
Master Thesis

Development, Implementation and Assessment

of DVB-S2 Frame Synchronization and SNR

Estimation on the GNU Radio Platform

Eral Türkyilmaz

Institute of Communication Networks and Satellite Communications

Graz University of Technology, Austria

Head: Univ.-Prof. Dipl.-Ing. Dr. Otto Koudelka

Assessor:

Univ.-Prof. Dipl.-Ing. Dr. Otto Koudelka

Supervisor:

Dipl.-Ing. Dr. Wilfried Gappmair

Graz, January 2012

2

4

Abstract

Future applications in satellite communication services will need more and more bandwidth.
This makes the use of higher frequency bands like Q/V necessary. Hence studies of satellite
communications in the Q/V-band will be performed by the European Space Agency (ESA)
in the context of the ALPHASAT project using a DVB-S2 transmission format.

Due to the high frequencies in the Q/V-band, the propagation e�ects are signi�cant and deep
fades can occur. Dynamic link capacity assignment with Adaptive Coding and Modulation
(ACM) is an e�ective way for fade mitigation. But ACM needs SNR estimation and MOD-
COD (Modulation Scheme and Coding) determination out of the sent DVB-S2 signal to work
properly.

The following thesis will provide a famework for these necessary tasks on a GNU Radio plat-
form. In this respect, possible frame synchronization algorithms for DVB-S2 are examined
and a suitable algorithm will be implemented on the platform. Additionally, performance-
critical operations should be realized in FPGA hardware.

Furthermore, SNR estimation algorithms are needed to monitor the current channel condi-
tions. Therefore an assessment of di�erent SNR estimations available from the open literature
has been done. Data-aided and non-data-aided variants of the SNR estimators are in the se-
quel applied to the DVB-S2 format and evaluated.

Additionally, a receiver architecture has been developed and implemented on the chosen
GNU Radio platform. The whole system was then tested in a laboratory setup.

5

6

Acknowledgements

I would like to thank Univ.-Prof. Dipl.-Ing. Dr. Otto Koudelka for giving me the opportunity
to work on this thesis in a professional �eld at Joanneum Research.

Furthermore, many thanks must be given to my advisors at Joanneum Research DIGITAL
SPA (Space Technology and Acoustics), namely Dipl.-Ing. Harald Schlemmer, Dipl.-Ing.
Michael Schmidt and Dipl.-Ing. Dr. Johannes Ebert. I am very grateful for their countless
hours of support during this work.

Special thanks go to my supervisor, Dipl.-Ing. Dr. Wilfried Gappmair for proofreading,
giving me support in mathematical concerns and for providing me with literature as back-
ground for my work.

Moreover, I would like to express my gratitude to all the people who have supported me
in any way during my work on this thesis.

7

8

Contents

Abstract 5

Acknowledgements 7

Contents 13

List of Figures 14

List of Tables 17

List of Acronyms 18

1. Introduction and Motivation 21
1.1. Q/V-Band Communication Experiment . 21
1.2. Scenario . 21
1.3. Using the GNU Radio SDR Platform . 22
1.4. Tasks . 23

2. The DVB-S2 Standard 25
2.1. History . 25
2.2. Transmitter Block Diagram . 26
2.3. Forward Error Correction Encoding . 26
2.4. Constellation Mapping . 26

2.4.1. Modulation . 26
2.4.2. Symbol Mappings . 27

2.5. PL Framing . 28
2.5.1. Physical Layer Frame Format . 28
2.5.2. Generating PLS Code . 28
2.5.3. π

2
-BPSK . 29

2.5.4. Payload . 30
2.5.5. Pilots . 30
2.5.6. DUMMY PLFRAME . 30
2.5.7. PL Scrambling . 30

2.6. Baseband Shaping and Quadrature Modulation 31
2.7. Support of Adaptive Coded Modulation (ACM) 31
2.8. Receiver Block Diagram (ETSI) . 31

3. Frame Synchronization Theory 33
3.1. Introduction . 33

3.1.1. Signal Model . 33
3.1.2. Carrier frequency and phase o�sets . 33
3.1.3. Noise . 34

9

3.2. Frame Timing Recovery . 34
3.2.1. Correlation . 35

3.2.1.1. Conventional Correlation . 35
3.2.1.2. Choi-Lee Detector . 35
3.2.1.3. Di�erential Correlation . 36
3.2.1.4. Application of Di�erential Correlation in DVB-S2 37

3.2.2. Peak Detection . 38
3.2.2.1. Threshold Detector . 38
3.2.2.2. Exponential Averaging + Threshold Detector 39
3.2.2.3. Modi�ed Peak Search Detector 40
3.2.2.4. Peak Search Detector . 40
3.2.2.5. Adapted Peak Search Detector 41

3.3. PLSC Decoding . 42
3.3.1. Correction of Carrier Phase O�sets . 42
3.3.2. Correction of Carrier Frequency O�sets 43
3.3.3. Symbol Decoding using Hard Decisions 43
3.3.4. PLSC Decoding of Hard Decisions . 44

3.3.4.1. Maximum Likelihood Method 44
3.3.4.2. Fast Hadamard Transformation 44

4. SNR Estimation Theory 45
4.1. Introduction . 45

4.1.1. Signal Model . 45
4.2. Classi�cation and Assessment of SNR Estimators 46

4.2.1. DA Squared Signal-to-Noise Variance Estimation 47
4.2.1.1. Derivation of the Algorithm 47
4.2.1.2. RxDA / TxDA Estimator . 48

4.2.2. Moment-Based Estimation . 48
4.2.2.1. Derivation of the Algorithm 48
4.2.2.2. Estimation for M-ary PSK . 49
4.2.2.3. Estimation for Non-Constant Envelope Modulations 49

4.3. Application of the SNR Estimators in DVB-S2 52
4.3.1. DA SNV Estimation on PLHEADER and Pilots 52

4.3.1.1. Phase O�set Correction . 52
4.3.1.2. Calculation on Individual Blocks And Combining 52

4.3.2. M2M4 Estimator . 53
4.3.2.1. Constant Envelope Modulation (QPSK, 8-PSK) 53
4.3.2.2. Non-Constant Envelope Modulation (16-APSK, 32-APSK) . . 53
4.3.2.3. Remark . 54

5. Implementation 55
5.1. Receiver Architecture Using the GNU Radio Platform 55

5.1.1. The GNU Radio Platform . 55
5.1.2. Block Diagram of the Receiver . 56
5.1.3. Possible Con�gurations . 56

5.2. Architecture of the Simulation Platform . 57
5.2.1. GNU Radio Companion (GRC) . 57
5.2.2. Python . 58

10

5.2.3. Graphical Analysis . 58
5.3. Implemented Blocks in GNU Radio . 58

5.3.1. Tools Library . 58
5.3.2. DVB-S2 Source Block Implementation 59
5.3.3. Di�erential Correlation Implementation 59
5.3.4. Peak Detector . 59

5.3.4.1. Exponential Averaging Implementation 60
5.3.4.2. Adapted Peak Search Implementation 60
5.3.4.3. Adapted Peaks Search and Resyncing 61

5.3.5. SNR Estimation Blocks Implementation 62
5.4. Architecture of the Prototype . 62
5.5. Di�erential Correlator (FPGA Implementation) 63

5.5.1. High Level Model in Matlab and C++ 64
5.5.2. Simulation Environment in VHDL . 64
5.5.3. Determing the Di�erential . 64
5.5.4. Use of Swapping Units instead of Multipliers 65
5.5.5. Correlation Result Calculation . 66

5.5.5.1. Using the Euclidean Norm (Norm 2) 66
5.5.5.2. Using the Manhattan Norm (Norm 1) 67

5.5.6. Correlator Structure . 68
5.5.6.1. Direct Form . 68
5.5.6.2. Transposed Form . 68
5.5.6.3. Comparison between Direct Form Implemenation and Trans-

posed Form Implementation 70

6. Simulation Results and Discussion 71
6.1. Performance of the Di�erential Correlation . 71

6.1.1. Correlation Results at Di�erent SNRs 71
6.1.2. Max-Peak Error Rate Simulation . 72
6.1.3. Max-Peak Error Rate with Frequency Error 74

6.2. INIT SYNC Acquisition Performance . 74
6.2.1. Acquisition Time . 75
6.2.2. Simulation Results . 76

6.3. SNR Estimation . 77
6.3.1. Performance Measurements . 77
6.3.2. DA Estimation . 77

6.3.2.1. Mean Estimator Output Simulation 78
6.3.2.2. NMSE Performance Simulation 79

6.3.3. Moment-Based Estimation . 80
6.3.3.1. Mean Estimator Output Simulation 81
6.3.3.2. NMSE Performance Simulation 81

7. Practical Measurements on the Prototype 83
7.1. Test Setup and Components . 83

7.1.1. Modulator / Demodulator Remote Control 84
7.1.2. Packet Generator and Analyzer . 86
7.1.3. Noise Generator . 87
7.1.4. SNR Measurement on the Spectrum Analyzer 87

11

7.1.5. Optimal Signal Level for ADC . 88
7.1.6. GNU Radio Setup for the Measurements 89

7.2. Test Cases . 90
7.3. INIT Sync Acquisition Performance . 91
7.4. SNR Measurements . 92

7.4.1. Empirical PDF . 92
7.4.2. Measurement Results . 93
7.4.3. Comparison to CRLB and Simulation 94

7.5. Real-time Performance Tests . 95

8. Conclusions and Future Work 97

A. USRP N210 Internals 99
A.1. Description . 99
A.2. Important Features and Components . 100
A.3. Clocking . 101

A.3.1. Clocking on the Mainboard . 101
A.3.2. External REF CLOCK Speci�cations 101
A.3.3. Clock Distribution inside the FPGA 101

A.4. Internal FPGA Design . 103
A.4.1. Memory Layout . 103
A.4.2. Samples via Ethernet . 105

A.4.2.1. SPI Flash and Memory Layout 105
A.4.2.2. Bootloading Sequence . 105

A.4.3. Generating FPGA Images . 106
A.5. Firmware . 107

A.5.1. Bootloader . 107
A.5.2. Main Firware . 107
A.5.3. Generate Firmware Images . 107

A.6. Flashing . 107
A.6.1. Burn FPGA Images into the SPI Flash 107
A.6.2. Repair Bricked Boards . 108

A.7. Logic Analysis . 108
A.7.1. Using the MICTOR Connector . 108
A.7.2. Using ChipScope . 108

A.8. Monitoring UART Output . 109
A.9. Modifying the Original FPGA Source . 110

A.9.1. Removing Unnecessary FPGA Parts 110
A.9.2. Providing Custom Calculations on the FPGA / UHD Settings 110
A.9.3. Timing Constraints Settings . 110

B. WBX Internals 113
B.1. Speci�cation . 113

B.1.1. RX Path Components . 113
B.1.2. Maximum Input Power . 114

B.2. Measuring the ADC Input Power . 114
B.3. Performing AGC . 115

C. UHD 117

12

C.1. Installing . 117
C.1.1. Building and Installing on Linux . 117
C.1.2. Building on Windows . 118

C.2. Tools . 118
C.2.1. UHD �nd Devices . 118
C.2.2. UHD USRP Probe . 118
C.2.3. UHD Net Burner: . 118

C.3. gr-uhd . 118

D. Deliverables 119
D.1. VHDL Source Files . 119
D.2. GNU Radio Source Files . 120
D.3. MATLAB Source File . 120

Bibliography 122

13

List of Figures

1.1. Communication experiment (unidirectional) 22
1.2. The GNU Radio platform (USRP + PC) . 23

2.1. Functional block diagram (from [ETS09]) . 26
2.2. QPSK symbol mapping . 27
2.3. 8-PSK symbol mapping . 27
2.4. 16-APSK symbol mapping . 27
2.5. 32-APSK symbol mapping . 27
2.6. PLFRAME format [ETS09] . 28
2.7. PLFRAME format [ETS09] . 29
2.8. Symbol mapping for odd bits . 30
2.9. Symbol mapping for even bits . 30
2.10. PL scrambling [ETS09] . 31
2.11. PL frames changing protection during a rain fading [ETS09] 31
2.12. ETSI proposed receiver structure [ETS05] . 32

3.1. Signal model . 33
3.2. Combination of correlator and peak detector to determine the frame timing

(SOF=Start-of -Frame) . 34
3.3. Circuit to perform the di�erential correlation 38
3.4. Exponential averaging and threshold detector 39
3.5. Peak search algorithm (from [SJL04]) . 41
3.6. Adapted peak search algorithm . 42
3.7. Example for the path search in the peak table 42

4.1. Block diagram for SNR estimation . 45
4.2. Signal model for SNR estimation . 46
4.3. Partitioning of the signal space in 16-APSK 50
4.4. DA SNR estimation for a single frame . 52
4.5. Moment-based SNR estimation for M-PSK . 53
4.6. Moment-based SNR estimation for 16-APSK and 32-APSK 54

5.1. The GNU Radio platform (USRP + PC) . 55
5.2. Principal receiver architecture . 56
5.3. Simulation graph in GRC . 57
5.4. DVB-S2 source block in GRC . 59
5.5. Di�erential correlator block in GRC . 59
5.6. Exponential averaging block in GRC . 60
5.7. Adapted peak search block in GRC . 60
5.8. Algorithm for INIT frame SYNC . 61
5.9. Algorithm for frame SYNC with resyncing . 62
5.10. SNR estimator blocks in GRC . 62

14

5.11. Proposed architecture . 63
5.12. Test bench for the di�erential correlator module 64
5.13. Determine the di�erential . 65
5.14. Swap unit . 66
5.15. Aproximate computation of the magnitude . 67
5.16. Improved architecture (transposed form) of the di�erential correlator 69

6.1. Schematic to plot correlation results in GRC 71
6.2. Correlation results at ES

N0
= 10 dB . 72

6.3. Correlation results at ES
N0

= −2 dB . 72
6.4. Max-peak error rate in GRC . 73
6.5. Max-peak error rate (∆f · Ts = 0) . 73
6.6. Max-peak error rate for di�erent frequency errors 74
6.7. Simulation of the INIT SYNC acquisition time in GRC 75
6.8. Empirical PDF and CDF of the acquisition Time at Es

N0
= −2dB 76

6.9. SNR estimation in GRC . 78
6.10. Mean estimator output . 78
6.11. Mean estimator output (zoomed at 6dB) . 79
6.12. Normalized MSE . 80
6.13. Simulation of the NDA estimation in GRC . 80
6.14. Mean estimator output for di�erent modulation schemes (L = 1000) 81
6.15. NMSE for di�erent modulation schemes (L = 1000) 82

7.1. Test setup in the laboratory . 84
7.2. Both Newtec modems on top of the noise generator 84
7.3. Modulator setup . 85
7.4. Demodulator setup . 85
7.5. Modulator overview setup . 86
7.6. Settings on the noise generator . 87
7.7. None-�atness of the noise generator in a 100 MHz band 87
7.8. Carrier-plus-noise power measurement . 88
7.9. Noise power measurement . 88
7.10. Input samples without Noise . 89
7.11. Input samples contaminated with noise (C

N
= 1dB) 89

7.12. GRC graph setup for measurements . 90
7.13. empirical PDF (left) and CDF (right) of the acquisition time at C

N
≈ −1dB . 92

7.14. empirical PDF (left) and CDF (right) of the acquisition time at C
N

≈ +1dB . 92
7.15. empirical determined PDFs at C

N
≈ 3dB . 93

7.16. DA estimator (on PLHEADER only L = 90) performance 95

A.1. Opened USRPN210 . 99
A.2. Front view of the USRP N210 . 100
A.3. Clock distribution on the mainboard . 102
A.4. Clock distribution inside the FPGA . 102
A.5. Internal SOC architecture inside the FPGA 104
A.6. FPGA image generation process steps . 106
A.7. Example of logic analysis system attached over MICTOR cable 109
A.8. Signal level converter for UART . 109

15

B.1. WBX-Board receive path block diagram . 114
B.2. Measuring the power of the inphase ADC-Samples 115

16

List of Tables

5.1. Chosen parameters for the adapted peak search algorithm 60
5.2. Comparisoin between di�erent FPGA implementations 70

6.1. Peak detector performance . 76

7.1. Test cases . 91
7.2. Frame acquisition measurement results . 91
7.3. Summary of the SNR measurement results . 94

A.1. Memory layout . 105
A.2. SPI �ash memory layout . 105
A.3. FPGA utilization in 2 di�erent con�gurations 110

17

List of Acronyms

8-PSK 8-ary Phase Shift Keying

16-APSK 16-ary Amplitude and Phase Shift Keying

32-APSK 32-ary Amplitude and Phase Shift Keying

ACM Adaptive Coding and Modulation

AGC Automatic Gain Control

AWGN Additive White Gaussian Noise

BB Baseband

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDF Cumulative Distribution Function

CFO Carrier Frequency O�set

CIC Cascaded Integrator Comb

CNR Carrier-to-Noise Ratio

CR Code Rate

CRC Cyclic Redundancy Check

CRLB Cramer-Rao Lower Bound

DA Data-Aided

DC Direct Current

DD Decision-Directed

DFT Discrete Fourier Transform

DRM Digital Radio Mondiale

DSP Digital Signal Processor

DTH Direct To Home

DVB Digital Video Broadcasting

EEP Equal Error Protection

EIRP Equivalent Isotropically Radiated Power

ESA European Space Agency

ETSI European Telecommunications Standards Institute

FEC Forward Error Correction

FFT Fast Fourier Transform

FIR Finite Impulse Response

FM Frequency Modulation

FPGA Field Programmable Gate Array

GRC GNU Radio Companion

HBF Half Band Filter

HPA High Power Ampli�er

ICI Inter-Carrier Interference

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

I/Q In-Phase/Quadrature-Phase

ISI Inter-Symbol Interference

LNA Low Noise Ampli�er

MCRLB Modi�ed Cramer-Rao Lower Bound

18

ML Maximum Likelihood

MODCOD Modulation and Coding

MSB Most Signi�cant Bit

MSE Mean Squared Error

NCRLB Normalized Cramer-Rao Lower Bound

NDA Non-Data-Aided

NMSE Normalized Mean Squared Error

PDF Probability Density Function

PL Physical Layer

PLSC Physical Layer Signalling Code

PLH Physical Layer Header

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quarternary Phase Shift Keying

RF Radio Frequency

RRC Root-Raised Cosine

SA Spectrum Analyzer

SDR Software De�ned Radio

SER Symbol Error Rate

SNR Signal to Noise Ratio

SOC System-On-Chip

SOF Start of Frame

STO Symbol Timing O�set

UHD Universal Hardware Driver

VCM Variable Coding and Modulation

19

20

1. Introduction and Motivation

1.1. Q/V-Band Communication Experiment

Nowadays most of the lower satellite frequency bands are already heavily congested. This
makes an investigation of higher frequency bands necessary. The Q/V-band (35GHz to
75GHz) is a potential candidate which could provide additional bandwidth for new appli-
cations. Since at such high frequencies the wavelengths are very small, wave propagation
e�ects have a signi�cant impact. The traditional approach of simply providing a large link
margin for fades by using high EIRP and G/T �gures are impractical. Adaptive Coding and
Modulation (ACM), o�ered by the DVB-S2 standard, provides a more e�ective approach by
performing a dynamic link adaptation to the current propagation conditions.
The ALPHASAT satellite, launched in late 2012, will carry an experimental Q/V-band pay-
load. Communication experiments will use DVB-S2 as transmission format and will therefore
leaving focus on ACM for fade mitigation.[Kou11][RCL+09]

1.2. Scenario

The principal scenario of the Q/V-band communication experiment is shown in �gure 1.1.
The real experiment will use a bidirectional communication link, but for simplicity reasons it
is only shown in one direction (unidirectional).

The payload data are generated by a packet generator, modulated into the DVB-S2 for-
mat according to the current MODCOD (modulation scheme and coding), and converted to
the L-Band. The L-Band signal is then upconverted into the Q/V-band. The resulting signal
is ampli�ed by a High Power Ampli�er (HPA), fed to the antenna and sent to the satellite.
The ALPHASAT transponder prepares the signal for the downlink. The receive station am-
pli�es the signal by a Low Noise Ampli�er (LNA) and performs the downconversion from
Q/V-band to the L-Band. The demodulator now performs all the processing to extract the
payload data out of the DVB-S2 frames. A packet analyzer shows how many packets were
sent correctly over the link.

For the ACM experiment it is important to provide the sending base station with a feed-
back on the channel conditions at the receive base station. Therefore we need an accurate
SNR estimate. The monitoring parameters (MODCOD and SNR) can be returned to the
sender by using an appropriate return channel (e.g.: return satellite channel, terrestrial link).
In the sending base station the experiment is controlled by an ACM algorithm that decides
when to switch the MODCOD based on the SNR estimates of the receiver station (each
available transmission format has a certain minimal SNR to o�er quasi error free transmission
[ETS09, p. 34]). Additionally, the experiment will be monitored which means that all received
return data (MODCODs and SNR) are logged at the sending base station.

21

The experiment will cover an SNR dynamic range of about 12.2 dB where the lowest mod-
ulation scheme is QPSK 1/2 (min. SNRs 1.6 dB) and the highest modulation scheme is
16-APSK 8/9 (min. SNRs 13.8 dB) .

