
Masterarbeit

Testen von mobilen HTML5
Web-Applikationen

Stefan Mayer

stefan.mayer@student.tugraz.at

————————————–

Institut für Softwaretechnologie (IST)
Technische Universität Graz

Inffeldgasse 16B/II,
8010 Graz, Österreich

Graz University of Technology

Begutachter und Betreuer: Univ.-Prof. Dipl.-Ing.Dr. techn.Wolfgang Slany

Graz, Februar 2012

Master’s Thesis

Testing of Mobile HTML5
Web-Applications

Stefan Mayer

stefan.mayer@student.tugraz.at

————————————–

Institute for Software Technology (IST)
Graz University of Technology

Inffeldgasse 16B/II,
8010 Graz, Austria

Graz University of Technology

Assessor and supervisor: Univ.-Prof. Dipl.-Ing.Dr. techn.Wolfgang Slany

Graz, February 2012

Abstract

Over the past years, smartphone sales grew exponentially. These phones allow to install
custom applications in an easy way and additionally bring a good web experience to mobile
devices. They allow working with the web on the go and using even desktop web pages on a
small screen. Especially the WebKit based mobile browsers support many of the new HTML5
and CSS3 features.

Within the rise of the smartphones, the mobile commerce has grown. Nearly every operating
system on mobile devices uses a different programming language for their applications.
Companies had to choose a limited amount of supported systems, as the development of
such apps is expensive. An application developed for one system is incompatible with the
others. The solution to this problem is HTML5 and CSS3. They allow to create native
alike web applications which run on nearly all smartphone browsers. This allows to write
applications for many different mobile devices without the need to reimplement it in different
programming languages.

This thesis describes the new features HTML5 and CSS3 offer. They allow to create native
alike mobile web applications and access smartphone specific functions like the geolocation
or the compass within the browser. Additionally some promising mobile frameworks are
presented, which allow to use the new features in an easier way. They also smooth out some
of the differences between the browsers on different devices. Tools and methods are described
how to test such mobile web applications. The document covers test driven development,
behaviour driven development, continuous integrations, nightly builds and GUI testing. For
each of those different approaches, the appropriate tools and strategies are presented.

Keywords: HTML5, CSS3, JavaScript, mobile, web, framework, testing, iPhone, Android,
BlackBerry, Windows Phone 7, test driven development (TDD), behaviour driven development
(BDD), continuous integration (CI), GUI testing

Kurzfassung

In den letzten Jahren stiegen die Smartphone Absatzzahlen exponentiell. Sie erlaubten
es endlich das Internet auch auf mobilen Geräten mit einem kleinen Bildschirm einfach
und bedienerfreundlich zu nutzen. Vor allem die auf WebKit basierenden mobilen Browser
ermöglichen neuste Technologien wie HTML5 und CSS3 auf mobilen Endgeräten.

Mit dem Boom der Smartphones ist auch das Interesse der Unternehmen am mobilen e-
Commerce gestiegen. Jedoch verwenden die unterschiedlichen Betriebssysteme verschiedene
Programmiersprachen für die Applikationsentwicklung. Firmen mussten daher aus Kosten-
gründen entscheiden für welche Plattformen sie ihre Applikationen entwickeln lassen wollten.
Das Entwickeln einer mobilen Anwendung ist sehr kostspielig und die Programme für ein
bestimmtes mobiles Betriebssystem sind inkompatibel zu den anderen. Die Lösung dieses
Problems sind HTML5 und CSS3. Diese beiden Technologien erlauben das Entwickeln von
mobilen Web-Anwendungen, die sich wie eine native Applikation anfühlen. Die Anwendungen
sind danach auf den Browsern der verschiedenen Smartphones lauffähig und müssen nicht
neu implementiert werden.

Die vorliegende Arbeit konzentriert sich auf das Erstellen dieser so genannten mobilen Web-
Apps und wie sie getestet werden können. Zuerst werden die neuen Features von HTML5
und CSS3 erklärt und gezeigt wie sie eingesetzt werden können um Smartphone-spezifische
Funktionen wie die Bestimmung des Aufenthaltsortes oder den Kompass im Browser zu
verwenden. Zudem werden Frameworks vorgestellt, die das einfache Nutzen dieser Features
erlauben und Unterschiede zwischen den Browsern korrigieren. Danach folgen Programme,
Frameworks und Strategien welche das Testen dieser mobilen Web-Apps ermöglichen. In der
Arbeit werden Strategien und Programme für Test-Driven Development, Behaviour Driven
Development, Continuous Integration, Nightly Builds und das Testen der GUI vorgestellt.

Schlüsselwörter: HTML5, CSS3, JavaScript, Web, mobil, Frameworks, Testen, iPhone,
Android, Blackberry, Windows Phone 7, Test Driven Development (TDD), Behaviour Driven
Development (BDD), Continuous Integration (CI), GUI Tests

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Acknowledgements

First of all I would like to thank Martin Bachler, my adviser at the NETCONOMY Software
& Consulting GmbH, and Johann Blauensteiner for their input and help during the work
on this master thesis. I would also like to thank my working colleagues at the company for
creating a friendly and special working atmosphere. Most importantly I would like to thank
my friends and family for their support.

Graz, February 2012 Stefan Mayer

Contents

List of Tables iv

List of Figures vi

1 Introduction 1
1.1 Outline . 3
1.2 Scope . 3

2 What is HTML5 4
2.1 HTML5 . 4

2.1.1 Doctype . 4
2.1.2 New Tags . 7
2.1.3 Changes to Existing Tags . 10
2.1.4 Application Cache . 13
2.1.5 JavaScript APIs . 14

2.2 CSS3 . 20
2.2.1 Media Queries . 20
2.2.2 Orientation and Aspect Ratio . 21
2.2.3 Resolution and Pixel Ratio . 21
2.2.4 Decorative Elements . 21
2.2.5 Transformations . 24
2.2.6 Transitions . 24
2.2.7 Animations . 25

2.3 URI schemes . 25

3 Current Smartphone Browsers 27
3.1 iOS . 27
3.2 Android . 28
3.3 Windows Phone . 28
3.4 BlackBerry . 29
3.5 MeeGo . 29
3.6 WebOS . 30
3.7 Cross Platform Browser . 30

3.7.1 Firefox for Mobile . 30
3.7.2 Opera Mobile . 31

i

4 Testing 33
4.1 Agile Testing . 33

4.1.1 Technology-Facing Tests that Support the Team 34
4.1.2 Business-Facing Tests that Support the Team 34
4.1.3 Business-Facing Tests that Critique the Application 35
4.1.4 Technology-Facing Tests that Critique the Application 35

4.2 Test Driven Development . 35
4.2.1 Test Double Pattern . 36

4.3 Behaviour Driven Development . 38

5 Frameworks 39
5.1 jQuery Mobile . 39
5.2 Sencha Touch . 41
5.3 Other Frameworks . 44

5.3.1 jQTouch . 45
5.3.2 Jo . 46

5.4 Summary . 46

6 Testing-Frameworks 48
6.1 In-Browser Testing-Frameworks . 48

6.1.1 QUnit . 48
6.1.2 YUI Test . 49
6.1.3 Jasmin . 51
6.1.4 Siesta . 52

6.2 Headless Testing-Frameworks . 53
6.2.1 Envjs and Rhino . 53
6.2.2 Zombie.js and Node.js . 53
6.2.3 PhantomJS . 54

6.3 Test Driver . 54
6.3.1 JsTestDriver . 54
6.3.2 Selenium . 58
6.3.3 Twist . 59
6.3.4 EventRecorder . 59

6.4 Stubbing and Mocking Libraries . 60
6.4.1 Sinon.JS . 60

7 Testing Approaches 62
7.1 Testing the HTML5 Features . 62

7.1.1 Feature Detection . 62
7.1.2 Offline Mode . 63
7.1.3 Storage . 63
7.1.4 Geolocation . 64
7.1.5 Motion Sensors . 64
7.1.6 Network . 65

7.2 Continuous Integration and Test Driven Development 66
7.2.1 jQuery Mobile . 67

ii

7.2.2 Sencha Touch . 67
7.3 Testing Nightly Builds . 67
7.4 Debugging . 68

7.4.1 In Browser Debugger . 68
7.4.2 JavaScript Based Debugger . 70
7.4.3 RemoteJS . 71

7.5 GUI Testing . 72
7.5.1 Remote Labs . 72

7.6 Summary . 74

8 Conclusion 78

List of Abbreviations 81

Bibliography 82

iii

List of Tables

1.1 Mobile OS Programming Languages [Wro11] 1

2.1 New HTML5 Tags . 7
2.1 New HTML5 Tags Continued . 9
2.2 Supported Audio and Video Codecs [App11],[Goo12b],[Lim11],[Mic12] 10
2.3 New Input Types . 12
2.4 Input Type Attributes . 13

3.1 Mobile Html5 Feature List, status as December 2011 [Fir11], [Dev11] 32

7.1 Testing Framework Comparison . 77

iv

List of Figures

1.1 AT&T’s Rise in Mobile Data Traffic with the Introduction of the iPhone [Wro11] 2

2.1 IE8 Rendering Modes Algorithm [Siv10] . 6
2.2 Virtual Keyboard Layout Depending on the HTML5 Input Field 11
2.3 CSS3 Text Shadow . 22
2.4 CSS3 Box Shadow . 22
2.5 Rounded Corners . 22
2.6 Linear Gradient [Gas11] . 23
2.7 Radial Gradient [Gas11] . 23
2.8 Multiple Gradients [Gas11] . 23

4.1 Agile Testing Quadrants [CG09] . 34
4.2 Test Double Types[Mes07] . 37

5.1 Simple Page Created with jQuery Mobile . 40
5.2 A Form with jQuery Mobile Widgets . 41
5.3 Sencha Touch Widgets . 44
5.4 jQTouch Kitchen Sink (http://jqtouch.com/) Browser Comparison 46
5.5 Jo Kitchen Sink from http://joapp.com/demos.html 47

6.1 QUnit Result Page on an Android Device . 50
6.2 Jasmin Result Page on an Android Device . 52
6.3 Siesta Example [Bry12] . 53
6.4 JsTestDriver Code Coverage Output . 55
6.5 LCOV Output . 56
6.6 LCOV Detailed Output . 56
6.7 JsTestDriver Eclipse Plugin . 57
6.8 Twist Example . 59

7.1 Windows Phone 7 Location Mocking . 64
7.2 Blackberry Accelerometer Simulation . 65
7.3 Windows Phone 7 Accelerometer Simulation 66
7.4 Mobile Safaris Console on an iPhone . 68
7.5 Android logcat Debugging . 69
7.6 Opera Mobile . 69
7.7 Opera Dragonfly . 69
7.8 Firebug Lite . 70
7.9 Weinre on the Mobile Device . 71

v

http://jqtouch.com/
http://joapp.com/demos.html

7.10 Weinre Inspector with a Selected Element Viewed on a Desktop Browser . . . 71
7.11 Samsung Lab.Dev . 73
7.12 DeviceAnywhere . 74
7.13 Perfecto Mobile [Per11] . 75

8.1 OS Share of Smartphone Sales [Per12] . 79
8.2 Top 8 Mobile OSs in Europe in 2011 [Sta12] 79
8.3 Top 9 Mobile Browsers in Europe in 2011 [Sta12] 80

vi

1 Introduction

In the last years the growth of smartphone sales was exponential. In November 2010 a former
Morgan Stanley analyst predicted that more smartphones than PCs would be sold in 2012.
It already happened in the last quarter of 2010. The traffic to mobile websites grew 600% in
that year. This happened because the smartphones’ web browsers offered a better mobile web
experience than classic mobile phones. Figure 1.1 shows the mobile data traffic over time of
the AT&T network as the iPhone was released. At this time AT&T was the exclusive carrier
of the iPhone in the US. According to Cisco the data usage of an average iPhone user was 4
times higher than any other smartphone platform at the beginning of 2010. By the end of the
same year an iPhone user had only 1.75 times more data usage than an average Android user.
The other platforms were catching up fast as their browsers were getting better. The average
smartphone data usage doubled in 2010 and Cisco predicts that till 2015 the smartphone
data traffic will increase 16-fold to 1.3GB per month for the average user. [Wro11], [Cis11]

Within the rise of smartphones in the last years, the mobile commerce has grown. The
downside of this boom is that there are a lot of different operating systems for smartphones
right now. The applications programmed for one operating system do not work on another
and even the programming language is different on nearly every system. See Table 1.1 for
comparison. Therefore large companies had to choose two or a maximum of three supported
operating systems. Smaller companies could afford programming an application for only one
system. The solution to this problem is HTML5. Modern browser both on desktop and
mobile devices support HTML5 already well. With the new features of this markup language
combined with JavaScript and CSS3, a web application can be developed that works on
all the important smartphone operating systems and still has the look and feel of a native
application. Adobe realised the power of HTML5 and announced on the 9th of November
2011 that they are going to stop supporting flash for mobile devices in favour of HTML5.
[Ado11], [Wro11]

The HTML5 buzzword is commonly understood not only as the markup language, but as a
combination of HTML5, CSS3 and JavaScript which enable the development of native alike

Mobile OS Native Programming Language
Android Java
Bada C++
Blackberry Java, WebWorks, Adobe Air
iOS Objective C
Windows Phone 7 Silverlight

Table 1.1: Mobile OS Programming Languages [Wro11]

1

Chapter 1. Introduction 2

Figure 1.1: AT&T’s Rise in Mobile Data Traffic with the Introduction of the iPhone [Wro11]

web applications. HTML5 itself allows, among other things, new input tags that can make
use of virtual touch-keyboards as they can change their layout depending on the input type.
Data can be stored in a manageable way on the client device and location based services
are possible thanks to the geolocation API (not part of the HTML5 standard, but also a
W3C standard1). The new video and audio tags allow the browser to handle multimedia
files without additional plugins and the Application Cache in combination with the local
storage offers the possibility to use the web application on the browser even without an active
internet connection. With the use of CSS3 animations, smooth transition between pages
are possible analogue to native mobile applications. 2D and 3D transformations of elements
allow a completely different look and feel than classical web sites. Not all features are fully
supported by the current devices, but the support is already quite good and keeps getting
better with every new version of the operating systems.

Programming a mobile web application means moving a lot of the business logic to the client
side, because in order to use the new features offered by HTML5 and CSS3, one has to work
with the JavaScript APIs. As the mobile Internet access is not always stable and fast, the
application should need as few requests as possible. Therefore, some work on the data has to
be moved to the client side and only the results are sent to the server. This allows to use the
application even if the smartphone does not have an active internet connection. Testing of
the client side code was always important, but with web applications it becomes essential.
Modern web applications have a lot more lines of code on the client side, than classical web
sites. The approach how to test these client side code is different than testing on the desktop
or for simple websites. Companies already started to develop frameworks to help testing

1 http://dev.w3.org/geo/api/spec-source.html

Chapter 1. Introduction 3

these web applications. [Joh11]

The main target of this master thesis is to explain the basics of HTML5 and CSS3 and how
to test mobile web apps programmed using the features these technologies offer.

1.1 Outline

The new features of HTML5 and CSS 3 are explained in detail first and afterwards the following
chapter focuses on mobile browsers and their capability to handle those new technologies.
Chapter 4 focuses on general testing and explains the basics of Agile testing, Test-Driven
development and Behaviour-Driven development. To use the full power of HTML5 the average
programmer will use a framework to work with the technologies. Chapter 5 introduces some
promising Frameworks which enable programming of mobile web applications. In order to
deliver well designed and maintainable source code, the applications have to be tested. Testing
frameworks for JavaScript and GUI-Testing on mobile devices are explained in Chapter 6.
The last chapter describes how to use the introduced testing frameworks for different kinds of
testing methods like TDD, GUI-testing and others.

During the creation of this thesis, a mobile web shop was developed using the latest technolo-
gies. The testing methods and frameworks presented were used to test the web shop. All
examples mentioned in this document refer to the developed application, if not otherwise
stated.

1.2 Scope

The focus of this master thesis lies on the new technologies that enable mobile web applications
and how to test them. General testing methods are explained in Chapter 4. The tools,
frameworks and techniques presented in this document are restricted to the mobile web.
Techniques like exploratory testing, security testing or other general testing techniques that are
the same for desktop and mobile web applications are not mentioned as there is already plenty
of literature available. To get more information on testing websites and web applications that
is not unique to mobile devices, see books and articles covering this topic for the desktop
like Exploratory Software Testing from Whittaker [Whi09], Web Security Testing Cookbook
from Hope and Walther [HW08] or Performance Testing Guidance for Web Applications from
Microsoft [Mic07].

2 What is HTML5

The term HTML5 is widely used and refers to more than just the new version of the markup
language most of the time. It has become the buzzword for websites that seem like native
applications and run on every modern browser. HTML5, CSS3 and JavaScript together allow
the development of these new so called web applications. [SH10]

2.1 HTML5

The development on the HTML5 standard started with the arise of the WHATWG in 2004.
The working group was formed because the W3C refused to work on an extension to HTML
and CSS for Web Applications. As the W3C continued to mainly work on the XHTML2
specification, the WHATWG meanwhile worked on a specification called "Web Applications
1.0". Because the WHATWG members were mainly web browser manufacturers and interested
parties, many features of their specification were already implemented by October 2006, while
XHTML2 was still an unimplemented draft. From there on the W3C and the WHATWG
worked together. One of the first things they did was renaming "Web Applications 1.0" to
"HTML5". In October 2009 the XHTML2 working group was shut down. [Pil10]

This chapter lists and explains the most important new features and changes on existing
elements of HTML5. See Chapter 3 for information on the mobile browser support of the
certain tags and APIs. HTML5 is defined in a way that all HTML4 pages still work. To
allow this, the standard separates requirements for authors and user agents. For example, an
author is not allowed to use the plaintext element on the page he/she is designing, while
the browser still has to support this element for backwards compatibility. [W3C11h]

Please keep in mind that this is not a complete list of all new features and changes. Only
the most important and common ones are listed in this document. At the time of writing,
the standard was still a working draft and some elements may have changed. Please see
http://www.w3.org/TR/html5/ for the official document. Other W3C specifications, that
are connected with the buzzword HTML5 in the public, are mentioned under this section as
well.

2.1.1 Doctype

Internet Explorer 5 for Mac was one of the first browsers that supported the standards so
well, that old websites, which were not programmed properly, actually did not work anymore.
Microsoft introduced as solution a special doctype triggering a specific renderer in the Internet

4

http://www.w3.org/TR/html5/

Chapter 2. What is HTML5 5

Explorer. That way older pages were rendered differently than pages with the new doctype.
As the standard was developed further, more doctypes were introduced to trigger different
rendering modes. IE8 already had 4 different modes depending on the doctype of the page.
In Figure 2.1 you can see a diagram of this behaviour drawn by Henri Sivonen.

