
Maximilian Fellner, BSc.

Specification of a Visual Programming
Language by Example

Master’s Thesis

Graz University of Technology

Institute for Software Technology

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, November 2013

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all mate-
rial which has been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den be-
nutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich
gemacht habe.

Graz, am

Datum Unterschrift

1 Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

Zusammenfassung

Spezifikationen stellen sicher, dass alle Interessengruppen in einem Softwarepro-
jekt gleichermaßen gut verstehen, welche Anforderungen es zu erfüllen gibt. Eine
Dokumentation beschreibt genau, wie das fertige Produkt aussehen sollte. Präzise
Spezifikationen helfen Mehrarbeit zu reduzieren, die durch Unklarheiten verur-
sacht wurde. Außerdem stellen sie ein objektives Maß für den gesamten Fort-
schritt dar. Moderne Softwareprojekte haben kürzere Projektphasen und schnel-
lere Iterationen, die es schwierig machen, eine nützliche und prägnante Spezifi-
kation aufzubauen und richtig instand zu halten. Der Ansatz von “Spezifikation
durch Beispiele” ist ein Versuch, mit der Hilfe von agilen Methoden Software
Spezifikation direkt in den Arbeitsfluss zu integrieren. Verhaltensgetriebene Ent-
wicklung (BDD) ist eine konkrete Erscheinungsform der Prozessmuster dieses
Ansatzes und eine weit verbreitete Methodologie, welche mehrere nützliche Soft-
ware Werkzeuge mit einschließt. In der vorliegenden Arbeit wird ein neuartiger
Ansatz zur Spezifikation einer visuellen Programmiersprache unter Verwendung
von Cucumber, einem populärem BDD Werkzeug, vorgestellt. Die visuelle Pro-
grammiersprache Catrobat wird für mehrere unterschiedliche mobile Betriebssys-
teme von gesonderten Entwicklerteams aktiv entwickelt. Die Plattformunabhän-
gigkeit dieses Softwareprojekts verlangt nach einer automatisch verifizierbaren
Spezifikation, die von allen Interessengruppen geteilt werden kann. Ausführbare
Spezifikationsdokumente, die mittels Cucumber verfasst werden können, erfül-
len diese Anforderung. Die Verwendung dieses Werkzeugs hat darüber hinaus
auch noch zusätzliche Vorteile. Um ein solches Argument zu untermauern, stellt
diese Arbeit die zugrunde liegenden Konzepte von BDD vor, betrachtet Beispiele
von allgemeiner Softwarespezifikation und erklärt schließlich anhand von realen
Beispielen, warum Cucumber für die plattformübergreifende Spezifikation einer
visuellen Programmiersprache geeignet ist.

Abstract

Specifications assure that all stakeholders in a software project understand equally
well which requirements need to be fulfilled. Documentation describes exactly
what the finished product should look like. Precise specifications help to reduce
extra work caused by ambiguities. They also provide an objective measure for
overall progress. Modern software projects have shorter project phases and faster
iterations, which make it difficult to build up and properly maintain a useful and
concise specification. The approach of “specification by example” is an attempt
at integrating software specification directly into the development workflow with
the help of agile techniques. Behavior-driven development (BDD) is a manifes-
tation of these process patterns and a widely used methodology which includes
several useful software tools. In the present work, a novel approach of specifying
a visual programming language by using Cucumber, a popular BDD tool, is intro-
duced. The visual programming language Catrobat is being actively developed for
multiple different mobile operating systems by separate teams of developers. The
cross-platform nature of this software project requires an automatically verifiable
specification which can be shared by all stakeholders. Executable specification
documents that can be composed by means of Cucumber meet this requirement.
Beyond that, the application of this tool also has additional benefits. In order to
support such an argument, this work introduces the underlying concepts of BDD,
looks at examples of software specification in general, and finally explains on
the basis of real-world examples why Cucumber is suitable for a cross-platform
specification of a visual programming language.

Contents

1 Introduction . 9

2 Machine-executable specifications . 11

2.1 Terminology . 11

2.2 Specification by example . 12

2.3 Behavior-driven development . 15

2.3.1 History of BDD . 15

2.3.2 Ubiquitous language and story 16

2.3.3 Similarities with TDD . 18

2.4 RSpec . 18

2.4.1 Structure and application . 19

2.5 Cucumber . 20

2.5.1 Features, scenarios and steps . 21

2.5.2 Step Definitions . 24

2.5.3 Cucumber and RSpec . 26

2.5.4 Cucumber-JVM . 27

2.6 Ruby Spec . 28

2.7 Other BDD tools . 30

2.7.1 Concordion . 30

2.7.2 FitNesse . 31

2.7.3 JBehave . 32

2.7.4 Robot Framework . 32

2.7.5 More BDD tools . 35

2.7.6 Comparison of BDD tools . 36

3 Testing mobile applications . 37

3.1 Challenges and motivation . 37

Contents

3.2 Calabash . 38

3.3 Testing with Frank . 40

3.4 Cucumber Android . 40

3.4.1 Android fundamentals . 41

3.4.2 Testing with Cucumber JVM . 43

3.5 Cucumber on other platforms . 45

4 Programming language specifications . 48

4.1 Elements of programming languages 48

4.1.1 Visual programming languages 49

4.2 Programming language standardization 49

4.3 Ada Conformity Assessment Test Suite 51

4.4 Vienna Development Method . 53

4.4.1 Software tools . 54

5 Specification of a visual language with BDD 58

5.1 Specifying programming languages by example 58

5.1.1 Applying the story structure . 59

5.1.2 Specifying visual languages . 60

5.2 The Catrobat programming language 61

5.2.1 Scratch . 61

5.2.2 Catroid . 64

5.2.3 Language concepts . 65

5.3 Specification of Catroid with Cucumber 67

5.3.1 Creating a program . 67

5.3.2 Specification of a loop . 69

5.3.3 Running Catrobat programs . 73

5.3.4 Behavior of script invocation . 74

5.3.5 Concurrency and wait locks . 77

5.3.6 Considering uneven performance 79

5.4 Lessons learned . 80

5.4.1 Advantages of specifying Catrobat by example 81

5.4.2 Necessary future improvements and limitations 83

5.4.3 Conclusion . 84

6

Contents

A Appendix . 86

A.1 Listings . 86

A.2 Acronyms . 90

Bibliography . 91

7

List of Figures

2.1 Success of a software product, adapted from Adzic [2] 13

2.2 The testing matrix, adapted from Meszaros [22] 14

2.3 Cucumber . 21

2.4 The Cucumber testing stack, adapted from Hellesoy and Wynne [14] . . 24

2.5 BDD cycle, adapted from Chelimsky et al. [8] 26

2.6 Robot framework example test report 34

3.1 Calabash system architecture . 39

3.2 Overview of the Android test framework 42

3.3 Class diagram of the Cucumber-Android module 43

3.4 Cucumber example report for a successful feature test 45

4.1 AlarmSL example project in the Overture IDE 55

4.2 Alarm example project in VDMTools 56

5.1 Scratch version 2.0 . 62

5.2 Concurrency artifact in Scratch 2.0 . 63

5.3 Script view in Pocket Code (Catroid) 0.9.4 64

5.4 Composition of elements in the Catrobat language 65

1 Introduction

Good practices are oftentimes only an afterthought for programmers. Although
the field of software development has over the last few decades brought forth a
plethora of methodologies, they are not always considered. One such good prac-
tice would be specification. Designating requirements and documenting the de-
tails of their implementation is essential for a successful software project. Notwith-
standing its importance, this work is commonly regarded as just a necessary bur-
den. But specification can actually be a very helpful tool that supports the devel-
opment process and solves many problems outright.

During the past few decades, the software development community has focused
mainly on technical practices in order to ensure results of high quality and to build
the product right. But it is equally important to build the right product. This task
requires different approaches and techniques however.

The visual programming language Catrobat is a software project which poses
many challenges. Implementations of this language are being simultaneously de-
veloped for different mobile computing devices which are running varied oper-
ating systems. The high goal of Catrobat is to give users a solid and consistent
experience regardless of the underlying platform. Like every other programming
language, Catrobat too requires a semantical specification in order to provide an
official and reliable guideline for implementors.

Without a common specification that is shared by all stakeholders of the project,
separate development teams are likely to drift apart. Functional gaps which re-
sult from ambiguities are a great risk that can cause delays and other issues. For
a specification to be really useful it should also be verifiable automatically. One
possible solution is the use of test suites, which will be discussed in some of the

1 Introduction

following sections. A disadvantage of such test suites is the reliance on a writ-
ten specification from which the tests are derived. Thus, a probably even better
approach would be to somehow combine the specification documents and the
tests.

For these reasons, the subsequent chapters will explore the concept of machine
executable specifications and the practice of behavior-driven development. Finally,
the last chapter will explain how the behavior-driven test framework Cucumber
has been used to specify parts of the Catrobat programming language.

10

2 Machine-executable specifications

2.1 Terminology

In other literature, a number of terms used in this work are sometimes used syn-
onymously. Peculiar technical terms can oftentimes be mystifying and might con-
fuse different concepts. In order to prevent confusion, the following terminology
will be used consistently.

Specification by example (SbE) is a set of process patterns that assist in the
creation and modification of software products. The term was coined by Gojko
Adzic in his 2011 book Specification by Example: How Successful Teams Deliver the
Right Software [2]. This approach aims to ensure that the right product, as defined
by the business stakeholders, is delivered by collaboratively creating a specifica-
tion that comprises numerous machine-executable examples. Ultimately, the goal
of SbE is to create a living, structured documentation.1 There can be different
manifestations of this concept; the two most important ones are explained in the
following.

Acceptance test-driven development (ATDD) is a method that derives software
tests from collectively conceived requirements. Acceptance tests ought to capture
the business intent of certain software features.2 They are easily put to use in an
existing test-driven development paradigm but there is no technical framework
that can support the correct employment of process patterns.

1http://specificationbyexample.com/key_ideas.html (accessed 2013-10-05)
2http://testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview

http://specificationbyexample.com/key_ideas.html
http://testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview

2 Machine-executable specifications

Behavior-driven development (BDD) is a software development process and
agile methodology based on test-driven development. It mandates software units
be specified in terms of the desired behavior of the units. The technique out-
lines a formal format for behavioral specification which is adopted from classical
user stories. The software behavior is specified in a specialized, domain-specific
language that can be understood by all stakeholders. BDD also places certain de-
mands on the software tools that automate reading the specification and executing
the associated test code with the appropriate parameters.3

2.2 Specification by example

With the increasing dependency of society on information technology, the surge
of personal computing devices and the necessity for higher quality and more se-
cure systems, the demands on software development keep rising. In this industry
the ability to deliver the right product in the shortest possible time is quickly be-
coming a key competitive advantage. In response, agile development has in recent
years defined the notion of quick, iterative refinement while working in effectively
organized teams.

Keeping a software system’s documentation up-to-date under these conditions
has become more and more challenging. As a result, creating and maintaining
documentation is now often considered wasteful and obstructive. Unfortunately,
this can lead to confusion among developers and stakeholders and result in copi-
ous amounts of lost time. Instead of building the right product, most programmers
have just focused on how to build it right. However, for a software product to be
successful, both requirements need to be fulfilled (Figure 2.1).

In his book, Gojko Adzic introduces specification by example (SbE) as a set of process
patterns that “allows teams to define expected functionality in a clear, objective,
and measurable way. It also speeds up feedback, improving the development flow
and preventing interruptions to planned work” [2]. In practice, the essence of

3http://dannorth.net/introducing-bdd (accessed 2013-10-05)

12

http://dannorth.net/introducing-bdd

2 Machine-executable specifications

Right product

Built
right

Success

Maintenance
difficulties

Useless
software

Business
failure

Figure 2.1: Success of a software product, adapted from Adzic [2]

this approach is to create a living documentation system through automating the
verification of a collaboratively authored specification. For a better understanding,
Adzic goes on to introduce two different models that actualize the principles of
SbE.

Acceptance test-driven development (ATDD) is an advanced form of test-driven
development where unit tests are directly derived from criteria specified by the
stakeholders or customers. The focus of this technique lies on the automated tests
and on defining straightforward targets for development [26], [17]. The testing
matrix by Gerard Meszaros in Figure 2.2 shows the different kinds of software
tests.

Acceptance tests (or customer tests) are at the business-facing end of the scale, be-
cause their purpose is to ensure that the product is acceptable to the customer.
Their distinguishing trait is that the behavior specified by the test is understand-
able by an end user.

The second model is known by the name of behavior-driven development (BDD).
It focuses on the interaction of the software system with its stakeholders and the
interplay of the system’s components with each other. Unlike acceptance tests,

13

2 Machine-executable specifications

Customer Tests
Business Intent

Usability Testing
Is it pleasurable?

Component Tests
Architect Intent

Exploratory Testing
Is it self-consistent?

Unit Tests
Developer Intent

Property Testing
Is it responsive, secure, scalable?

Business
Facing

Technology
Facing

Support Critique

Per Functionality Cross-Functional

Figure 2.2: The testing matrix, adapted from Meszaros [22]

this methodology defines a definitive workflow for describing a software in terms
of its expected behavior instead of its structure. The behavioral specification is
accomplished with stories, related to user stories from the domain of object-oriented
analysis and design. User stories, or story cards, are also a fundamental element of
Extreme Programming (XP) to describe software requirements. XP was introduced
by Kent Beck [6] as one of the first agile development methods.

A BDD story is composed of three distinct elements: a title that is unambigu-
ous and concise, a narrative which explains what a stakeholder wants from the
system, and acceptance criteria which comprise examples of specific cases of the
narrative.

Stories are written in a so-called ubiquitous language that is shared by everyone in-
volved with the development of the software product. Its syntax and grammar are
understandable by both developers and non-technical stakeholders. The language
also has specialized tooling support in order to make a specification written in
this format executable.

The commonality shared by both approaches is the way the scope of the software
system that has to be built is derived from business goals and subsequently illus-
trated via key examples. These examples make up a written specification that can
be verified by an automated system.

14

2 Machine-executable specifications

Specifying software by the means of examples was suggested as early as 1972 [25].
The renewed interest in the technique by the agile software development commu-
nity has nevertheless been relatively recent. Writing an example in a natural or
ubiquitous language is usually faster than implementing a feature in code. Using
examples for specification is also reasonable, because experience has shown that
it makes it easier to avoid ambiguity and redundancy [1].

The underlying requirements for examples are that they need to be precise but
also comprehensive enough to describe the entire scope of a certain feature. Fur-
thermore, examples should be easily understandable and realistic, i.e., they should
not be abstracted or simplified, but rather use authentic data like the software sys-
tem would in a real-world use case.

2.3 Behavior-driven development

Like test-driven development with acceptance tests, behavior-driven development
is a manifestation of SbE. In this case however, the underlying ideas are realized
with a precise workflow and by providing useful software tools that make the
whole process tangible for both engineers and business stakeholders.

2.3.1 History of BDD

BDD’s origins are tightly interwoven with the evolution of a number of software
tools. The British software engineer Dan North first introduced behavior-driven
development in the year 2006 [23]. The initial idea for this at the time unprece-
dentedly agile technique came from a tool created by a coworker of North. The
tool would automatically translate the names of JUnit classes and methods into a
structured text document.

North’s recognition of the necessity for expressive naming conventions to describe
the behavior of single units in traditional test-driven development subsequently

15

2 Machine-executable specifications

led to the creation of a specialized language which is easily understood but also
executable by a computer. Soon thereafter, this concept of a “ubiquitous language”
was introduced in the Java test-framework JBehave.4

Later on, North reimplemented JBehave in the Ruby programming language and
called it RBehave. This software was eventually integrated into another testing
tool, RSpec, as a so-called “story runner.” It only supported stories written in
Ruby at first, but support for plain text was added later on, thus making the tool
more accessible and expressive [8].

2.3.2 Ubiquitous language and story

Software requirements are most easily formulated in natural language. However,
technical and non-technical people tend to use different jargons which can lead
to difficulties in communication. Furthermore, programming languages have a
smaller vocabulary than natural language and thus make it unintuitive to express
specified requirements. Eric Evans suggested developing a common language that
can bridge this gap in Domain-Driven Design: Tackling Complexity in the Heart of
Software [10]. He called this language a ubiquitous language.

A ubiquitous language is a model-based language which is designed to describe
the components of a model and the the rules that govern it. Furthermore, such
a language allows non-technical domain experts and developers to communicate
with each other comfortably and efficiently [30].

A fundamental characteristic of BDD is the structured format of behavioral spec-
ifications in the form of stories. This concept is directly inspired by the practices
of agile software development and has many similarities with conventional user
stories. In the case of BDD, a story is usually written in a domain specific or ubiq-
uitous language which must be automatically executable by a software tool in
order to verify the specification as if it was a test.