Figure 1.1.: Communication experiment (unidirectional)

1.3. Using the GNU Radio SDR Platform

The existing modems o�er an SNR estimation but there is no information available about the
used algorithm and the time granularity of these SNR estimates.Therefore it is necessary to
provide a customized solution. The advantage is that we can realize our own methods and,
based on this, select the required MODCODs.
A �exible Software De�ned Radio (SDR) platform (USRP + GNU Radio running on the PC)
has been chosen to implement this tasks. A short overview of the SDR platform is shown in
�gure 1.2. The incoming RF signal is downconverted, sampled and decimated by the USRP.
In the sequel the samples are sent to the PC where the GNU Radio platform processes the
incoming samples.

22

Figure 1.2.: The GNU Radio platform (USRP + PC)

1.4. Tasks

Two important tasks have to be performed on the SDR platform. On the one hand, a frame
synchronization has to be achieved to get the current MODCOD and, on the other hand, an
SNR estimation has to be performed to evaluate the current channel conditions.
The goal of this Master Thesis is to develop a prototype for DVB-S2 frame synchronization
and SNR estimation for the Q/V-band communication experiment. The algorithms will be
implemented on the GNU Radio platform in combination with the USRP N210. Performance-
critical operations should be implemented on the FPGA of the USRP. Additionally, an as-
sessment of the di�erent algorithms has to be performed. The following list summarizes the
tasks to be performed in the context of the current Master Thesis:

� Frame synchronization algorithms for DVB-S2 have to be analyzed; an appropriate
algorithm will be chosen which has to be:

� implemented in software as �oating-point and bit-accurate model (C++ GNU
Radio modules)

� simulated in software to evaluate the performance and to get a reference for the
hardware implementation

� implemented in FPGA if necessary (parts of the algorithm)

� Di�erent SNR estimators have to be selected and evaluated; they have to be:

� implemented in software (C++ GNU Radio modules)

� simulated in software to measure their performance

� Developing a prototype on the GNU Radio platform:

� propose and implement an architecture

� practical measurements to evaluate the performance of the implemented system

� comparison to simulation

23

24

2. The DVB-S2 Standard

2.1. History

The DVB (Digital Video Broadcasting) Project introduced the DVB-S standard in 1994. It
is intended for DTH (Direct-to-Home) video broadcasting applications and at the time of
writing used by most satellite operators worldwide. It o�ers QPSK modulation and uses a
convolutional code with Viterbi decoding in combination with a Reed-Solomon code.
In 1997 DVB-DSNG was introduced. This standard also speci�es 8-PSK and 16QAM mod-
ulations. [ETS09]
In 2003 DVB-S2 was de�ned by the DVB Project. It is the second-generation speci�ca-
tion for broadband satellite applications. It introduced additional higher order modulation
schemes like 16-APSK and 32-APSK and also used recent developments in channel coding to
approach the channel capacity. So DVB-S2 can reach a performance gain of about 30% in
comparison to DVB-S at a given transponder bandwidth and transmit EIRP [MM06]. DVB-
S2 was later standardized by the ETSI (European Telecommunication Standards Institute)
and characterize by three key concepts:

� total �exibility

� best transmission performance

� reasonable receiver structure complexity

25

2.2. Transmitter Block Diagram

The principle transmission �ow block diagram is shown in �gure 2.1. Each block is designed
to operate independently and provides only its interfaces to its connected blocks. In this
Thesis only the lower layers (namely: MAPPING, PL FRAMING and MODULATION) of
the DVB-S2 standard are covered.

Figure 2.1.: Functional block diagram (from [ETS09])

2.3. Forward Error Correction Encoding

Forward Error Correction (FEC) encoding is provided by an inner LDPC (Low-Density Parity
Check) code and an outer BCH (Bose-Chaudhuri-Hocquenghem) code. The length of a
FECFRAME may either be 64800 coded bits (normal frame) or 16200 bits (short frame).

2.4. Constellation Mapping

2.4.1. Modulation

DVB-S2 o�ers the following modulations for the payload data:

� QPSK

� 8-PSK

� 16-APSK

� 32-APSK

According to [MM06] QPSK and 8-PSK are typically used for broadcast applications since
they have a constant envelope and therefore they are not so strongly impaired by a nonlinear

26

channel. 16-APSK and 32-APSK are targeted towards professional applications. The 16-
APSK and 32-APSK o�er better performance on the nonlinear channel in comparison to
16-QAM and 32-QAM, while o�ering similar performance on the AWGN channel.

2.4.2. Symbol Mappings

Figures 2.2 to 2.5 show the symbol mappings for the according modulation schemes speci�ed
for DVB-S2. In 16-APSK and 32-APSK the circle ratios γi are dependent of the used code
rate. Further details can be found in sections 5.4.3 and 5.4.4 of [ETS09].

Figure 2.2.: QPSK symbol mapping Figure 2.3.: 8-PSK symbol mapping

Figure 2.4.: 16-APSK symbol mapping
Figure 2.5.: 32-APSK symbol mapping

27

2.5. PL Framing

2.5.1. Physical Layer Frame Format

DVB-S2 uses the PLFRAME structure of �gure 2.6. First there is a PLHEADER which
consists of a Start Of Frame (SOF) and a Physical Layer Signaling Code (PLSC). The SOF
is a unique word (0x18D2E82) with 26 symbols. The PLSC is a non-systematic binary code
of length 64 and dimension 7 with minimum distance 32 (Reed-Muller code). It contains the
coded information for the physical layer signaling which consists of:

� MODCOD (5 bits): identi�es the used modulation scheme and the code rate.

� TYPE (2 bits): identi�es the length of the FECFRAME (normal or short frame) and
whether pilots are present or not.

Figure 2.6.: PLFRAME format [ETS09]

2.5.2. Generating PLS Code

The MODCOD and TYPE �eld are bi-orthogonally coded with a (64, 7) Reed-Muller code.
This code is generated by �rst calculating a bi-orthogonal (32, 6) code and then using an
XOR bit operation to get the �nal code. In more detail, we have that the MODCOD and
TYPE �eld are given as: b1, b2, b3, b4, b5︸ ︷︷ ︸

MODCOD

, b6, b7︸︷︷︸
TY PE

Then we can get the (32,6) code by multiplying the �rst 6 data bits (MODCOD + MSB of
TYPE) with the generator matrix G of the (32,6) Reed-Muller code:

(y1, . . . , y32) = (b1, . . . , b6) ·G

28

where

G =

01010101010101010101010101010101
00110011001100110011001100110011
00001111000011110000111100001111
00000000111111110000000011111111
00000000000000001111111111111111
11111111111111111111111111111111

Afterwards we generate the (64,7) code: First we XOR each bit of the (32,6) code with b7

yielding another codeword with 32 bit; Then we construct the �nal codeword by interleaving
both subcodes as:

(z1, . . . , z64) = (y1, y1 ⊗ b7, y2, y2 ⊗ b7 . . . , y32)

Depending on b7 two consecutive bits y2i−1 and y2i (for i = 1...32) are now either equal or

inverted. A block diagram of the construction of the whole PLSC is shown in �gure 2.7.

Figure 2.7.: PLFRAME format [ETS09]

The PLSC output bits are then further scrambled (XOR) by a binary scrambling sequence
to improve the autocorrelation properties. The scrambling sequence is give by:

s = (0111000110011101100000111100100101010011010000100010110111111010)

2.5.3. π
2 -BPSK

The PLHEADER data are always modulated by a π
2
-BPSK which is a variant of the BPSK

modulation. It has two binary symbol constellations that are 90° degrees rotated against each
other. One symbol constellation is chosen when odd data bits are modulated, whereas the
other is used when even data bits are modulated. The advantage of this modulation scheme
is whereas a reduction in the transmitted signal envelope �uctuation, because there are no
symbol transitions through the origin of the I/Q-plane [MM06].

Consider a PLHEADER data sequence represented by the binary sequence (y1, y2, ..., y2N).
The symbol mapping follows the following translation:

29

I2i−1 = Q2i−1 =
1√
2

(1− 2 · y2i−1) and I2i = −Q2i =
1√
2

(1− 2 · y2i−1) for i = 1, 2, ..., N

So for data bits with an odd index the modulation scheme from �gure 2.8 is used and for
data bits with an even index the modulation scheme from �gure 2.9 is used.

Figure 2.8.: Symbol mapping for odd bits Figure 2.9.: Symbol mapping for even bits

2.5.4. Payload

The payload is transmitted using the modulation scheme of the chosen MODCOD. The
FECFRAME is divided into S slots where 1 slot consists of 90 symbols. The number S
depends on the spectral e�ciency of the chosen modulation and of the TYPE �eld.

2.5.5. Pilots

When pilots are turned on in the TYPE �eld, a pilot block of 36 symbols will be inserted
after each 16 slots of payload data. The pilot symbols are represented by the following
constellation:

Ii = Qi =
1√
2

If a pilot block coincides with the beginning of the next frame then no pilot block will be
inserted.

2.5.6. DUMMY PLFRAME

Dummy frames can be inserted if there is no useful data ready to be sent on the channel.
The Dummy PLFRAME consists of a PLHEADER and 36 slots of un-modulated symbols:

Ii = Qi =
1√
2

2.5.7. PL Scrambling

The payload data (including the pilots) is additionally scrambled by multiplying the symbols
by a complex randomization sequence. The complex scrambling sequence is always reset at
the end of each PLHEADER. Further details about the structure of the scrambling sequence
are given in the standard.

30

Figure 2.10.: PL scrambling [ETS09]

2.6. Baseband Shaping and Quadrature Modulation

The baseband shaping should be done by a root-raised cosine pulse. The rollo� factor α
of the pulse can be chosen out of 3 values: {0.35, 0.30, 0.2}. After baseband shaping the
quadrature modulation into the passband is performed.

2.7. Support of Adaptive Coded Modulation (ACM)

ACM is a special feature of DVB-S2. It allows an optimization of the transmission parameters
with respect to the current channel conditions. So, if for example the SNR decreases on the
link, DVB-S2 allows to change the MODCOD of each frame. Since the available transpon-
der bandwidth is constant, the DVB-S2 modulator will operate at a �xed symbol rate. To
maintain the service continuity during signal fades (e.g.: rain fades as shown in �gure 2.11)
the information rate (user bits) needs to be reduced by reducing the coding rate and/or the
modulation order [MR04].

Figure 2.11.: PL frames changing protection during a rain fading [ETS09]

2.8. Receiver Block Diagram (ETSI)

An overview over a proposed receiver block diagram for the physical layer (�gure 2.12) can
be found in the DVB-S2 user guidelines [ETS05]. In this Thesis only certain aspects of

31

this receiver have been considered. The implemented parts include the frame synchroniza-
tion, PLSC decoding, phase synchronization and additionally SNR estimation. Symbol clock
recovery and digital interpolation are investigated in a companion thesis [Bis12].

Figure 2.12.: ETSI proposed receiver structure [ETS05]

32

3. Frame Synchronization Theory

3.1. Introduction

Since DVB-S2 uses a frame-based transmission format, a synchronization is necessary to �nd
the beginning of a frame. This is on the one hand required for both PLSC Decoding and on
the other hand for DA SNR estimation, to apply our algorithms sucessfully. The algorithm
should be resistant against channel impairments and acquire a synchronized state as fast as
possible. Also the algorithm has to be smart enough to cope e�ciently with all possible frame
formats (e.g. after a MODCOD switch).
DVB-S2 sends its data in a constant stream format (no bursts). Hence it is possible to �nd the
beginning of the next frame out of the decoded PLSC of the current frame. This holds as long
as the symbol timing loop is locked and no PLSC decoding error occurs (simulations showed
that the decoding works quasi-error-free). This means that the frame sync can be maintained
once it was acquired. Therefore it is just required to �nd an initial frame synchronization.
[SJL04]

3.1.1. Signal Model

Under the assumption that the symbol timing is correct, the received baseband signal rk
consists of the sent symbols sk rotated by a carrier frequency o�set ∆fc and a carrier phase
o�set θ and additive noise samples nk:

rk = ske
j(2πk∆fcTs+θ) + nk (3.1)

Figure 3.1.: Signal model

3.1.2. Carrier frequency and phase o�sets

The carrier frequency o�set distorts the received signal. Reasons for a carrier frequency o�set
∆fc = fcT − fcR (fcT : transmitter frequency; fcR : receiver frequency) are as follows:

� Mismatch between the transmitter carrier frequency oscillator and the receiver fre-
quency oscillator.

33

� Doppler frequency shifts due to relative motions between receiver and transmitter

This means that the received symbols rotate away from their ideal constellation points over
time.

Carrier phase o�sets are also present and as a result the symbol constellations are rotated by
a �xed angle.

3.1.3. Noise

Another reason for signal distortions in the receiver is thermal noise which is always present
in communication systems. The noise samples nk are assumed to be zero mean Gaussian
distributed with a variance of N0

2
in the I/Q components.

Re{nk} ∼ N

(
µ=0, σ2 =

N0

2

)
Im{nk} ∼ N

(
µ=0, σ2 =

N0

2

)

3.2. Frame Timing Recovery

A conventional approach to determine the frame timing is to �rst calculate correlation results
followed by a peak detection to analyze the correlation results (see �gure 3.2).

The correlation algorithm should deliver high peak results if a certain pattern (unique word)
inside the input stream occurs. Unique words typically represent the beginning of a frame.
In DVB-S2 the SOF sequence (which represents a unique word) is sent at the beginning of
each frame.

The second stage (peak detector) determines the beginning of a frame. This is done by using
the correlation results and, optionally, the input symbols. If the peak detector algorithm �nds
enough evidence that there could be a framestart, we can declare a successful synchronization
and tell the following modules the related positions in the symbol stream.

Figure 3.2.: Combination of correlator and peak detector to determine the frame timing
(SOF=Start-of -Frame)

34

3.2.1. Correlation

A short overview of di�erent possibilities to get correlation results is presented in this section.
The goal is to �nd an algorithm that copes best with the channel impairments but is also
simple enough in terms of complexity to be used in a hardware FPGA implementation.
The discussion about the correlation algorithms is followed by the application of the chosen
correlation algorithm in DVB-S2.

3.2.1.1. Conventional Correlation

This algorithm simply takes the received symbols and multiplies it with the expected complex
conjugated symbol of the unique word and sums this over the known sequence length:

Cnormal(µ) =

∣∣∣∣∣
NH−1∑
k=0

rk+µ · s∗k

∣∣∣∣∣ =

∣∣∣∣∣
NH−1∑
k=0

ck+µ

∣∣∣∣∣
Now we look what happens if we correlate exactly at the SOF position (µ = 0). We insert
the signal model for the received signal from (3.1) and neglect the noise term nk:

ck = rk · s∗k = sk · ej(2πk∆fcTs+θ) · s∗k = |sk|2ej(2πk∆fcTs+θ)

Inserting back into the correlation sum we get:

Cnormal(0) =

∣∣∣∣∣
NH−1∑
k=0

rk · s∗k

∣∣∣∣∣ =

∣∣∣∣∣
NH−1∑
k=0

|sk|2ejk2π∆fcTs+θ

∣∣∣∣∣ (3.2)

From (3.2) it can be seen that the correlation sum is quite sensitive to carrier frequency o�sets
∆fc even when correlating exactly at the SOF and no noise is present. This is because the
exponential term remains inside the sum. This may lead to unreliable correlation results.

3.2.1.2. Choi-Lee Detector

Choi and Lee proposed frame synchronization techniques in the presence of frequency o�sets
[CL02]. This algorithms are based on an approximate Maximum Likelihood (ML) criterion.
These algorithms can improve the performance of the ML rule signi�cantly in the presence
of a large frequency o�set. For a short overview the equations to calculate the L0 to L3

estimator are given here. Further details about performance can be found in the paper cited
above.

L0(µ) =
L−1∑
i=1

∣∣∣∣∣
L−1∑
k=i

r∗µ+kskrµ+k−is
∗
k−i

∣∣∣∣∣
2

−
µ+L−1∑
k=µ+i

|rk|2 |rk−i|2

L1(µ) =
L−1∑
i=1

{∣∣∣∣∣
L−1∑
k=i

r∗µ+kskrµ+k−is
∗
k−i

∣∣∣∣∣−
µ+L−1∑
k=µ+i

|rk| |rk−i|

}

L2(µ) =

∣∣∣∣∣
L−1∑
k=1

r∗µ+kskrµ+k−1s
∗
k−1

∣∣∣∣∣−
µ+L−1∑
k=µ+1

|rk| |rk−1|

35

L3(µ) =

∣∣∣∣∣
L−1∑
k=1

rµ+ks
∗
kr
∗
µ+k−1sk−1

∣∣∣∣∣
3.2.1.3. Di�erential Correlation

The di�erential correlation is in fact the proposed Choi-Lee detector L3(µ) [CL02]. The idea
behind di�erential correlation is not to take a sample-wise correlation but to take a correlation
on a pairwise di�erential.

Cdiff (µ) =

∣∣∣∣∣
NH−2∑
k=0

rk+µ · r∗k+µ+1 ·
(
sk · s∗k+1

)∗∣∣∣∣∣ =

∣∣∣∣∣
NH−2∑
k=0

ck+µ

∣∣∣∣∣
Again we look what happens when the correlation is performed at the SOF position (µ = 0).
If we insert the signal model for the received signal from (3.1) and neglect the noise sample
nk the pairwise di�erential term gets:

rk = ske
j(2πk∆fcTs+θ)

rk+1 = sk+1e
j(2π(k+1)∆fcTs+θ)

rk · r∗k+1 = ske
j(2πk∆fcTs+θ) · s∗k+1e

−j(2π(k+1)∆fcTs+θ) = sk · s∗k+1 · e−j2π∆fcTs

By correlating the di�erentials with the unique word di�erentials we get:

Cdiff (0) =

∣∣∣∣∣
NH−2∑
k=0

rk · r∗k+1 ·
(
sk · s∗k+1

)∗∣∣∣∣∣
=

∣∣∣∣∣
NH−2∑
k=0

sk · s∗k+1 · e−j2π∆fcTs · s∗k · sk+1

∣∣∣∣∣
=

∣∣∣∣∣
NH−2∑
k=0

|sk|2 · |sk+1|2e−j2π∆fcTs

∣∣∣∣∣ =
∣∣e−j2π∆fcTs

∣∣︸ ︷︷ ︸
1

∣∣∣∣∣
NH−2∑
k=0

|sk|2 · |sk+1|2
∣∣∣∣∣ (3.3)

A great advantage of this technique is that, on the one hand, the phase o�set term completely
vanishes from the correlation sum and, on the other hand, the exponential term with the
carrier frequency o�set does not a�ect the sum since the index k drops out because of the
pairwise di�erential.

36

3.2.1.4. Application of Di�erential Correlation in DVB-S2

The phase and frequency o�sets are not corrected before frame synchronization. Therefore
we need a correlation mechanism that copes with both impairments. As already stated in
section 3.2.1.3 we can use the di�erential correlation to overcome these problems with an
acceptable complexity especially with regard towards hardware implementations.

As stated in [MM06] correlating only on the 26 SOF symbols has been investigated but leads
to a bad performance in the presence of low SNRs. [SJL04] describes an algorithm that uses
the whole PLHEADER (90 symbols) for di�erential correlation on a symbol-by-symbol basis.
The following points are important to understand the algorithm:

� Since π
2
-BPSK is used in the PLHEADER, each di�erential sk · s∗k+1 either takes the

value of ±j. Therefore one tap can either take the ±j.

� The SOF symbols are always the same so we can use every di�erential sk · s∗k+1 for the
di�erential correlation.

� Di�erent modulations and code rates can be set in the PLSC. Obviously this may lead
to very di�erent taps. Extensive researches in papers [ZCF+10, QXC+08] have shown
that the PLSC part of the PLHEADER can also be used for the di�erential correlation
despite the fact that it does not have a �xed value. After the scrambling of all di�erent
PLSC an evaluation of the possible di�erential taps with MATLAB has shown that:

� Not all possible di�erential taps can be used for correlation since only 32 of the 64
di�erentials are known.

� There are only two possible PLSC correlation word symbol sequences where one
is the negative of the other. This means that it is possible that we receive a big
negative peak if we receive the opposite sequence of the taps settings.

� This circumstance can be exploited by the circuit if we additionally determine the
di�erence of the SOF correlation result and the PLSC correlation result. Since
this will yield to yet another high correlation value if there is a big negative value
in the PLSC correlation term. This is a massive improvement in terms of speed
since we do not have to change the PLSC taps until we �nd the right ones. Later
we can choose between the maximum of the sum or the di�erence.

