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Abstract

Cyber-Physical Systems (CPSs) where the interacting subsystems are connected
by a network have, beside the communication with the environment, also
communication within the system. Therefore, the different communications
have to be defined and tested carefully. It is a convenient way to create models
for such systems before the implementation using Unified Modeling Language
(UML) State Machines. These models can be transformed to Extended Symbolic
Transition Systems (ESTSs), which can be simulated without generating program
code. The big advantages of simulation in comparison to executing program
code is the time handling and handling of non-determinism. The simulation
calculates the time and consider all possible executions and therefore there
are more possibilities to detect undesired behaviors like races or deadlocks. In
contrast, the execution of code selects always one out of all possibilities.

We consider three different communication modes for the communication be-
tween the subsystems namely Deterministic, Full Interleaving and Full Parallel.
Deterministic and Full Interleaving executes transitions sequentially. In con-
trast to Deterministic, where only one subsystem at a time is executed, Full
Interleaving executes the subsystems simultaneously which can lead to non-
determinism also for deterministic models. The Full Parallel approach executes
the subsystems simultaneously where transitions can be executed at the same
time in parallel. Furthermore, time is considered in all simulations, where every
transition has an execution time. This is the time that is elapsed by a state
change triggered by the transition. By this means a system can be simulated
using different communication modes and execution times, which allows to get
the information about the consequences of different simulation setups to the
output of the system.

The impact of different executions due to the selection of varying inputs and
execution times leads to possible different execution traces. These traces have
an impact on for example co-simulations, where different model types are sim-
ulated cooperatively. An interface to the co-simulation framework Independent
Co-Simulation (ICOS) was created, which offers a very uncomplicated way to
use ESTSs in ICOS.
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1. Introduction

1.1. Motivation

Cyber-Physical System (CPS) consist of embedded computers which are con-
nected via networks to physical components to control physical processes [19].
The fields of application increases very fast for CPSs in general and especially
in the automotive industry. There are many such systems in use like Anti-lock
Braking System (ABS) or air bags. Also, a lot of researching is done in this area,
namely Car-to-X, where cars communicate with other cars, traffic lights and
others. An additional application is drive by wire, where mechanical connec-
tions are replaced by mechatronic connections. It is required that such systems
work correctly because a bug can cause great harm.

It is a challenge to add for example a new embedded control unit to an existing
system of physical components. The control unit can be for example a controller
of the airflow for the engine of a car. In such a system a number of subsystems
are executed concurrently connected via a network. Depending on the addressed
problem set different types of communication between the CPS components
have to be considered.

There exist tools like Rhapsody R©1, Enterprise ArchitectTM2 or Visual Para-
digm R©3 where UML models can be created and for which code can be generated.
This code is executable and is used for simulation and for a graphical animation
of the models. Due to the different communication modes and time behavior
options the simulation of a model has advantage in comparison to execute
generated code from a model.

A co-simulation framework like ICOS4 couples different simulation tools. There-
fore, a system which consists of subsystems of different domains can be co-

1http://www.ibm.com/software/awdtools/rhapsody/
2http://www.sparxsystems.com/ea
3http://www.visual-paradigm.com/
4http://www.v2c2.at/icos

1
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1. Introduction

simulated. For example, ICOS can co-simulate a system of a virtual vehicle
including different parts of a vehicle, the driver and the environment [26].

1.2. Contribution

The aim of this work is the simulation of concurrent models with different
communication modes by considering execution time. The simulated models
are ESTSs [23, 22] which can be transformed from UML State Machines or
can be created manually. Simulation means the execution of enabled outgoing
transitions of states where the execution leads to an execution tree. In addition,
an interface to ICOS is described that is able to co-simulate different simulators
including Hardware in the Loop (HiL) simulators.

The simulation provides three communication modes to be able to simulate dif-
ferent compositions of subsystems in a system namely Deterministic, Full Inter-
leaving and Full Parallel. Deterministic and Full Interleaving are for sequential
execution of ESTSs, where the deterministic mode simulates a nonpreemptive
multitasking processor and Full Interleaving calculates all possible execution
traces for a preemtive multitasking processor. Full Parallel executes the ESTSs
simultaneously in parallel considering times. Therefore, multiple transition
executions at the same time are possible, like in multi-core processors.

Every transition of an ESTS consists of an execution time and because of the
possibility of defining lower and upper bounds a transition consists also of an
execution time range. The simulation provides options to use different time
behavior alternatives. This means the lowest, the highest or a random execution
time within the execution time range can be used.

The execution of the ESTS simulators are done by three simulation executors
namely Random Walk, Linear Walk and Manual Walk. The Random Walk
is an automated run which generates inputs for the simulated ESTSs. The
impact of different simulation modes can be discovered with the Linear Walk.
With this simulation executor precalculated inputs are used for simulating and
the generated outputs can be compared with the different runs. The Manual
Walk gets inputs from an external program and sends it to the simulator. The
generated outputs are sent back to the external program.

The ICOS interface was implemented in this work to couple ESTS simulators.
With respect to CPS an ICOS co-simulation can for example look as follows. The
software components are simulated with ESTS simulators and the physical

2



1.3. Outline

components are simulated by domain specific simulator tools or they are
coupled via HiL simulators.

1.3. Outline

The remainder of this paper is organized as follows: Chapter 2 defines the
semantics of an ESTS and Chapter 3 describes the simulation of ESTSs. The
possibility to be able to nest such simulations is explained in Chapter 4. The
simulation executors are presented in Chapter 5 and Chapter 6 is about the
implemented interface for ICOS. The experimental results of this approach are
shown in Chapter 7. This thesis is closed with Chapter 8 which includes the
related and future work as well as the conclusion.
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2. Extended Symbolic Transition
System

An ESTS describes a system behavior similarly to an UML State Machine. In
general, an ESTS is an extended symbolic version of a Timed Labeled Transition
System (TLTS) [18]. It relies on timing groups and transition execution times to
describe progress in time and to handle clocks.

In this section we give an overview of the essential definitions of [23, 22] which
we use in following sections of this work.

2.1. Structure

An ESTS contains similar components in comparison to an UML State Machine.
This allows an easy model transformation of the UML State Machines into
ESTSs. As the name already suggest is ESTS an extension of Symbolic Transition
System (STS) [11, 12], where STS was extended by timing group, delay and
completion transition, transition priority and transition execution duration.

Definition 2.1. (Extended Symbolic Transition System)
An Extended Symbolic Transition System consists of a set of states, a set of
labels, a set of attributes, a set of signal parameters, a set of transitions, a set of
timing groups and the initial configuration. �

The set of labels contains the labels for input and output transitions used
for communication. Labels which are representing unobservable and comple-
tion transitions and the delay (natural numbers without 0) which labels delay
transitions.

Attributes and signal parameters are variable sets and are used for the symbolic
treatment of data. Attributes are properties of an ESTS and parameters are part
of signals.

5



2. Extended Symbolic Transition System

Definition 2.2. (Transition)
A transition consists of source and target state, a label, a guard, an attribute
update function, a priority and an execution duration with lower and upper
bound. �

The priority defines an execution order in the case a state has more than one
outgoing transitions. The execution duration defines the elapse of time of the
configuration change defined by the transitions. The lower and upper bound
can be used to define a scope around the execution duration. The time lapse of
the transition has to be in this scope.

Definition 2.3. (Variable Valuation)
A variable valuation is an ordered pair of a variable and a value. �

Corresponding to Definition 2.3 we use attribute valuation and parameter
valuation to refer to variable valuations of attributes and signal parameter.

Definition 2.4. (Parameterized Input and Output)
A parameterized input consists of an input label and its possibly empty param-
eter valuation. A parameterized output is defined in the same way, where an
output label is used instead of the input label. �

Definition 2.5. (Timing Group)
A timing group consists of a clock, a set of states, a set of delay transitions and
a set of clock reset transitions. �

A timing group defines a set of states sharing the same clock that is used to
keep track of the elapsed time within the timing group. There exists a clock
valuation containing a variable valuation for each timing group clock and for
the simulation clock. The simulation clock keeps track of the elapsed time of all
ESTSs.

A clock reset transition is able to reset the clock of the timing group, where a
reset means the clock valuation will be set to zero.

Definition 2.6. (Configuration)
A configuration consists of a state, an attribute valuation and a clock valuation.
�

The initial configuration of an ESTS holds the initial state, the initial attribute
valuation and the initial clock valuation.

6



2.1. Structure

B

C

γ [x > 50]

D

?b<int p1>
[p1 >= 0 &&
 p1 <= 100]
x = x + p1;

F

δ(y) E

τ [x > 60]

δ(y) δ(y) 

A

!e<int p1>
[p1 == x]

?d<int p1>
[p1 >= 0 &&
 p1 <= 100]

x = x + (p1 * 2);

?a<int p1,int p2>
[p1 >= 0 &&

 p1 <= 100 &&
 p2 > 0 &&
 p2 <= 20]

x = p1;
 y = p2;

Figure 2.1.: Example of an ESTS.

Example 2.1. (Extended Symbolic Transition System)
ESTSs can be displayed as graphs, where nodes represent a state and edges
are transitions. The double framed node is the start node. The transitions are
indicated with symbols, where ! stands for an output transition, ? for input
transition, γ for completion transition, τ unobservable transition and δ for delay
transition. The guards of the transitions are displayed in square brackets and
the signal parameter in angle brackets.

In Figure 2.1 an ESTS is shown which consists of states A, B, C, D, E and F,
attributes x and y and nine transitions. There are three input transitions which
are labeled with a, b and d, an output transition e and they all have signal
parameters. The attributes x and y will be set in the update functions of the
input transitions. The states B, C and D are part of a timing group and have
delay transitions to state F. The delay transitions have a variable delay that is
based on the attribute y.

This model is non-deterministic because the guards of the completion and the
unobservable transition are evaluating to true for the case the attribute x is
greater than 60. �
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3. Simulation

The simulation of one or more ESTSs is defined in this chapter which calculates
as a result an execution tree. In the case the simulated ESTS is deterministic, the
execution tree consists of one execution path. Otherwise, for a non-deterministic
ESTS the execution tree can hold a number of different execution paths.

The simulated ESTSs are able to communicate with each other, where input
and output transitions are used for communication. An output transition of
an ESTS sends a message to another ESTS which can receive it in the case a
corresponding input transition exists.

Messages also can be sent to ESTSs from the environment. That means the
simulation is controlled from an external source which can be for example a
user who sends messages a random message generator or predefined sequences
of messages.

Some of the definitions in this chapter are redefined from [8].

Definition 3.1. (Transition Execution)
An execution of a transition is a state change with an update of the attributes
corresponding to the attribute update functions of the transition. Moreover, the
simulation clock and the corresponding timing group clocks are updated by the
time the transition need for execution. �

Definition 3.2. (Blocked State)
A state is blocked if at least one input or delay transition exists where the state
is their source state. �

Definition 3.3. (Stopped State)
A state is stopped if no transitions, where the state is source state, can be
executed and the state is not blocked. �

Definition 3.4. (Message)
A message extends the parametrized input and output (Definition 2.4) by a
send time. This is the time the message was sent and the time it can be received
from an ESTS. �

9



3. Simulation

A message is produced by executing an output transition, where the send time
gets the value of the simulation clock after executing the transition. In addition,
a message can be generated from the environment. An input transition can be
only executed if a corresponding message was sent and the simulation time is
advanced enough to be greater or equal to the send time of the message.

3.1. Execution Tree

The result of the simulation is an execution tree which consists of one or more
execution tree nodes. An execution tree includes the calculated execution paths
of the simulated ESTSs. This structure was also defined in [8], for the sake of
completeness we redefine it in this section.

Definition 3.5. (Execution Tree Node)
An execution tree node consists of a set of states, an executed transition or an
empty transition, a possible empty list of messages, an attribute valuation, a
clock valuation and a possible empty set of child execution tree nodes. �

An execution tree node represents a snapshot of the simulation of ESTSs at
a given point in time. The set of states contains at most one state for each
simulated ESTS. Non-deterministic executions result in multiple execution tree
nodes. These states and their transitions are the basis for further executions. In
the case the execution tree node is the root execution tree node or the simulator
did only elapse time the executed transition is empty. Otherwise, a transition
was executed, the transition is held in the execution tree node. The executed
transition is needed to know the reason of the state change. The messages
are ordered in the list like a queue because of that they are processed in the
order they were added. In the attribute valuation the values of all attributes of
all simulated ESTSs are held. Also, the clock valuation holds the values of all
timing group clocks and the simulation clock. An execution tree node is able
to hold child execution tree nodes and we call it leaf execution tree node in
case the set of child execution tree nodes is empty. For simplicity we use in the
remainder of this document node for execution tree node.

