Photovoltaik-Gewächshäuser: eine wirtschaftlich-technische Untersuchung

Masterarbeit

Institut für Elektrische Anlagen TU Graz

vorgelegt von DI Dr.techn. Stefan Hackl

> Betreuer DI Thomas Wieland

Begutachter Univ.-Prof. DI Dr.techn. Lothar Fickert

Institutsleiter: Univ.-Prof. DI Dr.techn. Lothar Fickert

A - 8010 Graz, Inffeldgasse 18-I Telefon: (+43 316) 873 - 7551 Telefax: (+43 316) 873 - 7553 http://www.ifea.tugraz.at http://www.tugraz.at

Graz im September 2013

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

 $Graz, am\ 30.09.2013$

Kurzfassung

Aufgrund des ständig steigenden Energiebedarfs einerseits und der derzeitigen politischen Fördersituation andererseits, ist die Nachfrage nach Photovoltaikanlagen so groß wie noch nie. Es entstehen sehr viele dezentrale Erzeugungsanlagen auf Freiflächen und auf Dächern. Spezielle Photovoltaikmodule (sogenannte Glas-Glas-Module) ermöglichen die Montage einer Photovoltaikanlage in Glasfassaden und -dächern, die sich im Sinne der Gebäudearchitektur anbieten.

Es gibt jedoch Bemühungen, hier einen Schritt weiter zu gehen und eine Photovoltaik-Anlage auf dem Dach eines Gewächshauses zu errichten. Diese Symbiose der doppelten Sonnenenergienutzung soll wirtschaftlich und ökologisch eine Verbesserung einer herkömmlichen Photovoltaikanlage darstellen. Allerdings wurden bisher Untersuchungen an Anlagen dieser Art weder in ökonomischer noch in ökologischer Hinsicht veröffentlicht. Dabei beeinflussen sich die Photovoltaik-Anlage und das Gewächshaus gegenseitig: die Photovoltaik-Anlage beschattet die Pflanzen im Gewächshaus, während die Photovoltaikmodule schlecht hinterlüftet sind (wirkt sich negativ auf den Wirkungsgrad der Module aus).

Ziel dieser Arbeit ist es, die möglichen Beeinflussungsfaktoren und gegenseitigen Auswirkungen zu untersuchen und dabei die Frage zu klären, ob eine Gewächshaus- Photovoltaikanlage aus ökonomischer und ökologischer Sicht überhaupt sinnvoll ist.

Grundlage für die ökonomischen Untersuchungen bildet dabei die dynamische Investitionsrechnung. Diese berücksichtigt die Verzinsung der Einnahmen und Ausgaben im Laufe der Betriebsdauer. Die Ergebnisse hängen natürlich stark von den getroffenen Annahmen für die zukünftige Verzinsung, sowie für die zukünftige Entwicklung gewisser Preisentwicklungen, wie z.B. Strompreis, Gemüsepreis oder Gaspreis ab.

Die ökologischen Untersuchungen basieren auf der CO₂-Bilanz sowie auf der Energierücklaufzeit der verwendeten PV-Module. Diese beiden Methoden sind gängige Bewertungen für die Umweltauswirkungen eines Systems. Die CO₂-Bilanz stellt die verursachten CO₂-Emissionen den eingesparten Emissionen gegenüber. Es wird erwartet, dass die angebaute Gemüseart und dadurch die Art und Menge der Düngung ausschlagkräftig für die CO₂-Bilanz sein wird. Die Energierücklaufzeit bewertet jene Zeit, in der die zur Errichtung einer Anlage aufgewendete Energie wieder durch die PV-Anlage erzeugt wurde. Zuletzt wird in dieser Arbeit noch auf Methoden zur Bestimmung des Wirkungsgrads der Photovoltaik-Anlage eingegangen. Der Wirkungsgrad einer Photovoltaik-Anlage lässt sich durch Soll-Ist-Vergleich des Energieertrags ermitteln. Dabei wird in dieser Arbeit auf unterschiedliche Messmethoden für Einstrahlung und Zelltemperatur eingegangen und deren Vor- und Nachteile verdeutlicht.

Abstract

Due to the increasing energy demand on one hand and the current political support situation on the other hand the demand for photovoltaic systems is as great as never before. Numerous decentralized power plants are constructed in open spaces and on roofs. Special photovoltaic modules (so-called glass-glass modules) allow the installation of a photovoltaic system in glass roofs. This is often used in the sense of building architecture.

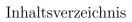
However, there are efforts to go one step further and to build a photovoltaic system on the roof of a greenhouse. This symbiosis of double solar energy use shall constitute an improvement to a conventional photovoltaic system regarding economics and for the environment. Studies about a system like this have been published neither in economic nor in ecological terms. Thereby the photovoltaic system and the greenhouse affect each other: the photovoltaic system shades the plants in the greenhouse, while the photovoltaic modules are poorly ventilated (which has a negative effect on the efficiency of the modules).

The aim of this work is to investigate the influencing factors and possible mutual effects and to clarify the question of whether a greenhouse photovoltaic system in meaningfull in an economic and as well as ecologic point of view.

The base for the economic analysis is the dynamic investment calculation. This takes into account the interest of revenue and expenses during the period of operation. Of course, the results strongly depend on the assumptions for future interest rates. Further assumptions are made for the future development of certain price developments, such as electricity price, vegetable price or gas price.

The ecological studies are based on the CO₂-balance and on the energy payback time. These two methods are usual measures for the environmental impact of a system. The CO₂-balance represents the caused CO₂-emissions compared to the saved emissions. It is expected that the cultivated vegetable species and thus the type and amount of fertilizer will be decisive for the CO₂-balance. The energy payback time describes the time which is required to generate the energy that has been spent in the construction of a plant.

Finally, methods for determining the efficiency of the photovoltaic system are discussed. The efficiency of a photovoltaic system can be determined by targed-performance comparison of the energy yield. This part also addresses different methods for measuring irradiation and temperature, and their advantages and disadvantages.


Inhaltsverzeichnis

Kι	ırzfas	sung		3
Αb	strac	:t		4
Inl	haltsv	erzeich	nnis	7
Αŀ	kürz	ungsvei	rzeichnis	8
1.	Einle	eitung		10
2.	Allg	emeine	Grundlagen	12
	2.1.	Photov	voltaik	12
		2.1.1.		12
			2.1.1.1. PV-Module	12
			2.1.1.2. Wechselrichter	13
		2.1.2.	Aufbau einer PV-Anlage	15
	2.2.	Gewäc	hshaus	17
		2.2.1.	Anbaufolge	17
		2.2.2.	Klimasteuerung	19
3.	Wirt	schaftl	ichkeit	23
	3.1.	Grund	lagen	23
	3.2.	Metho	den	27
		3.2.1.	Einnahmen aus der PV-Anlage	27
		3.2.2.	Einnahmen aus dem Gewächshaus	32
			3.2.2.1. Erntemenge Feldsalat	32
			3.2.2.2. Erntemenge Tomaten	33
			3.2.2.3. Erntemenge Gurken	33
			3.2.2.4. Marktpreise für Gemüse	34
		3.2.3.	Investitionskosten	37
		3.2.4.	Betriebskosten PV-Anlage	38
		3.2.5.	Betriebskosten Gewächshaus	38
			3.2.5.1. Beheizung	39
	3.3.	Ergebr	nisse	41
		3.3.1.	Sensitivitätsanalyse	41
		3.3.2.	Kapitalwert	45

			3.3.2.1.	Getrennte Betrachtung	
			3.3.2.2.	Volleinspeisung und Beheizung mit Gas	
			3.3.2.3.	Uberschusseinspeisung und Beheizung mit Gas	
			3.3.2.4.	Volleinspeisung und Beheizung mit Fernwärme	
			3.3.2.5.	Überschusseinspeisung und Beheizung mit Fernwärme	. 60
4.	CO_2	-Bilanz	ierung		64
	4.1.	Grund	llagen .		. 64
		4.1.1.	$\mathrm{CO}_2 ext{-Bil}$	anz	. 67
		4.1.2.	Energier	rücklaufzeit	. 68
	4.2.	Metho	den		. 70
		4.2.1.	PV-Anla	age	. 70
			4.2.1.1.	Emissionen bei der Herstellung	. 70
			4.2.1.2.	Eingesparte CO_2 -Emissionen	. 72
		4.2.2.		shaus	
			4.2.2.1.	Emissionen Gewächshausbau	
			4.2.2.2.	Emissionen Gärtnereibetrieb	. 73
			4.2.2.3.	Vermeidung Gärtnereibetrieb	
	4.3.	Ergebi			
		_	••	nz	
			4.3.1.1.	Gemüsebau	
			4.3.1.2.		
			4.3.1.3.	Gesamtanlage	
		4.3.2.		rücklaufzeit	
			4.3.2.1.		
			4.3.2.2.		
5.	Ene	rgieertı	agsmess	ung	86
		_	_		. 86
	5.2.		_		
		5.2.1.	Einstrah	ılung	. 87
		5.2.2.	Bestimn	nung der Zelltemperatur	. 90
				aturmessung	
			5.2.3.1.	NOCT-Methode	. 92
6.	Zusa	ammen	fassung		94
7.	Aus	blick			96
Lit	teratı	ırverze	ichnis		97
		J	zeichnis		100
Ta	belle	nverzei	ichnis		104

A. Heizgradtage	107
B. Sensitivitätsanalyse	114
C. Kapitalwertrechnung	128
D. Simulationsergebnisse	135
E. Datenblätter	141

Abkürzungsverzeichnis

$\Delta T_{Zelle,NOCT}$	Temperturunterschied Zelle - Umgebung bei NOCT-Bedingungungen $[^{\circ}\mathrm{C}]$
ΔT_{Zelle}	Temperturunterschied Zelle - Umgebung [°C]
\dot{Q}	Heizleistung [W]
η	Modulwirkungsgrad [%]
η_{gesamt}	nomineller Wirkungsgrad der gesamten Anlage
G_{NOCT}	Einstrahlung bei NOCT-Bedingungen [W/m²]
$HGT_{ti/th}$	Heizgradtage bei einer Innentemperatur ti und einer Heizgrenze th [°C]
t_a	Außentemperatur [°C]
t_i	Innentemperatur [°C]
$T_{U,NOCT}$	Umgebungstemperatur bei NOCT-Bedingungen [°C]
T_U	Umgebungstemperatur [°C]
$T_{Zelle,0}$	Zelltemperatur nachts (ohne Einstrahlung) [°C]
$T_{Zelle,NOCT}$	Nennbetriebszelltemperatur [°C]
T_{Zelle}	Zelltemperatur [°C]
$A_{GH}\ \dots\dots\dots$	Grundfläche des Gewächshauses [m ²]
$a_m\ \dots\dots\dots$	stöchiometrischer Faktor (Massenverhältnis) [kg $_{\rm CO2}/{\rm kg}_{\rm BS}$]
$a_n \ \dots \dots \dots$	stöchiometrischer Faktor (Molverhältnis) [$\mathrm{mol_{CO2}/mol_{BS}}$]
A _{PV}	gesamte Modulfläche der PV-Anlage[m ²]
	Ausgabe zum Zeitpunkt t
BWF	
E_{agen}	jährlich erzeugte Energie
E_{aoper}	jährlicher Energieaufwand für Betrieb, Wartung und Brennstoffbeschaffung
E _{EoL}	Primärenergieaufwand für Abbau und Entsorgung nach Ablauf der Lebensdauer
E_{inst}	Primärenergieaufwand für die Installation des Systems
E_{Ist}	Ist-Energieertrag
E_{manu}	Primärenergieaufwand für die Herstellung der Anlage

E _{mat}	Primärenergieaufwand für die Produktion der benötigten Mate-
	rialien
	(bei PV z.B. Silizium, Aluminium, Glas,)
	jährlicher Energieertrag der PV-Anlage [kWh]
E_{Soll}	
E_{trans}	Primärenergieaufwand für den Transport der genutzten Materia-
_	lien zum Standort
	Einnahme zum Zeitpunkt t
	Einnahmen aus der Volleinspeisung [€]
	Einnahmen aus der Überschusseinspeisung [€]
EPBT	Energy Pay-Back Time, Energierücklaufzeit
$f_{\mathrm{CO2},v} \ \dots \dots \dots$	spezifische Treibhausgasemissionen [kg CO ₂ /kWh]
G	solare Einstrahlung in Modulebene [kWh/(m ² a)]
GHG	gewichtete Treibhausgas-Emissionen [kg CO_{2eq}/kWh]
GWP	Global Warming Potential, Treibhaus potential [kg $\mathrm{CO}_{2\mathrm{e}}]$
$h_{u,m} \ \dots \dots \dots$	molarer Heizwert [kJ/mol]
$h_u\ \dots\dots\dots\dots$	spezifischer Heizwert [kJ/kg]
I	Investition zum Zeitpunkt t=0
i	angenommener Zinsfuß
k	Proportionalitätsfaktor
KW_0	Kapitalwert zum Zeitpunkt t=0
L	Lebensdauer der PV-Anlage [a]
LCA	Life Cycle Assessment
$\mathrm{MG}_{\mathrm{BS}} \ \ldots \ldots$	Molekulargewicht Brennstoff [g/mol]
$\mathrm{MG}_{\mathrm{CO2}}$	Molekulargewicht CO ₂ [g/mol]
p _{Strom}	Strompreis [€/kWh]
PR	Performance Ratio
PV	Photovoltaik
Q	benötigte Heizenergie [kWh]
RW _n	Restwert am Ende der Anlagenlebensdauer (nach n Jahren)
T	betrachteter Zeitraum der Kapitalwertmethode (in Perioden)
t	Zeitpunkt (Jahr) t
	Einspeisetarif [€/kWh]
U	Wärmedurchgangszahl [W/(m ² K)]
z	

1. Einleitung

Trotz Bemühungen, in vielen Bereichen Energie zu sparen bzw. diese effizient zu nutzen, steigt der weltweite Energiebedarf kontinuierlich an. Dies trifft durch die zunehmende Elektrifizierung (z.B. Computer, Klimageräte, Elektroautos) auch auf den Stromsektor zu, wodurch ständig neue Kraftwerke benötigt werden. Bekräftigt durch Themen wie z.B. Klimaschutz, Unsicherheit von Kernenergie (Tschernobyl, Fukushima) sowie die beschränkte Verfügbarkeit klassischer Rohstoffe wie z.B. Kohle, Öl und Gas wurden unter dem Begriff "Energiewende" die politischen Voraussetzungen für eine Forcierung der erneuerbaren Energieträger geschaffen. Der aktuelle Zeitgeist konzentriert sich vor allem auf die Photovoltaik (Stromerzeugung durch Sonnenlicht), welche durch Förderungen sowohl für Privatpersonen und Gewerbe, als auch für Energieerzeugungsunternehmen äußerst attraktiv geworden ist. Im Jahr 2012 wurden in Österreich netzgekoppelte Photovoltaikanlagen mit einer Gesamtleistung von 175,5 MWp errichtet (dies entspricht fast einer Verdoppelung zu 2011), insgesamt betrug die in Betrieb befindliche Leistung der Photovoltaikanlagen rund 360 MWp. [1].

Die große Nachfrage nach Photovoltaikanlagen treibt auch die Forschung an, die PV-Module weiterzuentwickeln. So gibt es seit kurzem Solarmodule ohne Rückseitenfolie (sogenannte Glas-Glas Module) mit wirtschaftlich vertretbarem Wirkungsgrad; solche Module sind teilweise lichtdurchlässig, was neue interessante Anwendungsgebiete aufschließt.

Es wurden in den vergangenen Jahrzehnten viele Bücher und wissenschaftliche Arbeiten hinsichtlich Wirtschaftlichkeit, Energiebilanz und CO₂-Bilanz von Photovoltaikanlagen verfasst.

Der Anbau von Pflanzen im Gewächshaus wird schon lange praktiziert. Diese Anbauform ermöglicht einen ganzjährigen Anbau und verringert Ernteschäden durch Unwetter drastisch. Der Betrieb eines Gewächshauses ist jedoch mit zusätzlichem Aufwand für Bewässerung, Beschattung, Befruchtung und vor allem Beheizung (bedingt durch den ganzjährigen Anbau) verbunden. Aus diesem Grund werden die Wirtschaftlichkeit und die CO₂-Bilanz des Gewächshausanbaus für verschiedene Pflanzensorten (zumeist Gemüse) untersucht. Ziel dieser Untersuchungen ist ein Vergleich zwischen (ganzjährigem) Anbau im Gewächshaus in Österreich mit dem Anbau der Pflanzen in Italien oder Spanien mit anschließendem Transport nach Österreich.

An wenigen Standorten wurde eine bisher kaum angewendete Kombination von Photovoltaikanlage und Gewächshaus realisiert: Glas-Glas Solarmodule befinden aufgrund

ihrer Eigenschaft der Lichtdurchlässigkeit auf dem Dach des Gewächshauses. Diese Kombination wurde aufgrund ihrer Neuartigkeit bisher noch nicht hinsichtlich Wirtschaftlichkeit und CO₂-Bilanz untersucht. Ziel dieser Arbeit ist es, genau diese Untersuchungen durchzuführen. Dabei wird vor allem die Frage geklärt, ob eine solche Kombination aufgrund der gegenseitigen Beeinflussung von Photovoltaikanlage und Gewächshaus überhaupt sinnvoll ist. Die Untersuchungen erfolgen am Beispiel einer modellhaften Musteranlage in der Südsteiermark. Die Arbeit beschränkt sich aufgrund der Komplexität des Themas auf die Gemüsesorten Feldsalat, Tomaten und Gurken.

Der erste Teil dieser Arbeit widmet sich der Frage nach der Wirtschaftlichkeit. Dabei werden beide Anlagenteile zuerst getrennt betrachtet und anschließend die Kombination mit ihren Auswirkungen untersucht.

Im zweiten Teil wird eine CO₂-Bilanz aufgestellt, dies erfolgt ebenfalls sowohl für beide Anlagenteile getrennt, als auch für die Kombination.

2. Allgemeine Grundlagen

2.1. Photovoltaik

Die Energieerzeugung mittels Sonnenlicht ist bereits Thema vieler wissenschaftlicher Arbeiten, zusätzlich gibt es etliche Bücher über dieses Thema. Aus diesem Grund wird an dieser Stelle nur kursorisch auf die Photovoltaik eingegangen und auf weiterführende Literatur verwiesen, z.B. Wagner [2], Mertens [3] oder das DGS-Kompendium [4].

Mit Photovoltaik wird die Umwandlung von Licht in elektrischen Strom bezeichnet. Dieser Effekt wird bereits seit langem z.B. in der Raumfahrt genutzt. Seit rund 20 Jahren werden in zunehmendem Maße Photovoltaikanlagen (PV-Anlagen) für die alternative Stromerzeugung im privaten und gewerblichen Bereich errichtet. Die Hauptkomponenten einer PV-Anlage sind **PV-Module** (Solarmodule) und **Wechselrichter**. Während die Solarmodule elektrischen Strom (Gleichstrom) aus Licht erzeugen, wandeln die Wechselrichter den Gleichstrom in Wechselstrom um.

2.1.1. Komponenten einer PV-Anlage

2.1.1.1. PV-Module

Die PV-Module bestehen aus Halbleiterzellen, die mit Fremdatomen angereichert (dotiert) sind. Durch die Dotierung entsteht ein sogenannter *pn-Übergang*, der auf Lichteinfall reagiert, indem Ladungsträger aus dem Übergang an die äußeren Kontakte befördert werden. Als Folge entsteht an den Kontakten eine Spannung, durch den Anschluss einer elektrischen Last kann die elektrische Energie genutzt werden.

Als Halbleiter kommen Silizium, KupferIndiumDiselenid (CIS) oder CadmiumTellurid (CdTe) zur Anwendung (siehe Abbildung 2.1).

Die am häufigsten eingesetzten Zelltypen sind dabei mono- und polykristallines Silizium. Für diese beiden Arten gibt es bereits langjährige Erfahrungswerte hinsichtlich Qualität und Wirkungsgrad, sie sind in der Entwicklung bereits sehr fortgeschritten und Silizium ist nahezu unbegrenzt verfügbar

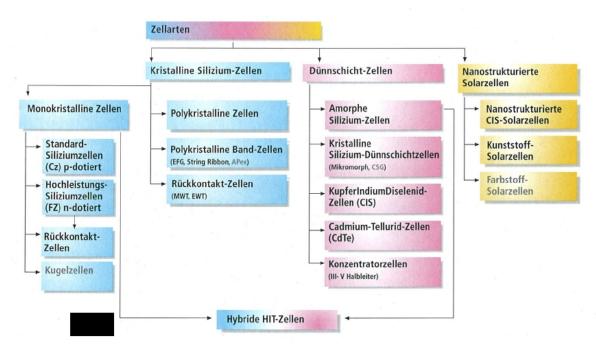


Abbildung 2.1.: Übersicht marktüblicher Zelltypen [4]

2.1.1.2. Wechselrichter

Der überwiegende Teil des elektrischen Energieversorgungsystems besteht (bis auf wenige Ausnahmen) aus Wechselstromnetzen, und somit sind alle elektrischen Geräte auf Wechselstrom ausgelegt. Bei dem von den PV-Modulen erzeugten Strom handelt es sich jedoch um Gleichstrom, der nicht direkt genutzt werden kann. Bei einem Wechselrichter handelt es sich um eine spezielle Form eines Stromrichters, bei dem Gleichstrom (DC) durch elektronische Schaltungen in Wechselstrom (AC) umgewandelt wird.

Wechselrichter lassen sich nach mehreren Kriterien unterscheiden:

mit/ohne Transformator: Vor allem ältere Geräte haben einen Transformator integriert (zusätzliche Verluste), da der optimale Arbeitspunkt des Wechselrichters bei diesen Geräten nicht bei der Netzspannung von 230 V liegt. Die heute verwendeten elektronischen Schaltungen sind jedoch dahingehend optimiert, dass der Arbeitspunkt bei der Netzspannung liegt und die meisten neuen Geräte deshalb keinen Transformator mehr beinhalten.

netzgeführt oder selbstgeführt: Netzgekoppelte Wechselrichter müssen aufgrund der geltenden Vorschriften (technische und organisatorische Regeln - TOR) netzgeführt sein, d.h. permanent die Netzparameter Spannung und Frequenz kontrollieren und auf Abweichungen reagieren (ggf. mit Abschalten). Bei Inselanlagen (d.h. ohne Netzanschluss), wie z.B. auf Almhütten, ist der Wechselrichter selbstgeführt, d.h.

Spannung und Frequenz werden durch den Wechselrichter (bei mehreren Geräten von einem Master-Gerät) vorgegeben.

Modul-, Strang- oder Zentralwechselrichter: Modulwechselrichter sind von äußerst kleiner Bauart und befinden sich bei jedem einzelnen PV-Modul, sodass von außen gesehen das Modul Wechselstrom erzeugt. Aufgrund der hohen benötigten Stückzahl setzt sich dieses Konzept nur schwer am Markt durch. Strangwechselrichter sind von kleinerer Bauart (typisch bis 30 kVA) und werden vorwiegend in kleinen PV-Anlagen eingesetzt. Aber auch bei großen PV-Anlagen lassen sich Strangwechselrichter dezentral einsetzen. Strangwechselrichter stellen üblicherweise Netzspannung (230/400 V) zur Verfügung. Zentralwechselrichter kommen nur bei großen PV-Kraftwerken zum Einsatz; die Leistung reicht von 50 kVA bis 2.000 MVA. Bei Zentralwechselrichtern ist im Normalfall aufgrund der Anlagengröße ein Transformator (meist auf 20 kV) notwendig, die Ausgangsspannung des Wechselrichters kann dadurch von der Netzspannung (230/400 V) abweichen.

Die einzelnen Wechselrichertypen sind in Abbildung 2.2 aufgezeigt.

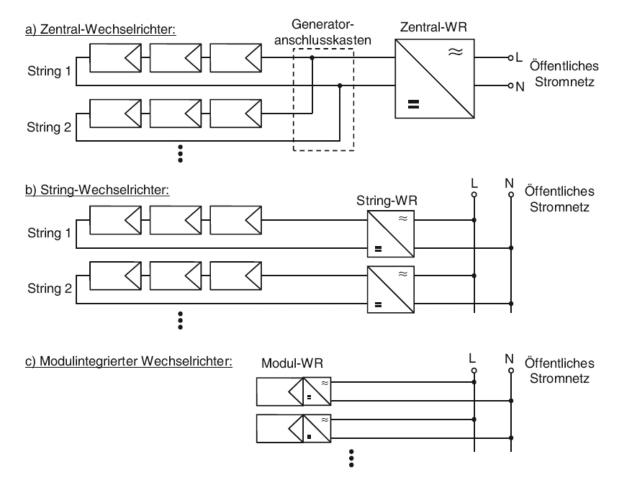


Abbildung 2.2.: Zentral-, Strang- (engl.: String) und Modulwechselrichter [3]

2.1.2. Aufbau einer PV-Anlage

Mehrere PV-Module werden durch Reihenschaltung zu einem sogenannten Strang verschaltet (siehe Abbildung 2.3). Durch die Reihenschaltung addiert sich die Spannung der PV-Module zur Systemspannung. Eine hohe führt zu geringeren Leitungsverlusten, dadurch wird der Gesamtwirkungsgrad der Anlage erhöht. Dabei ist jedoch zu beachten, dass die Leerlaufspannung die maximal erlaubten Spannungen von Modulen und Wechselrichtern nicht überschreitet.

Bei großen Anlagen werden mehrere Stränge parallel geschaltet, was den Vorteil der Leitungsreduktion mit sich bringt (weniger Leitungen mit großem Querschnitt anstatt vieler Leitungen mit geringem Querschnitt); siehe Abbildung 2.4). Die Verschaltung erfolgt dabei in sogenannten Gleichstromanschlusskästen (GAK).

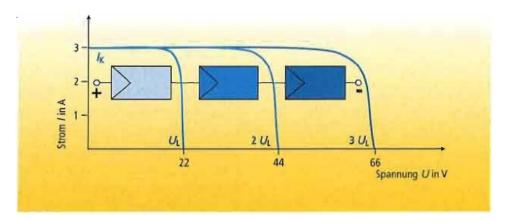


Abbildung 2.3.: Reihenschaltung von Modulen zu einem Strang [4]

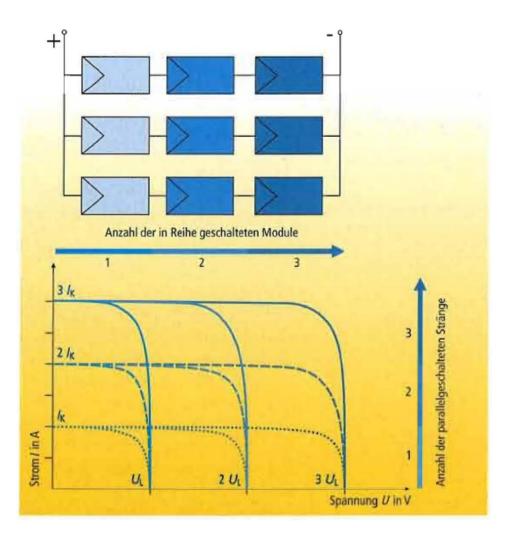


Abbildung 2.4.: Reihenschaltung von Modulen und Parallelschaltung von Strängen [4]

2.2. Gewächshaus

Der Anbau von Pflanzen im Gewächshaus wird schon seit Langem praktiziert. Der sogenannte "geschützte Anbau", d.h. Anbau unter Folie oder Glas, ermöglicht den ganzjährigen Anbau vieler Pflanzen. Überdies stammen viele gärtnerisch kultivierte Pflanzenarten (wie z.B. Tomaten) aus anderen Vegetationszonen und können bei uns nur im geschützten Anbau gedeihen [5].

Im Gewächshausanbau unterscheidet man primär zwischen Kaltanbau und Warmanbau. Unter Kaltanbau versteht man den Anbau in einem unbeheizten Gewächshaus (meist ein Folientunnel). Der Vorteil des Kaltanbaus liegt in den niedrigen Errichtungs- und Betriebskosten. Die meisten Pflanzenkulturen erfordern jedoch den Warmanbau, d.h. eine Beheizung des Gewächshauses. Die Beheizung erhöht zwar die Betriebskosten des Gemüseanbaus, auf der anderen Seite lassen sich die Qualität der kultivierten Pflanzen und die Erntemenge erhöhen. Nähere Erläuterungen zur Beheizung von Gewächshäusern folgen in Abschnitt 2.2.2.

2.2.1. Anbaufolge

Von besonderer Bedeutung ist die Anbaufolge, d.h. in welcher Abfolge die verschiedenen Gemüsesorten angebaut werden. Die Anbaufolge lässt sich aufgrund der kontinuierlichen Anpassung an die Marktverhältnisse nicht pauschalieren, jedoch lassen sich einige Annahmen treffen, wie die Anbaufolge in der Praxis durchgeführt wird.

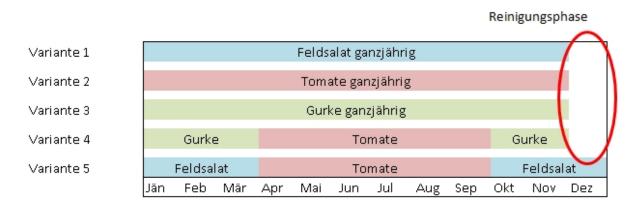


Abbildung 2.5.: Unterschiedliche Varianten der Anbauarten und Anbaufolgen

Wie in Abbildung 2.5 ersichtlich, werden Tomaten und Gurken zwischen 1 und 3 mal pro Jahr gepflanzt, wobei sich bei dreimaligem Anbau ein nahezu ganzjähriges Angebot der entsprechenden Gemüseart ergibt. Im Dezember wird bei Anbau von Tomaten und Gurken das Gewächshaus gereinigt, in diesem Monat erfolgt daher keine Kultur. Die Reinigung bei Anbau von Feldsalat erfolgt zwischen 2 Anbauzyklen; die Kultur erfolgt hier in jedem Monat.

Eine häufig angewandte Fruchtfolge sieht Gurken oder Feldsalat in der Vorkultur (Jänner-März), Tomaten in der Hauptkultur (April-September/Oktober) und dann wieder Gurken oder Feldsalat in der Nachkultur (Oktober-November) vor.

In dieser Arbeit werden 5 verschiedene Anbaufolgen untersucht:

- Variante 1: Feldsalat ganzjährig
- Variante 2: Rispentomaten ganzjährig
- Variante 3: Gurken ganzjährig
- Variante 4: Rispentomaten (Hauptkultur) mit Gurken in der Vor- und Nachkultur
- Variante 5: Rispentomaten (Hauptkultur) mit Feldsalat in der Vor- und Nachkultur

2.2.2. Klimasteuerung

Wie bereits erwähnt kann zwischen Kaltanbau und Warmanbau unterschieden werden. Beim Kaltanbau erfolgt keine Steuerung des Klimas im Gewächshaus. Dennoch kann die Produktivität durch diesen geschützten Anbau gesteigert werden. Unter Produktivität versteht man in diesem Zusammenhang die Qualität der Pflanzen und die Erntemenge. Die Produktivität lässt sich durch eine Klimasteuerung weiter steigern. Des weiteren stammen viele bei uns kultivierte Pflanzen aus anderen Vegetationszonen. Dies macht eine Steuerung des Klimas im Gewächshaus unumgänglich.

Die Klimasteuerung erfolgt durch Beheizung des Gewächshauses und Regelung der Innentemperatur. Die erforderliche Temperatur sowie Temperaturverläufe (über einen Tag oder im Jahr) sind von der angebauten Pflanzenart abhängig. Der Heizbedarf eines Gebäudes kann durch verschiedene Energieträger gedeckt werden, z.B. Erdgas, Fernwärme oder Öl.

Der tägliche Heizbedarf Q kann nach [6] näherungsweise wie folgt berechnet werden:

$$Q = \underbrace{(t_i - t_a) \cdot U \cdot A_{GH}}_{\dot{Q}} \cdot 24 \ Stunden \tag{2.1}$$

mit:

Q	benötigte Heizenergie [kWh]
\dot{Q}	Heizleistung [W]
t_i	Innentemperatur [°C]
t_a	Außentemperatur [°C]
U	Wärmedurchgangszahl [W/(m ² K)]
A_{GH}	Grundfläche des Gewächshauses [m ²]

Die Wärmedurchgangszahl U kann für ein durchschnittlich isoliertes Gewächshaus mit $5.1 \,\mathrm{W/m^2}$ K angesetzt werden [5].

Die sogenannten $Heizgradtage~HGT^1$ (auch Gradtagsumme genannt) berechnen sich aus der Anzahl der Tage im Jahr an denen die Temperatur unter die Heizgrenze fällt, und der Differenz zwischen Außentemperatur T_a und der erwünschten Innentemperatur t_i :

$$HGT_{ti/th} = \sum_{j=1}^{z} (t_{ij} - t_{aj})$$
 (2.2)

mit:

 $HGT_{ti/th}$ Heizgradtage bei einer Innentemperatur ti und einer Heizgrenze th [°C] z Anzahl der Heiztage

Mit den Heizgradtagen lässt sich der jährliche Heizbedarf ermitteln:

$$Q = \sum_{i} (t_i - t_a) \cdot U \cdot A_{GH} \cdot 24 \ Stunden = HGT \cdot U \cdot A_{GH} \cdot 24 \ Stunden$$
 (2.3)

Die erwünschte Lufttemperatur hängt natürlich von der angebauten Gemüseart ab. Tabelle 2.1 zeigt die erforderliche Innentemperatur und die gewählte Heizgrenze für verschiedene Gemüsearten.