To get rid of the complex doctypes and the different modes in the browsers’ engines, HTML5
introduced a new simple doctype that is meant to stay the same even for future versions. The
standard is designed with backwards compatibility in mind, to avoid the need of triggering
different rendering engines. Listing 2.1 shows a simple page with valid HTML5 syntax and
the new doctype. [Pil10]

The second syntax that can be used for HTML5 is XML. Please refer to http://www.w3.
org/TR/html5/ for further information about the XML-Syntax. A simple example can be
seen in Listing 2.2. [W3C11h]

1 <! doctype html >
2 <html >
3 <head >
4 <meta charset ="UTF -8">
5 <title >Example document </title >
6 </head >
7 <body >
8 <p>Example paragraph </p>
9 </body >

10 </html >

Listing 2.1: Valid HTML5 Syntax [W3C11h]

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <html xmlns="http: // www.w3.org /1999/ xhtml">
3 <head >
4 <title >Example document </title >
5 </head >
6 <body >
7 <p>Example paragraph </p>
8 </body >
9 </html >

Listing 2.2: Valid HTML5 XML-Syntax [W3C11h]

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

Chapter 2. What is HTML5 6

IE
=I

E8
 o

r
IE

=I
E7

 o
r

IE
=a

 o
r

IE
=E

m
ul

at
eI

E8
 o

r
ab

se
nt

St
ar

t

ir

ks
(I

E
5.

5)

IE
7

St
an

da
rd

s

IE
8

A
lm

os
t

St
an

da
rd

s
IE

8
St

an
da

rd
s

Fr
am

ed
 b

y
C

om
pa

tib
ili

ty

M
od

e
pa

ge
?

ir

ky
 o

r
N

o
D

oc
ty

pe
?

N
o

Ye
s

ir

ky
 o

r
N

o
D

oc
ty

pe
?

A
lm

os
t S

ta
nd

ar
ds

D

oc
ty

pe
?

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

X-
U

A
-C

om
pa

tib
le

<m

et
a>

?

IE
=5

X-
U

A
-C

om
pa

tib
le

H

TT
P

H
ea

de
r?

IE
=I

E8
 o

r
IE

=I
E7

 o
r

IE
=a

 o
r

IE
=E

m
ul

at
eI

E8
 o

r
ab

se
nt

 o
r

ha
s

<s
cr

ip
t>

 fi
rs

t

IE
=E

m
ul

at
eI

E7

IE
=5

IE
=8

 o
r

IE
=E

dg
e

or
 IE

=9
9

or
 IE

=9
.9

D
is

pl
ay

 A
ll

W
eb

Si

te
s…

 P
re

f S
et

?
N

o

Ye
s

D
is

pl
ay

 In
tr

an
et

Si

te
s…

 P
re

f S
et

?

N
o

Is
 th

e
Si

te
 in

In

tr
an

et
 Z

on
e?

Ye
s

N
o

Ye
s

D
om

ai
n

on
 M

S-
M

ai
nt

ai
ne

d
Li

st
?

N
o

Ye
s

IE
=7

IE
=8

 o
r

IE
=E

dg
e

or
 IE

=9
9

or
 IE

=9
.9

IE
=E

m
ul

at
eI

E7

IE
=7

C
om

pa
tib

ili
ty

M

od
e

B
u

on

Pr
es

se
d?

N
o

Ye
s

Fi
gu

re
2.
1:

IE
8
R
en

de
rin

g
M
od

es
A
lg
or
ith

m
[S
iv
10

]

Chapter 2. What is HTML5 7

2.1.2 New Tags

Table 2.1 lists the tags the HTML5 specification is introducing.

Table 2.1: New HTML5 Tags
Tag Description Example
Section Used to structure the docu-

ment. Every section can have
their own h1-h6 elements.

<section>...</section>

Article Represents an independent
piece of information. Meant
to be used for news or blog
entries amongst other things.

<article>...</article>

Aside Information that is only
slightly related to the rest of
the content.

<aside>...</aside>

Hgroup Groups set of h1-h6 elements. <hgroup>...</hgroup>
Header Contains the header of a sec-

tion (title, navigation etc.).
<header>...</header>

Footer Footer of a section (copyright,
author, etc.).

<footer>...</footer>

Navigation Meant to include navigation
elements.

<nav>...</nav>

Figure Contains for example images
or videos within a text flow.

<figure>
<video src="example.webm">
</video>
<figcaption>Example
</figcaption>

</figure>
Continued on Next Page. . .

Chapter 2. What is HTML5 8

Table 2.1 – Continued
Tag Description Example
Audio Used for audio content. The

element provides an API that
can be used to control it via
JavaScript. See Section 2.1.5
for details.

Because the standard is
not defining any codecs that
have to be supported as a min-
imum, every browser supports
different ones. Fortunately
the element supports multiple
sources per audio tag. The
browser is going to choose
the first one it is supporting.
The format of the audio file
is determined through the
MIME-type of the file. The
control parameter allows to
hide or show control elements
for this tag.

<audio controls="controls">
<source src="example.oga" />
<source src="example.mp3" />
<p>

Sorry, your browser
does not support any of
the provided audio
formats!

</p>
</audio>

Continued on Next Page. . .

Chapter 2. What is HTML5 9

Table 2.1 – Continued
Tag Description Example
Video Element to present videos.

Like the audio element it pro-
vides a JavaScript API. See
Section 2.1.5 for details to the
API.
The standard does not state
which codecs have to be sup-
ported as a minimum for this
element. As well as the au-
dio tag, the video element can
therefore have multiple sources
from which the browser can
choose one file it supports.
The type argument is optional,
but has the advantage that the
browser does not have to load
the video file first to determine
the used codec. Every browser
handles the video tag differ-
ently. For example the iPhone
4 (iOS5) opens the video in
the native video player, while
Android 4 plays the video em-
bedded in the website.

<video controls="controls">
<source src="movie.mp4"

type="video/mp4";
codecs="mp4a.40.2" />

<source src="movie.ogv"
type="video/ogg";
codecs="theora, vorbis"/>

<p>
Sorry, your browser
does not support any of
the provided video
formats!

</p>
</video>

Canvas Used to render bitmap graph-
ics on the fly. The JavaScript
API allows the interactive cre-
ation of graphical objects for
games, graphs or other types
of dynamic images.

<canvas id="myCanvas">
Your browser does not
support HTML5-Canvas!

</canvas>

Time Represents a date and/or time. <time datetime="2007-10-05">
October 5

</time>
MathML and SVG This new elements allows the

use of SVG and MathML el-
ements inside the document.
They allow to create scalable
vector graphics respectively
mathematical expression.

<svg>
<circle r="50" cx="50
cy="50" fill="green"/>

</svg>

Table 2.1: New HTML5 Tags Continued

Chapter 2. What is HTML5 10

As already mentioned, the audio and video tag specifications are not containing a minimum
of supported codecs. Table 2.2 lists the codecs which are supported by the current platforms.

Additional elements that support the semantics of a website like progress, meter, details,
summary and output exist. For a complete list see the official document at http://www.w3.
org/TR/html5/.

[W3C11h], [SH10]

Platform Audio Codecs Video Codecs
iOS AAC, MP3, AIF, WAVE MPEG-4 (H.264)
Android AAC, MP3, WAVE, MP4, OGG WebM(VP8), MPEG-4 (H.263 & H.264)
Blackberry AAC, MP3, WMA, OGG MPEG-4(H.263 & H.264), WMV9
Windows Phone MP3, MP4, WebM MP4, WebM

Table 2.2: Supported Audio and Video Codecs [App11],[Goo12b],[Lim11],[Mic12]

2.1.3 Changes to Existing Tags

All changes to existing tags have been chosen carefully, because they are already widely
supported or have a reasonable fallback. For example all modern browsers treat CSS as the
default language for stylesheets and JavaScript as the default scripting language. Now for
the link and the script tag the type attribute is optional. If it is not present the default
languages CSS and JavaScript are chosen. [FR11]

Meta Tag

In order to set the character encoding of the HTML site, the meta tag was simplified. Instead of
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> (still valid)
in HTML5 <meta charset="UTF-8"> can be used. [W3C11h]

Not included in the HTML5 standard, but a working draft at the W3C, too, is the viewport
meta element. First introduced by Apple for the mobile Safari on iOS, the element got soon
implemented by other browser manufacturer. It allows to set the viewport properties with a
CSS syntax. To display desktop sites properly, mobile browsers set the viewport to a size used
by desktop browser and then allow the user to zoom into the areas of interest. The viewport
property allows to set the width, height and zoom values of the viewport. Additionally, the
user-zoom functionality can be disabled completely. [W3C11b]

Input Tag

The input element got a bunch of new types. Browsers that are not supporting the special
type have a fallback to the default input type text. The new types are meant to make specific
inputs easier for the user and additional attributes allow input checking by the browser. For

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

Chapter 2. What is HTML5 11

Figure 2.2: Virtual Keyboard Layout Depending on the HTML5 Input Field

example, the number type supports minimum and maximum values and the tel type offers a
pattern attribute to restrict the input. Tel and email input fields can be validated by the
browser because of their semantics.

Some browsers already offer special input controls for color, date, range and number. Mobile
browsers with a virtual keyboard can change the keyboard layout for faster input depending
on the type. For example, number fields only get a keyboard with numbers and the email
field has a designated key for the @ symbol. As hardware keyboards have a fixed layout, they
can still switch to the number input mode if the browser has the focus on a number field.
Figure 2.2 shows an example of the different modes a virtual keyboard supports depending
on the input field.

Table 2.3 shows the new input types and the allowed attributes for every type. Most attributes
are self-explanatory, while others, like list, are hard to guess. The attributes are explained
in Table 2.4.

[W3C11g], [W3C11h]

Iframe Tag

Iframes can be limited in their functionality with the attribute values sandbox, seamless
and srcdoc. For example, sandboxed iframes are treated as being from a different origin and
all scripts and form submissions are disabled for security reasons. [W3C11h]

Chapter 2. What is HTML5 12

Type Description Supported Arguments
tel Phone-number autocomplete, list, maxlength, pattern,

placeholder, readonly, required, size
search Search fields. Allows the

browser to visually distinguish
this element.

autocomplete, dirname, list, maxlength,
pattern, placeholder, readonly, required,
size

url Url autocomplete, list, maxlength, pattern,
placeholder, readonly, required, size

email Email autocomplete, list, maxlength, multiple,
pattern, placeholder, readonly, required,
size

datetime Date and time autocomplete, list, max, min, readonly,
required, step

date Date only autocomplete, list, max, min, readonly,
required, step

month Month only autocomplete, list, max, min, readonly,
required, step

week Week only autocomplete, list, max, min, readonly,
required, step

time Time only autocomplete, list, max, min, readonly,
required, step

datetime-local Date and time without time-
zone information

autocomplete, list, max, min, readonly,
required, step

number Floating point numbers autocomplete, list, max, min, readonly,
required, step

range Numerical range autocomplete, list, max, min, step
color Colour. Browser can increase

usability with a special colour
picker.

autocomplete, list

Table 2.3: New Input Types

Chapter 2. What is HTML5 13

Attribute Description
autocomplete Disables the autocomplete feature of the browser.
dirname To define the directionality of the input. E.g. right-to-left text.
list Used for elements which list predefined options to the user.
max Maximum value of an element.
maxlength Restricts the length of the input.
min Minimum value of an element.
multiple Allows to specify more than one value (e.g. email addresses).
pattern Regular expression to validate input.
placeholder A small hint that should be displayed to the user for this element.
readonly Boolean to control if the field can be edited.
required Marks required fields.
size Sets the amount of characters a user is going to see while editing the field.
step Defines the granularity of the input by limiting allowed values.

Table 2.4: Input Type Attributes

Additional Attributes

The elements input, select, textarea and button support the new autofocus attribute
to specify which element should get the focus after the page has loaded. The input and
textarea tag additionally got the new placeholder attribute. This attribute allows to
specify a text which is displayed before the user types something into the element.

The form attribute is supported by the elements input, output, select, textarea, button,
label, object and fieldset. It allows to associate an element with a form that can be
anywhere on the page (the element does not have to be a descendant of the form element).

Input, select and textarea got the attribute required. The browser should only submit
the form if all fields marked with required have a valid value.

One important new global attribute is draggable and dropzone, which allow in combination
with the JavaScript API drag & drop. Elements marked as draggable can be dragged into a
dropzone. See Section 2.1.5 for more details on the JavaScript API.

[W3C11h]

2.1.4 Application Cache

A very interesting new feature is the Application Cache. It allows to define how the files of
the web application are cached. This information is contained in the cache manifest file. The
kind of caching can be specified for single files or whole directories. The different cache types
which can be defined for a file or directory are CACHE, NETWORK and FALLBACK. CACHE means
that this file or directory should be cached and only requested via network if the cache is not
up to date or not present. FALLBACK means that the resource is requested via network and if

Chapter 2. What is HTML5 14

not possible (e.g. no internet connection), the defined fallback file is used. NETWORK means
the resource has to be requested all the time. If not available, a 404 error will occur.

To check if the cache is up to date, the manifest file is checked byte-by-byte. This means the
cache manifest has to be changed in order to trigger an update. Therefore, it is recommendable
to include a version number in the file. If an update is necessary, the download of the resources
happen in the background. When the download is complete, the website is not refreshed
automatically. Instead the new cache will be used after the next browser refresh.

It is recommended to include * in the NETWORK part, otherwise every file has to be present
in one of the sections. Files not mentioned will not be loaded, except the page that holds
the cache manifest, which is automatically included and cached. Therefore, websites that
need to be requested from the network all the time, should not have a link to the manifest.
Listing 2.3 shows an example of the file.

See the next chapter for information about how to use the JavaScript API of the Application
Cache.

1 CACHE MANIFEST
2 # Version 1.0.15
3

4 CACHE:
5 images /
6 css/
7 js/
8 index
9 products

10 shopping_cart
11

12 NETWORK :
13 *
14

15 FALLBACK :
16 online_version offline_version

Listing 2.3: Cache Manifest Example

2.1.5 JavaScript APIs

As JavaScript is now the official default scripting language, the specification defines APIs
only for this language. Nearly every new element got its own API. Additional APIs for native
objects like the history, geolocation or the cache exist as well. Most of the APIs are already
supported well. For details on the support see Table 3.1 in Chapter 3.

Chapter 2. What is HTML5 15

Touch Events

Not included in the HTML5 standard, but defined in its own1, is the Touch Events specification.
Touch enabled devices finally got their own JavaScript events. The devices had to emulate
mouse click events in order to work properly on older pages. Now the programmer might
choose a different behaviour for a touch or a click event. Many browsers are still sending both
events in order to stay compatible with older pages. This has to be taken into account when
working with the new events. The official events are touchstart, touchend, touchmove and
touchcancel. [W3C11m]

Multimedia

Besides the HTML attributes, like preload, autoplay, loop, muted, etc., the multimedia
elements video and audio offer an API that allows to control them with JavaScript.

It offers various methods, properties and events to interact with the multimedia elements.
For example, the video or audio can be played, paused, loaded or muted programmatically.
Some properties offer information about the file like the width and height of a video or the
current time and duration. Events like play, pause, ended, waiting, volumechange and
others can be caught via JavaScript. The API allows, for example, to program particular
controls for the element or even define a playlist. With the method canPlayType() it is
possible to determine the codecs of video and audio files the browser might be able to play.
The method returns an empty string if the user agent is confident it cannot render the video
file or play the audio, probably if it is confident it is possible and maybe otherwise. [FR11],
[W3C11g]

Application Cache

The main functionality of the Application Cache is described in Section 2.1.4. This section
focuses on the JavaScript part. The API offers only 2 methods, update() and swapCache().
Update() forces a check of the cache manifest and swapCache() swaps the cache already
before a reload of the page happens. This does not mean that the page is going to change,
but that resources loaded after swapCache() was executed, will be received from the new
cache.

Additionally, the status of the cache can be checked with the attribute status of the
global Application Cache object. The available constants are UNCACHED, IDLE, CHECKING,
DOWNLOADING, UPDATEREADY and OBSOLETE. Every state change of the cache, including errors,
fires an event, which can be handled programmatically.

[SH10]

1 http://www.w3.org/TR/touch-events/

Chapter 2. What is HTML5 16

Online / Offline events

The navigator provides a property concerning the connection state. If the state changes,
the online or offline event is fired. This is no guaranty that there is a stable internet
connection if the property says online. For example flaky connections cannot be detected by
the device. [W3C10c]

Drag and Drop

An element marked as draggable will fire the dragstart event if dragged. The element can
be dragged into a drop target which has to be marked as dropzone and listen to drop events.
The MIME-type the dropzone accepts can be specified as an attribute as well. [W3C11g]

History

As pages loaded with Ajax are very common today and it is necessary in order to allow
animated page transitions, the history API offers to add this pages to the browser history.
The method pushState(data, title [, url]) allows to add data to the state, a page
title and optional a URL. In comparison replaceState(data, title [, url]) overrides
the actual history state. This allows to change the actual data, title and/or URL of the
displayed page without reloading it. [W3C11g]

Canvas

The canvas element allows to draw resolution dependent images on the fly. Those images can
be exported as a Blob or a data URL. The API to draw the image depends on the context.
As of this writing, only the 2D and the WebGL context were available. For example the 2D
context allows transformations of the image, drawing of rectangles, circles, lines, paths, texts,
other images and so on. The WebGL context allows to create, transform and animate 3D
objects on the fly. [W3C11g], [W3C11e], [WHA11]

Geolocation

The geolocation API is not included in the HTML5 standard, but it states an own standard.
It is a none transparent interface for the hardware location sensors, therefore the programmer
does not know how the location is determined by the device. It supports one-shot requests
and repeated position updates.

For one-shot requests the API offers the method getCurrentPosition(). As arguments it
accepts a callback for successful requests, an error callback and an options argument. Possible
options are the Boolean enableHighAccuracy, the timeout and the maximum age of the
position data. The first argument tells the device to use the most accurate sensor, the timeout

Chapter 2. What is HTML5 17

defines how long the application is willing to wait for data and the last argument allows to
request a cached position.

For repeated position updates the method watchPosition() is used. It has the same
arguments than getCurrentPosition(). The difference is that it calls the success callback
on every position change until clearWatch() is called.

The received position object contains the coordinate object and the timestamp when the
location was determined. The coordinate object holds the latitude, longitude and accuracy
of the position. It can also provide the altitude, altitude accuracy, heading and speed if the
device supports it, else these values are null.

[W3C10a]

Orientation and Motion Event

Not included in the HTML5 standard, but another W3C standard, is the
device orientation event standard. The name is confusing as it includes, besides the
orientation event, a motion event as well.

The orientation event provides 3D information on how the device is oriented in relation to the
earth, while the motion event provides information about the acceleration and the current
rotation rate. The compassneedscalibration event tells the website that the compass used
for the orientation event needs calibration.

[W3C11c]

Web Storage

Web storage was earlier included in the HTML5 standard, but now it is developed further
as a stand-alone specification. This client side storage is meant to replace cookies. Two
different types of client side storages exist: The session storage, which gets destroyed as soon
as the session is destroyed and the local storage which stays permanently. The storages offer
methods such as setting, getting and removing items, clearing the whole storage, getting the
amount of items or finding the key of the nth element. The storages can only be accessed
within the same script origin for security reasons, but from every window with the same
session. The specification recommends a limit of 5MB per origin which most devices apply.

[W3C11h], [W3C11o]

Chapter 2. What is HTML5 18

Web SQL Database

The W3C stopped working on this specification because of a lack of independent implementa-
tions (all browser vendors used SQLite as the backend).

WebSQL is meant to bring SQL to the client side of a webpage. It allows to use SQL databases
within JavaScript to work with structured data.