4http://jbehave.org (accessed 2013-10-05)

16

http://jbehave.org

2 Machine-executable specifications

Even though BDD does not dictate the appearance and organization of a story,
the scheme presented by Dan North [24] is now being widely used, and has been
implemented mostly unchanged in a number of tools. Listing 2.1 shows the basic
template for such a story which essentially comprises two major parts.

It begins with a narrative which explains who is the main stakeholder or character,
what this person demands from the system, and the reason why or the benefit the
persons hopes to gain from the proposed functionality. This composition forces
the writer to consider the usefulness of a feature and whether the feature provides
the appropriate benefit.

Title (one line describing the story)

Narrative :
As a [role]
I want [feature]
So that [benefit]

Acceptance Criteria : (presented as Scenarios)

Scenario 1: Title
Given [context]
And [some more context]...
When [event]
Then [outcome]
And [another outcome]...

Scenario 2: ...

Listing 2.1: Structure of a story, adapted from North [24]

Secondly, the acceptance criteria describe specific cases, or examples, of the narra-
tive as scenarios. A scenario begins with an initial condition, followed by a certain
event, and concludes with an anticipated outcome. The initial state is defined by
a given that explains the required context for the scenario. The when keyword
marks the beginning of the event description that really illustrates the gist of the
feature. After the event has occurred, the system is either left in an altered state or

17

2 Machine-executable specifications

in the same condition as before. The desired outcome is expressed after the then
keyword.

2.3.3 Similarities with TDD

Behavior-driven development is in many ways a more thorough fulfillment of
Kent Beck’s original theory of test-driven development. For example, in his book
Test-driven Development: By Example [7] Beck introduces the idea of manually up-
dating a list of tests, crossing off those that have already passed and adding
new ones as they come to mind. Most BDD tools actually automate this process
through the notion of pending examples. This is one of usually three indepen-
dent conditions for an individual test (the others being passing and failing) which
indicates a not yet implemented piece of code.

Even though there are some idealogical and structural differences, many concepts
apply to BDD as they do to TDD. In classical unit testing, a test case defines the
fixture (test context) to run multiple tests. For example, a class containing multiple
test methods would be called a test case. Such a class can also contain additional
methods to initialize and clean up the fixture for each individual test run. For
instance, the JUnit library for the Java programming language provides extensive
facilities following this approach [9]. In BDD however, the fixture is commonly
the executable source code that is directly connected to the ubiquitous language
by the test framework. The notion of a test case is replaced by the story and a test
is an example instead.

2.4 RSpec

In 2005 the behavior-driven test framework RSpec5 for the Ruby programming
language was created by Steven Baker after he had discussed elemental ideas
with Dan North and other programmers. Although a comprehensive definition of

5http://rspec.info (accessed 2013-10-05)

18

http://rspec.info

2 Machine-executable specifications

BDD was still a work in progress at the time, RSpec’s focus was on the behav-
ior of software components already from the very beginning [8]. The framework
does not employ an independent ubiquitous language, one that would have to be
interpreted or compiled, but instead creates the structure of a story entirely with
Ruby code.

Another difference to other BDD tools is that RSpec is most suitable for describing
individual objects in a software rather than the system as a whole.

The BDD test tool is well respected in the Ruby development scene and is widely
used in many software projects. Because of its versatility and behavior-driven ap-
proach, the RubySpec (Section 2.6) project also uses RSpec as their test framework
of choice to create an executable specification and documentation of the Ruby
programming language.

2.4.1 Structure and application

The Ruby programming language makes it relatively easy to create expressive
syntactical constructs. Like other Ruby programs, e.g., the web framework Rails,
RSpec also uses this circumstance to create a form of domain-specific language
(DSL) by using poignant method names and blocks (closures).

describe [object] do (example group , test case)
describe | context [detail] do (code example , test method)

it [behavior] do
[expectation] (expectation , assertion)

end
end

end

Listing 2.2: Structure of a RSpec spec

A set of RSpec test cases (also called example groups) that are contained within the
same file is called a spec. Example groups can be nested hierarchically, but usually
there are no more than two to four levels. The keywords describe, context and it all

19

2 Machine-executable specifications

invoke methods to create an instance of the class RSpec::Core::ExampleGroup. Their
parameters are a string that describes the object, detail or behavior, and another
example group or code block. The innermost example group in the hierarchy
ultimately contains an executable block that contains the test code and assertions
or expectations (Listing 2.2).

RSpec also provides a number of useful instruments that are reminiscent of tradi-
tional unit testing systems, like JUnit. There are hooks, methods that can run either
before or after each single test case (code example) or all of them, and expectations,
the equivalent of assertions. Just as the philosophy of BDD mandates, expecta-
tions have more colorful names than the functions of traditional TDD tools. The
two methods should and should_not are also more powerful than simple assertions.
Each method accepts a matcher or a special Ruby expression as an argument.

A matcher is an object that compares other objects using a special contract, not
unlike the Comparable interface of Java. Matchers, however, not only perform com-
parisons between similar objects, but can also inspect the attributes and properties
of an object. This makes expectations in RSpec very flexible and suitable for ex-
pressive statements in the code.

Even though RSpec’s techniques are conceivably not much more than an ele-
gant way of structuring regular tests, the purpose of this framework is rather
to strongly encourage a different style of development. While it is certainly pos-
sible to misuse RSpec in a non-behavior-driven way, the usefulness of all kinds
of software tests really depends on their correct utilization. This is also true of
test-driven development.

2.5 Cucumber

Cucumber is a popular open source BDD test automation framework which fol-
lows the behavior-driven development approach.6,7 It specializes in the specifica-

6http://cukes.info (accessed 2013-10-05)
7http://github.com/cucumber (accessed 2013-10-05)

20

http://cukes.info
http://github.com/cucumber

2 Machine-executable specifications

tion of a software system as a whole, whereas RSpec focuses on individual objects
inside the system. In this way, it is a more direct realization of the original BDD
concepts.

Figure 2.3: Cucumber

Cucumber was originally written in the Ruby program-
ming language by Aslak Hellesøy as a successor to the
“story runner,” an RSpec component developed by Dan
North. By now there is also a fully featured version
for the Java Virtual Machine (JVM), cucumber-jvm. Al-
though a pure JavaScript version is currently in devel-
opment as well, there is already support for modern web applications through
a number of Ruby libraries. The Cucumber Book: Behaviour-Driven Development for
Testers and Developers [14] by Matt Wynne and Aslak Hellesøy is a handbook on
the correct use of Cucumber, and it also covers many BDD fundamentals.

Gherkin is the name of the ubiquitous language employed by Cucumber. It very
closely follows the story structure that was initially outlined by Dan North (Sec-
tion 2.3), with the minor difference that stories are called Features instead.

The parser for this language bears the same name and has been implemented
with the Ragel state machine compiler.8 Because Ragel supports many different
programming languages, Gherkin is presently available for Ruby, Java, JavaScript
and .NET.

2.5.1 Features, scenarios and steps

A story written in Gherkin has a very well defined but easily readable structure.
A file should contain one single feature which can consist of one or more scenarios.
There is only a small number of keywords that mark the beginning of a new
element inside the structure (Listing 2.1).

Cucumber improves on the original story structure with the introduction of tables
and scenario outlines, which are basically templates for scenarios. In this manner

8http://www.complang.org/ragel (accessed 2013-10-05)

21

http://www.complang.org/ragel

2 Machine-executable specifications

1 Feature: Title of the feature or story
2
3 Description of the feature or narrative of the story.
4 This part can contain arbitrary text.
5
6 Background: Is executed once before every scenario
7 Given some condition
8 And one more thing
9 But something else

10
11 # This is a comment.
12
13 Scenario: A concrete example, illustrating the acceptance criteria
14 Given ...
15 And
16 But
17 When
18 Then
19
20 Scenario Outline: Template with placeholders, requires a table
21 Given I have <something>
22 And I also have <number> <thing>
23
24 Examples:
25 | something | number | thing |
26 | a monkey | 3 | bananas |
27 | a rabbit | 1 | carrot |

Listing 2.1: Cucumber feature containing all possible elements

a lot of redundancy occurring from the duplication of acceptance criteria can be
prevented.

By using variables inside steps, a scenario is executed once for every row in the
given table. During each iteration the variables are substituted with their associ-
ated values in the respective column.

As an example, we can imagine a fictional website where a user can adopt the
role of a manager or an admin. Depending on the role a user is being granted,
he receives one of two different messages. Without tables, two separate scenarios
would have been necessary to specify this behavior (Listing 2.2).

Another benefit of Cucumber is the concept of backgrounds. These are special sce-

22

2 Machine-executable specifications

1 Scenario Outline: Confirmation message
2 Given I have a registered user account
3 When an Admin grants me <Role> rights
4 Then I should receive a confirmation message with the text:
5 """
6 You have been granted <Role> rights. <details>. Please be responsible.
7 -The Admins
8 """
9 Examples:

10 | Role | details |
11 | Manager | You are now able to manage all accounts of your group |
12 | Admin | Your are now able to manage any user account on the system |

Listing 2.2: Cucumber scenario outline using a table

narios that are executed once before every regular scenario. They are used to cre-
ate the initial conditions required for every example, similar to the before method
in JUnit. This is another way how redundancy and the amount of required text
can be reduced (Listing 2.3).

1 Feature: Digital wallet
2
3 Background:
4 Given I am a registered user
5 And I am logged in to my digital wallet
6
7 Scenario: Withdrawing money from a wallet
8 Given I have 10.00 dollars in my wallet
9 When I click on the "withdraw money" button

10 Then I should be redirected to the transactions page
11
12 Scenario: Withdrawing money from an empty wallet
13 Given I have 0.00 dollars in my wallet
14 When I click on the "withdraw money" button
15 Then I should see a dialog with the message:
16 """
17 Sorry, but your wallet is empty.
18 """

Listing 2.3: Cucumber feature with a background and two scenarios

The hierarchical technology stack of Cucumber shows how the framework is in-
tegrated into a software project and how the different parts fit together. There are

23

2 Machine-executable specifications

two distinct segments, one of them on the business facing side and another one
on the technology facing side (Figure 2.4).

Business facing means that those sections are used to specify the system and they
are also utilized to communicate with non-technical personnel. The upper half is
furthermore an allegory for the central BDD concept of how a project can be fully
described by a well structured, executable specification. In the case of Cucumber
the specification is the sum of the features, which consist of scenarios, which in
turn are made up of individual steps.

The technology facing portion typically only concerns developers. The step def-
initions are directly imbedded into the code of the system. In other words, they
are the “glue” that connects the system with the specification.

Features

Project

Steps

Scenarios

Support Code

Step Definitions

System

Automation Library

Business Facing

Technology Facing

Figure 2.4: The Cucumber testing stack, adapted from Hellesoy and Wynne [14]

2.5.2 Step Definitions

In Cucumber, a step definition is the native code behind each step of a scenario.
Step definitions are methods implemented in Ruby, Java or any other of the sup-
ported programming languages. Different implementation details notwithstand-

24

2 Machine-executable specifications

ing, step definition methods are always matched to their corresponding steps in-
side the feature files with the help of unique regular expressions. The regular ex-
pressions placed inside the code either as string arguments (Ruby, C++, etc.) or
annotations (Java, Scala, etc.) of the methods.

As an example, Listing 2.4 shows the implemented step definitions for the feature
of the fictional digital wallet from Listing 2.3 in Ruby code. In the Ruby variant
of Cucumber, the keywords Given, When, Then, etc., are built-in methods of the
framework that take a regex and a code block (closure) as their two arguments.

1 Given(/^I am a registered user$/) do
2 # Create a test user object.
3 end
4
5 And(/^I am logged in to my digital wallet$/) do
6 # Enter the credentials of the test user.
7 end
8
9 When(/^And I click on the "(\w+)" button$/) do |button|

10 # Perform a click on the UI element.
11 end
12
13 Then(/^I should see a dialog with the message: (\w+)$/) do |page|
14 # Check if we are on the correct page.
15 end

Listing 2.4: Cucumber step definitions for the wallet feature in Ruby

At runtime, the Cucumber framework parses the source code files that contain the
step definitions and dynamically loads the methods within. When the tool then
reads in the feature files it can execute the correct code corresponding to the steps
of each scenario of every feature.

In practice the Cucumber step keywords are interchangeable because only the
regular expression is evaluated. Nevertheless it is probably a very good idea to use
the keywords appropriately in order to achieve better readability of the features
and to properly organize the step definitions.

25

2 Machine-executable specifications

2.5.3 Cucumber and RSpec

Because Cucumber focuses on the behavior of a software system as a whole and
RSpec is more suitable for specifying individual objects, the two frameworks can
be very well used in concert with each other. The complete BDD cycle shows the
approach of working “from the outside in” (Figure 2.5).

red

greenrefactor

1

2

3

45
6

7

refactor

red

green

Cucumber

RSpec

Figure 2.5: BDD cycle, adapted from Chelimsky et al. [8]. Working from the outside
in, the following phases must be repeated for each scenario inside a
feature:

1. Introduce a new scenario
2. Write a failing Cucumber step definition
3. Write a failing RSpec example
4. Test if the example passes
5. Refactor
6. Test if the scenario passes
7. Refactor

26

2 Machine-executable specifications

The development of a new feature starts out by creating a new scenario and the
first exemplar in a set of still failing step definitions with Cucumber. Next, RSpec
is used to write an example that, when fulfilled by the actual implementation in
production code, should also satisfy the step definition. This process is repeated
until the whole scenario is complete. After that, new scenarios can be added as
needed before the feature is regarded as expressive enough.

2.5.4 Cucumber-JVM

The implementation of Cucumber for the Java Virtual Machine supports many pro-
gramming languages and software packages that run on a standards-compliant
JVM. Java, Groovy and Scala are probably the most popular examples. With the
modules for JRuby and Jython, even Ruby and Python code can be tested with Cu-
cumber on the JVM. Furthermore, support for Android applications was added
only recently by Maximilian Fellner and the Cucumber team (Section 3.4). This
makes it very comfortable for users to run Cucumber directly on their target de-
vices, just like regular tests.

The JVM version of Cucumber works with exactly the same feature files, scenar-
ios and steps as the Ruby implementation. The only perceptible difference is, of
course, that step definitions are written in Java or any of the other supported
languages. Regarding features and ease of use, there are no disadvantages to the
original variant of Cucumber. Employing one of the many submodules, features
can even be executed through JUnit, which makes it a lot easier to integrate them
into an existing unit testing environment.

When using the Java variant of Cucumber, step definitions must be placed as
public methods inside one or more classes. They also have to be annotated with
one of the annotations @Given, @When, @Then, or @And. At runtime, Cucumber-
JVM dynamically loads and executes the annotated methods using the reflection
mechanism of Java. The regular expressions inside the annotations work the same
as they do in Ruby; they can even be copied and reused from an existing project

27

2 Machine-executable specifications

in that language. One must be aware, however, that special regex symbols need to
be escaped with two “\” characters in Java (Listing 2.5).

1 @Given("^I have (\\d+) slices of cucumber$")
2 public void I_have_slices_of_cucumber(int slices) {
3 // Do something with the slices
4 }

Listing 2.5: Cucumber step definition written in Java

The method names of the step definitions need to be unique in accordance with
Java language requirements but can otherwise have any possible name. It is usu-
ally common practice to build a name from the text of the Cucumber step. In
addition to step definitions, the so-called glue code classes can also contain two
methods annotated with @Before or @After. These are hook methods that are used
to prepare or clean up the fixture, the instance of the step class, before and after
every scenario or example.

2.6 Ruby Spec

The popular Ruby programming language has been implemented a number of
times in different versions. The reference implementation by inventor Yukihiro
Matsumoto, Matz’s Ruby Interpreter or MRI, is written in C.

Rubinius is a bytecode virtual machine written in C++ that uses LLVM to com-
pile bytecode into machine code at runtime. In this implementation of Ruby, the
bytecode compiler and most of the core classes are actually written in Ruby them-
selves.

JRuby is a virtual machine for the JVM written in Java. Ruby code can be inter-
preted directly and compiled into bytecode just-in-time or ahead-of-time. There
are further implementations, including .NET and Smalltalk versions.

28

2 Machine-executable specifications

In order to provide a way to test and verify the correctness of a Ruby implementa-
tion, RubySpec9 strives to create a complete, executable specification using RSpec.
Running popular and complex Ruby software, e.g., the web framework Rails, has
been a benchmark for Ruby interpreters and virtual machines, but this approach
does not cover testing the full features of the programming language. The testing
paradigm of RubySpec is somewhat similar to bootstrapping; a Ruby implemen-
tation must be at the very least able to even execute a single test, and from that
point on the ability to pass simple tests becomes the precondition for the more
complex ones.

