
Master’s Thesis

ECU with Safety Features for a Formula
Student Electric Race Car based on

FreeRTOS

Friedrich Lobenstock

————————————–

Institute for Technical Informatics
Graz University of Technology

Inffeldgasse 16, 8010 Graz, Austria
Head: O. Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Römer

Supervisor/Assessor:
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Graz, October 2013

Abstract

The Formula Student Electric (FSE) is an all-electric race car series, which was started in
2010 as part of the Formula Student and Formula SAE R© series of worldwide competitions.
Every year, the teams have to develop new prototype race cars. In prototype development,
general-purpose Electronic Control Units (ECUs) are commonly used. For cars with in-
ternal combustion engines, numerous commercial off-the-shelf, general-purpose ECUs are
already available. Not so for FSE cars, because of the specific requirements defined in the
rules of this series.

In this work, an ECU for use in FSE race cars was developed according to the Safety
Element out of Context (SEooC) concept of the functional safety standard ISO 26262.
The functional safety concept and the technical safety concept were derived from an item
definition, which is based on the Maxwheel race car of the TU Graz Racing Team. The
outcome is a Safety ECU platform for FSE race cars. Furthermore, as a basis for future
software development, FreeRTOS, a real-time operating system for embedded systems,
was ported to a CPU, based on the C166 V2 core.

Keywords: ISO 26262, Functional Safety, Item Definition, Functional Safety Concept,
Technical Safety Concept, Safety Element out of Context, SEooC, Formula Student Elec-
tric, Electronic Control Unit, ECU, FreeRTOS, C166

i

Kurzfassung

Die Formula Student Electric (FSE) ist eine Rennserie für vollelektrische Rennwägen,
die im Jahr 2010, als Teil der Formula Student- und Formula SAE R©-Serie weltweit aus-
getragener Wettkämpfe, gestartet wurde. Jedes Jahr müssen die Teams neue Rennwa-
genprototypen entwickeln. In der Entwicklung von Prototypen werden häufig Universal-
Steuergeräte eingesetzt. Für Fahrzeuge mit Verbrennungsmotoren ist bereits eine Vielzahl
von Universal-Steuergeräten kommerziell erhältlich. Nicht so jedoch für FSE-Rennwägen,
aufgrund der speziellen Anforderungen, die das Reglement dieser Serie stellt.

In der vorliegenden Arbeit wurde ein Steuergerät für den Einsatz in FSE-Rennwägen
nach dem Konzept des Safety Element out of Context (SEooC) der funktionalen Sicher-
heitsnorm ISO 26262 entwickelt. Sowohl das funktionale als auch das technische Sicher-
heitkonzept wurden von einer Item Definition, welche auf dem Maxwheel-Rennwagen des
TU Graz Racing Team basiert, abgeleitet. Das Ergebnis ist eine Sicherheits-Steuergeräte-
plattform für FSE-Rennwägen. Des Weiteren wurde als Grundlage für zukünftige Software-
Entwicklung FreeRTOS, ein Echtzeit-Betriebssystem für eingebette Systeme, auf eine CPU
mit C166 V2 Kern portiert.

Schlagwörter: ISO 26262, Funktionale Sicherheit, Item Definition, Funktionales Sicher-
heitskonzept, Technisches Sicherheitskonzept, Safety Element out of Context, SEooC, For-
mula Student Electric, Steuergerät, ECU, FreeRTOS, C166

ii

Acknowledgement

Diese Diplomarbeit wurde im Studienjahr 2012/13 am Institut für Technische Informatik
an der Technischen Universität Graz durchgeführt.

Besonderer Dank gilt den Mitgliedern des TU Graz E-Power Racing Teams, und in Fol-
ge den Mitgliedern des vereinten TU Graz Racing Teams, für die Möglichkeit diese Arbeit
überhaupt durchführen zu können und für die unvergesslichen Erlebnisse der gemeinsamen
Saisonen 2009 bis 2012.

Weiterer Dank gilt Herrn Professor Eugen Brenner für die Chance diese Arbeit auch
wissenschaftlich beleuchten zu können, ebenso wie Herrn Professor Christian Kreiner für
seinen Kurs zur Funktionalen Sicherheit. Dank gilt auch meinem Kollegen Georg Macher
fürs Korrekturlesen und meinem Kollegen Lukas Raschendorfer für seine Grafiktipps. Frau
Maj-Britt Macher danke ich für ihre professionellen Englischkorrekturen.

Graz, im Oktober 2013 Friedrich Lobenstock

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Aim . 2
1.3 Organization of the Thesis . 3

2 State of the Art 4
2.1 Automotive Embedded Systems . 4
2.2 Functional Safety . 5

2.2.1 History of Functional Safety and the IEC 61508 5
2.2.2 Industry-/Application-specific Variants of the IEC 61508 6

2.3 ISO 26262 Functional Safety for Road Vehicles 8
2.3.1 Functional Safety according to ISO 26262 8
2.3.2 Overview of the ISO 26262 . 8

2.4 Automotive Hard- and Software Architectures 14
2.5 The E-Gas Architecture and Safety Concept 17
2.6 Automotive Bus Systems Overview . 19
2.7 FreeRTOS Operating System . 20

2.7.1 General RTOS Fundamentals . 20
2.7.2 Tasks and Scheduling . 23
2.7.3 Communication and Synchronization 27
2.7.4 Software Timers . 27
2.7.5 Memory Management . 28
2.7.6 The Portable Layer . 28
2.7.7 Additional Features . 29

3 Design and Implementation 30
3.1 Applicability of ISO 26262 . 30
3.2 Development as Safety Element out of Context (SEooC) 31
3.3 SEooC Concept Phase . 32

3.3.1 Item Definition . 33
3.3.2 Situation Analysis . 34
3.3.3 Hazard Analysis and Risk Assessment (HARA) 35
3.3.4 Safety Goals . 39
3.3.5 Functional Safety Concept (FSC) . 40

3.4 SEooC Assumptions on Item Level . 41

iv

3.4.1 Intended Functionality . 42
3.4.2 Safety Goals and Functional Safety Concept 42
3.4.3 Bus System . 42
3.4.4 Communication with other devices 43
3.4.5 Interlocks and Emergency Stop Function 44

3.5 SEooC Product Development at System Level 46
3.5.1 Technical Safety Requirements . 46
3.5.2 System Architecture Design . 52

3.6 SEooC Product Development at Hardware Level 53
3.6.1 Hardware Architectural Design . 53
3.6.2 Main Processor and Asymmetric Processor 53
3.6.3 Output Controller . 55

3.7 A Formula Student Electric Safety ECU Platform 57
3.8 Porting FreeRTOS to the Infineon C166S v2 Core 60

3.8.1 Using the C166S V2 Architecture . 60
3.8.2 The Task Stack(s) . 62
3.8.3 Task Context Switching Primitives 65
3.8.4 Interrupts, Interrupt Nesting, and Critical Section Management . . . 67
3.8.5 Yield Function and System Timer Interrupt 69
3.8.6 Starting/Stopping the OS . 71
3.8.7 Interrupt Handling . 73
3.8.8 Demo Application . 75

4 Conclusions and Outlook 77
4.1 Conclusions . 77
4.2 Outlook . 78

A Acronyms and Abbreviations 79

B ISO 26262 82
B.1 Detailed Overview of ISO 26262 . 82
B.2 Essential vocabulary from ISO 26262 Part 1 84
B.3 Tables from ISO 26262 Part 3 . 85

B.3.1 Classes of severity . 85
B.3.2 Classes of probability of exposure . 85
B.3.3 Classes of controllability . 86
B.3.4 ASIL determination . 87

C Safety Element out of Context Tables 88
C.1 Situation Analysis . 89
C.2 Hazard Identification and Classification . 90
C.3 Safety Goals . 99
C.4 Functional Safety Concept . 100
C.5 Technical Safety Concept for ECU as SEooC 101

v

D Rules of the Formula Student/FSAE Series 108
D.1 Formula SAE R© Rules . 108

D.1.1 Rule A1.2 Vehicle Design Objectives 108
D.1.2 Rule B11.3.1 The cockpit-mounted master switch 108
D.1.3 Rule C3.6.1.a General Requirements 109
D.1.4 Rule D3.1 Operating Conditions . 109
D.1.5 Rule D7.2.2 Autocross Course Specifications & Speeds 109
D.1.6 Rule D8.6.1 Endurance Course Specifications & Speeds 109
D.1.7 Rule D8.7 Endurance General Procedure 109

D.2 Formula Student Electric Rules . 109
D.2.1 Rule 4.4.4 Brake Over-Travel Switch Function 109
D.2.2 Rule 4.12.4 Torque Encoder (throttle pedal position sensor) 110
D.2.3 Rule 4.12.5 Torque Encoder Plausibility Check 110
D.2.4 Rule 7.2 Failure Modes and Effects Analysis (FMEA) 110
D.2.5 Rule 7.7 Insulation Monitoring Device (IMD) 110
D.2.6 Rule 7.13 Tractive-system-active light (TSAL) 111
D.2.7 Rule 7.14 Shut Down Buttons . 111
D.2.8 Rule 7.15 Master Switches . 112
D.2.9 Rule 7.16 Inertia Switch . 112
D.2.10 Rule 7.17 Safety Circuit . 112
D.2.11 Rule 7.18 Activating the Tractive System 114
D.2.12 Rule 7.23 Accumulator Insulation Relay(s) (AIR) 114
D.2.13 Rule 7.24 Pre-Charge and Discharge Circuits 114
D.2.14 Rule 7.26 Battery Management System (BMS) 114

E C166S V2 Core 116
E.1 Section 2.5.2.1 Addressing via Data Page Pointer DPP 116
E.2 Section 2.5.5 The System Stack . 116
E.3 Section 2.6.5 Multiply and Divide Unit . 117
E.4 Section 3.3 DPRAM, Internal SRAM, and SFR Areas 117
E.5 Section 3.5 Crossing Memory Boundaries 118
E.6 Section 5.2.2 Saving the Status during Interrupt Service 119

F Tasking VX-toolset for C166 v3.1 120
F.1 Section 1.3. Accessing Memory . 120

F.1.1 Section 1.3.2. Memory Models . 120
F.2 Section 1.12.1 Calling Convention . 121

F.2.1 Parameter passing . 121
F.2.2 Stack usage . 122

F.3 Section 1.12.2 Register Usage . 123

G FreeRTOS Port Files 125
G.1 Linker Script Language File project.lsl . 125
G.2 Portable Layer Files . 126

G.2.1 portmacro.h . 126
G.2.2 port.c . 131

vi

G.3 Port Configuration File FreeRTOSConfig.h 138

Bibliography 141

Index 151

vii

List of Figures

1.1 FSE race car Maxwheel 2012 in motion . 1
1.2 General-purpose ECUs used by the TU Graz Racing Team 2
1.3 Comparison of a general-purpose ECU and an assumed FSE Safety ECU . . 2

2.1 The driver-vehicle-environment . 4
2.2 History of IEC 61508 . 6
2.3 Hierarchy of European harmonized standards 7
2.4 Functional safety standards (based on IEC 61508) 7
2.5 Overview of the ISO 26262 . 9
2.6 Safety lifecycle according to ISO 26262 . 10
2.7 Concept phase . 11
2.8 Overview of product development at the system level 11
2.9 Overview of product development at the hardware and software level 11
2.10 ASIL decomposition schemes . 13
2.11 Asymmetric processor architecture . 14
2.12 Dual processor architecture . 15
2.13 Lock-step processor architecture . 16
2.14 E-Gas architecture hard- and software concept 17
2.15 Communication cost per node . 19
2.16 General RTOS architecture . 20
2.17 Sequential execution vs. multitasking . 21
2.18 Task states as finite-state automaton . 22
2.19 States of a task in FreeRTOS . 23
2.20 FreeRTOS task control block . 24
2.21 FreeRTOS scheduler using double-linked lists 25
2.22 Rate-monotonic scheduling and utilization 26
2.23 The FreeRTOS queue . 27

3.1 Relationship between assumptions and SEooC development 31
3.2 SEooC system development . 32
3.3 Item definition of a Formula Student Electric race car 33
3.4 Assumed system’s bus configuration . 43
3.5 Wiring of interlocks circuits . 45
3.6 Chosen system architecture . 52
3.7 The chosen asymmetric processor architecture 53
3.8 Safety output controller with diagnostics . 55

viii

3.9 One contactor driver stage with diagnostics 56
3.10 Inputs and outputs of the FSE Safety ECU Platform 58
3.11 Block diagram of the FSE Safety ECU Platform 59
3.12 The stack layout for FreeRTOS on the Infineon C166S V2 architecture. . . 63
3.13 FreeRTOS interrupt nesting on the Infineon C166S V2 architecture. 67
3.14 Output of the statistics task on the serial console. 76

B.1 Detailed overview of ISO 26262 . 83

D.1 Schematic overview of the car’s Safety Circuit 113

E.1 RAM and SFR Areas . 118
E.2 Task Status Saved on the System Stack . 119

F.1 Tasking VX-toolset for C166 user stack frame 122

ix

List of Tables

2.1 Comparison of IEC 61508 and ISO 26262 8
2.2 ASIL determination . 11
2.3 Classification of bus systems . 19
2.4 FreeRTOS memory managers . 28

3.1 Situation analysis of the Formula Student Electric Germany 2012 35
3.2 Hazard identification and classification for a Formula Student Electric race

car . 36
3.3 Safety goals for a Formula Student Electric race car 40
3.4 Functional safety concept for a Formula Student Electric race car 41
3.5 E2E mechanisms vs. failure modes . 42
3.6 Configurations of the assumed CAN buses 43
3.7 Assumptions on CAN messages . 44
3.8 Technical safety requirements . 46
3.9 ECU electrical requirements . 57
3.10 Demo application tasks and priorities. 75

B.1 Examples of severity classification . 85
B.2 Classes of probability of exposure regarding duration 85
B.3 Classes of probability of exposure regarding frequency 86
B.4 Classes of controllability . 86
B.5 ASIL determination . 87

C.1 Situation analysis of the Formula Student Electric Germany 2012. 89
C.2 Hazard identification and classification for Formula Student Electric race

car with arguments. 90
C.3 Safety goals. 99
C.4 Functional safety concept. 100
C.5 Technical safety requirements for the ECU as SEooC. 101

F.1 Tasking C-Compiler supported memory models 121
F.2 Tasking C-Compiler parameter passing . 121
F.3 Tasking C-Compiler calling convention - register usage 123

x

Listings

3.1 Configuring the System Stack in project.lsl. 61
3.2 Configuring the DPPs in project.lsl. 61
3.3 Configuring the user stack in project.lsl. 61
3.4 FreeRTOS task prototype. 62
3.5 Example of a modification to the FreeRTOS Application Programming In-

terface (API) to support a second stack. 62
3.6 The initial stack layout is created by pxPortInitialiseStack() 64
3.7 The task context switching primitive portSAVE CONTEXT(). 65
3.8 The task context switching primitive portRESTORE CONTEXT(). 66
3.9 Critical section management macros. 68
3.10 The critical section management function vPortEnterCritical(). 68
3.11 The critical section management function vPortExitCritical(). 68
3.12 The task context switching primitive portYIELD(). 69
3.13 The yield function vPortYield(). 69
3.14 The system timer interrupt function STM viSTM1I(). 70
3.15 The scheduler Start function xPortStartScheduler(). 71
3.16 The system timer setup function prvSetupTimerInterrupt(). 71
3.17 The portSTART FIRST TASK() macro. 72
3.18 The scheduler start function for the first task, vPortStartFirstTask(). 72
3.19 The scheduler stop function vPortEndScheduler(). 72
3.20 Example of a classical ISR. 73
3.21 Example of an ISR using a local register bank. 74
3.22 Example of an ISR using a private global register bank. 75
G.1 Linker Script Language File project.lsl . 125
G.2 Portable Layer File portmacro.h . 126
G.3 Portable Layer File port.c . 131
G.4 Port Config File FreeRTOSConfig.h . 138

xi

Chapter 1

Introduction

1.1 Background

Since 2004 the TU Graz Racing Team1 has been taking part in the Formula Student and
the Formula SAE R© competitions. The Formula SAE R© competition series was started in
1979 by the Society of Automotive Engineers (SAE) in the USA. In 1998, the Institution
of Mechanical Engineers (IMechE) in the UK started the Formula Student competition
series in Europe. The first Formula Student Germany took place in 2005. Up to 2010, the
Formula Student and the Formula SAE series were all about internal combustion cars, but
that year Formula Student Germany introduced the first Formula Student Electric (FSE)
competition. Since then, the TU Graz Racing Team has been competing with its all-
electric race car named Maxwheel. Figure 1.1 shows Maxwheel 2012 in motion.

Photo: Formula Student Austria/Manuel Schwarz

Figure 1.1: FSE race car Maxwheel 2012 in motion.

1http://racing.tugraz.at/

1

http://racing.tugraz.at/

CHAPTER 1. INTRODUCTION 2

1.2 Motivation and Aim

In the racing seasons 2010 to 2012, the TU Graz Racing Team was using general-purpose
ECUs as vehicle control units, such as the ones shown in Figure 1.2.

Photo: dSPACE

(a) dSPACE MicroAutoBox.

Photo: TTTech

(b) TTTech HY-TTC 200.

Figure 1.2: General-purpose ECUs used by the TU Graz Racing Team.

General-purpose ECUs are a great thing to start development projects with, as they
usually come with support for, e.g., MATLAB Simulink R© for easy control strategy design.

For use in Formula Student Electric (FSE) race cars, no readily available general-
purpose ECU was found that supported the specific I/O interfaces needed to fulfill the
rules of that series, see Appendix D on page 108.

The interlocks and the safety system required by the FSE rules at first resulted in an
additional adapter box, referred to as “ECU Adapter” (see Figure 1.3a). To avoid the
extra adapter box and to reduce system complexity we decided to develop a FSE Safety
ECU, as shown in Figure 1.3b, which included the specific interfaces and could be thought
of as the starting point for the development of a standard ECU for the series.

Generic
ECU

ECU
Adapter

CAN BUS #1

CAN BUS #2

Direct
I/O

(a) General-purpose ECU.

FSE
Safety
ECU

CAN BUS #1

CAN BUS #2

Direct
I/O

(b) FSE Safety ECU.

Figure 1.3: Comparison of a general-purpose ECU and an assumed FSE Safety ECU.

CHAPTER 1. INTRODUCTION 3

Because the FSE organizers wrote a lot of safety-related rules into the book of rules,
and the functional safety standard ISO 26262 had just been published, we decided to
do the ECU development according to that standard. The SEooC concept presented in
the standard was considered a suitable approach for the development of the planned FSE
Safety ECU.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 contains an overview of automotive embedded systems, a brief history and
overview of functional safety and the automotive functional safety standard ISO 26262,
some background on the architecture of automotive hard- and software, an overview of
automotive bus systems, basic information on real-time operating systems in general, and
details about the FreeRTOS real-time operating system.

Chapter 3 goes into the details of the ECU design in accordance with the ISO 26262, i.e.,
applicability of the ISO 26262, description of the SEooC development process, the SEooC
concept phase, the SEooC assumptions at item level, and the SEooC product development
at the system and hardware level. Then it presents the final hardware, the Formula Student
Electric Safety ECU Platform. A port of FreeRTOS, to the chosen hardware platform,
rounds off the implementation part of this thesis.

Chapter 4 concludes the thesis and gives suggestions for future work.

Appendix A contains the used acronyms and abbreviations.

Appendix B contains additional ISO 26262 material, like the detailed overview figure,
essential vocabulary and tables from ISO 26262 part 3.

Appendix C contains the tables that are too large to be presented in the SEooC sections
of Chapter 3.

Appendix D lists the project-relevant rules of the Formula SAE (FSAE) Rules 2012 and
Formula Student Electric (FSE) Rules 2012.

Appendix E contains relevant sections from the C166S V2 User Manual.

Appendix F contains relevant sections from the TASKING VX-toolset for C166 v3.1 User
Guide.

Appendix G contains the source files of the FreeRTOS port to the Infineon C166S v2
Core.

Chapter 2

State of the Art

2.1 Automotive Embedded Systems

Nowadays embedded automotive systems build complex, networked, and distributed sys-
tems literally containing more than one hundred of so called ECUs [1, 2]. Basically an
embedded system can be seen as “a computerized system dedicated to perform a specific set
of real-world functions, rather than to provide a generalized computing environment.” [3].

These systems are found at the heart of engine combustion, transmission, anti-lock
braking, and many other control functionalities in today’s vehicles. Figure 2.1 shows the
relation of driver, vehicle, and environment in a block diagram as it is known from control
systems design. The block named “Controller” can be implemented - or “mapped” -

Setpoint
Encoder

Controller
Controlled

System
Actuators Sensors

Vehicle

Driver
Environ-

ment

Powertrain
Combustion,
Electric or

Hybrid

Network of Electronic Control Units (ECUs)

ECU #1 ECU #2 ECU #n

Network

Figure 2.1: The driver-vehicle-environment relations with controller and controlled
system mapping (adapted from [4]).

4

CHAPTER 2. STATE OF THE ART 5

as one single unit, or its functionality can be spread over different controllers forming a
distributed system, as shown in the figure. Systems without a direct user interface, but
with rather indirect user input, e.g., for setpoint values, are called embedded systems [4].
When we talk about systems in this thesis, it is about embedded systems.

A distributed system needs a way of exchanging values and/or messages, which is
accomplished by using a so called network or bus. A short overview of automotive bus
systems is given in Section 2.6.

The aforementioned control functionalities generally restrict a system regarding its
time budget for its responses, so that the system implementing them manifests itself as a
real-time system. In Section 2.7 we are going to look at real-time systems and a specific
implementation of a real-time operating system, i.e., FreeRTOS.

Another aspect of the control functionalities in automobiles is safety because they hold
the risk of destabilizing the vehicle while driving at high speed on the motorway. Safety
can usually only be defined as the absence of unacceptable risks. The following Section 2.2
will look into functional safety in general. An overview of the related industry standard
for the automotive domain, the ISO 26262, will be given in Section 2.3.

The architecture of automotive hard- and software is then covered in Section 2.4. A
brief overview of the E-Gas Architecture and Safety Concept will be given in Section 2.5.

2.2 Functional Safety

2.2.1 History of Functional Safety and the IEC 61508

In the 1960s safety became a concern in the process industry, but the definition of safety
was not as broad as it is today. The VDI/VDE Guideline 2180 from 1966, for example,
only considered safety in the context of a production site and had the produce as the only
safety objective.

The major accidents in Flixborough (UK) in 1974 and Seveso (Italy) in 1976 then
gave rise to the publication of novel loss-prevention actions like the Council Directive
82/501/EEC, the so-called Seveso Directive,2 which was adopted in 1982. Germany en-
acted the so-called Störfallverordnung (StFV, English: Hazardous Incident Ordinance) in
1980. In the UK this led to the CIMAH (Control of Industrial Major Accident Hazards)
regulations issued by the Health and Safety Executive (HSE) in 1984. Further events to
come were the Bhopal (India) incident in 1984 and the Piper Alpha (UK) incident in 1989.

In 1984, the second edition of the VDI/VDE Guideline 2180 was published. It remark-
ably incorporated the concept of injury to persons, and a mandatory fault analysis was
introduced. At that time also the concept of risk got more emphasis. The DIN V 19250,
“Control technology; fundamental safety aspects to be considered for measurement and
control equipment” emerged in 1989. The risk graph was used to estimate risks, and eight
risk classes were defined, each being assigned a different level of risk posed by the process,
and dedicated technical and organizational measures. The DIN V 19251, published in
1995, described those measures in depth.

Across the Atlantic in the US, catastrophic accidents in the chemical industry led
the Occupational Safety and Health Administration (OSHA) to release the directive for

2http://ec.europa.eu/environment/seveso/

http://ec.europa.eu/environment/seveso/

CHAPTER 2. STATE OF THE ART 6

Process Safety Management (PSM) of Highly Hazardous Chemicals in 1992. Subsequently,
the Instrument Society of America, now International Society of Automation, published
the standard ISA S84.01, “Application of Safety Instrumented Systems for the Process
Industries” in 1996.

Also in 1996, the Council Directive 96/82/EC on the control of major-accident hazards
– the so-called Seveso II Directive – was ratified and replaced the original Seveso Directive.
It added, e.g., new requirements related to safety management systems and emergency
planning.

In the 1980s microprocessor-based systems (generally referred to as Programmable
Logic Controllers (PLCs))) entered the safety control market, but risk assessment tech-
niques at that time did not specifically include those. In 1985 the International Electrotech-
nical Commission (IEC)3 set up a working group to develop a systems-based approach.
This culminated in the publishing of the IEC 61508 in 1998, a safety standard not only
including PLCs, but all types of electrotechnical technologies (electrical, electronic and
programmable electronic systems).

Figure 2.2 shows the historic timeline leading up to the IEC 61508. For more historic
details see references [5–10].

Accidents

Standards

Law / rules

1984
CIMAH

HSE
UK

1984
Bhopal (India)

MIC cloud
(US company)

1989
Piper Alpha (UK)
Oil platform fire

1976
Seveso(Italy)
TCDD cloud

1974
Flixborough(UK)

Vapor cloud
explosion

1998
IEC 61508

1996
ISA S84

US

1989
DIN

Germany

1980
StFV

Germany

1982
Seveso

directive
EC

1992
PSM

OHSA
US

2003
IEC 61511

1996
Seveso

directive II
EC

1980 1990 20001970

1984
VDI/VDE
Germany

Figure 2.2: History of IEC 61508 (adapted from [10]).

2.2.2 Industry-/Application-specific Variants of the IEC 61508

In Europe safety standards can be classified according to the following three types - see
also Figure 2.3:

• Type-A standards define the basic safety standards.

• Type-B standards define group- or area-specific safety standards.

• Type-C standards define additional, mandatory safety requirements for certain
products.

3http://www.iec.ch/

http://www.iec.ch/

CHAPTER 2. STATE OF THE ART 7

Type-B and type-C standards are derived from type-A standards. The IEC 61508, or
more specifically the EN IEC 61508, as the harmonized European standards are prefixed
with “EN”, is therefore a type-A standard.

B
GROUP SAFETY STANDARDS −

Concrete statements regarding basic standards

C
PRODUCT STANDARDS

A
BASIC

SAFETY STANDARDS

Figure 2.3: Hierarchy of harmonized European
standards [11].

Figure 2.4 shows examples of type-B functional safety standards which are derived from
the EN IEC 61508 for a specific industry or application.

...
IEC 61800-5-2
Electrical Drives

IEC 61513
Nuclear Industry

EN 50128
RailwayIEC 60601-1

Medical Devices

IEC 61511
Process Industry

EN 50156
Furnaces

IEC 62061
Machinery

ISO 26262
Automotive

IEC 61508

Figure 2.4: Functional safety standards (based on IEC 61508).

For road vehicles the relevant type-B standard, as shown, is the EN ISO 26262. More
details of this standard will be given in the following section.

CHAPTER 2. STATE OF THE ART 8

2.3 ISO 26262 Functional Safety for Road Vehicles

The ISO 26262 is an ISO standard which applies to safety-related systems of passenger
road vehicles. It is the adaptation of the IEC 61508 to the automotive application sector
and applies to automotive safety-related systems that include electrical and/or electronic
(E/E) systems. Table 2.1 shows the relation of the two standards IEC 61508 and ISO
26262. In contrast to the ISO 26262, the human-factor concept of controllability is not
considered in the IEC 61508. The Safety Integrity Level (SIL) 4 of the IEC 61508 has no
corresponding Automotive Safety Integrity Level (ASIL) in the ISO 26262.

Table 2.1: Comparison of IEC 61508 and ISO 26262 (adapted from [12]).

Standard IEC 61508 ISO 26262

Background Chemical plants Automotive

Relevance Generic, E/E/PE systems E/E systems in passenger
vehicles <3.5 tons

Philosophy Implement safety functions in
separate subsystems

Implement safety functions in
the same device that provides
the safety-related
functionality

Type of Production Individual equipment Mass/series production

Human Factor Not considered Concept of controllability

Safety Integrity
Levels

SIL 1-3; Various ways to
determine SIL

ASIL A-D; Hazard analysis
and risk assessment

Focus Development, start of
operation, operation and
maintenance,
decommissioning

Concept phase, product
development, production

Released 1st edition 1998,
2nd edition 2010

1st edition 2011,
2nd edn. expected 2016–2018

2.3.1 Functional Safety according to ISO 26262

Functional safety in the meaning of ISO 26262 means that hazards caused by potential
malfunctioning behavior of electrical and/or electronic (E/E) systems do not cause unac-
ceptable risks, or “unreasonable risks”, as the standard puts it. In other words, functional
safety is simply the absence of unacceptable risks with respect to the desired behavior of
E/E systems.

2.3.2 Overview of the ISO 26262

The ISO 26262 is divided into ten parts [13–22], of which parts 3 to 7 deal with the
product lifecycle, whereas the other parts are lifecycle-independent. Figure 2.5 gives an
overview of the parts of the ISO 26262. A more detailed overview is shown in Figure B.1 in
Appendix B, page 83. The V’s in the figure denote that each development process, i.e., the

CHAPTER 2. STATE OF THE ART 9

overall development process, the hardware, and the software development process, follows
the V-model (or Vee Model) development process.4

3. Concept Phase

2. Management of Functional Safety

7. Production
and

Operation

1. Vocabulary

8. Supporting Processes

4. Product Development
at the

System Level

6. Product
Development

at the
Software Level

5. Product
Development

at the
Hardware Level

10. Guideline

9. ASIL-oriented and safety-oriented Analyses

Figure 2.5: Overview of the ISO 26262 (adapted from [13, Figure 1]).

Part 1: Vocabulary defines the terms and definitions used in the context of ISO 26262.
Some noteworthy examples are listed in Appendix B.2 on page 84.

Part 2: Management of functional safety describes the management of the func-
tional safety processes. It defines the organization of the project and quality management
over the whole product lifecycle. This includes a safety plan, project plan, safety case,
functional safety assessment plan, and a confirmation measure report. It also specifies
that the functional safety has to be monitored even after the product has been released
for production. This safety lifecycle, as defined by the standard, is shown in Figure 2.6.

Part 3: Concept phase starts with the definition of the item - see definition in Ap-
pendix B.2 on page 84 - and initiates the safety lifecycle with an impact analysis and the
refinement of the safety plan from the previous part.

4http://en.wikipedia.org/wiki/V-Model_(software_development)

http://en.wikipedia.org/wiki/V-Model_(software_development)

CHAPTER 2. STATE OF THE ART 10

Hazard analysis
and risk assessment3-7

Functional safety
concept3-8

Operation, service
and

decommissioning
7-6

Production7-5

Production
planning7-5

Operation
planning7-6

4 Product development:
system level

HW
level

5 SW
level

6

Safety validation4-9

Controllability
Allocation

to other
technologies

External
measures

In the case of a
modification, back to
the appropriate
lifecycle phase

C
o

n
c

ep
t

p
h

as
e

P
ro

d
u

ct
 d

ev
e

lo
p

m
en

t
A

ft
er

 t
h

e

re
le

a
se

 f
o

r
p

ro
d

u
ct

io
n

Item definition3-5

Initiation of the
safety lifecycle3-6

Management of functional safety2-5 to 2-7

Functional safety
assessment4-10

Release
for production

4-11

Note: “m-n” denotes ISO 26262 part “m” clause “n”

Figure 2.6: Safety lifecycle according to ISO 26262 [14, Figure 2]).

The hazard analysis and risk assessment that follows analyzes (driving) situations,
classifies the risks of those situations, and derives safety goals as shown in Figure 2.7.
Each safety goal is assigned an ASIL according to a severity class, a probability class –
also called exposure –, and a controllability class, as shown in Table 2.2. ASIL A is the
lowest safety integrity level and ASIL D the highest one. The level QM denotes that only
quality management is required and no further actions regarding safety need to be taken.
Subsequently, a verification review by a third party has to show that the hazard analysis,
the risk assessment, and the safety goals, are complete, compliant, and consistent.

The functional safety concept, as shown in Figure 2.7, derives functional safety re-
quirements from the safety goals, which are further specified by, e.g., fault-tolerant time
intervals and a safe state. These requirements are then allocated to elements of the pre-
liminary architecture. Finally a verification step shows if the functional safety concept is
consistent and compliant with the safety goals, and that it is able to mitigate or avoid
hazardous events.

Part 4 to part 6: Product development at the system, hardware and software
level cover the core processes of product development according to ISO 26262. The

CHAPTER 2. STATE OF THE ART 11

Hazard analysis and risk
assessment

3-7 Hazard analysis and
risk assessment

Specification of safety goals

3-7 Hazard analysis and
risk assessment

Specification of functional safety
requirements

3-8 Functional safety
concept

Note: “m-n” denotes ISO 26262 part
“m” clause “n”

Figure 2.7: Concept phase (detail
from [15, Figure 3]).

Table 2.2: ASIL determination [15, Table 4].

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Severity
class

Probability
class

Controllability class

development process at the system level is shown in Figure 2.8, that at the hardware and/or
software level in Figure 2.9. The whole development process is structured according to

Initiation of product development
at the system level4-5

Specification of the technical safety
requirements4-6

Item integration and testing4-8

Safety validation4-9

Functional safety assessment4-10

Release for production4-11

System design4-7

Part 6: Product development:
software level

Part 5: Product development:
hardware level

Note: “m-n” denotes ISO 26262 part
“m” clause “n”

Figure 2.8: Overview of product
development at the system level
(adapted from [16, Figure 2]).

Software architectural design6-7

System design4-7

Software unit design and
implementation6-8

Specification of hardware safety
requirements5-6

Hardware design5-7

Evaluation of the hardware
architectural metrics5-8

Evaluation of safety goal violations
due to random hardware failures5-9

Hardware integration and testing5-10

Initiation of product development
at the software level6-5

Specification of software safety
requirements6-6

Software unit testing6-9

Software integration and testing6-10

Verification of software safety
requirements6-11

Initiation of product development
at the hardware level5-5

Item integration and testing4-8

Note: “m-n” denotes ISO 26262 part “m” clause “n”

Figure 2.9: Overview of product development at
the hardware and software level (adapted from [16,
Figure B.1]).

CHAPTER 2. STATE OF THE ART 12

the V-model,5 as depicted before in the overview in Figure 2.5. Each development phase
is divided into three subphases: planning of the activities, implementation, and then
verification/validation [23].

At the system level, the functional safety concept created during the concept phase
will be refined into the technical safety concept. The requirements for hardware and
software will then be derived from the design, which is again derived from the technical
safety concept. The link between hardware and software is specified in the so called
Hardware-Software Interface (HSI) during system design.

Then the development process will split into development at hardware and at software
level. When these steps are done, integration and testing will be followed by a validation
and assessment phase, and finally the product will be released for production.

Part 7: Production and operation contains requirements for production planning,
production, operation, service, and decommissioning of the product. For all phases, safety-
related implications have to be considered. During production it is essential that “the
correct embedded software and the associated calibration data are loaded into the ECUs
as part of the production process” [19]. A field monitoring process for functional safety
incidents shall also be implemented.

Part 8: Supporting processes describes supporting processes, such as a development
interface agreement (DIA) in case subsystems are developed by third parties, configuration
management, change management (i.e., traceability), verification, and documentation.
The software tools used have to undergo an evaluation to provide evidence of suitability
for use in safety-related development. Qualification reports for ready-made software and
hardware used in the project need to be prepared as well. There is also the possibility
to establish so called Proven in Use arguments for re-use of previously developed safety-
related (sub-)systems.

Part 9: ASIL-oriented and safety-oriented analyses mainly deals with ASIL de-
composition. All possible recursive decomposition schemes are shown in Figure 2.10. ASIL
A(A) is the only one which can not be decomposed any further. During decomposition
one has to provide sufficient evidence that the decomposed elements are independent of
each other and that confirmation measures according to part 2 have been applied. Cri-
teria for the coexistence of elements with different or no assigned ASIL are provided and
requirements for safety analysis are specified. [24] gives some practical examples on ASIL
decomposition.

Part 10: Guideline is the only part which is informative, in contrast to all other parts,
which are all normative. It contains notes on topics regarding safety management, con-
cept phase and system development, the safety process requirements structure, hardware
development, proven-in-use argument(s), and ASIL decomposition.

It also introduces the concept of developing a “Safety Element out of Context (SEooC)”
which is not developed in the context of a specific automobile. According to [25], “Concepts

5http://en.wikipedia.org/wiki/V-Model_(software_development)

http://en.wikipedia.org/wiki/V-Model_(software_development)

CHAPTER 2. STATE OF THE ART 13

before
decomposition

after
decomposition

alternative
decompositions

A
S

IL
 D

d
e

co
m

p
o

si
ti

o
n

ASIL D

ASIL C(D) +

requirements
in 5.4.11

ASIL A(D)

before
decomposition

after
decomposition

A
S

IL
 C

d
e

co
m

p
o

si
ti

o
n

before
decomposition

after
decomposition

A
S

IL
 B

d
e

co
m

p
o

si
ti

o
n

ASIL D

ASIL B(D) +

requirements
in 5.4.11

and 5.4.12

ASIL B(D)

ASIL D

ASIL D(D) +

requirements
in 5.4.11

QM(D)

alternative
decompositions

ASIL C

ASIL B(C) +

requirements
in 5.4.11

ASIL A(C)

ASIL C

ASIL C(C) +

requirements
in 5.4.11

QM(C)

alternative
decompositions

ASIL B

ASIL B(B) +

requirements
in 5.4.11

QM(B)

alternative
decompositionsASILB

ASIL A(B) +

requirements
in 5.4.11

ASIL A(B)

before
decomposition

after
decomposition

A
S

IL
 A

d
e

co
m

p
o

si
ti

o
n

ASIL A

ASIL A(A) +

requirements
in 5.4.11

QM(A)

Note: “ASIL X(Y)” denotes a component developed according to ASIL X but hardware architectural
metrics and hardware failure target values are kept at ASIL Y, as the safety goal always keeps its ASIL
level

Figure 2.10: ASIL decomposition schemes [21, Figure 2].

such as ‘Safety Element out of Context’ within the ISO DIS 26262 standard help to address
the problem of component construction in a safety-related development process [...]”.

CHAPTER 2. STATE OF THE ART 14

2.4 Automotive Hard- and Software Architectures

In this sections we will look into automotive hardware and software architectures in gen-
eral. The details of the so called E-Gas architecture, also known as the 3-layer safety
monitoring concept, will be covered in the following section.

The architectures suggested in the literature [26–32] essentially boil down to the fol-
lowing three types:

• Asymmetric Processor Architecture

• Dual Processor Architecture

• Lock-step Processor Architecture

These architectures will be outlined below.

