
benjamin hopfer

3 D F L O W F I E L D S I M P L I F I C AT I O N V I A
S T R E A M L I N E B U N D L E S

3 D F L O W F I E L D S I M P L I F I C AT I O N V I A S T R E A M L I N E B U N D L E S

benjamin hopfer

Master’s Thesis

Institute of Computer Graphics and Knowledge Visualization
Graz University of Technology

In cooperation with:
VIRTUAL VEHICLE - Kompetenzzentrum

Das virtuelle Fahrzeug Forschungs-GmbH (ViF)

December 2011

Benjamin Hopfer: 3d Flow Field Simplification via Streamline Bundles,
Master’s Thesis, © December 2011

supervisor:
Dipl.-Inform. Dr.-Ing. Sven Havemann

location:
Graz, Austria

A B S T R A C T

Results from computational fluid dynamics (CFD) simulations are gen-
erally complex and difficult to understand. This work proposes a new
method that computes from a given simulation result, e. g., the under-
hood flow of air around a car engine, a sparse directed graph network
with a few hundred nodes. The goal is a graph that preserves the
essential properties of the flow in such way that it is suitable for ap-
plications ranging from information visualization to flow simulation.
The algorithm finds bundles of similar streamline segments, which
are then mapped back to the original dataset in order to produce a
complete partition. A flow graph is derived from this partition by
integration over the CFD cells. By utilizing a custom-built simulation
framework, the proposed method is shown to produce meaningful
graphs, which can be used within the mentioned application areas.

Z U S A M M E N FA S S U N G

Ergebnisse von numerischen Flusssimulationen (computational fluid
dynamics, CFD) sind im Allgemeinen komplex und schwierig zu ver-
stehen. Diese Arbeit stellt eine neue Methode vor. Ausgehend vom
Ergebnis einer Strömungssimulation, beispielsweise von Luft im Mo-
torraum eines Autos, wird ein dünner, gerichteter Graph mit weni-
gen hundert Knoten erzeugt. Ziel der Arbeit ist ein Graph, welcher
die essenziellen Flusseigenschaften in einer Weise abbildet, die An-
wendungen von der Visualisierung bis hin zur Simulation erlaubt.
Der Algorithmus findet Bündel ähnlicher Stromliniensegmente und
ordnet diese dann wieder dem ursprünglichen Datensatz zu, um ei-
ne vollständige Partition zu erzeugen. Aus dieser Partition entsteht
durch Integration über die CFD-Zellen ein Flussgraph. Durch Einsatz
einer speziell implementierten Simulationsumgebung wird gezeigt,
dass die vorgeschlagene Methode sinnvolle Graphen erzeugt, welche
in den erwähnten Anwendungsgebieten verwendet werden können.

v

People think that computer science is the art of
geniuses but the actual reality is the opposite,

just many people doing things that build on
each other, like a wall of mini stones.

— Donald E. Knuth

A C K N O W L E D G M E N T S

I would like to thank my advisor Dr. Sven Havemann for his guidance
while performing this work. He was a true advisor; his unique style
allowed me to work freely and on my own, while I never felt left
alone. Somehow Sven always managed to give the right advice at the
right time, providing helpful answers to specific questions as well
as general guidelines about scientific work. Our insightful meetings
always pointed me in the right direction.

My parents always encouraged me in whatever I was pursuing and
supported me in every possible way during my studies. I therefore
want to use this opportunity to thank them.

Finally, this work started on the initiative of the Virtual Vehicle
Competence Center (ViF) in Graz. Specifically, I want to thank Dr.
Daniel Langmayr and Dipl.-Ing. Christian Rauch for their support
throughout this thesis. Daniel never turned any of my requests down
and generously shared his expertise in fluid dynamics. Christian was
also of great help and provided important initial pointers to relevant
literature.

The author would like to acknowledge the financial support of
the “COMET K2 - Competence Centres for Excellent Technologies Pro-
gramme” of the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of Economy,
Family and Youth (BMWFJ), the Austrian Research Promotion Agency
(FFG), the Province of Styria and the Styrian Business Promotion Ag-
ency (SFG) .

I would furthermore like to express thanks to the supporting in-
dustrial and scientific project partners of the ViF, namely AUDI AG,
Magna Powertrain Engineering Center Steyr GmbH & Co KG, Graz Uni-
versity of Technology Institute for Internal Combustion Engines and
Thermodynamics and to the Graz University of Technology.