[W3C10d]

IndexedDB

Like the Web SQL database it is meant for large amounts of structured data. As an advantage
over the SQL database it supports high performance searches, but on the downside it only
supports key value pairs. Instead of tables, IndexedDB uses object storages with indexes.
In comparison to the simple web storage, it supports relations, range searches for keys and
allows iterating over a result set. See Listing 2.4 for an example. [W3C11i], [RW10]

1 // Create object store
2 db. createIndex (" FriendNames ", "name", false);
3 var index = db. openIndex (’ FriendNames ’);
4 var id = index.get(’Eric ’);
5

6 // Restrict to names beginning A-E
7 var range = new KeyRange .bound(’A’, ’E’);
8 var cursor = index. openObjectCursor (range);
9

10 while (cursor . continue ()) {
11 console .log(cursor .value.name);
12 }

Listing 2.4: Valid HTML5 Syntax [Gre11]

Server-Sent Events

This specification allows the server to push data to the client after the client had first
initialized a connection. It is not yet well supported on mobile devices, but on desktop
solutions. It has been taken out of the HTML5 specification and is now developed as a
stand-alone specification. [W3C11j]

Web Sockets

Allows the client to initialize a bidirectional communication with the server. Once the socket
is opened the client can call the send() method in order to send data. If the server has sent
data to the client, the onmessage event is triggered. It is a stand-alone specification since
2009, too. [W3C11l]

Chapter 2. What is HTML5 19

Web Workers

As more and more logic is moved to the client side, performance gets an issue. Most modern
computers and even smartphones have multicore processors, but JavaScript is single threaded.
Web workers run in their own thread independently of the main JavaScript thread. This
allows to execute long running processes and still respond to user input events.

In order to keep the DOM operations efficient only the main thread is allowed to change
it. Web workers and the main thread communicate via messages. Primitive types, arrays
and even JSON objects can be exchanged, but functions cannot. This restriction is in place,
because no shared references are allowed between a worker and the main thread. The only
shared object is the web storage, which is thread safe.

[W3C11p]

Network Information

This specification provides an API to enable determining the underlying network type of
the device. The working draft document defines 7 types at the time of writing. unknown,
ethernet, wifi, 2g, 3g, 4g and none. Android uses integer constants instead of the defined
strings for the connection type at the moment. [W3C11k]

File API

This API allows to access local files (on the device) with JavaScript. This is useful, for
example, to manipulate local files or sent multiple files to the server. For security reasons the
script can only access files the user has provided access to. [HL11], [W3C11d]

Media Capture

The media capture feature extends the file upload field. It is meant to allow easier access to
capture devices like cameras or microphones. The specification defines the arguments accept
to define the type of media and capture for telling the browser from where the media should
come. Valid values for accept are image/*, audio/*, or video/*. Capture is an enumerated
attribute which can take one of the following values: camera, camcorder, microphone or
filesystem.

Right now only Android 3+ devices support this API. As fallback all other browsers open
the default file upload dialog.

1 <input type =" file" accept =" image /*" capture =" camera " id=" capture ">

Listing 2.5: Media capture example [W3C11f]

[HL11], [W3C11f]

Chapter 2. What is HTML5 20

Future APIs

Other APIs to access for example the battery status, the calendar or the contacts on the
device are work in progress. They are already a working draft at the W3C, but not yet
implemented. [HL11]

2.2 CSS3

It has nothing to do with HTML intrinsically, but still CSS3 always appears in combination
with the HTML5 buzzword. This is because only with the new version of CSS the features
of HTML5 can be presented in an attractive visual way. Additionally, CSS3 offers with the
media queries a good way to design a page for different screen resolutions.

CSS3 brings a lot of new features and this document does not mention all of them. Only the
features which bring special value to mobile web applications are mentioned here.

2.2.1 Media Queries

One of the most important new feature is the possibility to use CSS media queries. They
allow to trigger different styles for specific resolutions, size and other screen related values.

Media queries define a rule which has to be true in order to apply the style. Media queries
can be used within the link tag to restrict the inclusion of a specific CSS-file or within the
CSS for style expressions.

All media queries mentioned in this document (not a complete list), except the orientation
query, accept the min and max prefixes. They can be combined and allow to define styles for
specific ranges. All media queries can be combined using the and operator.

[Gas11]

Size

The width and the height of a screen can be used as a media query. [W3C10b]

1 @media screen and (min -width: 400 px) { rules }
2 @media media and (min -device -width :800 px) { rules }

Listing 2.6: Media Query Examples for the Width Keyword [Gas11]

These keywords represent the width and the height of the browser window. To work with the
resolution of the device itself CSS3 provides the device-width and device-height keywords.
[Gas11]

Chapter 2. What is HTML5 21

2.2.2 Orientation and Aspect Ratio

This media query is quite helpful on mobile phones which can display the page in landscape
or portrait mode depending on how the user is holding the device. Allowed values are
portrait and landscape. Besides orientation, aspect-ratio and device-aspect-ratio
are available as well. They allow to define styles for specific screen aspect ratios. [Gas11]

1 @media all and (orientation : portrait) { ... }
2 @media all and (orientation : landscape) { ... }

Listing 2.7: Media Query Examples for the Orientation Keyword [W3C10b]

2.2.3 Resolution and Pixel Ratio

Modern smartphone devices already have a quite high resolution regarding their screen size.
For example, the iPhone 4 with Retina display has a resolution of 960 x 640 pixels on a 3.5
inch screen 2 and the Samsung Galaxy Nexus has a resolution of 1280 x 720 pixels on 4.65
inch 3. In order to display websites in a size the user still can work with, the CSS resolution
is less than the physical one. The ratio of the actual devices pixel to the CSS pixels is called
device pixel ratio. The two previously mentioned devices both have a device pixel ratio of 2.
This means one pixel in CSS corresponds to 4 physical pixels on the screen.

For example, to display high resolution images on these screens, two media queries exist for
this purpose. The resolution media feature describes the density of the pixels of the device.
The -webkit-device-pixel-ratio query is only defined for WebKit browsers, but should
be added in the future to the specification. It describes the mentioned ratio between CSS
and physical pixels.

[Gas11], [W3C10b]

1 @media print and (min - resolution : 300 dpi) { ... }
2 @media all and (-webkit -min -device -pixel -ratio: 1.5) { ... }

Listing 2.8: Media Query Examples for the Resolution and Device-Pixel-Ratio Keyword
[W3C10b]

2.2.4 Decorative Elements

With CSS3 a lot of decoration can be added to boxes, borders and texts. Images previously
used to achieve the effect are not necessary any more. This saves bandwidth and allows
mobile devices with a slow internet connection to load the page faster.

2 http://support.apple.com/kb/SP587
3 http://www.samsung.com/at/consumer/mobile-phone/mobile-phone/smartphones/BGT-I9250-

spec?subsubtype=galaxy

Chapter 2. What is HTML5 22

Shadows

Shadows can be added to texts and boxes. The syntax allows to set the position, the blur
radius and the colour of the shadow. Even multiple shadows per element can be defined.

div { text-shadow: x y blur-radius color; }

Figure 2.3: CSS3 Text Shadow Figure 2.4: CSS3 Box Shadow

Rounded Corners

In order to get visually attractive buttons, background-images had to be used. With the
ability to use rounded corners on every element and in combination with the other features,
this is not necessary anymore.

Different values for the rounded corner effect can be defined for every single corner of the
element. A code example can be seen in Listing 2.9 and the result is shown in Figure 2.5.

1 div {
2 border -top -left - radius : 20px;
3 border -top -right - radius : 20px;
4 border -bottom -right - radius : 20px;
5 border -bottom -left - radius : 20px;
6 }

Listing 2.9: CSS3 Rounded Corners Example [Gas11]

Gradients

With this feature some background images might become obsolete. It allows to define a
gradient mathematically. Two different types are possible: the linear gradient and the radial
gradient. Both allow to define the angle and the colours. A minimum of two colours is

Figure 2.5: Rounded Corners

Chapter 2. What is HTML5 23

required, but any amount is possible. Additionally, the radial gradient has the arguments
shape and size.

At the time of this writing, the gradients needed still the browser specific prefixes like -webkit-
or -moz-. Listing 2.10 shows some example code and the results are displayed in Figure 2.6,
2.7 and 2.8.

1 background : -webkit -linear - gradient (135 deg , black , white);
2 background : -webkit -radial - gradient (80% 50%, circle closest -side , white ,

black);
3 background : -webkit -radial - gradient (left , circle farthest -side , white , black

25%, white 75%, black);

Listing 2.10: CSS3 Rounded Corners Example [Gas11]

Figure 2.6: Linear Gradient
[Gas11]

Figure 2.7: Radial Gradi-
ent [Gas11]

Figure 2.8: Multiple Gradi-
ents [Gas11]

Opacity

The opacity of elements can be defined in two ways: there is a stand-alone attribute opacity
and the attribute rgba which allows to define the alpha channel in combination with the
other colour channels.

1 . opacity { opacity : 0.5; }
2 .rgba { background -color: rgba (255 ,255 ,255 ,0.5); }

Listing 2.11: Opacity Syntax [Gas11]

Text Overflow and Line Wrapping

As the screens on mobile devices are quite small, longer texts have to be clipped sometimes.
The new text-overflow feature allows to define the behaviour of this clipping.

1 p {
2 overflow : hidden ;
3 text - overflow : ellipsis ;
4 white -space: nowrap ;
5 }

Listing 2.12: Text Overflow Example [Gas11]

Listing 2.12 shows a possible way to achieve clipping. The style overflow: hidden prevents
the text from being displayed outside the element’s border, white-space: nowrap prevents

Chapter 2. What is HTML5 24

the text to span over multiple lines and the new element text-overflow: ellipsis adds an
ellipsis character, which is basically 3 dots, where the text got clipped. Instead of ellipsis
other values are possible. The keyword value clip cuts the text without adding any additional
characters. At the time of writing, the other values for this property are marked as at risk to
be dropped out of the specification.

With the new word-wrap: <keyword> feature, the browser can be authorized to break words,
to fit into the surrounding element.

[Gas11], [W3C11a]

2.2.5 Transformations

CSS3 introduces 2D and 3D transformations for elements. They can be rotated, translated
or scaled. It is even possible to apply a complex matrix to an element. This allows in
combination with transitions, fancy animations of elements or even whole pages rendered by
the browser itself. Listing 2.13 shows some usage examples.

1 div { transform : rotate (value); }
2 div {
3 transform : translateX (20 px);
4 transform : translateY (15%);
5 }
6 div { transform : skew(skewX ,skewY); }
7 div { transform : scale(scaleX , scaleY); }
8 div { transform : matrix (cos(angle),sin(angle),-sin(angle),cos(angle),X,Y); }
9

10 div { transform : translate3d (translateX ,translateY , translateZ); }
11 div { transform : matrix3d (
12 m01 ,m02 ,m03 ,m04 ,
13 m05 ,m06 ,m07 ,m08 ,
14 m09 ,m10 ,m11 ,m12 ,
15 m13 ,m14 ,m15 ,m16
16); }

Listing 2.13: Transformation Examples [Gas11]

2.2.6 Transitions

With the transition feature the behaviour between two states of an element can be defined.
The default is that the change is applied immediately. For example if a class defines a bigger
font size and is applied to an element, the font changes instantly. Transitions allow a smooth
and defined change between the two states.

The transition-property defines the CSS property the transition is applied to.
Transition-delay and transition-duration control when the transition begins and how
long it lasts. Additional control is offered by the transition-timing-function attribute.
Possible values are ease, linear, ease-in, ease-out, ease-in-out and

Chapter 2. What is HTML5 25

cubic-bezier. The last one allows to customize the transition timing function with the use
of a cubic Bézier curve.

1 h1 {
2 font -size: 150%;
3 transition - property : font -size;
4 transition - duration : 2s;
5 transition -timing - function : ease -out;
6 transition -delay: 250 ms;
7 }

Listing 2.14: Transition Example [Gas11]

2.2.7 Animations

The animations are using the same syntax as the transitions. Additional arguments allow
more functionality. The biggest difference to transitions is, that an animation can have an
unlimited amount of keyframes, while a transition only has two states (start and end). This
means an animation consists of multiple transitions. Additionally, the repetition can be
configured. A simple example can be seen in Listing 2.15. The example animation consists
of three keyframes. The first two define the state of the border and the third also changes
the size of the div. The duration of the animation is 6s, with infinite repeat and alternating
animation sequence.

1 @keyframes ’expand ’ {
2 0% { border -width: 4px; }
3 50% { border -width: 12px; }
4 100% {
5 border -width: 4px;
6 height : 130 px;
7 width: 150 px;
8 }
9 }

10 div {
11 border : 4px solid black;
12 height : 100 px;
13 width: 100 px;
14 box - sizing : border -box;
15 animation : ’expand ’ 6s ease 0 infinite alternate ;
16 }

Listing 2.15: Animation Example [Gas11]

2.3 URI schemes

Although it is no W3C standard and does not have anything to do with HTML5, URI schemes
are still an important feature for mobile devices. There are certain RFCs regarding special

Chapter 2. What is HTML5 26

URI schemes that are well supported on mobile devices. For not supported schemes the
browser displays a meaningful error message to the user.

tel

This scheme is used for telephone numbers. A mobile phone which supports this scheme
allows the user with a simple tap on the link to call the number. Devices which do not
support calling, for example a tablet, open the address book to allow adding of the number.

Call +43 316 12 45 678

sms

The SMS-scheme is supposed to define a message and one or multiple phone numbers. Right
now, Apple supports only a single number which opens the SMS-app without any text.
Android 4+ supports the full RFC.

Please send me a text

mailto

Already supported by every desktop browser since years, mobile browsers support this scheme
as well. It is possible to define the recipients, cc, bcc, the subject and the body. This is
supported by all devices.

Mail

Google maps

It is not a RFC nor a special scheme, but it still opens an application on some devices. A
simple link to a Google maps page is sufficient to open the installed Google maps application.
Browser which do not support this special behaviour open the Google maps page in the
browser. Some devices support to open the navigation application as well.

TU Graz

[W3C10c],[SH10]

3 Current Smartphone Browsers

As many websites do not offer a mobile version, smartphone browsers also have to render
desktop websites correctly. Additionally, smartphone browsers support special tags to limit the
zooming or interpret additional URL schemes to call phone numbers directly. Unfortunately,
the vendors (except Apple) do not offer official documents that describe the capabilities of
their mobile browsers. The only sources are testing platforms to test the support of certain
tags and features of the browser like html5test.com or caniuse.com. Other pages gather
the information from this testing platforms and list supported features for the individual
browsers. This sources are not 100% reliable, as they often only test the capability of a
browser to handle a certain tag, but not if it works as expected. For example, the video and
audio tags are tested if the browser knows them, but not if it can handle any codecs or if the
JavaScript API works correctly. If possible, I tested the tags on the smartphone browsers by
myself and compared them to the results on the websites. As I did not have access to all
devices, for some I had to rely on the accuracy of the websites. Table 3.1 shows an overview
of the browsers and their feature support.

3.1 iOS

On the iOS operating system (used on iPhones, iPods and iPads) the default web browser
is a mobile version of Apples Safari. Like the most default mobile browsers and its desktop
equivalent, the mobile Safari is WebKit based.

Firtman [Fir11] and Deveria [Dev11] only list the features for iOS version 3.2 and up. The 3.2
version of the mobile Safari is already capable of the most HTML5 features, like Application
Cache, web storage, web SQL, geolocation, video tag, canvas, input depended keyboard
layouts and touch events. Most of the CSS3 features, like rounded corners, opacity, 2D
and 3D transformations, are already implemented. With iOS 4.1, Server-Sent Events got
possible. iOS 4.2 introduced Web Sockets and the Motion Sensor API which allows using the
accelerometer and gyroscope on the website. [Fir11], [Dev11]

The newest version, introduced with iOS 5.0, improved the performance of JavaScript,
HTML/CSS rendering and HTML5 canvas. New features of this version are Web Workers
and XMLHttpRequest level 2. The new input field types like date, time, month and range
got their own controls and keyboard layouts. The CSS element position: fixed finally got
supported with iOS5, which allows static header and footer bars as in native applications.
Additionally, the compass can now be used via the device orientation events. [Ban11]

27

html5test.com
caniuse.com

Chapter 3. Current Smartphone Browsers 28

Currently, only the iOS version of Safari has the possibility to define an icon for start screen
bookmarks. If started from that bookmark, the web application can be run in fullscreen
mode and with a splash screen image at start-up. Even the browser controls are not present
for a real native app feeling. A disadvantage is that the website has to include a back button
or navigation options, as the default browser controls are hidden. JavaScript has the ability
to determine if the web application is started in the browser or in fullscreen mode. [App11]

Apple provides a documentation about Safari which is valid for both the desktop and mobile
version. Differences between the version are mentioned in the articles of the documentation1.

3.2 Android

With every major OS update, a new version of the mobile browser is released as well.
Unfortunately, some browser vendors use their own version of the Android browser and are
not updating older devices anymore. For example, the HTC version of the Android 2.x
browser has a bug and ignores the viewport meta tag which allows disabling user zooming.

Like most mobile browsers it is WebKit based and uses the same JavaScript engine as Google’s
Chrome. Since Android 2.1, already many of the new features like the web storage, web SQL,
geolocation, the video tag, 2D transformations and CSS animations are supported. Froyo
(2.2) added a network information API, which allows the web application to determine the
current connection type. Additionally, position: fixed is supported if the user zoom is
disabled. Gingerbread finally added support for the audio tag.

Android 3 is only available for tablets, but it introduced a new version of the Android browser.
Furthermore, this version supports SVG, motion sensors, 3D transformations and the file API.
It has special keyboard layouts for the new HTML5 input types and allows to capture images
and videos with the camera or audio with the microphone. Ice Cream Sandwich (Android 4)
brought the tablet browser version finally to the mobile phones.

[Fir11], [Dev11], [Goo12a]

3.3 Windows Phone

The first browser shipped with Windows Phone 7 was the Internet Explorer Mobile 7 which
was based on the desktop browser Internet Explorer 7. This version did not had any HTML5
support. With the update to Mango (7.5) the phones got Internet Explorer Mobile 9, which
is based on IE9.

Unfortunately, this version still does not support as many of the new HTML5 and CSS3
features as for example the iOS or Android stock browser. It supports the client-side web
storage, but neither web SQL nor the Application Cache. One can make use of the geolocation
API and the multimedia tags video and audio on Windows Phone 7. Like other mobile

1 http://developer.apple.com/library/safari/navigation/index.html

Chapter 3. Current Smartphone Browsers 29

browsers it supports different keyboard layouts for the new input types, HTML5 canvas and
SVG. The supported CSS3 features are only the basic ones like opacity, rounded corners
or 2D transformations. Internet Explorer Mobile lacks in advanced CSS3 features as 3D
transformations and animations and does not support the JavaScript APIs for Web Workers
and Motion Sensors.

[Fir11], [Par11]

3.4 BlackBerry

BlackBerry smartphones and tablets supports HTML5 and CSS3 features already very well.
Additionally, it is possible to deploy HTML5 web applications as native apps to a BlackBerry
device and make use of APIs else only available to native apps. Since version 6 the browser is
WebKit based as well.

Browser version 6 and below were Mango based and only supported the canvas API, SVG
and different keyboard layouts for the new input types. Version 6 introduced support for the
Application Cache, web storage, web SQL, geolocation, web workers and CSS3 features as
opacity, rounded corners, 2D transformations, transitions and animations. A minor update
(6.1) added web sockets and touch event support.

