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Abstract

The ubiquitous usage of mobile devices like smartphones and tablet computers in our
everyday life imposes new challenges in terms of security. In order to cope with these
challenges cryptographic primitives can be applied. Cryptographic primitives are used
to protect sensitive data on the device itself and to facilitate the secure communication
of applications over the Internet. One of these important cryptographic primitives is
denoted by symmetric encryption algorithms, with the Advanced Encryption Standard
(AES) being the most prevalent algorithm of this type today.

Though the AES is considered to be secure, i.e., no mathematical flaws have been an-
nounced yet, the implementation of the algorithm itself might not always be secure. Cache
attacks are a special form of implementation attacks and focus on exploiting weaknesses
in the implementation of a specific algorithm. In particular, cache attacks exploit different
memory-access times within the memory hierarchy. In this thesis we investigate three dif-
ferent cache attacks on current Android-based mobile devices. Therefore, we analyze two
time-driven attacks and demonstrate that execution times leak information about mem-
ory accesses on mobile devices. This timing information allows us to deduce parts of the
secret key used by an AES implementation and with a subsequent brute-force key search it
might be even possible to reveal the whole secret key. In addition, we demonstrate a new
approach based on the analysis of memory-access patterns, which in some cases allows us
to recover the secret key even without a subsequent brute-force key search. Based on the
fact that only a few encryptions are necessary in order to recover the secret key this attack
might succeed in just a few minutes or even seconds. Thus, this attack poses a serious
threat for cryptographic implementations on today’s mobile devices. The results presented
in this thesis clearly emphasize the importance of considering side-channel attacks at the
implementation level and the need for countermeasures in order to prevent such attacks,
even on mobile devices.

Keywords: AES, Android, cache attacks, implementation attacks, memory-access pat-
terns
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Kurzfassung

Die allgegenwärtige Verwendung von mobilen Endgeräten, z.B. Smartphones und Tablet-
Computern, im alltäglichen Leben stellt eine Herausforderung in Bezug auf die Sicherheit
dar. Um diese Herausforderungen zu bewältigen werden kryptografische Verfahren einge-
setzt. Diese Verfahren werden verwendet um sensible Daten am Endgerät zu schützen und
eine sichere Kommunikation von Applikationen über das Internet zu ermöglichen. Eines
dieser kryptografischen Verfahren stellen symmetrische Verschlüsselungsalgorithmen dar,
wobei der Advanced Encryption Standard (AES) heute der am häufigsten verwendete
dieser Art ist.

Obwohl der AES als sicher gilt und somit keine mathematischen Schwachstellen be-
kannt sind, muss eine spezifische Implementierung dieses Algorithmus nicht notwendiger-
weise auch sicher sein. Cache-Attacken sind eine spezielle Form von Seitenkanalattacken,
die solche Schwachstellen in Implementierungen bestimmter Algorithmen ausnutzen. Ins-
besondere profitieren Cache-Attacken von den unterschiedlichen Zugriffszeiten die sich auf
Grund der Speicherhierarchie ergeben. In dieser Arbeit untersuchen wir drei unterschied-
liche Cache-Attacken auf aktuellen Android-basierten Geräten. Im Speziellen untersuchen
wir zwei zeitbasierte Attacken und zeigen, dass Ausführungszeiten Informationen über
Speicherzugriffe preisgeben. Die Ausführungszeiten ermöglichen es uns Teile des geheimen
Schlüssels zu ermitteln und mit einem darauffolgenden Brute-Force-Angriff möglicherwei-
se sogar den vollständigen Schlüssel zu gewinnen. Weiters stellen wir einen neuen Ansatz
vor, der auf der Analyse von Speicherzugriffsmustern basiert. Dieser ermöglicht es uns
unter gewissen Umständen den geheimen Schlüssel sogar ganz ohne Brute-Force-Angriff
zu ermitteln. Auf Grund der Tatsache, dass dieser Ansatz nur wenige Verschlüsselungen
benötigt, ist es möglich den geheimen Schlüssel innerhalb weniger Minuten oder sogar
Sekunden zu gewinnen. Somit stellt dieser Angriff eine ernstzunehmende Bedrohung für
kryptografische Implementierungen auf mobilen Endgeräten dar. Die Ergebnisse dieser
Arbeit betonen die Gefahr von Seitenkanalattacken und unterstreichen die darausfolgen-
de Notwendigkeit entsprechende Gegenmaßnahmen bereits auf Implementierungsebene zu
treffen.

Stichwörter: AES, Android, Cache-Attacken, Implementierungsattacken, Speicherzugriffs-
muster
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Chapter 1

Introduction

Motivated by the fact that more and more smartphones are activated every day the aim of
this master’s thesis is to analyze whether cache attacks are applicable on today’s mobile
devices. Besides the standard functionality, e.g., texting, calling, and browsing the web,
these devices are also used for business applications, managing banking transactions, and
even for payment applications. Thus, these devices inevitably hold sensitive data and
private information about the user, which must be protected against adversaries. Stan-
dardized cryptographic algorithms like the Advanced Encryption Standard (AES) might
be employed in order to secure the ubiquitous usage of these devices. Therefore, such algo-
rithms might be implemented in software to provide the required functionality. However,
the implementation of an algorithm which is considered to be secure does not necessarily
lead to a secure implementation. This is where implementation attacks come into play.
Implementation attacks exploit such weak implementations and aim at recovering the used
secret key.

With the availability of powerful processors the usage of central-processing unit (CPU)
caches has become inevitable in order to overcome the gap between the high clock frequen-
cies of the CPU and the slow main-memory access times. Therefore, caches are used to
hold frequently used data as close as possible to the CPU. Today, not only desktop comput-
ers but also mobile devices employ such powerful processors and hence also CPU caches.
Though today’s processors are quite powerful, software implementations of any kind are
optimized for performance, and so are encryption algorithms. Encryption algorithms are
usually made up of complex mathematical operations and in case of software implementa-
tions of the Advanced Encryption Standard (AES) these operations are precomputed and
looked-up later on. The crucial point is that data located within CPU caches might be
fetched an order of magnitude faster than data from main memory. Cache attacks aim at
exploiting these different access times within the memory hierarchy. Since the cache is a
shared resource between all processes on the same CPU an attacker might even cause ma-
nipulations of the cache in order to induce such timing differences within other processes.
Thus leading to even more sophisticated cache attacks.

Cache attacks have been launched successfully on a variety of desktop computers [15,
46] and also on embedded devices like the ARM9 board [17]. Some of them haven been
shown to impose serious threats for existing desktop computers and their corresponding
applications. The rising popularity of mobile devices in our everyday life clearly states the
need for an analysis of such implementation attacks on mobile devices. In this master’s
thesis we investigate the applicability of cache attacks on mobile devices in real-world
environments. According to our knowledge, we are the first to analyze whether mobile

1



CHAPTER 1. INTRODUCTION 2

devices, which employ powerful ARM Cortex-A8 and ARM Cortex-A9 processors running
a fully-functioning operating system, are vulnerable to these types of attacks.

In the following we briefly outline the basic structure of this thesis.
Chapter 2 states the need for CPU caches in today’s computer systems and intro-

duces a common understanding of cache-mapping schemes as well as different replacement
strategies.

Chapter 3 introduces implementation attacks in general and outlines the classification
of these attacks. This chapter focuses on cache attacks and illustrates their main working
principles.

Chapter 4 sketches the required preliminaries, including an overview of the Android
operating system, a short introduction of the AES with a focus on its implementation in
software, and the basic principles of the ARM architecture. Finally, we also introduce
Intel’s Time-Stamp Counter (TSC).

Chapter 5 outlines an approach in order to evict specific parts of the CPU cache. The
main part of this chapter deals with the applicability of three different cache attacks on
mobile devices. This chapter also outlines our suggested attack approach, which is based
on the analysis of cache-access patterns.

Chapter 6 concludes this work and gives an overview of possible future research areas
in this field.



Chapter 2

CPU Caches

In this chapter we introduce the basic principles of CPU caches in order to deal with cache
attacks in the remainder of this thesis. First of all, we outline the memory hierarchy and
emphasize the necessity of CPU caches in today’s computer systems at all. Secondly, we
cover details of cache-mapping schemes and finally we state the most commonly imple-
mented replacement strategies.

2.1 Memory Hierarchy

Ideally, memory would be indefinitely large, extremely fast — meaning the central pro-
cessing unit (CPU) could access it without any delay — and cheap. Unfortunately, due to
financial reasons, computer systems include only a small portion of fast memory. Further-
more, CPU frequencies tend to increase much faster than memory access times [24]. For
instance, Williams [47] states that a CPU with a clock frequency of 2 GHz would require
main memory access times of 0.5 ns in order to ensure the CPU operating without any
stalls or wait states. Such access times are simply not possible by now, at least in case of
the main memory, and due to the fact that fast memory is expensive such an approach (a
large and fast main memory) would not be a cost-efficient solution at all.

In order to overcome the gap between CPU clock frequencies and memory-access times
the memory hierarchy comes into play. This is a cost-efficient solution to hide the memory
latency from the CPU. Fast and expensive memory is only available in small quantities
and therefore located at the top of the hierarchy. Going downwards in the hierarchy
the memory size as well as the access times increase, whereas the price decreases. Fig-
ure 2.1 visualizes the memory hierarchy. Regarding the relatively small size of fast memory
available, the question is, how does the memory hierarchy overcome the performance gap
between the CPU frequency and the memory latency. This question was answered by
researchers at IBM in the 1960s, who observed that code as well as data are exception-
ally repetitive [24]. This is quite convenient since we can build a memory hierarchy with
fast and small memories at the top, and cheap and large memories at the bottom. Data
accessed recently and probably accessed in the near future is loaded into the fast memory
regions, whereas data currently not needed is left in slower memory further down in the
hierarchy. As a result CPU wait states can be reduced.

Literature typically refers to two principles formulating the repetitive portions of code
and data: the principle of spatial locality and the principle of temporal locality (cf. [24],
[25], [47]). These principles are described shortly in the following two paragraphs.

3



CHAPTER 2. CPU CACHES 4

CPU
registers

L1 cache

L2 cache

L3 cache

Main memory

Disk storage

Access time                Size

200 - 500 ps             < 1 KB

1 - 2 ns            < 64 KB

2 - 10 ns            < 256 KB

10 - 20 ns            < 8 MB

50 - 100 ns           < 16 GB

1 - 10 ms           < 16 TB

Figure 2.1: Memory hierarchy indicating the typical access time and the memory size for
every layer (cf. Hennessy and Patterson [26, p 72]).

Principle of Spatial Locality. This principle, also known as locality in space, states
that programs execute the same instructions and access the same data over and over
again, and therefore are executed out of a small area. Hennessy and Patterson [25,
p 38] state that “A widely held rule of thumb is that a program spends 90 % of its
execution time in only 10 % of the code.”

Principle of Temporal Locality. This principle, also known as locality in time, states
that data accessed recently is much more likely to be accessed again than data which
was accessed a long time ago. The temporal comparison refers to a few cycles ago
and many thousands of cycles ago.

The above mentioned principles clarify why caches are supposed to close the perfor-
mance gap between the CPU and the main memory. Data and code currently used, or
probably used in the near future, are moved from slower memory (random-access mem-
ory (RAM)) to faster memory (CPU cache). Due to the principle of spatial locality it is
convenient to load multiple bytes at once, known as cache line.

2.2 Cache-Mapping Schemes

Since main memory is typically larger than the cache a mapping has to be established. In
order to ensure a common understanding of necessary terms, required for the definition
of these cache-mapping schemes, we outline the terms block address as well as virtual and
physical caches first. For the sake of clarity, we use byte-addressable memory, which means
that each memory location (address) identifies one byte within main memory.

According to Hennessy and Patterson [25], we point out that in the context of caches
we usually do not talk about memory addresses, but block addresses. Figure 2.2 illustrates
which part of the address is used as block address. Such a block address is used to address
blocks or lines of data, containing multiple bytes. The number of bytes making up a
block, usually 32 or 64 bytes, is determined by the number of offset bits, i.e., n bits for
2n bytes. For mapping a block of data to the cache the index bits of the address are
used. As many blocks from main memory map to the same location within the cache, a
unique identification of the currently mapped block has to be established. This unique
identification is accomplished with the tag bits.
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Tag Offset
Address

Index

Block address

Figure 2.2: Address composition indicating which part of the memory address is used as
block address.

In the context of memory addresses we also have to differentiate between physical
and virtual addresses and therefore caches can be classified as either physical or virtual
caches. Caches connected to the CPU directly are named virtual or logical caches, whereas
caches connected to the CPU with the memory-management unit (MMU) in between are
named physical caches [24]. It might be possible to use either the physical address for
indexing and the virtual address for tagging or vice versa and, of course, the most obvious
disposal to use either the physical or the virtual address for both indexing and tagging
[25]. Therefore, caches are further classified into four categories: (1) virtually indexed,
virtually tagged, (2) physically indexed, physically tagged, (3) virtually indexed, physically
tagged, and (4) physically indexed, virtually tagged.

Virtually Indexed, Virtually Tagged (VIVT). As the name already suggests, the
virtual address is used for both indexing and tagging. Since the CPU already op-
erates on virtual addresses these caches are considered to be much faster because
no address translation is necessary, at least for cache hits. If a cache miss occurs,
the virtual address must be translated in order to load the data from main memory.
However, one problem of this approach is that multiple virtual addresses might map
to the same physical address, which in turn means that the same data is cached
separately. Problems arise if data is written to one of these locations. Though the
specific cache line (and according to Handy [24] also the physical memory (RAM))
is updated, there might be other cache lines which are not updated. This problem
is referred to as aliasing. Solutions to this problem, e.g., additional hardware which
ensures that each cache line maps to a unique physical address, are stated in [24, 25].

Physically Indexed, Physically Tagged (PIPT). These types of caches use the phys-
ical address to determine the index as well as to uniquely identify the location. Ba-
sically, this means that the memory-management unit has to translate the virtual
address before checking the cache and it circumvents the aliasing problem mentioned
in the context of VIVT caches. However, PIPT caches are considered slower than
VIVT caches because of the inevitable address translation [24, 25].

Virtually Indexed, Physically Tagged (VIPT). In this case the virtual address is
used for indexing. While accessing the cache by the index the virtual address is
simultaneously translated into the physical address. Later on the physical address
is used for the tag comparison. This technique also avoids the aliasing problem
[24, 25].

Physically Indexed, Virtually Tagged (PIVT). Legitimately, Jacob [31] entitles this
combination as peculiar and we mention this technique only for the sake of complete-
ness. These types of caches would use the physical address to access the cache by
the index, which means that the virtual address must have been translated already.
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Later on the virtual address is used for the tag comparison. For further information
about this technique we refer to Hennessy and Patterson [25] as well as Jacob [31].

Property Size

Main-memory size 2m bytes
Cache-line size 2l bytes
Number of cache lines 2n

Cache size 2c = 2l · 2n bytes
Number of cache sets 2s

Table 2.1: Definition of basic memory attributes (cf. Neve [37]).

Now that we have discussed the basics of memory addresses and the distinction between
physical and virtual caches we continue by defining the different cache-mapping schemes.
Table 2.1 defines some basic memory attributes which are used throughout the following
paragraphs. Referring to Hennessy and Patterson [25], and Williams [47] we define three
cache-mapping schemes: fully associative, direct mapped, and set associative.

Fully Associative Caches

In fully associative caches any location within main memory can go to any location within
the cache. In order to determine which location is currently mapped to a specific line
within the cache the so called tag bits are used. As can be seen in Figure 2.3 the offset
bits (composed of l bits) are used to refer to bytes within a cache line. Note that we
defined the cache-line size to be 2l bytes. The remaining upper bits, the tag bits, are
copied to the tag field in the cache. This ensures a unique identification of the address
which is currently mapped to this cache line.

When the CPU requests data from memory the cache controller checks whether the
requested address is already cached. Therefore, the tag bits of the requested address are
compared against all tag fields within the cache. Since checking all cache lines sequentially
would be too slow a considerable amount of additional hardware is necessary in order to
allow all cache lines to be checked simultaneously. The offset bits are then used to return
the requested byte within the cache line.

When writing data to the cache all bytes from a block are copied to any line within the
cache memory. The number of bytes is determined by the number of bits used as offset,
e.g., if 5 bits are used as offset then 25 = 32 bytes are copied. Furthermore, the tag bits
of the address are copied to the corresponding tag field.

Direct-Mapped Caches

For direct-mapped caches there exists exactly one location within the cache where a spe-
cific block from main memory can be placed. In contrast to fully associative caches this
approach circumvents the huge amount of necessary hardware to check multiple cache
lines at once. As can be seen in Figure 2.4 the lower l bits of the memory address are
used to access a byte within a cache line. Again, we defined the cache-line size to be 2l

bytes. The next n bits are used to identify the correct location within the cache, which is
also referred to as line or index. These bits establish the fixed mapping between the main
memory and the cache. The remaining bits, the so called tag bits, are used to uniquely
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Tag

Cache
(2n lines)

Cache memory
(2l bytes)

2l bytes per block

Main memory
(2m bytes)

Tag Offset (l bits)
Address

Block address

Figure 2.3: Fully associative cache.

identify the main-memory location which is currently mapped to this cache line. This is
necessary since multiple blocks from main memory map to the same location within the
cache. Hence, the tag bits are simply copied to the tag field within the cache.

When retrieving data from the cache, the cache controller simply determines the loca-
tion via the index bits and checks whether the tag field matches the tag bits within the
address. If the tag bits match, the cache signals a cache hit and the data can be provided
directly from the cache1. Therefore, the offset is used to slide along the line and to return
the requested byte. If the tag bits do not match, a cache miss occurs and the data has to
be fetched from main memory.

When data is written to the cache the line bits uniquely determine the line where the
data should go to. After determining the line, the bytes from the block are copied to the
corresponding cache memory. As already described above, the tag bits are simply copied
to the tag field within the cache.

One problem of the direct-mapped approach is that two lines mapping to the same
location within main memory cannot reside in cache memory at the same time. Since the
cache slot is replaced on every access this might result in a poor performance.

Set-Associative Caches

Today, caches are most commonly organized as set-associative caches. Set-associative
caches combine the direct-mapped approach and the fully associative approach mentioned
above and therefore combine the advantages of these two techniques. A set-associative
cache is divided into equally sized parts, each containing k cache lines. Such a cache is said
to be k-way associative. Blocks from main memory are first mapped to a unique set and
then the block can be placed in any line within this set. Of course, additional hardware
is necessary in order to check all cache lines within a set simultaneously. However, the

1Besides the tag bits there might be other bits to be checked, e.g., the valid bit which determines
whether the data currently held at this location is valid. For the sake of simplicity, we omit these details
here.
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Tag

Cache
(2n lines)

Cache memory
(2l bytes)

2l bytes per block

Main memory
(2m bytes)

Tag Offset (l bits)
Address

Block address

0

2n-1

1

...

Line

Line (n bits)

Figure 2.4: Direct-mapped cache

hardware costs are much lower compared to the fully associative approach. Note that
direct-mapped caches and fully associative caches are special cases of set-associative caches.
A direct-mapped cache is a 1-way associative cache, whereas a fully associative cache is
just a 2l-way associative cache.

Figure 2.5 illustrates the mapping scheme. When writing data to the cache, the set
bits of the address are used to determine the unique set within the cache. Then all the
bytes from the block are copied to the cache memory of any line within the set determined
in the previous step. Finally, the tag bits of the address are copied to the tag field of the
corresponding line within the set.

Tag

Cache
(2n lines)

Cache memory
(2l bytes)

2l bytes per block

Main memory
(2m bytes)

Tag Offset (l bits)
Address

Block address

Set

Set (s bits)

0

...

2s-1

Figure 2.5: Set-associative cache (2-way associative).
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Summary of Cache-Mapping Schemes

Figure 2.6 summarizes the three different cache-mapping techniques according to Hennessy
and Patterson [25]. Supposing we have a main memory of 32 blocks, each block consisting
of 2 bytes, and a cache with 8 lines. Furthermore, the set-associative cache is organized
as a 2-way associative cache, consisting of 4 sets. Now we intend to cache block 16. In
fully associative caches this block can go anywhere within the cache. In direct-mapped
caches there exists exactly one location within the cache where this block can go to (16
mod 8 ≡ 0). In set-associative caches the block is mapped to a unique set (16 mod 4 ≡ 0)
and can be stored in any line within set 0.

Direct-mapped cache
(8 lines)

Fully associative cache
(8 lines)

Tag
Cache memory

(2 bytes)

Tag
Cache memory

(2 bytes)Line
0

7

1

2

3

4

5

6

Tag

Set-associative cache
(8 lines)

Cache memory
(2l bytes)Set

0

1

3

2

Main memory
(64 bytes)

0

16

31

2 bytes per block

Figure 2.6: Overview of the different cache-mapping schemes when caching block 16 (cf.
Hennessy and Patterson [25, p C-7]).

2.3 Replacement Strategies

Since there is only one location where a block can go to in a direct-mapped cache, a new
block simply overrides the one which formerly mapped to this location. However, for fully
associative caches and set-associative caches there are multiple locations where a block
can go to. Now, the question is, which block should be evicted from the cache in order to
free up a line for new data. Replacement strategies address this question. According to
Handy [24] there are two common replacement strategies: random and least-recently used
(LRU). Since ARM processors might also support the round-robin replacement policy we
also describe this replacement strategy in the following.

