pnj = {u1j, . . . , unj} is a RQMC point set in [0, 1)d,

• uij is a random vector uniformly distributed over [0, 1)d for each i,

• P ′nj is highly uniform in [0, 1)d+1, in a sense that is left open for the moment.

Note that a point set P = (u1, . . . , un) is called RQMC point set if the ui ∈ [0, 1)d are
uniformly distributed and the point set P covers [0, 1)d more uniformly that a set of
independent random points.

The points in the set P ′nj are randomized independently at each step i, such that for
each of the n copies of the Markov chain the probability distribution of the generated
samples corresponds to the distribution in the classical MCMC method. Consequently
an unbiased estimator

Yn =
1

nτ

n∑
i=1

τ∑
j=0

cj(Xi,j) with stopping time τ (5.32)

for the average costs θ (5.29) results. In order that the empirical distribution of the
n realizations of Xi at step i provide a better approximation of the distribution of
the random variables Xi, a dependence over the n copies is imposed. This is done by
resorting the n copies of the Markov chain after each step.

Now here is how the method works in more detail: Let {Xn} be a Markov chain
with state space S ⊆ Rl ∪ {∞} for some integer l ≥ 1 and let each transition of
the chain consume d random variables. Furthermore let there be a sorting function
h : S → R ∪ {∞} on the state space, which assigns a real number to each state in S

with h(∞) = ∞. A state xi is said to be smaller than a state xj if h(xi) < h(xj) and
two states are said to be h-equivalent if h(xi) = h(xj). When choosing h appropriately,
the following array RQMC algorithm will perform well.

Algorithm (Array-RQMC Algorithm by L’Ecuyer et al. (2008))
Let P̃n = (ũ1, . . . , ũn) be a d-dimensional QMC point set. Select a randomization method
for P̃n such that the randomized version Pn defines a new RQMC point set P ′n as defined

75

in (5.31). Simulate n copies, numbered 1, . . . , n, of the Markov chain in parallel as
follows. Set X1,0 = x0, . . . , Xn,0 = x0 and j = 1.
While X1,j−1 <∞ do {

• Randomize P̃n to attain Pnj = (u1j, . . . , unj)

Note that Pnj is a new randomization of P̃n, independent of all the previous randomiza-

tions.

• Set i=1.

• While i ≤ n and Xi,j−1 <∞ do {

– Update the Markov chains Xi,j according to an update function
φ : S × [0, 1)d → S. So Xi,j = φ(Xi,j−1, uij).

– Set i = i+ 1.

}

• Sort the states X1,j, . . . , Xn,j by increasing order of their values of h(Xi,j) and
renumber them in this order such that h(X1,j) ≤ . . . ≤ h(Xn,j).

• Set j = j + 1.

}
Return the average Yn of the n estimators Y to get an unbiased estimator for the expected
cost θ.

L’Ecuyer et al. (2008) showed that for a finite state space S the upper bound on the
converge rate in the worst case is O(n−1 log n). Under some assumptions on the state
space S and the random variables ui a better convergence rate of order of magnitude
O(n−3/2) holds. This is a better convergence rate for the variance than the rate O(n−1)

for the classical MCMC method, see Section 3.5.1. The elaborately proofs for the bounds
of the convergence rate of the array RQMC method are given in L’Ecuyer et al. (2008).
The results of the empirical experiments by L’Ecuyer et al. (2008) showed that for many
examples the variance reduction is even much faster than the theoretical bound.

76

5.4.1 Example

The numerical examples by L’Ecuyer et al. (2008) illustrate that the variance for the
array RQMC method decreases faster than in the classical RQMC methods and the stan-
dard Monte Carlo sampling. In their illustrations they compare standard MC, classical
RQMC, and RQMC methods to each other. I will exhibit only one of these examples
to illustrate that the new array RQMC method can reach variance reductions of several
thousands in some cases.

The considered sample-sizes n are approximately 210, 212, 214, 216, 218 and 220. For the
classical RQMC methods, they use Korobov lattice rules (see Section 5.2.3) on the one
hand and Sobol’ nets (see Section 4.5.3) on the other hand. When taking a set Pn
of Korobov lattice points, Pn is randomized by a Cranley-Patterson rotation. For the
exact values of n and the associated primitive roots see L’Ecuyer et al. (2008). They
also considered Korobov lattice points after applying the Baker’s transformation, which
transforms each coordinate u to 2u if u < 1/2 and to 2(1 − u) if u ≥ 1/2, after the
randomization.