Definition 3.6. (Execution Path)
An execution path is an ordered list of nodes which represents a path through
the execution tree without a branch. The beginning is always the root node of
the execution tree and the end is a leaf node. �

10



3.1. Execution Tree

A 

B 

?a<int p1,int p2>
[p1 >= 0 &&

 p1 <= 100 &&
 p2 > 0 &&
 p2 <= 20]

x = p1;
 y = p2;

 10(tg1 0) B (x=63;y=13;)

C 

γ [x > 50]
 20(tg1 10) C (x=63;y=13;)

E 

τ [x > 60]
 20(tg1 10) E (x=63;y=13;)

C 

[wait]
 23(tg1 13) C (x=63;y=13;)

F 

δ(y)
  33(tg1 13) F (x=63;y=13;)

A 

!e<int p1> [p1 == x]
 43(tg1 13) A (x=63;y=13;)

F 

?d<int p1>
 [p1 >= 0 &&
 p1 <= 100]

x = x + (p1 * 2);
 30(tg1 10) F (x=185;y=13;)

A 

!e<int p1> [p1 == x]
 40(tg1 10) A (x=185;y=13;)

Figure 3.1.: Example of an execution tree.

Definition 3.7. (Blocked Execution Tree Node)
An execution tree node is blocked if at least one state of the set is blocked. �

Definition 3.8. (Stopped Execution Tree Node)
An execution tree node is stopped if all states of the set are stopped. �

Example 3.1. (Execution Tree)
The execution trees are displayed as graphs. The double framed node is the
start node. Furthermore, the nodes are colored respective to their properties,
where blocked nodes are blue, stopped nodes are red and otherwise the nodes
are black. The execution tree graphs include additionally the clock valuation
and attribute valuation information for every state change. This information is
displayed in the following way:

11



3. Simulation

• Transition symbol
• Message name or delay (optional)
• Simulation clock valuation
• Timing group names plus associated clock valuation (optional)
• States plus the attribute valuation

In Figure 3.1 an execution tree is shown that is the result of the simulation of
the ESTS in Figure 2.1. Due to the attribute x gets the value 63 from the input
transition a, the execution tree has two execution paths. These are A, B, C, F,

A and A, B, E, F, A. The [wait] indicates an execution tree node which does
only elapse time without executing a transition. The difference of the timing
group clock value and the value of the attribute y has to elapse. In this case, 3
time units were elapsed. �

3.2. Single ESTS Simulation

The simulation of a single ESTS is the basis to simulate a set of communicating
ESTSs. This simulation calculates an execution tree where the nodes have always
one state. This is because only on state of an ESTS can be the current state in a
node.

There are two different types of single ESTS simulators, the single step and the
continuous simulator. The single step simulator executes all enabled transitions
of a given node and terminates. The continuous simulator executes all enabled
transitions of the given nodes and the generated leaf nodes until no further
enabled transitions exist.

Definition 3.9. (Processable Message)
A message is processable if the send time is less or equal to the simulation clock
valuation. In addition, at least one input transition has to be labeled with the
message’s label. �

Definition 3.10. (Enabled Transition)
A transition is enabled if its guard evaluates to true. A delay transition addi-
tionally has to fulfill that the timing group clock valuation is greater or equal to
the delay the delay transition is labeled with. In case of an input transition a
processable message has to be first in the message list. �

Definition 3.11. (Completion Step)
A completion step is part of an execution of an ESTS, where enabled completion
transitions are executed before enabled input and delay transitions. �
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That means in the case a completion transition is enabled, enabled input and
delay transition won’t be executed.

Definition 3.12. (Calculated Execution)
The calculated execution duration is the calculated time lapse of the transition,
with respect to the execution duration of the transition and its lower and upper
bound. �

Definition 3.13. (Instantiated Transition)
An instantiated transition consists of a transition, a possible empty message
and a calculated execution duration. �

3.2.1. Single Step Simulator

This simulator makes one simulation step and stops afterward. A step is the
execution of all enabled transitions of a state of a leaf node. In the case enabled
transitions exist the node gets child nodes. These child nodes can be the inputs
for further executions of this simulator. Due to the simulation stops after every
node messages can be added to the list of messages before the simulation
continues.

Algorithm 3.1 defines such a simulation step. In the case the node has more than
one states only the state which belongs to the simulating ESTS is considered.
The algorithm expects as parameter a node which has to be a leaf and a
maximum simulation time. The enabled transitions of the given node will be
executed, where the maximum simulation time must not be exceeded. In the
case transitions are only enabled after a certain time, the simulation elapses time.
The algorithm has three different return values. First, EXECUTED if transitions
were executed. Second, INSUFFICIENT TIME if the simulation clock value is
greater than the maximum simulation time, after executing a transition. Third,
NO ENABLED TRANSITIONS if no transition is enabled.

Determine Enabledness

The function get enabled transitions returns a set of instantiated transitions
or an empty set in the case no transitions are enabled for given state. The
enabledness of the transitions are determined in this function. For output,
completion and unobservable transitions only the guard has to evaluate to true,
to be enabled. In the case more than one transition of a subset of the set of
labels are enabled, only the once with the highest priority will be returned. That
means the priority is for ordering the transitions in the subset of their labels
and not for the whole set of transitions. After evaluating the guard of an output
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Algorithm 3.1 Single Simulation Step

Require: node is a leaf node.
1: function single simulation step(node, max time)
2: state← get related state(node.states)
3: enabled transitions ← get enabled transitions(

state, node.attribute valuation)
4: if enabled transitions = ∅ then
5: time elapsed ← try elapse time(node, max time)
6: if time elapsed = TIME ELAPSED then
7: enabled transitions ← get enabled transitions(

state, node.attribute valuation)
8: else if time elapsed = INSUFFICIENT TIME then
9: return INSUFFICIENT TIME

10: else
11: return NO ENABLED TRANSITIONS
12: end if
13: end if
14: max f inalization time ← get max execution duration(

enabled transitions) + node.simulation clock
15: if max f inalization time <= max time then
16: for all t ∈ enabled transitions do
17: execute transition(node, t)
18: end for
19: return EXECUTED
20: else
21: return INSUFFICIENT TIME
22: end if
23: end function

transition, a message with the parameter valuation will be created and added
to the corresponding instantiated transition.

Input and delay transitions are not considered in the case a completion tran-
sitions is enabled. This is because of the Definition 3.11, where completion
transitions have to execute before input and delay transitions. If no completion
transition is enabled the enabledness of input and delay transitions also is
determined. Input and delay transitions have to in addition to a guard eval-
uating to true the following conditions to fulfill: An input transition needs a
processable message (Definition 3.9), where always the first message which has
the corresponding ESTS as target in the list of messages will be checked. The
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send time has to be less or equal to the simulation clock valuation and the label
has to be the same as the transition label. If the message fulfills the conditions it
will be added to the instantiated transition. In the case of a delay transition, the
clock valuation of the corresponding timing group has to be greater or equal to
the delay. Also, for input and delay transitions only the one with the highest
priority will be returned.

For an enabled transition an instantiated transition is created, where the execu-
tion duration will be calculated. There are different possibilities how to calculate
the execution duration.

• The execution duration is used.
• The lowest execution duration is used.
• The highest execution duration is used.
• The average execution duration is used.
• A random execution duration will be calculated.
• A constant execution duration can be used for all transitions. This can be

also zero to simulate without considering the time behavior.

Example 3.2. (Different execution duration calculations)
On the basis of the ESTS, in Figure 3.2a, the consequences of the use of different
execution duration calculations is shown. The ESTS receives messages a and b

in a loop. The loop ends after the attribute x is greater or equal to 3. Another
exit criteria are the delay transitions which ends the loop after 30 time units.
However, if the input and the delay transition are enabled at the same time
the execution tree will be non-deterministic. In Figure 3.2d a message was
processable when the delay expired and due to the arising non-determinism
two execution paths exist. The three execution trees in Figure 3.2 are the results
of three different simulations with different execution duration calculations. The
results are different because of the execution duration and the defined bounds
of the input transitions a and b. They have a lower and an upper bound for the
execution duration and so they can take from 5 to 20 time units for execution.
In Figure 3.2b the simulation took always maximum execution duration and so
the delay transition was executed after processing two messages. The minimum
execution duration was used to generate the execution tree in Figure 3.2c. Due
to the fast execution of only 5 time units three messages can be processed and
the completion transition ends the loop. The last execution duration calculation
in this example is a random one which takes a random execution duration
when a transition has an execution duration scope. The result of the use of this
calculation is shown in 3.2d, where the completion and the delay transitions are
executed as shown by the execution tree. �
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Figure 3.2.: ESTS and execution trees with different execution duration calculations.
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Elapse Time

If no transition of the state is enabled yet, the input and delay transitions will be
checked for enabledness in the future with the function try elapse time. Input
transitions can be only enabled in the future when the send time of the first
message which has the corresponding ESTS as target in the list of messages
is greater than the simulation clock valuation. Nevertheless the guard of the
transition has to evaluate to true. The difference of the clock valuation and the
simulation clock valuation can be elapsed, to ensure an enabled input transition.
Also, for delay transitions the difference of the timing group clock valuation
and the delay can be elapsed.

In the case more than one transition is enabled in the future the shortest time
that is needed to enable a transition will be elapsed. Time elapsing is done
by increasing the simulation clock valuation. In addition, the clock valuation
of the timing groups which the state belongs to have to be increased by the
same amount. After increasing, the simulation clock valuation has to be less
or equal to the maximum simulation time. Is this not the case the algorithm
returns insufficient time and no clock valuation will be changed. The other
return values can be time elapsed and no enabled transitions if no transition
will be enabled in the future. In the case clock valuations were changed the
function get enabled transitions will be applied a second time, to get the
newly enabled transitions.

Example 3.3. (Elapse Time)
This example demonstrates the behavior of the simulator when two transitions
are enabled in the future. In Figure 3.3a an ESTS with one input and one delay
transition with the same source state is shown. At the start of the simulation
a message for the input transition is in the list of messages where the send
time has the value 10. In this case, the input and the delay transition will be
enabled in the future. The input transition after 10 time units and the delay
transition after 20 time units, which is the value of the delay of the transition.
The shortest time to get an enabled transition will be elapsed and therefore 10
time units are elapsed and the input transition can be executed. The execution
tree is displayed in Figure 3.3b. �

Execute Transitions

Before executing the enabled transitions, the finalization times have to be
verified. The maximum finalization time of the enabled transitions has to be
less or equal to the maximum simulation time. The finalization time is the sum
of the calculated execution duration and the simulation clock valuation. Only in
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Figure 3.3.: Elapse time example.

the case that the execution of all enabled transitions will be finished within the
maximum simulation time they will be executed, otherwise insufficient time

is returned.

Algorithm 3.2 Execute a transition

1: procedure execute transition(node, instantiated transition)
2: transition← instantiated transition.transition
3: message← instantiated transition.message
4: child node ← node.create child(transition)
5: child node.elapse time(instantiated transition.execution duration)
6: if message = ∅ then
7: child node.execute update functions()
8: else
9: child node.execute update functions(

message.parameter valuation)
10: end if
11: if transition.label ∈ {output transitions} then
12: message.set send time(child node.simulation clock)
13: child node.message list.add(message)
14: else if transition.label ∈ {input transitions} then
15: child node.message list.remove(message)
16: end if
17: node.add child(child node)
18: end procedure

The execution is handled in the function execute transition which is defined
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in Algorithm 3.2. This algorithm is based on a similar algorithm in [8]. An
execution of a transition leads to a new node in the execution tree. Therefore,
a new node is created that is based on the given node. The message list, the
attribute valuation and the clock valuation where copied to the new node. The
target state of the transition is used as state of the node and the transition is
also held as executed transition in the node. The list of child nodes is empty
because the new node is a leaf node.

The time the transition need to execute has to be elapsed. Therefore, the simula-
tion clock valuation and the clock valuations of the timing groups, to which the
new node belongs, were increased by the calculated execution duration. In the
case the transition is a clock reset transition the clock valuations of the corre-
sponding timing groups are set to zero. Afterward, the update functions of the
executed transition are executed. If a message exists, the parameter valuation of
the message can be used to execute the update functions.

In the case the executed transition is an output transition the message is added
to the list of messages. Before adding to list, the send time of the message is
updated to the simulation clock valuation. The message can be received from
an input transition at the moment the output transition has been executed. Is
the executed transition an input transition than the message is removed from
the list of messages. The message was received from the ESTS which leads to
input transition execution and therefore the message is removed from list.

The execution of the transition ends by adding the new node to the list of child
nodes of the given node. Is the child node the first one in list than the execution
path grows, otherwise a new execution path is created.