The circuit has two parts. The right part correlates on the SOF symbols and the left part is
associated with the PLSC. The following equations are relevant in this context:

CSOF =

NSOF−1∑
k=0

rk · r∗k+1 · tapSOF [k]

CPLSC =

NPLSC/2−1∑
k=0

r2k · r∗2k+1 · tapPLSC [2k]

C = max (|CSOF + CPLSC | , |CSOF − CPLSC |) (3.4)

The taps can be determined by using the circuit in �gure 3.3 in the following way: First all
registers in the delay line are set to zero. Then shift the π

2
-BPSK modulated SOF and any

37

scrambled and modulated PLSC codeword into the circuit. This whole PL-Header symbol
sequence can be described:

s =

s1, s2, . . . , sNSOF︸ ︷︷ ︸
SOF Symbols

, sNSOF+1 . . . , sNSOF+NPLSC︸ ︷︷ ︸
PLSC Symbols

When the register associated to tapSOF [0] becomes nonzero, all taps can be determined by
simply taking the complex conjugate of the associated registers. This leads to the following
mathematical description to determine the taps:

tapSOF [k] =
(
sk · s∗k+1

)∗
tapPLSC [k] =

(
s2k+NSOF · s∗2k+NSOF+1

)∗
While the SOF taps sequence is �xed, the PLSC taps can only take two di�erent sequences
where one sequence is the negative of the other.

Figure 3.3.: Circuit to perform the di�erential correlation

3.2.2. Peak Detection

After performing the correlation algorithm, a detection of the maximum peak position is
necessary to �nd the correct beginning of the frame. Especially when there is a lot of noise
added to the received signal (e.g.: Es

N0
= −2dB) these peaks may occur at the wrong position

as it can be seen in section 6.1. The algorithm has to be smart enough to handle with these
low SNRs and also acquire the SYNC status as fast as possible.

3.2.2.1. Threshold Detector

Obviously the most intuitive method is to de�ne an absolute threshold value and look for
correlation results that exceed this threshold. While being relatively simple to implement this
method has its major drawback in a great sensitivity towards the threshold. So a received
signal fading e�ect may lead to missed or false detections because the threshold is never
exceeded or exceeded too often.

38

3.2.2.2. Exponential Averaging + Threshold Detector

A better method is to calculate an average over the correlation results to get a kind of
average signal power. If the current correlation result rises above this average signal power
by a relative amount (e.g: 150% over the average signal power) then there is the chance to
have a SOF at this position.
While this method may work well at high SNRs it becomes problematic at lower SNRs. The
reason for this is that the overall power in comparison to the peak values rises. So the peaks
may not rise signi�cantly over the average signal power and this will lead to missed detections.
Another drawback is that there is some freedom in the practical implementation: on the one
hand the optimal threshold β and on the other hand an optimal averaging parameter with
the weighting factor α have to be found. The averaging parameter determines how �fast� the
detector can react to a fading signal.
The exponential averager is a simple and e�ective way to compute a signal average [Lyo10]which
is given by the following recursive equation:

Cavg[n] = α · C[n] + (1− α) · Cavg[n− 1]

This leads to the following transfer function in the z- domain:

H(z) =
α

1− (1− α)z−1

For the detector we need to determine if the current signal rises above the threshold and
declare a successful SYNC if this is the case:

SY NC :=

{
1 C[n] ≥ (1 + β)Cavg[n]

0 else

Figure 3.4.: Exponential averaging and threshold detector

The bene�t from this method illustrated in �gure (3.4) is a very simple implementation which
perfectly suits for a digital circuit. Further simpli�cations are possible if α takes certain
values (see [Lyo10, p. 790]) to get a multiplier-free implementation. This method has been
implemented but simulations showed it to be too sensitive towards SNR changes. This means

39

that the optimal values for α and β, where a good relation between missed detections and
false detection is given, depends strongly of the current SNR. Therefore it was dropped in
favour of the adapted peak search detector.

3.2.2.3. Modi�ed Peak Search Detector

The following algorithm is proposed in [QXC+08]. This algorithm uses more than one peak
search window i.e. one for each of the four di�erent frame lengths (if only considering one
frame mode (short/long frames , with or without pilots)). In each window the two greatest
peaks are recorded. If the peaks represent a possible SOF, then it should repeat in the
following search window. By determining the distance (in number of symbols) between the
peaks in consecutive windows and comparing them to the known frame lengths. By further
comparing the peaks between di�erent search windows, we can determine if there is repeating
pattern in consecutive windows. If such a pattern occurs, there is a high likelihood that we
found the correct framelength and we can declare initial frame synchronization.

One advantage of this scheme is that it does not need to decode the PLSC to �nd the
framelength, this saves some processing power. Another important thing to keep in mind is
that in conventional approaches the decoding of the PLSC is very hard to perform if there is
a high carrier frequency o�set.

An obvious drawback of this solution is that it only works for transmissions in which MOD-
CODs are not changed on a frame-by-frame basis since the initial synchronization relies on a
repetitive pattern of the peaks. Therefore it is only suited for CCM (Constant Code and Mod-
ulation) transmission which are often used in Direct-to-Home TV broadcasting applications.
Since we use ACM in this project the algorithm can not be used.

3.2.2.4. Peak Search Detector

This peak search algorithm is proposed in [SJL04]. It �nds the maximum peak within a
search window and declares it as candidate (see �gure 3.5).

The window should be as small as possible but long enough to contain at least one SOF.
Hence the search window needs to be 33282 symbols (QPSK normal frames with pilots) long.
The PLSC at the candidate location is now decoded. Based on the decoded PLSC it gets the
location of the next PLHEADER. If there is a a su�cient strong correlation at this position
a successful INIT SYNC is declared. If this is not the case then the algorithm will check the
next candidate.

40

Figure 3.5.: Peak search algorithm (from [SJL04])

3.2.2.5. Adapted Peak Search Detector

The idea behind this algorithm is the same as with the the peak search detector mentioned
before but looks for more than one peak within a search window. Also the post veri�cation
looks out for more then two high correlation results. The adapted algorithm works as follows:

� The big search window is divided into a certain amount (M) of small windows

� In each of the small windows the N highest peaks are determined (correlation results
with the highest values) (see �gure (3.6))

� The position within the big window of each of the peaks is recorded in a table

� The PLSC at each peak position is decoded and the framelength determined

� The next peak position (=peak position + decoded framelength) is also recoded
in the table

� When the big search window passed, a post processing algorithm checks if there is a
path through the table (see �gure 3.7):

� Therefore it checks if there are matching peaks in the table

� If there is a certain amount of L consecutive peaks matching we declare a successful
frame synchronization at the �rst peak of the path

The following properties have to be considered for choosing the window lengths:

� A small window can only be as long as the minimal framelength (=3330 Symbols if
DUMMY Frames are use), otherwise it may be that the right peak of the next frame is
not recorded

� The big search window must be at least as long as L (the number of consecutive peaks)
times the maximum framelength (=33282 Symbols), since it has to be guaranteed that
at least L full framelengths pass so that each SOF of one frame can yield to a peak

41

Figure 3.6.: Adapted peak search algorithm

Figure 3.7.: Example for the path search in the peak table

3.3. PLSC Decoding

To get the MODCOD out of the received PLSC symbols we �rst need the sent binary stream
out of the sent symbol sequence. Then we need to decode the PLSC out of this binary stream.

3.3.1. Correction of Carrier Phase O�sets

Since the carrier phase o�set of the signal model in (3.1) rotates the symbol constellations
by a �xed angle we �rst need to estimate and correct the carrier phase o�set in the received
symbols before decoding. This can be done by a DA correlation between the received symbols
rkrec with the known SOF symbols pk. This leads to the following ML estimate (see [MD97]):

θ̂DA = arg

{
NSOF∑
k=1

rkrec · p∗k

}
After the estimate has been calculated all PLSC symbols can be corrected im phase by using
the phase estimate gained from the SOF symbols. Under the assumption that the phase
o�set for the PLSC symbols is the same as for the SOF symbols (no frequency o�sets), we
can correct the PLSC symbols by multiplying them with the complex exponential:

42

rk = rkrec · e−jθ̂DA

Generally, the modi�ed Cramer-Rao Lower Bound (MCRLB) for this kind of phase estimation
is given by:

MCRLB =
1

2 · LNSOF · EsN0

3.3.2. Correction of Carrier Frequency O�sets

For tiny frequency o�sets (∆fcTs < 0.001) the phase o�set estimation and correction on small
blocks like the 90 symbols of the PLHEADER is su�cient but leads to a biased estimation
of the phase estimate (see [MD97, p. 198]).
For large carrier frequency o�sets better algorithms have to be used (e.g. application of the
Luise & Reggiannini algorithm in DVB-S2 [SJL04]).

Another option that has been tried out was to determine a frequency estimate out of the
di�erential correlation sum (see [MMF98, p. 487]). When the sum is calculated exactly at
the beginning of the frame µopt (see equation 3.3) we can determine the estimate :

∆fcTs =
1

2π
arg

{∣∣∣∣∣
NH−2∑
k=0

rk+µ · r∗k+µ+1 ·
(
sk · s∗k+1

)∗∣∣∣∣∣
}
µ=µopt

This kind of estimator has been implemented but turned out to be not good enough. The
jitter variance is quite high at low SNRs (< 5dB) and therefore it is not suited for application
in DVB-S2.

3.3.3. Symbol Decoding using Hard Decisions

This method uses the absolute symbol positions from the π
2
-BPSK symbol constellations in

section 2.5.3 to decode the information bits from the received symbols. When a potential
start of a PLSC has been found we can decode by �rst rotating the received odd symbols by
−π

4
and even symbols by −3π

4
. Than we can make a hard decision between 0 and 1 for bit bk

by checking the real part of the rotated signal leading to the following decision rules for odd
data symbols:

Re
{
rk · e−j

π
4

}
≥ 0 =⇒ decide for 0 (3.5)

Re
{
rk · e−j

π
4

}
< 0 =⇒ decide for 1 (3.6)

The calculation can be further simpli�ed by analyzing the structure of the left part of the
inequation:

Re
{
rk · e−j

π
4

}
= Re

{
(Re{rk}+ j · Im{rk}) e−j

π
4

}
=

(√
2

2

)
(Re{rk}+ Im{rk})

43

Since the factor
(√

2
2

)
can be left out of (3.5)-(3.6) we can de�ne the following simpli�ed

decision rules for odd data symbols:

Re{rk}+ Im{rk} ≥ 0 =⇒ decide for 0 (bk = 0)

Re{rk}+ Im{rk} < 0 =⇒ decide for 1 (bk = 1)

In a similar way we can determine the decision rules for even data symbols leading to:

Im{rk} − Re{rk} ≥ 0 =⇒ decide for 0 (bk = 0)

Im{rk} − Re{rk} < 0 =⇒ decide for 1 (bk = 1)

The new decision rules reduce the implementation overhead since rotations are not necessary.
The received PLSC sequence consists now of the hard decisions for each of the bits:

PLSCrec = (bNSOF+1, ..., bNSOF+NPLSC)

3.3.4. PLSC Decoding of Hard Decisions

3.3.4.1. Maximum Likelihood Method

The idea behind behind this decoding algorithm is really simple. We take our received
codeword PLSCrec and form the Hamming distance to each of the 27 possible codewords
PLSC

(k)
i . The Hamming distance is calculated by counting the bits that are di�erent in both

codewords (essentially a XOR operation in digital hardware). Then we choose the code k
that yields to the minimal Hamming distance:

PLS = arg mink

{
NPLSC−1∑

i=0

PLSCrec i ⊕ PLSC(k)
i

}
Since there are only 27 = 128 possible codewords for the PLSC this method works quite
e�ciently.

3.3.4.2. Fast Hadamard Transformation

Another option is to decode the PLSC by a transformation. Since the PLSC is an interleaved
�rst-order Reed-Muller code with a length of 64, deinterleaving leads to a �rst-order Reed-
Muller codeword. This can be decoded by using the Fast Hadamard Transformation (FHT)
[SJL04]. Further information about the FHT can be found in [KLH+11].

44

4. SNR Estimation Theory

4.1. Introduction

SNR estimation is an important task in digital communication systems. When using ACM
we should have reliable estimates to detect when the current SNR is decreasing and therefore
an adaptation of the link is necessary (e.g. MODCOD switch). DVB-S2 can change the
modulation scheme on a frame-by-frame basis. Therefore our aim is to estimate one SNR per
frame.
The DVB-S2 signal includes both known sequences and also unknown data (payload). There-
fore we can perform two estimations: a Data-Aided (DA) estimation on the known data and
a blind Non-Data-Aided (NDA) SNR estimation on payload data.
Figure4.1 shows the principal operation of the SNR estimation. The DA estimator operates
on the PLHEADER (including SOF and PLSC after decoding) and on the pilot blocks if
available. The NDA estimator may operate on the whole frame because we do not need to
know any sent symbol sequences for using this estimator.

Figure 4.1.: Block diagram for SNR estimation

4.1.1. Signal Model

Perfect symbol timing recovery and perfect carrier recovery are assumed to be established
by former stages of the receiver chain. The following signal model is used for all further
derivations. The symbol ck is sent with an average symbol energy of

√
S and impaired by a

carrier phase o�set θ so that we receive:

rk =
√
Ssk +

√
Nwk, sk = ck · ejθ

Additionally there is thermal noise on the channel (
√
Nwk) where both real and imaginary

part of the complex noise are assumed to be independent zero mean Gaussian with variance
1
2
:

45

wkI = Re{wk} ∼ N

(
µ=0, σ2 =

1

2

)

wkQ = Im{wk} ∼ N

(
µ=0, σ2 =

1

2

)

Figure 4.2.: Signal model for SNR estimation

4.2. Classi�cation and Assessment of SNR Estimators

Paper [PB00] was used as background for this chapter. The following estimators are described
and compared within this paper:

� Split-Symbol Moments (S&M) estimator

� In-service estimator that can only be applied to BPSK-Signals in the real AWGN
channel

� Maximum-Likelihood (ML) estimator

� Based on ML estimation theory this estimator is suited for M-PSK signals in
complex AWGN channel

� Uses an oversampled signal (Nss samples per symbol)

� Squared Signal-to-Noise Variance (SNV) estimator

� Special case of the ML estimator where the optimally sampled output of the
matched �lter is taken.

� No oversampling

� Second- and Fourth-order Moments (M2M4) estimator

� NDA estimator that is based on the calculation of signal moments for the complex
AWGN channel

� Signal-to-Variation Ratio (SVR) estimator

� NDA moment-based method intended for multipath fading but it can be applied
also for an M-ary PSK signals in complex AWGN channels

46

For the DA estimation we have chosen the SNV estimator since it �ts perfectly to our ap-
plication where we have one sample per symbol (perfect symbol timing assumed) to perform
ML Estimation.
For the NDA estimation we have chosen the M2M4 estimator (with special adaptations for
16-APSK and 32-APSK). The SNR performance comparisons at the end of [PB00] have shown
that the M2M4 estimator in general outperforms the SVR estimator.

4.2.1. DA Squared Signal-to-Noise Variance Estimation

The SNV Estimation is basically a ML estimation of the SNR under the assumption of
optimally sampled output of the matched �lter with one sample per symbol [PB00].

4.2.1.1. Derivation of the Algorithm

The derivation is based on [PB00] and uses the signal model for the received samples given
in section 4.1.1.
Since both noise components are independent we can write the joint probability density
function for the noise samples as:

p(nkI , nkQ) =
1

πN
e−(n2

kI+n2
kQ)/N

Therefore the received signal sample has the following pdf:

p(rkI , rkQ|S,N) =
1

πN
exp

(
rkI −

√
SskI

)2

+
(
rkQ −

√
SskQ

)2

N

For K received samples we get the joint probability density function (samples are assumed
to be independent) of the sequence as:

p(rI, rQ|S,N) =

(
1

πN

)K
exp

[
− 1

N

(
K−1∑
k=0

(
rkI −

√
SskI

)2

+
K−1∑
k=0

(
rkQ −

√
SskQ

)2
)]

This yields to the following log-likelihood function:

Γ(S,N) = ln p(rI, rQ|S,N)

= −K · ln(πN)− 1

N

(
K−1∑
k=0

(
rkI −

√
SskI

)2

+
K−1∑
k=0

(
rkQ −

√
SskQ

)2
)

To express the ML estimate of the SNR ρ̂ML we di�erentiate the log-likelihood function with
respect to both S and N and divide both individual ML estimates:

∂Γ(S,N)

∂S

∣∣∣∣
S=ŜML;N=N̂ML

= 0

∂Γ(S,N)

∂N

∣∣∣∣
S=ŜML;N=N̂ML

= 0

47

ρ̂ML =
ŜML

N̂ML

=

[
1
K

∑K−1
k=0 Re {r∗ksk}

]2

1
K

∑K−1
k=0 |rk|

2 −
[

1
K

∑K−1
k=0 Re {r∗ksk}

]2 (4.1)

Studies have shown that the direct use of this estimator leads to a bias [Tho67]. The bias
can be reduced by multiplying the denominator with a correction factor. This yields to the
following expression for the reduced bias estimator:

ρ̂ML =

[
1
K

∑K−1
k=0 Re {r∗ksk}

]2

1
K− 3

2

∑K−1
k=0 |rk|

2 − 1

K(K− 3
2)

[∑K−1
k=0 Re {r∗ksk}

]2 (4.2)

4.2.1.2. RxDA / TxDA Estimator

The SNV may be used as an in-service RxDA estimator which means that the sent sequence
sk does not have to be knownat the receiver. Instead we use the symbol decisions of the
receiver for the sent sequence sk.
Another possibility is to use the estimator as an TxDA estimator (non in-service type). Here
we have perfect knowledge of the transmitted sequence and do not rely on receiver decisions
and can use the known sent symbols sk directly.

4.2.2. Moment-Based Estimation

The following section presents a blind SNR estimation using second- and fourth-order mo-
ments. One of the main advantages is that no knowledge about sent data and carrier phase
is needed for processing. The following section including the derivations are a summary of
the ideas presented in the two papers [GK06] and [PB00]

4.2.2.1. Derivation of the Algorithm

Assuming a symbol sequence of length L the estimator M2 for the 2nd moment E{|rk|2} is
given by:

M̂2 =
1

L

L∑
k=1

|rk|2

If L is large enough then M̂2 is a reliable estimate for the real expected value which yields to
S +N :

M̂2 ≈ E{|rk|2} = SE
{
|sk|2

}
+
√
SNE {skw∗k}+

√
SNE {s∗kwk}+NE

{
|wk|2

}
= S +N

The estimator M̂4 of the fourth moment E{|rk|4} is given by:

M̂4 =
1

L

L∑
k=1

|rk|4

If again L is large enough then M̂4 is an estimate for E{|rk|4} which yields to the following
expression, where Kc = E{|ck|4} is de�ned as the symbol curtosis.:

48

M̂4 ≈ E{|rk|4} = KcS
2 + 4 · S ·N + 2 ·N2

Both equations can be solved with respect to S and N establishing the moment-based esti-
mator:

Ŝ =

√
2M̂2

2 − M̂4

2−Kc

(4.3)

N̂ = M̂2 − Ŝ = M̂2 −

√
2M̂2

2 − M̂4

2−Kc

4.2.2.2. Estimation for M-ary PSK

The SNR estimate for an M-ary PSK is now given by simply dividing both estimators and
by knowing that the symbol curtosis Kc = 1:

ρ̂M−PSK NDA =
Ŝ

N̂
=

√
2M̂2

2 − M̂4

M̂2 −
√

2M̂2
2 − M̂4

To evaluate the estimator performance we will compare the jitter variance of this estimator
with the normalized CRLB of for DA SNR Estimation:

NCRLB =
MCRLB(ρ)

ρ2
=

1

L

(
1 +

2

ρ

)

4.2.2.3. Estimation for Non-Constant Envelope Modulations

According to [GK06] the above estimators are well suited for constant envelope modula-
tions (e.g.: M-ary PSK modulation) but the the performance degrades rapidly when using
modulations with a non-constant envelope. This problem arises because of the jitter which is
introduced by patterns with varying amplitudes. Two modulation formats of DVB-S2 namely
16-APSK and 32-APSK have such a non-constant envelope. To estimate the SNR for this
higher modulation schemes an adaption of the conventional algorithm is necessary.

The idea used from [GK06] is to generally estimate the SNR using the M2M4 algorithm just
on a portion of the available symbols (e.g. only the symbols on the outer ring). Therefore
the signal space has to be reliably partitioned into symbols that have the same amplitude.
Out of the received symbols the partition radii (borders between the partitions) have to be
estimated.

49

Figure 4.3.: Partitioning of the signal space in 16-APSK

For this purpose a general signal power average has to be estimated by using (4.3). This
estimate exhibits a jitter �oor for increasing SNR but can be reduced by choosing the obser-
vation length L as long as possible (e.g.: all symbols within the frame). Since the modulation
scheme is known in advance we can de�ne the partition radii Ri→i+1 out of the signal power.
Now we could choose between the di�erent rings. Because in 16-APSK and 32-APSK there
are always more symbols placed on the outer ring (therefore a longer estimator length Lz
is possible) we will always take this choice. The following two sections will present a short
overview of how applying the algorithm to the 16-APSK and 32-APSK modulation schemes.

Estimation for 16-APSK For the 16-APSK modulation type the symbol curtosis is given
by:

Kc = E
{
|ci|4

}
=

1

4
R4

1 +
3

4
R4

2

where R1 and R2 represent the modulation radii which are known and depend of the chosen
MODCOD. The factors before R1 and R2 represent the relative occurrence of a symbol on
the according ring. This can be seen in the modulation scheme since 4 of 16 (= 1

4
) symbols

lie on the inner ring R1 and 12 of 16 (= 3
4
) symbols on the outer ring R2.