For the second type of driving sequence, they use a Sobol’ net, which is randomized
by a left (upper-triangular) matrix scrambling followed by a random digital shift. For
more details about that see L’Ecuyer et al. (2008) and the references given there.

For the upcoming example the following classical random QMC were applied: a ran-
domly shifted Korobov rule (Classical Korobov), a randomly shifted Korobov rule with
Baker’s transformation (Classical Korobov-Baker) and a randomized Sobol’ point set
(Classical Sobol).

For the new array RQMC method they use the following types of driving sequences: a
(d+ 1)-dimensional Korobov lattice rule with its first coordinate skipped and randomly
shifted (Array Korobov), the same Korobov rule with the random shift followed by a
Baker’s transformation (Array Korobov-Baker), the first n points of a randomized Sobol’
sequence where the points are enumerated by order of their Gray code (Array Sobol) and
the same randomized Sobol’ point set but with the points enumerated in their natural
order (Array Sobol no Gray). For the exact construction of these sequences see L’Ecuyer
et al. (2008) and the references given there.

In the upcoming example the variance reduction factors (VRF) in comparison with
standard Monte Carlo are illustrated. Those were estimated by VarY/(nVarYn), where
VarYn is estimated by m = 100 independent copies of Yn and VarY is estimated by the
empirical variance of a large number of independent copies of Y .

77

An M/M/1 Queue with d = 1

Assume a single-server queue. The exponential interarrival times Aj of this queue are
assumed to be IID with mean 1 and the exponential service times Sj are assumed to be
IID with mean ρ < 1. This ρ is said to be the utilization factor of the server. Our aim
is the estimation of the expected average waiting time, say θ, of the first t customers.
Let Wj be the waiting time of customer j, where the first customer who arrives to the
empty queue has number 0. These Wjs satisfy the Lindley recurrence where W0 = 0

and Wj = max{0,Wj−1 + Sj−1 − Aj} for j ≥ 1. θ is estimated by

Y =
W0 + . . .+Wt−1

t
. (5.33)

Therefore we need to generate 2t random variables S0, . . . , St−1, A1, . . . , At. The simu-
lation is done by a d = 1 dimensional Markov chain which moves one step forward each
time one of these random variables is generated. So, X0 = W0, X1 = W0, X2 = W1,
X3 = W1 + S1, and so on. The dimension of the low-discrepancy points is s = 2t.
L’Ecuyer et al. (2008) give results for t = 100 customers with utilization factors

ρ = 0.2, 0.5, and 0.8. The variance per run σ2 for the IID case was estimated by
simulating 100 × 218 independent runs. The best estimates of θ were achieved by the
array RQMC method with n ≈ 220. These estimates are

θ = 0.04922 and σ2 = 0.0005393 for ρ = 0.2

θ = 0.48000 and σ2 = 0.06307 for ρ = 0.5

θ = 2.48004 and σ2 = 3.1544 for ρ = 0.8.

(5.34)

The table below gives the empirical VRFs of the different classical RQMC simulations
and the array RQMC simulations in comparison to an IID driving sequence for the
average waiting time of 100 customers in a single-server queue. The utilization factor is
ρ and approximately n ≈ 2k sample points were considered.

78

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

0.2 Classical Korobov-Baker 5 8 15 16 59 117
Classical Sobol 1 1 3 1 13 28
Array Korobov 18 55 49 292 850 2,169
Array Korobov-Baker 43 159 306 991 3,168 10,590
Array Sobol 87 282 836 3,705 10,640 47,850
Array Sobol no Gray 46 112 276 874 2,914 7,429

0.5 Classical Korobov-Baker 10 7 13 6 14 14
Classical Sobol 2 1 4 5 9 10
Array Korobov 14 46 33 231 686 2,034
Array Korobov-Baker 44 200 241 1,155 3,540 15,650
Array Sobol 123 504 1,083 5,651 13,830 55,160
Array Sobol no Gray 55 130 302 1,188 3,507 11,260