Tabelle 2.1.: Innentemperatur und Heizgrenze für verschiedene Gemüsearten

Gemüseart	Innentemperatur	Heizgrenze
Feldsalat	12°C	$8^{\circ}\mathrm{C}$
Tomate	18°C	$12^{\circ}\mathrm{C}$
Gurke	18°C	$12^{\circ}\mathrm{C}$

Entscheidend für den Heizbedarf ist auch die Anbaufolge. Wie bereits erwähnt, wird Feldsalat im Gewächshaus im Frühling und im Herbst angebaut und geerntet. Daher beschränkt sich die Heizperiode für Feldsalat auf die Monate Jänner-März und September-November. Für Tomaten und Gurken werden in dieser Arbeit 2 Anbaufolgen untersucht: einerseits Anbau in den Sommermonaten (März-August), andererseits ganzjähriger Anbau (mit Ausnahme des Monats Dezember, in welchem das Gewächshaus gereinigt wird).

Für einen Standort in der Südsteiermark ergeben sich mit der Gleichung $HGT_{ti/th} = \sum_{j=1}^{z} (t_{ij} - t_{aj})$ folgende Gradtagsummen (die Tabelle mit den Tageswerten befindet sich im Anhang A.1):

 \bullet Feldsalat (Produktion Jänner-Dezember): HGT_{8/12}=1.883 °C

¹Dieser Parameter ist auch aus dem Energieausweis für Gebäude bekannt

- Tomaten bzw. Gurken (Produktion Jänner-November): HGT_{12/18}=2.654 °C
- Tomaten (Produktion April-September): HGT_{12/18}=359 °C
- Gurken (Produktion Jänner-März und September-November): HGT_{12/18}=2.295 °C
- Feldsalat (Produktion Jänner-März und September-Dezember): $\mathrm{HGT}_{8/12} = 1.801\,^{\circ}\mathrm{C}$

Ein Effekt der PV-Anlage ist die Funktion als Energieschirm. Ein Energieschirm hat einerseits die Funktion, die Pflanzen im Sommer tagsüber vor direkter Sonneneinstrahlung und somit vor zu großer Hitze zu schützen (Gefahr von Brandschäden an den Pflanzen), und andererseits soll er nachts die Auskühlung des Gewächshauses mindern. Der Einsatz von Energieschirmen in Gewächshäusern ist heutzutage üblich, wobei die Energieschirme oft aus schwer entflammbarem Kunststoff mit eingewebtem oder aufgeklebtem Aluminium bestehen (Reduktion des Lichteinfalls bzw. Reflexion der Wärmestrahlung) [7]. Da die PV-Module die direkte Sonneneinstrahlung mindern und auch eine andere Wärmedurchgangszahl als Glas aufweisen, wird in dieser Arbeit eine Reduktion des Heizbedarfs von 15% durch die PV-Anlage angenommen².

Mit einer Wärmedurchgangszahl U=5,1 W/m², einer typischen Gewächshausgrundfläche $A_{GH}=12.000\,\mathrm{m}^2$, einer Reduktion um 15% (=Multiplikator 0,85), sowie den oben angeführten Heizgradtagen, ergibt sich ein jährlicher Heizbedarf nach folgender Aufstellung:

$$Q = \underbrace{HGT \cdot U \cdot A_{GH}}_{\dot{Q}} \cdot 24 \ Stunden \cdot 85\% = HGT \underbrace{\cdot 5, 1 \frac{W}{m^2 K} \cdot 12.000 \, m^2 \cdot 24 \, h \cdot 0, 85}_{1.249 \, \text{kWh/K}}$$
(2.4)

$$Q_{Feldsalat} = 1.883 \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 2,35 \,\text{GWh}$$
 (2.5)

$$Q_{Tomate/Gurke} = 2.654 \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 3,31 \,\text{GWh}$$
 (2.6)

$$Q_{Tomate+Gurke} = (359 + 2.295) \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 3,31 \,\text{GWh}$$
 (2.7)

$$Q_{Tomate+Feldsalat} = (359 + 1.801) \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K9} = 2,70 \,\text{GWh}$$
 (2.8)

(2.9)

Dabei entsprechen die Werte der Heizgradtage obiger Aufstellung; für die Varianten Tomate+Feldsalat und Tomate+Gurke wurden die HGT entsprechend addiert.

Es wird angenommen, dass der Heizbedarf der Musteranlage durch eine eigene Gasheizung gedeckt wird. Eine alternative Beheizung mit Fernwärme wird in dieser Arbeit ebenfalls untersucht.

²Dieser Wert wurde geschätzt, da derzeit noch Langzeiterfahrungen bezüglich des Einflusses der PV-Anlage fehlen.

Plausibilisierung:

Zur Kontrolle der errechneten Werte für den Heizbedarf werden Angaben aus der Literatur herangezogen.

Theurl [5] untersuchte den Heizbedarf eines Gewächshauses für den Anbau von Tomaten am Standort Simmering. Die Gewächshaustemperatur beträgt dabei $18\,^{\circ}$ C, dies führt zu einer Gradtagsumme von $2.507\,^{\circ}$ C und einem jährlichen spezifischen Heizbedarf von $11.047\,\mathrm{GJ/(ha~a)} = 307\,\mathrm{kWh/(m^2~a)}$. Umgerechnet auf die Fläche von $12.000\,\mathrm{m^2}$ und unter Berücksichtigung der Einsparung von 15% ergeben sich somit $3,13\,\mathrm{GWh}$.

Burgholzer [6] errechnet für den Standort Hörsching bei Linz und einer Gewächshaustemperatur von $18\,^{\circ}$ C auf eine Gradtagsumme von $3.483\,^{\circ}$ C und einen durchschnittlichen jährlichen Heizbedarf von $476\,\mathrm{kWh/m^2}$. Umgerechnet auf die Fläche von $12.000\,\mathrm{m^2}$ und unter Berücksichtigung der Einsparung von 15% ergeben sich somit $4.85\,\mathrm{GWh}$.

Fazit: Sowohl die Heizgradtage als auch der Heizbedarf liegen in einem plausiblen Wertebereich.

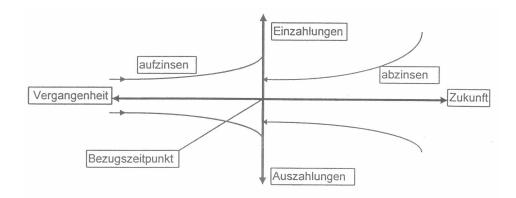
3. Wirtschaftlichkeit

3.1. Grundlagen

Grundsätzlich gibt es zwei Möglichkeiten der Investitionsrechnung oder Wirtschaftlichkeitsrechnung: die statische und die dynamische Investitionsrechnung.

Bei der statischen Investitionsrechnung wird der Zeitpunkt, zu dem eine Einnahme oder eine Ausgabe anfällt, nicht berücksichtigt. Vielmehr werden die Einnahmen und Ausgaben über den gesamten Betrachtungszeitraum summiert (somit ergeben sich "Erträge" und "Kosten"). Der Vorteil der statischen Rechnung liegt in ihrer Einfachheit. Der große Nachteil liegt jedoch in einer Ungenauigkeit bzw. Abweichung von den tatsächlichen Verhältnissen. Diese Ungenauigkeit ist umso größer,

- je größer die Differenz zwischen Investition und Geldrückfluss,
- je unregelmäßiger die Jahresergebnisse und
- je länger die Nutzungsdauer ist.


Für die Wirtschaftlichkeitsrechnung wird in dieser Arbeit die **dynamische Investiti- onsrechnung** herangezogen. Diese basiert auf der Berücksichtigung des Faktors Zeit (Betrachtung der gesamten Nutzungsdauer) unter Einbeziehung der *Verzinsung* des eingesetzten Kapitals. Dies bedeutet, dass alle vergangenen Zahlungen vor dem Bezugszeitpunkt aufgezinst werden, alle zukünftigen Zahlungen jedoch abgezinst werden (vereinfacht ausgedrückt: Geld wird mit der Zeit immer weniger Wert) [8].

Nachteilig ist bei der dynamischen Investitionsrechnung, dass eine Annahme für den zukünftig anzusetzenden Zinsfuß zu treffen ist.

In Abbildung 3.1 ist die Methodik der dynamischen Investitionsrechnung dargestellt.

Abbildung 3.1.: Aufzinsung und Abzinsung von Einnahmen und Ausgaben der Kapitalwertmethode [8]

Der Kapitalwert KW (=jährlicher Zahlungsstrom) errechnet sich aus

$$KW_0 = -I + \sum_{t=1}^{T} ((E_t - A_t + RW_n)BWF)$$
(3.1)

mit:

KW_0	Kapitalwert zum Zeitpunkt t=0
I	Investition zum Zeitpunkt t=0
T	betrachteter Zeitraum der Kapitalwertmethode (in Perioden)
$\mathrm{E_{t}}$	Einnahme zum Zeitpunkt t
A_{t}	Ausgabe zum Zeitpunkt t
RW_n	Restwert am Ende der Anlagenlebensdauer (nach n Jahren)
BWF	Barwertfaktor

Der Restwert am Ende der Anlagenlebensdauer kann in der Regel bei der Kapitalwertrechnung vernachlässigt werden, da im Wesentlichen nur noch der reine Materialwert bestehen bleibt und dieser mit den Abbruchkosten gegengerechnet werden muss. Wird der Restbetrag noch abgezinst, bleibt im Allgemeinen kaum etwas bestehen.

Der **Barwertfaktor BWF** beschreibt die Auf- bzw. Abzinsung der Einnahmen und der Ausgaben. Er kann wie folgt berechnet werden

$$BWF = \frac{1}{(1+i)^t} {3.2}$$

mit:

i angenommener Zinsfuß t Zeitpunkt (Jahr) t

Multipliziert man Einnahmen und Ausgaben zum Zeitpunkt t getrennt mit dem Barwertfaktor, so erhält man den Barwert der Einnahme/Ausgabe, d.h. den auf den Bezugszeitpunkt umgerechneten Wert.

Tabelle 3.1 zeigt ein einfaches Beispiel zur Veranschaulichung. Die Verzinsung soll 10% betragen. Bei diesem Beispiel ist gut ersichtlich, dass nach einer statischen Rechnung die Einnahmen und die Ausgaben 1.500€ betragen, der Endwert also 0 wäre. Führt man jedoch eine dynamische Rechnung durch, so beträgt der Kapitalwert aufgrund der Abzinsung nach 5 Jahren immer noch -242€.

Tabelle 3.1.: Kapitalwertrechnung; Verzinsung 10%; alle Werte in €; links: statische Investitionsrechnung, rechts: dynamische Investitionsrechnung

	statisch			dynamisch			
Jahr	Einnahmen	Ausgaben	Zahlungs-	Barwert-	Barwert	Barwert	Zahlungs-
	[€]	[€]	strom [€]	faktor	Einnahmen [€]	Ausgaben [€]	strom [€]
0	0	-1.000	-1.000	1	0	-1.000	-1.000
1	300	-100	200	0,909	272,70	-90,90	181,80
2	300	-100	200	0,826	247,80	-82,60	165,20
3	300	-100	200	0,751	225,30	-75,10	150,20
4	300	-100	200	0,683	204,90	68,30	136,60
5	300	-100	200	0,621	186,30	62,10	124,20
Σ	1.500	1.500	0		1.137	1.379	-242

Dabei gliedern sich die Einnahmen folgendermaßen auf:

- jährlicher Ertrag PV-Anlage
- jährlicher Ertrag Gemüseernte

Die Ausgaben setzen sich zusammen aus:

- Investitionskosten (einmalig)
- jährliche Kosten PV-Anlage
- jährliche Kosten Gemüseanbau

Der Ertrag aus der PV-Anlage basiert auf der erzeugten elektrischen Energie und hängt von folgenden Faktoren ab:

- Art der Einspeisung: Volleinspeisung (die gesamte erzeugte Energie wird in das öffentliche Netz eingespeist) oder Überschusseinspeisung(die erzeugte Energie wird primär vor Ort verbraucht und nur der Überschuss eingespeist)
- Nutzung des Fördertarifs der OeMAG; die Inanspruchnahme des Fördertarifs ist nur bei Volleinspeisung möglich

Der jährliche Ertrag aus der Gemüseernte errechnet sich aus der Erntemenge und dem zu erzielenden Marktpreis.

Die *Investitionskosten* umfassen Planung, Projektierung, Bau und Inbetriebnahme von Gewächshaus und PV-Anlage.

Die Kosten für die PV-Anlage setzen sich aus der periodisch durchzuführenden Wartung sowie aus etwaigen Reparaturen zusammen.

Die Kosten für den Gemüseanbau entstehen hauptsächlich durch die Beheizung des Gewächshauses in den Wintermonaten. Weitere Kosten fallen durch Saatgut, Düngung, Bewässerung und Ernte an.

3.2. Methoden

3.2.1. Einnahmen aus der PV-Anlage

Für den jährlichen Energie-Ertrag aus der PV-Anlage wird eine Simulationsrechnung mit der Software PV*SOL [9] und PVSyst [10] durchgeführt. Diese beiden Programme liefern die zu erwartende erzeugte Energie im langjährigen Mittel (basierend auf dem 20-jährigen Durchschnitt der meteorologischen Daten).

Folgende Parameter wurden für die Simulationen verwendet:

Tabelle 3.2.: Eingangsparameter für die Ertragssimulationen

948,6 kWp
3.162
PVP-GE 300M
17
186
2
Schneider Xantrex GT500E
$21,5^{\circ}$
0° (=Süden)
hinterlüftet
südliche Steiermark

Bei dem Modul PVP-GE 300M handelt es sich um ein **monokristallines Modul** mit einer Nennleistung von 300 Wp. Ein Modul besteht aus 72 Zellen mit den Maßen 156x156 mm, die Gesamtmaße eines Moduls betragen 2.113x995 mm. Diese Werte entsprechen einem Flächennutzungsfaktor von 171 W/m² netto (bezogen auf die reine Zellfläche) bzw. 143 W/m² brutto (bezogen auf die gesamte Modulfläche).

Die Simulationsergebnisse sind in Tabelle 3.3 dargestellt. Dabei stellt der absolute Energieertrag jene Energie dar, die im Laufe eines durchschnittlichen Jahres erzeugt wird. Der spezifische Energieertrag wird auf die Anlagenspitzenleistung normiert und erlaubt dadurch einen einfachen Vergleich zwischen Anlagen mit unterschiedlicher Spitzenleistung. Die ausführlichen Ergebnisse der Simulationsrechnung befinden sich im Anhang.

Tabelle 3.3.: Ergebnisse der Energieertragssimulation

Quelle	Energieertrag absolut [kWh/a]	Energieertrag spezifisch [kWh/kWp a]
PV*SOL	987.492	1.040
PVSyst	954.982	1.007
Mittelwert	971.237	1.024

Für die Einnahmen aus der PV-Anlage werden in dieser Arbeit 2 verschiedene Varianten betrachtet:

- Volleinspeisung unter Nutzung des OeMAG-Fördertarifs für 13 Jahre und danach Verkauf der erzeugten Energie an den Netzbetreiber zu dessen Einspeisetarif. Die PV-Anlage erhält einen eigenen Zählpunkt mit Einspeisezähler.
- Überschusseinspeisung, d.h. die erzeugte Energie wird vor Ort verbraucht und der Überschuss zu dessen Einspeisetarif an den Netzbetreiber verkauft (keine Förderung). Die PV-Anlage speist (vom Netz gesehen) nach dem Zähler ein, es ist ein bidirektionaler Zähler notwendig.

Für den zukünftigen zeitlichen Verlauf des Einspeisetarifs wird die jährliche Steigerungsrate aus dem Energiepreis für Gewerbekunden abgeleitet. Da der Strompreis im gewerblichen Bereich jedoch meistens individuell verhandelt wird, stehen nicht genügend Daten für eine aussagekräftige Strompreisentwicklung zu Verfügung. Daher wird die Steigerungsrate des Einspeisetarifs aus den Energiepreisen für Haushalts- und Industriekunden der Jahre 2004-2011 lt. Statistik Austria ermittelt (siehe Abbildung 3.2 und Tabelle 3.4).

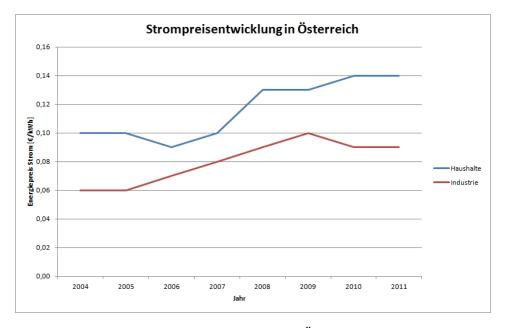


Abbildung 3.2.: Strompreisentwicklung in Österreich (Energiepreis) [11]

Werden die jährlichen Steigerungsraten für Haushalte und Industrie gemittelt, so erhält man für Gewerbe eine durchschnittliche jährliche Strompreissteigerung von 5,4 %. Der Einspeisetarif des Netzbetreibers wird im Jahr 2012 mit 0,06 €/kWh angenommen. Somit ergeben sich die in Tabelle 3.5 angegebenen Einspeisetarife.

Tabelle 3.4.: Strompreisentwicklung in Österreich (Energiepreis) für Haushalt und Industrie; im gewerblichen Bereich gibt es nicht genügend aussagekräftige Werte [11]

Jahr	Haushalt	Industrie
	€/kWh	€/kWh
2004	0,10	0,06
2005	0,10	0,06
2006	0,09	0,07
2007	0,10	0,08
2008	0,13	0,09
2009	0,13	0,10
2010	0,14	0,09
2011	0,14	0,09
Steigerung 2004-2011	40%	50%
jährl. Steigerung	4,92%	5,96%

Tabelle 3.5.: Entwicklung des Einspeisetarifs bei einer angenommenen Steigerungsrate von 5,4% p.a.

Strompreis [€/kWh] Jahr Tarif OeMAG (= mit Förderung) Einspeisetarif (= ohne 2012 - 2013 0,33 2014 0,33 2015 0,33 2016 0,33 2017 0,33	e Förderung) - 0,06 0,07 0,07
2012 - 2013 0,33 2014 0,33 2015 0,33 2016 0,33 2017 0,33	0,06 0,07
2013 0,33 2014 0,33 2015 0,33 2016 0,33 2017 0,33	0,07
2014 0,33 2015 0,33 2016 0,33 2017 0,33	0,07
2015 0,33 2016 0,33 2017 0,33	
2016 0,33 2017 0,33	0.07
2017 0,33	0,01
,	0,07
	0,08
2018 0,33	0,08
2019 0,33	0,09
2020 0,33	0,09
2021 0,33	0,10
2022 0,33	0,10
2023 0,33	0,11
2024 0,33	0,11
2025 0,33	0,12
2026 -	0,13
2027 -	0,13
2028 -	0,14
2029 -	0,15
2030 -	0,15
2031 -	0,16
2032 -	0,17
2033 -	0,18

Die Einnahmen aus der PV-Anlage lassen sich für die Volleinspeisung einfach durch folgende Formel berechnen:

$$E_{Voll} = E_{PV} \times T_E \tag{3.3}$$

mit:

Einnahmen aus der Volleinspeisung $[\mbox{\Large \in }]$ $\mathrm{E}_{\mathrm{Voll}}$ jährlicher Energieertrag der PV-Anlage [kWh]

Einspeisetarif [€/kWh]

Für Überschusseinspeisung wird für das Mustergewächshaus ein Jahresstromverbrauch von rund 50 MWh [5] und ein Eigenverbrauchsanteil von 90 % angenommen. Des weiteren betrug der durchschnittliche Strompreis für Gewerbekunden im Jahr 2012 lt. E-Control 0,0734€/kWh (Energiepreis) bzw. 0,184€/kWh inkl. aller Steuern und Abgaben. Diese Werte führen zu Einnahmen aus der Überschusseinspeisung von

$$E_{\text{Überschuss}} = \underbrace{\frac{50.000kWh \times 0.9}{45.000 \times p_{\text{Strom}}}}_{\text{Einsparung durch Eigenverbrauch}} + \underbrace{(E_{PV} - \underbrace{45.000}_{\text{Überschusseinspeisung}}) \times T_E}_{\text{Überschusseinspeisung}}$$
(3.4)

mit:

Einnahmen aus der Überschusseinspeisung [€] $\rm E_{\ddot{U}berschuss}$

Strompreis [€/kWh] p_{Strom} Einspeisetarif [€/kWh] $T_{\rm E}$

Der jährliche und der kumulierte Verlauf der Einnahmen aus der PV-Anlage für Vollund Überschusseinspeisung ist in Abbildung 3.3 dargestellt. Etwaige Einnahmen aus dem Jahr 2012 sind hier nicht berücksichtigt, da die Anlage im Laufe des Jahres errichtet wurde. Nach 13 Jahren wird der gleiche Einspeisetarif für beide Varianten verwendet, jedoch führt die Überschusseinspeisung zu einer Einsparung durch den Eigenverbrauch, was ab diesem Zeitpunkt zu höheren Einnahmen durch die Überschusseinspeisung (verglichen mit der Volleinspeisung) führt.

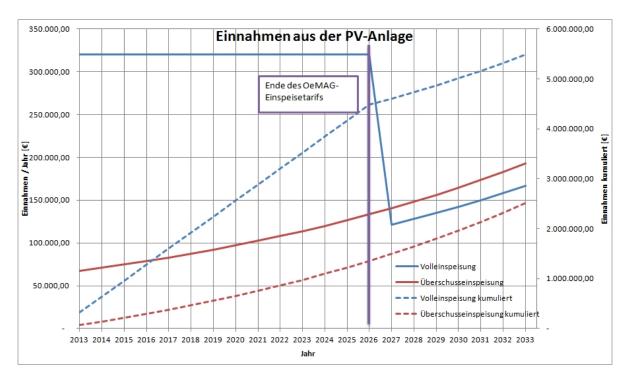


Abbildung 3.3.: Einnahmen aus der PV-Anlage

3.2.2. Einnahmen aus dem Gewächshaus

Der Ertrag der Gemüseernte setzt sich zusammen aus der Erntemenge und dem jeweiligen Marktpreis. Ein Förderzuschuss zum Verkaufspreis wird nicht angesetzt, da dem Autor keine Daten über Förderungsmöglichkeiten und -höhe bekannt sind. Die Erntemengen für die ausgewählten Gemüsesorten Feldsalat, Tomaten und Gurken sind in den nachfolgenden Abschnitten angeführt, wobei bei den Tomaten noch zwischen Klasse I und Rispentomaten unterschieden wird.

Es ist jedoch die Ertragsminderung der Gemüseernte aufgrund der geänderten Lichtverhältnisse zu berücksichtigen. Die PV-Anlage auf dem Dach des Gewächshauses beschattet die darunter liegenden Pflanzen, dies führt zu einer quantitativ geringeren Ernte. Die Lichtdurchläsigkeit der eigens für Gewächshäuser entwickelten PV-Module beträgt laut Datenblatt 17%.

Die Ertragsminderung der Gemüseernte aufgrund der PV-Anlage beträgt nach [12] ca. 1% Ertragsminderung bei 1% weniger Lichteinfall. Der Effekt ist größer bei geringer Lichtintensität, hoher CO_2 -Konzentration und hohen Temperaturen. Daraus ergibt sich zwangsläufig ein höherer Einfluss der PV-Anlage auf die Gemüseernte im Winter als im Sommer. Da jedoch nur die Südhälfte des Daches mit den PV-Modulen belegt ist, dringt dennoch verhältnismäßig viel diffuses Licht in das Gewächshaus. Die Ertragsminderung der Ernte durch die PV-Anlage wird daher mit 40% angesetzt¹.

3.2.2.1. Erntemenge Feldsalat

Wie in Kapitel 2.2.1 beschrieben, ist eine der in dieser Arbeit untersuchten Gemüsearten Feldsalat. Die Erntemengen für Feldsalat gemäß Statistik Austria sind in Tabelle 3.6 aufgelistet [13], [14].

tabene 9.0 Versenteuene Dintemengen für Tetasatut in Osterrete						
Erntemenge		Anbauart	Land	Jahr		
	(kg/ha)					
	9.200	Gewächshaus	Österreich	2012		
	9.600	Gewächshaus	Österreich	2011		
	9.300	Gewächshaus	Österreich	2010		
	9.370	Durchschnitt				

Tabelle 3.6.: Verschiedene Erntemengen für Feldsalat in Österreich [13], [14]

Die Erntemenge für Feldsalat im Gewächshausanbau variiert in den letzten Jahren. Die durchschnittliche Erntemenge von 9.370 kg/ha wird für die weitere Wirtschaftlichkeitsrechnung herangezogen.

¹Dieser Wert wird geschätzt, da derzeit noch Langzeiterfahrungen bezüglich des Einflusses der PV-Anlage fehlen.

3.2.2.2. Erntemenge Tomaten

Eine weitere untersuchte Gemüsesorte sind Tomaten, wobei hier in die größeren "Klasse 1"-Tomaten und Rispentomaten unterschieden wird. Tabelle 3.7 zeigt eine Auflistung der Erntemengen laut Statistik Austria für Klasse 1 Tomaten [13], [14].

Tabelle 3.7.: Verschiedene Erntemengen für Klasse 1 Tomaten in Österreich [13], [14]

Erntemenge	Anbauart	Land	Jahr
(kg/ha)			
152.700	Glashaus	Österreich	2012
153.000	Glashaus	Österreich	2011
145.300	Glashaus	Österreich	2010
150.333	Durchschnitt		

Die Erntemenge von Klasse 1 Tomaten im Gewächshaus stieg in den letzten leicht Jahren an. Die durchschnittliche Erntemenge von $150.333\,\mathrm{kg/ha}$ wird für die weitere Wirtschaftlichkeitsrechnung herangezogen.

Tabelle 3.8 zeigt eine Auflistung der Erntemengen gemäß Statistik Austria für Rispentomaten [13], [14].

Tabelle 3.8.: Verschiedene Erntemengen für Rispentomaten in Österreich [13], [14]

Erntemenge	Anbauart	Land	Jahr
(kg/ha)			
412.400	Glashaus	Österreich	2012
378.900	Glashaus	Österreich	2011
366.000	Glashaus	Österreich	2010
385.767	Durchschnitt		

Die Erntemenge von Rispentomaten stieg in den letzten Jahren stark an (über 10% in 2 Jahren). Die durchschnittliche Erntemenge von 385.767 kg/ha wird für die weitere Wirtschaftlichkeitsrechnung herangezogen.

3.2.2.3. Erntemenge Gurken

Die dritte in dieser Arbeit untersuchten Gemüsearten sind Gurken. Die Erntemengen für Gurken gemäß Statistik Austria sind in Tabelle 3.9 aufgelistet [13], [14].

Die Erntemenge von Gurken im Glashaus stieg wie die Erntemenge von Rispentomaten ebenfalls stark an (über 10% in 2 Jahren). Die durchschnittliche Erntemenge von $213.000\,\mathrm{kg/ha}$ wird für die weitere Wirtschaftlichkeitsrechnung herangezogen.

Tabelle 3.9.: Verschiedene Erntemengen für Gurken in Österreich [13], [14]

Erntemenge	Anbauart	Land	Jahr
(kg/ha)			
224.400	Glashaus	Österreich	2012
216.100	Glashaus	Österreich	2011
198.500	Glashaus	Österreich	2010
213.000	Durchschnitt		

3.2.2.4. Marktpreise für Gemüse

Da die zukünftige Preisentwicklung für die nächsten 20 Jahre schwer abzuschätzen ist, wird eine Näherung durchgeführt. Der Mittelwert des Marktpreises von Gewächshausgemüse der vergangenen 10 Jahre wird als Basis herangezogen². Dieser Basiswert ergibt zusammen mit einer angenommenen Entwicklung des Agrarpreisindex API (2,8%) die zukünftigen Marktpreise für Gemüse. Der API basiert auf der mittleren Preisentwicklung der vergangenen 10 Jahre. Tabelle 3.10 listet die Marktpreise für Feldsalat, Tomaten und Gurken der letzten 10 Jahre auf (Anmerkung: Die Gurkenpreise werden in der Literatur zu je 100 Stk. angegeben; die Umrechnung auf den Gewichtspreis erfolgt auf der Annahme eines Stückgewichts von 400 g). Die Entwicklung der Marktpreise für Feldsalat, Tomaten und Gurken ist grafisch in Abbildung 3.4 dargestellt.

²Eine Förderung des Marktpreises wird in dieser Arbeit nicht berücksichtigt

Tabelle 3.10.: Preisentwicklung für Feldsalat, Tomaten und Gurken in Österreich [15]; k.A.=keine Angabe

Preise in €/100 kg				
Jahr	Feldsalat	Klasse 1 Tomaten	Rispentomaten	Gurken
2002	18,5	67,6	k.A.	51,2
2003	22,4	47,8	k.A.	60,4
2004	17,8	33,9	k.A.	65,1
2005	21,3	44,0	81,2	64,8
2006	21,7	52,4	93,0	64,4
2007	22,8	36,1	83,6	59,4
2008	22,9	38,4	94,1	58,3
2009	20,3	34,3	87,4	59,9
2010	28,6	47,0	95,6	71,4
2011	19,4	32,3	75,3	61,2
2012	23,6	36,5	87,9	56,6
\oslash	21,8	42,8	87,3	62,1

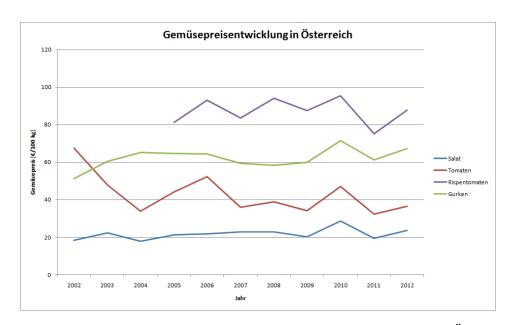


Abbildung 3.4.: Preisentwicklung für Feldsalat, Tomaten und Gurken in Österreich [15]

Tabelle 3.11 zeigt die angenommenen Marktpreise für Feldsalat, Tomaten und Gurken für die nächsten 20 Jahre. Der Preisentwicklung liegt eine angenommene jährliche Steigerung des Agrarpreisindex (API) von 2,80 % zugrunde. Die Basis ist der mittlere Preis der Jahre 2002-2012. Die für diese Arbeit relevanten Daten beginnen im Jahr 2013. Eine Förderung (zusätzlich zum Verkaufspreis) wird nicht angesetzt, da dem Autor keine Daten über Förderungsmöglichkeiten und -höhe vorliegen.

Tabelle 3.11.: Angenommene zukünftige Preisentwicklung für Feldsalat, Tomaten und Gurken in Österreich

Preise in €/100 kg				API in %	
Jahr	Feldsalat	Kl. 1 Tomaten	Rispentomaten	Gurken	Agrarpreisindex
Basis	21,76	42,81	87,25	62,12	100,00
2013	23,00	45,24	92,20	65,64	102,80
2014	23,64	46,50	94,78	67,48	105,68
2015	24,30	47,80	97,43	69,37	108,64
2016	24,98	49,14	100,16	71,31	111,68
2017	25,68	50,52	102,97	73,31	114,81
2018	26,40	51,93	105,85	75,36	118,02
2019	27,14	53,39	108,81	77,47	121,33
2020	27,90	54,88	111,86	79,64	124,72
2021	28,68	56,42	114,99	81,87	128,21
2022	29,49	58,00	118,21	84,16	131,80
2023	30,31	59,62	121,52	86,52	135,50
2024	31,16	61,29	124,93	88,94	139,29
2025	32,03	63,01	128,42	91,43	143,19
2026	32,93	64,77	132,02	93,99	147,20
2027	33,85	66,59	135,72	96,63	151,32
2028	34,80	68,45	139,52	99,33	155,56
2029	35,77	70,37	143,42	102,11	159,91
2030	36,78	72,34	147,44	104,97	164,39
2031	37,81	74,36	151,57	107,91	168,99
2032	38,86	76,45	155,81	110,93	173,72
2033	39,95	78,59	160,17	114,04	178,59

3.2.3. Investitionskosten

Die gesamten Investitionskosten (PV-Anlage und Gewächshaus) betragen für eine Musteranlage rund 2,8 Mio. € (Schätzung des Autors). Es gibt in der Steiermark eine Investitionsförderung in Höhe von 25% (max. 600.000€) im Gartenbau [16], welche in dieser Arbeit nicht berücksichtigt wird.

Die Investitionskosten für die **PV-Anlage** setzen sich aus folgenden Komponenten zusammen:

- Materialkosten
 - Module
 - DC-Sammelkästen
 - Wechselrichter
 - Transformator
 - Verkabelung
- Montagekosten
- Diverse Kosten

Bei der PV-Anlage kommen Glas-Glas-Module der Type PVP-GE300M zum Einsatz. Die Einkaufskosten für Glas-Glas-Module liegen ca. 5% über denen herkömmlicher Glas-Folien-Module.

Die beiden Wechselrichter vom Typ Schneider Xantrex GT500E sind gemeinsam mit einem 1.000-kVA-Trafo (Dreiwicklertransformator) in einer Betonstation untergebracht. Die diversen Kosten machen nur einen geringen Teil der gesamten Errichtungskosten aus. Sie können jedoch stark variieren, abhängig von den am Bau der PV-Anlage beteiligten Unternehmen. Zu dieser Kostenart zählen

- Diebstahl-Versicherung: Da die einzelnen Komponenten einer PV-Anlage teuer sein können und relativ leicht transportierbar sind, wird vom Errichter oftmals eine Diebstahl-Versicherung für die Dauer der Bauphase abgeschlossen.
- Sozialeinrichtungen: Nach dem Arbeitnehmerschutzgesetz sind Sozialeinrichtungen wie Aufenthaltsraum oder Toilette für die Dauer der Bauphase vorgeschrieben. Es wird angenommen, dass für Sozialeinrichtungen keine Kosten anfallen.
- Müll-Entsorgung: Der während der Bauphase anfallende Müll (Papier, Kunststoff, Holz, Restmüll) muss fachgerecht entsorgt werden. Dafür sind für eine PV-Anlage mit 1 MVA zwischen 4 und 6 Container (à 10 m³) notwendig.