Random. Random or pseudo-random replacement means that the line to be evicted is
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selected randomly. Since this replacement policy does not need information related
to the access frequency, caches with this strategy are kept simple. Furthermore,
in case of cache trashing — a commonly used location is replaced all the time —
the random-replacement strategy performs better than direct-mapped caches. For
example, in an 8-way associative cache the random-replacement policy replaces a
recently used cache line with a probability of 12.5 %, whereas the direct-mapped
cache always replaces the same line because there is only one location where a specific
block can go to.

Least-Recently Used (LRU). According to the principle of temporal locality evicting
recently used cache lines should be avoided. The LRU approach keeps track of ac-
cesses to every cache line and therefore eliminates the risk of evicting cache lines
accessed recently. The downside of this approach is the complexity of keeping LRU
statistics up to date and the required memory. If a block can go to N possible loca-
tions, then log2 (N !) bits are necessary to keep track of this information. While for a
2-way associative cache one additional bit is acceptable, an 8-way associative cache
would require log2 (8!) = 16 additional bits per set. Furthermore, this information
must be updated on every memory access (read and write operation), resulting in
significant additional overhead.

Round-Robin. The round-robin replacement policy can be implemented with a simple
counter. This counter circularly points to the cache line that should be evicted
next [12]. Assuming an initially empty cache, the counter increments until it reaches
the last line. Then the counter is reset to zero and the line which was cached first is
the first one to be evicted. Hence, the round-robin replacement policy is also known
as first in, first out (FIFO) scheme.



Chapter 3

Cache Attacks

This chapter provides an overview of implementation attacks in general. We briefly outline
the classification of implementation attacks and state examples for each class of attacks.
Finally we also state the main concepts of cache attacks.

3.1 Implementation Attacks

Rather than focusing on the mathematical details of a cryptographic algorithm, implemen-
tation attacks exploit weaknesses in the implementation itself. These include hardware
weaknesses as well as software weaknesses. Hence, implementation attacks are also known
as physical attacks. Koeune and Standaert [34] classify physical attacks along two axes.
The first axis determines whether the attack is invasive or non-invasive and the second
axis determines whether it is active or passive. While non-invasive attacks exploit only
information which can be observed/measured without manipulating the device itself, e.g.,
run time, the purpose of invasive attacks is to manipulate the device in order to observe
details of the computation itself. However, invasive attacks do not influence the compu-
tation itself. Influencing the computation itself in order to reveal secret information is
specific to active attacks, e.g., fault attacks. Figure 3.1 illustrates the classification of
implementation attacks according to these two axes and it also illustrates the positioning
of more specialized attacks. Examples for attacks according to this classification are given
in the following sections.

3.1.1 Probing Attacks

The first class are probing attacks, which are invasive attacks since the attacker manip-
ulates the device in order to observe details of the cryptographic computation. However,
invasive attacks do not involve the manipulation of the computation itself. According
to Koeune and Standaert [34], cryptographic devices, especially smart cards, might be
attacked by dismantling the device and connecting wires to the data buses in order to
monitor the data transfers or using a microscope in order to observe the content of a
memory cell.

3.1.2 Fault Attacks

Fault attacks are another class of implementation attacks. The purpose of fault attacks is
to introduce faults into the computation and thus leaking secret information. Since smart

11
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Probing attacksinvasive

non-invasive

active passive

Fault attacks

Side-channel
attacks

Side-channel attacks

Timing attacks

Power-analysis
attacks

Electromagnetic-
anylsis attacks

Figure 3.1: Classification of implementation attacks.

cards are powered by their reader, faults might be introduced easily, e.g., voltage peaks.
Fault attacks can be either invasive or non-invasive. For instance, introducing faults by
increasing the supply voltage of a smart card, also known as spike attacks, does not require
the manipulation of the smart card. Instead the reader supplies the voltage peaks. The
same holds true for changing the clock frequency, also known as glitching attacks. In
contrast, Skorobogatov and Anderson [44] mention another fault-induction attack with a
laser beam. After depackaging the chip they were able to change the state of memory cells
by simply illuminating certain areas of the chip. Actually, they claim their attack to be
semi-invasive but we do not cover the details here.

3.1.3 Side-Channel Attacks

Besides the intended output of a cryptographic device, i.e., the computed ciphertext of
a given plaintext or vice versa, these devices generally also leak unintended information.
Different inputs to the cryptographic device might lead to different timing behaviors,
different heat, different sounds, or different power consumption. An attacker who is able
to measure these differences might also be able to exploit them and to recover secret
information. Lawson [36] claims that each component, e.g., CPU, memory, etc., involved
in the computation process has its own characteristic, depending on the input provided.
These different characteristics might be exploited by attackers.

One of the most famous, and probably one of the earliest, side-channel attacks dates
back to 1956. Peter Wright [48], a former officer at the British military intelligence (MI5),
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reports an attack on a Hagelin encryption machine. The Hagelin machine was a famous
and wide-spread encryption machine in the 1950s, operating on rotating wheels. The initial
position of these rotating wheels corresponded to the used secret key. The positioning of
these wheels produced a click sound and with a high-sensitive microphone, installed near
the Hagelin machine, the MI5 was able to determine the initial position of the rotating
wheels. With this information they were able to read the ciphertexts.

The following paragraphs outline the most common types of side-channel attacks,
namely power-consumption attacks, electromagnetic-analysis attacks, and timing attacks.

Power-Consumption Attacks. As already mentioned above, different instructions op-
erating on different data might leak secret information through variations in their power
consumption. Power-consumption attacks can be further classified into Simple Power
Analysis (SPA) and Differential Power Analysis (DPA).

According to Kocher et al. [32], SPA attacks exploit the different power consump-
tions based on the execution of different instructions. Since power-consumption variations
according to instructions are easier detectable, SPA attacks usually require only one mea-
surement with an adequate resolution. The analysis, following the measurement phase, is
usually done visually. Power-consumption variations based on the manipulated data are
usually smaller than variations based on instructions. Hence, DPA attacks exploit these
smaller variations by applying statistical methods to many data samples. For further in-
formation, including an illustration of a Differential Power Analysis of DES, we refer to
Kocher et al. [32].

Electromagnetic-Analysis Attacks. The term Tempest occurs rather often in the
literature [6, 19, 34]. It is a codeword, used by the US government, referring to studies
and standards regarding the leakage of information through electromagnetic emanations.
This clearly shows that military and governmental organizations have been aware of elec-
tromagnetic emanations and its security impact at least since the 1960s [19, 35]. With the
reconstruction of a distant display unit, Van Eck [22] brought the issue of electromagnetic
emanations to the general public in 1985. Later, Quisquater and Samyde [43] extended
the idea of Kocher et al. [32, 33], regarding power and timing attacks, to electromagnetic
emanations. Electric current, flowing in any conductor, generates an electromagnetic field
which can be measured with coils and can be exploited later on. According to Agrawal
et al. [6], different components within a device influence the emanations of other compo-
nents and any component might provide a different source of information leakage. Hence,
electromagnetic-analysis attacks are considered far more powerful than power-analysis at-
tacks, where only the overall power consumption of all components is available.

Timing Attacks. Timing attacks are another important class of side-channel attacks.
Today, software implementations are optimized for performance and therefore unnecessary
operations are simply skipped in order to speedup computations. In cryptography timing
variations due to conditional statements and data-dependent execution branches are highly
inappropriate, since such timing variations render cryptographic implementations insecure.
This results from the fact that an attacker might deduce the executed branches and even
the processed data by carefully measuring the execution time.

In 1996 Paul Kocher [33] suggested the exploitation of cryptographic implementations
whose execution times depend on the provided input. He states that the modular expo-
nentiation — used, for instance, in RSA-based cryptosystems — compromises the cryp-
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Algorithm 1 Square and multiply exponentiation.

Input: m, n, and d = (dl−1, . . . , d0), where di ∈ {0, 1}
Output: md mod n
x← m
for i = l − 2 downto 0 do
x← x2 mod n
if di == 1 then
x← x ·m mod n

end if
end for
return x

tographic implementation if it does not run in a fixed time. For instance, the commonly
used square-and-multiply algorithm, as stated in Algorithm 1, computes the modular ex-
ponentiation. Therefore, it iterates over the binary representation of the exponent d and
in every iteration the intermediate result x is squared. In addition, depending on the cur-
rent bit of the exponent d the intermediate result is either multiplied with the base m or
not. Now the problem is that due to this key-dependent multiplication one might reveal
the secret key (exponent d) by carefully measuring the time taken to encrypt different
messages and afterwards performing a statistical analysis.

While the timing attacks mentioned in this section are mainly based on data-dependent
algorithms, cache attacks exploit different timing behaviors due to cache hits and cache
misses. Such timing attacks represent another serious threat and we cover them in the
next section.

3.2 Types of Cache Attacks

The following subsections outline the different types of cache attacks and their basic con-
cepts. These attacks are considered to be a special form of side-channel attacks, which
exploit different execution times due to different memory-access times within the memory
hierarchy. As the name already suggests, these attacks are applicable for cryptographic
implementations depending heavily on the cache memory, e.g., implementations employing
S-Boxes and look-up tables. At present cache attacks are separated into three categories:
time-driven attacks, access-driven attacks, and trace-driven attacks. While time-driven
attacks require the most measurement samples, these attacks require less knowledge of
the implementation and the underlying hardware architecture under attack. In contrast,
access-driven attacks as well as trace-driven attacks require far less measurement samples,
but more sophisticated knowledge of the implementation and the cache architecture is
necessary.

Generally, the number of recoverable bits per key byte is limited by the number of
table elements (S-Box elements or T-table elements) per cache line. Equation 3.1 outlines
the number of non-recoverable bits per key byte, which simply results from the fact that
one cannot distinguish between accessed elements in one cache line1. According to Osvik
et al. [46] this is the number of non-recoverable bits per key byte, at least for attacks
considering only the first round. Later on we discuss the advantage of attacking disaligned

1As already mentioned in Chapter 2 in case of a cache miss multiple bytes are loaded from main memory
into the cache.
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tables, which permit recovering more bits per key byte within the first round. S-Box tables
or T-tables are considered to be disaligned if the start address of these tables is not properly
aligned according to memory addresses which are mapped to the beginning of a cache line.

non-recoverable bits per key byte = log2
cache-line size in bytes

table-element size in bytes
(3.1)

3.2.1 Time-Driven Attacks

As Bernstein [15] claims, the use of secret data being used as look-up indices into pre-
computed data structures, e.g., S-Boxes and other look-up tables, might leak exploitable
timing information and hence lead to insecure cryptographic implementations. The basic
idea of time-driven attacks, as described in [15], is to gather timing information of encryp-
tions under a known secret key as well as timing information under an unknown secret key
and to correlate this timing information. Based on the assumption that similar look-up
indices yield similar timing information, an attacker might reveal the secret key.

Since cache memory is smaller than main memory many locations within the main
memory are mapped to the same location within the cache. This leads to cache evictions
of already cached data items, if other data mapping to the same location is accessed.
Hence, the interference of different memory accesses, resulting from different processes
and even the process performing the cryptographic computation itself, leads to exploitable
timing information. Furthermore, Neve [37] claims that memory accesses due to other
processes are not completely random and, hence, by averaging over multiple samples of
timing information and evaluating these samples with statistical methods an attacker
might reveal different timing information depending on the provided input.

3.2.2 Access-Driven Attacks

Though access-driven attacks also exploit timing information leaked through cache hits
and cache misses, respectively, the purpose of this type of attack is to determine which
cache lines were actually accessed during the cryptographic computation. According to
Osvik et al. [46] there are two approaches in order to determine which cache lines are
accessed during an encryption. The first approach requires the attacker to populate the
whole cache with temporary data. After the encryption the attacker simply checks which
cache lines are still present by measuring the time taken to reaccess memory blocks of
the afore mentioned temporary data array. Within the second approach the attacker
triggers the encryption of a plaintext and afterwards accesses arbitrary data in order to
cause the eviction of already loaded table elements (either S-Box or T-table elements).
By measuring the encryption time of the same plaintext again the attacker is able to
determine whether the evicted data is required for the encryption of the plaintext or not.
Obviously, this attack requires knowledge of the location of the precomputed S-Boxes or
T-tables in memory as well as information about the cache architecture, e.g., cache size,
cache-line size, and associativity.

3.2.3 Trace-Driven Attacks

This type of attack is based on the assumption that for every memory access of the
encryption function, i.e., for every look-up into a T-table or an S-Box, an adversary is
able to determine whether it resulted in a cache hit or a cache miss. More formally, a
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detailed cache profile based on the information of every single memory access is necessary
for this attack to be successful. As suggested by Bertoni et al. [16] the use of power traces
might leak such a detailed cache-access profile for every memory access. Additionally,
Aciiçmez and Koç [5] suggest using performance counters in order to establish such a
memory-access profile.

The approach suggested by Bertoni et al. [16] is as follows. The attacker triggers an
encryption under a known plaintext which simply initializes the cache, i.e., loads the re-
quired S-Box or T-table elements into the cache memory. Afterwards the attacker accesses
arbitrary data in order to provoke selective cache evictions of already loaded S-Box ele-
ments. Within the last step the attacker captures the power trace of the encryption under
the same plaintext again. Supposing a cache miss within the first round plus information
about the cryptographic implementation itself the attacker is able to deduce the secret
key, or at least parts of it. The second approach, as suggested by Aciiçmez and Koç [5],
assumes a clean cache, i.e., filled with arbitrary data. Again the attacker triggers the en-
cryption of a known plaintext and captures the cache trace. Since the attack starts with
an empty cache the first access always results in a cache miss. However, the information
whether the second access to one and the same table results in a cache hit or a cache miss
leaks partial information about the key bytes. Considering the implementation of the
AES in software, the first two memory accesses into the T-table T0 are s0 = p0 ⊕ k0 and
s4 = p4 ⊕ k4, respectively. Hence, there are two possible cases. First, a cache hit means
that the same look-up index was used, thus revealing information about the key-byte dif-
ference: p0 ⊕ p4 = k0 ⊕ k4. Second, a cache miss means that the attacker can restrict the
key-byte differences according to p0 ⊕ p4 6= k0 ⊕ k4. After infering possible bytes for the
first two key bytes, i.e., k0 and k4, the attacker continues with the third access to T0 and
so on until all memory accesses to T0 have been considered. Then the attack continues
with the rest of the T-tables analogously.



Chapter 4

Requirements

In this chapter we focus on the required preliminaries in order to investigate cache attacks
in the remainder of this thesis. At first, we introduce the Android software stack and
the basic architecture of the Android operating system. Second, we outline the required
basics of the Advanced Encryption Standard (AES). We especially focus on the software
implementation employing T-tables. In addition, we introduce the ARM architecture with
a focus on the coprocessor registers which are used for precise timing measurement. Finally,
we also cover Intel’s Time-Stamp Counter (TSC) which is used on desktop computers for
precise timing measurements.

4.1 Android

Developed by the Open Handset Alliance (OHA) [40], with Google probably being the
main driving force, Android is an open-source software stack including an operating system
and applications providing basic functionalities. Currently, Android is one of the most
popular operating systems for mobile devices. Figure 4.1 shows the system architecture of
Android, which will be described in the following paragraphs, from bottom to top. Based
on Becker and Pant [14], the Android Developer’s Guide [8], and Brady [18] we outline
the basic characteristics of the Android architecture which consists of the following basic
layers: Linux kernel, libraries, runtime, application framework, and applications.

Linux Kernel. A Linux kernel (version 2.6)1, which forms the basis of the Android
operating system, provides the core system functionalities. Besides process management
and power-management functionalities this also includes basic hardware drivers.

Libraries. The Android software stack also includes a bunch of core libraries, written in
C/C++, residing above the kernel. One of these libraries is the standard-C system library,
also known as libc, which provides wrappers for basic system calls. These include file I/O
as well as memory management. However, Android uses a custom libc implementation
called Bionic, which is a BSD-derived implementation of the standard-C system library.
Issues regarding the implementation of a custom libc include (1) keeping the GPL license
out of the user space, (2) optimizations and enhancements for use in embedded systems,
and (3) built-in support for Android-specific services [18]. Furthermore, these core libraries

1Since Android 4.x a Linux kernel 3.x forms the basis.
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Figure 4.1: Android system architecture (according to [8]).

include basic support for SQLite databases, standard audio and video formats, and many
more.

Runtime. Every Android application is intended to run within a separate Dalvik Virtual
Machine (DVM), which forms the heart of the Android runtime. The DVM is not a
standard Java Virtual Machine, but was developed especially for ARM-based devices,
which is the most common architecture used in today’s mobile devices. The concept of
a separate DVM for every application should increase the security of the overall system.
However, a separate DVM for every application requires sophisticated optimizations in
order to run on resource-constrained devices.

The DVM is capable of executing .dex (Dalvik Executable) files, which are generated
by a dedicated tool after compiling the Java sources into Java byte code. The dx -tool,
shipped with the Android SDK, is in charge of this step. These .dex files are compressed
within an .apk, ready to be installed on Android devices. For further information about
the Dalvik Virtual Machine we refer to [9].

Application Framework. The application framework provides the ability to access es-
sential low-level services, which are typically not accessed directly by the application, in
a more comfortable way. This includes accessing the device hardware, location informa-
tion, notification services, and many more. Accessing these services takes place through
different xxxManager classes. For instance, the android.app.NotificationManager can
be used for notification purposes by utilizing the flash light, LEDs, and the status bar.
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The android.telephony.TelephonyManager might be used to access telephony services
and states, as well as subscriber information. Furthermore, Android significantly stresses
the importance of reusable components. Therefore, applications may provide dedicated
capabilities to other applications.

Applications. On top of the software stack reside the applications, which provide the
interface between the user and the mobile device. Android applications are usually written
in Java and compiled with the Android SDK [8]. Android also allows developers to inte-
grate native code in their applications and therefore Google provides the Android Native
Development Kit (NDK) [8]. The integration of native libraries into Java applications is
done through the Java Native Interface (JNI).

4.2 Advanced Encryption Standard (AES)

In 2000 the National Institute of Standards and Technology announced Rijndael, designed
by J. Daemen and V. Rijmen, as the Advanced Encryption Standard (AES) [38]. The AES
is an iterated block cipher, processing data blocks of 128 bits, supporting key lengths of
128, 192, or even 256 bits. Rijndael is made up of 10, 12, or 14 rounds, depending on the
key length, each consisting of four byte-oriented round transformations. Our investigations
are limited to 128-bit keys.

For illustration purposes we denote the plaintext, the key, and the state as consecutive
arrays of bytes, i.e., p = {p0, . . . , p15}, k = {k0, ...kn−1} (where n is either 16, 24 or
32, depending on the key length), and s = {s0, . . . , s15}, respectively. As can be seen in
Figure 4.2 these consecutive arrays of bytes are represented as two-dimensional arrays of
bytes, consisting of four rows and four columns. Furthermore, this figure also illustrates
the initial round transformation, defined as the bitwise XOR of the plaintext and the
key, i.e., s = p ⊕ k. The resulting state represents the input for the subsequent round
transformations.
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Figure 4.2: AES initial transformation computing plaintext XOR key.

The following paragraphs shortly describe the four round transformations: SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Within the attacks described later on we do
not need to know the details of these round transformations. Therefore, we just refer to
Daemen and Rijmen [20] as well as the Federal Information Processing Standard [38] for
further details about the mathematical background, the round transformations, as well as
the key-scheduling algorithm.

SubBytes. Substitutes each byte within the state with a byte retrieved from a precom-
puted S-Box.

ShiftRows. The last three rows within the state are cyclically shifted to the left over
different offsets.
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MixColumns. Operates on the state column-by-column, multiplying each column with a
fixed polynomial. This operation might be implemented as a matrix multiplication.

AddRoundKey. The last transformation of each round is the addition of the round key
to the state, i.e., state XOR key.
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Figure 4.3: AES round transformation.

Figure 4.3 illustrates the general round transformations of the AES. At this point
we have to mention that prior to the first round a precomputation step is necessary
and that the last round is slightly different than the preceding nine rounds. The initial
round transformation simply consists of adding the plaintext to the initial key, as already
described above. In all following rounds a generated round key, derived from the initial
round key, is added to the state. Furthermore, in the final round the MixColumn operation
is omitted. Due to performance reasons software implementations of the AES usually
combine the transformations SubBytes, ShiftRows, and MixColumns into precomputed
look-up tables [20, pp 53–49].

In the following we outline a possible AES software implementation based on look-up
tables. Encryption and decryption each use five precomputed look-up tables (T0, . . . ,T4),
each having 1 KB. Four of these look-up tables (T0, . . . ,T3) are used in the rounds 1–9.
The fifth table (T4) results from the omission of the MixColumns transformation in the
last round. Hence, this table is used solely in the last round. Now, suppose the AES
encryption takes the following input parameters: the plaintext p, and the key k0 which
denotes the initial round key. The computed round keys are denoted kr. After the initial
key addition we denote the state s as s0 = p⊕k0. While Equation 4.1 outlines the round
computations for rounds 1–9, Equation 4.2 outlines the last round computation and the
last state represents the resulting ciphertext, i.e., c = {s100 , . . . , s1015}. Note, that in this
case the AES can be implemented by using only look-up operations and bitwise XOR
operations. For a fine grasp of the syntax used in the previously mentioned equations, we
define the following notations.