vii

C O N T E N T S

1 introduction 1

1.1 Construction of car cooling systems 1

1.1.1 Expert generated resistance graphs 2

1.1.2 Computational fluid dynamics 3

1.1.3 CFD-derived resistance graphs 5

1.2 The Toyota dataset 7

1.3 Understanding 3d flow fields 8

1.4 Related research topics 9

1.4.1 Applicability of cluster analysis 9

1.4.2 Applicability of image segmentation 11

1.5 Proposed solution 12

2 related work 15

2.1 Related work from vector field visualization 15

2.1.1 Vector field hierarchies 15

2.1.2 k-means clustering 17

2.1.3 Centroidal Voronoi tessellation 18

2.1.4 Variational clustering 20

2.2 Related work from medical image processing 23

2.2.1 Introduction to diffusion tensor imaging 23

2.2.2 Diffusion tensor imaging tractography 24

2.2.3 Distance measures for streamlines 24

2.2.4 Streamline clustering approaches 26

3 theory 29

3.1 Mathematical notation 29

3.2 Processing framework overview 30

3.3 Preprocessing overview 30

3.3.1 Undesired outside geometry 32

3.4 Partitioning 33

3.4.1 Seeding 34

3.4.2 Stream tracing 34

3.4.3 Streamline bundling 36

3.4.4 Mapping bundles to regions 42

3.4.5 Streamline bundling recap 42

3.5 Mapping regions to a graph 42

3.6 Mapping bundles to a graph 46

3.7 Graph collapse 47

3.8 Flow graph error measures 48

4 implementation 51

4.1 VTK and ParaView 51

ix

x contents

4.2 Preprocessing 52

4.2.1 Rectifying inconsistent surface normals 52

4.2.2 Removing undesired outside geometry 53

4.3 Partitioning 56

4.3.1 Seeding 57

4.3.2 Stream tracing 57

4.3.3 Streamline bundling 58

4.3.4 Mapping bundles to regions 66

4.4 Mapping regions to a graph 67

4.5 Graph collapse 69

4.6 User interface 70

4.6.1 User interaction wrappers 70

4.6.2 Graphical user interface 71

5 results 73

5.1 Preprocessing results 73

5.1.1 Region growing 73

5.1.2 Depth probing 74

5.2 Applicability for simulation 75

5.2.1 Error measures 76

5.2.2 Parameters for streamline bundling 76

5.2.3 Parameters for McKenzie et al. 77

5.2.4 Standard example results 77

5.2.5 Results for different configurations 85

5.2.6 Discussion of results for simulation 85

5.3 Applicability for visualization 87

5.3.1 Flow graph representations 87

5.3.2 Interactive flow graph exploration 88

5.4 Results for the centrifugal pump dataset 92

6 conclusion 95

6.1 Future work 96

a contents of the accompanying dvd 99

bibliography 101

L I S T O F F I G U R E S

Figure 1.1 Resistance graph design process. 3

Figure 1.2 3d CFD example. 4

Figure 1.3 CFD design process. 5

Figure 1.4 Good and poor flow partitions. 6

Figure 1.5 Resistance graph design process. 7

Figure 1.6 The Toyota dataset. 8

Figure 1.7 Cell types in the Toyota dataset. 8

Figure 1.8 Cluster analysis approach problems. 10

Figure 1.9 Simple streamline example. 12

Figure 1.10 Natural streamline bundlings. 13

Figure 2.1 Illustration of a splitting plane. 16

Figure 2.2 Centroidal Voronoi Tessellation. 20

Figure 2.3 Variational shape approximation results. 21

Figure 2.4 Illustration of 3d variational clustering. 23

Figure 2.5 Common streamline distance measures. 25

Figure 2.6 DTI fiber clustering result. 27

Figure 3.1 Processing framework overview. 31

Figure 3.2 Undesired outside geometry. 32

Figure 3.3 Seeding result. 35

Figure 3.4 Stream tracing result. 36

Figure 3.5 Basic principle of streamline bundling. 37

Figure 3.6 Similarity of sliced streamlines. 39

Figure 3.7 Bundle collision strategies. 42

Figure 3.8 Edge collapse graph operation. 47

Figure 4.1 VTK 3d cell types and point orders. 52

Figure 4.2 Surface structure of undesired geometry. 54

Figure 4.3 Depth probe illustration. 55

Figure 4.4 Depth probe path types. 56

Figure 4.5 2d view of bundle formation. 60

Figure 4.6 Illustration of createInitialBundle. 63

Figure 4.7 Qt GUI. 72

Figure 5.1 Region growing results. 74

Figure 5.2 Depth probing results. 74

Figure 5.3 Problems of depth probing. 75

Figure 5.4 Naive cuboid illustration. 78

Figure 5.5 Absolute SSEs for different approaches. 79

Figure 5.6 Region shapes: Streambundling 1. 81

Figure 5.7 Region shapes: Streambundling 2. 82

Figure 5.8 Region shapes: Mc Kenzie, velocity-only. 82

Figure 5.9 Region shapes: Mc Kenzie, Du Wang. 83

Figure 5.10 Development: Mc Kenzie, velocity-only. 84

xi

Figure 5.11 Development: Mc Kenzie, Du Wang. 84

Figure 5.12 Spatial SSEs for all setups. 86

Figure 5.13 Velocity SSEs for all setups. 86

Figure 5.14 Pressure SSEs for all setups. 86

Figure 5.15 Flow graph path representations. 88

Figure 5.16 Example interaction step 1. 89

Figure 5.17 Example interaction step 2. 90

Figure 5.18 Example interaction step 3. 90

Figure 5.19 Example interaction step 4. 91

Figure 5.20 Example interaction step 5. 91

Figure 5.21 Centrifugal pump dataset. 92

Figure 5.22 Centrifugal pump bundling result 1. 93

Figure 5.23 Centrifugal pump bundling result 2. 94

L I S T O F TA B L E S

Table 5.1 Error evaluation setups. 79

Table 5.2 Absolute SSEs for different approaches. 80

L I S T O F A L G O R I T H M S

4.1 Streamline bundling overview 59

- Function traceBundle(protoPoint) 61

- Function sliceAt(point, sliceParameters) 63

- Function createInitialBundle(initialSlice) 64

- Function mergeBundleWithSlice(oldBundle, slice) 65

4.2 mapBundlesToRegion . 67

4.3 mapRegionsToGraph . 68

4.4 graphCollapse . 69

4.5 userInterfaceUpdate . 71

xii

A C R O N Y M S

BSP Binary Space Partitioning

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CVT Centroidal Voronoi Tessellation

