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Kurzfassung

Seit einigen Jahren werden Mikrocontroller in der Automobilindustrie als Steuergeräte
für Bremsen oder Motorsteuerungen genutzt. Heutzutage gibt es viele Multi-Core Mikro-
controller, die aber nicht alle für sicherheitskritische Anwendungen in der Automobilin-
dustrie verwendet werden können.

Immer, wenn einige kritische Aufgaben ausgeführt werden müssen, muss sichergestellt
sein, dass der Mikrocontroller ordnungsgemäß funktioniert und das die funktionale Sicher-
heit im System erhalten bleibt.

Während der Laufzeit können Störungen (z.B. Übergangsfehler, gekoppelte Fehler
usw.) in den verschiedenen Teilen des Mikrocontrollers auftreten. Diese Fehler können zu
Ausfällen des gesamten Systems führen.

Zur Erkennung und Handhabung solcher Fehler sind Mikrocontroller mit diversen
Sicherheitsfunktionalitäten ausgestattet. Diese können in Form von Architekturen eines
Lock-Step Modus, asymmetrischen Modus, symmetrischen Modus oder Selbsttests real-
isiert sein, die entweder in Hardware oder in Software implementiert werden.

In dieser Arbeit wurden verschiedene Multi-Core-Architekturen und verschiedene Selb-
sttestalgorithmen bewertet.

Das erste Ziel war, zur Verfügung stehende Multi-Core-Mikrocontroller mit Bezug
auf die gewählten Kriterien zu bewerten. Ein weiteres Ziel war die Entwicklung und
Implementierung eines Online-Selbsttest-Konzepts für einen ausgewählten Multi-Core-
Mikrocontroller. Dieses Konzept beinhaltet, software- und hardwarebasierte Selbsttests
für bestimmte Teile des ausgewählten Mikrocontrollers wie RAM oder CPU.

Diese Hardware und softwarebasierten Selbsttests werden durch einen externen Watch-
dog ergänzt, der es ermöglicht, den Programmablauf zu überwachen.
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Abstract

During the last years microcontrollers have been used for control devices in the auto-
motive industry like auto-brakes, motor control etc. Nowadays there are many multi-core
microcontrollers, but not all of them can be used in the automotive industry for safety
critical applications. Whenever some critical tasks are executed, it must be ensured that
the microcontroller is working correctly and the system maintains the functional safety.

During runtime, faults can occur in various parts of the microcontroller such as ALU,
RAM or peripherals starting from, stuck at faults, transition faults, coupled faults etc.
These faults can cause failures of the complete system.

To detect and handle such faults, microcontrollers are equipped with safety features in
the form of architectures like lock-step mode, asymmetric mode, symmetric mode or self
tests which are implemented either in hardware or in software.

Different multicore architectures and different self testing algorithms were reviewed for
the thesis. The first goal was to evaluate available multicore microcontrollers with respect
to chosen evaluation criteria. Another goal was to design and implement an online self
test concept for a selected multi-core controller, which includes software based self tests
as well as hardware built-in self tests for specific parts of the chosen microcontroller like
RAM or CPU cores. These hardware and software-based self tests are supplemented by
an external watchdog that is used for the program flow monitoring.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, different accidents happen while driving a car or travelling by plane. There
were cases in which cars on the highway automatically executed the emergency braking
without interaction by the driver, or such cases when, during a radiotherapy, the device
killed a patient with an overdose [Mon99].

In our daily life, everyone is accustomed only to use different devices, but many do
not realize that the machines have a certain functional area. The slightest change in the
system can cause a total system failure.

These changes can be different in the electronic systems. It is sufficient that only a bit
flip occurs, to cause that the brakes of a car do not work because this bit flip makes the
program flow in the control unit jumps somewhere else.

Such changes or faults which produce unwanted results in a system can have several
causes. If a complete control system is considered, faults can be found in different forms:
control faults, development faults or mechanical faults because of mechanical utilization.

Faults can be classified as follow [Mon99]:

1. Source: development faults, run-time faults

2. Type: permanent, sporadic, conditional faults

3. Region: value, time, unsolicited actions

Development faults are permanent faults which occur during the development process
because of the high complexity, low verifiability or insufficient specification and are found
during the system lifetime. Run-time faults occur because of hardware, communication,
mechanical failures or overloading.

Permanent faults last until they are treated. Sporadic faults occur spontaneously and
are not reproducible until the fault source is found. Conditional faults are caused by
temperature, vibration or radiation disorders.

Fault based on the region can occur if the system does not generate the correct output
or if it fails to meet the timing requirements. Such failures can occur if the real time task
does not fulfil the response time window or the scheduler cannot practically provide the
theoretically controllable load.

10
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Once a fault has occurred, it can take a long time until it brings the entire system in
an undefined state. Depending on where it occurs, it may have different effects on the
system and the environment. When the fault is in the processor core it is very likely that
it can produce an accident.

Figure 1.1: Action chain for fault handling [Mon99]

A system must always be ready to intercept and handle faults. Fault-tolerant measures
must ensure that the system still works correctly if a fault is detected, or the system must
switch into a safe state. The complete chain steps of fault handling after a fault occurs,
illustrated in Figure 1.1, are: detection, reporting, delimiting, treating, and resolving.

After the faults are detected, other modules must be alerted. Then it must be located
to prevent the fault from spreading over the system. Hence it must be determined which
module is responsible for the fault and the particular module must be treated by fault
tolerant mechanisms. At the end, the fault can be resolved either by fault model or by
user intervention. All steps in the action chain can be taken in two ways:

1. Operative - The fault model is always and periodically looking for faults in the
system in order to find and correct them.

2. Responsive - If errors occur, they are reported. A module detects the error and
reports it to an error handling module.

Such operative or responsive measures can be integrated into the hardware or in form of
software-based self-tests (SBST). SBST are testing techniques, executed in the background
of the application. However, the integration of such SBST tests needs additional ROM
space and execution time.

As a motivation to write this thesis, there was the challenge to see and learn more
about, how the functional safety can be achieved. This is not only about how the con-
cepts are implemented but also to explore different algorithms and their mathematical
background. The result should be a software concept which could be implemented in such
a system in order to maintain the safety integrity.
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During the preparation of this thesis, different multi-core microcontrollers for safety-
relevant embedded systems which are available on the market were evaluated in terms of
safety-related components, fault coverage and performance.

1.2 Objective

Designing an effective online testing strategy requires information about the architecture,
RAM, ROM, instruction set, branch prediction etc. This information must be collected
and evaluated because in (E/E/PES) systems, failures can arise in different parts of the
system, which are caused by hardware, software, electromagnetic or different influences.

For creating such an online-testing strategy, sufficient knowledge about the architecture
of the system and different algorithms should be present. Hence, the first task of the thesis
was:

1. Study different safety strategies and architectures

2. Study different algorithms, their mathematical structure and fault models

3. Create a list of evaluation criteria based on which the microcontrollers will be eval-
uated

4. Check which safety features and protection mechanisms that are implemented in
different architectures

5. Based on the gained knowledge create a testing strategy

6. Implement the online periodic testing strategy and evaluate the results

After the evaluation task is finished, the online testing strategy which will be imple-
mented to maintain the integrity of the system during runtime, the testing strategy would
invoke these functional properties defined in previous tasks. This means that as a part of
the strategy, the support of hardware tests will be included.

At the end, the gained knowledge will form an on-line periodic strategy where the tests
which are developed must collaborate with each other to run in the background during
runtime and the application will perform its normal operation.

1.3 Structure

The second chapter gives a detailed introduction to the field of safety-related concepts,
architectures and software-based self-tests. Fail-safe safety strategies are used to achieve
a safe state in case of a fault. Therefore, online fault detection is necessary.

Safety architectures are created using different algorithms which are proofs of concept
in the field and provide safety using redundant hardware components that minimize the
causes of common cause failures (CCF).

Software-based self tests (SBST) are described which are part of a solution to provide
safety using the functional and structural information of microcontrollers. Using this
information, tests are generated and applied to cover faults which can cause unsafe states.
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At the end of the chapter, the state of the art in the field of RAM testing algorithms
are described starting from the mathematical background, complexity, and execution time.

The third chapter describes the different architectures which are evaluated and based
on the evaluation criteria; a concept is built to cover the faults during runtime in the
TMS570 microcontroller. The concept is an online strategy which consists of hardware
and software tests.

Chapter four presents the implementation of the concept described in the fourth chap-
ter. This chapter covers the evaluation board and the tool chain which are used for the
development, and each test is described regarding the implementation, execution time and
fault injection.

Chapter five presents the conclusion of this thesis and prospects for future work.



Chapter 2

Related Work

2.1 Hardware architectures and strategies

2.1.1 Faults and Failures

In the field of safety related systems, microcontrollers are very common devices. The
safety integrity of these devices must be maintained during system operation. Appropriate
testing strategies are required to detect faults in microcontrollers during runtime to be
able to achieve and maintain a safe state.

Figure 2.1: Finite State Machines describing basic faults

Faults are generally subdivided into:

1. Hardware faults

2. Software faults

Another group of faults which can be found in architectures where cores are physical
coupled are the common cause failures (CCF) [Tum09]. Here, a fault as the root cause
affects the entire system because of the coupling mechanism. The fault as root cause can
be: temperature spreading, using same power supply, or clock source for both cores etc.

14
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Dependent on which part of the microcontroller the faults occur, they are called as
follows:

1. CPU Faults

• Arithmetic faults

• Logical faults

• Conditional faults

2. RAM Faults

• Stuck at faults

• Transition faults

• Coupling faults

3. Peripheral Faults

The arithmetical faults cause the ALU to perform calculations incorrectly. This can
be multiplication, addition, division etc. Logical and conditional faults are the reason
that comparisons and jumps in programs are not performed correctly and can cause an
instruction routine jump elsewhere than intended.

But the most important faults which must be avoided in a system are RAM faults.
Any single bit fault in a RAM cell can be a root cause for other failures in the system
such as previously described CPU faults.

Stuck-at faults(SAF) can occur in two forms: stuck at 0 and 1. As illustrated in the
finite state machine, stuck at 0 or 1 means that any attempt to change the state of a RAM
cell from 0 to 1 or vice versa fails and the cell holds the original value.

Transition faults(TF) prevent a cell from changing its actual state from 0 to 1 or 1 to
0. The difference between transition faults and stuck at faults are that, transition faults
affect just one side of the state transition.

Coupling faults(CF) ensure that any transition in one RAM cell from one state to
another causes the changing of their actual state to one or to many other cells.

These three basic faults are the basis for other faults that can occur in RAM memory
and are illustrated in the Table 2.1 [WWW06]:

Fault Abbreviation

Address decoder faults AF

Stuck-open fault SOF

Data retention fault DRF

Inversion coupling fault CFin

Idempotent coupling fault CFid

State coupling fault CFst

Read disturb fault RDF

Table 2.1: Table with faults that can occur in RAM



CHAPTER 2. RELATED WORK 16

Each fault is illustrated in Table 2.1 and has the following meaning:

• The address decoder takes one or many input bits and constructs a specific address
as output. If some specific cells, addresses or blocks of addresses, cannot be accessed,
a fault is present.

• If a cell cannot be accessed because of a faulty voltage amplifier which cannot sense
the voltage difference of the bit line, it is a stuck open fault.

• If a specific cell cannot hold its value for a specific time due to a leakage current or
pull-up resistor problems, it is a data retain fault.

• While a writing operation is performed on the cell ”j”, the cell ”i” changes its value
and the fault is called an inversion coupling fault.

• If a cell ”j”, during a transition operation forces any other cell ”i” on the RAM
memory to be in a fixed value forever, the fault is called idempotent coupling fault.

• If a coupled cell or line ”i” makes a forced transition to a specific value x only if the
coupling cell or line ”j” is in state y, then it is described as a state coupling fault.

• If a cell during reading changes its logical value, it is called read disturb fault.

2.1.2 Fail-Safe System Strategies

Because of the various fault types, different strategies are developed to maintain the in-
tegrity in a controller. In order to fulfil all specific constraints in different architectures,
adequate strategies are needed.

These strategies must fulfil different criteria, but the most important of them are
[SD06]:

• A strategy must satisfy system safety requirements.1 Fault detection and handling
must be provided within the safe system response times.

• The system is transitioned to a safe state within the required safe fault response
time.

• Level of independent checking provided

• Performance

• Technology availability

• Development effort

So far, there have been different proven strategies that generally use watchdogs, dual,
symmetric and asymmetric architectures.

1SIL/ASIL levels
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2.1.2.1 Single Controller Strategy

A single controller executes the instructions of an application. At the same time, self-tests
that can be hardware circuitry or software self tests, observe the internal state of the
architecture.

With this mechanism, it can only achieved to catch the conditions related to the pro-
gram flow such as endless loops or incorrect flows, but it does not catch wrong calculations
in the output. A possible solution for this strategy is to implement protection mechanisms
that periodically check the internal state of the ALU or RAM, and to have a separation
between the critical parts of the architecture.