Notation 1. We define the concatenation of bytes as {b0, b1, b2, b3} = b0b1b2b3

Notation 2. We consider a look-up table (T) as a function, mapping a one-byte value to
a four-byte value, e.g., T[a] = b0b1b2b3. Consequently, the expression (T[a])i refers to the
byte at position i of the resulting look-up within table T using index a.
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Now the crucial point is that, according to Bernstein [15] and Osvik et al. [46], in the
first round the bytes of the state s0 are used as indices into the look-up tables. In short
this means that the look-up indices are key dependent. If an attacker knows the plaintext
to be encrypted and if one is further able to determine whether the access to the table
resulted in a cache hit or a cache miss it might be possible to reveal the secret key. As
we will see in the next chapter, implementations of the AES, and block ciphers in general,
using precomputed look-up tables are vulnerable to side-channel attacks, more formally
such implementations are vulnerable to cache attacks.

4.3 ARM Architecture

Advanced RISC Machines Limited [1] (ARM Ltd.) was found in England in 1990, and is
the leading company in providing 32-bit architecture processors for mobile devices today
[1, 12]. ARM Ltd. does not manufacture and sell chips directly, but simply licenses the
Intellectual Property (IP). This means that semiconductor companies buy licenses and
implement the design and specifications of ARM processors in their own products.

One has to distinguish between (1) architecture and (2) processor [12]. While the
architecture specifies, for instance, the instruction set and therefore how the processor must
behave, the processor is an implementation of the architecture and might be manufactured
by many different companies. Currently, the most wide-spread architecture in use is
version ARMv7. Though this architecture is divided into three different profiles, ranging
from ARMv7-A for application processors to be used in smartphones and tablet computers,
over ARMv7-R for real-time systems, to ARMv7-M for micro controllers, we solely focus
on the ARMv7-A profile. The ARMv7-A profile is implemented, for instance, in the
Cortex-A8 and Cortex-A9 processors as well as in processors from Qualcomm [4], e.g.,
Qualcomm Scorpion which is part of the Qualcomm Snapdragon platform [12].

The following three subsections are organized as follows. First, we introduce the ARM
Cortex-A series processors, a common processor architecture used in many mobile de-
vices today. Second, we outline the concept of coprocessors and finally we illustrate the
performance-monitor registers which can be used for timing and performance measure-
ments.

4.3.1 Cortex-A Series Processors

Since our cache attacks are based on mobile devices operated by a Cortex-A processor we
focus on this processor series, which implements the ARMv7-A architecture. The Cortex-
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Bit Value Description

14
0 Default replacement policy, usually pseudo-random replacement.
1 Round-robin replacement strategy, if supported.

Table 4.1: System Control Register (cf. [10, pp B3-94–B3-100]).

A series is designed for mobile devices with limited power constraints and therefore is a
wide-spread mobile processor for smartphones, tablet computers, and netbooks. Accord-
ing to the Cortex-A Series Programmer’s Guide [12], the Cortex-A series processors use
physically indexed, physically-tagged data caches (PIPT). Furthermore, ARM processors
usually support two types of cache-replacement policies. These are the round robin and
the pseudo-random replacement strategy. Though ARM processors might support both
strategies, the pseudo-random replacement policy is preferred due to its simplicity. Obvi-
ously, if there are multiple implemented strategies there must be a way to choose between
them. Indeed, a register for changing the replacement policy exists. The ARM Architec-
ture Reference Manual (ARMv7-A and ARMv7-R edition) [10] lists the System Control
Register (SCTLR) as being intended for managing some memory system settings. The
corresponding bit for changing the replacement policy, bit 14, is also referred to as RR
bit. Table 4.1 lists the possible values and the corresponding settings. However, writing
the RR bit in any of our tested environments, i.e., Google Nexus S, Acer Iconia A510,
and Samsung Galaxy SIII, did not have any effects. According to our observation it was
not even possible to flip the RR bit, though executed out of privileged code. This might
be due to the fact that this bit is listed as Implementation Defined and the Cortex-A8
Technical Reference Manual [11] does not even document the bits 14–24 of the Control
Register2 in more detail, but simply documents that a static value will be returned when
reading this range of the register. The Cortex-A9 Technical Reference Manual [13] lists
this bit as configuration bit for the instruction cache but not for the data cache. Thus
we conclude that we are not able to change the replacement policy for any of the three
devices.

The differences between the ARM Cortex-A8 and the ARM Cortex-A9 processor are
rather subtle. While the ARM Cortex-A8 is a single-core processor with clock frequencies
ranging from 600 MHz to 1 GHz [2], the Cortex-A9 is available either as single or multi-core
processor with clock frequencies from 800 MHz to 2 GHz [3]. Furthermore, the Cortex-A8
employs a 4-way set associative L1 cache and might support a cache size of 16 KB or
32 KB with a cache-line size of 64 bytes. In contrast, the Cortex-A9 employs a 4-way
set associative L1 cache with a configurable size of either 16 KB, 32 KB, or 64 KB and a
cache-line size of 32 bytes. Both processors employ a separated L1 cache for data and
instructions. The most important difference in terms of cache attacks is the cache-line
size.

4.3.2 Coprocessors

Coprocessors extend the functionality of a processor for specific tasks and applications.
They are named coprocessors as they are usually integrated into the processor [12]. Cur-
rently, up to 16 coprocessors might be implemented for ARM processors. According to
[10], only four of these coprocessors are in use by now. While the coprocessors 0–7 are

2 While [11] refers to this register simply as control register, [10] refers to it as system-control register.
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reserved for vendor-specific extensions, coprocessors 8, 9, 12, and 13 are reserved for fu-
ture implementations by ARM Ltd. The remaining four coprocessors are implemented
as follows. Coprocessors 10 and 11 (CP10 and CP11 ) extend the functionality of the
processor for floating-point operations and NEON3 support. Coprocessor 14 (CP14 ) is
used for hardware debugging and coprocessor 15 (CP15 ) provides access to system-control
features and performance-monitor registers. Since our cache attacks utilize features of the
CP15 exclusively, we strongly focus on this one. CP15 is used to manage cache and MMU
configurations as well as for performance-monitoring purposes. Basically, the CP15 is a
set of registers, with some registers being accessible in privileged mode only.

The Cortex-A Series Programmer’s Guide [12] lists five classes of coprocessor instruc-
tions: LDC and STC for moving data between coprocessor registers and memory, MRC and
MCR for moving data between ARM core registers and coprocessor registers, as well as
CDP for coprocessor-specific instructions. However, we only make use of the MRC and MCR

instruction. While MCR is used to pass values from an ARM core register to a coprocessor
register, MRC is used to pass values from a coprocessor register to an ARM core register.
Besides the instruction name, both instructions have the same syntax and are outlined in
Listing 4.1. The corresponding parameters are described in Table 4.2. For further details,
especially for conditional usage and other encodings, see the ARM Architecture Reference
Manual (ARMv7-A and ARMv7-R edition) [10].

Listing 4.1: MCR and MRC instruction.

[MCR|MRC] <coproc>, <opc1>, <Rt>, <CRn>, <CRm>{ , <opc2>}

Parameter Description

coproc Specifies the name of the coprocessor [p0, ..., p15].
opc1 Coprocessor-specific opcode [0, ..., 7].
Rt Specifies the ARM register.
CRn Specifies the coprocessor register.
CRm Specifies an additional coprocessor register.
opc2 Another coprocessor-specific opcode [0, ..., 7]. Default 0.

Table 4.2: MCR and MRC instruction parameters (cf. [10, p A8-187]).

Performance-Monitor Registers

This set of registers is capable of counting clock cycles used for precise and accurate
timing measurements. Furthermore, up to 31 different events might be counted and also
managing and controlling these counters is possible with this set of registers [10]. Usually,
the performance-monitor registers are only accessible from privileged mode, but setting
the appropriate bit within the User Enable Register allows code executed from user mode
to access these registers.

The following paragraphs introduce the performance-monitor registers and the most
important bits of these registers required for our attack in the next chapter. For a complete
and detailed description of all available performance-monitor registers we refer to [10,
pp C10-100] and [11, pp 3-2].

3The NEON technology refers to the Advanced Single Instruction Multiple Data (SIMD) support.
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User Enable Register (PMUSERENR). Though PMUSERENR is a 32-bit register
only the first bit is of concern. Bit 0 of this register controls whether code executed from
the user mode is allowed to access the performance-monitor registers or not. Therefore, if
this bit is set, the registers described in the remainder of this section are accessible from
user mode. Of course, this register is writeable in privileged mode only and therefore
we wrote a kernel module4, intended to set this bit. Listing 4.2 shows the corresponding
instruction and Table 4.3 lists the one and only bit of concern within this register.

Listing 4.2: Enable PMUSERENR.

asm volat i le ( ”mcr p15 , 0 , %0, c9 , c14 , 0” : /* no output */ : ” r ” ( 1 ) ) ;

Bit Value Description

0 0/1 Disable/enable access to performance monitors from user mode.

Table 4.3: User Enable Register (cf. [10, pp C10-110–C10-111]).

Performance Monitor Control Register (PMCR). This register is used to control
and manage the performance monitors. Listing 4.3 shows a sample configuration for
counting all cycles. Table 4.4 lists the bits of concern.

Listing 4.3: Sample configuration of PMCR.

// PMCR b i t [ 0 ] = 1 Enable a l l counters .
unsigned int value = 1 ;

// PMCR b i t [ 1 ] = 1 Reset a l l event counters , e xcep t the c y c l e counter .
value |= 2 ;

// PMCR b i t [ 2 ] = 1 Reset c y c l e counter (PMCCNTR) .
value |= 4 ;

// PMCR b i t [ 3 ] = 0 Count every c l o c k c y c l e

// Write Performance Monitor Contro l Reg i s t e r (PMCR)
asm volat i le ( ”mcr p15 , 0 , %0, c9 , c12 , 0\n” : /* no output */ : ” r ” ( va lue ) ) ;

Count Enable Set Register (PMCNTENSET). This register is used to enable
event counters as well as the cycle counter. Note that writing a 0 to any bit of this
register does not have any effect. Therefore, disabling counters is done via the Count
Enable Clear Register (PMCNTENCLR). Listing 4.4 shows an example of how to enable
the Cycle Count Register. Table 4.5 describes the most important bits of this register.

Listing 4.4: Enable Cycle Counter Register.

// PMCNTENSET b i t [ 3 1 ] = 1 Enable Cycle Count Reg i s t e r .
unsigned int value = 0x80000000 ;
asm volat i le ( ”mcr p15 , 0 , %0, c9 , c12 , 1\n” : /* no output */ : ” r ” ( va lue ) ) ;

4Further information about this kernel module can be found in Appendix C.
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Bit Value Description

0 0/1 Disable/enable all counters (including the cycle counter).

1 1 Reset all counters, except the cycle counter.

2 1 Reset cycle counter.

3 0/1 Count every clock cycle / every 64th cycle.

11–15 -
Holds the number of implemented event counters.
0 indicates the presence of the cycle-count register only.
Read-only field.

Table 4.4: Performance Monitor Control Register (cf. [10, pp C10-100–C10-102]).

Bit Value Description

0–(N − 1) 1
Enable the corresponding event counter.
N refers to the number of available event counters (see PMCR).

31 1 Enable the Cycle Count Register.

Table 4.5: Count Enable Set Register (cf. [10, pp C10-103–C10-104]).

Count Enable Clear Register (PMCNTENCLR). This register is used to disable
the event counters as well as the cycle counter. Again, writing a 0 to any bit of this
register does not have any effect. In order to enable counters the Count Enable Set
Register (PMCNTENSET) is used. Listing 4.5 shows an example of how to disable the
Cycle Count Register. Table 4.6 describes the most important bits of this register.

Listing 4.5: Disable Cycle Count Register.

// PMCNTENSET b i t [ 3 1 ] = 1 Disab l e Cycle Count Reg i s t e r .
unsigned int value = 0x80000000 ;
asm volat i le ( ”mcr p15 , 0 , %0, c9 , c12 , 2\n” : /* no output */ : ” r ” ( va lue ) ) ;

Bit Value Description

0–(N − 1) 1
Disable the corresponding event counter.
N refers to the number of available event counters (see PMCR).

31 1 Disable the Cycle Count Register.

Table 4.6: Count Enable Clear Register (cf. [10, pp C10-104–C10-105]).

Cycle Count Register (PMCCNTR). A 32-bit register that, if enabled, counts core
clock cycles. This register can be configured to count either all core clock cycles or to count
every 64th clock cycle. For configuration purposes see register PMCR above. Listing 4.6
shows the instruction to read the Cycle Count Register. For further information about
this register we refer to [10, p C10-108].

Analyzing the behavior of this register revealed that this timer allows measuring times
with a resolution of 1 ns (on devices with a clock frequency of 1 GHz). Measuring the
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resolution of the Cycle Count Register was done as suggested by Davison [21]. Listing 4.7
shows the general approach for measuring the resolution of a timing method.

On a device with a clock frequency of 1 GHz the counter increments 109 times a second.
Since the counter is only 32-bits wide it overflows every 232

109
≈ 4.3 seconds.

Listing 4.6: Read Cycle Count Register.

unsigned int value ;
asm volat i le ( ”mrc p15 , 0 , %0, c9 , c13 , 0\n” : ”=r ” ( va lue ) : /* no input */ ) ;

Listing 4.7: Code example for measuring the resolution of timing methods.

unsigned int s t a r t = 0 ;
unsigned int end = 0 ;
unsigned long long t o t a l = 0 ;
unsigned int i = 0 ;
double r e s o l u t i o n = 0 ;

for ( i = 0 ; i < num runs ; ++i ) {
s t a r t = get t ime ( ) ; // Replace wi th whatever method i s used
end = get t ime ( ) ;
while ( s t a r t == end ) {

end = get t ime ( ) ;
}
t o t a l += ( end − s t a r t ) ;

}
r e s o l u t i o n = t o t a l / (double ) num runs ;

4.4 Intel’s Time-Stamp Counter

Related work in the field of cache attacks usually employs Intel’s Time-Stamp Counter
(TSC) for precise timing measurements. The TSC is available on Intel platforms since the
introduction of the Intel Pentium processors [30]. The purpose of this 64-bit register is to
count clock cycles and hence this register is incremented on every clock tick. Accessing the
time-stamp counter register is done through the RDTSC instruction [29]. This instruction
loads the lower 32 bits of the time-stamp counter into the EAX register and the upper 32
bits of the time-stamp counter into the EDX register. On 64-bit systems the RAX and
RDX registers are used, respectively, whereat the upper 32 bits of the RAX and RDX
registers are cleared. Listing 4.8 illustrates the usage of the RDTSC instruction on a 64-bit
system. The Intel Software Developer’s Manual - Volume 2B [29] also points out that due
to the out-of-order execution on Intel processors it cannot be assured that this instruction
is executed in the exact same order as it appears in the source code. Hence, the manual
lists the CPUID instruction [29, pp 3-198–3-235] as a possible serialization instruction and
on newer systems, e.g., Intel Core i7, the RDTSCP instruction [29, pp 4-462–4-463] might
be used in order to wait until all previous instructions have been executed. However,
the RDTSCP instruction does not prevent subsequent instructions from being executed but
only waits until all previous instructions have been executed. This means that subsequent
instructions might distort the timing measurement. For further information on this topic
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CPU frequencies

# of NOPs 800 MHz 1600 MHz 2670 MHz

16 384 120 60 36
32 768 120 60 36
65 536 120 60 36

Table 4.7: Average execution time of a NOP instruction in clock cycles. The values clearly
indicate the impact of the Intel SpeedStep Technology on the execution time.

we refer to Paoloni [42], who provides a detailed insight into how to measure cycle times
correctly.

Listing 4.8: Usage of the RDTSC instruction on 64-bit systems.

unsigned int upper , lower ;
asm volat i le ( ”RDTSC\n mov %%edx , %0\n mov %%eax , %1\n”

: ”=r ” ( top ) , ”=r ” ( bottom )
: /* no input */
: ”%rax ” , ”%rdx” ) ;

Another important thing to keep in mind is that modern Intel processors support the
Enhanced Intel SpeedStep Technology [28], which is used to reduce the power consumption
of the CPU. Therefore, the SpeedStep Technology simply adjusts the core frequency of the
processor in order to meet the current requirements and has an impact on the time-stamp
counter, i.e., depending on the actual clock frequency of the CPU the time-stamp counter
increases faster or slower. The following experiment clearly demonstrates this behavior. In
our test environment, i.e., Lenovo Thinkpad W500, we deactivated the second CPU, i.e.,
passed the boot paramater maxcpus=1 to the Linux system at boot time. Afterwards we
started a root shell and pinned the frequency of the remaining CPU to one of the supported
clock frequencies as shown in Listing 4.9. The second line prevents the operating system
from changing the CPU’s frequency in the future and the third line scales the CPU to the
minimum supported frequency, which in our case is 800 MHz5. Next we timed multiple
NOP operations and computed the mean execution time. Table 4.7 shows the result of
this experiment for different CPU frequencies. This experiment clearly indicates that the
faster the CPU clock frequency is, the less cycles per instruction are measured.

Listing 4.9: Pin CPU frequency to the minimum frequency supported.

# cd / sys / de v i c e s / system/cpu/cpu0/ cpu f req /
# echo userspace > s c a l i n g go v e rno r
# cat cpu in f o min f r e q > s c a l i n g s e t s p e e d

5Though we talk about MHz in this context, the values in the filesystem /sys/devices/system/cpu/cpu*/
are given in kHz.
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Conducted Attacks

Before we cover the details of the conducted attacks in this chapter we have to clarify some
basic issues and decisions. First, we briefly mention the basic attack environment and the
general project structure. Especially the eviction of cache sets needs some clarification
and we also briefly outline the advantage of disaligned T-tables for cache attacks. Finally,
we outline the conducted attacks. For each of the conducted attacks we explain the basic
concept and the attack scenario. Furthermore, we analyze the applicability of these attacks
on the ARM Cortex-A series processor platform.

5.1 Attack Environment

In this thesis we strongly focus on Android smartphones and Android tablet computers
equipped with ARM processors. Though, the outlined attacks might also be applicable
on other mobile devices as well. Since the implementation of our attacks on the An-
droid platform requires the Android-SDK as well as the Android-NDK, we refer to [8] for
the required toolkits themselves and detailed information regarding the installation and
configuration of these toolkits. For further information regarding the specification of the
devices under attack see Appendix B. Before covering the details of the conducted attacks
we outline the basic project structure used to launch the attacks.

Kernel Module. As already mentioned in Section 4.3, access to the cycle-count register
is granted solely to privileged applications, except for the case that access is explic-
itly granted to unprivileged applications. The purpose of this kernel module is to
set a specific bit within an ARM control register and hence allows unprivileged ap-
plications to access this cycle-count register. Since loading a kernel module requires
root access, a rooted mobile device is necessary in order to launch these attacks. For
further information about this kernel module see Appendix C.

Attack Module. This component implements the conducted attacks outlined in the fol-
lowing sections and is written in Java and C respectively. The purpose of this module
is to trigger the application which performs the encryption and to gather measure-
ment samples. For reasons of simplicity, in our case the attack module triggers the
AES encryption function directly. Future work in this field might consider triggering
the encryption within an external application in order to simulate a more realistic
scenario.

28
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OpenSSL Module. As the name already suggests, this component holds the implemen-
tation of the OpenSSL project [41] including the AES implementation. Since the
Assembler implementations of the AES are usually optimized for performance and
might also implement countermeasures against side-channel attacks, we attack the
standard C implementation using T-tables. Currently we launch the attacks against
OpenSSL 0.9.7a, though newer versions like, for instance, OpenSSL 1.0.1c neither
resist these attacks since the T-table implementation is always the same.

Android Application. This is the main entry point and might represent a fancy appli-
cation the user is willing to grant root access. In order to prevent the attack from
being stopped after the user ends the application, the attack itself is implemented
as a Service, i.e., the execution is not bound to the execution of an Android Activity.
This is of utmost importance for time-driven attacks since these attacks usually take
hours in order to gather the required number of measurement samples. Of course,
the application itself takes care of loading the kernel module before launching the
attack.

Though Android devices are shipped with a libcrypto.so library, which can be found
under /system/lib/, it is not listed as stable API within the NDK and hence it should not
be used since it might change in future versions or it might even be removed. This means
that libcrypto.so is not available directly, e.g., by building and linking the application via
LOCAL_LDLIBS := lcrypto within the Android build file. Though, since the Dynamic
Linker Library is available one might use dlopen(), dlsym(), and dlclose() in order to
access the implementation of libcrypto.so dynamically, thus circumventing the fact that it
is not listed as stable API. However, we believe that the more common approach to make
use of AES encryptions in native code is to include an AES implementation within the
application itself. For the sake of completeness, we have to mention that SpongyCastle is
the default provider for Java-based AES encryptions in Android. Since the performance
of the AES encryption of SpongyCastle in comparison to a native T-table implementation
is rather worse, software developers might consider using a native T-table implementation
like the one of the OpenSSL project. Based on these considerations we assume our attack
scenario to be fairly realistic.

5.2 Eviction of Cache Sets

The eviction of specific cache sets represents an integral part of cache attacks. Osvik et
al. [46] give a brief overview of cache-set evictions. In general this might be accomplished
as follows. Suppose we have an L1 data cache with a number of cache sets denoted as
L1 S, a cache-line size of L1 B bytes, and an associativity of L1 W . Furthermore, we
denote the overall cache size in bytes as L1 Cache Size = L1 S ·L1 W ·L1 B. For virtual
caches, i.e., caches that use the virtual address in order to map data from main memory
to the cache, the memory regions are mapped contiguously to the cache. For instance,
the first L1 B bytes map to a specific cache set s, the next L1 B bytes map to the next
cache set s + 1 and so on. Thus, in order to evict a specific cache set from the cache,
i.e., replace the data currently stored within the cache set with other data, we allocate an
array of bytes which is exactly as large as the L1 cache, i.e., L1 Cache Size bytes. The
eviction of a specific cache set is done by accessing at least L1 W elements, which are
exactly L1 S ·L1 B bytes apart. Since accessing only one byte from a memory block that
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corresponds to a single cache line is enough in order to cache the whole memory block we
do not need to access every byte within the memory block but only one, e.g., the first one.