3.2.2. Continuous Simulator

In contrast to, the single step simulator this simulator does not interrupt after
every execution of a node. The simulation runs as long enabled transitions exist.
If no enabled transitions in the leaf nodes exist the simulation interrupts and
messages can be added to the list of messages. While simulating no messages
can be added to the list of messages from the environment or from other ESTSs.
Only messages from output transitions which are executed are added to the list
of messages.

The Algorithm 3.3 defines the continuous simulation. As parameter the algo-
rithm expects a leaf node and a maximum simulation time. Due to the single
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Algorithm 3.3 Continuous Simulation

Require: node is a leaf node.
1: function simulate continuously(node, max time)
2: sim state← single simulation step(node, max time)
3: if sim state = EXECUTED then
4: for all lea f ∈ node.get child nodes( )do
5: child sim state← simulate continuously(lea f , max time)
6: if child sim state = INSUFFICIENT TIME then
7: sim state← child sim state
8: else if sim state 6= INSUFFICIENT TIME then
9: sim state← child sim state

10: end if
11: end for
12: end if
13: return sim state
14: end function

ESTS simulator only the state which belongs to the simulating ESTS is consid-
ered of the given node. The algorithm calls itself recursively as long transitions
can be executed. Therefore, the algorithm only has two possible return values
INSUFFICIENT TIME and NO ENABLED TRANSITIONS.

First of all the function single simulation step of the single step simulator
is applied. This function executes all enabled transitions of the given node,
if there are someone. In the case the function has executed transitions the
algorithm continues. Otherwise, the return value of the function which provides
information why no transitions was executed will be returned.

The execution of the enabled transitions leads to new nodes in the list of
child nodes of the given node. These child nodes are the new parameter for
the recursive execution of this algorithm. The return values of the recursive
executions are weighted, where INSUFFICIENT TIME has a greater weight than
NO ENABLED TRANSITIONS. Therefore INSUFFICIENT TIME is used if at least one
execution returns this value.

3.3. Multiple ESTS Simulation

The simulation of two or more ESTSs at the same time is described in this
section. The single step simulators are used to simulate each ESTS and the

20



3.3. Multiple ESTS Simulation

resulting execution trees will be merged together.

The ESTSs are able to communicate with each other while simulation and
therefore there are three different ways how to do this. First, the communication
is deterministic, where the ESTSs will be simulated in a specific order and so
only the current simulated ESTS is able to send messages. The messages will be
received at the turn of the target ESTSs. Second, full interleaving communication,
where all ESTSs are simulated simultaneously and so they are able to send
and receive at any time. Third the ESTSs are simulated full parallel, where all
ESTSs are again simulated simultaneously, but in this case the transitions can
be executed parallel. Therefore, all ESTSs can send messages, but receiving is
only possible if no transition is executing at the moment.

Definition 3.14. (External Input Transition)
An input transition which has no corresponding output transition in the simu-
lating ESTSs is named external input transition. Corresponding in this context
means no output transition exists, which can generate a message for the input
transition. Therefore, such a message has to come from the environment to
enable the transition. �

3.3.1. Deterministic Simulator

The deterministic simulator simulates the ESTSs consecutively in a predefined
order. Therefore, the simulation leads to a non-deterministic execution tree
only in the case an ESTS is non-deterministic. Otherwise, the execution tree is
deterministic and holds exact one execution path.

The Algorithm 3.4 defines the deterministic simulation. There are three parame-
ters, where sim list is a list of single ESTS simulators, execution tree is the
execution tree which will be extended, and max time is the maximum time the
simulation time is allowed to reach. Every simulator will be executed once,
where this algorithm is executed in rotation while EXECUTED is returned. At the
first run the execution tree has to consists of a root node only which holds all
start states of the ESTSs of the simulators. In further runs the resulting execution
tree is used as parameter and therefore it will grow as long as transitions are
executed. In the case no transitions can be executed NO ENABLED TRANSITIONS is
returned and if the simulation time will exceed the max time INSUFFICIENT TIME

is returned. If one of these two return values are returned the given execution
tree will not be changed.

There are two nested loops in the algorithm, one for the simulators of the list of
simulators and one for the leaf nodes of the execution tree. The simulators are
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executed for every leaf node of the execution tree in the order they were added
to the list. In the case transitions are executed child nodes are added to the leaf
node. This extends the execution tree and therefore it has one or more new leaf
nodes. Due to this fact the simulator that is next in the list can have different
leaf nodes than his predecessor. That is why the order of the simulators in the
list is important because different orders can lead to different execution paths.

In the case a simulator returns INSUFFICIENT TIME, by reaching the given maxi-
mum simulation time, the simulation stops and resets the execution tree. The
reset is done by removing the child nodes of the nodes which were the leaves
at begin of the first loop. This is necessary because the execution order of the
simulators can be disordered on further executions of the algorithm with a
higher maximum time.

Algorithm 3.4 Deterministic Simulation

1: function deterministic simulation(sim list, execution tree, max time)
2: executed← f alse
3: origin lea f nodes← execution tree.get leaf nodes( )
4: for all sim ∈ sim list do
5: lea f nodes← execution tree.get leaf nodes( )
6: for all lea f ∈ lea f nodes do
7: sim state← sim.simulate(lea f , max time)
8: if sim state = INSUFFICIENT TIME then
9: for all origin lea f ∈ origin lea f nodes do

10: origin lea f .remove child nodes( )
11: end for
12: return INSUFFICIENT TIME
13: end if
14: if sim state = EXECUTED then
15: executed← true
16: end if
17: end for
18: end for
19: if executed then
20: return EXECUTED
21: else
22: return NO ENABLED TRANSITIONS
23: end if
24: end function

Example 3.4. (Deterministic simulation)
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Figure 3.4.: ESTSs for deterministic simulation.

The functionality of the deterministic simulator is shown in this example, where
two ESTSs are simulated with different single ESTS simulators. The first time
the single ESTSs are simulate with a single step simulator and the second time
they are simulated with a continuous simulator.

The ESTSs which were simulated are shown in Figure 3.4. ESTS 1 has two states
A0 and A1, one output transition a and two input transitions b and c. ESTS 2
also has two states B0 and B1, one output transition b and one input transitions
a. For the output transitions a and b there are corresponding input transitions
which can receive the messages. The input transitions are always part of the
other model than the output transitions belong to. Therefore, the models are
able to communicate with each other. In addition, the input transition c is
external which means the message has to come from the environment.

In Figure 3.5 two execution trees of two different deterministic simulation runs
are shown which are cut off at simulation time 80. The single ESTS simulators
are, in both simulations, added in the same order, first ESTS 1 and then ESTS
2. In addition, in both runs the environment sends a message for the external
input transition c with send time 10.

The result of a deterministic simulation with two single step simulators is
shown in Figure 3.5a. The start states of the two ESTSs are A0 and B0 which
are displayed in the root node of the execution tree. The first simulator in the
list was executed first. Therefore, the enabled output transition of state A0 was
executed. At this time, the environment sent a message for input transition
c. The second simulator was executed next, where the new generated node
is the base of simulation. Afterward, the algorithm terminated and returned
EXECUTED. The current states at this moment were A1 and B1. The algorithm was
repeated and so the input transition c was executed. This is done because this
message was first in the list. Then, the input transition a was executed. The
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Figure 3.5.: Deterministic simulation.
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algorithm was repeated a few times and the simulators of ESTS 1 and ESTS 2
were executed alternately and executed in every turn one transition.

The second execution tree in Figure 3.5b was created by a deterministic sim-
ulation with two continuous simulators. The simulation starts like the first
simulation, the output transitions a and b were executed. After the output
transition b the continuous simulator of ESTS 2 was not terminated because
further enabled transitions were available. Therefore, the input transition a and
after this again the output transition b were executed. Afterward, the second
simulator terminated and therefore the algorithm also terminated and returned
EXECUTED. The algorithm was executed again and the simulator of ESTS 1 was
also executed first. The messages which were sent from the environment and
from the simulator of ESTS 2 enabled the input transitions at state A1. As already
mentioned the execution tree was cut off before the second run of the algorithm
terminates.

The usage of different single ESTS simulators leads to different execution trees
which can be seen at the execution trees in Figure 3.5. The order of the execution
of the transitions are different. This leads to nodes which have different states
and different attribute valuations at the same simulation time. �

3.3.2. Full Interleaving Simulator

This simulator is also a multiple ESTS simulator, where all enabled transitions
of all states of a given node are executed at the same time. In the case more than
one transitions are enabled a non-deterministic execution tree will be the result
of simulation. The order of the added simulators has no importance because all
simulators are executed for a node and therefore the order has no impact.

In Algorithm 3.5 the full interleaving simulation is defined. This algorithm is in
many respects similar to Algorithm 3.4, but the differences are essential. The
first loop iterates through the leaf nodes of the given execution tree. For all leaf
nodes in the second loop all simulators in its list are executed. Due to this fact
all enabled transitions are executed and the newly created nodes are added to
the current leaf node.

The algorithm returns EXECUTED if at least one simulator has executed a transi-
tion. In the case no transitions are enabled, NO ENABLED TRANSITIONS is returned
and the execution tree will not be changed. If one of the simulators exceeded the
maximum simulation time INSUFFICIENT TIME is returned. The execution tree
will be reset because not all simulators have executed the enabled transitions.
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Algorithm 3.5 Full Interleaving Simulation

1: function full interleaving simulation(sim list, execution tree, max time)
2: executed← f alse
3: lea f nodes← execution tree.get leaf nodes( )
4: for all lea f ∈ lea f nodes do
5: for all sim ∈ sim list do
6: sim state← sim.simulate(lea f , max time)
7: if sim state = INSUFFICIENT TIME then
8: for all origin lea f ∈ lea f nodes do
9: origin lea f .remove child nodes( )

10: end for
11: return INSUFFICIENT TIME
12: end if
13: if sim state = EXECUTED then
14: executed← true
15: end if
16: end for
17: end for
18: if executed then
19: return EXECUTED
20: else
21: return NO ENABLED TRANSITIONS
22: end if
23: end function

Example 3.5. (Full interleaving simulation)
The functionality of the described algorithm will be shown in this example.
Like in Example 3.4 the ESTSs of Figure 3.4 will be used for simulating. The
full interleaving simulator will be applied twice with different single ESTS
simulators.

The basic conditions are similar to Example 3.4. The order of the single ESTS
simulator are in both runs the same and at simulation time 10 a message for
the external input transition c will be sent.

In Figure 3.6 the resulting execution tree of a full interleaving simulation with
two single step simulators is shown. The execution tree is non-deterministic
and holds 6 execution paths. At the begin both states A0 and B0 have an enabled
output transition which were executed. After executing output transition a the
following two transitions become enabled. The input transition c, because of the
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Figure 3.6.: Full interleaving simulation of two single step simulators.

message from the environment, and output transition b. All enabled transitions
of all states of all leaf nodes will be executed as long the simulation will be
repeated. Therefore, all possible execution paths of the two ESTSs with the one
message for input transition c are the result of the simulation.

The second full interleaving simulation was performed with two continuous
simulators. The created execution tree is shown in Figure 3.7 which is cut off
at simulation time 80. At the beginning the two output transitions a and b

are enabled and so they are executed. In both cases the continuous simulator
terminated because there were no messages to receive. During the second run of
the algorithm the leaf nodes process messages contained in the list of messages.
These messages were sent from the environment and from the executed output
transitions. Therefore, the continuous simulations have to execute a number of
transitions before the termination.

The execution path in the middle of the resulting execution tree is the same as
in Figure 3.5b. Further the execution path on the right side will be the result of
the deterministic simulation with a reverse order of the single ESTS simulators.
The left one will never be an execution path of the deterministic simulation
because the single ESTS simulator of ESTS 1 was executed twice consecutively.

As mentioned before the execution tree in figure 3.6 consists of all possible
execution paths. Therefore, all execution paths of the Figures 3.5a, 3.5b and 3.7
are part of the execution tree. In addition, there are three execution paths more
which only can be created with a full interleaving simulator with single step
simulators for every simulating ESTS. �
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Figure 3.7.: Full interleaving simulation of two continuous simulators.
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3.3.3. Full Parallel Simulator

Full parallel simulation simulates the parallel execution of ESTSs. That means
the models will be simulated as if every model has its own processor. Due to
this fact more than one transition can be executed at the same time. Therefore,
deterministic ESTSs leads to a deterministic execution tree.

Definition 3.15. (Extended Execution Tree Node)
The execution tree node has to be extended by replacing the executed transition
to a set of executed transitions and by adding a set of running transitions, to be
able to simulate parallel executions of transitions. �

The set of running transitions is a set of instantiated transitions which were exe-
cuted, but the execution is not finished at the moment of the node’s simulation
clock valuation.