DTI Diffusion Tensor Imaging

GUI Graphical User Interface

ID Identifier

LOD Level of Detail

MRI Magnetic Resonance Imaging

NP-hard Non-deterministic Polynomial-time hard

OS Operating System

RAM Random Access Memory

SSE Sum of Squared Errors

UI User Interface

ViF Virtual Vehicle Competence Center

xiii

1
I N T R O D U C T I O N

Begin at the
beginning and go on
till you come to the
end: then stop.
– The King, Alice
in Wonderland [4]

This chapter starts with describing the primary motivation for this
work, the construction of car cooling systems. The engineering task it-
self is described as well as two auxiliary tools and their respective de-
sign processes, namely resistance graphs and CFD simulations. Then
a hybrid approach using both of these tools and its advantages are
discussed. After shortly describing the main dataset of this thesis and
other applications of this work, the chapter goes on discussing why
results from cluster analysis and image segmentation are hard to ap-
ply. Finally, the proposed solution is sketched shortly.

1.1 construction of car cooling systems

Constructing the air side of the cooling system of a car is a difficult
task. The cooler and fan have to be designed, sized, and placed under
the hood of the car so that all hot components are kept cool. Insuffi-
cient design, poor placement or undersizing of the cooler or the fan
can lead to overheating of a part. Oversizing the cooler or the fan
adds weight and wastes material and underhood space.

All these factors have to be taken into consideration for different op-
erating points, i. e., at different speeds and loads. A car driving slowly
upwards a steep hill has a high load and must rely on the fan for
air intake. A car driving at high speed on a highway also has a high Old cars like

Porsche 911 and
Volkswagen Beetle
cooled their engines
directly with head
wind.

load, but thoughtful construction takes advantage of the speed for air
intake. Typical operating points are:

stationary car (0 km/h): If the car stands still with a running en-
gine, e. g., at traffic lights, only the fan provides cool air to the
cooler.

dominant fan influence (30 km/h to 65 km/h): At low speeds
like these, the fan still dominates the air intake, but the engine
load is higher than for the stationary car. Typically two opera-
tion points are chosen in this range.

wind tunnel speed (ca. 140 km/h): This is the usual speed for
aerodynamic measurements in the wind tunnel. The fan has al-
most no influence on the air intake anymore as the air is pushed
under the hood by the high speed.

maximum speed (e. g., 260 km/h): The maximum speed of the car.
The fan is “overblown”, i. e., it behaves like a resistance for the
air pushed under the hood.

1

2 introduction

Car designers must ensure proper cooling under all of these con-
ditions. In order to achieve that they must understand the air flow
under the hood of the car for all defined operating points. The un-
derhood air flow is the entire flow of air between the hood and the
base plate from all air inlets to all air outlets. If this flow of air is
understood, engineers can base their design decisions, like changing
vehicle part placement or adding barriers, on that. This work only
covers static flows, i. e., the constant air flow observed for stationary
boundary conditions. Time-dependent boundary conditions (e. g., an
accelerating car) leading to transient flows are out of scope.

1.1.1 Expert generated resistance graphs

One tool that aids engineers during the design of car cooling systems
is KULI [15]. The air flow is modeled by a graph with only a few nodes
(typically from 10 to 20), where each vertex represents one part of the
space under the hood. Several geometric primitives are available for
these vertices, e. g., the fan can be modeled as a cylinder, the cooler
as a cuboid and less important geometry as simple points. Edges
represent possible air flow and the vertices hold resistance data to
compute these air flows.

To generalize this concept, the term resistance graph will be used.
It denotes the abstract concept of graphs which hold sufficient resis-The terms

“resistance graph”
and “flow graph”

are not actually used
within KULI.

tance information to simulate the air flow. The result of simulating a
resistance graph is a graph with complete flow information for each
vertex and edge, a flow graph.

The main advantage of tools based on resistance graphs is the fast
simulation of all operating points. KULI also adds the possibility to
simulate the air side and the water side of the cooling system simul-
taneously. It is therefore a tool for planning the whole cooling system.

The big disadvantage of KULI is the need to define the graph rep-
resentation of the air side. This task demands expertise and specula-
tion and can result in various possible representations. The quality of
these representations depends on the experience of the engineer and
cannot be directly ascertained or compared. This leads to a repeatabil-
ity problem: Different engineers produce different resistance graphs,
and it is hard to single out the best representation.

Figure 1.1 explains the role of resistant graph tools like KULI within
the design process. It is clearly shown that all information about the
flow comes ultimately from the expert creating the graph. Notice, that
additional operation points do not add considerable processing time,
because each simulation only takes a few seconds.