Assuming a virtual cache and a deterministic replacement policy the above outlined
approach might be used to evict specific cache sets. In contrast, according to [10] ARM pro-
cessors employ a physically indexed, physically-tagged data cache (PIPT) with a random-
replacement policy. These subtle differences cause slight adaptions to the above outlined
approach. We address these two problems separately within the next paragraphs. First,
we cover the scenario for a physically indexed, physically-tagged cache (PIPT). Finally,
we state an approach in order to evict specific cache sets from caches implementing a
random-replacement policy.

PIPT Caches. As already outlined in Chapter 2, physical caches use the physical ad-
dress in order to establish a mapping between memory locations within the main memory
and cache sets. In general we are supposed to gain knowledge of the virtual address of
data structures easily. However, in case of physical caches knowledge of the physical ad-
dress might be necessary in order to evict specific parts of the cache. Therefore, the Linux
kernel provides the interface /proc/pid/pagemap, which might be used for this purpose.
For each virtual page it holds the corresponding physical page frame. Given the informa-
tion that the Samsung Galaxy SIII as well as the Acer Iconia A510 have a page size of
4 KB, a cache-line size of 32 bytes, and 256 cache sets we extract the virtual page number
of a 32-bit address as follows. First, we remove the lower log2 4 096 = 12 bits, i.e., the
page offset bits. We query /proc/pid/pagemap at the position denoted by the remaining
virtual page number and retrieve the physical page-frame number. Then we append the
initial offset bits to the page-frame number again and retrieve the physical address. In
order to obtain the corresponding cache set we remove the lower log2 32 = 5 bits, i.e.,
the bits used to index elements within the cache line. The lower log2 256 = 8 bits of the
remaining address yield the corresponding cache set for a physical cache.

Another problem of attacking physical caches is the fact that, in general, allocated
memory is not contiguous within the physical memory. At least in case the allocated
memory spreads across a physical page frame. Thus, allocating a data structure of 32 KB
on a system with a page size of 4 KB usually results in 8 different blocks of memory scat-
tered across the physical memory. Hence, accessing elements within this data structure,
which are exactly a multiple of L1 S ·L1 B bytes apart, might not map to the same cache
set in a PIPT cache. However, given the knowledge of how to extract the corresponding
cache set we are able to access precisely the memory blocks which map to a specific cache
set. In other words, given this information we should be able to establish a mapping, such
that we know which memory blocks in our data structure must be accessed in order to
evict a specific cache set.

Random-Replacement Policy. Another problem regarding the eviction of cache sets
might be imposed by the non-deterministic replacement policy of ARM caches. For in-
stance, Figure 5.2 visualizes a cache set consisting of four cache lines. The intention is
to ensure the eviction of the cache line which holds parts of a precomputed AES T-table.
For the purpose of the following explanation we assume a temporary data structure with
a size of L1 Cache Size bytes, such that exactly 4 memory blocks of this data structure
map to each of the L1 S cache sets. For virtual caches such a mapping can be established
easily by allocating a contiguous memory region, whereas for physical caches the mapping
must be ensured manually.
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Figure 5.1: Probability tree for a memory block bj still being cached after re-accessing a
memory block bi of the temporary byte array.
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Figure 5.2: Cache set with a memory block (bAES) of a precomputed AES T-table in one
line.

On accessing an element within the temporary data structure the random-replacement
policy selects an element (cache line) from the set of all possible cache lines Ω = {1, 2, 3, 4}
randomly. Equation 5.1 shows the probability that a specific cache line, e.g., the one which
holds the memory block of the AES T-table, is still present after accessing the first memory
block within the temporary byte array. Thus, the probability of the AES T-table elements
still being cached after the whole temporary byte array has been accessed once, i.e., four
accesses per cache set, is ≈ 31.64 %. For the purpose of cache attacks this probability is
too low. The corresponding probabilities for a cache line still being present after accessing
a specific memory block from the temporary byte array once are listed in Table 5.1.

Hence, due to the non-deterministic replacement policy of ARM caches we have two
possibilities in order to evict a specific cache set with a certain probability: (1) access
the L1 W memory blocks more than once, or (2) allocate a larger block of memory, e.g.,
three times the cache size. In terms of probability theory the second approach is consid-
ered to be more efficient. This results from the fact that the second access to a specific
memory block bi might not manipulate the cache at all, i.e., the accessed memory block
is still located within the cache. In order to clarify this observation Figure 5.1 visualizes
the computation of the probability that a specific memory block bj stays in cache after
accessing a memory block bi the second time. Given this probability tree, Equation 5.2
formalizes the corresponding probability for a specific block of memory bj still being in
cache after accessing another block of memory bi of the temporary byte array.
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Iteration Memory block (bi) accessed Probability

1 b1
P(bAES in cache) = 3

4
P(b1 in cache) = 1

1 b2

P(bAES in cache) =
(
3
4

)2
P(b1 in cache) =

(
3
4

)
P(b2 in cache) = 1

1 b3

P(bAES in cache) =
(
3
4

)3
P(b1 in cache) =

(
3
4

)2
P(b2 in cache) =

(
3
4

)
P(b3 in cache) = 1

1 b4

P(bAES in cache) =
(
3
4

)4
P(b1 in cache) =

(
3
4

)3
P(b2 in cache) =

(
3
4

)2
P(b3 in cache) =

(
3
4

)
P(b4 in cache) = 1

Table 5.1: Probability for any memory block bj still being present after accessing a specific
memory block bi.

A := Line 1 still in cache after the first memory access

B := Line 1 still in cache after the fourth memory access

P (A) =
|{2, 3, 4}|
|Ω|

=
3

4

P (B) = P (A)4 =

(
3

4

)4

≈ 0.3164

(5.1)

A := Memory block bj in cache before accessing memory block bi

B := Memory block bi already in cache

C := Memory block bj still in cache after accessing memory block bi

P (A) = p

P (B) = q

P (C) = p

[
q + (1− q) 3

4

]
(5.2)

Equation 5.3 states, for example, the corresponding probability for the AES block
bAES still being in cache after accessing the memory block b1 of the temporary byte array
within the second iteration.
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A := Memory block bAES in cache before accessing element b1 the second time

B := Memory block b1 already in cache

C := Memory block bAES still in cache after accessing memory block b1

P (A) = p =

(
3

4

)4

P (B) = q =

(
3

4

)3

P (C) = p

[
q + (1− q) 3

4

]
=

(
3

4

)4
[(

3

4

)3

+

(
1−

(
3

4

)3
)

3

4

]
≈ 0.2707

(5.3)

Table 5.2 lists the corresponding probabilities for a specific memory block bj still being
in cache after accessing a memory block bi for up to three iterations. The probability for
the memory block of the AES T-table still being cached after accessing all four memory
blocks of the temporary byte array mapping to this cache set, is about ≈ 15.17 %, for
three iterations.

Algorithm 2 Eviction of a specific cache set in virtual caches.

Input: set - the set to be evicted, data - array three times the size of the L1 cache
for i = 0 to (3 · L1 W )− 1 do
addr ← (L1 B · set) + (L1 S · L1 B · i)
read and write operation(data[addr])

end for

If the contiguous allocation of main memory can be ensured, i.e., for virtual caches, one
might use a temporary byte array with three times the cache size. In this case elements
of this array do not have to be accessed multiple times and therefore the probability
for a specific line still being present in cache after 12 different memory accesses can be
reduced to

(
3
4

)12 ≈ 0.0316. Thus, for the same number of memory accesses this approach
yields a better probability, i.e., is far more efficient. Algorithm 2 states the appropriate
algorithm for evicting a specific cache set with a probability of (100 − 3.16) = 96.84 %.
In order to prevent the compiler from optimizing away the memory access in case the
accessed element, e.g., data[addr], is not used we also perform a write operation at the
given address.

Intricacies on the ARM Cortex-A Series Processors

Since many official ARM documents [10, 11, 12] state that the ARM Cortex-A8 employs
a PIPT cache we implemented the eviction according to the considerations mentioned
above. Unfortunately, experiments did not yield appropriate results. For instance, the
localization of AES T-tables as it will be described in Section 5.4 did not yield the correct
position. Thus, we tried the approach considering a virtually-indexed data cache. Indeed,
with this approach we were able to establish a mapping between memory blocks within a
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Iteration Memory block bi accessed Probability

2 b1

P(bAES in cache) = 0.2707
P(b1 in cache) = 1
P(b2 in cache) = 0.4812
P(b3 in cache) = 0.6416
P(b4 in cache) = 0.8555

2 b2

P(bAES in cache) = 0.2356
P(b1 in cache) = 0.8703
P(b2 in cache) = 1
P(b3 in cache) = 0.5584
P(b4 in cache) = 0.7445

2 b3

P(bAES in cache) = 0.2096
P(b1 in cache) = 0.7742
P(b2 in cache) = 0.8896
P(b3 in cache) = 1
P(b4 in cache) = 0.6623

2 b4

P(bAES in cache) = 0.1919
P(b1 in cache) = 0.7089
P(b2 in cache) = 0.8145
P(b3 in cache) = 0.9156
P(b4 in cache) = 1

3 b1

P(bAES in cache) = 0.1779
P(b1 in cache) = 1
P(b2 in cache) = 0.7552
P(b3 in cache) = 0.8489
P(b4 in cache) = 0.9272

3 b2

P(bAES in cache) = 0.1670
P(b1 in cache) = 0.9388
P(b2 in cache) = 1
P(b3 in cache) = 0.7970
P(b4 in cache) = 0.8705

3 b3

P(bAES in cache) = 0.1585
P(b1 in cache) = 0.8912
P(b2 in cache) = 0.9492
P(b3 in cache) = 1
P(b4 in cache) = 0.8263

3 b4 P(bAES in cache) = 0.1517

Table 5.2: Probabilities for a specific memory block still being cached after accessing a
specific memory block bi.

temporary data structure and the data cache, such that we know which memory blocks
must be accessed in order to evict a specific cache set. The following observations harden
our assumption that the Cortex-A8 in fact uses a virtually-indexed data cache.
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Kernel-Message Buffer. An investigation of the dmesg output on the Google Nexus
S indicated that the Linux kernel on this device considers the data cache as be-
ing a VIPT cache. The corresponding output states the following: “CPU: VIPT
nonaliasing data cache, VIPT nonaliasing instruction cache”.

Literature Research. The ARM Architecture Reference Manual [10, p B3-22] states
that implementations of the ARMv7 architecture might use a VIPT data cache
if hardware alias avoidance is supported. Furthermore, Grisenthwaite [23] (an em-
ployee at ARM Ltd.) also states that the Cortex-A8 uses a VIPT data cache with
alias detection.

Concluding the investigation of cache-set evictions on the ARM architecture we point
out that further analysis might be necessary in order to determine whether the ARM
Cortex-A8 uses a PIPT or a VIPT data cache. However, for the purpose of cache attacks
we are able to establish a correct mapping between our temporary data structure and
cache sets, which allows us to evict specific cache sets.

5.3 Aligned and Disaligned Tables

In order to state the difference between aligned and disaligned AES T-tables we use the
following definitions.

Definition 1. We denote the maximum number of T-table elements per cache line as δ.
Since we consider systems with 4-byte integers, we define: δ = L1 B

4 .

Definition 2. We denote the number of cache sets a T-table is supposed to take as γ.
Since a T-table has 256 elements we define: γ = 256

δ for aligned T-tables and γ = 256
δ + 1

in case of disaligned T-tables.

Due to reasons of security, each AES T-table should start at a memory address which
is mapped to the beginning of a cache line. Equation 5.4 outlines the optimal placement
of an AES T-table T in memory. In this case the first cache set related to a specific AES
T-table holds exactly the first δ table elements, which is the optimum. In general this
means that an attacker cannot distinguish between any accessed element of this cache line.
Thus, for first-round attacks the theoretical number of recoverable key bits per key byte
is limited to the upper 8− dlog2 δe bits. In case of δ = 16 only half of the key bits might
be recovered, i.e., 64 bits of the total 128 bits. However, in practice we observe disaligned
tables. This means that the address of the precomputed look-up table does not correspond
to the start of a cache line, i.e., Equation 5.4 does not hold. Hence, the first cache set
related to a specific T-table holds less than δ table elements. This in turn means that the
number of indistinguishable key bits per key byte gets smaller and hence more key bits
can be recovered. The investigated mobile devices revealed that even a disalignment of
δ − 1 is possible, i.e., the first cache set holds only one element, which reveals the whole
secret key without a subsequent brute-force attack. Especially the cache-access pattern
attack mentioned below exploits this fact ruthlessly.

address(T[0]) ≡ 0 mod L1 B (5.4)
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5.4 Cache-Access Pattern Attack

As the name already suggests, this attack belongs to the class of access-driven attacks.
Based on the work of Osvik et al. [46] we developed an attack which employs a pattern-
matching approach. The intention of this attack is to extract the memory-access patterns
of the actual AES implementation and match them against precomputed access patterns.
In addition, we state an enhancement which might further reduce the remaining key space
in case the T-tables are not properly aligned and thus leak further information about the
key bytes.

In case of the AES the precomputed look-up tables (T-tables) consist of 256 integer
values, each four bytes wide. Hence, each of these T-tables takes up 1 KB of space in
memory. The exact number of cache sets required to cache such a T-table depends on
the cache-line size and whether the T-table is properly aligned or not. For instance, on
a system with a cache-line size of 64 bytes a T-table takes up 16 consecutive cache sets,
whereas on systems with a cache-line size of 32 bytes it takes up 32 consecutive cache sets.
We denote the number of cache sets a T-table is supposed to consume as γ. Hence, on
systems with a cache-line size of 64 bytes γ = 16, and on systems with a cache-line size of
32 bytes γ = 32. In addition, if the T-table is disaligned then γ increases by one.

Observe that the look-up indices within the first round of the AES are computed as
si = pi ⊕ ki. Furthermore, on a system with a cache-line size of 64 bytes the first cache
set contains the corresponding table elements of the look-up indices 0x00 ≤ si ≤ 0x0F,
i.e., the first 16 elements of the T-table. Thus, given information about the accessed cache
set and hence information about the accessed look-up index si and the corresponding
plaintext byte pi yields the upper four bits of the secret key ki.

The scenario for the following cache-access pattern attack is as follows. We are able to
trigger AES encryptions with an unknown but fixed key and a chosen plaintext. Though
the attack might also work for equally-distributed random plaintexts. Furthermore, we
assume to be able to measure the encryption time with a sufficient-high resolution and to
find an appropriate way that allows us to determine the memory-access patterns. Osvik
et al. [46] suggest two different approaches in order to gather the memory-access patterns:
(1) Prime and Probe, and (2) Evict and Time. We briefly outline these two approaches in
the following paragraphs.

Prime and Probe

The basic idea of this approach is to observe cache evictions through a data structure
within the attacker’s control. Therefore, the attacker allocates a data structure with the
same size of the L1 data cache and loads this data structure into the cache, i.e., by accessing
elements within this data structure. After the whole L1 data cache has been initialized
the attacker triggers the encryption of a plaintext. Obviously, the encryption evicts parts
of the initially loaded data structure. Hence, by precisely measuring the memory-access
times of the data structure loaded before triggering the encryption the attacker determines
which memory blocks have been evicted by the encryption. Assuming the attacker also
knows the start address of the first T-table and that T-tables are mapped contiguously
into the L1 data cache the attacker is able to deduce information about the accessed cache
sets.

Though Osvik et al. [46] state that this approach is extremely efficient, since the
attacker only measures a simple memory access within the memory space of the attack
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process, this approach is not applicable on processors with a random replacement policy.
This non-deterministic approach evicts cache lines within a cache set randomly. Thus, we
are not able to populate the L1 data cache with a data array of the same size. For instance,
suppose we have a 4-way set-associative cache with 128 cache sets and a cache-line size
of 64 bytes. The probability to initialize all four cache lines in one cache set with four
memory accesses is given in Equation 5.5. As Equation 5.6 indicates, taking all cache sets
into consideration it is impossible to load the whole data cache with the required data
structure.

P (Set initialized) =
4

4
· 3

4
· 2

4
· 1

4
= 0.09375

(5.5)

P (Cache initialized) = P (Set)128

= 0.09375128

≈ 2.584 · 10−132

≈ 0

(5.6)

Evict and Time

The idea of this approach is to observe cache evictions based on the encryption time itself.
Again, the attacker allocates a data structure which is as large as the L1 data cache.
However, this time the attack proceeds as follows. After triggering the encryption of a
plaintext p, the attacker evicts a specific cache set. Finally, by measuring the encryption
time of the same plaintext p again the attacker might determine whether a cache set
required for the encryption of plaintext p has been evicted or not. Since this approach
seems to be feasible on processors that implement a random-replacement policy we focus
on the Evict and Time approach.

5.4.1 Attack

The attack is composed of four steps: (1) locate the AES T-tables, (2) gather cache-
access patterns, (3) compute possible cache-access patterns, and (4) extract the secret key
by pattern matching. These phases are outlined in the following paragraphs.

Locate the AES T-tables. The purpose of this phase is to determine the location of
the precomputed AES look-up tables. More formally, the intention is to establish a
mapping which allows us to determine which specific memory block of a temporary
data array must be accessed in order to evict a specific cache set. Within the next
phase such a mapping is necessary in order to evict specific parts of the precomputed
AES T-tables.

The localization of the AES T-tables is based on the above mentioned Evict and
Time approach and works as follows. A random plaintext is encrypted three times.
The first encryption ensures that the required instructions and the required data
are loaded into the instruction cache and the data cache, respectively. Subsequent
to this warm-up phase the time of the second encryption of the same plaintext will
be measured. Afterwards, the data of a specific cache set will be evicted. This
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means that we replace the data of a cache set, which might contain data from a
precomputed look-up table, with other data and measure the encryption time of the
same plaintext again. Based on these two timing measurements we formulate the
following hypothesis: If the encryption time after the eviction of a specific cache set
is slower than before, we assume that this cache set contained data of a precomputed
AES look-up table. In order to overcome the random-replacement policy as well as
noise of the attack application itself and other applications running in parallel on
the same system, we perform this time comparison N times. The comparison might
be based on the average encryption time, however, our experiments showed that
the comparison of the absolute timing measurements in each run yields the best
results, i.e., we compare the encryption time before the eviction of a specific cache
set with the encryption time afterwards and treat this as our measurement score.
This measurement score allows us to determine which cache sets potentially hold
parts of the precomputed AES T-tables. Since we assume the T-tables to be located
contiguously within the cache we simply search for the longest sequence of cache sets
where the encryption time increased.

Gather Cache-Access Patterns. In this phase the attacker gathers the memory-access
patterns. Therefore, each key byte ki is attacked separately by considering the
following steps. We set pi = 0x00, choose the rest of the plaintext randomly, and
perform the following steps in order to gather the measurement samples. First, we
encrypt the chosen plaintext p in order to load the necessary T-table elements into
the data cache and the corresponding instructions into the instruction cache. We
refer to this first step as warm-up step. Second, we encrypt the plaintext p again
and this time we measure the encryption time. Afterwards, we evict a specific cache
set s where the corresponding T-table Tj of the attacked key byte ki resides. Recall,
that i ≡ j mod 4. Subsequent to this eviction we measure the encryption time of
the same plaintext p again. Hence, the second measurement provides some kind
of measurement score, of which we keep track of in a data structure ti[b][s], with
b ∈ {0x00, ..., 0xFF} representing all possible values pi might take, and s ∈ {0, ..., γ}1
representing the evicted cache set of Table Tj . In order to eliminate noise and
to retrieve stable measurement results the encryption of random plaintexts with
pi = 0x00 and the eviction of a specific cache set s is performed R times. Afterwards,
we advance to the next possible byte value pi = 0x01 and perform the same steps
again, until we finally reach pi = 0xFF. Algorithm 3 outlines the approach more
formally.

In other words, for each possible plaintext byte pi|i∈{0,...,15} ∈ {0x00, ..., 0xFF} of the
plaintext p we establish a data structure ti[b][s]. The purpose of this data structure
is to illustrate for which specific plaintext bytes pi = b the performance decreases
after evicting a specific cache set s. There might be multiple different values to be
used as a measurement score. In our case we retrieved stable measurement results,
and hence distinctive access patterns, by simply comparing the encryption time of
the second encryption with the encryption time of the third encryption. Thus, ti[b][s]
simply counts the number of encryptions where the performance decreases.

Figure 5.3 illustrates an example of such a data structure after performing the above
steps for a specific key byte, e.g., k5 in this case. We gathered this information

1Note that in case the T-tables are aligned s is limited by γ − 1.
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Algorithm 3 Gather cache-access patterns for an aligned T-table.