The Asymmetric Processor Architecture uses two different CPUs, one main and
one asymmetric processor, whereof the latter can also be an Application Specific Integrated
Circuit (ASIC), as shown in Figure 2.11. Both run different software and communicate
via Serial Peripheral Interface (SPI) or some other (high-speed) serial link and cross-check
each other. The asymmetric processor has much lower requirements on processing power
and memory because it only executes self-checks and checks the integrity of the main
processor. A common integrity check is the verification of the main processor’s control
flow [26], also called program flow monitoring [33]. If the inter-processor communication
follows a “question and answer” schema, this architecture is also known as the “challenge-
response” architecture [30].

Main
Processor

Output
Controller

Asymmetric
Processor
(or ASIC)

 SPI

Output driver status feedback

Processor
OutputsInput(s) Output(s)

Enable

Figure 2.11: Asymmetric processor architecture (adapted from [29]).

The main processor runs the safety-related software and the monitoring task which
communicates with the asymmetric processor. The software is implemented using redun-
dant coding, i.e., data is stored in different representations in different memory locations,
and certain self-tests are executed during start-up and during run-time [33]. The output

CHAPTER 2. STATE OF THE ART 15

controller, as shown in Figure 2.11, represents the safety-related output driver stages of
the main processor. Each processor can disable the enable signal to the output controller
via the enable gate, in case a fault has been detected on the other processor.

An architecture in which the asymmetric processor is placed onto the same chip as the
main processor, but is kept in form of an ASIC implementing an intelligent watchdog as
Finite State Machine (FSM), is presented in [34].

This architecture is fail-silent and the achievable Automotive Safety Integrity Level is
up to ASIL C/D [32].

The Dual Processor Architecture uses two identical CPUs running the same soft-
ware, as shown in Figure 2.12. The primary and secondary sensor inputs are connected to
the first and second CPUs, respectively. Both communicate via SPI or some other (high-
speed) serial link and cross-check each other’s software in near lock-step6 with software
synchronization. If the inter-processor communication follows a “question and answer”
schema, this architecture is also known as the dual-core “challenge-response” architec-
ture [30].

Main
Processor

1

Output
Controller

 SPI

Output driver status feedback

Input(s) Output(s)

Enable

Main
Processor

2

Output driver status feedback

Input(s)

Processor 1
Outputs

Processor 2
Outputs

Figure 2.12: Dual processor architecture (adapted from [29]).

Both processors run the safety-related software and a monitoring task which communi-
cates with the respective other processor’s monitoring task. The software is implemented
using redundant coding, i.e., data is stored in different representations in different mem-
ory locations, and certain self-tests are executed during start-up and during run-time [33].
The output controller represents the safety-related output driver stages of both processors.
Each processor can disable the enable signal to the output controller via the enable gate,
in case a fault has been detected on the other processor.

This architecture is fail-silent and the achievable Automotive Safety Integrity Level is
presumably ASIL D (no relevant studies found in the literature).

6http://en.wikipedia.org/wiki/Lockstep_(computing)

http://en.wikipedia.org/wiki/Lockstep_(computing)

CHAPTER 2. STATE OF THE ART 16

The Lock-step Processor Architecture uses two identical CPUs, like the Dual Pro-
cessor Architecture, but here the two processors are running in hardware lock-step execut-
ing the same software, as shown in Figure 2.13. All inputs are routed to both processors.
There is no need for communication between the processors, synonymously named cores,
because the address and data compare unit ensures that the software produces the same
results on both cores. Because the same software is running on both cores, the software
development efforts are considerably reduced as compared to the other architectures.

Main
Processor

1
(Master)

Output
Controller

Output driver status feedback

Input(s) Output(s)

Enable

Main
Processor

2
(Checker)

Processor
Outputs

Address & Data
Compare Unit

Figure 2.13: Lock-step processor architecture.

The software is as implemented using redundant coding, i.e., data is stored in different
representations in different memory locations, and certain self-tests are executed during
start-up and during run-time [33]. The output controller represents the safety-related
output driver stages of the main processor. The results of the second processor are only
used for comparison. The address and data compare unit can disable the enable signal to
the output controller in case a discrepancy in the execution results is detected.

If more than two cores are used and the address and data compare unit is changed
into a majority voting function, the architecture is called MooN (M out of N) or majority
voting system [35]. An example is the Triple Modular Redundant (TMR) architecture for
three cores [27]. In contrast to the aforementioned architectures which are fail-silent, this
architecture is fault-tolerant because it can still keep up its work if at least two of the
processors are fully functional.

The original lock-step processor architecture is fail-silent, optionally fault-tolerant as
MooN (M out of N) system, and the achievable Automotive Safety Integrity Level is
ASIL D [32].

CHAPTER 2. STATE OF THE ART 17

2.5 The E-Gas Architecture and Safety Concept

Designing safety-critical systems in the context of ISO 26262 leads to the E-Gas or Elec-
tronic Throttle Control (ETC)7 architecture and safety concept, one of the automotive
industry’s “best practice” approaches. It is also called the 3-level safety monitoring pat-
tern [36] or the “challenge-response” architecture [30].

The E-Gas or ETC architecture and safety concept [37, 38] is shown in figure 2.14.
It is patented in [39], probably based on the preceding patent [40], and extended by the
patent [41]. A dual-core variant is patented in [42]. Other possibly related patents are
[43–46].

The Asymmetric Processor Architecture, described in the previous section on page 14,
forms the basis for this architecture. The function controller is the main processor and
the monitoring controller is the asymmetric processor. The latter can either be a micro-
controller or an ASIC. Both are running on independent clocks and monitor each other’s
power supply.

Programmablaufkontrolle

Function
Controller

Monitoring
Controller

Level 3

Level 2

Level 1

Control Unit Functions

Monitoring Module

Power-
Output-
Stages

Response

Enable

Enable

Memory Test
of Level 2 Error Reaction

Challenge-spec.
test data

Function-spec.
instruction-set test

Contribution
to response

Join
Responses

Input-
Signals

Challenge

Function Monitoring

Program Flow Checking

Figure 2.14: E-Gas architecture hard- and software concept (translated from [37]).

The software is structured as three levels implementing the following functionality:

Level 1 (Functional Level) implements all engine control functions, and diagnostics
of input and output variables requiring monitoring.

Level 2 (Function Monitoring Level) implements the monitoring of functions that
determine the performance in level 1, e.g., by torque or acceleration monitoring. The level
1 error reaction is monitored if level 2 cannot independently generate an error reaction.
The memory area for variables is kept separate from that of level 1 and has to be monitored
cyclically. The program flow of level 1 is checked as well.

7http://en.wikipedia.org/wiki/Electronic_throttle_control

http://en.wikipedia.org/wiki/Electronic_throttle_control

CHAPTER 2. STATE OF THE ART 18

Level 3 (Controller Monitoring Level) consists of a monitoring module running on
the monitoring controller, and the monitoring software running on the function controller,
these two communicating with each other in a challenge-response fashion. RAM/ROM
storage is tested at least once per driving cycle. The status of level 2 program flow
monitoring and the result of the RAM/ROM storage test are checked, and the function-
specific processor instructions are tested as well.

CHAPTER 2. STATE OF THE ART 19

2.6 Automotive Bus Systems Overview

A brief overview of contemporary automotive bus systems, based on data from [47–49], is
shown in Table 2.3. A comparison of the costs per node of different bus systems is shown

Table 2.3: Classification of bus systems.

Classa Data rate [bit/s] Motivation Protocols Application

A < 10k
Simple control data,
Low-cost technology

ISO 9141 K-Line,
LIN

Diagnosis, chassis
electronics (door
locking, climate
control, ...)

B 10k...125k
Direct data exch.
between ECUs

CAN (Low-Speed)

C 125k...1000k
High-speed
communication
requirements,
gateway between
subsystems

CAN (High-Speed)

ABS, ADAS, engine
control, electronic
gear box,
increasingly
diagnosis

“D” > 1M FlexRay, CAN FD
Powertrain, steer-
and brake-by-wire

“E” > 10M MOST, Ethernet
ADAS sensor fusion,
multimedia (audio,
video)

aonly SAE classes A to C formally defined

in Figure 2.15. One can easily see why the CAN bus, despite its known limitations [1], is
still the dominant bus system in the automotive world today.

LIN

FlexRay

data rate
[Mbit/s]

0,01

0,1

1

10

100

1000
Ethernet

PHY

Switch

MOST
@50

@25

@150

LVDS

relative communication cost per node

1

CAN FD

CAN LIN: Local Interconnect Network
CAN: Controller Area Network
CAN FD: CAN Flexible Datarate
LVDS: Low Voltage Differential Signaling
MOST: Media Oriented Systems Transport
PHY: Physical Layer (Ethernet Transceiver)
 aka. BroadR-Reach, Ethernet(AVB)

Figure 2.15: Communication cost per node (adapted from [50]).

Further reading on automotive bus systems can be found in [1, 47–51].

CHAPTER 2. STATE OF THE ART 20

2.7 FreeRTOS Operating System

The FreeRTOS project website [52] describes FreeRTOS as follows [53]:

FreeRTOSTM is a market leading RTOS from Real Time Engineers Ltd. that
supports 33 architectures and received 103000 downloads during 2012. It is
professionally developed, strictly quality controlled, robust, supported, and
free to embed in commercial products without any requirement to expose your
proprietary source code.

FreeRTOS has become the de facto standard RTOS for microcontrollers by
removing common objections to using free software, and in so doing, providing
a truly compelling free software model.

The following sections will cover General RTOS Fundamentals and the details of FreeRTOS
Tasks and Scheduling, Communication and Synchronization, Software Timers, Memory
Management, the FreeRTOS The Portable Layer and FreeRTOS Additional Features. For
the sake of completeness, it has to be stated that all references to FreeRTOS in this
document refer to FreeRTOS Version 7.3.0.

2.7.1 General RTOS Fundamentals

This section gives an overview of the architecture of a Real-Time Operating System
(RTOS), of multitasking, and of what real-time is about. More in-depth information
related to the subject can be found in [54, Chapter 3], [55, Chapter 2], and [56, 57].

Architecture

The general architecture of an RTOS is shown in Figure 2.16. The RTOS kernel is in
control of the Central Processing Unit (CPU) and provides the following fundamental
functionality of a task:8 management (scheduling, dispatching), communication, and syn-
chronization. Additional functionality like memory management and support for periph-
erals is either provided by the RTOS itself, additional drivers alongside the RTOS, or by a
so called Hardware Abstraction Layer (HAL). The HAL would be added as an additional
layer between the hardware and all other layers, the advantage being that a change in
hardware does not affect the RTOS and the application(s).

Hardware (CPU, Peripherals)

Application(s)
Peripheral-

Driver(s)RTOS Kernel

Figure 2.16: General RTOS architecture.

8Synonymously called “process.”

CHAPTER 2. STATE OF THE ART 21

Multitasking

Most people know multitasking from their desktop PC as the parallel execution of pro-
grams, although their PC, till a few years ago, did only possess one CPU. Therefore,
this “parallel” execution will only be quasi-parallel because each program, or task has
to share the same CPU with others. Multitasking can also be considered an “illusion
of simultaneity” [54]. Figure 2.17 shows a comparison of sequential task execution and
multitasking. With multitasking, the tasks are executed in a time-sliced manner, which
creates the aforementioned illusion of simultaneity.

T1 T2 T3

T1 T1 T1T2 T2T3 T3 T3 T3

t

t

Figure 2.17: Sequential execution (top) vs.
multitasking (bottom) [55].

Though multitasking shows that the tasks are executed in the same timespan as with
sequential execution, there is overhead added by changing the order of execution from
one task to the other. This is called a context switch, whereby sufficient information of a
task is saved, so that it can be restored, or resumed, at a later time. In reality, the total
“run to completion” time of the three tasks in the above example will be slightly longer,
if multitasking is used instead of sequential execution.

The tasks’ order of execution is determined by the task scheduler. If a task has to wait
for, e.g., an I/O operation to complete or a timeout to happen, the task scheduler can
relinquish control to another task in the meantime. An RTOS, or an operating system in
general, usually provides an interface for letting a task wait for the occurrence of certain
events. This leads to the actual definition of a task.

Task

As [54] puts it, “A task is an abstraction of a running program and is the logical unit or
work scheduled by the operating system.” As shown in the previous section in Figure 2.17,
a task will not always be running, but could also be suspended or waiting while another
task is being executed.

Figure 2.18 shows the general states of a task as a finite-state automaton with four
states - the task state model. In the “ready” state a task can be run anytime, in the
“active” state it is executed, and in the “blocked” state it is waiting for a resource to
become available. In the “terminated” state the task is removed from the schedule. In an
RTOS, the terminated state is usually not present as the system will typically be executing
a fixed set of tasks for eternity, at least for as long as the system remains switched on.

CHAPTER 2. STATE OF THE ART 22

ready active terminated

blocked

(2)

(1)

(3)(4)

(5)

Figure 2.18: Task states as finite-state automaton [58].

The state transitions in Figure 2.18 can be described as follows [58]:

1. The Operation System (OS) selects the task to run (activation)

2. The OS selects another task (deactivation, preemption, interrupt)

3. The task blocks (e.g., waits on input or resource)

4. The task unblocks (e.g., resource becomes available)

5. The task ends or is terminated

Real-time

A common misconception about real-time systems is that these systems have to be fast,
and therefore have to have a very short response time. Basically, it really depends on the
application of the system; for example, the response time of a ticketing system will be
dramatically different from a fuel injection system.

[54] gives the following definitions for a real-time system:

Definition: A real time system is a system that must satisfy explicit (bounded)
response-time constraints or risk severe consequences, including failure.

or more generally [54]:

Definition: A real-time system is one whose logical correctness is based on
both the correctness of the outputs and their timeliness.

With this in mind we can now differentiate between systems where not meeting a response-
time constraint does not lead to a catastrophic failure [54]:

Definition: A soft real-time system is one in which performance is degraded
but not destroyed by failure to meet response-time constraints.

and those where it does [54]:

Definition: A hard real-time system is one in which failure to meet a single
deadline may lead to complete and catastrophic system failure.

CHAPTER 2. STATE OF THE ART 23

A system in between soft and hard real-time, where a small number of missed deadlines
can be tolerated, can be defined as follows [54]:

Definition: A firm real-time system is one in which a few missed deadlines
will not lead to total failure, but missing more than a few may lead to complete
and catastrophic system failure.

Into which of the three categories an embedded system fits just depends on the definition
of the response-time constraints. Relaxing those can change a firm real-time system into
a soft one, or a hard one into a firm one.

2.7.2 Tasks and Scheduling

Task State Model

Figure 2.19 presents the FreeRTOS task state model, based on [59, Figure 7.], with the task
termination transitions and the “terminating” state added to the finite-state automaton.

N
o

t
R

u
n

n
in

g
(s

up
er

 s
ta

te
)

vT
as

kS
us

pe
nd

()
ca

lle
d

Ready

Sus-
pended

Running

Blocked

Blocking
API callEvent

vT
as

kS
us

pe
nd

()
ca

lle
d

vT
as

kR
es

um
e(

)
ca

lle
d

vTaskSuspend()
called

xTaskCreate()
called vT

as
kD

el
et

e(
)

ca
lle

d

Schedule

Timeout

Termi-
nating

vTaskDelete()
called

Figure 2.19: States of a task in FreeRTOS (extension of [59]).

The functions referenced in Figure 2.19 are API function calls which are documented in
[60] or online at [61].

CHAPTER 2. STATE OF THE ART 24

Task Management

FreeRTOS uses the Task Control Block (TCB) model [54] to represent and manage tasks
in the system. The FreeRTOS TCB and its essential fields are shown in Figure 2.20.

pxTopOfStack

xGenericListItem
Stack

nextprev.

xEventListItem nextprev.

uxPriority

pxStack

pcTaskName

uxBasePriority

"Name"

Task Control Block

optional fields,
added when optional
features are enabled

Figure 2.20: FreeRTOS task control block (TCB).

Each task gets allocated a separate task stack which is referenced in the TCB; in the
literature it is called “Multiple-Stack Arrangement” [54]. In Figure 2.20, the stack shown
grows from top to bottom. A stack that grows from bottom to top is supported as well
on architectures that need such support. The pointers to the stack are optionally used
to do some rudimentary stack-overflow checking during run-time. This feature is mainly
enabled and used during the software development phase.

With the field xGenericListItem the TCBs are inserted into different double-linked
lists, i.e., into lists for ready, blocked (a.k.a. delayed), suspended, or terminating tasks.
Because a task is put into the respective list representing its state, there is no need to keep
the task’s state in the TCB itself. Thus, if a task changes its state, it is just moved from
one list to another. The field xEventListItem is used to reference the TCBs from event
lists, e.g., a reference to the task’s xEventListItem is added to the event list of a queue,
when the respective task is blocked on reading from a queue.

The field uxPriority is used to represent the task’s execution priority. It is only assigned
during task creation and never changed by the kernel itself. If enabled in the FreeRTOS
configuration, tasks can change their priority during run-time. When mutexes are enabled,
uxPriority is saved to uxBasePriority during a “priority inheritance” phase, and updated
to the highest priority needed to avoid the so called priority-inversion [54, Section 3.3.10]
problem.

Task Scheduler

The FreeRTOS scheduler, illustrated in Figure 2.21, can be characterized as follows:

CHAPTER 2. STATE OF THE ART 25

• fixed-priority preemptive scheduling

• round-robin scheduling at the same priority level

• configurable number of priority levels, priority 0 being the lowest priority

• only mutexes include a basic ‘priority inheritance’ mechanism

• (optional feature) priorities changeable by tasks during run-time

• the per-task release or arrival time has to be set by explicit calls to vTaskDelay() or
vTaskDelayUntil() - tasks are endless loops

• optionally, cooperative scheduling (a.k.a. coroutines) can be enabled

Optional features (to be enabled separately)

Priority 0

Priority 1

Priority 2

Priority n-1

CPU

..
.

Prioritized Ready Tasks Lists

Pending Ready List

Delayed Task List

Suspended Task List

Tasks Waiting for Termination

else, higher or same priority task ready or taskYIELD() called

Scheduler suspended

e.g., vTaskDelay(),
vTaskDelayUntil(),
xSemaphoreTake(),
xQueueReceive() called

vTaskSuspend() called

vTaskDelete() called

Scheduler resumed

woken

vTaskResume() called

Idle task removes
tasks waiting for
termination

Figure 2.21: FreeRTOS scheduler using double-linked lists.

Tasks gain control of the CPU in accordance with their priorities and when their current
state is “ready”. At any given time the task with the highest priority, i.e., the current

CHAPTER 2. STATE OF THE ART 26

task, is in control of the CPU. The prioritized, or fixed-priority preemptive scheduling
policy is the one used by most multitasking RTOS products, according to [62]. This is
due to the rate-monotonic (RM) theorem and the bound on the rate-monotonic algorithm
(RMA), which can be stated as follows [54]:

Theorem (Rate-monotonic) Given a set of periodic tasks and preemptive
priority scheduling, then assigning priorities such that the tasks with shorter
periods have higher priorities (rate-monotonic), yields an optimal scheduling
algorithm.

Theorem (RMA Bound) Any set of n periodic tasks is RM schedulable if
the processor utilization, U, is no greater than n · (21/n − 1).

For big n, this converges rapidly to ln(2) ≈ 0.69 as shown in Figure 2.22. [54] further
states:

Note that the RMA utilization bound is sufficient, but not necessary. That
is, it is not uncommon in practice to construct a periodic task set with total
processor utilization greater than the RMA bound but still RM-schedulable.

It is therefore up to the designer to choose the right schedule.

Figure 2.22: Rate-monotonic scheduling and utilization [54].

If support for task termination is enabled in FreeRTOS, tasks which are to be termi-
nated are placed in a ‘waiting for termination’ list. The always existing idle background
task will take care of freeing a task’s TCB and the associated stack space. Any other
memory area allocated to the task has to be freed explicitly before terminating the task.

The cooperative scheduling policy is not at all documented in the latest available
printed FreeRTOS documentation [59, 60], and will hence not be discussed any further
here.

More information on the FreeRTOS Task API can be found in the books [59] and [60],
or online in [61]. [63] gives a short overview of the basic architecture of FreeRTOS. [64] is

CHAPTER 2. STATE OF THE ART 27

another, if a little outdated, document available online, which provides information about
the inner workings of FreeRTOS.

2.7.3 Communication and Synchronization

FreeRTOS offers queues [54, Section 3.3.5] for inter-task communication, and semaphores
[54, Section 3.3.7] and mutexes [54, Section 3.5.2] for synchronization and resource man-
agement purposes. In [59] it is stated that “The ‘queue’ is the underlying primitive used
by all FreeRTOS communication and synchronization mechanisms.”.

Queues, as depicted in Figure 2.23, are used to convey information from one task to
another. In FreeRTOS, queues consist of a fixed number of fixed sized elements and are

Task 1 Task 2
Tx Rx

fixed length

fixed size

Figure 2.23: The FreeRTOS queue.

usually used as First In First Out (FIFO) style buffers. Data posted to a queue is copied
into the queue and not just passed as a reference. It is therefore advisable to keep the
data elements in the queue as small as possible.

Tasks reading from the queue can either block indefinitely, or specify a maximum
‘block’ time. The same holds true for tasks writing to the queue. It is possible to have
multiple tasks writing to a queue and multiple tasks reading from it. Therefore, each queue
has two associated event lists where tasks waiting to send or tasks waiting to receive are
managed - see also xEventListItem on page 24.

From an Interrupt Service Routine (ISR), only functions with the suffix ‘FromISR’ are
allowed to be called to transmit information, e.g., from the CAN receive ISR to a task or
vice versa.

Semaphores and mutexes are essentially queues with elements of size zero. Accessing
them from an ISR is also only allowed via functions with the ‘FromISR’ suffix.

More information on the FreeRTOS Queue and the Semaphore API can be found in
the books [59] and [60], or online in [61].

2.7.4 Software Timers

In embedded systems the functionality of a timer is usually provided by a hardware timer
unit. The function executed when the timer expires is called a timer ISR. Programming
such a timer is hardware-dependent, hence it cannot be ported to other platforms.

Software timers, on the other hand, provide a convenient, hardware-independent way
of calling software functions, so called callback functions, at a given time in the future.
Hardware timers usually provide a better resolution and less jitter, but this is not always
required.

CHAPTER 2. STATE OF THE ART 28

FreeRTOS software timers allow tasks to have a callback function executed when a
timer expires. Timers can be created on demand and can be of type ‘auto-reload’ or ‘one-
shot’. Changing the auto-reload period, resetting, starting, or stopping a timer during
run-time is also supported.

Timers in FreeRTOS are handled by a separate process, the timer service task . Com-
mands are sent to this task via a separate queue to control the timers. The callback func-
tions are executed in the context of this task and are therefore not allowed to use blocking
function calls. ISRs are only allowed to call timer API functions with the ’FromISR’ suffix.

More information on the FreeRTOS Timer API can be found in the book [60], or online
in [61].

2.7.5 Memory Management

FreeRTOS comes with the memory managers shown in Table 2.4. Most of the memory
managers are built around a statically allocated array, which represents the heap. The
memory manager “heap 1” probably covers most of the applications where FreeRTOS is
used.

Table 2.4: FreeRTOS memory managers.

Memory
Manager

free() Memory
defragmentation

Heap
pre-allocated

Deterministic

heap 1 no no yes yes

heap 2 yes no yes no

heap 3 yes dependent
on C library

dependent
on C library

no

heap 4 yes yes yes no

More details can be found in the book [59] or online in [65].

2.7.6 The Portable Layer

The FreeRTOS portable layer has to provide the following hardware-dependent function-
ality:

• defining platform-dependent data types

• defining the stack growth

• function for initializing a task’s context

• function for saving and restoring the task context and updating the task’s TCB

• function for configuring the scheduler tick interrupt (hardware timer)

• function for starting the scheduler

• function for ending the scheduler

• scheduler tick interrupt function

CHAPTER 2. STATE OF THE ART 29

• yield function

• critical section management functions

Usually the portable layer consists of just two files, namely portmacro.h and port.c,
and is the only place where inline Assembler code is used. It is also the only hardware-
dependent part of FreeRTOS; all other functionality is platform-independent C code.

The configuration of the tick interrupt in the portable layer defines the granularity of
the timer ticker and thus the minimal time slice of the scheduler. The timer tick interval
is inversely proportional to the overhead added by the saving and restoring of process
contexts.

2.7.7 Additional Features

On some ports9 there is also support for a Memory Protection Unit (MPU) [66], [67]. An
MPU is a subset of a Memory Management Unit (MMU), which only provides protection
of memory regions against unauthorized access, but no support for virtual memory.

A new feature in FreeRTOS is the so called “QueueSet”. Instead of blocking on
different queues, several queues can be put into a set and then a task can block on the
whole set [68], [69].

Run-time statistics is another (optional) feature provided by FreeRTOS [70]. This fea-
ture collects and provides information about the absolute time and the time in percentage
used by each task.

Tickless Idle Mode has recently been added to FreeRTOS, for better use of low-power
modes supported by certain microcontrollers [71]. The tick interrupt usually wakes the
CPU at an interval of, e.g., 1 ms. When no task needs attention, this interval is automat-
ically extended to the time where the CPU really needs to wake up. This helps saving
energy by only waking the CPU when there is work to be done.

Trace macros provide hooks to assist in debugging real-time applications [72]. This
allows for simple instrumentation of the FreeRTOS kernel to, e.g., measure a task’s acti-
vation time via CPU port pins.

9A “port” denotes FreeRTOS ported to a specific platform.

Chapter 3

Design and Implementation

The goal of this work is to design an ECU for a Formula Student Electric race car. First
we will look into the design process according to the ISO 26262 standard, which is outlined
in Section 2.3. The result is than an ECU platform for Formula Student Electric race cars,
which is presented in Section 3.7. Finally we will discuss the porting of the FreeRTOS
operating system, which is described in Section 2.7, to the chosen CPU platform.

3.1 Applicability of ISO 26262

Formally, the IEC 61508 is the functional safety standard which would be applied to the
development of Electrical and/or Electronic and/or Programmable Electronic (E/E/PE)
systems for Formula Student Electric race cars.

Formula Student Electric race cars - or Formula Student race cars in general - are
designed to be produced in a quantity of 1000 units per year - see Appendix D on page
108, Sections D.1.1 and D.1.3. The IEC 61508 focuses on equipment safety with equipment
produced in low volumes, whereas the ISO 26262, in contrast, focuses on vehicle safety
provided by functionally safe control systems, and takes mass production into account [73].

The ISO 26262 could be imagined as the standard for other road vehicles as well, e.g.,
for race cars as in our case, as [23] explains (translated from German):

However, the ISO 26262 does not prohibit the extension of its scope to other
categories of vehicles. The ISO 26262, as the industry-specific derivative of the
IEC 61508, represents a very good interpretation of the standard for all classes
of road transport vehicles. In principle, the application of the ISO 26262
to road vehicles is thus possible and reasonable, provided that appropriate
accompanying measures ensure that the current state of the art in science and
technology is achieved.

One example is MAN Truck & Bus AG, which applies the ISO 26262 to trucks and buses,
see [74] or [75].

In comparison to the IEC 61508, we considered the ISO 26262 a better representation
of the current state of the art in the Automotive sector. Therefore we decided to align the
development of Electrical and/or Electronic (E/E) systems for Formula Student Electric
race cars with the ISO 26262.

30

CHAPTER 3. DESIGN AND IMPLEMENTATION 31

3.2 Development as Safety Element out of Context (SEooC)

The ISO 262626 part 10 [22], despite only being informative, introduces in clause 9 the
concept of developing a “Safety Element out of Context (SEooC)” which is not developed
in the context of a specific automobile.

According to [25], “Concepts such as ‘Safety Element out of Context’ within the
ISO DIS 26262 standard help to address the problem of component construction in a
safety-related development process [...]”.

[76] defines a SEooC as follows: “A Safety Element out of Context (SEooC) is a safety
element for which an item10 does not exist at the time of the development. A SEooC can
either be a subsystem, a software component, or a hardware component.”

The development of a (sub-)system, hardware, or software component as SEooC re-
quires the developer to make assumptions on the design and assume requirements, as
shown in Figure 3.1.

Assumed
requirements

Assumptions
on design
external to

SEooC

Assumptions

SEooC
requirements

SEooC design

Figure 3.1: Relationship between assumptions and SEooC
development [22, Figure 18].

The standard defines the SEooC (sub-)system development as depicted in Figure 3.2. For
a new design, first the concept phase (ISO 262626-3 [15]) is executed and then assumptions
on item level are derived. If a previously developed SEooC is being reused, the results
from the concept phase just need to be updated. The assumed functional safety require-
ments then form the input for the design at system level (ISO 262626-4 [16]), hardware
level (ISO 262626-5 [17]), and/or software level (ISO 262626-6 [18]).

All assumptions made during the SEooC development process, and all work products
produced, are to be documented in a so called “Safety Manual”. The verification of the
correct implementation of the assumed safety requirements is done during the SEooC
development process as well.

10For the ISO 26262 definition of ‘item’, see Section B.2 on page 84

CHAPTER 3. DESIGN AND IMPLEMENTATION 32

Considered
partially or fully in
scope of system

SEooC
development

3-5
3-6
3-7
3-8

Concept phase
3

System SEooC component development Item development

Change
management

8-8

Assumptions on
item level

2-
6.4.5.
6 a)

Change
management

8-8

Considered partially in
scope of system

SEooC development

Considered fully in
scope of system

SEooC development

4-5
4-6
4-7

System level
4

4-8
4-9

Product development

Considered fully in
scope of system

SEooC development

5-5
5-6
5-7
5-8
5-9
5-10

Hardware level
5 Product development

Considered fully in
scope of system

SEooC development

6-5
6-6
6-7
6-8
6-9
6-10
6-11

Software level
6 Product development

Concept phase
3

System level
4 Product development

Establish validity
of assumptions

2-
6.4.5.
6 a)

valid

not
valid

Note 1: “m-n” denotes ISO 26262 part “m” clause “n”

Note 2: Some additional tailoring of the requirements can be necessary depending on the exact nature
of the SEooC.

Note 3: Depending on the exact nature of the SEooC, some requirements of parts 3 and 4 cannot be
applicable, and therefore only partial consideration is made.

Note 4: Although all clauses are not shown, this does not imply that they are not applicable.

Figure 3.2: SEooC system development [22, Figure 19].

When the SEooC is then used in the development of an item, the functional safety
requirements of the item are matched against the functional safety requirements assumed
for the SEooC. In case of a mismatch, a change management process has to be triggered,
which includes an impact analysis. The assumed safety requirements are validated during
item development, not during the SEooC development process.

For further information regarding the development of hardware and software compo-
nents as SEooCs, please refer to the ISO 26262-10:2012 standard [22] and [77–79].

3.3 SEooC Concept Phase

Because there is no prior knowledge available about the functional safety requirements for
an ECU developed in the domain of Formula Student Electric race cars, we have to build

CHAPTER 3. DESIGN AND IMPLEMENTATION 33

up that knowledge first, to be able to make assumptions on functional safety requirements
later on.

As described in the previous section, “Development as Safety Element out of Context
(SEooC)”, if we want to develop our new ECU as a SEooC, we have to complete the
concept phase of ISO 262626-3 [15] first - see Figure 3.1. The sub-phases “Item Definition”,
“Hazard Analysis and Risk Assessment (HARA)”, and “Functional Safety Concept (FSC)”
are described in the following subsections.

3.3.1 Item Definition

The aims of the item definition according to ISO 262626-3 clause 5 [15] are the following:

The first objective is to define and describe the item, its dependencies on, and
interaction with, the environment and other items.

The second objective is to support an adequate understanding of the item so
that the activities in subsequent phases can be performed.

From 2010 to 2012, the TU Graz Racing Team has been taking part in the Formula
Student Electric design and race events. The knowledge obtained during those seasons is
now used to make assumptions on dependencies and interactions, and to define the item
in whose context the ECU should be developed.

The item definition of a Formula Student Electric race car deploying two separately
driven rear wheels, which is the electric powertrain architecture chosen by the TU Graz
Racing Team, is shown in Figure 3.3. All general requirements are listed in the Formula
SAE rules [80] and the Formula Student Electric rules [81], as well as in Appendix D.

SYSTEM

MInverter

Current
Sense

Inverter

Current
Sense

Torque
CMDs

Torque
Results

Torque
applied

Switch
Power
CMD

Power Switch

Wheel RR

M

Torque
applied

Wheel RL

HV
Battery
(incl. BMS)

ECU

X-by-Wire
(Throttle, Brake
and Steer angle)

BUS System

Simple Signal

High Voltage Supply/Power

Mechanical Link

X-by-Wire
Data

Battery
Status Wheel

Speed

4

Figure 3.3: Item definition of a Formula Student Electric race car.

CHAPTER 3. DESIGN AND IMPLEMENTATION 34

The ECU in the center of the item and the other subsystems interact as follows:

• The X-by-Wire subsystem contains redundant throttle, brake, and steering angle
sensors, and sends this data to the ECU.

• The ECU takes the data from the X-by-Wire subsystem and the locally attached
wheel speed sensors, and calculates the torque to be requested from each of the two
inverters. It also controls the HV contactors (“Power Switch”).

• Each Inverter takes the commanded torque, calculates the corresponding Alternating
Current (AC) current, and delivers it to the attached motor. It also measures the
resulting currents, calculates the corresponding torque, and sends that result to the
ECU.

• The HV battery contains rechargeable Lithium Ion (LION) battery cells and a
Battery Management System (BMS)11 which sends battery health data to the ECU.
If that data shows that at least one of the cells is out of its safe operating area, the
ECU switches off the HV power supply of the inverters.

3.3.2 Situation Analysis

As a part of the hazard analysis and risk assessment (see next section), a situation analysis
according to ISO 262626-3 clause 7.4.2.1 [15] has to be made.

The situation analysis for the Formula Student Electric Germany 2012 race event is
shown in Table 3.1. The full table can be found in Appendix C in Table C.1 on page 89.
Here we analyze the driving situations which can occur during a Formula Student Electric
race event. This data will then be used in the next section, when we look at possible
malfunctions in certain driving situations. The value “Percentage of total time” influences
the exposure value for a certain hazard.

As can be seen from Table 3.1, the autocross and endurance race events are where the
major portion of time is spent during a Formula Student Electric event. The acceleration
race event is almost negligible with regard to the time spent, and will therefore have a
very low exposure value.

11http://en.wikipedia.org/wiki/Battery_management_system

http://en.wikipedia.org/wiki/Battery_management_system

CHAPTER 3. DESIGN AND IMPLEMENTATION 35

Table 3.1: Situation analysis of the Formula Student Electric Germany 2012.

Situation

Percentage
of total
time

Average
duration
[sec]

Approx.
track
length [m]

Top
speed
[km/h]

Average
speed
[km/h]

Acceleration
race event

0.72% 17.70 300 110 -

Skid-pad race
event

4.07% 100.43 920 - 33

Autocross race
event

14.33% 353.99 4800 90 50

Endurance
race event

66.71% 1647.81 22000 100 50

Approaching
start line (from
queue)

5.67% 140.00 140 10 -

Standstill
(engaged,
waiting to
start)

8.50% 210.00 - - -

Data Source: Formula Student Electric Germany 2012 event results, speeds estimated based on logged data.

3.3.3 Hazard Analysis and Risk Assessment (HARA)

The aim of the hazard analysis and risk assessment according to ISO 262626-3 clause 7 [15]
is as follows:

The objective of the hazard analysis and risk assessment is to identify and to
categorise the hazards that malfunctions in the item can trigger and to formu-
late the safety goals related to the prevention or mitigation of the hazardous
events, in order to avoid unreasonable risk.

The hazard identification and classification for the item depicted in Subsection 3.3.1 are
shown in Table 3.2. The full table, which also contains the arguments for classification,
can be found in Appendix C in Table C.2 on page 90.

As per ISO 262626-3 clause 7.4.3, each hazard is classified according to severity (S),
probability of exposure (E), and controllability (C). To classify the probability of exposure
of a situation, the information from the preceding Subsection 3.3.2, “Situation Analysis”,
is used. Expert judgment is used to determine the class of severity and controllability.
Finally, each hazard is assigned an ASIL, as well as a safety goal.

Tables for classes of severity, probability of exposure, and controllability, as well as
a table for the ASIL determination can be found in Appendix B in Section B.3, “Tables
from ISO 26262 Part 3”, on page 85.

CHAPTER 3. DESIGN AND IMPLEMENTATION 36

Table 3.2: Hazard identification and classification for a Formula Student Electric race
car.

Hazard Classification Safety Goal

ID
Possible
Malfunction

Situation S E C ASIL ID Description

HZ01 Unintended
accelera-
tion (at zero
speed)

Standstill;
marshal
crossing 1 m
in front of
race car

2 3 2 A SG01 The vehicle shall
not accelerate
without a valid
throttle de-
mand (above the
throttle function
threshold).

HZ02 Unintended
acceleration
(at low speed)

Approaching
Start; mar-
shal on
the side of
the start
position

2 3 2 A SG02 Unintended ac-
celeration shall
be prevented.

HZ03 Unintended
acceleration
(at medium
speed)

Autocross or
Endurance
race event;
medium
speed (30-
50 km/h)

2 4 2 B SG02 Unintended ac-
celeration shall
be prevented.

HZ04 Unintended
acceleration
(at medium
speed)

Autocross or
Endurance
race event;
another car
close behind
or mar-
shal close
to track;
medium
speed (30-
50 km/h)

3 3 2 B SG02 Unintended ac-
celeration shall
be prevented.

HZ05 Unintended
acceleration
(at high
speed)

Autocross or
Endurance
race event;
high speed
(≥70 km/h)

2 4 2 B SG02 Unintended ac-
celeration shall
be prevented.

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 37

Table 3.2: (continued)

Hazard Classification Safety Goal

ID
Possible
Malfunction

Situation S E C ASIL ID Description

HZ06 Unintended
acceleration
(at high
speed)

Autocross or
Endurance
race event;
another car
close behind
or mar-
shal close
to track;
high speed
(≥70 km/h)

3 3 2 B SG02 Unintended ac-
celeration shall
be prevented.

HZ07 Unintended
acceleration
forward one
motor, back-
ward the
other mo-
tor; yawing
moment (at
medium or
high speed)

Cornering;
medium
or high
speed (30-
50 km/h or
≥70 km/h)

2 4 2 B SG02 Unintended ac-
celeration shall
be prevented.

HZ08 Unintended
generative
braking, i.e.,
acceleration
backwards (at
zero speed)

Standstill;
queue of
waiting
cars 5-10 m
behind

2 3 2 A SG03 The vehicle shall
not do genera-
tive braking or
accelerate back-
wards (below the
electric braking
speed threshold).

HZ09 Unintended
generative
braking, i.e.,
acceleration
backwards (at
low speed)

Approaching
Start; queue
of waiting
cars 5-10 m
behind

2 3 2 A SG03 The vehicle shall
not do genera-
tive braking or
accelerate back-
wards (below the
electric braking
speed threshold).