The safety of such systems depends on the reliability of the watchdog circuits. If the
properties of such a circuit [HA99] are observed, it is possible that in some special cases
the watchdog does not detect the failures.

If the reset occurs within a defined period, the watchdog timer reacts. If however,
a fault occurs in the microcontroller, a faster reset can be generated, and the watchdog
is not able to differentiate between a normal refresh with period T and a period that is
smaller than T.

To overcome this limitation, extra logic parts must be included, to make the watchdog
reliable [HA99]. Although equipped with extra protection mechanisms, it has the problem
that extra self-test routines must be implemented (hardware or software) for the integrity.
This strategy is illustrated in Figure 2.2.

Figure 2.2: Single controller strategy [SD06]

2.1.2.2 Symmetric Controller Strategy

The next strategy [SD06] is the symmetric strategy. Here, the instructions are executed in
parallel and the results of the outputs are compared. Synchronization plays a very impor-
tant role in that matter, because every processor has a slightly different clock frequency.

The comparison can be made for every instruction or periodically (at specific points
of time). This strategy can cover almost all errors that may occur during calculation in
hardware or software.

Advantages of this strategy can be specified as:

• Almost all random hardware faults can be detected

• Complex self-checking techniques can be avoided
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Disadvantages or limitations:

• Both processors must be synchronized

• Large size and cost because the architecture has two processors

Figure 2.3: Symmetric controller strategy [SD06]

2.1.2.3 Dual Core Controller Strategy

This strategy is similar to the single controller strategy. The difference is that this strategy,
has two cores that compare the output of each other and can be combined with a watchdog
circuitry to avoid common cause failures. Additional software self-checking diagnostics
can be used [LCD+05], such as checksums, redundant coding or RAM tests to extend the
integrity of the controller.

Failures that occur in the relation with the CPU can be detected immediately, but it
depends on the execution time of the self-checking routines, for example ALU Checking,
output checking, etc.

Two architectures that are based on this strategy are Dual-Core Lock Step on Page 20.
Other possible system architectures can be found in [Has]:

• Heterogeneous → runs different OSs and has different types of cores

• Asymmetric Multi-Processing → containing two or more cores of the same type and
able to run different or same OS

• Symmetric Multi-Processing → runs same OS with same core types

Figure 2.4: Dual-Core controller strategy [SD06]
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2.1.2.4 Asymmetric Controller Strategy

This strategy as depicted by Figure 2.5 consists of two processors that are connected to
each other via a dedicated line. The second controller can be perceived as a watchdog
circuit, which monitors the primary processor. It does not execute application-specific
codes, but it only checks the main controller.

Typically, the second controller is a standard microcontroller (off-the-shelf), because
for using specific ASICs, it needs more design time and has higher costs.

This strategy has a good diagnostic coverage and guarantees controller integrity, be-
cause an external processor checks its integrity and not an internal self-checking procedure.

Figure 2.5: Asymmetric controller strategy [SD06]

2.1.2.5 Distributed Controller Strategy

In this strategy, two controllers are connected with each other in a network. One controller
serves as primary controller and the second checks the functionality of the first. According
[SD06] to the way, how the functionality of the second controller is implemented, it can
be grouped in two methods:

1. Independent execution of checking procedure

2. Independent checking of the primary processor

With the first method, the primary controller sends the received signal from the sec-
ondary controller and the results to the second controller, so the second controller performs
the same operations, and if there is a discrepancy, it can shut-down or disable the main
controller.

With the second method the second controller periodically sends a seed to the primary
controller, performs calculations and sends the result back. This result is compared to
a pre-calculated value to see if something in the primary controller is going wrong. The
”seed” is used in many self-checking methods to check the execution of the program, and to
see if a program has executed all the branches. For more information, refer to [LCD+05].

Depending on factors like network bandwidth, response time and synchronization, two
shutdown strategies of the main microcontroller are possible:
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1. Dedicated shutdown via a dedicated wire from the second to the primary controller
(hard-wired)

2. Shutdown via a local network controller in the primary controller

Figure 2.6: Distributed controller strategy [SD06]

2.1.3 Multi-core Architectures with redundant structures

Most of today’s modern controller architectures use redundancy to give controllers the
fault-tolerant property. But only with redundancy, the fault-tolerant property cannot
hold because of common cause faults that can occur in single or dual core architectures
[Tum09].

Other measures are needed to extend this capability, such as runtime tests, hardware
isolation like guard rings or memory protection mechanisms. In [BFM+03] different ar-
chitectures are described that will be explained later on.

2.1.3.1 Lock-Step Dual & Dual Lock-Step Processor Architectures

The first architecture is a so-called lock-step. It contains two processors that are connected
by a compare unit and are called ”master” and ”checker”.

The master executes the instructions and the checker is responsible to execute the same
instructions as the ”master”. The compare unit as illustrated in Figure 2.7a continuously
compares whether the calculations are correct.

Another important property is that the Compare Unit check only whether an error has
occurred during calculations, but it does not identify which part of the system causes this
error. Normally, to detect such errors and errors that happen because of common cause
faults [Tum09] an extra logic is needed implementing Error Correction Codes and parity
bits in peripheral devices.

Another modification of the first architecture is illustrated in Figure 2.7b, that includes
two lock-step controllers as in Figure 2.7a, that are interconnected to achieve enhanced
coverage.

Fault tolerance is guaranteed only for the tasks that are executed in parallel, and yields
fault coverage of about 100%. The tasks can be checked internally in each controller by
software self tests.
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(a) Lock-Step Dual Architecture (b) Dual Lock-Step Architecture

Figure 2.7: Architectures based on the Lock Step [BFM+03]

2.1.3.2 Loosely-Synchronized Dual & Triple Modular Processor Architec-
tures

In Loosely-Synchronized architecture two processors are connected to each other but are
independent and have their own memory and flash parts. Another strategy is imple-
mented here. Only a set of tasks marked as critical are duplicated, and each controller is
responsible for checking the result of the other.

If a mismatch occurs, self-checking techniques can be involved to find the faulty part
of the system.

The last architecture is illustrated in Figure 2.8b. Here, three controllers execute the
same instructions and send the results to the Majority Voter, which decides, based on the
results, whether the calculations are correct.

2.1.3.3 Generic Dual Core Architecture

Based on the previously described architectures, safety-related optimizations were pro-
posed. An example is reconfigurable dual-core [KS06] [BFM+03] as visualized in the
Figure 2.9. Kottke and Steininger [KS06] proposed a reconfigurable dual core architecture
to handle demands on safety and computing power, efficiently using the dual core. In
almost all architectures, the system works in master/checker mode for the tasks that are
marked as critical, whereas the non-critical tasks are processed in normal mode.

The special feature of the reconfigurable dual-core system is that it can be switched
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(a) TMR Architecture (b) Loosely-Synchronized Dual Architecture

Figure 2.8: TMR and Loosely-Synchronized Dual Architecture [BFM+03]

between two modes of operation:

1. Safety mode

2. Performance mode

For safety-critical applications, the safety mode operates in lock-step mode. The first
core or the master controls the peripherals and the memory. The checker is not connected
with the peripherals but it receives the same instructions and the results are compared
with the master outputs.

To avoid common cause failures which can detected be in form of electromagnetic or
any other external influence, the outputs of the master core are delayed for 1.5 clock cycles.

In safety mode, the same instruction stream is executed, and a kind of synchronization
is needed in order to assure that the registers and cache are identical before it is switched
from performance to safety mode. This can be done using an operating system. The main
challenge is the cache synchronization because it is a non deterministic part. A possible
solution is to flush all the cache tables before the mode switch is performed, or use a flag
list which identifies which cache lines are valid in the safety mode.

In the performance mode, both cores are working independently as a dual core system,
and the delay on the instructions is disabled. But these features can be used only in the
safety and performance mode. An extra module is needed such as Memory Management
Unit, which allows access to critical regions only in the supervisor mode.
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Figure 2.9: Reconfigurable dual core architecture [KS06]

The main memory is subdivided into the data and instruction memory, which are
equipped with self-test routines to detect faults during during runtime. To prevent access
to the same memory region, two special units are used to manage the RAM memory:

1. Instruction RAM control unit

2. Data RAM control unit

In the safety mode the instruction control unit serves exclusively the core which man-
ages the peripherals. In the performance mode, a priority scheme is built to manage the
access from both cores. At a specific address, one bit is used as identification for the
operating mode.

2.2 Software strategies

2.2.1 Software Based Self tests

As multicore processor architectures becomes more popular, the time which is needed
to test the cores scales depends on the number of cores. This prompts a challenge for
the industry to consider new testing methods and integrate them into the microprocessor
test flow. The purpose of the methods was to target the defective parts per million rate,
which is a demand on quality product development. Such testing methods are known as
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functional self testing (instruction-based self testing) or commonly ”software-based self-
testing” [WWC+05].

”The key idea of SBST is to exploit on chip programmable resources to run normal
programs that test the processor itself” [WWC+05]. Some SBST tests, exploit the instruc-
tion set of the Architecture and performs safety critical checks in the background using
the actual clock frequency.

Software-based self testing methods [PGSR10] are subdivided as illustrated in Fig-
ure 2.10 into two groups:

1. Functional methods

2. Structural methods

The first group exploits only the functional information about the processor, such as
the Instruction Set Architecture during the test generation. Structural methods use the
structural information of the architecture to generate the tests. The information can be
either gate-level or RTL description.

This categorization is performed based on the type of processor description and not
on a specific fault model.

Apart from this categorization in the group of functional tests, there are also tests,
that concentrate on specific fault models. In this group are software analysis methods and
algorithms like march, galloping, walking, checkerboard and butterfly, which are primarily
used to test RAM memories.

Figure 2.10: Tree categorization of SBST methods [PGSR10]
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2.2.2 Functional Tests

Functional tests as illustrated in Figure 2.10 based on the logic they use are subdivided
into two groups:

1. Randomized - generate tests with specific constraints during runtime

2. Feedback based - evaluate previous results to be considered for the new test gener-
ation during development time

Good representatives for the randomized tests are the methods defined in:

• VERTIS [SA98]

• FRITS [PML02]

• Load & GO [BHW06]

VERTIS uses the instruction set from the Programmers’ Manual to extract the infor-
mation about the functionality of the processor. This information is grouped and written
in a predefined format that can be used by the generation tool. This file format can be
found in [SA98]. The test generated from the tool is pseudo assembler and can be adopted
easily for different architectures.

VERTIS can generate data randomly or as specified by the user which are used for
different processor instructions. With the generated test sequences different parts of the
system are tested from the functional view like: CPU, memory, fetching units etc.

By using this methodology of generating random tests, two processors were tested, and
a fault coverage of about 94.04% for single stuck-at faults was achieved, which is a good
result compared to the other techniques which have a smaller fault coverage as presented
in Tables 2.2 and 2.3.

HITEC CRIS VERTIS

FaultCoverage [%] 81.55 91.30 94.04

CPU time 119 min 180 min 3 min

Table 2.2: VERTIS compared to the methods HITEC & CRIS for the Viper Processor
[SA98]

HITEC CRIS VERTIS

FaultCoverage [%] 22.28 46.73 90.20

Efficiency [%] 24.89 47.64 90.20

CPU time 50.4 hrs 9.31 hrs 3.1 min

Table 2.3: VERTIS compared to the methods HITEC & CRIS for the GL85 Processor
[SA98]

FRITS as a tool is used for microprocessors which have an extended instruction set.
FRITS tests (kernels) are executed in real time as presented in execution flow Figure 2.11.
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They do not produce any cache misses and therefore it is not necessary to control the
address and bus cycles.

Figure 2.11: Execution flow of the FRITS tool [PML02]

These kernels have several constraints to be generated:

• Tests should not produce any bus cycle

• Instruction generation efficiency

• User-controlled instruction generation

• Code size, to be portable in the target on-board cache

• Debug possibility to detect failures

FRITS is used to generate tests for the Intel architectures, x86 ISA and Intel Itanium
with a fault coverage of 70% and 85% to 90% for the second architecture.

The method Load & GO tool [BHW06] describes a process to insert the code into
the cache and to start the program execution from there. To apply this method several
problems must be solved:

• The program execution flow must hit every time in the cache

• Generation of the randomized tests
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• To catch the results of the test (passed or failed)

For the proof of concept the UltraSPARC microprocessor was used, which shows that
even with all simulations and test optimization this architecture lacks non-determinism of
the flow.

The second category of functional tests is feedback-based [RSCS04], with the µGP
architecture as illustrated in Figure 2.12.

The method generates a set of testing programs and optimizes them using the feedback
information gained from the simulator. Afterwards, they are evaluated with different
coverage metrics.

In the first step, the syntax of the target assembly language is encoded in a compact
format, which can be used by the code generators. After that, a set of valid assembler
programs are generated forming the initial seed (set). The µGP automatically optimizes
the test set by tuning and modifying the assembly programs by exploiting the subroutines
and software traps in the generated code.

Using this method two processors were tested, i8051 and Leon22. With about 8.4 mil-
lions of simulated instructions, µGP generated a set with about 100% coverage evaluating
five million instructions.