The Algorithm 3.1 which is the base of every simulator has to change to be
able to deal with the set of running transitions. In the case this set is not empty
and the highest calculated execution duration is not greater than the maximum
simulation time, the transitions in the set will be executed. The enabledness of
the transitions of the state will not be checked if transitions are in the set of
running transitions.

Depending on the execution duration of the transitions, there are two possibili-
ties the generated execution tree can look like. These possibilities are true for
enabled transitions of different ESTSs.

1. Execution duration of the enabled transitions are equal:
This behavior leads to a deterministic execution tree, where the list of exe-
cuted transitions holds more than one transition. Every enabled transition
will be executed and all executions will lead to the same node.

2. Execution duration of the enabled transitions are different:
The enabled transition with the lowest execution duration will be executed
first and the other enabled transitions are added to the set of running
transitions. After that, the running transition with the lowest execution
duration will be executed. This will be continued until the set of running
transition is empty. Due to the execution of the transitions was started at
the same time, the simulation clock valuation will be not always increased
by the whole execution duration of the transitions.

This simulator uses in general the same algorithm as the full interleaving
simulator. The only change in Algorithm 3.5 is the merging of the created child
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nodes after every execution of a simulator. In the case two or more transitions of
different ESTSs are executed the resulting nodes have to be merged together.

In Algorithm 3.6 the merging of two nodes is described. The parameters are the
set of child nodes of the current node and the ESTS of the simulator that was
executed last. The model is used to know which child nodes were added to the
set and have to merge. As a result this algorithm returns a set of nodes which
hold the merged child nodes of the given set. In the case no node was merged
the given set of child nodes will be returned.

There are two nested loops, where the first is for the child nodes which exist in
the set before the last simulator was executed. In the algorithm these are the old

child nodes. The second one handles the new child nodes which are created
from the last executed simulator and does the merging. That means every old
child node is merged with every new child node. The execution duration of
the executed transitions and the corresponding simulation clock valuation of
the child nodes are the key factors how to merge. There are three different
possibilities which have to be considered:

1. Simulation clock valuations are equal:
The two child nodes really melt together to one node. This means the
executed transition of the new created child node is added to the set of
executed transitions of the old child node. Also, the set of states, the list
of messages, the attribute valuation and the clock valuation are merged.
Therefore, the values which were changed by executing the transition of
the new child node are adapted.

2. Simulation clock valuation of the new child node is lower:
The two child nodes cannot be merged because the execution durations
are not equal. The new child node is the one with the lowest simulation
clock valuation and therefore this node will be used as base child node
for merging. The executed transitions of the old child node are converted
into a set of instantiated transitions which are added to the set of running
transitions of the new child node. During the next execution of the simu-
lators the running transitions will be executed again. Also, the enabled
transitions of the state that is the target of the executed transition of the
new child node will be executed.
If the new child node will be inserted in execution path before the old
child node, it will not be longer a leaf node. Therefore the simulator can
not execute the enabled transitions on the correct time. In this case, the
resulting execution tree will not be correct.

3. Simulation clock valuation of the new child node is greater:
The old child node has the lower simulation clock valuation and therefore
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the old child node is the base for merging. The executed transition of the
new child node will be converted into an instantiated transition and will
be added to the running transitions set of the old child node.

Simulating deterministic ESTSs where only one old and one new child node
exists, are merged into one child node and therefore the execution tree stays
deterministic. In a non-deterministic environment all old child nodes are merged
with all new child nodes and therefore the corresponding number of child nodes
is the product of the number of old and new child nodes.

The Algorithm 3.6 does not handle nodes which does elapse time without an
executed transition. In the case a child node was created to elapse time and
the simulation clock valuation is greater or equal to the merging child node,
the node for time elapsing will be ignored. Otherwise, the executed transitions
will be added to the set of running transitions contained by the time elapsing
node.

Example 3.6. (Merge different execution durations)
In this example the full parallel simulation will be illustrated. We simulate the
ESTSs which are displayed in Figures 3.8a and 3.8b twice, but with different
execution durations.

The first time the execution duration of both output transitions is 10. The
resulting execution tree is shown in Figure 3.8c. These transitions were executed
and because of the equality of the execution duration both were added to the set
of executed transitions. Therefore, only one new node was added to execution
tree.

For the second simulation the execution duration of the output transition a was
increased to 30. This leads to a different execution tree that is shown in Figure
3.8d. Both output transition started execution at same time. The output b is
ready in 10 time units and therefore a node was created, where the output a was
added to the running transition set, which is the reason the second node has
only one state. After 30 time units a is also ready with execution and therefore
a second node was created. �

Example 3.7. (Full parallel simulation)
The ESTSs of Figure 3.4 are also simulated with the full parallel simulator. The
resulting execution trees are shown in Figure 3.9. Due to the simulating ESTSs
are deterministic the generated execution trees are also deterministic.

The order of the single ESTS simulators is the same as in the Examples 3.4 and
3.5. Furthermore, at simulation time 10 a message was sent for the external
input transition c from the environment.
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Algorithm 3.6 Merge child nodes

1: function merge child nodes(child nodes, ests)
2: new child nodes← ∅
3: for all old child ∈ child nodes do
4: f irst transition← old child.executed transitions.get first( )

5: if
(

(old child.executed transitions.get size( )= 1)∧
(ests.contains transition( f irst transition))

)
then

6: continue
7: end if
8: for all new child ∈ child nodes do
9: transition← new child.executed transitions.get first( )

10: if
(

(new child.executed transitions.get size( )> 1)∨
¬(ests.contains transition(transition))

)
then

11: continue
12: end if
13: if old child.sim clock = new child.sim clock then
14: new node← old child
15: new node.executed transitions.add(transition)
16: new node.merge node fields(new child.attributes, ests)
17: else if old child.sim clock > new child.sim clock then
18: new node← new child
19: running trans list← create running transitions(

old child.execution transitions)
20: new node.add running transitions(running trans list)
21: else
22: new node← old child
23: running trans← create running transition(transition)
24: new node.add running transition(running trans)
25: end if
26: new child nodes.add(new node)
27: end for
28: end for
29: if new child nodes = ∅ then
30: return child nodes
31: else
32: return new child nodes
33: end if
34: end function
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Figure 3.8.: Example full parallel simulation

The first full parallel simulation were made with two single step simulators, the
result is shown in Figure 3.9a. The execution duration of every transition of both
ESTSs are equal and both states of the nodes have always enabled transitions.
This leads to an execution tree where every set of executed transitions held two
entries. Therefore, the number of executed transitions has been doubled in the
same time as in the other examples which uses the same ESTSs as before.

In Figure 3.9b the resulting execution tree is shown, where two continuous sim-
ulators were simulated. At the begin every continuous simulator only executed
one transition which were merged afterward. At the second execution of the
simulators more transitions were enabled. Therefore, the first simulator exe-
cuted ?b, !a, ?c and !a and the second simulator executed ?a and !b. The first
two executed transitions are merged and for the last two executed transitions of
the first simulator there are no other executed transitions to merge. Due to the
continuous simulators are used the second simulator cannot be executed after
termination. It has to wait until the first simulator terminated before both are
executed again.

Due to the parallel execution of transitions the resulting execution trees are
completely different than the once where a deterministic or full interleaving
simulator were used. The resulting execution trees of the full parallel simulator
have executed much more transitions in the same simulation time. Therefore,
no execution path of the runs before matches the parallel once. �
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Figure 3.9.: Execution trees of two full parallel simulations.
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The multiple ESTS simulators are for simulating systems, including more than
one ESTS, with one specific communication mode. There are also systems
which uses different communication modes and therefore the multiple ESTS
simulators need to be nestable.

4.1. Nesting

The multiple ESTS simulators can be nested which means that one simulator
contains other simulators. For this reason, the simulators are hierarchically
organized in a tree like structure. The hierarchy is top down organized as
shown in Figure 4.1. Such a simulator represents a subsystem of a system
that includes two or more simulators. The nested simulators can be single
or multiple ESTS simulators. In the case of a multiple ESTS simulator, the
subsystem has a child. The nesting ends with a leaf subsystem that has only
single ESTS simulators.

The algorithms of the single and multiple ESTS simulators have to be adapted to
be able to handle both types of simulators nested in a multiple ESTS simulator.
We use the signature of the single ESTS simulators, where a leaf node and a
maximum simulation time are the parameters. The changes in the multiple
ESTS simulators are quite simple. An execution tree has to be created with the
given leaf node as root node and the list of simulators have to be a global list.
Therefore, the simulators are added to the list before starting simulation.

Example 4.1. (Nested System)
In Figure 4.1 a system with nested subsystems is shown. The subsystems 2
and 3 are connected through subsystem 1 that do not have any other ESTSs.
All subsystems have different connection modes and the four ESTSs will be
simulated in a single step simulator.

The simulating ESTSs are displayed in Figure 4.2. The models of subsystem
2 send the values of their attributes a and b to subsystem 3. In ESTS 3 the
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Figure 4.1.: Example of nested simulators.
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Figure 4.2.: ESTSs for nested simulation.

value will be multiplied by 10 and in ESTS 4 the value will be divided by 10.
Both ESTSs send the calculated values back to subsystem 2. In subsystem 2 the
calculated values can be received until the delay transitions become enabled.

Figure 4.3 shows the generated execution tree of the nested simulation. The
nodes hold one state of every ESTS, where the first in the list are the states
of subsystem 2 and after them there are the states of subsystem 3. First, the
enabled transitions of subsystem 2 were executed. There were two transitions
enabled and because of the full interleaving simulator they were executed in
two different execution paths. Afterward, subsystem 3 received the messages
from the output transitions with the corresponding input transitions. On the
second turn of the simulator of subsystem 2 on every execution path the second
enabled output transition which was not executed on the execution path at first
turn was executed. In subsystem 3 the newly sent message was received and an
output transition was executed. Due to the simulator of subsystem 3 is a full
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Figure 4.3.: Execution tree of a nested simulation.

parallel simulator more than one transition can be executed at same time. On
turn three the message from subsystem 3 can be received from subsystem 2
before the delay transition became enabled. In subsystem 3 the second output
transition was executed in this term. On the last turn in both execution paths a
delay and an input transition were enabled and therefore they are executed and
two new execution paths are created.

In this example the simulation of the nested simulations leads to four different
execution paths with three different constellations of states and attributes at
the leaf nodes. These constellations are, first subsystem 2 is able to receive
all messages with the calculated values from subsystem 3. Second, and third
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subsystem 2 can only receive either one of the two messages from subsystem 3
because of the execution of the delay transition. �

4.2. Shared Attributes

A shared attribute is an attribute which is used in more than one ESTS. There-
fore, changes of the shared attribute value have effect to all ESTSs sharing the
attribute. In comparison to a programming language like C a shard attribute is
similar to a global variable.

A shared attribute is defined in multiple ESTS simulators and all nested simu-
lators which ESTSs include an attribute with the same name shares the same
value. In relation to the hierarchy structure of the multiple ESTS, the sharing of
the attributes does not apply to simulators which are above in hierarchy. The
attributes are shared from the defining simulator downwards.

The use of shared attributes impacts the merging of child nodes of the full
parallel simulator. In the case two transitions which are executed at the same
time with same execution duration changes the same shared attribute, the
execution leads to a non-deterministic execution tree. The attribute can not have
both values. Therefore, the simulation creates a new execution path. One path
uses the value of the shared attribute of one transition and the other path uses
the value of the second transition.

A1

A2

γ
x = x * 10;

A0

!a
x = x + 1;

(a)ESTS 1

B1

B2

?a
x = x * 20;

B0

!b
x = x + 2;

(b)ESTS 2

Figure 4.4.: ESTSs for shared attribute example.
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Figure 4.5.: Execution tree of a simulation with a shared attribute.

Example 4.2. (Shared Attribute)
The two ESTSs in Figure 4.4 are simulated with a full parallel simulator in this
example, where the attribute x is a shared attribute. The transitions of the two
ESTSs have an execution duration of 10 time units, except the output transition
b. This transition needs 20 time units for execution. Every transition changes
the value of the shared attribute x to show the impact of changing the value of
shared attributes.

The resulting execution tree is displayed in Figure 4.5. The output transitions
of the start states A0 and B0 are both enabled and were executed. The output
transition b needed more time for execution as output transition a. Therefore,
the first created node holds only one state and the output transition is part
of the set of running transitions. In the next step the output transition b and
the completion transition of state A1 were executed and both were ready with
execution at the same simulation clock valuation. Due to the parallel simulator
executed both transitions at the same time and both change the value of the
shared attribute, a new execution path was added to execution tree. In one path
x holds the value of the completion transition and in the other path x holds the
value of the output transition b. At the end the input transition was executed in
both execution paths. The shared attribute has already different values in every
execution path. �
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4.3. Nested Simulation State

Another kind of nesting are Nested Simulation States (NSSs), where a state
can contain a number of further ESTSs. That means a state can include nested
functionality which will be activated by reaching the state.