The current version 7 finally added video and audio tag support and is the only stock mobile
web browser that supports remote debugging. This allows to connect a desktop developer
tool like the one included in Chrome to the mobile browser and see the DOM, change CSS
on the fly and debug JavaScript code. The tablet version has the same capabilities as the
smartphone version of the browser, but adds additionally 3D transformations and, since
version 2, WebGL support.

[Fir11]

3.5 MeeGo

At the time of writing, the only available smartphones with MeeGo are the Nokia N9 and the
developer phone N950. MeeGos browser on this smartphones is WebKit based and supports
nearly all features available on Android and iOS. Version 1.2 already supports the Application
Cache, the web storage, web SQL, geolocation, the video and audio tags, web workers, canvas,
SVG, the motion sensor API and XMLHttpRequest level 2.

Only few things are not yet supported, like Web Sockets, special controls for Date, Time,
Month and Range, the remote debugger API, WebGL, the network information API, the
file API and the media capture feature. Except of WebGL, all main CSS3 features like 2D
and 3D transformations, animations, transitions, shadows, rounded corners and opacity are
supported. See Table 3.1 for a detailed list. [Fir11]

Chapter 3. Current Smartphone Browsers 30

3.6 WebOS

Most statistics do not even list this operating system explicitly, because of its low market
share. For example, Gartner [Gar11], Perez [Per12] and StatCounter [Sta12] do not list
webOS (its included in others).

When it comes to HTML5 support, HP’s webOS browser lags in comparison with the other
mobile browsers behind. It is WebKit based and supports the Application Cache, web storage,
web SQL, geolocation, the video and audio tags, canvas, 2D transformations, transitions,
animations and the basic CSS3 features like shadows, rounded corners and opacity.

Unfortunately more advanced features like web sockets, web workers, the motion sensor API,
touch events or the network information API are not yet supported. As HP announced at
the end of 2011 to stop developing webOS devices and to release it as an open-source project,
it is uncertain if the devices will get any future updates.

[Fir11], [Pan11]

3.7 Cross Platform Browser

Firefox for mobile and Opera Mobile are available on multiple platforms. They can be
installed in addition to the stock browser and are using their own rendering engines. Only
the main cross platform browsers are listed here. Others like Dolphin for Android are based
on the stock browser and differ only at the GUI level, or ones like Opera mini have only a
very limited JavaScript and HTML5 support and cannot be used for mobile web applications
with a native look and feel and are therefore not described here.

3.7.1 Firefox for Mobile

Like its desktop equivalent, Firefox for mobile is Gecko based. It is available on Android,
MeeGo and iOS. Since version 6 it supports the Application Cache, web storage, geolocation,
the video and audio tags, server sent events, web workers, canvas, SVG, motion sensors, input
type dependent keyboard layouts and additional controls for inputs like date, time, etc., touch
events, the notification API and as the only one of the mobile browsers IndexedDB.

CSS3 features, like opacity, shadows, rounded corners, 2D transformations, transitions, WebGL
and animations, are supported. Version 7 introduced additional support for web sockets. Only
few features like SQL storage, 3D transformations, remote debugger, XMLHttpRequest level
2, the media capture feature and the network information API do not work in the current
version. [Fir11]

Chapter 3. Current Smartphone Browsers 31

3.7.2 Opera Mobile

Opera mobile is available for Android, Symbian, MeeGo and Windows Mobile. At the time
of writing, the Windows Mobile version lagged the other platforms behind. No version was
available for Windows Phone or Blackberry devices.

Like the desktop version, it uses the Presto engine to render the websites and supports since
version 11 the Application Cache, web storage, web SQL, geolocation, video and audio tags,
server sent events, web sockets, web workers, canvas, SVG, virtual keyboard layouts and
specific controls for the new input types, touch events and the remote debugger features that
allows to connect with Operas DragonFly. See Section 7.4 for details on the remote debugger
feature.

Unfortunately it does not support advanced CSS3 features like animations or 3D transfor-
mations, but features like opacity, rounded corners, text shadows, 2D transformations and
transitions.

[Fir11], [Dev11]

Chapter 3. Current Smartphone Browsers 32

Fe
at
ur
e

Sa
fa
ri

on
iO

S
A
nd

ro
id

Br
ow

se
r

Bl
ac
kB

er
ry

Br
ow

se
r

N
ok

ia
Br

ow
se
r

In
te
rn
et

Ex
pl
or
er

O
pe

ra
Fi
re
fo
x

we
bO

S
Br

ow
se
r

Ve
rs
io
n
te
st
ed

iP
ho

ne
,i
Pa

d
Ph

on
es
(1
+
2.
3,

4.
0)

Ta
bl
et

(3
.0
+
)

Ph
on

es
Ta

bl
et

M
ee
G
o
-N

ok
ia

N
9

W
in
do

w
s
Ph

on
e

M
ob

ile
fo
r
m
ob

ile
M
in
im

um
ve
rs
io
n
te
st
ed

3.
2

1.
5

3.
0

5.
0

1.
0

1.
2

9
11

6
1.
4

A
pp

lic
at
io
n
ca
ch
e

X
X
2.
1+

X
X
6.
0+

X
X

X
X

X
W
eb

st
or
ag
e

X
X
2.
0+

X
X
6.
0+

X
X

X
X

X
X

W
eb

SQ
L
st
or
ag
e

X
X
2.
0+

X
X
6.
0+

X
X

X
X

G
eo
lo
ca
tio

n
X

X
2.
0+

X
X
6.
0+

X
X

X
X

X
X

V
id
eo

X
X
2.
3+

X
X
7.
0+

X
X

X
X

X
X

A
ud

io
X
4.
0+

X
2.
3+

X
X
7.
0+

X
X

X
X

X
X

Se
rv
er
-S
en
t
Ev

en
ts

X
4.
1+

X
X

X
W
eb

So
ck
et
s

X
4.
2+

X
6.
1+

X
X

X
7+

W
eb

W
or
ke
rs

X
5.
0+

X
6.
0+

X
X

X
X

C
an

va
s
A
PI

X
X

X
X

X
X

X
X

X
X

SV
G

X
X
4.
0+

X
X

X
X

X
X

X
M
ot
io
n
Se
ns
or
s

X
4.
2

X
4.
0+

X
X

X
m
oz

H
T
M
L5

Fo
rm

V
irt

ua
lK

ey
bo

ar
ds

X
X

X
X

X
X

X
H
T
M
L5

Fo
rm

N
ew

C
on

tr
ol
s

X
5.
0+

X
X

X
To

uc
h
Ev

en
ts

X
X
2.
1+

X
X
6.
1+

X
X

X
(a
nd

ro
id
)

X
Ba

sic
C
SS

3
X

X
X

X
6.
0

X
X

X
X

X
X

C
SS

3
Tr

an
sfo

rm
s
2D

X
X
2.
0+

X
X
6.
0

X
X

X
X

X
X

C
SS

3
Tr

an
sfo

rm
s
3D

X
X
4.
0+

X
X

X
C
SS

3
Tr

an
sit

io
ns

X
X
2.
0+

X
X
6.
0

X
X

X
X

X
C
SS

3
A
ni
m
at
io
ns

X
X
2.
0+

X
X
6.
0

X
X

X
X

V
ie
w
po

rt
de
fin

iti
on

X
X

X
X

X
X

X
X

X
X

Po
sit

io
n:

fix
ed

su
pp

or
t

X
5.
0+

X
2.
2+

X
3.
1+

X
7.
0+

X
X

X
X
M
LH

tt
pR

eq
ue
st

2.
0

X
5.
0+

X
4.
0+

X
X

W
eb
G
L

X
2.
3
So

ny
X
pe

ria
X
2.
0
be

ta
N
et
wo

rk
In
fo
rm

at
io
n
A
PI

X
2.
2+

X
Fi
le

A
PI

X
4.
0+

X
X
11
.1
+

H
T
M
L
M
ed
ia

C
ap

tu
re

X
4.
0+

X
In
de
xe
dD

B
X

Ta
bl
e
3.
1:

M
ob

ile
H
tm

l5
Fe

at
ur
e
Li
st
,s

ta
tu
s
as

D
ec
em

be
r
20

11
[F
ir1

1]
,[
D
ev
11

]

4 Testing

The mobile web is a fast changing place. To keep up with new technologies, devices, etc.
the development process of new applications has to react fast on this changes. In order to
achieve such a goal, agile practices are needed. This chapter focuses on testing in agile teams,
because of this reason. Other development processes can use the same testing techniques in a
different order or only fractions of them. For example, the waterfall model will use the same
regression and usability testing techniques, only at the very end of the development process,
instead of after every iteration cycle.

The agile development processes fits to mobile development because of the high productivity,
the faster time to market and the high quality of the outcome. [Coh10]

4.1 Agile Testing

In comparison to linear development processes, like the waterfall model, testing is not
postponed until development has finished. If the testing phase is the last phase, it gets
squished or skipped quite often as time is running short. Agile testing is iterative and
incremental. As tests are already finished before the actual coding, errors are caught very
early. In early development stages errors can be fixed a lot easier and thanks to the incremental
steps the code part causing the error can be isolated. Testing in an agile process is not only
writing tests to see if the code has no errors, it also includes verifying that the customer
requirements are met, that the end-user is able to use the application and non-functional
requirements like performance and security. It is not possible to automate all tests. Different
projects might not need heavy testing on all the mentioned areas, but at least all testing
areas should be considered and tested appropriate. Lisa Crispin and Janet Gregory divide the
different tests into 4 areas, as seen in Figure 4.1. The tests on the left hand side (Q1 and Q2)
describe tests that are driving the development. Those tests are written before the actual
coding and support the team during the development process. They are executed every time
the code changes. The tests on the right side (Q3 and Q4) critique the application. They
should be run for every released feature to catch errors as soon as possible.

The tests that are used to support the team and the ones that critique the product are divided
into two parts. Technology facing tests (Q1 and Q4), which are not meant for business experts
and customers. They are highly technical and need knowledge of the used technologies.
Business facing tests (Q2 and Q3) are also meant for business experts and customers. They
reflect the requirements and are easy to understand. [CG09]

33

Chapter 4. Testing 34

Figure 4.1: Agile Testing Quadrants [CG09]

4.1.1 Technology-Facing Tests that Support the Team

These tests are mainly written by the programmers themselves. For every piece of functionality
a programmer wants to implement, a test has to be written first. Those unit tests drive design
and development. More Details on Test-Driven Development can be found in Section 4.2.
Tests are usually automated and are for internal use only. Therefore, they need not to be
understandable for customers. They are a factor for the internal quality of the code. This
quadrant also includes regression and component tests which test the interaction between the
functional pieces tested with the unit tests. [CG09]

4.1.2 Business-Facing Tests that Support the Team

The tests from quadrant 2 are of a higher level. They should be written in a language the
business experts can understand and should be created with close contact to the customer as
they reflect the customer’s requirements. Ideally they are written by the customer directly.
Those tests are used to drive development as well. See Section 4.2 for information about
Behaviour-Driven Development (BDD). To accomplish this task they have to be automated
and run at the same interval than the unit tests the programmers are writing themselves.
Quadrant 2 tests are a part of the so called acceptance tests. A story is not finished until all
test are passed and all functionality is tested accordingly. [CG09]

Chapter 4. Testing 35

4.1.3 Business-Facing Tests that Critique the Application

The majority of the tests from this quadrant are executed manually. Including acceptance
tests, usability tests that are run by actual user and exploratory testing. The tests in quadrant
3 have the purpose to reveal requirements that were misinterpreted by the programmers or
not well formulated. The usability may feel different on the real product than in the head
of the customer during the concept phase and can be tested only after some features are
already usable. Exploratory tests are tests executed by professional testers to reveal errors on
some edge cases or not tested combinations of events the developers have not thought about.
Because the systems code is already well tested with an automated testing suite consisting of
the tests from quadrant 1 and 2, the testers have more time to look for bugs that are not
that obvious or are hard to catch. As agile development releases every iteration a working
product, those tests can be run as soon as a feature is released, to fix errors or misunderstood
requirements as early as possible in the process. Even though most tests are run manually, an
automation can be used for the test setup, like navigating to a special point in the application.
If a test can be automated and does not take a lot of time to run, it should be included in
the automated test suite the developers are running on every code change. [CG09]

4.1.4 Technology-Facing Tests that Critique the Application

Tests from this quadrant include non-functional requirements such as security, performance,
memory management, robustness, etc. For example, the system should be tested if it can
handle a lot of data or more than a certain amount of user at the same time. The results of
these tests should be used as feedback for the tests in quadrant 1 and 2. Automated tests
and story cards should be written concerning this issues, hence they can be used to drive the
design of the application as well.

The tests from this quadrant might require special tools or specialists. The development
team has to consider which external resources the tests might need and which cases they
can handle themselves. For example the robustness of an application might be tested using
the automated test suite from quadrant 1 and 2 and run multiple times against the system.
These type of tests should include end-to-end functional tests, if not already handled by the
regression tests from quadrant 1. Duplication should always be avoided. That applies to test
cases, too. [CG09]

4.2 Test Driven Development

Test-Driven development (TDD) means that the tests are used to drive development and
design. To accomplish this task, the tests have to be written first. Gerard Meszaros ([CG09]
P.113) explained that the main difference between Test-First development and Test-Driven
development is that Test-First development does not say that the production code is developed
passing one test at a time. This means that it is essential to TDD to write a test for a tiny
bit of functionality, see it fail, implement this tiny bit of functionality till the test passes and

Chapter 4. Testing 36

start with the test for the next bit of functionality. Using this pattern every piece of code is
tested and the developer has to think in advance about the functionality he/she wants to
implement. Additionally, letting the test fail first, is a small test for the test. There might be
a typo and the test passes before the actual functionality is implemented. Only the happy
path of a functionality can drive the development. Unlikely edge cases do not help driving the
design. Of course, they should be tested, too, but it is appropriate to test them afterwards,
to see if the code is robust. [CG09]

Because every programmer has an automated test suite whcih is running every time they
want to change the code and after they changed something, they cannot affect the other
developers. The code that gets checked in is tested and working. That way it is unlikely to
crash the code on the development system. But because the tests are run so often, they have
to be quick. It is essential to write easy, fast running tests. If the test suite needs too long to
give feedback, it is unlikely that the developer will use it all the time. Therefore, there should
be at least two different building processes: one that runs the fast running tests and one that
executes the longer ones. That way the fast test suite can be used to drive development and
the other suite ensures nothing breaks before the check-in. Afterwards, integration tests have
to be written to ensure that the code pieces are working together. [CG09]

When using TDD the developers do not have to worry about unintended changes to the
system. Additionally, they can refactor the system and get quick feedback if they broke
something. With TDD the internal code quality rises. Madeyski found that using TDD
leads to a significantly less coupled code and has an positive impact on the defect rate of
an application. The resulting code has a modular design which leads to easier reuse and
maintainability. [Mad10]

4.2.1 Test Double Pattern

To get quick and exact feedback from the unit test suite, Mocking and/or Stubbing has to be
used. This means the function under test has to be isolated from other influences. In that
case, if a test fails, the function under test is causing the error and not one of its dependencies.
Another value of using this pattern is that tests with dependencies, which need a long time to
run, can be speed up. The objects that replace these influences are referred to as test doubles.
There are different types of test doubles which are explained in the following subsections.
[Mes07] [Joh11]

Dummy Object

A dummy object is used for function calls or objects that are not under test, but will throw
an error if not present. They are usually empty functions or objects. [Joh11]

Chapter 4. Testing 37

Test Double

Dummy
Object Test StubTest Spy Mock

Object
Fake

Object

Figure 4.2: Test Double Types[Mes07]

Test Spy

A test spy is used to record the information about its usage. The indirect output of a function
can be tested with the use of this object. Gerard Meszaros [Mes07] describes a test spy as
a more capable version of a test stub (see Subsection Test Stub), while Christian Johansen
[Joh11] does not mention the spy having to stub the functionality. Testing frameworks like
Sinon.JS 1 define spies as object that log the usage and delegate the call to the original
implementation. Sinon.JS-Stubs are equipped with spy functionality as well. The common
feature of all those spies is the ability to log the usage.

Test Stub

Stubbing is used to isolate an interface from its dependencies. A test stub is a double with
pre-programmed behaviour. It can be used to define specific return values or may throw
an exception depending on the given arguments. With test stubs certain code paths can be
forced and the code can be tested if it can handle unexpected behaviour. [Mes07] [Joh11]

Mock Object

A mock object is more complex than a stub. It defines not only pre-programmed behaviour,
but also pre-programmed expectations and behaviour verification. The mock has an exact
expectation how it should get used. If it gets used in a different way, it fails. Mock objects
should not be used to silence dependencies as they might break a test. Every use for a mock
object has to be defined beforehand, because mock object only support behaviour verification.
In difference a test stub supports behaviour and state verification. [Joh11]

1 http://sinonjs.org/

Chapter 4. Testing 38

Fake Object

A fake object implements the same functionality then the replaced one, but in a simpler
way. This can be due to various reasons. Maybe the implementation is not yet available, too
slow or has some side effects. Fake objects are not used to verify some behaviour, their only
purpose is to replace the original implementation. One example is an I/O-Object. It can be
too slow to write data to the disk. Instead, a fake object writing the data to the RAM can
be used for testing. [Mes07]

4.3 Behaviour Driven Development

The main idea behind BDD is that writing the tests should feel more natural. A test describes
the behaviour of the code and it is actually the behaviour that drives the development. With
this thinking, how to write a test should be more clear. The test method names should be
sentences that describe the behaviour, so they are easier to understand and can be transformed
into real sentences with a simple script. Business experts and other people not familiar with
programming are then able to read the tests. Another advantage is, if a test fails, one can
directly read what the test should do and then derive if the code had a bug or maybe the
behaviour of the code has changed on purpose and the test has to be fixed. With thinking
the system has to do X, the programmers focus more on the business values, because they
think beforehand what the system should do (the behaviour it should implement). When
Dan North started developing the idea of BDD, he was trying to use all the advantages of
TDD and avoid the pitfalls. He discovered when he tried to teach about TDD, people had
a hard time to get the idea behind it. That is why BDD is an extension to TDD which is
easier to understand how it is meant to work. It encourages a thinking about the tests as
requirements for the system. [Nor06]

5 Frameworks

HTML5 offers a lot of new features, but unfortunately they are not all supported on every
device yet. Sometimes the features are already implemented, but still have a vendor prefix.
Frameworks help to smooth out some of the differences between the browsers, provide fallbacks
and allow easier access of the functionality. They do a lot of work to ease development for
the programmers. For example, most of the frameworks allow animated page transitions with
a simple argument or handle the browser history. In that way the developers do not need full
knowledge of every single functionality offered by HTML5 and CSS3.

This thesis only covers the most promising frameworks at the time of writing. Most of the
books, blogs and people mentioned only the frameworks listed below.

5.1 jQuery Mobile

jQuery is a very popular and powerful JavaScript library. It normalizes the differences between
web browsers and has an easy to use API which helps with a lot of tasks. But jQuery only
helps with programmatic tasks and does not have any specific functionality for mobile devices.
Here jQuery Mobile comes into play. It is built on top of jQuery and is optimized for mobile
devices with a touch screen.

The framework supports a wide range of mobile devices like Android, iOS, Blackberry, Palm,
Windows Phone and even Amazon’s Kindle1. For older devices it has fallback modes to still
stay functional. The framework offers touch optimized widgets, layouts and animations which
are specifically designed for smaller screens and touch-input.

jQuery Mobile makes use of the custom data-* attribute allowed on every html element.
With this attribute the programmer can tell the framework, what should be the header, the
footer, the main content, a button, etc. The framework then generates additional styles and
markup for this elements.