Die Investitionskosten für das Gewächshaus lassen sich wie folgt aufgliedern:

• Tiefbau (Vorbereitung der Baufläche)

- Materialkosten
 - Stahl
 - Glas
 - Aluminium
 - Beton
- Montagekosten

3.2.4. Betriebskosten PV-Anlage

Die laufenden Betriebskosten für die PV-Anlage umfassen

- kaufmännische Betriebsführung
- jährliche Wartung der gesamten Anlage (insbesondere der Wechselrichter)
- etwaige Reparaturen
- ev. Versicherung gegen Ausfall der Anlage
- ev. Garantieverlängerung der Wechselrichter
- Zählermiete, Bezugsstrom für Wechselrichter-Station,...

und lassen sich für eine Anlage dieser Größe mit ca. 30€/kWp beziffern [4].

3.2.5. Betriebskosten Gewächshaus

Die laufenden Betriebskosten für das Gewächshaus entstehen durch

- Stromkosten (Ventilation, Beleuchtung,...)
- Kauf von Saatgut
- Substrat (Steinwolle)³
- Folie bzw. Mulchvlies
- Schädlingsbekämpfung
- Bestäubung durch Hummeln (bei Tomaten nötig) [5]
- Düngung

³Im Gewächshausanbau setzt sich immer mehr der erdelose Anbau durch; dabei wird die Erde durch ein Substrat (Steinwolle, Sägespäne, Torf,...) ersetzt. Der erdelose Anbau wird bei Tomaten und Gurken angewandt. Für den Salatanbau wird jedoch Erde verwendet.

- Bewässerung
- Verpackungskosten des Endprodukts
- Absatzkosten
- Lohnkosten
- Beheizung des Gewächshauses

Die sächsische Landesanstalt für Landwirtschaft hat im Jahr 2004 die Wirtschaftlichkeit von Gemüse im Gewächshaus untersucht. Es wird davon ausgegangen, dass die grundsätzliche Kostenaufteilung seit dieser Untersuchung gleich geblieben ist. Da die relative Kostenstruktur übernommen wird, werden die Werte aus Deutschland auch für Österreich angewendet.

Die Kostenstruktur ist in Tabelle 3.12 dargestellt.

Tabelle 3.12.: Wirtschaftlichkeitsrechnung von Feldsalat, Tomaten und Gurken [17]; "-" bedeutet, dass diese Position nicht benötigt wird

Kostenart	Kosten in % von den Erlösen			
	Feldsalat	Tomaten	Gurken	
Stromkosten	0,81	1,50	1,96	
Pflanzgut	8,24	6,33	9,21	
Steinwolle	-	2,11	2,01	
Folie / Mulchvlies	-	0,59	0,49	
Pflanzenschutz biologisch	1,89	0,80	2,45	
Bestäubung	0,00	1,20	0,00	
Düngemittel	0,27	3,02	3,34	
Wasser	0,27	0,63	0,56	
Verpackungsmaterial	11,49	6,33	10,41	
Absatzkosten	7,02	6,96	6,91	
Sonstige Kosten	2,70	0,63	0,67	
Lohnkosten	8,24	15,68	13,87	
Summe Kosten (ohne Heizung)	40,93	45,78	51,88	

3.2.5.1. Beheizung

Wie in Abschnitt 2.2.2 Klimasteuerung erläutert, lässt sich der jährliche Heizbedarf nach folgender Formel berechnen (Zusammenfassung):

$$Q = \underbrace{HGT \cdot U \cdot A_{GH}}_{\dot{Q}} \cdot 24 \ Stunden \cdot 85\% = HGT \underbrace{\cdot 5, 1 \frac{W}{m^2 K} \cdot 12.000 \, m^2 \cdot 24 \, h \cdot 0, 85}_{1.249 \, \text{kWh/K}}$$
(3.5)

Mit einer Wärmedurchgangszahl U= $5.1 \,\mathrm{W/m^2}$, einer Grundfläche $A_{\mathrm{GH}}=12.000 \,\mathrm{m^2}$, einer Reduktion um 15% (=Multiplikator 0,85), sowie den in Abschnitt 2.2.2 angeführten Heizgradtagen, ergibt sich ein jährlicher Heizbedarf nach folgender Aufstellung:

$$Q_{Feldsalat} = 1.883 \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 2,35 \,\text{GWh}$$
 (3.6)

$$Q_{Tomate/Gurke} = 2.654 \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 3,31 \,\text{GWh}$$
 (3.7)

$$Q_{Tomate+Gurke} = (359 + 2.295) \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 3,31 \,\text{GWh}$$
 (3.8)

$$Q_{Tomate+Feldsalat} = (359 + 1.801) \,^{\circ}\text{C} \cdot 1.249 \,\text{kWh/K} = 2,70 \,\text{GWh}$$
 (3.9)

(3.10)

Dieser Bedarf wird durch eine Gasheizung (Zusatzheizung) gedeckt. Aus diesem Grund ist der Gaspreis ein weiterer Parameter in der Wirtschaftlichkeitsrechnung. Laut E-Control können "Gewerbekunden den Energiepreis mit den Gaslieferanten verhandeln. Viele Energieunternehmen führen daher auch gar keine festen Gewerbetarife. Dies macht zwar einen Vergleich schwierig, bietet aber die Chance, seine Einkaufskonditionen für den Energiebedarf zu verbessern." [18] Die E-Control stellt einige statistische Werte zur Verfügung, die als Anhaltspunkte für den Gaspreis im Gewerbebereich genutzt werden können.

Der durchschnittliche Energiepreis für Gas im Gewerbebereich (Lastprofil Heizgas) betrug im Jahr 2011 lt. E-Control 3,54 ct/kWh [18]. Zu diesem Energiepreis werden noch die Netzentgelte, Steuern und Abgaben addiert. Diese machen in Summe rund 40% des Energiepreises aus. Somit ergibt sich ein durchschnittlicher Bruttopreis für Gas im Gewerbebereich von 4,96 ct/kWh. Dieser Wert wird als Basis für die zukünftige Entwicklung des Gaspreises herangezogen. Die Entwicklung des Gaspreisindex hingegen ist ein variabler Parameter der Wirtschaftlichkeitsrechnung und wird mit 6,2 % angenommen.

Alternativ wird die Deckung des Heizbedarfs durch Fernwärme untersucht. Die Preissteigerung des Energiepreises für das Fernheizkraftwerk wird ebenfalls mit 6,2% angenommen.

3.3. Ergebnisse

Die Kapitalwertrechnung reagiert sehr sensibel auf den angenommenen zukünftigen Zinsfuß und die angenommenen Preissteigerungsraten. Aus diesem Grund werden die Berechnungen mit verschiedenen Szenarien durchgeführt. Die ungewissen Faktoren sind dabei die Entwicklung von

- Zinsfuß
- Strompreis (Einspeisetarif)
- Marktpreis für Gemüse
- Gaspreis

Aufgrund der vorhandenen Inflation und der bisherigen Preisentwicklung von Gemüse, Strom und Gas wird davon ausgegangen, dass die Preisindizes zukünftig positiv sein werden; somit wird von einer **Preissteigerung** für alle Parameter ausgegangen. Weitere angenommene Parameter sind die Ertragsminderung der Gemüseernte aufgrund der PV-Anlage (40%; siehe Abschnitt 3.2.2), die Ertragssteigerung durch die Funktion der PV-Anlage als Energieschirm (15%; siehe Abschnitt 2.2.2) und der Strombedarf des Gewächshauses.

3.3.1. Sensitivitätsanalyse

Die Sensitivitätsanalyse soll die Abhängigkeit des Kapitalwerts nach 20 Jahren von den oben genannten Parametern (Zinsfuß sowie Index bzw. Steigerungsrate von Gemüsepreis, Strompreis, Gaspreis) aufzeigen. Dabei wird jeweils ein Parameter um \pm 50% variiert (die anderen 3 Parameter werden konstant gelassen) und gemeinsam mit dem Kapitalwert, der sich dadurch ergibt, in einem Diagramm eingetragen. Dabei sind 4 Fälle möglich:

- Fall 1: Vergrößerung eines Parameters führt zu einer Vergrößerung des Kapitalwerts nach 20 Jahren (Datenpunkt im I. Quadranten)
- Fall 2: Verminderung eines Parameters führt zu einer Vergrößerung des Kapitalwerts nach 20 Jahren (Datenpunkt im II. Quadranten)
- Fall 3: Verminderung eines Parameters führt zu einer Verminderung des Kapitalwerts nach 20 Jahren (Datenpunkt im III. Quadranten)
- Fall 4: Vergrößerung eines Parameters führt zu einer Verminderung des Kapitalwerts nach 20 Jahren (Datenpunkt im IV. Quadranten)

Die Datenpunkte für die Parameter "Agrarpreisindex" und "Strompreisindex" sollten sich im I. und III. Quadranten befinden (der Kapitalwert ist proportional von diesen Parametern abhängig, da diese direkten Einfluss auf die Einnahmen haben). Die Datenpunkte für die Parameter "Zinsfuß" und "Gaspreisindex" sollten sich im II. und IV. Quadranten befinden (der Kapitalwert ist umgekehrt proportional von diesen Parametern abhängig, da diese direkten Einfluss auf die Ausgaben haben).

Die Sensitivitätsanalyse wird für folgende Variationen durchgeführt:

- Einspeiseart der PV-Anlage (Volleinspeiser = mit Förderung, Überschusseinspeiser = ohne Förderung)
- Beheizung des Gewächshauses (Gas oder Fernwärme)
- Gemüseart (Feldsalat, Rispentomate, Gurke, Tomate und Feldsalat, Tomate und Gurke)

Die Grafiken der Sensitivitätsanalysen befinden sich im Anhang B. Exemplarisch werden in diesem Abschnitt die Sensitivitätsanalysen für Rispentomaten und die Variationen Voll-/Überschusseinspeiser sowie Gas/Fernwärme untersucht. Die Abbildungen 3.5 bis 3.8 und B.1 bis B.20 zeigen Sensitivitätsanalysen verschiedener Anbaufolgen bei Voll-/Überschusseinspeisung und Beheizung mit Gas/Fernwärme. Die Ausgangsbasis der veränderten Parameter ist dabei:

• Zinsfuß: Z=6,0%

• Strompreisindex: Si=5,4%

• Agrarpreisindex: Ai=2,8%

• Gaspreisindex: Gi=6,2%

• Fernwärmeindex: Fi=6,2%

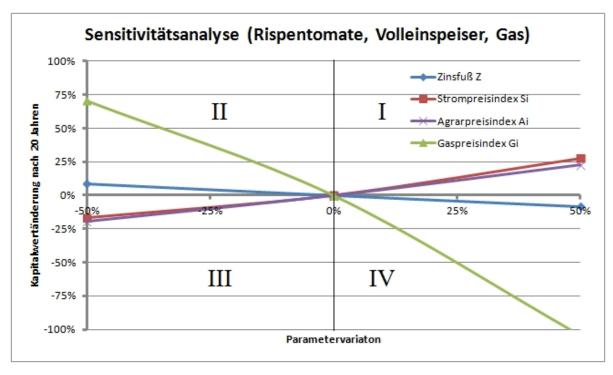


Abbildung 3.5.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau und Volleinspeisung der PV-Anlage und Beheizung mit Gas

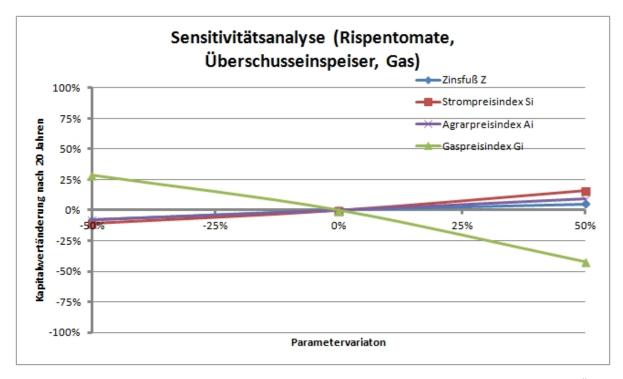


Abbildung 3.6.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Überschusseinspeisung der PV-Anlage und Beheizung mit Gas

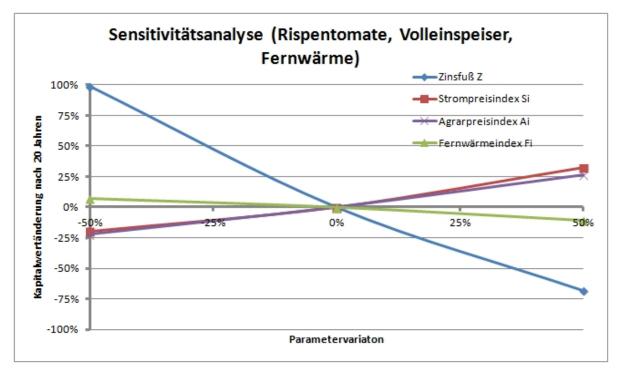


Abbildung 3.7.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Volleinspeisung der PV-Anlage und Beheizung mit Fernwärme



Abbildung 3.8.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Überschusseinspeisung der PV-Anlage und Beheizung mit Fernwärme

Erwartungsgemäß befinden sich die Datenpunkte für den Strompreisindex und den Agrarpreisindex in den Quadranten I und III, die Datenpunkte für Zinsfuß und Gaspreisindex in den Quadranten II und IV; einzige Ausnahme bildet die Variante Überschusseinspeisung mit Gasheizung: hier befinden sich die Datenpunkte für den Zinsfuß in den Quadranten I und III, was bedeutet, dass eine Minderung des Zinsfußes zu einer Minderung des Kapitalwerts führt. Dies lässt sich dadurch erklären, dass bei dieser Variante der jährliche Zahlungsstrom immer negativ ist (siehe Abschnitt 3.3.2.2) und somit ein negativer Kapitalwert abgezinst wird (was den abgezinsten Verlust verringert).

Bei Beheizung mit Gas zeigt der Zinsfuß äußerst wenig Einfluss auf den Kapitalwert nach 20 Jahren (<10%). Der Strompreisindex und der Gemüsepreisindex zeigen mittleren Einfluss auf den Kapitalwert, während die größte Abhängigkeit des Kapitalwerts sich aus dem Gaspreisindex ergibt. Bei Beheizung mit Fernwärme zeigt sich eine geringere Abhängigkeit des Kapitalwerts vom Energiepreis für die Heizung. Den größten Einfluss hat hier der Zinsfuß.

Die Art der Einspeisung (Volleinspeisung oder Überschuss) zeigt wenig Unterschiede. Interessant ist jedoch, dass bei der Variante Überschusseinspeisung mit Fernwärmebeheizung die einzelnen Parameter generell einen höheren Einfluss zeigen und die Datenpunkte weit gestreut sind. Dies ist darauf zurückzuführen, dass bei dieser Variante weder bei der PV-Anlage noch beim Gewächshaus Förderungen genutzt werden und im Gegensatz zur Gasheizung der Gaspreisindex kein dominierender Faktor ist.

3.3.2. Kapitalwert

3.3.2.1. Getrennte Betrachtung

Um den gegenseitigen wirtschaftlichen Einfluss besser darzustellen, werden zunächst die PV-Anlage und das Gewächshaus separat untersucht. Dabei wird von einem gesamten Investitionsvolumen von 2,8 Mio. € ausgegangen (siehe 3.2.3). Da die genaue Aufteilung in PV-Anlage und Gewächshaus nicht bekannt ist, wird der durchschnittliche Marktpreis für PV-Anlagen im Jahr 2012 herangezogen. Dieser wird mit 1.700 €/kWp angenommen [4], was bei einer Anlagengröße von 950 kWp zu Investitionskosten der PV-Anlage von 1.615.000 € führt. Somit betragen die Investitionskosten für das Gewächshaus 1.185.000 €. Die Entwicklung des Kapitalwerts für PV-Anlage (Volleinspeisung und Überschusseinspeisung) und Gewächshaus (Gemüseproduktion zzgl. Gasheizung bzw. Fernwärme) in getrennter Betrachtung ist in Abbildung 3.9 dargestellt. Der Restwert der Anlage nach 20 Jahren wird mit 0 angenommen (im Grunde bleibt nur noch der Materialwert bestehen, der sich vermutlich mit den Kosten für Abbrucharbeiten und Entsorgung im Wesentlichen aufhebt).

Es ist sehr gut zu erkennen, dass der Kapitalwert der PV-Anlage bereits nach 7 Jahren positiv ist. Der Kapitalwert des Gewächshauses bei Beheizung mit Gas ist immer negativ, d.h. durch das Gewächshaus allein wird kein Gewinn erzielt. Wird das Gewächshaus jedoch mit Fernwärme beheizt, so wird der Kapitalwert nach ca. 30 Jahren positiv.

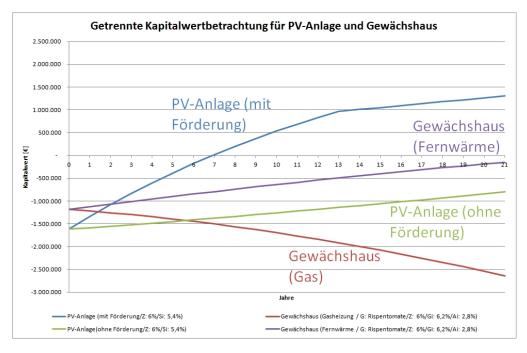
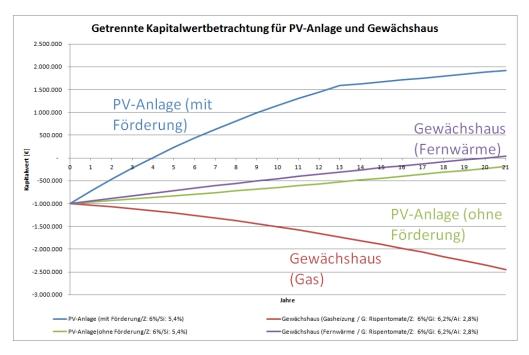
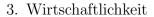




Abbildung 3.9.: Kapitalwert für PV-Anlage und Gewächshaus getrennt

Um einen direkten Vergleich zwischen einer entsprechenden fiktiven PV-Anlage und einem ebensolchen Gewächshaus zu ermöglichen, werden in Abbildung 3.10 die gleichen Investitionskosten (in Höhe von $1.000.000 \in$) angenommen.

Abbildung 3.10.: Kapitalwert für PV-Anlage und Gewächshaus getrennt mit (fiktiven) gleichen Investitionskosten

Es ist in Abbildung 3.10 gut ersichtlich, dass sowohl das nicht geförderte Gewächshaus als auch die ungeförderte PV-Anlage einen ähnlichen Kapitalwert erzielen und dieser nach ca. 20 Jahren positiv ist.

3.3.2.2. Volleinspeisung und Beheizung mit Gas

Die folgenden Abschnitte zeigen die Entwicklung des Kapitalwerts bei gemeinsamer Betrachtung von PV-Anlage und Gewächshaus. Dabei werden die gleichen 4 Fälle wie bei der Sensitivitätsanalyse untersucht:

- Volleinspeisung und Beheizung mit Gas
- Überschusseinspeisung und Beheizung mit Gas
- Volleinspeisung und Beheizung mit Fernwärme
- Überschusseinspeisung und Beheizung mit Fernwärme

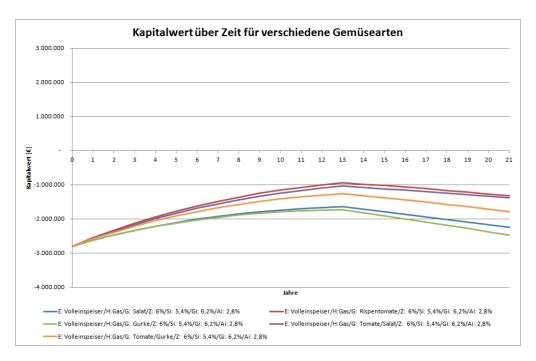
Dabei werden verschiedene Parameter variiert. Die Bezeichnung der Kurven erfolgt dabei nach dem Schema Einspeiseart (E)/Heizung (H)/Gemüseart (G)/Zinsfuß (Z)/Strompreisindex (Si)/Gaspreis-(Fernwärme-)index (Gi bzw. Fi)/Agrarpreisindex (Ai). Die Ausgangsbasis der Parameter ist dabei:

• Zinsfuß: Z=6,0%

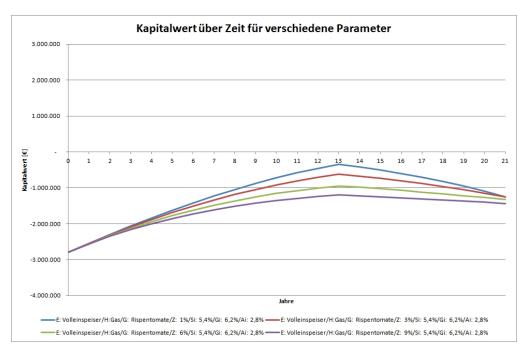
• Strompreisindex: Si=5,4%

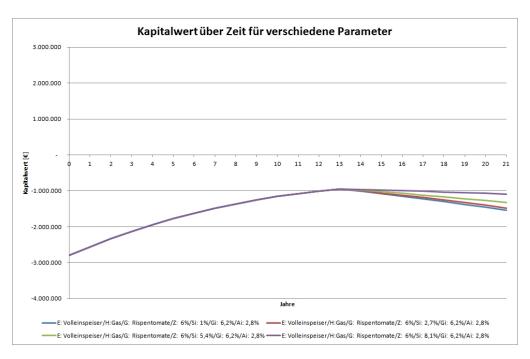
• Agrarpreisindex: Ai=2,8%

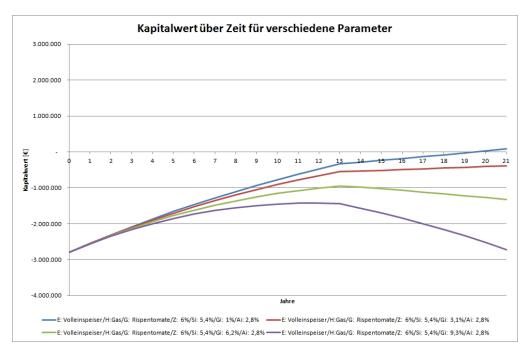
• Gaspreisindex: Gi=6,2%


• Fernwärmeindex: Fi=6,2%

Die detaillierten Kapitalwertrechnungen sind im Anhang C enthalten.


Die Abbildungen 3.11 bis 3.15 zeigen die Entwicklung des Kapitalwerts bei gemeinsamer Betrachtung von PV-Anlage (Volleinspeisung) und Gewächshaus (Beheizung mit Gas).


Abbildung 3.11.: Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung mit Gas


Abbildung 3.12.: Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z und Beheizung mit Gas

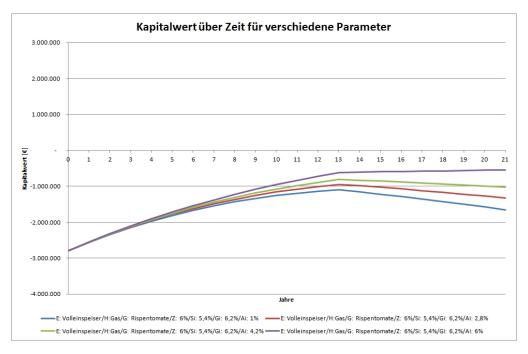
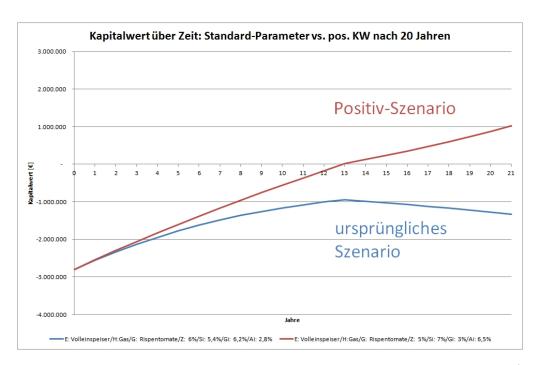

Abbildung 3.13.: Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreisindex Si und Beheizung mit Gas

Abbildung 3.14.: Kapitalwertentwicklung für Rispentomaten bei Variation von Gaspreisindex Gi und Beheizung mit Gas

Abbildung 3.15.: Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreisindex Ai und Beheizung mit Gas

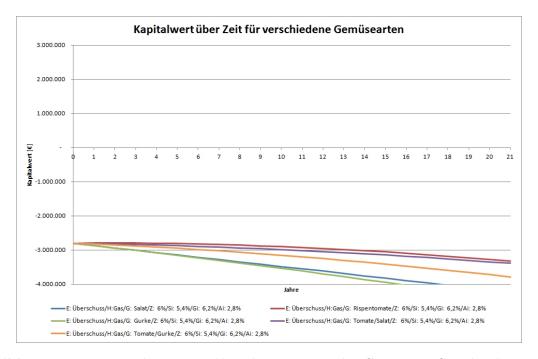
Der Knick in den Abbildungen 3.11 bis 3.15 zeigt das Ende der Einspeiseförderung. Ab diesem Zeitpunkt (nach 13 Jahren) wird die eingespeiste Energie zum Einspeisetarif des Netzbetreibers abgegolten.

Wie schon aus der Sensitivitätsanalyse ersichtlich ist, zeigt eine Variation des Gaspreisindex die größten Auswirkungen. So ist ein positiver Kapitalwert nach 20 Jahren nur durch einen entsprechend niedrigen Gaspreis(index) möglich. Es ist zu sehen, dass ein positiver Kapitalwert nur erreicht werden kann, wenn


- der Strompreis (und damit der Einspeisetarif) stark steigt, oder
- der Gemüsepreis stark steigt, oder
- der Gaspreis nicht so stark ansteigt.

Es wird ebenfalls ein Positiv-Szenario untersucht, in dem der Kapitalwert nach 20 Jahren positiv ist und die ursprünglichen Parameter so wenig wie nötig verändert werden. In diesem Szenario werden folgende Parameter angenommen:

- Z=5%
- Si=7%
- Gi=3%
- Ai=6,5%


Abbildung 3.16.: Kapitalwertentwicklng für Rispentomaten beim Positiv-Szenario (Volleinspeisung); blau: Positiv-Szenario, rot: ursprüngliches Szenario

3.3.2.3. Überschusseinspeisung und Beheizung mit Gas

Die Abbildungen 3.17 bis 3.21 zeigen die Entwicklung des Kapitalwerts bei gemeinsamer Betrachtung von PV-Anlage (Überschusseinspeisung) und Gewächshaus (Beheizung mit Gas).

Abbildung 3.17.: Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung mit Gas

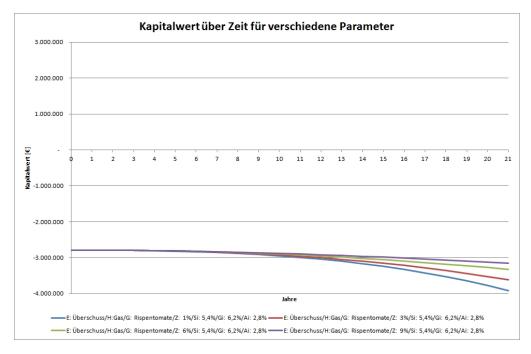
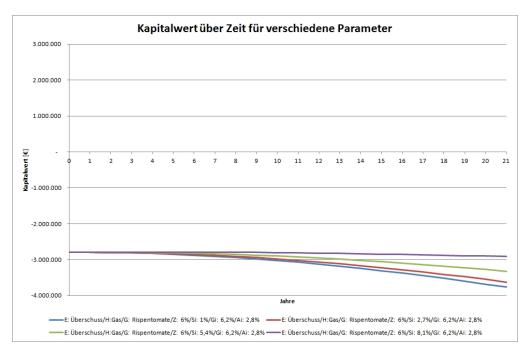



Abbildung 3.18.: Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z und Beheizung mit Gas

Abbildung 3.19.: Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreisindex Si und Beheizung mit Gas

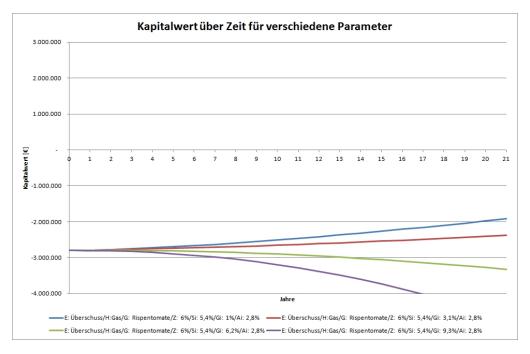
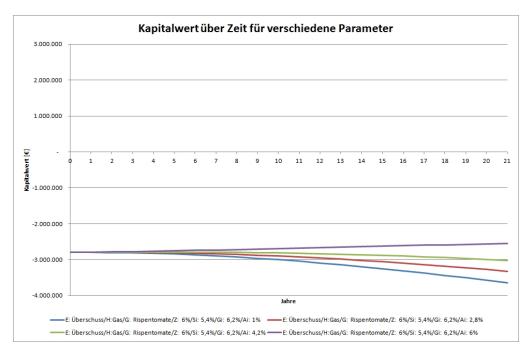
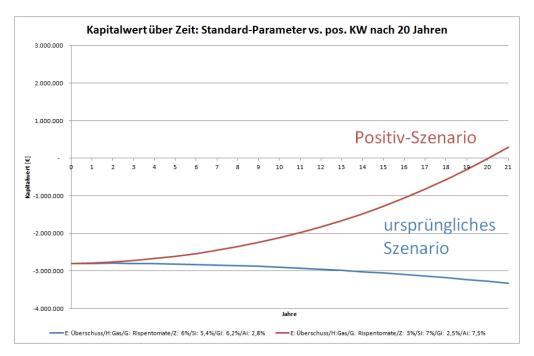



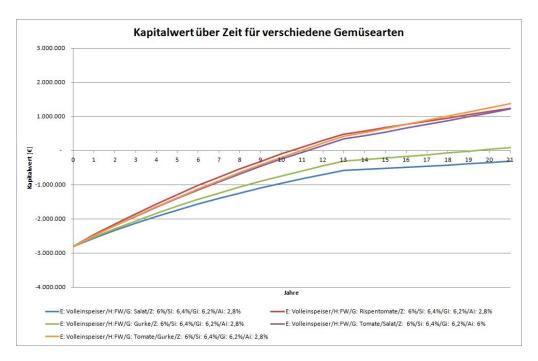
Abbildung 3.20.: Kapitalwertentwicklung für Rispentomaten bei Variation von Gaspreisindex Gi und Beheizung mit Gas

Abbildung 3.21.: Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreisindex Ai und Beheizung mit Gas

Ebenso wie bei der Volleinspeisung zeigt der Gaspreisindex die größten Auswirkungen. Deshalb wird ebenfalls ein Positiv-Szenario untersucht, in dem der Kapitalwert nach 20 Jahren positiv ist und die ursprünglichen Parameter so wenig wie nötig verändert werden. In diesem Szenario werden folgende Parameter angenommen:

- Z=3%
- Si=7%
- Gi=2.5%
- Ai=7.5%




Abbildung 3.22.: Kapitalwertentwickling für Feldsalat beim Positiv-Szenario (Überschusseinspeisung); blau: Positiv-Szenario, rot: ursprüngliches Szenario

3.3.2.4. Volleinspeisung und Beheizung mit Fernwärme

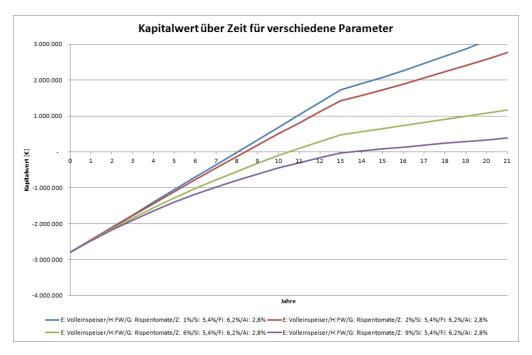
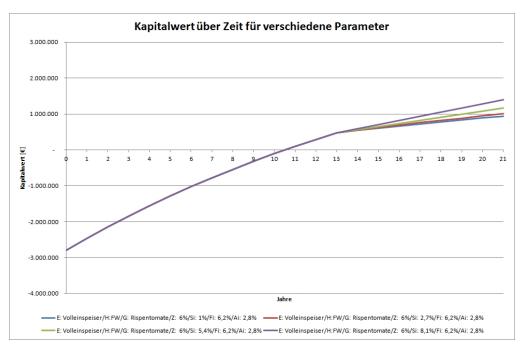
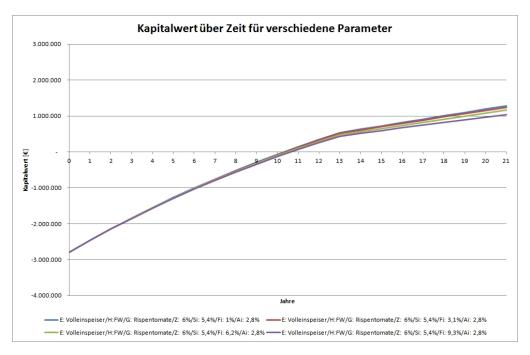

Die Abbildungen 3.23 bis 3.27 zeigen die Entwicklung des Kapitalwerts bei gemeinsamer Betrachtung von PV-Anlage (Volleinspeisung) und Gewächshaus (Beheizung mit Fernwärme).