Input: The byte i to be attacked.
Output: ti[b][s]

ti[b][s]← 0
for b = 0 to 255 do

for s = 0 to γ − 1 do
for r = 0 to R− 1 do

p←random()
pi ← b
t1 ←measure(AESk(p))
t2 ←measure(AESk(p))
evict set(s)
t3 ←measure(AESk(p))
if t2 < t3 then

ti[b][s]← ti[b][s] + 1
end if

end for
end for

end for
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Figure 5.3: Plot of all possible plaintext bytes, encrypted with k5 = 0xF3 for T-table T1.
Brighter areas represent slower encryptions after evicting the corresponding set.
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on the Google Nexus S. The vertical axis shows all possible plaintext bytes for p5,
and the horizontal axis shows the evicted cache set s. One clearly observes the
visible pattern which will be exploited in the following two phases. The pattern
can be interpreted as follows. After the eviction of cache set 0 (relating to T1) the
encryption performed slower for plaintext bytes p5 ∈ {0xF0, . . . , 0xFF}.
We explain the occurrence of this pattern as follows. Recall, that the index used to
access a precomputed T-table element si = pi ⊕ ki is composed of 8 bits. In this
case we assume a cache-line size of 64 bytes and thus the lower log2 δ = log2

64
4 =

4 bits determine the T-table element within a cache line. The remaining upper
8− log2 δ = 4 bits determine the cache set of the resulting index. Table 5.3 outlines
the occurrence of this pattern for a key byte ki = 0xF3. The column Set represents
the upper 4 bits of the resulting index. Given a plaintext byte pi ∈ {0xF0, . . . , 0xFF},
and the key ki = 0xF3 the resulting look-up indices map into cache set 0. For aligned
tables there exist 16 unique patterns, which can be used to reduce the initial key
space from 128 bits to 64 bits. In this case the plot in Figure 5.3 only reveals the
upper 4 bits of the key byte, e.g., ki ∈ {0xF0, . . . , 0xFF}.

pi pi ⊕ ki Set Index

0x00 0xF3 1111 0011
...

...
...

...
0xF0 0x03 0000 0011
0xF1 0x02 0000 0010
0xF2 0x01 0000 0001
0xF3 0x00 0000 0000
0xF4 0x07 0000 0111
0xF5 0x06 0000 0110
0xF6 0x05 0000 0101
0xF7 0x04 0000 0100
0xF8 0x0B 0000 1011
0xF9 0x0A 0000 1010
0xFA 0x09 0000 1001
0xFB 0x08 0000 1000
0xFC 0x0F 0000 1111
0xFD 0x0E 0000 1110
0xFE 0x0D 0000 1101
0xFF 0x0C 0000 1100

Table 5.3: Computed look-up indices for all possible bytes and a fixed key byte ki = 0xF3.

Compute Possible Cache-Access Patterns. As we have seen in the previous phase
the output of the online phase clearly reveals a visible memory-access pattern. In
order to exploit the information leaked through these access patterns we use the
following approach. For a hypothetical key byte h ∈ {0x00, . . . , 0xFF}, a number
of T-table elements per cache line δ, and a disalignment d ∈ {0, . . . , δ − 1} we are
able to compute the memory-access patterns within a specific set. Recall that the
lower log2 δ bits are used as index bits, i.e., these bits determine the element within
the cache line. The remaining upper bits are the set bits, and hence determine the
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cache set which holds the corresponding T-table element. For instance, if the cache
line holds δ = 16 table elements, the lower log2 16 = 4 bits are used as index bits
and the 4 remaining upper bits determine the cache set.

Given this information, Equation 5.7 formalizes the computation of the memory-
access patterns for a specific key hypothesis h ∈ {0x00, . . . , 0xFF}, a specific dis-
alignment d ∈ {0, . . . , δ−1}, all possible plaintext byte values b ∈ {0x00, . . . , 0xFF},
and all possible cache sets s ∈ {0, . . . , γ}. Note that the set s refers to the relative
set number of the T-table Tj and does not represent the absolute number of a set
within the cache.

b ∈ {0x00, ..., 0xFF}
s ∈ {0, ..., γ}

patternh,d [b] [s] =

{
1, iif shift right( (b⊕ h) + d, log2 δ) = s

0, otherwise

(5.7)

Considering all possible disalignments and all possible byte values we deduce that
there are δ · 256 patterns per cache set. For δ = 16 this results in 4 096 possible
patterns per cache set. However, further analysis revealed that there exist pairs of
hypothetical key bytes and disalignments (h,d) that produce the same cache-access
pattern within a specific set. Thus, we found out that there are only 1 376 unique
patterns for a cache set. Hence, the patterns are stored in a way, such that a pattern
maps to a list of pairs (h,d) that generate this specific pattern.

Figure 5.4 illustrates the plots of the computed patterns corresponding to the hypo-
thetical key h = 0xF3 and two different disalignments d as outlined in Equation 5.7.
For visualization purposes we computed the pattern for all cache sets a specific
T-table can take. For the actual attack one might even recover the secret key by
computing the patterns for only one cache set. Figure 5.4(a) visualizes the generated
pattern for an aligned T-table. In this case the T-table consumes exactly 16 cache
sets and each cache set holds 16 table elements. In contrast, Figure 5.4(b) visualizes
a generated pattern for a disaligned T-table. The first cache set, i.e., cache set 0,
holds only 15 table elements, indicated by a small gap at byte 0xFC. Consequently,
16 cache sets are not enough in order to hold all table elements and hence 17 cache
sets are required. Though cache set 16 only holds the last table element with the
index si = 0xFF, indicated at byte 0x0C. An interesting property of the single ele-
ment within cache set 17 is, that 0xFF ⊕ 0x0C = 0xF3 and thus yields the correct
key byte immediately. We will exploit this specific property later.

Note that in case of a smaller cache-line size, e.g., 32 bytes, the T-table elements
spread across γ = 32 cache sets in case of an aligned T-table and across γ = 33
cache sets in case of a disaligned T-table. This results from the fact that less T-
table elements can be located within one cache line. Furthermore, in case of smaller
cache-line sizes the number of recoverable bits per key byte increases. This means
that for a cache-line size of 32 bytes the number of recoverable bits per key byte is
8 − log2 δ = 5. Figure 5.5 illustrates the computed pattern for a hypothetical key
byte h = 0xF3 and two different disalignments d assuming a cache-line size of 32
bytes.
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(a) Generated pattern for h = 0xF3 and disalign-
ment d = 0.
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(b) Generated pattern for h = 0xF3 and disalign-
ment d = 1.

Figure 5.4: Generated pattern for h = 0xF3 and two different disalignments for a cache-line
size of 64 bytes.

Extract the Secret Key by Pattern Matching. From the measurement scores ti[b][s]
gathered in the online phase we extract a pattern vector. Therefore, we compute the
means and the standard deviation stds of each cache set s, i.e., of the columns in
ti[b][s]. We apply the following empirically detected threshold: If the measurement
score of a specific byte value b within a specific cache set s is greater than the means
plus the standard deviation stds, we assume that this byte value has been accessed
during the encryption. Consequently, if the measurement score is below this thresh-
old, we assume that this byte value has not been accessed during the encryption.
Equation 5.8 outlines the approach to extract a pattern vector for a specific cache
set s, and an attacked byte i.

pattern vectori[b][s] =

{
1, iif ti[b][s] > means + stds

0, otherwise.
(5.8)

With this pattern vector we are able to query the data structure generated in the
previous phase. Actually, we compute the element-wise product of this pattern
vector for a specific cache set s with all possible pattern vectors computed for the
same cache set s. If the result matches the computed pattern again, we retrieve a list
of possible key candidates and disalignments (h,d) that yield this specific pattern.
Furthermore, we save the key candidates and disalignments (h,d) with the greatest
compliance according to the compared pattern vectors. In the rare case that no
exact match was found, we simply treat the result with the greatest compliance as
possible key candidates.

A possibly noisy pattern might hinder the extraction of the pattern within a single
cache set. Thus, we extract the pattern of multiple sets and match them against
the precomputed patterns. We count the number of cache sets that consider h as
a possible key candidate. The more cache sets report a possible key candidate h
the more likely it might be the real key byte. If the access patterns are clearly
visible among the first set, an attacker might also consider exploiting only the access
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(a) Generated pattern for h = 0xF3 and disalign-
ment d = 0.
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(b) Generated pattern for h = 0xF3 and disalign-
ment d = 1.

Figure 5.5: Generated pattern for h = 0xF3 and two different disalignments for a cache-line
size of 32 bytes.

pattern of the first cache set. The above mentioned approach has the advantage that
it works even in case that some of the cache sets do not provide a specific pattern.

Another interesting property is that the generated patterns for a specific key-byte
hypothesis h and a specific disalignment d are equal in all odd sets s, besides some offset.
This might be of value if one considers the exploitation of all odd sets. In this case the
pattern for the first set is computed as outlined above and the remaining odd patterns
might be generated by shifting the computed pattern.

Enhancement

Further analysis of the extracted memory-access patterns revealed that the generated
patterns leak even more information, at least in case of disaligned T-tables. Recall that
the lookup indices into the T-tables are computed as si = pi ⊕ ki in case of the first
round. Hence, if the upper 8 − log2 δ bits of the encrypted plaintext byte pi equal the
upper 8 − log2 δ bits of the secret key ki, the resulting look-up index goes straight into
the first cache set related to T-table Tj , with i ≡ j mod 4. Thus, the resulting index will
be visualized within cache set 0, at least in case where noise does not pollute these cache
accesses. Unfortunately, we cannot determine which plaintext byte pi equals the unknown
secret key byte ki, unless there is only one table element within cache set 0.

The crucial observation, that allows further reduction of the remaining key space is
that the correct key byte is always within the largest block of the first set as well as the
largest block of the last set. We exploit this fact and extract the possible key candidates
from the smaller one of these two, i.e., the block that holds fewer possible key candidates.
In case we extract the key candidates from the last set we have to compute the XOR
with 0xFF from each of the candidates in order to invert all bits. In order to clarify the
observation that the larger block always contains the correct key byte we denote α as the
number of table elements within the first cache set. Thus, in case of disaligned T-tables
we always have α < δ. Starting by α = 1 and increasing it continuously leads to a change
within the lower dlog2 αe bits, with the remaining upper bits staying constant. Thus,
considering only the upper 8− dlog2 αe bits these lookup indices si ∈ {0, . . . , α− 1} form
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Figure 5.6: Gathered cache-access pattern on the Google Nexus S with R = 150 iterations
for key byte k0 = 0x0C.

a group. Now, consider the inverse operation pi = si ⊕ ki with a key which’s value is
irrelevant for this explanation. Within such a group, which is composed of the lookup
indices si ∈ {0, . . . , α − 1} the XOR operation might flip some bits. Nevertheless, the
upper 8− dlog2 αe bits flip to the same state and the lower blog2 αc bits form the largest
group of 2blog2 αc indices, with 0 always being part of this group. Since the lookup index
where the plaintext byte pi equals the correct key byte ki is always the one with index
pi⊕ki = 0 we can be assured that the correct key byte is always within the largest block.

Figure 5.6 illustrates such a run where this observation yields the key byte ki = 0x0C

without a brute-force attempt. After analyzing the odd sets, e.g., 1, 3, 5, 7, 9, 11, 13, and
15, the attack yields two key candidates, namely 0x0C and 0x13. Figure 5.7 outlines the
possible patterns for 0x0C and 0x13 with a disalignment of 11 and 5, respectively. Indeed,
the patterns in all odd sets are equal to the one extracted from the measurement samples.
What is even more interesting is the fact that we can further exploit the information
within the first and the last set. Therefore, we search for the largest block within the first
set and also for the largest block within the last set. Hence, our attack procedure checks
whether the largest block in the first set (from 0x0C to 0x0F) or the largest block within
the last set (from 0xF0 to 0xF7) is smaller. Of course, the first one is smaller and hence the
attack procedure computes the intersection of the set of key candidates gathered within
the pattern-matching approach and the set of keys from 0x0C to 0x0F. Thus, with this
approach we might be able to recover the correct key byte without a single brute-force
key search.

Due to reasons of noise the detection of the largest block might not always work with
the desired accuracy. Thus, we do not compute the intersection but simply extract the
upper 4 bits and compare them against the upper 4 bits of the extracted keys from the
pattern-matching approach. Nevertheless, the result is exactly the same, yielding the
correct key byte without a single brute-force test.
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(a) Generated pattern for h = 0x0C and disalign-
ment 11.
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(b) Generated pattern for h = 0x13 and disalign-
ment 5.

Figure 5.7: The two patterns which match the extracted pattern in Figure 5.6.

5.4.2 Analysis

Especially on the Google Nexus S this attack yields stable and reliable results. The
localization of the AES T-tables seems to be possible with a minimum of N = 4 runs
per cache set. Thus, considering the three AES encryptions per run, this yields a total of
4·3·L1 S AES encryptions in order to localize the AES T-tables. Since the Google Nexus S
has a total of 128 cache sets this leads to 1 536 AES encryptions. However, if the T-tables
are located within cache sets which are heavily used by the localization procedure, the
number of measurements might be increased.

Gathering cache-access patterns has been observed to be successful for R = 10 runs per
attacked key byte ki and every cache set of the related T-table Tj . Figure 5.8 represents
the gathered cache-access patterns after R = 10 iterations. Though the pattern might not
be visible at first glance, our attack procedure outlined above suggests four possible key
candidates, i.e., 0x94, 0x95, 0x96, and 0x97. Indeed, in this case the correct key byte was
0x95. The visual inspection clearly shows a bright area within the first set from 0x94 to
0x97, which reveals these four key candidates.

In practice, however, one might consider exploiting the cache-access patterns of only
one specific cache set per key byte ki. The exploitation of only one specific cache set, e.g.,
cache set 1 of every T-table Tj , also implies that the possible cache-access patterns must
be computed for only one set, which results in a total of 256 · 256 · δ XOR, addition, and
bitshift operations, with δ representing the number of possible disalignments.

Table 5.4 summarizes the main results of this attack on the Google Nexus S. We clearly
observe that in case of disaligned T-tables the implemented enhancement, i.e., attacking
the largest block within the first or last set, improves the result in terms of remaining
bits. According to this table some disalignments, e.g., only 5 or 9 elements within the
first set, are highly insecure. In this case our enhanced attack is able to recover the whole
secret key without a single brute-force encryption. The low success probability of 80 %
and 50 %, respectively, might be due to noisy memory-access patterns. For instance, it
might be possible that the patterns could not be extracted ambiguously since we gathered
too few measurement samples, e.g., R = 20 in this case. However, for most of the runs
we observe a success probability of 100 % and less than 32 remaining bits to be searched
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Figure 5.8: Gathered cache-access pattern on the Google Nexus S with R = 10 iterations.

exhaustively.
As already outlined above, if we assume that the Cortex-A8 of the Google Nexus

S uses a virtual cache, we retrieve stable measurement results and are able to reliably
determine the secret key. Our investigations revealed that devices employing an ARM
Cortex-A9, e.g., Samsung Galaxy SIII and Acer Iconia A510, also leak memory-access
patterns. However, for some key bytes we are not able to determine the correct key byte.
Further investigations and adaptions to the attack application might be necessary in order
to recover the whole secret key on the ARM Cortex-A9. For instance, the threshold
values for the extraction of the pattern vector might need some refinement. As already
mentioned before, access-driven attacks require sophisticated knowledge of the hardware
and the device under attack. Thus, we claim that given enough information it should be
possible to launch this attack successfully on the Cortex-A9 processor.

Regarding the proposed enhancement of the attack we suggest trying different ap-
proaches. For instance, finding the largest block might be achieved by either searching for
the block with the greatest sum, or by searching for the block with the longest sequence
according to the extracted pattern vector, etc.

Another possible extension of this attack might be that the pattern-matching phase
only considers key candidates with the same disalignment. Since the T-tables are usually
located contiguously within the memory the disalignment is the same for all T-tables.
Thus, for some runs this might even further reduce the remaining key space.

According to our investigations a simple countermeasure would be the proper alignment
of T-tables. This might be achieved easily by declaring the T-tables as
__attribute__((aligned(64))) static const uint32_t Te0[256].
The attribute aligned instructs the compiler to align this data structure according to a
specific byte boundary. In order to align the T-tables independently of the actual cache-
line size they might be aligned to a 4096-byte boundary, i.e., a page boundary. In this
case our memory-access pattern approach only recovers half of the key bits on a system
with a cache-line size of 64 bytes.
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Attack R α Psuccess Remaining Bits

Pattern 20 10 90 % 32
Pattern + Largest Block 20 10 90 % 18

Pattern 20 14 80 % 32
Pattern + Largest Block 20 14 50 % 25

Pattern 150 2 100 % 32
Pattern + Largest Block 150 2 100 % 16

Pattern 150 16 100 % 64
Pattern + Largest Block 150 16 100 % 64

Pattern 150 5 100 % 16
Pattern + Largest Block 150 5 100 % 0

Pattern 150 9 100 % 16
Pattern + Largest Block 150 9 100 % 0

Table 5.4: Results of the access-driven attack on the Google Nexus S.

5.4.3 Complexity

The overall complexity of the cache-access pattern attack is based on four different phases.
The localization of the AES T-tables requires N ·L1 S · 3 AES encryptions. In case of the
Google Nexus S, which employs 128 cache sets, we observed that it is possible to locate
the T-tables with N = 10 iterations. Thus, leading to a total of 10 · 128 · 3 = 3 840 ≈ 212

AES encryptions. The second phase, i.e., the gathering of the cache-access patterns, has a
complexity of 16·256·3·γ ·R AES encryptions. For all 16 plaintext bytes pi and all possible
byte values this plaintext byte might take we trigger the AES implementation 3 times.
The first encryption represents the warm-up step and the two subsequent encryptions
represent the measurement score. Between the second and the third encryption we evict a
cache set of the corresponding T-table Tj . Our experiments are based on the eviction of
all cache sets related to a specific T-table Tj . Thus, leading to γ = 17 cache-set evictions
per encrypted plaintext. The parameter R = 150 represents the number of iterations
in order to achieve stable measurement results. Overall, this leads to a complexity of
16 · 256 · 3 · 17 · 150 ≈ 225 AES encryptions in order to gather all cache-access patterns.

We also state the complexity of the pattern computation and the extraction of the
secret key in AES encryptions. Therefore, we measured the execution times of these two
phases and determined how many AES encryptions our device is able to perform during
this period. This yields a complexity of 221 AES encryptions for the computation of the
possible cache-access patterns and 225 AES encryptions for the pattern-matching phase.
Table 5.5 summarizes the attack complexity of this cache-access pattern attack in terms
of AES encryptions.

On the Google Nexus S this attack takes about 80 seconds, excluding the brute-force
step. This might be reduced even further, if an attacker only considers one cache set
instead of all γ cache sets. Furthermore, the parameter R was chosen in order to visualize
the cache-access patterns, i.e., R = 150. Reducing the number of iterations to R = 20
reduces the execution time to about 40 seconds.
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Phase

Locate the AES T-tables 212

Gather cache-access patterns 221 – 225

Compute possible cache-access patterns 221

Extract the secret key by pattern matching 225

Brute-force key search 0 – 264

Table 5.5: Complexity of the cache-access pattern attack on the Google Nexus S given in
AES encryptions.

5.4.4 Summary

We developed and analyzed an attack based on the approach by Osvik et al. [46] that
ruthlessly exploits timing information leaked through the AES T-table implementation.
Based on the generated memory-access patterns it might be possible to reveal the secret
key without a single brute-force computation. Since we assume the T-tables to be located
contiguously in memory the disalignment is the same for all T-tables. Thus, the attack
might be further enhanced, for instance, by considering only key candidates which have
the same disalignment. As a concluding remark of this analysis, we significantly stress the
importance of aligned T-tables. Though this does not prevent timing information from
being leaked it is the lesser of the two evils since only half of the key bits can be recovered
on the Google Nexus S through simple first-round attacks.

Though the attack seems to work reliable on the Google Nexus S we experienced
problems when launching the attack on the Samsung Galaxy SIII and the Acer Iconia
A510. The problems range from architecture differences, to different noise due to possibly
different operating-system versions and different services running in the background. Thus
it might be difficult to develop a generic approach which gathers the cache-access patterns
on all platforms. For instance, on the Google Nexus S comparing the absolute timing
differences works reliable whereas this approach does not always work on the Samsung
Galaxy SIII and the Acer Iconia A510. Attacks might be tailored at hand and launched
against the platform under attack.

5.5 Time-Driven Attack

As already shown in Section 4.2, AES implementations in software usually use look-up
tables in order to speed up the encryption, e.g., T0 [p0 ⊕ k0] for the first plaintext byte
in the first round. Obviously, the time for such a look-up operation depends on the used
index and the cache state, e.g., whether the corresponding part of the look-up table is
already located within the cache or not. Bernstein [15] claims that the time for the overall
encryption of a plaintext correlates with these single lookup operations. He assumes that
an attacker is able to send a plaintext p to a remote server, which in turn encrypts the
plaintext under a known secret key k and returns the time needed for this encryption
with a sufficient-high resolution. Due to reasons of simplicity, we assume the known key
k to be zero. An attacker simply collects this timing information for many plaintexts
and determines the encryption time for all possible values a specific plaintext byte can
take, i.e., the encryption time of pi|i∈{0,...,15} ∈ {0x00, . . . , 0xFF}. After collecting enough
measurement samples the attacker determines for which value of pi the overall encryption
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time is maximized. We refer to this process as study phase. Furthermore, Bernstein [15]
assumes that the attacker is also able to gather the same timing information for many
samples of plaintexts p̃ with an unknown key k̃. Given this information he determines for
which value of p̃i the overall encryption time is maximized and correlates this information
with the information gained before. Hence, he claims that an attacker is able to recover
the secret key byte k̃i by simply solving the equation pi⊕ki = p̃i⊕ k̃i ⇒ k̃i = p̃i⊕ki⊕pi.

