Masterarbeit

Design and Implementation of a Self-test
Concept for an Industrial Multi-core
Microcontroller

Burim ALIU

LTI

Institut fsr Technische Informatik
Technische Universitat Graz

TU

Grazm

Begutachter: Ass.-Prof. Dipl.-Ing. Dr.techn. Christian Steger
Betreuer: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger
Dipl.-Ing. Roland Mader

Graz, im Mai 2012

Kurzfassung

Seit einigen Jahren werden Mikrocontroller in der Automobiindustrie als Steuergerate
fur Bremsen oder Motorsteuerungen genutzt. Heutzutage gt es viele Multi-Core Mikro-
controller, die aber nicht alle far sicherheitskritische Anwendungen in der Automobilin-
dustrie verwendet werden kennen.

Immer, wenn einige kritische Aufgaben ausgefuhrt werden mssen, muss sichergestellt
sein, dass der Mikrocontroller ordnungsgema funktioniert und das die funktionale Sicher-
heit im System erhalten bleibt.

Wahrend der Laufzeit kennen Swrungen (z.B. Ubergangsfehler, gekoppelte Fehler
usw.) in den verschiedenen Teilen des Mikrocontrollers atifeten. Diese Fehler k®ennen zu
Ausfallen des gesamten Systems fuhren.

Zur Erkennung und Handhabung solcher Fehler sind Mikrocontoller mit diversen
Sicherheitsfunktionaliaten ausgestattet. Diese kennen in Form von Architekturen eines
Lock-Step Modus, asymmetrischen Modus, symmetrischen Mags oder Selbsttests real-
isiert sein, die entweder in Hardware oder in Software implmentiert werden.

In dieser Arbeit wurden verschiedene Multi-Core-Architekturen und verschiedene Selb-
sttestalgorithmen bewertet.

Das erste Ziel war, zur Veriagung stehende Multi-Core-Mikrocontroller mit Bezug
auf die gewahlten Kriterien zu bewerten. Ein weiteres Zielwar die Entwicklung und
Implementierung eines Online-Selbsttest-Konzepts far énen ausgewahlten Multi-Core-
Mikrocontroller. Dieses Konzept beinhaltet, software- urd hardwarebasierte Selbsttests
fur bestimmte Teile des ausgewahlten Mikrocontrollers wie RAM oder CPU.

Diese Hardware und softwarebasierten Selbsttests werderudch einen externen Watch-
dog erganzt, der es ermeglicht, den Programmablauf zu wkerwachen.

Abstract

During the last years microcontrollers have been used for aurol devices in the auto-
motive industry like auto-brakes, motor control etc. Nowadays there are many multi-core
microcontrollers, but not all of them can be used in the autonotive industry for safety
critical applications. Whenever some critical tasks are egcuted, it must be ensured that
the microcontroller is working correctly and the system mantains the functional safety.

During runtime, faults can occur in various parts of the microcontroller such as ALU,
RAM or peripherals starting from, stuck at faults, transiti on faults, coupled faults etc.
These faults can cause failures of the complete system.

To detect and handle such faults, microcontrollers are equiped with safety features in
the form of architectures like lock-step mode, asymmetric mde, symmetric mode or self
tests which are implemented either in hardware or in softwae.

Di erent multicore architectures and di erent self testing a Igorithms were reviewed for
the thesis. The rst goal was to evaluate available multicore microcontrollers with respect
to chosen evaluation criteria. Another goal was to design ad implement an online self
test concept for a selected multi-core controller, which iludes software based self tests
as well as hardware built-in self tests for specic parts of he chosen microcontroller like
RAM or CPU cores. These hardware and software-based self tssare supplemented by
an external watchdog that is used for the program ow monitoring.

STATUTORY DECLARATION

| declare that | have authored this thesis independently, that | have not used other than
the declared sources / resources, and that | have explicitymarked all material which has
been quoted either literally or by content from the used souces.

date (signature)

Acknowledgments

This thesis was performed at the Institute for Technical Informatics at the Technical
University of Graz in the scope of the MEPAS] pr%ject in cooperation with AVL List
GmbHA and The Virtual Vehicle Competence Cente

First of all I want to thank my supervisors Dipl.-Ing. Roland Mader and Ass.-Prof.
Dipl.-Ing. Dr. techn. Christian Steger who have supported me during the time | was working
on my thesis.

During my study | was greatly supported by my family: my father, my mother, and
my two brothers.

Graz, May 2012 Burim Aliu

!Methods and processes for automotive embedded software deglopment, veri cation and validation
2http:/iwww.avl.com
3http:/iwww.vif.tugraz.at

Contents

2.1.3.2 Loosely-Synchronized Dual & Triple Modular Procesor

Architectures e 21

2.1.3.3 _Generic Dual Core Architecture 21

2.2 %g%%[g iﬁ;ﬁ%% 23
1S . . e 23

222 Functional TeStS oo 25
[2.2.2.1 Software Fail-Safe Techniqués 27
2222 MarchTests i 28

.23 Structural TeStS . . .« o o o 34

4 On-line Period esSts 37

2.2.5 _Specialized Tests for Multi-corés 39

% poalsis and Besin P
............................. 42

[3.1.1 TMS570 - Texas Instruments oo oo 2

4.3 Start-up Phase

4.4.2 Watchdog test
4.4.3 CPUTLeSt

81
81
83

84

List of Figures

1.1 Action chain for fault handling [m 11
Mmummﬂmmg_mms 14
2.2 Single controller strategy [[SDOB] i 17
2.3 Symmetric controller strategy _S_D_O_d] 18
2.4 Dual-Core controller strategy [_S 18
2.5 Asymmetric controller strategy ﬁ@] 19
2.6 Distributed controller strategy [m 20
2.7 Architectures based on the Lock Stepm 21
2.8 TMR and Loosely-Synchronized Dual Architecture [BEM*03] 22
2.9 Recon gurable dual core architecture [KS06] 23
2.10 Tree categorization of SBST method o]. 24
2.11 Execution ow of the FRITS tool [PMLO2Jf 26
2.12 Functional feedback tests realized with GP architecture _] 27
2.13 Abraham Test [NTAZ8] oo ot e e 31
2.14 SBST methodology for pipelined processorm 36
2.15 Test routine generated according to the methodology [B04] 38
2.16 Functional tests with multicore architectures 09| .. 40
2.17 Performance results of multi-threaded over single-treaded M N N
3.1 _The TMS570 microcontroller from Texas Instruments 43
3.2 Comparing CPU instruction results m 44
3.3 Memory read/write access with ECC calculation m 44
3.4 The TC1766 microcontroller from In neon Technologies |B_S_E_Q_Z|J 45
3.5 The fRM architecture ﬂm a7
3.6 Advantages of fRM Methodology over traditional architectures m .. 48

4.1
4.2

MCBTMS570 Development Kit [KET] 62
Block diagram of the MCBTMS570 prototyping board @ 63

4.3

Code Composer Studio IDE o 64

48 The ESRAMinTMS570 [TMS] . . .« o o v e e 70

4.9 General purpose registers of the ARM Architecturem 71
4.10 Timing diagram of the watchdo 1 74
4.11 Format of the CPSR Register] 75
4 ML activity diagram of the coretest 76

1sh bu Ised ult Injection 77
4.14 Fault injection activity diagram|. 77
4.15 1 CD displaying the address of the corrupted RAM regioh 78

List of Tables

IZZ VERTIS compared to the methods HITEC & CRIS for the Viper P ;ggggggr 25
2.3 VERTIS compared to the methods HITEC & CRIS for the GL.85 Processaor 25

2.4 __Two conditions for a test to detect the AF Faults 30

Chapter 1

Introduction

1.1 Motivation

Nowadays, di erent accidents happen while driving a car or travelling by plane. There
were cases in which cars on the highway automatically execatl the emergency braking
without interaction by the driver, or such cases when, during a radiotherapy, the device
killed a patient with an overdose [Mon99].

In our daily life, everyone is accustomed only to use di erentdevices, but many do
not realize that the machines have a certain functional area The slightest change in the
system can cause a total system failure.

These changes can be di erent in the electronic systems. It isu cient that only a bit
ip occurs, to cause that the brakes of a car do not work becaus this bit ip makes the
program ow in the control unit jumps somewhere else.

Such changes or faults which produce unwanted results in a syfem can have several
causes. If a complete control system is considered, faultsan be found in di erent forms:
control faults, development faults or mechanical faults beause of mechanical utilization.

Faults can be classi ed as follow [Mon99]:

1. Source: development faults, run-time faults
2. Type: permanent, sporadic, conditional faults
3. Region: value, time, unsolicited actions

Development faults are permanent faults which occur duringthe development process
because of the high complexity, low veri ability or insu ci ent speci cation and are found
during the system lifetime. Run-time faults occur because bhardware, communication,
mechanical failures or overloading.

Permanent faults last until they are treated. Sporadic faults occur spontaneously and
are not reproducible until the fault source is found. Conditional faults are caused by
temperature, vibration or radiation disorders.

Fault based on the region can occur if the system does not gerae the correct output
or if it fails to meet the timing requirements. Such failures can occur if the real time task
does not ful | the response time window or the scheduler canaot practically provide the
theoretically controllable load.

10

CHAPTER 1. INTRODUCTION 11

Once a fault has occurred, it can take a long time until it brings the entire system in
an unde ned state. Depending on where it occurs, it may have derent e ects on the
system and the environment. When the fault is in the processocore it is very likely that
it can produce an accident.

Fault is resolved

Fault is treated

Fault is located

Fault is reported

Fault is detected

/== Fault occurs

Figure 1.1: Action chain for fault handling [Mon99]

A system must always be ready to intercept and handle faults.Fault-tolerant measures
must ensure that the system still works correctly if a fault is detected, or the system must
switch into a safe state. The complete chain steps of fault hadling after a fault occurs,
illustrated in Figure [1] are: detection, reporting, delimiting, treating, and resolving.

After the faults are detected, other modules must be alerted Then it must be located
to prevent the fault from spreading over the system. Hence itmust be determined which
module is responsible for the fault and the particular moduk must be treated by fault
tolerant mechanisms. At the end, the fault can be resolved ¢her by fault model or by
user intervention. All steps in the action chain can be takenin two ways:

1. Operative - The fault model is always and periodically loking for faults in the
system in order to nd and correct them.

2. Responsive - If errors occur, they are reported. A module etects the error and
reports it to an error handling module.

Such operative or responsive measures can be integrated athe hardware or in form of
software-based self-tests (SBST). SBST are testing techgiles, executed in the background
of the application. However, the integration of such SBST tests needs additional ROM
space and execution time.

As a motivation to write this thesis, there was the challengeto see and learn more
about, how the functional safety can be achieved. This is notonly about how the con-
cepts are implemented but also to explore di erent algorithms and their mathematical
background. The result should be a software concept which add be implemented in such
a system in order to maintain the safety integrity.

CHAPTER 1. INTRODUCTION 12

During the preparation of this thesis, di erent multi-core m icrocontrollers for safety-
relevant embedded systems which are available on the marketere evaluated in terms of
safety-related components, fault coverage and performarc

1.2 Objective

Designing an e ective online testing strategy requires infemation about the architecture,
RAM, ROM, instruction set, branch prediction etc. This info rmation must be collected
and evaluated because in (E/E/PES) systems, failures can dse in di erent parts of the
system, which are caused by hardware, software, electromagtic or di erent in uences.

For creating such an online-testing strategy, su cient knowledge about the architecture
of the system and di erent algorithms should be present. Hene, the rst task of the thesis
was:

1. Study di erent safety strategies and architectures
2. Study di erent algorithms, their mathematical structure and fault models

3. Create a list of evaluation criteria based on which the micocontrollers will be eval-
uated

4. Check which safety features and protection mechanisms #t are implemented in
di erent architectures

5. Based on the gained knowledge create a testing strategy

6. Implement the online periodic testing strategy and evalate the results

After the evaluation task is nished, the online testing strategy which will be imple-
mented to maintain the integrity of the system during runtim e, the testing strategy would
invoke these functional properties de ned in previous tasls. This means that as a part of
the strategy, the support of hardware tests will be included

At the end, the gained knowledge will form an on-line periodc strategy where the tests
which are developed must collaborate with each other to runn the background during
runtime and the application will perform its normal operati on.

1.3 Structure

The second chapter gives a detailed introduction to the eld of safety-related concepts,
architectures and software-based self-tests. Fail-safeafety strategies are used to achieve
a safe state in case of a fault. Therefore, online fault detéon is necessary.

Safety architectures are created using di erent algorithmswhich are proofs of concept
in the eld and provide safety using redundant hardware components that minimize the
causes of common cause failures (CCF).

Software-based self tests (SBST) are described which are gaf a solution to provide
safety using the functional and structural information of microcontrollers. Using this
information, tests are generated and applied to cover fauk which can cause unsafe states.

CHAPTER 1. INTRODUCTION 13

At the end of the chapter, the state of the art in the eld of RAM testing algorithms
are described starting from the mathematical background, omplexity, and execution time.

The third chapter describes the di erent architectures which are evaluated and based
on the evaluation criteria; a concept is built to cover the faults during runtime in the
TMS570 microcontroller. The concept is an online strategy vhich consists of hardware
and software tests.

Chapter four presents the implementation of the concept desribed in the fourth chap-
ter. This chapter covers the evaluation board and the tool ctain which are used for the
development, and each test is described regarding the impheentation, execution time and
fault injection.

Chapter ve presents the conclusion of this thesis and prospcts for future work.

Chapter 2

Related Work

2.1 Hardware architectures and strategies

2.1.1 Faults and Failures

In the eld of safety related systems, microcontrollers arevery common devices. The
safety integrity of these devices must be maintained duringsystem operation. Appropriate
testing strategies are required to detect faults in microcatrollers during runtime to be

able to achieve and maintain a safe state.

wrl

wi

wri wrl State 0¥ wri
wrl - State 0 & 1 . . @ Trarsitan

wrl

Stuck-at Fault Transition Fault Coupled Fault

Figure 2.1: Finite State Machines describing basic faults

Faults are generally subdivided into:

1. Hardware faults

2. Software faults

Another group of faults which can be found in architectures where cores are physical
coupled are the common cause failures (CCF)_[TumQ9]. Here, &ult as the root cause
a ects the entire system because of the coupling mechanism. fle fault as root cause can
be: temperature spreading, using same power supply, or clecource for both cores etc.

14

CHAPTER 2. RELATED WORK 15

Dependent on which part of the microcontroller the faults oaur, they are called as
follows:

1. CPU Faults

Arithmetic faults
Logical faults
Conditional faults

2. RAM Faults

Stuck at faults
Transition faults
Coupling faults

3. Peripheral Faults

The arithmetical faults cause the ALU to perform calculations incorrectly. This can
be multiplication, addition, division etc. Logical and conditional faults are the reason
that comparisons and jumps in programs are not performed coectly and can cause an
instruction routine jump elsewhere than intended.

But the most important faults which must be avoided in a system are RAM faults.
Any single bit fault in a RAM cell can be a root cause for other failures in the system
such as previously described CPU faults.

Stuck-at faults(SAF) can occur in two forms: stuck at 0 and 1. As illustrated in the
nite state machine, stuck at 0 or 1 means that any attempt to change the state of a RAM
cell from 0 to 1 or vice versa fails and the cell holds the origial value.

Transition faults(TF) prevent a cell from changing its actu al state from O to 1 or 1 to
0. The di erence between transition faults and stuck at faults are that, transition faults
a ect just one side of the state transition.

Coupling faults(CF) ensure that any transition in one RAM cell from one state to
another causes the changing of their actual state to one or tanany other cells.

These three basic faults are the basis for other faults that an occur in RAM memory
and are illustrated in the Table 2.1 [WWWO06]:

Fault Abbreviation
Address decoder faults AF
Stuck-open fault SOF

Data retention fault DRF
Inversion coupling fault CFin
Idempotent coupling fault CFid

State coupling fault CFst

Read disturb fault RDF

Table 2.1: Table with faults that can occur in RAM

CHAPTER 2. RELATED WORK 16

Each fault is illustrated in Table Z.Iland has the following meaning:

The address decoder takes one or many input bits and constrig a speci ¢ address
as output. If some speci c cells, addresses or blocks of adesses, cannot be accessed,
a fault is present.

If a cell cannot be accessed because of a faulty voltage ampli which cannot sense
the voltage di erence of the bit line, it is a stuck open fault.

If a speci ¢ cell cannot hold its value for a speci c time due to a leakage current or
pull-up resistor problems, it is a data retain fault.

While a writing operation is performed on the cell "j", the cell "i" changes its value
and the fault is called an inversion coupling fault.

If a cell "J", during a transition operation forces any other cell "i" on the RAM
memory to be in a xed value forever, the fault is called idempotent coupling fault.