The estimate for the signal power is now found by inserting the given values into (4.3), yielding
to:

Ŝ =

√
2M̂2

2 − M̂4

2−
(

1
4
R4

1 + 3
4
R4

2

)
The estimated partition radius between the outer and inner ring is now given by:

R̂12 =
1

2

√
Ŝ(R1 +R2)

50

After estimating the partition radius R12 we can realize the idea of an SNR estimation only
for the outer ring by accounting only the symbols zk that have a magnitude greater than R12.

|rk| > R̂12 : zk = rK

M̂ ′
2 =

1

Lz

Lz−1∑
k=0

|zk|2 , M̂ ′
4 =

1

Lz

Lz−1∑
k=0

|zk|4

The �nal SNR estimate is now given by:

ρ̂16−APSK =
1

R2
2

·

√
2M̂

′2
2 − M̂ ′

4

M̂ ′
2 −

√
2M̂

′2
2 − M̂ ′

4

The division factor of 1
R2

2
is because the following term would relate the SNR only to the

outer circle. This term has of course a higher average signal power R2
2 and therefore would

lead to a higher SNR.

Estimation for 32-APSK For the 32-APSK modulation type the symbol curtosis is given
by (where the factors are again de�ned by the probability that a symbol lies on the according
ring):

Kc = E
{
|ci|4

}
=

1

8
R4

1 +
3

8
R4

2 +
4

8
R4

3

The signal power estimate follows from (4.3) as:

Ŝ =

√
2M̂2

2 − M̂4

2−
(

1
8
R4

1 + 3
8
R4

2 + 4
8
R4

3

)
The estimated borderline between outer and middle ring (R2 and R3 are known and depend
of the chosen MODCOD) can now be determined as:

R̂23 =
1

2

√
Ŝ(R2 +R3)

Again only symbols from the outer ring are taken for the M2M4 estimator :

|rk| > R̂23 : zk = rK

M̂ ′
2 =

1

Lz

Lz−1∑
k=0

|zk|2 , M̂ ′
4 =

1

Lz

Lz−1∑
k=0

|zk|4

The �nal SNR estimate is given by:

ρ̂32−APSK =
1

R2
3

·

√
2M̂

′2
2 − M̂ ′

4

M̂ ′
2 −

√
2M̂

′2
2 − M̂ ′

4

51

4.3. Application of the SNR Estimators in DVB-S2

4.3.1. DA SNV Estimation on PLHEADER and Pilots

The PLHEADER consists of the unique word SOF which is always the same and therefore
known to the receiver. Additionally, if we assume that we have decoded the PLS part of the
PLHEADER correctly, we can also use this data for the DA SNR estimation.

Another option is to use the sent pilots in the frame format. After descrambling the pilot
blocks at the receiver, they can also be used for DA SNR estimation. Since we assume that we
have achieved a proper frame synchronization, we will know the transmitted symbol sequence
perfectly. Hence we will use the SNV estimation as TxDA estimator.

4.3.1.1. Phase O�set Correction

Since the phase o�set between the receiver and transmitter would lead to completely wrong
results, a phase estimation and correction for the received symbols is necessary before de-
termining the SNR estimate. The phase correction is performed by using the same ML
estimation as in section 3.3.1. Since the phase estimation adds an extra jitter, the SNR result
has a higher variance which can be seen in section 6.3.2.2.

The application of the SNV estimator now works by simply using the phase-corrected rk
symbols and inserting the known pilot symbols sk (the pilot symbols depend of the currently
decoded block) into the bias-corrected SNV estimator from (4.2).

4.3.1.2. Calculation on Individual Blocks And Combining

Figure 4.4.: DA SNR estimation for a single frame

We perform an individual SNR estimation on each of the known data blocks within a frame
(PLHEADER, pilot blocks). In each block also a new phase estimation & correction is
performed because already small frequency o�sets may lead to big errors when using the
phase estimates of the previous block . Since we want to get one result per frame we need
to average the �nal result of the individual block results (see �gure 4.4). Here we calculate
a weighted average since the PLHEADER carries more symbols (90 symbols) than the pilot
blocks (36 symbols). The number of pilot blocks, which depends on the chosen frame format,
is denoted as Np.

52

ρ̂ =
90 · ρ̂PLH +NP · 36 ·

∑Np
k=1 ρ̂k

90 +Np · 36

4.3.2. M2M4 Estimator

After the PLSC has been decoded, we know the modulation scheme that has been used within
this frame. Now the appropriate NDA SNR estimation algorithm can be chosen (M-PSK,
16-APSK or 32-APSK). Since only the payload symbols within a frame are modulated by the
same modulation scheme we choose to exclude the PLHEADER symbols and pilots from our
estimation. To allow a fair comparison of the SNR estimator performance in the simulation
we limit the e�ective amount of symbols used by all estimators to the same number Lz .

4.3.2.1. Constant Envelope Modulation (QPSK, 8-PSK)

Figure 4.5 illustrates which symbols are used for the estimation. For simplicity reasons the
pilot blocks are not shown. We only use the �rst Lz symbols of the payload and perform the
estimation that has been described in section 4.2.2.2.

Figure 4.5.: Moment-based SNR estimation for M-PSK

4.3.2.2. Non-Constant Envelope Modulation (16-APSK, 32-APSK)

In case of non-constant envelope modulations (16-APSK, 32-APSK) we use all symbols of
the frame to calculate the estimate of the signal power Ŝ as illustrated in �gure 4.6. Then
the saved bu�er of frame symbols will be checked for symbols that have a greater magnitude

than the calculated partition radius and M̂2

′
and M̂ ′

4 are calculated. If there are not enough
payload symbols within a frame whose magnitudes reach over this threshold then we will not
use this frame for the estimation process.

53

Figure 4.6.: Moment-based SNR estimation for 16-APSK and 32-APSK

4.3.2.3. Remark

All the square root expressions for moment-based SNR estimation may rarely have negative
arguments. If this is the case then we will throw away the estimated result of this frame and
will have to wait for the next frame.

54

5. Implementation

This chapter presents the practical implementation of the system. First we show the general
architecture of the GNU Radio platform. Then we will have a look at the possibilities of how
to map our developed block diagram on to the GNU Radio platform. Furthermore it will be
shown how to perform software-only simulations on this platform. This will be followed by an
overview of the implemented software-blocks. A protoptype architecture is proposed and it is
shown which parts have been implemented in the FPGA and which have been implemented
in software. In the last section the detailed implementation of the di�erential correlator in
the FPGA will be explained.

5.1. Receiver Architecture Using the GNU Radio

Platform

5.1.1. The GNU Radio Platform

The GNU Radio platform (�gure 5.1) has been chosen as the favoured Software De�ned Radio
(SDR) architecture. GNU Radio o�ers a �exible SDR architecture that is all open source. It
is essentially a software framework that is running on a PC for processing digital samples.
GNU Radio can use a hardware sampling device called USRP to get the samples into the
processing PC. The USRP needs a daughterboard (WBX) that performs the downconversion
of the chosen band. Afterwards the signal is AD-converted and processed digitally on a
FPGA. Finally the samples are sent over Ethernet to the PC were they are received through
a hardware driver (UHD).
The received samples are then further processed on the GNU Radio software platform. Fur-
ther details about the USRP, the WBX and the UHD drivers can be found in the appendix
section. Details about GNU Radio can be found in [Bis12].

Figure 5.1.: The GNU Radio platform (USRP + PC)

55

5.1.2. Block Diagram of the Receiver

This section presents an overview of the principal receiver architecture and with blocks nec-
essary to perform SNR estimation and MODCOD decoding. The detailed architecture of the
implemented prototype can be found in section 5.4.
The WBX daughterboard provides the downconversion from L-Band to baseband. After
A/D conversion of the baseband signal the mainboard of the USRP performs: decimation
through halfband �ltering and CIC �ltering. These blocks are already provided by the USRP
FPGA in standard con�guration. The target sample frequency after decimation is four times
the symbol rate for the chosen architecture. The custom made blocks now follow. The
Root-Raised Cosine (RRC) �lter, symbol timing recovery and the interpolator have been
implemented in another thesis [Bis12]. The following blocks: correlator, peak detection,
PLSC decoding and DA/NDA SNR estimation were all implemented in this Master Thesis.

Figure 5.2.: Principal receiver architecture

The custom made blocks may now be implemeneted in software or hardware. The following
section will provide an overview of some possible con�gurations.

5.1.3. Possible Con�gurations

The great advantage of the SDR concept [Mit00] is that the blocks may �oat between software
and hardware. This allows the following implemented reasonable con�gurations:

� Only downsampling on the FPGA

� RRC �lter, digital interpolation, correlation, peak detection, PLSC decoding and
SNR estimation all implemented in software.

56

� Extremely high CPU workload

� RRC �lter and interpolation on the FPGA

� Correlation, peak detection, PLSC decoding and SNR estimation in software.

� moderate CPU workload

� RRC �lter, interpolation and correlation on the FPGA

� Only peak detection, PLSC decoding and SNR estimation in software.

� Low workload for CPU

Implementing everything in software o�ers the great advantage of �exibility. Changes can
be made very easy by changing some lines of software code. Additionally the PC has the
great advantage that every signal processing operation can be performed in �oating point
and therefore the implementation loss compared to a �xed point FPGA implementation can
be much lower. The drawback is that there is a huge amount of data to calculate on the PC.
Depending of the CPU speed the processing power may not be enough to full�ll the realtime
calculation especially when high symbol rates are chosen. The preferred architecture of the
prototype will be presented in section 5.4.

5.2. Architecture of the Simulation Platform

Before implementing algorithms in hardware and generally to evaluate the performance of
the algorithms simulations are necessary. The GNU Radio platform can also be used for
simulation only. Samples may be generated by software blocks instead of coming from a real
hardware (USRP). The following section will provide a short overview of how to use GNU
Radio as a simulation environment.

5.2.1. GNU Radio Companion (GRC)

GNU Radio includes a comfortable graphical user interface called GNU Radio Companion to
draw block diagrams. It provides a nice overview over the connections between the blocks.
An exemplary simulation graph is shown in �gure 5.3. Individiual block connections and the
parameters can easily be altered in this GUI. In the background GRC automatically generates
a Python script that generates the connections between the blocks. One drawback of this
method is that automatic parameter changes, e.g. SNR, are not possible.

Figure 5.3.: Simulation graph in GRC

57

5.2.2. Python

To automate parameter changes Python scripts can be used. The automatically generated
Python script (top_block.py) of the GRC environment can be used as template to simplify
the procedure. The graph is started and a block inside the graph terminates the simulation
(i.e. after N frames). Afterwards the Python script gets the calculated results of a block by
calling an appropriate function on this GNU Radio block. Then another simulation can be
started with di�erent initial parameters. At the end all collected results are written into a
.mat �le.

5.2.3. Graphical Analysis

The produced .mat �les can now be post-processed by MATLAB. Here we can generate some
plots to get graphical results (e.g.: error rate curves).

5.3. Implemented Blocks in GNU Radio

The great bene�t of using the GNU Radio platform is that it can be used for either realtime
applications (when using samples from the USRP) or for simulations (when using self gener-
ated samples) by using the same C++ code. The following section provides an overview of
the implemented software modules.

5.3.1. Tools Library

To implement some common functions used in more than one module, a tools library has
been implemented. Functions include:

� PLSC decoding by minimum Hamming distance

� Determine frame lengths (with or without header and pilots) for a given PLS

� Phase correction by using correlation

� Scrambling and descrambling of PLSC

� Determination of complex scrambling sequence

� π
2
- BPSK symbol mapping and demapping

� QPSK, 8-PSK, 16-APSK, 32-APSK symbol mapping

� Radii determination for 16-APSK and 32-APSK

� Various debugging functions (Matlab export, vector printing, ...)

58

5.3.2. DVB-S2 Source Block Implementation

A DVB-S2 source has been developed on the GNU Radio platform using a C++ module. Its
purpose is to provide complex samples according to the DVB-S2 frame format (see section 2.5)
at its output. These samples can be used for simulations and to test modules. The source
block provides functions to set the signal-to-noise ratio ES

N0
and the average signal energy

Es. Aditionally an arbitrary PLS sequence can be de�ned so the module produces valid
frames according to the MODCOD, long/short Frames, and pilots/no pilots con�guration.
The PLHEADER and pilot parts of the frame con�rm to the DVB-S2 standard while the
other parts just consist of randomly chosen data bits modulated according to the current
MODCOD.
To test the source block the output samples were written out to a �le (�le sink). Later
the output samples were read with Matlab and a histogram of the samples amplitudes was
plotted. Then the relative occurence was checked.

Figure 5.4.: DVB-S2 source block in GRC

5.3.3. Di�erential Correlation Implementation

The di�erential correlation has been implemented in a C++ module as �oating point model
and also as a bit-accurate model. The model o�ers to choose between the three correlation
norm calculation methods (see section 5.5.5 for a detailed discussion):

� Euclidean norm (Norm 2)

� approximated Euclidean Norm (Alpha Max Plus Beta Min): using α = 15
16

; β = 15
32

� Manhatten norm (Norm 1)

Figure 5.5.: Di�erential correlator block in GRC

5.3.4. Peak Detector

Two di�erent peak detectors have been evaluated. The implementations of the peak detectors
already include the PLSC decoding of �gure 5.2. After a frame synchronization has been

59

found a FRAME SYNC signal (sync_out) and the according PLS (which is the MODCOD
+ TYPE �elds) will be signaled at the output of the block. The symbols (symbols_out) will
be delivered in synchronization to frame synchronization. So at each �rst symbol of a frame
the FRAME SYNC will be signalled.

5.3.4.1. Exponential Averaging Implementation

This block represents the C++ implementation of the algorithm that has been discussed in
section 3.2.2.2. The two parameters α (weigthing parameter) and β (threshold) need to be
set before the simulation starts.

Figure 5.6.: Exponential averaging block in GRC

First simulations of this algorithm have shown that it is heavily threshold-sensitive even at
SNRs of above 5 dB. Therefore this algorithm has not been further anlayzed since we should
support much lower SNR values in this work.

5.3.4.2. Adapted Peak Search Implementation

The used algorithm (see �gure 5.8) works by simply �nding the initial SYNC according to
the peak search algorithm of section 3.2.2.5. After acquisition a frame by frame decoding of
the incoming symbols (no correlation results needed anymore for this) can be performed to
maintain the synchronization. The following parameters were chosen for the �nal algorithm:

Parameter Chosen value
of peaks in each small window N = 3

of small windows M = 30
Symbols in big search window M · 3330 = 99900

matching peaks L = 3

Table 5.1.: Chosen parameters for the adapted peak search algorithm

Figure 5.7.: Adapted peak search block in GRC

60

Figure 5.8.: Algorithm for INIT frame SYNC

5.3.4.3. Adapted Peaks Search and Resyncing

One problem that was observed during tests was that the symbol timing sometimes got out
of lock. This was due to timing slips occuring in the recovery algorithm. This violates our
assumption that the symbol timing is locked all the time and the frame-by-frame decoding
process will not work as expected. The problem was solved by performing a repeated INIT
SYNC calculation (using the same algorithm as mentioned above) in parallel to the frame-
by-frame decdoding. After a repeated INIT SYNC has been found it is checked if the frame-
by-frame decoded SOF position still matches with the found INIT SYNC position. If there is
a mismatch then somehow the symbol timing got lost. Therefore a RESYNC to the correct
position is necessary. If both positions match then there is no further action needed.

61

Figure 5.9.: Algorithm for frame SYNC with resyncing

5.3.5. SNR Estimation Blocks Implementation

The SNR estimation blocks (�gure 5.10) are implemented according to the algorithms pre-
sented in section 4.3. Each time a SYNC signal is asserted at the sync_in-input the SNR
estimation will start and produce one result per DVB-S2 frame. The DA estimator will even
produce two results: one is the estimate on the whole frame (PLHEADER and pilots), the
other the estimate only on the PLHEADER part of the frame). The NDA estimation al-
gorithms (constant envelope, non-constant envelope) are chosen depending on the decoded
PLSC which is transmitted on a seperate pin (pls_decoded_in).

Figure 5.10.: SNR estimator blocks in GRC

5.4. Architecture of the Prototype

Filter operations like the RRC-�lter, digital interpolation and di�erential correlation require
a lot of processing power. Since these �lter operations are optimally suited to be processed on
the FPGA and the symbol rates are quite high (up to 8MSyms/s) we decided to implement
them inside the FPGA. So the proposed architecture is shown in �gure 5.11.

62

The WBX daughterboard is responsible for the ampli�cation and complex downconversion
of the received signal. The downconverted I/Q signals then pass through the anti-aliasing
�lters. The ADC now samples both paths with 100 Mhz to get the digital samples.

Then the digital samples are further decimated by a combination of halfband �lters and CIC
�lters. The CIC �lter and halfband combination can decimate in a variable range from 4
to 128. The actual decimation factor depends on the required symbol rate and can be set
through the UHD driver. The decimation factor is chosen such that there are 4 samples per
symbol. Therefore allowing a maximum and minimal symbolrates:

fsymmax =
fs

Mmin

=
100Mhz

4 · 4
= 6.25MSym/s

fsymmin =
fs

Mmax

=
100Mhz

4 · 128
= 0.1953MSym/s

The samples are then �ltered by a RRC �lter and passed to a digital interpolator that restores
the optimal symbol timing. The digital interpolator gets the symbol timing estimate input
calculated by a selected recovery algorithm. The former components (RRC, interpolator and
timing estimator) were implemented in another master thesis [Bis12]. The now optimally
sampled symbols (1 sample per symbol) are then fed into the di�erential correlator.

The optimally sampled I/Q symbols are now transmitted on channel 0 and the correlation
results are transmitted synchronized with the samples on channel 1 (each channel o�ers 32
bit). The remaining tasks (peak detection and SNR estimation) are now performed on the
PC.

Figure 5.11.: Proposed architecture

5.5. Di�erential Correlator (FPGA Implementation)

The I/Q samples after the digital interpolator are used as input for the di�erential correlator
circuit. The correlation results are calculated and sent to the PC via Ethernet on RX channel
1. Further we wanted to synchronize the correlation results with the incoming samples.
Therefore we need to delay the I/Q samples for the same amount of time the correlation
results appear at the output (delay line).

63

5.5.1. High Level Model in Matlab and C++

Before implementing the circuit in hardware a high level model has been implemented in
C++ and Matlab. This allows the evaluation of the needed bit widths and also provides the
opportunity to generate data to test the hardware module. In fact this is simply a bit-accurate
model of the �oating point implementation in section 5.3.3.

5.5.2. Simulation Environment in VHDL

An essential part of testing VHDL modules is to make a functional veri�cation by simulation.
Figure 5.12 shows an automatic test bench for functional veri�cation. The test data that
were generated by Matlab were exported as .dat-�le and used as an input stimulus to the
VHDL module inside a test bench environment. Additionally the calculated results out of
the Matlab model were also exported into a .dat-�le. The resulting data in this �golden� �le
was used to compare them against the outputs of the VHDL module.

Figure 5.12.: Test bench for the di�erential correlator module

5.5.3. Determing the Di�erential

To determine the di�erential rk · r∗k+1 on the FPGA the following operation has to be imple-
mented:

rk · r∗k+1 = (Re{rk}+ j · Im{rk}) · (Re{rk+1} − j · Im{rk+1})

To simplify the equation the following substitutions are inserted:

64

a = Re{rk}
b = Im{rk}
c = Re{rk+1}
d = −Im{rk+1}

rk · r∗k+1 = (a+ j · b) · (c+ j · d) = ac+ j · bc+ j · ad+ j2 · bd = (ac− bd) + j · (bc+ ad)

The implementation of this equation can be seen in �gure 5.13:

Figure 5.13.: Determine the di�erential

Since the input of the module is 16 bit the ouputs after the adders may grow up to 33 bit
where 32 bit are from the multiplication of two 16 bit numbers plus one bit for the addition
of two 32 bit numbers. We do not want to use that result by full extend and only use 16 bit
registers for the correlator cicuit. Therefore a scaling by an appropriate rounding is necessary.

5.5.4. Use of Swapping Units instead of Multipliers

To reduce the hardware amount in the FPGA implementation a simple swapping unit has
been used because the complex multiplication would be too costly [QXC+08]. According to
section 3.2.1.4 the complex taps only take values of ±j hence the complex multiplication of
the taps with the incoming data can be replaced by a simple swapping unit:

(a+ j · b) ∗ (±j) = ∓b± j · a

So we know that we can simply swap the real and imaginary part of the complex number and
set the sign depending according to the current tap. For the practial implementation of this
operation that consists of two multiplexers (see �gure 5.14).

65

Figure 5.14.: Swap unit

5.5.5. Correlation Result Calculation

The �nal step of the correlation result calculation requires to choose the maximum of the
absolute value of two complex numbers:

C = max (|CSOF + CPLSC | , |CSOF − CPLSC |)
The calculation of the absolute value may be performed in di�erent ways depending of the
needed accuracy and complexity. The following section shows di�erent routes to implement
the calculation of the absolute value with a special focus on digital implementation. In the
C++ software module the correct calculation and the approximations of the norm have been
implemented to compare their performances (see section 6.1.2).