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 38

Table 3.2: (continued)

Hazard Classification Safety Goal

ID
Possible
Malfunction

Situation S E C ASIL ID Description

HZ10 Unintended
generative
braking, i.e.,
acceleration
backwards
(at medium
speed)

Autocross or
Endurance
race event;
medium
speed (30-
50 km/h)

2 4 2 B SG04 Unintended gen-
erative braking
or acceleration
backwards shall
be prevented.

HZ11 Unintended
generative
braking, i.e.,
acceleration
backwards
(at medium
speed)

Autocross or
Endurance
race event;
another car
close behind
or mar-
shal close
to track;
medium
speed (30-
50 km/h)

3 3 2 B SG04 Unintended gen-
erative braking
or acceleration
backwards shall
be prevented.

HZ12 Unintended
generative
braking, i.e.,
acceleration
backwards (at
high speed)

Endurance
race event;
high speed
(≥70 km/h)

2 4 2 B SG04 Unintended gen-
erative braking
or acceleration
backwards shall
be prevented.

HZ13 Unintended
generative
braking, i.e.,
acceleration
backwards (at
high speed)

Endurance
race event;
another car
close behind
or mar-
shal close
to track,
high speed
(≥70 km/h)

3 3 2 B SG04 Unintended gen-
erative braking
or acceleration
backwards shall
be prevented.

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 39

Table 3.2: (continued)

Hazard Classification Safety Goal

ID
Possible
Malfunction

Situation S E C ASIL ID Description

HZ14 Battery pa-
rameters out
of range

Any driving
situation

2 4 2 B SG05 Battery parame-
ters shall be kept
within defined
safe operating
area.

HZ15 Missing
acceleration

Any driving
situation

1 4 1 QM SG06 Missing accel-
eration shall be
prevented.

HZ16 Unintended
decelera-
tion without
generative
braking

Any driving
situation.

1 4 1 QM SG07 Unintended de-
celeration with-
out generative
braking shall be
prevented.

HZ17 Missing
deceleration

Any driving
situation

1 4 1 QM SG08 Missing decel-
eration shall be
prevented.

Information about injury risks in frontal impacts of Formula Student cars can be found
in [82], and about the impact attenuator used in those cars in [83, 84].

3.3.4 Safety Goals

ISO 262626-3 clause 7.4.4.3 [15] defines safety goals as follows:

Safety goals are top-level safety requirements for the item. They lead to the
functional safety requirements needed to avoid an unreasonable risk for each
hazardous event. Safety goals are not expressed in terms of technological so-
lutions, but in terms of functional objectives.

The safety goals that were determined in the previous section are shown in Table 3.3.
Each safety goal which can only be achieved by transitioning to, or maintaining, a safe
state, is assigned such a safe state.

In the next subsection, the functional safety concept will be derived from these safety
goals.

CHAPTER 3. DESIGN AND IMPLEMENTATION 40

Table 3.3: Safety goals for a Formula Student Electric race car.

Safety Goal

ID Description Safe State ASIL

SG01 The vehicle shall not accelerate without a
valid throttle demand (above the throttle
function threshold).

Switch off power to the mo-
tors (demand zero torque).

A

SG02 Unintended acceleration shall be pre-
vented.

Switch off power to the mo-
tors (demand zero torque).

B

SG03 The vehicle shall not do generative brak-
ing or accelerate backwards (below the
electric braking speed threshold).

Switch off power to the mo-
tors (demand zero torque).

A

SG04 Unintended generative braking or accel-
eration backwards shall be prevented.

Switch off power to the mo-
tors (demand zero torque).

B

SG05 Battery parameters shall be kept within
defined safe operating area.

Switch off power to the in-
verters.

B

SG06 Missing acceleration shall be prevented. - QM

SG07 Unintended deceleration without genera-
tive braking shall be prevented.

- QM

SG08 Missing deceleration shall be prevented. - QM

SG01 gleaned from [85].

3.3.5 Functional Safety Concept (FSC)

ISO 262626-3 clause 8 [15] defines the objective of the functional safety concept as follows:

The objective of the functional safety concept is to derive the functional safety
requirements, from the safety goals, and to allocate them to the preliminary
architectural elements of the item, or to external measures.

It is essential that the “concrete implementation should be hidden from [the] FSC” [86].
The functional safety concept we derived for our item is shown in Table 3.4. The full

table, which also contains specifications like, e.g., fault-tolerant time interval, for each
functional safety requirement, can be found in Appendix C in Table C.4 on page 100.

CHAPTER 3. DESIGN AND IMPLEMENTATION 41

Table 3.4: Functional safety concept for a Formula Student Electric race car.

Functional Safety Requirement Safety
Goal

ID Description ASIL Allocated to
Element

ID

FSR01 The system shall not send throttle data
which causes the vehicle to accelerate with-
out a driver demand.

A X-by-Wire SG01

FSR02 The system shall not send a torque com-
mand which causes the vehicle to acceler-
ate without a driver demand.

A ECU

FSR03 Accurate throttle, brake and steering angle
signals shall be generated.

B X-by-Wire SG02,
SG03,
SG04FSR04 The throttle, brake, and steering angle sig-

nals shall be received and verified.
B ECU

FSR05 Accurate front and rear vehicle speed sig-
nals shall be generated.

B ECU

FSR06 Accurate torque command shall be
generated.

B ECU

FSR07 The torque command shall be received and
verified.

B Inverter

FSR08 Accurate calculation of the result-
ing torque by means of phase current
measurement.

B Inverter

FSR09 The torque result shall be received and
verified.

B ECU

FSR10 The torque result shall be validated. B ECU

FSR11 An accurate battery status shall be
provided.

B HV-Battery SG05

FSR12 The battery status shall be received, veri-
fied, and and reacted upon in case it is out
of the safe operating area.

B ECU

FSR01 gleaned from [85].

3.4 SEooC Assumptions on Item Level

As our ECU will be developed anew as a SEooC, we now have to make assumptions regard-
ing its “intended functionality and use context which includes external interfaces” [22].

CHAPTER 3. DESIGN AND IMPLEMENTATION 42

The validity of these assumptions will need to be established during the integration of
the ECU into an actual item. In case discrepancies between the assumptions and the
actual requirements are discovered during the integration, change management activities,
starting with an impact analysis, will need to be done.

3.4.1 Intended Functionality

The intended functionality of the ECU is to control a Formula Student Electric race car
as defined by the Formula SAE (FSAE) Rules 2012 [80] and the Formula Student Electric
(FSE) Rules 2012 [81].

3.4.2 Safety Goals and Functional Safety Concept

As the ECU will be developed anew as a SEooC, the safety goals from Subsection 3.3.4,
“Safety Goals”, and the functional safety requirements from Subsection 3.3.5, “Functional
Safety Concept (FSC)”, are now used as assumptions on item level.

Full tables can be found in Appendix C as Table C.3, “Safety Goals”, on page 99 and
Table C.4, “Functional Safety Concept”, on page 100, respectively.

3.4.3 Bus System

The chosen bus system is the Controller Area Network (CAN) bus [87, 88]. Despite the
fact that the CAN bus has not been designed for safety-related communication, it can still
be used in safety-related projects if appropriate measures are taken at the software level.

The industry best practice measures to provide reliable end-to-end communication,
e.g., as used in the AUTOSAR project “SW-C End-to-End Communication Protection
Library” [89], are listed below:

• Adding a counter (alive counter or sequence number) to each message sent.

• Adding a Cyclic Redundancy Check (CRC) checksum to each message sent.

• Using timeouts when receiving messages.

• Using a data ID to calculate the CRC checksum.

The failure modes covered by these mechanisms are listed in Table 3.5.

Table 3.5: E2E mechanisms vs. failure modes [89, Table 7-3].

Mechanism Detected failure modes

Counter Repetition, deletion, insertion, incorrect sequence

Timeout Deletion, delay

Data ID Insertion, addressing faults

CRC Corruption

The system’s bus configuration is shown in Figure 3.4 and each CAN bus configuration
is listed in Table 3.6.

CHAPTER 3. DESIGN AND IMPLEMENTATION 43

Drive-by-Wire
System

Inverter 2

Various other
nodes

Dashboard
Unit

HV Battery
Management System

Inverter 1

ECU

CAN BUS #1

CAN BUS #2

Figure 3.4: Assumed system’s bus configuration.

Table 3.6: Configurations of the assumed CAN buses.

BUS # Designation Bitrate [kbps] Adressing Termination

1 Powertrain CAN 1000 11 Bit Split termination

2 Feature CAN 500 11 Bit Split termination

3.4.4 Communication with other devices

Because this work only deals with the development of the ECU, we have to make the
following additional assumptions regarding the CAN communication (the CAN message
numbers in square brackets refer to Table 3.7):

• The Drive-by-Wire subsystem transmits a CAN message containing the throttle
signal, the inverse throttle signal, an alive counter, and a CRC checksum
[CAN Message #1].

• The Drive-by-Wire subsystem transmits a CAN message containing the brake
signal, the inverse brake signal, an alive counter, and a CRC checksum
[CAN Message #2].

• The Drive-by-Wire subsystem transmits a CAN message containing the steering
angle signal, the inverse steering angle signal, an alive counter, and a CRC checksum
[CAN Message #3].

• Each Inverter expects to receive a CAN message containing the torque command,
the inverse torque command, an alive counter, and a CRC checksum
[CAN Message #4].

• Each Inverter transmits a CAN message containing the torque result, the inverse
torque result, an alive counter, and a CRC checksum
[CAN Message #5].

CHAPTER 3. DESIGN AND IMPLEMENTATION 44

• The Battery Management System (BMS) transmits a CAN message containing
the state of charge12, the inverse state of charge, the overall BMS status, the inverse
overall BMS status, an alive counter, and a CRC checksum
[CAN Message #6].

The CRC checksum could use, e.g., the SAE J1850 CRC-8 polynomial as required by
AUTOSAR E2E [89], or some other CRC-8 polynomial.13

Table 3.7: Assumptions on CAN messages (in compliance with AUTOSAR E2E [89]).

M
sg

#

ID
Int.a

[ms]

D
L

C
b Byte

0 1 2 3 4 5 6 7

1 tbd. 10 6

C
R

C

A
li

ve Throttle Throttle

n
/
a

n
/
a

Signal Signal

2 tbd. 10 6

C
R

C

A
li

ve Brake Brake

n
/a

n
/a

Signal Signal

3 tbd. 10 6

C
R

C

A
li

ve Steering Angle SteeringAngle

n
/a

n
/a

Signal Signal

4 tbd. 10 6

C
R

C

A
li

ve Torque Torque

n
/a

n
/a

Command Command

5 tbd. 10 6

C
R

C

A
li

ve Torque Torque

n
/a

n
/a

Result Result

6 tbd. 100 8

C
R

C

A
li

ve State of State of
S

ta
tu

s

S
ta
tu
s

Charge Charge

aMessage transmission interval on the CAN bus.
bData Length Code, indicates how many bytes a message contains.

3.4.5 Interlocks and Emergency Stop Function

According to the Formula Student Electric rules, “Rule 7.17 Safety Circuit” [81], hardware
interlocks are demanded for the control of the HV contactors, as shown in Figure D.1 in
Appendix D, on page 113.

Hardware Interlocks are well established in the industry. For example, [90] documents
the use of interlocks already more than 65 years ago. How interlocks should be wired,
as defined in [90], is shown in Figure 3.5. The reason for doing so is to safeguard the
interlock circuit against faults against earth. Should a fault nonetheless happen, it will
not jeopardize the safety system.

12http://en.wikipedia.org/wiki/State_of_charge
13http://en.wikipedia.org/wiki/Polynomial_representations_of_cyclic_redundancy_checks

http://en.wikipedia.org/wiki/State_of_charge
http://en.wikipedia.org/wiki/Polynomial_representations_of_cyclic_redundancy_checks

CHAPTER 3. DESIGN AND IMPLEMENTATION 45

Interlocks and
relays

Fuse

Contactor
coils

Earth fault on positive
side of contactor
should blow fuse

Earth

Figure 3.5: Wiring of interlock circuits [90,
Fig. 3].

The emergency stop function demanded by the Formula Student Electric rules [81] is
covered by ISO 13850, “Safety of machinery – Emergency stop – Principles for design”, [91].
The emergency stop shall function according to stop category 1. This means that the
emergency stop shall first deactivate the inverters, by demanding zero torque, and then
shortly after remove the HV power. The emergency stop shall be executed within a defined
Fault-Tolerant Time Interval (FTTI) of 100 ms.

CHAPTER 3. DESIGN AND IMPLEMENTATION 46

3.5 SEooC Product Development at System Level

Now that the functional safety concept and the assumptions on item level have been
established, development can continue at product level. In this section, first the technical
safety requirements for the ECU will be derived from the functional safety concept, and
then the ECU system design will be presented.

3.5.1 Technical Safety Requirements

ISO 262626-4 clause 6 [16] defines the objectives of the technical safety requirements as
follows:

The technical safety requirements specification refines the functional safety
concept, considering both the functional concept and the preliminary architec-
tural assumptions (see ISO 26262-3).

This is the step in the design, where we see that ASIL decomposition can and should be
done, because after this step the requirements are assigned to hardware and software. A
decomposition of a requirement into intended functionality and associated safety mech-
anism, according to ISO 262626-9 clause 5 [21], can then intuitively be mapped to the
corresponding hardware and software requirements in the following design steps.

The technical safety requirements for the ECU, which were derived from the functional
safety concept, are shown in Table 3.8. The full table, which also contains the specifications
like, e.g., fault-tolerant time interval, for each technical safety requirement, can be found
in Appendix C in Table C.5 on page 101.

Table 3.8: Technical safety requirements.

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR01 A throttle sensor signal shall be
received from the CAN bus.

B ECU FSR02,
FSR04

TSR01.1 The throttle sensor signal and its
inverse representation shall be
received from the CAN bus. Check
the signal against its inverse
representation and do a range check;
assume 0, if failure.

QM(B)

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 47

Table 3.8: (continued)

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR01.2 Plausibility-check the throttle signal,
e.g., gradient. Check the
alive-counter for correct sequence
and the checksum for message
integrity. Force 0, if failure.

B(B)

TSR02 A Brake sensor signal shall be
received from the CAN bus.

B ECU FSR04

TSR02.1 The Brake sensor signal and its
inverse representation shall be
received from the CAN bus. Check
the signal against its inverse
representation and do a range check;
assume 0, if failure.

QM(B)

TSR02.2 Plausibility-check the brake sensor
signal, e.g., gradient. Check the
alive-counter for correct sequence
and the checksum for message
integrity. Force 0, if failure.

B(B)

TSR03 A Steering angle sensor signal shall
be received from the CAN bus.

B ECU FSR04

TSR03.1 The Steering angle sensor signal and
its inverse representation shall be
received from the CAN bus. Check
the signal against its inverse
representation and do a range check;
assume 0, if failure.

QM(B)

TSR03.2 Plausibility-check the steering angle
sensor signal, e.g., gradient. Check
the alive-counter for correct sequence
and the checksum for message
integrity. Force 0, if failure.

B(B)

TSR04 An accurate vehicle speed front
signal shall be generated.

B ECU FSR05

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 48

Table 3.8: (continued)

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR04.1 Generate vehicle speed front signal
by averaging two sensor signals.

QM(B)

TSR04.1.1 There shall be a vehicle speed front
sensor1.

QM(B)

TSR04.1.2 There shall be a vehicle speed front
sensor2.

QM(B)

TSR04.2 The vehicle speed front sensors shall
be checked for plausibility, e.g.,
gradient. Set “vehicle speed front
failure” flag if failure, else reset
failure flag if correct signals for 10
consecutive times.

B(B)

TSR05 An accurate vehicle speed rear signal
shall be generated.

B ECU FSR05

TSR05.1 Generate vehicle speed rear signal by
averaging two sensor signals.

QM(B)

TSR05.1.1 There shall be a vehicle speed rear
sensor1.

QM(B)

TSR05.1.2 There shall be a vehicle speed rear
sensor2.

QM(B)

TSR05.2 The vehicle speed rear sensors shall
be checked for plausibility, e.g.,
gradient. Set “vehicle speed rear
failure” flag if failure, else reset
failure flag if correct signals for 10
consecutive times.

B(B)

TSR06 An accurate torque command shall
be generated based on throttle,
brake, vehicle speed, and battery
health status.

B ECU FSR06,
FSR10

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 49

Table 3.8: (continued)

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR06.1 Generate torque command. Take
“vehicle speed failure” flags into
account. Limit gradient to
TORQUE GRADIENT LIMIT.
Range-check output signal. Send
torque command via CAN.

QM(B)

TSR06.2 Torque command shall be
plausibility-checked against torque
result. Force 0, if failure.

B(B)

TSR07 A torque result signal shall be
received from the CAN bus.

B ECU FSR09

TSR07.1 The torque result signal and its
inverse representation shall be
received from the CAN bus. Check
the signal against its inverse
representation and do a range check.

QM(B)

TSR07.2 Plausibility-check the torque result
signal. Check the alive-counter for
message freshness and the checksum
for message integrity. Set “torque
result failure” flag, if failure.

B(B)

TSR08 A battery status shall be received
from the CAN bus and reacted upon
in case it is out of the safe operating
area.

B ECU FSR12

TSR08.1 The battery status shall be received
from the CAN bus and reacted upon
in case it is out of the safe operating
area.

QM(B)

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 50

Table 3.8: (continued)

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR08.1.1 The battery status and its inverse
representation shall be received from
the CAN bus. Check the signal
against its inverse representation and
do a range check, assume battery
status is out of safe operating area if
checks fail.

QM(B)

TSR08.1.2 If battery status indicates “out of
safe operating area”, command zero
torque from inverters within
TIME FTTI THROTTLE (100ms)
and switch off power to the inverters
within TIME FTTI BATT (1s).

QM(B)

TSR08.2 Plausibility-check the battery status.
Check the alive-counter for correct
sequence and the checksum for
message integrity.

B(B)

TSR09 There shall be a reliable HV
contactor control.

B ECU FSR12

TSR09.1 There shall be a HV contactor
control for 3 contactors.

QM(B)

TSR09.1.1 There shall be a contactor control for
HV plus contactor.

QM(B)

TSR09.1.2 There shall be a contactor control for
HV negative contactor.

QM(B)

TSR09.1.3 There shall be a contactor control for
HV pre-charge contactor.

QM(B)

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 51

Table 3.8: (continued)

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR09.2 Plausibility-check the contactor
output stages. Compare voltage and
current status feedback against
contactor control status. Switch off
all contactors in case of detected
discrepancy.

B(B)

TSR10 Control flow monitoring. In case of
failure, command zero torque from
inverters within
TIME FTTI THROTTLE (100ms)
and switch off power to the inverters
within TIME FTTI BATT (1s).

B ECU FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

TSR11 External monitoring facility. In case
of failure, command zero torque from
inverters within
TIME FTTI THROTTLE (100ms)
and switch off power to the inverters
within TIME FTTI BATT (1s).

B ECU FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

TSR12 Memory Check. In case of failure
command zero torque from inverters
within TIME FTTI THROTTLE
(100ms) and switch off power to the
inverters within TIME FTTI BATT
(1s).

B ECU FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

TSR13 CPU Check. In case of failure
command zero torque from inverters
within TIME FTTI THROTTLE
(100ms) and switch off power to the
inverters within TIME FTTI BATT
(1s).

B ECU FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

(continued)

CHAPTER 3. DESIGN AND IMPLEMENTATION 52

Table 3.8: (continued)

Technical Safety Requirement Func.
Safety
Req.

ID Description ASIL Allocated
to
Element

ID

TSR14 Voltage Checks. In case of failure
command zero torque from inverters
within TIME FTTI THROTTLE
(100ms) and switch off power to the
inverters within TIME FTTI BATT
(1s).

B ECU FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

3.5.2 System Architecture Design

From the technical safety requirements in Table 3.8, it can be seen that these requirements
can be mapped to the three layers of the “E-Gas Architecture and Safety Concept”, briefly
described in Section 2.5. The chosen system architecture is shown in Figure 3.6.

For example, the technical safety requirement TSR01.1 maps to level 1 (Functional
Level), TSR01.2 to level 2 (Function Monitoring Level) and TSR10 to level 3 (Controller
Monitoring Level), and so on.

Programmablaufkontrolle

Function
Controller

Monitoring
Controller

Level 3

Level 2

Level 1

Control Unit Functions

Monitoring Module

Power-
Output-
Stages

Response

Enable

Enable

Memory Test
of Level 2 Error Reaction

Challenge-spec.
test data

Function-spec.
instruction-set test

Contribution
to response

Join
Responses

Input-
Signals

Challenge

Function Monitoring

Program Flow Checking

Figure 3.6: Chosen system architecture (translated from [37]).

CHAPTER 3. DESIGN AND IMPLEMENTATION 53

3.6 SEooC Product Development at Hardware Level

3.6.1 Hardware Architectural Design

At the system level, in Subsection 3.5.2, the “E-Gas Architecture and Safety Concept” was
chosen. It builds upon the “Asymmetric Processor Architecture” hardware architecture,
described in Section 2.4 and depicted in Figure 3.7.

Main
Processor

Output
Controller

Asymmetric
Processor
(or ASIC)

 SPI

Output driver status feedback

Processor
OutputsInput(s) Output(s)

Enable

Figure 3.7: The chosen asymmetric processor architecture.

Now a main and an asymmetric processor need to be selected and the output controller
needs to be designed according to the requirements established in the previous sections.

3.6.2 Main Processor and Asymmetric Processor

During an earlier evaluation it was found that, in terms of performance, our ECU should
be comparable to the TTTech HY-TTC 90,14 which uses a 16-bit microcontroller running
at 80 MHz. It was therefore decided to use a similar microcontroller. Infineon Technologies
AG was selected as the supplier for automotive-grade integrated circuits.

For safety-critical systems using a 16-bit microcontroller, Infineon offers a solution
which consists of a microcontroller from the XC2000 safety train (XC2300 series),15 the
safety companion chip CIC61508,16 and supporting safety software.

A brief overview is given in [92], and the presentations [93] and [94] give some more
details about the solutions offered by Infineon. [95] presents possible hardware configu-
rations of 16- and 32-bit microcontrollers in combination with the safety companion chip
CIC61508 for Automotive Safety Integrity Levels (ASILs) up to ASIL-B(D).

14http://www.tttech.com/products/automotive/electronic-control-units/general-purpose-e

cus/hy-ttc-90/
15http://www.infineon.com/xc2300
16http://www.infineon.com/cic61508

http://www.tttech.com/products/automotive/electronic-control-units/general-purpose-ecus/hy-ttc-90/
http://www.tttech.com/products/automotive/electronic-control-units/general-purpose-ecus/hy-ttc-90/
http://www.infineon.com/xc2300
http://www.infineon.com/cic61508

CHAPTER 3. DESIGN AND IMPLEMENTATION 54

Main Processor

As the main processor, we chose the XC2387A microcontroller from the Infineon XC2000
safety train. Its main safety-related features, according to [96], are:

• High-performance CPU with five-stage pipeline and MPU (up to 80MHz)

• Hardware CRC-checker with programmable polynomial to supervise on-chip memory
areas

• On-chip memory modules: SRAM, DPRAM, Flash with memory content protection
through Error Correction Code (ECC)

• Programmable watchdog timer and oscillator watchdog

The multi-voltage processor power supply TLE6368G2 was chosen for the main processor
and all peripherals, including the external sensors. Its most important features related to
safety are [97]:

• Power-on reset functionality

• SPI-triggered window watchdog

• Six independent voltage trackers (followers)

• Tracker control and diagnosis by SPI

The window watchdog feature covers the technical safety requirement TSR11, listed in
Subsection 3.5.1, “Technical Safety Requirements” on page 46.

Asymmetric Processor

The Infineon solution uses the CIC61508 as a safety supervisor companion chip. Its main
safety-related features, according to [98], are:

• Power supply monitor for over- and under-voltage

• Sequencer

• Task monitor

• Data comparison and verification functions

• SPI communication monitor

• Safety path control (enable/disable)

• Configurable wake-up timer

The power supply of the CIC61508 is provided by an extra linear voltage regulator and
is independent from the main processor’s power supply, to avoid Common Cause Failures
(CCFs). The TLE4274DV33 has been chosen as voltage regulator for the CIC61508.

For greater accuracy of the power supply monitoring, the precision 2.5V bandgap
voltage reference REF192 is used as the ADC voltage reference. The CIC61508 monitors
the +5V (VDD PA), the +3.3V (VDD PB), and the +1.5V (VDD Core) supply rails of
the main processor.

CHAPTER 3. DESIGN AND IMPLEMENTATION 55

3.6.3 Output Controller

As per the asymmetric processor architecture, see Figure 3.7, both processors need to assert
their respective enable signals for the safety-related output driver stages to be eventually
enabled. To adhere to the FSE’s “Rule 7.17 Safety Circuit” [81], see Appendix D on
page 112, there will be a third enable signal from the interlock circuit. To fulfill the
technical safety requirement TSR09.2, each contactor driver stage is equipped with a
voltage and current status feedback signal.

To be able to argue for a reliable HV system shutdown, in anticipation of future FSE
rule changes, a two-failure safe design is employed in designing the contactor drivers’
shutdown paths. The two-failure safe design stems from the requirements set forth in the
European Directive 94/9/EC.17

The final design of the output controller is shown in Figure 3.8.

BUS
#2

Driver
Stage

Driver
Stage

+12V

Driver
Stage

Driver
Stage

Control

C
o

n
ta

c
to

rs

ENABLE2

OUT 1

OUT n

Transceiver

CAN
BUS
#1CAN1 (Tx & Rx)

Transceiver
CAN2 (Tx & Rx)

Diagnostics

(Voltage and current status feedback)

ENABLE3

ENABLE1

DISABLE

INHIBIT

Figure 3.8: Safety output controller with diagnostics.

17http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/atex/

http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/atex/

CHAPTER 3. DESIGN AND IMPLEMENTATION 56

The origins of the three enable signals shown in the figure are as follows:

• ENABLE1 is the enable signal from the main processor.

• ENABLE2 is the enable signal from the asymmetric processor.

• ENABLE3 is the enable signal from the interlock circuit.

A single contactor driver stage using the smart high-side power switch BTS6163D [99],
is shown in Figure 3.9. Its diagnostic feedback feature is used to give feedback on the
actual load current situation. A resistive divider is used to give voltage feedback used
to diagnose the switching behavior of the high-side switch. Both features are necessary
to fulfill the technical safety requirement TSR09.2 and both are connected to the main
processors ADC.

BTS6163D

GND

BCR135SBCR135S

GND

IN2 IS 4

OUT 1

T1

OUT 5VBBTAB

R3

R1

R2

C1

2

1
6

T2_1

5

4
3

T2_2

R4

OUTIN

CONTROL

SENSE-I

SENSE-V
DISABLE R1

R2

R1

R2

Figure 3.9: One contactor driver stage with diagnostics.

The chosen CAN transceiver is the Infineon TLE6250GV33 [100]. For termination pur-
poses, a CAN split termination can optionally be populated for each CAN bus on the final
PCB.

CHAPTER 3. DESIGN AND IMPLEMENTATION 57

3.7 A Formula Student Electric Safety ECU Platform

The ECU electrical requirements are summarized in Table 3.9. These are a collection of
the requirements of the Formula SAE [80] and the FSE rules [81], see Appendix D, and
the general requirements of the setup chosen by the TU Graz Racing Team. This setup
forms the basis for the SEooC development process outlined in Section 3.3 to Section 3.6.

Table 3.9: ECU electrical requirements.

Feature Qty Specification

Power Supplies 3 ECU, Contactors, AUX

Supply Voltage Range 9...16V

Over-/Reverse-Voltage Protection ±30V

High-Side Drive HV Contactors 6 each max. 2A/pulse 5A

High-Side Drive Discharge Disable 1 each max. 0.2A/pulse 1A

High-Side Drive Auxiliary, high power, PWM 4 each max. 10A/pulse 20A

High-Side Drive Auxiliary, low power 2 each max. 2A/pulse 5A

Interlock Inputs 2 source from +supply

BMS-OK Input from BMS 1 BMS −OK latched

IMD-OK Input from IMD 1 IMD −OK latched

Reset Button 1 resets BMS/IMD-OK
latches

Reset Button LED 1 40mA current source

Wheel Speed Sensor Inputs 4 digital/PWM

Wheel Speed Sensor Supplies, w/ diagnostics 4 each 5V/16 mA

Wheel Travel Sensor Inputs 4 analog ratiometric

Wheel Travel Sensor Supplies, w/ diagnostics 2 each 5V/16 mA

High-Speed CAN Interfaces 2–3 max. 1000kbps, term.

(opt.) LIN Interfaces 2 max. 20kbps, term.

(opt.) WIFI Extension 1 differential SPI

(opt.) MicroSD Card Slot (data logging) 1 MicroSD in SPI mode

(opt.) Real-Time Clock (RTC) 1 for logging timestamps

With the support for up to six contactors, up to two accumulator containers can be
supported, see FSE “Rule 7.23 Accumulator Insulation Relay(s) (AIR)”, see Appendix D
on page 114. This provides a higher flexibility in the design of the energy storage of the
race car.

The first interlock input will usually encompass the interlock demanded by FSE “Rule
7.17 Safety Circuit”, see Appendix D on page 112. The additional interlock input allows
the partitioning of the interlock system. It can be used to, e.g., guard additional covers

CHAPTER 3. DESIGN AND IMPLEMENTATION 58

of the HV system, which are not covered by the rules. The BMS-OK signal allows the
Battery Management System (BMS), enclosed in the accumulator container, to directly
shut down the HV system.

Two high-speed Controller Area Network (CAN) bus interfaces allow for communica-
tion with external devices, such as dashboard unit, drive-by-wire system, inverters, BMS,
etc. Optionally, a third high-speed CAN bus interface or two Local Interconnect Net-
work (LIN) bus interfaces can be populated to support additional bus configurations.

An Insulation Monitoring Device (IMD) of type IR155-3203 [101] provides the signals
IMD-OK and IMD-M. The IMD-OK signal directly shuts down the HV system, should
the IMD trip at the factory-set trip point. Via the pulse-width-modulated signal IMD-M,
the ECU is able to read the measured insulation resistance and set an internal trip point
above the IMD factory-set trip point.

An optional differential Serial Peripheral Interface (SPI) allows for the connection of,
e.g., a WiFi/WLAN extension module. An optional MicroSD card slot and a Real-Time
Clock (RTC) allow for the implementation of data logging.

Figure 3.10 shows the inputs and outputs of the resulting ECU, and Figure 3.11 the
corresponding block diagram.

ECU(CPU, AUX)

CONTACTORS

AUX (high power)

PS1

PS2

PS3

Power Supply

Sensors
Supply WS

n

Wheel Speed
n

SW
n

WS
n

x4

Supply Analog
n_(n+1)

Analog Sensor
n

SA
n_(n+1)

AS
nx2

Analog Sensor
n+1

AS
n+1

Interlocks & Latch Reset
Interlock1

Interlock2

BMS-OK

IMD-OK

IMD-M IMD_M

IL1

IL2

BMS_OK

IMD_OK
Reset Button

Reset Button LED
RB

RBLED

C1

C2

C3

C5

C4

C6

Contactor1

Contactor3

Contactor5

Contactor2

Contactor4

Contactor6

DD Discharge Disable

HV Contactors& Discharge

Auxiliary Outputs
Fan1AUX1

AUX3

AUX2

AUX4

Water pump1

Fan2

Water pump2

AUX5 TSAL or Horn

AUX6 Brake light

Communication
DIFF_SPI WIFI Extension

CAN1 CAN Bus #1

CAN3 CAN Bus #3
CAN2 CAN Bus #2

LIN2 LIN BUS #2
LIN1 LIN BUS #1

CAN#3
or
LIN#1/2

E C U

Auxiliary Inputs
Start Button

Debug/Flash

SB

USBUSB 2.0

low-power

high-power

Figure 3.10: Inputs and outputs of the FSE Safety ECU Platform.

CHAPTER 3. DESIGN AND IMPLEMENTATION 59

IMD
Interface

Main
CPU

XC2387ASafety
Supervisor
CIC61508

6x HV
Contactors

Sensor
Interface

Power
Supply

with
Window

Watchdog

2x
AUX

low Pwr
1x LED

HV
Discharge
Disable

CAN/LIN
Interfaces

3 CAN
(alt. 2 CAN

+ 2 LIN)

Interlocks

4 Wheel Speed
Sensors

R
I S O

Driver Stage
with

Safety-Overwrite
(opt. Fault-Overwrite)

Driver Stage
with Safety- and
Fault-Overwrite

Fault Latched Fault

4 Analog
Sensors

Latch

FaultReset Button

4x
AUX

high Pwr
(PWM)

Safety Fault

Reset

Diff.-SPI
Extension
(e.g. WIFI)

Output
Control

Micro SD
Card Slot

SPI

SPI

BMS Interface
Fault

Reset

Start Button

SPI

SPI

RTC
I2C

Figure 3.11: Block diagram of the FSE Safety ECU Platform.

CHAPTER 3. DESIGN AND IMPLEMENTATION 60

3.8 Porting FreeRTOS to the Infineon C166S v2 Core

The microcontroller selected during design is the Infineon XC2387A microcontroller [96].
It is based on the Infineon C166S v2 Core, hence we will discuss the details of porting
FreeRTOS to this core in the following sections.

Before porting FreeRTOS to the Infineon C166S v2 Core, one should be familiar with
the following documents:

• C166S v2 CPU Core User Manual [102], see Appendix E on page 116

• Tasking C-Compiler User Guide [103], see Appendix F on page 120

• XC2300A Derivatives User’s Manual [104]

• FreeRTOS Porting Guide [105]

3.8.1 Using the C166S V2 Architecture

In this subsection we will look at how the stack on the C166S V2 architecture is used by
the compiler, which stack pointers are used, and how the stack is placed in the controller’s
memory. We will also look at the memory model used, how parameters are passed, and
what is and is not part of the context saved by the invocation of an ISR.

Stack Usage The Tasking C-Compiler suite actually uses two stacks on the C166 ar-
chitecture: One where the “usual” call return addresses and registers are pushed, and
another one where local variables are stored.

This stems from the fact that the C166 architecture does not support system stack
operations other than PUSH and POP. Therefore, a compiler has to work around this
deficiency of the C166 CPU core. The first stack is called the system stack and the other
one the user stack, both growing from top to bottom.

The core’s system stack is documented in [102] and in Appendix E.2 on page 116. The
Tasking C-Compiler suite’s stack usage is documented in [103] and in Appendix F.2.2 on
page 122.

Stack Pointers Because the compiler uses two stacks, but the CPU core only supports
one system stack pointer, the compiler uses the general purpose register R15 as user stack
pointer.

This also means that near addressing is employed. Near addressing uses one of the
four Data Page Pointers (DPPs), see [102, Chapter 2.5.2 “Long and Indirect Addressing
Modes”]. Which one is actually used for user stack addressing, is determined at linking
time.

The system stack is addressed by the Stack Pointer (SP) and the Stack Pointer Segment
Register (SPSG).

Currently, FreeRTOS only handles the system stack pointer in the task’s Task Control
Block (TCB). As a direct consequence, the FreeRTOS core has to be taught about the
second user stack. More on that in Subsection 3.8.2.

CHAPTER 3. DESIGN AND IMPLEMENTATION 61

System Stack The system stack’s placement in memory is configured in the project.lsl
file (full Listing G.1 on page 125). Line number 4 in Listing 3.1 shows the relevant code
line where the system stack is placed into the DPRAM memory.

1 // Define the system stack
2 section layout ::shuge (direction = high to low)
3 {
4 group (run addr = [0xF600..0xFC00], ordered) stack

"system stack" (size = 256);
5 }

Listing 3.1: Configuring the System Stack in project.lsl.

Data Page Pointers The Data Page Pointers (DPPs) DPP0 to DPP3 are also config-
ured in the project.lsl file (full Listing G.1 on page 125). The relevant code lines which
configure the DPP registers are shown in Listing 3.2. The DPP register configurations are
kept at their default values as created by the Tasking VX IDE when executing File →
New → Linker Script File (LSL).

1 #define DPP0 ADDR 0xC00000 /∗ [0xC00000..0xC03FFF] FLASH0 (Vector
Table) ∗/

2 #define DPP1 ADDR 0xE00000 /∗ [0xE00000..0x003FFF] PSRAM ∗/
3 #define DPP2 ADDR 0x008000 /∗ [0x008000..0x00BFFF] DSRAM ∗/
4 #define DPP3 ADDR 0x00C000 /∗ [0x00C000..0x00FFFF] DSRAM, XSFR,

ESFR, DPRAM, SFR ∗/

Listing 3.2: Configuring the DPPs in project.lsl.

User Stack To force the compiler to use DPP1 for user stack addressing, the user stack
is placed into the address range covered by DPP1 in the project.lsl file - see line number 4
in Listing 3.3. This placement has to be aligned at 16-bit boundaries.

1 // Define the user stack (force linker to use DPP1 for user stack)
2 section layout ::near
3 {
4 group(run addr = [0xE00002..0xE00100], ordered) stack

"user stack" (size = 254);
5 }

Listing 3.3: Configuring the user stack in project.lsl.

Note: The user stack is not placed at the very beginning of that range because the
Tasking User Guide [103, Section 8.7.4.] states that, “By default the near space is
‘paged’ in pages of 16 kB. The first byte in each space is reserved to avoid NULL
pointer comparison problems with objects allocated at the beginning of the page.”

Compiler Memory Model From the supported memory models, see Appendix F.1 on
page 120, the Huge Memory Model needs to be used in order to get consistent pointers
for the whole project. In this memory model, pointers are 32 bits wide.

CHAPTER 3. DESIGN AND IMPLEMENTATION 62

Parameter Passing FreeRTOS specifies that each task must conform to the following
task prototype - see Listing 3.4.

1 #define portTASK FUNCTION(vFunction, pvParameters) void vFunction(
void ∗pvParameters)

Listing 3.4: FreeRTOS task prototype.

The task’s parameter *pvParameters needs to be stored in the task’s initial context, so that
it gets restored in the correct registers upon first activation. For details about the Tasking
C-Compiler calling conventions for parameter passing see Appendix F.2.1 on page 121.

When passing a pointer, e.g., *pvParameters, as the first parameter, we can see from
Table F.2, that it is passed using the registers R2 and R3. During initialization of the
task’s context on the stack later on, this fact will need to be considered.

Context saved by an ISR In FreeRTOS a context switch usually occurs during the so
called tick ISR. When the CPU invokes an ISR in segmented mode, which is the default,
it saves the Program Status Word (PSW), the Code Segment Pointer (CSP), and the
Instruction Pointer (IP), in that very order, on the system stack - see Appendix E.6 on
page 119.