If a coupled cell or line "i" makes a forced transition to a spei ¢ value x only if the
coupling cell or line "|" is in state y, then it is described as a state coupling fault.

If a cell during reading changes its logical value, it is caktd read disturb fault.

2.1.2 Fail-Safe System Strategies

Because of the various fault types, di erent strategies are @veloped to maintain the in-
tegrity in a controller. In order to ful | all speci c constr aints in di erent architectures,
adequate strategies are needed.

These strategies must ful | di erent criteria, but the most i mportant of them are
[SDO06]:

A strategy must satisfy system safety requirementﬂ Fault detection and handling
must be provided within the safe system response times.

The system is transitioned to a safe state within the require safe fault response
time.

Level of independent checking provided
Performance
Technology availability

Development e ort

So far, there have been di erent proven strategies that genally use watchdogs, dual,
symmetric and asymmetric architectures.

ISIL/ASIL levels

CHAPTER 2. RELATED WORK 17

2.1.2.1 Single Controller Strategy

A single controller executes the instructions of an appliciion. At the same time, self-tests
that can be hardware circuitry or software self tests, obsere the internal state of the
architecture.

With this mechanism, it can only achieved to catch the conditons related to the pro-
gram ow such as endless loops or incorrect ows, but it does nt catch wrong calculations
in the output. A possible solution for this strategy is to implement protection mechanisms
that periodically check the internal state of the ALU or RAM, and to have a separation
between the critical parts of the architecture.

The safety of such systems depends on the reliability of the atchdog circuits. If the
properties of such a circuit [HA99] are observed, it is posbie that in some special cases
the watchdog does not detect the failures.

If the reset occurs within a de ned period, the watchdog timer reacts. If however,
a fault occurs in the microcontroller, a faster reset can be gnerated, and the watchdog
is not able to di erentiate between a normal refresh with period T and a period that is
smaller than T.

To overcome this limitation, extra logic parts must be included, to make the watchdog
reliable [HA99]. Although equipped with extra protection mechanisms, it has the problem
that extra self-test routines must be implemented (hardwatre or software) for the integrity.
This strategy is illustrated in Figure 2.2

Inputs Output

ﬁ
—

Figure 2.2: Single controller strategy [SDO6]

2.1.2.2 Symmetric Controller Strategy

The next strategy [SDOE] is the symmetric strategy. Here, tte instructions are executed in
parallel and the results of the outputs are compared. Synctwnization plays a very impor-
tant role in that matter, because every processor has a sligly di erent clock frequency.
The comparison can be made for every instruction or periodially (at specic points
of time). This strategy can cover almost all errors that may occur during calculation in
hardware or software.
Advantages of this strategy can be speci ed as:

Almost all random hardware faults can be detected

Complex self-checking techniques can be avoided

CHAPTER 2. RELATED WORK 18

Disadvantages or limitations:
Both processors must be synchronized

Large size and cost because the architecture has two process

Inputs

Figure 2.3: Symmetric controller strategy [SDO06]

2.1.2.3 Dual Core Controller Strategy

This strategy is similar to the single controller strategy. The di erence is that this strategy,
has two cores that compare the output of each other and can beambined with a watchdog
circuitry to avoid common cause failures. Additional software self-checking diagnostics
can be used[[LCD 05], such as checksums, redundant coding or RAM tests to extel the
integrity of the controller.

Failures that occur in the relation with the CPU can be detected immediately, but it
depends on the execution time of the self-checking routingdor example ALU Checking,
output checking, etc.

Two architectures that are based on this strategy are Dual-®@re Lock Step on Pagé¢ 20.
Other possible system architectures can be found iri [Has]:

Heterogeneoud runs di erent OSs and has di erent types of cores

Asymmetric Multi-Processing ! containing two or more cores of the same type and
able to run di erent or same OS

Symmetric Multi-Processing! runs same OS with same core types

Inputs

Figure 2.4: Dual-Core controller strategy [SDO06]

CHAPTER 2. RELATED WORK 19

2.1.2.4 Asymmetric Controller Strategy

This strategy as depicted by Figure[Z.5 consists of two procssors that are connected to
each other via a dedicated line. The second controller can bperceived as a watchdog
circuit, which monitors the primary processor. It does not execute application-speci c
codes, but it only checks the main controller.

Typically, the second controller is a standard microcontrdler (o -the-shelf), because
for using speci ¢ ASICs, it needs more design time and has hlger costs.

This strategy has a good diagnostic coverage and guaranteesntroller integrity, be-
cause an external processor checks its integrity and not amiernal self-checking procedure.

Asymmetric
Processor

Figure 2.5: Asymmetric controller strategy [SDO6]

2.1.2.5 Distributed Controller Strategy

In this strategy, two controllers are connected with each oher in a network. One controller
serves as primary controller and the second checks the funichality of the rst. According
[SDOE€] to the way, how the functionality of the second contrdler is implemented, it can
be grouped in two methods:

1. Independent execution of checking procedure

2. Independent checking of the primary processor

With the rst method, the primary controller sends the recei ved signal from the sec-
ondary controller and the results to the second controller,so the second controller performs
the same operations, and if there is a discrepancy, it can shwdown or disable the main
controller.

With the second method the second controller periodically ends a seed to the primary
controller, performs calculations and sends the result bdc This result is compared to
a pre-calculated value to see if something in the primary comoller is going wrong. The
"seed" is used in many self-checking methods to check the egetion of the program, and to
see if a program has executed all the branches. For more infaration, refer to [LCD* 05].

Depending on factors like network bandwidth, response timeand synchronization, two
shutdown strategies of the main microcontroller are possile:

CHAPTER 2. RELATED WORK 20
1. Dedicated shutdown via a dedicated wire from the second tehe primary controller
(hard-wired)

2. Shutdown via a local network controller in the primary controller

Bus

Shut
Down
Command

Figure 2.6: Distributed controller strategy [SDOE]

2.1.3 Multi-core Architectures with redundant structures

Most of today's modern controller architectures use redundncy to give controllers the
fault-tolerant property. But only with redundancy, the fau lt-tolerant property cannot
hold because of common cause faults that can occur in single dual core architectures
[TumQ9].

Other measures are needed to extend this capability, such asintime tests, hardware
isolation like guard rings or memory protection mechanisms In [BEM * 03] di erent ar-
chitectures are described that will be explained later on.

2.1.3.1 Lock-Step Dual & Dual Lock-Step Processor Architectures

The rst architecture is a so-called lock-step. It contains two processors that are connected
by a compare unit and are called "master" and “checker".

The master executes the instructions and the checker is regmsible to execute the same
instructions as the "master". The compare unit as illustrated in Figure[2.7a continuously
compares whether the calculations are correct.

Another important property is that the Compare Unit check on ly whether an error has
occurred during calculations, but it does not identify which part of the system causes this
error. Normally, to detect such errors and errors that happa because of common cause
faults [Tum09] an extra logic is needed implementing Error @rrection Codes and parity
bits in peripheral devices.

Another modi cation of the rst architecture is illustrate d in Figure 2.70, that includes
two lock-step controllers as in Figure[Z.7&a, that are interonnected to achieve enhanced
coverage.

Fault tolerance is guaranteed only for the tasks that are exeuted in parallel, and yields
fault coverage of about 100%. The tasks can be checked inteaity in each controller by
software self tests.

CHAPTER 2. RELATED WORK 21

RAM || FLASH

CPUT A II H
=l Master LL 4 >
Z
|| oPU A .—\l]l.:t:l't_"-[."ii E .
: i & DAT! =0
Checker :> monitor b '
z
Address § :
i o | ETUH — & DATA z
=| | Checker Q:” mibTiter 3
= = !
NT CTL c:: % =y
-q ﬁ 3| cruB ﬂ ..
CPU > Master :::.
Master U’ I H I[
CPU Address
= & DATA
Checker .
:> monitor —— RAM FLAS
(a) Lock-Step Dual Architecture (b) Dual Lock-Step Architecture

Figure 2.7: Architectures based on the Lock Step [BEMO03]

2.1.3.2 Loosely-Synchronized Dual & Triple Modular Processor Architec-
tures

In Loosely-Synchronized architecture two processors areoninected to each other but are
independent and have their own memory and ash parts. Anothe strategy is imple-
mented here. Only a set of tasks marked as critical are dupligted, and each controller is
responsible for checking the result of the other.

If a mismatch occurs, self-checking techniques can be inwad to nd the faulty part
of the system.

The last architecture is illustrated in Figure Here, three controllers execute the
same instructions and send the results to the Majority Voter, which decides, based on the
results, whether the calculations are correct.

2.1.3.3 Generic Dual Core Architecture

Based on the previously described architectures, safetyetated optimizations were pro-
posed. An example is recon gurable dual-core[[KS06] [BEMO03] as visualized in the
Figure [2.9. Kottke and Steininger [KS06] proposed a recon grable dual core architecture
to handle demands on safety and computing power, e ciently using the dual core. In
almost all architectures, the system works in master/checkr mode for the tasks that are
marked as critical, whereas the non-critical tasks are proessed in normal mode.

The special feature of the recon gurable dual-core systemsi that it can be switched

CHAPTER 2. RELATED WORK 22

RAM || FLASH

il . CPU A e
CPU-A > FLASH E +
<: A 1_5 :
oo
[~ L] Majority <5 |
t}i CPU-B B Voter e E |
: <: %
ii = 1
CPU-C B :E (

= (]| cruB -

—
—

RAM || FLASH

" RAM

(&) TMR Architecture (b) Loosely-Synchronized Dual Architecture

Figure 2.8: TMR and Loosely-Synchronized Dual Architecture [BEM' 03]

between two modes of operation:

1. Safety mode

2. Performance mode

For safety-critical applications, the safety mode operats in lock-step mode. The rst
core or the master controls the peripherals and the memory. Tie checker is not connected
with the peripherals but it receives the same instructions and the results are compared
with the master outputs.

To avoid common cause failures which can detected be in formf@lectromagnetic or
any other external in uence, the outputs of the master core ae delayed for 1.5 clock cycles.

In safety mode, the same instruction stream is executed, and kind of synchronization
is needed in order to assure that the registers and cache arddntical before it is switched
from performance to safety mode. This can be done using an opeting system. The main
challenge is the cache synchronization because it is a non @eministic part. A possible
solution is to ush all the cache tables before the mode swith is performed, or use a ag
list which identi es which cache lines are valid in the safey mode.

In the performance mode, both cores are working independelytas a dual core system,
and the delay on the instructions is disabled. But these fealires can be used only in the
safety and performance mode. An extra module is needed sucls dMemory Management
Unit, which allows access to critical regions only in the sugrvisor mode.

CHAPTER 2. RELATED WORK 23

Core 1
Instruction 1 3 Wait I I Dam Daa Dam
address T HEIO Signal IOErgk address out in
A A A A F 3
Maode
Switch
Y Cache | | Detect Yy Address
with pariry 2
A ¥ &
safe rity Instruction e i Data Data | safe
inStrueion| |necuction RAM - swich Switch AR - RAM il e | data
memory parity i Control Control memaory
Instruction 7 Y &
Dara
A Cache Mode AA with parity
Switeh
Detect
Y ¥ Y v Y
Instruction . Wait Dam Data Data
address [nstruction Signal Intermupt elk shgress ou in
Core 2

Figure 2.9: Recon gurable dual core architecture [KS06]

The main memory is subdivided into the data and instruction memory, which are
equipped with self-test routines to detect faults during during runtime. To prevent access
to the same memory region, two special units are used to managthe RAM memory:

1. Instruction RAM control unit

2. Data RAM control unit

In the safety mode the instruction control unit serves exclwsively the core which man-
ages the peripherals. In the performance mode, a priority $'eme is built to manage the
access from both cores. At a specic address, one bit is usedsddenti cation for the
operating mode.

2.2 Software strategies
2.2.1 Software Based Self tests

As multicore processor architectures becomes more populathe time which is needed
to test the cores scales depends on the number of cores. Thisgmpts a challenge for
the industry to consider new testing methods and integrate hem into the microprocessor
test ow. The purpose of the methods was to target the defectve parts per million rate,

which is a demand on quality product development. Such testig methods are known as

CHAPTER 2. RELATED WORK 24

functional self testing (instruction-based self testing) or commonly "software-based self-
testing" [WWC * 05].

"The key idea of SBST is to exploit on chip programmable resouces to run normal
programs that test the processor itself' [WWC* 05]. Some SBST tests, exploit the instruc-
tion set of the Architecture and performs safety critical checks in the background using
the actual clock frequency.

Software-based self testing methods [PGSR10] are subdived as illustrated in Fig-
ure [2.10 into two groups:

1. Functional methods
2. Structural methods

The rst group exploits only the functional information abo ut the processor, such as
the Instruction Set Architecture during the test generation. Structural methods use the
structural information of the architecture to generate the tests. The information can be
either gate-level or RTL description.

This categorization is performed based on the type of proce®r description and not
on a speci ¢ fault model.

Apart from this categorization in the group of functional te sts, there are also tests,
that concentrate on speci ¢ fault models. In this group are ftware analysis methods and
algorithms like march, galloping, walking, checkerboard ad butter y, which are primarily
used to test RAM memories.

l methods) l

— F E——
‘ Functional ‘ ‘ Structural |
methods methods
™ Y | l R Y 'S l Y
Randomi (Feedback- ‘ (Hierarchical ‘ ‘ RTL-level ‘
andomizer)L based 0oL methods) L methods)
Precomputed Constrained test Deterministic Pseudarandom ATPG per
stirmuli generation test data test data componant
A ht A s I . A LS

Figure 2.10: Tree categorization of SBST methods[[PGSR10]

CHAPTER 2. RELATED WORK 25

2.2.2 Functional Tests

Functional tests as illustrated in Figure 2.10 based on the dgic they use are subdivided
into two groups:

1. Randomized - generate tests with speci ¢ constraints duing runtime

2. Feedback based - evaluate previous results to be consiael for the new test gener-
ation during development time

Good representatives for the randomized tests are the methds de ned in:
VERTIS [SA98]
FRITS [PMLO2]
Load & GO [BHWO06]

VERTIS uses the instruction set from the Programmers' Manud to extract the infor-
mation about the functionality of the processor. This information is grouped and written
in a prede ned format that can be used by the generation tool. This le format can be
found in [SA98]. The test generated from the tool is pseudo aembler and can be adopted
easily for di erent architectures.

VERTIS can generate data randomly or as specied by the user wich are used for
di erent processor instructions. With the generated test sequences di erent parts of the
system are tested from the functional view like: CPU, memory fetching units etc.

By using this methodology of generating random tests, two pocessors were tested, and
a fault coverage of about 94.04% for single stuck-at faults as achieved, which is a good
result compared to the other techniques which have a smallefault coverage as presented
in Tables [Z.2 and [2Z.3.

HITEC CRIS VERTIS
FaultCoverage [%0] 81.55 91.30 94.04
CPU time 119 min 180 min 3 min

Table 2.2: VERTIS compared to the methods HITEC & CRIS for the Viper Processor

[SA98]
HITEC CRIS VERTIS
FaultCoverage [%0] 22.28 46.73 90.20
E ciency [%] 24.89 47.64 90.20
CPU time 50.4 hrs 9.31 hrs 3.1 min

Table 2.3: VERTIS compared to the methods HITEC & CRIS for the GL85 Processor

[SA9S]

FRITS as a tool is used for microprocessors which have an exteed instruction set.
FRITS tests (kernels) are executed in real time as presentedh execution ow Figure 2171

CHAPTER 2. RELATED WORK 26

They do not produce any cache misses and therefore it is not messary to control the
address and bus cycles.

Initialization

!

Test Sequence Generation

|

Test Data Generation [

|

Test Execution & Result
Compression

¥

,/)‘ e
"/’ ‘-k\--\.
- .
- ~_ N
-

<7 Dataloop count met >
- /

_— T~ N
- . -
<_Instruction loop count met?/“f)—
~— -
- =
~
Ty

END

Figure 2.11: Execution ow of the FRITS tool [PMLO2]

These kernels have several constraints to be generated:
Tests should not produce any bus cycle
Instruction generation e ciency
User-controlled instruction generation
Code size, to be portable in the target on-board cache
Debug possibility to detect failures

FRITS is used to generate tests for the Intel architectures x86 ISA and Intel Itanium
with a fault coverage of 70% and 85% to 90% for the second ardkicture.
The method Load & GO tool [BHWO6] describes a process to insérthe code into

the cache and to start the program execution from there. To aply this method several
problems must be solved:

The program execution ow must hit every time in the cache

Generation of the randomized tests

CHAPTER 2. RELATED WORK 27

To catch the results of the test (passed or failed)

For the proof of concept the UltraSPARC microprocessor was ged, which shows that
even with all simulations and test optimization this archit ecture lacks non-determinism of
the ow.

The second category of functional tests is feedback-baseRECS04], with the GP
architecture as illustrated in Figure 2.12.