Figure 2.12: Functional feedback tests realized with µGP architecture [RSCS04]

2.2.2.1 Software Fail-Safe Techniques

In the group of SBST tests, many software fail-safe techniques [LCD+05] exists, but the
most important are:

• Read/Write complementary data

• RAM test with checksums

• Redundant coding

• Program flow monitoring

2http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.gaisler.com/products/leon2/leon.html
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Working with complementary data it is the first basic technique. Specific data is
written in a part of the memory, the one’s complement is calculated and stored in a
separate part of the system. Checking whether a fault has occurred in the memory is
done by the summation of these two values. The result should be zero. This checking can
be done periodically or randomly based on the testing strategy. The main limitation of
this technique is the RAM size, because in order to store every complementary value, a
separate storage is needed.

RAM tests are performed to assure that data can be held and manipulated without
errors. RAM tests can be done during system initialization, before the program is running,
or during runtime, online periodically.

Checksums can be used to check the integrity of ROM, Flash, or EEPROM. For system
values that do not change at runtime, the checksum can be calculated and stored in ROM.
But checking the entire ROM needs many cycles, and that requires time. Testing the
EEPROM is faster. An approach to reduce testing time is to check only the pieces that
are marked as safety-critical. Checksums can find faults like memory errors, bit flips, and
other data changes.

Redundant coding is a technique to implement, store, and run the same safety-critical
code in different pieces of memory. For the same input, the result should be every time
the same. It is a software protection method which needs extra implementation to assure
that the code fragments do not have access to the same data and that the program itself
runs correctly. The last technique is the program flow monitoring.

Program flow monitoring (PFM) is a technique to include a specific seed/key values
program flow. With the help of these two values, it can be checked whether the program
has executed all steps. These values can be inserted between function calls, or can be
integrated into the program structure. Based on how the PFM values are included, the
PFM can be implemented in the following ways:

1. Application-independent

2. Application-dependent

3. Time-dependent

The application-independent method updates the values between each function call. A
disadvantage of this method is that the value can be updated without execution of the
function. The advantage is that the PFM code can be reused without the modification
across the application.

The application-dependent PFM is tightly integrated into the program execution. The
update of the value is performed within the function, and assures that all functions are
called.

The time-dependent PFM helps to verify that specific functions are called within a
required timing window. This is accomplished by updating the values at specific times,
during program execution.

2.2.2.2 March Tests

March tests [BBC+08], [Goo93] form a group of tests which exist in different variations
that are simple and have linear complexity O(n).
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The basic operation in all variations is called ”march element”. Every march element
contains basic operations which are performed in a cell and then proceeds to the next cell:

• Writing 0 into the cell - w0

• Reading expected 0 from the cell - r0

• Writing 1 into the cell - w1

• Reading expected 1 from the cell - r1

After these operations are performed in a cell, the next cell is selected with increasing
(⇑) or decreasing(⇓) address order. The symbol (m) is used if the addressing order is not
important.

Very common variations of March Algorithm are:

1. MATS+ described with the formula 2.1

2. March C- described with the formula 2.2

3. March B described with the formula 2.3

4. March G described with the formula 2.4

with the following mathematical representation:

m (w0) ⇑ (r0, w1) ⇓ (r1, w0) (2.1)

m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0) (2.2)

m (w0);⇑ (r0, w1, r1, w0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0) (2.3)

m (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0);

(DELAY ;m (r0, w1, r1);DELAY ;m (r1, w0, r0)) (2.4)

In order to detect the AF 2.1.1 faults, fulfilling the following conditions as illustrated in
Table 2.4 is needed, which includes at least two march elements and starts with a different
addressing order.

The MATS+ test finds all address decoder faults(AF) 2.1.1 because of the mathe-
matical structure and it fulfils the condition in the Table 2.4. Stuck at faults (SAF) are
detected because in the Equation 2.1, the values 0 and 1 are read from a cell. The number
of operations to complete this test is 5n3.

3”n” is the number of cells in a memory
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Condition March element

1 ⇑ (rx, ...wx)

2 ⇓ (rx, ...wx)

Table 2.4: Two conditions for a test to detect the AF Faults

The MarchC- test is an extension of the MarchC, which has linear complexity O(n)
and requires 10n operations to complete the test. Three groups of faults are targeted
with this test: AF because it satisfies the conditions in Table 2.4, SAF because in the
equation 2.2, it reads 1 and 0 from the cells and all CFin and CFSsts faults are detected
due to the successively read and write operations.

The MarchB test which requires 17n operations, targets and detects the following
faults: all AFs, SAFs, TFs, CFins and linked CFids, described in Section 2.1.1.

Condition March element

1 ..., rx, ...rx

2 ..., rx, ...rx

Table 2.5: Two conditions for a test to detect the COF Faults

A COF Fault is present if a specific RAM cell cannot be accessed. To ensure that every
cell is accessible, it must be guaranteed that 0 and 1 is read from the cell as illustrated in
Table 2.5. To extend a march test to allow the detection of DRF faults as well, it must
contain delays between writing a value ”x” and reading it back.

The MarchG test is an extension of the MarchB test which includes these two exten-
sions and specifically detects COF and DRF faults. To complete the test it requires 23n
+ 2Del4 operations.

2.2.2.3 Abraham Test

Another functional test for RAM memory is the Abraham Test. In order to apply the
test, there need not be structural information about the processor and covers specifically
stuck at faults and coupled faults. It not only covers these faults but it covers the faults
that occur in different parts of the RAM:

1. Memory Cell Array,

2. Read/Write Logic and

3. Decoder Logic

4Delayed operations
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Figure 2.13: Abraham Test [NTA78]

The test consists of three conditions which are necessary to be fulfilled:

1. Every memory cell must make these forced transitions:

• A 0-1 Transition

• A 1-0 Transition

and are read after each transition, before any other operation is made.

2. For each pair of cells (i, j) cell ”i” must be read before the cell ”j” makes a forced
transition, and before the cells ”i” and ”j” make any next forced transition for the
following states ”i” and forced transitions ”j”:

• Cell ”i” in state 0, cell ”j” makes a 0-1 transition

• Cell ”i” in state 1, cell ”j” makes a 0-1 transition

• Cell ”i” in state 0, cell ”j” makes a 1-0 transition

• Cell ”i” in state 1, cell ”j” makes a 1-0 transition

3. If the cell ”j” makes a transition of y in y after the cell ”i” has made a transition from
x to x and before the cell k in state z is read, for every triplet i,j,k, the algorithm
must fulfil the following conditions with [x, y, z ∈ 0, 1]:

• Cell k is read in state z, after the cell i makes a transition from x to x and
before the cell j makes a transition from y to y.

• Cell k is read in state z, after the cell j makes a transition from y to y and
before the cell i makes a transition from x to x.
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The test is illustrated in Figure 2.13 and the symbols inside have the following meaning:

• ↓ - Forced transition from 1 to 0

• ↑ - Forced transition from 0 to 1

• R - Read RAM cell

By these steps, it is ensured that all coupled faults are detected. The sequences 1,2,5
and 7 go through the RAM with increasing memory address, and the sequences are 3,4,6,8
with decreasing address.

In the worst case the algorithm performs 30n operations in which ”n” is the number
of RAM cells, which means that the algorithm has a linear complexity O(n).

2.2.2.4 Galloping and Walking patterns

Next two [WWW06] other common algorithms which are used for RAM testing are de-
scribed:

1. Galloping (ping-pong) pattern (GALPAT)

2. Walking pattern (WALPAT)

Algorithm 1 GALPAT Algorithm

Initialize : RamCells[n] = 0, step = 1
while step <= 2 do

for i = 0 → n− 1 do
RamCell[i]
for j = 0, j! = i → n− 1 do

V erifyCell[i]
V erifyCell[j]
j ⇐ j + 1

end for
RamCell[i]
i ⇐ i+ 1

end for
Initialize : RamCells[n] = 1
step = step+ 1

end while

The Galloping pattern algorithm has quadratic runtime complexity of O(4n2) and de-
tects faults like SAF, AF, TF and CFs but it is not recommended for large RAM memories
because of its quadratic runtime complexity. The complete algorithm is illustrated in the
Algorithm 1.

The algorithm begins with initializing the complete RAM cells to 0 and complements
the first ”i” cell. In the next step, it performs a read of the current cell and all other cells
(VerifyCell[i], VerifyCell[j]). Then it complements the ”i” cell again and increments ”i”
until it reaches n. Afterwards, it performs the same step but now initializing all cells to 1.
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Algorithm 2 WALPAT Algorithm

Initialize : RamCells[n] = 0, step = 1
while step <= 2 do

for i = 0 → n− 1 do
RamCell[i]
for j = 0, j! = i → n− 1 do

V erifyCell[i]
j ⇐ j + 1

end for
V erifyCell[j]
RamCell[i]
i ⇐ i+ 1

end for
Initialize : RamCells[n] = 1
step = step+ 1

end while

The other alternative is the WALPAT, which is a modification of the GALPAT with
complexity of O(2n2). The only difference is that after complementing the first ”i” cell it
reads the basic cell after all other cells are read.

Algorithm 3 Checkerboard Algorithm

for i = 0 → N − 1 do
RamCell[i] = 0
RamCell[i+ 1] = 1
i ⇐ i+ 2

end for
for i = 1 → N − 1 do

ReadCell[i]
end for
for i = 0 → N − 1 do

RamCell[i] = 1
RamCell[i+ 1] = 0
i ⇐ i+ 2

end for
for i = 1 → N − 1 do

ReadCell[i]
end for

2.2.2.5 Checkerboard

The checkerboard [WWW06] test places the bit patterns like the structure of the checker-
board game. It has O(n) complexity with 4n operations. The test begins with writing the
first pattern to even or odd cells and all neighboring cells are set to a different value. After
that, a read back is performed. The same procedure is applied with a different pattern.
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It is mainly used just to activate different faults, and a delay is included between read
and write operations. It targets but does not detect all AF, SAF, TF and CF faults.

2.2.2.6 Butterfly Algorithm

Algorithm 4 Butterfly Algorithm

”maxdist < 0.5 ∗ col/rowlength”
Initialize : RamCells[n] = 0, step = 1
while step <= 2 do

for i = 0 → n− 1 do
RamCell[i]
dist = 1, j = i
while dist <= maxdist do

Read[i][j − 1]
Read[i− 1][j]
Read[i][j + 1]
Read[i+ 1][j]
Read[i][j]
dist∗ = 2

end while
i ⇐ i+ 1

end for
RamCell[i]
Initialize : RamCells[n] = 1
step = 2

end while

This test [WWW06] is a modified version of GALPAT, with the purpose to find only
AFs and SAFs. The time complexity is 5n ∗ logn. In the first step, all cells are initialized
at zero. As illustrated in the Algorithm 4 the read operations are performed in butterfly
form. These operations are performed twice with the initialization of the cells at one.

2.2.3 Structural Tests

Basically all structural tests [PGK+01] use RTL description or gate-level information about
the controller. Based on the test tree 2.10 and how this information is used, approaches
are subdivided into:

• Hierarchical tests

• RTL-level tests

Hierarchical tests concentrate on specific controller modules of a processor core. Test
vectors are generated for every module and converted into instruction sequences that
can be applied to the controller. The ”pre-computed test sets” and ”constrained test
generation” are part of this group.
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”Pre-computed test sets” denotes a group of methods that generates stimuli sets for
every module of the controller under consideration, and then exploits the functional mecha-
nism to give the module the precomputed stimuli and to propagate the results to observable
locations.

A representative is a method [GVA06] which generates test sequences with the main
focus on functional faults that are difficult to detect. It involves controllability and ob-
servability properties with Boolean differences and a bounded model checker.

To simulate faults difficult to detect, pseudo random instructions are generated with
36579 instructions for the OpenRISC 1200 processor5 and using an available commercial
tool. The fault coverage is evaluated which has a result of about 68% for stuck-at faults.

The list of undetected faults from the first step, is the basis for next step. A selec-
tion process is performed to group the instructions based on the modules, and then, the
commercial ATPG tool generates for each module new test sequences. The observability
properties are guaranteed with the expression of propagation requirements as Boolean
differences.

The model checker evaluates the sequences to see which one propagates the effects of
the observed fault to the primary output, and finally only these sequences remain. The
complete process on the OpenRISC 1200 processor increases the fault coverage by about
14% to overall 82% for stuck-at faults.

Constrained test generation describes the modules on the processor with different ab-
straction levels. The module under consideration is described at RTL level, whereas the
other modules of the system are described at a higher level. With the detailed description
of only the module under consideration, the ATPG tool has a lower circuit complexity
than the original one.

Part of this group is the method proposed by Chen [CRRD03], which divides a given
processor up into different levels of modules, generates templates sets, and, using the con-
trollability and observability properties, selects the most suitable templates. A constrained
test generation is performed with selected templates and, for specific module, and at the
end, the module test patterns are translated into instruction test sequences. Using this
method for a RISC processor, a fault coverage of 95% was achieved for common faults
like stuck-at faults, but it can be applied to other fault models like bridging faults and
transistor-level faults.