Abbildung 3.23.: Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung mit Fernwärme

Abbildung 3.24.: Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z und Beheizung mit Fernwärme

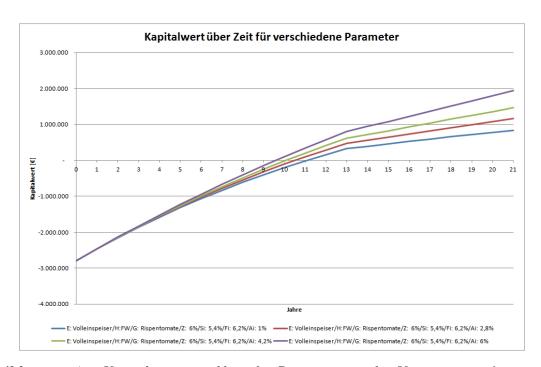
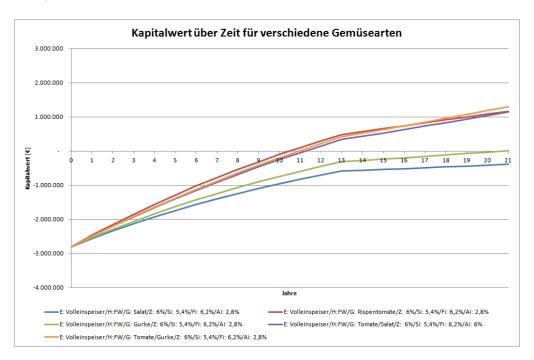

Abbildung 3.25.: Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreisindex Si und Beheizung mit Fernwärme

Abbildung 3.26.: Kapitalwertentwicklung für Rispentomaten bei Variation von Fernwärmeindex Fi und Beheizung mit Fernwärme

Abbildung 3.27.: Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreisindex Ai und Beheizung mit Fernwärme



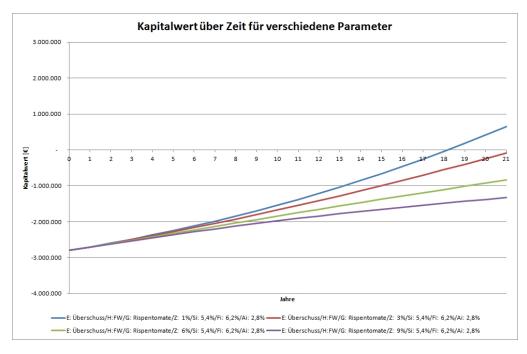
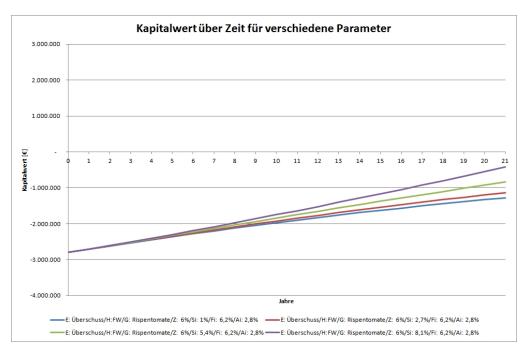
Der Knick in den Abbildungen 3.23 bis 3.27 zeigt das Ende der Einspeiseförderung. Ab diesem Zeitpunkt (nach 13 Jahren) wird die eingespeiste Energie zum Einspeisetarif des Netzbetreibers abgegolten.

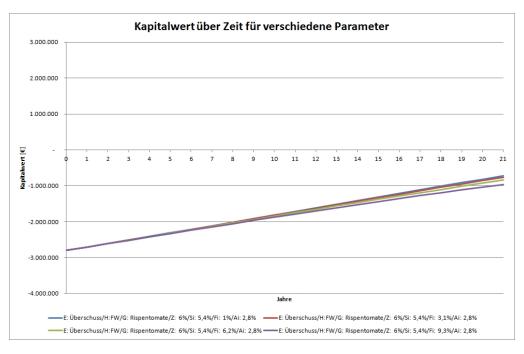
Wie schon aus der Sensitivitätsanalyse ersichtlich ist, zeigt eine Variation des Zinsfußes die größten Auswirkungen. Aufgrund der niedrigen Beheizungskosten ist bei Rispentomaten der Kapitalwert nach spätestens 15 Jahren positiv.

3.3.2.5. Überschusseinspeisung und Beheizung mit Fernwärme

Die Abbildungen 3.28 bis 3.32 zeigen die Entwicklung des Kapitalwerts bei gemeinsamer Betrachtung von PV-Anlage (Volleinspeisung) und Gewächshaus (Beheizung mit Fernwärme).

Abbildung 3.28.: Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung mit Fernwärme


Abbildung 3.29.: Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z und Beheizung mit Fernwärme

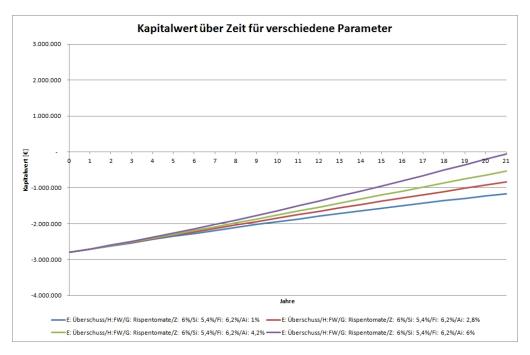

Abbildung 3.30.: Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreisindex Si und Beheizung mit Fernwärme

Abbildung 3.31.: Kapitalwertentwicklung für Rispentomaten bei Variation von Fernwärmeindex Fi und Beheizung mit Fernwärme

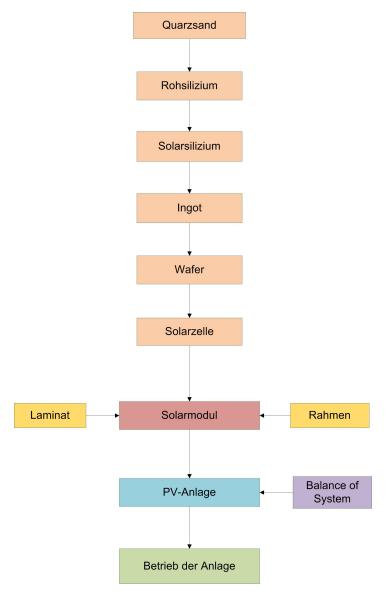
Abbildung 3.32.: Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreisindex Ai und Beheizung mit Fernwärme

Wie schon aus der Sensitivitätsanalyse ersichtlich ist, zeigt eine Variation des Zinsfußes die größten Auswirkungen. Bei günstigen Parametern (niedriger Zinsfuß und Energiepreisindex, hoher Strompreis- und Agrarpreisindex) kann ein positiver Kapitalwert nach weniger als 20 Jahren erreicht werden.

4. CO₂-Bilanzierung

4.1. Grundlagen

Die Analyse der Umweltauswirkungen eines Produktes während seines Lebenszyklus wird Ökobilanz oder Life Cycle Assessment (LCA) genannt. Dabei umfasst der Produktlebenszyklus die gesamte Wertschöpfungskette ("von der Wiege zur Geburt") [19], d.h.:


- Herstellung und Gewinnung der Rohstoffe
- Produktion
- Verteilung
- Nutzung
- Entsorgung

Der Produktlebenszyklus einer Photovoltaik-Anlage (PV-Anlage) ist in Abbildung 4.1 dargestellt. Die Produktionsschritte vom Rohstoff bis zur fertigen PV-Zelle entsprechen dabei dem Produktionsprozess kristalliner Zellen (für die Herstellung von Dünnschichtzellen (amorphes Silizium, CIS, CdTe,...) werden andere Schritte in der Produktion angewendet). Aus Quarzsand wird Silizium (Rohsilizium bis Solarsilizium) gewonnen. Bei der Herstellung von monokristallinen Zellen wird meist im Czochralski-Verfahren ein Siliziumstab (monokristalliner Ingot) gezogen. Für polykristalline Zellen wird das Solarsilizium in rechteckige Blöcke (polykristalline Ingots) gegossen. Die Ingots werden in Wafer (dünne Scheiben) gesägt und die Wafer im Anschluss zu Zellen prozessiert (Dotierung, Reinigung, Anbringen der Elektroden). [4]

Die fertigen PV-Zellen werden auf das Deckglas gelegt, zu Strängen verlötet und auf der Rückseite laminiert (bzw. Rückglas bei Glas-Glas-Modulen). Nach Verdrahtung der Zellen und der Montage des Rahmens (bei gerahmten Modulen) ist das Modul fertig [4]. Zu einer PV-Anlage gehören jedoch nicht nur die PV-Module, sondern auch die entsprechenden Nebeneinrichtungen (BOS, Balance of Sytem). BOS umfasst dabei das Montagegestell für die Module, Wechselrichter, Verkabelung, Transformator, Schaltgeräte, Sicherungseinrichtungen. Diese Komponenten müssen in der Ökobilanz einer PV-Anlage ebenso aufscheinen, auch wenn ihr Anteil an der gesamten Bilanz nur einen Bruchteil des Anteils der Module beträgt.

 ${\bf Abbildung}~{\bf 4.1.:}~Produktlebenszyklus~einer~PV\text{-}Anlage~[20]$

Ein Teil der LCA ist die Untersuchung der Emission von Treibhausgasen (CO₂-Bilanz). Die wichtigsten anthropogenen (=vom Menschen verursachten bzw. eingesetzten) Treibhausgase nach dem Kyoto-Protokoll sind in Tabelle 4.1 dargestellt.

Tabelle 4.1.: Die wichtigsten vom Menschen verursachten bzw. eingesetzten Treibhausgase

Treibhausgas	Summenformel	Entstehung/Verwendung
Kohlenstoffdioxid	CO_2	Verbrennungen
Methan	CH_4	Landwirtschaft
Distickstoffoxid (Lachgas)	N_2O	Düngung
Schwefelhexafluorid	SF_6	Isoliergas in MS & HS-Schaltanlagen

Da die Treibhausgase die Atmosphäre mit unterschiedlicher Intensität beeinflussen und um die Auswirkungen dennoch vergleichbar zu machen, wird der Treibhauseffekt über das Global Warming Potential (GWP) gewichtet und in CO_2 -Äquivalenten (Abkürzung CO_{2eq}) angegeben. Als Bezugswert dient hierbei der Treibhauseffekt von CO_2 über einen Zeitraum von 100 Jahren [21].

Tabelle 4.2.: GWP ausgewählter Treibhausgase [21]

		•
Summen-	Verweildauer in	GWP
formel	Atmosphäre	(100 Jahre)
CO_2	100 Jahre	1
CH_4	12 Jahre	21
N_2O	120 Jahre	310
SF_6	3.200 Jahre	23.900

Zur Verdeutlichung von Tabelle 4.2: 1 kg CH_4 trägt nach Freisetzung innerhalb von 12 Jahren so stark zum Treibhauseffekt bei wie 21 kg CO_2 in 100 Jahren.

 SF_6 ist zwar das stärkste bekannte Treibhausgas, es wird jedoch wegen der begleitenden technischen Vorkehrungen kaum freigesetzt, sodass sein Einfluss auf die globale Erwärmung gering ist.

Die für diese Arbeit relevanten Treibhausgase sind CO_2 (fällt im Produktionsprozess der Komponenten einer PV-Anlage und eines Glashauses an bzw. wird im Betrieb vermieden) und N_2O (fällt bei der Düngung an).

In dieser Arbeit wird nur auf die CO₂-Bilanz und die Energie-Rücklaufzeit eingegangen, da diese in Bezug auf Stromerzeugung eine größere Relevanz gegenüber anderen Umweltauswirkungen haben.

4.1.1. CO₂-Bilanz

Die CO₂-Bilanz berücksichtigt die verursachten CO₂-Emissionen der PV-Anlage, des Gewächshauses und des Gemüsebaus als auch die eingesparten Emissionen durch den Betrieb der PV-Anlage und die CO₂-Aufnahme der Pflanzen.

CO₂ wird nur im Herstellungsprozess einer PV-Anlage emittiert. Zwar kommt es auch in der Betriebsphase einer PV-Anlage zu CO₂-Emissionen, hervorgerufen durch Wartungen, Reparaturen, Betriebsführung etc.; diese Emissionen sind jedoch von untergeordneter Bedeutung und können ohne weiteres vernachlässigt werden.

Die CO₂-Bilanz von PV-Anlagen wurde in der Vergangenheit bereits hinlänglich von verschiedensten Autoren behandelt (z.B. [22], [23], [20], [24], [25], [26]). Insbesondere Hsu et al. [25] haben im Jahr 2012 eine umfangreiche Recherche bisheriger CO₂-Bilanzen von PV-Anlagen durchgeführt und diese Ergebnisse im Anschluss harmonisiert.

Die in der Literatur angegebenen Werte für die CO₂-Emissionen einer PV-Anlage beziehen sich auf unterschiedliche Parameter wie

- Produktionsland
- Standort der PV-Anlage; abgebildet durch die Einstrahlung
- eingesetzte Technologie (Mono-, Multikristallin, Dünnschicht); abgebildet durch Modulfläche, Modulwirkungsgrad und Performance Ratio
- angenommene Lebensdauer

Die im Produktionsprozess verursachten CO₂-Emissionen werden zum Großteil durch den zur Stromerzeugung eingesetzten Primärenergieträger bestimmt. Diese lassen sich nur sehr schwer bestimmen; jedoch lässt das Produktionsland der Komponenten einer PV-Anlage Rückschlüsse über den jeweiligen Strommix und somit die eingesetzten Primärenergieträger zu. Für die CO₂-Emissionen ist es somit von großer Bedeutung, in welchem Land die Komponenten hergestellt wurden.

Der Betriebs-Standort einer PV-Anlage nimmt natürlich keinen Einfluss auf die in der Produktion verursachten CO₂-Emissionen. Allerdings kommt es durch den Transport der Komponenten zum jeweiligen Anlagenstandort zu Emissionen.

Pflanzen reichern sich mit Kohlenstoff an, wodurch es von außen gesehen zu einer Absorption von CO₂ kommt. In Abschnitt 4.2.2.3 wird gezeigt, dass diese Absorption nur geringen Einfluss auf die CO₂-Bilanz hat.

Durch den Bau des Gewächshauses wird CO_2 emittiert, vor allem durch die Herstellung der für den Bau benötigten Materialien.

Im Zuge des Gemüseanbaus wird ebenfalls CO₂ emittiert. Es kann gezeigt werden, dass die Emissionen durch die Prozesse des Gemüsebaus (Düngung, Bewirtschaftung,...) vernachlässigbar gegenüber den Emissionen durch die Beheizung sind.

4.1.2. Energierücklaufzeit

Die Energierücklaufzeit (auch energetische Amortisationszeit oder Energy Pay-Back Time EPBT) gibt an, in welcher Zeit eine Stromerzeugungsanlage jene Energie erzeugt hat, die zur Herstellung der Anlage (inklusive ihrer Komponenten) eingesetzt werden musste. Dazu wird der kumulierte Energieaufwand (KEA)¹ des Herstellungsprozesses durch die jährlich erzeugte Energie (abzüglich des Energieeinsatzes für den Betrieb) dividiert [4]:

$$EPBT = \frac{E_{mat} + E_{manu} + E_{trans} + E_{inst} + E_{EoL}}{E_{agen} - E_{aoper}}$$

$$(4.1)$$

mit:

EPBT Energy Pay-Back Time, Energierücklaufzeit

E_{mat} Primärenergieaufwand für die Produktion der benötigten Materialien

(bei PV z.B. Silizium, Aluminium, Glas,...)

E_{manu} Primärenergieaufwand für die Herstellung der Anlage

 ${\cal E}_{trans}$ Primärenergieaufwand für den Transport der genutzten Materialien zum Standort

 ${\cal E}_{\rm inst}$ Primärenergieaufwand für die Installation des Systems

 $\rm E_{EoL}$ Primärenergieaufwand für Abbau und Entsorgung nach Ablauf der Lebensdauer

Eagen jährlich erzeugte Energie

 $\mathbf{E}_{\mathrm{aoper}} \qquad \qquad \mathbf{j} \\ \mathbf{\ddot{a}} \\ \mathbf{h} \\ \mathbf{l} \\ \mathbf{c} \\ \mathbf{e} \\ \mathbf{f} \\ \mathbf{u} \\ \mathbf{r} \\ \mathbf{d} \\ \mathbf{f} \\ \mathbf{u} \\ \mathbf{r} \\ \mathbf{d} \\ \mathbf{f} \\ \mathbf{u} \\ \mathbf{r} \\ \mathbf{d} \\ \mathbf{e} \\ \mathbf{f} \\ \mathbf{u} \\ \mathbf{r} \\ \mathbf{d} \\ \mathbf{e} \\ \mathbf{e}$

Ausschlaggebend für die EPBT einer PV-Anlage ist somit, in welchem Land, unter welchen Umständen die Komponenten hergestellt wurden, und in welchem Land die Anlage betrieben wird. Der Anlagenstandort ist insbesondere bei den erneuerbaren Energieträgern wie Wind und Sonne von größter Bedeutung, da z.B. Südeuropa eine größere Einstrahlung als Mitteleuropa aufweist und somit jährlich mehr Energie erzeugt werden kann; dies führt wiederum zu einer kürzeren EPBT.

In der Literatur wird die Energierücklaufzeit auch gerne primärenergetisch bewertet. Dies ist eine hypothetische Betrachtung, wie hoch die Energierücklaufzeit wäre, wenn man den Primärenergieaufwand nicht in den Betrieb eines bereits bestehenden Kraftwerks (mit z.B. 31% Wirkungsgrad), sondern in den Bau und den Betrieb eines neuen Kraftwerks stecken würde. Die primärenergetisch bewertete Energierücklaufzeit ist geringer als die "normale" Energierücklaufzeit. Diese Bewertung ist allerdings zu hinterfragen, da mit einem bestimmten Wirkungsgrad gewichtet wird; nachdem verschiedene Kraftwerkstypen einen unterschiedlichen Wirkungsgrad besitzen, lässt sich ein neutraler Vergleich nicht durchführen. Aus diesem Grund wird in dieser Arbeit die "normale" Energierücklaufzeit betrachtet.

Tabelle 4.3 zeigt die Energierücklaufzeit für verschiedene Kraftwerkstypen. Standort ist dabei jeweils Westeuropa.

¹Der kumulierte Energieaufwand wird oft auch als **Graue Energie** bezeichnet.

Tabelle 4.3.: Energierücklaufzeiten verschiedener Kraftwerkstypen [27]

Kraftwerkstyp	Energierücklaufzeit
GuD	9 Tage
Steinkohle	2 Monate
Kernkraft	2 Monate
Wind	12 Monate
Laufwasser	24 Monate
Pumpspeicher	36 Monate
Photovoltaik	72 Monate

Es ist an dieser Stelle anzumerken, dass die für die Stromproduktion notwendige Energieaufbringung durch den Brennstoff (Öl, Kohle, Gas, Uran, Holz,...) bei der Energierücklaufzeit nicht berücksichtigt wird! Würde man den Brennstoffeinsatz berücksichtigen, so
ist es einleuchtend, dass sich für die brennstoffabhängigen Kraftwerkstypen eine negative Energierücklaufzeit ergibt, d.h. es muss immer mehr Energie aufgebracht werden,
als "erzeugt" werden kann. In diesem Sinne haben nur Windkraftwerke, Wasserkraftwerke (mit Ausnahme von Pumpspeichern) und Photovoltaikkraftwerke eine positive
Energierücklaufzeit.

4.2. Methoden

4.2.1. PV-Anlage

4.2.1.1. Emissionen bei der Herstellung

Da die CO₂-Emissionen von PV-Anlagen bereits hinreichend untersucht wurden, werden in dieser Arbeit die Ergebnisse aus der Literatur auf die Musteranlage umgerechnet. Die Treibhausgas-Emissionen einer PV-Anlage lassen sich nach [25] wie folgt harmonisieren:

$$GHG = \frac{GWP}{G \cdot A_{PV} \cdot \eta \cdot PR \cdot L} \tag{4.2}$$

mit:

GHG	gewichtete Treibhausgas-Emissionen [kg CO _{2eq} /kWh]
GWP	Global Warming Potential, Treibhauspotential [kg CO _{2e}]
G	solare Einstrahlung in Modulebene [kWh/(m ² a)]
A_{PV}	gesamte Modulfläche der PV-Anlage[m ²]
η	Modulwirkungsgrad [%]
PR	Performance Ratio der gesamten PV-Anlage [%]
L	Lebensdauer der PV-Anlage [a]

Will man nun die Ergebnisse einer Literatur (unter Kenntnis der angeführten Parameter) auf andere Parameter umrechnen, z.B. Einstrahlung von $1.000\,\mathrm{W/m^2}$ statt $1.700\,\mathrm{W/m^2}$ oder eine Lebensdauer von 25 Jahren statt 30 Jahre, so lässt sich dies einfach mit Gleichung 4.2 bewerkstelligen. Die Umrechnung erfolgt dabei durch einen Faktor, z.B. $\frac{1.700~\mathrm{W/m^2}}{1.000~\mathrm{W/m^2}} = 1,7$. Die Fläche A fällt aus der Gleichung, wenn man die Fläche konstant lässt. Für CO_2 ist das Treibhauspotential $\mathrm{GWP}{=}1$.

Tabelle 4.4 zeigt beispielhaft Ergebnisse aus der Literatur mit den verwendeten Parametern.

Tabelle 4.4.: In der Literatur angegebene CO₂-Emissionen ([22], [28], [25])

Veröffentlichungs-	Technologie	G	η	PR	L	GHG
jahr		kWh/m^2 a	%	%	a	$ m g~CO_{2eq}/kWh$
2006	Si Mono	1,7	14	75	30	35
2006	Si Multi	1,7	13,2	75	30	32
2011	Si Mono	1,7	14	75	30	29
2011	Si Multi	1,7	13,2	75	30	28
2012	Si Mono	1,7	14	75	30	40
2012	Si Multi	1,7	13,2	75	30	49

Unter Anwendung von Gleichung 4.2 und den nachstehenden Parametern werden diese Ergebnisse aus der Literatur auf die Musteranlage in der Südoststeiermakr umgerechnet und gemittelt.

Das Treibhauspotential GWP von CO_2 ist **1**. Die solare Einstrahlung G beträgt in der Südsteiermark $1.160\,\mathrm{kWh/(m^2a)}$ auf die Horizontale und $1.289\,\mathrm{kWh/(m^2a)}$ in Modulebene (Neigungswinkel $21,5^\circ$ bei Ausrichtung nach Süden; siehe Simulationsergebnisse im Anhang D). Bei $3.162\,\mathrm{Modulen}$ mit Modulabmessungen von $2.113\,\mathrm{mm}$ x $995\,\mathrm{mm}$ ergibt sich die gesamte PV-Fläche zu

$$A_{PV} = \underbrace{2,113 \times 0,995}_{2.10 \ m^2} \times 3.162 = \mathbf{6.648 \ m^2}$$
 (4.3)

Der Modulwirkungsgrad η beträgt laut Datenblatt 14,3 % (siehe Anhang E). Dieser bleibt jedoch nicht über die gesamte Lebensdauer der PV-Module konstant, nimmt aufgrund der Alterung ab. Der Modulhersteller garantiert eine Leistung von 80% nach 25 Jahren; dies entspricht einem Modulwirkungsgrad von 11,44 %. Da in der Literatur jedoch der ursprüngliche Wirkungsgrad angegeben und die Minderung im Laufe der Zeit berücksichtigt wird, wird auch an dieser Stelle der Wert laut Datenblatt herangezogen. Die Performance Ratio PR der PV-Anlage beträgt nach Mittlung der Simulationsergebnisse 78,6 % (siehe Anhang D) und die Lebensdauer der PV-Anlage wird mit 30 Jahren angesetzt. Die in der Musteranlage verwendeten Module bestehen aus monokristallinen Zellen. Deshalb wird in der weiteren Betrachtung auf polykristalline Module verzichtet.

Beispiel: Monokristallines Modul, 2006

$$GHG = \frac{GWP}{E \cdot A \cdot \eta \cdot PR \cdot L}$$

$$GHG_{umgerechnet} = 35 \cdot \frac{1700}{1289} \cdot \frac{14}{14,3} \cdot \frac{75}{78,6} = 35 \cdot 1, 32 \cdot 0, 98 \cdot 0, 95 = 43, 4 \tag{4.4}$$

Diese Umrechnung wird mit den Werten aus Tabelle 4.4 für die monokristallinen Zelltechnologien durchgeführt; die umgerechneten Werte sind in Tabelle 4.5 dargestellt.

Die spezifischen Emissionen von $42.8 \,\mathrm{g}$ $\mathrm{CO}_2/\mathrm{kWh}$ entsprechen bei den oben angeführten Parametern (Lebensdauer, PR, Wirkungsgrad) einmaligen Emissionen von $1.247 \,\mathrm{t}$ CO_2 .

Tabelle 4.5.: Umrechnung der CO₂-Emissionen auf eine PV-Modellanlage in der Südsteiermark

CO ₂ -Emissionen	CO_2 -Emissionen
original [g/kWh]	umgerechnet [g/kWh]
35	43,4
29	35,7
40	49,3
\oslash	42,8

4.2.1.2. Eingesparte CO₂-Emissionen

Für die eingesparten CO_2 -Emissionen durch den Betrieb der PV-Anlage werden 2 Werte angesetzt:

- 1. Substitution eines modernen GuD-Kraftwerks (ohne Fernwärme-Auskopplung)
- 2. Substitution eines Kraftwerksmix mit Zusammensetzung lt. Stromkennzeichnungsbericht der E-Control

Für die CO_2 -Emissionen eines modernen GuD-Kraftwerks können $440 \,\mathrm{g/kWh_{el}}$ angesetzt werden [29].

Die Zusammensetzung der österreichischen Stromkennzeichnung ist im Stromkennzeichnungsbericht 2012 der E-Control aufgeführt [29]. Laut dem Stromkennzeichnungsbericht der E-Control setzte sich die Stromaufbringung in Österreich im Jahr 2011 wie folgt zusammen:

Tabelle 4.6.: Zusammensetzung der Stromaufbringung in Österreich 2011 [29]

Erneuerbare Energieträger	64,43 %
Fossile Energieträger	21,41 %
Strom unbekannter Herkunft	13,89 %
Sonstige	0,21 %
Nuklearenergie	0,00 %
Summe	100,00 %

Anmerkung: Für Strom unbekannter Herkunft wird laut E-Control der ENTSO-E-Mix angesetzt.

Die CO₂-Emissionen der österreichischen Stromaufbringung betrugen im Jahr 2011 durchschnittlich **192,5** g/kWh [29].

Der Energieertrag der PV-Anlage beträgt nach Mittelung der Simulationsergebnisse durchschnittlich $1.024\,\mathrm{kWh/(kWp~a)}$, dies führt bei einer Spitzenleistung der Anlage von $950\,\mathrm{kWp}$ zu einer jährlichen Erzeugung von $972.800\,\mathrm{kWh}$. Für die vermiedenen CO_2 -Emissionen bedeutet dies bei:

- Substitution eines GuD-Kraftwerks $428\,\mathrm{t}$ CO₂/a
- Substitution des österreichischen Strommix 187 t CO₂/a.

4.2.2. Gewächshaus

CO₂-Emissionen entstehen einerseits durch den Bau des Gewächshauses, andererseits durch den Betrieb der Gemüseproduktion.

4.2.2.1. Emissionen Gewächshausbau

Durch den Bau des Gewächshauses, genauer des Glashauses, entstehen direkt und indirekt CO₂-Emissionen; die direkten Emissionen werden durch den Transport der verwendeten Materialien zum Standort und durch den Bau selbst (Betrieb von Baumaschinen, Baustrom,...) verursacht. Die indirekten Emissionen entstehen durch die Herstellung der Materialien. Tabelle 4.7 listet die für den Gewächshausbau maßgeblichen Materialien und deren CO₂-Emissionen je kg und je ha. Dabei wurde eine Sekundärproduktion (d.h. wiederverwertetes Material wurde zugesetzt) in Österreich angenommen².

Tabelle 4.7.: Auflistung der durch den Gewächshausbau verursachten CO_2 -Emissionen [30]

Material	CO ₂ -Emissionen	verbaute Menge	CO ₂ -Emissionen
	kg/kg Material	kg/ha	kg/ha
Beton	0,15	504.064	75.610
Stahl	1,73	110.000	190.300
Aluminium	1,45	25.000	36.250
Glas	0,45	130.000	58.500
Summe			360.660

4.2.2.2. Emissionen Gärtnereibetrieb

Die CO₂-Emissionen aus dem Gärtnereibetrieb setzen sich einerseits aus dem eigentlichen Betrieb mit Düngung, Pflanzenschutzmittel, Kulturarbeiten und Transport, und andererseits aus der Beheizung zusammen. Die Emissionen während des Betriebs spielen jedoch nur eine untergeordnete Rolle. Es kann gezeigt werden, dass die Beheizung den größten Anteil an den CO₂-Emissionen hat.

²Dabei handelt es sich lediglich um eine Annahme; die tatsächliche Materialherkunft schwankt stark abhängig vom Lieferanten

Tabelle 4.8 zeigt die im Rahmen des Projetk SUKI ermittelten CO₂-Emissionen für Feldsalat im Freilandanbau und für Tomaten im Glashaus [32]. Die Beheizung wurde in der Auflistung bewusst weggelassen und wird in einem späteren Schritt berücksichtigt.

Tabelle 4.8.: Prozessbezogene Auflistung der bei der Feldsalat- und Tomatenproduktion entstehenden CO_{2eq} in kg/kg Ernte im Freilandanbau [32]

Prozess	Feldsalat	Tomaten
Düngemittelherstellung	0,0310	0,0176
N_2 O-Emissionen	0,0149	0,0098
Bewässerung	0,0066	-
Maschineneinsatz	0,0097	0,0002
Saatgutproduktion	0,0001	0,0001
Pflanzenschutzmittelproduktion	0,0050	0,0004
Transport	0,0217	0,0079
Lagerung	0,0007	0,0075
Summe	0,08	0,0435

Zu ähnlichen Ergebnissen für Tomaten im Glashaus kommt Theurl [5]. Tabelle 4.8 zeigt die bei der Tomatenproduktion im Glashaus entstehenden CO₂-Emissionen bezogen auf die Erntemenge.

Tabelle 4.9.: Prozessbezogene Auflistung der bei der Tomatenproduktion entstehenden CO_{2eq} in kg/kg Ernte ([5]) im Freilandanbau

Prozess	Tomaten	Feldsalat
Düngung	0,0134	k.A.
Pflanzenschutzmittel	0,0004	k.A.
Kulturarbeiten	0,008	k.A.
Transport	0,01	k.A.
Summe	0,0318	k.A.

Der Heizbedarf wird durch eine eigene Zusatzheizung gedeckt (siehe Abschnitt 2.2.2). Es wird eine Gasheizung als Zusatzheizung angenommen, die mit Erdgas betrieben wird. Somit können die $\rm CO_2\text{-}Emissionen$ durch die Beheizung des Gewächshauses aus dem Massenverhältnis $\rm a_m$ und dem spezifischen Heizwert $\rm h_u$ von Erdgas berechnet werden:

$$f_{CO2,v} = \frac{a_m}{h_u} \tag{4.5}$$

Das Massenverhältnis a_m wird bestimmt durch das Molverhältnis a_n (welches bei Kohlenstoff C 1 ist; 1 Teil C führt zu 1 Teil CO_2) und das Verhältnis des Molekulargewichts

MG von CO_2 ($MG_{CO_2}=44,01$ g/mol) und Erdgas CH_4 ($MG_{CH_4}=16,04$ g/mol).

$$a_m = a_n \cdot \frac{MG_{CO2}}{MG_{CH4}} = 1 \cdot \frac{44,01 \ g/mol}{16,04 \ g/mol} = 2,74 \ kg_{CO2}/kg_{CH4}$$
 (4.6)

d.h. 1 kg CH₄ führt zu 2,74 kg CO₂-Emission.

Der spezifische Heizwert h_u lässt sich wie folgt berechnen:

$$h_u = \frac{h_{u,m}}{MG_{BS}} = \frac{802,34 \ kJ/mol}{16,04 \ g/mol} = 50,02 \ kJ/g = 50,02 \ MJ/kg$$
(4.7)

Daraus folgt für die spezifischen CO₂-Emissionen

$$f_{CO2,v} = \frac{a_m}{h_u} = \frac{2.74 \ kg_{CO2}/kg_{CH4}}{50,02 \ MJ/kg} = 54,80 \ g/MJ = 197,5 \ g \ CO_2/kWh$$
 (4.8)

Dabei sind:

 $\begin{array}{lll} f_{\rm CO2,v} & {\rm spezifische\ Treibhausgasemissionen\ [kg\ CO_2/kWh]} \\ a_{\rm m} & {\rm st\"{c}chiometrischer\ Faktor\ (Massenverh\"{a}ltnis)\ [kg_{\rm CO_2}/kg_{\rm BS}]} \\ a_{\rm n} & {\rm st\"{c}chiometrischer\ Faktor\ (Molverh\"{a}ltnis)\ [mol_{\rm CO_2}/mol_{\rm BS}]} \\ h_{\rm u} & {\rm spezifischer\ Heizwert\ [kJ/kg]} \\ h_{\rm u,m} & {\rm molarer\ Heizwert\ [kJ/mol]} \\ MG_{\rm CO_2} & {\rm Molekulargewicht\ CO_2\ [g/mol]} \\ MG_{\rm BS} & {\rm Molekulargewicht\ Brennstoff\ [g/mol]} \\ \end{array}$

Der Heizbedarf für ein Mustergewächshaus in der Südsteiermark unterscheidet sich für verschiedene Kulturen (siehe Abschnitt 3.2.5.1). Die sich durch die Gasheizung (Zusatzheizung, mit Erdgas betrieben) ergebenden jährliche CO_2 -Emissionen sind gemeinsam mit den auf die Erntemenge umgerechneten Werte in Tabelle 4.10 dargestellt. Eine Reduktion des Heizbedarfs durch die Funktion der PV-Anlage als Energieschirm (siehe Abschnitt 2.2.2) wurde berücksichtigt.