Though the real attack also considers the remaining timing information, not only the
maximum values, the above mentioned scenario clearly outlines the basic idea of Bern-
stein’s attack. He also claims that eliminating the possibility of measuring the encryption
time directly on the server does not stop the attack, since the attacker might measure
the encryption time on his local machine and simply average over more samples in or-
der to eliminate noise. In contrast to Bernstein, who outlines the attack considering a
remote server, Neve [37] suggests using a single computer which does all the work, i.e.,
the encryption, timing measurement, and even the analysis of the timing information, for
simplicity reasons. We follow the approach of Neve and investigate the applicability of
this time-driven attack on mobile devices.

5.5.1 Attack

The time-driven attack suggested by Bernstein [15] is composed of four phases which
are: study phase, attack phase, correlation phase, and key-search phase. The following
paragraphs outline the attack phases in more detail. Neve [37] also provides a detailed
analysis of this time-driven attack, which we also consider in the following paragraphs.
Especially in terms of the used notations, e.g., for data structures and computations, we
stick to the ones introduced by Neve.

Study Phase. In this phase the attacker is supposed to know the secret key k under
which the plaintexts are encrypted. The attacker sends multiple random plaintexts
p to the attacked server/function/application and precisely measures the encryption
time for the given plaintext. Furthermore, the attacker keeps track of this timing
information in a data structure t[j][b], where j represents the corresponding plaintext
byte position pj and b the actual value of this plaintext byte. More formally, t[j][b]
holds the sum of all encryption times of plaintexts with plaintext byte pj = b. In
addition, a data structure n[j][b] keeps track of the number of encrypted plaintexts
with plaintext byte pj = b.

As outlined in Equation 5.9, with this information it is possible to compute the
average encryption time for each possible plaintext byte, compared to the overall
average encryption time for all possible plaintext bytes. Neve [37] refers to this
information as the plaintext-byte signature.

v[j][b] =
t[j][b]

n[j][b]
−
∑

j

∑
b t[j][b]∑

j

∑
b n[j][b]

(5.9)

The attacker further computes the standard deviation of the average encryption time
of each possible byte, which is used for the computation of a threshold value within
the correlation phase.

Attack Phase. In this phase the attacker does not know the secret key k̃, under which
the plaintexts in this phase are encrypted. Nevertheless, the procedure in this phase
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is exactly the same as in the study phase mentioned above. The attacker sends
random plaintexts p̃ to the encryption function and stores the gathered information
in the data structures t̃[j][b], ñ[j][b], and ṽ[j][b] respectively. Again t̃[j][b] stores
the sum of all encryption times of plaintexts with plaintext byte p̃j = b, and ñ[j][b]
counts the number of plaintexts with plaintext byte p̃j = b. The corresponding
plaintext-byte signature is computed exactly as outlined in the learn phase above,
except that t, n, and v are replaced with t̃, ñ, and ṽ, respectively.

Correlation Phase. Within the correlation phase the attacker combines the timing pro-
files gained in the study phase with the timing profiles gained in the attack phase,
i.e., v and ṽ. According to Neve [37] the following heuristic is introduced: If pairs
of plaintext bytes and key bytes in the study phase (pi, ki) and in the attack phase
(p̃i, k̃i) have the same difference, i.e., pi ⊕ ki = p̃i ⊕ k̃i, then these encryptions
might have a similar timing profile. Hence, by simply rearranging this equation for
pairs with a similar timing profile, one retrieves possible key candiates k̃i for known
plaintext bytes pi and p̃i, as well as the known key ki.

c[j][b] =
255∑
i=0

v[j][i] · ṽ[j][i⊕ b] (5.10)

Equation 5.10 states the computation of this correlation. Note that we assume
the known key k to be zero and hence we do not have to consider k here. The
resulting correlation values c[j] are sorted in descending order and the value b ∈
{0x00, ..., 0xFF} represents possible key candidates with respect to the correlation.
The higher the correlation c[j][b] of the timing profiles, the more likely the corre-
sponding value of b represents a possible key candidate. The published source code
of Bernstein [15] (correlate.c) states the usage of a threshold based on the standard
deviation computed in the study phase and the attack phase, respectively. Simply
spoken, the correlation phase searches for values of b for which the timing profiles
correlate most.

Search Phase. Due to the fact that the correlation phase usually outputs multiple pos-
sible key candidates for each key byte, a brute-force key search is necessary in order
to reveal the correct secret key.

5.5.2 Analysis

Since O’Hanlon and Tonge [39] reported problems in launching the attack on a Pentium
III and a Pentium IV processor, we cover their main findings first. Later on we state our
main findings of the time-driven attack on a desktop PC and finally we outline the results
of this attack on the three mobile devices.

Within their first approach O’Hanlon and Tonge [39] tried to reproduce Bernstein’s
timing attack on a Pentium IV processor, running GCC 4.0.0 and OpenSSL 0.9.7f. After
gathering 230 measurement samples in the learn phase and 225 measurement samples in the
attack phase, they were not able to narrow down the key space at all. They also launched
the attack on a Pentium III processor, also running GCC 4.0.0 and OpenSSL 0.9.7f, and
found out that though the key space was not reduced significantly, two key bytes leaked
timing information and were reduced to 8 and 16 possible key candidates, respectively.
Within another approach they compiled OpenSSL 0.9.7a with GCC 2.95.3 and launched
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Processor AES implementation GCC Remaining key space

Pentium IV OpenSSL 0.9.7f 4.0.0 128 bits
Pentium III OpenSSL 0.9.7f 4.0.0 ∼ 116 bits
Pentium III OpenSSL 0.9.7f 2.95.3 ∼ 116 bits
Pentium III OpenSSL 0.9.7a 4.0.0 ∼ 116 bits
Pentium III OpenSSL 0.9.7a 2.95.3 ∼ 103 bits
Pentium III MIRACL 2.95.3 ∼ 34 bits

Table 5.6: Summary of the results by O’Hanlon and Tonge (cf. [39]).

the attack again, which led to a slight improvement. This time four key bytes were reduced
to 8 and 16 possibilities. However, most of the remaining key bytes were not reduced at
all, which means that they still showed up 256 possible candidates per key byte. Actually,
O’Hanlon and Tonge [39] blame the larger cache2 of their Pentium III for the failure of this
attack and claim that Bernstein investigates a smaller cache size, which leads to more cache
misses. Hence, instead of attacking the OpenSSL implementation they started attacking
MIRACL’s AES implementation, since they claim that this implementation takes up more
space in cache memory. They immediately declared success. The remaining key space,
with a complexity of approximately 234 key-byte combinations, could be searched easily.
Table 5.6 summarizes their main findings with the corresponding configuration and the
remaining key-space complexity.

Due to the fact that ARM processors implement a random replacement policy, which
might exacerbate Bernstein’s timing attack, we also start by launching the attack on a
desktop computer before moving on to the mobile devices.

Desktop Machines

In order to investigate the applicability of Bernstein’s timing attack on modern desktop
machines we use the following two devices: (1) a Lenovo Thinkpad W500 and (2) a Lenovo
Thinkpad W520. The Thinkpad W500 employs an Intel Core2 Duo dual-core CPU, clocked
at 2.66 GHz, and runs GCC 4.5.2. Furthermore, it employs an 8-way associative L1 data
cache, with a total size of 32 KB, and a cache-line size of 64 bytes. The Thinkpad W520
employs an Intel Core i7-2670QM quad-core CPU, clocked at 2.2 GHz, and runs GCC
4.6.1. The properties of the L1 data cache are exactly the same as for the Thinkpad
W500. The OpenSSL implementations used for the following experiments were taken from
the OpenSSL website [41]. In order to use the T-table implementation, rather than the
optimized and (probably) timing-attack resistant assembler implementation, we configured
and compiled the OpenSSL implementations with the flag no-asm.

Table 5.7 summarizes the most promising results of this attack for different configura-
tions and different parameters on both machines. The columns Study and Attack denote
the number of measurement samples to be gathered in the corresponding phase. The col-
umn Cores state information about the number of active cores and the CPU frequency,
i.e., whether we pinned the CPU frequency or allowed the machine to adjust the frequency
according to the Intel SpeedStep Technology [28] dynamically. For further information re-
garding the deactivation of CPU cores and how to pin the CPU frequency we refer to

2Bernstein does not explicitly state the cache size of the attacked Pentium III. Nevertheless, he points
out that a typical Pentium III has 16 KB of L1 cache, with a cache-line size of 32 bytes.
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Machine Cores Study Attack OpenSSL Success Remaining

W500 1 (800 MHz) 225 225 0.9.8o 225, 225 65 bits

W520
4 (dynamic) 234 234 0.9.7a 233, 231 52 bits
4 (dynamic) 230 230 0.9.7a 230, 230 83 bits
4 (dynamic) 230 230 1.0.1c 230, 230 83 bits

Table 5.7: Results of the time-driven attack on the two desktop machines.

Section 4.4. The column Success denotes the number of samples in the study phase and
in the attack phase, respectively, for which the correlation yields all correct key bytes
with respect to the lowest brute-force complexity. Observe, that this column does not
necessarily yield the same number of samples as denoted by the columns Study and At-
tack. We state the reason for this as follows. As suggested by Bernstein [15], we output
the statistical values in the study phase as well as in the attack phase after gathering a
number of samples which is exactly a power of two. For instance, suppose we want to
gather 230 samples in the study phase as well as in the attack phase. After processing
215 measurement samples in each phase we output the statistical values for the first time.
After processing 216 measurement samples we output the statistical values again and so
on, until we finally reach the supposed 230 measurement samples. For analysis purposes
we correlate all possible combinations of measurement samples from the study phase with
the measurement samples from the attack phase, i.e., the statistical values after 2i mea-
surement samples within the study phase with the statistical values after 2j measurement
samples within the attack phase, for 15 ≤ j ≤ 30 and 15 ≤ i ≤ 30. The last column
denotes the number of remaining bits x to be searched within the brute-force key-search
phase, i.e., 2x AES encryptions.

On the Thinkpad W500 we observed the best results when simulating a standard
situation while performing the attack, e.g., browsing the web (Google Chromium) and a
mail client (Mozilla Thunderbird) continuously checking for new mails. Furthermore, we
did not retrieve remarkable results with both cores enabled. Hence, in order to prevent
the attack process and the noise-generation applications from being executed on different
cores we disabled the second CPU core and pinned the remaining CPU core to a frequency
of 800 MHz. However, even with only one CPU enabled the attack did not yield stable
results, i.e., two successive runs did not yield approximately the same amount of key bits.
This inconsistency might be due to the multiple processes running on the system in the
background. In contrast, on the Lenovo Thinkpad W520 we did not even had to disable
any core in order to retrieve stable results. We simply fired up a web browser (Google
Chromium) and generated continuous memory accesses by playing videos. Indeed, on this
machine the attack constantly yielded a remaining key space of approximately 85 bits.
Note that we did not further analyze the impact of multi-core processors, hyper-threading,
nor the L2 and L3 data cache on the attack.

As already mentioned in Section 4.4, the usage of Intel’s Time-Stamp Counter (TSC)
might cause inaccurate timing measurements on processors which support out-of-order
execution. Hence, a complex serialization process is necessary in order to ensure accurate
timing measurements. Neve [37] also mentioned the problem of the RDTSC instruction,
but since he snipped the corresponding timing function in the provided source code we do
not know whether he adopted to this fact or not. Nevertheless, in our case the complex
serialization process did not yield better results.
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# candidates Key byte Possible values

8 0 b3 b4 b5 b1 b7 b2 b6 b0
200 1 34 36 32 30 33 37 35 31 ...
8 2 5d 58 5a 59 5b 5e 5f 5c
8 3 a2 a3 a4 a7 a6 a0 a5 a1
32 4 a5 a7 a1 a3 a6 a4 a2 a0 ...
32 5 d4 d6 d7 d5 d2 d3 d1 d0 ...
32 6 f3 f6 f1 f2 f5 f4 f7 f0 ...
8 7 f4 f6 f1 f2 f0 f3 f7 f5
32 8 19 1e 1f 1d 1a 1b 18 1c ...
8 9 21 23 27 25 20 24 26 22
8 10 f5 f3 f2 f0 f1 f7 f6 f4

199 11 0f 0e 0c 0a 0d 09 08 0b ...
8 12 7f 7e 7b 7c 7d 79 78 7a
8 13 b0 b4 b7 b2 b1 b3 b6 b5
8 14 2b 2a 2d 2e 2c 2f 28 29
8 15 94 95 90 97 93 96 91 92

Table 5.8: Sample output of the correlation phase on the Thinkpad W500.

Table 5.8 visualizes the output of the correlation phase of an attack on the Lenovo
Thinkpad W500. For this specific example we gathered 225 measurement samples in
both phases, the study phase as well as the attack phase. The first column states the
number of recovered key candidates for the corresponding key byte, the second column
denotes the position i of the key byte (ki), and the third column denotes the recovered
key-byte candidates. The correct key bytes are underlined and marked in bold. For key
bytes where the number of possible key candidates is larger than eight we only state
the first eight candidates. Computing the product of the values within the first column
yields the number of possible key combinations, i.e., the complexity of the remaining
brute-force search. In this case the corresponding brute-force complexity is ∼ 265 AES
encryptions, which is still out of reach. However, we observe a significant leakage of
timing information. Interestingly, it can be observed that all correct key bytes are within
the first eight possible key-byte candidates, which would reduce the complexity to 248 AES
encryptions. Unfortunately, multiple experiments showed that this is not always the case
and hence we cannot rely on this observation.

According to our experiments we observed that sometimes the key space is reduced
too much. This means that for some key bytes the correct key is not present anymore
in the candidate list. Table 5.9 illustrates this problem. In this example the brute-force
complexity would be 230 AES encryptions. However, nearly half of the correct key bytes
are not present anymore, which renders this run completely useless. Table 5.10 illustrates
the same problem for a run with 234 samples in both online phases. Except for key
byte 7, where the correct byte (8d) is missing, all key bytes were recovered successfully.
This output would lead to a remaining complexity of approximately 255 AES encryptions.
But again, for one key byte the correct byte value is missing which also renders this run
completely useless. Interestingly, for most of the key bytes the correct key is listed at the
first position.

Since further analysis of Bernstein’s attack on desktop machines would exceed the scope
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# candidates Key byte Possible values

1 0 95 [missing b5]
1 1 1c [missing 32]
8 2 5b 59 5a 5f 5d 58 5e 5c
8 3 a2 a3 a0 a1 a5 a7 a6 a4
2 4 81 83 [missing a1]
2 5 f7 f6 [missing d7]
8 6 f6 f0 f2 f4 f1 f7 f5 f3
8 7 f4 f7 f2 f1 f0 f3 f6 f5
1 8 39 [missing 1b]
1 9 05 [missing 25]
2 10 d7 d6 [missing f4]
8 11 08 0a 0d 0b 0c 0f 09 0e
8 12 7c 79 78 7d 7a 7b 7e 7f
8 13 b6 b7 b4 b0 b5 b1 b2 b3
8 14 2f 2e 2d 29 2c 2b 28 2a
8 15 93 92 91 95 90 94 97 96

Table 5.9: Sample output of the correlation phase on the Thinkpad W500 where the key
space was reduced too much.

of this work and we already observed that timing information leaks through multiple AES
encryptions we continue with the analysis on mobile devices. For a more detailed analysis
regarding the applicability of Bernstein’s attack we refer to Bernstein [15] and Neve [37].

Mobile Devices

The best results, according to our investigations, can be achieved by simply generating
the required memory accesses (noise) within the attack application itself. This is done by
changing the size of data arrays within the implementation and hence perform additional
memory accesses. Actually, this is the same approach as suggested by Bernstein [15].
Within multiple consecutive runs, Bernstein simply sends data of different length to the
server. Though the server only encrypts 16 bytes of the transmitted data, the rest of the
data is copied to a temporary data array and hence possibly generates cache evictions of
already loaded T-table elements.

We also tried to generate a more realistic scenario. In this scenario we mounted the
attack while watching videos, or while watching an image slideshow on the mobile devices.
However, according to our observations the generation of noise due to external applications,
e.g., applications launched simultaneously to the application that performs the attack, does
not yield better results of this attack. Only minor timing information leaked and finally
the remaining key space was not reduced significantly. Based on our observations we
conclude that either the cache evictions affect the wrong cache sets, i.e., cache sets which
do not contain T-table elements, or the generated noise is not constant and hence corrupts
the timing profiles. Furthermore, on multi-core devices, as for instance the Acer Iconia
A510 and the Samsung Galaxy SIII, the two applications might be executed on different
cores. We further conclude that a fairly realistic approach would be to wrap the attack in
a fine-grained application, i.e., a fancy game or another long running application, and to
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# candidates Key byte Possible values

1 0 b5
32 1 90 91 93 92 82 81 83 9c ...
22 2 11 c1 39 01 f9 29 e9 c9 ...
43 3 66 7a 64 73 72 78 61 70 ...
4 4 ae af ad ac
32 5 cc d4 c4 dc 2c 34 ... bc ...
15 6 cd fd 05 f5 35 c5 15 dd ...
224 7 8c 8e f2 e2 f1 ea f3 02 ... [missing 8d]
1 8 12
32 9 b9 b1 a9 a1 59 51 49 41 ...
36 10 55 15 05 1d 4d 0d f5 e5 ...
4 11 12 10 11 13
1 12 92
4 13 4a 4b 48 49
32 14 6b 8b b3 23 73 bb 83 9b ...
4 15 9f 9e 9c 9d

Table 5.10: Sample output of the correlation phase on the Lenovo Thinkpad W520.

Device Study Attack Success Remaining key space

Google Nexus S
230 230 230, 229 65 bits
229 229 229, 228 69 bits

Samsung Galaxy SIII
230 230 230, 229 58 bits
230 230 230, 230 61 bits

Acer Iconia A510
230 230 230, 227 73 bits
230 230 230, 229 78 bits

Table 5.11: Results of the time-driven attack on the mobile devices.

control the generated memory accesses within this application.
Table 5.11 summarizes the best attack results on the tested mobile devices. For analysis

purposes we state the output of a sample run in Table 5.12. This specific run yields a
remaining brute-force complexity of 261 AES encryptions. Considering the output of the
correlation phase, e.g., for key byte 1, indicates that a high number of key candidates is
proposed. The corresponding byte-signature plot in Figure 5.9 clarifies the problem. The
x axis shows the possible values the corresponding byte pi might take, i.e., 0x00 ≤ pi ≤
0xFF, and the y axis the average encryption time of this specific byte value subtracted
by the overall average encryption time. In case of key byte 1 the byte signatures of both
phases do not reveal any obvious patterns and look noisy. Hence the correlation fails,
which means that many key candidates are proposed. In contrast, for byte 7 the key space
was reduced to 4 possible key candidates. The corresponding signature plot in Figure 5.10
reveals a clear pattern in both phases.

We conclude that it is possible to launch Bernstein’s time-driven attack against all
three mobile devices. Of course, the remaining key space is still too large for a brute-
force key search, but we clearly observe the leakage of timing information. Generally, we
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# candidates Key byte Possible values

106 0 f4 f5 6d 2f 31 1b ... 00 ...
132 1 71 32 2f 43 fa 1c ... 10 ...
9 2 23 2f 21 2c 22 2e 20 2d ...
4 3 33 31 30 32
37 4 84 a0 dc 38 6e f4 ... 40 ...
12 5 53 50 51 52 4c 49 4d fd ...
6 6 60 61 62 6f 6e 63
4 7 71 70 73 72

130 8 fc 84 88 80 19 94 b8 91 ...
7 9 93 9d 90 91 8c 3d 9e
9 10 a2 a3 bd a0 ac a1 ae ad ...
4 11 b3 b2 b1 b0

117 12 20 fa c0 c8 22 c4 18 b8 ...
4 13 d0 d3 d2 d1
8 14 e3 ec ed e2 e1 e0 ee ef
4 15 f3 f1 f2 f0

Table 5.12: Sample output of the correlation phase on the Samsung Galaxy SIII.
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(a) Sample signature plot of byte 1 in the study phase on the Samsung Galaxy SIII.

0x00 0x40 0x80 0xC0 0xFF
−1

0

1

Byte value

ṽ
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(b) Sample signature plot of byte 1 in the attack phase on the Samsung Galaxy SIII.

Figure 5.9: Sample signature plot of byte 1 on the Samsung Galaxy SIII.
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(a) Sample signature plot of byte 7 in the study phase on the Samsung Galaxy SIII.
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(b) Sample signature plot of byte 7 in the attack phase on the Samsung Galaxy SIII.

Figure 5.10: Sample signature plot of byte 7 on the Samsung Galaxy SIII.

observed the same behaviour as on the desktop machines. For some runs the correlation
phase leaked the correct key byte immediately, for others the correct key byte was not
present anymore, and yet for others the key spaces was not reduced at all.

However, in order for this attack to be successful an attacker might carefully adapt the
implementation in order to generate the required cache evictions, such that the encryption
function leaks enough timing information. Indeed, this sounds like an awful lot of work
since the attacker in general does not have any information about the location of the
T-tables within the cache. Hence, the attacker does not know where the noise should be
generated. Due to the impressive number of required measurement samples to be generated
in the two online phases (study phase and attack phase), this attack might drastically drain
the battery on mobile devices. Hence, one might consider launching this attack only if the
battery is charging. Supposing that the average user charges a mobile device during the
night this is a rather reasonable assumption. Another scenario might be an attacker who
wants to attack the disk encryption. In this case the attacker is in possession of the device
and is willing to do anything in order to get the secret key. The online phases take about
six hours on our Google Nexus S in order to generate 2 · 230 measurement samples. On
the Acer Iconia A510 and the Samsung Galaxy SIII the same number of measurement
samples takes just four hours. We consider the brute-force key-search phase to be carried
out on a remote machine. In this case the mobile device transfers the gathered information
to a remote server and the server continues the attack, which might potentially lead to a
successful key recovery.