SBST methods that use structural information (RTL) during the process of tests gen-
eration are part of the RTL structural test branch as illustrated in Figure 2.10. Based on
the information which is used to generate test vectors, they are subdivided into:

• Deterministic algorithms

• ATPG Algorithms

• Pseudorandom methods

Deterministic algorithms use information about a specific function that a controller
performs.

Kranitis [KPGX05] proposed a component-based divide and conquer approach that
uses information about the ISA and RTL description. In the first step, components with

5http://www.opencores.org/openrisc,or1200
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their operations are identified, next, they are classified and prioritized, and, finally, de-
terministic routines are generated. This approach was used for two processors, and the
following results were observed; Plasma achieved fault coverage of 95% and MIPS R3000
achieved 95% total fault coverage.

Another method that is part of this group was proposed by Paschalis [PGH+06]. It
efficiently tests the processor data path without changes in the structure of the processor
and can be applied to any word length and different internal architectures.

Figure 2.14: SBST methodology for pipelined processors [PGH+06]

The methodology, illustrated in Figure 2.14, is divided up into two phases: Phase 1 &
2. It takes existing SBST programs and different processor pipeline parameters to make a
list of programs that achieve high fault coverage. Phase 1 deals with identifying def-use6

pairs, code variants generation and optimization including removing dependencies within
a loop with ”loop unrolling”.

The output is a modified SBST code, which is used in the second phase. Here, the
code is partitioned with respect to virtual memory, size of test program, and memory
parameters. Jump instructions are included in the end of every module to guarantee the
propagation of address related faults.

The methodology was simulated with two pipeline processors: miniMIPS7 and Open-
RISC 12008. From an average fault tolerance of 82.81%, an improvement of 12.34 % was
achieved, increasing the overall stuck-at fault coverage to 93.03%.

6def-use analysis is used for optimization in compilers; a variable’s value is ”defined” when an assignment
is made to it and is ”used” when it appears on the right side of an assignment

7http://opencores.org/project,minimips
8http://opencores.org/project,or1k
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The method proposed by Chen [CWLG07] which generates test stimuli using the gate
level of the processor description as entry point, is part of the ATPG Algorithms group .

The proposed method consists of multiple levels of abstraction, which are input to
the test development based on the information about the processor architecture, register
transfer-level and gate-level. To apply this method, the processor core must be subdivided
into different parts: ISA registers, IP Units, control, steering logic, pipeline registers, and
hazard related logic.

After the classification, test routines are generated for every module. In the ISA Regis-
ters, the development is focused on the structural faults of D Flip Flops. For the identified
IPs, control & steering logic, and pipeline related logic, an ATPG tool generates the test
patterns focused on the ISA specification, RTL descriptions, and pipeline architecture of
the target processor.

The methodology was tested in a processor core with an ARMv4 instruction set which
achieves a fault coverage of 93.74 % for stuck-at faults related to pipeline registers, ALU,
Decoder, memory access unit etc.

Pseudo-random methods generate data together with testing instructions and let the
processor perform the evaluation. Such a method is presented by a group of researchers
[KLC+02]. It generates tests under the constraints of the ISA to avoid unwanted test
patterns. It is targeting structural faults like stuck-at and delay faults.

The method consists of two steps: test preparation and self-testing. Using a special
software program, the tests which are generated are deliverable test patterns. The results
are stored in the memory, and a selection is made using the constraints of the instruction
set of the processor.

A component level fault simulation is performed to evaluate the test patterns. After
evaluating the tests, evaluated they are tested on-chip.

Using this method, a test was performed on Parwan and DLX processors. For the
Parwan processor it took 5.3 instructions on average for a test vector with a fault coverage
of 99.8%, while in the DLX processors 5.9 instructions with fault coverage of 96.3% for
stuck-at and delay faults.

2.2.4 On-line Periodic Tests

Online periodic tests are performed during the normal operation of a processor. These tests
reside in the RAM or Flash and are called by the operating system as normal programs.

Gizopoulos [PG04] proposed a SBST methodology to classify the processor components
and characteristics of SBST test programs to be suitable for online periodic tests. The
methodology consists of three phases.

In the first phase, information is extracted from the ISA and the low register trans-
fer level. The component operations are identified with specific input and outputs that
perform different operations, which includes multi-cycle data-paths or pipeline register.

In the second phase, different processor components are selected based on the same
properties and component prioritization to generate test patterns, which will be trans-
formed to a test routine.
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Based on how the different components are visible for the programmer, they can be
characterized as follows:

1. Visible components

2. Data-visible components

3. Address-visible components

4. Mixed (data & address) visible components

5. Partially visible components

6. Hidden components

Visible components are parts whose inputs and outputs are accessible from the assem-
bler language programmers. Data-visible components are components like ALU, multipli-
ers, dividers data registers etc. which serve as storage for input data test patterns. The
output data can be stored at register file, data memory, or both of them.

Address-visible components are components whose inputs and the outputs, receive
addresses of the memory system. These appear in the instruction fetch unit or data-
memory controller.

The mixed visible components use a mixed type of the inputs and outputs of the
visible and data visible components such as the adder used with the relative addressing.
Partially visible components are the components which generate control signals and are
implemented as finite state machines. One such component is the processor control unit
which affects the visible components. They have a medium testability.

The hidden components are architecture components which are included for perfor-
mance and are not visible to assembly programming language. Such components are
pipeline control units, branch prediction mechanisms etc.

Figure 2.15: Test routine generated according to the methodology [PG04]

The development of the test routines is performed in the third phase based on the
different TPG strategies. Such a test routine is illustrated in Figure 2.15.
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A 32 bit RISC processor9 called Plasma was used to demonstrate the proposed method-
ology, which achieves a fault coverage of 95.6 % for stuck at faults.

For the project SafetyLoan [TP07] several SBST tests were developed for an ARM7
microcontroller. To test the RAM memory, the walking pattern algorithm is used. It is
optimized in a manner that read/write operations are performed in block segments of 32
bytes, by a single command using multiple load and store. This reduces the number of
operations to be performed in the RAM memory.

For the data integrity, cyclic redundancy checks with 16 bit are performed, while
for register testing, the galloping pattern is used. The galloping pattern is described in
Section 2.2.2.4.

The main problem with the register testing is that during the test runs, the values are
stored in the memory. A possible solution to the problem is to swap the content between
the registers while the tests are running.

Testing the arithmetic logic unit is done by subdividing the instruction set into com-
mand classes, which use the opcode as classifying parameter. The entire RAM was tested
within 0.95 s, while ALU & register tests had a total execution time of 4.26 ms with a
high diagnostic coverage.

2.2.5 Specialized Tests for Multi-cores

The research of last the years is going towards multi-core architectures for better per-
formance and exploiting parallelism for instruction execution. These advances bring new
challenges for SBST techniques which must be adopted for multi-core architectures and
can be defined as [PGSR10]:

1. Use of SBST techniques that are proven for single core architectures to test all cores
individually

2. Speed up self testing routines with core and thread parallelism

3. Testing of interoperability logic at cores and threads levels

In two recent papers based on these challenges, Apostolakis attempts to reduce appli-
cation time [APG+09] and tries to exploit the core and thread parallelism [AGPP09].

The proposed approach [APG+09] is used to transfer the SBST test from uni-core to
symmetric multiprocessor architectures (SMP). The complete algorithm is very complex
and reduces time overheads caused by data cache and bus. The test consists of different
steps which are performed to start the test. In the first step, data and test code is loaded
directly in the cache. Secondly, every CPU connected to the matrix executes this code at
its actual clock speed. In the third step, the results are uploaded to a low-cost tester and
are checked from an external device. The complete structure is illustrated in Figure 2.16.

The main objective of the method was to improve the SBST test routines for the
OpenSPARC T1 Processor, which has eight cores.

9MIPS architecture
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Figure 2.16: Functional tests with multicore architectures [APG+09]

After a long analysis and simulation the following two equations were derived for
maximum speed-up:

Smax =
idle time

run time+ 1
, or (2.5)

Smax =
memory latency + pipeline latency

run time+ 1

Smax =
100− long latency instruction time

long latency instruction time
+ 1 (2.6)

Equation 2.6 is for ALU and shift test routines while the Equation 2.6 is for Mult
and Div operations because they spend much time on long latency instructions. With the
help of these two equations, two rules are formulated that help to transform single thread
self-tests into a multi-threaded version:

1. Do not use more threads that execute the same self test routine concurrently than
the optimum calculated by expressions 2.6 and 2.6.

2. The number of self routines that have high L1 miss rate must be reduced, since the
memory waiting intervals will not be overlapped

The methodology can be described with the following steps:

1. Analyze the performance of the test routines

2. Calculate the total execution time of the single threaded version and optimum total
execution time of multithreaded version

3. If the execution time of the single-threaded routine is longer, it must be split into
shorter routines, and group these routines in a set
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Figure 2.17: Performance results of multi-threaded over single-threaded [APG+09]

4. Select the longest routine from the set of self routines, assigns to it the smallest
execution time, which is the sum of all time single threaded routines assigned to the
thread until now

• If this calculation contradicts one of two rules, give the routine the next shortest
execution time

• Remove this routine from the set

5. If the set is not empty, go to step 3, or exit.

Using different set-ups this method achieves a speed-up of 3.3 of the execution time,
compared to single-threaded and straightforward multi-threaded methodologies. The com-
plete results are illustrated in Table 2.17

The TLP10 method [AGPP09] splits the self test routines into shorter ones. Then it
assigns the new routines to hardware threads of the core, thus increasing parallel execution
and reducing the idle intervals of the core. Idle intervals can occur due to cache misses or
other latency’s.

The complete strategy consists of three phases:

1. Allocation of the test code in the shared cache

2. Allocation of the test responses in the shared cache

3. Efficient SBST scheduling between the cores

To evaluate the methodology different benchmarks with dual-core, quad-core and octal-
core were used. The benchmarks are based on the OpenRISC 1200 processor, which is
used in numerous research activities for SBST tests, and in this case, the fault evaluation
results for the three benchmarks are about 90 % total stuck-at fault coverage.

10Thread-level parallelism



Chapter 3

Analysis and Design

3.1 Evaluated Architectures

During the first steps of the thesis, different multi-core architectures were evaluated. Obvi-
ously, there are many different multi-core microcontrollers which are intended to be used
in safety-related systems and many of them are designed to fulfil the IEC 61508 SIL-3
certification criteria. But not all of them are suitable to be used in this area because they
lack of safety features and are vulnerable to common cause failures.

According to the safety features, properties and the architectures, three microcon-
trollers were chosen to be evaluated:

1. Texas Instruments TMS570

2. Infineon TC1766 (Audo-NextGeneration)

3. Toshiba/Yogitech fRMethodology (Fault Robust Methodology)

In the Sections 2.1.2 and 2.1.3 different controller strategies are discussed, and a short
description about possible implementations is given. Now, architectures are examined
from the industrial perspective to see how these concepts are used in practice. In the
following, the three architectures are described.

3.1.1 TMS570 - Texas Instruments

Referring to Figure 3.1, the controller has two cores connected in Lock - Step Mode1. It
uses two ARM R© Cortex-R4F cores, with floating point unit to meet the SIL-3/ASIL-D
level according to the IEC-61508 and ISO-26262.

Target applications for the microcontroller are:

• Electronic Power Steering

• Active Steering

• Integrated Chassis Management

1Described in Page 21 with Figure 2.7a
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• Braking and Stability Control

• Dynamic Damping and Driver Assistance

Figure 3.1: The TMS570 microcontroller from Texas Instruments

The main safety features on the TI Controller are:

1. Guard Ring between the two cores

2. Cycle delays on both CPU’s

3. On-line hardware checker of the outputs of the CPU’s

4. Memory Protection Unit protects up to eight regions in the memory space

5. ECC calculation for every RAM read/write access

6. Separate address spaces for flash & RAM to store ECC data

7. Parity check for all communication peripherals

8. Safety tests for cores, memory and bus

The guard ring (physical separation) isolates the two cores from each other. The cycle
delays as illustrated in Figure 3.2 and the 180 ◦ rotation of one core, isolates the influence
from one core to the other and increases the robustness against common cause failures.

The memory protection unit includes different levels of permissions which can be used
to protect the eight regions to be read, written or executed either by a user or the privileged
mode. This assures that a user program can not modify registers which are protected and
can be used only by the operating system or by using supervisor calls.

All communication peripherals and the address bus are protected by parity check
during runtime. Additionally, safety tests can be applied at the start-up to the peripherals,
memory, and the cores to check the integrity of these components.
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Figure 3.2: Comparing CPU instruction results [TMS]

A physical separation of data regions exists in the architecture. For the SRAM section,
a SRAM-ECC section exists, in which the ECC of the SRAM contents is stored. The same
principle is applied to the Flash section, but here a mirrored physical section of Flash &
Flash-ECC exists, which assures better integrity of the data. For protection against mutual
influences, a physical, unused reserved space is included between the address spaces of the
SRAM, ECC, Flash and the mirrored address spaces.