Definition 4.1. (Termination State)
A state which has no outgoing transitions is a termination state. �

A NSS is a state which includes a single or multiple ESTS simulator. The
simulator is starting by reaching the state and is executed until all states of
the ESTSs of the simulator are termination states. In the case all current states
of the simulator are terminated the simulator terminates and returns to the
corresponding NSS.

The Algorithm 3.2 for executing a transition has to adapt to be able to handle
such states. If the new state of a new child node is a NSS the nested simulator
becomes active and will be started. Therefore, the start states of the nested
simulator’s ESTSs replace the NSS in the new child node. In further consequence
the transitions of the ESTSs of the nested simulator will be executed instead
of the enabled transitions of the NSS. Due to the nested simulator can be
terminated, this behavior has also to check at this point. In the case all states
of the ESTSs of the nested simulator are terminated, the states are replaced
through the corresponding NSS. Thereby the enabled transitions of this state
can be executed after the nested simulator is terminated. The activation and
deactivation of the nested simulators run in a loop until neither a nested
simulator is activated nor deactivated. This is done because states of the nested
simulators can be also NSSs and therefore by activating a nested simulator
another one can become active and vice versa.

Example 4.3. (Simulation with NSSs)
In this example the functionality of NSSs is shown. In Figure 4.6 a model with
two NSSs is displayed. This model consists of five different ESTSs which are
identifiable by the start state (double framed) and the termination state (gray
filled). The NSSs in this model are A1 and C1 where every state includes two
ESTSs. In addition, the used attributes x and y are shared attributes.

The ESTSs are part of a simulator and in this example we show the impact of
using two different multiple ESTS simulators. The single ESTSs are in both runs
simulated with a single step simulator.
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Figure 4.6.: Model with NSSs consisting of different ESTSs.

In Figure 4.7 the execution tree is shown for a simulation where the nested
simulators are both full parallel simulators. At the beginning the output tran-
sition a was executed. Therefore, the NSS A1 was reached and the first nested
simulator was started. Instead of the state A1 the node holds the start states of
the nested simulator’s ESTSs B0 and C0. Both states have an enabled transition
which were executed parallel. Again, a NSS was reached and the second nested
simulator was started by replacing the state C1 by the start states X0 and Y0.
The enabled transitions were executed and because two transitions change the
value of the same shared attribute a second execution path was created. After
execution of the output transitions x and y the termination states X1 and Y1

were reached. The nested simulator terminated and the corresponding NSS C1

replaced the termination states. The next step executed the output transition c

and entered the termination state C2. At this point all states of the first nested
simulation’s ESTSs are termination states which leads to the termination of
the nested simulator. The NSS A1 replaced the termination states and the last
transition was executed.

The second simulation of the ESTSs in Figure 4.6 is made with two different
types of multiple ESTS simulators for the nested simulators. The ESTSs of the
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NSS A1 are simulated with a full interleaving simulator and the ESTSs of NSS
C1 are simulated with a full parallel simulator. A fragment of the generated
execution tree is shown in Figure 4.8. The whole execution tree is too big and
therefore some execution paths are not shown.

The execution of the first transition and the start of the first nested simulation
is equal to the simulation before. The created child node has two enabled
transitions and because of the full interleaving simulator both were executed,
but in different execution paths. Therefore, in the different execution paths the
second nested simulator is initialized at different times with different values for
the attribute y. The second nested simulator executed the two output transitions
parallel. The output transitions changed the same shared attribute at the same
time and therefore a new execution path had to be created. This execution paths
were removed from the execution tree because the execution tree is too big and
these execution paths do not matter in this example.

On a closer look of this execution tree in Figure 4.8, the point in time of the
execution of the output transition b deciding for the value of the attribute x in
the leaf nodes. In the first execution path b was executed before the completion
transition between the states C0 and C1. In further consequences the second
nested simulator started with the value 10 for attribute y and in the leaf node
the attribute x holds the value 13. In the second and third execution paths
b was executed after the completion transition. Attribute y had at start of
the second nested simulator the value 20 and x had the value 23 at the leaf
nodes. This two execution paths terminate with the same value for attribute x

similar to the first execution path of the execution tree in Figure 4.7. However,
it has to be considered that the simulation clock valuation is not equal. The
simulation clock valuation at the leaf nodes of the second execution tree are
greater than the simulation clock valuation at the first execution tree’s leaves.
This difference arose from the use of different multiple ESTS simulators for the
first nested simulator. Last but not least, the fourth execution path of the second
execution tree gets our attention. In this execution path the output transition b

was executed after the output transition c and therefore the attribute x got the
value 1. �
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Figure 4.7.: Execution tree of a simulation with NSSs (full parallel).
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Figure 4.8.: Fragment of an execution tree of a simulation with NSSs (full interleaving).
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Simulation executors are programs which simulate an environment for ESTSs
simulators. They are responsible for sending messages to the simulators and
for receiving the outputs from them.

The messages for the input transitions especially for the external input transi-
tions (Definition 3.14) have to be generated for the simulators. In this section
there are three different approaches how messages can be created. The first
approach is a random one, where the messages are generated randomly, the
second works with precalculated values. The third one works like a wrapper
which gets inputs from external and passes them to the simulators.

5.1. Random Walk

The random walk is a simulation executor which generates messages randomly
for the executing simulator. Therefore, a constraint solver is needed, which is
able to calculate a parameter assignment to get a true evaluating guard. Only
in the case such a parameter assignment can be found a message is sent to the
simulator. The values for the parameters are randomly generated with respect to
the restriction of the guard. Also, the send time of the message can be randomly
calculated with the lower bound of the current simulation time. The simulator
has to elapse the time difference to enable the input transition by adding a
message with a send time higher than the simulation time.

Not only input transitions are of interest for the random walk also the delay
transitions are important. In the case a delay transitions has a guard evaluating
to true the random walk can signal the simulator to elapse time to enable a
delay transition.

The leaf nodes of the execution tree are considered by the random walk. If there
are more than one blocked node or a node has more than one input or delay
transitions one leaf node and one input transition or delay transition is chosen
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randomly. After every stop of the simulator one message is sent to the simulator
or the simulator is signaled to wait for a delay transition.

Algorithm 5.1 Random Walk

1: function random walk(simulator, max time)
2: execution tree← simulator.get initialized execution tree( )
3: sim state← EXECUTED
4: while sim state = EXECUTED do
5: lea f nodes← execution tree.get blocking leaf nodes( )
6: shuffle(lea f nodes)
7: for all current lea f node ∈ lea f nodes do
8: message←create message or wait(current lea f node)
9: if message = ∅ then

10: continue
11: else if message 6= EMPTY MESSAGE then
12: for all lea f node ∈ lea f nodes do
13: lea f node.add message(message)
14: end for
15: end if
16: break
17: end for
18: sim state←do simulation(simulator, max time)
19: end while
20: return execution tree
21: end function

In Algorithm 5.1 the random walk is defined. This algorithm gets as parameter
a simulator that can be a single or multiple ESTS simulator and a maximum
simulation time. The simulator is executed as long enabled transitions exists
and the maximum simulation time is not exceeded. The generated execution
tree will be returned after one of these exit criterion is fulfilled.

At the beginning the execution tree is initialized with the initialized execution
tree of the given simulator. This execution tree consists only of the root node
which holds all start states of all ESTSs of the simulator. In a loop the core
of the random walk is proceeded as long the simulation state has the value
EXECUTED. The blocking leaf nodes of the execution tree are obtained and the
leaf nodes are shuffled in the list to get a random order of the leaf nodes. These
leaf nodes are checked if a message can be generated or a delay transition
will become enabled in the future. If no message was returned the next leaf
node will be checked. In the case an empty message is returned the decision
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is fallen to wait for a delay transition. Otherwise, a randomly chosen and
created message is returned which will be added to the list of messages of
every leaf node. Afterward, the simulator is executed for all leaf nodes, where
the added message will be processed or the time will be elapsed to enable a
delay transition. In the case no transitions of all leaf nodes can be executed
NO ENABLED TRANSITIONS is returned or INSUFFICIENT TIME if the maximum
time is reached and therefore no more transitions can be executed. Otherwise,
transitions are executed EXECUTED is returned and the loop will be continued.

A1

A0

?b<int p>
[p > 10 &&

 p < 20]
x = p;

A2

δ(20) 

?a<int p>
[p > 0 &&

 p < 10]
x = p;

δ(20) 

Figure 5.1.: ESTS for random walk example.

Example 5.1. (Random Walk)
This example shows three runs of a random walk for the same ESTS which is
simulated by a single step simulator. The simulated ESTS is shown in Figure
5.1 which consists of three states, two input transitions, two delay transitions
and one timing group. The states A0 and A1 are part of the timing group and
the two input transitions a and b are external input transitions.

The three different execution trees of the three random walk runs are shown in
Figure 5.2. In the first execution tree the random walk decided to wait for the
delay transition at the root node. Therefore, 20 time units are elapsed and the
delay transition became enabled and was executed.

At the second run a message for the input transition was sent with the send
time 8 and with the value 7 for the parameter p. This value was created from a
constraint solver with respect to the guard p > 0∧ p < 10. Due to the send time
of the message is 8 these time units were elapsed. This is done to be able to
receive the message by executing input transition a. Afterward, a message for
input transition b was sent to the simulator which received it. The last transition
which was executed was the delay transition. This has two possible causes, first
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Figure 5.2.: Execution trees of random walks

the random walk chose the delay transition or second the random walk sent a
message with send time higher than 28. Therefore, the delay transition was the
only enabled transition at simulation time 28 and was executed.

The third run generated a non-deterministic execution tree. After sending
the message for input transitions a and b the simulation held at state A0.
Another message for input transition a was sent to the simulator with a send
time 20. Therefore, the delay and the input transition were enabled and both
were executed. After executing input transition a the delay transition was also
executed at the second execution path. The parameter values of the created
messages were always generated by a constraint solver with random values,
where the upper and lower bounds of the guard were considered.

In this example three different random walk runs are shown with different
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results. There is a range of possible parameter values for the input transitions
a and b. In combination with different waits there are a number of possible
execution trees which a random walk can generate. �

5.2. Linear Walk

The linear walk does not generate messages for input transitions, but works
with precalculated values instead. It gets an ordered list of messages which can
have different origins. This list can consists for example of the created messages
of a random walk. Another example could be a manual created list of messages
which represents an accepted order of messages which the simulator should be
able to process.

The aim of the linear walk is the possibility to be able to compare the created
messages of the output transitions with the expected once for a given list
of inputs. Furthermore, the messages can be sent to different variations of
simulators for the given ESTSs. Therefore, the impact of different conditions for
the same input can be revealed.

This simulation executor gets a simulator that can be a single or multiple ESTS
simulator, an ordered list of messages and the maximum simulation time as
input. The messages are added to the list of messages of the root node of the
initialized execution tree of the simulator. Then the simulator is executed until
the maximum simulation time is reached or the leaf nodes of the execution tree
do not have enabled transitions.

5.3. Manual Walk

In contrast to, the simulation executors before this one does not make an
automatic run. This is because the manual walk does not generate messages or
gets the messages before starting. The inputs for the ESTSs have to send from
external to initiate transition executions at the time they occur. The manual
walk is a wrapper, where messages are created for the given inputs and they
are sent to the simulator. The outputs from the simulator are received from the
manual walk and are sent to the external program.

The manual walk is an interface to a simulator that can be a single or multi-
ple ESTS simulator, where an external program is able to send inputs to the
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simulator and receive the outputs. This allows an interaction between an ex-
ternal program and the simulator. Due the ESTSs simulators need a maximum
simulation time the simulation stops at the latest at this time.
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6.1. Independent Co-Simulation (ICOS)

ICOS[26] is a co-simulation framework where different simulation tools and
HiL components are coupled with advanced coupling algorithms. The aim of
ICOS is the simulation of an overall system which includes a vehicle, a driver
and the environment [28].

There are a number of domain-specific simulation tools like Simulink R©1, Dy-
mola R©2, SystemC R©3 or ASCET R©4 which have specific heterogeneous simulation
environments. ICOS couples systems of different simulation tools with various
engineering domains to an overall system. This enables the co-simulation of a
cross-domain system.

In the Graphical User Interface (GUI) of ICOS a system which consists of a
number of subsystems can be assembled. The inputs and the outputs of the
subsystems have to specified and also how they are linked. The output of a
subsystem can be the input of another subsystem. It must be ensured that all
inputs of the subsystems are linked with an output. Therefore, at least one
subsystem must not use inputs.

The co-simulation simulates the system for a defined number of durations
where a duration represents a defined time unit. This means for example that
one second elapses after each simulation step if one second is used as duration.
At any duration the subsystems are applied with the defined input values.
There are different modes which values the subsystems use. By default the
inputs get the calculated values of the outputs of the previous duration.