1.1 construction of car cooling systems 3

Design
decision

Expert generated
resistance graph

Resistance
graph

simulation

OP1

OP2

OP3

OP4

OP5

OP6

ROP1

ROP2

ROP3

ROP4

ROP5

ROP6

Figure 1.1: Design process using resistance graphs. An expert creates the
resistance graph. The air flow is simulated using this graph for
several operation points (OP1 to OP6), which requires only a
few seconds. The resulting flow graphs for the operation points
(ROP1 to ROP6) are then used to guide further design decisions.
Design decisions usually lead to changes in the resistance graph
and the process starts again.

1.1.2 Computational fluid dynamics

The world is
continuous, but the
mind is discrete.
– David Mumford

Another important tool for understanding air flows is a Computati-
onal Fluid Dynamics (CFD) simulation. Its main idea is to discretize
the continuous problem of flow simulation by dividing the simula-
tion volume into small cells, called the grid or the mesh.1 For each cell,
flow parameters (e. g., velocity, pressure, temperature) are assumed
constant. The parameters of each cell are related to the parameters
of its neighbor cells by nonlinear equations, namely conservation of
mass and conservation of momentum (Navier-Stokes equations). Af-
ter adding boundary conditions (e. g., outside pressure and car ve-
locity), the flow parameters of each cell are calculated from the sys-
tem of nonlinear equations by iterative numerical methods, up to a
predefined error. This permitted error is the deviation of the calcu-
lated boundary condition values to the predefined ones. It can be de-
creased by increasing the number of iterations of the solver. Figure 1.2
shows the rendered partial result of a CFD simulation of the Toyota
dataset [29]. As the term “CFD simulation result” is cumbersome to The Toyota dataset is

used throughout this
thesis, a detailed
explanation can be
found in Section 1.2.

use, the shorter term flow field will be used to talk about data with this
structure and not specifically about the result of a CFD simulation.

The main advantage of CFD simulations is their freely definable
quality. The resolution of a simulation can easily be increased by re-
ducing the cell sizes and the precision of the result can easily be
increased by lowering the permitted error.

1 “Mesh” is the term used in Computer Science whereas “grid” or in this case “un-
structured grid” is the CFD community term. They are interchangeable with each
other and both will be used throughout the thesis.

4 introduction

Figure 1.2: 3d-view of a CFD simulation result subset of the Toyota dataset.
The subset is located between an upper front air inlet and the
cooler. In the Toyota dataset the parameters (pressure, velocity,
and temperature) are assigned to the grid points, not the mesh
cells. In this visualization blue lines represent the cell borders
(i. e., mesh edges), pressure is indicated by surface color, and
velocity is indicated by thick arrows which are colored by mag-
nitude.

The second advantage is that the results of a CFD simulation do not
rely heavily on user expertise.2 The simulation result depends only
on the 3d-dataset and the boundary conditions.

One disadvantage of CFD simulations is the required computation
time for iteratively solving systems of millions of nonlinear equa-
tions.3 Notice that for the car cooling use case, one simulation is
required for each operation point, due to the different boundary con-
ditions. A resistance graph based simulation on the other hand is
finished in mere seconds on a standard PC and multiple executions
for different operation points are therefore not a problem.

Another disadvantage of CFD simulations is the sheer amount of
output data produced. The output is a set of flow parameters at ev-
ery cell. The main challenge after a CFD simulation is therefore under-
standing the resulting flow field and extracting important informa-
tion to guide the design of the cooling system.

Methods for visualizing and understanding flow fields are for ex-
ample false-colored renderings of dataset slices or streamlines. A
streamline is a line within a flow field which follows the flow direc-
tion at every point, i. e., it is a tangent to the flow direction at every
point. Another way to think of streamlines is as the path of a massless
particle floating through the field. A streamline is therefore uniquely

2 Of course user expertise is needed for defining the mesh, the boundary conditions,
and other simulation input.

3 I was told to be careful when stating CFD simulation times, as they can vary greatly.
Usually simulation of the Toyota dataset takes from a few hours up to one night on
a state-of-the-art workstation.

1.1 construction of car cooling systems 5

defined by a seed point within a given flow field. The according stream-
line is created by a stream tracer which is tracing the flow field starting
at the seed point by employing integration methods. More informa-
tion on streamline generation can be found in Section 3.4.2.

Visualization
and

information
extraction

3D model

CFD
simulation

Design
decision

Figure 1.3: Design process using CFD simulations. CFD simulations are ap-
plied to the 3d-model for each operation point (OP1 to OP6),
which takes a few hours per simulation on a standard computer.
The results are then visualized and interpreted leading to one
result per operation point (ROP1 to ROP6). These results guide
further design decisions, which change the 3d-model and require
another simulation iteration.

Figure 1.3 shows the design process when using CFD simulations.
Since CFD simulation takes significantly longer than resistance graph
simulation, adding operation points increases computation time sig-
nificantly. Remember that the design process is iterative, i. e., design
decisions usually lead to a different 3d-model and require new simu-
lations.

1.1.3 CFD-derived resistance graphs

The primary goal of this thesis was to bridge the gap between resis-
tance graph representations and the flow fields which result from CFD

simulations. Ideally, the result is an algorithm that takes a flow field
as input and creates a resistance graph with a few dozen vertices as
output.

The global approach for solving this problem is straightforward: In
a first step, derive a flow graph from the flow field. From the flow
graph, the resistance graph can be generated in the second step. To
derive the flow graph the flow field needs to be divided into disjoint
regions, i. e., into a partition of the 3d-mesh. The regions of this parti-
tion become the vertices of the graph. Two regions sharing a common
boundary surface are connected by an edge, because there is possible
flow between them. Additional information like the mean velocity
and mean pressure of vertices or the exact flow over edges are at-
tached to the graph elements.