Figure 3.3: Memory read/write access with ECC calculation [TMS]

In Figure 3.3, the connection between CPU and the RAM banks is presented. Inside
the Cortex-R4F core for every read/write access on the RAM, the ECC data is calculated
and stored. The core has two other interfaces which are used to access even or odd memory
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addresses.

3.1.2 TC1766 - Infineon Technologies

The architecture [BSE07] from Infineon Technologies has two hardware-decoupled 32 bit
cores on the same silicon die, the first is from the family of TriCore2 and the second is a
PCP(Peripheral Control Processor) core with the following characteristics:

• Connected to the TriCore with a bandwidth about 1,6 GB/sec

• Compared to the TriCore, it uses other register file, pipeline, and physical memories

• Software is created using a different compiler

Figure 3.4: The TC1766 microcontroller from Infineon Technologies [BSE07]

The architecture is illustrated in Figure 3.4. With the monolithic design, it is not
robust against common cause failures because it uses the same clock source and power

2http://www.infineon.com
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supply for both cores. As a protection against those failures, an ASIC watchdog monitors
the clock and power supply, and the cores use separate RAM memories for local variables.

Major components are:

1. Computational Unit - TriCore

2. Monitoring Unit - PCP Core

3. Safety unit for common cause failures - Watchdog ASIC

In the computational unit, the TriCore runs the application, answers the requests of
the monitoring unit, and checks the operation of safety-critical parts. The TriCore runs
the tests during normal operation, start-up and shut-down and is equipped with a floating
point unit, dual multiply accumulator, and a DSP instruction set.

It includes different hardware safety features such as parity protection of SRAMs,
ECC protection of flash, memory protection tables, internal backup oscillator and a DMA
controller with memory protection.

The PCP core is a RISC controller and is based on the asymmetric strategy that is
presented in Section 2.1.2.4. It runs the checking application to monitor the TriCore main
controller.

It sends periodical requests to the TriCore, which can intentionally be correct or incor-
rect to ensure that the TriCore calculation unit works correctly. Intentionally, incorrect
means that the responses to the test vectors are checked for equality and inequality with
true and false data. Based on the safety strategy, if too many incorrect results are returned,
the PCP core can shut-down the system to enter a safe state.

Monitoring the requests can occur in two ways:

• Question/Answer method

• Using shared structures

For the first method, the PCP generates different opcode tests which cover all registers,
different instruction types3 and the stack. The PCP transmits every generated test to the
computational unit and compares the result to the pre-calculated value stored in the local
RAM.

For the second method, the results are written in the shared structure. The PCP
monitors that the test are performed based on different parameters, like test counter
increments etc.

Furthermore, the ASIC watchdog monitors the power supply and clock speed to avoid
common cause failures.

3.1.3 fRMethodology - Yogitech & Toshiba

The FMEA methodology described in [BCM07], is a new approach that is used to design a
controller based on the IEC 61508 safety standard. The methodology subdivides the SoC
into ”critical zones”, which are elementary failure points, and then extracts the information
about RTL Logic, which is used to build the SRS4 document about the system.

3Memory, arithmetic, logic and control flow operations
4Safety Requirements Specification
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The information is extracted automatically from the controller [MKS10] by a tool,
in the next step, the information is grouped in a database and then failure rates of the
”critical zones” are calculated.

Based on this statistical information two important factors5 are computed:

1. Safe Failure Fraction - SFF and

2. Diagnostic Coverage - DC

which are required by the IEC61508 to define the rates for the Safe Failure Fraction and
Diagnostic Coverage.

SFF =

∑
λS +

∑
λDD

∑
λS +

∑
λD

(3.1)

DC =

∑
λDD

∑
λD

(3.2)

The elements in the equations represent the following failure rates:

• λS - rate of safe failures

• λD - rate of dangerous failures

• λDD - rate of dangerous failures that are detected

Figure 3.5: The fRM architecture [BCM07]

5http://www.ntnu.no/ross/slides/chapt10.pdf
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According to the equations 3.1 and 3.2, the so-called faultRobust IPs(fRIPs)[FM07]
and Toshiba diagnostic circuits (ThwD) are built to support fault tolerance and fault
detection. There are different IPs, dependent on the ”critical region” they supervise.

In Figure 3.5, an architecture is presented that is built with the faultRobust Method-
ology. The safety functional units are:

1. fRCPU

2. fRMEM

3. fRBUS

4. ThwD

5. fRNET

The fRCPU is a fault supervisor which supervises the CPU core with its complete
functionality. It is called the ”optimized tightly coupled fault supervisor” because it has
the same instruction control flow as the CPU but it is optimized to supervise the critical
sections identified by the FMEA methodology, which can lead to failures. The fRCPU
has a dedicated interface, which is used to monitor the CPU to increase the fault coverage
and detection latency.

The fRMEM is a configurable IP, which uses EDC and ECC6 to implement safety
functions. They can either use parity bits or Hamming codes with different distances.
Because the fRMEM is configurable, it can be optimized for different parameters.

Figure 3.6: Advantages of fRM Methodology over traditional architectures [Mar07]

The fRBUS is a supervisor for the master and slave buses, which checks the address
decoding, data transport in the buses, and includes ECC capabilities, and it is capable of
detecting the loss of power supply.

In cooperation with Toshiba, the mechanism called ”ThWD”7 is included for periph-
eral supervision. Generally, these mechanisms are used to test the system timers mainly

6Error Detection/Correction Codes
7TOSHIBA hW diagnostic
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focusing on: counter failures, register failures, clock failure, capture failures, and timer
comparator failures. To facilitate testing, a complete redundant counter structure is im-
plemented, and with the help of parity schemas the peripheral registers are tested to detect
register failures.

The fRNET is the connection unit between all IP units and the ThwD logic described
before. All error signals which are generated from different fRIPs are passed on to fRNET,
which then fires a global error signal. It is equipped with self-test logic to test the signal
path and to avoid latent faults.

TMS570 TC-1766 TSB/TC MCU

Run time
tests in
Hardware

STC/LBIST for
CPU’s
Compare Module for
CPU’s
PBIST for memories
ECC in memories &
buses

Sequential Tests in
start-up/shut-down
(Flash Checksum,
SRAM Tests)
Periodic tests in
peripherals

Self-check circuitry
on fRIPs

Computing
power

160 MHz with 250

DMIPS

80 MHz with 130

DMIPS

Dependent on the
processor in which
fRM is implemented

Guard Ring ”Guard ring per
CPU, Minimum
distance 100m”

No Present

CCF Com-
mon Cause
Failures -
Robustness

Second CPU mir-
rored and rotated
Cycle delayed lock-
step
Duplicated clock tree
CPU’s

Watchdog ASIC to
monitor power sup-
ply

Intellectual Proper-
ties (faultRobust IPs
or fRIPs) are archi-
tecturally and func-
tionally diverse with
respect to sub-block
that they supervise

Availability On Market On Market 2011

Architecture Lock-Step Mode on
single chip

Asymmetric mode
on single chip

fRMethodology
Optimized Tightly
Coupled (OTC)
Dual Core

Number of
cores

2 Cores 2 CPU’s (TriCore
and PCP2 core)

2 Cores

Cache No 8 KByte instruction
cache

No Information

Branch
prediction

No No No Information

Table 3.1: Evaluation criteria for the Microcontrollers-Part 1

In comparison [FM07] to the different architectures according to Figure 3.6 [MB07],
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the faultRobust approach provides great savings in terms of area, power and performance
compared to normal dual core lock-step architectures, such as described in Section 2.7a.

3.1.4 Evaluation Criteria

After the selection of the three microcontrollers, a list of evaluation criteria was formulated
as illustrated in Tables 3.1 and 3.2, which cover safety-relevant features.

The properties of each controller were assessed with respect to the evaluation criteria.
The main focus of the evaluation is on the safety features.

As illustrated in Table 3.1, each microcontroller has a different architecture and at-
tempts to achieve safety in different ways. The TMS570 includes hardware safety tests
for the main components: CPU, RAM, Flash, and Peripherals. Each of these features is
integrated into a special hardware module.

As illustrated in Figure 3.5, the fRCPU supervises only the critical paths of the main
CPU. The TC1766 has only sequence tests which can be executed at the start-up or
shut-down.

The safety hardware STC/CPU test can be subdivided into different interval sets and
executed at run-time dependent on the application requirements. RAM memory and flash
are protected with ECC, which are calculated and evaluated on each read/write access to
catch runtime failures. Additionally, all microcontrollers have built-in self tests covering
all memories included in the chip.

Comparing the performance criteria, the TMS570 has an advantage of over 100 DMPIS
comparing to the TC1766, but the TC MCU has no information about the speed and it is
dependent on the architecture in which the fRM Architecture will be implemented in the
future.

For the common cause failures, the fRM methodology has a more sophisticated protec-
tion concept rather than the TMS570. A disadvantage is that the TC-MCU is actually not
on the market, and the TMS570 includes a guard ring between the cores with duplicated
clock tree.

The TMS570 microcontroller implements the architecture described in Figure 2.7a,
and the two others the architecture depicted in Figure 2.1.2.4. The advantages and dis-
advantages are described in the corresponding sections.

With respect to the criteria defining the development kits and prototyping board,
again, the TMS570 is supported in a better way because it includes different tools, IDEs
for development, flash, compilation etc., and has two types of prototyping boards on the
market, which can be used for prototyping implementation. The only advantage of the
TC1766 is the support for Mathlab & Simulink, which extends the support for simulation
of control systems.

The Instruction cache is included in the TC1766 microcontroller. The presence of the
cache has advantages for the instructions which are executed but it is non deterministic
for testing purposes.

Continuing with the communication interfaces, the first two microcontrollers are sim-
ilar, considering the number of interface types. The TMS570, however, has additional
powerful features for the interfaces including parity and bus protection.

The Memory protection and online checker are present on three microcontrollers, it
differs only how these features are implemented and how many regions they protect.
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TMS570 TC-1766 TSB/TC MCU

Development
environments

CCS8 IDE v4.1
HalCoGen9

TargetLink
JTAG Emulator
nowFlash
nowECC

Mathlab & Simulink
TriCore VX-Toolset
MemTool(Infineon)

No Information

Instruction
set

ARM, Thumb,
Thumb2 v7

PCP2 - RISC
instruction set

No information

Prototyping
board

TMS570 Microcon-
troller
Development Kit &
Microcontroller USB
Kit

Starter Kit TC1762
& TC1766

No information

Memory
protection

MPU protects up-to
8 regions

Memory Protection
Tables for
4 data regions & two
code regions
DMA controller with
memory protection

The fRMEM super-
visor
ECC based with
measure extensions
MCE block acts as
MPU

Safety
features

ECC on Flash &
SRAM
CRC using DMA
protects static data
in memory

Parity on all SRAMs
ECC on Flash
CRC32 peripheral
for critical sections
on RAM

fRCPU, fRMEM
fRBUS, ThwD
fRNET

Peripheral
Interfaces

Three Multi-buffered
SPIs
Three CAN Con-
trollers
Dual Channel
FlexRay Controller
Two UARTs (SCI)
with LIN Interface

Asynchronous,
Synchronous Serial
& High-Speed
Synchronous Serial
Interface
Micro Link Serial
Bus
Micro Second Bus
MultiCAN module

No information

Peripheral
Safety

Parity protection of
peripherals memo-
ries
Bus protection

Internal bus tests
and
peripheral test

ThWD safety
mechanism
Parity on registers

Pipeline 8 stage pipeline 4 stage pipeline No information

Online
Checker

Hardware Compare
Module of CPU out-
puts

PCP Monitor Unit
ASIC watchdog

Hardware fRCPU
comparing instruc-
tions at run-time

Table 3.2: Evaluation criteria for the Microcontrollers-Part 2
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In the TMS570 microcontroller, eight memory regions can be protected from changes
during runtime from changes which can be intended by a user or other influences, The
TMS570 has an advantage of four regions, compared to the TC1766, which protects only
four data regions and two code regions.

The TMS570 has a better pipeline with eight stages, and the TC1766 has only four of
them.

The online comparison modules in the TM570 and TSB/TC-MCU are implemented in
hardware and compares every instruction executed in the main core. In the TMS570 every
instruction is duplicated and executed on both cores, and the outputs are transmitted to
the compare module which compares the results for equality.

Based on these criteria, the TMS570 was chosen as the most suitable for the implemen-
tation of safety-related measures, because it has a SIL-3 certification, better performance,
good development environment, and numerous safety features.

In the Section 3.1.1, the architecture of the TMS570 was described, but in the next
section, the safety features from the technical view will be described, and more details will
be listed, which will help to incorporate them in the safety strategy.

3.2 CPU, RAM and Peripheral tests in the TMS570 micro-

controller

According to the Technical Reference Manual [TMS] the main safety features of the
TMS570 are integrated into the following modules implemented in hardware:

1. STC/LBIST (Self Test Controller / Logical Built in Self-Test)

2. CCM-R4F (Core Compare Module)

3. PBIST (Programmable Built-In Self-Test)

4. ESM (Error Signalling Module)

These are the primary relevant modules for the strategy which will be implemented.