The method generates a set of testing programs and optimizetem using the feedback
information gained from the simulator. Afterwards, they are evaluated with di erent
coverage metrics.

In the rst step, the syntax of the target assembly language s encoded in a compact
format, which can be used by the code generators. After thata set of valid assembler
programs are generated forming the initial seed (set). The GP automatically optimizes
the test set by tuning and modifying the assembly programs byexploiting the subroutines
and software traps in the generated code.

Using this method two processors were tested, i8051 and Legf With about 8.4 mil-
lions of simulated instructions, GP generated a set with about 100% coverage evaluating
ve million instructions.

nGPcore |- Simulator ﬁ

L /' T
- Test [Mmroprocessor

program model

Figure 2.12: Functional feedback tests realized with GP architecture [RSCS04]

2.2.2.1 Software Fail-Safe Techniques

In the group of SBST tests, many software fail-safe technigas [LCD" 05] exists, but the
most important are:

Read/Write complementary data
RAM test with checksums
Redundant coding

Program ow monitoring

2http://visicad.eecs.umich.edu/BK/Slots/cache/www.ga isler.com/products/leon2/leon.html

CHAPTER 2. RELATED WORK 28

Working with complementary data it is the rst basic techniq ue. Specic data is
written in a part of the memory, the one's complement is calcdated and stored in a
separate part of the system. Checking whether a fault has oegred in the memory is
done by the summation of these two values. The result should & zero. This checking can
be done periodically or randomly based on the testing stratgy. The main limitation of
this technique is the RAM size, because in order to store evgrcomplementary value, a
separate storage is needed.

RAM tests are performed to assure that data can be held and maipulated without
errors. RAM tests can be done during system initialization, before the program is running,
or during runtime, online periodically.

Checksums can be used to check the integrity of ROM, Flash, oEEPROM. For system
values that do not change at runtime, the checksum can be caldated and stored in ROM.
But checking the entire ROM needs many cycles, and that requies time. Testing the
EEPROM is faster. An approach to reduce testing time is to chek only the pieces that
are marked as safety-critical. Checksums can nd faults lik memory errors, bit ips, and
other data changes.

Redundant coding is a technique to implement, store, and rurthe same safety-critical
code in di erent pieces of memory. For the same input, the reslt should be every time
the same. It is a software protection method which needs extr implementation to assure
that the code fragments do not have access to the same data arttat the program itself
runs correctly. The last technique is the program ow monitoring.

Program ow monitoring (PFM) is a technique to include a speci ¢ seed/key values
program ow. With the help of these two values, it can be checled whether the program
has executed all steps. These values can be inserted betwe&mction calls, or can be
integrated into the program structure. Based on how the PFM values are included, the
PFM can be implemented in the following ways:

1. Application-independent
2. Application-dependent
3. Time-dependent

The application-independent method updates the values beteen each function call. A
disadvantage of this method is that the value can be updated vhout execution of the
function. The advantage is that the PFM code can be reused wiout the modi cation
across the application.

The application-dependent PFM is tightly integrated into t he program execution. The
update of the value is performed within the function, and assires that all functions are
called.

The time-dependent PFM helps to verify that speci ¢ functions are called within a
required timing window. This is accomplished by updating the values at speci c times,
during program execution.

2.2.2.2 March Tests

March tests [BBC* 08], [Goo93] form a group of tests which exist in di erent variations
that are simple and have linear complexity O(n).

CHAPTER 2. RELATED WORK 29

The basic operation in all variations is called "march elemat”. Every march element
contains basic operations which are performed in a cell andhten proceeds to the next cell:

Writing O into the cell - wO
Reading expected 0 from the cell - rO
Writing 1 into the cell - wl
Reading expected 1 from the cell - r1

After these operations are performed in a cell, the next celis selected with increasing
(*) or decreasing) address order. The symbol () is used if the addressing order is not
important.

Very common variations of March Algorithm are:

1. MATS+ described with the formula 2.1]

2. March C- described with the formula[Z.2
3. March B described with the formula[Z.3
4,

March G described with the formula[Z.4

with the following mathematical representation:

m(w0) * (r0;wl) + (r1; w0) (2.1)
m(w0);* (rO;wl);* (r1;w0);+ (rO;wl);+ (r1; w0); m(r0) (2.2)
m(w0);* (rO;wl;r1;wo;,wl);* (r1,wO;wl);+ (r1;,wO;wl; w0);+ (ro;wl,w0) (2.3)

m(wO0);* (rO;wl;r1;w0;r0O;wl);* (rl;,wO;wl);+ (r1;w0;wl; w0);+ (r0; wl; w0);
(DELAY ;m(rO;w1;rl); DELAY ;m(r1;w0;r0)) (2.4)

In order to detect the AF 2. 1.1l faults, ful lling the followi ng conditions as illustrated in
Table 2.4 is needed, which includes at least two march elem&nhand starts with a di erent
addressing order.

The MATS+ test nds all address decoder faults(AF) Z.1.1] because of the mathe-
matical structure and it ful Is the condition in the Table 2[_4. Stuck at faults (SAF) are
detected because in the Equatiofi Z]1, the values 0 and 1 areaed from a cell. The number
of operations to complete this test is 58.

3'n" is the number of cells in a memory

CHAPTER 2. RELATED WORK 30

Condition March element
1 * (rx; ::wX)
2 + (rx; :wX)

Table 2.4: Two conditions for a test to detect the AF Faults

The MarchC- test is an extension of the MarchC, which has linar complexity O(n)
and requires 10n operations to complete the test. Three grqus of faults are targeted
with this test;: AF because it satis es the conditions in Table[Z.4, SAF because in the
equation[2.2, it reads 1 and 0 from the cells and all CFin and CBSsts faults are detected
due to the successively read and write operations.

The MarchB test which requires 17n operations, targets and dtects the following
faults: all AFs, SAFs, TFs, CFins and linked CFids, describeal in Section[Z.1.].

Condition March element
1 DX ir X
2 DX X

Table 2.5: Two conditions for a test to detect the COF Faults

A COF Fault is present if a speci ¢ RAM cell cannot be accessed To ensure that every
cell is accessible, it must be guaranteed that 0 and 1 is readdm the cell as illustrated in
Table 2.5. To extend a march test to allow the detection of DRF faults as well, it must
contain delays between writing a value "x" and reading it bad.

The MarchG test is an extension of the MarchB test which includes these two exten-
sions and speci cally detects COF and DRF faults. To complet the test it requires 23n
+ 2Deld operations.

2.2.2.3 Abraham Test

Another functional test for RAM memory is the Abraham Test. | n order to apply the
test, there need not be structural information about the processor and covers speci cally
stuck at faults and coupled faults. It not only covers these &ults but it covers the faults
that occur in di erent parts of the RAM:

1. Memory Cell Array,
2. Read/Write Logic and

3. Decoder Logic

“Delayed operations

CHAPTER 2. RELATED WORK

31

Cell
Number | Initialize Sequence 1 Sequence 2 Sequence 3 Sequence &
1 0 Rt R| R Rt Rl
2 0 Rt R R! R E* R Rl R
3 0 Rt " R L R . R
i . . R . R i . R! .
n-1 o Rt R R! R R R Ri R
n 0 Rt R| R4 R | R! R
Cell
Number Sequence 5 Sequence 6 Reset Sequence 7 Sequence 8
1 ! R R:L 1 RLY R RLt
2 RY+ R Ry R RIT R RIt R
3 R* ! . R 1 R!t ’ : R
: R Rt! . . R Rl .
n-1 Rt! R R R 1 RIt R RLT R
n Rt Rtt R RLT Rit R

The test consists of three conditions which are necessary tbe ful lled:

Figure 2.13. Abraham Test [NTA78]

1. Every memory cell must make these forced transitions:

A 0-1 Transiti
A 1-0 Transiti

on
on

and are read after each transition, before any other operatin is made.

2. For each pair of cells (i, j) cell "i" must be read before thecell "|* makes a forced
transition, and before the cells "i" and "j" make any next for ced transition for the
and forced transitions "j":

following states

Cell "i" in state 0, cell "|* makes a 0-1 transition
Cell "i" in state 1, cell "|* makes a 0-1 transition
Cell "i" in state 0, cell "|* makes a 1-0 transition
Cell "i" in state 1, cell "|* makes a 1-0 transition

3. If the cell "|" makes a transition of y in y after the cell "i" has made a transition from
x to X and before the cell k in state z is read, for every triplet i,jk, the algorithm
must ful | the following conditions with [x;y;z 2 0; 1]:

Cell k is read in state z, after the cell i makes a transition flom x to X and

before the cell j makes a transition from y toy.

Cell k is read in state z, after the cell j makes a transition flom y to y and

before the cell i makes a transition from x toX.

CHAPTER 2. RELATED WORK 32

The test is illustrated in Figure and the symbols insidehave the following meaning:

- Forced transition from 1 to O

- Forced transition from O to 1
R - Read RAM cell

By these steps, it is ensured that all coupled faults are deteted. The sequences 1,2,5
and 7 go through the RAM with increasing memory address, and he sequences are 3,4,6,8
with decreasing address.

In the worst case the algorithm performs 30n operations in wich "n" is the number
of RAM cells, which means that the algorithm has a linear compexity O(n).

2.2.2.4 Galloping and Walking patterns

Next two [WWW06] other common algorithms which are used for RAM testing are de-
scribed:

1. Galloping (ping-pong) pattern (GALPAT)
2. Walking pattern (WALPAT)

Algorithm 1 GALPAT Algorithm
Initialize : RamCells[n]=0;step=1
while step <=2 do

fori=0! n 1do
RamcCell[i]
for j =0;j!'=i! n 1do
V erifyCell [i]
V erifyCell [j]
J(Cj+1
end for
RamcCell[i]
i(i+l
end for
Initialize : RamCells[n]=1
step= step+1
end while

The Galloping pattern algorithm has quadratic runtime complexity of O(4n?) and de-
tects faults like SAF, AF, TF and CFs but it is not recommended for large RAM memaories
because of its quadratic runtime complexity. The complete &orithm is illustrated in the
Algorithm 1]

The algorithm begins with initializing the complete RAM cel s to 0 and complements
the rst "i" cell. In the next step, it performs a read of the cu rrent cell and all other cells
(VerifyCell[i], VerifyCell[j]). Then it complements the " i" cell again and increments "i"
until it reaches n. Afterwards, it performs the same step butnow initializing all cells to 1.

CHAPTER 2. RELATED WORK 33

Algorithm 2~ WALPAT Algorithm
Initialize : RamCells[n]=0;step=1
while step <=2 do

fori=0! n 1do
RamcCell[i]
for j =0;j!'=i! n 1ldo
V erifyCell [i]
J(Cj+1
end for
V erifyCell [j]
RamcCell[i]
i(i+l
end for
Initialize : RamCells[n]=1
step= step+1
end while

The other alternative is the WALPAT, which is a modi cation o f the GALPAT with
complexity of O(2n?). The only di erence is that after complementing the rst"i"* cell it
reads the basic cell after all other cells are read.

Algorithm 3 Checkerboard Algorithm
fori=0! N 1do

RamCell[i]=0
RamCell[i +1] =1
i(i+2

end for

fori=1! N 1do
ReadCell[i]

end for

fori=0! N 1do
RamCell[i]=1
RamCell[i +1]=0
i(i+2

end for

fori=1! N 1do
ReadCell[i]

end for

2.2.2.5 Checkerboard

The checkerboard [WWWOGE] test places the bit patterns like the structure of the checker-
board game. It has O(n) complexity with 4n operations. The test begins with writing the
rst pattern to even or odd cells and all neighboring cells are set to a di erent value. After
that, a read back is performed. The same procedure is appliedith a di erent pattern.

CHAPTER 2. RELATED WORK 34

It is mainly used just to activate di erent faults, and a delay is included between read
and write operations. It targets but does not detect all AF, SAF, TF and CF faults.

2.2.2.6 Buttery Algorithm

Algorithm 4 Butter y Algorithm

"maxdist < 0:5 col=rowlength"
Initialize :RamCells[n]=0;step=1
while step <=2 do
fori=0! n 1do
RamcCell[i]
dist=1;] =i
while dist < = maxdist do
Readi]] 1]
Readi 1]]j]
Readi][j +1]
Readi + 1][j]
Read[i][j]
dist =2
end while
i(i+l
end for
RamcCell[i]
Initialize : RamCells[n]=1
step=2
end while

This test [WWWO06] is a modi ed version of GALPAT, with the pur pose to nd only
AFs and SAFs. The time complexity is5n logn. In the rst step, all cells are initialized
at zero. As illustrated in the Algorithm 4lthe read operations are performed in butter y
form. These operations are performed twice with the initiaization of the cells at one.

2.2.3 Structural Tests

Basically all structural tests [PGK * 01] use RTL description or gate-level information about
the controller. Based on the test tree[2Z.ID and how this infomation is used, approaches
are subdivided into:

Hierarchical tests
RTL-level tests

Hierarchical tests concentrate on speci ¢ controller modues of a processor core. Test
vectors are generated for every module and converted into Btruction sequences that
can be applied to the controller. The "pre-computed test ses" and "constrained test
generation" are part of this group.

CHAPTER 2. RELATED WORK 35

"Pre-computed test sets" denotes a group of methods that geerates stimuli sets for
every module of the controller under consideration, and tha exploits the functional mecha-
nism to give the module the precomputed stimuli and to propagte the results to observable
locations.

A representative is a method [GVA06] which generates test spiences with the main
focus on functional faults that are di cult to detect. It inv olves controllability and ob-
servability properties with Boolean di erences and a boundel model checker.

To simulate faults di cult to detect, pseudo random instruc tions are generated with
36579 instructions for the OpenRISC 1200 procesé%rand using an available commercial
tool. The fault coverage is evaluated which has a result of abut 68% for stuck-at faults.

The list of undetected faults from the rst step, is the basis for next step. A selec-
tion process is performed to group the instructions based oithe modules, and then, the
commercial ATPG tool generates for each module new test se@mces. The observability
properties are guaranteed with the expression of propagabin requirements as Boolean
di erences.

The model checker evaluates the sequences to see which onegagates the e ects of
the observed fault to the primary output, and nally only the se sequences remain. The
complete process on the OpenRISC 1200 processor increashs fault coverage by about
14% to overall 82% for stuck-at faults.

Constrained test generation describes the modules on the pcessor with di erent ab-
straction levels. The module under consideration is desdoied at RTL level, whereas the
other modules of the system are described at a higher level. ith the detailed description
of only the module under consideration, the ATPG tool has a laver circuit complexity
than the original one.

Part of this group is the method proposed by Chen[[CRRDO3], wiich divides a given
processor up into di erent levels of modules, generates temptes sets, and, using the con-
trollability and observability properties, selects the most suitable templates. A constrained
test generation is performed with selected templates and,dr speci ¢ module, and at the
end, the module test patterns are translated into instruction test sequences. Using this
method for a RISC processor, a fault coverage of 95% was acked for common faults
like stuck-at faults, but it can be applied to other fault mod els like bridging faults and
transistor-level faults.

SBST methods that use structural information (RTL) during t he process of tests gen-
eration are part of the RTL structural test branch as illustr ated in Figure [2.10. Based on
the information which is used to generate test vectors, theyare subdivided into:

Deterministic algorithms
ATPG Algorithms

Pseudorandom methods

Deterministic algorithms use information about a speci ¢ function that a controller
performs.

Kranitis [KPGXO05] proposed a component-based divide and coquer approach that
uses information about the ISA and RTL description. In the r st step, components with

Shttp://www.opencores.org/openrisc,or1200

CHAPTER 2. RELATED WORK 36

their operations are identi ed, next, they are classi ed and prioritized, and, nally, de-
terministic routines are generated. This approach was usedor two processors, and the
following results were observed; Plasma achieved fault cevage of 95% and MIPS R3000
achieved 95% total fault coverage.

Another method that is part of this group was proposed by Pasbalis [PGH* 06]. It
e ciently tests the processor data path without changes in the structure of the processor
and can be applied to any word length and di erent internal architectures.

Functional SBST codEeJ
v

Identification
of def-use pairs

— h

Pipeline .
- Generatmn_of test
description code variants
e
[]
v

Modification of the 1
SBST code

v

Memory and Partition of SBST
program

— ~

Insertion of jump || Address faults
instructions propagation 5

] -

Enhanced SBST COdSJ

—» Loop unrolling s

\

J

cache parameters

Figure 2.14: SBST methodology for pipelined processors [PGHO6]

The methodology, illustrated in Figure 2.14, is divided up into two phases: Phase 1 &
2. It takes existing SBST programs and di erent processor pifeline parameters to make a
list of programs that achieve high fault coverage. Phase 1 dds with identifying def-usdd
pairs, code variants generation and optimization including removing dependencies within
a loop with "loop unrolling".