0.8 Classical Korobov-Baker 11 2 15 17 21 26
Classical Sobol 3 2 4 6 10 11
Array Korobov 15 85 33 337 727 5,119
Array Korobov-Baker 70 463 287 2,225 10,080 75,920
Array Sobol 370 1,281 3,240 19,730 57,290 233,100
Array Sobol no Gray 117 288 996 4,580 13,210 48,660

As a result from this table one clearly sees that array RQMC sampling obtains con-
spicuous improvements not only in comparison to Monte Carlo sampling but also in
comparison with classical RQMC sampling. Note that the VRF increases when the uti-
lization factor ρ increases. For this example of a M/M/1 queue the VRF in classical
RQMC is higher when using a Korobov sequence with Baker’s transformation as driving
sequence instead of a Sobol’ net. Conversely, when performing array RQMC sampling
the highest VRF is reached for driving sequences using a Sobol net where the points are
sorted in their Gray code order.

79

6 Conclusion

After the introductory chapters about different Monte Carlo simulation methods, includ-
ing standard Monte Carlo, quasi MC and Markov chain Monte Carlo, I presented two
hybrid versions of QMC and MCMC. Those relatively new methods showed promising
results in comparison to classical MCMC methods. The first result I specified was by
Owen and Tribble (2005). They showed that when using quasi-random points which
have the (weakly) CUD property instead of pseudo-random points as driving sequence
for the Metropolis-Hastings sampler, the consistency of the sampler remains. An exam-
ple illustrates that the variance of this hybrid method is always lower than for classical
MCMC. The variance reduction factor reaches from about 14 to more than 200.
The second, more sophisticated method was originated by Lécot and Tuffin (2004)

and revisited by L’Ecuyer et al. (2008). The method presented there is denoted by array
RQMC. To perform this array RQMC method, numerous copies of a Markov chain are
run in parallel, where the driving sequence is built by randomized low-discrepancy points.
After each step those copies were resorted according to a sorting function which operates
on the state space. An example makes it obvious that this array RQMC sampler allows
variance reduction factors up to many thousands.

It should be mentioned that the performance of this method decreases if the integrand
has a high variance, or the dimension of the state space gets too large and there exists
no natural sorting function for the states. Nevertheless, also in those cases, the variance
reductions reached for this method compared with standard MCMC are still conspicuous.

Another hybrid is presented by L’Ecuyer and Sanvido (2010), who take the basic
ingredients of the array RQMC method and adapt it for the coupling from the past
algorithm by Propp and Wilson (1996). They also reported performance improvements
in comparison to conventional MCMC methods.

80

Bibliography

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous
response data. J. Amer. Statist. Assoc., 88(422):669–679.

Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv.
in Appl. Math., 8(1):69–97.

Barker, A. (1965). Monte carlo calculations of the radial distribution functions for a
proton-electron plasma. Australian Journal of Physics, pages 18–119.

Behrends, E. (2000). Introduction to Markov chains. Advanced Lectures in Mathematics.
Friedr. Vieweg & Sohn, Braunschweig. With special emphasis on rapid mixing.

Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. In Acta numerica,
1998, volume 7 of Acta Numer., pages 1–49. Cambridge Univ. Press, Cambridge.

Casella, G., Lavine, M., and Robert, C. P. (2001). Explaining the perfect sampler. Amer.
Statist., 55(4):299–305.

Čencov, N. N. (1967). Pseudo-random numbers for the simulation of Markov chains. Ž.
Vyčisl. Mat. i Mat. Fiz., 7:632–643.

Chaudhary, S. K. (2004). Acceleration of Monte Carlo methods using low discrepancy
sequences. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–University of California,
Los Angeles.

Chen, S., Dick, J., and Owen, A. B. (2009). Consistency of markov chain quasi-monte
carlo on continuous state.

Corcoran, J. N. and Tweedie, R. L. (2002). Perfect sampling from independent
Metropolis-Hastings chains. J. Statist. Plann. Inference, 104(2):297–314.

Craiu, R. V. and Lemieux, C. (2007). Acceleration of the Multiple-Try Metropolis
algorithm using antithetic and stratified sampling. Stat. Comput., 17(2):109–120.

81

Cranley, R. and Patterson, T. N. L. (1976). Randomization of number theoretic methods
for multiple integration. SIAM J. Numer. Anal., 13(6):904–914.