1http://www.mathworks.com/simulink
2http://www.dymola.com
3http://www.systemc.org
4http://www.etas.com/ascet
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6.2. Interface

Definition 6.1. (Wrapper)
A wrapper is a program which provides an interface to call a second program.
The inputs of the wrapper are converted to be valid inputs for the second
program and the outputs of the second program are also converted for the
calling program. The calling program does not have to know anything about
the second program it only has to know how to use the wrapper. �

The large collection of couplings to existing simulation tools does not include
a simulation tool which simulates a transition system. To close this gap an
interface to the ESTS simulator was implemented. On the basis of this interface
ESTSs and transformed UML State Machines can be co-simulated with ICOS.

Due to the use of different program languages ICOS is implemented in C++
and the ESTS simulator is implemented in Java two wrappers are developed.
One wrapper is written in C++ and is called from ICOS and the other one is
written in Java and is called from the C++ wrapper and calls the ESTS simulator.
To be able to call a Java method from C++ Java Native Interface (JNI) is used.
JNI enables programs written in a non-Java language to call Java code which
runs in a Java Virtual Machine (JVM).

A file specification was developed to be able to save a definition of an ESTS in a
file. In the GUI a file is selected which contains the ESTS to simulate. For ICOS
only deterministic ESTSs are supported because it is a deterministic simulation
where every output can only have one value at a time.

6.2.1. C++ Wrapper

This wrapper starts a JVM and in this JVM the Java wrapper. Afterward, the
ESTS simulator is initialized with the ESTS file that was defined in the GUI
before, by passing the file path and name to the Java wrapper. This is done
via JNI which is able to call Java methods which are currently available in the
JVM.

At every duration the C++ wrapper gets the inputs from ICOS. These will be
prepared for the JNI call and are passed to the Java wrapper. Additionally
the simulation time is passed which will be the maximum simulation time for
the simulator. The output transitions which are executed while simulating are
fetched from the Java wrapper and they are returned to ICOS.
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The simulator has to deliver values for every defined output at the end of the
simulation time of the duration. In the case not all required output transitions
were executed the simulation terminates with a failure.

6.2.2. Java Wrapper

This wrapper is the counterpart of the C++ wrapper on the Java side to execute
the ESTS simulator. More precisely the manual walk is used to execute the ESTS
simulator. The Java wrapper gets the file path and name from the ESTS file from
the C++ wrapper. An ESTS is created with the given file and with this model
an ESTS simulator is created to initialize the manual walk.

The inputs from the C++ wrapper are received and are sent to manual walk.
After receiving the inputs for one duration, the simulation is started where the
given simulation time is used as maximum simulation time for the simulator.

The main reason for using the Java wrapper instead of calling directly the
manual walk is the handling of the outputs. ICOS specifies that on the end
of the duration every defined output has to have a value. Value means in this
context the valuation of the output parameters. The execution path can be seen
as time line where an output has at any time the same value as the execution of
the output before. Before the first execution, the value of an output is undefined
and after the first execution the output has a specific value. This value is valid
until another execution of the output is done. After simulating the ESTS all
output value changes which are done in the current duration are returned where
the label of the output transition, the parameter valuations and the simulation
time after the execution are delivered to the C++ wrapper. Additionally the
output values at the simulation time of the duration are returned to fulfill the
ICOS specification.

Example 6.1. (Electricity Controller)
In this example an electricity controller of a hybrid electric vehicle which has an
internal combustion engine and additionally an electric motor using a battery
is simulated. The electricity controller calculates the percentage share of the
usage of the electric motor based on the charge level of the battery. The higher
the charge level the more the electric motor is used to support the internal
combustion engine.

The ESTS which defines the electricity controller is shown in Figure 6.1. It
has one input transition battery and one output transition electricity. The
completion transitions are used to set the attribute electricity based on the
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Figure 6.1.: ESTS of the electricity controller.
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Figure 6.2.: Plot of the calculated electricity usage (red) and the battery charge condition (blue).

value of the attribute battery. In the case the battery charge level is below 10%
the electric motor will not be used. Is the battery charge level between 10% and
40% than the electric motor is used for 20% and so on.

The battery charge level is a predefined static curve that is used as input for the
ESTS. This curve is plotted in blue in Figure 6.2. The plot displays the battery
charge level in percent over time in seconds.
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ICOS was executed for 600 durations where a duration was one second. The red
curve in Figure 6.2 is the output of the simulated ESTS which is the calculated
percentage share of the usage of the electric motor. At the begin the battery
charge level was 100% and the car used 80% electrical power and 20% from the
internal combustion engine. The battery charge level decreased and at the point
it is under 60% the ESTS returned for the electrical usage 50%. After the charge
level decreased under 40% only 20% electrical power is used. At second 300

the battery was charged and at the point the charge level reached 40% again
more power of the electrical motor was used. The charging ended at second
400 thenceforth the charge level decreased and at second 550 the charge level is
under 10%. Therefore, the electronic motor is not used at the last 50 seconds. �
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In this chapter the applicability of simulating ESTSs is shown. The resulting
execution tree of a simulation gives information about the behavior of simulating
in different environments. The full interleaving simulator executes all enabled
transitions of a state and therefore all possible execution orders for a specific
initialization and inputs results. Due to this fact the execution tree can be
checked for unexpected behaviors. This can be caused for example by faulty
models, unexpected occurrences of race conditions or unexpected time behavior.
The full parallel simulator provides information about the behavior of the
models in a parallel environment. Not all models are ready for full parallel
executions and therefore probably arising unexpected behaviors can be seen in
the execution tree.

There is also an example which shows the co-simulation of Simulink
R©

models
and an ESTS in ICOS. An air controller for a physical plant is simulated where
the physical plant is simulated with Simulink R© and the air controller with an
ESTS simulator.

7.1. Deadlock Detection

A situation where two or more actions wait for each other to continue is called
deadlock. A famous problem to show the occurrence of deadlocks is the dining
philosophers problem. We use it to show the ability to detect deadlocks by
simulating ESTSs. In this example two philosophers are sitting on a table where
each of them has a plate, but there are only two forks placed. In the middle
of the table is a bowl of spaghetti where the philosopher is allowed to serve
himself in the case he has both forks. The philosophers alternately think and
eat. However, because of the limitation of the forks only one philosopher is able
to eat at a time. A hungry philosopher takes a fork if it is available unless he
waits for it. A deadlock occurs in the case every philosopher has taken one fork
and waits for the second.
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Figure 7.1.: ESTSs of two philosophers.

In Figure 7.1 two ESTSs are shown which are the models for the two philoso-
phers. They are thinking and after they become hungry they take the forks.
With both forks they eat and when they are full they put the forks back on the
table and think again. The attributes f1 and f2 are shared attributes which can
have the values 0 and 1. 0 means the fork is available and 1 means the fork is in
use. The main difference between these two models is that philosopher 1 takes
first fork 1 and then fork 2 and philosopher 2 takes first fork 2 and then fork 1.
After eating, they put the forks back on the table in the same order they have
taken them.

A simulation with the deterministic simulator will not result in a deadlock
because only the first added ESTS will be simulated. The models do not termi-
nate and therefore the deterministic simulator simulates the model until the
maximum simulation time is reached.
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(a)Full Interleaving

thinking thinking 

hungry hungry 

γ 
γ 

 10 hungry (f1=0;f2=0;) 
hungry (f1=0;f2=0;)

hungryOneFork hungryOneFork 

!takeForkL[f1 == 0] f1 = 1;
!takeForkL[f2 == 0] f2 = 1;

 20 hungryOneFork (f1=1;f2=1;) 
hungryOneFork (f1=1;f2=1;)

(b)Full Parallel

Figure 7.2.: Execution trees of the simulation of two dining philosophers.

More interesting are the simulation results of the full interleaving and full
parallel simulator which are shown in Figure 7.2. The full interleaving simulator
generates a non-deterministic execution tree where a fragment of this tree is
displayed in Figure 7.2a. There are two execution paths shown, in one the
philosopher 1 is eating and in the other one the execution results in a deadlock.
The second execution tree, shown in Figure 7.2b, is the result of a full parallel
simulation. The deadlock occurs pretty soon because the two philosophers did
everything simultaneously. They became hungry and took a fork always at
the same time. Afterward, they wait for the second fork which never will be
available in this situation.

7.2. Race Condition

A race condition occurs if the time at which inputs are received lead to different
states during the simulation. In the case the inputs are received in an order the
programs are not implemented for an unexpected behavior can occur. There are
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different ways which create race conditions, where three of them are discussed
in more detail. First, we discuss an unexpected update of a shared resource
due to a race condition. Second the write-write conflict where two or more
simultaneously executed programs write to the same shared resource. Therefore,
an update can be replaced by another without considering the previous update
which is called lost update. The third race condition is the parallel update of a
shared resource which leads to a non-deterministic behavior and can be also an
unexpected behavior.

7.2.1. Unexpected Update

The producer consumer problem is a classic example to show different problems
of a multi-process environment. The producer and consumer share a buffer
with a fixed size where the producer fills the buffer and the consumer empties
it. In Figure 7.3 the ESTSs for producer and consumer are displayed. Instead of
a buffer the models increase and decrease the shared attribute x and the shared
attribute N which defines the maximum value of x. The producer produces an
item and x is increased by 1 if x < N. In the other case where x has reached its
maximum the producer goes to state sleep. At this state it waits for a wakeup

of the consumer. After increasing x the producer goes to state idle and in the
case x = 1 a wakeup is sent to the consumer. This is done because before the
increasing of x it is 0 and in this case the consumer could be in state sleep. The
customer decrease the shared attribute x in the case it is greater than 0. In state
itemPicked a wakeup is sent to the producer in the case x = N − 1 because x

has reached the maximum before decreasing and the producer could sleep.

idle

newItem

!produce

sleep

γ 
[x == N]

itemAdded

γ 
[x < N]

x = x + 1;
?wakeup

!wakeup
[x == 1]

γ 
[x > 1]

(a)Producer

idle

sleep

γ 
[x == 0]

itemPicked

γ 
[x > 0]

x = x - 1;
?wakeup

consume

!wakeup
[x == N - 1]

γ 
[x < N - 1]

!consume

(b)Consumer

Figure 7.3.: ESTSs of a producer and a consumer.
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(a)Bug in producer.
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!produce
1 newItem (N=5;x=5;) idle (N=5;x=5;)
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γ [x < N] x = x + 1;
3 itemAdded (N=5;x=5;) itemPicked (N=5;x=5;)

idle itemPicked 

γ [x > 1]
4 idle (N=5;x=5;) itemPicked (N=5;x=5;)

newItem itemPicked 

!produce
5 newItem (N=5;x=5;) itemPicked (N=5;x=5;)

sleep itemPicked 

γ [x == N]
6 sleep (N=5;x=5;) itemPicked (N=5;x=5;)

(b)Bug in consumer.

Figure 7.4.: Execution paths showing unexpected race conditions which are leading to a bug.

A full interleaving simulation with single step simulators for producer and
consumer generates an execution tree. This tree consists of all possible execution
orders of these two ESTSs for a given simulation time and for a specific initial
attribute valuation. That means the generated execution tree contains all possible
race conditions for the given conditions. In this example the simulation is started
once with x = 0 and once with x = 5. The attribute N is in both simulations 5.
The resulting execution tree contains two execution paths which are shown in
Figure 7.4. These execution paths are displayed because they identify two bugs
in the ESTSs caused by unexpected race conditions.

The first simulation starts with x is 0 and therefore the producer can execute the
output transition produce and the increasing of x by 1. After the increasing, the
consumer was allowed to execute its transitions. Due to x was 1 the consumer
decreased x by 1 and executes the output transition consume. The consumer is
again in state idle but this time x was 0 and therefore it changed its state to
sleep. The consumer waited for a wakeup of the producer, but the producer was
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not able to execute a transition. This was caused by an incorrect guard x > 1 of
the completion transition of the state itemAdded. Due to the state itemAdded is
the state after the increase of x, x should be greater or equal to 1. In the case x is
1 the output transition wakeup and in the other case the completion transition is
executed. Due to the race condition the shared attribute x was 0 and no guard
could evaluate to true.

The second simulation was initialized with x = N = 5. In the execution path
(Figure 7.4b) producer and consumer alternated at the begin. The producer
produced an item and the consumer picked one. Therefore, the producer was
able to add the new item by increasing x by 1 and so x reached again the
maximum. The producer output transition produce was executed a second
time and because x = N it went to sleep. In this situation a second bug was
found, the guard of the state itemPicked of the consumer are also incorrect
with respect to the occurrence of race conditions.