In order to use the animated page transitions, the new page has to be loaded via Ajax. This
can take some time and might let the page appear frozen. There are two options to avoid this,
displaying a loading message, or, the alternative to Ajax offered by the framework, defining
multiple pages within one HTML document. A page for jQuery Mobile is a div with the data
attribute page and an unique id. Listing 5.1 shows a simple HTML file with two pages. In
order not to break the browser’s back button, the framework makes heavy use of the history
API offered by HTML5. When it comes to the structure of a page, jQuery Mobile does not

1 http://jquerymobile.com/gbs/

39

Chapter 5. Frameworks 40

Figure 5.1: Simple Page Created with jQuery Mobile

rely on the HTML5 elements like header or footer, but on the data-role attribute. The header
and footer tag can be switched to simple divs and the page will still look the same.

1 ...
2 <body >
3 <div id=" mainPage " data -role="page">
4 <header data -role=" header ">
5 <h1 >Webshop </h1 >
6 </ header >
7 <div data -role=" content ">
8 ...
9 </div >

10 <footer data -role=" footer ">
11 ...
12 </ footer >
13 </div >
14 <div id=" secondPage " data -role="page">
15 ...
16 </div >
17 </body >
18 ...

Listing 5.1: A simple jQuery Mobile page

In Figure 5.1 you can see a jQuery Mobile page with only a little of custom CSS.

One of the biggest advantages of jQuery Mobile is that it is very easy to use and needs only

Chapter 5. Frameworks 41

Figure 5.2: A Form with jQuery Mobile Widgets

little JavaScript knowledge to create good looking mobile web apps. The framework offers
many additional widgets like custom sliders, select fields or checkboxes, which can be used
only by setting the specific data-* attribute on the HTML element. Figure 5.2 shows an
excerpt of the available widgets.

jQuery Mobile is focusing on the main tasks like navigation and the look, but as it uses the
jQuery core library, it has all of its advantages. Custom events can be fired, the DOM can
be manipulated with an easy to use API and all the jQuery plugins are available as well.
For example neither jQuery nor jQuery Mobile have any functionality regarding client side
storage, but there are a lot of plugins available for this task. Other plugins allow to swipe
through pictures using the swipe events offered by jQuery Mobile.

The framework is free of charge and might be used under the terms of either the MIT Licence
or GNU General Public License (GPL) Version 2 2.

[FR11], [jQu10], [Rei11], [Thea]

5.2 Sencha Touch

Sencha Touch in comparison with jQuery Mobile is taking a completely different approach.
While jQuery Mobile enriched HTML markup, Sencha Touch applications are entirely written
in JavaScript. This requires some learning time of the framework’s functions, objects and
structure. Additionally, a good knowledge of the JavaScript programming language is
recommendable for bigger applications.

2 http://jquery.org/license/

Chapter 5. Frameworks 42

On the 14th of June 2010 the Ext JS team joined with jQTouch and Raphaël and changed
the name of the company to Sencha. The new knowledge was used to create the framework
Sencha Touch and the first public beta was already released on the 17th of June 2010. Five
month later Sencha Touch 1.0 was ready including a free commercial license. In March 2011
the version 1.1 supported, additionally to Android and iOS, BlackBerry 6. Since 2.0 it is
possible to convert a Sencha Touch app into a native iOS or Android application with a
single command. With this feature some native device APIs are now available within the
framework. Additionally, the new class loading system, first introduced for Ext JS 4, was
ported to this framework.

Sencha Touch is developed to work best on WebKit based browsers. It makes use of all the
capabilities this browser engine offers. This has the advantage that the applications developed
with Sencha Touch look like native apps, but the disadvantage is that they do not work on
other engines. Future releases are planned to be based on the CSS3 specification without
needing any WebKit exclusive features.

In order to develop applications with this framework a lot of JavaScript knowledge is necessary,
but only little of HTML code. Listing 5.2 shows all needed HTML code. Everything else is
coded in JavaScript.

1 <! DOCTYPE html >
2 <html >
3 <head lang="en">
4 <title >Webshop Sencha Touch </title >
5 <meta charset ="utf -8">
6 <meta name=" author " content =" Stefan Mayer">
7 <script src="lib/touch/sencha -touch.js" ></ script >
8 <script src="app.js"></ script >
9

10 <link rel=" stylesheet " href="css/sencha -touch.css" />
11 <link rel=" stylesheet " href="css/my.css" />
12 </head >
13 <body >
14

15 </body >
16 </html >

Listing 5.2: Sencha Touch HTML code

Other JavaScript files can be loaded using the new class loader. The application needs
therefore a specific structure in order to find the class files. Views have to be in the view
directory, controllers in the controller directory and so on. The application is initialized in
the app.js file. This file only consist of the application name and the used controllers. The
class-loader configuration happens in this file as well. An example can be seen in Listing 5.3.

Chapter 5. Frameworks 43

1 Ext. Loader . setConfig ({
2 enabled : true
3 });
4 Ext. application ({
5 name: ’Webshop ’,
6 controllers : [’Main ’]
7 });

Listing 5.3: Sencha Touch app.js

Sencha Touch applications are meant to work with the MVC-Pattern, but it is not mandatory.
In order to have a maintainable code, the classes offered by the frameworks can be extended,
as known from other object oriented programming languages. Sencha Touch offers its own
functions to extend, define and instantiate classes. Examples are shown in Listings 5.4 and
5.5.

1 Ext. define (’ Webshop .view.Cart ’, {
2 extend : ’Ext.Panel ’,
3 alias: ’widget .cartView ’,
4 config : {
5 ...
6 }
7 });

Listing 5.4: Sencha Touch Class Extending

1 var shoppingCart = Ext. create (’ Webshop .view.Cart ’, {
2 id: ’senchaCart ’
3 });

Listing 5.5: Sencha Touch Class Instantiation

Sencha Touch offers a lot of widgets, like toolbars, styled buttons, tab navigation, lists,
form inputs and different overlay dialogs. In order to allow custom styles for those widgets
the framework uses Sass. It is an extension of CSS3 and allows to work with nested rules,
variables and inheritance. The Sass files can be compiled to CSS afterwards. Sencha Touch
makes use of variables to allow custom theming. With replacing some values, the used colour
of all widgets can be changed and the framework still has a consistent look. Predefined styles
not needed for the current application (if some widgets or icons are not used) can easily be
removed in order to reduce the size of the final file. An example is shown in Listing 5.6.
Figure 5.3 shows the framework in action.

Sencha Touch is available under different licenses depending on the type of use. The general
commercial license is free, but in case the framework is used to develop other commercial
frameworks, a paid license is needed. Additionally a special open source license is available
for open source projects.

[Sen11]

Chapter 5. Frameworks 44

Figure 5.3: Sencha Touch Widgets

1 $body -bg -color: #000;
2

3 $base - color: #333;
4 $base - gradient : ’matte ’;
5 $active -color: # B2DF1E ;
6

7 $tabs -dark: $base -color;
8 $tabs - light: #555;
9

10 $tabs -bottom - radius : .4em;
11 $tabs -bottom - gradient : ’bevel ’;
12 $tabs -bar - gradient : ’matte ’;
13 $tabs -bottom -active - gradient : ’recessed ’;
14

15 $toolbar - gradient : ’glossy ’;

Listing 5.6: Sencha Touch Theming with Sass

5.3 Other Frameworks

This section includes smaller, less important frameworks. They do not have an equally big
and active community as the two frameworks listed above. They support less features and
have a more simple look, but might be still a good choice for smaller applications because of
their small filesize or easier to use API.

Chapter 5. Frameworks 45

5.3.1 jQTouch

It was first developed as a jQuery plugin focusing on allowing to create mobile web applications
using a simple syntax. Later jQTouch b4 was released with two options: using jQuery as the
core or Zepto.js. Zepto.js is a project which recreates the jQuery API optimized for WebKit
browsers. As jQTouch also focuses on WebKit and Zepto.js has a smaller filesize and a faster
loading speed, it is going to be the default library for future versions. [Kan11]

jQTouch offers not as many widgets as Sencha Touch or jQuery Mobile, but is therefore
smaller in filesize. It runs only on WebKit based browsers, while for example jQuery Mobile
is optimized for a broader range of browsers. This framework is meant for developing smaller,
less complex applications for mobile devices with a WebKit based browser.

The framework works quite similar than jQuery Mobile, but instead of using the data-*
attribute, it looks for specific classes. The elements marked with the specific CSS classes are
enriched with special markup and CSS. Like Sencha Touch it works with Sass, which allows
easier change of the global styles. [Pea11]

A code sample of jQTouch can be seen in Listing 5.7.

1 ...
2 <body >
3 <div id=" mainPage ">
4 <div class=" toolbar ">
5 <h1 >Webshop </h1 >
6 </div >
7 <ul class=" edgetoedge scroll ">
8 ...
9

10 <div class="info">
11 ...
12 </div >
13 </div >
14 <div id=" secondPage ">
15 ...
16 </div >
17 </body >
18 ...

Listing 5.7: Multiple jQTouch Pages

The current version (1 beta 4rc) of the framework works well on iOS devices, but has some
issues on Android phones. On Android you can observe how the framework is adding the
additional markup and the performance of scrolling is very poor. Even the widgets look
different on the devices. A screenshot is displayed in Figure 5.4. The framework is available
for free under the MIT License. 3

3 http://jqtouch.com/

Chapter 5. Frameworks 46

Figure 5.4: jQTouch Kitchen Sink (http://jqtouch.com/) Browser Comparison

5.3.2 Jo

Jo is a lightweight mobile UI-framework without any dependencies to other libraries, which
has a positive impact on the filesize. On the other hand, the default look of the widgets is not
as fancy as of the other frameworks, nor is it as comprehensive as for example jQuery Mobile
or Sencha Touch. The framework is tested on iOS, Android, webOS and Blackberry.

Like with Sencha Touch, the entire application is written in JavaScript. No further page
loads are needed, once the page is ready. Jo is available under the BSD License. An example
can be seen in Figure 5.5.

[OB11]

5.4 Summary

From the current point of view, jQuery Mobile and Sencha Touch are the most promising
frameworks. They offer a lot of widgets and functions to develop native alike mobile web
applications. Both frameworks have a big active community and are under active development.
All frameworks still have issues with animations and transformations on Android, but jQuery
Mobile and Sencha Touch are putting in great efforts for a better performance. Every new
release has an improved Android support. Other devices do not have a big market share and

http://jqtouch.com/

Chapter 5. Frameworks 47

Figure 5.5: Jo Kitchen Sink from http://joapp.com/demos.html

are not a top priority for the framework developers. For small applications jQTouch might be
appropriate because of its its small filesize and easy syntax, but more complex applications
should rely on the two big frameworks. Depending on the preferences jQuery mobile and
Sencha Touch have both their advantages and disadvantages.

http://joapp.com/demos.html

6 Testing-Frameworks

Mobile web applications have a lot of JavaScript code in order to make use of the features
offered by HTML5 and CSS3. Therefore, the client side code gets more and more important
and the web applications get more complex. This makes manual testing tedious and error-
prone. Additionally, most developers do not like testing and companies are trying to keep
costs short. Testing-frameworks help to automate testing and allow to spend as few time as
possible on writing and executing tests. They help to run the tests continuously, compare
results, make screenshots and enable running the test suite on multiple devices at the same
time.

In which cases the specific frameworks make most sense is explained in Chapter 7. This
chapter list the advantages and limitations of the frameworks. The chapter is divided into
in-browser testing-frameworks, headless testing frameworks, test drivers and stubbing and
mocking libraries. All this frameworks test the JavaScript business logic for mobile web
applications or the GUI. Backend testing is not covered within this document.

[Joh11], [CS11]

6.1 In-Browser Testing-Frameworks

This type of testing-frameworks run within the browser. The advantage of this approach
is, that the tests are run within a real environment. The disadvantage is that on their own,
they cannot be run automated and repeatedly. Some of them do not offer a command line
tool to start the tests or to evaluate the results. It might be hard to introduce continuous
integration with some of these testing-frameworks. [Joh11]

6.1.1 QUnit

QUnit is written and developed by the jQuery Project. Because it is an in-browser testing-
framework, a HTML page is needed to run the tests. HTML elements mandatory for the
tests are placed within a div with the id "qunit-fixture". Listing 6.1 shows the template
HTML page.

48

Chapter 6. Testing-Frameworks 49

1 <body >
2 <h1 id="qunit - header ">Webshop Tests </h1 >
3 <h2 id="qunit - banner "></h2 >
4 <div id="qunit -testrunner - toolbar "></div >
5 <h2 id="qunit - userAgent "></h2 >
6 <ol id="qunit -tests">
7 <div id="qunit - fixture ">
8 ...
9 </div >

10 </body >

Listing 6.1: QUnit HTML Template

In order to run the tests the framework files, the code that should be tested and the test code
have to be included in the HTML file. The tests itself can be categorized with the function
module() and the actual test is coded within the test() function. A sample can be seen in
Listing 6.2. The result of the tests are displayed visually. Failed tests are displayed in red
including an error message, while passed tests are blue. See an example in Figure 6.1.

1 module (" Helper Tests ");
2 test (" should be object ", function () {
3 expect (1);
4 equal(typeof (Webshop . helper), " object ", " should be an object ");
5 });
6 test (" should have isAppleMobile function ", function () {
7 expect (1);
8 equal(typeof (Webshop . helper . isAppleMobile), " function ", " should be a

function ");
9 });

Listing 6.2: QUnit Test Example

The expect() function tells QUnit how many assertions are expected to be called. Supported
assertions are ok(), for variables that should be true, equal(), notEqual(), deepEqual(),
notDeepEqual(), strictEqual() and notStrictEqual(), for comparison and raises() to
test for exceptions. Asynchronous tests are supported as well. This allows the testing of Ajax
calls or timeouts.

To allow integration with automation tools, QUnit provides a simple microformat as output
for easier parsing. QUnit is meant for unit and regression testing. It can be combined with
various automated test runners and other libraries. A big advantage is, that the tests can be
run in every browser with access to the server. Therefore only the test-URL has to be typed
into the browser in order to run the tests on a mobile device or emulator.

[CS11], [Mac11], [Theb]

6.1.2 YUI Test

YUI is a JavaScript and CSS library from Yahoo!. As other big frameworks it offers a
testing library as well. YUI Test is an in-browser testing-framework that offers a lot of

Chapter 6. Testing-Frameworks 50

Figure 6.1: QUnit Result Page on an Android Device

features. Besides a test runner and assertions it includes a mocking library, allows testing of
asynchronous functions and can simulate mouse events. The framework has various ways to
present the results. It is possible to render the results in a more user friendly way, but also
machine readable formats like XML or JSON are possible.

Like QUnit, YUI Test requires an HTML file to start the tests. The HTML file only has
to include the framework files and the test files. DOM fixtures can be included into the
HTML file if needed. The Tests are run manually as soon as a browser opens the HTML file.
Unfortunately the simulated user actions are quite limited in their functionality, therefore
other frameworks should be used for such kind of tests.

Some example code can be found in Listing 6.3. All test cases have to be added manually to
the test runner or else will not be executed.

[Joh11], [BW10], [Yah11]

Chapter 6. Testing-Frameworks 51

1 YUI. webshop .test. HelperTestCase = new YUI.Test.Case ({
2

3 name: " Helper Tests",
4

5 "test should be object ": function () {
6 YUI. Assert . isObject (Webshop . helper);
7 },
8

9 "test should have isAppleMobile function ": function () {
10 YUI. Assert . isFunction (Webshop . helper . isAppleMobile);
11 }
12 });

Listing 6.3: YUI Test Example

6.1.3 Jasmin

Jasmin is developed especially for behaviour driven development. It does not require any other
libraries, frameworks or a DOM, which has a positive impact on the file size, performance
and can run in every environment.

Such as the other frameworks, it needs a HTML file to load and execute the JavaScript code.
Listing 6.4 shows an example test case.

1 describe (" Helper Tests", function () {
2 it(" should be an object ", function () {
3 expect (typeof (Webshop . helper)).toBe(" object ");
4 });
5

6 it(" should have isAppleMobile function ", function () {
7 expect (typeof (Webshop . helper . isAppleMobile)).toBe(" function ");
8 });
9 });

Listing 6.4: Jasmin Test Example

As known from Chapter 4.3, BDD has a more natural language like syntax. Jasmin uses for
grouping the tests the function describe() and the tests are run within the function it().
This allows sentences like it("should have ...).

Instead of the usual asserts, Jasmin uses more natural keywords, like expect(..).toEqual(..)
or expect(..).toBeTruthy(..). Additionally, it offers spies. These Jasmin spies are not
equivalent to the definition in Chapter 4.2.1. They are a combination of spies and mocks.

Figure 6.2 shows the visual results of some executed tests run on an Android device. Jasmin
can easily be integrated into scripts or test runners for continuous integration or other
automated test suites. It is meant to work with Ruby, Maven, JsTestDriver and Django.

[Mac11], [Piv11]

Chapter 6. Testing-Frameworks 52

Figure 6.2: Jasmin Result Page on an Android Device

6.1.4 Siesta

Siesta is developed especially for the ExtJS framework, which is the desktop version of Sencha
Touch. Besides ExtJS it supports jQuery applications, too. The framework allows testing the
JavaScript code, DOM manipulations and can simulate user actions like clicks, text inputs
and drag and drop.

It offers a wide range of functionality like identifying unexpected global variables or detecting
page refreshes, by letting the JavaScript code run in a separate context.

The tests can be run within the browser and the results are presented using ExtJS. This allows
to rerun the tests, see the source code of each single test and observe the user actions. A
screenshot can be seen in Figure 6.3. Besides running the test within the browser Siesta offers
to run them headlessly with PhantomJS or on multiple browser via Selenium. PhantomJS
is a headless WebKit implementation. See Section 6.2 for more information about headless
testing. Selenium is described in Chapter 6.3.2.

The framework can be used for any kind of web applications, but it offers special features for
ExtJS and jQuery apps. Future releases of this framework will be even more interesting for
mobile web applications, as official support for Sencha Touch has been announced.

[Bry11], [Bry12]

Chapter 6. Testing-Frameworks 53

Figure 6.3: Siesta Example [Bry12]

6.2 Headless Testing-Frameworks

Headless testing-frameworks are command line tools that emulate a browser. Because of the
lack of a GUI, the tests can be executed very fast and run even on servers without a graphic
card. This kind of frameworks can easily be integrated with continuous integration tools
and can be run frequently. The downside is that they only emulate a browser. If the tests
passes within the emulated browser, there is no guarantee that they are going to pass in
a real environment. Even if a real browser is emulated, the tools cannot keep up with the
fast update cycles of modern browsers and cannot emulate the real counterpiece perfectly.
[Joh11]

6.2.1 Envjs and Rhino

Rhino is a JavaScript implementation in Java developed by Mozilla. It allows to compile
JavaScript code into Java bytecode or to interpret it during runtime. Envjs is built on top of
Rhino and implements a browser and a DOM API. The combination of both plus a testing
framework like QUnit or Jasmin allows to execute the JavaScript tests headless. [Mac11],
[Joh11]

6.2.2 Zombie.js and Node.js

Another server side implementation of JavaScript is Node.js. It uses Google V8 JavaScript
engine, which is used in Chrome and Android. Zombie.js runs on top of Node.js, implements a
browser API and executes the tests. The test and the client code are run in separate contexts.
Hence, global variables cannot affect the test code. Additionally, tests can run parallel in
different contexts and make use of multicore CPUs.