The output is a modi ed SBST code, which is used in the second pase. Here, the
code is partitioned with respect to virtual memory, size of test program, and memory
parameters. Jump instructions are included in the end of evey module to guarantee the
propagation of address related faults.

The methodology was simulated with two pipeline processorsminiMIPS[?] and Open-
RISC 1206. From an average fault tolerance of 82.81%, an improvementfal2.34 % was
achieved, increasing the overall stuck-at fault coveraged 93.03%.

def-use analysis is used for optimization in compilers; a variable's value is "de ned" when an assignment
is made to it and is "used" when it appears on the right side of a n assignment

"http://opencores.org/project,minimips

8http://opencores.org/project,orlk

CHAPTER 2. RELATED WORK 37

The method proposed by Chen[[CWLGQ7] which generates test stuli using the gate
level of the processor description as entry point, is part othe ATPG Algorithms group .

The proposed method consists of multiple levels of abstraan, which are input to
the test development based on the information about the proessor architecture, register
transfer-level and gate-level. To apply this method, the pocessor core must be subdivided
into di erent parts: ISA registers, IP Units, control, steer ing logic, pipeline registers, and
hazard related logic.

After the classi cation, test routines are generated for exery module. In the ISA Regis-
ters, the development is focused on the structural faults oD Flip Flops. For the identi ed
IPs, control & steering logic, and pipeline related logic, & ATPG tool generates the test
patterns focused on the ISA speci cation, RTL descriptions and pipeline architecture of
the target processor.

The methodology was tested in a processor core with an ARMvd4nistruction set which
achieves a fault coverage of 93.74 % for stuck-at faults refed to pipeline registers, ALU,
Decoder, memory access unit etc.

Pseudo-random methods generate data together with testindgnstructions and let the
processor perform the evaluation. Such a method is preserdeby a group of researchers
[KLC * 02]. It generates tests under the constraints of the ISA to awid unwanted test
patterns. It is targeting structural faults like stuck-at a nd delay faults.

The method consists of two steps: test preparation and selfesting. Using a special
software program, the tests which are generated are delivable test patterns. The results
are stored in the memory, and a selection is made using the cestraints of the instruction
set of the processor.

A component level fault simulation is performed to evaluatethe test patterns. After
evaluating the tests, evaluated they are tested on-chip.

Using this method, a test was performed on Parwan and DLX proessors. For the
Parwan processor it took 5.3 instructions on average for a t& vector with a fault coverage
of 99.8%, while in the DLX processors 5.9 instructions with &ult coverage of 96.3% for
stuck-at and delay faults.

2.2.4 On-line Periodic Tests

Online periodic tests are performed during the normal opertion of a processor. These tests
reside in the RAM or Flash and are called by the operating systm as normal programs.

Gizopoulos [PG04] proposed a SBST methodology to classifyne processor components
and characteristics of SBST test programs to be suitable foronline periodic tests. The
methodology consists of three phases.

In the rst phase, information is extracted from the ISA and t he low register trans-
fer level. The component operations are identi ed with specc input and outputs that
perform di erent operations, which includes multi-cycle data-paths or pipeline register.

In the second phase, di erent processor components are seted based on the same
properties and component prioritization to generate test mtterns, which will be trans-
formed to a test routine.

CHAPTER 2. RELATED WORK 38

Based on how the di erent components are visible for the progammer, they can be
characterized as follows:

Visible components

Data-visible components

Address-visible components

Mixed (data & address) visible components

Partially visible components

L T o

Hidden components

Visible components are parts whose inputs and outputs are aessible from the assem-
bler language programmers. Data-visible components are agponents like ALU, multipli-
ers, dividers data registers etc. which serve as storage famput data test patterns. The
output data can be stored at register le, data memory, or both of them.

Address-visible components are components whose inputs dnthe outputs, receive
addresses of the memory system. These appear in the instruon fetch unit or data-
memory controller.

The mixed visible components use a mixed type of the inputs ath outputs of the
visible and data visible components such as the adder used thi the relative addressing.
Partially visible components are the components which gemmate control signals and are
implemented as nite state machines. One such component ishte processor control unit
which a ects the visible components. They have a medium testaility.

The hidden components are architecture components which & included for perfor-
mance and are not visible to assembly programming language.Such components are
pipeline control units, branch prediction mechanisms etc.

1i 550, patbern X 1;

1li $sl, pattern Y 1;

function $s2 $s0, $s1;

jal compaction routine address;

1li $s0, pattern X n;

ld. @sl, pathers Y oy

fupetion Sg2 S80, Ssl:

jal compaction routine address;

li $s3, signature address;
sw $s2, (signature displacement) ($s3);

Figure 2.15: Test routine generated according to the methodology [PG04]

The development of the test routines is performed in the thid phase based on the
di erent TPG strategies. Such a test routine is illustrated i n Figure [Z.15.

CHAPTER 2. RELATED WORK 39

A 32 bit RISC processo called Plasma was used to demonstrate the proposed method-
ology, which achieves a fault coverage of 95.6 % for stuck aadilts.

For the project SafetyLoan [TP0O7] several SBST tests were deloped for an ARM7
microcontroller. To test the RAM memory, the walking patter n algorithm is used. It is
optimized in a manner that read/write operations are performed in block segments of 32
bytes, by a single command using multiple load and store. Ths reduces the number of
operations to be performed in the RAM memory.

For the data integrity, cyclic redundancy checks with 16 bit are performed, while
for register testing, the galloping pattern is used. The gdoping pattern is described in
Section[2.Z.2.4.

The main problem with the register testing is that during the test runs, the values are
stored in the memory. A possible solution to the problem is toswap the content between
the registers while the tests are running.

Testing the arithmetic logic unit is done by subdividing the instruction set into com-
mand classes, which use the opcode as classifying parametdihe entire RAM was tested
within 0.95 s, while ALU & register tests had a total execution time of 4.26 ms with a
high diagnostic coverage.

2.2.5 Specialized Tests for Multi-cores

The research of last the years is going towards multi-core ahitectures for better per-

formance and exploiting parallelism for instruction execuion. These advances bring new
challenges for SBST techniques which must be adopted for mtilcore architectures and

can be de ned as[PGSR1D]:

1. Use of SBST techniques that are proven for single core aritectures to test all cores
individually

2. Speed up self testing routines with core and thread paradlism
3. Testing of interoperability logic at cores and threads leels

In two recent papers based on these challenges, Apostolakidtempts to reduce appli-
cation time [APG* 09] and tries to exploit the core and thread parallelism [AGPP09].

The proposed approach![APG 09] is used to transfer the SBST test from uni-core to
symmetric multiprocessor architectures (SMP). The complée algorithm is very complex
and reduces time overheads caused by data cache and bus. Thest consists of di erent
steps which are performed to start the test. In the rst step, data and test code is loaded
directly in the cache. Secondly, every CPU connected to the ratrix executes this code at
its actual clock speed. In the third step, the results are upbaded to a low-cost tester and
are checked from an external device. The complete structurés illustrated in Figure 216l

The main objective of the method was to improve the SBST test putines for the
OpenSPARC T1 Processor, which has eight cores.

®MIPS architecture

CHAPTER 2. RELATED WORK 40

CPUD||CPU1||CPU2||CPU3||CPU4||CPUS5||CPUB||CPUT

I-C -C I-C I-C I-C I-C I-C I-C
D-C D-C D-C D-C D-C D-C D-C D-C

o T . z k. J 13 A L 4 i T T W

Crossbar switch..-

gazrn)

Test Ot
L2 cache mefmary
L -

1

E@\ Low-cost g/

tester

Figure 2.16: Functional tests with multicore architectures [APG* 09]

After a long analysis and simulation the following two equaions were derived for
maximum speed-up:

idle time
Smax = run tme +1 ' (2.5)

memory latency + pipeline latency
run time +1

Smax =

_ 100 long latency instruction time

S = - - - 2.6
max long latency instruction time (2.6)

Equation 2.8 is for ALU and shift test routines while the Equation is for Mult
and Div operations because they spend much time on long latery instructions. With the
help of these two equations, two rules are formulated that hip to transform single thread
self-tests into a multi-threaded version:

1. Do not use more threads that execute the same self test roite concurrently than
the optimum calculated by expressions[26 and_Z]6.

2. The number of self routines that have high L1 miss rate mustbe reduced, since the
memory waiting intervals will not be overlapped

The methodology can be described with the following steps:

1. Analyze the performance of the test routines

2. Calculate the total execution time of the single threadedversion and optimum total
execution time of multithreaded version

3. If the execution time of the single-threaded routine is lmger, it must be split into
shorter routines, and group these routines in a set

CHAPTER 2. RELATED WORK 41

Routiae Single Four Speedup Maximum Optimum
Thread (A) Threads (B) (A/B) speedup partitioning
ALU 2171 644 34 3.6 4
Shift 14426 4566 3.2 32 4
Mult 8597 6169 1.4 kA 2
Div 29610 [R638 1.6 1.6 2
FPU 3320 2093 1.6 n.a. n.4.
SPU 1647 3647 1.0 n.a. TL.4.
Total 61771 35757 Ii% n.a. LA

Figure 2.17: Performance results of multi-threaded over single-threaed [APG* Q9]

4. Select the longest routine from the set of self routines, ssigns to it the smallest
execution time, which is the sum of all time single threaded outines assigned to the
thread until now

If this calculation contradicts one of two rules, give the rautine the next shortest
execution time

Remove this routine from the set

5. If the set is not empty, go to step 3, or exit.

Using di erent set-ups this method achieves a speed-up of 3.8f the execution time,
compared to single-threaded and straightforward multi-threaded methodologies. The com-
plete results are illustrated in Table [2.17

The TLP[9 method [AGPPQ9] splits the self test routines into shorter aes. Then it
assigns the new routines to hardware threads of the core, thaiincreasing parallel execution
and reducing the idle intervals of the core. Idle intervals @n occur due to cache misses or
other latency's.

The complete strategy consists of three phases:

1. Allocation of the test code in the shared cache
2. Allocation of the test responses in the shared cache
3. E cient SBST scheduling between the cores

To evaluate the methodology di erent benchmarks with dual-core, quad-core and octal-
core were used. The benchmarks are based on the OpenRISC 120fbcessor, which is
used in numerous research activities for SBST tests, and inhis case, the fault evaluation
results for the three benchmarks are about 90 % total stuck-afault coverage.

0 Thread-level parallelism

Chapter 3

Analysis and Design

3.1 Evaluated Architectures

During the rst steps of the thesis, di erent multi-core arch itectures were evaluated. Obvi-
ously, there are many di erent multi-core microcontrollers which are intended to be used
in safety-related systems and many of them are designed to flithe IEC 61508 SIL-3
certi cation criteria. But not all of them are suitable to be used in this area because they
lack of safety features and are vulnerable to common causeifares.

According to the safety features, properties and the archiectures, three microcon-
trollers were chosen to be evaluated:

1. Texas Instruments TMS570
2. Inneon TC1766 (Audo-NextGeneration)
3. Toshiba/Yogitech fRMethodology (Fault Robust Methodol ogy)

In the Sections[2.1.2 and2.1.13 di erent controller strateges are discussed, and a short
description about possible implementations is given. Now,architectures are examined
from the industrial perspective to see how these concepts arused in practice. In the
following, the three architectures are described.

3.1.1 TMS570 - Texas Instruments

Referring to Figure [3., the controller has two cores connded in Lock - Step Moddl. 1t
uses twoARM R Cortex-R4F cores, with oating point unit to meet the SIL-3/ ASIL-D
level according to the IEC-61508 and 1SO-26262.

Target applications for the microcontroller are:
Electronic Power Steering
Active Steering

Integrated Chassis Management

!Described in Page[21 with Figure [Z.7@

42

CHAPTER 3. ANALYSIS AND DESIGN 43

Braking and Stability Control

Dynamic Damping and Driver Assistance

Dual Core Lockstep Subsystem

ARM ARM LIN (2)
Cortex-R4F Cortex-R4F :
CPU CPU Ll

buffered
Builtin Self Test(Logic & Memory)

SPI(3)

Memory with ECC protection
2MB on-chip flash

' CRC | HighEnd

Timer RA

AD Tra
Converter(2)]| Port

Figure 3.1: The TMS570 microcontroller from Texas Instruments

The main safety features on the Tl Controller are:

Guard Ring between the two cores

Cycle delays on both CPU's

On-line hardware checker of the outputs of the CPU's

Memory Protection Unit protects up to eight regions in the memory space
ECC calculation for every RAM read/write access

Separate address spaces for ash & RAM to store ECC data

Parity check for all communication peripherals

© N o o M W N B

Safety tests for cores, memory and bus

The guard ring (physical separation) isolates the two coregrom each other. The cycle
delays as illustrated in Figure[3.2 and the 180 rotation of one core, isolates the in uence
from one core to the other and increases the robustness againcommon cause failures.

The memory protection unit includes di erent levels of permissions which can be used
to protect the eight regions to be read, written or executed é&her by a user or the privileged
mode. This assures that a user program can not modify registe which are protected and
can be used only by the operating system or by using supervisaalls.

All communication peripherals and the address bus are proteted by parity check
during runtime. Additionally, safety tests can be applied at the start-up to the peripherals,
memory, and the cores to check the integrity of these componss.

CHAPTER 3. ANALYSIS AND DESIGN 44

1 Ecycle delay -

CCM-R4F compare ESM
CPUICLK ‘ compare L

CPU1 CPU 2

1.5cycle delay

‘ CPUZCLK

Figure 3.2: Comparing CPU instruction results [TMS]

A physical separation of data regions exists in the architeture. For the SRAM section,
a SRAM-ECC section exists, in which the ECC of the SRAM conters is stored. The same
principle is applied to the Flash section, but here a mirrorel physical section of Flash &
Flash-ECC exists, which assures better integrity of the daf. For protection against mutual

in uences, a physical, unused reserved space is included theeen the address spaces of the
SRAM, ECC, Flash and the mirrored address spaces.

VBUSPLF PMT IF RTP ¥

A y A '_i:
Upper 32 bits data&| 36 Bit
Cortex R4F] [U U 4 ECChits wide
EVEN Address L RAM L
B0 TCM BUS —
<—Z——> TCRAMWI]
rehs <—— > %8
64 Bit data bus 36 Bit
wide
A Lower 32 b1!§ data & RAM
< T1eMm 4 ECC bits |
Upper 32 bits data &| 36 Bit
= ODD Address 4 ECC bis wide
TCM TCM BUS RAM
64 Bit data bus TCRAMW 2
<:.> 36 Bit
1 wide
Lower32bitsdata&| pam
4 ECC bits | I

VBUSP I'F pMT UF RTP I'F

Figure 3.3: Memory read/write access with ECC calculation [TMS]

In Figure B.3, the connection between CPU and the RAM banks ispresented. Inside
the Cortex-R4F core for every read/write access on the RAM, he ECC data is calculated
and stored. The core has two other interfaces which are useataccess even or odd memory

CHAPTER 3. ANALYSIS AND DESIGN

addresses.

3.1.2 TC1766 - In neon Technologies

45

The architecture [BSEQ7] from In neon Technologies has twohardware-decoupled 32 bit
cores on the same silicon die, the rst is from the family of TriCore@ and the second is a
PCP(Peripheral Control Processor) core with the following characteristics:

Connected to the TriCore with a bandwidth about 1,6 GB/sec

Compared to the TriCore, it uses other register le, pipeline, and physical memories

Software is created using a di erent compiler

FPU
PMI DMI
16 KB SPRAM | TiiCore J— 56 KB LDRAM
8 KB ICACHE (TC1.3M)
5 Abbreviations:
cr ICACHE: Instruction Cache
T SPRAM ScratchPad RAM
] LDRAM: Local Data RAM
Local Memory Bus (LMB) OVRAM Overlay RAM
PMU EEOQAH: Eoot ROF\EI @
16 ey £ ash’ rogram Fla
. 16 KB BROM > BCU DFlash: Data Flash
1504 KB Pflash | = ﬁ PRAM: Parameter Memory in PCP
32 KB DFlash g 3 LFI Bridge (L:mBEM Lcmef memorygw PCP
< / acal Memory Bus
8 KB OVRAM F4‘1‘ T‘r SPB System Peripheral Bus
Ul I‘v1emory\nter?'aoe Shaded: Only available in TC17GGEL
8 KB PRAM
i <]
e = w
nterface/JTAGH— 1] A
— pcPz |5 —)
o [Core _@E_J — STM
;W =
o
ASCO v - ¢—| sscu 4
w —
2 12 KB CMEMN — . WWatchdog
i : ™ aing SSco ASIC
£ @
ASCI E P < Ports §
e =) IS -
¢ | scu B «—»| ssci
o
E - foeu
GPTA [;2;, DMA ol ADCO b ==
L = = ™ 32a. 125
Sl 5. [Sle—>) P—
S —
[5te] | PAC 123
Ext Multi CAN A4
Request {2 Nodes, MSCO
Unit 64 Buffer)
ITRT Mem
(YWY I LU I

Figure 3.4: The TC1766 microcontroller from In neon Technologies [BSEOQ7]

The architecture is illustrated in Figure B4l With the monollithic design, it is not
robust against common cause failures because it uses the samslock source and power

2http://www.in neon.com

CHAPTER 3. ANALYSIS AND DESIGN 46

supply for both cores. As a protection against those failurs, an ASIC watchdog monitors
the clock and power supply, and the cores use separate RAM marries for local variables.
Major components are:

1. Computational Unit - TriCore
2. Monitoring Unit - PCP Core
3. Safety unit for common cause failures - Watchdog ASIC

In the computational unit, the TriCore runs the application , answers the requests of
the monitoring unit, and checks the operation of safety-crtical parts. The TriCore runs
the tests during normal operation, start-up and shut-down and is equipped with a oating
point unit, dual multiply accumulator, and a DSP instructio n set.