1 require File.expand_path(’../../../spec_helper’, __FILE__)
2 require File.expand_path(’../fixtures/classes’, __FILE__)
3
4 describe "Kernel#==" do
5 it "returns true only if obj and other are the same object" do
6 o1 = mock(’o1’)
7 o2 = mock(’o2’)
8 (o1 == o1).should == true
9 (o2 == o2).should == true

10 (o1 == o2).should== false
11 (nil == nil).should == true
12 (o1 == nil).should== false
13 (nil == o2).should== false
14 end
15 end

Listing 2.6: Ruby spec for the “==” operator

The spec files which contain RSpec tests are organized in direct correlation with
the official Ruby language documentation.10. Because Ruby is a strongly object-
oriented language, most features of the programming language can be described
in terms of objects and their methods. Listing 2.6 shows an example of a test
for the equality operator “==” of Ruby. The complete executable specification is
being actively developed as an open source project, but is still incomplete at this
time. Section 4.3 will introduce a similar test-driven approach to programming
language specification for the programming language ADA.

9http://rubyspec.org (accessed 2013-10-05)
10http://www.ruby-doc.org (accessed 2013-10-05)

29

http://rubyspec.org
http://www.ruby-doc.org

2 Machine-executable specifications

2.7 Other BDD tools

2.7.1 Concordion

The acceptance test framework Concordion11 is an open source tool that was at
first implemented in Java, but is now also available for .NET, Python, Scala and
Ruby.

Software requirements and specifications are written without any special struc-
ture as HTML documents in natural language. In order to connect the documents
to executable source code, the markup needs to contain so-called “instrumenta-
tions” (Listing 2.3). These are special attributes that are placed inside the HTML
tags and are invisible when the document is being viewed in a browser. A Java
fixture class can process the instrumentations that accompany the specification,
and connects the specification to the system under test.

<p>
When Bob logs in , a greeting
Hello Bob !
should be displayed .
</p>

Listing 2.3: Example of an instrumenation, adapted from concordion.org

One advantage of Concordion is that the specification documents are typically
more readable than when using other frameworks because they can be freely
structured and visually enhanced using cascading style sheets (CSS).

HTML is, however, also more cumbersome to write and maintain than pure code
or a specialized ubiquitous language. Furthermore, because the connection be-
tween the specification and the executable code is provided by attributes hidden
in the markup, it is not immediately clear which are the essential parts and which
parts are only for illustration purposes.

11http://www.concordion.org (accessed 2010-10-05)

30

http://www.concordion.org
http://www.concordion.org

2 Machine-executable specifications

2.7.2 FitNesse

FitNesse12 is a collaborative wiki web server where the individual wiki pages are
executable tests. This open source framework is a Java application that can be used
on a local machine or as a service on a server. With an extensive list of plugins
provided by users, FitNesse supports many of the major programming languages
like Java, .NET, Ruby, Python, C++, etc..

Tests are expressed as tables of input data and expected output data. This ta-
ble style is also called a “decision table,” where each row represents a complete
scenario (Listing 2.4).

|eg. Division |
numerator	denominator	quotient ?
10	2	5
12.6	3	4.2

Listing 2.4: Example of a FitNesse wiki markup, adapted from fitnesse.org

Decision tables are executed live on the system under test when clicking the “test”
button on a wiki page. The contents of the table are matched to a Java fixture
class which the underlying system uses to connect with the system under test.
The results of the execution are then also displayed on the same page. FitNesse
provides a second class of table that uses a compact RPC (remote procedure call)
system called SLIM to directly call functions in the system under test.

By restricting the test format to tables, FitNesse is somewhat more limited than
comparable systems. But the integration of a fully featured wiki system makes
the framework also increasingly flexible and very suitable for a more complete
documentation that can be read and edited by many different people.

12http://fitnesse.org (accessed 2010-10-05)

31

http://fitnesse.org
http://fitnesse.org

2 Machine-executable specifications

2.7.3 JBehave

Initiated by Dan North, JBehave13 is one of the earliest BDD test frameworks.
It adopts the scenario-based story structure and the step keywords Given, When,
Then that are also part of Cucumber (Section 2.5). JBehave is a pure Java imple-
mentation and also does not support any other programming languages, but it
can be integrated quite easily into an existing workflow.

JBehave consists of a core and a web distribution, the latter one being an exten-
sion which provides support for web-related access and functionality. A sepa-
rately available Selenium integration module allows the user to drive the verification
of web application behavior using Selenium, an automation framework for web
browsers.

2.7.4 Robot Framework

The open source, generic test automation tool Robot Framework14 is intended for
acceptance testing and acceptance test-driven development. The development of
the core framework is supported by Nokia Siemens Networks.15 Robot Frame-
work supports a keyword-driven and data-driven testing approach with a tabular
test data syntax. It is implemented in the Python programming language and can
be extended natively with both Python and Java. Software in other languages can
also be tested using an XML-based RPC interface.

The framework allows test cases to be formatted in a relatively permissive way as
simple plain text or in HTML, focusing only on keywords. The supported file ex-
tensions are thus .txt and .robot for plain text files, .tsv for tab-separated files, .html,
.htm and .xhtml for HTML files, and finally .rst or .rest for reStructuredText.

13http://jbehave.org (accessed 2010-10-05)
14http://robotframework.org (accessed 2010-10-05)
15http://nsn.com (accessed 2013-10-05)

32

http://jbehave.org
http://robotframework.org
http://nsn.com

2 Machine-executable specifications

As an example, Listing 2.7 shows a test for the login feature of a web service. The
keywords used in this example are defined in a separate file, resource.txt, which
can be found in Listing A.8.

1 *** Settings ***
2 Documentation A test suite with a single test for valid login.
3 ...
4 ... This test has a workflow that is created using keywords in
5 ... the imported resource file.
6 Resource resource.txt
7
8 *** Test Cases ***
9 Valid Login

10 Open Browser To Login Page
11 Input Username demo
12 Input Password mode
13 Submit Credentials
14 Welcome Page Should Be Open
15 [Teardown] Close Browser

Listing 2.7: Robot framework login feature, adapted from robotframework.org

Robot Framework produces structured reports for all test cases inside well read-
able HTML documents. An example of such a test report can be seen in a screen-
shot in Figure 2.6. Of course test cases do not have to be written as plain text files.
Another approach supported by the framework is to use tables inside HTML
documents. In this case no special markup is required, only the headings of the
test data tables are considered. Four different kinds of table can be used with
the following names required in their first column: Setting, Variable, Test Case and
Keyword. The headings Value, Action and Argument which follow in subsequent
columns specify additional information. Robot Framework recognizes only these
words and ignores all other contents of an HTML document.

Keywords can actually consist of multiple words and any set of characters, and
can even be combinations of other keywords. Robot Framework comes with a
set of built-in keywords and can be effortlessly extended with custom words by
the user. Eventually, the lowest level words have to be implemented in actual
source code, called test libraries. Keywords can come from multiple user-provided

33

http://robotframework.org

2 Machine-executable specifications

Figure 2.6: Robot framework example test report

or external libraries, a handful of which is already included together with Robot
Framework.

Robot Framework is exceedingly versatile and suitable for testing every aspect
of a software system ranging from user interfaces to command line programs.
The keyword-driven approach makes the framework very flexible, but also more
difficult to configure and maintain than other systems which provide a one-to-one
binding between test case files (or stories) and the test code.

34

2 Machine-executable specifications

2.7.5 More BDD tools

SpecFlow16 is an open source BDD test framework for software built with .NET.
It uses the Gherkin parser and ubiquitous language of the Cucumber project (Sec-
tion 2.5) but allows step definitions to be written in the C# programming language.
The framework can be installed as a plugin for the Microsoft Visual Studio IDE,
and supports syntax highlighting and the execution of feature files alongside an
existing workflow with common tools.

TextTest17 is a text-based functional testing framework for the Python program-
ming language with a focus on user interface testing. The framework itself also
includes a graphical user interface for the creation and execution of tests. Tests
are written in a plain text format which can be automatically generated by an-
other tool called StoryText. This tool can record actions performed by a user on
the screen and translate into a simple domain specific language. The recordings
can then be replayed as test cases by TextTest. A third tool, CaptureMock, applies
this approach to mocking classes.

Twist18 is a commercial product developed and distributed by the company Thought-
Works, Inc. This test framework for the Java programming language comes with
a custom IDE based on Eclipse. It uses a specialized domain specific language
for test cases that supposedly allows for improved collaboration between engi-
neers and non-technical stakeholders. The product and professional support are
available from the company for an annual price of USD 99.00.

16http://www.specflow.org (accessed 2010-10-05)
17http://texttest.sourceforge.net (accessed 2010-10-05)
18http://www.thoughtworks.com/products/twist-agile-testing (accessed 2010-10-05)

35

http://www.specflow.org
http://texttest.sourceforge.net
http://www.thoughtworks.com/products/twist-agile-testing

2 Machine-executable specifications

2.7.6 Comparison of BDD tools

The following table gives an overview of the BDD or acceptance testing tools and
frameworks introduced in the previous sections.

Name Supported Languages Test Focus Specification format
RSpec Ruby single objects Ruby code

Cucumber Ruby, JVM languages, Javascript whole system ubiquitous language

Concordion Java, .NET, Python, Ruby, Scala whole system HTML

FitNesse Java, .NET, Python, Ruby, C/C++ whole system wiki markup

JBehave Java whole system ubiquitous language

Robot Java, Python acceptance tests keywords

SpecFlow .NET whole system ubiquitous language

TextTest Python acceptance tests plain text

Twist Java acceptance tests ubiquitous language

While every framework has its own particular strengths and weaknesses, their
concrete sets of features and overall software architecture are the two most impor-
tant properties when considering a cross-platform employment on modern mobile
devices. In fact, only Cucumber and the Gherkin syntax have been modified and
integrated many times over in a number of different tools and frameworks for the
testing of mobile applications.

The list of software projects using Cucumber includes Calabash (Section 3.2),
Frank (Section 3.3), iCuke,19 and Zucchini.20

19http://github.com/unboxed/icuke (accessed 2010-10-05)
20http://www.zucchiniframework.org (accessed 2010-10-05)

36

http://github.com/unboxed/icuke
http://www.zucchiniframework.org

3 Testing mobile applications

3.1 Challenges and motivation

The increasing importance of mobile computing platforms over traditional per-
sonal computers is undeniable. On the one hand, computers like smartphones
and tablets, but also laptops and desktop computers, are increasingly being used
for interaction with the World Wide Web. In a sense, the Web has become its very
own platform for which programmers can develop software using the same tools
regardless of the hardware a consumer chooses to use. On the other hand, these
mobile and wirelessly connected devices are becoming more and more capable
of fulfilling the same purpose for consumers as their larger precursors. For many
people a smartphone and a tablet can be the only computers they require in order
to fulfill their everyday needs. Certainly these mobile devices are nowadays much
more likely to become the very first general purpose computers in children’s lives,
because they are relatively cheap and very easy to use.

Software for smartphones, tablets and the like can of course be similarly complex
as software for desktop computers. While Microsoft Windows, Apple OS X, and
some distributions of Linux to a lesser degree, have established themselves as de
facto standards, and also support overlapping technologies, mobile operating sys-
tems are more diverse. Java, Objective-C and C# are the programming languages
used for user space software in the major mobile operating systems Android,
iOS and Windows Phone, respectively. The system kernels and application pro-
gramming interfaces (APIS) are also vastly different on every platform. For this
reason, cross-platform development poses many challenges for programmers. An-
other issue that complicates mobile application development is that smartphones

3 Testing mobile applications

and tablets almost exclusively use ARM-based and not desktop-class x86 CPUs.
As a result, applications eventually need to be transferred onto a physical device
or an emulator, although cross compilers exist. In consequence, software for mo-
bile devices cannot usually be tested on the same computer a programmer uses
for development. Furthermore, many useful tools and test frameworks may not
be available to a developer because the required technologies do not exist on a
smartphone or tablet operating system. At the same time, the nature of mobile
applications asks for completely novel testing paradigms altogether. Mobile op-
erating systems feature complex visual patterns of touch-based user interaction,
and the devices they run on contain many different sensors, the data of which is
often incorporated into use cases of applications.

But for just these reasons, behavior-driven development can potentially be very
useful for testing and specifying software on mobile devices. Firstly, the holistic
view of specification by example makes it easier to translate requirements of vi-
sual and touch-driven user experiences into actual working code. And secondly,
the concept of an independent ubiquitous language lends itself well to the cross-
platform demands of mobile application development. The following sections will
review several behavior-driven tools and frameworks for this purpose.

3.2 Calabash

The Danish company Lesspainful Apps1 provided a cross-platform user interface
test automation service for Android and iOS applications. The company was ac-
quired by the US software startup Xamarin in 2013, and the original services are
now provided as part of the new product Xamarin Test Cloud.2

A UI test framework based on Cucumber (2.5) with the name Calabash continues
to be actively developed as an open source project on the social coding website
Github.3 Calabash is available for both the iOS and Android mobile operating

1http://www.lesspainful.com (accessed 2013-09-22)
2http://xamarin.com/test-cloud (accessed 2013-10-05)
3http://github.com/calabash (accessed 2013-10-05)

38

http://www.lesspainful.com
http://xamarin.com/test-cloud
http://github.com/calabash

3 Testing mobile applications

systems and consists of two major components: a Ruby library (i.e. gem) for the
local development machine, and a server for the remote mobile device or emu-
lator. The client and server communicate using a JSON based protocol to trigger
and parametrize certain predefined actions (Figure 3.1).

developer computer
or build server

Ruby client library,
step definitions

Cucumber features

device or emulator

Calabash HTTP server

Mobile App

Figure 3.1: Calabash system architecture

Using this framework, step definitions must be written in Ruby and be placed on
the developer’s computer or on the build server together with the feature files.
Calabash provides a number of built-in operations for extensive testing of the
user interface (UI) and interaction design (UX) of mobile applications across iOS
and Android. Amongst others, these steps include operations to press buttons,
scroll lists, swipe across the screen and assertions for displayed text. Because the
provided operations are relatively abstract and equally available on both operating
systems, the same Cucumber features can be used to test two implementations of
the same mobile application.

However, because the actual native code behind the steps is implemented in the
server component of Calabash, no custom steps for directly interacting with the
code of the mobile application can be implemented by the user. Because of the
open source nature of the framework it would in theory be possible to add such
modifications in a custom fork of the source repository. But the added complexity
makes this approach hardly practical in most cases.

39

3 Testing mobile applications

3.3 Testing with Frank

The open source project Frank is another user interface test framework that sup-
ports the development with Cucumber exclusively on iOS.4 Similar to Calabash
(Section 3.2), a number of predefined, “canned” operations can be rearranged
and combined to create customized step definitions. Some ready-made steps for
interaction and verification of screen contents are also already included.

Frank also uses a client-server architecture with the server component being com-
piled into the mobile application being tested. Likewise, the framework also fea-
tures a JSON based wire protocol called Frankly for bidirectional communication.
Testing on a physical device is possible, but requires additional software and a
special configuration process. Additionally, Frank even can be used for desktop
applications running under Apple OS X.

3.4 Cucumber Android

After originally being written in Ruby, the BDD test framework Cucumber has
also been implemented in Java for the JVM (Section 2.5) and is thus compatible
with a wide range of systems and programming languages. The open source op-
erating system Android for smartphones, tablets and other platforms does not use
a Java Virtual Machine but a custom implementation with the name Dalvik5 which
was optimized for use on mobile devices. Most parts of the API are identical to
Java SE 6 (to such an extent that it warranted a lawsuit between the companies
Oracle and Google [35]) but nevertheless there are several subtle differences.

Most importantly, dynamic class loading and Java’s reflection mechanism work
differently on Android,6 which is critical for Cucumber. With the Cucumber-Android

4http://www.testingwithfrank.com (accessed 2013-10-05)
5http://code.google.com/p/dalvik (accessed 2013-10-05)
6http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html

40

http://www.testingwithfrank.com
http://code.google.com/p/dalvik
http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html

3 Testing mobile applications

module7 Cucumber can now be integrated natively with the Android test frame-
work8 for the direct execution of step definitions on the Dalvik VM whilst sup-
porting all the available features.