Flow graphs can be generated for any partition with connected
regions, but resistance graph simulations are based on the assump-

6 introduction

tion that there is exactly one flow condition at each vertex. Therefore
homogeneous partitions with respect to the pressure and the velocity
field are favorable for computing meaningful resistance graphs. The
important observation here is that CFD simulation results are highly
redundant, i. e., close cells usually have similar flow parameters and
can therefore be grouped without losing much information. Stated
differently, if the partition consists of homogeneous regions, the lost
information due to collapsing cells to one vertex is smaller than for
arbitrary regions. Figure 1.4 shows a simple vector field partitioned
in both a homogeneous and a inhomogeneous region.

(a) Good, homogeneous partition. (b) Bad, inhomogeneous partition.

Figure 1.4: A simple 2d vector field partitioned into two good (left) and two poor (right) regions,
from a homogeneity standpoint. The smaller top right copies represent the information
reduction after conversion to the flow graph: Each region is represented by only one
average velocity. Clearly, the good partition retains more information about the flow
field. The poor partition however, is almost as descriptive as using only one region for
the whole field (small blue figure).

The derivation of resistance graphs from flow graphs is not part of
this work, as it depends on the underlying simulation algorithm.4 It
is assumed however that the resistance graph simulation is reversible,
i. e., that an algorithm computing a flow graph from a resistance
graph can be reversed.

One benefit of such an automated mapping from flow fields to re-
sistance graphs would be deeper understanding of resistance graphs.
Instead of relying on experts to create correct resistance graphs, re-
search could be done on ways or rules to create sound graphs using
the repeatable results of automatic resistance graph generation.

Another hope of this thesis is that the resistance graph computed
from a flow field may produce sufficiently correct simulation results
for nearby operating points. This would reduce the number of re-
quired CFD simulations without losing considerable accuracy. Fig-
ure 1.5 explains the hybrid design process if this hope is justified.
Also notice that if the operation point range is completely covered

4 The research group at ViF assumes that KULI is not capable of handling vertex counts
in the hundreds. Therefore the derivation of a KULI resistance graph from a flow
graph was not performed.

1.2 the toyota dataset 7

by CFD-derived resistance graphs, additional operation points can be
added without significantly increasing the computation time.

3D model

Design
decision

CFD
simulations

OP1

OP2

OP3

Flow
graph

Resistance
graph

simulation

ROP1

ROP2

ROP3

OP4

OP5

OP6

Resistance
graph

CFD
simulations

Flow
graph

Resistance
graph

simulation

ROP4

ROP5

ROP6

Resistance
graph

Figure 1.5: Design process using a few CFD simulations and converting them to resistance graphs.
CFD simulations are applied to the 3d-model for some operation points (OP2 and OP5),
which usually takes a few hours per simulation on a standard workstation. The result-
ing flow fields of these simulations are then partitioned and converted to flow graphs
which again can be converted to a resistance graphs. If the resistance graphs are also
valid for similar operation points (e. g., OP1 and OP3 are similar to OP2, OP4, and OP6

are similar to OP5), these similar operation points can be directly simulated using the
resistance graphs and computation time can be decreased significantly. The process is
an iterative optimization process, i. e., after design changes are made, simulations have
to be redone.

1.2 the toyota dataset

The dataset uses the
outside hull of the
Prius, but compared
to a modern car, the
inside looks empty.
It turned out that
this did not
invalidate the
applicability to real
world problems.

The CFD simulation results used for this thesis were provided by the
research group at Virtual Vehicle Competence Center (ViF) and are
based on the Toyota Prius dataset [29]. CFD simulation results for
three operation points were provided: At 30 km/h, at 190 km/h, and
at vmax (262 km/h). The CFD result at vmax is shown in Figure 1.6. The
figure also shows a problem with cells outside the hood boundaries,
which has to be overcome in preprocessing.

The 3d unstructured grid is divided into approximately 9.1 million
cells which are based on approximately 8.9 million points. It features
four basic cell types, with hexahedra filling most of the space and
other cell types filling in the seams and details. The four cell types
are shown in Figure 1.7.

As explained in Section 1.1.2 the CFD simulation computes flow
parameters at each cell. At the end of the simulation however, flow
parameters are assigned to the grid points – the corners of the cells
– for the Toyota dataset. Therefore, one can also think of the simula-
tion output as dense point cloud, with fixed flow parameters at every
point. From this point of view, the cells only add connectivity infor-
mation.

Each point of the point cloud carries at least seven values and is
therefore at least 7-dimensional. The seven dimensions are made up

8 introduction

Figure 1.6: The Toyota dataset used for most demonstrations in this thesis at vmax. The car hood
is shown from the front with the three main inlet openings visible. The cut-out was
added for illustration purposes. The colors represent velocity magnitude.

(a) Tetrahedron) (b) Pyramid (c) Wedge (d) Hexahedron

Figure 1.7: Cell types used within the Toyota dataset’s 3d-mesh.

by three values for its Euclidean position, three values for the velocity
vector, and one value for the pressure.