It includes dierent hardware safety features such as parity protection of SRAMs,
ECC protection of ash, memory protection tables, internal backup oscillator and a DMA
controller with memory protection.

The PCP core is a RISC controller and is based on the asymmetei strategy that is
presented in Sectiorf 2.1.2]4. It runs the checking applicabn to monitor the TriCore main
controller.

It sends periodical requests to the TriCore, which can intetionally be correct or incor-
rect to ensure that the TriCore calculation unit works correctly. Intentionally, incorrect
means that the responses to the test vectors are checked fogeality and inequality with
true and false data. Based on the safety strategy, if too manyncorrect results are returned,
the PCP core can shut-down the system to enter a safe state.

Monitoring the requests can occur in two ways:

Question/Answer method
Using shared structures

For the rst method, the PCP generates di erent opcode tests which cover all registers,
di erent instruction types B and the stack. The PCP transmits every generated test to the
computational unit and compares the result to the pre-calclated value stored in the local
RAM.

For the second method, the results are written in the shared sucture. The PCP
monitors that the test are performed based on dierent paramders, like test counter
increments etc.

Furthermore, the ASIC watchdog monitors the power supply ard clock speed to avoid
common cause failures.

3.1.3 fRMethodology - Yogitech & Toshiba

The FMEA methodology described in [BCMOQ7], is a new approachthat is used to design a
controller based on the IEC 61508 safety standard. The methdology subdivides the SoC
into "critical zones", which are elementary failure points, and then extracts the information
about RTL Logic, which is used to build the SR document about the system.

3Memory, arithmetic, logic and control ow operations
4Safety Requirements Speci cation

CHAPTER 3. ANALYSIS AND DESIGN 47

The information is extracted automatically from the contro ller [MKS10] by a tool,
in the next step, the information is grouped in a database andthen failure rates of the
“critical zones" are calculated.

Based on this statistical information two important factor & are computed:

1. Safe Failure Fraction - SFF and
2. Diagnostic Coverage - DC

which are required by the IEC61508 to de ne the rates for the &fe Failure Fraction and
Diagnostic Coverage.

PP
SFF = 433—+Pﬂ (3.1)
S D
P
DC = p 20 3.2)
D

The elements in the equations represent the following failte rates:

s - rate of safe failures
p - rate of dangerous failures

pp - rate of dangerous failures that are detected

| AHB-Lite Bus [755] [m'm, AHB-Lite Bus |
= | mNET | =
w1
| omact] Clomac |
| |
AHB-Lite Bus
&= | Exclusive| AHB
Py control | El
F o Brid Bl
TEST I m |Tr,,|,,—,?|e OSTimer | | CG[RESC [
[E=2] pwm _UART |

TIMER SEIO | [P] oo
[=5] ADIF GPIO [ma] [mwe | St

Figure 3.5 The fRM architecture

Shttp://www.ntnu.no/ross/slides/chapt10.pdf

CHAPTER 3. ANALYSIS AND DESIGN 48

According to the equations[3.1 and[3.2, the so-called faultRbust IPs(fRIPs)[EMO7]
and Toshiba diagnostic circuits (ThwD) are built to support fault tolerance and fault
detection. There are di erent IPs, dependent on the "critical region" they supervise.

In Figure B.5, an architecture is presented that is built with the faultRobust Method-
ology. The safety functional units are:

1. fRCPU
2. fRMEM
3. fRBUS
4. ThwD

5. fRNET

The fRCPU is a fault supervisor which supervises the CPU corewith its complete
functionality. It is called the "optimized tightly coupled fault supervisor" because it has
the same instruction control ow as the CPU but it is optimize d to supervise the critical
sections identi ed by the FMEA methodology, which can lead to failures. The fRCPU
has a dedicated interface, which is used to monitor the CPU tdncrease the fault coverage
and detection latency.

The fRMEM is a con gurable IP, which uses EDC and ECdﬁ to implement safety
functions. They can either use parity bits or Hamming codes th di erent distances.
Because the fRMEM is con gurable, it can be optimized for di erent parameters.

1) 2)

CPU
(master)

=E Y B

CPU CPU CPU
(checker) (master) m (checker)

Guard g

CPU

Compare Unit

SIL3: Safe Failure Fraction (SFF) =99%, Basc =0.25

3

Dual core Dual core
lock-step lock-step
(Basic=0.25) (Basic<0.25)
Area overhead 1.0 1.97 0.31
SW overhead 1.0 2.22 0.45
Power overhead 1.0 1.94 0.31
Performance overhead 1.0 2.22 0.08
Detection latency 1.0 3 <1

Figure 3.6: Advantages of fRM Methodology over traditional architectues

The fRBUS is a supervisor for the master and slave buses, whicchecks the address
decoding, data transport in the buses, and includes ECC cagallities, and it is capable of
detecting the loss of power supply.

In cooperation with Toshiba, the mechanism called "ThwD"[1 is included for periph-
eral supervision. Generally, these mechanisms are used tedt the system timers mainly

SError Detection/Correction Codes
"TOSHIBA hW diagnostic

CHAPTER 3. ANALYSIS AND DESIGN 49

focusing on: counter failures, register failures, clock filure, capture failures, and timer

comparator failures. To facilitate testing, a complete redundant counter structure is im-

plemented, and with the help of parity schemas the peripherbregisters are tested to detect
register failures.

The fRNET is the connection unit between all IP units and the T hwD logic described
before. All error signals which are generated from di erent RIPs are passed on to fRNET,
which then res a global error signal. It is equipped with seff-test logic to test the signal
path and to avoid latent faults.

TMS570 TC-1766 TSB/TC MCU
Run time | STC/LBIST for | Sequential Tests in| Self-check circuitry
tests in | CPU's start-up/shut-down on fRIPs
Hardware Compare Module for | (Flash Checksum,
CPU's SRAM Tests)
PBIST for memories | Periodic tests in
ECC in memories & | peripherals
buses
Computing 160 MHz with 250 | 80 MHz with 130 | Dependent on the
power DMIPS DMIPS processor in which
fRM is implemented
Guard Ring "Guard ring per | No Present
CPU, Minimum
distance 100m"
CCF Com- | Second CPU mir-| Watchdog ASIC to | Intellectual Proper-
mon Cause | rored and rotated monitor power sup- | ties (faultRobust IPs
Failures - | Cycle delayed lock-| ply or fRIPs) are archi-
Robustness step tecturally and func-
Duplicated clock tree tionally diverse with
CPU's respect to sub-block
that they supervise
Availability On Market On Market 2011
Architecture Lock-Step Mode on| Asymmetric mode | fRMethodology
single chip on single chip Optimized Tightly
Coupled (OTC)
Dual Core
Number of | 2 Cores 2 CPU's (TriCore | 2 Cores
cores and PCP2 core)
Cache No 8 KByte instruction | No Information
cache
Branch No No No Information
prediction
Table 3.1: Evaluation criteria for the Microcontrollers-Part 1

In comparison [FMO7] to the di erent architectures according to Figure 3.6 [MBQ7],

CHAPTER 3. ANALYSIS AND DESIGN 50

the faultRobust approach provides great savings in terms ofrea, power and performance
compared to normal dual core lock-step architectures, suclas described in Sectioi_Z.7a.

3.1.4 Evaluation Criteria

After the selection of the three microcontrollers, a list ofevaluation criteria was formulated
as illustrated in Tables[3.1 and[3:2, which cover safety-ravant features.

The properties of each controller were assessed with resgdo the evaluation criteria.
The main focus of the evaluation is on the safety features.

As illustrated in Table B.I] each microcontroller has a di erent architecture and at-
tempts to achieve safety in dierent ways. The TMS570 includes hardware safety tests
for the main components: CPU, RAM, Flash, and Peripherals. Each of these features is
integrated into a special hardware module.

As illustrated in Figure B.5] the fRCPU supervises only the citical paths of the main
CPU. The TC1766 has only sequence tests which can be executeat the start-up or
shut-down.

The safety hardware STC/CPU test can be subdivided into di er ent interval sets and
executed at run-time dependent on the application requirenents. RAM memory and ash
are protected with ECC, which are calculated and evaluated a each read/write access to
catch runtime failures. Additionally, all microcontrolle rs have built-in self tests covering
all memories included in the chip.

Comparing the performance criteria, the TMS570 has an advatage of over 100 DMPIS
comparing to the TC1766, but the TC MCU has no information about the speed and it is
dependent on the architecture in which the fRM Architecture will be implemented in the
future.

For the common cause failures, the fRM methodology has a morsophisticated protec-
tion concept rather than the TMS570. A disadvantage is that the TC-MCU is actually not
on the market, and the TMS570 includes a guard ring between tk cores with duplicated
clock tree.

The TMS570 microcontroller implements the architecture described in Figure [2.7a,
and the two others the architecture depicted in Figure[Z1.24. The advantages and dis-
advantages are described in the corresponding sections.

With respect to the criteria de ning the development kits and prototyping board,
again, the TMS570 is supported in a better way because it incldes di erent tools, IDEs
for development, ash, compilation etc., and has two types & prototyping boards on the
market, which can be used for prototyping implementation. The only advantage of the
TC1766 is the support for Mathlab & Simulink, which extends the support for simulation
of control systems.

The Instruction cache is included in the TC1766 microcontrdler. The presence of the
cache has advantages for the instructions which are execufebut it is non deterministic
for testing purposes.

Continuing with the communication interfaces, the rst two microcontrollers are sim-
ilar, considering the number of interface types. The TMS570Q however, has additional
powerful features for the interfaces including parity and hus protection.

The Memory protection and online checker are present on thre microcontrollers, it
di ers only how these features are implemented and how many rgions they protect.

CHAPTER 3. ANALYSIS AND DESIGN

51

TMS570 TC-1766 TSB/TC MCU
Development | CCS IDE v4.1 Mathlab & Simulink | No Information
environments | HalCoGerl TriCore VX-Toolset
TargetLink MemTool(In neon)
JTAG Emulator
nowFlash
nowECC
Instruction ARM, Thumb, | PCP2 - RISC No information
set Thumb2 v7 instruction set
Prototyping TMS570 Microcon- | Starter Kit TC1762 | No information
board troller & TC1766
Development Kit &
Microcontroller USB
Kit
Memory MPU protects up-to | Memory Protection | The fRMEM super-
protection 8 regions Tables for visor
4 data regions & two | ECC based with
code regions measure extensions
DMA controller with | MCE block acts as
memory protection MPU
Safety ECC on Flash & | Parity on all SRAMs | fRCPU, fRMEM
features SRAM ECC on Flash fRBUS, ThwD
CRC using DMA CRC32 peripheral | fRNET
protects static data | for critical sections
in memory on RAM
Peripheral Three Multi-bu ered | Asynchronous, No information
Interfaces SPIs Synchronous Serial
Three CAN Con- | & High-Speed
trollers Synchronous Serial
Dual Channel | Interface
FlexRay Controller Micro Link Serial
Two UARTs (SCI) | Bus
with LIN Interface Micro Second Bus
MultiCAN module
Peripheral Parity protection of | Internal bus tests | ThWD safety
Safety peripherals memo-| and mechanism
ries peripheral test Parity on registers
Bus protection
Pipeline 8 stage pipeline 4 stage pipeline No information
Online Hardware Compare | PCP Monitor Unit Hardware fRCPU
Checker Module of CPU out- | ASIC watchdog comparing instruc-
puts tions at run-time

Table 3.2: Evaluation criteria for the Microcontrollers-Part 2

CHAPTER 3. ANALYSIS AND DESIGN 52

In the TMS570 microcontroller, eight memory regions can be potected from changes
during runtime from changes which can be intended by a user oother in uences, The
TMS570 has an advantage of four regions, compared to the TCBB, which protects only
four data regions and two code regions.

The TMS570 has a better pipeline with eight stages, and the TAQ 766 has only four of
them.

The online comparison modules in the TM570 and TSB/TC-MCU are implemented in
hardware and compares every instruction executed in the mai core. In the TMS570 every
instruction is duplicated and executed on both cores, and tle outputs are transmitted to
the compare module which compares the results for equality.

Based on these criteria, the TMS570 was chosen as the most talile for the implemen-
tation of safety-related measures, because it has a SIL-3 iecation, better performance,
good development environment, and numerous safety featuse

In the Section [3.1.1, the architecture of the TMS570 was desibed, but in the next
section, the safety features from the technical view will bedescribed, and more details will
be listed, which will help to incorporate them in the safety grategy.

3.2 CPU, RAM and Peripheral tests in the TMS570 micro-
controller

According to the Technical Reference Manual [[TMS] the main afety features of the
TMS570 are integrated into the following modules implemened in hardware:

1. STC/LBIST (Self Test Controller / Logical Built in Self-T est)
2. CCM-R4F (Core Compare Module)
3. PBIST (Programmable Built-In Self-Test)

4. ESM (Error Signalling Module)

These are the primary relevant modules for the strategy whib will be implemented.

3.2.1 CPU Tests

The CPU Self-Test Controller (STC) is an integrated on-chip BIST support to test the
CPU cores with high diagnostic coverage. It is possible to ra di erent levels of the tests,
while during the execution, the CPU cores are isolated and &lbus transactions signals
are in idle mode.

Furthermore, all pending interrupts are served and processd after the tests are n-
ished. The test can be run at start-up without needing to perform a backup of the registers.
During runtime before the test is started, a backup of the regster is required. The register
contents need to be restored after the test.

With a diagnostic coverage of over 90% and 32 intervals as ilstrated in Table B.3,
the complete test execution requires between 0.926 msec arddl1l msec depending on the
hardware and STC clock.

CHAPTER 3. ANALYSIS AND DESIGN 53

Intervals Test Coverage [%]| Test Cycle
0 0 0

1 57,14 1555

2 65,82 3108

15 86,19 23297

16 86,56 24850

17 86,97 26403

30 90,46 46592

31 90,64 48145

32 90,84 49698

Table 3.3: STC levels and coverage [TMS]

3.2.2 Core Compare Module Tests

The core compare module not only is responsible to compare ¢hresults of the output
instructions, it also contains the following built in self tests which can be used during
runtime:

self-test
error forcing test

self-test error forcing mode

The start of the test must be issued by the application. During the "self test", the
module can generate compare match and compare mismatch pattns. Applying compare
match patterns (four patters 0x0, Ox1, OxA, 0x5) at the outputs, equal results are expected.
If a fault is detected, an ESM error is generated, and the tesis terminated, otherwise the
termination must be performed by the application.

The compare mismatch patterns are applied in the same mannewith the di erence
that the patterns for the second core are inverted, and di erent result is expected as in
the rst core. The test takes 3615 test cycles.

Applying the error forcing test only one pattern is applied to force that an error is
introduced in path between CCMR4F and ESM. If after the test is applied, and no error
is asserted on the ESM module, a hardware fault is present.

The tests that are described check only the CCMR4F module, ad the normal applica-
tion can use the CPU's in the background, but the outputs of the CPU's are not compared
with each other.

CHAPTER 3. ANALYSIS AND DESIGN 54

3.2.3 RAM and Peripheral Tests

The PBIST (Programmable Built-In Self Test) architecture i s a built-in testing engine
controlled by a small CPU. It o ers the possibility to test all types of memories with
pre-implemented algorithms in the microcontroller.

Ram Group | Module Memory type
3 DCAN1 Single Port
4 DCAN2 Single Port
5 DCAN3 Single Port
6 ESRAM Single Port
7 MIBSPI Single Port
8 VIM Single Port
9 MibADC Two Port
10 DMA Two Port
11 NHET Two Port
12 HET TU Two Port
13 RTP Two Port
14 Flexray Single Port

Table 3.4: RAM groups in TMS570 [TMS]

In Table B4, all RAM memories with types of the microcontroller are presented. For
each type of memory, in Table[35 the algorithms are shown.