3.8.2 The Task Stack(s)

Extending FreeRTOS to handle two Stacks for each Task As the compiler op-
erates with two stacks, FreeRTOS had to be extended to handle the additional second
stack. All the kernel API functions were supplemented with support for two stacks, like
the function xTaskGenericCreate() shown in Listing 3.5.

The API was made dependent on the value of portSTACK2 : To enable a two-stack
enabled API, like in this port of FreeRTOS to the Infineon C166S v2 Core, portSTACK2
has to be defined to 1 in portmacro.h - see Listing G.2 in Appendix G on page 126.

The Task Control Block (TCB) had to be extended by the essential fields for handling
the second stack as well. Those additional fields were also made dependent on the value
of portSTACK2.

Listing 3.5: Example of a modification to the FreeRTOS API to support a second stack.

1 #if (portSTACK2 == 1)
2 signed portBASE TYPE xTaskGenericCreate(pdTASK CODE pxTaskCode, const

signed char ∗ const pcName, unsigned short usStackDepth, unsigned
short usStackDepth2, void ∗pvParameters, unsigned portBASE TYPE
uxPriority, xTaskHandle ∗pxCreatedTask, portSTACK TYPE
∗puxStackBuffer, portSTACK TYPE ∗puxStackBuffer2, const
xMemoryRegion ∗ const xRegions)

3 #else
4 signed portBASE TYPE xTaskGenericCreate(pdTASK CODE pxTaskCode, const

signed char ∗ const pcName, unsigned short usStackDepth, void
∗pvParameters, unsigned portBASE TYPE uxPriority, xTaskHandle
∗pxCreatedTask, portSTACK TYPE ∗puxStackBuffer, const
xMemoryRegion ∗ const xRegions)

5 #endif

CHAPTER 3. DESIGN AND IMPLEMENTATION 63

Listing 3.5: Example of a modification to the FreeRTOS API to support a second stack.

Note: Further work would be necessary on a more generic handling of multiple stacks
without changing the current API of FreeRTOS.

Task Context, Stack Layout and Stack Creation A task’s context, saved and
restored on the system stack, is depicted as stack layout in Figure 3.12. It consists of

PSW

CSP

IP

DPP0

DPP1

DPP2

DPP3

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

MDC

MDH

MDL

16 bits wide

Registers saved by CPU
and
restored by RETI instruction

Registers saved by
portSAVE_CONTEXT()
and
restored by
portRESTORE_CONTEXT()

Task function parameter
void *pvParameters

User stack pointer

Task
Context

Stack grows
from top to

bottom

MDx registers are only
safe to push if at least

17 cycles have passed

Figure 3.12: The stack layout for FreeRTOS on the Infineon C166S V2 architecture.

CHAPTER 3. DESIGN AND IMPLEMENTATION 64

the Program Status Word (PSW), the Code Segment Pointer (CSP), the Instruction
Pointer (IP), the DPP registers, the general purpose registers R0 to R15, and the multiply
divide unit registers MDL, MDH, and MDC. To not stall the CPU execution, the registers
of the multiply divide unit are only safe to store when at least 17 CPU cycles have passed
- see Appendix E.3 on page 117.

Note, that the state of the additional MAC unit, accessed via the new CoXXX arith-
metic instructions [103, Chapter 1.12.5. “Intrinsic Functions”], is not part of a task’s
context. As a direct consequence, only one single task is allowed to make use of these
instructions in this port of FreeRTOS.

The initialization of a task’s context on the stack is done in the function pxPortIni-
tialiseStack() in the file port.c. The relevant code lines are shown in Listing 3.6.

Listing 3.6: The initial stack layout is created by pxPortInitialiseStack()

1 portSTACK TYPE ∗pxPortInitialiseStack(portSTACK TYPE ∗pxTopOfStack,
portSTACK TYPE ∗pxTopOfStack2, pdTASK CODE pxCode, void
∗pvParameters)

2 {
3 PSW type initialPSW;
4

5 // PSW − processor status word
6 initialPSW.U = 0; // reset initialization value
7 initialPSW.B.ien = 1; // enable interrupts
8 portPushToStack(pxTopOfStack, initialPSW.U);
9 // CSP − code segment pointer

10 portPushToStack(pxTopOfStack, seg(pxCode));
11 // IP − instruction pointer
12 portPushToStack(pxTopOfStack, sof(pxCode));
13

14 // initialize registers DPP0 to DPP3
15 // DPP1 is used to access the user stack (stack2)
16 // see the project LSL file how this is accomplished
17 portPushToStack(pxTopOfStack, DPP0);
18 portPushToStack(pxTopOfStack, pag(pxTopOfStack2));
19 portPushToStack(pxTopOfStack, DPP2);
20 portPushToStack(pxTopOfStack, DPP3);
21

22 // initialize general purpose register R15
23 // as user stack pointer (stack2), per TASKING
24 // C−compiler calling convention, use DPP1
25 portPushToStack(pxTopOfStack, dpof(1, pxTopOfStack2));
26

27 // initialize general purpose registers R14 to R4
28 portPushToStackCnt(pxTopOfStack, 0x00, 11);
29

30 // initialize general purpose registers R3 and R2 as
31 // input parameter pvParameters
32 // ATTENTION: we assume the huge memory model here!
33 portPushToStack(pxTopOfStack, seg(pvParameters));
34 portPushToStack(pxTopOfStack, sof(pvParameters));
35

CHAPTER 3. DESIGN AND IMPLEMENTATION 65

36 // initialize registers R1 and R0
37 portPushToStackCnt(pxTopOfStack, 0x00, 2);
38

39 // initialize multiply/divide unit registers MDC, MDH and MDL
40 portPushToStackCnt(pxTopOfStack, 0x00, 3);
41

42 return pxTopOfStack;
43 }

Listing 3.6: The initial stack layout is created by pxPortInitialiseStack()

Note: The macro portPushToStack() is defined in the file portmacro.h - see Listing G.2
in Appendix G on page 126.

3.8.3 Task Context Switching Primitives

The definition of a task context requires context switching to be done inside an Interrupt
Service Routine (ISR). The saving of the suspended task’s CPU status is done by the
CPU when calling this ISR. The assembler primitive RETI at the end of ISRs takes care
of restoring the respective CPU status.

The primitives portSAVE CONTEXT() and portRESTORE CONTEXT() only need
to take care of saving and restoring the general purpose registers R0 to R15, the Data
Page Pointers (DPPs) DPP0 to DPP3, and the multiply divide unit registers MDL, MDH,
and MDC. The stack pointers in the task’s TCB and the CPU system stack pointer have
to be updated or saved as well.

Listing 3.7 and Listing 3.8 show the respective primitives. A full listing of port.c is
provided in Appendix G.2.2 on page 131.

Listing 3.7: The task context switching primitive portSAVE CONTEXT().

1 void always inline portSAVE CONTEXT(void)
2 {
3 register portSTACK TYPE ∗ pxTopOfStack;
4 asm ("\n"
5 " push DPP0 \n"
6 " push DPP1 \n"
7 " push DPP2 \n"
8 " push DPP3 \n"
9 " push r15 \n"

10 " push r14 \n"
11 " push r13 \n"
12 " push r12 \n"
13 " push r11 \n"
14 " push r10 \n"
15 " push r9 \n"
16 " push r8 \n"
17 " push r7 \n"
18 " push r6 \n"
19 " push r5 \n"
20 " push r4 \n"
21 " push r3 \n"

CHAPTER 3. DESIGN AND IMPLEMENTATION 66

22 " push r2 \n"
23 " push r1 \n"
24 " push r0 \n"
25 " push MDC \n" // MDx registers are only safe to push
26 " push MDH \n" // if at least 17 cycles have passed
27 " push MDL \n");
28

29 // system stack pointer
30 pxTopOfStack = mkhp(SP, SPSEG);
31 pxCurrentTCB−>pxTopOfStack = pxTopOfStack;
32 // user stack pointer
33 pxTopOfStack = mkfp((unsigned int) getsp(), DPP1);
34 pxCurrentTCB−>pxTopOfStack2 = pxTopOfStack;
35 }

Listing 3.7: The task context switching primitive portSAVE CONTEXT().

Listing 3.8: The task context switching primitive portRESTORE CONTEXT().

1 void always inline portRESTORE CONTEXT(void)
2 {
3 register portSTACK TYPE ∗ pxTopOfStack;
4

5 pxTopOfStack = (portSTACK TYPE ∗)pxCurrentTCB−>pxTopOfStack;
6

7 // let CPU stack pointer point to stack of task to be restored
(write atomically)

8 atomic(2);
9 SP = sof(pxTopOfStack);

10 SPSEG = seg(pxTopOfStack);
11 endatomic(); // used as fence for the compiler
12

13 // restore registers saved by portSAVE CONTEXT
14 asm ("\n"
15 " pop MDL \n"
16 " pop MDH \n"
17 " pop MDC \n"
18 " pop r0 \n"
19 " pop r1 \n"
20 " pop r2 \n"
21 " pop r3 \n"
22 " pop r4 \n"
23 " pop r5 \n"
24 " pop r6 \n"
25 " pop r7 \n"
26 " pop r8 \n"
27 " pop r9 \n"
28 " pop r10 \n"
29 " pop r11 \n"
30 " pop r12 \n"
31 " pop r13 \n"
32 " pop r14 \n"
33 " atomic #4 \n" // atomically restore user stack pointer

CHAPTER 3. DESIGN AND IMPLEMENTATION 67

34 " pop r15 \n"
35 " pop DPP3 \n"
36 " pop DPP2 \n"
37 " pop DPP1 \n"
38 " pop DPP0 \n"
39 "\n");
40 }

Listing 3.8: The task context switching primitive portRESTORE CONTEXT().

Note: As these primitives are only used in port.c, they are defined as inline functions
there, and not as macros in portmacro.h. This facilitates debugging of those
functions.

Note: Both functions are not allowed to use local variables without the register qualifier!
This is because these functions cannot use the user stack, where local variables
would be stored, as it is just being changed by them.

3.8.4 Interrupts, Interrupt Nesting, and Critical Section Management

Interrupts and Interrupt Nesting Interrupts with a priority level equal to or below
the Max. SysCall Priority are allowed to use a only limited set of FreeRTOS API functions,
and they can nest, i.e., a higher priority interrupt will suspend the execution of a lower
priority interrupt. Interrupts at priority levels above Max. SysCall Priority can handle
critical hardware interrupts, but are not allowed to use the FreeRTOS API.

The interrupt priority levels on the C166S V2 architecture, and their relation to FreeR-
TOS, are shown in Figure 3.13. Max. SysCall Priority has been set to a level of 11 to allow

15 (highest)

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 (lowest)

C166 CPU Priority Level

Interrupts can nest,
but MUST NOT call
any FreeRTOS API
functions.

Max. SysCall Priority

Kernel Level Priority

Task Level Priority

Interrupts can nest
and are allowed to
call light weight
FreeRTOS API
functions ending in
FromISR(), but they
will be masked by
critical sections.

All FreeRTOS API
functions allowed.

C166 fast interrupts
with optional fast
bank switching
supported

Interrupts not using
any FreeRTOS API
functions, can use
any priority and they
will nest.

Figure 3.13: FreeRTOS interrupt nesting on the Infineon C166S V2 architecture.

CHAPTER 3. DESIGN AND IMPLEMENTATION 68

critical hardware interrupts to utilize the fast interrupt and/or bank switching feature of
the C166S V2 architecture when using an interrupt level of 12 and upward. The levels are
defined in FreeRTOSConfig.h - see Listing G.4 in Appendix G on page 138 - and can be
adapted for a given project, if need be.

Critical Section Management When a a critical section of of user code is entered
by calling taskENTER CRITICAL(), all interrupts up to the Max. SysCall Priority are
disabled until the section is exited again by calling portEXIT CRITICAL().

As FreeRTOS supports the nesting of critical sections, this means that interrupts are
only re-enabled again, when the last nested critical section is exited by calling portEXIT -
CRITICAL().

1 #define portENTER CRITICAL() vPortEnterCritical()
2 #define portEXIT CRITICAL() vPortExitCritical()

Listing 3.9: Critical section management macros.

Note: Interrupts above Max. SysCall Priority are not disabled. If it is important to
disable those as well, portDISABLE INTERRUPTS() and portENABLE INTER-
RUPTS() have to be called.

Note: An interrupt-safe alternative for use in ISRs is to call portSET INTERRUPT -
MASK FROM ISR() and portCLEAR INTERRUPT MASK FROM ISR().

The implementation of taskENTER CRITICAL() as inline function vPortEnterCritical()
is shown in Listing 3.10.

1 inline void vPortEnterCritical(void)
2 {
3 if (uxCriticalNesting == 0)
4 {
5 /∗ Disable all interrupts under RTOS control ∗/
6 portSET INTERRUPT MASK FROM ISR();
7 }
8

9 /∗
10 ∗ Now interrupts are disabled ulCriticalNesting can be accessed
11 ∗ directly. Increment ulCriticalNesting to keep a count of how

many
12 ∗ times portENTER CRITICAL() has been called.
13 ∗/
14 uxCriticalNesting++;
15 }

Listing 3.10: The critical section management function vPortEnterCritical().

The implementation of portEXIT CRITICAL() as inline function vPortExitCritical() is
shown in Listing 3.11.

Listing 3.11: The critical section management function vPortExitCritical().

1 inline void vPortExitCritical(void)

CHAPTER 3. DESIGN AND IMPLEMENTATION 69

2 {
3 if (uxCriticalNesting > 0)
4 {
5 /∗ Decrement the nesting count as we are leaving a critical

section. ∗/
6 uxCriticalNesting−−;
7

8 /∗
9 ∗ If the nesting level has reached zero then interrupts

should be
10 ∗ re−enabled.
11 ∗/
12 if(uxCriticalNesting == 0)
13 {
14 portCLEAR INTERRUPT MASK FROM ISR(
15 configTASK LEVEL INTERRUPT PRIORITY);
16 }
17 }
18 }

Listing 3.11: The critical section management function vPortExitCritical().

3.8.5 Yield Function and System Timer Interrupt

Yield Function To force a context switch, also known as yield , two macros are provided:
portYIELD() and portYIELD FROM ISR(). The first is to be used within tasks, mostly
used when the cooperative scheduler is selected. The second one can be called at the end
of ISRs to force a context switch, if resources have become available to a higher-priority
task than the one currently suspended. Both macros are shown in Listing 3.12.

1 #if configUSE PREEMPTION == 0
2 #define portYIELD() int166(127)
3 #else
4 #define portYIELD() STM vSTM1Trap()
5 #endif
6

7 #define portYIELD FROM ISR(SwitchRequired) \
8 { if (SwitchRequired) portYIELD(); }

Listing 3.12: The task context switching primitive portYIELD().

In case the non-preemptive or cooperative scheduler is used, the function portYIELD()
is defined as a software trap function. This way vPortYield(), shown in Listing 3.13, is
invoked as an interrupt function. The latter is important to get a correct stack layout, as
a normal function call would not save the PSW on the task’s stack.

In case the preemptive scheduler is used, the function portYIELD() is defined as a
macro using the low-level STM module driver trap, which essentially sets a hardware flag
to force an STM1 interrupt.

Listing 3.13: The yield function vPortYield().

1 #if configUSE PREEMPTION == 0

CHAPTER 3. DESIGN AND IMPLEMENTATION 70

2 interrupt(TRAP127 VECT) frame() void vPortYield(void)
3 {
4 /∗ save current task’s context ∗/
5 portSAVE CONTEXT();
6

7 /∗ do the context switch ∗/
8 vTaskSwitchContext();
9

10 /∗ restore new task’s context ∗/
11 portRESTORE CONTEXT();
12 }
13 #endif /∗ configUSE PREEMPTION == 0 ∗/

Listing 3.13: The yield function vPortYield().

System Timer Interrupt The STM1 interrupt function, shown in Listing 3.14, is
called the FreeRTOS system tick interrupt , which also acts as the yield function if the
preemptive scheduler is used.

FreeRTOS tracks the system time via this interrupt. Task sleep delays and timeouts
of blocking API function calls are all based on system ticks. On every tick the scheduler
selects the next task with the same or a higher priority level which is in the ready state.

1 interrupt(STM1 VECT) frame() void STM viSTM1I(void)
2 {
3 register unsigned portBASE TYPE hw tick;
4

5 /∗ save current task’s context ∗/
6 portSAVE CONTEXT();
7

8 /∗ if set, this is a hardware tick, otherwise a software yield ∗/
9 hw tick = SCU DMPMIT STM1;

10

11 /∗ Clear interrupt status ∗/
12 STM vSTM1Clr(hw tick);
13

14 /∗ hardware tick, otherwise a software yield ∗/
15 if (hw tick)
16 {
17 // increment Tick
18 vTaskIncrementTick();
19 }
20

21 #if configUSE PREEMPTION == 1
22 vTaskSwitchContext();
23 #endif /∗ configUSE PREEMPTION == 1 ∗/
24

25 /∗ restore new task’s context ∗/
26 portRESTORE CONTEXT();
27 } // End of function STM viSTM1I

Listing 3.14: The system timer interrupt function STM viSTM1I().

CHAPTER 3. DESIGN AND IMPLEMENTATION 71

3.8.6 Starting/Stopping the OS

From the main routine, the FreeRTOS scheduler is started by a call to vTaskStartSched-
uler(), which then calls the hardware-dependent setup function xPortStartScheduler(),
shown in Listing 3.15. This function in turn calls the setup function of the FreeRTOS
tick timer, restores and activates the first task. From this point, the kernel is said to be
running.

1 portBASE TYPE xPortStartScheduler(void)
2 {
3 /∗
4 ∗ Start the timer that generates the tick ISR at the kernel
5 ∗ interrupts priority. Interrupts are disabled here already.
6 ∗/
7 prvSetupTimerInterrupt(configKERNEL INTERRUPT PRIORITY, 0);
8

9 /∗ Start first task. ∗/
10 portSTART FIRST TASK();
11

12 /∗ Should never reach here. ∗/
13 return pdFALSE;
14 }

Listing 3.15: The scheduler Start function xPortStartScheduler().

The FreeRTOS system tick interrupt is configured and started by the function prvSetup-
TimerInterrupt(), shown in Listing 3.16. It enables the interrupts from the System Timer
Module (STM) and then starts the system timer.

1 void prvSetupTimerInterrupt(unsigned short usILVL, unsigned short
usXGLVL)

2 {
3 /∗ STM vInit() must have been called during hardware setup ∗/
4

5 /∗ enable STM1 interrupt node ∗/
6 STM vNodeEnable(STM1 NODE, usILVL, usXGLVL);
7

8 /∗ enable STM1 interrupt ∗/
9 STM vEnableSTM1();

10

11 /∗ start the System Timer Module (STM) ∗/
12 STM vStartSTM();
13 }

Listing 3.16: The system timer setup function prvSetupTimerInterrupt().

The function portSTART FIRST TASK(), shown in Listing 3.17, is defined as a software
interrupt, essentially calling vPortStartFirstTask(), shown in Listing 3.18, as an interrupt
function. This is the only way we can get the compiler to produce a RETI 18 instruction.
This is important because a normal function call return via RET would not restore the
PSW from the task’s stack.

18RETI = return from interrupt

CHAPTER 3. DESIGN AND IMPLEMENTATION 72

1 #define portSTART FIRST TASK() int166(126)

Listing 3.17: The portSTART FIRST TASK() macro.

The function vPortStartFirstTask() saves essential information to be able to stop the
FreeRTOS scheduler again later on. It also sets up the C166S V2 core’s local register
bank 1 to reuse the user stack used during system setup for interrupt functions.

This local register bank can then be used by, e.g., up to two fast interrupts utilizing
fast bank switching at the same interrupt level. How this local register bank can be used
in application-specific code is shown in Section 3.8.7, “Interrupt Handling”.

Because this function is defined as an Interrupt Service Routine (ISR), the compiler
generates a RETI instruction at its end. This instruction ensures that interrupts are
enabled again, as all tasks’ PSWs saved in their respective task context on the stack have
interrupts enabled - see Listing 3.6 on page 64.

1 interrupt(TRAP126 VECT) frame() void vPortStartFirstTask(void)
2 {
3 /∗ interrupts are still disabled ∗/
4

5 /∗ save TopOfStack for system and user stack ∗/
6 pxTopOfSystemStack = mkhp(SP, SPSEG);
7 pxTopOfUserStack = mkfp((unsigned int) getsp(), DPP1);
8

9 /∗ switch to local register bank 1 ∗/
10 switchregbank(1);
11

12 /∗ set user stack pointer of local register bank (using DPP1) ∗/
13 setsp(mknp(1, pxTopOfUserStack));
14

15 /∗ switch to global register bank ∗/
16 switchregbank(0);
17

18 /∗ restore context of first task ∗/
19 portRESTORE CONTEXT();
20

21 /∗ interrupts are enabled by returning to the first task ∗/
22 }

Listing 3.18: The scheduler start function for the first task, vPortStartFirstTask().

When the FreeRTOS kernel is being stopped by a call to vTaskEndScheduler(), subse-
quently the function vPortEndScheduler(), shown in Listing 3.19, is called. This function
restores the system to its state before the call to xPortStartScheduler().

Listing 3.19: The scheduler stop function vPortEndScheduler().

1 void vPortEndScheduler(void)
2 {
3 register unsigned portSHORT reg;
4

5 /∗ restore system stack pointer ∗/
6 SP = sof(pxTopOfSystemStack);

CHAPTER 3. DESIGN AND IMPLEMENTATION 73

7 SPSEG = seg(pxTopOfSystemStack);
8

9 /∗ restore user stack pointer ∗/
10 DPP1 = pag(pxTopOfUserStack);
11 setsp(mknp(1, pxTopOfUserStack));
12

13 /∗ stop RTOS timer tick ∗/
14 STM vStopSTM();
15

16 /∗ portSTART FIRST TASK() placed IP and CSP on the stack, remove
them ∗/

17 portPOP(reg);
18 portPOP(reg);
19

20 /∗ simulate return value of xPortStartScheduler() ∗/
21 reg = pdPASS;
22 asm (" movw r2,%0 \n" // set function return value
23 :: "w" (reg));
24

25 /∗ portSTART FIRST TASK() placed PSW on the stack, restore it ∗/
26 portPOP(PSW);
27 }

Listing 3.19: The scheduler stop function vPortEndScheduler().

3.8.7 Interrupt Handling

Classical Interrupt Service Routine FreeRTOS requires that Interrupt Service Rou-
tines (ISRs) are defined using the portTASK FUNCTION() macro, as shown in List-
ing 3.20. The macro portTASK FUNCTION PROTO() has to be used to create a function
prototype, e.g., in header files. If, as in this example, the ISR sends data to a queue or
uses a semaphore/mutex to communicate with a user task, it can wake the blocked task
by calling portYIELD FROM ISR() as the very last statement.

Classical ISRs store their return address and the registers used by the function on the
currently suspended task’s system stack, and local variables on the task’s user stack. Each
of the two stacks has to be big enough to accommodate the maximal number of nested
interrupts.

Listing 3.20: Example of a classical ISR.

1 portTASK FUNCTION PROTO(vMyISR1, MODULE VECT);
2

3 portTASK FUNCTION(vMyISR1, MODULE VECT)
4 {
5 portCHAR cData;
6 portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;
7

8 /∗ read hardware registers ∗/
9 cData =

10

11 /∗ post result to queue ∗/

CHAPTER 3. DESIGN AND IMPLEMENTATION 74

12 xQueueSendFromISR(xMyQueue, &cData, &xHigherPriorityTaskWoken);
13

14 /∗ switch context if necessary ∗/
15 portYIELD FROM ISR(xHigherPriorityTaskWoken);
16 }

Listing 3.20: Example of a classical ISR.

Interrupt Service Routine using Local Register Bank ISRs can optionally be
defined using a local register bank via the portINTERRUPT HANDLER BANKSEL()
macro, as shown in Listing 3.21. Currently only one of the two local register banks,
namely local register bank 1, can be used. To use local register bank 2, its user stack
pointer would need to be initialized first, but this is not done in this port of FreeRTOS.

An ISR using a local register bank stores only its return address on the currently
suspended task’s system stack, and local variables on the task’s user stack. This way the
space usage on the system stack is reduced as compared to the classical ISR. Another
advantage is that a context switch to a local register bank is much faster than a switch to
another global register bank.

However, still each of the two stacks has to be big enough to accommodate the maxi-
mum number of nested interrupts.

1 portINTERRUPT HANDLER BANKSEL PROTO(vMyISR2, MODULE VECT, 1);
2

3 portINTERRUPT HANDLER BANKSEL(vMyISR2, MODULE VECT, 1)
4 {
5 /∗ function body same as vMyISR1 above ∗/
6 }

Listing 3.21: Example of an ISR using a local register bank.

Note: As the compiler does not save the CPU registers on the stack when a local register
bank is selected, ISRs defined using the same register bank need to have the same
interrupt priority level, i.e., those ISRs cannot nest.

Note: ISRs defined with the same interrupt priority level (ILVL) need to have differ-
ent interrupt group levels (XGLVL) assigned, see [102, Chapter 5.1.2, “Interrupt
Arbitration”]!

Interrupt Service Routine using Private Global Register Bank ISRs can option-
ally be defined using a private global memory-mapped register bank via the portINTER-
RUPT HANDLER BANKSEL() macro, as shown in Listing 3.22. Instead of a register
bank number, a memory-mapped register bank is assigned by name.

An ISR using a private global register bank stores only its return address on the
currently suspended task’s system stack, and local variables on the task’s user stack. This
way the space usage on the system stack is reduced as compared to the classical ISR.

However, still each of the two stacks has to be big enough to accommodate the maxi-
mum number of nested interrupts. It has to be noted that the context switch to another

CHAPTER 3. DESIGN AND IMPLEMENTATION 75

global register bank adds additional latency to the ISR because the register bank has to
be validated by the CPU first.

1 portINTERRUPT HANDLER BANKSEL PROTO(vMyISR3, MODULE VECT, "MY bank");
2

3 portINTERRUPT HANDLER BANKSEL(vMyISR3, MODULE VECT, "MY bank")
4 {
5 /∗ function body same as vMyISR1 above ∗/
6 }

Listing 3.22: Example of an ISR using a private global register bank.

Note: As the compiler does not save the CPU registers on the stack when another than
the default global register bank is selected, ISRs defined using the same register
bank need to have the same interrupt priority level, i.e., those ISRs cannot nest.

Note: ISRs defined with the same interrupt priority level (ILVL) need to have differ-
ent interrupt group levels (XGLVL) assigned, see [102, Chapter 5.1.2, “Interrupt
Arbitration”]!

3.8.8 Demo Application

A demo application is provided with this port of FreeRTOS to test and to demonstrate its
functionality. The demo runs the tasks listed in Table 3.10. All tasks are either standard
demo tasks or FreeRTOS core tasks, except “Reg1” and “Reg2”, which have been modified
to test the registers of the C166S V2 architecture.

Table 3.10: Demo application tasks and priorities.

Task Name Priority Task Description

BTest1 2 Test scenarios ensuring that tasks do not exit queue send
or receive functions prematurely.BTest2 1

IntMath 0
Repeatedly performs a 32-bit calculation, checking the
result of the calculation against the expected result.

QConsB1 2
Six tasks that operate on three queues, with each
consumer task being followed by its accompanying
producer task. Scenarios with different and identical
priorities are tested.

QProdB2 0
QConsB3 0
QProdB4 2
QProdB5 0
QConsB6 0

Reg1 0 Initializes processor registers with known values and
checks if they remain unchanged during context switch.Reg2 0

Stats 0
Prints process statistics on the serial console. See
Figure 3.14 for an example.

Tmr Svc 4 FreeRTOS Timer Service Task - executes timer callbacks.

IDLE 0 FreeRTOS IDLE Task.

CHAPTER 3. DESIGN AND IMPLEMENTATION 76

−−−−−−−−−−−−−− RUN TIME STATISTICS −−−−−−−−−−−−−−−
−−
Task Name 1/10 Ticks Percentage
−−
IDLE 24828 <1%
IntMath 27909887 33%
QProdB2 88840 <1%
QConsB3 94174 <1%
QProdB5 1431541 1%
QConsB6 1447645 1%
Reg1 19473930 23%
Stats 8326 <1%
Reg2 27934058 33%
BTest2 64616 <1%
QConsB1 2738151 3%
QProdB4 2724660 3%
Tmr Svc 2801 <1%
BTest1 56573 <1%
−−
TOTAL TICKS 8400000
STATS EXE TICKS 7
PRINT EXE TICKS 2301
−−

Figure 3.14: Output of the statistics task on the serial console.

Chapter 4

Conclusions and Outlook

4.1 Conclusions

This work focused on the development of a Safety Electronic Control Unit (ECU) for a
FSE race car. Such an ECU has, to our knowledge, never before been developed according
to the ISO 26262 [13–22].

Despite the fact, that this standard to date only covers road-going vehicles of less than
3.5 tons, it was applied to the development of electronics for a race car of the FSE series.
As [106] notes, “There are demands from [the] commercial vehicle sector for extending
the ISO 26262 for commercial vehicles and motor cycles.”, we see a broadening of this
standard in the future. [107] already hints that the German standards working group
“VDA Arbeitskreis 16” is heading in this direction. As the global review process of this
standard has not even started yet, it is too early to speculate about the ISO 26262 being
expanded to cover other types of vehicles.

The development of electronics as Safety Element out of Context (SEooC), heavily
used in this work, shows to be a very practicable method. We therefore anticipate that
the next release of the ISO 26262 might evolve this concept further. This work also shows
that the SEooC development process, according to the ISO 26262, is applicable to the
development of electronics for FSE race cars.

The developed ECU is versatile and integrates most of the interfaces specific to FSE
race cars. Furthermore, it simplifies wiring harness design and reduces weight. General-
purpose ECUs, commonly used for rapid prototyping and pre-series prototypes, lack the
necessary interfaces which are common on race cars of this series. The interlocks and the
safety system required in this series are not common outside, and therefore need to be
implemented as a separate device. This adds to the complexity and to the weight of the
wiring harness. Two devices, instead of one, also take up more space in the interior, which
is precious in race cars of this size. Additionally, with the port of FreeRTOS [52], the
foundation for the software stack has been laid. We see that the ECU presented in this
work could very well be established as a standard device on this series.

77

CHAPTER 4. CONCLUSIONS AND OUTLOOK 78

4.2 Outlook

As the foundation for the software has been laid with the port of an RTOS, the design
and implementation of a driver library or some kind of CPU abstraction layer would be a
logical next step. Further work would also involve the development of the software safety
requirements and a corresponding software design, which would then be implemented and
tested on a future race car.

Another possible direction for subsequent projects would also be an evaluation of other
setups used within the series, in order to extend the current functional safety concept to
also cover those.

The development of a parameterizable ECU software and accompanying PC configu-
ration software for easier adaption within the series would also be desirable.

A totally different research path would be the realization of a port of an AUTOSAR19

OS, e.g., Arctic Core.20 As the Arctic Core Microcontroller Abstraction Layer (MCAL)
package currently does not support the Infineon XC2300 series CPU, either a MCAL
could be written from scratch, or the Infineon MCAL [108] could be evaluated regarding
its compatibility with the Arctic Core OS.

Yet another project could as well take the functional safety concept developed in this
work, use it to derive the technical safety concept for the drive-by-wire system developed
in [109], and then refine the system as a SEooC.

19http://www.autosar.org/
20http://www.arccore.com/products/arctic-core/

http://www.autosar.org/
http://www.arccore.com/products/arctic-core/

Appendix A

Acronyms and Abbreviations

AC Alternating Current

ABS Antilock Break System

ADAS Advanced Driver Assistance System

ADC Analog to Digital Converter

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System ARchitecture

BMS Battery Management System

CAN Controller Area Network

CAN FD CAN Flexible Data-rate

CCF Common Cause Failure

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSP Code Segment Pointer

DAP Device Access Port, Infineon proprietary debug interface

DC Direct Current

DPP Data Page Pointer

DPRAM Dual Port RAM

79

APPENDIX A. ACRONYMS AND ABBREVIATIONS 80

E/E Electrical and/or Electronic

E/E/PE Electrical and/or Electronic and/or Programmable Electronic

E-Gas Elektronisches Gaspedal

ECC Error Correction Code

ECU Electronic Control Unit

ETC Electronic Throttle Control

FIFO First In First Out

FSC Functional Safety Concept

FSE Formula Student Electric

FSM Finite State Machine

FTTI Fault-Tolerant Time Interval

HAL Hardware Abstraction Layer

HSI Hardware-Software Interface

HV High Voltage, in the automotive sector, includes voltages >60V and
≤1500V DC, and >25V and ≤1000V AC RMS

IP Instruction Pointer

IMD Insulation Monitoring Device

ISR Interrupt Service Routine

LAN Local Area Network

LIN Local Interconnect Network

LION Lithium Ion

LV Low Voltage, in the automotive sector, includes voltages ≤60V DC, and
≤25V AC RMS, the voltage level of Protective Extra Low Voltage
(PELV) according to presumably according to IEC 60364-4-41

MCAL Microcontroller Abstraction Layer

MicroSD Micro Secure Digital

MMU Memory Management Unit

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPU Memory Protection Unit

APPENDIX A. ACRONYMS AND ABBREVIATIONS 81

OS Operation System

PLC Programmable Logic Controller

PSW Program Status Word

PWM Pulse Width Modulation

RAM Random Access Memory

RMS Root Mean Square

RTC Real-Time Clock

RTOS Real-Time Operating System

SEooC Safety Element out of Context

SIL Safety Integrity Level

SPI Serial Peripheral Interface

SRAM Static RAM

TCB Task Control Block

TMR Triple Modular Redundant

TSAL Tractive System Active Light

WiFi Wireless Fidelity

WLAN Wireless LAN

Appendix B

ISO 26262

B.1 Detailed Overview of ISO 26262

Figure B.1 shows the detailed overview of ISO 26262 as defined in part 1 of ISO 26262 [13].

The specific clauses of the standard are indicated in the following manner: “m-n”, where
“m” represents the number of the particular part and “n” indicates the number of the
clause within that part.

EXAMPLE “5-7” represents Clause 7 of ISO 26262-5.