The problems of the dataset and required preprocessing steps are
described in the theory and implementation chapters (Section 3.3 and
Section 4.2).

1.3 understanding 3d flow fields

Computers are
useless. They can

only give you
answers.

– Pablo Picasso

After being introduced to the specific car cooling problem in the pre-
vious sections, one might think that the solution to the problem is
also very specific. This is not the case. As explained, the key to the
solution is an abstract subproblem:

Given: A flow field, i. e., a dense mesh of probably millions
of elements with assigned velocities and pressures.

1.4 related research topics 9

Find a sparse flow graph that preserves as much informa-
tion of the flow field as possible, i. e., a graph where ver-
tices represent homogeneous regions and edges represent
flow between these regions.

The purpose of
computation is
insight, not
numbers.
– Richard
Hamming

Having a solution to this problem not only aids in designing car
cooling systems. It also helps in understanding flow fields by reducing
redundancy and stressing important features. One straightforward
application of using flow graphs to understand flow fields is inter-
active flow exploration. Section 5.3 shows one example of how flow
graphs could be used to build a graph based flow exploration tool.
Notice, however, that a flow graph is a good tool for visualizing and
understanding the coarse features like volume and mass flow rates
or pressure distributions, but it is not suited for analyzing small local
features like vortices. A region containing mainly small curls com-
pared to the flow graph resolution is a dead end for flow graphs:
Incoming and outgoing volume flow rates are almost zero. Circular
flows that are larger than the flow graph resolution on the other hand,
can be represented by circles in the flow graph.

1.4 related research topics

Several research topics are related to partitioning flow fields into ho-
mogeneous regions. Two related topics come immediately to mind:
cluster analysis from statistics and image segmentation from image pro-
cessing. The following subsections shortly explain these research top-
ics and discuss the applicability of their results to flow field partition-
ing.

1.4.1 Applicability of cluster analysis

There is no exact, commonly agreed on definition for cluster. Everitt
even states that “. . . it turns out that such formal definition is not
only difficult but may even be misplaced.” [11]. An informal defini-
tion might be that cluster analysis tries to group similar objects together
into clusters, while trying to separate dissimilar objects. One important
property of all clustering algorithms is that the grouped objects are
statistical n-dimensional tuples or vectors. Each tuple is usually rep-
resented by a point in n-dimensional space and “similarity” of points
is usually defined by a distance function between these points. There-
fore algorithms from cluster analysis can easily be applied to the 7-
dimensional point cloud described in Section 1.2.

The problem with this approach is that almost all advanced clus-
tering algorithms work solely on point clouds (e. g., k-means, kernel
based methods, density based methods). This implies that they can-
not take connectivity information into account. After clustering the

10 introduction

point cloud to point clusters, the clusters need to be mapped to the
cell grid. Some of the resulting regions in the cell grid might not be
connected or some point cluster may even be completely scattered on
the cell grid. See Figure 1.8a for a simple example of this problem.
To produce the required compact clusters w. r. t. spatial position, the
distance measure must therefore put strong emphasis on the spatial
distances in 3d-space between the points. This however limits the al-
gorithm’s potential to cluster according to flow parameters. The main
problem for utilizing clustering algorithms is therefore to derive a rea-
sonable distance function that accounts both for spatial compactness
and flow homogeneity.

Another problem for using cluster algorithms is existing geome-
try which separates the dataset, i. e., areas where constructional el-
ements divide the CFD volume. As the CFD volume only covers the
fluid, there are no cells within these constructional elements and no
clustering should occur through these parts. As cluster algorithms
only use point clouds, small model parts (like thin plates), can easily
be “jumped over”, leading to clusters as shown in Figure 1.8b.

In addition not all cluster algorithms qualify for the problem be-
cause of computational limits (i. e., about 8 million 7-dimensional
points).

(a) Non-connected cluster. (b) Clustering over mesh boundaries.

Figure 1.8: Problems with using cluster analysis approaches to partition a flow field. The left image
shows one non-connected cluster (red), which results from too strong emphasis on flow
parameters and too weak emphasis on Euclidean distance. The right image shows a
cluster (red) going over constructional parts (hatched), because clustering algorithms
work on point clouds and do not utilize connectivity information.

The simple problems in Figure 1.8 can be overcome by splitting
the problematic clusters, but more complex cases exist for both of
these problems. Despite the mentioned problems, point cluster based
approaches are employed to partition flow fields. Some approaches
that utilize k-means on the mesh points are discussed in Section 2.1.2.

1.4 related research topics 11

1.4.2 Applicability of image segmentation

Image segmentation is the wide field of extracting edges and homo-
geneous regions from digital images in order to aid image process-
ing and improve image understanding. Although methods of cluster
analysis were successfully employed in image segmentation (most
prominently k-means), many image segmentation algorithms utilize
the inherent neighbor information of pixels in images.

Naturally, image segmentation methods which extract homogen-
eous regions from 2d images could be applicable to 3d CFD data par-
titioning too. The pixels of an image correspond to the cells and the
color information corresponds to the attached values (i. e., velocity
and pressure).

The first problem for applying image segmentation algorithms ar-
ises from the unstructured grid in CFD data. Pixels in images have a
uniform structure and neighborhood as well as fixed size. This is not
the case for unstructured 3d-grids. More problems arise from the ad-
ditional dimensions of CFD data. The following prominent image seg-
mentation methods can theoretically be adapted to unstructured 3d-
data. They are shortly described and their applicability is discussed.