Memory Module Valid RAM Groups
type

Single Port | march13n-red 3,45,6,7,8,14
Two Port march13n-red 9,10,11,12,13
Single Port | downlA-red 3,45,6,7,8,14
Two Port downlA-red 9,10,11,12,13
Single Port | mapcolumn 3,4,5,6,7,8,14
Two Port mapcolumn 9,10,11,12,13
Single Port | precharge 3,4,5,6,7,8,14
Two Port precharge 9,10,11,12,13
Single Port | dtxn2 3,4,5,6,7,8,14
Two Port dtxn2 9,10,11,12,13

Table 3.5: Algorithm to RAM mapping in TMS570 [TMS]

March13N - As described in Sectiori 2.2.2]2, March13N proviels very high diagnostic
coverage. The fault types detected by this algorithm are maifold starting from,
decoder, stuck-at, coupled, parametric faults, and endingwith logic faults. With
13N operations where N is number of RAM Cells, it has linear complexity O(n).

CHAPTER 3. ANALYSIS AND DESIGN 55

Map Column - is commonly used to nd bit lines sensitivities in memory. It consists
of writing on each line of memory 1 and 0's and repeatedly readg and writing back.

Pre-Charge - used to address the pre-charging of the SRAM dslbecause the analog
portion is frequency-sensitive.

DOWNl1la - addresses the data bits and address bits by switchig their content with
a forced transition.

DTXN2a - mainly used to test decoding logic in RAM memories.

The complete content of the a ected memory part are lost after the tests are applied.
Therefore, all these tests are carried out at the start-up. The complete tests needs 23.23
msec at HCLK = 80 MHz and ROMCLK = 100 MHz and 43.63 msec with HCLK = 100
MHz and ROMCLK = 40 MHz to be completely executed.

3.2.4 Error Signaling Module - ESM

The ESM Module is used to control the error signals that come fom di erent sources of
the microcontroller and can be transmitted to a dedicated exernal pin.
The main properties of the ESM module are :

96 interrupt/error channels for various error sources

Dedicated pin ERROR to signal external sources

The rst thirty two error sources are maskable during normal runtime, and the rest
are non-maskable.

3.3 Functional Safety Requirements

At start-up, the RAM should be initialized with ECC.

At start-up,all RAM memories must be tested with the PBIST lo gic, which ensures
that the RAM and Peripheral memories are in a safe state.

The RAM must be initialized to a known state.

It must be ensured that all errors are reported correctly andthat the system does
not enter an unsafe state.

During runtime the RAM must be tested completely, and it must be guaranteed that
the normal application software is not halted in its normal operation.

It must be ensured that after disabling the Interrupts, they are enabled after the
test is nished.

During runtime the execution time of the RAM test must not exceed the critical
time for which the Interrupts are disabled.

CHAPTER 3. ANALYSIS AND DESIGN 56

At start-up, the two cores must be tested with 32 levels of tes$ patterns with the
STC controller

At runtime, the STC tests can be run with the complete test level or the tests can
be divided from 1 to 32 levels and can be run periodically.

3.4 Design Concept

After describing the microcontrollers and listing the safdy requirements, which a safety
strategy must ful I, a design concept needs to be found. Thisconcept consists of:

1. Hardware tests

2. Software tests

Using the hardware tests is advisable, because the functi@lty which is o ered in
hardware is reliable, faster, and less error prone than testthat are implemented in soft-
ware. Software tests will be implemented because the impleented functionality does not
o er an online periodic testing schema of the SRAM at the microcontroller.

The hardware and software test as illustrated in Tables[3.6 ad [3.7 are subdivided
into tests which can be executed at start-up and tests which an be continuously executed
continuously during runtime.

Algorithms: Start- Up Runtime
March13N
Map Column
STC / LBIST
DTXN2a
DOWN1la
Pre-Charge
Watchdog Test X

XXX X[X X
X

Table 3.6: Hardware tests in the TMS570 microcontroller

Algorithms: Start-Up Runtime
March-Tests X

Table 3.7: Software tests in the TMS570 microcontroller

FreeRTOSH is available to be used in connection with the TMS570. The bais thread
of execution in the FreeRTOS [[Barl0] is called a task, which hs a dedicated stack and
priority that runs forever, and the scheduler is responsibé to give each of them CPU time
for execution. The advantage of using such a kernel over a camon " nite state machine”

P http://www.freertos.org/

CHAPTER 3. ANALYSIS AND DESIGN 57

are synchronizing issues. The synchronization of the appdation and the tests, during the
execution are done by the FreeRTOS scheduler. The task withte higher priority if in
ready state is scheduled to run.

In Section [ZZ.2Z.2 di erent RAM testing algorithms were intr oduced and described.
Deciding upon an appropriate algorithm based on the critera which are merged within
Tables[3.8 and(3.9.

The smallest number of operations and the linear complexityare such criteria. Sorting
according to complexity, three types of algorithms are present: linear, logarithmic, and
quadratic.

In the group with linear complexity are the algorithms, Checkerboard, March B and
Abraham with the Checkerboard as the best representative. hey has smaller number of
operations by factor 4X and 7X compared to the other two.

Including the second criteria in the evaluation, namely the covered faults, the "March
B" covers a larger set of faults than the Checkerboard test orthe Abraham test. Con-
structing the tuple (Number of Operations, Covered faults) of criteria the MARCH-B
proves to be as the best representative for the implementatin.

Algorithms Number of Covered Faults
Operations

Checkerboard an detects not all AF, SAF, TF
and CFs

March B 17n all AFs, SAFs, TFs, CFins
and linked CFids

Abraham Test 30n TFs, CFs

Butter y 5n logn AFs and SAFs

GALPAT 4n? + 4n AFs, TFs, CFs, and SAFs

WALPAT 2n? + 8n SAF, AF, TF and CFs

Table 3.8: RAM test Faults coverage and number of operations

The algorithms with quadratic complexity are not suitable t o be implemented because
the number of operations are very high and they do not cover tle kind of faults that are
covered by the group of linear complex algorithms.

, o Complgx[ty n n logn n3=2 n2
Size s
1K 0.0001s | 0.001s 0.0033 s 0.105 s
4K 0.0004s | 0.0048s 0.0262 s 1.7s
16K 0.0016s | 0.0224s 0.21s 27s
64K 0.0064s | 0.1s 1.678 s 7.17 m
256K 0.0256s | 0.46s 134s 19h
1MB 0.102s 2.04s 1.83m 1.27d

Table 3.9: Test Time as a Function of Memory Size [WWWO06]

CHAPTER 3. ANALYSIS AND DESIGN 58

According to these criteria, the MARCH B test is implemented. Another March test
is implemented in the hardware with 13N operations, which wil be run at the start-up.
Concerning the structure, they are the same, they di er only in the number of operations.
The implemented march test is redundant and can be run in pardlel with the application.

3.4.1 Modules

The complete concept is built on three modules as illustratd in Figure B.4.

Safety Modules |

= | —F
scomponents acomponents
CoreTest Module RamTest Module
@ CoreTask() & RAMTestTask()
& FaultinjectionTask()

wcomponents

Application Module

WatchdogTask()
ApplicationTask()
@ LCDTask()

Figure 3.7: Modules in the concept

At the start-up, the PBIST algorithms of the TMS570 are carri ed out, because the
content of the memory is completely lost during testing. The watchdog, RAM and STC
tests are applied inside the tasks, periodically online.

The tasks inside the modules illustrated in Figure[38 existin the context of the OS
Kernel, and the scheduler is responsible to provide each ohem with execution time.

These tasks are created to cover the following functionalit:

Core Test - It was decided to run the CPU test periodically be@use during that test
the interrupts are not served, the core test is adaptable to on gure the number of
intervals, and the test is executed under 1 ms.

RAM Test - The pseudo-code of the selected RAM test is illustated in the Algo-
rithm §] and it describes all operations which must be perfomed to run the test.

Watchdog - The TMS570 Prototyping board has an external windowed watchdog
that can be used for program ow monitoring of the application and it is integrated

CHAPTER 3. ANALYSIS AND DESIGN 59

FreeRTOS

aprimitiveTypexs aprimitiveTypexs aprimitiveTypes

CoreTest Task RAMTest Task Faultinjection Task

aprimitiveTypexs aprimitiveTypes aprimitiveTypes
Application Task Watchog Task LCD Task

Figure 3.8: Tasks executed in the FreeRTOS kernel

into the concept. This watchdog starts counting after the r st rising edge on the
WDI interface as illustrated in Figure B.9] and after a de ned time, this interface
must be set to low (falling edge). After the switch SW4 is turned on, then the
watchdog must be reset during the de ned time interval. The time interval cannot
be changed.

Application - As part of the application, the status of the te st is presented on the
LCD Display. An application ("blinky") is implemented whic h uses the numerous
LEDs on the board. The external watchdog monitors the progran ow. The blinky
application is a led show consisting of the various LEDs whils are present on the
prototyping board.

Fault injection - For veri cation purposes, these tasks will inject faults into the RAM.

The Figures[3.9 and 4.70 illustrates how the watchdog is intgrated into the prototyping
board and how the watchdog needs to be reset within the appropate timing window.

3.4.2 Properties of the modules

The tests that are active at run-time are included in separae tasks. During the imple-
mentation phase, the following parameters need a special éatment:

1. Task Priorities
2. Execution time
3. Context Switch

4. Interrupts

Task priority is important because the scheduler chooses th ready task to run based
on the priority. Obviously, the tests will have lower priori ty than the application, but the

CHAPTER 3. ANALYSIS AND DESIGN 60

3v3

SW4 MSS3

=

A
R
5 C =
G\D"I Ri6d" Ik | 2
GND
L
V3 3V3 GND
——=ClI8
RI6GER167 | 100n el R165
NP $NP 2k2
— VDD
GND 5 | wop mep L6 $¥D RSTn
vl
3 | wor wop 1_GloB2
GND
R 169 NS
3 TPS3813K33DBV
GND
Switch
SWa
(@) Circuit diagram (b) On/o button

Figure 3.9: Watchdog circuit used for program ow monitoring

execution time of each test should not stop the application m its correct operation. This
can be seen as a compromise between priority and executiomtie.

The FreeRTOS Kernel o ers nine levels of priority with the low est priority represented
as 1 and the highest represented with the number 9. The applation implemented in the
concept has the priority 4, and all other tests 3. This ensurs that the tests are running if
the application is in idle mode. These priorities assignedd the tasks present a risk if the
application is busy forever, because it takes the CPU, and tk other tasks never get into
the running state. This must be taken into account during the implementation.

When each task is ready to run, a context switch is performed,which means the
complete context of the actual task (program counter, regisers, stack pointer) are stored
on the task's stack on the RAM memory.

Hence, these two conditions must be avoided/disabled at therun-time of the tests.
During the startup of the test the interrupts are disabled to avoid test interruptions, the
actual code region will be marked as critical to avoid a cont&t switch, and another task
is scheduled to run. For the RAM test implementation, some pasibility to perform fault
injection testing must be implemented to verify the concept

While the tasks with the tests are running, a context switch is not allowed. A context
switch can occur on two conditions:

An Interrupt happens during that time

One task with higher priority becomes ready

The fault coverage is guaranteed due to the March Test struatire, which is discussed
in Section[Z.Z.Z.2, but a fault injection strategy must be implemented.

CHAPTER 3. ANALYSIS AND DESIGN 61

Two cases are at disposal:

1. Change the RAM content in the cells during runtime

2. Use ECC functionality of the microcontroller to corrupt t he RAM

Changing the content of RAM during a running test would, however, not meet the
requirements listed in the previous chapter, which means aatext switching and interrupts
are disabled and all tasks are suspended until the test is rshed with the actual sector.

Algorithm 5 March B testing the memory with N cells

fori=0! n 1do
RamcCell[i]=0

end for

fori=0! n 1do
CheckRamCell[i] ==

RamcCell[i]=1
CheckRamCell[i] ==
RamcCell[i]=0
RamcCell[i]=1

end for

for i=0! n 1do
CheckRamCell[i] ==

RamcCell[i]=0
RamcCell[i]=1
end for

fori=0! n 1do
CheckRamCell[i] ==

RamcCell[i]=0

RamCell[i]=1

RamcCell[i]=0
end for

fori=0! n 1do
CheckRamCell[i] ==

RamCell[i]=1
RamCell[i]=0
end for

The Cortex R4F core always internally calculates an ECC for d RAM read/write
accesses. It can detect single bit errors and correct them. @&uble and more bit errors are
detected but cannot be corrected. It is also possible to endb/disable the reporting of
detected errors, but it is not possible to disable the detedbn and correction.

In the implemented strategy, the reporting is enabled. If it fails during the program
ow the redundant RAM test will nd the faults in the memory.

Chapter 4

Implementation and Results

4.1 TMS570 Evaluation Board

The MCBTMS570 [KEI] prototyping board by KEIL is presented i n Figure[4.1. It contains
an ARMOf3 processor with two Cortex R4F Cores in Lockstep mode. As premnted in Block
Diagram [4.2, it has many peripherals and an analog input part

esd Pee mee R B el §
et ey W IR, T 1L3¥ WAl § e WO

Figure 4.1: MCBTMS570 Development Kit [KEI]

1 Advanced RISC Machines

62

CHAPTER 4. IMPLEMENTATION AND RESULTS 63

The Prototyping consists of two parts:
1. The MCBTMS570 CPU board
2. The MCBTMS570 1/0O board for the peripherals and the analog circuits

The CPU board includes the main logic of the prototyping board and the following
components:

A TMS570LS20216 microcontroller
A 16 MHz Oscillator

The ETM Interface (MIPI) connector which provides instruct ion-level trace debug-
ging support

Three USB Standard ports: USB 1.1, 2.0 and mini-B connector

An 100/10M Ethernet Port A standard (RJ45) connector connected to an on-board
Ethernet transceiver

Two JTAG interfaces: USB/Ethernet-JTAG connector and a sta ndard JTAG 20-pin
connector

Two push buttons for: The RESET WARM (S1) to wake the microcontroller from
sleep mode and the RESET POR (S2) button used as power-on refseircuit

User 11O

Analog N LCD Display
Input

e LIN/RS485

Configuration Al A CAN
Jumpers &
Switches CPU Reset & Interrupt
Butt
TMS570L520216 s
(Or variant) |t FlexRay

Port LEDs
12 VDC
Power SD Card

Light, Temp. &
Pressure Sensors

|

[Ethernet
USE Device & |
Host
Relay & Solenoid I
Drivers

Figure 4.2: Block diagram of the MCBTMS570 prototyping board [[KEI]

The second part or the I/O board contains the peripherals, transceivers for the com-
munication ports, and other components as listed below:

CHAPTER 4. IMPLEMENTATION AND RESULTS 64

Three CAN Ports with transceivers

One LIN port and one RS488 port with the corresponding transceivers
Two connectors for FlexRay network communication

A 240x320 TFT Touch Screen/LCD Display

Temperature and light sensor realized with on-board ADC cowerters
Ampli ed speaker for audio output

MicroSD card connector for SD cards

Two push buttons: SW1 and SW2, which can be used for the appliation

Four jumpers and three switches for: LIN/RS485 switching, av/o watchdog timer
and on/o pressure sensor

Internally the prototyping board has an XDS100v2 emulator. It is possible to ash the
board without an external JTAG emulator and it can be used with an USB connector.

Figure 4.3: Code Composer Studio IDE

2E|A-485 is a speci cation of local networks and communicati ons links

CHAPTER 4. IMPLEMENTATION AND RESULTS 65

4.2 Work ow and Tool Chain

The TMS570 microcontroller is supported by a large group of bols which can be used
during the development of applications. Starting from IDEs and ashing tools which are

essential for every developer, the Starter Kit includes moe supporting software as listed
below:

Code Composer Studio IDE

HALCoGen Peripheral Drivers Generation Tool

Flash programming tool integrated into Code Composer Stdio
nowFlash

nowECC

HET GUI/Simulator/Assembler including Synapticad Wave Viewer

N o o M N oPE

FMzPLL & FPLL Calculators

Figure 4.4. HalCoGen tool from Texas Instruments

Code Composer Studio is an Eclipse-based framework which ¢iudes tools from TI,
debugger, compiler, building environment, simulator, andthe possibility to ash directly
from the IDE. This feature and the debugging features are vey helpful at the beginning
of the work with the prototyping board.

CHAPTER 4. IMPLEMENTATION AND RESULTS 66

Texas Instruments has developed a code generator and con gation tool(HalCoGen)
which helps to con gure the microcontroller, starting from the PLL, interrupt sources,
operating system, all peripherals, safety features, all dck trees etc.

The HalCoGen allows to generate code that can be compiled andeployed on the pro-
totyping board. The compiled binary can be deployed with the nowFlash tool or directly
from the CCStudio. It is recommended to generate the ECC of tke complete binary and
to ash it manually as presented in Figure 4.5 using the nowFhsh tool.