82

APPENDIX B. ISO 26262 83

3.
 C

o
n

ce
p

t
p

h
as

e

2.
 M

an
ag

em
en

t
o

f
fu

n
ct

io
n

al
 s

af
et

y

2-
5

O
ve

ra
ll

sa
fe

ty
 m

a
na

ge
m

en
t

2-
6

S
a

fe
ty

 m
an

ag
em

en
t d

ur
in

g
th

e
 c

on
ce

pt
 p

ha
se

an

d
th

e
pr

od
uc

t d
ev

el
op

m
en

t

7.
 P

ro
d

u
ct

io
n

 a
n

d
 o

p
er

at
io

n

6-
5

In
iti

at
io

n
of

 p
ro

d
uc

t
de

ve
lo

pm
e

nt
 a

t t
he

 s
o

ftw
a

re
 le

ve
l

6-
7

S
of

tw
ar

e
ar

ch
ite

ct
ur

al
 d

es
ig

n

6-
8

S
of

tw
ar

e
un

it
de

si
g

n
a

nd

im
p

le
m

en
ta

tio
n

6-
9

S
of

tw
ar

e
un

it
te

st
in

g

6-
10

S
of

tw
ar

e
in

te
gr

at
io

n
 a

n
d

te
st

in
g

6-
11

 V
er

ifi
ca

tio
n

o
f s

of
tw

ar
e

 s
af

et
y

re
qu

ire
m

e
nt

s

5-
5

In
iti

at
io

n
of

 p
ro

d
uc

t
de

ve
lo

pm
e

nt
 a

t t
he

 h
ar

dw
ar

e
le

ve
l

5-
6

S
pe

ci
fic

a
tio

n
of

 h
ar

dw
ar

e
sa

fe
ty

 r
eq

ui
re

m
en

ts

5-
7

H
ar

dw
ar

e
de

si
gn

5-
8

E
va

lu
a

tio
n

of
 t

h
e

ha
rd

w
ar

e
ar

ch
ite

ct
u

ra
l m

et
ric

s

5-
10

H
ar

dw
a

re
 in

te
gr

at
io

n
a

nd

te
st

in
g

2-
7

S
af

et
y

m
an

ag
em

en
t a

fte
r

th
e

 it
em

´s
 r

e
le

as
e

fo
r

pr
o

du
ct

io
n

3-
6

In
iti

at
io

n
 o

f t
h

e
sa

fe
ty

 li
fe

cy
cl

e

1.
 V

o
ca

b
u

la
ry

3-
5

Ite
m

 d
ef

in
iti

on

3-
7

H
a

za
rd

 a
n

al
ys

is
 a

nd
ris

k
a

ss
e

ss
m

en
t

3-
8

F
un

ct
io

na
l s

af
et

y
co

n
ce

pt

7
-6

 O
p

er
at

io
n

, s
er

vi
ce

(m

a
in

te
na

n
ce

 a
nd

 r
ep

a
ir)

, a
nd

d

ec
om

m
is

si
on

in
g

7
-5

 P
ro

du
ct

io
n

8.
 S

u
p

p
o

rt
in

g
 p

ro
ce

ss
es

8-
5

In
te

rf
a

ce
s

w
ith

in
 d

is
tr

ib
ut

ed
 d

ev
el

o
pm

en
ts

8-
6

S
pe

ci
fic

at
io

n
an

d
m

an
ag

em
en

t o
f s

af
et

y
re

qu
ire

m
en

ts

8-
8

C
h

an
ge

 m
an

ag
em

en
t

8-
9

V
er

ifi
ca

tio
n

8-
7

C
o

nf
ig

ur
a

tio
n

m
a

na
ge

m
e

nt

4.
 P

ro
d

u
ct

 d
ev

el
o

p
m

en
t

at
 t

h
e

sy
st

em
 l

ev
el

4-
5

In
iti

at
io

n
 o

f p
ro

d
uc

t
d

ev
el

o
pm

en
t a

t t
he

 s
ys

te
m

 le
ve

l

4
-7

S
ys

te
m

 d
e

si
gn

4-

8
It

em
 in

te
gr

a
tio

n
an

d
te

st
in

g

4-
9

S
af

e
ty

 v
al

id
at

io
n

4-
10

F
un

ct
io

na
l s

a
fe

ty
 a

ss
es

sm
en

t

4-
11

R
e

le
as

e
 fo

r
pr

o
du

ct
io

n

6.
 P

ro
d

u
ct

 d
ev

el
o

p
m

en
t

at
 t

h
e

so
ft

w
ar

e
le

v
el

5.
 P

ro
d

u
ct

 d
ev

el
o

p
m

en
t

at
 t

h
e

h
ar

d
w

ar
e

le
v

el

5-
9

E
va

lu
at

io
n

of
 t

he
 s

af
et

y
go

al

vi
o

la
tio

n
s

du
e

to
 r

an
do

m
 h

ar
d

w
ar

e

fa
ilu

re
s

4-
6

S
pe

ci
fic

a
tio

n
of

 th
e

 te
ch

n
ic

al

sa
fe

ty
 r

eq
ui

re
m

en
ts

9.
 A

S
IL

-o
ri

en
te

d
 a

n
d

 s
af

et
y-

o
ri

en
te

d
 a

n
al

ys
es

9
-5

R
e

qu
ir

em
en

ts
 d

ec
o

m
po

si
tio

n
 w

ith
 r

es
pe

ct
 to

 A
S

IL
 ta

ilo
rin

g
9

-6
C

ri
te

ria
 fo

r
co

ex
is

te
nc

e
of

 e
le

m
en

ts

8-
10

D
oc

u
m

e
nt

at
io

n
8-

11
C

on
fid

en
ce

 in
 th

e
 u

se
 o

f s
o

ftw
a

re
 to

ol
s

8-
13

Q
ua

lif
ic

a
tio

n
of

 h
a

rd
w

ar
e

co
m

po
n

en
ts

8-
14

P
ro

ve
n

in
 u

se
 a

rg
u

m
e

nt

8-
12

Q
ua

lif
ic

a
tio

n
of

 s
o

ftw
a

re
 c

o
m

p
on

e
nt

s

9-
7

A
na

ly
si

s
of

 d
ep

en
de

n
t f

ai
lu

re
s

9-
8

S
af

et
y

a
na

ly
se

s

10
. G

u
id

el
in

e
o

n
 IS

O
 2

62
62

Figure B.1: Detailed overview of ISO 26262 [13, Figure 1]

APPENDIX B. ISO 26262 84

B.2 Essential vocabulary from ISO 26262 Part 1

controllability
ability to avoid a specified harm or damage through the timely reactions of the
persons involved, possibly with support from external measures

electrical and/or electronic system (E/E system)
system that consists of electrical and/or electronic elements, including program-
mable electronic elements

failure rate
probability density of failure divided by probability of survival for a hardware element

fault-tolerant time interval
time-span in which a fault or faults can be present in a system before a hazardous
event occurs

functional concept
specification of the intended functions and their interactions necessary to achieve
the desired behaviour

functional safety
absence of unreasonable risk due to hazards caused by malfunctioning be-
haviour of E/E systems

harm
physical injury or damage to the health of persons

hazard
potential source of harm caused by malfunctioning behaviour of the item

item
system or array of systems to implement a function at the vehicle level, to which
ISO 26262 is applied

malfunctioning behaviour
failure or unintended behaviour of an item with respect to its design intent

risk combination of the probability of occurrence of harm and the severity of that harm

safe state
operating mode of an item without an unreasonable level of risk

safety
absence of unreasonable risk

severity
estimate of the extent of harm to one or more individuals that can occur in a
potentially hazardous situation

unreasonable risk
risk judged to be unacceptable in a certain context according to valid societal moral
concepts

APPENDIX B. ISO 26262 85

B.3 Tables from ISO 26262 Part 3

B.3.1 Classes of severity

Table B.1: Examples of severity classification [15]

Class of severity

S0 S1 S2 S3

Description No injuries Light and
moderate
injuries

Severe and
life-threatening

injuries
(survival
probable)

Life-
threatening

injuries
(survival

uncertain),
fatal injuries

Reference
for single
injuries
(from AIS
scale)

- AIS 0 and
less than 10
% probabil-
ity of AIS 1-6

- Damage
that cannot
be classified
safety-
related

More than 10
% probability

of AIS 1-6
(and not S2 or

S3)

More than 10
% probability

of AIS 3-6
(and not S3)

More than 10
% probability

of AIS 5-6

Note 1: This table is a merger of ISO26262-3:2011 table 1 and table B.1

Note 2: For AIS see http://en.wikipedia.org/wiki/Abbreviated_Injury_Scale#Severity

B.3.2 Classes of probability of exposure

Table B.2: Classes of probability of exposure regarding duration [15]

Class of probability of exposure in operational situations

E1 E2 E3 E4

Description Very low
probability

Low
probability

Medium
probability

High
probability

Duration
(% of average
operating
time)

Not specified <1 % of
average

operating time

1 % to 10 % of
average

operating time

>10 % of
average

operating time

Note: This table is a merger of ISO26262-3:2011 table 2 and table B.2

http://en.wikipedia.org/wiki/Abbreviated_Injury_Scale#Severity

APPENDIX B. ISO 26262 86

Table B.3: Classes of probability of exposure regarding frequency [15]

Class of probability of exposure in operational situations

E1 E2 E3 E4

Description Very low
probability

Low
probability

Medium
probability

High
probability

Frequency
of situation

Occurs less
often than

once a year for
the great

majority of
drivers

Occurs a few
times a year
for the great
majority of

drivers

Occurs once a
month or more

often for an
average driver

Occurs during
almost every

drive on
average

Note: This table is a merger of ISO26262-3:2011 table 2 and table B.3

B.3.3 Classes of controllability

Table B.4: Classes of controllability [15]

Class of controllability

C0 C1 C2 C3

Description Controllable in
general

Simply
controllable

Normally
controllable

Difficult to
control or

uncontrollable

Driving
factors and
scenarios

Controllable in
general

99 % or more
of all drivers

or other traffic
participants
are usually

able to avoid
harm

90 % or more
of all drivers

or other traffic
participants
are usually

able to avoid
harm

Less than 90 %
of all drivers

or other traffic
participants
are usually

able, or barely
able, to avoid

harm

Note: This table is a merger of ISO26262-3:2011 table 3 and table B.4

APPENDIX B. ISO 26262 87

B.3.4 ASIL determination

Table B.5: ASIL determination [15, Table 4]

Severity class Probability class
Controllability class

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Appendix C

Safety Element out of Context Tables

This appendix contains the tables that are too large to be presented in the SEooC sections of the main part.

88

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

89
C.1 Situation Analysis

Table C.1: Situation analysis of the Formula Student Electric Germany 2012.

Situation

Percentage
of total
time

Average
duration
[sec]

Number
of
drivers

Number of
attempts
per driver

Approx.
track
length [m]

Top
speed
[km/h]

Average
speed
[km/h]

Median
time per
run or turn
[sec]

Remarks

Acceleration race
event

0.72% 17.70 2 2 75 110 - 4.42 -

Skid-pad race
event

4.07% 100.43 2 2 115 - 33 25.11 track wet

Autocross race
event

14.33% 353.99 2 2 1200 90 50 88.50 -

Endurance race
event

66.71% 1647.81 2 1 11000 100 50 823.90 -

Approaching
start line (from
queue)

5.67% 140.00 8 1.75 10 10 - 10.00 estimated

Standstill
(engaged,
waiting to start)

8.50% 210.00 8 1.75 - - - 15.00 estimated

Data source: Formula Student Electric Germany 2012 event results; speeds estimated based on logged data.

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

90
C.2 Hazard Identification and Classification

Table C.2: Hazard identification and classification for Formula Student Electric race car with arguments.

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ01 Unintended accel-
eration (at zero
speed)

Standstill; mar-
shal crossing 1 m
in front of race car

2 A crash is pos-
sible because of
the person cross-
ing just 1 m be-
fore the car. The
traffic participant
could be badly
injured.

3 According to the
situation anal-
ysis, standstill
accounts for less
than 10% of the
total operating
time.

2 Driver can steer to
side to avoid accident,
can use the mechan-
ically operating brak-
ing system to slow/stop
the vehicle, and can
additionally push the
emergency-off button to
shut down power to the
motors.

A SG01

HZ02 Unintended accel-
eration (at low
speed)

Approaching
start; marshal on
the side of the
start position

2 A crash is possi-
ble because of the
person beside the
start line. The
traffic participant
could be badly
injured.

3 According to the
situation analy-
sis, approaching
start accounts
for less than
10% of the total
operating time.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button
to shut down power to
the motors. Marshal
can jump aside if he
sees the car approach-
ing beside the usual
starting position.

A SG02

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

91
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ03 Unintended ac-
celeration (at
medium speed)

Autocross or
Endurance
race event;
medium speed
(30-50 km/h)

2 A crash is possi-
ble and the driver
could be badly
injured.

4 Medium speed
accounts for more
than 10% of the
total operating
time.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button to
shut down power to the
motors. Marshal can
jump aside if he sees
the car approaching.

B SG02

HZ04 Unintended ac-
celeration (at
medium speed)

Autocross or
Endurance race
event; another
car close be-
hind or marshal
close to track;
medium speed
(30-50 km/h)

3 A crash is possi-
ble and the traffic
participants could
be badly injured.

3 Because of how
the event is or-
ganized, one car
running up to
another accounts
for less than 10%
of the average
operating time
during one race
event. Marshals
are trained by
the organizer to
keep clear of the
vicinity of the
track.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button to
shut down power to the
motors. Marshal can
jump aside if he sees
the car approaching.

B SG02

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

92
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ05 Unintended accel-
eration (at high
speed)

Autocross or
Endurance race
event; high speed
(≥70 km/h)

2 A crash is possi-
ble and the driver
could be badly
injured.

4 High speed ac-
counts for more
than 10% of the
total operating
time.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button to
shut down power to the
motors. Marshal can
jump aside if he sees
the car approaching.

B SG02

HZ06 Unintended accel-
eration (at high
speed)

Autocross or
Endurance race
event; another car
close behind or
marshal close to
track; high speed
(≥70 km/h)

3 A crash is possi-
ble and the traffic
participants could
be badly injured
or killed.

3 Because of how
the event is or-
ganized, one car
running up to
another accounts
for less than 10%
of the average
operating time
during one race
event. Marshals
are trained by
the organizer to
keep clear of the
vicinity of the
track.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button to
shut down power to the
motors. Marshal can
jump aside if he sees
the car approaching.

B SG02

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

93
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ07 Unintended accel-
eration forward
one motor, back-
ward the other
motor; yawing
moment (at
medium or high
speed)

Cornering;
medium or
high speed (30-
50 km/h or
≥70 km/h)

2 A crash is possi-
ble and the driver
could be badly
injured.

4 On average, cor-
nering occurs dur-
ing almost every
race.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button
to force the shutdown
of power to the motors.

B SG02

HZ08 Unintended gen-
erative braking,
i.e., acceleration
backwards (at
zero speed)

Standstill; queue
of waiting cars 5-
10 m behind

2 A crash is pos-
sible because of
the queue of cars
waiting behind
– front collision
for the other car.
The driver could
be badly injured.

3 According to the
situation anal-
ysis, standstill
accounts for less
than 10% of the
total operating
time.

2 Driver can use the
mechanically operating
braking system to
slow/stop the vehicle,
and can additionally
push the emergency-off
button to force the
shutdown of power to
the motors.

A SG03

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

94
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ09 Unintended gen-
erative braking,
i.e., acceleration
backwards (at
low speed)

Approaching
start; queue
of waiting cars
5-10 m behind

2 A crash is pos-
sible because of
the queue of wait-
ing cars behind
– front collision
for the other car.
The driver could
be badly injured.

3 According to the
situation analy-
sis, approaching
start accounts
for less than
10% of the total
operating time.

2 Driver can maintain
driving path or steer to
side to avoid accident,
use the mechanically
operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button
to force the shutdown
of power to the motors.
Marshal can jump
aside if he sees the car
approaching.

A SG03

HZ10 Unintended gen-
erative braking,
i.e., acceleration
backwards (at
medium speed)

Autocross or
Endurance
race event;
medium speed
(30-50 km/h)

2 A crash is possi-
ble and the driver
could be badly
injured.

4 Medium speed
accounts for more
than 10% of the
total operating
time.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cal operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button
to force the shutdown
of power to the motors.
Marshal can jump
aside if he sees the car
approaching.

B SG04

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

95
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ11 Unintended gen-
erative braking,
i.e., acceleration
backwards (at
medium speed)

Autocross or
Endurance race
Event; another
car close be-
hind or marshal
close to track;
medium speed
(30-50 km/h)

3 A crash is possi-
ble and the traffic
participants could
be badly injured
or killed.

3 Because of how
the event is or-
ganized, one car
running up to
another accounts
for less than 10%
of the average
operating time
during one race
event. Marshals
are trained by
the organizer to
keep clear of the
vicinity of the
track.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button
to force the shutdown
of power to the motors.
Marshal can jump
aside if he sees the car
approaching.

B SG04

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

96
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ12 Unintended gen-
erative braking,
i.e., acceleration
backwards (at
high speed)

Endurance race
event; high speed
(≥70 km/h)

2 A crash is possi-
ble and the driver
could be badly
injured.

4 High speed ac-
counts for more
than 10% of the
total operating
time.

2 Driver can maintain
driving path or steer to
side to avoid accident,
can use the mechani-
cally operating braking
system to slow/stop
the vehicle, and can
additionally push the
emergency-off button
to force the shutdown
of power to the motors.
Marshal can jump
aside if he sees the car
approaching.

B SG04

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

97
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ13 Unintended gen-
erative braking,
i.e., acceleration
backwards (at
high speed)

Endurance race
event; another car
close behind or
marshal close to
track, high speed
(≥70 km/h)

3 A crash is possi-
ble and the traffic
participants could
be badly injured
or killed.

3 Because of how
the event is or-
ganized, one car
running up to
another accounts
for less than 10%
of the average
operating time
during one race
event. Marshals
are trained by
the organizer to
keep clear of the
vicinity of the
track.

2 Driver use the mechan-
ically operating braking
system to slow/stop
the vehicle and can
additionally push the
emergency-off button
to force the shutdown
of power to the motors.
Marshal can jump
aside if he sees the car
approaching.

B SG04

HZ14 Battery parame-
ters out of range

Any driving
situation

2 The driver could
be badly injured.

4 Always 2 Driver can maintain
driving path and use
the mechanically oper-
ating braking system to
slow/stop the vehicle
and get out if the
battery, e.g., starts
burning.

B SG05

HZ15 Missing
acceleration

Any driving
situation

1 A crash is possi-
ble and the driver
could be lightly
injured.

4 Always 1 99% of the drivers are
usually able to avoid
harm.

QM SG06

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

98
Table C.2: (continued)

Hazard Classification of Hazardous Event (Severity, Exposure, Controllability)
Safety
Goal

ID
Possible
Malfunction

Situation S Argument E Argument C Argument ASIL ID

HZ16 Unintended
deceleration with-
out generative
braking

Any driving
situation

1 A crash is possi-
ble and the driver
could be lightly
injured.

4 Always 1 99% of the drivers are
usually able to avoid
harm.

QM SG07

HZ17 Missing
deceleration

Any driving
situation

1 A crash is possi-
ble and the driver
could be lightly
injured.

4 Always 1 99% of the drivers are
usually able to avoid
harm.

QM SG08

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

99
C.3 Safety Goals

Table C.3: Safety goals.

Safety Goal

ID Description Safe State ASIL

SG01 The vehicle shall not accelerate without a valid throttle demand
(above the throttle function threshold).

Switch off power to the motors (demand zero
torque).

A

SG02 Unintended acceleration shall be prevented. Switch off power to the motors (demand zero
torque).

B

SG03 The vehicle shall not do generative braking or accelerate back-
wards (below the electric braking speed threshold).

Switch off power to the motors (demand zero
torque).

A

SG04 Unintended generative braking or acceleration backwards shall be
prevented.

Switch off power to the motors (demand zero
torque).

B

SG05 Battery parameters shall be kept within defined safe operating
area.

Switch off power to the inverters. B

SG06 Missing acceleration shall be prevented. - QM

SG07 Unintended deceleration without generative braking shall be
prevented.

- QM

SG08 Missing deceleration shall be prevented. - QM

SG01 gleaned from [85].

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

100
C.4 Functional Safety Concept

Table C.4: Functional safety concept.

Functional Safety Requirement Safety
Goal

Specification

ID Description ASIL Allocated
to Element

ID Operating
Modes

Fault-tolerant
Time

Safe State

FSR01 The system shall not send throttle data which causes
the vehicle to accelerate without a driver demand.

A X-by-Wire SG01 Vehicle
powered on

100 ms Switch off
power to the
motors
(demand
zero torque).

FSR02 The system shall not send a torque command which
causes the vehicle to accelerate without a driver
demand.

A ECU

FSR03 Accurate throttle, brake, and steering angle signals
shall be generated.

B X-by-Wire SG02,
SG03,
SG04

Vehicle
powered on

100 ms Switch off
power to the
motors
(demand
zero torque).

FSR04 The throttle, brake, and steering angle signals shall be
received and verified.

B ECU

FSR05 Accurate front and rear vehicle speed signals shall be
generated.

B ECU

FSR06 Accurate torque command shall be generated. B ECU

FSR07 The torque command shall be received and verified. B Inverter

FSR08 Accurate calculation of the resulting torque by means
of phase current measurement.

B Inverter

FSR09 The torque result shall be received and verified. B ECU

FSR10 The torque result shall be validated. B ECU

FSR11 An accurate battery status shall be provided. B HV-Battery SG05 Vehicle
powered on

1 s Switch off
power to the
inverters.

FSR12 The battery status shall be received, verified, and re-
acted upon in case it is out of the safe operating area.

B ECU

FSR01 gleaned from [85].

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

101
C.5 Technical Safety Concept for ECU as SEooC

Table C.5: Technical safety requirements for the ECU as SEooC.

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR01 A throttle sensor signal shall be received from the
CAN bus.

B FSR02,
FSR04

Powered on 100 ms Switch off
power to
the
motors
(demand
zero
torque).

Keep until at least
10 consecutive valid
zero values have
been received, or
keep till power-off.

TSR01.1 The throttle sensor signal and its inverse
representation shall be received from the CAN bus.
Check the signal against its inverse representation
and do a range check; assume 0, if failure.

QM(B)

TSR01.2 Plausibility-check the throttle signal, e.g.,
gradient. Check the alive-counter for correct
sequence and the checksum for message integrity.
Force 0, if failure.

B(B)

TSR02 A brake sensor signal shall be received from the
CAN bus.

B FSR04 Powered on 100 ms Switch off
power to
the
motors
(demand
zero
torque).

Keep until at least
10 consecutive valid
values have been
received, or keep till
power-off.

TSR02.1 The brake sensor signal and its inverse
representation shall be received from the CAN bus.
Check the signal against its inverse representation
and do a range check; assume 0, if failure.

QM(B)

TSR02.2 Plausibility-check the brake sensor signal, e.g.,
gradient. Check the alive-counter for correct
sequence and the checksum for message integrity.
Force 0, if failure.

B(B)

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

102
Table C.5: (continued)

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR03 A steering angle sensor signal shall be received
from the CAN bus.

B FSR04 Powered on 100 ms Switch off
power to
the
motors
(demand
zero
torque).

Keep until at least
10 consecutive valid
values have been
received, or keep till
power-off.

TSR03.1 The steering angle sensor signal and inverse
representation shall be received from the CAN bus.
Check the signal against its inverse representation
and do a range check; assume 0, if failure.

QM(B)

TSR03.2 Plausibility-check the steering angle sensor signal,
e.g., gradient. Check the alive-counter for correct
sequence and the checksum for message integrity.
Force 0, if failure.

B(B)

TSR04 An accurate vehicle speed front signal shall be
generated.

B FSR05 Powered on - - -

TSR04.1 Generate vehicle speed front signal by averaging
two sensor signals.

QM(B)

TSR04.1.1 There shall be a vehicle speed front sensor1. QM(B)

TSR04.1.2 There shall be a vehicle speed front sensor2. QM(B)

TSR04.2 The vehicle speed front sensors shall be checked
for plausibility, e.g., gradient. Set “vehicle speed
front failure” flag if failure, else reset failure flag if
valid signals for 10 consecutive times.

B(B)

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

103
Table C.5: (continued)

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR05 An accurate vehicle speed rear signal shall be
generated.

B FSR05 Powered on - - -

TSR05.1 Generate vehicle speed rear signal by averaging
two sensor signals.

QM(B)

TSR05.1.1 There shall be a vehicle speed rear sensor1. QM(B)

TSR05.1.2 There shall be a vehicle speed rear sensor2. QM(B)

TSR05.2 The vehicle speed rear sensors shall be checked for
plausibility, e.g., gradient. Set “vehicle speed rear
failure” flag if failure, else reset failure flag if valid
signals for 10 consecutive times.

B(B)

TSR06 An accurate torque command shall be generated
based on throttle, brake, vehicle speed, and
battery health status.

B FSR06,
FSR10

Powered on 100 ms Switch off
power to
the
motors
(demand
zero
torque).

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
TCMD FAIL -
COUNT, then only
reset in garage shall
be possible, else keep
until power-off.

TSR06.1 Generate torque command. Take “vehicle speed
failure” flags into account. Limit gradient to
TORQUE GRADIENT LIMIT. Range-check
output signal. Send torque command via CAN.

QM(B)

TSR06.2 Torque command shall be plausibility-checked
against torque result. Force 0, if failure.

B(B)

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

104
Table C.5: (continued)

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR07 A torque result signal shall be received from the
CAN bus.

B FSR09 Powered on 100 ms Switch off
power to
the
motors
(demand
zero
torque).

Keep until at least
10 consecutive valid
values have been
received, or keep till
power-off.

TSR07.1 The torque result signal and its inverse
representation shall be received from the CAN
bus. Check the signal against its inverse
representation and do a range check.

QM(B)

TSR07.2 Plausibility-check the torque result signal. Check
the alive-counter for correct sequence and the
checksum for message integrity. Set “torque result
failure” flag, if failure.

B(B)

TSR08 A battery status shall be received from the CAN
bus and reacted upon in case it is out of the safe
operating area.

B FSR12 Powered on 1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
BATT FAIL -
COUNT, then only
reset in garage shall
be possible, else keep
until power-off.

TSR08.1 The battery status shall be received from the CAN
bus and reacted upon in case it is out of the safe
operating area.

QM(B)

TSR08.1.1 The battery status and its inverse representation
shall be received from the CAN bus. Check the
signal against its inverse representation and do a
range check; assume battery status is out of safe
operating area if checks fail.

QM(B)

TSR08.1.2 If battery status indicates “out of safe operating
area”, command zero torque from inverters within
TIME FTTI THROTTLE (100ms) and switch off
power to the inverters within TIME FTTI BATT
(1s).

QM(B)

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

105
Table C.5: (continued)

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR08.2 Plausibility-check the battery status. Check the
alive-counter for correct sequence and the
checksum for message integrity.

B(B)

TSR09 There shall be a reliable HV contactor control. B FSR12 Powered on 1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
CONT FAIL -
COUNT, then only
reset in garage shall
be possible, else keep
until power-off.

TSR09.1 There shall be a HV contactor control for 3
contactors.

QM(B)

TSR09.1.1 There shall be a contactor control for HV plus
contactor.

QM(B)

TSR09.1.2 There shall be a contactor control for HV negative
contactor.

QM(B)

TSR09.1.3 There shall be a contactor control for HV
pre-charge contactor.

QM(B)

TSR09.2 Plausibility-check the contactor output stages.
Compare voltage and current status feedback
against contactor control status. Switch off all
contactors in case of detected discrepancy.

B(B)

TSR10 Control flow monitoring. In case of failure,
command zero torque from inverters within
TIME FTTI THROTTLE (100ms) and switch off
power to the inverters within TIME FTTI BATT
(1s).

B FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

Powered on 1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
CNTR FAIL -
COUNT, then only
reset in garage shall
be possible, else keep
until power-off.

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

106
Table C.5: (continued)

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR11 External monitoring facility. In case of failure,
command zero torque from inverters within
TIME FTTI THROTTLE (100ms) and switch off
power to the inverters within TIME FTTI BATT
(1s).

B FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

Powered on 1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
MON FAIL -
COUNT, then only
reset in garage
possible, else keep
until power-off.

TSR12 Memory Check. In case of failure command zero
torque from inverters within
TIME FTTI THROTTLE (100ms) and switch off
power to the inverters within TIME FTTI BATT
(1s).

B FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

Power-up,
powered on

1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
MEM FAIL -
COUNT, then only
reset in garage shall
be possible, else keep
until power-off.

TSR13 CPU Check. In case of failure command zero
torque from inverters within
TIME FTTI THROTTLE (100ms) and switch off
power to the inverters within TIME FTTI BATT
(1s).

B FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

Power-up,
powered on

1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
CPU FAIL COUNT,
then only reset in
garage shall be
possible, else keep
until power-off.

(continued)

A
P
P
E
N
D
IX

C
.
S
A
F
E
T
Y

E
L
E
M
E
N
T

O
U
T

O
F
C
O
N
T
E
X
T

T
A
B
L
E
S

107
Table C.5: (continued)

ECU Technical Safety Requirement Func.
Safety
Req.

Specification

ID Description ASIL ID Operating
Modes

FTTI Safe
State

Maintain Safe
State

TSR14 Voltage Checks. In case of failure command zero
torque from inverters within
TIME FTTI THROTTLE (100ms) and switch off
power to the inverters within TIME FTTI BATT
(1s).

B FSR02,
FSR04,
FSR05,
FSR06,
FSR09,
FSR10,
FSR12

Power-up,
powered on

1 s Switch off
power to
the
inverters.

The number of fault
reactions shall be
stored in NVRAM. If
fault reactions >
VLT FAIL COUNT,
then only reset in
garage shall be
possible, else keep
until power-off.

Appendix D

Rules of the Formula
Student/FSAE Series

D.1 Formula SAE R© Rules

This chapter lists the project-relevant rules of the Formula SAE (FSAE) Rules 2012 [80].
They are included here for easier referencing and in case the original documents are no
longer available at a later date.

D.1.1 Rule A1.2 Vehicle Design Objectives

For the purpose of the Formula SAE competition, teams are to assume that they work for
a design firm that is designing, fabricating, testing and demonstrating a prototype vehicle
for the non-professional, weekend, competition market.

D.1.2 Rule B11.3.1 The cockpit-mounted master switch

a. Must be located to provide easy actuation by the driver in an emergency or panic
situation.

b. Must be located within easy reach of the belted-in driver, alongside the steering
wheel, and unobstructed by the steering wheel or any other part of the car. It is
suggested that it be placed on the same side of the steering wheel as the shifter
mechanism.

c. Must be a push/pull Emergency switch. The switch must be installed such that:

i. From the ON position, pushing on the switch will disable power to the ignition
and all fuel pumps, and

ii. From the OFF position, pulling on the switch will enable power to the ignition
and fuel pump(s). Switches that require a twist or twist and pull to enable
power are acceptable.

d. May act through a relay.

108

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 109

D.1.3 Rule C3.6.1.a General Requirements

[...] designed to reflect a hypothetical car built for production at the annual volume of
1000 units per year.

D.1.4 Rule D3.1 Operating Conditions

The following operating conditions will be recognized at Formula SAE:

D3.1.1 Dry – Overall the track surface is dry.

D3.1.2 Damp – Significant sections of the track surface are damp.

D3.1.3 Wet – The entire track surface is wet and there may be puddles of water.

D.1.5 Rule D7.2.2 Autocross Course Specifications & Speeds

The length of each run will be approximately 0.805 km (1/2 mile) and the driver will
complete a specified number of runs.

D.1.6 Rule D8.6.1 Endurance Course Specifications & Speeds

Course speeds can be estimated by the following standard course specifications. Aver-
age speed should be 48 km/hr (29.8 mph) to 57 km/hr (35.4 mph) with top speeds of
approximately 105 km/hr (65.2 mph).

D.1.7 Rule D8.7 Endurance General Procedure

D8.7.1 The event will be run as a single heat approximately 22 km (13.66 miles) long.

D8.7.3 A driver change must be made during a three (3) minute period at the midpoint
of the heat.

D.2 Formula Student Electric Rules

This chapter lists the project-relevant rules of the Formula Student Electric (FSE) Rules
2012 [81].

D.2.1 Rule 4.4.4 Brake Over-Travel Switch Function(Specific FSE
change of Formula SAE R© 2012 Rule B7.3.1)

Instead of switching off the ignition and fuel pumps the brake pedal over-travel switch
must shut down the Tractive System by opening the safety circuit, see also 7.17 (Chapter
D.2.10).

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 110

D.2.2 Rule 4.12.4 Torque Encoder (throttle pedal position sensor)

Drive by wire is permitted.
The torque encoder must be actuated by a foot pedal.
The foot pedal must return to its original position when not actuated.
The foot pedal must have a positive stop preventing the mounted sensors from being dam-
aged or overstressed.
At least two separate sensors have to be used as torque encoder. Separate is defined as
not sharing supply or signal lines.
If an implausibility occurs between the values of these two sensors the power to the mo-
tor(s) has to be immediately shut down completely. It is not necessary to completely
deactivate the Tractive System, the motor controller(s) shutting down the power to the
motor(s) is sufficient.
Implausibility is defined as a deviation of more than 10% pedal travel between the sensors.
If three sensors are used at least two sensors have to be within 10% pedal travel. Each
sensor has to have a separate detachable connector that enables a check of these functions
by unplugging it during E-Scrutineering.

D.2.3 Rule 4.12.5 Torque Encoder Plausibility Check

The power to the motors has to be immediately shut down completely, if the brake pedal
is actuated and the torque encoder signals more than 25% pedal travel at the same time.
The motor power shut down has to remain active until the torque encoder signals less
than 5% pedal travel, no matter whether the brake pedal is still actuated or not.

D.2.4 Rule 7.2 Failure Modes and Effects Analysis (FMEA)

Teams must submit a complete failure modes and effects analysis (FMEA) of the tractive
system prior to the event.
A template including required failures to be described will be made available on the FSG
website at http://www.formulastudent.de/fse/2012/rules/
Do not change the format of the template. Pictures, schematics and data sheets to be
referenced in the FMEA have to be included in the ESF.

D.2.5 Rule 7.7 Insulation Monitoring Device (IMD)

Every car must have an insulation monitoring device (IMD) installed in the tractive sys-
tem. For information regarding FSE approved IMD(s) please refer to the corresponding
document in the “Rules & Important Documents” section of the FSG website.
The response value of the IMD needs to be set to 500 Ohm / Volt, related to the maximum
tractive system operation voltage.
In case of an insulation failure or an IMD failure, the IMD must break the holding current
flow of the accumulator insulation relay(s) to shut down the tractive system.
This has to be done without the influence of any logic e.g. a micro-controller. See also
7.17 (Chapter D.2.10) regarding the re-activation of the tractive-system after an insulation
fault.
The status of the IMD has to be shown to the driver by a red indicator light in the cockpit

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 111

that is easily visible even in bright sunlight. This indicator has to light up, if the IMD
detects an insulation failure or if the IMD detects a failure in its own operation e.g. when
it looses reference ground. The IMD indicator light has to be clearly marked with the
lettering “IMD” or “GFD” (Ground Fault Detector).

D.2.6 Rule 7.13 Tractive-system-active light (TSAL)

It must be clearly visible when the tractive system is set to active. The car is defined as
active whenever the accumulator insulation relay is closed or the voltage outside the accu-
mulator containers exceeds 40V DC or 25V AC RMS. For this the car must be equipped
with a light mounted under the highest point of the main roll hoop which lights if the
car’s tractive system is active and which is off when the tractive system is not active, see
definition above.
The TSAL must be red.
The TSAL has to flash continuously with a frequency between 2Hz and 5Hz.
The voltage being present within the tractive system must directly control the TSAL using
hard wired electronics (no software control is permitted).
It must not be possible for the driver’s helmet to contact the TSAL.
The TSAL has to be clearly visible from every horizontal direction, except small angles
which are covered by the main roll hoop, even in very bright sunlight.
NOTE: If any offical e.g. track marshal, scrutineer, etc. considers the TSAL to not be
easily visible during track operations the team may not be allowed to compete in any
dynamic event before the problem is solved.
It is prohibited to mount other lights in proximity to the TSAL.

D.2.7 Rule 7.14 Shut Down Buttons

A system of three shut-down buttons must be installed on the vehicle.
Pressing one of the shut-down buttons must separate the tractive system from the ac-
cumulator block by opening the accumulator insulation relays, AIRs, see also Rule 7.17
(Chapter D.2.10).
After separating the system, the voltage in the tractive system must drop to under 40V
DC or 25V AC RMS in less than five seconds.
Each shut-down button must be a push-pull or push-rotate emergency switch where push-
ing the button opens the circuit of the holding current of the accumulator insulation relays.
The shut-down buttons must not act through logic, e.g. a microcontroller.
One button must be located on each side of the vehicle behind the driver’s compartment
at approximately the level of the driver’s head. The minimum allowed diameter of the
shut down buttons on both sides of the car is 40 mm.
One shut-down button is equivalent to the cockpit-mounted Master Switch and must be
easily accessible by the driver in any steering wheel position. The minimum allowed di-
ameter of the shut down button in the cockpit is 24 mm.
The shutdown buttons are not allowed to be easily removable, e.g. mounted onto remov-
able body work.

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 112

D.2.8 Rule 7.15 Master Switches

Each vehicle has to have two Master Switches, the Control System Master Switch, CSMS,
and the Tractive System Master Switch, TSMS.
The CSMS must completely disable power to the Control System and must be direct
acting, i.e. it cannot act through a relay or logic.
The CSMS must be located on the right side of the vehicle, in proximity to the Main
Hoop, at shoulder height and be easily actuated from outside the car.
The TSMS must be located next to the CSMS and break the current flow holding the
accumulator insulation relays. The TSMS must be direct acting, i.e. it cannot act through
a relay or logic.
After separating the system, the voltage in the tractive system must drop to under 40V
DC or 25V AC RMS in less than five seconds, see also Rule 7.17 (Chapter D.2.10).
Both master switches have to be of the rotary type, with a red, removable key, similar to
the one shown in Figure 4 (see Figure D.1).
The master switches are not allowed to be easily removable, e.g. mounted onto removable
body work.
The function of both switches must be clearly marked with “LV” and “HV”. A sticker
with a red or black lightning bolt on a yellow background or red lightning bolt on a
white background must additionally mark the Tractive System Master Switch. The “ON”
position of both switches must be in the horizontal position.

D.2.9 Rule 7.16 Inertia Switch

All vehicles must be equipped with an inertia switch. This must be a Sensata Resettable
Crash Sensor or equivalent approved by FSE.
The inertia switch must be part of the Safety Circuit and must be wired in series with
the shutdown buttons such that an impact will result in the Safety Circuit being opened.
The inertia switch must latch until manually reset.
The device must trigger due to an impact load which decelerates the vehicle at between
6g and 11g depending on the duration of the deceleration (see spec sheet of the Sensata
device).
This may be reset by the driver from within the driver’s cell.
It must be possible to demount the device so that its functionality can be tested by shaking
it.

D.2.10 Rule 7.17 Safety Circuit

Setting any of the 2 master switches or of the 3 shut-down buttons to the “Off”- Posi-
tion, activating the brake-over-travel-switch, an insulation failure detected by the IMD, a
tripped inertia switch or critical values of the accumulators detected by the battery man-
agement system, BMS, must open all accumulator insulation relay(s) and the voltage in
the tractive system must drop to under 40V DC or 25V AC RMS in less than five seconds
after such event.
An exemplary schematic of the required safety circuit, excluding possibly needed interlock
circuitry, is shown in Figure D.1.
If the tractive system is shut down by the BMS or the IMD the tractive system must

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 113

remain disabled until being manually reset by a person directly at the car which is not
driver.
It must not be possible for the driver to re-activate the tractive system from within the
car in case of an BMS or IMD fault.
For example: Applying an IMD test resistor between HV+ and control system ground
must deactivate the system. Disconnecting the test resistor must not re-activate the sys-
tem. The tractive system must remain inactive until it was manually reset. All circuits
that are part of the safety circuit have to be designed in a way, that in de-energized state
they are open with respect to the current controlling the AIRs.
If the tractive system is de-activated while driving, the motor(s) has/have to spin free e.g.
no brake torque must be applied to the motor(s).

Figure D.1: Figure 4: Schematic overview of the car’s Safety Circuit [81]

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 114

D.2.11 Rule 7.18 Activating the Tractive System

The driver has to be able to (re-)activate or reset the Tractive System from within the
cockpit without the assistance of any other person except for situations in which the BMS
or IMD have shut down the tractive system, see 7.17 (Chapter D.2.10).
Resetting or re-activating the Tractive System by operating controls which cannot be
reached by the driver is considered as working on the car.
Only closing the Safety Circuit/AIRs must not set the car to ready-to-drive mode. The car
is ready to drive as soon as the motor(s) will respond to the input of the torque encoder /
acceleration pedal. Therefore additional actions are required by the driver to set the car
to ready-to-drive-mode e.g. pressing a dedicated start button, after the tractive system
has been activated.

D.2.12 Rule 7.23 Accumulator Insulation Relay(s) (AIR)

In every accumulator container at least two insulation relays must be installed. The
accumulator insulation relays must cut both(!) poles of the accumulator.
If these relays are open, no HV may be present outside of the accumulator container.
The insulation relays must be of a “normally open” type. The maximum switch-off-current
of the used accumulator insulation relay must be higher than the used accumulator fuse
value.

D.2.13 Rule 7.24 Pre-Charge and Discharge Circuits

A circuit that is able to pre-charge the intermediate circuit to at least 90% of the current
accumulator voltage before closing the second AIR has to be implemented.
This circuit has to be blocked by a de-activated safety circuit, see rule 7.17 (Chapter
D.2.10).
Therefore the pre-charge circuit must not be able to pre-charge the system, if the safety
circuit is open.
It is allowed to pre-charge the intermediate circuit for a conservatively calculated time,
before closing the second AIR. A feedback via measuring the current intermediate circuit
voltage is not required.
If a discharge circuit is needed to meet the “below five seconds under 40VDC”- bound, it
has to be designed to handle the maximum discharge current for at least 15 seconds. The
calculation proving this has to be part of the ESF.
The discharge circuit has to be wired in a way that it is always active whenever the safety
circuit is open. Furthermore the discharge circuit has to be fail-safe.

D.2.14 Rule 7.26 Battery Management System (BMS)

Each accumulator must be monitored by a battery management system whenever the
tractive system is active or the accumulator is connected to a charger.
The BMS must continuously measure the cell voltage of every cell in order to keep the
cells inside the allowed minimum and maximum cell voltage bound stated in the cell data
sheet. If single cells are directly connected in parallel, only one voltage measurement is
needed.

APPENDIX D. RULES OF THE FORMULA STUDENT/FSAE SERIES 115

The BMS must continuously measure the temperatures of critical points of the accumulator
to keep the cells below the allowed maximum cell temperature bound stated in the cell
data sheet.
The temperature of at least 30% of the cells has to be monitored by the BMS, if the
used accumulator cells are not intrinsically safe, which has to be proven by corresponding
documentation in the ESF. The monitored cells have to be equally distributed over the
accumulator container(s).
Cells are only considered intrinsically safe, if their cell chemistry is based on LiFePO4.
The BMS must be capable of shutting down the tractive system, if critical values are
detected.
FSE recommends to monitor every cell voltage and every cell temperature.