Edge based image segmentation methods try to find the abrupt
intensity changes between different regions and use these edges to
identify the regions. In 3d this means finding complexly shaped sur-
faces that separate regions, which is geometrically difficult but pos-
sible. However, the fact that there are no identifiable abrupt changes
in a typical flow field renders these methods useless for flow field
partitioning.

Other approaches that lead to great results in region based image
segmentation are watershed algorithms. They interpret gray-level im-
ages as topological surface and incrementally increase or decrease
water levels. Then merging “water ponds” define region borders. The
approach is not applicable to CFD data firstly because the resulting
topology would be at least four-dimensional and secondly because
there is no simple method to incorporate all flow information into
the single fourth dimension.

Energy based methods, like the influential Mumford-Shah energy
functional [23], minimize a cost function that contains terms for re-
gions, edges, and intensity. This cost function could be extended to
work in 3d and it would contain terms for regions, surfaces sepa-
rating regions and flow information like velocity and pressure. The
problem is that minimizing the complex cost function for large CFD

datasets is expected to be computationally infeasible.
Obvious examples of applicable simple image segmentation algo-

rithms are region merging, region growing, and region splitting. They
are usually too greedy at a local level to yield good image segmen-
tations and similar results are expected for flow fields. A variety of

12 introduction

region growing (“rapid flooding”) is used within McKenzie et al.’s
flow field partitioning method [21]. A region splitting approach for
vector fields was introduced by Heckel et al. [14]. Both approaches
are described in Chapter 2.

1.5 proposed solution

Alice: Would you
tell me, please,
which way I ought
to go from here?

The Cat: That
depends a good deal
on where you want
to get to.

Alice: I don’t much
care where.

The Cat: Then it
doesn’t much matter
which way you go.

Alice: . . . so long as
I get somewhere.

The Cat: Oh, you’re
sure to do that, if
only you walk long
enough.

– Alice in
Wonderland [4]

The previous section has shown that some ideas from cluster analysis
possibly lead to good flow field partitions, but their application is
not straightforward and difficulties need to be overcome. The main
challenge for these approaches is to find a suitable distance function,
but a function meeting the requirements is not easy to find.

The proposed solution is completely different from the described
standard approaches. It circumvents the problem of finding a distance
function in an elegant way, by utilizing streamlines. A short introduc-
tion on streamlines was already given in the context of CFD simulation
result interpretation in Section 1.1.2. More information can be found
in Section 3.4.2. The important property of streamlines is that they
incorporate both spatial information and velocity information in the
same geometric primitive (curves in 3d). Figure 1.9 shows a simple
example of a flow field and its dense streamline representation. In the
streamline representation the clustering task becomes obvious: Find
bundles of streamline segments which are parallel.

(a) Flow field representation. (b) Dense streamline representation.

Figure 1.9: A simple flow field with a separating construction element (hatched triangle). The flow
field representation, with velocities at grid points, is presented on the left. The dense
streamline representation, with curves conveying information about both location and
flow direction, is presented on the right. The task of clustering connected cells with
similar flow directions in the flow field can be translated to the task of finding bundles
of parallel streamline segments in the streamline representation.

Figure 1.10 shows two intuitive partitions for the streamline repre-
sentation of Figure 1.9. Short bundles of many streamlines, as shown
in Figure 1.10a, are advantageous for deriving resistance graphs.

1.5 proposed solution 13

Clustering streamline segments also allows finding bent bundles,
which are interesting in visualization scenarios (see Figure 1.10b).

Building on this idea the following four-step-solution is proposed:

1. Dense streamline generation: Generate dense streamlines, cover-
ing the whole flow field, using standard methods.

2. Streamline bundling: Find bundles of streamline segments which
are close and parallel.

3. Region mapping: Map back the streamline bundles to CFD cells
to produce a partition of the flow field.

4. Flow graph generation: Generate the flow graph from the flow
field partition by integrating cell values over regions and over
interfaces between regions.

Figure 1.10: Natural bundlings of the simple streamline example. For resistance graph generation,
parallel bundles of streamlines are advantageous (left). For visualization purposes on
the other hand, bent bundles like the one shown at the right can be more interesting.

2
R E L AT E D W O R K

Bernard of Chartres
used to say that we
are like dwarfs on
the shoulders of
giants, so that we
can see more than
they, and things at a
greater distance, not
by virtue of any
sharpness of sight on
our part, or any
physical distinction,
but because we are
carried high and
raised up by their
giant size.
– John of Salisbury

In addition to the initial, general considerations given in Section 1.4
this section treats works from two related research fields.

The first is visualization of vector fields. Some works of this field uti-
lize clustering to reduce the information contained within large vec-
tor fields. Therefore, the overlap with this thesis is in the computation
result, i. e., finding clusters in vector fields.

The second is medical image processing, in particular work on inter-
preting and visualizing scans of fibrous organic structures. Some of
the approaches involve streamline clustering. The association with this
thesis is therefore in the method, i. e., finding and bundling similar
streamlines.

This chapter will now discuss important work from both of these
fields, starting with vector field visualization.