Auf ein ähnliches Ergebnis der CO_2 -Emissionen durch die Beheizung für Tomaten im Ganzjahresanbau kommen Theurl [5] mit 1,4 kg CO_2 /kg Tomaten (Parameter: Standort Wien, Erdgasheizung) und SUKI [32] mit 1,89 kg CO_2 /kg Tomaten (Parameter: Standort Wien, Erdgasheizung).

Die CO_2 -Emissionen durch die Beheizung (2,36-68,83 kg CO_2 /kg Ernte) liegen wesentlich höher als die Summe der prozessbezogenen CO_2 -Emissionen (0,03-0,08 kg CO_2 /kg Ernte) und sind somit ausschlaggebend für die Emissionen und die Bilanz des Gemüsebaus.

Tabelle 4.10.: CO₂-Emissionen der Gasheizung bezogen auf ein Mustergewächshaus in der Südsteiermark

	Feldsalat	Tomaten	Gurken	Tomaten +	Tomaten +
				Gurken	Feldsalat
CO ₂ -Emissionen [t/a]	464	655	655	655	533
Erntemenge [kg/a]	6.748	277.754	153.360	229.997	170.027
CO ₂ -Emissionen	68,83	2,36	4,27	2,87	3,13
[kg CO ₂ /kg Ernte]					

Wie bei der Wirtschaftlichkeitsrechnung wird auch bei der Berechnung der CO₂-Emissionen untersucht, welche Auswirkungen die Umstellung der Beheizung von Gas auf Fernwärme hätte. Da Fernwärme üblicherweise ein Koppelprodukt aus der Kraft-Wärme-Kopplung (KWK) ist, lassen sich die Emissionen nicht ohne weiteres exakt der Stromproduktion und der Fernwärme zuordnen. Es gibt allerdings Berechnungsmethoden (nach ÖNORM EN 15316-4-5 bzw. CEN/CENELEC), nach denen eine ungefähre Aufteilung der Emissionen möglich ist; für Details sei hier auf weiterführende Literatur verwiesen [33]. Die spezifischen CO₂-Emissionen bei Beheizung mit Fernwärme betragen 0,08 kg CO₂/kWh [33]. Die Umrechnung auf den Heizbedarf eines Mustergewächshauses in der Südsteiermark ist in Tabelle 4.11 angeführt.

Tabelle 4.11.: CO₂-Emissionen der Heizung bezogen auf das Mustergewächshaus in der Südsteiermark bei Beheizung mit Fernwärme

	Feldsalat	Tomaten	Gurken	Tomaten +	Tomaten +
				Gurken	Feldsalat
CO ₂ -Emissionen [t/a]	188	255	255	265	216
Erntemenge [kg/a]	6.748	277.754	153.360	229.997	170.027
CO ₂ -Emissionen	27,88	0,95	1,73	1,16	1,17
[kg CO ₂ /kg Ernte]					

4.2.2.3. Vermeidung Gärtnereibetrieb

Pflanzen benötigen zur Photosynthese CO_2 . Im Zuge dieses Prozesses wird der Kohlenstoff aus dem CO_2 in der Pflanze angereichert. Die Menge in den Pflanzen gespeichertem C lässt sich nur schwer ermitteln. Daher wird mit folgender Näherung gerechnet: Eine (Gemüse-)Pflanze besteht zu 90-95% aus Wasser. Im Maximalfall beträgt die Trockenmasse somit 10%. Der Anteil an Kohlenstoff in der Trockenmasse beträgt ca. 50% [5]. Somit kommt man auf einen Kohlenstoffanteil von max. 5% am Gesamtgewicht der Pflanze. Aus dem Gewichtsverhältnis von Kohlendioxid und Kohlenstoff lässt sich dieser C-Anteil auf CO_2 umrechnen:

$$a_m = \frac{MG_{CO2}}{MG_C} = \frac{44 \ g/mol}{12 \ g/mol} = 3,67$$
 (4.9)

Auf 1 kg Pflanzengewicht entfallen somit 0,05 kg C bzw. 0,18 kg CO_2 .

Umgerechnet auf die Erntemengen eines Mustergewächshauses mit 1,2 ha bedeutet dies:

Tabelle 4.12.: CO₂-Aufnahme der Pflanzen bezogen auf die Erntemenge des Mustergewächshauses

	Feldsalat	Tomaten	Gurken	Tomaten +	Tomaten +
				Gurken	Feldsalat
Erntemenge [kg/a]	6.748	277.754	153.360	229.997	170.027
CO ₂ -Aufnahme	1.215	49.996	27.605	41.399	30.605
$[\text{kg CO}_2/\text{a}]$					

4.3. Ergebnisse

4.3.1. Ökobilanz

Die Ergebnisse der CO₂-Bilanzierung werden 3-stufig dargestellt. Zuerst wird das Gewächshaus ohne Photovoltaikanlage betrachtet, anschließend die PV-Anlage ohne Gewächshaus. Zuletzt erfolgt die Untersuchung der gesamten Anlage, d.h. PV-Anlage kombiniert mit Gewächshaus.

4.3.1.1. Gemüsebau

Die CO₂-Emissionen des Gemüsebaus setzen sich aus den Emissionen durch den Bau des Gewächshauses und den Betrieb der Gemüseproduktion zusammen. Die Absorption durch die Pflanzen wird ebenfalls berücksichtigt.

Wie in Abschnitt 4.2.2.1 gezeigt, betragen die CO₂-Emissionen des Gewächshausbaus 1.121.060 kg CO₂/ha. Beim Gemüsebau werden die prozessbezogenen Emissionen vernachlässigt, da diese in Relation zu den Emissionen der Beheizung verschwindend gering sind. Die CO₂-Emissionen der Beheizung sind in Abschnitt 4.2.2.2 angeführt und werden an dieser Stelle nicht wiederholt.

In den Tabellen 4.13 und 4.14 ist die Ökobilanz des Gemüsebaus (ohne PV-Anlage) für Gasheizung und Fernwärme dargestellt.

	Emissionen	Emissionen	Einsparung	Bilanz
	einmalig [t]	jährlich [t/a]	jährlich [t/a]	nach 30 Jahren
Gewächshaus	-433	0	0	-433
Feldsalat	0	-464	1	-13.897
Tomaten	0	-655	50	-18.137
Gurken	0	-655	28	-18.809
Tomaten/Gurken	0	-655	41	-18.406
Tomaten/Feldsalat	0	-533	31	-15.064

Tabelle 4.13.: Ökobilanz des Gemüsebaus bei Gasheizung (ohne PV-Anlage)

Es zeigt sich, dass die Aufnahme von ${\rm CO_2}$ durch die Pflanzen vernachlässigt werden kann, da die hier dargestellten Werte bereits Maximalwerte sind (siehe Abschnitt 4.2.2.3) und die realen Werte darunter liegen.

4.3.1.2. Photovoltaikanlage

Die CO₂-Emissionen der PV-Anlage setzen sich zusammen aus den Emissionen durch die Produktion der Anlage und die Vermeidung durch die Stromerzeugung (Substitution eines Kraftwerks mit CO₂-Emissionen).

Emissionen Emissionen Einsparung Bilanz einmalig [t] jährlich [t/a] jährlich [t/a] nach 30 Jahren Gewächshaus -433 -433 0 0 Feldsalat 0 -1881 -5.608Tomaten 0 -26550 -6.456Gurken 0 -265 28 -7.128Tomaten/Gurken 0 -265 41 -6.725Tomaten/Feldsalat 0 -216 31 -5.557

Tabelle 4.14.: Ökobilanz des Gemüsebaus bei Fernwärme (ohne PV-Anlage)

Wie in Abschnitt 4.2.1.1 gezeigt, betragen die $\rm CO_2\text{-}Emissionen$ der PV-Anlage 42,8 g $\rm CO_2/kWh$, bezogen auf eine Lebensdauer von 30 Jahren. Für die Vermeidung von $\rm CO_2\text{-}Emissionen$ können 440 g/kWh (Substitution eines GuD-Kraftwerks) oder 192,5 g/kWh (Substitution eines österreichischen Kraftwerksmix) angesetzt werden. Die jährliche Stromproduktion beträgt durchschnittlich 971.237 kWh/a.

In Tabelle 4.15 ist die Ökobilanz der PV-Anlage ohne den Gemüsebau dargestellt.

Substitution GuD Substitution Kraftwerksmix Emissionen [g/kWh] -42.8 -42.8Vermeidung [g/kWh] 440 192,5 Ökobilanz [g/kWh] 397 150 Okobilanz in 1 Jahr [t] 386 146 Ökobilanz nach 30 Jahren [t] 11.567 4.371

Tabelle 4.15.: Ökobilanz der PV-Anlage (ohne Gemüsebau)

Die Ökobilanz einer PV-Anlage ist positiv, d.h. es wird mehr CO_2 "eingespart" als emittiert.

4.3.1.3. Gesamtanlage

Die Berechnung der Ökobilanz der gesamten Anlage wird mit allen untersuchten Gemüsesorten und mit beiden Substitutionen der PV-Anlage durchgeführt. Tabelle 4.16 zeigt die jährliche Ökobilanz der gesamten Anlage bei Gasheizung, wobei die einmaligen Emissionen, verursacht durch den Gewächshausbau und die Produktion der PV-Anlage, nicht berücksichtigt werden. Die Ernteminderung durch die PV-Anlage (Abschattung) wurde ebenso berücksichtigt wie die Reduktion des Heizbedarfs durch die Funktion als Energieschirm.

Die jährliche Ökobilanz der Gesamtanlage ist negativ, d.h. es wird mehr CO_2 durch den Gemüsebau emittiert als durch die PV-Anlage eingespart wird.

Tabelle 4.16.: Jährliche Ökobilanz der gesamten Anlage bei Gasheizung (PV-Anlage und Gemüsebau ohne einmalige Emissionen); alle Angaben in t CO_2/a

	→PV-Anlage			
↓ Gewächshaus		Substitution Kraftwerksmix		
Feldsalat	-36	-276		
7 Tomaten	-177	-418		
Gurken	-200	-440		
Tomaten/Gurken	-197	-437		
Tomaten/Feldsalat	-75	-315		

Bei der Ökobilanz nach 30 Jahren werden sowohl der Bau des Gewächshauses (einmalige Emissionen) als auch die jährliche Ökobilanz berücksichtigt. Die Bilanz nach 30 Jahren ist in Tabelle 4.17 und Abbildung 4.2 dargestellt, wobei die Emissionen durch den Gewächshausbau $433\,\mathrm{t}$ CO₂/a betragen.

Tabelle 4.17.: Ökobilanz der gesamten Anlage (PV-Anlage & Gemüsebau inkl. einmalige Emissionen) bei Gasheizung nach 30 Jahren t CO₂

CO ₂ Emissionen/Vermeidung [t]				
Substitution GuD Substitution Kraftwerksmi				
Feldsalat	-2.756	-9.967		
Tomaten	-6.997	-14.209		
Gurken	-7.669	-14.880		
Tomaten/Gurken	-7.266	-14.477		
Tomaten/Feldsalat	-3.924	-11.135		

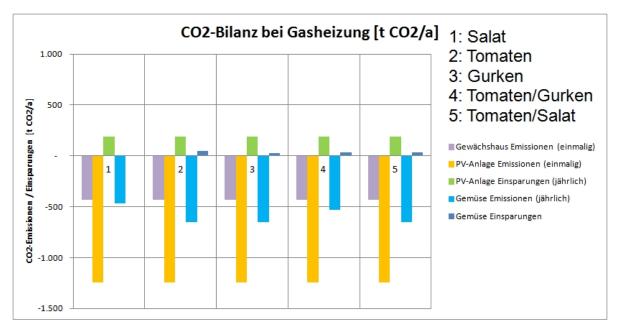


Abbildung 4.2.: CO₂-Bilanz bei Gasheizung

Nachdem die jährliche Ökobilanz negativ ausfällt, ist natürlich auch die Ökobilanz nach 30 Jahren negativ. In 30 Jahren werden somit zwischen 2.750 und 14.900 t CO₂ emittiert.

Die Berechnungen werden auch mit der alternativen Beheizung mit Fernwärme durchgeführt. Tabelle 4.18 zeigt die jährliche Ökobilanz der gesamten Anlage bei Beheizung mit Fernwärme, wobei die einmaligen Emissionen, verursacht durch den Gewächshausbau und die Produktion der PV-Anlage, nicht berücksichtigt werden.

Tabelle 4.18.: Jährliche Ökobilanz der gesamten Anlage bei Beheizung mit Fernwärme (PV-Anlage & Gemüsebau ohne einmalige Emissionen)

	→PV-Anlage		
↓ Gewächshaus	Substitution GuD	Substitution Kraftwerksmix	
Feldsalat	240	0	
Tomaten	212	-28	
Gurken	190	-51	
Tomaten/Gurken	203	-37	
Tomaten/Feldsalat	242	1	

Die jährliche Ökobilanz der Gesamtanlage ist abhängig von der angenommenen Substitution positiv oder knapp negativ, d.h. es wird im Grunde mehr CO₂ durch die PV-Anlage eingespart als durch den Gemüsebau emittiert wird.

Bei der Ökobilanz nach 30 Jahren werden sowohl der Bau des Gewächshauses (einmalige Emissionen) als auch die jährliche Ökobilanz berücksichtigt. Die Bilanz nach 30 Jahren

ist in Tabelle 4.19 und Abbildung 4.3 dargestellt. Die Ernteminderung durch die PV-Anlage (Abschattung) wurde ebenso berücksichtigt wie die Reduktion des Heizbedarfs durch die Funktion als Energieschirm.

Tabelle 4.19.: Ökobilanz der gesamten Anlage (PV-Anlage & Gemüsebau inkl. einmalige Emissionen) bei Fernwärme nach 30 Jahren

CO ₂ Emissionen/Vermeidung [t]				
Substitution GuD Substitution Kraftwerksmix				
Feldsalat	5.532	-1.679		
Tomaten	4.685	-2.527		
Gurken	4.013	-3.198		
Tomaten/Gurken	4.416	-2.795		
Tomaten/Feldsalat	5.584	-1.628		

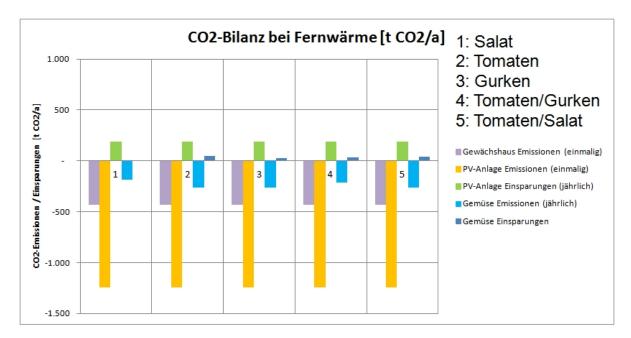


Abbildung 4.3.: CO₂-Bilanz bei Fernwärme

Bei Beheizung mit Fernwärme fällt die Ökobilanz unterschiedlich aus. Nimmt man an, dass die PV-Anlage ein GuD-Kraftwerk ersetzt, so ist die Ökobilanz positiv, in 30 Jahren werden somit 4.000-5.580 t CO₂ eingespart. Bei Annahme der Substitution gemäß österreichischem Kraftwerksmix ist die Ökobilanz negativ, in 30 Jahren werden zwischen 1.630 und 3.200 t CO₂ emittiert.

4.3.2. Energierücklaufzeit

Die Energierücklaufzeit wird zuerst für die PV-Anlage alleine (d.h. ohne Gemüsebau) dargestellt, im nächsten Schritt für die Gesamtanlage (d.h. PV-Anlage und Gewächshaus). Eine separate Betrachtung der Energierücklaufzeit für den Gemüsebau ist sinnlos, da keine Energie "erzeugt" wird ³.

4.3.2.1. Energierücklaufzeit der PV-Anlage

Der Primärenergiebedarf, der zur Herstellung einer Photovoltaikanlage benötigt wird, lässt sich nicht exakt bemessen. Es gibt jedoch zahlreiche wissenschaftliche Untersuchungen zur möglichst exakten Bestimmung der LCA (Life Cycle Assessment, siehe Abschnitt 4.1) von PV-Anlagen. Diese Untersuchungen basieren größtenteils auf Herstellerangaben; aufgrund der großen Anzahl an voneinander unabhängigen Quellen und Berechnungen lässt sich der Primärenergiebedarf einer PV-Anlage gut beziffern. In dieser Arbeit werden die Ergebnisse von Weißbach et. al. [27] herangezogen, da diese Werte den aktuellen Stand der Technik beschreiben.

Bei der Herstellung einer PV-Anlage ist der Primärenergiebedarf zur Erzeugung der Solarmodule mit Abstand am größten. Tabelle 4.20 zeigt den kumulierten Energieaufwand (Primärenergiebedarf) zur Herstellung einer PV-Anlage, d.h. $E_{\rm mat}+E_{\rm manu}+E_{\rm trans}+E_{\rm inst}+E_{\rm EoL}$. BOS steht in dieser Tabelle für Balance of System und umfasst alle Komponenten, die für den Betrieb der Anlage benötigt werden, mit Ausnahme der Module selbst (d.h. Wechselrichter, Verkabelung, Modulmontagesystem, Transformator, Schalteinrichtungen). Die Umrechnung von MJ/m^2 auf kWh/kWp erfolgt in dieser Tabelle auf einer Basis von 5,85 m^2/kWp ; die verwendete Modultype PVP-GE 300M weist diesen Wert auf.

Tabelle 4.20.: Primärenergiebedarf zur Herstellung einer PV-Anlage [27]; die Umrechnung von MJ/m^2 auf kWh/kWp erfolgt auf einer Basis von 5,85 m^2/kWp

, , ,	1 0 0 0	, , 1
Herstellungsschritt	Primärenergie-	Primärenergie-
	bedarf $[MJ/m^2]$	bedarf [kWh/kWp]
Herstellung Rohsilizium	72	117
Herstellung Solarsilizium	850	1.381
Waferproduktion	190	309
Zellproduktion	180	293
Modulherstellung (Rahmen)	480	780
BOS	330	536
Summe	2.102	4.087

Der Energieaufwand E_{aoper} für die Aufrechterhaltung des Betriebs (Wartung, Bezugsstrom) kann bei einer PV-Anlage ohne weiteres vernachlässigt werden, da die erzeugte

³Eine Betrachtung des energetischen Wertes der Gemüseproduktion soll nicht Thema dieser Arbeit sein.

Energie die benötigte Energie bei weitem übersteigt.

Die jährlich erzeugte Energie E_{agen} beträgt durchschnittlich 971.237 kWh bzw. 1.024 kWh/kWp (siehe Tabelle 3.3, Abschnitt 3.2.1).

Entsprechend Formel 4.1 lässt sich die Energierücklaufzeit wie folgt berechnen:

$$EPBT = \frac{E_{mat} + E_{manu} + E_{trans} + E_{inst} + E_{EoL}}{E_{agen} - E_{aoper}}$$

$$(4.10)$$

Mit den eingesetzten Werten ergibt sich somit eine Energierücklaufzeit von $\mathbf{EPBT} = \frac{4.087}{1.024-0} = \mathbf{4}$ Jahre. Dieser Wert deckt sich mit anderen in der Literatur angegebenen Werten, die (abhängig von Technologie und Standort der Anlage) von 2 bis 6 Jahren reichen.

4.3.2.2. Energierücklaufzeit der gesamten Anlage

Bei der Energierücklaufzeit der gesamten Anlage wird die Beheizung des Gewächshauses außer Acht gelassen. Würde die für die Beheizung aufgewendete Energie in die Berechnung der Energierücklaufzeit mit einbezogen, so wäre die EPBT negativ (es muss immer mehr Energie aufgebracht werden als erzeugt werden kann; vergleiche Abschnitt 4.1.2).

Da kaum Informationen bezüglich des kumulierten Energieaufwands für die Herstellung eines Gewächshauses verfügbar sind, wird der KEA der für den Bau benötigten Materialien herangezogen (siehe Abschnitt 4.2.2.1).

Tabelle 4.21.: Kumulierter Energieaufwand für die Komponenten des Gewächshauses [30] [31]

	Beton	Stahl	Aluminium	Glas	Summe
KEA spez. [GJ/t]	0,7	22	24	11	57,7
Menge [t/ha]	504	110	25	130	769
Menge für 1,2 ha[t]	605	132	30	156	923
KEA abs. [GJ]	423	2.904	720	1.716	5.763
KEA abs [MWh]	118	807	200	477	1.601
KEA normiert [kWh/kWp]	124	849	211	502	1.685

Der Primärenergieeinsatz für die Errichtung des Gewächshauses beträgt rund 1,6 MWh bzw. normiert auf ein kWp (bei einer Leistung der PV-Anlage von 950 kWp) 1.685 kWh/kWp⁴.

⁴Der Energieeinsatz für die Errichtung des Gewächshauses (Bauphase) wird an dieser Stelle vernachlässigt.

Dieser KEA kann nun in der Berechnung der Energierücklaufzeit für die PV-Anlage berücksichtigt werden.

$$EPBT_{gesamt} = \frac{KEA_{PV-Anlage} + KEA_{Gewächshaus}}{erzeugte\ Energie} = \frac{(4.087 + 1.685)\ kWh/kWp}{1.024\ kWh/kWp} = 5,6\ Jahre$$

$$(4.11)$$

Die Energierücklaufzeit bei Gesamtbetrachtung (ohne Beheizung des Gewächshauses) beträgt **5,6 Jahre**; durch das Gewächshaus verlängert sich die Energierücklaufzeit also um 1,6 Jahre.

5. Energieertragsmessung

5.1. Grundlagen

Der Energieertrag (=erzeugter Strom) einer PV-Anlage hängt von vielen Faktoren ab. Zu den wichtigsten gehören:

- Standort der PV-Anlage, beeinflusst
 - Einstrahlung
 - Umgebungstemperatur
- Ausrichtung der PV-Module (Azimut und Neigungswinkel)
- Modulwirkungsgrad
- Wechselrichterwirkungsgrad
- Verschaltung der Module (elektrische Leitungslänge eines Stranges, Anzahl der Parallelstränge)
- Montageart der Module (freistehend, hinterlüftet, dach- oder fassadenintegriert)

Vor Errichtung einer PV-Anlage wird eine Simulation mit den eben genannten Parametern als Eingangsdaten durchgeführt. Diese Simulation dient einerseits der technischen Auslegung der Komponenten, andererseits dient sie zur Einschätzung des zu erwartenden Energieertrags.

Im Zuge des Betriebs einer PV-Anlage stellt sich die Frage nach dem Wirkungsgrad der gesamten Anlage. Dazu wird jedoch nicht der tatsächliche Wirkungsgrad (Verhältnis Output/Input) verwendet, sondern die sogenannte **Performance Ratio PR**. Die PR hingegen wird berechnet aus dem Verhältnis von Ist-Energieertrag $E_{\rm Ist}$ zu Soll-Energieertrag $E_{\rm Soll}$:

$$PR = \frac{E_{Ist}}{E_{Soll}} \tag{5.1}$$

mit:

 $\begin{array}{ll} PR & Performance \ Ratio \\ E_{Ist} & Ist-Energieertrag \\ E_{Soll} & Soll-Energieertrag \end{array}$

Der Soll-Energieertrag ist jener Energieertrag, der gemäß dem nominellen Wirkungsgraden der Komponenten resultieren müsste, d.h.

$$E_{Soll} = E \cdot \eta_{qesamt} \tag{5.2}$$

mit:

E solare Einstrahlung

 η_{gesamt} nomineller Wirkungsgrad der gesamten Anlage

Da der Wirkungsgrad der Photovoltaikmodule und Wechselrichter von äußeren Parametern wie Einstrahlung oder Temperatur und Wind abhängt (und somit nicht immer dem nominellen Wert laut Datenblatt entspricht), weicht auch der tatsächliche Gesamtwirkungsgrad vom nominellen Gesamtwirkungsgrad ab. Dadurch ergibt sich eine PR von 75%-85% [2]. Eine PR von 80% bedeutet somit, dass der Energieertrag 80% jenes Wertes beträgt, den die Anlage erzeugt hätte, wenn die Komponenten mit ihrem nominellen Wirkungsgrad betrieben worden wären.

5.2. Methoden

5.2.1. Einstrahlung

Zur Kontrolle des einwandfreien Betriebs einer PV-Anlage ist die Messung der solaren Einstrahlung unumgänglich, da diese den energetischen "Input" der Anlage darstellt. Zur messtechnischen Erfassung gibt es derzeit 2 Verfahren: das Pyranometer und die Referenzzelle.

Das Pyranometer ist die genaueste Methode der Einstrahlungsmessung. Dabei befindet sich eine schwarze Absorberfläche unterhalb eines Glasdoms (siehe Abbildung 5.1). Diese Absorberfläche erwärmt sich aufgrund der eintreffenden Strahlung gegenüber der Umgebung. Die Temperaturdifferenz stellt somit ein Maß für die Einstrahlung dar [3].

Bei der Referenzzelle handelt es sich im Grunde um eine kleine PV-Zelle (siehe Abbildung 5.2). Diese kann mono- oder polykristallin ausgeführt sein. Um die Einstrahlung zu messen, wird die Solarzelle mit einem niederohmigen Shunt-Widerstand kurzgeschlossen und die am Shunt abfallende Spannung gemessen. Da der Kurzschlussstrom einer Solarzelle proportional zur Einstrahlung ist, ist eine einfache Zuordnung möglich [3].

Abbildung 5.1.: Pyranometer [34]

 ${\bf Abbildung~5.2.:~\it Einstrahlungssensor~(SMA~Sunny~Sensorbox)~[35]}$

Der Vorteil des Pyranometers liegt in der Messgenauigkeit sowie im weiten spektralen Erfassungsbereich. Die Nachteile sind die hohen Anschaffungskosten sowie der weite spektrale Erfassungsbereich. PV-Zellen sind in einem relativ kleinen Teil des Spektrums empfindlich (ausgenommen neue, noch nicht marktreife Entwicklungen wie z.B. die SunPower-Zelle), im Gegensatz zum Pyranometer welches einen weiten Teil des Spektrums erfasst. Daraus folgt, dass es unweigerlich zu Abweichungen zwischen diesen kommt (die Einstrahlung lt. Pyranometer ist höher als die von den PV-Modulen tatsächlich nutzbare Einstrahlung); siehe Abbildungen 5.3 und 5.4.

Die Vorteile der Referenzzelle sind die günstigen Anschaffungskosten und die Tatsache, dass diese Zelle das gleiche Spektrum wie die PV-Module erfasst. Der Nachteil ist die relativ hohe Messungenauigkeit.

Die Entscheidung für eines der beiden Messsysteme liegt letztlich in der Frage, wofür gemessen werden soll. Während sich das Pyranometer gut für absolute Werte und einen Vergleich zwischen mehreren Standorten eignet, ist für die permanente Messung der Einstrahlung zur Anlagenüberprüfung die Referenzzelle wohl das Mittel der Wahl.

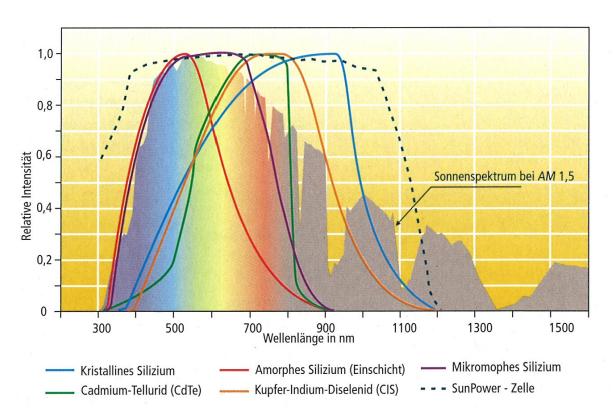


Abbildung 5.3.: Spektrale Empfindlichkeit unterschiedlicher Solarzelltypen [4]

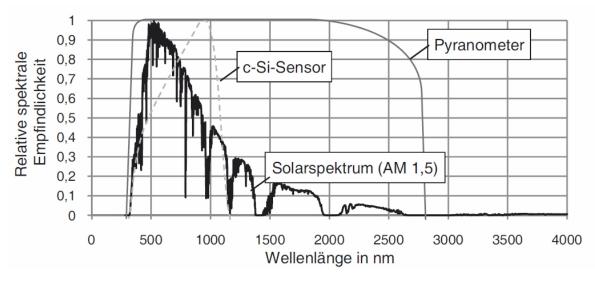
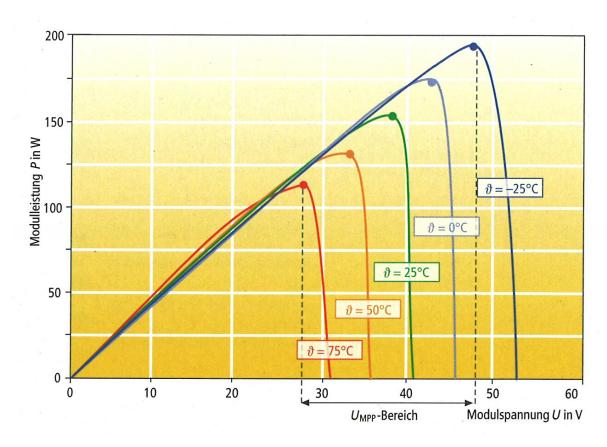


Abbildung 5.4.: Spektrale Empfindlichkeit von Pyranometer und PV-Zellensensor [3]

5.2.2. Bestimmung der Zelltemperatur

Die Leistung von PV-Modulen ist umgekehrt proportional abhängig von der Temperatur (siehe Abbildung 5.5). Daher gehört zur korrekten Überprüfung einer PV-Anlage auch die messtechnische Erfassung der Zelltemperatur.


Die Zelltemperatur kann nur dann direkt gemessen werden, wenn im Zuge des Modulfertigungsprozesses bereits ein Temperaturfühler eingebaut wird [2]. In der Praxis sind solch speziell angefertigten Module jedoch kaum anzutreffen. Daher muss die Zelltemperatur auf anderem Wege bestimmt werden. Dazu werden hauptsächlich 2 Verfahren eingesetzt: die direkte Messung an der Modulrückseite und die Berechnung aus Umgebungstemperatur und Einstrahlung (NOCT-Methode). Diese zwei Methoden werden nun näher beschrieben.

5.2.3. Temperaturmessung

Bei der direkten Messung an der Modulrückseite wird ein PT100-Temperaturfühler mit einem wärmeleitfähigen Kleber an die Folie auf der Modulrückseite geklebt. Diese Methode wird aufgrund ihrer Einfachheit am häufigsten eingesetzt. Da der Temperaturfühler an der Modulrückseite angebracht wird, befindet sich zwischen Zelle und Fühler die rückseitige Folie des Moduls. Dadurch wird nicht die Zelltemperatur selbst, sondern die Temperatur der Folie gemessen, was zu einem (vernachlässigbaren) Messfehler führt [2].

Abbildung 5.5.: Modulleistung bei unterschiedlichen Zelltemperaturen und bei konstanter Einstrahlung von 1000 W/m^2 [4]

5.2.3.1. NOCT-Methode

Mit Hilfe der NOCT-Methode (Normal Operating Cell Temperature = Nennbetriebszelltemperatur) lässt sich die Zelltemperatur aus der Umgebungstemperatur und der Einstrahlung berechnen. Der Nachteil dieser Methode ist, dass 2 Messungen durchgeführt werden müssen (Einstrahlung und Umgebungstemperatur) und die Genauigkeit des Verfahrens daher auch von diesen beiden Messungen abhängt. Die Herleitung dieser Methode basiert auf [2].

Die Temperaturerhöhung der Zelle gegenüber der Umgebungstemperatur (d.h. der Temperaturunterschied ΔT_{Zelle} zwischen Zelltemperatur T_{Zelle} und Umgebungstemperatur T_U) ist

$$\Delta T_{Zelle} = T_{Zelle} - T_U \tag{5.3}$$

Die Abhängigkeit der Temperaturerhöhung ΔT_{Zelle} von der Einstrahlung G kann als linear angenommen werden. Somit kann folgende lineare Gleichung angeschrieben werden (analog y = kx + d):

$$\Delta T_{Zelle} = k \cdot G + T_{Zelle,0} \tag{5.4}$$

Dabei ist $T_{Zelle,0}$ jene Zelltemperatur, die sich bei einer Einstrahlung von G=0 W/m² (also nachts) einstellt. Diese Temperatur ist nahezu 0.