Chapter 6. Testing-Frameworks 54

Zombie.js keeps the state of the browser object between page transitions for testing of cookies,
web storage and the history. Tests can even interact with the page, like filling in and
submitting forms.

[Mac11]

6.2.3 PhantomJS

It is a headless implementation of WebKit, the engine used in most mobile web browsers. It
offers a DOM API, CSS selectors, Canvas and SVGs. PhantomJS itself does not offer testing
functionality, but it is compatible with other testing frameworks like Jasmin or QUnit. The
implementation allows to render the website into an image, which can be used for comparing
the results. [Hid11]

6.3 Test Driver

Till now all the introduced frameworks are run only within one environment. The in-browser
testing-frameworks can be run within any browser manually, but therefore one person has to
execute them and compare the results. Test Drivers do exactly this task. They run a test
suite in multiple environments and collect and interpret the results. [Joh11], [Mac11]

Again, only tools which work with mobile devices are mentioned. Popular test drivers like
Watir1 work only with desktop browsers at the time of writing and are therefore not described
in this document.

6.3.1 JsTestDriver

JsTestDriver is a tool provided by Google to run unit-tests on different browsers at the same
time. It consists of two parts, a server and a client. The server runs on one machine and can
handle multiple clients running on the same machine or different ones. Every device with
network access to the server can connect it’s browsers. They stay connected as long as the
server is running and the network connection is available. The developers run their test suite
with the help of the client. The unit-tests are distributed to the connected browsers and run
in parallel on all of them.

The big advantage of this system is, that code can be tested easily on different machines and
browsers at the same time. For example, if the goal is to develop a web application mainly
for iPhone and Android, their browsers can be connected to the server and the unit tests can
be run on both of them with a single command.

JsTestDriver also offers a code coverage and an some IDE plugins. Unfortunately, they cannot
be combined yet. If projects already use other testing frameworks like QUnit or YUI, they

1 http://watir.com/

http://watir.com/

Chapter 6. Testing-Frameworks 55

Figure 6.4: JsTestDriver Code Coverage Output

can be run with the use of adapters. On the homepage of JsTestDriver2 are adapters listed
for the most important frameworks and others might be added soon or found elsewhere on
the Internet. Additionally, the test driver differentiates between normal and strict mode. If
the browser is captured in strict mode, all scripts are distributed with the "use strict"
prefix. This allows to trigger the strict mode provided by ECMAScript 5. This special mode
throws errors on unsafe or error-prone code parts. As JsTestDriver host the JavaScript files,
Ajax requests are directed to the test driver’s server, too. In order to allow communication
with a backend server, it allows to configure gateways. They redirect a certain URL path to
a specific server.

One big advantage of JsTestDriver is that the client is able to connect to any JsTestDriver
server. This allows to run for example two different servers. One with only the main target
devices, which allows to execute the tests fast and a company test server that has all browsers
connected the company wants to support. The developers can run local tests against the main
supported browsers on a regularly base and use the company test server before deployment
to test against all browsers.

For DOM interactions JsTestDriver offers to write HTML-elements into JavaScript variables
without rendering them. It is also possible to add HTML to the global DOM, but this renders
the elements and might slow down the tests.

[Joh11]

Code Coverage Plugin

If this plugin is included in the configuration file, it is run every time the test suite is executed.
For every file the aggregated coverage percentage is displayed. This gives a good overview
about the code health. Even the coverage of the test cases is displayed. Figure 6.4 shows
the output information. The plugin allows to write the coverage information into a file by
setting the --testOutput flag. This file is compatible with the LCOV visualizer3. Figure 6.5
and 6.6 show how the line coverage is visualised. With the visualised information, missing
test cases can be found. [Goo11]

2 http://code.google.com/p/js-test-driver/
3 http://ltp.sourceforge.net/coverage/lcov.php

http://code.google.com/p/js-test-driver/
http://ltp.sourceforge.net/coverage/lcov.php

Chapter 6. Testing-Frameworks 56

Figure 6.5: LCOV Output

Figure 6.6: LCOV Detailed Output

Chapter 6. Testing-Frameworks 57

Figure 6.7: JsTestDriver Eclipse Plugin

Eclipse and IntelliJ IDEA Plugin

This plugins allow easy integration of JsTestDriver with Eclipse or IntelliJ IDEA. The Eclipse
version of the plugin can be configured to run the tests after every save. The plugins itself
also contain the server. The advantage of this plugins is the easy integration. With the run
on every save option, not even a button has to be pressed (except of starting the server once
with a single click). The results are directly visible within the IDE. In combination with Test
Driven Development this is a powerful tool.

The disadvantage is, that it does not always support the most recent version. An alternative
approach is to define a builder for the Eclipse IDE or use Apache Maven. An additional
advantage is that the code coverage plugin works with this method. The results are afterwards
presented in the console of the IDE. Figure 6.7 displays a screenshot of the plugin in action.

[Goo11]

Chapter 6. Testing-Frameworks 58

JsTestDriver Adapters

As already mentioned before, JsTestDriver allows to run test suites from other testing
frameworks, like YUI Test, QUnit or Jasmin. Additionally, it offers adapters to work with
continuous integration servers as Ruby Auto Test or Team City.

Adding an adapter that allows to execute a test suite programmed using another testing-
framework is as simple as including an additional JavaScript file. With this method test suites
from different frameworks can be combined. At the time of this writing the test coverage
plugin did not work with the adapters.

[Goo11]

6.3.2 Selenium

Selenium is a well known and popular open-source project that allows to test the GUI of
web applications. Selenium 1 interacted with the websites through JavaScript. Selenium 2
emerged when the Selenium 1 and the WebDriver project merged. It combines the advantages
of both Frameworks. WebDriver takes a different approach when it comes to interactions.
It passes the commands from the OS to the browser and has therefore more options to
interact with the page and a more fine grained control of how the interaction takes place.
The disadvantage of this approach is that Selenium 2 needs some adaption for every new
browser.

Selenium 1 did not support mobile browsers explicitly, but as it uses JavaScript to interact
with the pages, at least for Android tricks exist to get it working4. Selenium 2 has an official
support for iPhone and Android. A dedicated BlackBerry version of WebDriver is available
as well. Unfortunately the iPhone driver is not in the Apple App store. Because of this, the
tests can only be executed on a real device with a paid developer account. Testing on the
emulator is possible with a free developer account. As Android allows to install applications
from outside the Android Market, it is possible to run the tests on every real device. The
Android WebDriver is officially supported by Google and ships with the Android SDK.

Selenium communicates with the native driver applications via HTTP. Therefore the device
can by anywhere as long as it has network access to the hosting machine. Selenium also
offers additional tools to distribute the tests to multiple machines. In combination with a
headless testing framework Selenium can also make use of the computation power of cloud
computing.

The tests itself can be written in many different languages. Selenium offers support for
Java, C#, Python, Ruby, PHP and Perl. The framework offers functions to click on certain
elements, enter text, drag & drop, navigate through the history and to manage cookies. It is
open source and available under the Apache 2.0 License.

[Mac11], [Bur10], [Sel12]

4 http://artofsolving.com/node/48

Chapter 6. Testing-Frameworks 59

Figure 6.8: Twist Example

6.3.3 Twist

Twist is developed by Thoughtworks Studios and allows to write business requirements in
plain English and execute them as tests. This should help with the communication between
business user and developers. Every sentence is associated with a test function. This test
functions include the actual test code. Twist supports Selenium or Sahi for programming the
actual behaviour of a test function. Sahi is an alternative to Selenium, but only supports
Android at the time of writing and has a smaller community then Selenium.

Twist allows to run the tests with different sets of data. With this feature it is possible to
switch the input data of a test without the need to change the actual testing code behind it.
Because every sentence is matched to a function, they can be reused easily. Figure 6.8 shows
an example of a Twist test.

[Tho11]

6.3.4 EventRecorder

Developed by Sencha Inc., EventRecorder allows to record the interactions with a web site
on a real Android device or emulator. The recordings are saved as a python script. To
replay the recording the python script has to be run. It is possible to set points in the script
where a screenshot should be taken. Additionally, the output of the JavaScript function
Console.log() are logged in a file. These two outputs can be used to compare if the test
passed. JavaScript can be evaluated as well, which allows to write test cases in combination
with the Console.log() function. The EventRecorder works already very well, but is still in
an early development stage.

Chapter 6. Testing-Frameworks 60

The recorded actions are replayed independently of the state. If something goes wrong the
script does not recognize this. The only possibility to detect a failure are the screenshots
and the log file. Unfortunately the generated scripts only works on a device with the same
resolution, because the screen coordinates are used for the user interactions. Therefore, one
generated script cannot be run on multiple different devices.

[Cor11]

6.4 Stubbing and Mocking Libraries

Not all of the introduced frameworks support mocking or stubbing of JavaScript objects
and functions. Fortunately there exist specific libraries to fill this gap. A lot of libraries
are available like qmock, JsMockito or JSMock. All the mentioned ones only offer mocking
functionality. Therefore I am going to introduce Sinon.JS, because it offers stubbing and
mocking and has some additional functionality as well. Besides that, all libraries offer quite
similar mocking functionality with only a different syntax.

6.4.1 Sinon.JS

Sinon.JS is a standalone library that offers test spies, stubs and mocks and can be combined
with any testing-framework. The stubs used in this library are a combination of stubs and
spies regarding to the definition in Chapter 4.2.1.

Spies, stubs and mocks overwrite the original function and the program under test does not
notice the difference. Because another test might need the original function, the changes
can be reverted by simply calling restore() on the spy, stub or mock. Sinon.JS offers
another possibility to control the lifecycle of its objects. The tests can be wrapped within
the sinon.test() function. All overwritten functions will be restored automatically after
the sinon.test() function is finished. Alternatively, multiple tests can be included in a
sinon.testCase. After all tests in such a test case are executed, the functions are restored.
Examples can be seen in Listing 6.5 and Listing 6.6.

[Joh11]

1 ...
2 "test should retrieve element with provided id": sinon.test(function () {
3 var jQuerySpy = this.spy(jQuery .fn , "init ");
4

5 jQuery .nc. fitLayoutEventHandler (this.event);
6

7 assertEquals (’#1’, jQuerySpy . getCall (0).args [0]);
8 }),
9 ...

Listing 6.5: Sinon.JS Spy Example

Chapter 6. Testing-Frameworks 61

1 ...
2 var dataMock = sinon.mock ();
3 dataMock . atLeast (1). withExactArgs (’role ’);
4 this. dataReturnObject .data = dataMock ;
5 this. jQueryStub = sinon.stub(jQuery .fn , "init ");
6 this. jQueryStub . withArgs (this. element). returns (this. dataReturnObject);
7

8 jQuery .nc. creditCardField . findCreditCardFields (this.event);
9

10 dataMock . verify ();
11 ...

Listing 6.6: Sinon.JS Stub and Mock Example

7 Testing Approaches

While the programming language used on the server side runs in a controlled environment,
the client side JavaScript has to work in many different browsers and operating systems.
Therefore, testing the client side code is a lot harder.

The server side code was always number one priority for testing, as a website with a non
working server side code is broken. If JavaScript fails, most conventional websites are still
usable. JavaScript fails silently and recovers after an error as soon as a new event occurs.
Modern web applications depend heavily on the JavaScript part and do not work properly
with faulty code anymore. Therefore, server and client side code should be equally handled
when it comes to testing.

JavaScript is a lot different to most common server-side programming languages. It allows
to add, overwrite or remove object properties on the fly and functions can be passed as
values. It is possible to access the objects methods and properties using different syntaxes
and uninitialized variables or properties are not null, they are undefined. JavaScript is also
event driven. It gets executed as soon as the page is loaded and afterwards it can react on
events, like clicks, swipes, network changes, etc. Additionally, native browser objects, like the
history or the location object, are available. Depending on the browser it is sometimes not
possible to overwrite (e.g. stub or mock) them. The native objects differ from browser to
browser and specific features are not supported on all of them. To test for example fallbacks,
the test has to be executed on a browser that does not support the feature or a browser that
allows to overwrite native objects in order to remove the feature support.

This chapter describes how the HTML5 features itself can be tested and how the introduced
testing frameworks can be used for TDD, continuous integration or GUI testing. The summary
includes a final evaluation figure of how the testing-frameworks work with jQuery Mobile and
Sencha Touch. The other frameworks described in Chapter 6 are similar to either jQuery
Mobile or Sencha Touch. Therefore, the presented methods can be applied to the other
frameworks as well.

[Joh11], [FR11], [Eug10]

7.1 Testing the HTML5 Features

7.1.1 Feature Detection

As described in Chapter 3, not every mobile browser supports all of the new HTML5 features.
If a feature is not supported, a fallback should be implemented or at least the user should

62

Chapter 7. Testing Approaches 63

be notified. Proper feature detection is not easy, because some browsers have a faulty or
incomplete implementation of a feature. For example, Android supports since version 2.1 the
audio tag, but does not have any supported codecs. Because of this, libraries like Modernizr
(see following section), help detecting the support of certain features, like video, audio, storage,
CSS3 transformations and more. Libraries like Modernizr will remain important as long as
the HTML5 specification is still under development and not all mobile devices are supporting
an equal level of HTML5 and CSS3 features. Only Modernizr is presented in this document as
at the time of this writing no other feature detection library existed that focused on HTML5
and CSS3.

Modernizr

Modernizr is meant to detect the browser support for the new HTML5 and CSS3 features.
This library can be used in order to detect if the current browser is able to support the
needed features and provide fallback if not. It supports a broad range of desktop and mobile
browsers and offers an easy to use API for feature detection. It consists of a small JavaScript
file which has to be included on the website. The library can be configured to include code
only needed to detected certain features. This keeps the filesize small. A code example can
be seen in Listing 7.1. [FR11]

1 if (Modernizr . geolocation) {...}
2 if (Modernizr .audio.ogg) {...}

Listing 7.1: Feature Detection with Modernizr

7.1.2 Offline Mode

The Application Cache offers an API that states if the cache is working correctly and which
state it is in, but it cannot tell if all needed resources are cached. Additionally, Ajax requests
targeted to not cached resources will fail. Therefore, all asynchronous requests have to
be tested on the unit-level for proper error handling. All other unit-tests will not behave
differently as in online mode, as no additional connections are needed to execute them.

The application needs a defined behaviour if the network connection is lost. In order to test
if the web application works as expected without a network connection, GUI tests have to be
used. Depending on how the behaviour differs from the online case, the same tests might be
used or special test cases have to be added. With tools like Selenium, the browser only needs
to have access to the Selenium server, but not to the server delivering the resources. The
GUI test suite can then be run on the resources from the Application Cache.

7.1.3 Storage

Testing the client side storages, like web storage or web SQL, is straight forward. The native
objects can be mocked and therefore the correct usage be verified. Integration tests can

Chapter 7. Testing Approaches 64

Figure 7.1: Windows Phone 7 Location Mocking

test the real storage on the supported browser in order to detect faulty implementations or
missing feature detection. Additionally, the fallbacks need to be tested with integration tests,
too. Therefore, a browser that does not support the feature should be used or the native
storage objects should be stubbed.

7.1.4 Geolocation

Integration testing of the Geolocation is difficult. The location API is not accessible on the
Android, BlackBerry nor the iPhone emulator. Only native apps can access the geo location
on the emulators. The Windows Phone emulator is the only one allowing to set the browser
location. The location on real devices is not fixed and therefore cannot be used for repeatable
automated testing. Android allows to fake locations on real devices and emulators for native
applications. As Selenium accesses the web application through its own app, it can make use
of faked locations. The iPhone emulator provides a fixed location for native applications which
cannot be changed. The only other possibility is trying to fake the Geolocation object within
JavaScript for testing purposes, which might not be possible on all devices. See Figure 7.1
how the location can be set for the Windows Phone emulator.

7.1.5 Motion Sensors

Unfortunately the current version of the iPhone simulator does not allow to simulate any
movements. The emulator can only be shaken and rotated left or right. The Android emulator

Chapter 7. Testing Approaches 65

Figure 7.2: Blackberry Accelerometer Simulation

is even more limited and allows no movement at all. For both emulators exist custom programs
(iPhone1, Android2) that allow to inject sensor data into native applications. Unfortunately,
the applications have to include some extra code to support it.

The Blackberry and the Windows Phone emulator both allow to set the sensor data and even
to replay recorded data. See Figure 7.2 and 7.3 for emulator screenshots.

7.1.6 Network

The Android emulator allows to control the network speed (type) and the latency. The
BlackBerry emulator provides options to set the network type, but the option does not affect
the network speed. All other emulators do not allow setting any network options. Therefore,
the Network Information API (see page 19) can only be tested on the Android emulator.
Running tools, that allow to control the network speed and latency on the hosting machine,
affect the emulators and allow for example testing of timeouts.

1 http://code.google.com/p/accelerometer-simulator
2 http://code.google.com/p/openintents/wiki/SensorSimulator

Chapter 7. Testing Approaches 66

Figure 7.3: Windows Phone 7 Accelerometer Simulation

7.2 Continuous Integration and Test Driven Development

Continuous Integration and Test Driven Development require the same test qualities. They
have to give quick and exact feedback. Because they are run very frequently, developers want
to get quick results. In order to get an exact description of an error, unit-tests are the best
choice. Every unit-test only tests a small bit of functionality, allowing to narrow down defect
code. As described in Chapter 4.2 at least two different test suites should exist. One that
runs fast and covers the most important tests and one that perhaps takes a longer time, but
covers more aspects. Additionally fast-running integration tests should be run frequently.
Depending on the time it takes to complete them, they should be executed at least before
every commit, to ensure a working code base for the other team members.

Because of the good performance of headless testing frameworks they can be used for test
driven development. But as the tests are not run in a real environment, at least some
cross-browser integration tests are needed to ensure the code works within the targeted
browsers [Mac11]. In order to ensure the tests pass also in a real environment, in-browser
tests or test drivers are recommendable. If performance is not an issue, the test suite should
be executed using a test driver in at least the main targeted browsers. This allows to catch
device dependent errors in an early phase. Functions delaying the test executions like timers
or AJAX requests should be stubbed, if not relevant for the test.

Chapter 7. Testing Approaches 67

7.2.1 jQuery Mobile

Testing of jQuery Mobile like applications is quite easy. A jQuery Mobile project mainly
consists only of JavaScript code written by the developers. For unit testing the jQuery
functions should be stubbed or mocked and the rest of the code can be tested using one of
the testing-frameworks from Chapter 6. Best practise would be to use a test driver and run
the test suite frequently on the main targeted platforms.

7.2.2 Sencha Touch

TDD on Sencha Touch like frameworks is hard. Their applications have a lot of JavaScript
code overhead. Class extending, defining and instantiation needs additional code and is
typically distributed over many files. The frameworks do not offer any specific testing tools
and handle the object instantiation themselves. The objects created by the frameworks are
hard to test, because of their complex structure. Additionally, the structure might change if
the version of the framework is upgraded. Therefore, it seems to be best to have the business
logic in its own files and custom objects and only use them from within the framework.
This way the logic is easy to test with TDD and integration tests handle the rest of the
framework. The only tool Sencha offers for testing is the EventRecorder(Chapter 6.3.4). One
can create small GUI integration tests and replay them with a script in order to verify the
functionality of the application. Unfortunately those tests are, comparing to unit-tests, slow
and time-consuming to create. These tests might not be appropriate for TDD, but can be
run on a continuous integration server and provide feedback after a commit.