Appendix E

C166S V2 Core

All sections in this appendix are verbatim copies from [102], the C166S V2 User Manual.
This information is included here for easier referencing and in case the original document
is no longer available at a later date.

E.1 Section 2.5.2.1 Addressing via Data Page Pointer DPP

. . .

After reset, the DPP registers select data pages 3...0 within segment 0. If the user does
not want to use any data paging, no further action is required.

. . .

E.2 Section 2.5.5 The System Stack

The C166S V2 CPU supports a system stack of 64 kBytes. The stack can be located
internally in one of the on-chip memories or externally. The 16-bit Stack Pointer (SP)
register addresses the stack within a 64 kByte segment. The Stack Pointer Segment Reg-
ister (SPSG) selects the segment in which the stack is located. A virtual stack (usually
bigger then 64 kBytes) can be implemented by software. This mechanism is supported by
registers STKOV and STKUN (see descriptions below).

The Stack Pointer Register SP

The non-bit addressable Stack Pointer SP register is used to point to the top of the system
stack (TOS). The SP register is pre-decremented whenever data is to be pushed onto the
stack, and it is post-incremented whenever data is to be popped from the stack. Therefore,
the system stack grows from higher toward lower memory locations. The SP register can
be updated via any instruction capable of modifying an 16-bit SFR.

Note: Due to the internal instruction pipeline, a stack pointer initialization stalls the
instruction flow until the operation is finished. A POP and RETURN instruction
can immediately follow an instruction updating the SP.

116

APPENDIX E. C166S V2 CORE 117

. . .

E.3 Section 2.6.5 Multiply and Divide Unit

The C166S V2 CPU multiply and divide unit has two separated parts. One is the fast
16x16-bit multiplier that executes a multiplication in one CPU cycle. The other one is
a division sub-unit which performs the division algorithm in 21 CPU cycles maximum.
According to the data and division types, the division length varies between 18 and 21
cycles. The divide instruction requires four CPU cycles to be executed. For performance
reasons, the rest of the division algorithm runs in the background during the following
seventeen CPU cycles, while further instructions are executed in parallel. If another
instruction tries to use the unit while a division is still running, the execution of this new
instruction is stalled until the division is finished. Interrupt tasks can also be started
and executed immediately without any delay. The previous division will be finished in
the background. If an instruction of the interrupt task uses the multiply and divide unit
before the previous division process is finished, the instruction flow will be stalled as
well. To avoid these stalls, the multiply and division unit should not be used during the
first fourteen CPU cycles of the interrupt tasks. This requires up to fourteen one-cycle
instructions to be executed between the interrupt entry and the first instruction which
uses the multiply and divide unit again (worst case).

. . .

E.4 Section 3.3 DPRAM, Internal SRAM, and SFR Areas

The C166S V2 CPU differentiates between various internal memory types and internal
peripheral areas. These data memories and the IO/SFR areas are located within data
page 3 and provide fast accesses using one dedicated Data Page Pointer (see Figure E.1).

Note: Code access is not possible from the DPRAM, the Internal RAM, or the IO/SFR
areas.

APPENDIX E. C166S V2 CORE 118

00’4000H

00’8000H

00’C000H

Data Page 0

Data Page 1

Data Page 2

Data Page 3

00’F000H

System Segment 0
64KByte

External
Memory

00´0000H

00’E000H 00’FE00H

00’F200H

00’F000H

00’FD00H

internal
IO

Internal
SRAM

Internal
SRAM

IO
Area

RAM/SFR
Area

DPRAM

DPRAM

SFR

Area

ESFR

Area

00’FFFFH 00’FFFFH

Figure E.1: Figure 3-3 RAM and SFR Areas [102]

E.5 Section 3.5 Crossing Memory Boundaries

. . .

Data Pages are contiguous blocks of 16 KBytes each. They are referenced via the data
page pointers DPP3...0 and via an explicit data page number for data accesses overriding
the standard DPP scheme. Each DPP register can select one of the possible 1024 data
pages. The DPP register that is used for the current access is selected via the two upper
bits of the 16-bit data address. Subsequent 16-bit data addresses that cross the 16 KByte
data page boundaries will use different data page pointers, while the physical locations
need not be subsequent within memory.

APPENDIX E. C166S V2 CORE 119

E.6 Section 5.2.2 Saving the Status during Interrupt Service

Before an operating system or ITC21 can actually service a task switch request or interrupt,
the CPU must save the current task status. The C166S V2 CPU saves the CPU status
(PSW) along with the return address in the system stack. The return address defines the
point at which the execution of the interrupted task is to be resumed after returning from
the service routine. This return address is specified by the Instruction Pointer (IP) and,
in the case of a segmented memory model, also by the Code Segment Pointer (CSP).

. . .

PSW
IP
--

--
--
--

SP

1. System Stack before
Interrupt Entry

SP

2. System Stack after
Interrupt Entry
(Unsegmented)

SP

3. System Stack after
Interrupt Entry
(Segmented)

Status of
Interrupted Task

PSW
CSP
IP

Figure E.2: Figure 5-3 Task Status Saved on the System Stack [102]

. . .

When the CPU returns from the interrupt service routine (RETI is executed), the status
information is popped from the system stack in reverse order. The status information
contents depend on the SGTDIS bit value (see Figure E.2).

21Interrupt Controller

Appendix F

Tasking VX-toolset for C166 v3.1

All sections in this appendix are verbatim copies from [103], the TASKING VX-toolset
for C166 v3.1 User Guide. This information is included here for easier referencing and in
case the original document is is no longer available at a later date.

F.1 Section 1.3. Accessing Memory

The TASKING VX-toolset for C166 internally knows the following address types:

• 32-bit linear, ‘huge’ addresses. The address notation is in bytes, starts at 0 and ends
at 16M.

• 32-bit paged, ‘far’ addresses. In the address notation the high word contains the
10-bit page number and the low word contains the 14-bit offset within the 16 kB
page.

• 16-bit, ‘near’ addresses. The high 2 bits contain the DPP number and the low 14
bits are the offset within the 16 kB page.

• 12-bit bit-addressable addresses. This embodies an 8-bit word offset in the bit-
addressable space and a 4-bit bit number.

• 8-bit SFR addresses. This is an offset within the SFR space or within the extended
SFR space.

The TASKING VX-toolset for C166 toolset has several keywords you can use in your C
source to specify memory locations. This is explained in the sub-sections that follow.

F.1.1 Section 1.3.2. Memory Models

The C compiler supports four data memory models, listed in the following table.

120

APPENDIX F. TASKING VX-TOOLSET FOR C166 V3.1 121

Table F.1: Tasking C-Compiler supported memory mod-
els [103]

Memory model Letter Default data memory type

Near n near

Far f far

Segmented Huge s shuge

Huge h huge

Each memory model defines a default memory type for objects that do not have a mem-
ory type qualifier specified. By default, the C166 compiler uses the near memory model.
With this memory model the most efficient code is generated. With the C compiler option
–model you can specify another memory model.

For information on the memory types, see [103, Section 1.3.1], Memory Type Qualifiers.

F.2 Section 1.12.1 Calling Convention

F.2.1 Parameter passing

A lot of execution time of an application is spent transferring parameters between func-
tions. The fastest parameter transport is via registers. Therefore, function parameters are
first passed via registers. If no more registers are available for a parameter, the compiler
pushes parameters on the stack.

The following conventions are used when passing parameters to functions.

Registers available for parameter passing are USR0, R2, R3, R4 R5, R11, R12, R13 and
R14. Parameters <= 64 bit are passed in registers except for 64-bit structures:

Table F.2: Tasking C-Compiler parameter passing [103]

Parameter Type Registers used for parameters

1 bit USR0, R2.0..15, R3.0..15, R4.0..15, R5.0..15

8 bit RL2, RH2, RL3, RH3, RL4, RH4, RL5, RH5

16 bit R2, R3, R4, R5, R11, R12, R13, R14

32 bit R2R3, R4R5, R11R12, R13R14

64 bit R2R3R4R5, R11R12R13R14

The parameters are processed from left to right. The first not used and fitting register is
used. Registers are searched for in the order listed above. When a parameter is > 64 bit,
or all registers are used, parameter passing continues on the stack. The stack grows from
higher towards lower address, each parameter on the stack is stored in little-endian. The
first parameter is pushed at the lowest stack address. The alignment on the stack depends
on the data type as listed in [103, Section 1.1], Data Types.

APPENDIX F. TASKING VX-TOOLSET FOR C166 V3.1 122

Example with three arguments:

func1(int a, long b, int ∗ c)
a (first parameter) is passed in registers R2.
b (second parameter) is passed in registers R4R5.
c (third parameter) is passed in registers R3.

F.2.2 Stack usage

The stack on the C166 consists of a system stack and a user stack. The system stack is
used for the return addresses and for data explicitly pushed with the PUSH instruction.
The compiler usually does not push anything on the system stack, with exception to in-
terrupt functions. The user stack is used for parameter passing, allocation of automatics
and temporary storage. The compiler uses R15 as user stack pointer. The data on the
stack is aligned depending on the data type as listed in [103, Section 1.1], Data Types.
The stack pointer itself is always aligned at 16-bit. In the Super10/XC16x a user stack is
allocated for each local bank. The user stack grows from high to low. The user stack is
always located in near memory, the maximum size depends on the chosen memory model.
The DPP register used for the user stack is determined at link time.

The stack pointer always refers to the last occupied slot. Meaning that the stack pointer
first has to be decreased before data can be stored. A typical stack frame is outlined in
the following picture:

Figure F.1: Tasking VX-toolset for C166 user stack frame [103]

APPENDIX F. TASKING VX-TOOLSET FOR C166 V3.1 123

Before a function call, the caller pushes the required parameters on the stack. This area
is called the argument passing area. For user stack functions the return address is saved
on the user stack. After the call has been made, the callee will save the used callee-saved
registers in the “callee saved” area. Next, the space for the local objects is allocated.
After this, variable length arrays (VLAs) can be allocated. If VLAs are used in a function,
register R8 is used to access the local objects and stack parameters. If no VLAs are used,
R8 is available for other purposes. When the called function returns an object > 64 bit on
the stack, the caller must reserve a stack area to hold the return value. After the function
call, the caller must release this stack area. This also applies to the argument passing area.
After the stack frame has been built, the stack pointer points to the argument passing
area.

F.3 Section 1.12.2 Register Usage

The C compiler uses the general purpose registers according to the convention given in
the following table.

Table F.3: Tasking C-Compiler calling convention - register usage [103]

Register Class Purpose

USR0 caller saves Parameter passing and return values

R0, RL0, RH0 callee saves Automatic variables

R1, RL1, RH1 callee saves Automatic variables

R2, RL2, RH2 caller saves Parameter passing and return values

R3, RL3, RH3 caller saves Parameter passing and return values

R4, RL4, RH4 caller saves Parameter passing and return values

R5, RL5, RH5 caller saves Parameter passing and return values

R6, RL6, RH6 callee saves Automatic variables

R7, RL7, RH7 callee saves Automatic variables

R8 callee saves Automatic variables, User stack frame pointer

R9 callee saves Automatic variables

R10 callee saves Automatic variables

R11 caller saves Parameter passing

R12 caller saves Parameter passing

R13 caller saves Parameter passing

R14 caller saves Parameter passing, return buffer pointer

R15 dedicated User stack pointer

The registers are classified: caller saves, callee saves and dedicated.

caller saves These registers are allowed to be changed by a function without saving
the contents. Therefore, the calling function must save these registers
when necessary prior to a function call.

callee saves These registers must be saved by the called function, i.e. the caller
expects them not to be changed after the function call.

APPENDIX F. TASKING VX-TOOLSET FOR C166 V3.1 124

dedicated The user stack pointer register R15 is dedicated.

The user stack frame pointer register R8 is used for functions containing variable length
arrays.

Registers R0, R1, R2 and R3 can be used directly in an arithmetic instruction like:
ADD Rx, [R0]

Appendix G

FreeRTOS Port Files

This appendix contains the source files of the FreeRTOS port to the Infineon C166S v2
Core.

G.1 Linker Script Language File project.lsl

1 //
2 // Linker script file for the VX−toolset for C166
3 //
4
5 // Define the near page addresses. Each DPP will point to a near page.
6 // DPP3 ADDR is fixed at 0x00C000 (not being overwritten in cstart.c)
7 #define DPP0 ADDR 0xC00000 /∗ [0xC00000..0xC03FFF] FLASH0 (Vector Table) ∗/
8 #define DPP1 ADDR 0xE00000 /∗ [0xE00000..0x003FFF] PSRAM ∗/
9 #define DPP2 ADDR 0x008000 /∗ [0x008000..0x00BFFF] DSRAM ∗/

10 #define DPP3 ADDR 0x00C000 /∗ [0x00C000..0x00FFFF] DSRAM, XSFR, ESFR, DPRAM, SFR ∗/
11
12 #include <cpu.lsl>
13
14 // Define interrupt vector table
15 section setup ::code
16 {
17 vector table "vector table" (vector size = 4, size = 128, run addr = 0xC00000,
18 template=" vector template", template symbol=" lc vector target",
19 vector prefix=".vector.", fill = loop)
20 {
21 vector (id=0, fill=" cstart");
22 }
23 }
24
25 // Define the system stack
26 section layout ::shuge (direction = high to low)
27 {
28 /∗
29 ∗ Locate it in the DPRAM memory area, as small as possible, just used during
30 ∗ startup of FreeRTOS. Enable configCHECK FOR SYS STACK OVERFLOW to guard
31 ∗ against system stack overflows during startup.
32 ∗/
33 group (run addr = [0xF600..0xFC00], ordered) stack "system stack" (size = 256);
34 }
35
36 // Define the user stack (force linker to use DPP1 for user stack)
37 section layout ::near
38 {
39 /∗
40 ∗ Locate it in the PSRAM memory area. Used for ISRs using local
41 ∗ register bank 1. Enable configCHECK FOR SYS STACK OVERFLOW to guard
42 ∗ against user stack overflows during startup.
43 ∗
44 ∗ NOTE: do not place at start of page, see TASKING VX−toolset for C166 User Guide,
45 ∗ section "The Architecture Definition", subsection "Address spaces"
46 ∗
47 ∗ Approx. 250 bytes free for use by nested ISRs
48 ∗/
49 group(run addr = [0xE00002..0xE00100], ordered) stack "user stack" (size = 254);
50 }

Listing G.1: Linker Script Language File project.lsl

125

APPENDIX G. FREERTOS PORT FILES 126

G.2 Portable Layer Files

G.2.1 portmacro.h

Listing G.2: Portable Layer File portmacro.h

1 /∗
2 FreeRTOS V7.3.0 − Copyright (C) 2012 Real Time Engineers Ltd.
3
4 FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
5 http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
6
7 ∗∗∗
8 ∗ ∗
9 ∗ FreeRTOS tutorial books are available in pdf and paperback. ∗

10 ∗ Complete, revised, and edited pdf reference manuals are also ∗
11 ∗ available. ∗
12 ∗ ∗
13 ∗ Purchasing FreeRTOS documentation will not only help you, by ∗
14 ∗ ensuring you get running as quickly as possible and with an ∗
15 ∗ in−depth knowledge of how to use FreeRTOS, it will also help ∗
16 ∗ the FreeRTOS project to continue with its mission of providing ∗
17 ∗ professional grade, cross platform, de facto standard solutions ∗
18 ∗ for microcontrollers − completely free of charge! ∗
19 ∗ ∗
20 ∗ >>> See http://www.FreeRTOS.org/Documentation for details. <<< ∗
21 ∗ ∗
22 ∗ Thank you for using FreeRTOS, and thank you for your support! ∗
23 ∗ ∗
24 ∗∗∗
25
26
27 This file is part of the FreeRTOS distribution.
28
29 FreeRTOS is free software; you can redistribute it and/or modify it under
30 the terms of the GNU General Public License (version 2) as published by the
31 Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
32 >>>NOTE<<< The modification to the GPL is included to allow you to
33 distribute a combined work that includes FreeRTOS without being obliged to
34 provide the source code for proprietary components outside of the FreeRTOS
35 kernel. FreeRTOS is distributed in the hope that it will be useful, but
36 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
37 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
38 more details. You should have received a copy of the GNU General Public
39 License and the FreeRTOS license exception along with FreeRTOS; if not it
40 can be viewed here: http://www.freertos.org/a00114.html and also obtained
41 by writing to Richard Barry, contact details for whom are available on the
42 FreeRTOS WEB site.
43
44 1 tab == 4 spaces!
45
46 ∗∗∗
47 ∗ ∗
48 ∗ Having a problem? Start by reading the FAQ "My application does ∗
49 ∗ not run, what could be wrong?" ∗
50 ∗ ∗
51 ∗ http://www.FreeRTOS.org/FAQHelp.html ∗
52 ∗ ∗
53 ∗∗∗
54
55
56 http://www.FreeRTOS.org − Documentation, training, latest versions, license
57 and contact details.
58
59 http://www.FreeRTOS.org/plus − A selection of FreeRTOS ecosystem products,
60 including FreeRTOS+Trace − an indispensable productivity tool.
61
62 Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
63 the code with commercial support, indemnification, and middleware, under
64 the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
65 provide a safety engineered and independently SIL3 certified version under
66 the SafeRTOS brand: http://www.SafeRTOS.com.
67 ∗/
68
69
70 #ifndef PORTMACRO H
71 #define PORTMACRO H
72
73 #ifdef cplusplus
74 extern "C" {
75 #endif
76
77 /∗−−−
78 ∗ Port specific definitions.
79 ∗

APPENDIX G. FREERTOS PORT FILES 127

80 ∗ The settings in this file configure FreeRTOS correctly for the
81 ∗ given hardware and compiler.
82 ∗
83 ∗ These settings should not be altered.
84 ∗−−−
85 ∗/
86
87 #if !defined(TASKING) | | (C166 != 1) | | !defined(CORE XC16X) | | !defined(VX)
88 #error Wrong compiler and/or wrong architecture
89 #endif
90
91 #if (MODEL != ’h’)
92 #error Wrong memory model selected. MUST use the huge model!
93 #endif
94
95 /∗ include SFR file for selected CPU ∗/
96 #ifndef TASKING SFR
97 # ifdef CPU
98 # include SFRFILE (CPU)
99 # else

100 # error Tasking SFRs are not included and CPU is not defined!
101 # endif
102 #endif
103 #include "STM/STM.h"
104
105 /∗ Type definitions. ∗/
106 #define portCHAR char
107 #define portFLOAT float
108 #define portDOUBLE double
109 #define portLONG long
110 #define portSHORT short
111 #define portSTACK TYPE unsigned portSHORT
112 #define portBASE TYPE portSHORT
113
114 #if(configUSE 16 BIT TICKS == 1)
115 typedef unsigned portSHORT portTickType;
116 #define portMAX DELAY (portTickType) 0xffff
117 #else
118 typedef unsigned portLONG portTickType;
119 #define portMAX DELAY (portTickType) 0xffffffff
120 #endif
121
122 #if (configGENERATE RUN TIME STATS == 1)
123 typedef unsigned portLONG portStatsTickType;
124 #endif
125 /∗−−−∗/
126
127 /∗ Architecture specifics. ∗/
128 #define portSTACK GROWTH (−1)
129 #define portTICK RATE MS ((portTickType) 1000 / configTICK RATE HZ)
130 #define portBYTE ALIGNMENT 2
131
132 #define portHEAP ABSOLUTE ADDR configHEAP ABSOLUTE ADDR
133
134 #define portSTACK2 1
135
136 #if (USER STACK == 1)
137 #error Option "Use user stack for return addresses" is not supported!
138 #endif
139
140 #if !defined(configMINIMAL STACK SIZE) | | !defined(configMINIMAL STACK2 SIZE) | | !defined(configHEAP ABSOLUTE ADDR)
141 #error This port needs 2 stacks. Define configMINIMAL STACK SIZE, configMINIMAL STACK2 SIZE and

configHEAP ABSOLUTE ADDR accrodingly!
142 #endif
143
144 /∗−−−∗/
145
146 /∗ Scheduler utilities. ∗/
147
148 /∗ Task utilities. ∗/
149
150 /∗
151 ∗ − in non−preempted mode, define yield as software trap
152 ∗ to correctly handle PSW, CSP and IP upon context switch
153 ∗ − in preempted mode, define yield as a simulated tick isr
154 ∗ to correctly handle PSW, CSP and IP upon context switch
155 ∗/
156 #if configUSE PREEMPTION == 0
157 #define portYIELD() int166(127)
158 #else
159 #define portYIELD() STM vSTM1Trap()
160 #endif
161
162 #define portYIELD FROM ISR(SwitchRequired) \
163 { if (SwitchRequired) portYIELD(); }
164
165 /∗
166 ∗ define startFirstTask() as software trap to correctly handle

APPENDIX G. FREERTOS PORT FILES 128

167 ∗ PSW, CSP and IP upon context switch
168 ∗/
169 #define portSTART FIRST TASK() int166(126)
170
171 /∗−−−∗/
172
173 /∗
174 ∗ fence macro needed to tell Tasking Compiler not to move
175 ∗ code around
176 ∗/
177 #define fence() asm ("")
178
179 /∗ Critical section management. ∗/
180 inline void vPortEnterCritical(void);
181 inline void vPortExitCritical(void);
182 #define portENTER CRITICAL() vPortEnterCritical()
183 #define portEXIT CRITICAL() vPortExitCritical()
184
185 inline void vPortDisableInterrupts(void);
186 inline void vPortEnableInterrupts(void);
187 #define portDISABLE INTERRUPTS() vPortDisableInterrupts()
188 #define portENABLE INTERRUPTS() vPortEnableInterrupts()
189
190 inline unsigned portBASE TYPE xPortSetInterruptMaskFromISR(unsigned portBASE TYPE uxNewIntLevelValue);
191 inline void vPortClearInterruptMaskFromISR(unsigned portBASE TYPE uxSavedIntLevelValue);
192 #define portSET INTERRUPT MASK FROM ISR() \
193 xPortSetInterruptMaskFromISR(configMAX SYSCALL INTERRUPT PRIORITY)
194 #define portCLEAR INTERRUPT MASK FROM ISR(uxSavedStatusValue) \
195 vPortClearInterruptMaskFromISR(uxSavedStatusValue)
196 /∗−−−∗/
197
198 extern volatile unsigned portBASE TYPE uxCriticalNesting;
199
200 inline void vPortEnterCritical(void)
201 {
202 fence(); /∗ fence compiler ∗/
203
204 if (uxCriticalNesting == 0)
205 {
206 /∗ Disable all interrupts under RTOS control ∗/
207 portSET INTERRUPT MASK FROM ISR();
208 }
209
210 /∗
211 ∗ Now interrupts are disabled ulCriticalNesting can be accessed
212 ∗ directly. Increment ulCriticalNesting to keep a count of how many
213 ∗ times portENTER CRITICAL() has been called.
214 ∗/
215 uxCriticalNesting++;
216
217 fence(); /∗ fence compiler ∗/
218 }
219
220 inline void vPortExitCritical(void)
221 {
222 fence(); /∗ fence compiler ∗/
223
224 if (uxCriticalNesting > 0)
225 {
226 /∗ Decrement the nesting count as we are leaving a critical section. ∗/
227 uxCriticalNesting−−;
228
229 /∗
230 ∗ If the nesting level has reached zero then interrupts should be
231 ∗ re−enabled.
232 ∗/
233 if(uxCriticalNesting == 0)
234 {
235 portCLEAR INTERRUPT MASK FROM ISR(
236 configTASK LEVEL INTERRUPT PRIORITY);
237 }
238 }
239
240 fence(); /∗ fence compiler ∗/
241 }
242 /∗−−−∗/
243
244 inline void vPortDisableInterrupts(void)
245 {
246 fence(); /∗ fence compiler ∗/
247
248 PSW IEN = 0;
249
250 fence(); /∗ fence compiler ∗/
251 }
252 /∗−−−∗/
253
254 inline void vPortEnableInterrupts(void)

APPENDIX G. FREERTOS PORT FILES 129

255 {
256 fence(); /∗ fence compiler ∗/
257
258 PSW IEN = 1;
259
260 fence(); /∗ fence compiler ∗/
261 }
262 /∗−−−∗/
263
264 inline unsigned portBASE TYPE xPortSetInterruptMaskFromISR(unsigned portBASE TYPE uxNewIntLevelValue)
265 {
266 register unsigned portBASE TYPE uxSavedIntLevelValue;
267
268 fence(); /∗ fence compiler ∗/
269
270 // store current interrupt level
271 uxSavedIntLevelValue = PSW ILVL;
272
273 // set to highest system call level
274 PSW ILVL = uxNewIntLevelValue;
275
276 fence(); /∗ fence compiler ∗/
277
278 return uxSavedIntLevelValue;
279 }
280 /∗−−−∗/
281
282 inline void vPortClearInterruptMaskFromISR(unsigned portBASE TYPE uxSavedIntLevelValue)
283 {
284 fence(); /∗ fence compiler ∗/
285
286 // restore interrupt level
287 PSW ILVL = uxSavedIntLevelValue;
288
289 fence(); /∗ fence compiler ∗/
290 }
291 /∗−−−∗/
292
293 /∗ Task function macros as described on the FreeRTOS.org WEB site. ∗/
294 #define portTASK FUNCTION PROTO(vFunction, pvParameters) void vFunction(void ∗pvParameters)
295 #define portTASK FUNCTION(vFunction, pvParameters) void vFunction(void ∗pvParameters)
296
297 /∗ ISR function macros − see INT/INT.h for vectors defined ∗/
298 #define portINTERRUPT HANDLER PROTO(vIsrFunction, vector) interrupt(vector) void vIsrFunction (void)
299 #define portINTERRUPT HANDLER(vIsrFunction, vector) interrupt(vector) void vIsrFunction (void)
300
301 #define portINTERRUPT HANDLER BANKSEL PROTO(vIsrFunction, vector, bank) registerbank(bank) interrupt(vector)

void vIsrFunction (void)
302 #define portINTERRUPT HANDLER BANKSEL(vIsrFunction, vector, bank) registerbank(bank) interrupt(vector) void

vIsrFunction (void)
303
304 /∗−−−∗/
305
306 /∗ Miscellaneous functions ∗/
307 #define portNOP() nop()
308 #define portPUSH(val) { asm("push %0 \n" : : "=w" (val)); }
309 #define portPOP(val) { asm("pop %0 \n" : "=w" (val) :); }
310 #define portPushToStack(stack, val) {stack−−; ∗stack = val;}
311 #define portPopFromStack(stack, val) {val = ∗stack; stack++;}
312 #define portPushToStackCnt(stack, val, cnt) { \
313 for(unsigned portSHORT uxPushToStackCnt=0; \
314 uxPushToStackCnt < (unsigned portSHORT)cnt; \
315 uxPushToStackCnt++) \
316 portPushToStack(stack, val); \
317 }
318
319 #define atomic(number) asm("$nowarning(735)"); asm("atomic #" # number " ")
320 #define endatomic() asm("$warning(735)");
321
322 #define switchregbank(number) PSW BANK = number + ((number > 0) ? 1 : 0)
323 #define dpof(dpp,address) ((((unsigned int)(dpp) & 0x3) << 14) | pof(address))
324 #define mknp(dpp,address) ((void near ∗) dpof(dpp,address))
325 /∗−−−∗/
326
327 /∗ Run time stats functions ∗/
328 #if (configGENERATE RUN TIME STATS == 1)
329 extern void vPortConfigStatsTimer(void);
330 extern portStatsTickType uSystemTotalRunTime;
331 #define portLU PRINTF SPECIFIER REQUIRED 1 /∗ sizeof(int) != sizeof(long) ∗/
332 #define portCONFIGURE TIMER FOR RUN TIME STATS() \
333 vPortConfigStatsTimer()
334 #define portALT GET RUN TIME COUNTER VALUE(ulTotalRunTime) \
335 { \
336 portDISABLE INTERRUPTS(); \
337 ulTotalRunTime = uSystemTotalRunTime; \
338 portENABLE INTERRUPTS(); \
339 }
340 #endif /∗ (configGENERATE RUN TIME STATS == 1) ∗/

APPENDIX G. FREERTOS PORT FILES 130

341
342
343 #ifdef cplusplus
344 }
345 #endif
346
347 #endif /∗ PORTMACRO H ∗/

Listing G.2: Portable Layer File portmacro.h

APPENDIX G. FREERTOS PORT FILES 131

G.2.2 port.c

Listing G.3: Portable Layer File port.c

1 /∗
2 FreeRTOS V7.3.0 − Copyright (C) 2012 Real Time Engineers Ltd.
3
4 FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
5 http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
6
7 ∗∗∗
8 ∗ ∗
9 ∗ FreeRTOS tutorial books are available in pdf and paperback. ∗

10 ∗ Complete, revised, and edited pdf reference manuals are also ∗
11 ∗ available. ∗
12 ∗ ∗
13 ∗ Purchasing FreeRTOS documentation will not only help you, by ∗
14 ∗ ensuring you get running as quickly as possible and with an ∗
15 ∗ in−depth knowledge of how to use FreeRTOS, it will also help ∗
16 ∗ the FreeRTOS project to continue with its mission of providing ∗
17 ∗ professional grade, cross platform, de facto standard solutions ∗
18 ∗ for microcontrollers − completely free of charge! ∗
19 ∗ ∗
20 ∗ >>> See http://www.FreeRTOS.org/Documentation for details. <<< ∗
21 ∗ ∗
22 ∗ Thank you for using FreeRTOS, and thank you for your support! ∗
23 ∗ ∗
24 ∗∗∗
25
26
27 This file is part of the FreeRTOS distribution.
28
29 FreeRTOS is free software; you can redistribute it and/or modify it under
30 the terms of the GNU General Public License (version 2) as published by the
31 Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
32 >>>NOTE<<< The modification to the GPL is included to allow you to
33 distribute a combined work that includes FreeRTOS without being obliged to
34 provide the source code for proprietary components outside of the FreeRTOS
35 kernel. FreeRTOS is distributed in the hope that it will be useful, but
36 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
37 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
38 more details. You should have received a copy of the GNU General Public
39 License and the FreeRTOS license exception along with FreeRTOS; if not it
40 can be viewed here: http://www.freertos.org/a00114.html and also obtained
41 by writing to Richard Barry, contact details for whom are available on the
42 FreeRTOS WEB site.
43
44 1 tab == 4 spaces!
45
46 ∗∗∗
47 ∗ ∗
48 ∗ Having a problem? Start by reading the FAQ "My application does ∗
49 ∗ not run, what could be wrong?" ∗
50 ∗ ∗
51 ∗ http://www.FreeRTOS.org/FAQHelp.html ∗
52 ∗ ∗
53 ∗∗∗
54
55
56 http://www.FreeRTOS.org − Documentation, training, latest versions, license
57 and contact details.
58
59 http://www.FreeRTOS.org/plus − A selection of FreeRTOS ecosystem products,
60 including FreeRTOS+Trace − an indispensable productivity tool.
61
62 Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
63 the code with commercial support, indemnification, and middleware, under
64 the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
65 provide a safety engineered and independently SIL3 certified version under
66 the SafeRTOS brand: http://www.SafeRTOS.com.
67 ∗/
68
69 /∗−−−
70 ∗ Implementation of functions defined in portable.h for the INFINEON C166S V2 port.
71 ∗−−∗/
72
73 /∗ Standard includes. ∗/
74 #include <string.h>
75
76 /∗ Define TASK INCLUDED FROM KERNEL FILE to import the definition of the task
77 control block (TCB). That should only be done when task.h is included from a
78 kernel or port layer file. ∗/
79 #define TASK INCLUDED FROM KERNEL FILE
80
81 /∗ Scheduler includes. ∗/
82 #include "FreeRTOS.h"
83 #include "task.h"

APPENDIX G. FREERTOS PORT FILES 132

84 #include "StackMacros.h"
85
86 #undef TASK INCLUDED FROM KERNEL FILE
87
88 /∗ Platform includes ∗/
89 #include "STM/STM.h"
90 #include "IO/IO.h"
91
92 #if (configGENERATE RUN TIME STATS == 1)
93 // uSystemTotalRunTime can count to
94 portStatsTickType uSystemTotalRunTime = 0;
95 #endif /∗ (configGENERATE RUN TIME STATS == 1) ∗/
96
97 /∗ We require the address of the pxCurrentTCB variable. ∗/
98 extern tskTCB ∗ volatile pxCurrentTCB;
99

100 /∗
101 ∗ Configure a timer to generate the RTOS tick at the frequency specified
102 ∗ within FreeRTOSConfig.h.
103 ∗/
104 static void prvSetupTimerInterrupt(unsigned short usILVL, unsigned short usXGLVL);
105
106 /∗ Calls to portENTER CRITICAL() can be nested. When they are nested the
107 critical section should not be left (i.e. interrupts should not be re−enabled)
108 until the nesting depth reaches 0. This variable simply tracks the nesting
109 depth. Initialize uxCriticalNesting to zero. ∗/
110 volatile unsigned portBASE TYPE uxCriticalNesting = 0;
111
112 /∗−−∗/
113
114 /∗
115 ∗ Pointers to top of system and user stack, saved by vPortStartFirstTask()
116 ∗ and restored by vPortEndScheduler()
117 ∗/
118 portSTACK TYPE ∗pxTopOfSystemStack = NULL;
119 portSTACK TYPE ∗pxTopOfUserStack = NULL;
120
121 /∗−−∗/
122
123 /∗ support for runtime system stack overflow checking ∗/
124 #if configCHECK FOR BOOT STACK OVERFLOW == 1
125 signed char pcBootTaskName[configMAX TASK NAME LEN] = "BOOT";
126 #if configCHECK FOR STACK OVERFLOW >= 1
127 extern huge char lc ue system stack[]; // bottom of system stack
128 #endif
129 #if configCHECK FOR STACK2 OVERFLOW >= 1
130 extern near char lc ue user stack[]; // bottom of user stack
131 #endif
132 #endif
133
134 /∗−−∗/
135
136 /∗
137 ∗ Inline function to save a task context to the task stack. This simply
138 ∗ pushes all the general purpose registers onto the stack. Finally the
139 ∗ resultant stack pointer value is saved into the task control block so
140 ∗ it can be retrieved the next time the task executes.
141 ∗/
142 void always inline portSAVE CONTEXT(void)
143 {
144 register portSTACK TYPE ∗ pxTopOfStack;
145
146 /∗
147 ∗ PSW, CSP and IP are already on the stack by a call to
148 ∗ an ISR or a Software Trap
149 ∗/
150 asm ("\n"
151 " push DPP0 \n"
152 " push DPP1 \n"
153 " push DPP2 \n"
154 " push DPP3 \n"
155 " push r15 \n"
156 " push r14 \n"
157 " push r13 \n"
158 " push r12 \n"
159 " push r11 \n"
160 " push r10 \n"
161 " push r9 \n"
162 " push r8 \n"
163 " push r7 \n"
164 " push r6 \n"
165 " push r5 \n"
166 " push r4 \n"
167 " push r3 \n"
168 " push r2 \n"
169 " push r1 \n"
170 " push r0 \n"
171 " push MDC \n" // MDx registers are only safe to push

APPENDIX G. FREERTOS PORT FILES 133

172 " push MDH \n" // if at least 17 cycles have passed
173 " push MDL \n");
174
175 /∗ update RTOS stack pointers ∗/
176
177 // system stack pointer
178 pxTopOfStack = mkhp(SP, SPSEG);
179 pxCurrentTCB−>pxTopOfStack = pxTopOfStack;
180
181 // user stack pointer
182 pxTopOfStack = mkfp((unsigned int) getsp(), DPP1);
183 pxCurrentTCB−>pxTopOfStack2 = pxTopOfStack;
184 }
185
186 /∗
187 ∗ Inline function to restore a task context from the task stack. This is
188 ∗ effectively the reverse of portSAVE CONTEXT(). First the stack pointer
189 ∗ value is loaded from the task control block. Next the value of all the
190 ∗ general purpose registers are retrieved.
191 ∗/
192
193 void always inline portRESTORE CONTEXT(void)
194 {
195 register portSTACK TYPE ∗ pxTopOfStack;
196
197 pxTopOfStack = (portSTACK TYPE ∗)pxCurrentTCB−>pxTopOfStack;
198
199 // let CPU stack pointer point to stack of task to be restored (write atomically)
200 atomic(2);
201 SP = sof(pxTopOfStack);
202 SPSEG = seg(pxTopOfStack);
203 endatomic(); // used as fence for the compiler
204
205 // restore registers saved by portSAVE CONTEXT
206 asm ("\n"
207 " pop MDL \n"
208 " pop MDH \n"
209 " pop MDC \n"
210 " pop r0 \n"
211 " pop r1 \n"
212 " pop r2 \n"
213 " pop r3 \n"
214 " pop r4 \n"
215 " pop r5 \n"
216 " pop r6 \n"
217 " pop r7 \n"
218 " pop r8 \n"
219 " pop r9 \n"
220 " pop r10 \n"
221 " pop r11 \n"
222 " pop r12 \n"
223 " pop r13 \n"
224 " pop r14 \n"
225 " atomic #4 \n" // atomically restore user stack pointer
226 " pop r15 \n"
227 " pop DPP3 \n"
228 " pop DPP2 \n"
229 " pop DPP1 \n"
230 " pop DPP0 \n"
231 "\n");
232
233 /∗
234 ∗ IP, CSP and PSW are restored by the RETI instruction at the
235 ∗ end of the ISR/Software Trap
236 ∗/
237 }
238
239 /∗−−∗/
240
241 /∗
242 ∗ Setup the stack of a new task so it is ready to be placed under the
243 ∗ scheduler control. The registers have to be placed on the stack in
244 ∗ the order that the port expects to find them.
245 ∗
246 ∗/
247 portSTACK TYPE ∗pxPortInitialiseStack(portSTACK TYPE ∗pxTopOfStack, portSTACK TYPE ∗pxTopOfStack2, pdTASK CODE

pxCode, void ∗pvParameters)
248 {
249 PSW type initialPSW;
250
251 /∗
252 ∗ Place a few bytes of known values on the bottom of the stack.
253 ∗ This is just useful for debugging and can be included if required.
254 ∗/
255 /∗
256 portPushToStack(pxTopOfStack, (portSTACK TYPE) 0x1111U);
257 portPushToStack(pxTopOfStack, (portSTACK TYPE) 0x2222U);
258 portPushToStack(pxTopOfStack, (portSTACK TYPE) 0x3333U);