Dick, J., Larcher, G., Pillichshammer, F., and Woźniakowski, H. (2011). Exponential
convergence and tractability of multivariate integration for Korobov spaces. Math.
Comp., 80(274):905–930.

Doerr, B. and Friedrich, T. (2009). Deterministic random walks on the two-dimensional
grid. Combin. Probab. Comput., 18(1-2):123–144.

Drmota, M. and Tichy, R. F. (1997). Sequences, discrepancies and applications, volume
1651 of Lecture Notes in Mathematics. Springer-Verlag, Berlin.

Feller, W. (1968). An introduction to probability theory and its applications. Vol. I.
Third edition. John Wiley & Sons Inc., New York.

Fill, J. A. (1998). An interruptible algorithm for perfect sampling via Markov chains.
Ann. Appl. Probab., 8(1):131–162.

Fill, J. A., Machida, M., Murdoch, D. J., and Rosenthal, J. S. (2000). Extension of Fill’s
perfect rejection sampling algorithm to general chains (extended abstract). In Monte
Carlo methods (Toronto, ON, 1998), volume 26 of Fields Inst. Commun., pages 37–52.
Amer. Math. Soc., Providence, RI.

Gaver, D. P. and O’ Muircheartaigh, I. G. (1987). Robust empirical Bayes analyses of
event rates. Technometrics, 29(1):1–15.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities. J. Amer. Statist. Assoc., 85(410):398–409.

Gilks, W., Richardson, S., and Spiegelhalter, D. (1996). Markov chain Monte Carlo in
practice. Chapman & Hall/CRC.

Gnewuch, M., Srivastav, A., and Winzen, C. (2009). Finding optimal volume subin-
tervals with k-points and calculating the star discrepancy are NP-hard problems. J.
Complexity, 25(2):115–127.

Häggström, O. (2002). Finite Markov chains and algorithmic applications, volume 52 of
London Mathematical Society Student Texts. Cambridge University Press, Cambridge.

82

Häggström, O. and Nelander, K. (1999). On exact simulation of Markov random fields
using coupling from the past. Scand. J. Statist., 26(3):395–411.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numer. Math., 2:84–90.

Halton, J. H. and Zaremba, S. C. (1969). The extreme and L2 discrepancies of some
plane sets. Monatsh. Math., 73:316–328.

Hastings, W. (1970). Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109.

Hlawka, E. (1979). Theorie der Gleichverteilung. Bibliographisches Institut, Mannheim.

Hohendorff, J. M. (2005). An introduction to markov chain monte carlo. Lecture notes,
University of Toronto. http://probability.ca/jeff/ftpdir/johannes.pdf.

Hunter, J. J. (2009). Coupling and mixing times in a Markov chain. Linear Algebra
Appl., 430(10):2607–2621.

König, W. (Sommersemester 2003). Stochastische algorithmen. Vorlesungsskript, Uni-
versität zu Köln. http://www.wias-berlin.de/people/koenig/www/AlgStoch.pdf.

Knuth, D. E. (1981). The art of computer programming. Vol. 2. Addison-Wesley Publish-
ing Co., Reading, Mass., second edition. Seminumerical algorithms, Addison-Wesley
Series in Computer Science and Information Processing.

Korobov, N. M. (1948). On functions with uniformly distributed fractional parts. Dok-
lady Akad. Nauk SSSR (N. S.), 62:21–22.

Kuipers, L. and Niederreiter, H. (1974). Uniform distribution of sequences. Wiley-
Interscience [John Wiley & Sons], New York. Pure and Applied Mathematics.

Lécot, C. and Tuffin, B. (2004). Quasi-Monte Carlo methods for estimating transient
measures of discrete time Markov chains. In Monte Carlo and quasi-Monte Carlo
methods 2002, pages 329–343. Springer, Berlin.

L’Ecuyer, P. (1999). Tables of linear congruential generators of different sizes and good
lattice structure. Math. Comp., 68(225):249–260.

L’Ecuyer, P., Lécot, C., and Tuffin, B. (2008). A randomized quasi-monte carlo simula-
tion method for markov chains. Operations Research, 56:958–975.