3.2.1 CPU Tests

The CPU Self-Test Controller (STC) is an integrated on-chip BIST support to test the
CPU cores with high diagnostic coverage. It is possible to run different levels of the tests,
while during the execution, the CPU cores are isolated and all bus transactions signals
are in idle mode.

Furthermore, all pending interrupts are served and processed after the tests are fin-
ished. The test can be run at start-up without needing to perform a backup of the registers.
During runtime before the test is started, a backup of the register is required. The register
contents need to be restored after the test.

With a diagnostic coverage of over 90% and 32 intervals as illustrated in Table 3.3,
the complete test execution requires between 0.926 msec and 1.11 msec depending on the
hardware and STC clock.
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Intervals Test Coverage [%] Test Cycle

0 0 0

1 57,14 1555

2 65,82 3108

. . .

. . .

15 86,19 23297

16 86,56 24850

17 86,97 26403

. . .

. . .

30 90,46 46592

31 90,64 48145

32 90,84 49698

Table 3.3: STC levels and coverage [TMS]

3.2.2 Core Compare Module Tests

The core compare module not only is responsible to compare the results of the output
instructions, it also contains the following built in self tests which can be used during
runtime:

• self-test

• error forcing test

• self-test error forcing mode

The start of the test must be issued by the application. During the ”self test”, the
module can generate compare match and compare mismatch patterns. Applying compare
match patterns (four patters 0x0, 0x1, 0xA, 0x5) at the outputs, equal results are expected.
If a fault is detected, an ESM error is generated, and the test is terminated, otherwise the
termination must be performed by the application.

The compare mismatch patterns are applied in the same manner with the difference
that the patterns for the second core are inverted, and different result is expected as in
the first core. The test takes 3615 test cycles.

Applying the error forcing test only one pattern is applied to force that an error is
introduced in path between CCMR4F and ESM. If after the test is applied, and no error
is asserted on the ESM module, a hardware fault is present.

The tests that are described check only the CCMR4F module, and the normal applica-
tion can use the CPU’s in the background, but the outputs of the CPU’s are not compared
with each other.
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3.2.3 RAM and Peripheral Tests

The PBIST (Programmable Built-In Self Test) architecture is a built-in testing engine
controlled by a small CPU. It offers the possibility to test all types of memories with
pre-implemented algorithms in the microcontroller.

Ram Group Module Memory type

3 DCAN1 Single Port

4 DCAN2 Single Port

5 DCAN3 Single Port

6 ESRAM Single Port

7 MIBSPI Single Port

8 VIM Single Port

9 MibADC Two Port

10 DMA Two Port

11 NHET Two Port

12 HET TU Two Port

13 RTP Two Port

14 Flexray Single Port

Table 3.4: RAM groups in TMS570 [TMS]

In Table 3.4, all RAM memories with types of the microcontroller are presented. For
each type of memory, in Table 3.5 the algorithms are shown.

Memory
type

Module Valid RAM Groups

Single Port march13n-red 3,4,5,6,7,8,14

Two Port march13n-red 9,10,11,12,13

Single Port down1A-red 3,4,5,6,7,8,14

Two Port down1A-red 9,10,11,12,13

Single Port mapcolumn 3,4,5,6,7,8,14

Two Port mapcolumn 9,10,11,12,13

Single Port precharge 3,4,5,6,7,8,14

Two Port precharge 9,10,11,12,13

Single Port dtxn2 3,4,5,6,7,8,14

Two Port dtxn2 9,10,11,12,13

Table 3.5: Algorithm to RAM mapping in TMS570 [TMS]

• March13N - As described in Section 2.2.2.2, March13N provides very high diagnostic
coverage. The fault types detected by this algorithm are manifold starting from,
decoder, stuck-at, coupled, parametric faults, and ending with logic faults. With
13N operations where N is number of RAM Cells, it has linear complexity O(n).
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• Map Column - is commonly used to find bit lines sensitivities in memory. It consists
of writing on each line of memory 1 and 0’s and repeatedly reading and writing back.

• Pre-Charge - used to address the pre-charging of the SRAM cells because the analog
portion is frequency-sensitive.

• DOWN1a - addresses the data bits and address bits by switching their content with
a forced transition.

• DTXN2a - mainly used to test decoding logic in RAM memories.

The complete content of the affected memory part are lost after the tests are applied.
Therefore, all these tests are carried out at the start-up. The complete tests needs 23.23
msec at HCLK = 80 MHz and ROMCLK = 100 MHz and 43.63 msec with HCLK = 100
MHz and ROMCLK = 40 MHz to be completely executed.

3.2.4 Error Signaling Module - ESM

The ESM Module is used to control the error signals that come from different sources of
the microcontroller and can be transmitted to a dedicated external pin.

The main properties of the ESM module are :

• 96 interrupt/error channels for various error sources

• Dedicated pin ERROR to signal external sources

The first thirty two error sources are maskable during normal runtime, and the rest
are non-maskable.

3.3 Functional Safety Requirements

• At start-up, the RAM should be initialized with ECC.

• At start-up,all RAM memories must be tested with the PBIST logic, which ensures
that the RAM and Peripheral memories are in a safe state.

• The RAM must be initialized to a known state.

• It must be ensured that all errors are reported correctly and that the system does
not enter an unsafe state.

• During runtime the RAM must be tested completely, and it must be guaranteed that
the normal application software is not halted in its normal operation.

• It must be ensured that after disabling the Interrupts, they are enabled after the
test is finished.

• During runtime the execution time of the RAM test must not exceed the critical
time for which the Interrupts are disabled.
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• At start-up, the two cores must be tested with 32 levels of test patterns with the
STC controller

• At runtime, the STC tests can be run with the complete test level or the tests can
be divided from 1 to 32 levels and can be run periodically.

3.4 Design Concept

After describing the microcontrollers and listing the safety requirements, which a safety
strategy must fulfil, a design concept needs to be found. This concept consists of:

1. Hardware tests

2. Software tests

Using the hardware tests is advisable, because the functionality which is offered in
hardware is reliable, faster, and less error prone than tests that are implemented in soft-
ware. Software tests will be implemented because the implemented functionality does not
offer an online periodic testing schema of the SRAM at the microcontroller.

The hardware and software test as illustrated in Tables 3.6 and 3.7 are subdivided
into tests which can be executed at start-up and tests which can be continuously executed
continuously during runtime.

Algorithms: Start- Up Runtime

March13N X

Map Column X

STC / LBIST X X

DTXN2a X

DOWN1a X

Pre-Charge X

Watchdog Test X

Table 3.6: Hardware tests in the TMS570 microcontroller

Algorithms: Start-Up Runtime

March-Tests X

Table 3.7: Software tests in the TMS570 microcontroller

FreeRTOS10 is available to be used in connection with the TMS570. The basic thread
of execution in the FreeRTOS [Bar10] is called a task, which has a dedicated stack and
priority that runs forever, and the scheduler is responsible to give each of them CPU time
for execution. The advantage of using such a kernel over a common ”finite state machine”

10http://www.freertos.org/
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are synchronizing issues. The synchronization of the application and the tests, during the
execution are done by the FreeRTOS scheduler. The task with the higher priority if in
ready state is scheduled to run.

In Section 2.2.2.2 different RAM testing algorithms were introduced and described.
Deciding upon an appropriate algorithm based on the criteria which are merged within
Tables 3.8 and 3.9.

The smallest number of operations and the linear complexity are such criteria. Sorting
according to complexity, three types of algorithms are present: linear, logarithmic, and
quadratic.

In the group with linear complexity are the algorithms, Checkerboard, March B and
Abraham with the Checkerboard as the best representative. They has smaller number of
operations by factor 4X and 7X compared to the other two.

Including the second criteria in the evaluation, namely the covered faults, the ”March
B” covers a larger set of faults than the Checkerboard test or the Abraham test. Con-
structing the tuple (Number of Operations, Covered faults) of criteria the MARCH-B
proves to be as the best representative for the implementation.

Algorithms Number of
Operations

Covered Faults

Checkerboard 4n detects not all AF, SAF, TF
and CFs

March B 17n all AFs, SAFs, TFs, CFins
and linked CFids

Abraham Test 30n TFs, CFs

Butterfly 5n ∗ log n AFs and SAFs

GALPAT 4n2 + 4n AFs, TFs, CFs, and SAFs

WALPAT 2n2 + 8n SAF, AF, TF and CFs

Table 3.8: RAM test Faults coverage and number of operations

The algorithms with quadratic complexity are not suitable to be implemented because
the number of operations are very high and they do not cover the kind of faults that are
covered by the group of linear complex algorithms.

`
`
`
`
`
`
`
`
`
`
`
`
`
`

Size
Complexity

n n ∗ logn n3/2 n2

1K 0.0001s 0.001s 0.0033 s 0.105 s

4K 0.0004s 0.0048s 0.0262 s 1.7 s

16K 0.0016s 0.0224s 0.21 s 27 s

64K 0.0064s 0.1s 1.678 s 7.17 m

256K 0.0256s 0.46s 13.4 s 1.9 h

1MB 0.102s 2.04s 1.83 m 1.27 d

Table 3.9: Test Time as a Function of Memory Size [WWW06]
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According to these criteria, the MARCH B test is implemented. Another March test
is implemented in the hardware with 13N operations, which will be run at the start-up.
Concerning the structure, they are the same, they differ only in the number of operations.
The implemented march test is redundant and can be run in parallel with the application.

3.4.1 Modules

The complete concept is built on three modules as illustrated in Figure 3.7.

Figure 3.7: Modules in the concept

At the start-up, the PBIST algorithms of the TMS570 are carried out, because the
content of the memory is completely lost during testing. The watchdog, RAM and STC
tests are applied inside the tasks, periodically online.

The tasks inside the modules illustrated in Figure 3.8 exist in the context of the OS
Kernel, and the scheduler is responsible to provide each of them with execution time.

These tasks are created to cover the following functionality:

• Core Test - It was decided to run the CPU test periodically because during that test
the interrupts are not served, the core test is adaptable to configure the number of
intervals, and the test is executed under 1 ms.

• RAM Test - The pseudo-code of the selected RAM test is illustrated in the Algo-
rithm 5, and it describes all operations which must be performed to run the test.

• Watchdog - The TMS570 Prototyping board has an external windowed watchdog
that can be used for program flow monitoring of the application and it is integrated
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Figure 3.8: Tasks executed in the FreeRTOS kernel

into the concept. This watchdog starts counting after the first rising edge on the
WDI interface as illustrated in Figure 3.9, and after a defined time, this interface
must be set to low (falling edge). After the switch SW4 is turned on, then the
watchdog must be reset during the defined time interval. The time interval cannot
be changed.

• Application - As part of the application, the status of the test is presented on the
LCD Display. An application (”blinky”) is implemented which uses the numerous
LEDs on the board. The external watchdog monitors the program flow. The blinky
application is a led show consisting of the various LEDs which are present on the
prototyping board.

• Fault injection - For verification purposes, these tasks will inject faults into the RAM.

The Figures 3.9 and 4.10 illustrates how the watchdog is integrated into the prototyping
board and how the watchdog needs to be reset within the appropriate timing window.

3.4.2 Properties of the modules

The tests that are active at run-time are included in separate tasks. During the imple-
mentation phase, the following parameters need a special treatment:

1. Task Priorities

2. Execution time

3. Context Switch

4. Interrupts

Task priority is important because the scheduler chooses the ready task to run based
on the priority. Obviously, the tests will have lower priority than the application, but the
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(a) Circuit diagram (b) On/off button

Figure 3.9: Watchdog circuit used for program flow monitoring

execution time of each test should not stop the application in its correct operation. This
can be seen as a compromise between priority and execution time.

The FreeRTOS Kernel offers nine levels of priority with the lowest priority represented
as 1 and the highest represented with the number 9. The application implemented in the
concept has the priority 4, and all other tests 3. This ensures that the tests are running if
the application is in idle mode. These priorities assigned to the tasks present a risk if the
application is busy forever, because it takes the CPU, and the other tasks never get into
the running state. This must be taken into account during the implementation.

When each task is ready to run, a context switch is performed, which means the
complete context of the actual task (program counter, registers, stack pointer) are stored
on the task’s stack on the RAM memory.

Hence, these two conditions must be avoided/disabled at the run-time of the tests.
During the startup of the test the interrupts are disabled to avoid test interruptions, the
actual code region will be marked as critical to avoid a context switch, and another task
is scheduled to run. For the RAM test implementation, some possibility to perform fault
injection testing must be implemented to verify the concept.

While the tasks with the tests are running, a context switch is not allowed. A context
switch can occur on two conditions:

• An Interrupt happens during that time

• One task with higher priority becomes ready

The fault coverage is guaranteed due to the March Test structure, which is discussed
in Section 2.2.2.2, but a fault injection strategy must be implemented.
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Two cases are at disposal:

1. Change the RAM content in the cells during runtime

2. Use ECC functionality of the microcontroller to corrupt the RAM

Changing the content of RAM during a running test would, however, not meet the
requirements listed in the previous chapter, which means context switching and interrupts
are disabled and all tasks are suspended until the test is finished with the actual sector.