3.4.1 Android fundamentals

Android is an open source operating system developed by Google. It uses a mono-
lithic, modified Linux kernel and includes a Java application framework based on
Apache Harmony.9 Using the freely available Android SDK, user space applica-
tions are packaged into Android packages (.apk) using a two-step compilation pro-
cess. Java Code is at first compiled into an intermediate bytecode format which
is then translated into bytecode in the Dalvik Executable-Format (.dex) for the
Dalvik VM.10 Apk files typically contain both uncompiled resources (e.g., image
and audio data) and compiled resources [16].

Android Applications can enclose components of up to four different types [15]:

• Activities are processes which are in possession of a user interface for a
screen. Only a single Activity can be in the foreground for the user to interact
with at any given time. Activities are intricate elements of an application’s
overall lifecycle.

• Services are components that run in the background and do not provide a
user interface. They are started by any of the other components and multiple
services can be active simultaneously.

• Content providers have the capability to manage and provide sets of shared
application data. They are created automatically by the system.

• Broadcast receivers respond to system-wide broadcast announcements and
are only active during the short period when the announcement is being
made. They are typically used to start specific Activities.

7http://github.com/cucumber/cucumber-jvm/tree/master/android (accessed 2013-10-05)
8http://developer.android.com/tools/testing/testing_android.html (accessed 2013-10-05)
9http://harmony.apache.org (accessed 2013-10-05)

10http://source.android.com/devices/tech/dalvik (accessed 2013-10-05)

41

http://github.com/cucumber/cucumber-jvm/tree/master/android
http://developer.android.com/tools/testing/testing_android.html
http://harmony.apache.org
http://source.android.com/devices/tech/dalvik

3 Testing mobile applications

When testing an Android application, the test classes and associated resources
are usually contained inside their own separate test project, which will be com-
piled into an independent .apk file. Both the application being tested and the
test package are placed on an physical device or an emulator. The Instrumenta-
tionTestRunner is a class provided by the Android framework which handles the
dynamic loading and execution of test code, and is a subclass of Instrumentation.
An Instrumentation is a set of control functions of the system that control An-
droid components independently from their normal lifecycle (Figure 3.2). When
running tests, the class will be instantiated before any of the application code. An
Instrumentation implementation is described to the Android test system through
an instrumentation tag inside the file AndroidManifest.xml of the test project. The
manifest contains essential information about the application that is required by
the Android system. The system must have all of this information before it can
run any code of the application.

application package (.apk)

InstrumentationTestRunner

test package (.apk)

test tools

monkey runner

test case classes

Instrumentation JUnit

mock objects

process

Figure 3.2: Overview of the Android test framework

42

3 Testing mobile applications

3.4.2 Testing with Cucumber JVM

By replacing the InstrumentationTestRunner with another implementation, the test
system can be altered and foreign code can be integrated. Cucumber-Android
implements a custom variant of an Instrumentation in order to execute feature
files with Cucumber JVM instead of regular unit tests. A simplified class diagram
of Cucumber-Android can be seen in Figure 3.3.

Instrumentation

CucumberInstrumenation Runtime

RuntimeOptions

AndroidResourceLoader

ClassLoader

JavaBackend 1..*

DexClassFinder

AndroidObjectFactory

ResourceLoader

ClassFinder

ObjectFactory

1

1

1

1

1

1

1

Figure 3.3: Class diagram of the Cucumber-Android module

43

3 Testing mobile applications

At its core, the module includes the class CucumberInstrumentation. This is the only
component that is being used to communicate between the Android test frame-
work and Cucumber JVM. When creating a new test project, this class has to be
utilized instead of the regular InstrumentationTestRunner. Inside the Android-
Manifest.xml of the test project, the instrumentation tag needs to be configured in
the following way:

<instrumentation android :name =" cucumber .api. android . CucumberInstrumentation "/>

An Android test project for Cucumber JVM requires the libraries cucumber-android,
cucumber-core and cucumber-java, all of which are available from Maven. Because
Maven is not the recommended build environment for Android, it is advisable to
download the required .jar files manually and place them inside the libs directory
of the project, which is also the appropriate place for any additional libraries.

The class AndroidResourceLoader is responsible for loading the Cucumber feature
files at runtime. For the loader to be able to find the files, they must be placed
inside a directory called features inside the assets directory of the Android test
project. Feature files are included as raw assets inside the test package and can
thus be opened using the asset management mechanism of Android. Almost every
feature of Cucumber JVM is also supported on Android. When the features are
being executed, debug output is provided through the logging mechanism Logcat,
and status code is reported back to the Instrumentation. This way, an IDE (e.g.,
Eclipse) can display successful and failed features as if they were unit tests and
provide valuable feedback to the user.

Cucumber is capable of generating structured HTML reports which give an im-
mediate overview of the failed and passed feature tests (Figure 3.4). However,
because Cucumber Android is still in beta, the access to formatted test results is
still a little bit cumbersome. At this time a developer has to copy the generated re-
ports manually from the remote device using a command line tool included with
the Android software development kit.

Future improvements to the code base of Cucumber will likely include more ad-

44

3 Testing mobile applications

Figure 3.4: Cucumber example report for a successful feature test

vanced and comfortable reporting features, for example integration with a local
service that can give real-time feedback about every test run. The source code
and binary packages of the Cucumber JVM project, including the Android mod-
ule, complete with instructions, tutorials and examples, are available from the
project’s website.11

3.5 Cucumber on other platforms

Cucumber has already been implemented in Ruby, for most programming lan-
guages running on the JVM and Javascript. Although C++ step definitions are
supported, they still require Cucumber Ruby to run on a desktop computer.
Calabash, Frank and similar testing frameworks on the other hand do not pro-
vide enough functionality, and are impractical for in-depth testing because of the

11http://cukes.info/install-cucumber-jvm.html (accessed 2013-10-05)

45

http://cukes.info/install-cucumber-jvm.html

3 Testing mobile applications

client-server-model. In order to support the other two major platforms, iOS and
Windows Phone, a native implementation of Gherkin and Cucumber using the
programming languages C and C++ is the only viable solution. To achieve such
an objective, essentially two components would have to be considered:

Gherkin interpreter. The ubiquitous language of Cucumber is a relatively sim-
ple domain specific language, which encompasses only a handful of keywords
and tokens. The story structure of Cucumber feature documents is also quite un-
complicated. As a result, the lexer and parser for this language have a very modest
size of approximately 2800 source lines of code (SLOC) in Ruby. Furthermore, the
Gherkin interpreter has been accomplished with the Ragel state machine compiler
[31], and consequently it requires not very much effort to adapt and compile it
for other programming languages. However, native support for C or C++ has not
yet been implemented and would be the first step toward a functioning version of
Cucumber on other mobile platforms.

Cucumber core modules. The core modules of Cucumber are responsible for
generating an abstract syntax tree (AST) with the help of Gherkin. The objects of
the AST connect the steps of each feature with their associated step definitions.
Additionally, Cucumber contains a number of components which allow the user
to generate formatted report documents from a test run. Altogether, the number
of source lines of code of Cucumber’s Java implementation amounts to approxi-
mately 6400. These modules would have to reimplemented from the ground up
in C or preferably C++, because of its object oriented nature. The Ruby variant of
Cucumber does in fact support step definitions that are written in C++ for testing
C or C++ programs.12 However, this extension requires a working Ruby instal-
lation and an additional C++ test framework, Boost Test or GTest. There are also
macros for annotating step definitions which could probably be reused in a native
C++ implementation of Cucumber.

12https://github.com/cucumber/cucumber-cpp (accessed 2013-10-05)

46

https://github.com/cucumber/cucumber-cpp

3 Testing mobile applications

Cucumber has a distinct disadvantage in not being truly cross-platform yet. This
certainly has to do with the fact that mobile applications have not been a con-
cern of the open source project until very recently. Another factor which influ-
enced the implementation languages of the test framework was likely the focus
on web application development, which usually does not involve C or C++. The
architecture of Cucumber is, however, relatively well designed and the amount
of existing source code is not overwhelming. For this reason a reimplemenation
in C++ should be an achievable goal, given that enough developers are actually
interested in realizing this vision. The increased maintenance efforts of keeping a
third variant of Cucumber up to date and feature complete would certainly be an
additional burden for the whole project, but thriving open source communities
can usually deal with such added complexity.

The challenges for a native HTML-5 version are similar. Fortunately, work in this
regard has already progressed a little bit further. Besides, several extensions to
Cucumber already exist which allow the testing of Javascript applications on the
desktop.

47

4 Programming language specifications

4.1 Elements of programming languages

A programming language is an abstraction used by humans to efficiently convey
instructions to a machine, specifically a computer. Programming languages are
often built upon many levels of abstraction, as some languages themselves have
been implemented in other programming languages, like C. When talking about
formal programming languages, one must consider both the syntax (a set of rules
regarding the possible combinations of symbols) and the semantics (the meaning
and effects of statements) of a language. With the help of the previous two com-
ponents, a programming language typically also encompasses a set of types (e.g.,
numbers, strings), and algorithms which can act upon those types.

A programming language syntax is commonly specified by means of a formal,
context-free grammar (CFG) which defines how tokens, or lexemes, can be mean-
ingfully combined. Individual tokens on the other hand can be very well described
by regular expressions. Two accepted notation techniques for context-free grammars
are the Backus–Naur Form and the van Wijngaarden form. When translating a com-
puter program into machine instructions, a scanner and a parser must first per-
form a lexical and syntactical analysis of the program text, respectively. After that,
a semantic analyzer examines whether the program conforms to the specified set
of semantic rules. Semantics define the meaning of a programming language; this
portion cannot be described by a context-free grammar [27]. In practice, seman-
tics are specified either through the medium of mathematical formulae, natural
language, reference implementations, or test suites.

4 Programming language specifications

4.1.1 Visual programming languages

Visual programming languages provide yet another level of abstraction to ma-
chine instructions. The syntax of such a language typically consists of graphical
elements, or diagrams, in a two-dimensional space. The arrangement of these ele-
ments and their spatial relationships constitute the meaning of a visual program.
Specialized formalisms for the syntactical and semantical specification of visual
languages have been considered in the past [21]. However, the semantics of a vi-
sual language can be specified just in the same manner as a text-based language.
It is possible to use the same approaches and tools, with the possible exception
of a formal mathematical description. There should be no significant reason why
natural language, reference implementations, or test suites would not be suitable
for the semantical specification of a visual programming language.

4.2 Programming language standardization

In 1964, Alt [3] identified the general degree of complexity, the lack of pure man-
power, and the lack of travel funds for participation in meetings as the three major
obstacles preventing the widespread adoption of specification practices. At least
the last two concerns have been all but wiped away by the advent of the Internet
and the associated increase in worldwide communication. Although the challenge
of specification has in the face of new developments not become any less complex,
almost every major programming language these days was eventually specified
in a written document that is now published on the World Wide Web.

A popular example would be the programming language JavaScript. This lan-
guage was originally made available in the Netscape web browser. In 1996 Netscape
submitted JavaScript to Ecma International, an international, membership-based,
non-profit standards organization for IT systems based in Geneva, Switzerland.
Today, ECMA-262

1 is the most widely used variant of the language. The specifica-

1http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf (acc. 2013-10)

49

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

4 Programming language specifications

tion document contains more than 200 pages with details on data types, built-in
functions, syntax, and grammar.

But it is not always a consortium or organization that backs a standard. Although
the original developer of Java, Sun Microsystems, attempted a standardization at
ISO, and later Ecma International, the language remains only a de facto standard,
controlled by the Java Community Process.2

For C++ there is an official ISO/IEC standard, the latest one being 14882:2011.3

Unlike Ecma, the ISO document is not freely available, but rather has to be pur-
chased for the price of CHF 238,00. While this should not present a barrier to
established compiler vendors, it still makes the standard barely accessible to the
general public. Instead, hobbyists and other private developers have to look for
unofficial alternatives.

Even though standardization has become common practice nowadays, it is not
clear if the benefits have been fully realized yet. While the widespread availability
of specification documents is one remaining issue, the format of natural language
is becoming unwieldy in the face of the growing complexity and the richness of
features of modern programming languages. It seems somewhat absurd that de-
spite increasing automation and abstraction in the field of computing, the defini-
tion of computer languages themselves are still being maintained in archaic ways.
Evidently, more modern approaches with the support of advanced software tools
should be considered to specify programming languages and to automatically test
implementations for their compliance with given standards.

2http://www.jcp.org/en/home/index (accessed 2013-10-05)
3http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372 (accessed 2013-10-05)

50

http://www.jcp.org/en/home/index
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372

4 Programming language specifications

4.3 Ada Conformity Assessment Test Suite

The Ada Conformity Assessment Test Suite (ACATS)4 is an official and freely
available test suite for checking the conformity of Ada processors with the Ada
programming language standard. The most recent version available is ACATS 3.0
for the 2007 version of Ada. Also still available is version 2.6 for Ada 95. ACATS
essentially constitutes a specification of the Ada programming language semantics
by means of a test suite.

Ada is quite unique in that it has become the first programming language to
provide a method for certifying the conformity of compilers according to an in-
ternational standard. The International Organization of Standards specifies this
approach to certification in the document “Ada: Conformity assessment of a lan-
guage processor” (ISO/IEC-18009:1999) [4]. Perhaps it is not surprising that Ada
is standardized in this way because it was originally developed by the United
States Department of Defense, and in its beginning was targeted at embedded sys-
tems. Because of its safety-critical support features, the programming language
today is widely used in critical systems like aerospace vehicles [33] [34].

ACATS 3.0 comprises over 4660 files and 3771 individual tests. It organizes the
tests into six different classes; A, B, C, D, E and L, each of which reflects differ-
ent testing requirements of language conformity testing. The test files themselves
have alphanumeric names corresponding to their class and the location of the test
objective inside the AIG (if they are legacy tests) or a section inside the Ada Stan-
dard. The ACVC Implementer’s Guide (AIG) is an older document describing the
test objectives used to produce test programs for ACVC (ACATS) versions [5].

Listing 4.1 shows an authentic ACATS test used to specify a property of the String
type. It belongs to class C of tests, which check that executable constructs are
implemented correctly and produce expected results.

Tonndorf [32] argues that the conformity assessments of Ada can be a model for
other programming languages as well. First of all, the basic requirement besides

4http://www.ada-auth.org/acats.html (accessed 2013-10-05)

51

http://www.ada-auth.org/acats.html

4 Programming language specifications

1 -- C26008A.ADA
2
3 -- CHECK THAT UPPER AND LOWER CASE LETTERS ARE DISTINCT WITHIN STRING
4 -- LITERALS.
5
6 -- JRK 12/12/79
7 -- PWN 11/30/94 SUBTYPE QUALIFIED LITERALS FOR ADA 9X.
8
9 WITH REPORT;

10 PROCEDURE C26008A IS
11
12 USE REPORT;
13
14 BEGIN
15 TEST ("C26008A", "UPPER/LOWER CASE ARE DISTINCT IN STRING " &
16 "LITERALS");
17
18 IF CHARACTER’(’a’) = ’A’ THEN
19 FAILED ("LOWER CASE NOT DISTINCT FROM UPPER IN " &
20 "CHARACTER LITERALS");
21 END IF;
22
23 IF STRING’("abcde") = "ABCDE" THEN
24 FAILED ("LOWER CASE NOT DISTINCT FROM UPPER IN " &
25 "STRING LITERALS");
26 END IF;
27
28 RESULT;
29 END C26008A;

Listing 4.1: Ada conformity test C26008A regarding String types

an international standard for a programming language would be to have a single
worldwide certification system. Just like in the case of ACATS, such a system
would comprise the following components:

1. Testing object, an identified language processor (e.g., a compiler).
2. Test objective, to verify compliance of the object with an ISO standard.
3. Tests conducted through a testing method (e.g., a test suite, ACATS).

In the case of Ada, the testing method includes both positive test cases and neg-
ative test cases, which are intended violations of the standard that have to be de-
tected by an implementation. According to Tonndorf, the condition to have only a

52

4 Programming language specifications

single generally accepted test suite is paramount. This way, multiple implementa-
tions can be reliably compared. The testing itself is also supposed to be conducted
exclusively by recognized or accredited organizations.

The author contends that test suites for other programming languages do not
have the same objectivity, impartiality and completeness as ACATS because they
are primarily developed and maintained by compiler vendors for their own pur-
poses. However, community-driven open source projects like RubySpec (Section
2.6) show that a complete and systematic approach to conformity testing without
bureaucracy is potentially feasible.

4.4 Vienna Development Method

In the 1970’s a local branch of IBM, the Vienna Laboratory, developed a set of
tools and techniques grounded in formal specification methods. For decades, the
Vienna Development Method (VDM) has been one of the most established formal
methods to develop software systems.