7.3 Testing Nightly Builds

Nightly Builds do not need to have a quick feedback and can therefore execute more complex
test-suites. This includes of course the same test-suite the developers are running frequently
plus additional regression tests and GUI tests. As time is not a big issue, the test-suite should
be run on as many different browsers and devices as possible. Test Drivers are the first choice.
The integration tests should stub or mock as little as possible.

All introduced test drivers (except Twist, which is only a wrapper for a test driver) can be
controlled via command line and can be run automated by a build-server. The browsers
which should be tested, have to be connected to JsTestDriver only once and Selenium needs a
network connection to the devices and starts the test automated. The EventRecorder needs a
USB connection to the Android devices. Problems might occur if more test drivers are used
on the same device. This might cause problems, as JsTestDriver needs a running browser
and the other ones are starting their own apps. For example EventRecorder is not closing
its app and the device might close the browser if it needs more resources. It is not possible
for JsTestDriver then to test on this devices. Additional custom scripts, that verify that the
browser is opened and are able to start the browser with the correct address if necessary, can
solve this issue.

Chapter 7. Testing Approaches 68

Figure 7.4: Mobile Safaris Console on an iPhone

The results of the tests should be collected, combined and evaluated. They should be accessible
to monitor progress of development and failed test need to be reported to the developers
automatically.

7.4 Debugging

The desktop browsers offer developer tools which allow to debug the JavaScript, CSS and
web requests. Because of the limited screen size this would not be the best solution on mobile
browsers. Some mobile devices offer limited debugging directly on the phone, others via
network on a desktop application and others even do not support any debugging of the mobile
browser at all.

7.4.1 In Browser Debugger

The mobile Safari on iOS devices allow to activate a console which displays HTML, JavaScript
and CSS errors. JavaScript can log messages to the console with the use of the console
object. The amount of information in the console is displayed directly under the address bar
and if tapped, the console is opened in fullscreen including the whole message text. Figure 7.4
shows the fullscreen view of the console.

Android does not have such a console within the browser, but all errors are logged in the
logcat application. Logcat is the default Android logging system and shows debug information

Chapter 7. Testing Approaches 69

Figure 7.5: Android logcat Debugging

from all applications including the browser. Like on iOS a console object is available within
JavaScript for debugging and logging purposes. The log can be accessed via the Android
debug bridge for any connected device. The output of the log can be filtered, for example, to
display only the browser messages as shown in Figure 7.5.

The mobile Opera allows to connect via network to the Opera Dragonfly debugging toolbar of
its desktop equivalent. Figure 7.6 and 7.7 display how this combination looks like. Additionally,
to the console similar to Android and iOS, Dragonfly allows to access the DOM, see Ajax
requests and debug the JavaScript.

Figure 7.6: Opera Mobile Figure 7.7: Opera Dragonfly

Blackberry is offering an Eclipse and Visual Studio plugin for its devices, which provide
similar functionality like Dragonfly. Unfortunately no debugger is available on Windows
Phone 7 at the time of this writing.

[Fir10]

Chapter 7. Testing Approaches 70

Figure 7.8: Firebug Lite

7.4.2 JavaScript Based Debugger

This type of debuggers only need a JavaScript file added to the page and allow to debug
directly on the device or via Ajax on the desktop. They are not as powerful as for example
Opera Dragonfly, because of the limitations of the JavaScript language.

Firebug Lite

Firebug Lite has the look and feel from the popular desktop debugger Firebug, but does not
need any plugins at the browser. It runs directly within the mobile browsers window. Firebug
Lite offers a console that displays all warnings and errors and allows to execute custom
JavaScript code. The tools include an inspector that displays the HTML code and CSS styles
applied to an element. The CSS styles can be edited in real-time. Because it is programmed
in JavaScript, it is not possible to debug the websites JavaScript code. Unfortunately it is
designed for desktop usage and is not optimised for mobile devices and their small screen.
Figure 7.8 shows Firebug Lite on an Android device.

[Moz11], [Fir10]

Chapter 7. Testing Approaches 71

Weinre

Weinre is an open-source tool with a similar target as Firebug Lite, but it does not display
the debug view on the device itself, instead it works via Ajax and allows to browse the DOM
and CSS on the desktop. The look and feel is quite similar to Firebug Lite and it offers nearly
the same functionality, but also has the limitation when it comes to JavaScript debugging. It
allows to view the JavaScript source code and to execute custom code.

In order to use Weinre, the Weinre server has to be started on the desktop. The server
serves a JavaScript file, that has to be included in the page to enable debugging. This way,
a connection is automatically created between the mobile browser and the Weinre server.
Figure 7.9 and 7.10 shows Weinre in action.

Figure 7.9: Weinre on the
Mobile Device

Figure 7.10: Weinre Inspector with a Selected Element Viewed
on a Desktop Browser

[GG11]

7.4.3 RemoteJS

Sencha Labs developed a remote debugging tool for Android using the Android Debug Bridge
(adb). A custom app is installed on the device displaying only a webview. Two versions exist
from the desktop client, a GUI version and a python version. The GUI version displays a
console within a desktop browser allowing to see logged messages and to execute custom
JavaScript code. This tool overwrites the Android console object in JavaScript and provides
its own. The python version has the same capabilities as the GUI version, but additionally

Chapter 7. Testing Approaches 72

allows to automate the scripting via python. Sencha Labs is planning to release an iPhone
version in the future. [Cor10]

7.5 GUI Testing

Testing the GUI manually or automated is quite similar to testing desktop websites. Tools
like Selenium for example work on desktop websites and offer plugins to work on mobile
devices, too.

In Chapter 6.3 three automated GUI testing tools were introduced. As Twist uses Selenium to
drive the browser it has the same capabilities, only displays the tests in an easy to understand
way. They work at the time of writing only on Android and iOS devices. The third tool,
EventRecorder from Sencha Labs is a lot simpler, less powerful and only works on Android
right now. An advantage of the EventRecorder is that test cases can be created very quickly,
but they only work on the device they are created on.

Manual testing on real physical devices can become very expensive as some top-end smart-
phones costs more than 600€. Testing on emulators is cheaper, but some of them offer a poor
performance and cannot emulate the real devices 100%. The following chapter describes a
trade-off between testing on emulators and real devices.

7.5.1 Remote Labs

Remote Labs allow to access real physical devices over the internet. This allows to test the
mobile web application on many devices without the need of purchasing them. Most remote
labs allow to capture a screenshot or a video during the test. Depending on the internet
connection and the remote lab, the feedback from control events might be delayed.

Nokia Remote Device Access (RDA)

At the time of writing, Nokias remote lab only offers Symbian and Maemo based phones. The
service is free of charge, offers only a few devices and the time how long one user can access a
device is limited. Registered Nokia developers have access to this lab and get 8 hours per day
to access the devices. The software allows to make screenshots, change the screen orientation
and to set the location data for the device. Unfortunately no automation of tests is available.
[Fir10], [Nok12]

Samsung Lab.Dev

This is Samsungs equivalent to Nokias RDA. The service is free of charge for user with a
Samsung Mobile Innovator user account. Every user gets 10 credits per day, which are valid
for 2.5h of using a device. Premium members can get more credits and have a broader range
of devices. At the time of writing only a limited amount of Android phones and tablets

Chapter 7. Testing Approaches 73

Figure 7.11: Samsung Lab.Dev

were available. Additionally, the data on the phones is not deleted after logging out and is
available to the next user. Figure 7.11 shows a Samsung Galaxy S II accessed via Lab.Dev.
It is possible to transfer files to the device and to take screenshots or record a video. [Fir10],
[Sam12]

DeviceAnywhere

DeviceAnywhere is a commercial service to access real mobile devices from different vendors
and with different operating systems. The service offers much more functionality than the free
services from Samsung and Nokia. It supports to capture videos or screenshots and also plays
back the audio of the device. Additionally, a proxy records and displays all network requests
and offers a DOM inspector. The software allows to use and control hardware components
like the accelerometer, compass or the camera of the device. It is also possible to connect
Android devices to the Android Debug Bridge (adb) as if they were local. This allows to use
Androids logcat or other programs requiring adb.

Besides manual testing, the test center software allows to create automated test cases. Testers
can add instructions and the types of proof for the test case. The created test cases can be
scheduled and run on multiple devices at the same time. Afterwards the results, including
screenshots and videos, are stored centrally and can be accessed by the whole team. A
screenshot of the software can be seen in Figure 7.12.

[Fir10], [Key11]

Chapter 7. Testing Approaches 74

Figure 7.12: DeviceAnywhere

Perfecto Mobile

Perfecto Mobile is a direct competitor to DeviceAnywhere. It offers the same services, like
accessing and controlling real smartphones via the internet. Like with DeviceAnywhere it
is possible to share the live session with other user or to record it. Tests can be automated
using scripts, image recognition and OCR. This allows to tell the script to wait for a certain
image or text to appear. The software allows to write custom commands and reuse them in
other tests.

An advantage of Perfecto Mobile over DeviceAnywhere is, that it runs completely in the
browser and does not require any additional software. Also a unique feature is Website
Validation. It runs a single URL on multiple devices and takes screenshots on all of them.
Afterwards the screenshots are displayed side by side on one page for comparison. Contrary to
its main competitor, Perfecto Mobile does not allow access or control of any of the hardware
components and does not offer a proxy to access the DOM on the device. Figure 7.13 shows
a screenshot of the software.

[Fir10], [Per11]

7.6 Summary

There is no tool that can handle all kinds of the different test types on mobile devices right
now, but with a combination of different tools one can cover the different test cases at least
on Android and iOS. Blackberry and Windows Phone 7 is not yet a top priority for the
vendors of testing tools, but this might change in the future. The biggest problem is the

Chapter 7. Testing Approaches 75

Figure 7.13: Perfecto Mobile [Per11]

missing debugger on Windows Phone 7. If a JavaScript error occurs uniquely on Windows
Phone devices, it is hard to find the cause of the problem.

Nearly all of the introduced test drivers work on both Android and iOS devices. This allows
to run unit, regression and GUI tests on multiple of this devices at the same time. Test
drivers can be run manually or integrated into automated scripts for continuous integration
and nightly build tests.

Headless testing frameworks do have a performance advantage over the other frameworks, but
cannot emulate a real browser on a physical mobile device 100%. Additionally, they cannot
keep up with the fast release of new versions of the browsers and may lag behind. Simulators
do have the same problem and some of them are quite slow. A trade-off are the presented
remote labs. They allow to test remotely on real physical devices. Test can be automated
and run parallel on many devices for a quick feedback.

Table 7.1 gives an overview how the testing frameworks work together with either jQuery
Mobile or Sencha Touch. This table recommends which testing framework should be chosen
for a specific testing type and a used mobile web application framework. A value of 1 means
this testing framework is not a good choice for this case and 5 for a perfect match. The
different test cases are TDD, CI, nightly builds and GUI testing. TDD has priority on a
fast feedback and easy and fast test creation, while CI on the other hand needs the ability
to call the tests via script and compare the results programmatically. Nightly builds need
frameworks that allow to run the test suites on real devices via command line, while quick
feedback is not an issue. GUI testing also needs to be done on real devices or emulators,

Chapter 7. Testing Approaches 76

while real environments are preferred. Priorities at GUI testing are automation, repeatability
and automated test validation.

Chapter 7. Testing Approaches 77

Testing Method Testing-Framework jQuery Mobile Sencha Touch

TDD

QUnit 5 4
YUI Test 4 3
Jasmin 5 4
Siesta 4 4
Envjs and Rhino 4 4
Zombie.js and Node.js 4 4
PhantomJS 4 4
JsTestDriver 5 4
Selenium 2 2
Twist 2 2
EventRecorder 4 4

CI

QUnit 5 4
YUI Test 4 3
Jasmin 5 4
Siesta 5 5
Envjs and Rhino 5 5
Zombie.js and Node.js 5 5
PhantomJS 5 5
JsTestDriver 5 5
Selenium 4 4
Twist 4 4
EventRecorder 2 2

Nightly Builds

QUnit 5 4
YUI Test 5 4
Jasmin 5 4
Siesta 5 5
Envjs and Rhino 2 2
Zombie.js and Node.js 2 2
PhantomJS 2 2
JsTestDriver 5 5
Selenium 5 5
Twist 5 5
EventRecorder 1 1

GUI Tests

QUnit 1 1
YUI Test 1 1
Jasmin 1 1
Siesta 4 4
Envjs and Rhino 1 1
Zombie.js and Node.js 1 1
PhantomJS 1 1
JsTestDriver 2 2
Selenium 4 4
Twist 5 5
EventRecorder 3 3

Table 7.1: Testing Framework Comparison

8 Conclusion

The HTML5 and CSS3 standards are still a subject to change. During the development of
the specifications, elements were removed, new ones were added and some even got their own
specification. At the time of writing the target date for the W3C recommendation of HTML5
is 2014 [W3C11n]. Nevertheless many of the new features are already implemented in the
biggest part of the mobile browsers. Android, Blackberry and iOS support the new features
already well and allow the development of native alike mobile web applications.

At the end of 2012, iOS and Android were the most popular operating systems for mobile
devices. Figure 8.1 shows that mainly Android and iOS devices are bought currently. This is
reflecting in the statistics shown in Figure 8.2, which displays the current share of mobile OSs
in Europe, and in Figure 8.3, which describes the share of mobile browsers in Europe in 2011.
The statistics tell us that most user in Europe use Android and iOS devices to access the
mobile web and mainly stay with the stock mobile browsers. Current HTML5 frameworks
focus therefore on this two devices. Blackberry switched with version 6 to a WebKit based
browser and has now the same underlying engine as the Android and iOS browser. This
allows Blackberry devices to render iPhone or Android optimized pages. Windows Phone 7 is
at the end of 2011 not widely used and has, together with webOS, the worst HTML5 support
of the current smartphone operating systems.

The most promising mobile HTML5 frameworks are Sencha Touch and jQuery Mobile at
the time of writing. They allow to develop mobile web applications with a native look and
feel. Both of them have their advantages and disadvantages. jQuery Mobile for example has
the broader range of supported mobile devices, while Sencha Touch focuses on a real native
feeling of the web applications, but uses for that reason some WebKit unique features. The
frameworks work very well on iOS devices, but still have some problems with animations
and performance on Android devices. However, because of the increasing market share of
Android the developers are now focusing to solve the problems on this platform. Every new
version of the frameworks have an increased Android support.

Testing of mobile web applications is harder then testing classical desktop websites because
of the big diversity of mobile devices and the lack of tools. Only a few tools exists that are
specifically designed for testing on mobile devices. Unfortunately most of them only work on
Android and iOS devices. Additionally, not every mobile browser supports debugging of the
HTML and JavaScript code. This can make troubleshooting difficult.

When it comes to testing the JavaScript code, many options exist. Headless testing-frameworks
emulate a real browser and allow executing the test suite very fast, but are not a guarantee
that the code will work in a real environment. In-browser testing-frameworks can be run
manually on the mobile device, but are hard to automate. Test drivers like JsTestDriver

78

Chapter 8. Conclusion 79

Figure 8.1: OS Share of Smartphone Sales [Per12]

Figure 8.2: Top 8 Mobile OSs in Europe in 2011 [Sta12]

Chapter 8. Conclusion 80

Figure 8.3: Top 9 Mobile Browsers in Europe in 2011 [Sta12]

allow to execute the test suite on many connected devices at the same time and to collect
and evaluate the results on a central node. Even testing on real devices is not a guarantee
that it will work on every device available. Purchasing smartphones is expensive and testing
on a lot of them is time consuming. A trade-off has to be found.

GUI testing mobile web applications is more difficult than testing only the JavaScript code.
Only few tools, as for example Selenium, allow automated GUI testing on mobile devices.
At the time of writing, only Android and iOS devices are supported. Additionally, it is not
possible to test on all available Android devices, because they are expensive and it is very
time consuming. Remote labs allow to test the applications on real devices over the internet
without the need of purchasing them. Depending on the used service, some of them allow test
automation as well. This services are expensive and cannot replace testing on a real device,
as the usability, like controlling it over the internet with a mouse, is different to holding it in
the own hands. Nevertheless, they are a good complement to testing on real devices.

With combining some of the introduced testing tools, a good test coverage can already be
achieved. As the mobile web will become even more important in the future, new testing
tools will become available.

List of Abbreviations

adb Android Debug Bridge
API Application Programming Interface
bcc Blind carbon copy
BDD Behaviour Driven Development
Blob Binary large object
BSD Berkeley Software Distribution
cc Carbon copy
CI Continuous Integration
CSS Cascading Style Sheets
DOM Document Object Model
GB Gigabyte
GPL GNU General Public License
GUI Graphical User Interface
HTML Hypertext Markup Language
IDE Integrated Development Environment
IE Internet Explorer
JSON JavaScript Object Notation
MIT Massachusetts Institute of Technology
MVC Model View Controller
OCR Optical Character Recognition
OS Operating System
RDA Remote Device Access
RFC Request for Comments
Sass Syntactically Awesome Stylesheets
SMS Short Message Service
SQL Structured Query Language
SVG Scalable Vector Graphics
TDD Test Driven Development
URI Uniform resource identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WebGL Web Graphics Library
YUI Yahoo! User Interface

81

Bibliography

[Ado11] Adobe. Aggressively Contribute to HTML5, 2011. Available online at http:
//blogs.adobe.com/conversations/2011/11/flash-focus.html; visited on
December 20th 2011.

[App11] Apple Inc. Safari Developer Library, 2011. Available online at http://developer.
apple.com/library/safari/; visited on January 23th 2012.

[Ban11] Aditya Bansod. Apple iOS 5: HTML5 Developer Score-
card, 2011. Available online at http://www.sencha.com/blog/
apple-ios-5-html5-developer-scorecard/; visited on January 20th
2012.

[Bry11] Mats Bryntse. Introducing Siesta: A Testing Tool for Ext
JS, 2011. Available online at http://www.sencha.com/blog/
introducing-siesta-a-testing-tool-for-ext-js/; visited on January
9th 2012.

[Bry12] Bryntum AB. Siesta, 2012. Available online at http://www.bryntum.com/
products/siesta/; visited on January 9th 2012.

[Bur10] David Burns. Selenium 1.0 Testing Tools. Packt Publishing, Birmingham, 2010.

[BW10] Daniel Barreiro and Dan Wellman. YUI 2.8 Learning the Library. Packt Publish-
ing, Birmingham, 2010.

[CG09] Lisa Crispin and Janet Gregory. Agile Testing. Addison-Wesley, Boston, 1st
edition, 2009.

[Cis11] Cisco. Cisco Visual Networking Index : Global Mobile Data Traffic Forecast
Update , 2010 - 2015. Technical report, Cisco, 2011.

[Coh10] Mike Cohn. Succeeding with Agile, Software Development Using Scrum. Addison-
Wesley, Boston, 2010.

[Cor10] Helder Correia. Remote JavaScript Debugging on Android,
2010. Available online at http://www.sencha.com/blog/
remote-javascript-debugging-on-android/; visited on January 19th
2012.

[Cor11] Helder Correia. EventRecorder for Android Web Applica-
tions, 2011. Available online at http://www.sencha.com/blog/
event-recorder-for-android-web-applications; visited on January
13th 2012.