Algorithm 5 March B testing the memory with N cells

for i = 0 → n− 1 do
RamCell[i] = 0

end for
for i = 0 → n− 1 do

CheckRamCell[i] == 0
RamCell[i] = 1
CheckRamCell[i] == 1
RamCell[i] = 0
RamCell[i] = 1

end for
for i = 0 → n− 1 do

CheckRamCell[i] == 1
RamCell[i] = 0
RamCell[i] = 1

end for
for i = 0 → n− 1 do

CheckRamCell[i] == 1
RamCell[i] = 0
RamCell[i] = 1
RamCell[i] = 0

end for
for i = 0 → n− 1 do

CheckRamCell[i] == 0
RamCell[i] = 1
RamCell[i] = 0

end for

The Cortex R4F core always internally calculates an ECC for all RAM read/write
accesses. It can detect single bit errors and correct them. Double and more bit errors are
detected but cannot be corrected. It is also possible to enable/disable the reporting of
detected errors, but it is not possible to disable the detection and correction.

In the implemented strategy, the reporting is enabled. If it fails during the program
flow the redundant RAM test will find the faults in the memory.
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Implementation and Results

4.1 TMS570 Evaluation Board

The MCBTMS570 [KEI] prototyping board by KEIL is presented in Figure 4.1. It contains
an ARM91 processor with two Cortex R4F Cores in Lockstep mode. As presented in Block
Diagram 4.2, it has many peripherals and an analog input part.

Figure 4.1: MCBTMS570 Development Kit [KEI]

1Advanced RISC Machines
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The Prototyping consists of two parts:

1. The MCBTMS570 CPU board

2. The MCBTMS570 I/O board for the peripherals and the analog circuits

The CPU board includes the main logic of the prototyping board and the following
components:

• A TMS570LS20216 microcontroller

• A 16 MHz Oscillator

• The ETM Interface (MIPI) connector which provides instruction-level trace debug-
ging support

• Three USB Standard ports: USB 1.1, 2.0 and mini-B connector

• An 100/10M Ethernet Port A standard (RJ45) connector connected to an on-board
Ethernet transceiver

• Two JTAG interfaces: USB/Ethernet-JTAG connector and a standard JTAG 20-pin
connector

• Two push buttons for: The RESET WARM (S1) to wake the microcontroller from
sleep mode and the RESET POR (S2) button used as power-on reset circuit

Figure 4.2: Block diagram of the MCBTMS570 prototyping board [KEI]

The second part or the I/O board contains the peripherals, transceivers for the com-
munication ports, and other components as listed below:



CHAPTER 4. IMPLEMENTATION AND RESULTS 64

• Three CAN Ports with transceivers

• One LIN port and one RS4852 port with the corresponding transceivers

• Two connectors for FlexRay network communication

• A 240x320 TFT Touch Screen/LCD Display

• Temperature and light sensor realized with on-board ADC converters

• Amplified speaker for audio output

• MicroSD card connector for SD cards

• Two push buttons: SW1 and SW2, which can be used for the application

• Four jumpers and three switches for: LIN/RS485 switching, on/off watchdog timer
and on/off pressure sensor

Internally the prototyping board has an XDS100v2 emulator. It is possible to flash the
board without an external JTAG emulator and it can be used with an USB connector.

Figure 4.3: Code Composer Studio IDE

2EIA-485 is a specification of local networks and communications links
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4.2 Workflow and Tool Chain

The TMS570 microcontroller is supported by a large group of tools which can be used
during the development of applications. Starting from IDEs and flashing tools which are
essential for every developer, the Starter Kit includes more supporting software as listed
below:

1. Code Composer Studio IDE

2. HALCoGen Peripheral Drivers Generation Tool

3. Flash programming tool integrated into Code Composer Studio

4. nowFlash

5. nowECC

6. HET GUI/Simulator/Assembler including Synapticad WaveViewer

7. FMzPLL & FPLL Calculators

Figure 4.4: HalCoGen tool from Texas Instruments

Code Composer Studio is an Eclipse-based framework which includes tools from TI,
debugger, compiler, building environment, simulator, and the possibility to flash directly
from the IDE. This feature and the debugging features are very helpful at the beginning
of the work with the prototyping board.
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Texas Instruments has developed a code generator and configuration tool(HalCoGen)
which helps to configure the microcontroller, starting from the PLL, interrupt sources,
operating system, all peripherals, safety features, all clock trees etc.

The HalCoGen allows to generate code that can be compiled and deployed on the pro-
totyping board. The compiled binary can be deployed with the nowFlash tool or directly
from the CCStudio. It is recommended to generate the ECC of the complete binary and
to flash it manually as presented in Figure 4.5 using the nowFlash tool.

Figure 4.5: Workflow to deploy binarys on the TMS570

The TMS570 architecture has separate address spaces for the ECC part and the pro-
gram/data part. As safety feature it includes mirror images in separate address spaces
for ECC part and program part. More information about the ARM software flow can be
found in [ARM11] on page 16.
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In the support package, three other GUI based tools are included. Two PLL GUI cal-
culators for the internal PLL and for the FlexRay PLL can be used to generate values for
the internal PLL registers. The High End Timer Simulator can be used to simulate and
configure timer functionality like waveforms generators (PWM), memory write triggers,
cycle counts etc.

4.3 Start-up Phase

To run the software tests periodically as defined in the concept in Section 3.4, the FreeR-
TOS kernel is used, which is an open source and can be provided by the HalCoGen tool,
which can be employed to configure tick rate, priorities, task modes, scheduler properties
and stack/heap size. The OS is responsible for switching between the tests and therefore
it is defined as pre-emptive to let the tasks with higher priority run while the others are
suspended.

In FreeRTOS Tasks [Bar10] are defined with the following function:

portBASE_TYPE xTaskCreate

( pdTASK_CODE pvTaskCode, // Pointer to the Task function

const signed portCHAR * const pcName,// Name of the Task

unsigned portSHORT usStackDepth, // Size of the Task stack

void *pvParameters, // Possible to pass parameters

unsigned portBASE_TYPE uxPriority, // Priority of the Task (1-9)

xTaskHandle *pxCreatedTask // Handle of the created Task

);

The functions are implemented as endless loops with the possibility to suspend a
specific task for a defined time.

void pvTaskCode( void *pvParameters ){

portTickType xLastWakeTime = xTaskGetTickCount();

for(;;) {

vTaskDelayUntil( &xLastWakeTime, (PERIOD_MS / portTICK_RATE_MS ));

}

}

Before the system with the defined safety-related tasks are put into operation, at
start-up, hardware implemented self tests and additional safety measures are carried out
for accuracy. This is necessary to ensure that the device operates normally. At start-up,
the sequence of safety tests is as the following:

1. CCM-R4 checks for faults in self test mode by a matching pattern as well as by a
mismatching pattern.

2. Cortex-R4F core checks for faults using STC/LBIST running all the test patterns.
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3. MPU is configured appropriately to protect memory regions.

4. The complete SRAM is initialized to a defined state with ECC enabled using the
auto initialization feature of the board.

5. Hardware PBIST engine executes multiple RAM testing algorithms with 99% fault
coverage.

6. Redundant address decoding logic tests are performed on the CPU core.

The complete start-up sequence is presented as UML diagram in Figure 4.6. After the
reset interrupt is generated the core registers [RIT] must be initialized with appropriate
values. Hence, the reset source is scrutinized whether it is generated by the core test. In
this case, it will branch to the previous program flow (main routine or core test task) to
continue the operation. Otherwise, the normal start-up procedure continues.

Figure 4.6: The safety start-up sequence

After initializing the system clock sources, flash wait cycles etc., the memory tests are
applied to the RAM and the peripherals. If the test fails, it branches to a safe state, and
the start-up cannot continue because that could lead to undefined error states.

If the test was executed without errors, the memories are initialized with the auto
initialization feature. Branching at the main routine, the first step is to apply the core
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test with the maximum number of the intervals. After generating the reset, the status bit
(successfully, failed) is stored.

Then the MPU is initialized and, the core compare module test and the decode logic
test are applied. The status bits of these tests are stored too. After initializing the modules
as described in Section 3.4.1, all status bits are evaluated.

If one the modules was not successfully initialized or one of the tests has failed, then
the procedure exists without starting the application. Otherwise the flow continues and
starts the scheduler of the FreeRTOS which continues to execute the tasks defined in the
modules.

4.4 Periodic Operation

4.4.1 RAM test

In Chapter 2.2 different RAM testing algorithms are presented and explained based on
the running complexity and fault coverage.

Figure 4.7: Activity diagram of the RAM Test

March testing algorithms with March-B are suitable to be implemented, because it
has linear complexity O(n) and covers stuck at faults, address decoder faults, transition
faults, inversion coupling faults, and linked idempotent coupling faults. The advantage
over the March-G, is that it has very small execution time and does not contain delays
like March-G.
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The RAM test is defined to run periodically as a FreeRTOS Task:

xTaskCreate( RAMTest,

(signed portCHAR *)"Task Ram-Test",

500,

(void*)ramTestTxt,

3,

&xRamTestHandle);

The task is periodically executed by the RTOS Kernel and calls the function in assem-
bler to test the actual sector number of the RAM. Some parts of the test implemented in
the assembler are presented in Listing 5.1.

In Figure 4.7, an UML activity diagram is presented, which describes the complete
sequences of the OS Task needed to run the ram test. In the first step after the task
switches into the running state, all interrupts are disabled.

The test presented in Listing 5.1 is executed, and if it fails, the complete system goes
into a safe state. After branching to safe state, the tasks are switched to stop state, and
the other resources are disabled. This state would be responsible to switch off actuators
or sensors.

Otherwise, the sector address is incremented, interrupts are enabled, and the task
changes to sleep state until the scheduler chooses the task next time and the scheduler
passes the CPU on to the next ready task.

This test is very efficient but it is destructive for the RAM content, because after the
test is applied, the complete content is deleted.

As presented in Figure 4.8, the base address of the RAM is 0x08000000 with a size of
160 kB and an end address at 0x08027FFF. During runtime, the application flow must
not be changed and the content of the RAM must be restored after the test is applied.

Figure 4.8: The ESRAM in TMS570 [TMS]

Hence, a backup strategy must be developed to store the content of the RAM. It is
possible to subdivide the RAM memory into active and passive regions, but there are
several problems to this solution. First, it is complex to manage, and so it is difficult to
fulfil the timing requirements. Second, the local variables in RAM, which are used to run
the test, can be overwritten.
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Because of these problems, the following requirements must be fulfilled:

1. The RAM cannot be used as backup storage

2. The test must run completely from FLASH without using local variables in RAM

3. The backup strategy must be fast

There are two other components which can be used for backup: Flash and Core reg-
isters. Using the Flash as backup storage has advantages and disadvantages. A great
advantage is the storage capacity which could be used to backup a huge amount of data
from the RAM and offers the possibility to verify the integrity of the data with the help
of error correction codes. As a disadvantage, writing/reading to/from Flash is very slow,
which does not meet the previous requirements and it is not appropriate to be used for
backup. So it is required to backup RAM contents in the CPU registers.

According to the ARM Architecture Reference Manual [ARM] for the Cortex R4F
processors, it has 32 general purpose register and, 32 bit width and a subset of registers
are accessible from different modes as presented in Figure 4.9.

These modes are used to grant privileges code parts during execution. The ARM
architecture supports the following processor modes:

Figure 4.9: General purpose registers of the ARM Architecture [ARM]



CHAPTER 4. IMPLEMENTATION AND RESULTS 72

1. System and User

2. FIQ

3. Supervisor

4. Abort

5. IRQ

6. Undefined

All applications normally run in the system/user mode, and the OS uses the supervisor
mode. The two interrupt modes are used to serve the interrupt requests, but the difference
between them is that FIQs are of higher priority than the FIQ interrupts. The Abort
mode is used for data abort instructions and the Undefined mode is entered if there is an
exception3.

Listing 4.1: March test implemented in Assembler�

esramTest :
l d r r2 , z e r opat te rn
l d r r3 , onepattern

; Store the content o f the RAM in the r e g i s t e r
LDMIA R0 ! , {R5−R12}

; Load back the s t a r t ad r e s s because LDMIA increments i t
; by [ numBytes ] loaded

mov r1 , r0
sub r0 , r0 , #32

f i r s tLoop :
s t r r2 , [ r0 ]
add r0 , r0 , #0x4
cmp r0 , r1
bne f i r s tLoop
sub r0 , r0 , #32

secondLoop :
l d r r4 , [ r0 ]
cmp r4 , r2
bne e x i t

.

.

.
onepattern : . word 0xFFFFFFFF
zeropat te rn : . word 0x00000000


� �

3If the application is trying to run unknown instructions
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As presented in Figure 4.9, the user mode, in which 15 registers and the Program
Counter(PC) are visible is very important. The Stack Pointer(SP) and the Link Register
(LR) are mapped on the register R13 and R14.