VDM and and the VDM Specification Language (VDM-SL), are supported by a
wide range of academic and commercial tools. Over the years, practical use of
VDM and the academical research centered around it have contributed notably
to the development of fundamental systems like compilers, and to advances in
computer science in general. In practice, VDM is mostly used for the development
of large scale industrial systems and for security and safety critical software.

When designing a software system with this method, one begins by constructing
an object-oriented model of data types and classes. A VDM specification is a
mathematical model where data types represent the classes of input and output
values. Functions and operations which work on values of these types model the
functionality of a system. A document containing such information is written in
the abstract syntax of the model-oriented specification language VDM-SL [13].

53

4 Programming language specifications

An example of VDML-SL can be seen in Listing 4.1. Here a message type is mod-
eled as a sequence of characters. An invariant defines a maximum limit of 10,000

characters for a message. Additionally, a function substring on messages is speci-
fied. The function shall return a boolean value true if one message is a submessage
of another [20]. Because VDM-SL allows the detailed definition of data types and
functions regardless of implementation details, it supports a high level of abstrac-
tion.

Message = seq of char
inv m == len m <= 10000

substring : Message * Message -> bool
substring (s1 ,s2) == exists i,j in set inds s2 & s1 = s2(i ,... ,j)

Listing 4.1: Example of VDM-SL, adapted from Larsen, Fitzgerald, and Brookes [20]

In order to create actual source code for a piece of software specified with VDM-
SL, two steps are necessary. First, data types and functions have to be refined
into concrete types and algorithms using an algebraic and thus provable pro-
cess. Secondly, this concrete specification must be translated into the source code
of the targeted programming language. The correctness of this final step cannot
be proven because it depends on the semantic of the programming language. It
would theoretically be possible to automate this process at least partially.

4.4.1 Software tools

Overture IDE is a popular open-source tool based on Eclipse which is used for
software development with the VDM Specification Language.5 Alternate versions
of the tool also support the object-oriented extension VDM++, and VDM-RT,
which is used for specifying real-time and distributed systems. The community
surrounding Overture aims to develop a common open-source platform that inte-
grates a variety of tools to construct and analyze formal system models with the

5http://www.overturetool.org (accessed 2013-10-05)

54

http://www.overturetool.org

4 Programming language specifications

help of VDM. The IDE includes a number of advanced features which facilitate
the development process, like automatic static type checking and so-called proof
obligations [19].

Figure 4.1: AlarmSL example project in the Overture IDE

Figure 4.1 shows an example that was inspired by an alarm system subcomponent
developed by the Danish company IFAD A/S. Fitzgerald and Larsen originally in-
troduced the example in their book Modelling Systems: Practical Tools and Techniques
in Software Development [11]. The specified system is supposed to alert experts
with different qualifications to operational faults in a chemical plant. The VDM-
SL model of this system includes the necessary data types and functions, and

55

4 Programming language specifications

implements a number of requirements. Overture only allows for the creation and
testing of formal models but it cannot automatically generate executable source
code from these models. An automatic code generator has been proposed by Peter
Jørgensen.6

VDMTools is a leading commercial tool for VDM and VDM++ that is being ac-
tively developed by the Japanese IT service company SCSK.7 The software in-
cludes advanced features like a static checker and a code generator for both C++
and Java. Recently, an experimental reverse engineering module for Java was in-
cluded in the tool suite to generate low-level VDM++ models from source code
[12].

Figure 4.2: Alarm example project in VDMTools

6http://wiki.overturetool.org/images/1/1c/PeterJørgensen_CodeGen.pdf (accessed 2013-10-05)
7http://www.vdmtools.jp/en/index.php (accessed 2013-10-05)

56

http://wiki.overturetool.org/images/1/1c/PeterJ%C3%B8rgensen_CodeGen.pdf
http://www.vdmtools.jp/en/index.php

4 Programming language specifications

VDMTools has been used in several large and important projects in the past. For
example, the company FeliCa Networks developed the operating system for a
new generation of integrated circuit chip with the help of VDM++ and VDM-
Tools. The system was implemented in the programming languages C and C++
and after a VDM++ model. A specification document which spanned 677 pages
and contained test cases formulated in VDM was created by a separate team of
developers who were responsible for validation and verification. The VDMTools
interpreter was used to execute these test cases, and it was also possible to gen-
erate information about test coverage. Using VDM++ and VDMTools helped to
identify many issues in the requirements early on, and contributed to the success
of the whole project [18].

57

5 Specification of a visual language with
BDD

5.1 Specifying programming languages by example

The previous chapter gave an overview of the fundamentals of programming lan-
guage standardization. It also explored the concepts of assessing compliance with
a specification by means of automated tests and ways to formally specify soft-
ware from the ground up. The focus of specification by example, to build the
right software, is by its own definition aligned with the goal of written language
standardization documents, to ensure consistent implementations. For this rea-
son, the following sections will explore the suitability of BDD tools to take on the
responsibility of replacing or at least supplementing such documents.

As it was already demonstrated by RubySpec in Section 2.6, a completely behavior-
driven specification by means of acceptance tests is potentially feasible. But for the
job of specifying software, and programming language implementations in par-
ticular, across multiple different platforms, an intermediate format may be more
practical. Hence the ubiquitous language Gherkin of the Cucumber framework
(Section 2.5) would be ideal for this task of cross-platform specification.

There are several conceivable advantages to this approach:

• Natural language. A ubiquitous language is close enough to the natural lan-
guage of conventional specification documents that it can possibly constitute

5 Specification of a visual language with BDD

all of the documentation. At the same time, executable specifications writ-
ten in this format are able to fulfill at the very least the same purpose as
traditional tests (e.g., ACATS).

• Portability. Contrary to test code, an intermediate format is portable across
multiple platforms as long as respective interpreters for this format exist. In
the case of Gherkin, the native code of step definitions still has to be ported,
but it is easier to translate individual steps than whole tests.

• Process. Because SbE is a set of process patterns that are the foundation of an
agile development process, the development of the programming language
itself becomes agile when using this method for specification purposes.

• Psychology. Programmers may shy away from writing a formal specification
when they come up with a new feature in their minds because they would
rather start writing code immediately. On the other hand they might also be
hesitant to write any code before the feature has not been extensively doc-
umented. Specification by example breaks down the psychological barriers
between those two worlds by using practical and executable examples that
can be easily composed.

5.1.1 Applying the story structure

In agile development, the purpose of a story is generally to capture the require-
ments for a single software component or to define a concrete use case from the
perspective of an end user [6]. Behavior-driven development uses the story for-
mat for an outside-in approach to software development by defining the expected
behavior of the whole system or individual objects.

Cucumber uses an extended variation of Dan North’s original story structure
(Section 2.3.2) written in the ubiquitous language of Gherkin. When specifying
a programming language, each Cucumber feature should correspond to a sin-
gle property of an element in the programming language. For example, a string
type has many properties, ranging from the characteristics of the underlying raw

59

5 Specification of a visual language with BDD

data, to the operations that can be performed on the string. The elements of pro-
gramming languages were briefly introduced in Section 4.1. Depending on the
complexity and the abstraction level of the language, the features will have to be
more or less detailed. A decent guideline for the degree of detail are existing test
suites like RubySpec (Section 2.6) or ACATS (Section 4.3).

There are plausibly two different ways how a programming language can be de-
scribed using an exemplary Cucumber story:

One way is to define program examples complete with inputs and the expected
output or behavior of the whole system. The program structure and expected
behavior must be described using the Gherkin grammar of acceptance criteria
(Given, When, Then). Input and output data can additionally be represented as
formatted strings or as strings within tables. This approach is more suitable for
specifying control structures and algorithms.

The second concept is to directly describe singular elements of the language (e.g.,
objects, primitive types) and their expected behavior under certain conditions.
This technique is best used for specifying the type system. However, in higher
level programming languages often most elements, even functions, are actually
objects. In these cases this descriptive method can also be used to reason about
such objects. RubySpec (Section 2.6) is a test framework which follows this ap-
proach for the most part.

5.1.2 Specifying visual languages

Visual programming languages (Section 4.1.1) use graphical elements in lieu of a
textual syntax. Nevertheless, they are governed by the very same laws as regular
programming languages. However, depending on the concrete implementation,
input can be a challenge for testing. Even if an interpreter does not provide a
way to process visual programs in an alternate text-based or binary format, there
must at least be some sort of user interface to interact with it. In such a case
the test framework evidently needs to include a library for the automated testing

60

5 Specification of a visual language with BDD

in graphical user interfaces. When testing third-party implementations without
direct access to the code base, this is likely the only possible approach.

If the software system that implements a visual language, including the inter-
preter, has a well-defined and accessible API, the test framework can alternatively
directly interface with the system. This should also be the preferred technique for
programmers who are writing their own code and who use BDD in their develop-
ment process. The following sections will look at a practical example where this
course of action has been taken.

5.2 The Catrobat programming language

Catrobat is an open source, cross-platform, mobile, visual programming language.
It was inspired and is heavily influenced by Scratch,1 a visual programming envi-
ronment for children and teenagers, developed by the MIT Media Lab.

Different from Scratch, Catrobat from the very beginning aimed to be optimized
for mobile devices, i.e., smartphones and tablets. It was at first implemented in
Java as the Android application Catroid. Meanwhile, versions for iOS and Win-
dows Phone, as well as a version for the web based on HTML 5, are also in
development. The Android app Catroid has already been released to the pub-
lic on the Google Play Store under the name Pocket Code.2 It is at this time still
the most feature complete implementation of the visual programming language
Catrobat.

5.2.1 Scratch

Scratch was originally written in the Smalltalk programming language and im-
plemented on the Squeak virtual machine. Recently it was completely rewritten

1http://scratch.mit.edu (accessed 2013-10-05)
2http://play.google.com/store/apps/details?id=org.catrobat.catroid (accessed 2013-10-05)

61

http://scratch.mit.edu
http://play.google.com/store/apps/details?id=org.catrobat.catroid

5 Specification of a visual language with BDD

from the ground up in Actionscript using Adobe Flash, and it is now available as
a web application on many compatible browsers.

Figure 5.1: Scratch version 2.0

In a nutshell, the concept of Scratch is to create interactive animations with the
help of rearrangeable blocks. The blocks are organized into lists called scripts which
need to have a specialized event block at the top. Scripts, on the other hand, belong
to a single sprite, an object of sorts that contains scripts, costumes (images) and
sounds (audio files).

Scratch differentiates between nine different types of blocks in total. The most
important ones, however, are events and control blocks. Events, with the exception
of broadcast blocks, are always the first elements in a script. They are message
responders that react to the program being started, a key being pressed, or other
predefined events. If scripts are like subroutines, then event blocks basically define

62

5 Specification of a visual language with BDD

the identifiers and parameters of functions. Control blocks determine the control
flow inside a script with iteration and selection statements. The other categories
all contain blocks that either perform some kind of action or blocks that evaluate
statements and return a primitive type (i.e., string, number, boolean).

To the user, every script is an asynchronous process in Scratch. The concurrency
model is fully transparent, which means that there is no way for the user to di-
rectly control individual threads. Only the broadcast and wait block gives a little
bit of control to the user by letting him decide to halt the execution of the current
script until any message receivers are finished. Furthermore, scripts are compa-
rable to function objects, which can have just a single instance (singleton). As
a result, the same script cannot be executed multiple times in parallel. Because
Scratch 2.0’s implementation language Actionscript is a single threaded program-
ming language, there can be no actual data races in the background. However,
there are still frequently unexpected outcomes. For example, Figure 5.2 shows a
program with three scripts. From the visual syntax alone it is unclear what the
output is going to be. Here is what really happens behind the scenes:

Figure 5.2: Concurrency artifact in
Scratch 2.0

When starting the program, the start script
is the first to begin executing. The asyn-
chronous broadcast reaches the the other
scripts in the order they were added to the
program. Because the rightmost script was
added last, it overwrites the value that was
set by the leftmost script. Even though the
wait block is set to 0, it introduces a small
delay. As a result, the output of this pro-
gram is actually “hello, people.”

When running the same program on the older version 1.4 of Scratch, the output
“hello, world” is generated instead. The reason for this is that the wait block causes
no delay in that version, and so the first script continues before the other two can
finish. Another peculiarity of the older version is that the order in which scripts
are arranged on the screen influences the order in which they will be executed.

63

5 Specification of a visual language with BDD

It is understandable that introducing advanced synchronization mechanisms would
unnecessarily overcomplicate the user-friendly design of Scratch. Nevertheless,
the discrepancy between the new and the old implementation is very likely the
result of undefined, or unspecified, behavior.

5.2.2 Catroid

Figure 5.3: Script view in Pocket
Code (Catroid) 0.9.4

Catroid was the first visual programming
environment for Catrobat. It is predom-
inantly aimed at children and teenagers
with the goal of increasing their inter-
est in computer science and to promote
logical thinking and programming skills.
The visual aspect of the system is sup-
posed to make programming more at-
tractive and easier to understand for the
target audience. Because of the rapid
growth in the sector of mobile comput-
ing, the increasing proliferation of smart-
phones and tablets amongst children,
and the intuitive interaction design of
these devices, Catroid was created for
the mobile Android platform [29], [28].
The software is being actively developed
by the Catrobat open source project on
Github.3

Similar to Scratch, Catroid is also centered around the scripting and audiovisual
animation of graphical objects, or sprites, on the screen. This makes the language
very accessible to the prime target audience of children and young teenagers. The

3http://github.com/Catrobat (accessed 2013-10-05)

64

http://github.com/Catrobat

5 Specification of a visual language with BDD

programming environment is not limited to this purpose however. On Android,
the Pocket Code application also allows users to control Lego Mindstorms© toy
robots and the Parrot AR Drone© with their personally created visual programs.

5.2.3 Language concepts

Catrobat borrows from Scratch the notion of block elements or bricks, as they are
also called. These are atomic elements that represent specific statements of the
programming language. For example, there are control flow blocks for structured
programming but also more specialized blocks which directly alter a graphical
object on the screen. Although it is implemented in a different programming lan-
guage and with a different architecture, Catrobat also retains the principal lan-
guage concepts and program composition from Scratch. A program comprises
one or more objects and possibly a set of global variables. An object can possess
local variables and typically also has two sets of specialized attributes, namely
looks (images) and sounds (audio files), for the audiovisual animations. Most im-
portantly, an object contains a list of scripts. They are the code portion of a Catrobat
program and contain the bricks which in turn incorporate the logic of the entire
program. Scripts essentially behave like subroutines because they are triggered by
different external or internal events (Figure 5.4).

Program

Object

Script Brick

Sound

Look

0..*

0..*

0..*

1..*

1..*

variable

Figure 5.4: Composition of elements in the Catrobat language

65

5 Specification of a visual language with BDD

Catrobat has five discernible types of bricks in total:

1. Control. These are either event bricks that respond to messages, broadcast
bricks to send messages, or control flow bricks (e.g., loops, conditionals).

2. Motion. These are bricks to alter the position of an object (sprite) on the
screen either instantly or by using a predefined animation.

3. Sound. This category includes bricks that control the playback of audio files
associated with an object or change the system’s volume level.

4. Looks. These bricks change the appearance of the visual representation of
objects. A different look can be chosen from the object’s internal list, or the
overall visibility of the object can be changed.

5. Variables. This last category contains bricks to initialize variables or to
change their values.

Unlike Scratch, Catrobat does not yet include a particular set of bricks for arith-
metic operations. Instead, the integrated development environment of Catroid
(Pocket Code) provides a module called forumla editor. This is a special input
method that is made available to the user whenever a literal value can be en-
tered. The formula editor is also responsible for managing global and object-local
variables during the runtime of the program.

Broadcast bricks and when scripts

There are two different kinds of broadcast bricks. The regular, non-blocking broad-
cast brick sends a message to every receiver, and the containing script immediately
continues executing or stops if there are no further bricks. The synchronous, block-
ing broadcast wait brick sends a message and causes the containing script to block
until every responding script has finished execution.

Like in Scratch, every script is triggered by a certain event. A when brick defines
the reception of a specific message as an event. Scripts that begin with a when
brick are called when scripts and they are responders to broadcast bricks.

66

5 Specification of a visual language with BDD

5.3 Specification of Catroid with Cucumber

One of the primary goals of the Catrobat project is to provide dependable func-
tionality and a consistent overall experience by ensuring that visual programs
behave exactly the same on every implementation platform. This is one of the
reasons that Cucumber with its platform independent ubiquitous language was
selected at as the tool of choice to create an executable documentation for the
programming language. The following examples show how some of the primary
features of Catrobat have been specified in a behavior-driven way using Cucum-
ber scenarios and steps.

5.3.1 Creating a program

For many of the individual specifications, the basis is a simple Catrobat program
with a single object. Although this foundation could be set up and prepared as
part of the supporting test code, it is important to document as much of the
implementation as possible by using executable Cucumber features. This makes
it much easier to maintain the code base and it also makes the specification more
useful to implementing programmers.