82

http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://developer.apple.com/library/safari/
http://developer.apple.com/library/safari/
http://www.sencha.com/blog/apple-ios-5-html5-developer-scorecard/
http://www.sencha.com/blog/apple-ios-5-html5-developer-scorecard/
http://www.sencha.com/blog/introducing-siesta-a-testing-tool-for-ext-js/
http://www.sencha.com/blog/introducing-siesta-a-testing-tool-for-ext-js/
http://www.bryntum.com/products/siesta/
http://www.bryntum.com/products/siesta/
http://www.sencha.com/blog/remote-javascript-debugging-on-android/
http://www.sencha.com/blog/remote-javascript-debugging-on-android/
http://www.sencha.com/blog/event-recorder-for-android-web-applications
http://www.sencha.com/blog/event-recorder-for-android-web-applications

Bibliography 83

[CS11] Jonathan Chaffer and Karl Swedberg. Learning jQuery Third Edition. Packt
Publishing, Birmingham, 2011.

[Dev11] Alexis Deveria. When can I use... Support tables for HTML5, CSS3, etc, 2011.
Available online at http://caniuse.com; visited on January 24th 2012.

[Eug10] Liang Yuxian Eugene. JavaScript Testing. Packt Publishing, Birmingham, 2010.

[Fir10] Maximiliano Firtman. Programming the Mobile Web. O’Reilly, Sebastopol, 2010.

[Fir11] Maximiliano Firtman. Mobile Html5, 2011. Available online at http://
mobilehtml5.org/; visited on December 19th 2011.

[FR11] Eric Freeman and Elisabeth Robson. Head First HTML5 Programming. O’Reilly,
Sebastopol, 1st edition, 2011.

[Gar11] Gartner. Gartner Says Sales of Mobile Devices in Second Quarter of 2011
Grew 16.5 Percent Year-on-Year; Smartphone Sales Grew 74 Percent, 2011.
Available online at http://www.gartner.com/it/page.jsp?id=1764714; visited
on January 30th 2012.

[Gas11] Peter Gasston. The Book of CSS3. No Starch Press, Inc., San Francisco, 2011.

[GG11] Lyza Danger Gardner and Jason Grigsby. Head First Mobile Web. O’Reilly,
Sebastopol, 2011.

[Goo11] Google. JsTestDriver, 2011. Available online at http://code.google.com/p/
js-test-driver/; visited on January 10th 2012.

[Goo12a] Google. Android Developers, 2012. Available online at http://developer.
android.com; visited on January 20th 2012.

[Goo12b] Google. Android Supported Media Formats, 2012. Available online at http:
//developer.android.com/guide/appendix/media-formats.html; visited on
January 23th 2012.

[Gre11] Ido Green. Offline, 2011. Available online at http://offline-11.appspot.com;
visited on December 29th 2011.

[Hid11] Ariya Hidayat. PhantomJS, 2011. Available online at http://www.phantomjs.
org/; visited on January 10th 2012.

[HL11] Chuck Hudson and Tom Leadbetter. HTML5 Developer’s Cookbook. Addison-
Wesley, Boston, 2011.

[HW08] Paco Hope and Ben Walther. Web Security Testing Cookbook. O’Reilly, Sebastopol,
2008.

[Joh11] Christian Johansen. Test-Driven JavaScript Development. Pearson Education,
Inc., Boston, 2011.

[jQu10] jQuery Community Experts. jQuery Cookbook. O’Reilly, Sebastopol, 2010.

http://caniuse.com
http://mobilehtml5.org/
http://mobilehtml5.org/
http://www.gartner.com/it/page.jsp?id=1764714
http://code.google.com/p/js-test-driver/
http://code.google.com/p/js-test-driver/
http://developer.android.com
http://developer.android.com
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
http://offline-11.appspot.com
http://www.phantomjs.org/
http://www.phantomjs.org/

Bibliography 84

[Kan11] David Kaneda. jQTouch, 2011. Available online at http://blog.jqtouch.com/;
visited on January 4th 2012.

[Key11] Keynote DeviceAnywhere. DeviceAnywhere, 2011. Available online at http:
//www.deviceanywhere.com/; visited on January 18th 2012.

[Lim11] Research In Motion Limited. Manuals and Guides for BlackBerry Users, 2011.
Available online at http://www.blackberry.com/docs/smartphones; visited on
January 23th 2012.

[Mac11] Alex MacCaw. JavaScript Web Applications. O’Reilly, Sebastopol, first edition,
2011.

[Mad10] Lech Madeyski. Test-Driven Development: An Empirical Evaluation of Agile
Practice. Springer Berlin Heidelberg, Wroclaw, 1st edition, 2010.

[Mes07] Gerard Meszaros. xUnit Test Patterns. Addison-Wesley, Boston, 2007.

[Mic07] Microsoft Corporation. Performance Testing Guidance for Web Applications.
Microsoft Press, 2007.

[Mic12] Microsoft. How to use HTML5 to Add an Audio Player to your Webpage, 2012.
Available online at http://msdn.microsoft.com/en-us/library/gg589483(v=
VS.85).aspx; visited on January 23th 2012.

[Moz11] Mozilla. Firebug Lite, 2011. Available online at http://getfirebug.com/
firebuglite; visited on January 18th 2012.

[Nok12] Nokia. Remote device access, 2012. Available online at http://www.developer.
nokia.com/Devices/Remote_device_access/; visited on January 18th 2012.

[Nor06] Dan North. Introducing BDD, 2006. Available online at http://dannorth.net/
introducing-bdd/; visited on December 19th 2011.

[OB11] Damon Oehlman and Sébastien Blanc. Pro Android Web Apps: Develop for
Android Using HTML5, CSS3 & JavaScript. Apress, New York, 2011.

[Pan11] Matthew Panzarino. HP announces it will discontinue TouchPad,
Pre phones, stop webOS device development, 2011. Available online
at http://thenextweb.com/insider/2011/08/18/hp-announces-it-will-discontinue-
touchpad-stop-webos-device-development/ visited on January 30th 2012.

[Par11] Alejandro Parjus. IE9 For Windows Phone Is "Code Com-
plete", 2011. Available online at http://www.everythingwm.com/
ie9-for-windows-phone-is-code-complete/2011/05/25/; visited on January
30th 2012.

[Pea11] James Pearce. Professional Mobile Web Development with WordPress, Joomla!,
and Drupal. Wiley Publishing, Inc., Indianapolis, 2011.

[Per11] Perfecto Mobile. Mobile Application Testing on Real Devices, 2011. Available
online at http://www.perfectomobile.com/; visited on January 19th 2012.

http://blog.jqtouch.com/
http://www.deviceanywhere.com/
http://www.deviceanywhere.com/
http://www.blackberry.com/docs/smartphones
http://msdn.microsoft.com/en-us/library/gg589483(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/gg589483(v=VS.85).aspx
http://getfirebug.com/firebuglite
http://getfirebug.com/firebuglite
http://www.developer.nokia.com/Devices/Remote_device_access/
http://www.developer.nokia.com/Devices/Remote_device_access/
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://www.everythingwm.com/ie9-for-windows-phone-is-code-complete/2011/05/25/
http://www.everythingwm.com/ie9-for-windows-phone-is-code-complete/2011/05/25/
http://www.perfectomobile.com/

Bibliography 85

[Per12] Sarah Perez. iOS Market Share Up From 26% In Q3 To 43% In Oc-
t/Nov 2011, 2012. Available online at http://techcrunch.com/2012/01/09/
ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/; visited on
January 23th 2012.

[Pil10] Mark Pilgrim. Html5 up & running. O’Reilly, Sebastopol, 1st edition, 2010.

[Piv11] Pivotal Labs. Jasmin, 2011. Available online at https://github.com/pivotal/
jasmine/wiki; visited on January 9th 2012.

[Rei11] Jon Reid. jQuery Mobile. O’Reilly, Sebastopol, 1st edition, 2011.

[RW10] Arun Ranganathan and Shawn Wilsher. Firefox 4: An early walk-through of
IndexedDB, 2010. Available online at http://hacks.mozilla.org/2010/06/
comparing-indexeddb-and-webdatabase/; visited on December 29th 2011.

[Sam12] Samsung Electronics Co. Ltd. Lab.dev, 2012. Available online at http://
innovator.samsungmobile.com/bbs/lab/view.do?platformId=1; visited on
January 18th 2012.

[Sel12] Selenium. SeleniumHQ, 2012. Available online at http://seleniumhq.org/;
visited on January 11th 2012.

[Sen11] Sencha Inc. Sencha Touch, 2011. Available online at http://www.sencha.com/
products/touch/; visited on January 4th 2012.

[SH10] Markus Spiering and Sven Haiges. HTML5-Apps für iPhone und Android. Franzis
Verlag GmbH, Poing, 2010.

[Siv10] Henri Sivonen. Activating Browser Modes with Doctype, 2010. Available online
at http://hsivonen.iki.fi/doctype/; visited on December 21th 2011.

[Sta12] StatCounter. Top 9 Mobile Browsers in Europe from Dec 2010 to Dec
2011, 2012. Available online at http://gs.statcounter.com/#mobile_
browser-eu-monthly-201012-201112; visited on January 23th 2012.

[Thea] The jQuery Project. jQuery Mobile. Available online at http://jquerymobile.
com; visited on December 29th 2011.

[Theb] The jQuery Project. QUnit. Available online at http://docs.jquery.com/QUnit;
visited on January 5th 2012.

[Tho11] Thoughtworks Studios. Twist, 2011. Available online at http://www.
thoughtworks-studios.com/agile-test-automation; visited on November
11th 2011.

[W3C10a] W3C. Geolocation API Specification, 2010. Available online at http://www.
w3.org/TR/2010/CR-geolocation-API-20100907/; visited on December 28th
2011.

[W3C10b] W3C. Media Queries, 2010. Available online at http://www.w3.org/TR/2010/
CR-css3-mediaqueries-20100727/; visited on January 3rd 2012.

http://techcrunch.com/2012/01/09/ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/
http://techcrunch.com/2012/01/09/ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/
https://github.com/pivotal/jasmine/wiki
https://github.com/pivotal/jasmine/wiki
http://hacks.mozilla.org/2010/06/comparing-indexeddb-and-webdatabase/
http://hacks.mozilla.org/2010/06/comparing-indexeddb-and-webdatabase/
http://innovator.samsungmobile.com/bbs/lab/view.do?platformId=1
http://innovator.samsungmobile.com/bbs/lab/view.do?platformId=1
http://seleniumhq.org/
http://www.sencha.com/products/touch/
http://www.sencha.com/products/touch/
http://hsivonen.iki.fi/doctype/
http://gs.statcounter.com/#mobile_browser-eu-monthly-201012-201112
http://gs.statcounter.com/#mobile_browser-eu-monthly-201012-201112
http://jquerymobile.com
http://jquerymobile.com
http://docs.jquery.com/QUnit
http://www.thoughtworks-studios.com/agile-test-automation
http://www.thoughtworks-studios.com/agile-test-automation
http://www.w3.org/TR/2010/CR-geolocation-API-20100907/
http://www.w3.org/TR/2010/CR-geolocation-API-20100907/
http://www.w3.org/TR/2010/CR-css3-mediaqueries-20100727/
http://www.w3.org/TR/2010/CR-css3-mediaqueries-20100727/

Bibliography 86

[W3C10c] W3C. Mobile Web Application Best Practices, 2010. Available online at http:
//www.w3.org/TR/2010/REC-mwabp-20101214/; visited on December 22th 2011.

[W3C10d] W3C. Web SQL Database, 2010. Available online at http://www.w3.org/TR/
2010/NOTE-webdatabase-20101118/; visited on December 29th 2011.

[W3C11a] W3C. CSS Basic User Interface Module Level 3, 2011. Available online at
http://dev.w3.org/csswg/css3-ui/; visited on January 3rd 2012.

[W3C11b] W3C. CSS Device Adaptation, 2011. Available online at http://www.w3.org/
TR/2011/WD-css-device-adapt-20110915/; visited on December 21th 2011.

[W3C11c] W3C. DeviceOrientation Event Specification, 2011. Available online at http://
www.w3.org/TR/2011/WD-orientation-event-20111201/; visited on December
28th 2011.

[W3C11d] W3C. File API, 2011. Available online at http://www.w3.org/TR/2011/
WD-FileAPI-20111020/; visited on December 29th 2011.

[W3C11e] W3C. HTML Canvas 2D Context, 2011. Available online at http://www.w3.
org/TR/2011/WD-2dcontext-20110525/; visited on December 28th 2011.

[W3C11f] W3C. HTML Media Capture, 2011. Available online at http://www.w3.org/TR/
2011/WD-html-media-capture-20110414/; visited on December 29th 2011.

[W3C11g] W3C. HTML5, 2011. Available online at http://www.w3.org/TR/2011/
WD-html5-20110525/; visited on December 23th 2011.

[W3C11h] W3C. HTML5 differences from HTML4, 2011. Available online at http://www.
w3.org/TR/2011/WD-html5-diff-20110525/; visited on December 21th 2011.

[W3C11i] W3C. Indexed Database API, 2011. Available online at http://www.w3.org/TR/
2011/WD-IndexedDB-20111206/; visited on December 29th 2011.

[W3C11j] W3C. Server-Sent Events, 2011. Available online at http://www.w3.org/TR/
2011/WD-eventsource-20111020/; visited on December 29th 2011.

[W3C11k] W3C. The Network Information API, 2011. Available online at http://www.w3.
org/TR/2011/WD-netinfo-api-20110607/; visited on December 29th 2011.

[W3C11l] W3C. The WebSocket API, 2011. Available online at http://www.w3.org/TR/
2011/CR-websockets-20111208/; visited on December 29th 2011.

[W3C11m] W3C. Touch Events version 1, 2011. Available online at http://www.w3.org/
TR/2011/CR-touch-events-20111215/; visited on December 23th 2011.

[W3C11n] W3C. W3C Confirms May 2011 for HTML5 Last Call, Targets 2014 for HTML5
Standard, 2011. Available online at http://www.w3.org/2011/02/htmlwg-pr.
html; visited on January 23th 2012.

[W3C11o] W3C. Web Storage, 2011. Available online at http://www.w3.org/TR/2011/
CR-webstorage-20111208/; visited on December 28th 2011.

http://www.w3.org/TR/2010/REC-mwabp-20101214/
http://www.w3.org/TR/2010/REC-mwabp-20101214/
http://www.w3.org/TR/2010/NOTE-webdatabase-20101118/
http://www.w3.org/TR/2010/NOTE-webdatabase-20101118/
http://dev.w3.org/csswg/css3-ui/
http://www.w3.org/TR/2011/WD-css-device-adapt-20110915/
http://www.w3.org/TR/2011/WD-css-device-adapt-20110915/
http://www.w3.org/TR/2011/WD-orientation-event-20111201/
http://www.w3.org/TR/2011/WD-orientation-event-20111201/
http://www.w3.org/TR/2011/WD-FileAPI-20111020/
http://www.w3.org/TR/2011/WD-FileAPI-20111020/
http://www.w3.org/TR/2011/WD-2dcontext-20110525/
http://www.w3.org/TR/2011/WD-2dcontext-20110525/
http://www.w3.org/TR/2011/WD-html-media-capture-20110414/
http://www.w3.org/TR/2011/WD-html-media-capture-20110414/
http://www.w3.org/TR/2011/WD-html5-20110525/
http://www.w3.org/TR/2011/WD-html5-20110525/
http://www.w3.org/TR/2011/WD-html5-diff-20110525/
http://www.w3.org/TR/2011/WD-html5-diff-20110525/
http://www.w3.org/TR/2011/WD-IndexedDB-20111206/
http://www.w3.org/TR/2011/WD-IndexedDB-20111206/
http://www.w3.org/TR/2011/WD-eventsource-20111020/
http://www.w3.org/TR/2011/WD-eventsource-20111020/
http://www.w3.org/TR/2011/WD-netinfo-api-20110607/
http://www.w3.org/TR/2011/WD-netinfo-api-20110607/
http://www.w3.org/TR/2011/CR-websockets-20111208/
http://www.w3.org/TR/2011/CR-websockets-20111208/
http://www.w3.org/TR/2011/CR-touch-events-20111215/
http://www.w3.org/TR/2011/CR-touch-events-20111215/
http://www.w3.org/2011/02/htmlwg-pr.html
http://www.w3.org/2011/02/htmlwg-pr.html
http://www.w3.org/TR/2011/CR-webstorage-20111208/
http://www.w3.org/TR/2011/CR-webstorage-20111208/

Bibliography 87

[W3C11p] W3C. Web Workers, 2011. Available online at http://www.w3.org/TR/2011/
WD-workers-20110901/; visited on December 29th 2011.

[WHA11] WHATWG. CanvasContexts, 2011. Available online at http://wiki.whatwg.
org/wiki/CanvasContexts; visited on December 28th 2011.

[Whi09] James A. Whittaker. Exploratory Software Testing. Pearson Education, Inc.,
Boston, 2009.

[Wro11] Luke Wroblewski. Mobile First. Jeffrey Zeldman, New York, 2011.

[Yah11] Yahoo! Inc. YUI Test, 2011. Available online at http://yuilibrary.com/
projects/yuitest/; visited on January 9th 2012.

http://www.w3.org/TR/2011/WD-workers-20110901/
http://www.w3.org/TR/2011/WD-workers-20110901/
http://wiki.whatwg.org/wiki/CanvasContexts
http://wiki.whatwg.org/wiki/CanvasContexts
http://yuilibrary.com/projects/yuitest/
http://yuilibrary.com/projects/yuitest/

	Contents
	List of Tables
	List of Figures
	Introduction
	Outline
	Scope

	What is HTML5
	HTML5
	Doctype
	New Tags
	Changes to Existing Tags
	Application Cache
	JavaScript APIs

	CSS3
	Media Queries
	Orientation and Aspect Ratio
	Resolution and Pixel Ratio
	Decorative Elements
	Transformations
	Transitions
	Animations

	URI schemes

	Current Smartphone Browsers
	iOS
	Android
	Windows Phone
	BlackBerry
	MeeGo
	WebOS
	Cross Platform Browser
	Firefox for Mobile
	Opera Mobile

	Testing
	Agile Testing
	Technology-Facing Tests that Support the Team
	Business-Facing Tests that Support the Team
	Business-Facing Tests that Critique the Application
	Technology-Facing Tests that Critique the Application

	Test Driven Development
	Test Double Pattern

	Behaviour Driven Development

	Frameworks
	jQuery Mobile
	Sencha Touch
	Other Frameworks
	jQTouch
	Jo

	Summary

	Testing-Frameworks
	In-Browser Testing-Frameworks
	QUnit
	YUI Test
	Jasmin
	Siesta

	Headless Testing-Frameworks
	Envjs and Rhino
	Zombie.js and Node.js
	PhantomJS

	Test Driver
	JsTestDriver
	Selenium
	Twist
	EventRecorder

	Stubbing and Mocking Libraries
	Sinon.JS

	Testing Approaches
	Testing the HTML5 Features
	Feature Detection
	Offline Mode
	Storage
	Geolocation
	Motion Sensors
	Network

	Continuous Integration and Test Driven Development
	jQuery Mobile
	Sencha Touch

	Testing Nightly Builds
	Debugging
	In Browser Debugger
	JavaScript Based Debugger
	RemoteJS

	GUI Testing
	Remote Labs

	Summary

	Conclusion
	List of Abbreviations
	Bibliography