Figure 4.5: Work ow to deploy binarys on the TMS570

The TMS570 architecture has separate address spaces for tH&CC part and the pro-
gram/data part. As safety feature it includes mirror images in separate address spaces
for ECC part and program part. More information about the ARM software ow can be
found in [ARM11] on page 16.

CHAPTER 4. IMPLEMENTATION AND RESULTS 67

In the support package, three other GUI based tools are inclded. Two PLL GUI cal-
culators for the internal PLL and for the FlexRay PLL can be used to generate values for
the internal PLL registers. The High End Timer Simulator can be used to simulate and
con gure timer functionality like waveforms generators (PWM), memory write triggers,
cycle counts etc.

4.3 Start-up Phase

To run the software tests periodically as de ned in the concet in Section 3.4, the FreeR-
TOS kernel is used, which is an open source and can be providdsy the HalCoGen tool,
which can be employed to con gure tick rate, priorities, task modes, scheduler properties
and stack/heap size. The OS is responsible for switching beteen the tests and therefore
it is de ned as pre-emptive to let the tasks with higher priority run while the others are
suspended.

In FreeRTOS Tasks [Bar10] are de ned with the following function:

portBASE_TYPE xTaskCreate

(pdTASK_CODE pvTaskCode, /I Pointer to the Task function
const signed portCHAR * const pcName,// Name of the Task
unsigned portSHORT usStackDepth, /I Size of the Task stack
void *pvParameters, /I Possible to pass parameters
unsigned portBASE_TYPE uxPriority, // Priority of the Task (1-9)
xTaskHandle *pxCreatedTask /l Handle of the created Task

)i

The functions are implemented as endless loops with the posslity to suspend a
speci c task for a de ned time.

void pvTaskCode(void *pvParameters){

portTickType xLastWakeTime = xTaskGetTickCount();
for(;;) {

vTaskDelayUntil(&xLastWakeTime, (PERIOD_MS / portTICK_RATE_MS));

Before the system with the de ned safety-related tasks are pt into operation, at
start-up, hardware implemented self tests and additional sfety measures are carried out
for accuracy. This is necessary to ensure that the device opates normally. At start-up,
the sequence of safety tests is as the following:

1. CCM-R4 checks for faults in self test mode by a matching paern as well as by a
mismatching pattern.

2. Cortex-R4F core checks for faults using STC/LBIST running all the test patterns.

CHAPTER 4. IMPLEMENTATION AND RESULTS 68

3. MPU is con gured appropriately to protect memory regions.

4. The complete SRAM is initialized to a de ned state with ECC enabled using the
auto initialization feature of the board.

5. Hardware PBIST engine executes multiple RAM testing algoithms with 99% fault
coverage.

6. Redundant address decoding logic tests are performed omeé CPU core.

The complete start-up sequence is presented as UML diagranmiFigure 4.6. After the
reset interrupt is generated the core registers [RIT] must [initialized with appropriate
values. Hence, the reset source is scrutinized whether it igenerated by the core test. In
this case, it will branch to the previous program ow (main ro utine or core test task) to
continue the operation. Otherwise, the normal start-up procedure continues.

Figure 4.6: The safety start-up sequence

After initializing the system clock sources, ash wait cycles etc., the memory tests are
applied to the RAM and the peripherals. If the test fails, it b ranches to a safe state, and
the start-up cannot continue because that could lead to undened error states.

If the test was executed without errors, the memories are irtialized with the auto
initialization feature. Branching at the main routine, the rst step is to apply the core

CHAPTER 4. IMPLEMENTATION AND RESULTS 69

test with the maximum number of the intervals. After generating the reset, the status bit
(successfully, failed) is stored.

Then the MPU is initialized and, the core compare module testand the decode logic
test are applied. The status bits of these tests are stored to. After initializing the modules
as described in Section 3.4.1, all status bits are evaluated

If one the modules was not successfully initialized or one ahe tests has failed, then
the procedure exists without starting the application. Otherwise the ow continues and
starts the scheduler of the FreeRTOS which continues to exede the tasks de ned in the
modules.

4.4 Periodic Operation

441 RAM test

In Chapter 2.2 di erent RAM testing algorithms are presented and explained based on
the running complexity and fault coverage.

Figure 4.7. Activity diagram of the RAM Test

March testing algorithms with March-B are suitable to be implemented, because it
has linear complexity O(n) and covers stuck at faults, addres decoder faults, transition
faults, inversion coupling faults, and linked idempotent mupling faults. The advantage
over the March-G, is that it has very small execution time and does not contain delays
like March-G.

CHAPTER 4. IMPLEMENTATION AND RESULTS 70

The RAM test is de ned to run periodically as a FreeRTOS Task:

xTaskCreate(RAMTest,

(signed portCHAR *)"Task Ram-Test",
500,

(void*)ramTestTxt,

3,

&xRamTestHandle);

The task is periodically executed by the RTOS Kernel and cals the function in assem-
bler to test the actual sector number of the RAM. Some parts ofthe test implemented in
the assembler are presented in Listing 5.1.

In Figure 4.7, an UML activity diagram is presented, which describes the complete
sequences of the OS Task needed to run the ram test. In the rsistep after the task
switches into the running state, all interrupts are disabled.

The test presented in Listing 5.1 is executed, and if it fails the complete system goes
into a safe state. After branching to safe state, the tasks a& switched to stop state, and
the other resources are disabled. This state would be respsible to switch o actuators
Or Sensors.

Otherwise, the sector address is incremented, interrupts r@ enabled, and the task
changes to sleep state until the scheduler chooses the taslext time and the scheduler
passes the CPU on to the next ready task.

This test is very e cient but it is destructive for the RAM con tent, because after the
test is applied, the complete content is deleted.

As presented in Figure 4.8, the base address of the RAM is 0x080000 with a size of
160 kB and an end address at 0x08027FFF. During runtime, the pplication ow must
not be changed and the content of the RAM must be restored aftethe test is applied.

Figure 4.8: The ESRAM in TMS570 [TMS]

Hence, a backup strategy must be developed to store the coné of the RAM. It is
possible to subdivide the RAM memory into active and passiveregions, but there are
several problems to this solution. First, it is complex to manage, and so it is di cult to
ful | the timing requirements. Second, the local variables in RAM, which are used to run
the test, can be overwritten.

CHAPTER 4. IMPLEMENTATION AND RESULTS 71

Because of these problems, the following requirements muste ful lled:
1. The RAM cannot be used as backup storage

2. The test must run completely from FLASH without using local variables in RAM

3. The backup strategy must be fast

There are two other components which can be used for backup: I[&h and Core reg-
isters. Using the Flash as backup storage has advantages artisadvantages. A great
advantage is the storage capacity which could be used to baadp a huge amount of data
from the RAM and o ers the possibility to verify the integrity of the data with the help
of error correction codes. As a disadvantage, writing/reaghg to/from Flash is very slow,
which does not meet the previous requirements and it is not apropriate to be used for
backup. So it is required to backup RAM contents in the CPU regsters.

According to the ARM Architecture Reference Manual [ARM] for the Cortex R4F
processors, it has 32 general purpose register and, 32 bit dth and a subset of registers
are accessible from di erent modes as presented in Figure 4.9

These modes are used to grant privileges code parts during egution. The ARM
architecture supports the following processor modes:

Figure 4.9: General purpose registers of the ARM Architecture [ARM]

CHAPTER 4. IMPLEMENTATION AND RESULTS 72

System and User

. FIQ

. Supervisor

. IRQ

1.
2
3
4. Abort
5
6. Unde ned

All applications normally run in the system/user mode, and the OS uses the supervisor
mode. The two interrupt modes are used to serve the interruptrequests, but the di erence
between them is that FIQs are of higher priority than the FIQ interrupts. The Abort
mode is used for data abort instructions and the Unde ned moc is entered if there is an
exceptior?.

Listing 4.1: March test implemented in Assembler
_esramTest :
Idr r2, zeropattern
Idr r3, onepattern
; Store the content of the RAM in the register
LDMIA RO!, fR5 R12g
: Load back the start adress because LDMIA increments it
; by [numBytes] loaded
mov rl, rO
sub r0, r0, #32
firstLoop:
str r2, [rO]
add rO, rO, #0x4
cmp rO, rl
bne firstLoop
sub r0, r0, #32
secondLoop:
Idr r4, [r0]
cmp rd, r2
bne exit
onepattern: .word OxFFFFFFFF
zeropattern: .word 0x00000000

3|f the application is trying to run unknown instructions

CHAPTER 4. IMPLEMENTATION AND RESULTS 73

As presented in Figure 4.9, the user mode, in which 15 registe and the Program
Counter(PC) are visible is very important. The Stack Pointer(SP) and the Link Register
(LR) are mapped on the register R13 and R14.

Thus, the registers R0-R12 can be used as backup storage, atmlaccess these registers,
the test will be implemented in Assembler and not in C langua@, because accessing these
registers from the assembler is very easy and other assemblmstructions for multiple
(data at RAM) load and store instructions will be used to move the content from and
to RAM. The Cortex R4F Architecture implemented in the TMS57 0 microcontroller uses
two instruction sets, ARM and Thumb-v2. During the implementation of the test in the
Assembler, only ARM mode compatible instructions are usedwith the advantage that
the test can be used in other ARM architectures and because # 32 bit width registers
are used as storage with 4 byte access instructions to loadisre the content of the RAM
memory.

4.4.2 Watchdog test

In the implementation, the watchdog is used to monitor the program ow. It runs in
conjunction with the FreeRTOS Kernel and the application as designed in Section 3.4. A
watchdog reset is carried out periodically within the window size of 200 ms. The testing
results of the current tested sector are displayed on the LCDdisplay.

The application task has the priority of 4. Only the watchdog task has higher priority
because in the prototyping board it is not possible to switchit o .

In the running state, the application switches all LEDs present on the board and resets
the watchdog inside the window.

xTaskCreate(Application,
(signed portCHAR *)"Task Application”,
250,
(void*)appText,
4,
&xAppHandle);

After the application task is nished, the next task in ready state is selected by the
OS to run. Because the watchdog has the highest priority, it wil switch to the watchdog
task and continues to reset the watchdog.

Inside, the lower windows have to be careful not to reset the atchdog, as this would
reset the complete board.

The timing diagram as illustrated in Figure 4.10 contains two windows:

Lower window frame with max 10 ms width
Window frame with min 200 ms

xTaskCreate(Watchdog,
(signed portCHAR *)'Watchdog Task",
250,
(void*)textWatchdog,
81
&xWatchdogHandle);

CHAPTER 4. IMPLEMENTATION AND RESULTS 74

The window watchdog can be used as a monitoring circuit for tke supply voltage and as
window watchdog which can be employed to monitor the programow of the application.
The main problem with the PFM is how to perform the check if all steps are performed
and that the speci c operations are performed within a de ned time.

Consequently, if critical operations are to be performed, hey have to be enclosed in
the watchdog monitoring because delays in response of a cigal operation can lead to
unexpected results, and so the program ow is monitored.

Figure 4.10: Timing diagram of the watchdog [PSC]

4.4.3 CPU test

During the start-up, the test is carried out with the maximal number of intervals. At
run-time as described in Section 3.4, the core test should mu periodically into a task
with maximal 16 intervals, because the test must stay under 6 ms. The following points
must be considered, in order to successfully run the core tesrom the Self Test Controller
(STC) module:

Backup application registers
Run the test in intervals

Restore the application registers

These are the basic requirements to run the test periodica}l From practical point of
view, it is not clearly speci ed which registers should backip and where. To integrate the
test into the concept with the OS kernel, the registers are sbred into the RAM, because
the access times to write and read from RAM are negligible. Fothe following registers a
backup is performed:

All general purpose R0-R15 and CPSR register

All coprocessor including the banked registers for di erentoperating modes as pre-
sented in Figure 4.9

Memory protection registers and optionally, all FPU registers

CHAPTER 4. IMPLEMENTATION AND RESULTS 75

To backup the registers in di erent modes, the M[3:0] bits of the CPSR register as
in Figure 4.11 are changed with appropriate values to switchbetween user, FIQ, IRQ,
Supervisor, and Undef modes as illustrated in Figure 4.9.

The task that executes the core test is created with the follaving parameters:

xTaskCreate(CoreTest,
(signed portCHAR *)"Core Task",
250,
(void*)textCoreTest,
21
&xCoreTestHandle);

The test is subdivided into intervals and is executed in the kackground of the applica-
tion. The core test has the lowest priority compared to all other tasks implemented in the
concept. The reason for such a decision is that the test mustun only if all other tasks are
in idle mode to prevent that one of the tasks becomes ready andannot switch to running
state.

Figure 4.11: Format of the CPSR Register [CPS]

After each switch, a backup is performed for the banked regters in that mode. After
the core test is nished the same procedure is applied but in everse order to restore the
content of the registers. For the other bits in the CPSR, refe to the link [CPS].

The complete test sequences are presented in Figure 4.12. t&f the core test is started,
the next step is to con gure the coretest. Then, a backup of alregisters is performed, and
the values are stored in the RAM memory. After the test is nished, it generates a reset
which is captured by the start-up activity as described in Figure 4.5. Then, the program
ow continues with restoring all registers values which arepreviously stored in the RAM.

The MPU is reinitialized, because it is a static con guration which does not change
at run-time and it is overhead to perform a backup of MPU regiders and restore them
afterwards. The con guration values stay the same.

4.5 Fault Injection, Test Cases and Timing Results

The push buttons as presented in Figure 4.13 can be used to ie¢t faults into the RAM.
The buttons can be accessed by con guring the correspondingPIO's. Externally, they
can be always pushed, and internally, they generate a randonaddress and corrupt the
content of the RAM-ECC at that address. A task is created to generate the random ad-
dress and read the GPIOs.

CHAPTER 4. IMPLEMENTATION AND RESULTS 76

Figure 4.12: UML activity diagram of the core test

xTaskCreate(Faultinjection,
(signed portCHAR *)"Task Fault-Injection”,
500,
(void*)ramFaultTxt,
3,
&xFaultInjectionHandle);

In the Cortex R4F core, the ECC is calculated for every read/write access in the RAM
address space. The functionality of the ECC detection repding is encapsulated in the
two TCRAM Wrappers. The TCRAM wrapper serves as an interface support for error
detection/correction and decoding.

After one of the push buttons is pressed in the Wrapper, the rporting of the detection
faults in enabled as presented in Figure 4.15. In the displays written, in which sector the
error is introduced.

Reaching the corrupted data sector, a data fault is generaté and as impact, all tasks
running are stopped, and, optionally dependent on safety rquirements all peripherals are
stopped. After this fault is caused, in the prototyping board, the two error leds are set to
high as in Figure 4.15.

The activities of the RAM fault injection are presented in Figure 4.14. Every time the
task takes the CPU, it checks if the buttons are pressed; if yg, it randomly generates a

CHAPTER 4. IMPLEMENTATION AND RESULTS e

(@) Push buttons (b) Circuit diagram

Figure 4.13. Push buttons used for the Fault Injection

Figure 4.14: Fault injection activity diagram

RAM address, corrupts the ECC sum, and changes to sleep state
The following test cases for the Watchdog test are performed

Increasing the time between operations

Performing operations that take more than 200 ms

In Table 4.1, the timing results of the implemented online test strategy are presented:

The test cases for the watchdog are performed to see whethehé¢ evaluation board
needs to be reset. This is used if the application waits morehtan 200 ms for an answer of
a critical function.

CHAPTER 4. IMPLEMENTATION AND RESULTS 78

Figure 4.15: LCD displaying the address of the corrupted RAM region

RAM test Core test Watchdog
Complete test 30 mg P 0,927 ms 100ms
Testing a sector-| 5,86 s 0.029 ms {
interval

aWithout counting the OS Context switch time
PAt 160 MHz system clock

Table 4.1: Timing properties of the tests

Test cases for the STC test which can be performed to verify te functionality of the
module are:

Set time out counter preload register to a low value

Initializing the core registers at start-up with wrong valu es

With the rst test case, it is assured that the test is perform ed within a de ned number
of CPU cycles. If the test is not nished within the de ned num ber of cycles, a timeout
will be generated and it guarantees that the application dos not have to wait forever if
the test hangs up. The second test is based on the property ohe cores, which should be
initialized with a de ned procedure as described in [RIT] to avoid that at start-up a core
compare error is generated.

Chapter 5

Conclusions and Outlook

5.1 Conclusions

At the beginning of this thesis safety-related architectures and self-testing techniques were
introduced. The beginning was at the hardware level which iludes safety strategies and
architectures with a description of the ideas behind such cocepts and also the require-
ments these systems must meet to maintain the functional safty.

The form of hardware strategies is dependent on the fault modl. A detailed description
of such strategies is given, which can be in a form of single @mmulti-distributed controllers.
From a practical point of view, these strategies are concept which form the base for
architectures and are described in detail in the second chdpr.