5.5.5.1. Using the Euclidean Norm (Norm 2)

Determing the correct absolute value (magnitude) of a complex number requires to square
the real and imaginary part, add them and take the square root (Euclidiean norm). Since in
(3.4) we only need to compare the absolute values of the two complex numbers we could omit
the square roots but this would lead to a massive growth in bitlength. Therefore a square
root calculation on the FPGA would also be necessary.

|c| = ‖c‖2 =
√
a2 + b2

Since the square root is a really unpleasant function to calculate on an FPGA the following
approximations may be used to simplify the magnitude calculation:

Alpha Max Plus Beta Min (Approximation of Norm 2) This algorithm uses the following
approximation for the magnitude [Lyo10, p. 679]:

|c| ≈ α ·max (|a| , |b|) + β ·min (|a| , |b|)
This avoids the calculation of squares and square roots and only introduces additional com-
parators, one multiplier and one adder. According to [Lyo10, p. 683] a reduced estimation
error (maximum error: 6.3%) is provided by choosing the following parameters:

α =
15

16
; β =

15

32

66

Another advantage of using this parameter pair is a simpli�ed implementation by using only
one multiplier and two binary right shifts:

|c| ≈ 15 (max (|a| , |b|) + min (|a| , |b|) /2) /16

The structure of the FPGA implementation is shown in �gure 5.15.

Figure 5.15.: Aproximate computation of the magnitude

To save area (since the FPGA was nearly 80% full and routing took a long time) and for
simplicity reasons this approximated norm was used inside the FPGA implementation.

CORDIC Another option to calculate the magnitude is to use the CORDIC algorithm
[MB07]. The magnitude of a complex number is determined by rotating a complex vector
until it has a phase of zero or nearly zero. So the magnitude after rotating the vector is then
simply given by the real part of the rotated vector.

The drawback of this method is that the rotation requires an additional amount of clock
cylces. Therefore the number of registers to synchronize the correlation results and the I/Q
samples increases. Since the FPGA was already �lled to a decent extend it was decided not
to use this method.

5.5.5.2. Using the Manhattan Norm (Norm 1)

Since we are only interested in �nding maximum peaks we may use an approximation and
replace the Euclidean norm by the Manhattan norm (see [Kae08]) :

|c| ≈ ‖c‖1 = |a|+ |b|

This results in an implementation loss regarding the Max Peak Error Rate Simulation in sec-
tion 6.1.2. This implementation loss leads to a higher peak error rate and thus the acquisition
process will take longer. This norm has also been implemented on the FPGA but dropped
later in favour of the approximated Euclidean norm.

67

5.5.6. Correlator Structure

5.5.6.1. Direct Form

The circuit from �gure 3.3 has been implemented in VHDL. One problem is that the critical
path (maximum combinatoric delay) of the adders gets very long so it may be that we can
not satisfy the operating speed. [QXC+08] solves this problem by introducing several pipeline
registers between the adders. This requires of course an additional amount of registers for the
pipelines and an additional amount for the delay line (since we required that the correlation
signal is synchronized with the I/Q samples). Therefore a better way is to look for a di�erent
structure that can save the additional use of registers and reduce the maximum combinatoric
delay.

5.5.6.2. Transposed Form

According to [Lyo10] and [RS09] the tranposition theorem can be used to change the structure
of a linear time-invariant digital network without changing the transfer function. Since the
circuit from �gure 3.3 represents a linear time-invariant tapped delay line structure we can
use this property here to convert from a �direct-form� �lter into a �transposed-form� �lter.

The transposition has many advantages:

� It shortens the critical path of the above circuit since values get registered between the
adders.

� In principle it is enough to only use 2 swapping units. We only need to choose one of
the outputs depending of the tap at this current position. This saves some amount of
space.

One prerequisite to use this technique is that we need the delayed original I/Q samples at the
input of the SOF correlator. Since we are going to send the correlation results synchronized
to the I/Q samples anyway we already have a delay line. Now we are taking the signal after 64
registers (delay of the PLSC correlator) of this delay line as the input for the SOF correlator.

By integrating the �rst �ip-�ops of the two di�_corr modules into the delay line we can save
two �ip-�ops in the delay line. This is recognized by the synthesis tool and automatically
optimized.

68

Figure 5.16.: Improved architecture (transposed form) of the di�erential correlator 69

5.5.6.3. Comparison between Direct Form Implemenation and Transposed Form
Implementation

To analyze the bene�t of using the transposed form implementation instead of the direct form,
area resource comparisons and the maximal possible clock frequency have been analyzed. The
results are presented in table 5.2.

% of occupied Slices max. Clock Frequency

Direct Form w. approx. Norm 2 16 % 22.11 MHz
Transposed Form w. approx Norm 2 10% 33.116 Mhz

Transposed Form w. Norm 1 9 % 100 Mhz

Table 5.2.: Comparisoin between di�erent FPGA implementations

We can clearly see that we have reduced the number of occupied slices in the FPGA by using
the transpased structure. Additionally we even improved the max. clock frequency speed of
the implementation.

70

6. Simulation Results and Discussion

This chapter will present the simulations that have been performed on the GNU Radio plat-
form and their results.

6.1. Performance of the Di�erential Correlation

6.1.1. Correlation Results at Di�erent SNRs

Simulations of the di�erential correlator have been performed using GRC. A QPSK long
frame format including pilots has been used. The correlation results have been written into
a �le sink, read and plotted with MATLAB.

Figure 6.1.: Schematic to plot correlation results in GRC

Figures ?? and 6.3 show the correlation results for two di�erent SNRs (10dB and −2dB).
At 10dB we can clearly see that peaks are rising high above the other correlation results.
Each peak is exactly N = 33282 symbols (which represents the frame size for the chosen
modulation) away from the next peak. So the SOF can be identi�ed by the maximum peaks.
An SNR of Es

N0
= −2dB leads to the circumstance that peaks cannot be identi�ed anymore

out of the correlation results. The highest peaks may not correspond to the points where
the frames begin. Further studies of this phenomenon have been performed in the following
section.

71

Figure 6.2.: Correlation results at ES
N0

= 10 dB

Figure 6.3.: Correlation results at ES
N0

= −2 dB

6.1.2. Max-Peak Error Rate Simulation

The performance of the di�erential correlation has been evaluated at di�erent SNR points
using GRC. The performance was measured in terms of the maximum peak error rate. This

72

means that we measure how often the highest peak within a frame occurs at the wrong
position (not at the real SOF).

Figure 6.4.: Max-peak error rate in GRC

Figure 6.5 shows a simulation of the peak error rate over N = 106 QPSK Short Frames (to
decrease the simulation time a short frame format has been used) using the �oating point
model. The curves were plotted for a frequency error free simulation ∆f · TS = 0 using the
di�erent correlation result norms mentioned in section 5.5.5.

−2 −1 0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
S
 / N

0
 [dB]

M
ax

. P
ea

k
E

rr
or

 R
at

e

Norm 1
Norm 2
Norm 2 Approx

Figure 6.5.: Max-peak error rate (∆f · Ts = 0)

From this analysis we can see that using the Norm 1 as an approximation leads to a higher
peak error rate and results in an implementation loss of more than 2 dB. A high max peak
error rate will lead to a longer INIT SYNC acquisition time. The peak detector algorithm
(see implementation 3.2.2.5) will store only the N highest peaks within a small window.
Therefore the probability that the correct peak (where the frame starts) is among those N
peaks reduces drastically at low SNRs due to this high implementation loss. A higher peak
error rate may also increase the probability of false INIT SYNCs. Wrong peaks may lead to

73

a false synchronization if the peak positions match and there are M consecutive matching
peaks.
By using the approximation for the Norm 2 we get a much better performance and the
implementation loss is below 0.5 dB. Therefore the Norm 2 approximation has also been used
in the FPGA implementation.

6.1.3. Max-Peak Error Rate with Frequency Error

In this section we focus on the frequency sensitivity of the correlation algorithm. No frequency
error (∆f ·Ts = 0) and a frequency error of 10% (∆f ·Ts = 0.1) have been tested for the ideal
(Norm 2) calculation and the approximated Norm 2 calculation that has been used inside the
FPGA. The resulting max-peak error rate can be seen in �gure 6.6.

−2 −1 0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
S
 / N

0
 [dB]

M
ax

. P
ea

k
E

rr
or

 R
at

e

Norm 2 @∆ fTs=0.0

Norm 2 @∆ fTs=0.1

Norm 2 Approx @∆ fTs=0.0

Norm 2 Approx @∆ fTs=0.1

Figure 6.6.: Max-peak error rate for di�erent frequency errors

The shown curves indicate that in the case of the Norm 2 ideal calculation a small frequency
error leads to a small decrease in the performance when compared to the frequency error free
error. When using the approximated Norm 2 calculation there is nearly no di�erence between
both cases.
This also proves the shown frequency error immunity of the di�erential correlation that has
been explained at the end of section 3.2.1.3.

6.2. INIT SYNC Acquisition Performance

The following section analyzes the performance of the peak search algorithm (adapted peak
detector) in combination with the di�erential correlation. For this simulation the ideal norm
(Norm 2) has been used to show the possible performance of the system. The chosen frame

74

format for this simulation is QPSK (normal frames) using pilots. This combination repre-
sents the biggest possible frame format (=33282 symbols within a frame). Therefore the
simulated acquisition times represent the worst-case scenario due to the design of the al-
gorithm. For shorter framelengths the acquisition time will reduce. Figure 6.7 shows the
simulation graph for the acquisition time. Each time a INIT SYNC is found the module
(peak_detect_by_decoding_w_reset) is reset to the initial conditions and will count how
many search windows are needed until the next INIT SYNC is found. Within this module also
the number of false INIT SYNCs will be counted. An additional module (sim_plsc_decode)
will evaluate how many PLSC �elds have been decoded wrong (decoding failure)

Figure 6.7.: Simulation of the INIT SYNC acquisition time in GRC

6.2.1. Acquisition Time

We can model the acquisition process as a random experiment were the random variable X
represents the number of search windows needed until a successful INIT SYNC is achieved.
This leads to the empirical determined Probability Density Function (PDF) p(X = k) (shown
in �gure 6.8 for example).
Further we can de�ne the cumulative distribution function (CDF) as the probability of �nding
the INIT SYNC in less or equal then k search windows:

p(X ≤ k) =
k∑
i=0

p(X = i)

This allows us to determine also a mean acquisition time de�ned as:

E(X) =
∞∑
k=0

p(X = k) · k

To get the �nal mean acquisition time Tacq in seconds we can calculate the average number
of search windows times the symbols per search window(= 30 ∗ 3330Symbols chosen) times
the inverse baudrate:

Tacq = E(X) · 30 · 3330 · 1

Baudrate

Additionally we de�ne a time with α = 99.5% con�dence and α = 99.9% con�dence to acquire
frame synchronization. This is essentially the number k of search windows where the CDF
gets above this con�dence value (inverse CDF).

k : P (X ≤ k) ≥ α

75

6.2.2. Simulation Results

Table 6.1 shows the simulation results for di�erent SNR values. Since the simulations require
a lot of time we reduced the possible values of Es

N0
to a few points.

A histogram of the acquisition time has been generated by counting the number of search
windows (SW) between successive INIT SYNCs.

(
Es
N0

)
dB

Mean Acquisition Time 99.5% con�dence 99.9% con�dence P(False INIT Sync) P(False decoded PLSC)

-2 dB 4.39 SW 21 SW 27 SW 6.4261e-005 2.25066e-006

0 dB 1.20 SW 3 SW 4 SW 1.3064e-005 QEF*

1 dB 1.03 SW 2SW 3 SW 3.3389e-006 QEF*

3 dB 1 SW 1 SW 1 SW QEF* QEF*

*QEF (Quasi Error Free) means that within the simulation time (10 Mio Frames) no errors occured

Table 6.1.: Peak detector performance

A false INIT SYNC means that a frame synchronization has been achieved by the module
but the position is not the correct one. For the chosen algorithm this might happen if
coincidentally 3 consecutive peaks match. In the ideal case (symbol timing locked, no PLSC
decoding errors) the INIT SYNC just has to be found once and it can be maintained through
the frame by frame decoding process explained in 5.3.4.2.

The PLSC decoding performance shows that there is only one entry in the table. In the
required experiment range of 1dB to 13dB the decoding error is QEF. Simulations have
shown that by using soft bits instead of hard decision when decoding the PLSC (section
3.3.4) an additional gain of 2 dB is possible.

Figure 6.8 shows the empirical determined PDF and CDF of the search windows needed until
acquisition at an SNR of −2dB. We can see that the amount of the search windows needed
has an exponential decay.

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Acquisition Time [Number of Search Windows]

pd
f

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Acquisition Time [Number of Search Windows]

cd
f

Figure 6.8.: Empirical PDF and CDF of the acquisition Time at Es
N0

= −2dB

76

6.3. SNR Estimation

6.3.1. Performance Measurements

One important �gure is the mean estimator output. It is determined by simply averaging
over all SNR estimates ρ̂Framek (which are calculated over one frame).

Mean(ρ̂) =
1

NFrames

NFrames−1∑
k=0

ρ̂
Framek

The bias may now be calculated by simply determining the deviation of the mean estimator
output of the real SNR value:

bias(ρ̂) = Mean(ρ̂)− ρ

Another important �gure of merit is the mean squared error (MSE). The MSE has been
chosen because it accounts both the variance and the squared bias of the estimator. It is
determined by calculating the following sum:

MSE(ρ̂) =
1

NFrames

NFrames−1∑
k=0

(
ρ̂
Framek

− ρ
)2

The normalized MSE is then determined by dividing the MSE by the squared value of the
true SNR value ρ2:

NMSE(ρ̂) =
MSE(ρ̂)

ρ2

The NMSE can now be compared to the NCRLB to evaluate how far away the current
estimator is from the optimum performance.

6.3.2. DA Estimation

The estimator block is directly attached to the DVB-S2 source block. Each time the sync
input of the SNR estimator block is triggered it will start to perform its operation. When a
whole frame has passed the SNR estimator will output two estimates (see section 4.3.1.2):

� One estimate is the SNR estimate only calculated on the PLHEADER (ρ̂PLH)

� The other estimate will provide a combined estimate (PLHEADER + pilot blocks) (ρ̂)

A frame format with PLS = 5 (QPSK normal frames with pilots) has been chosen for the
simulation because it contains the most pilot blocks. There are two options to calculate the
SNR estimate which have been simulated and compared:

� Practical case: carrier phase o�set is not known and has to be corrected

� Simulation case: carrier phase ideally known and corrected

77

Figure 6.9.: SNR estimation in GRC

The last block in the simulation chain determines the normalized MSE of the SNR output.

6.3.2.1. Mean Estimator Output Simulation

The mean estimator output has been plotted in �gures 6.10 and 6.11. In the �rst �gure we
can see that all estimates have a quite good bias performance and never induce a bias of more
than 0.1 dB over the whole simulated region.

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

16

E
S
 / N

0
 [dB]

M
ea

n
V

al
ue

 [d
B

]

Ideal Characteristic
Mean Est. PLHEADER + Pilots (Phase known)
Mean Est. PLHEADER (Phase known)
Mean Est. PLHEADER + Pilots (Phase unknown)
Mean Est. PLHEADER (Phase unknown)

Figure 6.10.: Mean estimator output

In the following plot the mean estimator output has been zoomed in an range of about 6 dB
to show details abut the behaviour. We can see that the �Phase known� cases in general have
a lower bias and perform similarly well. When the phase is not known and estimated and
corrected a small bias is added to the estimation.

78

5.9 5.92 5.94 5.96 5.98 6 6.02 6.04 6.06 6.08 6.1

5.95

6

6.05

6.1

6.15

6.2

E
S
 / N

0
 [dB]

M
ea

n
V

al
ue

 [d
B

]

Ideal Characteristic
Mean Est. PLHEADER + Pilots (Phase known)
Mean Est. PLHEADER (Phase known)
Mean Est. PLHEADER + Pilots (Phase unknown)
Mean Est. PLHEADER (Phase unknown)

Figure 6.11.: Mean estimator output (zoomed at 6dB)

6.3.2.2. NMSE Performance Simulation

The normalized Cramer-Rao Lower Bound has been plotted and the simulated NMSE results
are compared to it (see �gure 6.12). We can clearly see that for both cases (PLHEADER
only, PLHEADER + pilots) the DA SNV estimators perform close to the CRLB. The curves
for the �phase unknown� case has a slight o�set in the PLHEADER only estimation. In
the case of PLHEADER + pilots estimation, phase estimation and correction has a stronger
e�ect. Additional uncertainty is introduced from the phase estimation which also in�uences
the SNR estimation. That has already be seen in the mean estimator output where a small
bias was induced. Since the NMSE also accounts the bias we can see it resulting in an o�set
here.

79

−2 0 2 4 6 8 10 12 14
10

−3

10
−2

10
−1

E
S
 / N

0
 [dB]

N
or

m
al

iz
ed

 M
S

E

NCRLB Header Only
NMSE Header Only (L=90 Syms) Phase known
NMSE Header Only (L=90 Syms) Phase unknown
NCRLB Header + Pilots
NMSE Header + Pilots (L=882 Syms) Phase known
NMSE Header + Pilots (L=882 Syms) Phase unknown

Figure 6.12.: Normalized MSE

6.3.3. Moment-Based Estimation

The setup of the simulation graph is essentially the same as with the DA estimator. This
time we can only get one SNR estimate on a whole frame. The following cases have been
simulated:

� NDA estimation for constant envelope modulation (QPSK, 8-PSK):

� estimation limited to Lz = 1000 symbols

� NDA estimation for non-constant envelope modulation (16-APSK, 32-APSK)

� average signal energy calculated on whole frame

� estimation limited to Lz = 1000 symbols that reach over the partition margin

Because we want to have a kind of fair comparison between all the di�erent NDA estimators
we limited the amount of symbols used to an equal amount of Lz = 1000 Symbols.

Figure 6.13.: Simulation of the NDA estimation in GRC

80

6.3.3.1. Mean Estimator Output Simulation

We can see the mean estimator output in the following plot. It can be clearly seen that the
constant envelope (QPSK, 8-PSK) estimators perform quite well over the whole tested range
and nearly induce no bias. We can see that the non-constant envelope modulations induce a
high bias in the lower SNR range but that the estimation gets better with increasing SNR.

−2 0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

20

25

E
S
 / N

0
 [dB]

M
ea

n
V

al
ue

 [d
B

]

Ideal Characteristic
16APSK
32APSK
QPSK
8PSK

Figure 6.14.: Mean estimator output for di�erent modulation schemes (L = 1000)

6.3.3.2. NMSE Performance Simulation

The bias problem can also be seen in the following plot which displays the simulated NMSE
for all estimators (�gure 6.15). Due to the high bias the non-constant envelope modulations
have a quite high NMSE in the low SNR region. The 16-APSK case performs slightly better
than the 32-APSK. This is due to the fact that 16-APSK has more symbols within a frame
than 32-APSK. Therefore more symbols can be used for the estimation of the average signal
power (which is used for determining the partition radius). For low SNR values generally the
variance of all estimators is high. For higher SNR values we can see that they all reach an
asymptotic NMSE �oor value which is above the NCRLB. According to [BS67, GT05] this is
a typical behaviour for envelope-based estimators.

81

−2 0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

E
S
 / N

0
 [dB]

N
or

m
al

iz
ed

 M
S

E

NCRLB
NMSE 16APSK simulated
NMSE 32APSK simulated
NMSE QPSK simulated
NMSE 8PSK simulated

Figure 6.15.: NMSE for di�erent modulation schemes (L = 1000)

82

7. Practical Measurements on the

Prototype

In this chapter the measurement setup with the implemented prototype will be explained.
We'll perform the same measurements as in the simulation and make a comparison.

7.1. Test Setup and Components

The following components have been used for the test setup (�gure 7.1):

� Modulator / Demodulator: Newtec Elevation EL470

� One modem is acting as modulator, the other as demodulator

� Noise Generator: Noisecom UFX7112A

� Spectrum Analyzer: Rhode & Schwarz FSV Signal Analyzer (9kHz - 40GHz)

� Logic Analyzer: Agilent 16702B Logic Analysis System

� Power Splitter 1: Mini Circuits ZFSC 2-11

� Power Splitter 2: Mini Circuits ZA4PD-2

APP PC1 generates the payload for the Newtec modem, modulating the data according to
the DVB-S2 frame format and converting the spectrum up to 1 GHz. The programmable
noise generator now attenuates the signal and adds the needed amount of noise.

Through the power splitters the signal is now distributed to the demodulator, the spectrum
analyzer and the USRP N210 with the proposed prototype FPGA image. A PC with the
GNU Radio blocks running on it now performs the needed signal processing (MODCOD
determination, SNR estimation).

On the demodulator the DVB-S2 frames are decoded and send to the APP PC2 were the
payload is further analyzed.

83

Figure 7.1.: Test setup in the laboratory

7.1.1. Modulator / Demodulator Remote Control

Both modems (�gure7.2) o�er a http-WebInterface that can be used to control and monitor
the modems.

Figure 7.2.: Both Newtec modems on top of the noise generator

On the modulator Web-Interface all transmission relevant parameters (like the MODCOD,
Symbol Rate, Output Power, etc) can be set (�gure 7.3).

84

Figure 7.3.: Modulator setup

On the demodulator interface some important receiving �gures can be seen (receive SNR,
link margin, etc).