7.2.2. Write–Write Conflict

A write-write conflict occurs when two programs write to the same shared
resource without taking note of previous updates. One program updates a
shared variable and the second program overwrite the value with a new one.
The second program does not note the previous update of the first program. The
race conditions are also responsible for this unexpected behavior and therefore
it can be detected in the generated execution tree of a full interleaving simulator.
To illustrate the possibility to detect such write-write conflicts two ESTSs are
simulated with full interleaving simulator. The individual ESTSs are simulated
with single step simulator to get an execution tree which includes all possible
race conditions.

In Figure 7.5 two ESTSs are shown which read and write to the same shared
attribute x. First, they read the value of x and save the value in a non-shared
attribute a. The value of a is in one ESTS increased by 1 and in the other ESTS
multiplied by 3. After the calculations the new values of a are written to shared
value x. In the case the models are simulated deterministically no unexpected
behavior will be arise. The expected values for x after execution are 6 and 4.
The value 6 is the result if ESTS 1 is executed before ESTS 2 and the value
4 is the expected result for the reverse order of execution. The situation is
different when the models are simulated simultaneously because in this case
race conditions can be happening.
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(b)ESTS 2

Figure 7.5.: ESTSs to show write-write conflict.
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Figure 7.6.: Execution tree showing expected and unexpected behavior because of race condi-
tions.
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The generated execution tree of the full interleaving simulator consists of
different execution paths which terminate with four different valuations of the
shared attribute x. A fragment of the generated execution tree is shown in Figure
7.6 which contains four execution paths where each end with a different value
for x. The two outer execution paths are executions which hold an expected
value of x at the termination states. The left one executes first ESTS 1 and then
ESTS 2 and the right one executes the ESTSs in a reverse order. These execution
paths are out of race conditions and therefore x has an expected result.

The write-write conflict can be seen in the execution paths in the middle of the
execution tree. At the begin both models read the value of x and therefore both
calculated with the value 1. After calculating the models assigned the new value
to x. Due to this execution order x holds always the value of the last update
and the update before is lost.

7.2.3. Contemporaneous Update

In a parallel environment an update of a shared attribute by two different
ESTSs at the same time is possible. The value of the attribute after such con-
temporaneous updates is undefined. That means the attribute holds one of
the two values, but which value is unknown. Therefore, in such a case the full
parallel simulation leads to a non-deterministic execution tree. However, in each
execution path an update is lost and this can lead to unexpected results.

The previously used ESTSs of the Figures 7.3 and 7.5 are simulated with a full
parallel simulator to illustrate contemporaneous updates. The result of the full
parallel simulation of the write-write conflict ESTSs is shown in Figure 7.7. The
two models had read, calculated and wrote always at the same time. Due to the
simultaneously write the execution tree became non-deterministic. The shared
attribute x got in one execution path the calculated value of the first model and
in the other execution path the value of the second model. The resulting values
for x are 2 and 3. This execution tree shows the parallel behavior of the models
and in the case the resulting attribute valuations are incorrect the models are
not ready of parallelism.

The second full parallel simulation uses the producer and consumer ESTSs
(Figure 7.3) which generated the result shown in Figure 7.8. The producer
produced a new item and the consumer went to sleep on the first state change.
Afterward, the producer increased the shared attribute x and sent a wakeup to
the consumer. Then the producer and consumer can execute transitions again
parallel. The producer produced another item and the consumer received the
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Figure 7.7.: Execution tree showing unexpected outputs because of race conditions.
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Figure 7.8.: Execution tree fragment of the simulation of consumer and producer.
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wake up. The shared attribute x was increased because of the new produced
item and the consumer decreased x because items were available. These also
were done at the same time which resulted in a non-deterministic execution
tree. In the first execution path x is 2 and in the second one x is 0. Both values
are incorrect due to the increasing and decreasing of x whereas the value of x
should be 1. Assuming that x is an index of a buffer the access with the value
of the first execution path can lead to an index out of bounds exception. The
second execution path will ignore the newly added item because x is 0 which
means the buffer is empty.

7.3. Time Behavior

There are many reasons which can affect the execution time of a program. For
example, the processor can also process other programs at the same time or
the network is busy. Therefore, the different time behaviors can be investigated
by simulating ESTSs with different execution durations. To get a meaningful
information about the influence of different time behaviors the models have to
simulate with the same inputs and the same initialization. In this example a
system with three models (Figure 7.9) are simulated with different simulators
and different time behaviors.
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!inputN?inputS
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?fullS

timeout

?timeoutS

(a)Sender

input
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!inputR ?inputN

full

?fullN

timeout

?timeoutN!fullS !timeoutS

(b)Network
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γ 
[x < 2]
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!fullN
[x == 2]

sendTimeout

!timeoutN

?inputR

δ(150) 

(c)Receiver

Figure 7.9.: ESTSs for time behavior example.
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A sender receives user inputs and sends the inputs over a network to the
receiver. The receiver is able to process 2 inputs which have to be received
within 100 time units. After receiving 2 inputs the receiver sends full over
the network back to the sender. A timing group in the receiver is responsible
to change after 150 time units in the timeout state to send a timeout to the
sender. The transitions of the sender and the receiver takes 10 time unit and the
transitions of the network can take between 1 and 25 time units. The aim of this
example is to show the influence of different workloads of the network to the
whole system.

The ESTSs in Figure 7.9 are simulated four times where they are simulated
twice with the deterministic simulator and the single ESTSs with the continuous
simulator. The other two simulations are made with the full parallel simula-
tor and the single ESTSs are simulated with the single step simulator. Every
multiple ESTS simulator is executed once with the setup to use the minimum
execution duration and once to use the maximum execution duration. This
effects the execution duration of the network where either 1 or 25 time units are
used. The environment sent an input for the external input transition inputS

three times at simulation time 1, 2 and 3.

In the Figures A.1 and A.2 the generated simulation tree from the deterministic
simulator are shown. As mentioned before the single ESTSs are simulated with
the continuous simulator. The first simulation is done using the minimum
execution duration. The sender starts with the reception of the input and sends
it to the network. The network received and sent the input to the receiver. Due
to the minimum execution duration this only needed 2 time units. The receiver
processed the input by increasing the attribute x by 1. Afterward, the sender got
its second turn and received the second input from the environment and sent
it via the network to the receiver. The receiver again processed the input and
due to the attribute x reached the maximum value of 2, fullN was sent to the
sender. Before the network can forwarding, the message from the receiver the
sender got its third input which had no effect because the receiver is full.

The result of the simulation using the maximum execution duration is quite
different than the previous one. This execution tree is shown in Figure A.2
which shows three execution paths. The begin of the execution tree is similar to
A.1 the only difference is the used execution duration for the transitions of the
network. The network took much more time and therefore the receiver got its
second turn at simulation time 170. Due to the delay is less than the simulation
time the delay transition became enabled. Besides the delay transition the input
transition inputR is also enabled leading to non-determinism. In one execution
path the receiver sent a timeout to the sender. The other execution path splits
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again because the delay transition became enabled at state processInput. Thus,
the execution path which executes the delay transition sent a timeout to the
sender and the other one sent a full message.

These two execution trees show the impact of the time to a system. In the
case the network is not busy the inputs are received before the timeout occurs.
Though the network is busy this is not necessarily the case.

This system was also simulated with a full parallel simulator which used single
step simulators for the single ESTSs. The resulting execution trees are shown in
the Figures A.3 and A.4. Due to the parallel execution of transitions the inputs
are always received before the timeout occurs. The sender and receiver are
able to execute transitions while the network is busy. Therefore, the inputs are
earlier processed and the receiver got the two inputs before the delay transitions
became enabled.

7.4. ICOS Air Controller

This example illustrates the functionality of the implemented ICOS interface by
a co-simulation of Simulink R© models and an ESTS. In Figure 7.10 a Simulink R©

model is shown which includes three different main models: the Switch Signal,
the Air Controller and the Physical Plant. The Switch Signal is able to turn
the Air Controller on and off. The clock signal does not influence this example
and therefore it is ignored. The Air Controller includes a nested State Machine,
which is shown in Figure B.1. It consists of two fans which are activated if
specific temperatures are reached. The inputs for the Air Controller are the
switch (on or off) and the temperature of the Physical Plant. The Physical Plant
needs the airflow of the fans for cooling.

The idea is to replace the Air Controller through an ESTS and ICOS co-simulates
the Switch Signal, Physical Plant and the created ESTS. Therefore, the Switch
Signal and Physical Plant are adapted to work with ICOS. Due to a State
Machine can be transferred to an ESTS an equivalent ESTS for the Air Controller
Simulink R© State Machine was created, which is shown in Figure B.2. ICOS sends
both inputs (switch and temperature) always at the same time and the ESTS has
to send the airflow back within the simulation time of the duration. Therefore,
an airflow output transition will be sent also when the Air Controller is turned
off, but in this case it is always zero. Is the Air Controller turned on the value
of the airflow depends on the received temperature.
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Switch Signal 
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160
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Figure 7.10.: Simulink R© model of the air controller.

ICOS co-simulates the Simulink R© models and the ESTS for 600 seconds. The
plots shown in Figure 7.11 are the result of the co-simulation. The Switch Signal
sends the values 1 and 0 to turn the Air controller on and off. In Figure 7.11a
the sent switch signal is plotted where the Air Controller is only turned on in
the time between 350 and 500. The temperature of the Physical Plant increases
while the Air Controller is turned off which can be seen in Figure 7.11b. At
second 350 it has a temperature of about 158

◦C at this time the Air Controller
was turned on and both fans started to work. The temperature decreased under
150
◦C and therefore one fan stopped working. After 50 seconds, the second fan

also stopped its operation because the temperature is under 120
◦C. The next 100

seconds the temperature reached the 120
◦C bound a few times and therefore

one fan was stared always for a short time. The Switch Signal turned the Air
Controller off at second 500 and this led to an increasing of the temperature
until the simulation was stopped.

The results of the ICOS co-simulation are basically equal in comparison with the
Simulink R© simulation, which is shown in Figure B.3. The Simulink R© simulation
used the Clock signal of the Switch Signal, which is 2Hz. The ICOS simulation
was made with a duration of 1s and therefore the results are not exactly equal.
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(a)Plot of the input switch (blue) and the calculated airflow (red).
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(b)Plot of the temperature of the Physical Plant.

Figure 7.11.: ICOS plots of the co-simulation of Simulink R© and ESTS.
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8. Final Remarks

8.1. Related Work

The simulation of transition systems is used in a lot of scientific tools in particu-
lar for automatic generation of test cases. There are some tools using Labeled
Transition Systems (LTSs) [24] like TGV [17, 16] and TorX [3, 25]. These tools
are generating test cases from formal specifications of reactive systems. TGV
generates tests cases for a System Under Test (SUT) with respect to a given test
purpose where the system and the test purpose are given as LTSs. TorX takes
a different approach than TGV by generating test cases on-the-fly, where the
random generated inputs are executed on the SUT and the outputs are checked
immediately.

Modeling large systems with LTS is impractical and therefore specification
languages are used. One of these is LOTOS [15] which is an International
Organization for Standardization (ISO) standard and it is a practical way to
specify a LTS. However, it is often a laborious task to create such a model because
of the treatment of data. In a LTS there exists no variables and parameter so
these names and values have to encode in the state and action names. This
intensifies the state space to state space explosion and limits the usability.

The tool STG [7] uses a symbolic version of transition systems the Input-Output
Symbolic Transition System (IOSTS). Symbolic means that data are separated
from the model where the data are stored in variables. The process of the STG is
similar to that from TGV. A tool that is using STS [11, 12] for on-the-fly test case
generation like TorX is the STSimulator. This simulator is used in Jambition

[10] which generates test cases automatically for web applications.

The approaches above are not considering time and for this reason the models
have to be improved for time-critical systems. One of the first approaches
dealing with real-time was the Timed Automata (TA) [1] which is the base for
many further approaches. There are a lot of real-time extensions which define
timed versions of LTS [18, 6, 21]. The tool TorX was extended to support a timed
version of a LTS [5]. The combination of time and a STS was defined in [27].
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They described the Symbolic Timed Automata (STA) which is an amalgamation
of a STS and a TA.

A related and much older approach are the Finite State Machines (FSMs) [13]
which consists of states and transitions. The main difference in comparison
with transition systems is that a transition consists of input and output. The
explosion of the state space is a problem for LTS as well as for FSM. Therefore,
a symbolic approach the Extended Finite State Machine (EFSM) was introduced.
There are also approaches to handle real-time systems based on FSM variants
like Timed Finite State Machines (TFSM) [9] and Timed Extended Finite State
Machines (TEFSM) [20]. The simulation of FSMs is also done for example for
verification [14].