5.5.3 Complexity

In contrast to access-driven attacks, time-driven attacks feature an enormous online com-
plexity. Table 5.13 summarizes the complexity of Bernstein’s timing attack in terms of
AES encryptions. The range of the brute-force key search is given in terms of the best and
the worst result of our attacks. Since the correlation phase only involves the computation
of correlation values based on the aggregated statistical data computed in the two online
phases, we ignore this complexity here. Note that only the study phase and the attack
phase must be carried out on the mobile device. The brute-force key search might be
carried out on a more powerful device, possibly even supporting AES New Instructions
(AES-NI).
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Phase

Study phase 225 – 232

Attack phase 225 – 232

Brute-force key search 258 – 2128

Table 5.13: Complexity of Bernstein’s attack given in AES encryptions.

5.5.4 Summary

The following paragraphs summarize our main observations of the analysis of Bernstein’s
time-driven attack.

Observation 1. It might be hardly possible to produce stable results, i.e., that two
successive runs yield the same amount of key bits. Bernstein’s attack requires cache
manipulations due to memory accesses of other processes and even the process performing
the encryption itself performs cache evictions of already loaded T-table elements. If the
cache would not be manipulated by other memory accesses, the encryption might run in
constant time, since all data might be provided from the L1 data cache in constant time.
Neve [37] claims that the exploitable timing information leaks through the manipulation
of constant cache sets by different processes running on the same machine. The source
code published by Bernstein [15] indicates that the imaginary server function, which does
the encryption, manipulates a temporary array. Of course, these array manipulations lead
to constant cache manipulations and hence also lead to exploitable timing differences. We
conclude that possibly uncontrollable noise might corrupt the timing measurements and
hence lead to wrong key bytes or the key space is not reduced at all. On server machines,
which commonly do the same work all the time, this might lead to more successful attacks.
In contrast, on mobile devices the user might frequently change the used applications and
hence this attack might not succeed due to frequently changing memory accesses.

Observation 2. For analysis purposes, we correlate all possible combinations of mea-
surement samples in the study phase with the ones from the attack phase. However, in
practice one would define the number of samples to be generated and the resulting out-
put would be correlated. As our investigations revealed, the initially defined number of
measurement samples only rarely yields the correct key bytes. This might exacerbate the
attack since we do not know in advance how many samples to generate.

Observation 3. According to our investigations, the best runs yield a remaining brute-
force complexity of approximately 260 AES encryptions. Though the usage of AES New
Instructions on modern Intel processors might drastically speed up the AES encryption,
260 AES encryptions are still unfeasible.

Observation 4. Sometimes the key space is not reduced at all and sometimes the key
space is reduced too much. While the former implies that the correlation phase returns
all possible values for a specific key byte, the latter implies that some of the correct key
bytes are not present anymore. More formally, if the key space is reduced in order to bring
this attack in the range of a possible brute-force key search, then the correct key-byte is
probably not present anymore. However, if all correct key bytes are still present after
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the correlation phase, then the remaining complexity is far too large for a brute-force key
search. For instance, we observed runs where the remaining brute-force complexity was
230 AES encryptions. Unfortunately, nearly half of the correct key bytes were not present
anymore, which rendered this run of the attack completely useless.

Observation 5. Due to the huge number of samples to be generated within the study
phase and the attack phase, this attack might drastically drain the battery on mobile
devices. Hence, one might consider launching this attack only if the battery is charging.
Having the “standard user” in mind, who charges the mobile device during the night, this
might be a reasonable assumption. Even if the online phase takes about six hours as in
case of the Nexus S.

5.6 Cache-Collision Timing Attack

Bogdanov et al. [17] suggest the exploitation of so called wide collisions between two
consecutive encryptions of chosen plaintexts. The main idea behind their attack is to
choose pairs of plaintexts (P1, P2) in a specific manner, such that five S-Box lookups collide
when encrypting such a pair of plaintexts. Supposing an empty cache, the encryption of
P1 loads the corresponding table elements into the cache. Obviously, the encryption of
P2 is computed faster if table lookups collide, i.e., if intermediate state bytes between P1

and P2 are equal. However, due to the fact that one cache line contains multiple table
elements, the lookup of two state bytes might cause a cache collision though the two bytes
are not necessarily equal. As we will see later in this section, this imposes a problem.

Besides the concept of wide collisions, the following section describes the cache-collision
attack in more detail. We also state the main findings of the cache-collision attack on our
three test devices and, last but not least, we analyze the attack complexity. Though S-Box
collisions are considered for the explanation of wide collisions, it should be clear that this
attack also works for the common T-table implementation of the AES.

5.6.1 Attack

Before we cover the details of the cache-collision attack of Bogdanov et al. [17], we outline
the notion of a wide collision as follows. Figure 5.11 visualizes the initial AES states of P1

and P2, represented as a matrix of four columns and four rows, respectively. Due to reasons
of simplicity we stick to their notation: Bytes which are equal in both states are shown
brighter, whereas bytes which are different in both states are shown darker. Suppose
we choose the diagonal pair (A, E), i.e., A = {a0, a1, a2, a3} and E = {e0, e1, e2, e3},
independently and randomly, such that ai 6= ei for 0 ≤ i < 4. Furthmore, suppose we
also choose the remaining bytes randomly, but equal for both plaintexts. Afterwards,
we apply the transformations labeled in Figure 5.11 for the first round and inspect the
resulting output state. Due to the nature of the chosen plaintext, the resulting state bytes
are pairwisely equal between the intermediate state of P1 and P2 within the columns 2,
3, and 4. Due to the ShiftRows transformation the pairwisely different bytes, i.e., the
bytes of the diagonal pair (A, E), are aligned within the first column. However, due to the
MixColumns transformation it might be possible that some bytes — at most 3 at the same
time — of the first column are equal between the first and the second state, i.e., a′i = e′i
for some 0 ≤ i < 4. Within the sample transformations outlined in Figure 5.11 we assume
that a′1 = e′1. If a collision between any a′i and e′i occurs, then the colliding bytes are
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Figure 5.11: Intermediate states of a plaintext pair (P1, P2) producing a wide collision,
assuming a′1 = e′1 and hence a′′1 = e′′1 also holds true.

shifted to the same column by the ShiftRows transformation of the second round. In case
of this example the colliding bytes a′1 = e′1 are shifted to the fourth column. Consequently,
the MixColumns and AddRoundKey transformations output pairwisely equal columns for
both states, which leads to four additional S-Box collisions in the third round and thus to
lower encryption times compared to encryptions where no wide collision occurs. Of course,
the pairwisely equal columns depend on where the colliding bytes a′i = e′i are shifted to.

Now that we are familiar with the notion of a wide collision, we outline the cache-
collision attack according to Bogdanov et al. [17], which consists of the following three
phases: online phase, collision-detection phase, and key-search phase. Though we describe
these phases only for one out of the four possible diagonals, i.e., bytes of the plaintext
which are shifted to the same column after the ShiftRows transformation, these steps must
be performed for all four diagonals in order to recover the whole secret key. For the sake
of clarity, all four possible diagonals are outlined in Figure 5.12.

Online Phase. The purpose of the online phase is to gather measurement samples for
the subsequent collision-detection phase. Hence, the attacker randomly chooses N
different pairs of diagonals (A, E), such that ai 6= ei, for 0 ≤ i < 4. For each of
these diagonal pairs (A, E), the remaining plaintext bytes are chosen randomly but
equal for both plaintexts I times. In order to achieve stable measurement results, R
iterations are performed for each plaintext pair (P1, P2), which simply means that
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Figure 5.12: All four possible diagonals.

the chosen pair of plaintexts is encrypted R times. Actually, within each iteration
the attacker clears the cache3, encrypts plaintext P1, and subsequently measures
the encryption time of plaintext P2. Hence, the output of the online phase consists
of a list of diagonal pairs (A, E) along with the encryption time of the second
plaintext. While Bogdanov et al. [17] suggest using the average encryption time of
the j ∈ {2, 5, 10, R} fastest out of the R encryptions, we compute multiple statistical
values in the online phase for analysis purposes.

S1 =


a′0
a′1
a′2
a′3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


SBox(s0)
SBox(s5)
SBox(s10)
SBox(s15)



=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


SBox(a0 ⊕ k0)
SBox(a1 ⊕ k5)
SBox(a2 ⊕ k10)
SBox(a3 ⊕ k15)


(5.11)

Collision-Detection Phase. In this phase the output of the online phase, i.e., the list
of diagonal pairs (A, E) along with the corresponding encryption times, is analyzed
in order to determine which diagonals lead to wide collisions. As already mentioned
above, this is done based on the encryption time of the second plaintext P2. Based
on this decision there might be false positives, i.e., diagonal pairs which are supposed
to lead to wide collisions due to their encryption time, but in fact do not lead to
wide collisions. As we will see in the next phase, at least 4 diagonal pairs leading
to wide collisions are necessary in order to recover the correct sub key. Hence, the
higher the expectation rate of false positives, the more diagonal pairs are necessary
for the next phase. If only 4 diagonal pairs are chosen and one pair is a false positive,
the evaluation of the next phase will not yield the correct sub key.

Key-Search Phase. The first step of this phase is to determine which sub keys lead
to a wide collision between any four diagonal pairs (A, E) output in the previous
phase. Due to the above mentioned problem of false positives, the collision-detection
phase might output more than four pairs of diagonals. The attacker has to consider
all possible combinations of four diagonal pairs out of the suggested diagonal pairs.
Then, the attacker exhaustively iterates over all possible sub keys of the correspond-
ing diagonal (232 combinations) and computes, for each of these 4 diagonal pairs,
the intermediate AES state according to Equation 5.11.

Equation 5.11 outlines the round transformations of the first round for column one,
excluding the AddRoundKey operation. The AddRoundKey transformation of round

3For further details regarding the eviction of cache sets we refer to Section 5.2.
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one is omitted since it is a simple XOR operation and if two bytes collide before
the XOR operation, then these bytes also collide after the XOR operation with
the same round key. Nevertheless, the initial AddRoundKey (si = aj ⊕ ki), with
j ≡ i mod 4, for the investigated diagonal must be considered and is computed as
follows: s0 = a0⊕k0, s5 = a1⊕k5, s10 = a2⊕k10, and s15 = a3⊕k15. The SubBytes
transformation is denoted by the SBox() operation and the ShiftRows transformation
is done implicitly since the diagonal A = {a0, a1, a2, a3} is considered to be aligned
within the first column after the ShiftRows transformation. The same equation
can be formed for plaintext P2, except that ai and a′i are replaced with ei and e′i
respectively. Due to the fact that the matrix multiplication stated in Equation 5.11
leads to a system of equations (a′i = e′i for 0 ≤ i < 4) with four unknowns (k0, k5,
k10, and k15), four diagonal pairs (A, E) leading to wide collisions are necessary in
order to recover the corresponding sub key of this diagonal.

By iterating over all possible sub keys of the corresponding diagonal, i.e., k0, k5, k10,
and k15, and computing the intermediate state S1 according to Equation 5.11 for
both diagonals A and E, one simply checks which key candidates lead to a collision
of any byte value a′i = e′i between all four pairs of diagonals A and E. However, the
colliding byte positions might differ between two diagonal pairs, e.g., for the first
pair of diagonals the colliding bytes are a′i = e′i and for the second pair of diagonals
the colliding bytes are a′j = e′j , with i 6= j. If a collision occurs between all four pairs
of diagonals A and E, then the corresponding choice of the sub key is treated as a
possible sub-key candidate and stored for the following brute-force key search.

After computing the list of possible sub keys for all 4 diagonals the final brute-force
key search can be performed. Therefore all possible combinations of 4-byte sub keys
are checked against a known plaintext-ciphertext pair.

5.6.2 Analysis

The following section states the main results of the cache-collision attack on the ARM
Cortex-A8 and the ARM Cortex-A9 processor. The attack of the full 10-round AES
implementation on the ARM Cortex-A8 revealed that a reliable detection of wide collisions
seems to be a challenging task. Hence, we start by attacking a reduced version of the AES,
with only 3 rounds. The histogram in Figure 5.13(a) visualizes the encryption times of a
3-round AES implementation on an ARM Cortex-A8 processor. Five diagonal pairs (A,
E) which result in a wide collision and five diagonal pairs (A, E) which do not result
in a wide collision are encrypted. Due to reasons of noise each encryption is performed
I · R times (I = 400, R = 20). The lower encryption times of plaintexts which lead to
wide collisions are clearly observable. Hence, the execution time can be used to distinguish
diagonals which lead to wide collisions from diagonals which do not lead to wide collisions.
For the ARM Cortex-A9 processor the encryption times of wide collisions and non wide
collisions are also clearly separable. The plots are similar to the one shown for the ARM
Cortex-A8 processor.

With the separable encryption times of these two categories of plaintexts in mind,
Figure 5.13(b) visualizes an approach to determine diagonals which lead to wide collisions.
The plot shows the mean encryption time without noise, i.e., averaged over I ·R encryption
times below a predefined threshold4 of a fixed diagonal pair (A, E). This was done since our

4The threshold might be determined in a preprocessing stage by averaging over multiple encryptions.
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(b) Detection of wide collisions with n = 6.

Figure 5.13: Analysis of wide-collision detection for 3-round AES on a Cortex-A8.
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(b) Detection of wide collisions for n = 8.

Figure 5.14: Analysis of wide-collision detection for 6-round AES on a Cortex-A8.

analysis exposed this statistical value as a quite eligible decision criteria for the detection
of wide collisions. Now we simply consider the n = 6 lowest encryption times as possible
wide collisions. As Figure 5.13(b) indicates, among the 6 chosen diagonals there are 4
real wide collisions and 2 false positives. Note that 4 real wide collisions are required
for a successful attack. In order to visualize the detected wide collisions as well as false
positives, we stored all occurring wide collisions during this run.

Experiments on the ARM Cortex-A8 processor revealed that wide collisions can be de-
tected for AES implementations of up to 6 rounds. Though the histogram in Figure 5.14(a)
shows slightly lower encryption times for plaintexts where a wide collision occurs, the two
categories of plaintexts are harder to distinguish than for the 3-round AES. This in turn
increases the number of false positives, which can be observed in Figure 5.14(b). For more
than 6 rounds of the AES we are not able to reliably detect wide collisions on the ARM
Cortex-A8. As Figure 5.15(a) indicates, the encryption times of plaintexts which lead
to wide collisions and plaintexts which do not lead to wide collisions cannot be distin-
guished anymore. Figure 5.15(b) visualizes the collision detection phase of a run where
not even a single wide collision was detected among 10 chosen diagonal pairs. Though
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Figure 5.15: Analysis of wide-collision detection for 7-round AES on a Cortex-A8.

bad collision-detection mechanisms might be overcome by taking more diagonal pairs into
consideration, this drastically increases the complexity of the brute-force key-search phase.
Due to the fact that 4 diagonal pairs are necessary in order to solve Equation 5.11, the
attack requires to test all combinations of 4 diagonal pairs from the set of diagonal pairs
returned from the collision-detection phase. Hence,

(
n
4

)
combinations of diagonal pairs

need to be investigated in the first part of the key search phase and for larger values of n
this drastically increases the complexity of the remaining brute-force key-search phase.

The main reason for this attack to fail on the Cortex-A8 processor seems to be the ad-
ditional noise due to the larger cache-line size. Bogdanov et al. [17] attacked an ARM920T
processor with a cache-line size of 32 bytes, whereas the ARM Cortex-A8 has a cache-line
size of 64 bytes. Simply spoken, on a cache miss the ARM920T only loads 8 table elements
into the cache, whereas the Cortex-A8 loads 16 elements into the cache. By changing the
data type of the AES table elements, from 4-byte integers to 8-byte integers, we are able
to simulate a 32 byte cache-line. Indeed, this setting decreases the number of false pos-
itives in the collision-detection phase for the full 10-round AES implementation on the
ARM Cortex-A8 processor. Moreover, our investigations on the ARM Cortex-A9 proces-
sor, which also has a cache-line size of 32 bytes, confirmed our assumption regarding the
larger cache-line size.

Taking probability theory into consideration clarifies the problem of detecting wide
collisions on processors with a larger cache-line size. There is a total of 4 · 9 lookup oper-
ations into the same T-table in the rounds 1 to 9. The last round of the AES encryption
uses a different T-table, at least in case of the AES implementation shipped with OpenSSL
0.9.7a. Equation 5.12 states the probability of δ consecutive table elements of a T-table
still not being present in the CPU cache after an entire encryption, where δ denotes the
number of table elements per cache line. In case of processors with a cache-line size of
32 bytes each of these lines holds 8 table elements. Hence, the probability of a specific
element still not being present after encrypting the first byte of the second plaintext P2 is
0.3189. However, the ARM Cortex-A8 holds 16 table elements per cache line and hence
the probability is 0.092, which is significantly lower. The corresponding probabilities for
a specific element already being cached are 1 − 0.3189 = 0.6811 and 1 − 0.082 = 0.918,
respectively. In other words, the probability for additional cache collisions, besides the
required wide collisions, is far greater for the ARM Cortex-A8 than for the ARM920T
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and the ARM Cortex-A9. This in turn decreases the overall encryption time of P2 and
makes wide-collisions and non wide collisions nearly indistinguishable according to their
encryption time. The above considerations assume that the cache is large enough in order
to hold all T-tables, i.e., table elements of T-tables do not evict themselves. In case of the
ARM Cortex-A8 and the ARM Cortex-A9 processor this holds true.

A := Block of table elements still not in cache after one encryption.

δ := Number of table elements per cache line.

P (A) =

(
1− δ

256

)36
(5.12)

Table 5.14 lists the specific parameters, according to our investigations, for a success-
ful detection of wide collisions with a high probability. Note that we do not consider
the Google Nexus S in this table since the larger cache-line size of the ARM Cortex-A8
exacerbates the cache-collision attack, i.e., a successful detection of wide collisions seems
to be impossible without changing the AES T-table implementation. The parameter X
determines the maximum number of cycles an encryption is supposed to take. Encryptions
consuming more than X cycles are ignored for the computation of the statistical timing
value S1 (mean encryption time without noise), which will be introduced below. The pa-
rameters N, I, and R correspond to the parameters mentioned in the attack description
above. N determines the number of different diagonal pairs (A,E) chosen. I denotes how
often the remaining bytes are chosen and R the number of times each resulting plaintext
P2 is encrypted in order to achieve stable measurement results.

The second and the third part of Table 5.14 deal with the success probabilities regard-
ing the detection of wide collisions. The corresponding statistical values (S1, ..., S5) are
listed in Table 5.16. These statistical values have been determined empirically and might
differ for other devices. Based on the encryption time of plaintext P2 these statistical
values are computed and output in the online phase. Later on these values act as a deci-
sion criteria in order to distinguish wide collisions from non wide collisions. n denotes the
number of chosen values in the collision-detection phase, n−4 denotes the number of false
positives accepted. For the Acer Iconia A510 we observe a success probability of 75 % if
considering n = 9 values in the collision-detection phase. However, we only observe this
success probability if considering nearly all the statistical values mentioned in Table 5.16.
Since this would increase the overall complexity of the attack, the more realistic approach
would be to choose only one statistical value. In our case, for the Acer Iconia A510, the
best results were achieved using the median of the minimum encryption time (S3). Under
the assumption that n = 9 values are chosen, we achieve a success probability of 38 % in
the collision-detection phase. For the Samsung Galaxy SIII the success probability is even
worse.

The problem concerning the detection of wide collisions is clearly indicated in Ta-
ble 5.15, which stems from a specific run with parameters chosen exactly as stated in
Table 5.14. For each of the four diagonals this table shows x/y, where x denotes the
number of detected wide collisions among the y diagonal pairs chosen. For the diagonals
2 and 4 there is not even a single false positive among the first 4 diagonal pairs chosen.
However, for diagonal 3 we have to choose at least 8 values in order to detect enough
wide collisions and, even worse, in case of diagonal 1 we are not able to detect 4 wide
collisions among n = 10 chosen diagonal pairs. Hence, for this specific run this attack will
not succeed.
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Acer Iconia A510 Samsung Galaxy SIII

X 1800 – 2000 cycles 1200 – 1800 cycles
N 1024 1024
I 800 1000
R 20/40 20

Psuccess considering multiple statistical values.
S1, S2, S3, S4, S5 S1, S2, S5

n = 6 - -
n = 7 13 % 8 %
n = 8 25 % 8 %
n = 9 75 % 33 %
n = 10 75 % 33 %

Psuccess considering only one statistical value.
S3 S5

n = 6 - -
n = 7 - -
n = 8 - -
n = 9 38 % 17 %
n = 10 38 % 17 %

Table 5.14: Parameters and success probabilities for the devices under attack.

Diagonal n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1 1/4 1/5 1/6 1/7 1/8 2/9 3/10
2 4/4 5/5 6/6 6/7 7/8 7/9 7/10
3 2/4 3/5 3/6 3/7 4/8 5/9 5/10
4 4/4 5/5 5/6 5/7 5/8 6/9 6/10

Table 5.15: Number of detected wide collisions among the number of chosen diagonal
pairs.
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Statistical values

S1

Mean encryption time without noise. For a fixed diagonal pair
(A,E) we total the I ·R encryption times of P2, iff the encryption time
is below a predefined threshold (parameter X in Table 5.14). Afterwards
we divide the overall encryption time by the number of considered en-
cryptions.