APPENDIX G. FREERTOS PORT FILES 134

259 ∗/
260
261 /∗
262 ∗ Simulate the stack frame as it would be created by a context
263 ∗ switch interrupt.
264 ∗
265 ∗ System Stack (FreeRTOS Stack1)
266 ∗ +−−−−−−−+
267 ∗ | xxxxx | <−− Stack Pointer (SP) before
268 ∗ | PSW |
269 ∗ | CSP |
270 ∗ | IP | <−− SP after ISR/TRAP called
271 ∗ | DPP0 | −−> from here registers saved
272 ∗ | DPP1 | by portSAVE CONTEXT()
273 ∗ | DPP2 |
274 ∗ | DPP3 |
275 ∗ | R15 | dedicated to User Stack Pointer[1]
276 ∗ | R14 |
277 ∗ | R13 |
278 ∗ | R12 |
279 ∗ | R11 |
280 ∗ | R10 |
281 ∗ | R9 |
282 ∗ | R8 |
283 ∗ | R7 |
284 ∗ | R6 |
285 ∗ | R5 |
286 ∗ | R4 |
287 ∗ | R3 | \
288 ∗ | R2 | / first 32−bit parameter (pvParameters∗)[1]
289 ∗ | R1 |
290 ∗ | R0 |
291 ∗ | MDC |
292 ∗ | MDH |
293 ∗ | MDL | <−− SP after portSAVE CONTEXT()
294 ∗ +−−−−−−−+
295 ∗
296 ∗ [1] ... per TASKING C−compiler calling convention
297 ∗
298 ∗ The C166S V2 automatically pushes the PSW followed by the CSP
299 ∗ and then IP onto the stack before executing an ISR.
300 ∗
301 ∗/
302
303 // PSW − processor status word
304 initialPSW.U = 0; // reset initialization value
305 initialPSW.B.ien = 1; // enable interrupts
306 portPushToStack(pxTopOfStack, initialPSW.U);
307 // CSP − code segment pointer
308 portPushToStack(pxTopOfStack, seg(pxCode));
309 // IP − instruction pointer
310 portPushToStack(pxTopOfStack, sof(pxCode));
311
312 // initialize registers DPP0 to DPP3
313 // DPP1 is used to access the user stack (stack2)
314 // see the project LSL file how this is accomplished
315 portPushToStack(pxTopOfStack, DPP0);
316 portPushToStack(pxTopOfStack, pag(pxTopOfStack2));
317 portPushToStack(pxTopOfStack, DPP2);
318 portPushToStack(pxTopOfStack, DPP3);
319
320 // initialize general purpose register R15
321 // as user stack pointer (stack2), per TASKING
322 // C−compiler calling convention, use DPP1
323 portPushToStack(pxTopOfStack, dpof(1, pxTopOfStack2));
324
325 // initialize general purpose registers R14 to R4
326 portPushToStackCnt(pxTopOfStack, 0x00, 11);
327
328 // initialize general purpose registers R3 and R2 as
329 // input parameter pvParameters
330 // ATTENTION: we assume the huge memory model here!
331 portPushToStack(pxTopOfStack, seg(pvParameters));
332 portPushToStack(pxTopOfStack, sof(pvParameters));
333
334 // initialize registers R1 and R0
335 portPushToStackCnt(pxTopOfStack, 0x00, 2);
336
337 // initialize multiply/divide unit registers MDC, MDH and MDL
338 portPushToStackCnt(pxTopOfStack, 0x00, 3);
339
340 return pxTopOfStack;
341 }
342 /∗−−∗/
343
344 /∗
345 ∗ See header file for description.
346 ∗/

APPENDIX G. FREERTOS PORT FILES 135

347 portBASE TYPE xPortStartScheduler(void)
348 {
349 /∗
350 ∗ configMAX SYSCALL INTERRUPT PRIORITY must not be set to 0,
351 ∗ and it must be greater or equal to configKERNEL INTERRUPT PRIORITY.
352 ∗/
353 configASSERT((configMAX SYSCALL INTERRUPT PRIORITY));
354 configASSERT((configMAX SYSCALL INTERRUPT PRIORITY >= configKERNEL INTERRUPT PRIORITY));
355
356 /∗
357 ∗ Start the timer that generates the tick ISR at the kernel
358 ∗ interrupts priority. Interrupts are disabled here already.
359 ∗/
360 prvSetupTimerInterrupt(configKERNEL INTERRUPT PRIORITY, 0);
361
362 /∗ Start first task. ∗/
363 portSTART FIRST TASK();
364
365 /∗ Should never reach here. ∗/
366 return pdFALSE;
367 }
368 /∗−−∗/
369
370 void vPortEndScheduler(void)
371 {
372 register unsigned portSHORT reg;
373
374 /∗ restore system stack pointer ∗/
375 SP = sof(pxTopOfSystemStack);
376 SPSEG = seg(pxTopOfSystemStack);
377
378 /∗ restore user stack pointer ∗/
379 DPP1 = pag(pxTopOfUserStack);
380 setsp(mknp(1, pxTopOfUserStack));
381
382 /∗ stop RTOS timer tick ∗/
383 STM vStopSTM();
384
385 /∗ portSTART FIRST TASK() placed IP and CSP on the stack, remove them ∗/
386 portPOP(reg);
387 portPOP(reg);
388
389 /∗ simulate return value of xPortStartScheduler() ∗/
390 reg = pdPASS;
391 asm (" movw r2,%0 \n" // set function return value
392 :: "w" (reg));
393
394 /∗ portSTART FIRST TASK() placed PSW on the stack, restore it ∗/
395 portPOP(PSW);
396 }
397 /∗−−∗/
398
399 // frame() does what naked usually does, but gives a warning.
400 #pragma warning 796
401 interrupt(TRAP126 VECT) frame() void vPortStartFirstTask(void)
402 {
403 register portSTACK TYPE ∗ pxStack;
404 register near char ∗ us;
405
406 /∗ interrupts are still disabled ∗/
407
408 /∗ save TopOfStack for system and user stack ∗/
409 pxTopOfSystemStack = mkhp(SP, SPSEG);
410 pxTopOfUserStack = mkfp((unsigned int) getsp(), DPP1);
411
412 /∗ switch to local register bank 1 ∗/
413 switchregbank(1);
414
415 /∗ set user stack pointer of local register bank (using DPP1) ∗/
416 setsp(mknp(1, pxTopOfUserStack));
417
418 #if (configCHECK FOR BOOT STACK OVERFLOW == 1)
419 /∗ NOTE: The following code depends on the initialisation of system and
420 user stack in cstart.c ∗/
421
422 /∗ check system stack ∗/
423 pxStack = (portSTACK TYPE ∗) lc ue system stack;
424 taskFIRST CHECK FOR STACK OVERFLOW(pxStack, pxTopOfSystemStack, NULL, vApplicationStackOverflowHook, NULL,

pcBootTaskName);
425 taskSECOND CHECK FOR STACK OVERFLOW(pxStack, pxTopOfSystemStack, NULL, vApplicationStackOverflowHook, NULL,

pcBootTaskName);
426
427 /∗ check user stack ∗/
428 pxStack = mkfp((unsigned int) lc ue user stack, DPP1);
429 taskFIRST CHECK FOR STACK OVERFLOW(pxStack, pxTopOfUserStack, NULL, vApplicationStack2OverflowHook, NULL,

pcBootTaskName);
430 taskSECOND CHECK FOR STACK OVERFLOW(pxStack, pxTopOfUserStack, NULL, vApplicationStack2OverflowHook, NULL,

pcBootTaskName);

APPENDIX G. FREERTOS PORT FILES 136

431 #endif /∗ (configCHECK FOR SYS STACK OVERFLOW == 1) ∗/
432
433 /∗ Initialise unused part of user stack ∗/
434 us = (near char ∗) getsp();
435 do
436 {
437 ∗(−−us) = 0xa5; // initialise with fill value
438 }
439 while (us != lc ue user stack); // bottom of user stack reached?
440
441 #if 1
442 /∗ initialise all registers of local register bank ∗/
443 asm ("\n"
444 " movw r0,#0 \n"
445 " movw r1,#1 \n"
446 " movw r2,#2 \n"
447 " movw r3,#3 \n"
448 " movw r4,#4 \n"
449 " movw r5,#5 \n"
450 " movw r6,#6 \n"
451 " movw r7,#7 \n"
452 " movw r8,#8 \n"
453 " movw r9,#9 \n"
454 " movw r10,#10 \n"
455 " movw r11,#11 \n"
456 " movw r12,#12 \n"
457 " movw r13,#13 \n"
458 " movw r14,#14 \n");
459 #endif
460
461 /∗ switch to global register bank ∗/
462 switchregbank(0);
463
464 /∗ restore context of first task ∗/
465 portRESTORE CONTEXT();
466
467 /∗ interrupts are enabled by returning to the first task ∗/
468 }
469 #pragma warning restore
470 /∗−−∗/
471
472 #if configUSE PREEMPTION == 0
473 // frame() does what naked usually does, but gives a warning.
474 #pragma warning 796
475 interrupt(TRAP127 VECT) frame() void vPortYield(void)
476 {
477 /∗ save current task’s context ∗/
478 portSAVE CONTEXT();
479
480 /∗ do the context switch ∗/
481 vTaskSwitchContext();
482
483 /∗ restore new task’s context ∗/
484 portRESTORE CONTEXT();
485 }
486 #pragma warning restore
487 #endif /∗ configUSE PREEMPTION == 0 ∗/
488 /∗−−∗/
489
490 /∗
491 ∗ Setup the system tick timer to generate the tick interrupts at the required
492 ∗ frequency.
493 ∗/
494 void prvSetupTimerInterrupt(unsigned short usILVL, unsigned short usXGLVL)
495 {
496 /∗ STM vInit() must have been called during hardware setup ∗/
497
498 /∗ enable STM1 interrupt node ∗/
499 STM vNodeEnable(STM1 NODE, usILVL, usXGLVL);
500
501 /∗ enable STM1 interrupt ∗/
502 STM vEnableSTM1();
503
504 /∗ start the System Timer Module (STM) ∗/
505 STM vStartSTM();
506 }
507 /∗−−∗/
508
509 #if (configGENERATE RUN TIME STATS == 1)
510 portINTERRUPT HANDLER PROTO(STM viSTM0I,STM0 VECT);
511 void vPortConfigStatsTimer(void)
512 {
513 /∗ STM vInit() must have been called during hardware setup ∗/
514
515 /∗ enable STM0 interrupt node ∗/
516 STM vNodeEnable(STM0 NODE, configMAX INTERRUPT PRIORITY, 0);
517
518 /∗ enable as fast interrupt ∗/

APPENDIX G. FREERTOS PORT FILES 137

519 STM vNodeEnableFast(STM0 NODE, (INT FUNC)STM viSTM0I);
520
521 /∗ enable STM0 interrupt ∗/
522 STM vEnableSTM0();
523
524 /∗ STM module will be started in prvSetupTimerInterrupt() ∗/
525 }
526 #endif /∗ (configGENERATE RUN TIME STATS == 1) ∗/
527 /∗−−∗/
528
529 /∗
530 ∗ STM viSTM1I() timer ISR.
531 ∗
532 ∗ Note: This ISR has no frame so it has to
533 ∗ − call portSAVE CONTEXT() first and
534 ∗ − call portRESTORE CONTEXT() at the end.
535 ∗/
536 // frame() does what naked usually does, but gives a warning.
537 #pragma warning 796
538 interrupt(STM1 VECT) frame() void STM viSTM1I(void)
539 {
540 register unsigned portBASE TYPE hw tick;
541
542 /∗ if any other SCU interrupt is activated and
543 points to this interrupt, we are not interested ∗/
544 if (!SCU INTSTAT STM1I)
545 {
546 return;
547 }
548
549 /∗ save current task’s context ∗/
550 portSAVE CONTEXT();
551
552 /∗ if set, this is a hardware tick, otherwise a software yield ∗/
553 hw tick = SCU DMPMIT STM1;
554
555 /∗ Clear interrupt status ∗/
556 STM vSTM1Clr(hw tick);
557
558 /∗ hardware tick, otherwise a software yield ∗/
559 if (hw tick)
560 {
561 // increment Tick
562 vTaskIncrementTick();
563 }
564
565 #if configUSE PREEMPTION == 1
566 vTaskSwitchContext();
567 #endif /∗ configUSE PREEMPTION == 1 ∗/
568
569 /∗ restore new task’s context ∗/
570 portRESTORE CONTEXT();
571 } // End of function STM viSTM1I
572 #pragma warning restore
573 /∗−−∗/
574
575 /∗
576 ∗ STM viSTM0I() timer ISR.
577 ∗/
578 #if (configGENERATE RUN TIME STATS == 1)
579 portINTERRUPT HANDLER(STM viSTM0I,STM0 VECT)
580 {
581 /∗ if any other SCU interrupt is activated and
582 points to this interrupt, we are not interested ∗/
583 if (!SCU INTSTAT STM0I)
584 {
585 return;
586 }
587
588 // Clear interrupt status
589 STM vSTM0Clr();
590
591 uSystemTotalRunTime++;
592 }
593 #endif /∗ (configGENERATE RUN TIME STATS == 1) ∗/

Listing G.3: Portable Layer File port.c

APPENDIX G. FREERTOS PORT FILES 138

G.3 Port Configuration File FreeRTOSConfig.h

Listing G.4: Port Config File FreeRTOSConfig.h

1 /∗
2 FreeRTOS V7.3.0 − Copyright (C) 2012 Real Time Engineers Ltd.
3
4 FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
5 http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
6
7 ∗∗∗
8 ∗ ∗
9 ∗ FreeRTOS tutorial books are available in pdf and paperback. ∗

10 ∗ Complete, revised, and edited pdf reference manuals are also ∗
11 ∗ available. ∗
12 ∗ ∗
13 ∗ Purchasing FreeRTOS documentation will not only help you, by ∗
14 ∗ ensuring you get running as quickly as possible and with an ∗
15 ∗ in−depth knowledge of how to use FreeRTOS, it will also help ∗
16 ∗ the FreeRTOS project to continue with its mission of providing ∗
17 ∗ professional grade, cross platform, de facto standard solutions ∗
18 ∗ for microcontrollers − completely free of charge! ∗
19 ∗ ∗
20 ∗ >>> See http://www.FreeRTOS.org/Documentation for details. <<< ∗
21 ∗ ∗
22 ∗ Thank you for using FreeRTOS, and thank you for your support! ∗
23 ∗ ∗
24 ∗∗∗
25
26
27 This file is part of the FreeRTOS distribution.
28
29 FreeRTOS is free software; you can redistribute it and/or modify it under
30 the terms of the GNU General Public License (version 2) as published by the
31 Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
32 >>>NOTE<<< The modification to the GPL is included to allow you to
33 distribute a combined work that includes FreeRTOS without being obliged to
34 provide the source code for proprietary components outside of the FreeRTOS
35 kernel. FreeRTOS is distributed in the hope that it will be useful, but
36 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
37 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
38 more details. You should have received a copy of the GNU General Public
39 License and the FreeRTOS license exception along with FreeRTOS; if not it
40 can be viewed here: http://www.freertos.org/a00114.html and also obtained
41 by writing to Richard Barry, contact details for whom are available on the
42 FreeRTOS WEB site.
43
44 1 tab == 4 spaces!
45
46 ∗∗∗
47 ∗ ∗
48 ∗ Having a problem? Start by reading the FAQ "My application does ∗
49 ∗ not run, what could be wrong?" ∗
50 ∗ ∗
51 ∗ http://www.FreeRTOS.org/FAQHelp.html ∗
52 ∗ ∗
53 ∗∗∗
54
55
56 http://www.FreeRTOS.org − Documentation, training, latest versions, license
57 and contact details.
58
59 http://www.FreeRTOS.org/plus − A selection of FreeRTOS ecosystem products,
60 including FreeRTOS+Trace − an indispensable productivity tool.
61
62 Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
63 the code with commercial support, indemnification, and middleware, under
64 the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
65 provide a safety engineered and independently SIL3 certified version under
66 the SafeRTOS brand: http://www.SafeRTOS.com.
67 ∗/
68
69
70 #ifndef FREERTOS CONFIG H
71 #define FREERTOS CONFIG H
72
73
74 /∗−−−
75 ∗ Application specific definitions.
76 ∗
77 ∗ These definitions should be adjusted for your particular hardware and
78 ∗ application requirements.
79 ∗
80 ∗ THESE PARAMETERS ARE DESCRIBED WITHIN THE ’CONFIGURATION’ SECTION OF THE
81 ∗ FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
82 ∗

APPENDIX G. FREERTOS PORT FILES 139

83 ∗ See http://www.freertos.org/a00110.html.
84 ∗−−∗/
85
86 /∗
87 ∗ The following #error directive is to remind users that a batch file must be
88 ∗ executed prior to this project being built. The batch file ∗cannot∗ be
89 ∗ executed from within the IDE! Once it has been executed, re−open or refresh
90 ∗ the Eclipse project and remove the #error line below.
91 ∗/
92 //#error Ensure CreateProjectDirectoryStructure.bat has been executed before building. See comment immediately above.
93
94 #define configUSE PREEMPTION 1
95 #define configUSE IDLE HOOK 1
96 #define configUSE TICK HOOK 1
97 #define configCPU CLOCK HZ (80000000UL)
98 #define configTICK RATE HZ ((portTickType) 1000)
99 #define configMAX PRIORITIES ((unsigned portBASE TYPE) 5)

100
101 /∗
102 ∗ The stack is divided into a (system) stack and a user stack space
103 ∗ per task. The tasks (system) stack stores the return addresses for
104 ∗ function calls and its context when suspended. Local variables in
105 ∗ functions are placed on the task user stack.
106 ∗/
107 /∗ sufficient for a call−depth of 7 plus 2 nested IRQs plus full context ∗/
108 #define configMINIMAL STACK SIZE ((unsigned short) 104)
109 /∗ sufficient for the task, 7 calls and 2 nested IRQs each pushing 7
110 registers and 6 variables of type word onto the user stack ∗/
111 #define configMINIMAL STACK2 SIZE ((unsigned short) 264)
112 /∗
113 ∗ The heap has to be max 16kB minus 256 bytes for the initial
114 ∗ system user stack or it would not be accessible by near
115 ∗ addressing via Data Page Pointer (DPP).
116 ∗/
117 #define configTOTAL HEAP SIZE ((size t) (16∗1024 − 256))
118 /∗
119 ∗ The heap has to be placed right after the system user stack at
120 ∗ absolute address 0xE00100 (see project LSL file for user stack
121 ∗ definition).
122 ∗/
123 #define configHEAP ABSOLUTE ADDR at (0xE00100)
124
125 #define configMAX TASK NAME LEN (8)
126 #define configUSE TRACE FACILITY 1
127 #define configUSE 16 BIT TICKS 0
128 #define configIDLE SHOULD YIELD 1
129 #define configUSE MUTEXES 1
130 #define configQUEUE REGISTRY SIZE 0
131 #define configCHECK FOR STACK OVERFLOW 2
132 #define configCHECK FOR STACK2 OVERFLOW 2
133 /∗ support boot stack checking to know when to increase
134 system and/or user stack size in the LSL file ∗/
135 #define configCHECK FOR BOOT STACK OVERFLOW 1
136 #define configUSE RECURSIVE MUTEXES 1
137 #define configUSE MALLOC FAILED HOOK 1
138 #define configUSE APPLICATION TASK TAG 1
139 #define configUSE COUNTING SEMAPHORES 1
140 #define configGENERATE RUN TIME STATS 1
141
142 /∗ Co−routine definitions. ∗/
143 #define configUSE CO ROUTINES 0
144 #define configMAX CO ROUTINE PRIORITIES (2)
145
146 /∗ Software timer definitions. ∗/
147 #define configUSE TIMERS 1
148 #define configTIMER TASK PRIORITY (configMAX PRIORITIES − 1)
149 #define configTIMER QUEUE LENGTH 5
150 #define configTIMER TASK STACK DEPTH (configMINIMAL STACK SIZE)
151 #define configTIMER TASK STACK2 DEPTH (configMINIMAL STACK2 SIZE ∗2)
152
153 /∗ Set the following definitions to 1 to include the API function, or zero
154 to exclude the API function. ∗/
155 #define INCLUDE vTaskPrioritySet 1
156 #define INCLUDE uxTaskPriorityGet 1
157 #define INCLUDE vTaskDelete 1
158 #define INCLUDE vTaskCleanUpResources 1
159 #define INCLUDE vTaskSuspend 1
160 #define INCLUDE vTaskDelayUntil 1
161 #define INCLUDE vTaskDelay 1
162 // test compile extended features
163 #define INCLUDE xTaskGetIdleTaskHandle 1
164 #define INCLUDE xTimerGetTimerDaemonTaskHandle 1
165 #define INCLUDE xTimerGetTimerDaemonTaskHandle 1
166 #define INCLUDE eTaskStateGet 1
167 #define INCLUDE pcTaskGetTaskName 1
168 #define INCLUDE uxTaskGetStackHighWaterMark 1
169 #define INCLUDE xQueueGetMutexHolder 1
170

APPENDIX G. FREERTOS PORT FILES 140

171 #define configPRIO BITS 4 /∗ 15 priority levels ∗/
172
173 /∗ The absolute highest interrupt level ∗/
174 #define configMAX INTERRUPT PRIORITY ((1 << configPRIO BITS) − 1)
175
176 /∗ The highest interrupt priority that can be used by any interrupt service
177 routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
178 INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
179 PRIORITY THAN THIS! ∗/
180 #define configMAX SYSCALL INTERRUPT PRIORITY 11
181
182 /∗ Lowest Interrupt priority, used by the kernel port layer itself. ∗/
183 #define configKERNEL INTERRUPT PRIORITY 1
184
185 /∗ Task level priority ∗/
186 #define configTASK LEVEL INTERRUPT PRIORITY 0
187
188 /∗ Normal assert() semantics without relying on the provision of an assert.h
189 header file. ∗/
190 #define configASSERT(x) \
191 if((x) == 0) { taskDISABLE INTERRUPTS(); for(;;) portNOP(); }
192
193 #endif /∗ FREERTOS CONFIG H ∗/

Listing G.4: Port Config File FreeRTOSConfig.h

Bibliography

[1] Nicolas Navet and Francoise Simonot-Lion, editors. Automotive embedded systems
handbook. Industrial Information Technology Series. CRC Press, Boca Raton, 2009.
ISBN 9780849380266.

[2] Dip Goswami, Reinhard Schneider, Alejandro Masrur, Martin Lukasiewycz, Samarjit
Chakraborty, Harald Voit, and Anuradha Annaswamy. Challenges in Automotive
Cyber-physical Systems Design. In International Conference on Embedded Computer
Systems (SAMOS), 2012, pages 346–354, 2012.

[3] Bruce Powel Douglass. Design Patterns for Embedded Systems in C. Newnes, Oxford,
UK, 1. edition, 2011. ISBN 9781856177078.

[4] Jörg Schäuffele and Thomas Zurawka. Automotive Software Engineering.
ATZ/MTZ-Fachbuch. Vieweg + Teubner, Wiesbaden, 4. edition, 2010. ISBN
3834803642.

[5] David John Smith and Kenneth G. L. Simpson. Functional safety.
Elsevier/Butterworth-Heinemann, Oxford, 2. edition, 2004. ISBN 9780750662697.

[6] Ron Bell. Introduction to IEC 61508. In Proceedings of the 10th Australian work-
shop on Safety critical systems and software – Volume 55, SCS ’05, pages 3–12,
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc. ISBN
1920682376.

[7] Raija Koivisto, Nina Wessberg, Annele Eerola, Toni Ahlqvist, Sirkku Kivisaari,
Jouko Myllyoja, and Minna Halonen. Integrating FTA and Risk Assessment Method-
ologies. Third International Seville Seminar on Future-Oriented Technology Anal-
ysis: Impacts and implications for policy and decision-making – SEVILLE 16-17
OCTOBER 2008, October 2008. URL http://forera.jrc.ec.europa.eu/fta_20

08/papers_parallel/theme_1/1-9%20Koivisto-Paper.pdf. Last accessed 2012-
09-26.

[8] Instrument-Net.co.uk. Standards/Safety/Integrity Levels ANSI/ISA S84.01 &
DRAFT IEC 61508 – How this Standard will affect your business, 2010. URL http:

//www.instrument-net.co.uk/safety_integrity.html. Last accessed 2012-09-
26.

[9] Pirmin Netter. Wie die Sicherheit laufen lernte – Entwicklung der
funktionalen Sicherheit in Deutschland. atp edition, pages 46–55, 1-2/

141

http://forera.jrc.ec.europa.eu/fta_2008/papers_parallel/theme_1/1-9%20Koivisto-Paper.pdf
http://forera.jrc.ec.europa.eu/fta_2008/papers_parallel/theme_1/1-9%20Koivisto-Paper.pdf
http://www.instrument-net.co.uk/safety_integrity.html
http://www.instrument-net.co.uk/safety_integrity.html

BIBLIOGRAPHY 142

2011. URL http://www.namur.de/fileadmin/media/Pressespiegel/atp/atp_0

1_02_2011_Sicherheit_Netter.pdf. Last accessed 2012-09-22.

[10] Wilfried Grote. Basics of Functional Safety in Process Industry. Slides, Septem-
ber 2011. URL http://www.emo.org.tr/ekler/7b58fca3ca5baf4_ek.pdf. Last
accessed 2012-09-25.

[11] ABB Asea Brown Boveri Ltd. ABB drives – Technical guide no.
10 – Functional safety. ABB Asea Brown Boveri Ltd, 2011. URL
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/7532c4

4d2abe431bc12578620045c2ba/$file/en_technicalguideno10_revd.pdf. Last
accessed 2012-10-02.

[12] Christoph Braeuchle. Safety critical development of software-intensive automotive
systems. John Day’s Automotive Electronics News – Insight for Engineers, May 16th
2012. URL http://johndayautomotivelectronics.com/?p=10362. Last accessed
2012-08-21.

[13] ISO 26262-1:2011 - Road vehicles - Functional safety - Part 1: Vocabulary. Interna-
tional Standard, November 15th 2011.

[14] ISO 26262-2:2011 - Road vehicles - Functional safety - Part 2: Management of
functional safety. International Standard, November 15th 2011.

[15] ISO 26262-3:2011 - Road vehicles - Functional safety - Part 3: Concept phase.
International Standard, November 15th 2011.

[16] ISO 26262-4:2011 - Road vehicles - Functional safety - Part 4: Product development
at the system level. International Standard, November 15th 2011.

[17] ISO 26262-5:2011 - Road vehicles - Functional safety - Part 5: Product development
at the hardware level. International Standard, November 15th 2011.

[18] ISO 26262-6:2011 - Road vehicles - Functional safety - Part 6: Product development
at the software level. International Standard, November 15th 2011.

[19] ISO 26262-7:2011 - Road vehicles - Functional safety - Part 7: Production and
operation. International Standard, November 15th 2011.

[20] ISO 26262-8:2011 - Road vehicles - Functional safety - Part 8: Supporting processes.
International Standard, November 15th 2011.

[21] ISO 26262-9:2011 - Road vehicles - Functional safety - Part 9: Automotive Safety In-
tegrity Level (ASIL)-oriented and safety-oriented analyses. International Standard,
November 15th 2011.

[22] ISO 26262-10:2012 - Road vehicles - Functional safety - Part 10: Guideline on ISO
26262. International Standard, August 1st 2012.

http://www.namur.de/fileadmin/media/Pressespiegel/atp/atp_01_02_2011_Sicherheit_Netter.pdf
http://www.namur.de/fileadmin/media/Pressespiegel/atp/atp_01_02_2011_Sicherheit_Netter.pdf
http://www.emo.org.tr/ekler/7b58fca3ca5baf4_ek.pdf
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/7532c44d2abe431bc12578620045c2ba/$file/en_technicalguideno10_revd.pdf
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/7532c44d2abe431bc12578620045c2ba/$file/en_technicalguideno10_revd.pdf
http://johndayautomotivelectronics.com/?p=10362

BIBLIOGRAPHY 143

[23] Jürgen Sauler and Stefan Kriso. ISO 26262 – Die zukünftige Norm zur funktionalen
Sicherheit von Straßenfahrzeugen. Elektronikpraxis, August 31st 2011. URL
http://files.vogel.de/vogelonline/pdfarticles/ep/themen/elektronikman

agement/projektqualitaetsmanagement/articles/242243/242243.pdf. Last
accessed 2013-07-05.

[24] Andrea Piovesan and John Favaro. Experience with ISO 26262 ASIL Decomposition.
Automotive SPIN, Milano, February 17th 2011. URL http://www.automotive-s

pin.it/uploads/8/8W_favaro.pdf. Last accessed 2013-05-15.

[25] Olaf Kath, Rudolf Schreiner, and John Favaro. Safety, Security, and Soft-
ware Reuse: A Model-Based Approach. In Fourth International Work-
shop in Software Reuse and Safety (RESAFE 2009), Washington, DC, USA,
2009. URL http://www.favaro.net/john/RESAFE2009/results/RESAFE2009%20

Intecs%20ikv%20object%20security.pdf. Last accessed 2013-07-05.

[26] Terry L. Fruehling. Delphi Secured Microcontroller Architecture. In 2000 SAE
World Congress, pages pp. 1–12. SAE International, March 6-9 2000. URL http://

am.delphi.com/pdf/techpapers/2000-01-1052.pdf. SAE Technical Paper 2000-
01-1052. Last accessed 2012-08-10.

[27] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Alberto Sangiovanni-
Vincentelli, Maurizio Peri, and Saverio Pezzini. Fault-tolerant platforms for automo-
tive safety-critical applications. In Proceedings of the 2003 international conference
on Compilers, architecture and synthesis for embedded systems, CASES ’03, pages
170–177. ACM, 2003. ISBN 1581136765.

[28] Jean-Louis Dufour. Automotive safety concepts : 10−9/h for less than 100EUR
a piece. 6th Braunschweig Conference AAET 2005 – Automation, Assistance and
Embedded Real Time Platforms for Transport, page 10, February 2005. URL http:

//j-l-dufour.voila.net/05_AAET_article.pdf. Last accessed 2012-10-01.

[29] Padma Sundaram and Joseph G. D’Ambrosio. Controller Integrity in Automotive
Failsafe System Architectures. In 2006 SAE World Congress, page pp. 10. SAE
International, April 3-6 2006. URL http://delphi.com/pdf/techpapers/2006-0

1-0840.pdf. SAE Technical Paper 2006-01-0840. Last accessed 2012-08-10.

[30] Riccardo Mariani and Peter Fuhrmann. Comparing fail-safe microcontroller archi-
tectures in light of IEC 61508. In Proc. 22nd IEEE Int. Symp. Defect and Fault-
Tolerance in VLSI Systems DFT ’07, pages 123–131, 2007.

[31] Xi Chen. Requirements and concepts for future automotive electronic architectures
from the view of integrated safety. PhD thesis, Universität Karlsruhe (TH), February
2008. URL http://uvka.ubka.uni-karlsruhe.de/shop/download/1000007763.
Last accessed 2013-07-29.

[32] Marco Bellotti and Riccardo Mariani. How future automotive functional safety
requirements will impact microprocessors design. Microelectronics Reliability, 50
(9-11):1320–1326, 2010. ISSN 00262714.

http://files.vogel.de/vogelonline/pdfarticles/ep/themen/elektronikmanagement/projektqualitaetsmanagement/articles/242243/242243.pdf
http://files.vogel.de/vogelonline/pdfarticles/ep/themen/elektronikmanagement/projektqualitaetsmanagement/articles/242243/242243.pdf
http://www.automotive-spin.it/uploads/8/8W_favaro.pdf
http://www.automotive-spin.it/uploads/8/8W_favaro.pdf
http://www.favaro.net/john/RESAFE2009/results/RESAFE2009%20Intecs%20ikv%20object%20security.pdf
http://www.favaro.net/john/RESAFE2009/results/RESAFE2009%20Intecs%20ikv%20object%20security.pdf
http://am.delphi.com/pdf/techpapers/2000-01-1052.pdf
http://am.delphi.com/pdf/techpapers/2000-01-1052.pdf
http://j-l-dufour.voila.net/05_AAET_article.pdf
http://j-l-dufour.voila.net/05_AAET_article.pdf
http://delphi.com/pdf/techpapers/2006-01-0840.pdf
http://delphi.com/pdf/techpapers/2006-01-0840.pdf
http://uvka.ubka.uni-karlsruhe.de/shop/download/1000007763

BIBLIOGRAPHY 144

[33] Eldon G. Leaphart, Barbara J. Czerny, Joseph G. D’Ambrosio, Christopher L. Den-
linger, and Deron Littlejohn. Survey of Software Failsafe Techniques for Safety-
Critical Automotive Applications. In 2005 SAE World Congress, page pp. 16. SAE
International, April 11-14 2005. URL http://delphi.com/pdf/techpapers/2005

-01-0779.pdf. SAE Technical Paper 2005-01-0779. Last accessed 2012-08-10.

[34] Simon Brewerton, Rolf Schneider, and Denis Eberhard. Implementation of a Basic
Single-Microcontroller Monitoring Concept for Safety Critical Systems on a Dual-
Core Microcontroller. SAE Technical Paper 2007-01-1486, April 2007.

[35] Josef Börcsök. Models to calculate Safety and Reliability Parameters for Embedded
Systems. In ICAT 2009. XXII International Symposium on Information, Commu-
nication and Automation Technologies, 2009., pages 1–8, 2009.

[36] Ashraf Armoush. Design Patterns for Safety-Critical Embedded Systems. Phd the-
sis, Embedded Software Laboratory – RWTH Aachen University, June 2010. URL
http://aib.informatik.rwth-aachen.de/2010/2010-13.pdf. AIB-2010-13. Last
accessed 2012-08-13.

[37] Arbeitskreis EGAS. Standardisiertes E-Gas Überwachungskonzept für Ben-
zin und Diesel Motorsteuerungen. Version 5.5, May 16th 2013. URL
http://www.iav.com/publikationen/technische-veroeffentlichungen/e

-gas-monitoring-concepts. Last accessed 2013-06-11.

[38] Arbeitskreis EGAS. Standardized ETC Monitoring Concept for Gasoline and Diesel
Engine Control Systems. Version 5.5, May 16th 2013. URL http://www.iav.co

m/en/publications/technical-publications/etc-monitoring-concepts. Last
accessed 2013-06-11.

[39] Thomas Zurawka and Joerg Schäuffele. Verfahren zur Überprüfung der Sicherheit
und Zuverlässigkeit softwarebasierter elektronischer Systeme. Robert Bosch GmbH,
International Patent No. WO2005003972, January 2005. URL http://worldwid

e.espacenet.com/publicationDetails/biblio?CC=WO&NR=2005003972. Last ac-
cessed 2012-10-24.

[40] Frank Bederna and Thomas Zeller. Verfahren und Vorrichtung zur Steuerung
der Antriebseinheit eines Fahrzeugs. Robert Bosch GmbH, German Patent No.
DE4438714, May 1996. URL http://worldwide.espacenet.com/publicationDet

ails/biblio?CC=DE&NR=4438714. Last accessed 2013-05-25.

[41] Christian Miedl. Verfahren zur Überprüfung einer Funktion einer Recheneinheit
und Anordnung mit zwei Recheneinheiten. Continental Automotive GmbH, Ger-
man Patent No. DE102009023112, December 2012. URL http://worldwide.espa

cenet.com/publicationDetails/biblio?CC=DE&NR=102009023112. Last accessed
2012-10-01.

[42] Torsten Bauer. Verfahren und Vorrichtung zur gegenseitigen Überwachung von
Steuereinheiten. Robert Bosch GmbH, German Patent No. DE19933086, January
2001. URL http://worldwide.espacenet.com/publicationDetails/biblio?CC

=DE&NR=19933086. Last accessed 2013-06-04.

http://delphi.com/pdf/techpapers/2005-01-0779.pdf
http://delphi.com/pdf/techpapers/2005-01-0779.pdf
http://aib.informatik.rwth-aachen.de/2010/2010-13.pdf
http://www.iav.com/publikationen/technische-veroeffentlichungen/e-gas-monitoring-concepts
http://www.iav.com/publikationen/technische-veroeffentlichungen/e-gas-monitoring-concepts
http://www.iav.com/en/publications/technical-publications/etc-monitoring-concepts
http://www.iav.com/en/publications/technical-publications/etc-monitoring-concepts
http://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2005003972
http://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2005003972
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=4438714
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=4438714
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=102009023112
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=102009023112
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=19933086
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=19933086

BIBLIOGRAPHY 145

[43] Wolfgang Haas, Andreas Frank, and Thomas Meier. System und Verfahren zur
Überwachung einer Einrichtung zum Messen, Steuern und Regeln. Robert Bosch
GmbH, German Patent No. DE10018859, October 2001. URL http://worldwide.

espacenet.com/publicationDetails/biblio?CC=DE&NR=10018859. Last accessed
2012-10-24.

[44] Thorsten Juenemann, Bernd Doerr, Holger Niemann, and Per Hagman. Verfahren
zur Steuerung einer Fahrzeug-Antriebseinheit. Robert Bosch Gmbh, German Patent
No. DE102005040783, March 2007. URL http://worldwide.espacenet.com/publ

icationDetails/biblio?CC=DE&NR=102005040783. Last accessed 2013-06-11.

[45] Holger Niemann, Per Hagman, and Daniel Dammm. Verfahren zum Betreiben einer
Steuer- und/oder Regeleinrichtung, vorzugsweise für eine Antriebsmaschine eines
Kraftfahrzeugs. Robert Bosch GmbH, German Patent No. DE102005062873, July
2007. URL http://worldwide.espacenet.com/publicationDetails/biblio?CC

=DE&NR=102005062873. Last accessed 2012-10-24.

[46] Malte Jacobi and Edwin Böhm. Monitoring concept in a control device.
Conti Temic Microelectronic GmbH, US Patent No. US20120316728, December
2012. URL http://worldwide.espacenet.com/publicationDetails/biblio?CC

=US&NR=2012316728. Last accessed 2013-05-25.

[47] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der Fahrzeugtechnik.
ATZ/MTZ-Fachbuch. Vieweg, Wiesbaden, 2. edition, 2007. ISBN 9783834802354.

[48] Robert Bosch GmbH. Introduction to Automotive Bus Systems, October 2011.
URL http://users.nik.uni-obuda.hu/mobil/tantargyak/bir/bsc/2011/intr

o_farkas_external_2011_10_21.pdf. Last accessed 2013-09-26.

[49] Yolanda XI. Freescale Solutions for Advanced Driver Assistance, 2012. URL
http://www.freescale.com.cn/media/download/Freescale_ADAS_solutions%2

02012_customer.pdf. Last accessed 2013-04-16.

[50] Josef Noebauer. Is Ethernet the Rising Star for In-vehicle Networks? 16th IEEE
Inter. Conference on Emerging Technologies and Factory Automation (ETFA2011),
September 2011. URL http://www.iestcfa.org/presentations/etfa2011/Noe

bauer_Ethernet.pdf. Last accessed 2012-09-18.