Figure 7.4.: Demodulator setup

85

7.1.2. Packet Generator and Analyzer

A packet generator running on the APP PC1 side generates the payload data (UDP packet
data) and sends it to the receiver over the DVB-S2 channel. The received data is now analyzed
by the APP PC2 where a packet analyzer is running.

The generated UDP packets are �rst encapsulated into IP datagrams. If the modulator is
con�gured in bridge mode then the datagrams are encapsulated into Ethernet frames. The
modulator encapsulator now embedds this Ethernet frame into a DVB-S2 frame where the
payload section represents the Ethernet frame. The overview of this setup can be seen in
�gure 7.5).

Additionally there is a backlink from the demodulator to the modulator. Since the modulator
is con�gured in the bridge mode we need to know the MAC address of the receiver (APP PC2)
and this is done by ARP (Address Resolution Protocol). Therefore the backlink provides a
way to send back an ARP reply from APP PC2 to APP PC1.

One important setting on APP PC1 is to generate enough data with the packet generator
within a certain time since the modem will otherwise start to insert so called DUMMY
frames. We want to have a constant MODCOD for our sent data and no DUMMY frames.
The capacity utilization can be determined in the modulator overview when looking at the
e�ciency �eld. It needs to be 100% so that no DUMMY frames get inserted.

Figure 7.5.: Modulator overview setup

86

7.1.3. Noise Generator

As shown in �gure 7.6 the noise generator allows to set a certain signal attenuation on the
input signal and allows to turn o� or on a noise signal with a certain attenuation in respect
to the maximal noise output power.

Figure 7.6.: Settings on the noise generator

One problem is that the noise generator produces a none �at spectrum with a maximum
�atness of±2dB [Noi] which has also been veri�ed by measurements (see �gure 7.7). Therefore
the measurement of the carrier-to-noise ratio is in�uenced by this circumstance. The higher
the symbol rate gets, the worse the produced error of the noise generator will be.

Figure 7.7.: None-�atness of the noise generator in a 100 MHz band

7.1.4. SNR Measurement on the Spectrum Analyzer

A good way to measure the carrier-to-noise ratio is to measure both powers in the same
frequency band. This is done by �rst turning on the carrier in the modem and determining

87

the carrier-plus-noise power within the bandwidth area where the carrier is �at (�gure 7.8).
Afterwards the carrier is turned o� at the modem and the noise power is measured in the same
area (�gure 7.9). The di�erence between both power levels determines the Carrier -plus-Noise
to Noise ratio: (

C +N

N

)
dB

To determine the real CNR we need to perform the following operation:(
C

N

)
dB

= 10 · log

(
10

(C+N
N)

dB
10 − 1

)
Especially at low CNRs (< 5dB) this calculation is very sensitive towards jittering deci-
mal places of the power measurements. Therefore the CNR measurements at the spectrum
analyzer can only give a rough estimation (±0.3 dB) for the real CNR.

Figure 7.8.: Carrier-plus-noise power measure-
ment

Figure 7.9.: Noise power measurement

7.1.5. Optimal Signal Level for ADC

The WBX board does not include an Automatic Gain Control (AGC) therefore a manual
setting of the noise generator settings and the ampli�er gain is necessary to prevent the ADC
from clipping. Clipping would mean an unwanted signal distortion. When adding noise to
the signal it should also be considered that the added noise should not drive the ADC too
much into saturation. Otherwise the clipping would take away some signal-plus-noise power
and therefore the SNR estimation would become inaccurate. Figures 7.10 and 7.11 show how
the ADC range was determined on the logic analysis system (for further details have a look
in appendix B.2).
Additionally we should take care that the input of the correlator after the decimation (CIC,
HBF, Interpolator) is resolved with enough bits. Since we are going to cut and round bits after
determining the di�erential we need to have at least approx. 8 bits (shown in a simulation) .

88

To determine the resolution we may write the received samples from the USRP to a �le and
determine with MATLAB the average power of the signal. And how many bits are e�ectively
used out of the RMS value.

Figure 7.10.: Input samples without Noise

Figure 7.11.: Input samples contaminated with noise (C
N

= 1dB)

7.1.6. GNU Radio Setup for the Measurements

The following GRC graph shows the setup during measurements on the GNU Radio PC. The
UHD USRP source delivers the samples that are sent from the USRP through Ethernet to

89

the GNU Radio environment.

On the upper channel the optimally sampled symbols (1 Sample / Symbol) are available. The
channel transmits two 16 bit signed integers as a combined vector. Since the peak detection
and the other modules are performing with �oating points we need to convert the samples
to a complex �oat format. This is shown in the �gure as the chain Vector to Streams =>
Short To Float => Float To Complex. All those conversion blocks are already provided
by the standard GNU Radio toolkit.

The other channel transmits the correlation results that have been determined in the FPGA.
Since the correlation result has a maximum bit width of 22 we needed to send them on two
separate 16 bit integers. The following custom block (short_vec_to_float) performs the
shifting and correct conversion of the incoming samples into a �oating point format.

Both converted channels are now fed into the peak detector which produces SYNC signals at
the beginning of each frame. Additionally within this module an analysis of the INIT SYNC
acquisition performance is performed by calculating repeated INIT SYNCs in the background
and writing the number of needed search windows into a �le. Additionally the number of
false INIT syncs is recorded by comparing the decoded PLS �eld with the known (since the
modulator is kept �xed to a certain modulation scheme) PLS �eld.

The DA and NDA SNR estimation are now triggered by the generated SYNC signals and
estimate the Es

N0
according to the implemented algorithms. The estimated values are logged

in a text-�le. After the measurements are �nished all log-�les can be post-processed by
MATLAB.

Figure 7.12.: GRC graph setup for measurements

7.2. Test Cases

Now di�erent test cases have been de�ned in table 7.1. They cover nearly the needed dy-
namic range of 12dB that is used in the ACM experiment. Since the SNR measurements on
the spectrum analyzer are not very reliable (especially in case of low SNRs) the test cases
are denoted with the targeted SNR. All tests have been performed using a symbol rate of
fs = 1MSym/s since in the according bandwidth the noise generator produces a nearly �at
spectrum.

90

Settings
QPSK@ QPSK@ QPSK@ QPSK @ 8 PSK @ 16-APSK@

C
N ≈ −1 dB

C
N ≈ 1 dB C

N ≈ 3 dB C
N ≈ 5 dB C

N ≈ 7 dB C
N ≈ 10 dB

Modem Output Power −20 dBm −20 dBm −20 dBm −20dBm −20 dBm −20 dBm
NG*: Noise Attenuation 1 dB 3 dB 3 dB 3 dB 3 dB 3 dB

NG*: Signal Attenuation 11.2 dB 11.2 dB 8.9 dB 7.3 dB 5.3 dB 3 dB

USRP: Gain 26 dB 26 dB 26 dB 26 dB 26 dB 26 dB

SA+ measured C+N
N 2.44 dB 3.55 dB 4.8 dB 6.25 dB 7.75 dB 10.45 dB

SA+ measured C
N −1.227 dB 1.02 dB 3.05 dB 5.07 dB 6.95 dB 10.04 dB

* NG = Noise Generator
+ SA = Spectrum Analyzer

Table 7.1.: Test cases

7.3. INIT Sync Acquisition Performance

Measures of the acquisition time have been performed in the -1 dB to 5dB range for QPSK
normal frames using pilots (PLS = 0x09). This frame format was chosen because it has the
longest frame length (=33282 Symbols) and displays the worst case in terms of acquisition
time. The same performance measurements (mean acquisition time, 99.5% and 99.9% con�-
dence acquisition time) as in the simulation (see section 6.2) have been performed. The two
other test cases (8-PSK, 16-APSK) have a shorter framelength (=>shorter acquisition time)
and therefore would not allow a fair comparison. All acquisition times are expressed in Search
Windows (SW) where one search window is 1SW = 30 · 3330 = 99900 Symbols.

Test case Mean Acq. Time 99.5% Acq. Time 99.9% Acq. Time P(False INIT Sync) #Search Windows

QPSK@C
N
≈ −1 dB 6.92 SW 35 SW 46 SW 1.480e-003 962728

QPSK@C
N
≈ 1 dB 1.70 SW 6 SW 8 SW 4.1708e-004 167228

QPSK@ C
N dB

≈ 3 dB 1 SW 1 SW 2 SW 2.0052e-004 628171

QPSK @ C
N
≈ 5 dB 1 SW 1 SW 1 SW 2.1872e-004 169558

Table 7.2.: Frame acquisition measurement results

The two �gures (7.13 and 7.14) show the empirically determined PDF and CDF of the INIT
SYNC acquisition time at two test cases C

N
≈ −1dB and C

N
≈ +1dB. We can see that in both

cases the empirical PDF and CDF have the same characteristics as shown in the simulation
of section 6.2. The PDFs show an exponential decay of the acquistion time.

As we compare the measurements with the simulations we can see that the acquistion process
in the real system is taking slightly longer. This is on the one hand due to the SNR degra-
dation caused by the implementation loss of the CIC �lters and digital interpolator (through
jittering recovery algorithm which has a limited resolution and limited estimation length on
the FPGA). On the other hand the use of the approximated Norm 2 inside the FPGA in-
troduces an additional degradation in the Max-peak error rate curve as explained in section
6.1.2.

91

5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Aquistion Time [Number of Search Windows]

pd
f

5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aquistion Time [Number of Search Windows]

cd
f

Figure 7.13.: empirical PDF (left) and CDF (right) of the acquisition time at C
N
≈ −1dB

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Aquistion Time [Number of Search Windows]

pd
f

5 10 15 20 25 30 35 40
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Aquistion Time [Number of Search Windows]

cd
f

Figure 7.14.: empirical PDF (left) and CDF (right) of the acquisition time at C
N

≈ +1dB

7.4. SNR Measurements

The following three estimations were performed in the GNU Radio environment for all test
cases and the results written to a �le:

� DA estimation only on PLHEADER

� DA estimation on PLHEADER + PILOT blocks

� NDA estimation on whole frame

7.4.1. Empirical PDF

The measured SNR estimates are read in from the log-�les with MATLAB and post-processed.
Out of this data we can generate a histogram of the estimator values to evaluate the estimator

92

distribution. An exemplary empirical determined PDF is shown in �gure 7.15. We can see
that the estimates are Gaussian distributed. The wider the Gaussian estimator PDF is the
bigger the variance will be.
The DA estimator (PLHEADER only) has the biggest variance because it uses the lowest
amount of symbols (90 symbols). The DA SNR estimator on PLHEADER and pilots (882
symbols) has a much lower variance even when compared to the NDA estimator variance.
Although the NDA estimator uses more symbols (1000 symbols) for the estimation it has a
higher jitter variance (compare to the simulation).

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

DA estimated E
S
 / N

0
 (PLHEADER)

pd
f

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

DA estimated E
S
 / N

0
 (whole frame)

pd
f

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

NDA estimated E
S
 / N

0

pd
f

Figure 7.15.: empirical determined PDFs at C
N
≈ 3dB

7.4.2. Measurement Results

In table 7.3 we can see the results of our measurements.that One problem is that we do not
know the exact SNR. The measured C

N
on the Spectrum Analyzer are only approximate values

(±0.3 dB).
Overall there is an implementation loss of our SNR estimates when compared to the measured
SNR on the spectrum analyzer. The implementation loss is again caused by the digital signal
processing chain inside the FPGA (that is the CIC �lter and non ideal sampling (caused by
limited FPGA resources) in the timing recover algorithm).

93

SNR Est
QPSK@ QPSK@ QPSK@ QPSK @ 8-PSK @ 16-APSK@

C
N ≈ −1dB

C
N ≈ 1 dB C

N ≈ 3 dB C
N ≈ 5 dB C

N ≈ 7 dB C
N ≈ 10 dB

Spec. Analyzer [dB] -1.2 1.02 3.05 5.07 6.95 10.04

Mean PLH [dB] -1.36 0.33 2.79 3.90 6.29 8.91

MSE PLH 0.024 0.041571 0.091755 0.343095 0.417481 0.918290

Mean Whole Frame [dB]* -1.24 0.4140 2.8486 4.0465 6.2719 8.9175

MSE Whole Frame* 0.002559 0.0043 0.0092 0.0341 0.0547 0.1694

Number Frames 2886608 501963 1885518 508858 2791090 1258604

Mean NDA [dB]+ -1.38 0.3334 2.7844 4.5191 6.2312 9.5004

MSE NDA 0.027805 0.0281 0.0374 0.0541 0.1020 0.2514

Number Frames 2885315 501964 1885519 508860 2791161 1258604

*not equal amount of PILOT Blocks in QPSK, 8-PSK and 16-APSK
+ di�erent algorithms in QPSK, 8-PSK, 16-APSK

Table 7.3.: Summary of the SNR measurement results

7.4.3. Comparison to CRLB and Simulation

To measure the performance of the estimator �rst the mean value ¯̂ρ is determined by:

¯̂ρ = Mean(ρ̂) =
1

NFrames

NFrames−1∑
k=0

ρ̂
Framek

Like in the simulation we determine the normalized MSE of the estimator but this time due to
lack of knowledge we can not use the the real value for ρ. The assumption that the measured
SNR is bias free can be made because the used algorithm is nearly bias-free as seen in the
simulation. Therefore it is assumed that the mean value ¯̂ρ is the SNR that is really present in
the digital system (after all implementation losses due to the digital signal processing) ρ ≈ ¯̂ρ.
The MSE is now calculated by (remark: if the bias = 0 then the MSE = variance):

MSE(ρ̂) =
1

NFrames

NFrames−1∑
k=0

(
ρ̂
Framek

− ρ
)2 ρ≈ ¯̂ρ

=
1

NFrames

NFrames−1∑
k=0

(
ρ̂
Framek

− ¯̂ρ
)2

And �nally the NMSE is given by:

NMSE(ρ̂) =
MSE(ρ̂)

¯̂ρ2

Here only the DA SNR Estimator on the PLHEADER has been considered. This is due to the
fact that this is the only estimator that uses the same amount of symbols in every test case
(regardless of which modulation is actually used). Figure 7.16 shows the measured NMSE
and in comparison the simulated NMSE and the normalized CRLB. We can see that they
match pretty good.

94

−2 0 2 4 6 8 10
10

−2

10
−1

E
S
 / N

0
 [dB]

N
or

m
al

iz
ed

 M
S

E

NCRLB
NMSE measured
NMSE simulated

Figure 7.16.: DA estimator (on PLHEADER only L = 90) performance

7.5. Real-time Performance Tests

Additional tests have been performed to test the real-time performance at higher symbol
rates. The maximum achievable symbol rate at the current con�guration is 6.25MHz. This
comes from the minimal possible CIC & HBF combination decimation factor being 4. The
downsampling rate of the digital interpolator is �xed to 4. Therefore the maximal symbol
rate is given by dividing the ADC sampling rate through the minimal possible decimation
rate:

fsymmax =
fs

Mmin

=
100Mhz

4 · 4
= 6.25MSym/s

Future implementations could replace the standard CIC & HBF �lters o�ered by the USRP
by �lters that allow lower decimation rates to achieve even higher symbol rates.
The real-time performance of the proposed prototype (see �gure 5.11) has been tested on a
PC running Ubuntu Linux using an Intel Core2 vPro (Quadcore CPU, each core has 2.83
GHz). At the maximal symbol rate of 6.25MSym/s the maximum utilization of each core
was approximately 80%. No over�ows occurred at the input network card bu�er because the
CPU processed the data fast enough.

95

96

8. Conclusions and Future Work

We have seen that the implemented algorithm for frame synchronization is really e�cient.
The di�erential correlation is quite resistant against frequency and phase errors. The com-
bination with the proposed peak detector algorithm provides a robust solution with both, a
fast acquisition time and a low probability of false detection even for Es

N0
values as low as−2dB.

It was shown that the theoretical SNR estimators from the literature can be successfully ap-
plied to DVB-S2 transmissions. The implemented DA / NDA methods have proved to have
a decent performance in the practical range of 1− 13 dB.

The SDR concept turned out to be quite �exible and ideally suited for the required tasks.
Depending on the necessary speed performance we can place blocks either in software or place
them inside the FPGA. After implementation in software, the required max. symbol rate of
8MSym/s could not be reached in realtime. Therefore it was decided to place the correlator
and the former stages in FPGA. In future versions the CIC and halfband �lters need to be
replaced because they only allow a maximal symbol rate of 6.25MSym/s.

The GNU Radio platform and the USRP proved to be quite mature and stable but both lack
a bit of documentation. Especially many of the USRP internals are not well documented
so that we had to resort to the source code. This is especially tedious when custom parts
of the FPGA have to be changed and no signal descriptions are available. For this reason
the studies of the internals of the USRP and WBX are presented in the appendix section.
Another problem that arose was that the FPGA was already quite full (80%) and therefore
some time optimizing the timing constraints had to be spent.

97

98

A. USRP N210 Internals

A.1. Description

The USRP (Universal Software Radio Peripheral) N210 is a hardware sampling device that
is suited for application in GNU Radio. Figure A.1 shows the USRP N210 with open case.
The WBX Daughterboard (further details in appendix B) is attached on top of the USRP
Motherboard. All used external interface connections (Ethernet, MICTOR, platform cable
USB, serial connection) are also shown in that �gure.

Figure A.1.: Opened USRPN210

99

Figure A.2.: Front view of the USRP N210

A.2. Important Features and Components

� FPGA: Xilinx Spartan XC3SD3400A

� ADCs: 14-bits 100 MS/s

� ADS62P44: dual channel, 14-bits, 125/105/80/65 MSPS ADC with DDR LVD-
S/CMOS outputs

� ADC's full range is 2V peak-to-peak with the input 50 Ohm impedance

� DACs: 16-bits 400 MS/s

� AD9777: 16-Bit 160 MSPS 2x/4x/8x Interpolating Dual TxDAC+® D/A Con-
verter

� Gigabit Ethernet connectivity:

� LSI TruePHY � ET1011C Gigabit Ethernet Transceiver

� Clock:

� Distribution PLL: AD95101.2 GHz Clock Distribution IC, PLL Core, Dividers,
Delay Adjust, Eight Outputs

� Reference Clock MUX: SY89545L 3.3V, 3.2Gbps di�erential 4:1 LVDS multiplexer
with internal input termination

� TCXO Frequency Reference (~2.5ppm)

� Optional internal GPS locked reference oscillator

� MIMO capable - Requires two or more USRP N210 devices

100

A.3. Clocking

A.3.1. Clocking on the Mainboard

The AD9510 PLL is the main is responsible for clock distribution on the motherboard. It
provides two programmable dividers R and N that can be used to change the intermediate
clock (clk_2) that is derived of the incoming reference clock (ref_clk). The PLL provides
eight clock outputs where each can further divide this intermediate clock to get individual
clock rates. This is again done with individual programmable dividers (shown in �gure A.3).
All programmable dividers are accessible through an SPI interface. The relation between the
intermediate clock and the reference clock is given by:

clk_2 = ref_clk · N
R

= ref_clk · P ·B + A

R

where R is set directly and N is set indirectly through 3 register settings:

N = (P ∗B + A)

The USRP N210 in standard con�guration provides a 100 MHz clock on all outputs of the
PLL. In normal con�guration the reference clock for the PLL comes from the 10 MHz on-
board oscillator. The device has also an input for an external reference clock that allows
to synchronize the clocks to a common source [Ettc]. The selection of the source reference
clock is done by the clk_sel wires whose settings are stored inside the FPGA in a status
register. Normally the PC-Side UHD driver sets this register by sending control-messages
to the device during initialization (see UHD/clock_ctrl.cpp) for further details. The UHD
driver also sets the dividers correctly by sending control-messages to provide a 100 MHz clock
signal out of the internal reference clock (10Mhz). It sets the clock ratio to N

R
= 10 and all

other programmable dividers to 1.

A.3.2. External REF CLOCK Speci�cations

According to [Etta] the USRP N210 allows the use of an external 10MHz reference clock.
Square wave input is the preferred input waveform (best phase noise performance) but sinu-
soidal waveform is also acceptable. The N210 allows an reference clock input power level of
0 to 15dBm.

A.3.3. Clock Distribution inside the FPGA

The Xilinx Spartan XC3SD3400A includes eight Digital Clock Managers (DCM) which can
be used for clock skew elimination (delay locked loop) and for frequency synthesis from a
reference clock. Only one DCM is used in the standard con�guration of the USRP N210 for
the clock distribution. It provides a 100 MHz clock used for the DSP core. Another clock
(50 MHz) is provided for the ZPU and the Wishbone Interfaces. Additionally there is a third
clock that provides a 270° shifted clock signal to interface the SRAM blocks.
Besides these clocks there are also 3 clocks that pass the DCM and are generated from external
peripherals. GMII_RX_CLK and clk_to_mac are generated by the Ethernet PHY. The
ser_rx_clk is used for the SERDES component.