Uppaal [4, 2] is a model checker for real-time systems which is developed by
Uppsala University and Aalborg University. Systems can be modeled, validated
and verified with this tool. The base of the underlying model is a TA which is
extended with data types.

8.2. Future Work

The presented ESTS simulators generate execution traces with respect to the
given inputs. An input holds for every parameter exactly one value. An exten-
sion of this approach could be extent the parameter valuation to a parameter
valuation range. Therefore, a simulation can generate the execution traces for
the value range. This would lead to the possibility to create test cases for bound-
ary checks. Furthermore, test cases could be generated based on the execution
traces using for example constraint solver.

8.3. Conclusion

A system like a CPS has versatile components which communicate in different
ways with each other. Therefore, ESTSs can be simulated with three different
communication modes namely Deterministic, Full Interleaving and Full Parallel.
This communication modes consist of sequential execution of the simulation
ESTSs to simultaneously in parallel execution. The ability to use different
communication modes for one simulation underlies the possibility of nesting
ESTSs in a hierarchy in a tree like structure.
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8.3. Conclusion

The simulation executors send inputs to a simulator and receive the outputs. The
origin of the sent inputs is in every simulation executor different. The Random
Walk generates inputs randomly by using a constraint solver. Precalculated
inputs are used in Linear Walk where the outputs of different simulations with
different options can be compared for the same inputs. The Manual Walk works
like a wrapper and gets the inputs from an external program. This allows an
interaction between an external program and the simulator.

The intention to create an embedded control unit for an existing system of
physical components can be supported by the ESTS simulator. The provided
communication modes and the considering of time fulfill the requirements to
simulate such systems.

An interface to the co-simulation framework ICOS was introduced. ICOS is able
to couple different simulation tools to co-simulate a system with subsystems of
different domains. This enables the ESTS simulator to be a part of a simulation
of for example a virtual vehicle.
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Appendix A.

Network Example

The execution trees which are described in Section 7.3 are shown in this ap-
pendix.
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Appendix A. Network Example

idle idle idle 

input idle idle 

?inputS
10(tg 10)

 input () idle () idle (x=0;)

idle idle idle 

!inputN
20(tg 20)

 idle () idle () idle (x=0;)

idle input idle 

?inputN
21(tg 21)

 idle () input () idle (x=0;)

idle idle idle 

!inputR
22(tg 22)

 idle () idle () idle (x=0;)

idle idle input 

?inputR
32(tg 32)

 idle () idle () input (x=0;)

idle idle processInput 

γ 
x = x + 1;
42(tg 42)

 idle () idle () processInput (x=1;)

idle idle idle 

γ 
[x < 2]

52(tg 52)
 idle () idle () idle (x=1;)

(a)Part 1

idle idle idle 

input idle idle 

?inputS
62(tg 62)

 input () idle () idle (x=1;)

idle idle idle 

!inputN
72(tg 72)

 idle () idle () idle (x=1;)

idle input idle 

?inputN
73(tg 73)

 idle () input () idle (x=1;)

idle idle idle 

!inputR
74(tg 74)

 idle () idle () idle (x=1;)

idle idle input 

?inputR
84(tg 84)

 idle () idle () input (x=1;)

idle idle processInput 

γ 
x = x + 1;
94(tg 94)

 idle () idle () processInput (x=2;)

idle idle full 

!fullN
[x == 2]

104(tg 104)
 idle () idle () full (x=2;)

(b)Part 2

idle idle full 

idle full full 

?fullN
105(tg 104)

 idle () full () full (x=2;)

idle idle full 

!fullS
106(tg 104)

 idle () idle () full (x=2;)

input idle full 

?inputS
116(tg 104)

 input () idle () full (x=2;)

idle idle full 

!inputN
126(tg 104)

 idle () idle () full (x=2;)

full idle full 

?fullS
136(tg 104)

 full () idle () full (x=2;)

full input full 

?inputN
137(tg 104)

 full () input () full (x=2;)

full idle full 

!inputR
138(tg 104)

 full () idle () full (x=2;)

(c)Part 3

Figure A.1.: Execution tree for minimum execution duration and deterministic simulator.

78



idle idle idle 

input idle idle 

?inputS
10(tg 10)

 input () idle () idle (x=0;)

idle idle idle 

!inputN
20(tg 20)

 idle () idle () idle (x=0;)

idle input idle 

?inputN
45(tg 45)

 idle () input () idle (x=0;)

idle idle idle 

!inputR
70(tg 70)

 idle () idle () idle (x=0;)

idle idle input 

?inputR
80(tg 80)

 idle () idle () input (x=0;)

idle idle processInput 

γ 
x = x + 1;
90(tg 90)

 idle () idle () processInput (x=1;)

idle idle idle 

γ 
[x < 2]

100(tg 100)
 idle () idle () idle (x=1;)

input idle idle 

?inputS
110(tg 110)

 input () idle () idle (x=1;)

idle idle idle 

!inputN
120(tg 120)

 idle () idle () idle (x=1;)

idle input idle 

?inputN
145(tg 145)

 idle () input () idle (x=1;)

idle idle idle 

!inputR
170(tg 170)

 idle () idle () idle (x=1;)

(a)Part 1

idle idle idle 

idle idle timeout 

δ(150) 
180(tg 170)

 idle () idle () timeout (x=1;)

idle idle input 

?inputR
180(tg 180)

 idle () idle () input (x=1;)

idle idle sendTimeout 

!timeoutN
190(tg 170)

 idle () idle () sendTimeout (x=1;)

idle timeout sendTimeout 

?timeoutN
215(tg 170)

 idle () timeout () sendTimeout (x=1;)

idle idle sendTimeout 

!timeoutS
240(tg 170)

 idle () idle () sendTimeout (x=1;)

input idle sendTimeout 

?inputS
250(tg 170)

 input () idle () sendTimeout (x=1;)

idle idle sendTimeout 

!inputN
260(tg 170)

 idle () idle () sendTimeout (x=1;)

timeout idle sendTimeout 

?timeoutS
270(tg 170)

 timeout () idle () sendTimeout (x=1;)

timeout input sendTimeout 

?inputN
295(tg 170)

 timeout () input () sendTimeout (x=1;)

timeout idle sendTimeout 

!inputR
320(tg 170)

 timeout () idle () sendTimeout (x=1;)

idle idle processInput 

γ 
x = x + 1;

190(tg 190)
 idle () idle () processInput (x=2;)

idle idle full 

!fullN
[x == 2]

200(tg 200)
 idle () idle () full (x=2;)

idle idle timeout 

δ(150) 
200(tg 190)

 idle () idle () timeout (x=2;)

idle full full 

?fullN
225(tg 200)

 idle () full () full (x=2;)

idle idle full 

!fullS
250(tg 200)

 idle () idle () full (x=2;)

input idle full 

?inputS
260(tg 200)

 input () idle () full (x=2;)

idle idle full 

!inputN
270(tg 200)

 idle () idle () full (x=2;)

full idle full 

?fullS
280(tg 200)

 full () idle () full (x=2;)

full input full 

?inputN
305(tg 200)

 full () input () full (x=2;)

full idle full 

!inputR
330(tg 200)

 full () idle () full (x=2;)

idle idle sendTimeout 

!timeoutN
210(tg 190)

 idle () idle () sendTimeout (x=2;)

idle timeout sendTimeout 

?timeoutN
235(tg 190)

 idle () timeout () sendTimeout (x=2;)

idle idle sendTimeout 

!timeoutS
260(tg 190)

 idle () idle () sendTimeout (x=2;)

input idle sendTimeout 

?inputS
270(tg 190)

 input () idle () sendTimeout (x=2;)

idle idle sendTimeout 

!inputN
280(tg 190)

 idle () idle () sendTimeout (x=2;)

timeout idle sendTimeout 

?timeoutS
290(tg 190)

 timeout () idle () sendTimeout (x=2;)

timeout input sendTimeout 

?inputN
315(tg 190)

 timeout () input () sendTimeout (x=2;)

timeout idle sendTimeout 

!inputR
340(tg 190)

 timeout () idle () sendTimeout (x=2;)

(b)Part 2

Figure A.2.: Execution tree for maximum execution duration and deterministic simulator.
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Appendix A. Network Example

idle idle idle 

input idle idle 

?inputS
10(tg 10)

 input () idle () idle (x=0;)

idle idle idle 

!inputN
20(tg 20)

 idle () idle () idle (x=0;)

input idle 

?inputN
21(tg 21)

 input () idle (x=0;)

idle idle 

!inputR
22(tg 22)

 idle () idle (x=0;)

input idle 

?inputS
30(tg 30)

 input () idle ()

idle input 

?inputR
32(tg 32)

 idle () input (x=0;)

idle idle 

!inputN
40(tg 40)

 idle () idle ()

idle input 

?inputN
41(tg 41)

 idle () input ()

(a)Part 1

idle input 

idle idle processInput 

!inputR
γ 

x = x + 1;
42(tg 42)

 idle () idle () processInput (x=1;)

idle idle idle 

γ 
[x < 2]

52(tg 52)
 idle () idle () idle (x=1;)

idle idle input 

?inputR
62(tg 62)

 idle () idle () input (x=1;)

idle idle processInput 

γ 
x = x + 1;
72(tg 72)

 idle () idle () processInput (x=2;)

idle idle full 

!fullN
[x == 2]
82(tg 82)

 idle () idle () full (x=2;)

idle full full 

?fullN
83(tg 82)

 idle () full () full (x=2;)

idle idle full 

!fullS
84(tg 82)

 idle () idle () full (x=2;)

full idle full 

?fullS
94(tg 82)

 full () idle () full (x=2;)

(b)Part 2

Figure A.3.: Execution tree for minimum execution duration and full parallel simulator.
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idle idle idle 

input idle idle 

?inputS
10(tg 10)

 input () idle () idle (x=0;)

idle idle idle 

!inputN
20(tg 20)

 idle () idle () idle (x=0;)

input idle 

?inputS
30(tg 30)

 input () idle (x=0;)

idle idle 

!inputN
40(tg 40)

 idle () idle (x=0;)

input idle 

?inputN
45(tg 45)

 input () idle (x=0;)

input idle 

?inputS
50(tg 50)

 input () idle (x=0;)

idle idle 

!inputN
60(tg 60)

 idle () idle (x=0;)

(a)Part 1

idle idle 

idle idle idle 

!inputR
70(tg 70)

 idle () idle () idle (x=0;)

idle input 

?inputR
80(tg 80)

 idle () input (x=0;)

idle processInput 

γ 
x = x + 1;
90(tg 90)

 idle () processInput (x=1;)

idle input 

?inputN
95(tg 95)

 idle () input ()

idle idle 

γ 
[x < 2]

100(tg 100)
 idle () idle (x=1;)

idle idle idle 

!inputR
120(tg 120)

 idle () idle () idle (x=1;)

idle input 

?inputR
130(tg 130)

 idle () input (x=1;)

(b)Part 2

idle input 

idle processInput 

γ 
x = x + 1;

140(tg 140)
 idle () processInput (x=2;)

idle input 

?inputN
145(tg 145)

 idle () input ()

idle full 

!fullN
[x == 2]

150(tg 150)
 idle () full (x=2;)

idle idle full 

!inputR
170(tg 150)

 idle () idle () full (x=2;)

idle full full 

?fullN
195(tg 150)

 idle () full () full (x=2;)

idle idle full 

!fullS
220(tg 150)

 idle () idle () full (x=2;)

(c)Part 3

Figure A.4.: Execution tree for maximum execution duration and full parallel simulator.
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Appendix B.

Air Controller Example

The Simulink R© State Machine and the equivalent ESTS of the air controller are
shown here. Also, the reference result of the Simulink R© simulation is displayed
in this section.

PowerOn

FAN1 1
On

Off

FAN2 2
On

Off

SpeedValue
during: airflow = in(FAN1.On) + in(FAN2.On);

3

PowerOff
entry: airflow = 0;

Switch Switch

[temp<120]

[temp >= 120]

[temp <150]

[temp >=150]

Figure B.1.: Simulink R© State Machine of the air controller.
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Appendix B. Air Controller Example
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Figure B.2.: ESTS of the air controller.
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Figure B.3.: Simulink R© plot of the Air Controller simulation.
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List of Acronyms

CPS Cyber-Physical System
EFSM Extended Finite State Machine
ESTS Extended Symbolic Transition System
FSM Finite State Machine
GUI Graphical User Interface
HiL Hardware in the Loop
ICOS Independent Co-Simulation
IOSTS Input-Output Symbolic Transition System
ISO International Organization for Standardization
JNI Java Native Interface
JVM Java Virtual Machine
LTS Labeled Transition System
NSS Nested Simulation State
STA Symbolic Timed Automata
STS Symbolic Transition System
SUT System Under Test
TA Timed Automata
TLTS Timed Labeled Transition System
UML Unified Modeling Language
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