[51] Florian Hartwich. CAN with Flexible Data-Rate. In Proceedings of the 13th iCC
2012 in Hambach Castle (Germany), pages 14–1–14–9. CAN in Automation e.V.,
March 2012. URL http://www.can-cia.org/fileadmin/cia/files/icc/13/hart

wich.pdf. Last accessed 2012-08-20.

[52] FreeRTOS – Market leading RTOS (Real Time Operating System) for embedded
systems supporting 33 microcontroller architectures. Website, 2013. URL http:

//www.freertos.org/. Last accessed 2013-02-13.

[53] About FreeRTOS. Website, 2013. URL http://www.freertos.org/RTOS.html.
Last accessed 2013-02-13.

http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=10018859
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=10018859
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=102005040783
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=102005040783
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=102005062873
http://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=102005062873
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2012316728
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2012316728
http://users.nik.uni-obuda.hu/mobil/tantargyak/bir/bsc/2011/intro_farkas_external_2011_10_21.pdf
http://users.nik.uni-obuda.hu/mobil/tantargyak/bir/bsc/2011/intro_farkas_external_2011_10_21.pdf
http://www.freescale.com.cn/media/download/Freescale_ADAS_solutions%202012_customer.pdf
http://www.freescale.com.cn/media/download/Freescale_ADAS_solutions%202012_customer.pdf
http://www.iestcfa.org/presentations/etfa2011/Noebauer_Ethernet.pdf
http://www.iestcfa.org/presentations/etfa2011/Noebauer_Ethernet.pdf
http://www.can-cia.org/fileadmin/cia/files/icc/13/hartwich.pdf
http://www.can-cia.org/fileadmin/cia/files/icc/13/hartwich.pdf
http://www.freertos.org/
http://www.freertos.org/
http://www.freertos.org/RTOS.html

BIBLIOGRAPHY 146

[54] Phillip A. Laplante. Real-time systems design and analysis. Wiley, Hoboken, N.J,
3. edition, 2004. ISBN 0471228559.

[55] Matthias Homann. OSEK. Betriebssystem-Standard für Automotive und Embedded
Systems. mitp-Verlag, Bonn, 2. edition, 2005. ISBN 9783826615528.

[56] Eugen Brenner. Echtzeit-Betriebssysteme. Entwurf von Echtzeitsystemen, 1. Teil,
November 2012. URL https://www.iti.tugraz.at/cms/index.php?option=com

_phocadownload&view=category&download=130:entwurfechtzeitsystemeteil

1&id=15:entwurf-von-echtzeitsystemen&Itemid=69. Last accessed 2013-02-15.

[57] Eugen Brenner. Echtzeit-Betriebssysteme. Entwurf von Echtzeitsystemen, 4. Teil,
November 2012. URL https://www.iti.tugraz.at/cms/index.php?option=com

_phocadownload&view=category&download=133:entwurfechtzeitsystemeteil

4&id=15:entwurf-von-echtzeitsystemen&Itemid=69. Last accessed 2013-02-15.

[58] Peter Mandl. Grundkurs Betriebssysteme. Studium. Springer Vieweg, Wiesbaden,
3. edition, 2013. ISBN 9783834818973.

[59] Richard Barry. Using the FreeRTOS Real Time Kernel: A Practical Guide – Stan-
dard Edition. Real Time Engineers Limited, Bristol, UK, 1. edition, 2010. ISBN
9781446169148.

[60] Richard Barry. FreeRTOS Reference Manual: API Functions and Configuration
Options. Real Time Engineers Limited, Bristol, UK, 2011.

[61] Richard Barry. FreeRTOS API Reference, 2013. URL http://www.freertos.org

/a00106.html. Last accessed 2013-02-27.

[62] Tom Barrett. Real-Time Operating Systems: On schedule. Micro
Technology Europe (MTE) Magazine, pages 26–29, August 2012. URL
http://www.embeddednews.co.uk/files/pdfs/104fd4bb-eec0-42b8-ad87-6

ccb58542520/mteaugust2012forweb.pdf. Last accessed 2013-03-01.

[63] Christopher Svec. FreeRTOS. The Architecture of Open Source Applications, Volume
II, 2012. URL http://www.aosabook.org/en/freertos.html. Last accessed 2013-
02-26.

[64] Rich Goyette. An Analysis and Description of the Inner Workings of the FreeRTOS
Kernel. Unpublished course work in SYSC5701: Operating System Methods for
Real-Time Applications, 2007. URL http://richardgoyette.com/Papers/FreeRT

OSPaper.pdf. Last accessed accessed 2013-02-28.

[65] Richard Barry. FreeRTOS Memory Management, 2012. URL http://www.freert

os.org/a00111.html. Last accessed 2013-03-04.

[66] Richard Barry. FreeRTOS-MPU – Memory Protection Unit (MPU) Support, 2012.
URL http://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html.
Last accessed 2013-03-04.

https://www.iti.tugraz.at/cms/index.php?option=com_phocadownload&view=category&download=130:entwurfechtzeitsystemeteil1&id=15:entwurf-von-echtzeitsystemen&Itemid=69
https://www.iti.tugraz.at/cms/index.php?option=com_phocadownload&view=category&download=130:entwurfechtzeitsystemeteil1&id=15:entwurf-von-echtzeitsystemen&Itemid=69
https://www.iti.tugraz.at/cms/index.php?option=com_phocadownload&view=category&download=130:entwurfechtzeitsystemeteil1&id=15:entwurf-von-echtzeitsystemen&Itemid=69
https://www.iti.tugraz.at/cms/index.php?option=com_phocadownload&view=category&download=133:entwurfechtzeitsystemeteil4&id=15:entwurf-von-echtzeitsystemen&Itemid=69
https://www.iti.tugraz.at/cms/index.php?option=com_phocadownload&view=category&download=133:entwurfechtzeitsystemeteil4&id=15:entwurf-von-echtzeitsystemen&Itemid=69
https://www.iti.tugraz.at/cms/index.php?option=com_phocadownload&view=category&download=133:entwurfechtzeitsystemeteil4&id=15:entwurf-von-echtzeitsystemen&Itemid=69
http://www.freertos.org/a00106.html
http://www.freertos.org/a00106.html
http://www.embeddednews.co.uk/files/pdfs/104fd4bb-eec0-42b8-ad87-6ccb58542520/mteaugust2012forweb.pdf
http://www.embeddednews.co.uk/files/pdfs/104fd4bb-eec0-42b8-ad87-6ccb58542520/mteaugust2012forweb.pdf
http://www.aosabook.org/en/freertos.html
http://richardgoyette.com/Papers/FreeRTOSPaper.pdf
http://richardgoyette.com/Papers/FreeRTOSPaper.pdf
http://www.freertos.org/a00111.html
http://www.freertos.org/a00111.html
http://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html

BIBLIOGRAPHY 147

[67] Richard Barry. FreeRTOS-MPU Specific Functions, 2012. URL http://www.free

rtos.org/FreeRTOS-MPU-specific.html. Last accessed 2013-03-04.

[68] Richard Barry. FreeRTOS Blocking on Multiple RTOS Objects, 2013. URL ht

tp://www.freertos.org/Pend-on-multiple-rtos-objects.html. Last accessed
2013-03-04.

[69] Richard Barry. FreeRTOS Queue Set API Functions, 2013. URL http://www.free

rtos.org/RTOS-queue-sets.html. Last accessed 2013-03-04.

[70] Richard Barry. FreeRTOS Run Time Statistics, 2012. URL http://www.freertos

.org/rtos-run-time-stats.html. Last accessed 2013-03-04.

[71] Richard Barry. Tickless Low power features in FreeRTOS, 2012. URL http://ww

w.freertos.org/low-power-tickless-rtos.html. Last accessed 2013-03-06.

[72] Richard Barry. FreeRTOS Trace Hook Macros, 2012. URL http://www.freertos

.org/rtos-trace-macros.html. Last accessed 2013-03-04.

[73] Martin Schmidt, Marcus Rau, Ekkehard Helmig, and Bernhard Bauer. Functional
Safety – Dealing with Independency, Legal Framework Conditions and Liability
Issues. Professional article, 2011. URL http://www.sgs-tuev-saar.com/pdf/Ar

ticle-ISO-26262-Law-08-2011.pdf. Last accessed 2013-07-16.

[74] Stefan Teuchert. ISO 26262 – Fluch oder Segen? ATZelektronik, 7(6):pp 410–415,
December 1st 2012. doi: 10.1365/s35658-012-0223-x. URL http://www.springer

link.com/index/10.1365/s35658-012-0223-x.

[75] Stefan Teuchert. ISO 26262 – Blessing or Curse? ATZelektronik worldwide, 7(6):pp
4–9, October 1st 2012. doi: 10.1365/s38314-012-0128-8. URL http://link.sprin

ger.com/article/10.1365/s38314-012-0128-8.

[76] Simon Fürst. ISO 26262 and AUTOSAR. Requirements and Solutions
for Safety Related Software. 5th Vector Congress, December 2010.
URL https://www.vector.com/portal/medien/cmc/events/commercial_event

s/VectorCongress_2010/AUTOSAR_2_Fuerst_Lecture.pdf. Last accessed 2013-
07-29.

[77] Rolf Schneider, Wolfgang Brandstaetter, Marc Born, Olaf Kath, Tobias Wenzel,
Rafael Zalman, and Johann Mayer. Safety Element out of Context – A Practical
Approach. SAE Technical Paper 2012-01-0033, April 16th 2012.

[78] Simon P. Brewerton, Natalia Willey, Swapnil Gandhi, Thorsten Rosenthal, Claus
Stellwag, and Matthieu Lemerre. Demonstration of Automotive Steering Column
Lock using Multicore AutoSAR R© Operating System. SAE Technical Paper 2012-
01-0031, April 16th 2012. URL http://delphi.com/pdf/techpapers/2012-01-0

031.pdf. Last accessed 2013-09-08.

[79] Mike Ellims, Helen Monkhouse, and Angus Lyon. ISO 26262: Experience ap-
plying part 3 to an in-wheel electric motor. In 6th IET International System

http://www.freertos.org/FreeRTOS-MPU-specific.html
http://www.freertos.org/FreeRTOS-MPU-specific.html
http://www.freertos.org/Pend-on-multiple-rtos-objects.html
http://www.freertos.org/Pend-on-multiple-rtos-objects.html
http://www.freertos.org/RTOS-queue-sets.html
http://www.freertos.org/RTOS-queue-sets.html
http://www.freertos.org/rtos-run-time-stats.html
http://www.freertos.org/rtos-run-time-stats.html
http://www.freertos.org/low-power-tickless-rtos.html
http://www.freertos.org/low-power-tickless-rtos.html
http://www.freertos.org/rtos-trace-macros.html
http://www.freertos.org/rtos-trace-macros.html
http://www.sgs-tuev-saar.com/pdf/Article-ISO-26262-Law-08-2011.pdf
http://www.sgs-tuev-saar.com/pdf/Article-ISO-26262-Law-08-2011.pdf
http://www.springerlink.com/index/10.1365/s35658-012-0223-x
http://www.springerlink.com/index/10.1365/s35658-012-0223-x
http://link.springer.com/article/10.1365/s38314-012-0128-8
http://link.springer.com/article/10.1365/s38314-012-0128-8
https://www.vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2010/AUTOSAR_2_Fuerst_Lecture.pdf
https://www.vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2010/AUTOSAR_2_Fuerst_Lecture.pdf
http://delphi.com/pdf/techpapers/2012-01-0031.pdf
http://delphi.com/pdf/techpapers/2012-01-0031.pdf

BIBLIOGRAPHY 148

Safety Conference 2011, pages 1–8, Birmingham UK, September 2011. URL
http://skicambridge.com/papers/IET_2012.pdf. Last accessed 2012-11-21.

[80] SAE International. 2012 Formula SAE R© Rules, September 2011. URL http://www.

fsaeonline.com/content/2012_FSAE_Rules_Version_90111K.pdf. Last accessed
accessed 2013-09-26.

[81] Formula Student Germany. Formula Student Electric Rules 2012. Version 1.0.1,
March 2012. URL http://www.formulastudent.de/uploads/media/FSE_Rules_

2012_v1.0.1.pdf. Last accessed 2012-11-06.

[82] Huw C. Davies and B. Gugliotta. Investigating the injury risk in frontal impacts
of Formula Student cars: a computer-aided engineering analysis. In Proceedings of
the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
2012, pages 181–193. SAGE Publications, September 15th 2011.

[83] David Rising, Jason Kane, Nick Vernon, Joseph Adkins, Craig Hoff,
and Janet Brelin-Fornari. Analysis of a Frontal Impact of a Formula
SAE Vehicle. Automotive Testing Expo North America, 2006. URL
http://users.telenet.be/AudiR8/Analysis%20of%20a%20Frontal%20Impa

ct%20of%20a%20Formula%20SAE%20Vehicle.pdf. Last accessed 2012-11-27.

[84] Witchawut Pumchaloen, Rachan Chumueang, Apiwat Kialon, and Chawin Chan-
tharasenawong. Assessment of Student Formula driver’s safety through optimiza-
tion of impact attenuator sizing. The 7th International Conference on Automo-
tive Engineering (ICAE-7), Bangkok, Thailand, March 28th–April 1st 2011. URL
http://www.drchawin.com/FTPdrive/Publications/ICAE-7.pdf. Last accessed
2012-11-27.

[85] Steve Hartley, Ireri Ibarra, and Gunwant Dhadyalla. Functional Safety & Diag-
nostics of Hybrid Vehicles. Regenerative Braking & Vehicle Supervisory Control
Dissemination Event, October 27th 2011. URL http://www2.warwick.ac.uk

/fac/sci/wmg/research/lcvtp/documents/presentations/lcvtp072-ws6diss

eminationeventfunctionalsafetyanddiagnosticsfinalversion_3.pdf. Last
accessed 2013-09-05.

[86] Bernhard Kaiser. Approaches Towards Reusable Safety Concepts. VDA Automotive
SYS Conference 2012, May 15th-16th 2012. URL http://www.berner-mattner.c

om/cms/upload/pdf/Praesentationen/BernerMattner_Vortrag_VDA_2012.pdf.
Last accessed 2013-09-17.

[87] Robert Bosch GmbH. CAN Specification Version 2.0B, 1991. URL http://www.bosc

h-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf. Last accessed
2013-09-26.

[88] Robert Bosch GmbH. CAN (Controller Area Network), September 2011.
URL http://users.nik.uni-obuda.hu/mobil/tantargyak/bir/bsc/2011/_CAN

_OE_Babosa_2011_11_14.pdf. Last accessed 2013-09-26.

http://skicambridge.com/papers/IET_2012.pdf
http://www.fsaeonline.com/content/2012_FSAE_Rules_Version_90111K.pdf
http://www.fsaeonline.com/content/2012_FSAE_Rules_Version_90111K.pdf
http://www.formulastudent.de/uploads/media/FSE_Rules_2012_v1.0.1.pdf
http://www.formulastudent.de/uploads/media/FSE_Rules_2012_v1.0.1.pdf
http://users.telenet.be/AudiR8/Analysis%20of%20a%20Frontal%20Impact%20of%20a%20Formula%20SAE%20Vehicle.pdf
http://users.telenet.be/AudiR8/Analysis%20of%20a%20Frontal%20Impact%20of%20a%20Formula%20SAE%20Vehicle.pdf
http://www.drchawin.com/FTPdrive/Publications/ICAE-7.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/research/lcvtp/documents/presentations/lcvtp072-ws6disseminationeventfunctionalsafetyanddiagnosticsfinalversion_3.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/research/lcvtp/documents/presentations/lcvtp072-ws6disseminationeventfunctionalsafetyanddiagnosticsfinalversion_3.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/research/lcvtp/documents/presentations/lcvtp072-ws6disseminationeventfunctionalsafetyanddiagnosticsfinalversion_3.pdf
http://www.berner-mattner.com/cms/upload/pdf/Praesentationen/BernerMattner_Vortrag_VDA_2012.pdf
http://www.berner-mattner.com/cms/upload/pdf/Praesentationen/BernerMattner_Vortrag_VDA_2012.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://users.nik.uni-obuda.hu/mobil/tantargyak/bir/bsc/2011/_CAN_OE_Babosa_2011_11_14.pdf
http://users.nik.uni-obuda.hu/mobil/tantargyak/bir/bsc/2011/_CAN_OE_Babosa_2011_11_14.pdf

BIBLIOGRAPHY 149

[89] AUTOSAR development partnership. AUTOSAR Specification of SW-C End-
to-End Communication Protection Library. V2.0.0 R4.0 Rev 3, December 21th
2011. URL http://www.autosar.org/download/R4.0/AUTOSAR_SWS_E2ELibrary

.pdf. Last accessed 2013-09-26.

[90] William Fordham Cooper. Electrical control of dangerous machinery and processes.
Electrical Engineers – Part II: Power Engineering, Journal of the Institution of, 94
(39):216–232, June 1947.

[91] ISO 13850:2006 - Safety of machinery - Emergency stop - Principles for design.
International Standard, May 25th 2008.

[92] Infineon Technologies AG. XC2300 and CIC61508 – Cost-Optimized Safety Comput-
ing Platform. Product Brief, 2012. URL http://www.infineon.com/dgdl/Safety

-Computing-Platform-XC2300-CIC61508-Product-Brief.pdf?folderId=db3a

304317a748360117f45a9c863e84&fileId=db3a3043353fdc16013543303497315d.
Last accessed 2013-10-03.

[93] Infineon Technologies AG. Infineon safety computing platform for ISO26262 compli-
ant motor control. Presentation, 2011. URL http://www.infineon-ecosystem.org

/download/solution.php?act=down&topic=3&item=19. Last accessed 2012-10-19.

[94] Infineon Technologies AG. Infineon safety computing platform scalable platform up
to ASIL-D. Presentation, 2011. URL http://www.infineon-ecosystem.org/dow

nload/schedule.php?act=detail&item=93. Last accessed 2013-10-03.

[95] Hitex (UK) Ltd. XC2000 For ASIL-B Configuration Concept, 2012. URL
http://www.hitex.com/fileadmin/uk-files/downloads/CIC%20Support/ASI

L-B(D)%20Configurations.pdf. Last accessed 2013-10-03.

[96] Infineon Technologies AG. XC2385A, XC2387A – 16/32-Bit Single-Chip Micro-
controller with 32-Bit Performance. Datasheet V2.1, 2011. URL http://www.in

fineon.com/dgdl/xc238xa_ds_v2+1_2011_07.pdf?folderId=db3a304412b4079

50112b409d4b00386&fileId=db3a3043353fdc16013557e024517b1e&ack=t. Last
accessed 2013-10-04.

[97] Infineon Technologies AG. TLE6368-G2 Multi-Voltage Processor Power Supply.
Datasheet V2.32, 2010. URL http://www.infineon.com/dgdl/TLE6368_G2_DS_

rev2+32.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a304

32239cccd01225a67e02b6c60&ack=t. Last accessed 2013-10-04.

[98] Infineon Technologies AG. CIC61508 – Functional Safety Companion Chip.
Datasheet V1.2, 2011. URL http://www.infineon.com/dgdl/CIC61508_ds_v1.2

_2011_06.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a30

432f29829e012f449b02301f1f&ask=t. Last accessed 2013-10-04.

[99] Infineon Technologies AG. PROFET R© BTS 6163 D Smart Highside Power Switch.
Datasheet V1.0, 2007. URL http://www.infineon.com/dgdl/BTS6163D_DS_v10.

pdf?folderId=db3a304314dca389011537739e37155f&fileId=db3a3043183a955

50118606cdf2336a2&ack=t. Last accessed 2013-10-06.

http://www.autosar.org/download/R4.0/AUTOSAR_SWS_E2ELibrary.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_E2ELibrary.pdf
http://www.infineon.com/dgdl/Safety-Computing-Platform-XC2300-CIC61508-Product-Brief.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a3043353fdc16013543303497315d
http://www.infineon.com/dgdl/Safety-Computing-Platform-XC2300-CIC61508-Product-Brief.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a3043353fdc16013543303497315d
http://www.infineon.com/dgdl/Safety-Computing-Platform-XC2300-CIC61508-Product-Brief.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a3043353fdc16013543303497315d
http://www.infineon-ecosystem.org/download/solution.php?act=down&topic=3&item=19
http://www.infineon-ecosystem.org/download/solution.php?act=down&topic=3&item=19
http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=93
http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=93
http://www.hitex.com/fileadmin/uk-files/downloads/CIC%20Support/ASIL-B(D)%20Configurations.pdf
http://www.hitex.com/fileadmin/uk-files/downloads/CIC%20Support/ASIL-B(D)%20Configurations.pdf
http://www.infineon.com/dgdl/xc238xa_ds_v2+1_2011_07.pdf?folderId=db3a304412b407950112b409d4b00386&fileId=db3a3043353fdc16013557e024517b1e&ack=t
http://www.infineon.com/dgdl/xc238xa_ds_v2+1_2011_07.pdf?folderId=db3a304412b407950112b409d4b00386&fileId=db3a3043353fdc16013557e024517b1e&ack=t
http://www.infineon.com/dgdl/xc238xa_ds_v2+1_2011_07.pdf?folderId=db3a304412b407950112b409d4b00386&fileId=db3a3043353fdc16013557e024517b1e&ack=t
http://www.infineon.com/dgdl/TLE6368_G2_DS_rev2+32.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a30432239cccd01225a67e02b6c60&ack=t
http://www.infineon.com/dgdl/TLE6368_G2_DS_rev2+32.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a30432239cccd01225a67e02b6c60&ack=t
http://www.infineon.com/dgdl/TLE6368_G2_DS_rev2+32.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a30432239cccd01225a67e02b6c60&ack=t
http://www.infineon.com/dgdl/CIC61508_ds_v1.2_2011_06.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a30432f29829e012f449b02301f1f&ask=t
http://www.infineon.com/dgdl/CIC61508_ds_v1.2_2011_06.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a30432f29829e012f449b02301f1f&ask=t
http://www.infineon.com/dgdl/CIC61508_ds_v1.2_2011_06.pdf?folderId=db3a304317a748360117f45a9c863e84&fileId=db3a30432f29829e012f449b02301f1f&ask=t
http://www.infineon.com/dgdl/BTS6163D_DS_v10.pdf?folderId=db3a304314dca389011537739e37155f&fileId=db3a3043183a95550118606cdf2336a2&ack=t
http://www.infineon.com/dgdl/BTS6163D_DS_v10.pdf?folderId=db3a304314dca389011537739e37155f&fileId=db3a3043183a95550118606cdf2336a2&ack=t
http://www.infineon.com/dgdl/BTS6163D_DS_v10.pdf?folderId=db3a304314dca389011537739e37155f&fileId=db3a3043183a95550118606cdf2336a2&ack=t

BIBLIOGRAPHY 150

[100] Infineon Technologies AG. TLE6250 High Speed CAN-Transceiver. Datasheet
V4.0, 2008. URL http://www.infineon.com/dgdl/TLE6250G_DS_rev40_Green%

5B1%5D.pdf?folderId=db3a30431ed1d7b2011edadb13813703&fileId=db3a3043

1ed1d7b2011edadbb20d3704&ack=t. Last accessed 2013-10-06.

[101] Bender GmbH & Co. KG. ISOMETER R© IR155-3203/IR155-3204 – Insulation mon-
itoring device (IMD) for unearthed DC drive systems (IT systems) in electric vehi-
cles. Datasheet V004, 2013. URL http://www.bender-emobility.com/fileadmin

/products/doc/iso-F1-IR155-32xx-V004-electric-vehicles_DB_en.pdf. Last
accessed 2013-10-07.

[102] Infineon Technologies AG. C166S V2 – 16-Bit Microcontroller. User’s Manual V1.7,
2001. URL http://www.infineon.com/dgdl/c166sv2um.pdf?folderId=db3a304

412b407950112b41d4e492fe2&fileId=db3a304412b407950112b41d4ea32fe3&ac

k=t. Last accessed 2013-10-04.

[103] Altium Limited. TASKING VX-toolset for C166 v3.1 User Guide, October 2012.
URL http://tasking.com/support/c166/c166_user_guide_v3.1.pdf. Last ac-
cessed 2013-03-07.

[104] Infineon Technologies AG. XC2300A Derivatives – 16/32-Bit Single-Chip
Microcontroller with 32-Bit Performance. User’s Manual V2.0, 2009. URL
http://www.infineon.com/dgdl/xc2300a_um_v2.0_2009_03.pdf?folderId=db3

a30431375fb1a0113864e0cc701b6&fileId=db3a304320d39d590120f681ca126a3

b&sId=db3a30433d346a2d013d58f943a3183a. Last accessed 2013-10-04.

[105] Richard Barry. FreeRTOS Porting Guide, 2012. URL http://www.freertos.org

/FreeRTOS-porting-guide.html. Last accessed 2013-03-07.

[106] Mahindra Satyam. Commercial vehicles – Functional safety implementation process
and challenges. Presentation, 2013. URL https://s3.amazonaws.com/automotiv

eworld/events/cvm-india-2013/1-3-Dr-Chitra-Rajan-Mahindra-Satyem.pdf.
Last accessed 2013-10-08.

[107] Verband der Automobilindustrie (VDA). Auto & Normung NAAutomobil Jahres-
bericht 2012, 2012. URL http://www.vda.de/de/downloads/1113/. Last accessed
2013-10-08.

[108] Infineon Technologies AG. MC-ISAR XC2000. Product Sheet, 2013. URL
http://www.infineon.com/cms/de/product/microcontrollers/development-t

ools-software-and-kits/embedded-software-solutions/infineon-autosar

-software/product-sheet-mc-isar-xc2000/channel.html?channel=db3a304

329a0f6ee0129f561e79530ce. Last accessed 2013-10-08.

[109] Georg Macher. Drive-by-Wire System eines Formula Student Electric Boliden. Mas-
ter thesis, Graz University of Technology, Graz, 2010.

http://www.infineon.com/dgdl/TLE6250G_DS_rev40_Green%5B1%5D.pdf?folderId=db3a30431ed1d7b2011edadb13813703&fileId=db3a30431ed1d7b2011edadbb20d3704&ack=t
http://www.infineon.com/dgdl/TLE6250G_DS_rev40_Green%5B1%5D.pdf?folderId=db3a30431ed1d7b2011edadb13813703&fileId=db3a30431ed1d7b2011edadbb20d3704&ack=t
http://www.infineon.com/dgdl/TLE6250G_DS_rev40_Green%5B1%5D.pdf?folderId=db3a30431ed1d7b2011edadb13813703&fileId=db3a30431ed1d7b2011edadbb20d3704&ack=t
http://www.bender-emobility.com/fileadmin/products/doc/iso-F1-IR155-32xx-V004-electric-vehicles_DB_en.pdf
http://www.bender-emobility.com/fileadmin/products/doc/iso-F1-IR155-32xx-V004-electric-vehicles_DB_en.pdf
http://www.infineon.com/dgdl/c166sv2um.pdf?folderId=db3a304412b407950112b41d4e492fe2&fileId=db3a304412b407950112b41d4ea32fe3&ack=t
http://www.infineon.com/dgdl/c166sv2um.pdf?folderId=db3a304412b407950112b41d4e492fe2&fileId=db3a304412b407950112b41d4ea32fe3&ack=t
http://www.infineon.com/dgdl/c166sv2um.pdf?folderId=db3a304412b407950112b41d4e492fe2&fileId=db3a304412b407950112b41d4ea32fe3&ack=t
http://tasking.com/support/c166/c166_user_guide_v3.1.pdf
http://www.infineon.com/dgdl/xc2300a_um_v2.0_2009_03.pdf?folderId=db3a30431375fb1a0113864e0cc701b6&fileId=db3a304320d39d590120f681ca126a3b&sId=db3a30433d346a2d013d58f943a3183a
http://www.infineon.com/dgdl/xc2300a_um_v2.0_2009_03.pdf?folderId=db3a30431375fb1a0113864e0cc701b6&fileId=db3a304320d39d590120f681ca126a3b&sId=db3a30433d346a2d013d58f943a3183a
http://www.infineon.com/dgdl/xc2300a_um_v2.0_2009_03.pdf?folderId=db3a30431375fb1a0113864e0cc701b6&fileId=db3a304320d39d590120f681ca126a3b&sId=db3a30433d346a2d013d58f943a3183a
http://www.freertos.org/FreeRTOS-porting-guide.html
http://www.freertos.org/FreeRTOS-porting-guide.html
https://s3.amazonaws.com/automotiveworld/events/cvm-india-2013/1-3-Dr-Chitra-Rajan-Mahindra-Satyem.pdf
https://s3.amazonaws.com/automotiveworld/events/cvm-india-2013/1-3-Dr-Chitra-Rajan-Mahindra-Satyem.pdf
http://www.vda.de/de/downloads/1113/
http://www.infineon.com/cms/de/product/microcontrollers/development-tools-software-and-kits/embedded-software-solutions/infineon-autosar-software/product-sheet-mc-isar-xc2000/channel.html?channel=db3a304329a0f6ee0129f561e79530ce
http://www.infineon.com/cms/de/product/microcontrollers/development-tools-software-and-kits/embedded-software-solutions/infineon-autosar-software/product-sheet-mc-isar-xc2000/channel.html?channel=db3a304329a0f6ee0129f561e79530ce
http://www.infineon.com/cms/de/product/microcontrollers/development-tools-software-and-kits/embedded-software-solutions/infineon-autosar-software/product-sheet-mc-isar-xc2000/channel.html?channel=db3a304329a0f6ee0129f561e79530ce
http://www.infineon.com/cms/de/product/microcontrollers/development-tools-software-and-kits/embedded-software-solutions/infineon-autosar-software/product-sheet-mc-isar-xc2000/channel.html?channel=db3a304329a0f6ee0129f561e79530ce

Index

Symbols
3-level safety monitoring pattern, 17

A
accumulator containers, 57
ASIL decomposition, 12, 46
assumptions on item level, 31, 41
asymmetric processor architecture, 14, 53

B
Battery Management System, 34, 58
BMS, see Battery Management System
bus system, 42

C
change management, 12
concept phase, 32
configuration management, 12
context switch, 21, 65, 69
controllability, 84
critical section, 68

D
Development Interface Agreement, 12
DIA, see Development Interface Agreement
documentation, 12
driving situation, 34
dual processor architecture, 15

E
E-Gas architecture and safety concept, 17
electrical and/or electronic system, 84
E/E system, see Electrical and/or Electronic

system
emergency stop function, 45
ETC architecture and safety concept, see E-

Gas architecture and safety concept

F
failure rate, 84

FreeRTOSTM, 20
fixed priority preemptive, 25
interrupt service routine, 27
ISR, see interrupt service routine
memory manager, 28
memory protection unit, 29
MPU, see memory protection unit
mutex, 24
mutexes, 27
portable layer, 28
porting, 60
priority inheritance, 24
queue set, 29
queues, 27
round-robin, 25
run-time statistics, 29
scheduler, 24
semaphores, 27
software timers, 28
stack-overflow checking, 24
task arrival time, 25
task control block, 24
task priority, 24
task release time, 25
task stack, 24
task state change, 24
task state model, 23
TCB, see task control block
tick interrupt, 29, 70
tickless idle mode, 29
timer service task, 28
trace macros, 29

FSC, see functional safety concept
functional concept, 84
functional safety, 84
functional safety assessment, 9
functional safety concept, 40
functional safety requirements, 31, 41

151

INDEX 152

H
HAL, see Hardware Abstraction Layer
HARA, see hazard analysis and risk assess-

ment
Hardware Abstraction Layer, 20
harm, 84
hazard, 84
hazard analysis and risk assessment, 10, 35
hazard identification and classification, 35
hierarchy of standards, 6

I
IMD, see Insulation Monitoring Device
Infineon CIC61508, 54
Infineon XC2387A, 54
Insulation Monitoring Device, 58
interlock, 44, 57
interrupt, 67
interrupt service routine, 73, 74
inverter, 34
item, 84
item definition, 9, 33

L
lock-step processor architecture, 16

M
malfunctioning behaviour, 84
memory model, 61
Multiple-Stack Arrangement, 24
multitasking, 21

O
output controller, 55

P
priority-inversion, 24
Proven in Use, 12

R
rate-monotonic algorithm

bound on, 26
rate-monotonic theorem, 26
Real-time Operating System, 20

architecture, 20
context switch, 21
Hardware Abstraction Layer, 20
multitasking, 21

task, 21
task scheduler, 21
task state model, 21

Real-time system, 22
reliable end-to-end communication, 42
risk, 84
RTOS, see Real-time Operating System

S
safe state, 84
safety, 84

analysis, 12
case, 9
lifecycle, 9
plan, 9

Safety Element out of Context, 12, 31
safety goals, 39
safety mechanism, 46
safety supervisor, 54
SEooC, see Safety Element out of Context
severity, 84
situation analysis, 34
system stack, 61
system timer interrupt, 70

T
task, 21
task control block, 24
task prototype, 62
task scheduler, 21
task state model, 21
task’s context, 63
TCB, see task control block
technical safety requirements, 46

U
unreasonable risk, 84
user stack, 61

V
verification, 12

X
X-by-Wire, 34

Y
yield function, 69

	1 Introduction
	1.1 Background
	1.2 Motivation and Aim
	1.3 Organization of the Thesis

	2 State of the Art
	2.1 Automotive Embedded Systems
	2.2 Functional Safety
	2.2.1 History of Functional Safety and the IEC 61508
	2.2.2 Industry-/Application-specific Variants of the IEC 61508

	2.3 ISO 26262 Functional Safety for Road Vehicles
	2.3.1 Functional Safety according to ISO 26262
	2.3.2 Overview of the ISO 26262

	2.4 Automotive Hard- and Software Architectures
	2.5 The E-Gas Architecture and Safety Concept
	2.6 Automotive Bus Systems Overview
	2.7 FreeRTOS Operating System
	2.7.1 General RTOS Fundamentals
	2.7.2 Tasks and Scheduling
	2.7.3 Communication and Synchronization
	2.7.4 Software Timers
	2.7.5 Memory Management
	2.7.6 The Portable Layer
	2.7.7 Additional Features

	3 Design and Implementation
	3.1 Applicability of ISO 26262
	3.2 Development as Safety Element out of Context (SEooC)
	3.3 SEooC Concept Phase
	3.3.1 Item Definition
	3.3.2 Situation Analysis
	3.3.3 Hazard Analysis and Risk Assessment (HARA)
	3.3.4 Safety Goals
	3.3.5 Functional Safety Concept (FSC)

	3.4 SEooC Assumptions on Item Level
	3.4.1 Intended Functionality
	3.4.2 Safety Goals and Functional Safety Concept
	3.4.3 Bus System
	3.4.4 Communication with other devices
	3.4.5 Interlocks and Emergency Stop Function

	3.5 SEooC Product Development at System Level
	3.5.1 Technical Safety Requirements
	3.5.2 System Architecture Design

	3.6 SEooC Product Development at Hardware Level
	3.6.1 Hardware Architectural Design
	3.6.2 Main Processor and Asymmetric Processor
	3.6.3 Output Controller

	3.7 A Formula Student Electric Safety ECU Platform
	3.8 Porting FreeRTOS to the Infineon C166S v2 Core
	3.8.1 Using the C166S V2 Architecture
	3.8.2 The Task Stack(s)
	3.8.3 Task Context Switching Primitives
	3.8.4 Interrupts, Interrupt Nesting, and Critical Section Management
	3.8.5 Yield Function and System Timer Interrupt
	3.8.6 Starting/Stopping the OS
	3.8.7 Interrupt Handling
	3.8.8 Demo Application

	4 Conclusions and Outlook
	4.1 Conclusions
	4.2 Outlook

	A Acronyms and Abbreviations
	B ISO 26262
	B.1 Detailed Overview of ISO 26262
	B.2 Essential vocabulary from ISO 26262 Part 1
	B.3 Tables from ISO 26262 Part 3
	B.3.1 Classes of severity
	B.3.2 Classes of probability of exposure
	B.3.3 Classes of controllability
	B.3.4 ASIL determination

	C Safety Element out of Context Tables
	C.1 Situation Analysis
	C.2 Hazard Identification and Classification
	C.3 Safety Goals
	C.4 Functional Safety Concept
	C.5 Technical Safety Concept for ECU as SEooC

	D Rules of the Formula Student/FSAE Series
	D.1 Formula SAE® Rules
	D.1.1 Rule A1.2 Vehicle Design Objectives
	D.1.2 Rule B11.3.1 The cockpit-mounted master switch
	D.1.3 Rule C3.6.1.a General Requirements
	D.1.4 Rule D3.1 Operating Conditions
	D.1.5 Rule D7.2.2 Autocross Course Specifications & Speeds
	D.1.6 Rule D8.6.1 Endurance Course Specifications & Speeds
	D.1.7 Rule D8.7 Endurance General Procedure

	D.2 Formula Student Electric Rules
	D.2.1 Rule 4.4.4 Brake Over-Travel Switch Function
	D.2.2 Rule 4.12.4 Torque Encoder (throttle pedal position sensor)
	D.2.3 Rule 4.12.5 Torque Encoder Plausibility Check
	D.2.4 Rule 7.2 Failure Modes and Effects Analysis (FMEA)
	D.2.5 Rule 7.7 Insulation Monitoring Device (IMD)
	D.2.6 Rule 7.13 Tractive-system-active light (TSAL)
	D.2.7 Rule 7.14 Shut Down Buttons
	D.2.8 Rule 7.15 Master Switches
	D.2.9 Rule 7.16 Inertia Switch
	D.2.10 Rule 7.17 Safety Circuit
	D.2.11 Rule 7.18 Activating the Tractive System
	D.2.12 Rule 7.23 Accumulator Insulation Relay(s) (AIR)
	D.2.13 Rule 7.24 Pre-Charge and Discharge Circuits
	D.2.14 Rule 7.26 Battery Management System (BMS)

	E C166S V2 Core
	E.1 Section 2.5.2.1 Addressing via Data Page Pointer DPP
	E.2 Section 2.5.5 The System Stack
	E.3 Section 2.6.5 Multiply and Divide Unit
	E.4 Section 3.3 DPRAM, Internal SRAM, and SFR Areas
	E.5 Section 3.5 Crossing Memory Boundaries
	E.6 Section 5.2.2 Saving the Status during Interrupt Service

	F Tasking VX-toolset for C166 v3.1
	F.1 Section 1.3. Accessing Memory
	F.1.1 Section 1.3.2. Memory Models

	F.2 Section 1.12.1 Calling Convention
	F.2.1 Parameter passing
	F.2.2 Stack usage

	F.3 Section 1.12.2 Register Usage

	G FreeRTOS Port Files
	G.1 Linker Script Language File project.lsl
	G.2 Portable Layer Files
	G.2.1 portmacro.h
	G.2.2 port.c

	G.3 Port Configuration File FreeRTOSConfig.h

	Bibliography
	Index