Setzt man nun NOCT-Bedingungen ein und setzt diese beiden Gleichungen für ΔT_{Zelle} gleich erhält man:

$$\Delta T_{Zelle,NOCT} = T_{Zelle,NOCT} - T_{U,NOCT} \stackrel{\wedge}{=} T_{Zelle,0} + k \cdot G_{NOCT}$$
 (5.5)

Durch Vernachlässigung von $T_{Zelle,0}$ kann der Faktor k ermittelt werden:

$$k = \frac{T_{Zelle,NOCT} - T_{U,NOCT}}{G_{NOCT}} \tag{5.6}$$

Durch Einsetzen von Gleichung 5.6 in Gleichung 5.4 folgt:

$$\Delta T_{Zelle} = \frac{T_{Zelle,NOCT} - T_{U,NOCT}}{G_{NOCT}} \cdot G \tag{5.7}$$

Durch Einsetzen von Gleichung 5.7 in Gleichung 5.3 folgt:

$$T_{Zelle} = T_U + \frac{T_{Zelle,NOCT} - T_{U,NOCT}}{G_{NOCT}} \cdot G \tag{5.8}$$

Ein Einsetzen der NOCT-Bedingungen ($G_{NOCT} = 800W/m^2$ und $T_{U,NOCT} = 20^{\circ}C$ nach IEC 60904-3) ergibt schließlich:

$$T_{Zelle} = T_U + \frac{T_{Zelle,NOCT} - 20^{\circ}C}{800 W/m^2} \cdot G$$

$$(5.9)$$

Die Zelltemperatur T_{Zelle} kann somit aus der gemessenen Umgebungstemperatur T_U , der gemessenen Einstrahlung G und dem im Moduldatenblatt angegebenen Wert $T_{Zelle,NOCT}$ bestimmt werden.

Dabei sind:

 ΔT_{Zelle} Tempertur
unterschied Zelle - Umgebung [°C]

 T_{Zelle} Zelltemperatur [°C]

 T_U Umgebungstemperatur [°C]

 $\begin{array}{ll} T_{Zelle,0} & \text{Zelltemperatur nachts (ohne Einstrahlung) [^{\circ}\text{C}]} \\ \text{G} & \text{solare Einstrahlung in Modulebene [W/m}^{2}] \end{array}$

k Proportionalitätsfaktor

 $\Delta T_{Zelle,NOCT}$ Temperturunterschied Zelle - Umgebung bei NOCT-Bedingungungen [°C]

 $T_{Zelle,NOCT}$ Nennbetriebszelltemperatur [°C]

 $T_{U,NOCT}$ Umgebungstemperatur bei NOCT-Bedingungen [°C] G_{NOCT} Einstrahlung bei NOCT-Bedingungen [W/m²]

Anmerkung: Die NOCT-Bedingungen (Normal Operating Cell Temperature) sind nicht mit den STC-Bedingungen (Standard Test Conditions) zu verwechseln. Während erstere einigermaßen reale Betriebsbedingungen widerspiegeln, können die STC nur im Labor erreicht werden und dienen zum Vergleich verschiedener Photovoltaik-Module. Bei STC sind Einstrahlung und Umgebungstemperatur standardisiert, bei NOCT ist die Einstrahlung standardisiert und die Zelltemperatur im Moduldatenblatt angegeben.

Tabelle 5.1.: Gegenüberstellung NOCT-STC für das Modul PVP-GE300M (k.A.= keine Angabe)

	NOCT	STC	
Einstrahlung	800	1.000	W/m^2
Umgebungstemperatur	k.A.	20	$^{\circ}\mathrm{C}$
Zelltemperatur	48	k.A.	$^{\circ}\mathrm{C}$

6. Zusammenfassung

Die Kombination bestehend aus einer Photovoltaikanlage mit einem Gewächshaus ist ein neuartiger Zugang zur mehrfachen Nutzung der Sonnenenergie und möglicherweise ein wesentlicher Schritt in Richtung Energieeffizienz und Ressourcenschonung. Ziel dieser Arbeit ist die Untersuchung dieser Synergie hinsichtlich Wirtschaftlichkeit und Ökobilanz. Dabei werden mehrere Szenarien untersucht: 5 verschiedene Anbauvarianten (Feldsalat, Rispentomaten, Gurken, Tomaten und Feldsalat, Tomaten und Gurken), 2 verschiedene Einspeisearten (Volleinspeisung mit Förderung vs. Überschusseinspeisung ohne Förderung) und 2 Beheizungsmethoden (Erdgas und Fernwärme).

Für die wirtschaftlichen Untersuchungen wird eine dynamische Investitionsrechnung, die Kapitalwertmethode, herangezogen. Die Berechnungen basieren auf mehreren Parametern wie Zinssatz, Strompreis, Gaspreis und Agrarpreis und deren zukünftiger Entwicklung. Dies bringt jedoch den Nachteil einer vorausschauenden Untersuchung mit sich: die Entwicklung der Parameter kann nur aufgrund bisheriger Daten geschätzt werden; reale Daten sind natürlich erst im Nachhinein verfügbar.

Zu Beginn wird eine Sensitivitätsanalyse durchgeführt, um den Einfluss der verschiedenen Parameter auf den Kapitalwert festzustellen. Dabei zeigt sich ganz klar der enorme Einfluss des Gaspreises auf den Kapitalwert bei Beheizung mit Erdgas; bei Beheizung mit Fernwärme hat hingegen der Zinsfuß den größten Einfluss.

Die getrennte Betrachtung des Kapitalwertes nach 20 Jahren zeigt, dass die PV-Anlage auf jeden Fall einen positiven Kapitalwert aufweist und das Gewächshaus bei Beheizung mit Fernwärme auch. Bei Beheizung mit Erdgas jedoch wird der Kapitalwert von Jahr zu Jahr negativer.

Bei gemeinsamer Betrachtung von PV-Anlage und Gewächshaus fällt auf, dass bei Beheizung mit Gas ein positiver Kapitalwert nur dann erreicht werden kann, wenn sich die angenommenen Preisentwicklungen stark verändern (z.B. geringerer Gaspreis, höherer Agrarpreis). Bei Beheizung mit Fernwärme hingegen hängt der Kapitalwert (wie bei der Sensitivitätsanalyse gezeigt wird) stark vom Zinsfuß ab; bei Annahme einer Überschusseinspeisung wirkt sich auch die angebaute Gemüsesorte stark aus (diese hat Einfluss auf den Heizbedarf und den Erlös aus dem Gartenbau).

Zum Thema Wirtschaftlichkeit muss angemerkt werden, dass für den Gemüsemarktpreis ein österreichischer Mittelwert angenommen wird, welcher nicht mit dem tatsächlichen Verkaufspreis der Pflanzen einer Anlage übereinstimmen muss.

Die Ökobilanz untersucht zwei Kennwerte: CO₂-Bilanz und Energierücklaufzeit. Die CO₂-Bilanz fällt bei separater Betrachtung für die PV-Anlage positiv aus (d.h. es wird

mehr CO₂ eingespart als durch den Bau der Anlage emittiert wurde), für das Gewächshaus allerdings negativ (d.h. es wird durch Bau und Betrieb des Gewächshauses mehr CO₂ emittiert als durch die Pflanzen aufgenommen wird). Betrachtet man die PV-Anlage und das Gewächshaus gemeinsam, so ist die CO₂-Bilanz nur bei Beheizung mit Fernwärme und Substitution eines GuD-Kraftwerks positiv.

Die Energierücklaufzeit der PV-Anlage beträgt 4 Jahre, dies deckt sich auch mit Werten aus der Literatur. Berücksichtigt man zusätzlich auch das Gewächshaus (allerdings ohne Energieaufwand für die Beheizung), so verlängert sich die Energierücklaufzeit auf 5,6 Jahre.

Zum Schluss werden auch noch Vor- und Nachteile unterschiedlicher Methoden zur Erfassung von Einstrahlung und Zelltemperatur aufgezeigt, um den Sollwert des Energieertrags der PV-Anlage zuverlässig bestimmen zu können. Dieser Wert ist wesentlich für die Beurteilung des Anlagenwirkungsgrads.

7. Ausblick

Die gegenseitige Beeinflussung der beiden Anlagen kann in Zukunft durch langjährige Beobachtung und Auswertung der Daten von realisierten Anlagen besser eingeschätzt werden. Dazu zählt einerseits der Einfluss des Gewächshauses auf die erzeugte Energie der PV-Anlage und andererseits der Einfluss der PV-Anlage auf die Erntemenge und -qualität durch Abschattung sowie die Wirkung der PV-Anlage als Energieschirm.

Der Eigenverbrauchsanteil wird in dieser Arbeit angenommen und beruht nicht auf dem tatsächlichen Eigenverbrauch eines Gewächshauses. Durch Einbindung eines definierten Lastprofils lässt sich der Eigenverbrauch optimieren, dies zeigt wiederum Auswirkungen auf Ökonomie und Ökologie der Anlage.

Diese Arbeit beschränkt sich auf 3 Gemüsesorten und 5 Anbauvarianten. Da der Gartenbau sich jedoch nicht auf diese Varianten reduziert und gezeigt wird, dass die Wahl der angebauten Pflanze von Bedeutung für die Wirtschaftlichkeit und die CO₂-Bilanz ist, ist es von Interesse, auch den Anbau anderer Pflanzen (Gemüse und Blumen) zu untersuchen.

Literaturverzeichnis

- [1] P. Biermayer, M. Eberl, R. Ehrig, H. Fechner, C. Kristöfel, K. Leonhartsberger, S. Martelli, C. Strasser, W. Weiss, and M. Wörgetter, "Innovative Energietechnologien in Österreich Marktentwicklung 2012," Bundesministerium für Verkehr, Innovation und Umwelt, Tech. Rep., 2013.
- [2] A. Wagner, Photovoltaik-Engineering: die Methode der effektiven Solarzellen-Kennlinie. Springer-Verlag, 1999.
- [3] K. Mertens, *Photovoltaik: Lehrbuch zu Grundlagen, Technologie und Praxis*. Carl Hanser Verlag München, 2011.
- [4] R. Haselhuhn, *Photovoltaische Anlagen: Leitfaden Photovoltaik*. Deutsche Gesellschaft für Sonnenenergie e.V., 2012.
- [5] M. C. Theurl, "CO2-Bilanz der Tomatenproduktion: Analyse acht verschiedener Produktionssysteme in Österreich, Spanien und Italien," Master's thesis, Universität Wien, 2008.
- [6] P. Burgholzer, "Energiekennzahlen und Energiesparpotentiale in Gärtnereien," Branchenberatung Energie, Tech. Rep., 1997.
- [7] "Wikipedia," zuletzt besucht am 16.08.2013. [Online]. Available: http://de.wikipedia.org/Energieschirm
- [8] H. Stigler, Skriptum Energieplanungsmethoden, TU Graz, Graz, Austria, 2006, Vorlesungsskript.
- [9] D. V. E. GbH, "PV*SOL," Berlin, Deutschland.
- [10] P. SA, "PVSyst," Satigny, Schweiz.
- [11] Statistik Austria, "STATcube Statistische Datenbank von Statistik Austria," zuletzt besucht am 24.06.2013. [Online]. Available: http://www.statcube.at
- [12] M. Marcelis, A. Broekhujisen, E. Meinen, E. Nijs, and M. Raaphorst, "Quantification of the Growth Response to Light Quantity of Greenhouse Grown Crops," in Proceedings: V International Symposium on Artificial Lightning in Horticulture, no. Paper 1. ISHS Acta Horticulturae 711, 2006, pp. 97–103.
- [13] R. Bader and M. Kriesel, "Gemüseernte 2012," Statistik Austria, Tech. Rep., 2012.
- [14] —, "Gemüseernte 2011," Statistik Austria, Tech. Rep., 2011.

- [15] AMA, "Preis- und Produktionsübersicht Österreich Gemüse," AgrarMarkt Austria, Tech. Rep., 2012.
- [16] A. Grienschgl, "Information per E-Mail zu Förderungsmöglichkeiten im Gartenbau," Juli 2013.
- [17] G. Lattauschke, "Anbau von Gewächshausgemüse: Hinweise zum umweltgerechten Anbau," Sächsische Landesanstalt für Landwirtschaft, Tech. Rep., 2004.
- [18] E-Control, "Gaspreise für Gewerbekunden." [Online]. Available: http://www.e-control.at
- [19] N. Jungbluth, "Umweltfolgen des Nahrungsmittelkonsums: Beurteilung von Produktmerkmalen auf Grundlage einer modularen Ökobilanz," Master's thesis, Eidgenössische Technische Hochschule Zürich, 2000.
- [20] V. Fthenakis, H. C. Kim, and E. Alsema, "Emissions from Photovoltaic Life Cycles," Environmental Science & Technology, vol. 42, no. 6, pp. 2168–2174, 2008.
- [21] United Nations Framework Convention on Climate Change, "Global warming potentials." [Online]. Available: http://unfccc.int/ghg_data/items/3825.php
- [22] E. Alsema, M. de Wild-Scholten, and V. Fthenakis, "Environmental impacts of pv electricity generation a critical comparison of energy supply options," in 21st European Photovoltaic Solar Energy Conference, 2006.
- [23] N. Jungbluth, M. Stucki, and R. Frischknecht, "Ecoinvent Report No. 6 part XII: Photovoltaics," Swiss Centre for Life Cycle Inventories, Tech. Rep., 2009.
- [24] V. Fthenakis and E. Alsema, "Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004-early 2005 status," *Progress in Photovoltaics: Research and Applications*, vol. 14, pp. 275–280, 2006.
- [25] D. Hsu, P. O'Donoughue, V. Fthenakis, G. Heath, H. C. Kim, P. Sawyer, J.-K. Choi, and D. Turney, "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization," *Journal of Industrial Ecology*, vol. 16, no. S1, pp. S122–S135, 2012.
- [26] S. Krauter and R. Rüther, "Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy," *Renewable Energy*, vol. 29, pp. 345–355, 2004.
- [27] D. Weißbach, G. Ruprecht, A. Huke, K. Czerski, S. Gottlieb, and A. Hussein, "Energy intensities, erois (energy returned on invested), and energy payback times of electricity generating power plants," *Energy*, vol. 52, no. 0, pp. 210 221, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360544213000492

- [28] V. Fthenakis, H. C. Kim, R. Frischknecht, M. Raugei, P. Sinha, and M. Stucki, "Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems," International Energy Agency (IEA), PVPS Task 12, Report T12-02:2011, 2011.
- [29] E-Control Austria, "Stromkennzeichnungsbericht 2012," E-Control Austria, Tech. Rep., 2012.
- [30] H. Frischenschlager, B. Karigl, C. Lampert, W. Pölz, I. Schindler, M. Tesar, H. Wiesenberger, and B. Winter, "Klimarelevanz ausgewählter Recycling-Prozesse in Österreich," Umweltbundesamt, Tech. Rep., 2010.
- [31] W. Jenseit, T. Lützkendorf, and O. Eiermann, "Der kumulierte Energieaufwand (KEA) im Baubereich," Öko-Institut Darmstadt, Tech. Rep., 1999.
- [32] H. Daxbeck, D. Ehrlinger, D. de Neef, and M. Weineisen, "Möglichkeiten von Grossküchen zur Reduktion ihrer CO2-Emissionen (Massnahmen, Rahmenbedingunen und Grenzen) Sustainable Kitchen," Ressourcen Management Agentur, Tech. Rep., 2011.
- [33] Matthias Theissing, "CO2-Emissionen und Primärenergiefaktor der Fernwärme in Österreich," 2012.
- [34] Hukseflux, "Thermal Sensors." [Online]. Available: http://www.hukseflux.com/
- [35] SMA, "Anlagenüberwachung Sunny Sensorbox."
- [36] E-Control, "Strompreise für Gewerbekunden." [Online]. Available: http://www.e-control.at/de/industrie/strom/strompreis/gewerbepreise

Abbildungsverzeichnis

2.1.	Übersicht marktüblicher Zelltypen [4]	13
2.2.	Zentral-, Strang- (engl.: String) und Modulwechselrichter [3]	14
2.3.	Reihenschaltung von Modulen zu einem Strang [4]	15
2.4.	Reihenschaltung von Modulen und Parallelschaltung von Strängen [4]	16
2.5.	Unterschiedliche Varianten der Anbauarten und Anbaufolgen	17
3.1.	Aufzinsung und Abzinsung von Einnahmen und Ausgaben der Kapitalwertmethode [8]	24
3.2.	Strompreisentwicklung in Österreich (Energiepreis) [11]	28
3.3.	Einnahmen aus der PV-Anlage	31
3.4.	Preisentwicklung für Feldsalat, Tomaten und Gurken in Österreich [15] .	35
3.5.	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau und Volleinspeisung der PV-Anlage und Beheizung mit Gas	43
3.6.	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Über-	
	schusseinspeisung der PV-Anlage und Beheizung mit Gas	43
3.7.	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Volle-	
	inspeisung der PV-Anlage und Beheizung mit Fernwärme	44
3.8.	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Über-	
	schusseinspeisung der PV-Anlage und Beheizung mit Fernwärme	44
3.9.	Kapitalwert für PV-Anlage und Gewächshaus getrennt	46
3.10.	Kapitalwert für PV-Anlage und Gewächshaus getrennt mit (fiktiven) gleichen Investitionskosten	46
3.11.	Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung	
	mit Gas	49
3.12.	Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z	
	und Beheizung mit Gas	49
3.13.	Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreis-	
	index Si und Beheizung mit Gas	50
3.14.	Kapitalwertentwicklung für Rispentomaten bei Variation von Gaspreisin-	
	dex Gi und Beheizung mit Gas	50
3.15.	Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreis-	
	index Ai und Beheizung mit Gas	51
3.16.	Kapitalwertentwicklng für Rispentomaten beim Positiv-Szenario (Volle-	
	inspeisung); blau: Positiv-Szenario, rot: ursprüngliches Szenario	52
3.17.	Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung	
	mit Gas	53

3.18.	Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfüß Z	54
3 10	und Beheizung mit Gas	34
0.10.	index Si und Beheizung mit Gas	54
3.20.	Kapitalwertentwicklung für Rispentomaten bei Variation von Gaspreisin-	-
	dex Gi und Beheizung mit Gas	55
3.21.	Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreis-	
	index Ai und Beheizung mit Gas	55
3.22.	Kapitalwertentwicklng für Feldsalat beim Positiv-Szenario (Überschusse-	
	inspeisung); blau: Positiv-Szenario, rot: ursprüngliches Szenario	56
3.23.	Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung	
	mit Fernwärme	57
3.24.	Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z	
2 2 5	und Beheizung mit Fernwärme	57
3.25.	Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreis-	- 0
2.06	index Si und Beheizung mit Fernwärme	58
3.20.	Kapitalwertentwicklung für Rispentomaten bei Variation von Fernwärmeindex Fi und Beheizung mit Fernwärme	58
3 27	Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreis-	90
0.21.	index Ai und Beheizung mit Fernwärme	59
3.28.	Kapitalwertentwicklung bei Variation der Gemüseart G und Beheizung	00
	mit Fernwärme	60
3.29.	Kapitalwertentwicklung für Rispentomaten bei Variation von Zinsfuß Z	
	und Beheizung mit Fernwärme	61
3.30.	Kapitalwertentwicklung für Rispentomaten bei Variation von Strompreis-	
	index Si und Beheizung mit Fernwärme	61
3.31.	Kapitalwertentwicklung für Rispentomaten bei Variation von Fernwärme-	
0.00	index Fi und Beheizung mit Fernwärme	62
3.32.	Kapitalwertentwicklung für Rispentomaten bei Variation von Agrarpreis-	co
	index Ai und Beheizung mit Fernwärme	62
4.1.	Produktlebenszyklus einer PV-Anlage [20]	65
4.2.	CO ₂ -Bilanz bei Gasheizung	81
4.3.	$\mathrm{CO}_2 ext{-Bilanz}$ bei Fernwärme	82
5.1.	Dyranomator [24]	88
5.2.	Pyranometer [34]	88
5.3.	Spektrale Empfindlichkeit unterschiedlicher Solarzelltypen [4]	89
5.4.	Spektrale Empfindlichkeit von Pyranometer und PV-Zellensensor [3]	90
5.5.	Modulleistung bei unterschiedlichen Zelltemperaturen und bei konstanter	
	Einstrahlung von 1000 W/m ² [4] \dots	91
D 1	C	
Б.1.	Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau und Volleinspeisung der PV-Anlage	114
	bung uci i v=Aimage	114

D.Z.	Sensitivitatsanaryse für Kispentomaten im ganzjanrigen Anoau und voi-	
	leinspeisung der PV-Anlage	115
В.З.	Sensitivitätsanalyse für Gurken im ganzjährigen Anbau und Volleinspei-	
	sung der PV-Anlage	115
B.4.	Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vor-	
	und Nachkultur) im ganzjährigen Anbau und Volleinspeisung der PV-Anlage	116
B.5.	Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vor-	
	und Nachkultur) im ganzjährigen Anbau und Volleinspeisung der PV-Anlage	117
B.6.	Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau bei Beheizung	
	mit Fernwärme und Volleinspeisung der PV-Anlage	118
B.7.	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Behei-	
	zung mit Fernwärme und Volleinspeisung der PV-Anlage	119
B.8.	Sensitivitätsanalyse für Gurken im ganzjährigen Anbau bei Beheizung mit	
	Fernwärme und Volleinspeisung der PV-Anlage. Die Skala wurde hier ge-	
	ändert, da sich bei den Standard-Parametern ein Kapitalwert von nahezu	
	0 ergibt; die Kapitalwerte bei Parametervariationen weisen dadurch eine	
	extrem hohe Änderung zu diesem Bezugswert auf	120
B.9.	Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vor-	
	und Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme	
	und Volleinspeisung der PV-Anlage	121
B.10	.Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vor-	
	und Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme	
	und Volleinspeisung der PV-Anlage	121
B.11	Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau bei Beheizung	
2,11	mit Fernwärme und Überschusseinspeisung der PV-Anlage	122
B.12	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Behei-	
2.12	zung mit Fernwärme und Überschusseinspeisung der PV-Anlage	123
B.13	Sensitivitätsanalyse für Gurken im ganzjährigen Anbau bei Beheizung mit	120
D .10	Fernwärme und Überschusseinspeisung der PV-Anlage	123
B 14	Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vor-	1_0
2.11	und Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme	
	und Überschusseinspeisung der PV-Anlage	124
B.15	Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vor-	
D .10	und Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme	
	und Überschusseinspeisung der PV-Anlage	124
B 16	Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau bei Beheizung	
D .10	mit Fernwärme und Überschusseinspeisung der PV-Anlage	125
B.17	Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Behei-	120
D.11	zung mit Fernwärme und Überschusseinspeisung der PV-Anlage	126
B 18	Sensitivitätsanalyse für Gurken im ganzjährigen Anbau bei Beheizung mit	120
2.10	Fernwärme und Überschusseinspeisung der PV-Anlage	126
B 19	Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vor-	
2.10	und Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme	
	und Überschusseinspeisung der PV-Anlage	127
	and observed and the final control of the control o	

Abbildungsverzeichnis

B.20. Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vor-	
und Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme	
und Überschusseinspeisung der PV-Anlage	127

Tabellenverzeichnis

2.1.	Innentemperatur und Heizgrenze für verschiedene Gemüsearten $\ \ . \ \ . \ \ .$	20
3.1.	Kapitalwertrechnung; Verzinsung 10%; alle Werte in €; links: statische Investitionsrechnung, rechts: dynamische Investitionsrechnung	25
3.2.	Eingangsparameter für die Ertragssimulationen	27
3.3.	Ergebnisse der Energieertragssimulation	27
3.4.	Strompreisentwicklung in Österreich (Energiepreis) für Haushalt und Industrie; im gewerblichen Bereich gibt es nicht genügend aussagekräftige	
	Werte [11]	29
3.5.	Entwicklung des Einspeisetarifs bei einer angenommenen Steigerungsrate von $5,4\%$ p.a	29
3.6.	Verschiedene Erntemengen für Feldsalat in Österreich [13], [14]	32
3.7.	Verschiedene Erntemengen für Klasse 1 Tomaten in Österreich [13], [14] .	33
3.8.	Verschiedene Erntemengen für Rispentomaten in Österreich [13], [14]	33
3.9.	Verschiedene Erntemengen für Gurken in Österreich [13], [14]	34
3.10.	Preisentwicklung für Feldsalat, Tomaten und Gurken in Österreich [15];	
	k.A.=keine Angabe	35
3.11.	Angenommene zukünftige Preisentwicklung für Feldsalat, Tomaten und	
	Gurken in Österreich	36
3.12.	Wirtschaftlichkeitsrechnung von Feldsalat, Tomaten und Gurken [17]; "-" bedeutet, dass diese Position nicht benötigt wird	39
4.1.	Die wichtigsten vom Menschen verursachten bzw. eingesetzten Treibhaus-	
	gase	66
4.2.	GWP ausgewählter Treibhausgase [21]	66
4.3.	Energierücklaufzeiten verschiedener Kraftwerkstypen [27]	69
4.4.	In der Literatur angegebene CO_2 -Emissionen ([22], [28], [25])	70
4.5.	Umrechnung der CO ₂ -Emissionen auf eine PV-Modellanlage in der Südsteiermark	72
4.6.	Zusammensetzung der Stromaufbringung in Österreich 2011 [29]	72
4.7.	Auflistung der durch den Gewächshausbau verursachten CO ₂ -Emissionen	
	[30] [31]	73
4.8.	Prozessbezogene Auflistung der bei der Feldsalat- und Tomatenprodukti-	
	on entstehenden CO_{2eq} in kg/kg Ernte im Freilandanbau [32]	74
4.9.	Prozessbezogene Auflistung der bei der Tomatenproduktion entstehenden	
	CO_{2eq} in kg/kg Ernte ([5]) im Freilandanbau	74

4.10.	der Südsteiermark	76
4.11.	CO ₂ -Emissionen der Heizung bezogen auf das Mustergewächshaus in der	10
	Südsteiermark bei Beheizung mit Fernwärme	76
4.12.	CO ₂ -Aufnahme der Pflanzen bezogen auf die Erntemenge des Musterge-	
	wächshauses	77
4.13.	Ökobilanz des Gemüsebaus bei Gasheizung (ohne PV-Anlage)	78
	Ökobilanz des Gemüsebaus bei Fernwärme (ohne PV-Anlage)	79
	Ökobilanz der PV-Anlage (ohne Gemüsebau)	79
	Jährliche Ökobilanz der gesamten Anlage bei Gasheizung (PV-Anlage und	
	Gemüsebau ohne einmalige Emissionen); alle Angaben in t CO_2/a	80
4.17.	Ökobilanz der gesamten Anlage (PV-Anlage & Gemüsebau inkl. einmalige	
	Emissionen) bei Gasheizung nach 30 Jahren t CO ₂	80
4.18.	Jährliche Ökobilanz der gesamten Anlage bei Beheizung mit Fernwärme	
	(PV-Anlage & Gemüsebau ohne einmalige Emissionen)	81
4.19.	Ökobilanz der gesamten Anlage (PV-Anlage & Gemüsebau inkl. einmalige	
	Emissionen) bei Fernwärme nach 30 Jahren	82
4.20.	Primärenergiebedarf zur Herstellung einer PV-Anlage [27]; die Umrech-	
	nung von MJ/m^2 auf kWh/kWp erfolgt auf einer Basis von 5,85 m²/kWp	83
4.21.	Kumulierter Energieaufwand für die Komponenten des Gewächshauses	
	$[30] [31] \dots \dots$	84
5.1.	Gegenüberstellung NOCT-STC für das Modul PVP-GE300M (k.A.= kei-	
0.1.	ne Angabe)	93
	ine imgaabo)	00
A.1.	Außentemperatur und Heizgradtage für einen Standort in der Südsteier-	
	mark im langjährigen Mittel $(1/6)$	108
A.2.	Außentemperatur und Heizgradtage für einen Standort in der Südsteier-	
	mark im langjährigen Mittel $(2/6)$	109
A.3.	Außentemperatur und Heizgradtage für einen Standort in der Südsteier-	
	mark im langjährigen Mittel (3/6)	110
A.4.	Außentemperatur und Heizgradtage für einen Standort in der Südsteier-	
	mark im langjährigen Mittel (4/6)	111
A.5.	Außentemperatur und Heizgradtage für einen Standort in der Südsteier-	110
1 C	mark im langjährigen Mittel (5/6)	112
A.6.	Außentemperatur und Heizgradtage für einen Standort in der Südsteier-	119
	mark im langjährigen Mittel $(6/6)$	113
C.1.	Kapitalwertrechnung für die PV-Anlage (Volleinspeiser, Z: 6%, Si: 6,4%)	129
	Kapitalwertrechnung für die PV-Anlage (Überschusseinspeiser, Z: 6%, Si:	
	6,4%)	130
α		
C.3.	Kapitalwertrechnung für das Gewächshaus bei Gasheizung (Rispentoma-	

${\bf Tabellen verzeichnis}$

C.4.	Kapitalwertrechnung für das Gewächshaus bei Fernwärme (Rispentoma-	
	ten, Z: 6%, Fi: 6,2%, Ai: 2,8%)	132
C.5.	Kapitalwertrechnung für Rispentomaten bei Gasheizung und Volleinspei-	
	sung (Z: 6%, Si: 6,4%, Gi: 6,2%, Ai: 2,8%)	133
C.6.	Kapitalwertrechnung für Rispentomaten bei Fernwärme und Volleinspei-	
	sung (Z: 6%, Si: 6.4%, Fi: 6.2%, Ai: 2.8%)	134

A. Heizgradtage

In den Tabellen A.1 bis A.6 sind die Tageswerte von Außentemperatur und den resultierenden Heizgradtagen 18/12 und 12/8 für einen Standort in der Südsteiermark angeführt.