83

L’Ecuyer, P. and Sanvido, C. (2010). Coupling from the past with randomized quasi-
Monte Carlo. Math. Comput. Simulation, 81(3):476–489.

Lemieux, C. and Sidorsky, P. (2006). Exact sampling with highly uniform point sets.
Math. Comput. Modelling, 43(3-4):339–349.

Levin, D. A., Peres, Y., and Wilmer, E. L. (2009). Markov chains and mixing times.
American Mathematical Society, Providence, RI. With a chapter by James G. Propp
and David B. Wilson.

Liao, L. G. (1998). Variance reduction in gibbs sampler using quasi random numbers.
Journal of Computational and Graphical Statistics, 7:253–266.

MacKay, D. J. C. (2003). Information theory, inference and learning algorithms. Cam-
bridge University Press, New York.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equa-
tion of state calculations by fast computing machines. J. Chem. Phys., 21:1087.

Morokoff, W. J. and Caflisch, R. E. (1993). A quasi-Monte Carlo approach to particle
simulation of the heat equation. SIAM J. Numer. Anal., 30(6):1558–1573.

Niederreiter, H. (1977). Pseudo-random numbers and optimal coefficients. Advances in
Math., 26(2):99–181.

Niederreiter, H. (1986). Multidimensional numerical integration using pseudorandom
numbers. Math. Programming Stud., (27):17–38. Stochastic programming 84. I.

Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monatsh.
Math., 104(4):273–337.

Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods,
volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Owen, A. B. (2005). Multidimensional variation for quasi-Monte Carlo. In Contemporary
multivariate analysis and design of experiments, volume 2 of Ser. Biostat., pages 49–
74. World Sci. Publ., Hackensack, NJ.

Owen, A. B. (2009). Monte Carlo and quasi-Monte Carlo for statistics. In Monte Carlo
and quasi-Monte Carlo methods 2008, pages 3–18. Springer, Berlin.

84

Owen, A. B. and Tribble, S. D. (2005). A quasi-Monte Carlo Metropolis algorithm.
Proc. Natl. Acad. Sci. USA, 102(25):8844–8849 (electronic).

Propp, J. and Wilson, D. (1998). Coupling from the past: a user’s guide. InMicrosurveys
in discrete probability (Princeton, NJ, 1997), volume 41 of DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., pages 181–192. Amer. Math. Soc., Providence, RI.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains
and applications to statistical mechanics. In Proceedings of the Seventh International
Conference on Random Structures and Algorithms (Atlanta, GA, 1995), volume 9,
pages 223–252.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-
Hastings algorithms. Statist. Sci., 16(4):351–367.

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and
MCMC algorithms. Probab. Surv., 1:20–71 (electronic).

Rosenthal, J. S. (2003). Asymptotic variance and convergence rates of nearly-periodic
Markov chain Monte Carlo algorithms. J. Amer. Statist. Assoc., 98(461):169–177.

Schmidt, V. (2010). Markov chains and monte-carlo simulation. Lecture notes, Ulm Uni-
versity. http://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/

lehre/ss10/MCMC/Schmidt_MCMC_2010.pdf.

Schmidt, W. M. (1972). Irregularities of distribution. VII. Acta Arith., 21:45–50.

Sobol, I. M. (1974). Pseudorandom numbers for the construction of discrete Markov
chains by a Monte Carlo method. Ž. Vyčisl. Mat. i Mat. Fiz., 14:36–44, 266.

Tribble, S. D. (2007). Markov chain Monte Carlo algorithms using completely uniformly
distributed driving sequences. PhD thesis, Stanford University.

Tribble, S. D. and Owen, A. B. (2008). Construction of weakly CUD sequences for
MCMC sampling. Electron. J. Stat., 2:634–660.

van der Corput, J. G. (1935). Verteilungsfunkionen. Nederl. Akad. Wetensch. Proc. Ser.
B, 38:813–821.

Wilson, D. B. (2000). Layered multishift coupling for use in perfect sampling algorithms
(with a primer on CFTP). In Monte Carlo methods (Toronto, ON, 1998), volume 26
of Fields Inst. Commun., pages 143–179. Amer. Math. Soc., Providence, RI.

85

Woźniakowski, H. (1991). Average case complexity of multivariate integration. Bull.
Amer. Math. Soc. (N.S.), 24(1):185–194.

86