There are two steps necessary to crate a basic program (Listing 5.1). In the first step
an empty program container is created. The underlying step definition is shown
in Listing 5.2. In this example a parameter for the program name is omitted, but it
would be no problem at all to create a second definition to support this potential
requirement.

1 Background:
2 Given I have a Program
3 And this program has an Object ’Object’

Listing 5.1: Steps for program creation

A program is an instance of the class Project in the Catroid implementation of
Catrobat. Other types as well may have different names in different implemen-

67

5 Specification of a visual language with BDD

tations. However, by using steps with a high granularity or resolution for every
individual aspect of Catrobat, it is unproblematic for an implementation to use
distinct denominations. By any means the test code inside step definitions should
be short, concise and do only one specific thing. How well this requirement can be
fulfilled strongly depends on the modularity of the application under test. If the
application does not have a well designed API, the test code has to work around
any deficiencies.

1 @Given("^I have a Program$")
2 public void I_have_a_program() throws IOException {
3 ProjectManager pm = ProjectManager.getInstance();
4 pm.initializeNewProject("Cucumber", getContext(), /*empty*/ true);
5 Project project = pm.getCurrentProject();
6 }
7
8 @Given("^this program has an Object ’(\\w+)’$")
9 public void program_has_object(String name) {

10 int lookId = org.catrobat.catroid.R.drawable.default_project_mole_1;
11 ProjectManager pm = ProjectManager.getInstance();
12 Project project = pm.getCurrentProject();
13 Sprite sprite = Util.addNewObjectWithLook(getContext(), project, name, lookId);
14 Cucumber.put(Cucumber.KEY_CURRENT_OBJECT, sprite);
15 }

Listing 5.2: Step definitions for program creation

After creating an empty program, the second step is to add an Object to it. In the
step definition a new object is instantiated from the Sprite class of Catroid and is
assigned the provided name. The declaration and initialization of objects is not
done directly by the use of Catrobat statements (bricks), but rather by manually
adding them to a project inside Catroid’s IDE. For this reason the step does not
have to be any more explicit. In the corresponding step definition the object is
created and added to the program using supporting test code from a utility class.
As the name implies, this step should follow the instantiation of the program and
therefore it is assumed that a valid instance is available through the ProjectMan-
ager.

Unfortunately, the following steps cannot rely on a similar mechanism for access
to the created object. This is why a shared global variable, a static instance of a Java

68

5 Specification of a visual language with BDD

collection in this case, must be used to store a reference to this object. Although
a local member attribute to the containing class would also be an option, step
definitions usually reside in different classes and need a way to share information
with each other.

In every feature where having a program that contains a single object is the funda-
mental requirement, a Background (Section 2.5) is used to define the two necessary
preceding steps. With the help of this construct, these steps are automatically
executed before every example and need not be additionally included in each
Scenario.

5.3.2 Specification of a loop

Like in every programming language, a loop is also an essential control structure
in Catrobat. Until recently, this functionality used to be only documented by a
relatively complex unit test (Listing 5.3). The test method in question first initial-
izes a set of local variables. Then it creates a sprite object and an associated script
object to which the necessary brick elements are finally added. The actual execu-
tion of the script happens inside the while loop, where a method is called which
belongs to a backend graphics library that is employed by Catroid.

A Repeat brick and the corresponding Repeat end brick are the two elements which
make up a loop in the Catrobat language. By definition, any bricks that are posi-
tioned between those two are repeatedly executed for a given number of iterations.
In this case the bricks enclose another brick which has the purpose to modify a
position attribute of the sprite. Albeit functional, this test cannot be regarded as a
useful specification mainly for two reasons: Firstly, the Java code is far too difficult
to read in order to get an impression of the loop functionality, at least in a short
amount of time. Secondly, the test as a whole requires considerable efforts to be
translated into other programming languages on other platforms.

By defining the feature at hand with Cucumber instead, both the intent and ex-
pected behavior can be made much clearer. Furthermore, the whole example is

69

5 Specification of a visual language with BDD

1 public void testRepeatBrick() throws InterruptedException {
2 final int loops = 4, deltaY = -10;
3 Sprite sprite = new Sprite("sprite");
4 Script script = new StartScript(sprite);
5
6 RepeatBrick repeatBrick = new RepeatBrick(sprite, loops);
7 LoopEndBrick loopEndBrick = new LoopEndBrick(sprite, repeatBrick);
8 repeatBrick.setLoopEndBrick(loopEndBrick);
9

10 script.addBrick(repeatBrick);
11 script.addBrick(new ChangeYByNBrick(sprite, deltaY));
12 script.addBrick(loopEndBrick);
13
14 sprite.addScript(script);
15 sprite.createStartScriptActionSequence();
16
17 while (!sprite.look.getAllActionsAreFinished()) {
18 sprite.look.act(1.0f);
19 }
20
21 assertEquals(loops * deltaY, sprite.look.getYInUserInterfaceDimensionUnit());
22 }

Listing 5.3: Original Repeat brick test

broken up into smaller, reusable step definition methods which are much simpler
to port. Listing 5.4 shows a complete example for a behavior-centric specification
of the Repeat brick. The example only specifies the basic functionality of a loop,
namely repeating a given set of bricks for a number of times. As will be discussed
later on, there are also performance related properties which are dealt with in
separate feature files.

Below the name of the feature there is a explanatory line of text that describes the
intent of a Repeat brick. This part is called the narrative in Dan North’s original
story structure (Section 2.3.2), and while it does not contain any executable state-
ments, it is still important to give a brief summary of the specified feature and its
scenarios. If this portion of text tends to get too long and unwieldy, then it is most
likely that the feature and the described intent are too generic. A Repeat brick, for
example, has many desired properties, each of which can and should be specified
in an individual Cucumber feature file.

70

5 Specification of a visual language with BDD

1 Feature: Repeat brick
2 A Repeat Brick should repeat another set of bricks a given number of times.
3
4 Background:
5 Given I have a Program
6 And this program has an Object ’Object’
7
8 Scenario: Increment variable inside loop
9 Given ’Object’ has a Start script

10 And this script has a set ’i’ to 0 brick
11 And this script has a Repeat 8 times brick
12 And this script has a change ’i’ by 1 brick
13 And this script has a Repeat end brick
14
15 When I start the program
16 And I wait until the program has stopped
17 Then the variable ’i’ should be equal 8

Listing 5.4: Cucumber feature for a Repeat brick

As mentioned before, the Background is a reoccurring element that declutters
scenarios by grouping together essential steps, which are executed before ev-
ery example. Here it already becomes apparent that the Repeat brick feature
contains more logic than the original unit test. The reason for this is that the
behavior-driven approach of Cucumber stimulates the composition of holistic
models which look at the system as a whole. While the essence of every feature
is principally defined by the scenarios, a Background gives the necessary context
for a practical use case.

Like the feature itself, every Scenario can have a short and descriptive name which
should be carefully selected. In this example a script is constructed that will be
automatically executed when the whole program is started. The script contains
bricks to declare and initialize a variable that is then incremented by one within
a loop. The step definition to initialize variables makes use of Catroid’s internal
formula editor, which is a separate module. The underlying code can be found in
Listing A.5. In the end an assertion is made that the variable should equal the
amount of total iterations. Because of the whole-system approach, which consid-
ers a complete program, this Cucumber specification effectively uses more Java

71

5 Specification of a visual language with BDD

code behind the scenes than the original unit test while still being shorter in
length and exhibiting far greater clarity.

1 @And("^this script has a Repeat (\\d+) times brick$")
2 public void script_has_repeat_times_brick(int iterations) {
3 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
4 Script script = (Script) Cucumber.get(Cucumber.KEY_CURRENT_SCRIPT);
5
6 Brick brick = new RepeatBrick(object, new Formula(iterations));
7 Cucumber.put(Cucumber.KEY_LOOP_BEGIN, brick);
8 script.addBrick(brick);
9 }

10
11 @And("^this script has a Repeat end brick$")
12 public void script_has_repeat_end_brick() {
13 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
14 Script script = (Script) Cucumber.get(Cucumber.KEY_CURRENT_SCRIPT);
15
16 LoopBeginBrick begin = (LoopBeginBrick) Cucumber.get(Cucumber.KEY_LOOP_BEGIN);
17 Brick brick = new LoopEndBrick(object, begin);
18 script.addBrick(brick);
19 }

Listing 5.5: Step definitions for a Repeat brick

Listing 5.5 contains the two step definitions for creating a Repeat brick and its
counterpart, a Repeat End brick. The Catroid IDE is implemented in such a way
that the user does not need to worry about the Repeat End brick because it is au-
tomatically added or removed together with the first brick of the loop. Of course,
the Cucumber feature cannot rely on the convenience of the IDE, and thus an ap-
propriate step definition is required. Although it would theoretically be possible
to automatically add the Repeat End brick after a given number of consecutive
bricks and to omit the additional step, this would be rather unintuitive and actu-
ally make the specification less concise. It is also worth saying that these two step
definitions in particular need to use the global state in order to share the instance
of the first Repeat brick with the Repeat End brick.

Finally, within Listing 5.6 there is the step definition that creates a Change Variable
brick by employing the internal formula mechanism of Catroid. The purpose of
this brick is to change the value of a stored variable by a given amount, which is

72

5 Specification of a visual language with BDD

1 @And("^this script has a change ’(\\w+)’ by (\\d+.?\\d*) brick$")
2 public void script_has_change_var_by_val_brick(String name, String value) {
3 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
4 Script script = (Script) Cucumber.get(Cucumber.KEY_CURRENT_SCRIPT);
5 Project project = ProjectManager.getInstance().getCurrentProject();
6
7 UserVariable var = project.getUserVariables().getUserVariable(name, object);
8 if (var == null) {
9 var = project.getUserVariables().addSpriteUserVariableToSprite(object, name);

10 }
11
12 FormulaElement elem = new FormulaElement(ElementType.NUMBER, value, null);
13
14 Brick brick = new ChangeVariableBrick(object, new Formula(elem), var);
15 script.addBrick(brick);
16 }

Listing 5.6: Step definition for a Change Variable brick

stated as a literal value.

5.3.3 Running Catrobat programs

Considering that Catroid is a mobile Android application which implements a
visual programming language, there is inevitably some framework code required
to interact with a user interface. Robotium4 is such a framework that extends the
existing Android test facilities, and gives improved control over various screen
elements. The Solo class of Robotium is used inside the step definition for the
invocation of a program (Listing 5.7) to navigate through different views, and to
eventually initiate program execution.

Because a Catrobat program itself is really only a container, its execution conven-
tionally begins with the start of the first script and ends with termination of the
last script. By this definition the program must contain at least one Start script
which will be automatically signaled at the beginning. In order to determine the
start and end of the scripts, a set of two different wait locks and callback methods

4https://code.google.com/p/robotium (accessed 2013-10-05)

73

https://code.google.com/p/robotium

5 Specification of a visual language with BDD

1 @When("^I start the program$")
2 public void I_start_the_program() throws InterruptedException {
3 programWaitLock = new Semaphore(programWaitLockPermits);
4 addScriptEndCallbacks();
5
6 Solo solo = (Solo) Cucumber.get(Cucumber.KEY_SOLO);
7 assertEquals(MainMenuActivity.class, solo.getCurrentActivity().getClass());
8 solo.clickOnView(solo.getView(R.id.main_menu_button_continue));
9 solo.waitForActivity(ProjectActivity.class.getSimpleName(), 3000);

10 assertEquals(ProjectActivity.class, solo.getCurrentActivity().getClass());
11 solo.clickOnView(solo.getView(R.id.button_play));
12 solo.waitForActivity(StageActivity.class.getSimpleName(), 3000);
13 assertEquals(StageActivity.class, solo.getCurrentActivity().getClass());
14
15 synchronized (programStartWaitLock) {
16 if (!programHasStarted) {
17 programStartWaitLock.wait(10000);
18 }
19 }
20 }

Listing 5.7: Step definition for program invocation

is used inside the Java code of the step definition classes. Special bricks of a type
that is declared inside the test code are added to the top and bottom of each script.
Such a brick then has the ability to call a method which is also inside the test code
to signal the start or end of a script. These “callback bricks” are respectively added
either inside the step definitions for starting the program (Listings 5.7, A.2), or for
creating a start script (Listing A.1).

5.3.4 Behavior of script invocation

In Catrobat, Scripts begin running in response to an event, which is the same
behavior as in Scratch. An event can be the start of the whole program, an ex-
ternal input event on the hardware, or some kind of internal event. The so-called
Broadcast bricks and When scripts are the two components of the latter example.
Broadcasts are signals or undirected messages, which are sent into the Catroid
runtime. They do not contain information about the sender or any other data

74

5 Specification of a visual language with BDD

than a string, which is just the name of the message itself. A When script can gen-
erally either respond to a pre-defined event, e.g., a touch input, or to a broadcast
message. While this model is reminiscent of function calling, it has more similar-
ities with the dynamic approach of programming languages like Smalltalk and
Ruby.

1 Scenario: Broadcast brick sends message in program with two When scripts
2
3 Given ’Object’ has a Start script
4 And this script has a Broadcast ’hello’ brick
5 And this script has a Wait 200 milliseconds brick
6 And this script has a Print brick with ’-S-’
7
8 Given ’Object’ has a When ’hello’ script
9 And this script has a Wait 100 milliseconds brick

10 And this script has a Print brick with ’-A-’
11
12 Given ’Object’ has a When ’hello’ script
13 And this script has a Wait 300 milliseconds brick
14 And this script has a Print brick with ’-B-’
15
16 When I start the program
17 And I wait until the program has stopped
18 Then I should see the printed output ’-A--S--B-’

Listing 5.8: Cucumber scenario for a Broadcast brick

When specifying the properties of Broadcast bricks and When scripts, there are
two fundamentally important modes of behavior that need to be documented.
The first one is the simple convention that every When script for given message
A will start running as the direct result of a broadcast of the message A. List-
ing 5.8 specifies a scenario where two When scripts react to the same message
broadcast.

In this example timings are used to force the scripts into a deliberate order. This is
important to ensure that no side effects that are uncorrelated with the documented
behavior affect the outcome of the test. The method of printed output was chosen
because text strings can be very easily compared to each other, and they do a good
job at illustrating the entire scenario. The Print brick is actually not part of the
Catrobat programming language, but has been implemented inside the test code.

75

5 Specification of a visual language with BDD

At the time of writing Catroid did not yet include any functionality that would
have been suitable for this feature.

1 Scenario: Program with two start scripts and one When script
2
3 Given ’Object’ has a Start script
4 And this script has a Broadcast ’hello’ brick
5
6 Given ’Object’ has a Start script
7 And this script has a Wait 100 milliseconds brick
8 And this script has a Broadcast ’hello’ brick
9

10 Given ’Object’ has a When ’hello’ script
11 And this script has a Print brick with ’-A-’
12 And this script has a Wait 300 milliseconds brick
13 And this script has a Print brick with ’-B-’
14 And this script has a Wait 300 milliseconds brick
15 And this script has a Print brick with ’-C-’
16
17 When I start the program
18 And I wait until the program has stopped
19 Then I should see the printed output ’-A--A--B--C-’

Listing 5.9: Cucumber scenario for the restarting of When scripts

The second essential behavior that When scripts are expected to have comes to
light in a specific situation. When scripts actually behave like singleton objects in
a way that they are only instantiated once and do not get duplicated when they
receive a message. This means that sending the same message twice in quick
succession can have one of two different effects. Either a reacting When script
queues up the messages it receives and runs from start to finish, or it immediately
restarts itself for every message. The second type of behavior is the one that has
been implemented in Scratch and Catroid. Within Listing 5.9 there is is a scenario
that specifies this feature with the help of printed output. Again, timings are used
to enforce a deterministic sequence of execution that can be reliably verified every
time.

76

5 Specification of a visual language with BDD

5.3.5 Concurrency and wait locks

Because broadcasts are undirected messages they are generally asynchronous in
both Scratch and Catroid. This means that a script will continue right away to
run any following bricks that come after a Broadcast brick was sent. However,
this behavior may not always be desired. For example, a Start script may invoke
a number of separate initialization scripts that should finish before the program
continues with the first script. For this reason there is another kind of Broadcast
brick that blocks the parent script until every reacting When script has ceased
execution. This Broadcast Wait brick thus effectively allows to enforce the synchro-
nization of parts of the control flow. In Listing 5.10 there is another Cucumber
scenario which illustrates the expected behavior. If in this example a conventional
Broadcast brick was used instead, then the Start script would be the first to fin-
ish.