Tabelle A.1.: Außentemperatur und Heizgradtage für einen Standort in der Südsteiermark im langjährigen Mittel (1/6)

T.		iangjanrigen N	` ' '	l		HOT 10/10	H.C.T. 10/0
Tag	t_{aj}	HGT 18/12	HGT 12/8	Tag	t_{aj}	HGT 18/12	HGT 12/8
1. 1.	5,4	12,6	6,6	1. 2.	2,2	15,8	9,8
2. 1.	0,6	17,4	11,4	2. 2.	1,2	16,8	10,8
3. 1.	2,8	15,2	9,2	3. 2.	-1,1	19,1	13,1
4. 1.	-0,9	18,9	12,9	4. 2.	-6,5	24,5	18,5
5. 1.	-2,7	20,7	14,7	5. 2.	-3,4	21,4	15,4
6. 1.	-4,0	22,0	16,0	6. 2.	-4,3	22,3	16,3
7. 1.	-3,4	21,4	15,4	7. 2.	-2,0	20,0	14,0
8. 1.	-4,7	22,7	16,7	8. 2.	-5,0	23,0	17,0
9. 1.	-6,0	24,0	18,0	9. 2.	-5,8	23,8	17,8
10. 1.	-5,7	23,7	17,7	10. 2.	-3,8	21,8	15,8
11. 1.	-4,4	22,4	16,4	11. 2.	-2,4	20,4	$14,\!4$
12. 1.	-11,6	29,6	23,6	12. 2.	-2,9	20,9	14,9
13. 1.	-8,9	26,9	20,9	13. 2.	0,8	17,2	11,2
14. 1.	-8,4	26,4	20,4	14. 2.	-9,1	27,1	21,1
15. 1.	-13,2	31,2	25,2	15. 2.	-8,0	26,0	20,0
16. 1.	-5,7	23,7	17,7	16. 2.	-0,6	18,6	12,6
17. 1.	-4,2	22,2	16,2	17. 2.	1,6	16,4	10,4
18. 1.	-2,6	20,6	14,6	18. 2.	-1,6	19,6	13,6
19. 1.	-0,5	18,5	12,5	19. 2.	-0,2	18,2	12,2
20. 1.	-2,0	20,0	14,0	20. 2.	2,6	15,4	9,4
21. 1.	-0,2	18,2	12,2	21. 2.	7,0	11,0	5,0
22. 1.	1,3	16,7	10,7	22. 2.	7,7	10,3	4,3
23. 1.	-2,4	20,4	14,4	23. 2.	3,6	14,4	8,4
24. 1.	-6,4	24,4	18,4	24. 2.	3,9	14,1	8,1
25. 1.	-5,0	23,0	17,0	25. 2.	3,1	14,9	8,9
26. 1.	2,0	16,0	10,0	26. 2.	0,4	17,6	11,6
27. 1.	0,2	17,8	11,8	27. 2.	5,1	12,9	6,9
28. 1.	-3,1	21,1	15,1	28. 2.	6,1	11,9	5,9
29. 1.	-1,3	19,3	13,3			·	·
30. 1.	-0,5	18,5	12,5				
31. 1.	4,0	14,0	8,0				
	•		•	1			

Tabelle A.2.: Außentemperatur und Heizgradtage für einen Standort in der Südsteiermark im langjährigen Mittel (2/6)

	in	n langjährigen 1	Mittel~(2/6)				
Tag	$\mathrm{t_{aj}}$	HGT 18/12	HGT 12/8	Tag	$\mathrm{t_{aj}}$	HGT 18/12	HGT 12/8
1. 3.	3,0	15,0	9,0	1. 4.	4,3	13,7	7,7
2. 3.	2,7	15,3	9,3	2. 4.	4,7	13,3	7,3
3. 3.	-0.8	18,8	12,8	3. 4.	2,0	16,0	10,0
4. 3.	-1,5	19,5	13,5	4. 4.	6,9	11,1	5,1
5. 3.	-0,1	18,1	12,1	5. 4.	13,1	0,0	0,0
6. 3.	1,7	16,3	10,3	6. 4.	11,7	6,3	0,0
7. 3.	1,0	17,0	11,0	7. 4.	14,0	0,0	0,0
8. 3.	-4,1	22,1	16,1	8. 4.	13,6	0,0	0,0
9. 3.	-2,9	20,9	14,9	9. 4.	12,7	0,0	0,0
10. 3.	0,6	17,4	11,4	10. 4.	15,1	0,0	0,0
11. 3.	2,0	16,0	10,0	11. 4.	16,1	0,0	0,0
12. 3.	1,3	16,7	10,7	12. 4.	12,1	0,0	0,0
13. 3.	2,3	15,7	9,7	13. 4.	10,8	7,2	0,0
14. 3.	3,3	14,7	8,7	14. 4.	11,1	6,9	0,0
15. 3.	4,4	13,6	7,6	15. 4.	8,9	9,1	0,0
16. 3.	5,3	12,7	6,7	16. 4.	8,6	9,4	0,0
17. 3.	11,5	6,5	0,0	17. 4.	9,8	8,2	0,0
18. 3.	8,6	9,4	0,0	18. 4.	6,4	11,6	5,6
19. 3.	6,5	11,5	5,5	19. 4.	5,6	12,4	6,4
20. 3.	3,7	14,3	8,3	20. 4.	6,7	11,3	5,3
21. 3.	4,0	14,0	8,0	21. 4.	6,0	12,0	6,0
22. 3.	7,8	10,2	4,2	22. 4.	7,8	10,2	4,2
23. 3.	6,2	11,8	5,8	23. 4.	8,8	9,2	0,0
24. 3.	6,9	11,1	5,1	24. 4.	7,4	10,6	4,6
25. 3.	5,7	12,3	6,3	25. 4.	9,3	8,7	0,0
26. 3.	4,9	13,1	7,1	26. 4.	9,2	8,8	0,0
27. 3.	9,5	8,5	0,0	27. 4.	10,3	7,7	0,0
28. 3.	9,2	8,8	0,0	28. 4.	8,2	9,8	0,0
29. 3.	7,4	10,6	4,6	29. 4.	5,1	12,9	6,9
30. 3.	8,3	9,7	0,0	30. 4.	3,1	14,9	8,9
31. 3.	10,6	7,4	0,0				0,0

Tabelle A.3.: Außentemperatur und Heizgradtage für einen Standort in der Südsteiermark im langjährigen Mittel (3/6)

Tag	$ m t_{aj}$	HGT 18/12	HGT 12/8	Tag	${ m t_{aj}}$	HGT 18/12	HGT 12/8
1. 5.	11,3	6,7	0,0	1. 6.	14,9	0,0	0,0
2. 5.	13,4	0,0	0,0	2. 6.	15,5	0,0	0,0
3. 5.	13,7	0,0	0,0	3. 6.	15,1	0,0	0,0
4. 5.	13,1	0,0	0,0	4. 6.	12,1	0,0	0,0
5. 5.	14,2	0,0	0,0	5. 6.	14,4	0,0	0,0
6. 5.	15,0	0,0	0,0	6. 6.	13,8	0,0	0,0
7. 5.	12,2	0,0	0,0	7. 6.	13,4	0,0	0,0
8. 5.	10,7	7,3	0,0	8. 6.	11,0	7,0	0,0
9. 5.	9,9	8,1	0,0	9. 6.	13,0	0,0	0,0
10. 5.	9,0	9,0	0,0	10. 6.	14,1	0,0	0,0
11. 5.	11,5	6,5	0,0	11. 6.	15,8	0,0	0,0
12. 5.	8,0	10,0	4,0	12. 6.	16,5	0,0	0,0
13. 5.	11,0	7,0	0,0	13. 6.	19,3	0,0	0,0
14. 5.	10,2	7,8	0,0	14. 6.	17,1	0,0	0,0
15. 5.	14,0	0,0	0,0	15. 6.	16,8	0,0	0,0
16. 5.	12,4	0,0	0,0	16. 6.	16,9	0,0	0,0
17. 5.	12,8	0,0	0,0	17. 6.	15,9	0,0	0,0
18. 5.	11,9	6,1	0,0	18. 6.	18,7	0,0	0,0
19. 5.	14,6	0,0	0,0	19. 6.	23,4	0,0	0,0
20. 5.	19,1	0,0	0,0	20. 6.	22,8	0,0	0,0
21. 5.	18,1	0,0	0,0	21. 6.	21,9	0,0	0,0
22. 5.	16,6	0,0	0,0	22. 6.	20,9	0,0	0,0
23. 5.	17,3	0,0	0,0	23. 6.	20,2	0,0	0,0
24. 5.	15,2	0,0	0,0	24. 6.	19,7	0,0	0,0
25. 5.	16,4	0,0	0,0	25. 6.	21,2	0,0	0,0
26. 5.	17,7	0,0	0,0	26. 6.	18,3	0,0	0,0
27. 5.	18,5	0,0	0,0	27. 6.	17,8	0,0	0,0
28. 5.	19,4	0,0	0,0	28. 6.	17,5	0,0	0,0
29. 5.	17,0	0,0	0,0	29. 6.	16,2	0,0	0,0
30. 5.	15,7	0,0	0,0	30. 6.	17,3	0,0	0,0
31. 5.	15,9	0,0	0,0				0,0

 ${\bf Tabelle~A.4.:}~ Außentemperatur~und~ Heizgradtage~f\"ur~einen~Standort~in~der~S\"udsteiermark~im~langj\"ahrigen~Mittel~(4/6)$

Tag	${ m t_{ai}}$	HGT 18/12	HGT 12/8	Tag	${ m t_{aj}}$	HGT 18/12	HGT 12/8
1. 7.	19,0	0,0	0,0	1. 8.	19,3	0,0	0,0
2. 7.	20,2	0,0	0,0	2. 8.	16,7	0,0	0,0
3. 7.	21,3	0,0	0,0	3. 8.	14,6	0,0	0,0
4. 7.	17,1	0,0	0,0	4. 8.	12,8	0,0	0,0
5. 7.	16,8	0,0	0,0	5. 8.	15,9	0,0	0,0
6. 7.	15,9	0,0	0,0	6. 8.	15,5	0,0	0,0
7. 7.	17,8	0,0	0,0	7. 8.	13,7	0,0	0,0
8. 7.	20,0	0,0	0,0	8. 8.	16,3	0,0	0,0
9. 7.	23,8	0,0	0,0	9. 8.	15,1	0,0	0,0
10. 7.	21,1	0,0	0,0	10. 8.	16,9	0,0	0,0
11. 7.	19,2	0,0	0,0	11. 8.	19,8	0,0	0,0
12. 7.	18,4	0,0	0,0	12. 8.	20,3	0,0	0,0
13. 7.	18,7	0,0	0,0	13. 8.	17,7	0,0	0,0
14. 7.	14,3	0,0	0,0	14. 8.	20,1	0,0	0,0
15. 7.	13,5	0,0	0,0	15. 8.	18,6	0,0	0,0
16. 7.	15,5	0,0	0,0	16. 8.	18,3	0,0	0,0
17. 7.	17,3	0,0	0,0	17. 8.	21,9	0,0	0,0
18. 7.	20,8	0,0	0,0	18. 8.	23,2	0,0	0,0
19. 7.	20,6	0,0	0,0	19. 8.	24,0	0,0	0,0
20. 7.	16,3	0,0	0,0	20. 8.	22,3	0,0	0,0
21. 7.	25,0	0,0	0,0	21. 8.	18,9	0,0	0,0
22. 7.	22,7	0,0	0,0	22. 8.	15,5	0,0	0,0
23. 7.	22,0	0,0	0,0	23. 8.	16,5	0,0	0,0
24. 7.	19,8	0,0	0,0	24. 8.	17,3	0,0	0,0
25. 7.	16,3	0,0	0,0	25. 8.	21,0	0,0	0,0
26. 7.	14,7	0,0	0,0	26. 8.	17,6	0,0	0,0
27. 7.	18,0	0,0	0,0	27. 8.	20,6	0,0	0,0
28. 7.	19,5	0,0	0,0	28. 8.	19,4	0,0	0,0
29. 7.	22,3	0,0	0,0	29. 8.	17,0	0,0	0,0
30. 7.	17,5	0,0	0,0	30. 8.	17,9	0,0	0,0
31. 7.	21,7	0,0	0,0	31. 8.	21,4	0,0	0,0

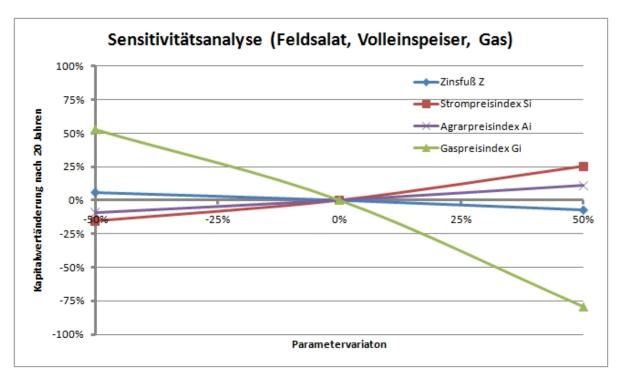
Tabelle A.5.: Außentemperatur und Heizgradtage für einen Standort in der Südsteiermark im langjährigen Mittel (5/6)

		n langjährigen .	` ' '			TT CITE 10 /10	TT CIT 10 /0
Tag	t_{aj}	HGT 18/12	HGT 12/8	Tag	t_{aj}	HGT 18/12	HGT 12/8
1. 9.	17,9	0,0	0,0	1.10.	8,2	9,8	0,0
2. 9.	18,2	0,0	0,0	2.10.	7,7	10,3	4,3
3. 9.	18,6	0,0	0,0	3.10.	8,3	9,7	0,0
4. 9.	20,1	0,0	0,0	4.10.	9,3	8,7	0,0
5. 9.	19,2	0,0	0,0	5.10.	11,0	7,0	0,0
6. 9.	17,6	0,0	0,0	6.10.	11,6	6,4	0,0
7. 9.	13,5	0,0	0,0	7.10.	11,9	6,1	0,0
8. 9.	14,5	0,0	0,0	8.10.	10,7	7,3	0,0
9. 9.	11,9	6,1	0,0	9.10.	12,5	0,0	0,0
10. 9.	11,5	6,5	0,0	10.10.	14,7	0,0	0,0
11. 9.	10,4	7,6	0,0	11.10.	15,6	0,0	0,0
12. 9.	10,9	7,1	0,0	12.10.	13,8	0,0	0,0
13. 9.	12,4	0,0	0,0	13.10.	13,4	0,0	0,0
14. 9.	16,6	0,0	0,0	14.10.	13,0	0,0	0,0
15. 9.	15,6	0,0	0,0	15.10.	12,2	0,0	0,0
16. 9.	14,5	0,0	0,0	16.10.	9,0	9,0	0,0
17. 9.	9,5	8,5	0,0	17.10.	10,3	7,7	0,0
18. 9.	13,7	0,0	0,0	18.10.	9,6	8,4	0,0
19. 9.	11,2	6,8	0,0	19.10.	7,3	10,7	4,7
20. 9.	12,1	0,0	0,0	20.10.	11,2	6,8	0,0
21. 9.	13,2	0,0	0,0	21.10.	10,0	8,0	0,0
22. 9.	13,0	0,0	0,0	22.10.	6,9	11,1	5,1
23. 9.	13,6	0,0	0,0	23.10.	6,2	11,8	5,8
24. 9.	17,1	0,0	0,0	24.10.	6,6	11,4	5,4
25. 9.	16,1	0,0	0,0	25.10.	5,3	12,7	6,7
26. 9.	14,0	0,0	0,0	26.10.	2,3	15,7	9,7
27. 9.	14,3	0,0	0,0	27.10.	3,6	14,4	8,4
28. 9.	12,7	0,0	0,0	28.10.	1,0	17,0	11,0
29. 9.	14,1	0,0	0,0	29.10.	4,7	13,3	7,3
30. 9.	14,9	0,0	0,0	30.10.	5,7	12,3	6,3
			0,0	31.10.	4,1	13,9	7,9

Tabelle A.6.: Außentemperatur und Heizgradtage für einen Standort in der Südsteiermark im langjährigen Mittel (6/6)

	v_{I}	п иапузантиден .	. , ,				
Tag	${ m t_{aj}}$	HGT 18/12	HGT 12/8	Tag	${ m t_{aj}}$	HGT 18/12	HGT 12/8
1.11.	-5,1	23,1	17,1	1.12.	0,2	17,8	11,8
2.11.	-2,0	20,0	14,0	2.12.	-3,4	21,4	15,4
3.11.	-1,4	19,4	13,4	3.12.	2,4	15,6	9,6
4.11.	-1,0	19,0	13,0	4.12.	2,1	15,9	9,9
5.11.	0,8	17,2	11,2	5.12.	-0,6	18,6	12,6
6.11.	1,2	16,8	10,8	6.12.	-2,4	20,4	$14,\!4$
7.11.	2,6	15,4	9,4	7.12.	-1,3	19,3	13,3
8.11.	7,3	10,7	4,7	8.12.	-0,2	18,2	12,2
9.11.	8,2	9,8	0,0	9.12.	-2,7	20,7	14,7
10.11.	9,4	8,6	0,0	10.12.	-1,7	19,7	13,7
11.11.	10,6	7,4	0,0	11.12.	-4,8	22,8	16,8
12.11.	5,4	12,6	6,6	12.12.	0,5	17,5	11,5
13.11.	3,8	14,2	8,2	13.12.	-3,0	21,0	15,0
14.11.	4,3	13,7	7,7	14.12.	1,2	16,8	10,8
15.11.	0,4	17,6	11,6	15.12.	2,9	15,1	9,1
16.11.	3,0	15,0	9,0	16.12.	4,7	13,3	7,3
17.11.	4,8	13,2	7,2	17.12.	1,7	16,3	10,3
18.11.	1,7	16,3	10,3	18.12.	5,9	12,1	6,1
19.11.	11,5	6,5	0,0	19.12.	3,8	14,2	8,2
20.11.	8,9	9,1	0,0	20.12.	3,3	14,7	8,7
21.11.	6,0	12,0	6,0	21.12.	-4,1	22,1	16,1
22.11.	6,4	11,6	5,6	22.12.	0,9	17,1	11,1
23.11.	7,0	11,0	5,0	23.12.	-2,0	20,0	14,0
24.11.	-0,5	18,5	12,5	24.12.	-6,6	24,6	18,6
25.11.	3,2	14,8	8,8	25.12.	-11,7	29,7	23,7
26.11.	2,1	15,9	9,9	26.12.	-9,8	27,8	21,8
27.11.	-0,1	18,1	12,1	27.12.	-7,5	$25,\!5$	19,5
28.11.	-2,5	20,5	14,5	28.12.	-5,8	23,8	17,8
29.11.	-4,1	22,1	16,1	29.12.	-3,9	21,9	15,9
30.11.	-3,0	21,0	15,0	30.12.	-1,0	19,0	13,0
				31.12.	-4,5	22,5	16,5

B. Sensitivitätsanalyse


Die Abbildungen B.1 bis B.5 zeigen Sensitivitätsanalysen verschiedener Anbaufolgen bei Volleinspeisung und Beheizung mit Gas. Die Ausgangsbasis der veränderten Parameter ist dabei:

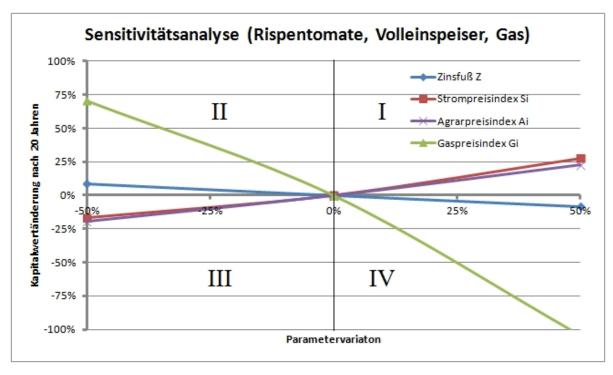
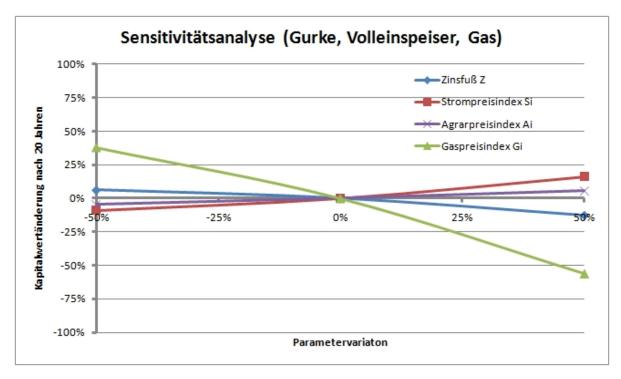
• Zinsfuß: Z=6,0%

• Strompreisindex: Si=5,4%

• Agrarpreisindex: Ai=2,8%

• Gaspreisindex: Gi=6,2%

Abbildung B.1.: Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau und Volleinspeisung der PV-Anlage

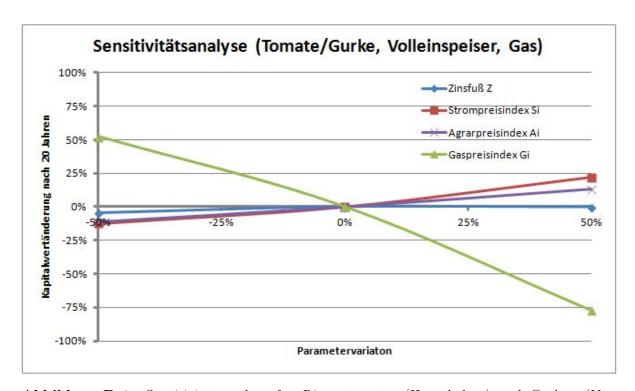

Abbildung B.2.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau und Volleinspeisung der PV-Anlage

Abbildung B.3.: Sensitivitätsanalyse für Gurken im ganzjährigen Anbau und Volleinspeisung der PV-Anlage

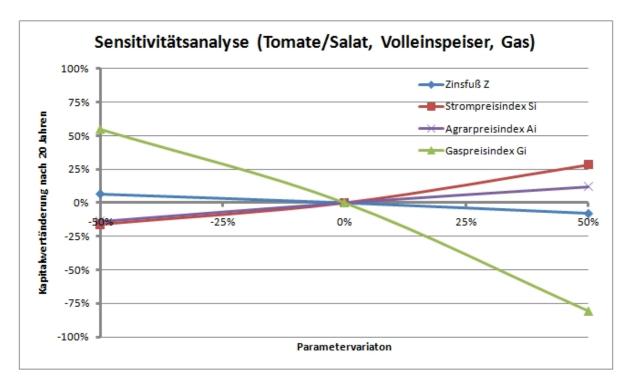
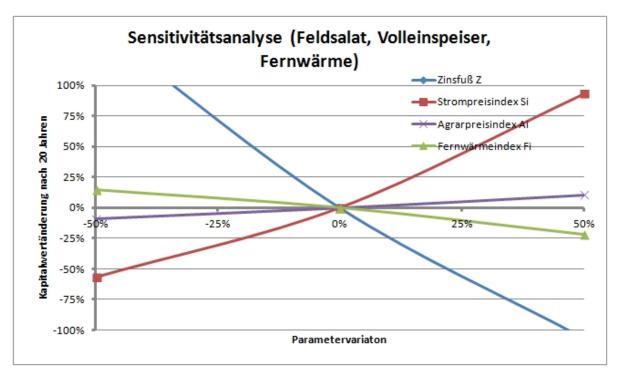


Abbildung B.4.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vorund Nachkultur) im ganzjährigen Anbau und Volleinspeisung der PV-Anlage

Abbildung B.5.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vorund Nachkultur) im ganzjährigen Anbau und Volleinspeisung der PV-Anlage



Die Abbildungen B.6 bis B.10 zeigen Sensitivitätsanalysen verschiedener Anbaufolgen bei Volleinspeisung und Beheizung mit Fernwärme. Die Ausgangsbasis der veränderten Parameter ist dabei:

• Zinsfuß: Z=6,0%

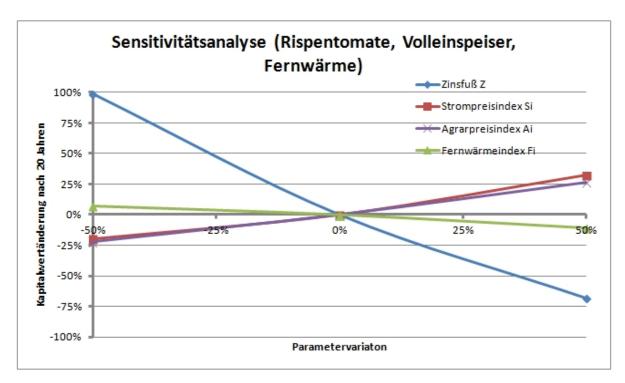

Strompreisindex: Si=5,4%
Agrarpreisindex: Ai=2,8%
Gaspreisindex: Gi=6,2%

Abbildung B.6.: Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau bei Beheizung mit Fernwärme und Volleinspeisung der PV-Anlage

Abbildung B.7.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Beheizung mit Fernwärme und Volleinspeisung der PV-Anlage

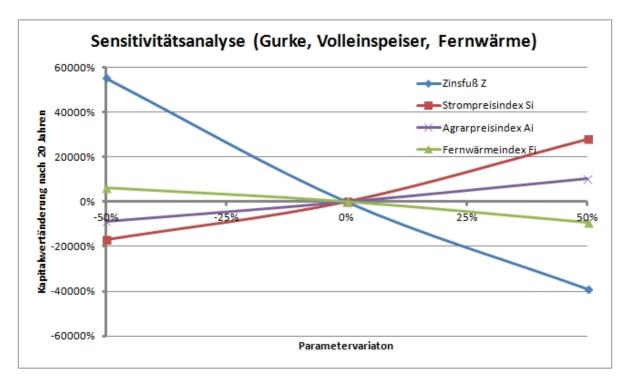
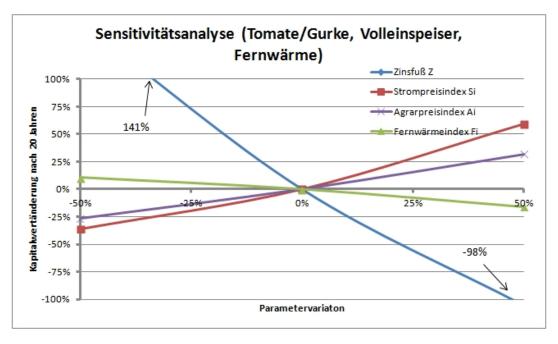



Abbildung B.8.: Sensitivitätsanalyse für Gurken im ganzjährigen Anbau bei Beheizung mit Fernwärme und Volleinspeisung der PV-Anlage. Die Skala wurde hier geändert, da sich bei den Standard-Parametern ein Kapitalwert von nahezu 0 ergibt; die Kapitalwerte bei Parametervariationen weisen dadurch eine extrem hohe Änderung zu diesem Bezugswert auf.

Abbildung B.9.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vorund Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme und Volleinspeisung der PV-Anlage

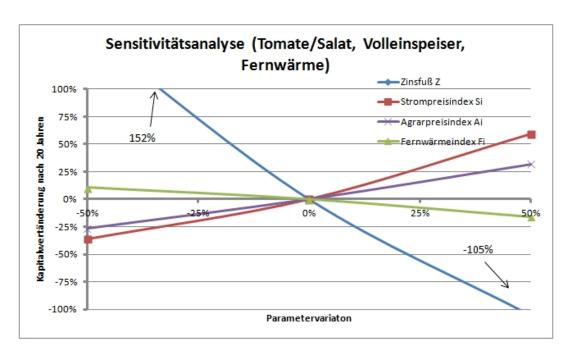
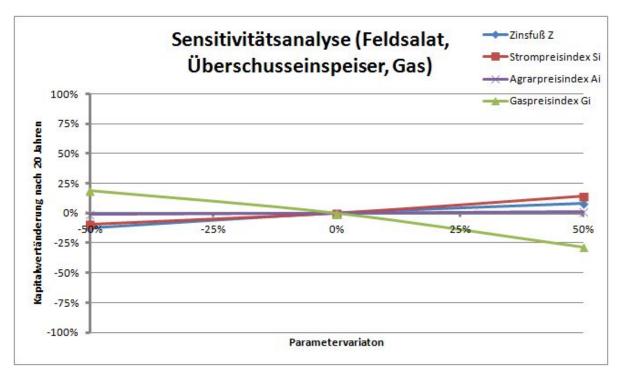


Abbildung B.10.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vorund Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme und Volleinspeisung der PV-Anlage



Die Abbildungen B.11 bis B.15 zeigen Sensitivitätsanalysen verschiedener Anbaufolgen bei Überschusseinspeisung und Beheizung mit Gas. Die Ausgangsbasis der veränderten Parameter ist dabei:

• Zinsfuß: Z=6,0%

Strompreisindex: Si=5,4%Agrarpreisindex: Ai=2,8%

• Gaspreisindex: Gi=6,2%

Abbildung B.11.: Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

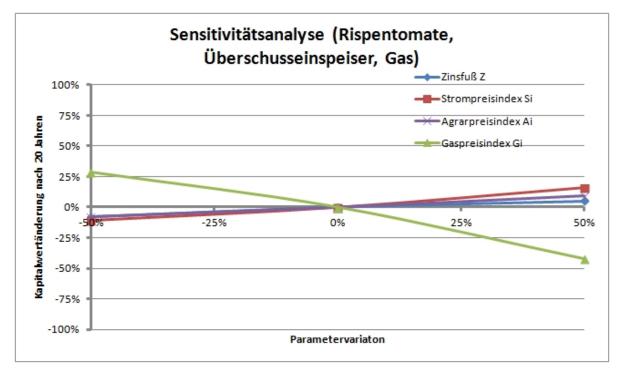
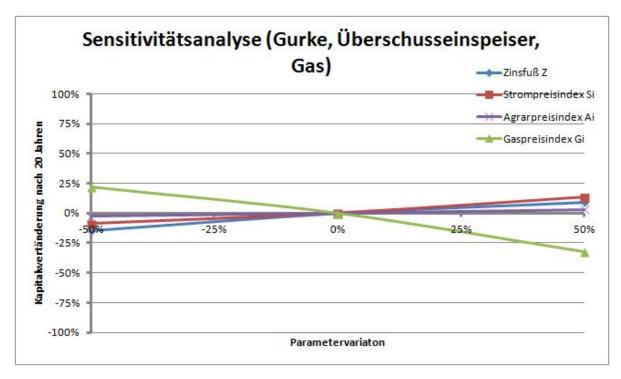



Abbildung B.12.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

Abbildung B.13.: Sensitivitätsanalyse für Gurken im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

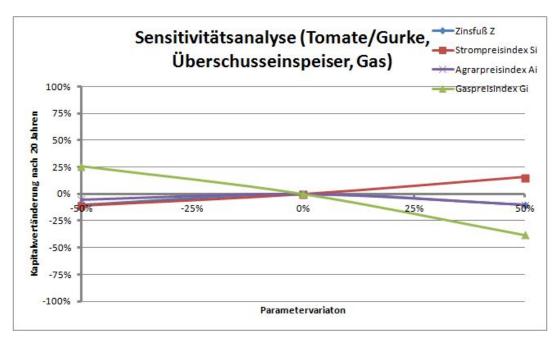


Abbildung B.14.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vorund Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

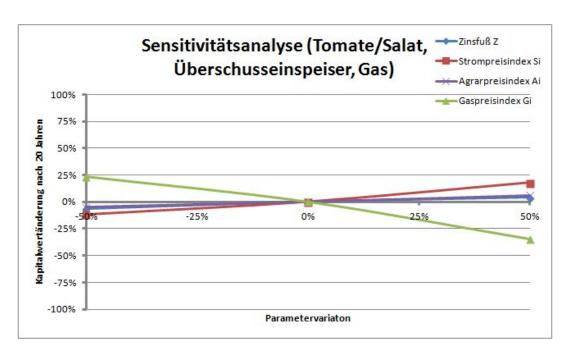
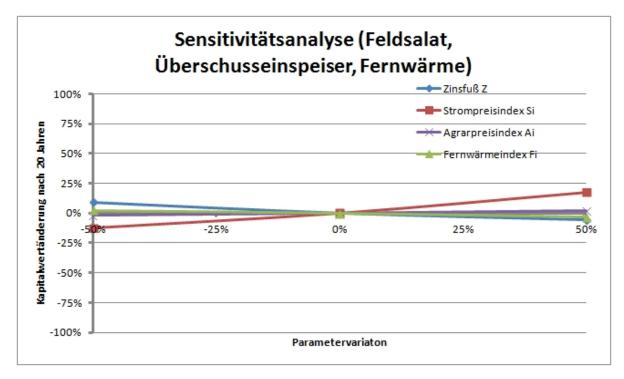


Abbildung B.15.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vorund Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage



Die Abbildungen B.16 bis B.20 zeigen Sensitivitätsanalysen verschiedener Anbaufolgen bei Überschusseinspeisung und Beheizung mit Fernwärme. Die Ausgangsbasis der veränderten Parameter ist dabei:

• Zinsfuß: Z=6,0%

Strompreisindex: Si=5,4%
Agrarpreisindex: Ai=2,8%
Gaspreisindex: Gi=6,2%

Abbildung B.16.: Sensitivitätsanalyse für Feldsalat im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

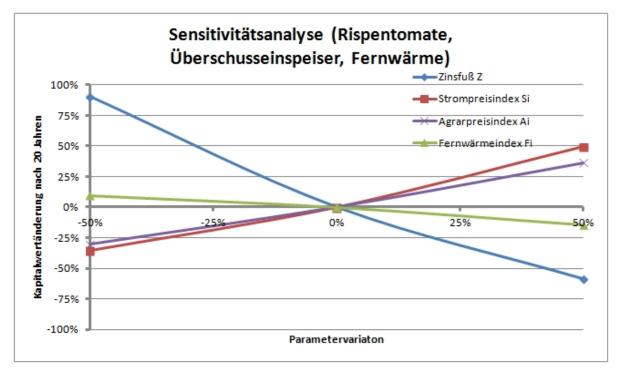
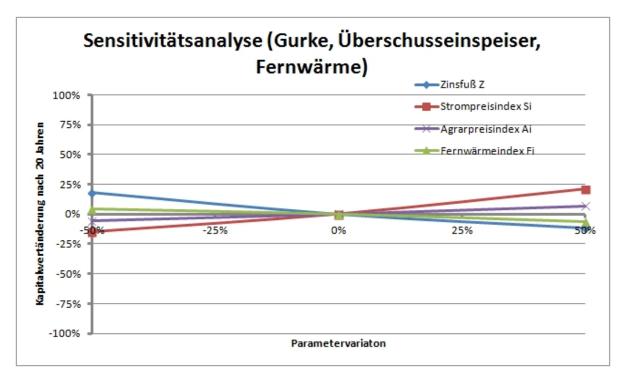



Abbildung B.17.: Sensitivitätsanalyse für Rispentomaten im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

Abbildung B.18.: Sensitivitätsanalyse für Gurken im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

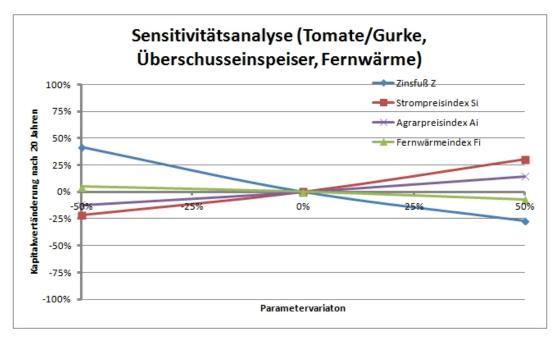


Abbildung B.19.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Gurken (Vorund Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

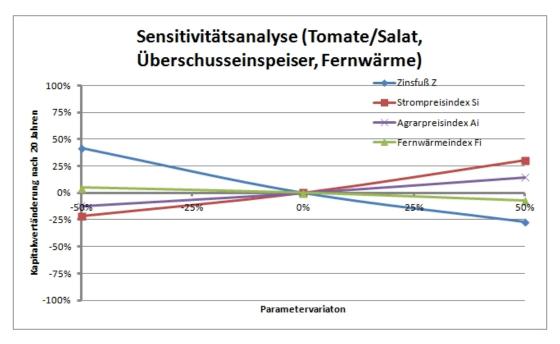


Abbildung B.20.: Sensitivitätsanalyse für Rispentomaten (Hauptkultur) und Feldsalat (Vorund Nachkultur) im ganzjährigen Anbau bei Beheizung mit Fernwärme und Überschusseinspeisung der PV-Anlage

C. Kapitalwertrechnung

Die nachstehenden Tabellen zeigen die detaillierten Kapitalwertrechnungen für folgende ausgewählte Varianten:

- PV-Anlage bei Volleinspeisung
- PV-Anlage bei Überschusseinspeisung
- Gewächshaus bei Gasheizung (Rispentomaten)
- Gewächshaus bei Fernwärme (Rispentomaten)
- Gesamtanlage bei Gasheizung und Volleinspeisung (Rispentomaten)
- Gesamtanlage bei Fernwärme und Volleinspeisung (Rispentomaten)

Tabelle C.1.: Kapitalwertrechnung für die PV-Anlage (Volleinspeiser, Z: 6%, Si: 6,4%)