101

Figure A.3.: Clock distribution on the mainboard

Figure A.4.: Clock distribution inside the FPGA

102

A.4. Internal FPGA Design

The USRP N210 FPGA design consists of a modern System-on-Chip (SOC) architecture (see
�gure A.5). Since GNU Radio is designed to be an open source project it makes heavy use
of free IP cores from opencores.org. To connect various components, a Wishbone bus (the
recommended bus system by opencores.org) has been used. The design includes the following
main components:

� ZPU (a lightweight Soft Core CPU available from [Ope])

� stack-based

� address bus: 32bit wide

� small op-code: 8bit

� Memory (internal block RAM memory)

� Bootloader memory

� Wishbone bus to interconnect all components

� 2 RX-DSP Cores / 1 TX-DSP Core

� these is the are the main data paths for RX and TX

� performs mainly the decimation / interpolation of the samples

� UART

� Programmable interrupt controller

� Ethernet controller

� Interface to Ethernet PHY, Packet Router and ZPU

A.4.1. Memory Layout

The following memory layout was chosen by the USRP N210 designers for the memory
mapped IO in the system (further details in <FIRMWARE_DIR>/lib/memory_map.h):

103

W
is

h
b

o
n

e
 B

u
s

B
o

o
t

R
A

M

P
IC

(P
ro

g
ra

m
m

a
b

le

In
te

rr
u

p
t

C
o

n
tr

o
lle

r)

S
y

s
 R

A
M

S
y

s
te

m

C
o

n
tr

o
l

U
A

R
T

S
im

p
le

G
E

M
A

C

W
ra

p
p

e
r

E
th

e
rn

e
t
M

A
C

N
S

G
P

IO
Z

P
U

I2
C

M
a

s
te

r

F
la

s
h

 S
P

I

C
o

n
tr

o
lle

r

P
a

c
k

e
t

R
o

u
te

r

B
u

ff
e

r
P

o
o

l

v
it

a
_

rx
_

c
h

a
in

0

D
S

P
_

C
O

R
E

_

R
X

0w
r1

_
d

a
t

s
a

m
p

le
_

rx
0

S
h

a
re

d
 S

P
I

C
o

n
tr

o
lle

r

A
D

C
 C

o
n

tr
o

l

A
T

R

C
o

n
tr

o
ll
e

r

A
D

C

w
b

_
re

a
d

b
a

c
k

_
m

u
x

B
u

ff
e

r
P

o
o

l

S
ta

tu
s

S
e

tt
in

g
s

 B
u

s
 /

C
ro

s
s

c
lo

c
k

rd
2

_
d

a
t
/

w
r2

_
d

a
t

E
x

t_
F

IF
O

rd
1

_
d

a
t

V
it

a
_

tx
_

c
h

a
in

D
S

P
_

C
O

R
E

_
T

X

D
A

C

E
th

e
rn

e
t

P
H

Y

S
E

R
D

E
S

S
e

ri
a

li
z
e

r/

D
e

s
e

ri
a

li
z
e

r

(E
th

e
rn

e
t

T
ra

n
c
e

iv
e

r

T
L

K
2

X
X

1
)

rd
0

_
d

a
t

/
w

r0
_

d
a

t

s
im

p
le

_
ti

m
e

r

v
it

a
_

rx
_

c
h

a
in

1

D
S

P
_

C
O

R
E

_

R
X

1

w
r3

_
d

a
t

s
a

m
p

le
_

rx
1

s
tr

o
b

e
_

rx
1

s
tr

o
b

e
_

rx
0

Figure A.5.: Internal SOC architecture inside the FPGA104

Name Address

ROUTER_RAM_BASE 0x4000
SPI_BASE 0x5000
I2C_BASE 0x5400
GPIO_BASE 0x5800

READBACK_BASE 0x5C00
ETH_BASE 0x6000

SETTING_REGS_BASE 0x7000
PIC_BASE 0x8000
UART_BASE 0x8800
ATR_BASE 0x8C00
ICAP_BASE 0xA000
SPIF_BASE 0xB000
RAM_BASE 0xC000

Table A.1.: Memory layout

The settings registers (addresses start from SETTING_REGS_BASE) are used to set the
common properties of the components used in the SOC system. One subset of the settings
registers is used to control the properties of the DSP RX (SR_RX_DSP0) path for example.
So it can be used to set the decimation rate of the integrated CIC �lters and enable the
appropriate halfband �lter if needed. Further details have to be looked up in the VHDL
source code.

A.4.2. Samples via Ethernet

The samples are transported to the PC via the Ethernet interface using the UDP protocol.
The host side gets the sent data by using the UHD driver which allows a transparent access
to the I/Q samples.

A.4.2.1. SPI Flash and Memory Layout

Since FPGAs don not have non-volatile memory it is required to load the FPGA con�guration
(�FPGA image�) and the �rmware from an external source. This external source is an 8MB
SPI �ash located on the backside of the motherboard. Its memory layout is shown in table
A.2:

Area Start-Address End-Address

SAFE_FPGA 0x000000 0x17FFFF
PROD_FPGA 0x180000 0x2FFFFF

PROD_FIRMWARE 0x300000 0x3EFFFF
SAFE_FIRMWARE 0x3F0000 0x3F3FFF

Table A.2.: SPI �ash memory layout

A.4.2.2. Bootloading Sequence

According to [Fos11] and by studying the bootloader source code the boot sequence is per-
formed the following way:

105

� The FPGA loads its con�guration automatically starting from SPI �ash address 0x000000
(which corresponds to the safe FPGA image)

� This image contains a bootloader (a pre�lled boot RAM) which tries to �nd a valid
production FPGA image

� a valid FPGA image: leading 0xFF padding, followed by the sync bytes 0xAA
0x99

� The bootloader then tries to load this production image using ICAP (a technique to
dynamically recon�gure FPGA images)

� a �ag is written into the EEPROM that we should now be in production mode

� The bootloader of the production FPGA image then tries to locate a valid production
�rmware and tries to load it

� the production mode is detected by reading out the EEPROM �ag

� If no valid production �rmware is found it will try to load the safe �rmware

� If that also fails the bootloader will fall back to a basic prompt where a valid �rmware
image can be loaded by the serial port

A.4.3. Generating FPGA Images

To compile FPGA image for the USRP N210 the paid version of the Xilinx ISE Design Suite
is necessary. We recommend using ISE v12.4. in favour of v13 since the whole compilation
was faster.

To generate an FPGA image go into FPGA image source path and create a XILINX ISE -
project �le and synthesize the design by using the following commands :
cd <SOURCE_DIRECTORY>/uhd/fpga/usrp2p/top/N2x0

make N210R3

This will generate a Xilinx ISE project u2plus.xise for the chosen board type (N210 Re-
vision 3) in the directory:
<SOURCE_DIRECTORY>/uhd/fpga/usrp2p/top/N2x0/build-N210R3/

To generate the FPGA binary images (.bin and .bit �les) we can open the project in the
Xilinx Project Navigator. Inside the project environment we may change according VHDL
�les to our needs. Afterwards we can start the compilation process. The process steps of
this compilation are shown in �gure A.6. After generating FPGA images they can be used
to recon�gure the FPGA.

Figure A.6.: FPGA image generation process steps

106

A.5. Firmware

A.5.1. Bootloader

The main task of the bootlaoder code is to load the production FPGA image (through ICAP)
and a production �rmware into the block RAM memory. For further details on the boot
sequence may be found in section A.4.2.2.

A.5.2. Main Firware

The main task of the �rmware is to initialize the components of the SOC system. It addi-
tionally provides a TCP/IP Stack (LWIP) to perform the communication (e.g. to set the
sampling rate or start streaming) between the host PC and the USRP. Also the SPI �ash
programming over Ethernet is provided in the �rmware.

A.5.3. Generate Firmware Images

There is a small CPU (called ZPU [Ope]) running on the FPGA for which a �rmware is
necessary. To generate this �rmware a compiler (zpu-elf-gcc) for the ZPU is available from
[Zyl].

To compile the �rmware you will have to change into the source directory, create a build-
directory and call the Build System (cmake):

cd <SOURCE_DIRECTORY>/uhd/firmware/zpu

mkdir build

cd build

cmake ../

make

This will create a usrp2p_txrx_uhd.bin �le in the

<SOURCE_DIRECTORY>/uhd/firmware/zpu/build/usrp2p directory.

This �le can be later used for �ashing.

A.6. Flashing

A.6.1. Burn FPGA Images into the SPI Flash

The programming of the SPI �ash is done via Ethernet. The UHD environment o�ers an ap-
plication called �Net Burner� for this purpose. The program comes in a GUI and a command
line application.

To start burning using the Net burner command line use:

python <UHD_INSTALL_PATH>/utils/usrp_n2xx_net_burner.py --addr=<ip address>

--fw=<path for firmware image (.bin)> --fpga=<path to FPGA image (.bin)>

You may use the option --overwrite_safe if you want to overwrite bad safe images.

To start the GUI application:

107

python <UHD_INSTALL_PATH>/utils/usrp_n2xx_net_burner_gui.py

Remark : The Net Burner Tool checks for a valid image which should match the FPGA
Revision by its Filename. If for a example a N210 Rev 3 board is connected then the FPGA
binary image (.bin File) must contain the substring �n210_r3�

A.6.2. Repair Bricked Boards

It may rarely occur that the �ashing program gets stuck or crashes. In such a case it may be
possible that the production FPGA image and or the �rmware image are invalid.

The �rst step in trying to recover these images is to boot into �safe mode� by pressing the
button S2 (located on the mainboard) during the boot process until the LEDs in the front
remain solid. In this process the bootloader tries to load the safe �rmware from the SPI �ash
instead of the production image. In this safe mode the device is always con�gured with the
IP address 192.168.10.2. Now it is possible to use the �Net Burner� tool to recover the FPGA
and �rmware image.

If this does not help and nothing happens after booting (LEDs do not light) the only way to
recover USRP board is to directly con�gure the FPGA by JTAG using the Xilinx Platform
Cable in combination with the iMPACT software that comes with the Xilinx ISE Toolchain.
An appropriate image (.bit File) is needed to load the FPGA. If there is a valid �rmware
on the device then it will be loaded and the FPGA image and the �rmware image in the
SPI-Flash can be recovered by using �Net Burner�. [Neg]

If there is no valid �rmware image available the device will switch to a Intel HEX prompt.
So you can transmit a valid image using the serial interface by using a supplied tool.

A.7. Logic Analysis

There are two possibilities to monitor and analyze the internal signals produced by the USRP
N210.

A.7.1. Using the MICTOR Connector

The USRP N210 provides a MICTOR (Matched Impedance Connector) (J301) that can be
connected to a logic analyzer. The Main Verilog File provides a 32 bit-signal set called �debug�
which is routed to this MICTOR interface. Any signal that has to be observed can be simply
connected to this debug signal set.

A.7.2. Using ChipScope

Another opportunity to monitor signals is to use the ChipScope Technology provided by
Xilinx. This integrates a small Logic Analysis System into the FPGA design and can be later
monitored by JTAG through the platform cable. Since this technique requires an additional
amount of block RAM space and slices inside the FPGA and the FPGA was already full to
a decent extent we did not use it.

108

Figure A.7.: Example of logic analysis system attached over MICTOR cable

A.8. Monitoring UART Output

To verify correct startup and to log the debug outputs of the ZPU UART via the serial
interface a small circuit has been soldered to provide the necessary signal level conversion
from 3.3V to RS232. The circuit basically uses a MAX2323 IC.

Figure A.8.: Signal level converter for UART

109

A.9. Modifying the Original FPGA Source

A.9.1. Removing Unnecessary FPGA Parts

For this project a TX path was not needed so the TX path can be removed to save some
space inside the FPGA. The usage level of the FPGA can be further reduced by removing
the second DSP core (see below). Space comparisons have been performed and can be seen in
table A.3. Obviously there is a great reduction of area utilization by removing the mentioned
parts. This available space can now be used for custom logic parts.

FPGA Resource Standard Con�guration Modi�ed Con�guration
(TX and RX1 removed)

Number of occupied Slices 79% 55%
Number of DSP48As 21% 8%

Number of RAMB16BWERs 24% 23%

Table A.3.: FPGA utilization in 2 di�erent con�gurations

One thing we found out is that the SERDES-module which would not be necessary can not be
removed. After burning the image without the SERDES module the communication between
the USRP and the host PC did not work anymore.

A.9.2. Providing Custom Calculations on the FPGA / UHD Settings

Sometimes there is a need to perform computational instensive calculations on the FPGA
instead of using the PC (e.g.: the di�erential correlator in this Master Thesis). For this
purpose the FPGA design has to be modi�ed to transmit the additional samples on a second
channel. The standard FPGA design includes two complete DDC chains. This includes a
second RX data path (called dsp_core_rx1) which consists of the same elements as the �rst
RX path. This second channel is originally intendend to use a second carrier which will be
downconverted by the CORDIC unit. This DSP core can be replaced by a custom logic. So
an additional 32 bits are available to transmit the results of custom calculations.
On the PC host side a proper con�guration of the USRP UHD source is necessary. The UHD
source block has to be con�gured to:

� use two channels

� use following WBX subdevice speci�cation: �A:0 A:0�.

Practical measurements have also shown that it has to be guaranteed that the digital strobe
signals of both channels (strobe_rx0 and strobe_rx1) occur at the same time. Otherwise
the UHD driver on the host PC will notify the user that the timestamps of the received
samples mismatch and will not continue to work.

A.9.3. Timing Constraints Settings

When implementing custom logic into the data path of the FPGA it is important to ful�ll
the timing (setup and hold time)[Kil07]. If the FPGA is �lled to some decent extent (rule
of thumb > 80%) and no timing constraints are provided, errors concerning the timing on
certain paths may occcur. The place and route algorithm tries the best to avoid violations of

110

the timing but cannot avoid them because the FPGA is already quite full. Timing constraints
provide a solution to this problem if certain parts of the design work at lower clock speeds
(through clock-enable signals). We may add them to a timing group where we can loosen the
timing constraints. Therefore the place and route algorithm can prioritize other paths that
have more stringent timing constraints. In this project for example the correlator works at a
much lower speed than the 100MHz clock speed that is provided by the FPGA. Therefore
we added some instructions to the User Constraints File (UCF) that relaxing the timing
requirements of each �ip-�op of the correlator. The UCF �le can be found in the directory:
<SOURCE_DIRECTORY>/uhd/fpga/usrp2p/top/N2x0/build-N210R3/u2plus.ucf

111

112

B. WBX Internals

B.1. Speci�cation

The WBX board is a transceiver daughterboard for the USRP N210 produced by Ettus
Research. It has the following speci�cations [Ettd]:

� Full Duplex Transmitter/Receiver

� 50 MHz to 2.2 GHz coverage

� Front-end boards (Grand-Daughterboards) may be changed to provide higher power
ampli�er, custom �lters, antenna switches, etc.

� Receiver noise �gure of 5-7 dB

B.1.1. RX Path Components

The following components are used in the WBX daughterboard:

� HMC174MS8 (TX/RX switch)

� MGA 62563 (GaAs MMIC Ampli�er)

� 22 dB Gain

� 0.9 dB Noise Figure

� max. 21 dBm Input

� HMC 472LP4 (GaAS MMIC Attenuator)

� variable Attenuator: -31.5 to -0.5 dB

� 0.5 dB Steps

� max. 27dBm Input

� MGA 82563 (GaAs MMIC Ampli�er)

� 13 dB Gain

� max. 13dBm Input

� ADF4350 (Synthesizer)

� ADL5387 (I/Q Demodulator)

� ADA 4937 (Ultralow Distortion Di�erential ADC Driver)

� Anti Aliasing Filters for the ADC

113

� 20 MHz Cheb. Lowpass

� 50 Mhz Butterw. Lowpass

The operation of the WBX receive path is shown as block diagram in �gure B.1.

The WBX performs the complex downconversion into the baseband. This is done by �rst
amplifying the received signal with an ampli�er chain. The ampli�er chain is able to produce
a variable gain through the attenuator whose attenuation factor can be serially programmed
in 0.5 dB steps. The ampli�ed signal is then mixed into the complex baseband. The LO
frequency for the I/Q demodulator is provided by a frequency synthesizer. It is programmable
through a serial interface and allows to set the required LO frequency.

Figure B.1.: WBX-Board receive path block diagram

B.1.2. Maximum Input Power

According to discussion of [Lee10] and [Abe10] the maximum WBX input power should not
exceed -10dBm (∼ 0.2V pp).

B.2. Measuring the ADC Input Power

First a FPGA image was generated where one of the two 14-bit AD converter I/Q sample
pair was routed to the MICTOR. The Logic Analysis System (LAS) was con�gured to display
the received digital data in a two-complements format. By manually testing di�erent gains
of the UHD source we can change how a signal drives the ADC. To measure the power of the
digital samples and to �nd out how many bits are e�ectively used we can export the digital
sample values out of the logic analyzer and read them with MATLAB. The average power
can now be determined by squaring all samples

Pin =
1

L

L∑
k=0

|x[i]|2

This can now be used to calculate the RMS (Root Mean Square):

114

xRMS =

√√√√ 1

L

L∑
k=0

|x[i]|2

To get to the number of driven bits we simply determine:

Nbits = ld(xRMS)

Figure B.2.: Measuring the power of the inphase ADC-Samples

B.3. Performing AGC

The WBX Board itself does not o�er Automatic Gain Control (AGC) to drive the ADC
optimally. We can only set a static value of the receiver gain. An idea for future imple-
mentations may be to measure the power in software and determine the average power
of the input samples. According to the measured power we can now send a command
(wbx_base::set_rx_gain()) to the WBX to either reduce or increase the gain.

115

116

C. UHD

UHD is short for Universal Software Radio Peripheral Hardware Driver. UHD provides a
uni�ed access to all devices developed by Ettus Research and works on common platforms
(Linux, Windows and MAC). UHD provides access to the device through the driver standalone
libraries or with 3rd party application like Simulink or GNU Radio (gr-uhd) [Ettb].
The UHD driver provides many functions like:

� get samples out of the device

� set the sample rate on daughterboards (i.e.: WBX)

� set the clock source for the FPGA

� set the decimation rate

� handling of multiple USRPs attached to a PC

C.1. Installing

The install process is usually done by compiling the UHD source code. The current UHD
driver source can be downloaded from the Ettus Homepage by cloning the GIT repository:

git clone git://code.ettus.com/ettus/uhd.git

The checked out source code does not only include the host PC code but also the device
�rmware and FPGA image.

Alternative to compiling the source there are prebuilt binary images for Windows (.exe)
and Linux (RPM and DEB packages) which can be installed on the system. They are avail-
able from:

http://files.ettus.com/uhd_releases/

C.1.1. Building and Installing on Linux

On Linux the cmake script will generate an �automake�-project which can be compiled and
installed using the following commands:

mkdir bu i ld
cd bu i ld
cmake . . /
make
sudo make i n s t a l l
sudo l d c on f i g

117

The UHD driver libuhd.so should now reside in the Library Path. All other UHD related �les
go into usr/local/bin/ and /usr/local/share/uhd/.

C.1.2. Building on Windows

On a Windows operating system the UHD PC host source code can be build by using the
Microsoft Visual C++ Compilers. The source code includes a cmake script which can be
con�gured to generate a MSVC project. This project can now be compiled by the MSVC.
Instructions can be found at:

http://files.ettus.com/uhd_docs/manual/html/build.html#build-instructions-windows

C.2. Tools

There exist a bunch of tools to test, verify and program the USRP devices. The most
important ones are listed here.

C.2.1. UHD �nd Devices

This tool will �nd all USRP devices attached to the host PC and will plot their according
IPs. It can be called using:
/usr/local/bin/uhd_find_devices

C.2.2. UHD USRP Probe

This tool can probe all settings of the mainboard and also all attached daughterboards and
their settings and displays it on the screen. The tool can be used by calling:
/usr/local/bin/uhd_usrp_probe

C.2.3. UHD Net Burner:

The Net Burner (a Python script) is an essential tool for burning custom �rmware and FPGA
images into the SPI Flash. It sends commands to reprogran the SPI �ash via UDP to the
device �rmware which will rewrite the according sections of the the SPI �ash memory. The
tool o�ers an option to overwrite the fail-safe �rmware or FPGA image. This option can be
enabled by using the command line option --overwrite_safe

Its location is in:
/usr/local/share/uhd/utils/usrp_n2xx_net_burner.py

For further information on how to �ash the board have a look in section A.6.1.

C.3. gr-uhd

To use the UHD driver in GNU Radio there is a block called �gr-uhd�. It provides a kind
of wrapper to integrate the UHD driver into the GNU Radio environment. All necessary
functions like setting the center frequency or the sampling rate can be called through this
GNU Radio block.

118

D. Deliverables

The following sections show a short overview of the most important implemented modules
and their purpose.

D.1. VHDL Source Files

The VHDL Source Files are located in <MAIN_SOURCE>/fpga/usrp2/alphasat/diff_corr/

path

� constants.vhd: Constants File including taps and �xed bitwidth constants

� correlator.vhd: Top module of the di�erential correlator

� delay_line_corr.vhd: Implements a parameterizeable Delay Line

� diff_corr.vhd: Implements the calculation of the di�erential

� diff_corr_rounded.vhd: Top module for di�_corr and round_signed to zero

� diff_plsc_corr.vhd: Di�erntial correlation on PLSC part

� diff_sof_corr.vhd: Di�erential correlation on SOF part

� peak_calculation.vhd: Implements the result calculation, o�ers 2 di�erent architec-
tures (Norm1 and Alpha Max Beta Min Approximation of Norm 2)

� peak_detector_exp_averaging.vhd: Implements the exponental averaging + thresh-
old method for peak detection

� round_signed_to_zero.vhd: Used for proper o�set free rounding of the results

� signed_adder.vhd: Parameterizeable Signed Adder

� swapping_unit.vhd: Implementation of the Swapping Unit.