1 Scenario: Broadcast Wait brick sends message in program with two When scripts
2
3 Given ’Object’ has a Start script
4 And this script has a BroadcastWait ’hello’ brick
5 And this script has a Print brick with ’-S1-’
6
7 Given ’Object’ has a When ’hello’ script
8 And this script has a Wait 100 milliseconds brick
9 And this script has a Print brick with ’-W1-’

10
11 Given ’Object’ has a When ’hello’ script
12 And this script has a Wait 200 milliseconds brick
13 And this script has a Print brick with ’-W2-’
14
15 When I start the program
16 And I wait until the program has stopped
17 Then I should see the printed output ’-W1--W2--S1-’

Listing 5.10: Cucumber scenario for a Broadcast Wait brick

Concurrency, of course, always introduces a lot of complexity into a programming
language, even if the possibilities are strictly limited like they are in Catrobat.
Here, correct and verifiable specification is the key to a well-designed and well-
implemented system. In fact, a discrepancy between Catroid and Scratch was only

77

5 Specification of a visual language with BDD

discovered by chance, but the correct behavior has since been well documented
and exactly specified with the help of Cucumber. One of the many advantages of
the ubiquitous language Gherkin is that it allows developers to discuss concepts at
by means of tangible examples. The example for the aforementioned concurrency
issue is revealed in Listing 5.11.

1 Scenario: Broadcast Wait brick is unblocked when the same message is resent
2
3 Given ’Object’ has a Start script
4 And this script has a BroadcastWait ’hello’ brick
5 And this script has a Print brick with ’-S1-’
6
7 Given ’Object’ has a Start script
8 And this script has a Wait 200 milliseconds brick
9 And this script has a Broadcast ’hello’ brick

10
11 Given ’Object’ has a When ’hello’ script
12 And this script has a Print brick with ’-W1-’
13 And this script has a Wait 400 milliseconds brick
14 And this script has a Print brick with ’-W2-’
15
16 When I start the program
17 And I wait until the program has stopped
18 Then I should see the printed output ’-W1--S1--W1--W2-’

Listing 5.11: Cucumber scenario for the blocking behavior of Broadcast bricks

The behavior in question arises from a situation where a Broadcast Wait brick
is blocking a script because it is waiting for the reacting When scripts to finish.
Ordinarily there would be only one possible outcome, that is to say the waiting
script would simply finish after the other scripts. But what happens when there is
an additional script with a Broadcast brick that sends the same message another
time? Given that the behavior of restarting When scripts described in Section
5.3.4 still holds true, the very When scripts that the waiting script is anticipating
to finish are indeed restarted. Now one possibility would be that because the
When scripts did not actually finish (because they were restarted), the Broadcast
Wait brick continues to block its containing script. The other possibility, which
is the one that has been implemented within Scratch and Catroid, is to unblock
the Broadcast Wait brick and let the waiting script proceed instantly. It becomes

78

5 Specification of a visual language with BDD

clear that stating intricate circumstances like these only in unstructured natural
language is quite inappropriate. With Cucumber, however, even very complex
problems can be stated clearly.

5.3.6 Considering uneven performance

Another topic of great importance is the specification of performance. In order
to achieve the goal of providing the same experience across multiple platforms,
Catrobat programs also need be consistent in the amount of time they need for
certain operations. In most cases it is considered better if a task is carried out as
well and fast as possible in a programming language. However, the visual nature
of Catrobat involves specific actions which directly interact with animated objects
on the screen. One common task, for example, is to modify the position attribute
of an object’s sprite in such a way that it appears to move in a gliding motion.
Specifically, one would increment or decrement the coordinate values inside a
loop. Now the arising problem is that if the time for one iteration of a Repeat
brick would be only bounded by hardware speed, then the animated sprite would
move faster on better hardware and more sluggishly on slower hardware. Since
new generations of hardware tend to continuously improve, it is thus sufficient to
define a lower temporal bound for one loop iteration (Listing 5.12).

This Cucumber feature relies completely on native features of the Catrobat pro-
gramming language to specify the expected behavior of a Repeat brick. The sce-
nario involves two scripts which start running at the same time and continue to
run concurrently. One of the scripts contains a loop which continuously incre-
ments a variable. The other script waits two seconds and then checks the value
of the variable. If a single iteration takes at least 20 milliseconds (0.02 seconds),
then the variable should be less than or equal to 100. In other words, only 100

iterations at the most should have been possible within two seconds. An asser-
tion for a lower bound of iterations is omitted because there are separate features
for specifying the general functionality and expected minimum performance of a
Repeat brick.

79

5 Specification of a visual language with BDD

1 Scenario: No more than 100 iterations in 2 seconds
2
3 Given ’Object’ has a Start script
4 And this script has a set ’i’ to 0 brick
5 And this script has a set ’k’ to 0 brick
6 And this script has a Wait 2 seconds brick
7 And this script has a set ’k’ to ’i’ brick
8
9 Given ’Object’ has a Start script

10 And this script has a Repeat 400 times brick
11 And this script has a change ’i’ by 1 brick
12 And this script has a Repeat end brick
13
14 When I start the program
15 And I wait until the program has stopped
16 Then the variable ’k’ should be less than or equal 100

Listing 5.12: Cucumber scenario for Repeat brick delay

In most cases the test will produce a result of almost exactly 100 iterations, de-
pending on the hardware. When the Cucumber tests are executed on virtualized
systems with an emulator, however, it is possible that the amount is much lower.
The Java code of the step definitions consists only of basic assertions, visible in in
Listing A.4.

5.4 Lessons learned

The previous sections have demonstrated how an executable specification which
is written in the ubiquitous language Gherkin can be used to document and test
the visual programming language Catrobat as it is implemented in the Android
application Catroid. The behavior-driven approach of specification by example
definitely has a number of advantages, but in order to realize its full potential for
cross-platform applications there is still some work to be done.

80

5 Specification of a visual language with BDD

5.4.1 Advantages of specifying Catrobat by example

The Android module of Cucumber JVM has already been successfully integrated
with the existing code base of Catroid. Several features have been written since,
and numerous practical advantages have been identified.

Verifiable documentation. Feature files have indeed turned out to be extremely
valuable as written documentation. Before the introduction of BDD with Cucum-
ber, story cards pinned on a whiteboard and other loose documents were the
only foundation for the large code base of Catroid. The established unit tests are
already mostly derived from these story cards as a result of the TDD process.
Nevertheless, they are not very suitable for gaining a complete understanding of
the whole system. Gherkin features on the other hand are not only very read-
able documentation, but most importantly, they are verifiable by automated test-
ing. The more natural syntax of Gherkin is also an advantage of Cucumber over
model-based testing. Because specification by example also means to think about
the requirements first and write them down, depending on the discipline of the
developers the resulting documentation should always be complete.

Agile development process. A common misunderstanding about BDD is that
customers or other non-technical stakeholders are supposed to write stories in
the ubiquitous language. While this can be possible, programmers should instead
integrate writing feature files into their development process. Because the Catroid
development team already uses a modified form of Kanban, it is very easy to do
just that. With the integration of Cucumber, a new story card can be accompanied
by a Gherkin feature which illustrates concrete use cases in the form of scenarios.
When submitting bug reports or feature requests to Github, a written example can
now be used to better explain the correct behavior of the system. Best of all, any
Gherkin scenarios can be directly tried out on Catroid without having to abstract
them into unit tests first.

81

5 Specification of a visual language with BDD

Testing requirements. The measure of code coverage states how large that por-
tion of a software is which has been throughly tested. But the larger a system
is, the more individual components it contains. The different ways these compo-
nents interact with each other, and how they interact with the user comprise the
software functionality as a whole. The functional requirements can potentially be
tested by integration tests or acceptance tests. Cucumber features with their com-
binable and reusable steps are much more efficient for this task however. With
the ubiquitous language Gherkin, every relevant behavior can be stated precisely
and with a concise structure. Another advantage is the increased turnaround time
during development. Existing Cucumber features can be modified without hav-
ing to recompile the code base. Once a significant number of step definitions has
been accumulated, new features can be composed without even having to add
new glue code.

Easier cross-platform development. Although Cucumber has not yet been put
to use on the other implementation platforms of Catrobat, the process will be very
similar. Until now the development teams of the iOS, Windows Phone and web
versions of the visual programming language did not have any other guideline
than the existing Java code based on the Android version. Even without employ-
ing Cucumber themselves, those teams will for the first time be able to rely on a
platform independent, behavior-centric documentation in the form of feature files.
Critical features like the loop delay or the blocking behavior of bricks are docu-
mented and specified in a plain and readable language. As soon as Cucumber is
available on the other platforms, the complete set of feature files can be shared by
all the different development teams. They will then only need to implement step
definitions for every step in order to be able to automatically verify the specifi-
cation. In such an environment synergetic effects will allow the teams to benefit
from each others’ work, as the underlying feature files can be developed together
across all platforms.

82

5 Specification of a visual language with BDD

5.4.2 Necessary future improvements and limitations

Although the specification of Catrobat by example has initially shown many
promising advantages, BDD with Cucumber is certainly no golden bullet. Like
every methodology of software development, specification by example is also lim-
ited by how thoroughly it is exercised. If the demanded features are not formu-
lated specifically enough, it still cannot be ensured that the software will meet
the requirements. This can be especially difficult when trying to design a pro-
gramming language, visual or not. The developers must take great care that they
consider all the aspects of the system and then come up with user stories and key
examples for the expected behavior. In Section 5.1.1 different approaches to ap-
plying a story structure to a visual programming language were introduced that
helped to make the process easier. Similarly, the quality of the test code inside
step definitions also heavily depends on the abilities of the programmers.

Another limitation at this time is that the cross-platform aspect of the Catrobat
specification could not yet be fully realized. The reason is that Cucumber and
Gherkin must first be natively implemented on other mobile platforms than An-
droid. Other mobile test frameworks which also use Gherkin but do not execute
Cucumber natively on the target platform cannot directly interact with the ap-
plication code, and thus are no substitute. In Section 3.5 it was briefly discussed
what steps have to be taken to achieve a native implementation of Cucumber on
the operating systems Windows Phone and iOS.

Finally, even the most comprehensive test and specification framework can be
limited by some of the inherent properties of the hardware of mobile devices. The
inconsistency of performance or the varying availability of certain features can
be a challenge for a uniform test base across devices. Because the advantage of
using Cucumber significantly depends on the ability to use the same Gherkin fea-
ture files on all platforms, any discrepancies must be accounted for in some way.
When considering only one operating system platform, the differences between
mobile devices are usually hardware specific properties like screen size and reso-
lution, CPU performance, and RAM size. With some effort, these differences can

83

5 Specification of a visual language with BDD

be accounted for inside the test code and by carefully selecting test criteria for the
Cucumber features, e.g., using a lower bound for the time limit of a loop iteration
(Section 5.3.6).

Coping with missing hardware components is rarely necessary but can be rather
complicated. Because Catrobat features abstractions for hardware sensor measure-
ments at the language level, e.g., device rotation, a complete specification of the
visual programming language must also include tests for these components. If
a physical device or emulator instance lacks the proper hardware to deliver the
expected sensor data, certain tests would probably fail. This issue can potentially
be mitigated by using mocking frameworks inside the test code, which can stand
in for the missing hardware.

When it comes to providing a consistent set of Cucumber files as the definite
specification of Catrobat across not only different hardware but also different op-
erating systems, more challenges arise. While the data format delivered by sensor
measurements is in most cases equal across devices running the same operat-
ing system, different operating systems may specify different formats for values
of device orientation, coordinates of touch input, etc. If the Gherkin feature files
contain information about the expected format for such data, it is an obligation
for the programmers to implement any necessary transformations inside the step
definitions. However, the Cucumber test framework provides no help in itself for
such issues.

5.4.3 Conclusion

Proper specification is the precondition for an all-round successful software project.
The focus of many developers lies often exclusively on building the software right,
but not on building the right product for the given requirements. Behavior-driven
development and specification by example are sometimes criticized for not adding
anything valuable to a development process, but instead for only increasing the
management overheads. Software tools like Cucumber make it easier to realize
the concept of specification by example with less effort, but they cannot prevent

84

5 Specification of a visual language with BDD

failure or ensure success. Although the approach definitely has some limitations,
in the instance of Catroid and Catrobat actual real life benefits could be demon-
strated.

The challenge of specifying a visual programming language on diverging mobile
platforms truly demands new and different approaches. Using Cucumber to com-
pose system-centric specification documents which are executable is a very pow-
erful solution to many problems such as this challenge poses. One reason why
the underlying methods are so suitable in this case is that BDD enforces a holistic
vision of the software that inspires developers to think about architecture and be-
havior first before writing any code. The other reason is that the tools which are
part of the test framework Cucumber, like the platform-independent ubiquitous
language Gherkin, are ideal for use with diverse mobile applications.

In conclusion, the practical examples of a dynamic and executable specification
for Catrobat suggest that this approach will be of great value for the continued
development of this visual programming language. Hopefully the presented ideas
will further improve software quality and project efficiency to help Catrobat reach
its respectable goals.

85

A Appendix

A.1 Listings

1 @Given("^’(\\w+)’ has a Start script$")
2 public void object_has_start_script(String object) {
3 programWaitLockPermits -= 1;
4 Project project = ProjectManager.getInstance().getCurrentProject();
5 Sprite sprite = Util.findSprite(project, object);
6 StartScript script = new StartScript(sprite);
7
8 script.addBrick(new CallbackBrick(sprite, new CallbackBrick.BrickCallback() {
9 @Override

10 public void onCallback() {
11 synchronized (programStartWaitLock) {
12 if (!programHasStarted) {
13 programHasStarted = true;
14 programStartWaitLock.notify();
15 }
16 }
17 }
18 }));
19
20 sprite.addScript(script);
21 Cucumber.put(Cucumber.KEY_CURRENT_SCRIPT, script);
22 }

Listing A.1: Step definition for a Start script (Section 5.3)

A Appendix

1 private void addScriptEndCallbacks() {
2 Project project = ProjectManager.getInstance().getCurrentProject();
3 for (Sprite sprite : project.getSpriteList()) {
4 for (int i = 0; i < sprite.getNumberOfScripts(); i++) {
5 sprite.getScript(i).addBrick(new CallbackBrick(sprite, new BrickCallback() {
6 @Override
7 public void onCallback() {
8 programWaitLock.release();
9 }

10 }));
11 }
12 }
13 }

Listing A.2: Method to append a callback brick (Section 5.3)

1 @And("^I wait until the program has stopped$")
2 public void wait_until_program_has_stopped() throws InterruptedException {
3 // While there are still scripts running, the available permits should be < 1.
4 programWaitLock.tryAcquire(1, 60, TimeUnit.SECONDS);
5 }

Listing A.3: Step definition for determining program termination (Section 5.3)

1 @And("^this script has a set ’(\\w+)’ to ’(\\w+)’ brick$")
2 public void script_has_set_var_to_var_brick(String a, String b) {
3 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
4 Script script = (Script) Cucumber.get(Cucumber.KEY_CURRENT_SCRIPT);
5 Project project = ProjectManager.getInstance().getCurrentProject();
6
7 UserVariable varA = project.getUserVariables().getUserVariable(a, object);
8 if (varA == null) {
9 varA = project.getUserVariables().addSpriteUserVariableToSprite(object, a);

10 }
11
12 FormulaElement elemB = new FormulaElement(ElementType.USER_VARIABLE, b, null);
13
14 Brick brick = new SetVariableBrick(object, new Formula(elemB), varA);
15 script.addBrick(brick);
16 }

Listing A.4: Step definition for assigning one variable to another (Section 5.3)

87

A Appendix

1 @And("^this script has a set ’(\\w+)’ to (\\d+.?\\d*) brick$")
2 public void script_has_set_var_to_val_brick(String a, String b) {
3 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
4 Script script = (Script) Cucumber.get(Cucumber.KEY_CURRENT_SCRIPT);
5 Project project = ProjectManager.getInstance().getCurrentProject();
6
7 UserVariable varA = project.getUserVariables().getUserVariable(a, object);
8 if (varA == null) {
9 varA = project.getUserVariables().addSpriteUserVariableToSprite(object, a);

10 }
11
12 FormulaElement elemB = new FormulaElement(ElementType.NUMBER, b, null);
13
14 Brick brick = new SetVariableBrick(object, new Formula(elemB), varA);
15 script.addBrick(brick);
16 }

Listing A.5: Step definition for assigning a literal to a variable (Section 5.3)