S2

Mean/median of median encryption time. For a fixed diagonal
pair (A,E) we compute the median of R encryptions of P2. Later on we
consider the mean/median of these I median values as decision criteria.

S3

Mean/median of minimum encryption time. For a fixed diagonal
pair (A,E) we compute the minimum of R encryptions of P2. The
decision criteria is the mean/median of the I minimum encryption times.

S4

Mean/median of encryption times without noise. For a fixed di-
agonal pair (A,E) we total the R encryption times of P2, iff the encryp-
tion time is below a predefined threshold (parameter X in Table 5.14).
The mean/median of these I intermediate values is used to detect wide
collisions.

S5

Mean/median of the mean of the r-fastest encryptions. For a
fixed diagonal pair (A,E) we compute the mean of the r = 5 fastest
encryptions of P2. The decision criteria is the mean/median of these I
intermediate values.

Table 5.16: Most promising statistical values for the detection of wide-collisions.
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Phase n = 4 n = 6 n = 9

Online phase ∼ 227 ∼ 227 ∼ 227

Key-search phase (find all possible sub-key candidates) ∼ 229 ∼ 233 ∼ 236

Key-search phase (test all possible sub-key candiates ∼ 232 ∼ 248 ∼ 260

Table 5.17: Attack complexity given in AES encryptions.

5.6.3 Complexity

Obviously, the more diagonal pairs one considers, the higher becomes the probability to
detect four wide collisions among the chosen ones. However, by choosing n ≥ 6 the
complexity of the brute-force step increases drastically. The complexity of the online
phase for both plaintexts (P1 and P2) is given by N · I · R · 2 AES encryptions for each
diagonal. Hence, the overall complexity of the online phase for all four diagonals is denoted
as N · I · R · 2 · 4. In our case, for a successful run — N = 1 024, I = 1 000, R = 20 —
this yields a complexity of approximately 227 AES encryptions. The complexity of the
collision-detection phase can be ignored since one simply chooses n diagonal pairs with
the lowest encryption times. The complexity of the last phase, namely the key-search
phase, mainly depends on the number of chosen diagonal pairs, denoted as n. Again, this
parameter depends on the expectation rate of false positives. If we expect many false
positives, n must be higher. Otherwise, n can be reduced to a minimum of n = 4 diagonal
pairs per diagonal. As Equation 5.11 indicates, only one out of the ten AES rounds is
computed, which reduces the complexity by a factor of 1

10 . Furthermore, Bogdanov et
al. [17] claim that a key candidate only rarely survives the check of the first diagonal pair
and hence they reduce the complexity by a factor of 1

4 . The complexity for the first part
of the key-search phase is given by

(
n
4

)
·232 · 1

10 ·
1
4 ·4. As our experiments indicate, at least

n = 9 possible wide collisions must be taken into consideration in oder for this attack to be
realistic. Hence, the first part of the key-search phase consists of approximately 236 AES
encryptions. According to Bogdanov et al. [17] each of the four diagonals yields 256 ·

(
n
4

)
sub-key candidates. For a choice of n = 9 we retrieve 32 256 possible sub-key candidates
per diagonal. Since these sub-key candidates have to be enumerated exhaustively this
yields a remaining complexity of 32 2564 ≈ 260 AES encryptions. In contrast, considering
only n = 6 diagonal pairs we retrieve 3 840 possible sub keys, which leads to a remaining
complexity of 3 8404 ≈ 248 AES encryptions. Table 5.17 summarizes the complexity of the
cache-collision timing attack for different values of n.

Since only the measurement samples must be gathered directly on the device under
attack, the remaining attack steps might be done on a more powerful machine. With
the advent of AES New Instructions (AES-NI) in the Intel Westmere family a new era
in terms of encryption performance began for the AES. According to [7] an Intel Core i7
processor with 6 cores, each clocked at 3.3 GHz, and hyper-threading technology is capable
of performing an AES encryption in 3.84 cycles. This results in about 241 AES encryptions
per hour, which makes the complexity mentioned above less awkward, at least for n = 6.

5.6.4 Summary

Since the Acer Iconia A510 and the Samsung Galaxy SIII both employ the same processor
architecture, and even the same operating-system version we would expect both devices to
have the same success probability. However, our investigations showed that the Samsung
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Galaxy SIII has a worse success rate than the Acer Iconia A510. In order to get a brief
overview of the running tasks and processes on both devices we used the adb shell (Android
Debug Bride), which is part of the Android SDK. This analysis revealed that there are far
more processes running on the Samsung Galaxy SIII than on the Acer Iconia A510.

Under certain circumstances, i.e., considering multiple statistical values in parallel, we
are able to detect wide collisions with n ≥ 6. However, the brute-force complexity for the
remaining key space is too large.



Chapter 6

Conclusions

In this master’s thesis we investigated the applicability of cache attacks on today’s mobile
devices. The need for this work arose from the popularity of mobile devices and their
ubiquitous usage scenarios. Since cache attacks have been claimed to be launched success-
fully on desktop computers and an ARM9 board, the aim of this work was to analyze such
attacks according to their applicability on state-of-the-art mobile devices. We strongly fo-
cused on real-world environments rather than the commonly stated laboratory constraints.
Our investigations are based on mobile devices featuring a fully-functioning operating sys-
tem. The only requirement for the investigated attacks to work is a rooted smartphone
or tablet computer. We analyzed three different approaches aiming at recovering a secret
AES key.

In particular, we proposed a new attack approach based on the access-driven attack
by Osvik et al. [46]. This approach investigates memory accesses of the AES software
implementation. We refer to this approach as cache-access pattern analysis since we
visualize memory accesses into precomputed AES T-tables. By comparing the gathered
memory-access patterns with precomputed access patterns we are able to extract the used
secret key. The analysis of cache-access patterns has been shown to be a rather promising
attack. Most importantly, the fact that AES T-tables are usually not properly aligned
allows us to recover the whole secret key without a subsequent brute-force attack. A
proper alignment of T-tables might be achieved by a single statement within the source
code. This simple countermeasure is sufficient in order to prevent us from recovering the
whole key immediately. However, depending on the cache-line size we are still able to
reduce the key space at least from 128 bits to 64 bits. In case of smaller cache-line sizes
the key space might be reduced even further, i.e., 48 bits on systems with a cache-line size
of 32 bytes. With the introduction of AES New Instructions on modern Intel processors a
key space of 48 bits might be searched exhaustively within a few days. Thus, a remaining
key space of 48 bits and the fact that we are able to gather the necessary cache-access
patterns within just a few minutes imposes a serious threat for today’s mobile devices.
Therefore, we heavily stress the importance of countermeasures.

Secondly, we investigated the time-driven attack suggested by Bernstein [15]. This
attack assumes that an attacker gathers statistical information for many encryptions and
organizes these encryptions in two sets. The first set represents the gathered information
of encryptions under a known key and the second set represents the gathered information
of encryptions under an unknown key. Given enough measurement samples one searches
for correlations between the statistical information of these two sets of encryptions and
tries to deduce the secret key. We consider this attack to be heavily susceptible to noise
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related to processes running in parallel on the system. Thus in our scenarios it did not
yield reliable results.

Finally, we also analyzed the time-driven attack suggested by Bogdanov et al. [17].
Though this attack was initially launched on an ARM9 board we analyzed the applicability
of this attack on current mobile devices featuring a full operating system. The main idea of
their attack is to search for two plaintexts, such that specific state bytes collide, i.e., access
the same cache-line. For a cache-line size of 64 bytes we were able to reproduce their attack
only for a reduced version of the AES, i.e., 6 rounds. However, for a cache-line size of 32
bytes we were able to reproduce it for the full 10-round AES. Due to the remaining brute-
force complexity of approximately 260 AES encryptions we do not consider this attack as
a real threat. Nevertheless, it might serve as a strong basis for subsequent attacks.

Though time-driven attacks require far more measurement samples in order to exploit
the leaked timing information these kinds of attacks are considered far more realistic and
might be applicable for a wide range of mobile devices. The manifold attack scenarios
on mobile devices do not necessarily require attacks to run in a minimum of time. For
instance, an adversary might be in possession of the mobile device and hence does not
care whether the attack takes a few hours or just a few seconds. Supposing a scenario in
which one attacks the disk encryption seems to be reasonable.

Overall we conclude that though time-driven attacks require far less knowledge of the
device under attack these attacks are more prone to noise, generated by other processes,
than access-driven attacks. This results from the fact that time-driven attacks rely on the
encryption time alone.

Future research in this area might investigate the applicability of trace-driven attacks
on mobile devices. As suggested by Bertoni et al. [16] the usage of performance counters
might facilitate an attacker by gathering the necessary memory-access traces. Given the
fact that ARM Cortex-A series processors indeed employ such performance monitors this
seems to be a rather reasonable approach.

Another important issue might be the implementation of countermeasures. For in-
stance, Cortex-A series processors support a feature called cache lockdown, which prevents
the eviction of specific data within the cache. Such techniques might be employed in order
to prevent AES T-table elements from being evicted, thus resulting in constant encryption
times.
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Definitions

A.1 Abbreviations

ADB Android Debug Bridge
AES Advanced Encryption Standard
CPU Central-Processing Unit
DVM Dalvik Virtual Machine
JNI Java Native Interface
LRU Least-Recently Used
MMU Memory-Management Unit
NDK Native Development Kit
PMCCNTR Cycle Count Register
PMCNTENCLR Count Enable Clear Register
PMCNTENSET Count Enable Set Register
PMCR Performance Monitor Control Register
PMUSERENR User Enable Register
SDK Software Development Kit
TSC Intel’s Time-Stamp Counter

A.2 Used Symbols

L1 S L1 cache size
L1 B L1 cache-line size
L1 W L1 cache associativity
δ Maximum number of T-table elements per cache line
γ Number of cache sets a T-table is supposed to consume

72



Appendix B

Device Specifications

Acer Iconia A510

Processor Cortex-A9
Processor implementation Nvidia Tegra 3 1.4 GHz quad core
Instruction-set architecture ARMv7
Out-of-order execution yes
L1 cache size 32 KB
L1 cache associativity 4 way
L1 cache-line size 32 byte
L1 cache sets 256
Operating system Android 4.0.4

Google Nexus S

Processor Cortex-A8
Processor implementation Exynos 3 Single 1 GHz
Instruction-set architecture ARMv7
Out-of-order execution no
L1 cache size 32 KB
L1 cache associativity 4 way
L1 cache-line size 64 byte
L1 cache sets 128
Operating system Android 2.3.4

Samsung Galaxy SIII

Processor Cortex-A9
Processor implementation Exynos 4 Quad 1.4 GHz
Instruction-set architecture ARMv7
Out-of-order execution yes
L1 cache size 32 KB
L1 cache associativity 4 way
L1 cache-line size 32 byte
L1 cache sets 256
Operating system Android 4.0.4
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Appendix C

Source Code

C.1 Kernel Module

This section outlines the necessary basics in order to compile a kernel module for the
Android platform. Sylve [45] provides a great tutorial on how to compile kernel modules
for Android. We followed his instructions in order to build our kernel module successfully.

For the purpose of cache attacks a kernel module, as outlined in Listing C.1, is required
in order to grant user-space applications access to the cycle-count register. Compiling
kernel modules requires the appropriate kernel sources of the device under attack. Fortu-
nately, the kernel sources of Android-based mobile devices can be found on the website of
the manufacturer. Otherwise, the use of any state-of-the-art search engine should reveal
the location of the correct kernel sources.

Figure C.1 outlines the basic steps in order to load a kernel module on an Android
device. In case insmod returns an error the dmesg command might reveal further infor-
mation about the problem. The next few paragraphs briefly outline the necessary steps
for compiling the kernel module for different mobile devices. Furthermore, we outline
encountered problems and their solutions.

Listing C.1: Kernel module to enable the cycle-counter register within the user space on
single-core devices.
#include <l i nux /module . h>
#include <l i nux / ke rne l . h>

MODULE DESCRIPTION(”Enables the ccnt r e g i s t e r with in user−space app l i c a t i o n s ” ) ;
MODULE LICENSE( ”GPL” ) ;

int i n i t modu l e ( )
{

/* Enable user−mode ac c e s s to t h e per formance coun te r */
asm volat i le ( ”mcr p15 , 0 , %0, c9 , c14 , 0” : : ” r ” ( 1 ) ) ;
return 0 ;

}

void cleanup module ( )
{

/* Di s a b l e user−mode ac c e s s to t h e per formance coun te r */
asm volat i le ( ”mcr p15 , 0 , %0, c9 , c14 , 0” : : ” r ” ( 0 ) ) ;

}

Google Nexus S. In case of the Google Nexus S the kernel source can be found at
https://android.googlesource.com/kernel/samsung.git. After checking out the re-
quired kernel version, in our case android-samsung-2.6.35-gingerbread, one should be able
to compile kernel modules for the Google Nexus S as outlined in Listing C.2.
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user@system:~/android-sdk-linux/platform-tools$ ./adb push /path/to/kernel-module/enableccnt.ko /sdcard/enableccnt.ko

558 KB/s (24932 bytes in 0.043s)

user@syste:~/android-sdk-linux/platform-tools$ ./adb shell

shell@android:/ $ su

shell@android:/ # insmod /sdcard/enableccnt.ko

shell@android:/ # lsmod

enableccnt 504 0 - Live 0xbf028000

btlock 1584 0 - Live 0xbf024000

Si4709_driver 16195 0 - Live 0xbf01c000

exfat_fs 17079 0 - Live 0xbf013000 (P)

exfat_core 59615 1 exfat_fs, Live 0xbf000000 (P)

shell@android:/ #

Figure C.1: Load kernel module on an Android device.

Trying to load the kernel module on the Google Nexus S yielded the following error
message: insmod: init module ’/sdcard/enableccnt.ko’ failed (Exec format error). Further-
more, the dmesg output returned the error message: enableccnt: version magic ’2.6.39.4
SMP preempt mod unload ARMv7’ should be ’2.6.39.4+ SMP preempt mod unload ARMv7’.
As suggested by Hommey [27], we solved this problem by creating a file .scmversion with
the content -ge382d80 within the kernel-source folder. The appropriate content can be
extracted from /proc/version on the Google Nexus S. Afterwards we compiled and loaded
the kernel module again. This time it worked properly.

Listing C.2: Building the kernel module for the Google Nexus S.
#!/ b in / bash −
SDK ROOT=’%path to your android sdk root f o l d e r%’
NDKROOT=’%path to your android ndk root f o l d e r%’
KERNEL SOURCE=’%path to your Google Nexus S ke rne l source f o l d e r%’
KERNELMODULE=’%path to ke rne l module%’

# l o c a t e t h e arm c r o s s c omp i l e r t o o l c h a i n
TOOLCHAIN=$ ( f i nd ${NDKROOT} −name ”* androideabi−gcc ” | sed ’ s / gcc$ // ’ )

# cr e a t e c o n f i g u r a t i o n f o r t h e Google Nexus S
cd $KERNEL SOURCE
make ARCH=arm he r r i n g d e f c o n f i g CROSS COMPILE=${TOOLCHAIN} modules prepare

# bu i l d t h e k e r n e l module
make ARCH=arm CROSS COMPILE=${TOOLCHAIN} −C ${KERNEL SOURCE} M=${KERNELMODULE} modules

# copy the k e r n e l module to t h e smartphone
$SDK ROOT/platform−t o o l s /adb push ${KERNELMODULE}/ enab leccnt . ko / sdcard / enab leccnt . ko

Acer Iconia A510. In case of the Acer Iconia A510 we found the corresponding
source code at http://support.acer.com. Since this mobile device employs a multi-core
processor we use a slightly different kernel module. As outlined in Listing C.3 we ensure
that the cycle-count register is enabled on a all active CPUs. Since usually only the CPU
0 is active the cycle-count register will be enabled only on this CPU. Obviously, the attack
application must be pinnend to the same CPU in order to prevent this process from being
executed on a different core and thus from failing to read the cycle-count register. In order
to pin the attack application to a specific CPU we use the syscall sched_setaffinity.

Listing C.4 outlines the basic steps in order to compile the kernel module. Preparing
the kernel source for building the kernel module requires a .config file. In case of the
Acer Iconia A510 this file can be found on the device (/proc/config.gz). Hence, we
simply copy this file to the extracted kernel-source folder and continue by calling the
make target module_prepare with the right path to the toolchain used for the Android
platform, followed by the corresponding target used to compile the kernel module itself.
Compiling and loading the kernel module on the Acer Iconia A510 did not cause any
problems.

http://support.acer.com
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Listing C.3: Kernel module to enable the cycle-counter register within the user space on
multi-core devices.
#include <l i nux /module . h>
#include <l i nux / ke rne l . h>
#include <l i nux /smp . h>

MODULE DESCRIPTION(”Enables the ccnt r e g i s t e r with in use r space ” ) ;
MODULE LICENSE( ”GPL” ) ;

stat ic void enable (void *unused )
{

asm volat i le ( ”mcr p15 , 0 , %0, c9 , c14 , 0” : : ” r ” ( 1 ) ) ;
}

int i n i t modu l e ( )
{

unsigned int value ;

/* Ca l l f u n c t i o n t h a t e n a b l e s ccn t r e g i s t e r on a l l a c t i v e CPUs . */
on each cpu ( enable , NULL, 0 ) ;
return 0 ;

}

void cleanup module ( )
{

/* Di s a b l e user−mode ac c e s s to t h e per formance coun te r */
asm volat i le ( ”mcr p15 , 0 , %0, c9 , c14 , 0” : : ” r ” ( 0 ) ) ;

}

Listing C.4: Building the kernel module for the Acer Iconia A510.
#!/ b in / bash −
SDK ROOT=’%path to your android sdk root f o l d e r%’
NDKROOT=’%path to your android ndk root f o l d e r%’
KERNEL SOURCE=’%path to your Acer I con i a A510 ke rne l source f o l d e r%’
KERNELMODULE=’%path to ke rne l module%’

# l o c a t e t h e arm c r o s s c omp i l e r t o o l c h a i n
TOOLCHAIN=$ ( f i nd ${NDKROOT} −name ”* androideabi−gcc ” | sed ’ s / gcc$ // ’ )

# r e t r i e v e t h e c o n f i g u r a t i o n f i l e d i r e c t l y from the t a b l e t
$SDK ROOT/platform−t o o l s /adb pu l l / proc / con f i g . gz
gunzip con f i g . gz
cp con f i g $KERNEL SOURCE/ . c on f i g

# prepare t h e k e r n e l s ou r c e s
cd $KERNEL SOURCE
make ARCH=arm CROSS COMPILE=${TOOLCHAIN} modules

# f i n a l l y b u i l d t h e k e r n e l module i t s e l f
make ARCH=arm CROSS COMPILE=${TOOLCHAIN} −C ${KERNEL SOURCE} M=${KERNELMODULE} modules

# and copy the k e r n l e module to t h e t a b l e t computer
$SDK ROOT/platform−t o o l s /adb push ${KERNELMODULE}/ enab leccnt . ko / sdcard / enab leccnt . ko

Samsung Galaxy SIII. The appropriate kernel sources for the Samsung Galaxy SIII
can be found at http://opensource.samsung.com. After extracting the kernel-source
archive one simply uses the bash script outlined in Listing C.5 in order to prepare the
kernel source and compile the kernel module outlined in Listing C.1.

In case of the Samsung Galaxy SIII the appropriate .config file could not be lo-
cated on the device. Fortunately, the README file shipped with the kernel source outlines
how to generate the .config file for the Samung Galaxy SIII kernel. Though in general
it is possible to compile kernel modules without compiling the whole kernel source, we
ran into troubles when trying to load the kernel module on the device. The command
insmod enableccnt.ko returned the following error message: insmod: ini module ’/sd-
card/enableccnt.ko’ failed (Exec format error). Furthermore, the dmesg command returned
enableccnt: no symbol version for module layout. In our case building the whole kernel
source, as outlined in Listing C.5, did the trick and we were able to load the resulting
kernel module successfully.

http://opensource.samsung.com
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Listing C.5: Building the kernel module for the Samsung Galaxy SIII.
#!/ b in / bash −
SDK ROOT=’%path to your android sdk root f o l d e r%’
NDKROOT=’%path to your android ndk root f o l d e r%’
KERNEL SOURCE=’%path to your Samsung Galaxy S I I I ke rne l source f o l d e r%’
KERNELMODULE=’%path to ke rne l module%’

# l o c a t e t h e arm c r o s s c omp i l e r t o o l c h a i n
TOOLCHAIN=$ ( f i nd ${NDKROOT} −name ”* androideabi−gcc ” | sed ’ s / gcc$ // ’ )

# cr e a t e c o n f i g u r a t i o n f o r Samsung Galaxy S I I I
cd $KERNEL SOURCE
make ARCH=arm m0 00 de f con f i g

# bu i l d comp le t e k e r n e l
make CROSS COMPILE=${TOOLCHAIN}

# bu i l d t h e k e r n e l module
make ARCH=arm CROSS COMPILE=${TOOLCHAIN} −C ${KERNEL SOURCE} M=${KERNELMODULE} modules

# and copy the k e r n e l module to t h e smartphone
$SDK ROOT/platform−t o o l s /adb push ${KERNELMODULE}/ enab leccnt . ko / sdcard / enab leccnt . ko
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