� tb_correlator.vhd: Test bench of the Top Module

� tb_diff_corr.vhd: Test bench for the di�_corr module

� tb_peak_detector_exp_averaging.vhd: Test bench for the peak_detector_exp_averaging
module

119

D.2. GNU Radio Source Files

The GNU Radio modules are all in the <MAIN_SOURCE_PATH>/gnuradio/alphasat_blocks/
path:

� apps/: Source directory for GNU Radio Companion �les and Python simulations

� lib/alphasat_CONSTANS.h: Some common constants for the GNU Radio blocks

� lib/alphasat_DEBUG.h: Some common debug functions for the GNU Radio blocks

� lib/alphasat_tools.cpp/.h: Important tools library that implements some common
functions

� lib/alphasat_differential_detection_cf.cc/.h: Floating point model of the dif-
ferential correlator

� lib/alphasat_differential_detection_ss.cc/.h: Bit-Accurate Model of the dif-
ferential correlator

� lib/alphasat_dvb_s2_source.cc/.h: DVB-S2 source block, generate symbols ac-
cording to the DVB-S2 standard

� lib/alphasat_peak_detect_by_decoding.cc/.h: Implements the adapted peak search
algorithm without resyncing

� lib/alphasat_peak_detect_by_decoding_w_reset.cc/.h: Implements the adapted
peak search algorithm with resyncing

� lib/alphasat_peak_detect_with_exp_averaging.cc/.h: Implements the exponen-
tal averaging + threshold method for peak detection

� lib/alphasat_short_vec_to_float.cc/.h: Used for conversion of the correlation re-
sults delivered by the USRP

� lib/alphasat_sim_*.cc/.h: Some modules used during simulation

� lib/alphasat_snr_est_da_header_and_pilots.cc/.h: Implementation of DA SNR
Estimation

� lib/alphasat_snr_est_nda.cc/.h: Implementation of NDA SNR Estimation

D.3. MATLAB Source File

As already mentioned MATLAB is used for analysis. The �les are located in the directory
<MAIN_SOURCE_PATH>/matlab/test_signal_generation/. All the logs and binary �les
are dumped into subdirectories. The following MATLAB scripts were implemented (only
important ones shown):

� agilent_read_samples_from_files.m: Reads in the saved ADC samples from the
Logic Analysis System

� constants.m: Some common constants

120

� diff_corr.m: High Level Model of di�erential correlation. Implements all di�erent
correlation result calculations

� generate_dvbs2_test_signal.m: High Level Model of DVB-S2 source

� generate_scrambling_sequence.m: High Level Model to genreate the scrambling se-
quence for the DVB-S2 payload

� gnuradio_read_*.m: Various functions to read from binary �les generated by GNU
Radio File Sinks

� gnuradio_write_*.m: Various functions to write to binary �les to be used by GNU
Radio File Sources

� meas_adc_power.m: Analyze the power on the ADC samples from the Logic Analysis
System

� meas_acqu_time_snr_est_performance.m: Analyzes the log-�les from the peak de-
tector, DA/NDA estimator generated during practical measurements.

� meas_plheader_var.m: Used to genreate a plot to analyze the performance of the DA
estimator (PLHEADER only)

� meas_resyncs.m: Analyze how often the adapted peak search algorithm needed to
resync

� test_codes_and_taps_corr.m: Tests to study the PLSC codes and their structure.
Generating taps for the di�erential correlator

� meas_usrp_calc_power.m: Reads the data generated by the USRP channel and cal-
culates the power of the signal

� sim_*.m: Analyze various log-�les from simulations generated by GNU Radio

� vhdl_*.m: Various functions to generate testdata for the VHDL testbench

121

Bibliography

[Abe10] J. Abele. GNU Radio Mailing List - Max Voltage swing for WBX boards, 2010.
Retrieved December 24, 2011. Available from: http://lists.gnu.org/archive/
html/discuss-gnuradio/2010-09/msg00227.html.

[Bis12] C. Bischof. Development and Implementation of a High Performance Interpola-
tor on a Software De�ned Radio Platform. Master's thesis, Graz University of
Technology, 2012.

[BS67] T. Benedict and T. Soong. The joint estimation of signal and noise from the sum
envelope. IEEE Transactions on Information Theory, 13(3):447 � 454, jul 1967.

[CGG04] E. Casini, R. De Gaudenzi, and A. Ginesi. DVB-S2 modem algorithms design
and performance over typical satellite channels. International Journal of Satellite
Communications and Networking, 22(3):281�318, 2004.

[CL02] Z. Y. Choi and Y.H. Lee. Frame synchronization in the presence of frequency
o�set. IEEE Transactions on Communications, 50(7):1062 � 1065, jul 2002.

[ETS05] ETSI. Digital Video Broadcasting (DVB) User guidelines for the second gener-
ation system for Broadcasting, Interactive Services, News Gathering and other
broadband satellite applications (DVB-S2) (ETSI TR 102 376 V1.1.1 (2005-02)).
Technical report, feb 2005.

[ETS09] ETSI. Digital Video Broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2) (ETSI EN
302 307 V1.2.1 (2009-08)), aug 2009.

[Etta] EttusResearch. UHD - USRP2 and N Series Application Notes. Retrieved De-
cember 24, 2011. Available from: http://files.ettus.com/uhd_docs/manual/
html/usrp2.html#ref-clock-10mhz.

[Ettb] EttusResearch. UHD Start. Retrieved December 24, 2011. Available from: http:
//code.ettus.com/redmine/ettus/projects/uhd/wiki.

[Ettc] EttusResearch. USRP Clocking Notes. Retrieved December 24, 2011.
Available from: http://gnuradio.org/redmine/projects/gnuradio/wiki/

USRPClockingNotes.

[Ettd] EttusResearch. WBX. Retrieved December 24, 2011. Available from: http:

//www.ettus.com/WBX.

[Fos11] N. Foster. USRP Mailing List - A few questions about USRP N210, 2011.
Retrieved December 24, 2011. Available from: http://lists.ettus.com/

pipermail/usrp-users_lists.ettus.com/2011-April/001030.html.

122

http://lists.gnu.org/archive/html/discuss-gnuradio/2010-09/msg00227.html
http://lists.gnu.org/archive/html/discuss-gnuradio/2010-09/msg00227.html
http://files.ettus.com/uhd_docs/manual/html/usrp2.html#ref-clock-10mhz
http://files.ettus.com/uhd_docs/manual/html/usrp2.html#ref-clock-10mhz
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://gnuradio.org/redmine/projects/gnuradio/wiki/USRPClockingNotes
http://gnuradio.org/redmine/projects/gnuradio/wiki/USRPClockingNotes
http://www.ettus.com/WBX
http://www.ettus.com/WBX
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/2011-April/001030.html
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/2011-April/001030.html

[GK06] W. Gappmair and O. Koudelka. Moment-Based SNR Estimation of Signals with
Non-Constant Envelope. In 3rd Conference on Advanced Satellite Mobile Systems
(ASMS), pages 301�303, Herrsching, Germany, 2006.

[GT05] P. Gao and C. Tepedelenlioglu. SNR estimation for nonconstant modulus con-
stellations. IEEE Transactions on Signal Processing, 53(3):865 � 870, mar 2005.

[Kae08] H. Kaeslin. Digital integrated circuit design: from VLSI architectures to CMOS
fabrication. Cambridge University Press, 2008.

[KCP+07] P. Kim, G.E. Corazza, R. Pedone, M. Villanti, D.-I. Chang, and D.-G. Oh. En-
hanced Frame Synchronization for DVB-S2 System Under a Large of Frequency
O�set. In IEEE Wireless Communications and Networking Conference (WCNC),
pages 1183 �1187, mar 2007.

[Kil07] S. Kilts. Advanced FPGA design: architecture, implementation, and optimization.
Wiley, 2007.

[KLH+11] I.S. Kang, H. Lee, S.J. Han, C.S. Park, J.H. Soh, and Y.J. Song. Reconstruction
method for Reed-Muller codes using Fast Hadamard Transform. In 13th Interna-
tional Conference on Advanced Communication Technology (ICACT), pages 793
�796, feb. 2011.

[Kou11] O. Koudelka. Q/V-band communications and propagation experiments using
ALPHASAT. Acta Astronautica, 69(11-12):1029 � 1037, 2011.

[Lee10] M. D. Leech. GNU Radio Mailing List - maximum input signal power for WBX,
2010. Retrieved December 24, 2011. Available from: http://lists.gnu.org/

archive/html/discuss-gnuradio/2010-11/msg00542.html.

[Lyo10] R.G. Lyons. Understanding Digital Signal Processing. Pearson Education Canada,
2010.

[MB07] U. Meyer-Baese. Digital signal processing with �eld programmable gate arrays.
Springer, 2007.

[MBS10] G. Maral, M. Bousquet, and Z. Sun. Satellite communications systems: systems,
techniques and technology. John Wiley, 2010.

[MD97] U. Mengali and A.N. D'Andrea. Synchronization techniques for digital receivers.
Plenum Press, 1997.

[Mit00] J. Mitola. Software radio architecture: object-oriented approaches to wireless
systems engineering. J. Wiley & Sons, 2000.

[MM06] A. Morello and V. Mignone. DVB-S2: The Second Generation Standard for
Satellite Broad-Band Services. Proceedings of the IEEE, 94(1):210 �227, jan.
2006.

[MMF98] H. Meyr, M. Moeneclaey, and S. Fechtel. Digital communication receivers: syn-
chronization, channel estimation, and signal processing. Wiley, 1998.

123

http://lists.gnu.org/archive/html/discuss-gnuradio/2010-11/msg00542.html
http://lists.gnu.org/archive/html/discuss-gnuradio/2010-11/msg00542.html

[MR04] A. Morello and U. Reimers. DVB-S2, the second generation standard for satellite
broadcasting and unicasting. International Journal of Satellite Communications
and Networking, 22(3):249�268, 2004.

[Neg] V. Negnevitsky. GNU Radio Mailing List - Bricking and recovery of N210. Re-
trieved December 24, 2011. Available from: http://lists.gnu.org/archive/

html/discuss-gnuradio/2011-04/msg00371.html.

[Noi] NoiseCom. UFX7000 Noise Generator Datasheet. Retrieved December
25, 2011. Available from: http://noisecom.com/products/instruments/

ufx7000-noise-generator?go=datasheet.

[Ope] OpenCores. ZPU - the worlds smallest 32 bit CPU with GCC toolchain. Retrieved
December 24, 2011. Available from: http://opencores.org/project,zpu.

[PB00] D. R. Pauluzzi and N. C. Beaulieu. A comparison of SNR estimation techniques
for the AWGN channel. IEEE Transactions on Communications, 48(10):1681�
1691, 2000.

[QXC+08] L. Qing, Z. Xiaoyang, W. Chuan, Z. Yulong, Yunsong D., and J. Han. Optimal
frame synchronization for DVB-S2. In IEEE International Symposium on Circuits
and Systems (ISCAS), pages 956 �959, may 2008.

[RCL+09] T. Rossi, E. Cianca, M. Lucente, M. De Sanctis, C. Stallo, M. Ruggieri,
A. Paraboni, A. Vernucci, L. Zuliani, L. Bruca, and G. Codispoti. Experimental
Italian Q/V band satellite network. In IEEE Aerospace conference, pages 1 �9,
mar 2009.

[RS09] J. Reichardt and B. Schwarz. VHDL-Synthese: Entwurf digitaler Schaltungen
und Systeme. Oldenbourg Wissensch.Vlg, 2009.

[SJL04] F.-W. Sun, Y. Jiang, and L.-N. Lee. Frame synchronization and pilot struc-
ture for second generation DVB via satellites. International Journal of Satellite
Communications and Networking, 22(3):319�339, 2004.

[Tho67] C.M. Thomas. Maximum likelihood estimation of signal-to-noise ratio. PhD
thesis, 1967.

[XWL10] R. Xue, C. Wang, and X. Li. A multiple correlation peak value detecting method
for frame synchronization of DVB-S2. In IEEE International 12th Conference on
Communication Technology (ICCT), pages 837 �840, nov. 2010.

[YYW+10] D. Yang, C. Yan, H. Wang, J. Kuang, H. Zhang, and N. Wu. Performance
evaluation of di�erent detectors for frame synchronization in DVB-S2 system.
In International Conference on Wireless Communications and Signal Processing
(WCSP), pages 1 �5, oct. 2010.

[ZCF+10] Y. Zhang, X. Chen, W. Fan, J. Han, and X. Zeng. Robust and reliable frame syn-
chronization method for DVB-S2 system. In Proceedings of the 9th Conference on
Wireless Telecommunications Symposium, WTS'10, pages 318�322, Piscataway,
NJ, USA, 2010. IEEE Press.

124

http://lists.gnu.org/archive/html/discuss-gnuradio/2011-04/msg00371.html
http://lists.gnu.org/archive/html/discuss-gnuradio/2011-04/msg00371.html
http://noisecom.com/products/instruments/ufx7000-noise-generator?go=datasheet
http://noisecom.com/products/instruments/ufx7000-noise-generator?go=datasheet
http://opencores.org/project,zpu

[Zyl] Zylin. Zylin-CPU. Retrieved December 24, 2011. Available from: http://

opensource.zylin.com/zpudownload.html.

125

http://opensource.zylin.com/zpudownload.html
http://opensource.zylin.com/zpudownload.html

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction and Motivation
	1.1 Q/V-Band Communication Experiment
	1.2 Scenario
	1.3 Using the GNU Radio SDR Platform
	1.4 Tasks

	2 The DVB-S2 Standard
	2.1 History
	2.2 Transmitter Block Diagram
	2.3 Forward Error Correction Encoding
	2.4 Constellation Mapping
	2.4.1 Modulation
	2.4.2 Symbol Mappings

	2.5 PL Framing
	2.5.1 Physical Layer Frame Format
	2.5.2 Generating PLS Code
	2.5.3 2-BPSK
	2.5.4 Payload
	2.5.5 Pilots
	2.5.6 DUMMY PLFRAME
	2.5.7 PL Scrambling

	2.6 Baseband Shaping and Quadrature Modulation
	2.7 Support of Adaptive Coded Modulation (ACM)
	2.8 Receiver Block Diagram (ETSI)

	3 Frame Synchronization Theory
	3.1 Introduction
	3.1.1 Signal Model
	3.1.2 Carrier frequency and phase offsets
	3.1.3 Noise

	3.2 Frame Timing Recovery
	3.2.1 Correlation
	3.2.1.1 Conventional Correlation
	3.2.1.2 Choi-Lee Detector
	3.2.1.3 Differential Correlation
	3.2.1.4 Application of Differential Correlation in DVB-S2

	3.2.2 Peak Detection
	3.2.2.1 Threshold Detector
	3.2.2.2 Exponential Averaging + Threshold Detector
	3.2.2.3 Modified Peak Search Detector
	3.2.2.4 Peak Search Detector
	3.2.2.5 Adapted Peak Search Detector

	3.3 PLSC Decoding
	3.3.1 Correction of Carrier Phase Offsets
	3.3.2 Correction of Carrier Frequency Offsets
	3.3.3 Symbol Decoding using Hard Decisions
	3.3.4 PLSC Decoding of Hard Decisions
	3.3.4.1 Maximum Likelihood Method
	3.3.4.2 Fast Hadamard Transformation

	4 SNR Estimation Theory
	4.1 Introduction
	4.1.1 Signal Model

	4.2 Classification and Assessment of SNR Estimators
	4.2.1 DA Squared Signal-to-Noise Variance Estimation
	4.2.1.1 Derivation of the Algorithm
	4.2.1.2 RxDA / TxDA Estimator

	4.2.2 Moment-Based Estimation
	4.2.2.1 Derivation of the Algorithm
	4.2.2.2 Estimation for M-ary PSK
	4.2.2.3 Estimation for Non-Constant Envelope Modulations

	4.3 Application of the SNR Estimators in DVB-S2
	4.3.1 DA SNV Estimation on PLHEADER and Pilots
	4.3.1.1 Phase Offset Correction
	4.3.1.2 Calculation on Individual Blocks And Combining

	4.3.2 M2M4 Estimator
	4.3.2.1 Constant Envelope Modulation (QPSK, 8-PSK)
	4.3.2.2 Non-Constant Envelope Modulation (16-APSK, 32-APSK)
	4.3.2.3 Remark

	5 Implementation
	5.1 Receiver Architecture Using the GNU Radio Platform
	5.1.1 The GNU Radio Platform
	5.1.2 Block Diagram of the Receiver
	5.1.3 Possible Configurations

	5.2 Architecture of the Simulation Platform
	5.2.1 GNU Radio Companion (GRC)
	5.2.2 Python
	5.2.3 Graphical Analysis

	5.3 Implemented Blocks in GNU Radio
	5.3.1 Tools Library
	5.3.2 DVB-S2 Source Block Implementation
	5.3.3 Differential Correlation Implementation
	5.3.4 Peak Detector
	5.3.4.1 Exponential Averaging Implementation
	5.3.4.2 Adapted Peak Search Implementation
	5.3.4.3 Adapted Peaks Search and Resyncing

	5.3.5 SNR Estimation Blocks Implementation

	5.4 Architecture of the Prototype
	5.5 Differential Correlator (FPGA Implementation)
	5.5.1 High Level Model in Matlab and C++
	5.5.2 Simulation Environment in VHDL
	5.5.3 Determing the Differential
	5.5.4 Use of Swapping Units instead of Multipliers
	5.5.5 Correlation Result Calculation
	5.5.5.1 Using the Euclidean Norm (Norm 2)
	5.5.5.2 Using the Manhattan Norm (Norm 1)

	5.5.6 Correlator Structure
	5.5.6.1 Direct Form
	5.5.6.2 Transposed Form
	5.5.6.3 Comparison between Direct Form Implemenation and Transposed Form Implementation

	6 Simulation Results and Discussion
	6.1 Performance of the Differential Correlation
	6.1.1 Correlation Results at Different SNRs
	6.1.2 Max-Peak Error Rate Simulation
	6.1.3 Max-Peak Error Rate with Frequency Error

	6.2 INIT SYNC Acquisition Performance
	6.2.1 Acquisition Time
	6.2.2 Simulation Results

	6.3 SNR Estimation
	6.3.1 Performance Measurements
	6.3.2 DA Estimation
	6.3.2.1 Mean Estimator Output Simulation
	6.3.2.2 NMSE Performance Simulation

	6.3.3 Moment-Based Estimation
	6.3.3.1 Mean Estimator Output Simulation
	6.3.3.2 NMSE Performance Simulation

	7 Practical Measurements on the Prototype
	7.1 Test Setup and Components
	7.1.1 Modulator / Demodulator Remote Control
	7.1.2 Packet Generator and Analyzer
	7.1.3 Noise Generator
	7.1.4 SNR Measurement on the Spectrum Analyzer
	7.1.5 Optimal Signal Level for ADC
	7.1.6 GNU Radio Setup for the Measurements

	7.2 Test Cases
	7.3 INIT Sync Acquisition Performance
	7.4 SNR Measurements
	7.4.1 Empirical PDF
	7.4.2 Measurement Results
	7.4.3 Comparison to CRLB and Simulation

	7.5 Real-time Performance Tests

	8 Conclusions and Future Work
	A USRP N210 Internals
	A.1 Description
	A.2 Important Features and Components
	A.3 Clocking
	A.3.1 Clocking on the Mainboard
	A.3.2 External REF CLOCK Specifications
	A.3.3 Clock Distribution inside the FPGA

	A.4 Internal FPGA Design
	A.4.1 Memory Layout
	A.4.2 Samples via Ethernet
	A.4.2.1 SPI Flash and Memory Layout
	A.4.2.2 Bootloading Sequence

	A.4.3 Generating FPGA Images

	A.5 Firmware
	A.5.1 Bootloader
	A.5.2 Main Firware
	A.5.3 Generate Firmware Images

	A.6 Flashing
	A.6.1 Burn FPGA Images into the SPI Flash
	A.6.2 Repair Bricked Boards

	A.7 Logic Analysis
	A.7.1 Using the MICTOR Connector
	A.7.2 Using ChipScope

	A.8 Monitoring UART Output
	A.9 Modifying the Original FPGA Source
	A.9.1 Removing Unnecessary FPGA Parts
	A.9.2 Providing Custom Calculations on the FPGA / UHD Settings
	A.9.3 Timing Constraints Settings

	B WBX Internals
	B.1 Specification
	B.1.1 RX Path Components
	B.1.2 Maximum Input Power

	B.2 Measuring the ADC Input Power
	B.3 Performing AGC

	C UHD
	C.1 Installing
	C.1.1 Building and Installing on Linux
	C.1.2 Building on Windows

	C.2 Tools
	C.2.1 UHD find Devices
	C.2.2 UHD USRP Probe
	C.2.3 UHD Net Burner:

	C.3 gr-uhd

	D Deliverables
	D.1 VHDL Source Files
	D.2 GNU Radio Source Files
	D.3 MATLAB Source File

	Bibliography