		Ei	nnahmen			Ausgaben			Barwert	Barwert	,	
n	Jahr	PV-Anlage	Gemüse	Summe	PV-Anlage	Gemüse	Summe	BWF	Einnahmen	Ausgaben	Zahlungsstrom	Kapitalwert
0	2012			-			1.615.000	1,000	-	1.615.000	- 1.615.000	- 1.615.000
1	2013	320.508	-	320.508	28.500	-	28.500	0,943	302.366	26.887	275.479	- 1.339.521
2	2014	320.508	-	320.508	28.500	-	28.500	0,890	285.251	25.365	259.886	- 1.079.634
3	2015	320.508	-	320.508	28.500	-	28.500	0,840	269.105	23.929	245.176	- 834.459
4	2016	320.508	ı	320.508	28.500	-	28.500	0,792	253.873	22.575	231.298	- 603.161
5	2017	320.508	-	320.508	28.500	-	28.500	0,747	239.502	21.297	218.206	- 384.955
6	2018	320.508	ı	320.508	28.500	-	28.500	0,705	225.946	20.091	205.854	- 179.101
7	2019	320.508	-	320.508	28.500	-	28.500	0,665	213.156	18.954	194.202	15.101
8	2020	320.508	-	320.508	28.500	-	28.500	0,627	201.091	17.881	183.210	198.311
9	2021	320.508	-	320.508	28.500	-	28.500	0,592	189.708	16.869	172.839	371.150
10	2022	320.508	-	320.508	28.500	-	28.500	0,558	178.970	15.914	163.056	534.206
11	2023	320.508	-	320.508	28.500	-	28.500	0,527	168.840	15.013	153.826	688.032
12	2024	320.508	-	320.508	28.500	-	28.500	0,497	159.283	14.164	145.119	833.151
13	2025	320.508	-	320.508	28.500	-	28.500	0,469	150.267	13.362	136.905	970.056
14	2026	138.886	-	138.886	28.500	-	28.500	0,442	61.430	12.606	48.824	1.018.880
15	2027	147.775	-	147.775	28.500	-	28.500	0,417	61.661	11.892	49.769	1.068.649
16	2028	157.233	-	157.233	28.500	-	28.500	0,394	61.894	11.219	50.675	1.119.324
17	2029	167.295	-	167.295	28.500	-	28.500	0,371	62.128	10.584	51.544	1.170.868
18	2030	178.002	-	178.002	28.500	-	28.500	0,350	62.362	9.985	52.377	1.223.245
19	2031	189.395	-	189.395	28.500	-	28.500	0,331	62.597	9.420	53.178	1.276.423
20	2032	201.516	-	201.516	28.500	-	28.500	0,312	62.834	8.886	53.947	1.330.370
21	2033	214.413	-	214.413	28.500	-	28.500	0,294	63.071	8.383	54.687	1.385.057

Tabelle C.2.: Kapitalwertrechnung für die PV-Anlage (Überschusseinspeiser, Z: 6%, Si: 6,4%)

		Einnahmen			Ausgaben	· · · · · · · · · · · · · · · · · · ·		Barwert	Barwert			
n	Jahr	PV-Anlage	Gemüse	Summe	PV-Anlage	Gemüse	Summe	BWF	Einnahmen	Ausgaben	Zahlungsstrom	Kapitalwert
0	2012			-			1.615.000	1,000	-	1.615.000	- 1.615.000	- 1.615.000
1	2013	62.004	-	62.004	28.500		28.500	0,943	58.494	26.887	31.607	- 1.583.393
2	2014	65.972	-	65.972	28.500		28.500	0,890	58.715	25.365	33.350	- 1.550.043
3	2015	70.194	-	70.194	28.500	-	28.500	0,840	58.936	23.929	35.007	- 1.515.035
4	2016	74.687	-	74.687	28.500	-	28.500	0,792	59.159	22.575	36.584	- 1.478.451
5	2017	79.467	-	79.467	28.500	-	28.500	0,747	59.382	21.297	38.085	- 1.440.366
6	2018	84.552	-	84.552	28.500	-	28.500	0,705	59.606	20.091	39.515	- 1.400.851
7	2019	89.964	-	89.964	28.500	-	28.500	0,665	59.831	18.954	40.877	- 1.359.974
8	2020	95.721	-	95.721	28.500	-	28.500	0,627	60.057	17.881	42.176	- 1.317.799
9	2021	101.848	-	101.848	28.500	-	28.500	0,592	60.283	16.869	43.414	- 1.274.384
10	2022	108.366	-	108.366	28.500	-	28.500	0,558	60.511	15.914	44.597	- 1.229.788
11	2023	115.301	-	115.301	28.500	-	28.500	0,527	60.739	15.013	45.726	- 1.184.062
12	2024	122.681	-	122.681	28.500	-	28.500	0,497	60.969	14.164	46.805	- 1.137.257
13	2025	130.532	-	130.532	28.500	-	28.500	0,469	61.199	13.362	47.837	- 1.089.420
14	2026	138.886	-	138.886	28.500	-	28.500	0,442	61.430	12.606	48.824	- 1.040.596
15	2027	147.775	-	147.775	28.500	-	28.500	0,417	61.661	11.892	49.769	- 990.827
16	2028	157.233	-	157.233	28.500	-	28.500	0,394	61.894	11.219	50.675	- 940.152
17	2029	167.295	-	167.295	28.500	-	28.500	0,371	62.128	10.584	51.544	- 888.608
18	2030	178.002	-	178.002	28.500	-	28.500	0,350	62.362	9.985	52.377	- 836.231
19	2031	189.395	-	189.395	28.500	-	28.500	0,331	62.597	9.420	53.178	- 783.053
20	2032	201.516	-	201.516	28.500	-	28.500	0,312	62.834	8.886	53.947	- 729.106
21	2033	214.413	-	214.413	28.500	-	28.500	0,294	63.071	8.383	54.687	- 674.419

Tabelle C.3.: Kapitalwertrechnung für das Gewächshaus bei Gasheizung (Rispentomaten, Z: 6%, Gi: 6,2%, Ai: 2,8%)

			nnahmen		Ausgaben				Barwert	Barwert		,
n	Jahr	PV-Anlage	Gemüse	Summe	PV-Anlage	Gemüse	Summe	BWF	Einnahmen	Ausgaben	Zahlungsstrom	Kapitalwert
0	2012			-			1.185.000	1,000	-	1.185.000	- 1.185.000	- 1.185.000
1	2013	-	257.359	257.359	-	292.207	292.207	0,943	242.791	275.667	- 32.876	- 1.217.876
2	2014	-	264.565	264.565	-	306.318	306.318	0,890	235.462	272.622	- 37.160	- 1.255.036
3	2015	-	271.973	271.973	-	321.192	321.192	0,840	228.354	269.679	- 41.325	- 1.296.361
4	2016	-	279.588	279.588	-	336.872	336.872	0,792	221.460	266.834	- 45.375	- 1.341.735
5	2017	-	287.417	287.417	-	353.407	353.407	0,747	214.774	264.086	- 49.312	- 1.391.047
6	2018	-	295.464	295.464	-	370.844	370.844	0,705	208.291	261.430	- 53.140	- 1.444.187
7	2019	-	303.737	303.737	-	389.237	389.237	0,665	202.003	258.865	- 56.863	- 1.501.049
8	2020	-	312.242	312.242	-	408.642	408.642	0,627	195.904	256.387	- 60.483	- 1.561.532
9	2021	-	320.985	320.985	-	429.118	429.118	0,592	189.990	253.994	- 64.004	- 1.625.536
10	2022	_	329.972	329.972	-	450.727	450.727	0,558	184.255	251.684	- 67.429	- 1.692.965
11	2023	_	339.211	339.211	-	473.536	473.536	0,527	178.692	249.453	- 70.761	- 1.763.726
12	2024	_	348.709	348.709	-	497.616	497.616	0,497	173.298	247.300	- 74.002	- 1.837.728
13	2025	_	358.473	358.473	-	523.040	523.040	0,469	168.066	245.222	- 77.155	- 1.914.883
14	2026	_	368.510	368.510	-	549.889	549.889	0,442	162.993	243.216	- 80.224	- 1.995.107
15	2027	_	378.829	378.829	-	578.246	578.246	0,417	158.072	241.282	- 83.210	- 2.078.317
16	2028	-	389.436	389.436	-	608.201	608.201	0,394	153.300	239.416	- 86.116	- 2.164.433
17	2029	-	400.340	400.340	-	639.848	639.848	0,371	148.672	237.617	- 88.945	- 2.253.378
18	2030	-	411.550	411.550	-	673.287	673.287	0,350	144.184	235.882	- 91.698	- 2.345.076
19	2031	-	423.073	423.073	-	708.625	708.625	0,331	139.831	234.210	- 94.379	- 2.439.454
20	2032	-	434.919	434.919	-	745.974	745.974	0,312	135.610	232.598	- 96.988	- 2.536.443
21	2033	-	447.097	447.097	-	785.455	785.455	0,294	131.516	231.046	- 99.530	- 2.635.973

Tabelle C.4.: Kapitalwertrechnung für das Gewächshaus bei Fernwärme (Rispentomaten, Z: 6%, Fi: 6,2%, Ai: 2,8%)

		Ei	nnahmen			Ausgaben		<u> </u>	Barwert	Barwert		
n	Jahr	PV-Anlage	Gemüse	Summe	PV-Anlage	Gemüse	Summe	BWF	Einnahmen	Ausgaben	Zahlungsstrom	Kapitalwert
0	2012			-			1.185.000	1,000	-	1.185.000	- 1.185.000	- 1.185.000
1	2013	-	257.359	257.359	-	195.735	195.735	0,943	242.791	184.655	58.136	- 1.126.864
2	2014	-	264.565	264.565	-	199.890	199.890	0,890	235.462	177.901	57.561	- 1.069.303
3	2015	-	271.973	271.973	-	204.190	204.190	0,840	228.354	171.442	56.911	- 1.012.392
4	2016	-	279.588	279.588	-	208.642	208.642	0,792	221.460	165.264	56.196	- 956.196
5	2017	-	287.417	287.417	1	213.252	213.252	0,747	214.774	159.354	55.420	- 900.776
6	2018	-	295.464	295.464	ı	218.025	218.025	0,705	208.291	153.699	54.591	- 846.184
7	2019	-	303.737	303.737	-	222.969	222.969	0,665	202.003	148.287	53.715	- 792.469
8	2020	-	312.242	312.242	-	228.091	228.091	0,627	195.904	143.107	52.797	- 739.672
9	2021	-	320.985	320.985	-	233.398	233.398	0,592	189.990	138.148	51.842	- 687.829
10	2022	-	329.972	329.972	-	238.898	238.898	0,558	184.255	133.399	50.855	- 636.974
11	2023	-	339.211	339.211	-	244.599	244.599	0,527	178.692	128.852	49.841	- 587.134
12	2024	-	348.709	348.709	-	250.510	250.510	0,497	173.298	124.496	48.802	- 538.332
13	2025	-	358.473	358.473	-	256.639	256.639	0,469	168.066	120.323	47.744	- 490.588
14	2026	-	368.510	368.510	-	262.997	262.997	0,442	162.993	116.324	46.669	- 443.919
15	2027	-	378.829	378.829	-	269.592	269.592	0,417	158.072	112.491	45.581	- 398.338
16	2028	-	389.436	389.436	-	276.436	276.436	0,394	153.300	108.818	44.482	- 353.856
17	2029	-	400.340	400.340	-	283.538	283.538	0,371	148.672	105.296	43.376	- 310.480
18	2030	-	411.550	411.550	_	290.912	290.912	0,350	144.184	101.919	42.265	- 268.215
19	2031	-	423.073	423.073	-	298.568	298.568	0,331	139.831	98.681	41.151	- 227.065
20	2032	-	434.919	434.919	-	306.520	306.520	0,312	135.610	95.574	40.036	- 187.029
21	2033	-	447.097	447.097	-	314.780	314.780	0,294	131.516	92.594	38.922	- 148.108

Tabelle C.5.: Kapitalwertrechnung für Rispentomaten bei Gasheizung und Volleinspeisung (Z: 6%, Si: 6,4%, Gi: 6,2%, Ai: 2,8%)

		Ei	nnahmen		-	Ausgaben			Barwert	Barwert		
n	Jahr	PV-Anlage	Gemüse	Summe	PV-Anlage	Gemüse	Summe	BWF	Einnahmen	Ausgaben	Zahlungsstrom	Kapitalwert
0	2012			-			2.800.000	1,000	-	2.800.000	- 2.800.000	- 2.800.000
1	2013	320.508	257.359	577.867	28.500	292.207	320.707	0,943	545.158	302.554	242.604	- 2.557.396
2	2014	320.508	264.565	585.073	28.500	306.318	334.818	0,890	520.713	297.987	222.726	- 2.334.670
3	2015	320.508	271.973	592.481	28.500	321.192	349.692	0,840	497.459	293.608	203.851	- 2.130.819
4	2016	320.508	279.588	600.096	28.500	336.872	365.372	0,792	475.332	289.409	185.923	- 1.944.896
5	2017	320.508	287.417	607.925	28.500	353.407	381.907	0,747	454.277	285.383	168.894	- 1.776.002
6	2018	320.508	295.464	615.972	28.500	370.844	399.344	0,705	434.236	281.522	152.714	- 1.623.288
7	2019	320.508	303.737	624.245	28.500	389.237	417.737	0,665	415.159	277.819	137.340	- 1.485.948
8	2020	320.508	312.242	632.750	28.500	408.642	437.142	0,627	396.995	274.269	122.727	- 1.363.221
9	2021	320.508	320.985	641.493	28.500	429.118	457.618	0,592	379.699	270.864	108.835	- 1.254.386
10	2022	320.508	329.972	650.480	28.500	450.727	479.227	0,558	363.225	267.598	95.627	- 1.158.759
11	2023	320.508	339.211	659.720	28.500	473.536	502.036	0,527	347.532	264.466	83.066	- 1.075.694
12	2024	320.508	348.709	669.218	28.500	497.616	526.116	0,497	332.581	261.463	71.117	- 1.004.577
13	2025	320.508	358.473	678.981	28.500	523.040	551.540	0,469	318.333	258.584	59.749	- 944.827
14	2026	138.886	368.510	507.397	28.500	549.889	578.389	0,442	224.422	255.822	- 31.400	- 976.227
15	2027	147.775	378.829	526.604	28.500	578.246	606.746	0,417	219.733	253.174	- 33.441	- 1.009.668
16	2028	157.233	389.436	546.669	28.500	608.201	636.701	0,394	215.194	250.635	- 35.441	- 1.045.109
17	2029	167.295	400.340	567.636	28.500	639.848	668.348	0,371	210.800	248.201	- 37.401	- 1.082.510
18	2030	178.002	411.550	589.552	28.500	673.287	701.787	0,350	206.546	245.867	- 39.321	- 1.121.830
19	2031	189.395	423.073	612.468	28.500	708.625	737.125	0,331	202.429	243.629	- 41.201	- 1.163.031
20	2032	201.516	434.919	636.435	28.500	745.974	774.474	0,312	198.443	241.485	- 43.041	- 1.206.072
21	2033	214.413	447.097	661.510	28.500	785.455	813.955	0,294	194.587	239.429	- 44.843	- 1.250.915

Tabelle C.6.: Kapitalwertrechnung für Rispentomaten bei Fernwärme und Volleinspeisung (Z: 6%, Si: 6,4%, Fi: 6,2%, Ai: 2,8%)

		Ei	nnahmen		-	Ausgaben			Barwert	Barwert		
n	Jahr	PV-Anlage	Gemüse	Summe	PV-Anlage	Gemüse	Summe	BWF	Einnahmen	Ausgaben	Zahlungsstrom	Kapitalwert
0	2012			-			2.800.000	1,000	-	2.800.000	- 2.800.000	- 2.800.000
1	2013	320.508	257.359	577.867	28.500	195.735	224.235	0,943	545.158	211.542	333.616	- 2.466.384
2	2014	320.508	264.565	585.073	28.500	199.890	228.390	0,890	520.713	203.266	317.447	- 2.148.937
3	2015	320.508	271.973	592.481	28.500	204.190	232.690	0,840	497.459	195.371	302.087	- 1.846.850
4	2016	320.508	279.588	600.096	28.500	208.642	237.142	0,792	475.332	187.839	287.494	- 1.559.357
5	2017	320.508	287.417	607.925	28.500	213.252	241.752	0,747	454.277	180.651	273.626	- 1.285.731
6	2018	320.508	295.464	615.972	28.500	218.025	246.525	0,705	434.236	173.791	260.446	- 1.025.285
7	2019	320.508	303.737	624.245	28.500	222.969	251.469	0,665	415.159	167.241	247.917	- 777.368
8	2020	320.508	312.242	632.750	28.500	228.091	256.591	0,627	396.995	160.988	236.007	- 541.361
9	2021	320.508	320.985	641.493	28.500	233.398	261.898	0,592	379.699	155.017	224.682	- 316.680
10	2022	320.508	329.972	650.480	28.500	238.898	267.398	0,558	363.225	149.314	213.911	- 102.768
11	2023	320.508	339.211	659.720	28.500	244.599	273.099	0,527	347.532	143.865	203.667	100.898
12	2024	320.508	348.709	669.218	28.500	250.510	279.010	0,497	332.581	138.659	193.921	294.820
13	2025	320.508	358.473	678.981	28.500	256.639	285.139	0,469	318.333	133.684	184.649	479.468
14	2026	138.886	368.510	507.397	28.500	262.997	291.497	0,442	224.422	128.929	95.493	574.961
15	2027	147.775	378.829	526.604	28.500	269.592	298.092	0,417	219.733	124.383	95.350	670.311
16	2028	157.233	389.436	546.669	28.500	276.436	304.936	0,394	215.194	120.037	95.157	765.468
17	2029	167.295	400.340	567.636	28.500	283.538	312.038	0,371	210.800	115.880	94.920	860.388
18	2030	178.002	411.550	589.552	28.500	290.912	319.412	0,350	206.546	111.904	94.642	955.030
19	2031	189.395	423.073	612.468	28.500	298.568	327.068	0,331	202.429	108.100	94.328	1.049.358
20	2032	201.516	434.919	636.435	28.500	306.520	335.020	0,312	198.443	104.461	93.983	1.143.341
21	2033	214.413	447.097	661.510	28.500	314.780	343.280	0,294	194.587	100.978	93.609	1.236.950

D. Simulationsergebnisse

Standort: Südösterreich

Klimadatensatz: ------

PV-Leistung: 948,60 kWp PV-Brutto-/Bezugsfläche: 6.647,90 / 6.647,85 m²

PV-Generator Einstrahlung: 8.744.886 kWh
PV-Gen. erzeugte Energie (wechselstromseitig): 987.492 kWh

Netzeinspeisung: 987.492 kWh

Systemnutzungsgrad: 11,3 %
Performance Ratio (Anlagennutzungsgrad): 79,1 %
Wechselrichter Nutzungsgrad: 93,3 %

Wechselfichter Nutzungsgrad: 93,3 %
PV-Generator Nutzungsgrad: 12,1 %

Spez. Jahresertrag: 1.040 kWh/kWp

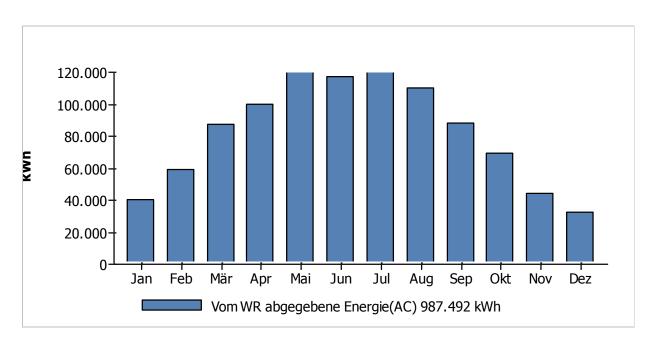
Vermiedene CO2-Emissionen: 874.121 kg/a

Die Ergebnisse sind durch eine mathematische Modellrechnung ermittelt worden. Die tatsächlichen Erträge der Photovoltaikanlage können aufgrund von Schwankungen des Wetters, der Wirkungsgrade von Modulen und Wechselrichter und anderer Faktoren abweichen. Das obige Anlagenschema ersetzt nicht die fachtechnische Planung der Photovoltaikanlage.

Anlage im netzgekoppelten Be	etrieb
------------------------------	--------

Standort:	Südösterreich	PV-Leistung:	948,60 kWp
Klimadatensatz:		PV-Brutto-/Bezugsfläche:	6.647,9 m ² /
Anzahl der	1		6.647,9 m ²
Teilgeneratoren:	_		

Teilgenerator 1: Name des Teilgenerators


Verschattung:

Leistung:	948,60 kW	Bodenreflexion:	20,0 %
Brutto- / Bezugsfläche:	6647,9 m² / 6647,9 m²	Leistungsverluste durch	
PV-Modul	3162 x	Abweichung vom AM 1.5:	2,0 %
Hersteller:	PV Products GmbH	Abw. Herstellerangaben:	0,5 %
Typ:	PVP-GE300M	in Dioden:	0,0 %
Nennleistung:	300 W	durch Verschmutzung:	0,0 %
Abweichung der	0 %	Wechselrichter	2 x
Nennleistung:			
Wirkungsgrad (STC):	14,3 %	Hersteller:	Xantrex Technology
	•		Inc.
Anz. der Module in Reihe:	17	Тур:	Inc. GT500E
Anz. der Module in Reihe: MPP-Spannung (STC):	17 629 V	Typ: Leistung:	=
		, ·	GT500E
MPP-Spannung (STC):	629 V	Leistung:	GT500E 500,00 kW

Simulationsergebnisse für das Gesamtsystem

nein

	,	,		
Einstrahlung auf Horizontale:	7.789.792 kWh	Eigenverbrauch:	900,2 kWh	
PV-Gen. Einstrahlung:	8.744.886 kWh	PV-Gen. erzeugte Energie:	1.057.590 kWh	
Einstrahlung abzl. Reflexion:	8.311.292 kWh	Systemnutzungsgrad:	11,3 %	
Vom WR abgegebene Energie(AC):	987.492 kWh	Performance Ratio:	79,1 %	
Verbrauch Bedarf:	0 kWh	Final Yield:	2,8 h/d	
Netz Bezug:	900 kWh	Spez. Jahresertrag:	1.040 kWh/kWp	
Generator Nutzungsgrad:	12.1 %			

Netz gekoppeltes System: Simulationsparameter

Projekt: Suedoesterreich

Geografische Station Suedoesterreich Land Austria Breitengrad 46.7°N Längengrad 15.8°E Lage Zeit definiert als

Ortszeit Zeitzone UT+1 geo. Höhe 237 m

Albedo 0.20

Wetterdaten: Suedoesterreich, Stündliche künstliche Daten

Simulationsvariante: Photovoltaik-Gewächshaus

Simulationsdatum 04/02/13 07h16

Simulationsparameter

Kollektorflächenausrichtung Neigung 22° Azimut 0°

Freier Horizont Horizont

Nahverschattungen Keine Verschattungen

PV-Feld Eigenschaften

PV-Modul Si-mono Modell **PVP-GE300M**

> Hersteller **PVP**

Anzahl PV-Module In Reihe 17 Module 186 Stränge Parallel Gesamtzahl der PV-Module Anzahl Module 3162 Nennleistung 300 Wp

PV-Feld Leistung Nennleistung (STC) 949 kWp Bei Betriebsbed. 854 kWp (50°C)

Feld Betriebsbedingungen (50°C) 1500 A U mpp 569 V I mpp

Gesamtoberfläche Moduloberfläche 6648 m²

Wechselrichter **GT 500E** Modell

Hersteller Xantrex

450-880 V Kriterien Betriebsspannung Nennleistung 500 kW AC Wechselrichter Anzahl der Wechselrichter Gesamtleistung 1000 kW AC 2 Einheiten

PV-Feld Verlustgrößen

Thermischer Verlustfaktor Uc (konst) 20.0 W/m²K Uv (Wind) 0.0 W/m2K / m/s

=> Effektive Funktionstemperatur (G=800 W/m², TUmg.=20°C, Windgesch.=1m/s.) NOCT 56 °C

1.5 % bei STC Kabelverluste Gesamtfeld-Widerstand 6.3 mOhm Verlustanteil

Leistungstolleranzabzug Verlustanteil 1.5 %

Mismatch-Verluste Module Verlustanteil 2.0 % am MPP

Einfallswinkeleffekt (ASHRAE) IAM = 1 - bo (1/cos i - 1) bo Parameter 0.05

Verlustfaktoren des Systems

Externer Transformator Verlust Eisen (24H connection) 742 W Verlustanteil 0.1 % bei STC

> Widerstands-/Induktions-Verluste 1.1 mOhm Verlustanteil 1.0 % bei STC

Benutzeranforderungen: Unbegrenzte Last (Netz)

Netz gekoppeltes System: Hauptergebnisse

Projekt: Suedoesterreich

Simulationsvariante: Photovoltaik-Gewächshaus

Hauptsystemparameter

PV-Feld-Ausrichtung **PV-Module** PV-Feld

Wechselrichter Wechselrichter Benutzeranforderungen

Systemtyp Neigung Modell

Anzahl der Module Modell Anzahl der Einheiten Unbegrenzte Last (Netz)

Netz gekoppelt 22°

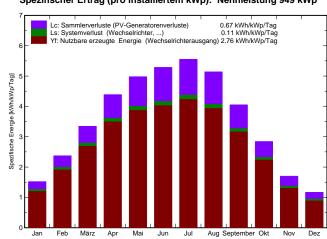
PVP-GE300M 3162

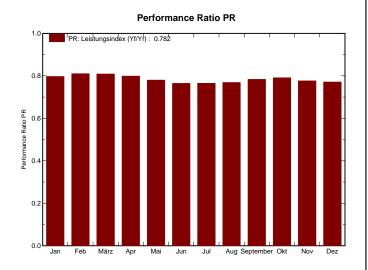
GT 500E 2.0

0° Azimut Pnenn

300 Wp Pnenn Total 949 kWp Pnenn 500 kW ac Pnenn Total 1000 kW ac

Hauptsimulationsergebnisse


Systemproduktion


Erzeugte Energie 957 MWh/Jahr Performance Ratio PR 78.2 %

Produzierbar

1009 kWh/kWp/Jahr

Spezifischer Ertrag (pro installiertem kWp): Nennleistung 949 kWp

Photovoltaik-Gewächshaus Bilanzen und Hauptergebnisse

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
Januar	33.5	-0.90	47.2	45.3	37.6	35.7	11.99	11.37
Februar	50.4	1.80	66.5	64.0	53.3	51.1	12.07	11.56
März	88.0	5.80	103.7	100.1	82.6	79.6	11.99	11.54
April	121.2	10.60	131.7	127.5	103.3	99.8	11.80	11.40
Mai	151.6	15.70	154.4	149.2	118.3	114.3	11.52	11.13
Juni	159.6	19.20	158.6	153.2	119.0	115.1	11.29	10.91
Juli	170.8	20.60	172.2	166.5	129.1	124.9	11.28	10.92
August	149.7	20.20	159.3	154.4	120.1	116.2	11.34	10.97
September	104.7	15.50	121.6	117.5	93.6	90.4	11.58	11.18
Oktober	69.1	11.60	88.2	85.0	68.8	66.1	11.74	11.29
November	37.2	5.50	51.0	49.0	39.6	37.6	11.66	11.08
Dezember	25.7	0.20	36.3	34.7	28.3	26.5	11.73	11.00
Jahr	1161.6	10.53	1290.5	1246.5	993.7	957.2	11.58	11.16

Legenden: GlobHor

T Amb GlobInc GlobEff

Horizontale Globalstrahlung Umgebungstemperatur

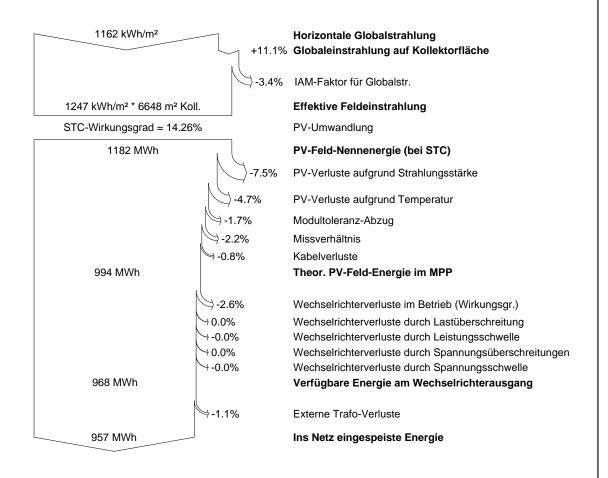
Globaleinstrahlung auf Kollektorfläche Effektive Globalstr. (IAM u. Verschattungen) **EArray** E_Grid EffArrR **EffSysR** Effektive Energie am PV-Feld-Ausgang Ins Netz eingespeiste Energie

Wirkunsgr. Eaus PV-Gen./ Brutto-Fl. Wirkunsgr. Eaus System./ Brutto-Fl.

Netz gekoppeltes System: Verlust-Diagramm

Projekt: Suedoesterreich

Simulationsvariante: Photovoltaik-Gewächshaus


Hauptsystemparameter Systemtyp Netz gekoppelt

PV-Feld-Ausrichtung Neigung 22° Azimut 0°
PV-Module Modell PVP-GE300M Pnenn 300 Wp
PV-Feld Anzahl der Module 3162 Pnenn Total **949 kWp**

Wechselrichter Modell GT 500E Pnenn 500 kW ac Wechselrichter Anzahl der Einheiten 2.0 Pnenn Total 1000 kW ac

Benutzeranforderungen Unbegrenzte Last (Netz)

Ganzjahres-Verlustdiagramm

E. Datenblätter

GEWÄCHSHAUSMODUL

Glas-Glas 72 Zellen Monokristallin PVP-GExxxM Leistung: 290/295/300Wp

- Eigens entwickelt für Gewächshäuser, Lichtdurchlässigkeit von 17%
- Leichte Konstruktion durch besonders dünnes Solarglas 2,1mm
- Positive Leistungstoleranz: bis zu +3%
- 10 Jahre Produktgarantie, Leistungsgarantie: 10 Jahre 90%, 25 Jahre 80%
- Qualitätszertifikate: IEC 61215 und IEC 61730 von TÜV Rheinland in Zertifizierung

Jedes PVP-Modul zeichnet sich durch beste Leistungswerte und hochwertige Materialien aus. Produziert in Österreich nach modernsten Produktionsstandards. Module der GE-Serie erfüllen somit höchste Ansprüche und beste Ertragseigenschaften.

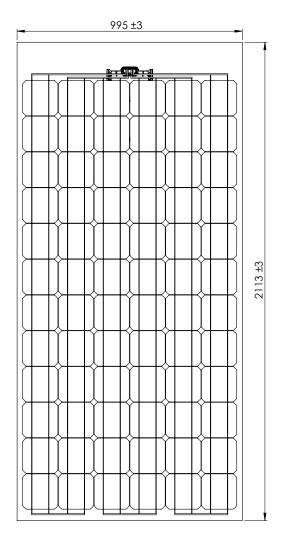
PVP-GEXXXM Glas-Glas Modul 72-Zellen Monokristallin 290/295/300Wp

Elektrische Daten			STC*			800W/m² NOCT**		
Max Leistung (Pmpp)	[Wp]	290	295	300	208,7	213,4	216,4	
Spannung bei Pmpp (Vmpp)	[V]	36,7	36,9	37,0	33,0	33,2	33,4	
Strom bei Pmpp (Impp)	[A]	7,9	8	8,1	6,3	6,4	6,5	
Leerlaufspannung (Voc)	[V]	44,1	44,3	44,7	39,9	40,1	40,5	
Kurzschlussstrom (Isc)	[A]	8,6	8,6	8,7	6,9	6,9	7,0	
Modulwirkungsgrad	[%]	13,8	14,0	14,3				

^{*} Standard-Test-Bedingungen (STC) 1.000W/m2; AM 1,5; 25°C ** 800 W/m²; AM 1,5; Nennbetriebszelltemperatur (NOCT)

Geringe Wirkungsgradminderung bei Teillastverhalten: Es werden bei 200W/m² min. 95% des STC (1000W/m²) Wirkungsgrad erreicht

Thermische Kenngrößen / Temperaturkoeffizienten				
TK P	Tk Voc	TK Isc	NOCT	
-0,42 %/K	-0,32 %/K	0,047 %/K	48°C +/-2°C	


Mechanische Daten					
Länge	Breite	Höhe	Gewicht		
2113mm	995mm	5,1mm	25kg		

Weitere Kenngrößen	
Plussortierung	-0% to +3%
Belastbarkeit / Schneelast	2400 N/m ² *
max. Systemspannung	1000V
Schutzklasse	II
Rückstrombelastbarkeit	15A
Anschlussdose	Huber Suhner HA3
Bypassdioden	3 Type Schottky
Schutzart Anschlussdose	IP67
Kabel Länge/Querschnitt	1000mm / 4mm ²
Steckverbindersystem	Radox Solar
Messtoleranz	+/- 3%
Betriebstemperatur	-40°C ~ +85°C

^{*} Abhängig von Befestigungssystem

Verwendete Materialien Zellen pro Modul 72 (6x12) Zellentyp monokristallin 156x156 Solarglas 2 x 2,1mm gehärtetes Solarglas Rahmen Rahmenlos

Technische Zeichnung

Dieses Datenblatt ist nicht rechtsverbindlich. Die tatsächlichen Spezifikationen und/oder Produktmerkmale können davon abweichen. Änderungen vorbehalten. Achtung: Lesen Sie die Sicherheits- und Installationsanweisungen durch, bevor Sie das Produkt verwenden. Eine projektbezogene, statische Überprüfung ist für jeden Änwendungsbreich dieses Produktes durchzuführen.

Bei Kauf gelten die aktuell gültigen Garantieerklärungen und die allgemeinen Liefer- und Geschäftsbedingungen der PV Products GmbH. Weitere Einzelheiten finden Sie auf unserer Website. Dieses Datenblatt entspricht den Vorgaben der EN 50380