1 @Then("^the variable ’(\\w+)’ should be greater than or equal (\\d+.?\\d*)$")
2 public void var_should_greater_than_equal_float(String name, float expected) {
3 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
4 Project project = ProjectManager.getInstance().getCurrentProject();
5
6 UserVariable var = project.getUserVariables().getUserVariable(name, object);
7 assertNotNull(var);
8
9 float actual = var.getValue().floatValue();

10 assertThat(actual, greaterThanOrEqualTo(expected));
11 }

Listing A.6: Step definition for comparing variables (Section 5.3)

1 @And("^this script has a Wait (\\d+.?\\d*) seconds brick$")
2 public void script_has_wait_ms_brick(float seconds) {
3 Sprite object = (Sprite) Cucumber.get(Cucumber.KEY_CURRENT_OBJECT);
4 Script script = (Script) Cucumber.get(Cucumber.KEY_CURRENT_SCRIPT);
5
6 int millis = Math.round(seconds * 1000f);
7 Brick brick = new WaitBrick(object, millis);
8 script.addBrick(brick);
9 }

Listing A.7: Step definition for a Wait brick (Section 5.3)

88

A Appendix

1 *** Settings ***
2 Documentation A resource file with reusable keywords and variables.
3 ...
4 ... The system specific keywords created here form our own
5 ... domain specific language. They utilize keywords provided
6 ... by the imported Selenium2Library.
7 Library Selenium2Library
8
9 *** Variables ***

10 ${SERVER} localhost:7272
11 ${BROWSER} Firefox
12 ${DELAY} 0
13 ${VALID USER} demo
14 ${VALID PASSWORD} mode
15 ${LOGIN URL} http://${SERVER}/
16 ${WELCOME URL} http://${SERVER}/welcome.html
17 ${ERROR URL} http://${SERVER}/error.html
18
19 *** Keywords ***
20 Open Browser To Login Page
21 Open Browser ${LOGIN URL} ${BROWSER}
22 Maximize Browser Window
23 Set Selenium Speed ${DELAY}
24 Login Page Should Be Open
25
26 Login Page Should Be Open
27 Title Should Be Login Page
28
29 Go To Login Page
30 Go To ${LOGIN URL}
31 Login Page Should Be Open
32
33 Input Username
34 [Arguments] ${username}
35 Input Text username_field ${username}
36
37 Input Password
38 [Arguments] ${password}
39 Input Text password_field ${password}
40
41 Submit Credentials
42 Click Button login_button
43
44 Welcome Page Should Be Open
45 Location Should Be ${WELCOME URL}
46 Title Should Be Welcome Page

Listing A.8: Robot framework resource file, adapted from robotframework.org

89

http://robotframework.org

Acronyms

A.2 Acronyms

ATDD acceptance test-driven development

BDD behavior-driven development

CFG context-free grammar

regex regular expession

SbE specification by example

TDD test-driven development

XP Extreme Programming

90

Bibliography

[1] G. Adzic. Examples make it easy to spot inconsistencies. Online; accessed 2013-
10-05. May 2009. url: http://gojko.net/2009/05/12/examples-make- it-
easy-to-spot-inconsistencies.

[2] G. Adzic. Specification by Example: How Successful Teams Deliver the Right Soft-
ware. Manning Pubs Co Series. Manning, 2011. isbn: 9781617290084. url:
http://books.google.at/books?id=5F5PYgEACAAJ.

[3] Franz L. Alt. “The standardization of programming languages.” In: Pro-
ceedings of the 1964 19th ACM national conference. ACM ’64. New York, NY,
USA: ACM, 1964, pp. 22.1–22.6. doi: 10 . 1145 / 800257 . 808893. url: http :
//doi.acm.org/10.1145/800257.808893.

[4] Ada Resource Association. An ISO Standard Guards the Ada Hen House. On-
line; accessed 2013-10-05. 2013. url: http://www.adaic.org/ada-resources/
standards/ada-95-documents/acaa.

[5] Ada Conformity Assessment Authority and R. L. Brukardt. The Ada Confor-
mity Assessment Test Suite (ACATS) Version 3.0 User’s Guide. Online; accessed
2013-10-05. 2008. url: http://www.ada-auth.org.

[6] K. Beck. Extreme Programming Explained: Embrace Change. An Alan R. Apt
Book Series. Addison-Wesley, 2000. isbn: 9780201616415. url: http://books.
google.at/books?id=G8EL4H4vf7UC.

[7] K. Beck. Test-driven Development: By Example. Kent Beck signature book.
Addison-Wesley, 2003. isbn: 9780321146533. url: http://books.google.at/
books?id=gFgnde%5C_vwMAC.

http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies
http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies
http://books.google.at/books?id=5F5PYgEACAAJ
http://dx.doi.org/10.1145/800257.808893
http://doi.acm.org/10.1145/800257.808893
http://doi.acm.org/10.1145/800257.808893
http://www.adaic.org/ada-resources/standards/ada-95-documents/acaa
http://www.adaic.org/ada-resources/standards/ada-95-documents/acaa
http://www.ada-auth.org
http://books.google.at/books?id=G8EL4H4vf7UC
http://books.google.at/books?id=G8EL4H4vf7UC
http://books.google.at/books?id=gFgnde%5C_vwMAC
http://books.google.at/books?id=gFgnde%5C_vwMAC

Bibliography

[8] D. Chelimsky et al. The Rspec Book: Behaviour Driven Development With Rspec,
Cucumber, and Friends. Pragmatic Bookshelf Series. Pragmatic Bookshelf,
2010. isbn: 9781934356371. url: http://books.google.at/books?id=0rxoPgAACAAJ.

[9] Yoonsik Cheon and GaryT. Leavens. “A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way.” English. In: ECOOP 2002 — Object-
Oriented Programming. Ed. by Boris Magnusson. Vol. 2374. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2002, pp. 231–255. isbn: 978-
3-540-43759-8. doi: 10.1007/3-540-47993-7_10. url: http://dx.doi.org/10.
1007/3-540-47993-7_10.

[10] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison Wesley Professional, 2004. isbn: 9780321125217. url: http://books.
google.at/books?id=xColAAPGubgC.

[11] J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques
in Software Development. Cambridge University Press, 2009. isbn: 9780521899116.
url: http://books.google.at/books?id=PwbqT8g1nfAC.

[12] John Fitzgerald, PG Larsen, and S Sahara. “VDMTools: advances in support
for formal modeling in VDM.” In: SIGPLAN Not. 43.2 (Feb. 2008), pp. 3–11.
issn: 0362-1340. doi: 10.1145/1361213.1361214. url: http://doi.acm.org/10.
1145/1361213.1361214.

[13] Andrew Harry. Formal Methods: Fact File: VDM and Z. New York, NY, USA:
John Wiley & Sons, Inc., 1997. isbn: 0471958573.

[14] A. Hellesoy and M. Wynne. The Cucumber Book: Behaviour-Driven Develop-
ment for Testers and Developers. Pragmatic Programmers. Pragmatic Book-
shelf, 2012. isbn: 9781934356807. url: http://books.google.at/books?id=
oMswygAACAAJ.

[15] Google Inc. Android Developer Reference — Application Fundamentals. Online;
accessed 2013-10-05. 2013. url: http : / / developer. android . com / guide /
components/fundamentals.html.

92

http://books.google.at/books?id=0rxoPgAACAAJ
http://dx.doi.org/10.1007/3-540-47993-7_10
http://dx.doi.org/10.1007/3-540-47993-7_10
http://dx.doi.org/10.1007/3-540-47993-7_10
http://books.google.at/books?id=xColAAPGubgC
http://books.google.at/books?id=xColAAPGubgC
http://books.google.at/books?id=PwbqT8g1nfAC
http://dx.doi.org/10.1145/1361213.1361214
http://doi.acm.org/10.1145/1361213.1361214
http://doi.acm.org/10.1145/1361213.1361214
http://books.google.at/books?id=oMswygAACAAJ
http://books.google.at/books?id=oMswygAACAAJ
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html

Bibliography

[16] Google Inc. Android Developer Reference — Building and Running. Online;
accessed 2013-10-05. 2013. url: http : / / developer. android . com / tools /
building.

[17] C. Larman and B. Vodde. Practices for Scaling Lean & Agile Development: Large,
Multisite, and Offshore Product Development with Large-Scale Scrum. Pearson
Education, 2010. isbn: 9780321685087. url: http://books.google.at/books?
id=fqdTsH36TVYC.

[18] Peter Gorm Larsen and John Fitzgerald. “Recent industrial applications of
VDM in Japan.” In: Proceedings of the 2007th internatioanal conference on Formal
Methods in Industry. FACS-FMI’07. London, UK: British Computer Society,
2007, pp. 8–8. url: http://dl.acm.org/citation.cfm?id=2227886.2227894.

[19] Peter Gorm Larsen et al. “The overture initiative integrating tools for VDM.”
In: SIGSOFT Softw. Eng. Notes 35.1 (Jan. 2010), pp. 1–6. issn: 0163-5948. doi:
10 . 1145 / 1668862 . 1668864. url: http : / / doi . acm . org / 10 . 1145 / 1668862 .
1668864.

[20] P.G. Larsen, J. Fitzgerald, and T. Brookes. “Applying formal specification
in industry.” In: Software, IEEE 13.3 (1996), pp. 48–56. issn: 0740-7459. doi:
10.1109/52.493020.

[21] Kim Marriott, Bernd Meyer, and KentB. Wittenburg. “A Survey of Visual
Language Specification and Recognition.” English. In: Visual Language The-
ory. Ed. by Kim Marriott and Bernd Meyer. Springer New York, 1998, pp. 5–
85. isbn: 978-1-4612-7240-3. doi: 10.1007/978-1-4612-1676-6_2. url: http:
//dx.doi.org/10.1007/978-1-4612-1676-6_2.

[22] G. Meszaros. XUnit Test Patterns: Refactoring Test Code. A Martin Fowler sig-
nature book. Addison Wesley Professional, 2007. isbn: 9780131495050. url:
http://books.google.at/books?id=y4JuQgAACAAJ.

[23] D. North. Introducing BDD. Online; accessed 2013-10-05. 2006. url: http :
//dannorth.net/introducing-bdd.

[24] D. North. What’s in a story? Online; accessed 2013-10-05. 2007. url: http :
//dannorth.net/whats-in-a-story.

93

http://developer.android.com/tools/building
http://developer.android.com/tools/building
http://books.google.at/books?id=fqdTsH36TVYC
http://books.google.at/books?id=fqdTsH36TVYC
http://dl.acm.org/citation.cfm?id=2227886.2227894
http://dx.doi.org/10.1145/1668862.1668864
http://doi.acm.org/10.1145/1668862.1668864
http://doi.acm.org/10.1145/1668862.1668864
http://dx.doi.org/10.1109/52.493020
http://dx.doi.org/10.1007/978-1-4612-1676-6_2
http://dx.doi.org/10.1007/978-1-4612-1676-6_2
http://dx.doi.org/10.1007/978-1-4612-1676-6_2
http://books.google.at/books?id=y4JuQgAACAAJ
http://dannorth.net/introducing-bdd
http://dannorth.net/introducing-bdd
http://dannorth.net/whats-in-a-story
http://dannorth.net/whats-in-a-story

Bibliography

[25] D. L. Parnas. “A technique for software module specification with exam-
ples.” In: Commun. ACM 15.5 (May 1972), pp. 330–336. issn: 0001-0782. doi:
10.1145/355602.361309. url: http://doi.acm.org/10.1145/355602.361309.

[26] K. Pugh. Lean-Agile Acceptance Test-Driven-Development. Net Objectives Lean-
Agile Series. Pearson Education, 2010. isbn: 9780321719447. url: http ://
books.google.at/books?id=tB23eWcG9DEC.

[27] M.L. Scott. Programming Language Pragmatics. Elsevier Science, 2009. isbn:
9780080922997. url: http://books.google.at/books?id=GBISkhhrHh8C.

[28] W. Slany. “A mobile visual programming system for Android smartphones
and tablets.” In: Visual Languages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on. 2012, pp. 265–266. doi: 10 .1109/VLHCC.2012 .
6344546.

[29] Wolfgang Slany. “Catroid: a mobile visual programming system for chil-
dren.” In: Proceedings of the 11th International Conference on Interaction Design
and Children. IDC ’12. Bremen, Germany: ACM, 2012, pp. 300–303. isbn: 978-
1-4503-1007-9. doi: 10.1145/2307096.2307151. url: http://doi.acm.org/10.
1145/2307096.2307151.

[30] C. Solis and Xiaofeng Wang. “A Study of the Characteristics of Behaviour
Driven Development.” In: Software Engineering and Advanced Applications
(SEAA), 2011 37th EUROMICRO Conference on. 2011, pp. 383–387. doi: 10 .
1109/SEAA.2011.76.

[31] A. Thurston. Ragel State Machine Compiler User Guide. Online; accessed 2013-
10-05. 2013. url: http://www.complang.org/ragel/ragel-guide-6.8.pdf.

[32] Michael Tonndorf. “Ada conformity assessments: a model for other pro-
gramming languages?” In: Ada Lett. XIX.3 (Sept. 1999), pp. 89–99. issn: 1094-
3641. doi: 10.1145/319295.319310. url: http://doi.acm.org/10.1145/319295.
319310.

94

http://dx.doi.org/10.1145/355602.361309
http://doi.acm.org/10.1145/355602.361309
http://books.google.at/books?id=tB23eWcG9DEC
http://books.google.at/books?id=tB23eWcG9DEC
http://books.google.at/books?id=GBISkhhrHh8C
http://dx.doi.org/10.1109/VLHCC.2012.6344546
http://dx.doi.org/10.1109/VLHCC.2012.6344546
http://dx.doi.org/10.1145/2307096.2307151
http://doi.acm.org/10.1145/2307096.2307151
http://doi.acm.org/10.1145/2307096.2307151
http://dx.doi.org/10.1109/SEAA.2011.76
http://dx.doi.org/10.1109/SEAA.2011.76
http://www.complang.org/ragel/ragel-guide-6.8.pdf
http://dx.doi.org/10.1145/319295.319310
http://doi.acm.org/10.1145/319295.319310
http://doi.acm.org/10.1145/319295.319310

Bibliography

[33] D.A. Watt, B.A. Wichmann, and W. Findlay. ADA: language and methodology.
Prentice-Hall international series in computer science. Prentice/Hall Inter-
national, 1987. isbn: 9780130040862. url: http://books.google.at/books?
id=O9kmAAAAMAAJ.

[34] Peter Wegner. “The Ada language and environment.” In: SIGSOFT Softw.
Eng. Notes 5.2 (Apr. 1980), pp. 8–14. issn: 0163-5948. doi: 10.1145/1010792.
1010793. url: http://doi.acm.org/10.1145/1010792.1010793.

[35] Wikipedia. Oracle v. Google — Wikipedia, The Free Encyclopedia. Online; ac-
cessed 2013-10-05. 2013. url: http ://en .wikipedia .org/wiki/Oracle_v.
_Google.

95

http://books.google.at/books?id=O9kmAAAAMAAJ
http://books.google.at/books?id=O9kmAAAAMAAJ
http://dx.doi.org/10.1145/1010792.1010793
http://dx.doi.org/10.1145/1010792.1010793
http://doi.acm.org/10.1145/1010792.1010793
http://en.wikipedia.org/wiki/Oracle_v._Google
http://en.wikipedia.org/wiki/Oracle_v._Google

	Introduction
	Machine-executable specifications
	Terminology
	Specification by example
	Behavior-driven development
	History of BDD
	Ubiquitous language and story
	Similarities with TDD

	RSpec
	Structure and application

	Cucumber
	Features, scenarios and steps
	Step Definitions
	Cucumber and RSpec
	Cucumber-JVM

	Ruby Spec
	Other BDD tools
	Concordion
	FitNesse
	JBehave
	Robot Framework
	More BDD tools
	Comparison of BDD tools

	Testing mobile applications
	Challenges and motivation
	Calabash
	Testing with Frank
	Cucumber Android
	Android fundamentals
	Testing with Cucumber JVM

	Cucumber on other platforms

	Programming language specifications
	Elements of programming languages
	Visual programming languages

	Programming language standardization
	Ada Conformity Assessment Test Suite
	Vienna Development Method
	Software tools

	Specification of a visual language with BDD
	Specifying programming languages by example
	Applying the story structure
	Specifying visual languages

	The Catrobat programming language
	Scratch
	Catroid
	Language concepts

	Specification of Catroid with Cucumber
	Creating a program
	Specification of a loop
	Running Catrobat programs
	Behavior of script invocation
	Concurrency and wait locks
	Considering uneven performance

	Lessons learned
	Advantages of specifying Catrobat by example
	Necessary future improvements and limitations
	Conclusion

	Appendix
	Listings
	Acronyms

	Bibliography