In order to assure the safety in a microcontroller, algoritms are needed to be im-
plemented, which can be veri ed either using the mathemati@al structure or simulation.
In the thesis, di erent algorithms are presented, which can ke used in a system to nd
di erent types of faults like coupled, stuck-at, transition faults etc. which can be either
implemented in hardware as part of an architecture or in softvare as software-based self
test. However, the main focus was on functional tests.

In order to evaluate such architectures on how they full safety criteria, a list of
evaluation criteria was created. Based on the safety featwas, performance, run time tests,
developing environment etc, the TMS570 microcontroller wa chosen as the appropriate
device for further implementations.

The idea was to use safety features of the microcontroller, rad di erent algorithms to
be mixed in an online periodic testing strategy which assure safety in critical applications.
It was shown in the thesis, which are the main safety feature®f the chosen microcontroller
and which are implemented, the online RAM test and watchdog £st running during normal
system operation.

An operating system kernel was used to run all the tests, andtiwas shown how the
tests can be integrated into a safety strategy, presentinghe advantages and disadvantages
of using such a system. As for the performance, the RAM test, Wich is implemented
completely in assembler, can be used by any ARM microcontréér with or without an
operating system.

A microcontroller which has not only o -line safety features (tests that can be per-
formed only at startup) but online features as well, which tests the microcontroller's

79

CHAPTER 5. CONCLUSIONS AND OUTLOOK 80

functional parts like RAM, CPU, ash, would extend the possibility for critical applica-
tions that could be implemented in the automotive industry or power plants, medical life
support equipment etc.

5.2 Outlook

The TMS570 microcontroller o ers a variety of tests and safely features which can be
used during the development. As presented in the design chagr of the concept, it has
some drawbacks because it does not have tests for every part the system which can be
performed at runtime. All RAM tests can be performed only at start-up, and the RAM
needs to be extended either with hardware or with software tets for such purposes.

Such an integration would be a powerful feature for all applcations in that eld. Not
only by extending such tests, but also by creating a better OSsupport for the safety
features like the core test, as maintaining and backup the derent registers in software to
perform the test periodically is error prone because of timig requirements.

There are new microcontrollers with safety features which ave more computing cores
and adequately address the requirements of safety-critidaapplications. They will be used
in the automotive industry in the near future.

Appendix A

De nitions

A.1 Abbreviations

ATPG
AF

ALU
ARM
ASIC
ASIL
BIST
CAN
CCF
CPU
CPSR
CF

CFin
CFid
CFst
CuU

DC

DRF
DSP
EEPROM
ECC
ESM
ETM
FMzPLL
FPLL
FSM
FPU
FMEA
GALPAT
GUI

Automatic Test Pattern Generation
Address Decoder Faults

Arithmetical Logical Unit

Advanced RISC Machine

Application Speci c Integrated Circuit
Automotive Safety Integrity Level
Built in Self Tests

Controller Area Network

Common Cause Failures

Central Processing Unit

Current Program Status Register
Coupling Faults

Inversion Coupling Fault

Idempotent Coupling Fault

State Coupling Fault

Comparing Unit

Diagnostic Coverage

Data Retention Fault

Digital Signal Processor

Electrically Erasable Programmable Read-Only Memory
Error Correction Codes

Error Signaling Module

Embedded Trace Macrocell
Frequency modulated phase lock loop
Flexray phase lock loop

Finite State Machine

Floating Point Unit

Failure Modes and E ects Analysis
Galloping Pattern

Graphical user interface

81

APPENDIX A. DEFINITIONS 82

HALCoGen Hardware Abstraction Code Generator Layer
HET High-End Timer

ISA Instruction Set Architecture

IDE Integrated Development Environment

ITI Institute for Technical Informatics

JTAG Joint Test Action Group Interface

LBIST Logical Built-in Self Tests

LIN Local Interconnect Network

MIPI Mobile Industry Processor Interface
MEPAS Methods and processes for automotive embedded software ddepment,
veri cation and validation

MPU Memory Protection Unit

MCU Microcontroller Unit

NowECC Error Correction Code Generator

PWM Pulse Width Modulation

PFM Program Flow Monitoring

PCP Peripheral Control Processor

PBIST Programmable Built-In Self Test

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RTOS Real Time Operating System

RTL Register Transfer Level

RJ45 Registered Jack

SRS Safety Requirements Speci cation

SIL Safety Integrity Level

SAF Stuck-at Faults

SFF Safe Failure Fraction

SMP Symmetric multiprocessor architectures
SOF Stuck-open fault

STC Self Test Controller

SFF Safe Failure Fraction

SBST Software Based Self Tests

TCRAM Tightly Coupled Random Access Memory
TI Texas Instruments

TLP Thread Level Parallelism

TF Transition Faults

ThwD TTOSHIBA hW diagnostic

TFT-LCD Thin Film Transistor Liquid Crystal Display

WALPAT Walking Pattern

APPENDIX A. DEFINITIONS

A.2 Used Symbols

S Rate of Safe Failures
D Rate of Dangerous Failures
D Rate of Dangerous Failures that are Detected
+ Decreasing Addressing Order
* Increasing Addressing Order
(wO0) Write Zero to the Speci c Ram Cell
(wl) Write One to the Speci c Ram Cell
(ro) Read Zero to the Speci ¢ Ram Cell
(r1) Read One to the Speci ¢ Ram Cell
Forced Transition from 1 to O

Forced Transition from O to 1

Bibliography

[AGPP09]

[APG* 09]

[ARM]
[ARM11]
[Barl0]
[BBC™* 08]

[BCMO7]

[BFM* 03]

[BHWO6]

[BSEO7]

[CPS]

Andreas Apostolakis, Dimitris Gizopoulos, Mihalis Psarakis, and Antonis
Paschalis. Software-Based Self-Testing of Symmetric Shad-Memory Mul-
tiprocessors. IEEE Transactions on Computers, 58:1682 { 1694, 2009.

Andreas Apostolakis, Mihalis Psarakis, Dimitris Gizopoulos, Antonis
Paschalis, and Ishwar Parulkar. Exploiting Thread-Level Parallelism in Func-
tional Self-Testing of CMT Processors. European Test Symposium pages 33
{ 38, 2009.

ARM architecture reference manual.
ARM Optimizing C/C++ Compiler v4.9 , August 2011.
Richard Barry. Using the FreeRTOS Real Time Kernel 2010.

Alfredo Benso, Alberto Bosio, Stefano Di Carlo, GiorgioDi Natale, and Paolo
Prinetto. March Test Generation Revealed. IEEE Transactions on Comput-
ers, VOL. 57, NO. 12, 2008.

Gabriele Boschi, Federico Colucci, and Riccardo Maani. Using an innova-
tive SoC-level FMEA methodology to design in compliance wih IEC61508.
Design, Automation & Test in Europe Conference & Exhibition, 2007.

Massimo Baleani, Alberto Ferrari, Leonardo MangerucaAllberto Luigi San-
giovanni Vincentelli, Maurizio Peri, and Saverio Pezzini. Falut-Tolerant Plat-
forms for Automotive Safety-Critical Applications. Proceedings of the 2003
International Conference on Compilers, Architecture and Synhesis for Em-
bedded Systemspages 170 { 177, 2003.

Ismet Bayraktaroglu, Jim Hunt, and Daniel Watkins. Cache Resident Func-
tional Microprocessor Testing: Avoiding High Speed IO Isses. Test Confer-
ence, ITC '06. IEEE International , pages 1 { 7, 2006.

Simon Brewerton, Rolf Schneider, and Denis Eberhak Implementation of a
Basic Single-Microcontoller Monitoring Concept for Safey Critical Systems
on a Dual-Core Microcontroller. In SAE International-Safety Critical Sys-
tems, Paper Number: 2007-01-14862007.

Cortex-R4 and Cortex-R4F Technical Reference Manual
http://www.arm.com/products/processors/cortex-r/ind ex.php

84

BIBLIOGRAPHY 85

[CRRDO3]

[CWLGO7]

[FMO7]

[G0093]

[GVA06]

[HA99]

[Has]

[KEI]
[KLC * 02]

[KPGX05]

[KS06]

[LCD* 05]

[MarQ7]

Li Chen, Srivaths Ravi, Anand Raghunathan, and Sujt Dey. A Scalable
Software-Based Self-Test Methodology for Programmable Rycessors. IrProc.
40th Design Automation Conference pages 548{553, 2003.

Chung-Ho Chen, Chih-Kai Wei, Tai-Hua Lu, and Hsun-Wei Gao. Software
Based Self-Testing with Multiplie-Level Abstractions for Soft Processor Cores.
IEEE Very Large Scale Integration Systems (VLSI), 15:505{517, 2007.

Peter Fuhrmann and Riccardo Mariani. Comparing fail-safe microcontroller
architectures in light of IEC 61508. In 22nd IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems 2007.

Ad J. Van De Goor. Using March Tests to Test SRAMs. IEEE Design and
Test of Computers vol. 10 no. 1:8{14, 1993.

Sankar Gurumurthy, Shobha Vasudevan, and Jacob A. Araham. Automatic
generation of instruction sequences targeting hard-to-diect structural faults
in a processor. INIEEE International Test Conference, pages 1 { 9, 2006.

Mohamed S. Hefny and Hassanein H. Ammer. Design of ammproved watch-
dog circuit for microcontroller-based systems.ICM'99. Eleventh International
Conference on Microelectronics pages 165 { 168, 1999.

Atsushi Hasegawa. R&D strategy: Using various types fomulti-core architec-
tures to overcome limitations of single-core microcomputes. Technical report,
RENESAS.

http://www.keil.com/support/man/docs/mcbtms570 /.

Angela Krstic, Wei-Cheng Lai, Kwang-Ting Cheng, Li Chen, and Suijit Dey.
Embedded Software Based Self Test for Programmable Core Bad Designs.
IEEE Design & Test, 19:18{27, 2002.

Nektarios Kranitis, Antonis Paschalis, Dimitris Gizopoulos, and George Xe-
noulis. Software-based self-testing of embedded processo IEEE Transac-
tions on Computers 54 Issue: 4:461 { 475, 2005.

Thomas Kottke and Andreas Steininger. A Recon guralde Generic Dual-Core
Architecture. International Conference on Dependable Systems and Networks
pages 45 { 54, 2006.

Eldon G. Leaphart, Barbara J. Czerny, Joseph G. D'Ambroso, Christopher L.

Denlinger, and Deron Littlejohn. Survey of Software Failsgde Techniques for
Safety-Critical Automotive Applications. SAE 2005 World Congress & Exhi-
bition, April 2005, Detroit, MIl, USA, Session: Safety-Critic al Systems (Part
1 & 2), 2005.

Riccardo Mariani. Applying IEC 61508 to Integrated Circuits. Technical
report, 2007.

BIBLIOGRAPHY 86

[MBO7]

[MKS10]

[Mon99]

INTA78]

[PGO04]

[PGH* 06]

[PGK* 01]

[PGSR10]

[PMLO2]

[PSC]

[RIT]

[RSCS04]

[SA98]

Riccardo Mariani and Gabriele Boschi. A systematic gproach for Failure
Modes and E ects Analysis of System-On-Chips. 13th IEEE International
On-Line Testing Symposium pages 187 { 188, 2007.

Riccardo Mariani, Thomas Kuschel, and Hiroshi Shighara. A exible mi-
crocontroller architecture for fail-safe and fail-operaional systems. Technical
report, 2010.

Sergio Montenegro. Sichere und fehlertolerante Steuerungen - Entwicklung
sicherheitsrelevanter SystemeCarl Hanser Verlag Mdanchen Wien, 1999.

R. Nair, Satish M. Thatte, and Jacob A. Abraham. E ci ent Algorithms
for Testing Semiconductor Random-Access MemoriedEEE Transactions on
Computers pages 572 { 576, 1978.

Antonis Paschalis and Dimitris Gizopoulos. E ective Software-Based Self-
Test Strategies for On-Line Periodic Testing of Embedded Pocessors.|EEE

Transactions on Computer-Aided Design of Integrated Circuitsand Systems
2004.

Mihalis Psarakis, Dimitris Gizopoulos, Miltiadis Hatzimihail, Antonis
Paschalis, Anand Raghunathan, and Srivaths Ravi. Systemat Software-
Based Self-Test for Pipelined Processors. 2006.

Antonis M. Paschalis, Dimitris Gizopoulos, Nektarios Kranitis, Mihalis

Psarakis, and Yervant Zorian Zorian. Deterministic Software-Based Self-
Testing of Embedded Processor Cores. Iesign, Automation and Test in
Europe. Conference and Exhibition pages 92 { 96, 2001.

Mihalis Psarakis, Dimitris Gizopoulos, Ernesto @nchez, and Matteo Sonza
Reorda. Microprocessor Software-Based Self-TestingEEE Design and Test
of Computers vol. 27, no. 3:pages 4{19, 2010.

Praveen Parvathala, Kaila Maneparambil, and William Lindsay. FRITS - A
microprocessor functional BIST method. ITC '02 Proceedings of the 2002
IEEE International Test Conference, pages 590 { 598, 2002.

Processor Supervisory Circuits with Window-Watchdog
"http://mww.ti.com/lit/ds/symlink/tps3813130.pdf"

Recommended Initializations for TMS570 Microcontrollers -
http://www.ti.com/lit/an/spnal19/spnall9.pdf

Matteo Sonza Reorda, Giovanni Squillero, Fulvio @rno, and Ernesto Sanchez.
Automatic Test Program Generation: A Case Study. Design & Test of Com-
puters, IEEE, 21 Issue: 2:102 { 109, 2004.

Jian Shen and Jacob A. Abraham. Native Mode FunctionaTest Generation
for Processors with Applications to Self Test and Design Vabation. Test
Conference Proceedings, Internationa) pages 990 { 999, 1998.

BIBLIOGRAPHY 87

[SDO6]

[TMS]
[TPO7]

[TumO09]

[WWC * 05]

[WWWO6]

Padma Sundaram and Joseph G. D'Ambrosio. Controllerintegrity in Au-
tomotive Failsafe System Architectures. In Safety Critical Systems, Special
Publications Paper Collections, SAE International, Product Code: SP-2029
2006.

TMS570 Technical Reference Manual

Thomas Tamandl and Peter Preininger. Online Self Tets for Microcontrollers
in Safety Related Systems. In5Sth IEEE International Conference on Indus-
trial Informatics , pages 137 { 142, 2007.

Peter Tummeltshammer. Analysis of Common Cause Faults in Dual Core
Architectures. PhD thesis, Technische Universitat Wien - Fakult@at far Infor-
matik, 20009.

Charles H. P. Wen, Li-C. Wang, Kwang-Ting Cheng, Kai Yang, Wei-Ting
Liu, and Ji-Jan Chen. On a software-based self-test methodogy and its
application. In VLSI Test Symposium, 2005. Proceedings. 23rd IEEE pages
107 { 113, 2005.

Laung-Terng Wang, Cheng-Wen Wu, and Xiaoging Wen. VLSI Test Princi-
ples and Architectures - Design for Testability Morgan Kaufmann; 1 edition,
2006.

	Introduction
	Motivation
	Objective
	Structure

	Related Work
	Hardware architectures and strategies
	Faults and Failures
	Fail-Safe System Strategies
	Single Controller Strategy
	Symmetric Controller Strategy
	Dual Core Controller Strategy
	Asymmetric Controller Strategy
	Distributed Controller Strategy

	Multi-core Architectures with redundant structures
	Lock-Step Dual & Dual Lock-Step Processor Architectures
	Loosely-Synchronized Dual & Triple Modular Processor Architectures
	Generic Dual Core Architecture

	Software strategies
	Software Based Self tests
	Functional Tests
	Software Fail-Safe Techniques
	March Tests
	Abraham Test
	Galloping and Walking patterns
	Checkerboard
	Butterfly Algorithm

	Structural Tests
	On-line Periodic Tests
	Specialized Tests for Multi-cores

	Analysis and Design
	Evaluated Architectures
	TMS570 - Texas Instruments
	TC1766 - Infineon Technologies
	fRMethodology - Yogitech & Toshiba
	Evaluation Criteria

	CPU, RAM and Peripheral tests in the TMS570 microcontroller
	CPU Tests
	Core Compare Module Tests
	RAM and Peripheral Tests
	Error Signaling Module - ESM

	Functional Safety Requirements
	Design Concept
	Modules
	Properties of the modules

	Implementation and Results
	TMS570 Evaluation Board
	Workflow and Tool Chain
	Start-up Phase
	Periodic Operation
	RAM test
	Watchdog test
	CPU test

	Fault Injection, Test Cases and Timing Results

	Conclusions and Outlook
	Conclusions
	Outlook

	Definitions
	Abbreviations
	Used Symbols