Thus, the registers R0-R12 can be used as backup storage, and to access these registers,
the test will be implemented in Assembler and not in C language, because accessing these
registers from the assembler is very easy and other assembler instructions for multiple
(data at RAM) load and store instructions will be used to move the content from and
to RAM. The Cortex R4F Architecture implemented in the TMS570 microcontroller uses
two instruction sets, ARM and Thumb-v2. During the implementation of the test in the
Assembler, only ARM mode compatible instructions are used, with the advantage that
the test can be used in other ARM architectures and because the 32 bit width registers
are used as storage with 4 byte access instructions to load/store the content of the RAM
memory.

4.4.2 Watchdog test

In the implementation, the watchdog is used to monitor the program flow. It runs in
conjunction with the FreeRTOS Kernel and the application as designed in Section 3.4. A
watchdog reset is carried out periodically within the window size of 200 ms. The testing
results of the current tested sector are displayed on the LCD display.

The application task has the priority of 4. Only the watchdog task has higher priority
because in the prototyping board it is not possible to switch it off.

In the running state, the application switches all LEDs present on the board and resets
the watchdog inside the window.

xTaskCreate( Application,

(signed portCHAR *)"Task Application",

250,

(void*)appText,

4,

&xAppHandle );

After the application task is finished, the next task in ready state is selected by the
OS to run. Because the watchdog has the highest priority, it will switch to the watchdog
task and continues to reset the watchdog.

Inside, the lower windows have to be careful not to reset the watchdog, as this would
reset the complete board.

The timing diagram as illustrated in Figure 4.10 contains two windows:

• Lower window frame with max 10 ms width

• Window frame with min 200 ms

xTaskCreate( Watchdog,

(signed portCHAR *)"Watchdog Task",

250,

(void*)textWatchdog,

8,

&xWatchdogHandle );
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The window watchdog can be used as a monitoring circuit for the supply voltage and as
window watchdog which can be employed to monitor the program flow of the application.
The main problem with the PFM is how to perform the check if all steps are performed
and that the specific operations are performed within a defined time.

Consequently, if critical operations are to be performed, they have to be enclosed in
the watchdog monitoring because delays in response of a critical operation can lead to
unexpected results, and so the program flow is monitored.

Figure 4.10: Timing diagram of the watchdog [PSC]

4.4.3 CPU test

During the start-up, the test is carried out with the maximal number of intervals. At
run-time as described in Section 3.4, the core test should run periodically into a task
with maximal 16 intervals, because the test must stay under 0.5 ms. The following points
must be considered, in order to successfully run the core test from the Self Test Controller
(STC) module:

• Backup application registers

• Run the test in intervals

• Restore the application registers

These are the basic requirements to run the test periodically. From practical point of
view, it is not clearly specified which registers should backup and where. To integrate the
test into the concept with the OS kernel, the registers are stored into the RAM, because
the access times to write and read from RAM are negligible. For the following registers a
backup is performed:

• All general purpose R0-R15 and CPSR register

• All coprocessor including the banked registers for different operating modes as pre-
sented in Figure 4.9

• Memory protection registers and optionally, all FPU registers
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To backup the registers in different modes, the M[3:0] bits of the CPSR register as
in Figure 4.11 are changed with appropriate values to switch between user, FIQ, IRQ,
Supervisor, and Undef modes as illustrated in Figure 4.9.

The task that executes the core test is created with the following parameters:

xTaskCreate( CoreTest,

(signed portCHAR *)"Core Task",

250,

(void*)textCoreTest,

2,

&xCoreTestHandle);

The test is subdivided into intervals and is executed in the background of the applica-
tion. The core test has the lowest priority compared to all other tasks implemented in the
concept. The reason for such a decision is that the test must run only if all other tasks are
in idle mode to prevent that one of the tasks becomes ready and cannot switch to running
state.

Figure 4.11: Format of the CPSR Register [CPS]

After each switch, a backup is performed for the banked registers in that mode. After
the core test is finished the same procedure is applied but in reverse order to restore the
content of the registers. For the other bits in the CPSR, refer to the link [CPS].

The complete test sequences are presented in Figure 4.12. After the core test is started,
the next step is to configure the coretest. Then, a backup of all registers is performed, and
the values are stored in the RAM memory. After the test is finished, it generates a reset
which is captured by the start-up activity as described in Figure 4.5. Then, the program
flow continues with restoring all registers values which are previously stored in the RAM.

The MPU is reinitialized, because it is a static configuration which does not change
at run-time and it is overhead to perform a backup of MPU registers and restore them
afterwards. The configuration values stay the same.

4.5 Fault Injection, Test Cases and Timing Results

The push buttons as presented in Figure 4.13 can be used to inject faults into the RAM.
The buttons can be accessed by configuring the corresponding GPIO’s. Externally, they
can be always pushed, and internally, they generate a random address and corrupt the
content of the RAM-ECC at that address. A task is created to generate the random ad-
dress and read the GPIOs.
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Figure 4.12: UML activity diagram of the core test

xTaskCreate( FaultInjection,

(signed portCHAR *)"Task Fault-Injection",

500,

(void*)ramFaultTxt,

3,

&xFaultInjectionHandle );

In the Cortex R4F core, the ECC is calculated for every read/write access in the RAM
address space. The functionality of the ECC detection reporting is encapsulated in the
two TCRAM Wrappers. The TCRAM wrapper serves as an interface support for error
detection/correction and decoding.

After one of the push buttons is pressed in the Wrapper, the reporting of the detection
faults in enabled as presented in Figure 4.15. In the display is written, in which sector the
error is introduced.

Reaching the corrupted data sector, a data fault is generated and as impact, all tasks
running are stopped, and, optionally dependent on safety requirements all peripherals are
stopped. After this fault is caused, in the prototyping board, the two error leds are set to
high as in Figure 4.15.

The activities of the RAM fault injection are presented in Figure 4.14. Every time the
task takes the CPU, it checks if the buttons are pressed; if yes, it randomly generates a
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(a) Push buttons (b) Circuit diagram

Figure 4.13: Push buttons used for the Fault Injection

Figure 4.14: Fault injection activity diagram

RAM address, corrupts the ECC sum, and changes to sleep state.
The following test cases for the Watchdog test are performed:

• Increasing the time between operations

• Performing operations that take more than 200 ms

In Table 4.1, the timing results of the implemented online test strategy are presented:
The test cases for the watchdog are performed to see whether the evaluation board

needs to be reset. This is used if the application waits more than 200 ms for an answer of
a critical function.
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Figure 4.15: LCD displaying the address of the corrupted RAM region

RAM test Core test Watchdog

Complete test 30 msa b 0,927 ms 100ms

Testing a sector-
interval

5,86 µs 0.029 ms –

aWithout counting the OS Context switch time
bAt 160 MHz system clock

Table 4.1: Timing properties of the tests

Test cases for the STC test which can be performed to verify the functionality of the
module are:

• Set time out counter preload register to a low value

• Initializing the core registers at start-up with wrong values

With the first test case, it is assured that the test is performed within a defined number
of CPU cycles. If the test is not finished within the defined number of cycles, a timeout
will be generated and it guarantees that the application does not have to wait forever if
the test hangs up. The second test is based on the property of the cores, which should be
initialized with a defined procedure as described in [RIT] to avoid that at start-up a core
compare error is generated.



Chapter 5

Conclusions and Outlook

5.1 Conclusions

At the beginning of this thesis safety-related architectures and self-testing techniques were
introduced. The beginning was at the hardware level which includes safety strategies and
architectures with a description of the ideas behind such concepts and also the require-
ments these systems must meet to maintain the functional safety.

The form of hardware strategies is dependent on the fault model. A detailed description
of such strategies is given, which can be in a form of single and multi-distributed controllers.
From a practical point of view, these strategies are concepts which form the base for
architectures and are described in detail in the second chapter.

In order to assure the safety in a microcontroller, algorithms are needed to be im-
plemented, which can be verified either using the mathematical structure or simulation.
In the thesis, different algorithms are presented, which can be used in a system to find
different types of faults like coupled, stuck-at, transition faults etc. which can be either
implemented in hardware as part of an architecture or in software as software-based self
test. However, the main focus was on functional tests.

In order to evaluate such architectures on how they fulfil safety criteria, a list of
evaluation criteria was created. Based on the safety features, performance, run time tests,
developing environment etc, the TMS570 microcontroller was chosen as the appropriate
device for further implementations.

The idea was to use safety features of the microcontroller, and different algorithms to
be mixed in an online periodic testing strategy which assures safety in critical applications.
It was shown in the thesis, which are the main safety features of the chosen microcontroller
and which are implemented, the online RAM test and watchdog test running during normal
system operation.

An operating system kernel was used to run all the tests, and it was shown how the
tests can be integrated into a safety strategy, presenting the advantages and disadvantages
of using such a system. As for the performance, the RAM test, which is implemented
completely in assembler, can be used by any ARM microcontroller with or without an
operating system.

A microcontroller which has not only off-line safety features (tests that can be per-
formed only at startup) but online features as well, which tests the microcontroller’s
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functional parts like RAM, CPU, flash, would extend the possibility for critical applica-
tions that could be implemented in the automotive industry or power plants, medical life
support equipment etc.

5.2 Outlook

The TMS570 microcontroller offers a variety of tests and safety features which can be
used during the development. As presented in the design chapter of the concept, it has
some drawbacks because it does not have tests for every part of the system which can be
performed at runtime. All RAM tests can be performed only at start-up, and the RAM
needs to be extended either with hardware or with software tests for such purposes.

Such an integration would be a powerful feature for all applications in that field. Not
only by extending such tests, but also by creating a better OS support for the safety
features like the core test, as maintaining and backup the different registers in software to
perform the test periodically is error prone because of timing requirements.

There are new microcontrollers with safety features which have more computing cores
and adequately address the requirements of safety-critical applications. They will be used
in the automotive industry in the near future.



Appendix A

Definitions

A.1 Abbreviations

ATPG Automatic Test Pattern Generation
AF Address Decoder Faults
ALU Arithmetical Logical Unit
ARM Advanced RISC Machine
ASIC Application Specific Integrated Circuit
ASIL Automotive Safety Integrity Level
BIST Built in Self Tests
CAN Controller Area Network
CCF Common Cause Failures
CPU Central Processing Unit
CPSR Current Program Status Register
CF Coupling Faults
CFin Inversion Coupling Fault
CFid Idempotent Coupling Fault
CFst State Coupling Fault
CU Comparing Unit
DC Diagnostic Coverage
DRF Data Retention Fault
DSP Digital Signal Processor
EEPROM Electrically Erasable Programmable Read-Only Memory
ECC Error Correction Codes
ESM Error Signaling Module
ETM Embedded Trace Macrocell
FMzPLL Frequency modulated phase lock loop
FPLL Flexray phase lock loop
FSM Finite State Machine
FPU Floating Point Unit
FMEA Failure Modes and Effects Analysis
GALPAT Galloping Pattern
GUI Graphical user interface

81
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HALCoGen Hardware Abstraction Code Generator Layer
HET High-End Timer
ISA Instruction Set Architecture
IDE Integrated Development Environment
ITI Institute for Technical Informatics
JTAG Joint Test Action Group Interface
LBIST Logical Built-in Self Tests
LIN Local Interconnect Network
MIPI Mobile Industry Processor Interface
MEPAS Methods and processes for automotive embedded software development,
verification and validation
MPU Memory Protection Unit
MCU Microcontroller Unit
NowECC Error Correction Code Generator
PWM Pulse Width Modulation
PFM Program Flow Monitoring
PCP Peripheral Control Processor
PBIST Programmable Built-In Self Test
RAM Random Access Memory
RISC Reduced Instruction Set Computing
ROM Read Only Memory
RTOS Real Time Operating System
RTL Register Transfer Level
RJ45 Registered Jack
SRS Safety Requirements Specification
SIL Safety Integrity Level
SAF Stuck-at Faults
SFF Safe Failure Fraction
SMP Symmetric multiprocessor architectures
SOF Stuck-open fault
STC Self Test Controller
SFF Safe Failure Fraction
SBST Software Based Self Tests
TCRAM Tightly Coupled Random Access Memory
TI Texas Instruments
TLP Thread Level Parallelism
TF Transition Faults
ThWD TTOSHIBA hW diagnostic
TFT-LCD Thin Film Transistor Liquid Crystal Display
WALPAT Walking Pattern
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A.2 Used Symbols

λS Rate of Safe Failures
λD Rate of Dangerous Failures
λD Rate of Dangerous Failures that are Detected
⇓ Decreasing Addressing Order
⇑ Increasing Addressing Order
(w0) Write Zero to the Specific Ram Cell
(w1) Write One to the Specific Ram Cell
(r0) Read Zero to the Specific Ram Cell
(r1) Read One to the Specific Ram Cell
↓ Forced Transition from 1 to 0
↑ Forced Transition from 0 to 1
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