2.1 related work from vector field visualization

Visualizing vector fields for human interpretation is difficult for two
main reasons:

1. It usually involves large amounts of partially redundant data.

2. It is initially unclear which aspects of the data are important to
the user.

The former mainly makes the task more difficult, where the lat-
ter motivated the development of many different strategies for vector
field visualization. Some of these strategies contain vector field clus-
tering as a preprocessing step, others use it directly for visualization.
This section describes the most promising candidates for flow graph
generation in the context of this work.

2.1.1 Vector field hierarchies

Heckel et al. introduce a method for vector field clustering using a re-
gion splitting approach [14]. Starting with the whole dataset, they cre-
ate a Binary Space Partitioning (BSP)-tree by recursively splitting the
vector field using planes (Figure 2.1a). Their algorithm uses the grid
points only, without taking connectivity information into account.
The problem of irregular or disconnected clusters – which is often an
issue when neglecting connectivity information (see Figure 1.8) – is
mitigated, because the resulting regions are obviously always convex

15

16 related work

and connected. The hierarchical BSP-tree representation has many ad-
vantages in visualization, especially for adaptive Level of Detail (LOD)
calculations and visualizations.

split
plane

(a) 2d-example of a cluster and one desirable
splitting plane.

(b) The streamline based error
measure for point x is the sum-
mation of the individual point
pair distances.

Figure 2.1: Visualization of the main ideas of Heckel et al. (Images taken
from Heckel et al. [14]. The font of the labels was adapted.)

The flow of each region at each level is described by one average
position and vector. These are created by averaging over all original
positions and vectors of the grid points within that region. The vec-
tor field at each level is continuously interpolated from these points
using Hardy’s multiquadric method [13].

In order to find splits, they define a visualization driven error mea-
sure which is based on streamlines. To find the approximation error
of a given point x, a streamline is traced starting from this point in
both the original and the simplified field. They define the error of
this particular point by the deviation of the two streamlines, which
are described by their points si and s ′i (see Figure 2.1b):

ε(x) =
n∑
i=1

∥∥si − s ′i
∥∥. (2.1)

The error of a whole cluster C is then defined as maximum of the
individual errors of its points:

ε(C) = max
x∈C

ε(x). (2.2)

The position and orientation of the splitting plane P for a cluster C is
derived as best fitting plane to all points of the cluster, where points
with low error are weighted higher. The algorithm is as follows:

1. Compute the weights of each point inversely proportional to
their errors:

w(xi) =
1

Wε(xi)
, were W =

∑
xj∈C

ε(xj)−1, ε(xj) 6= 0. (2.3)

2.1 related work from vector field visualization 17

2. The splitting plane goes through the weighted average point x
of the cluster:

x =
1

k

∑
xi∈C

wi(xi) · xi. (2.4)

3. The orientation of the splitting plane is (quoting) “the best-fit
plane, in the least squares sense, to the set of weighted points

{wi(xi) · xi | xi ∈ C} .” (2.5)

The algorithm for building the BSP-tree is now simply to iteratively
split the worst current cluster (i. e., the one with highest ε(C)) with the
uniquely defined plane P for this cluster until a global error threshold
or a given number of clusters is reached.

Heckel et al.’s method has several problems in the application area
of this work. The main problem is that it cannot guarantee connected
clusters for complex dataset boundaries as described in Figure 1.8b,
i. e., it potentially clusters over mesh boundaries. In addition the de-
scribed visualization driven, streamline based error measure might
not lead to a good partition from a physical point of view. This could
be circumvented by using a “physical” error measure. However, find-
ing good error or distance measures is problematic as described in
Section 1.4.1. Lastly, the algorithms decisions (i. e., splits) are both
local and greedy, and are not expected to lead to globally optimal re-
sults.

Overall, the approach solves the problem of scattered clusters and
finding a distance measure elegantly. In addition it allows fine control
over the number of clusters and the associated approximation error.
It therefore applies well to the vector field visualization problem, but
is not a first candidate for deriving flow graphs.

2.1.2 k-means clustering

A non-local and frequently utilized standard clustering algorithm is
k-means. It is attributed to Lloyd, who introduced the idea in a sig-
nal processing paper in 1957 (published 1982) [17]. The algorithm is
hence often referred to as Lloyd’s algorithm. The term k-means and a
description from a clustering perspective can be found in [18].

The basic algorithm works as follows: Given n points or vectors P =

p0, . . . , pn−1, each with m dimensions, a distance function between
two points d(pi, pj) and the number of desired clusters u,

1. select u starting points (seeds) randomly from P as initial cluster
centers C0 = c00, . . . , c0u−1 (initialization),

2. assign each point pi in P to its closest cluster center ckj in Ck,
according to distance function d(pi, ckj) (assignment step),

18 related work

3. compute the new cluster centers ck+1j in Ck+1 as the mean of
all points assigned to ckj (update step),

4. if any stopping criterion is met, exit, otherwise go to step 2 with
Ck+1 (iteration).

The usual stopping criterion is the minimal total change of the clus-
ter centers, e. g.,

∑m−1
j=0 ‖ckj − ck+1j ‖. Another possible criterion is the

maximum number of iterations kmax.
The algorithm aims to find the optimal k-partition of the points P,

i. e., the partition which minimizes
∑n−1
i=0 d(pi, c(pi)), where c(pi) is

the cluster center pi is assigned to.
Finding the globally optimal partition for the Euclidean distance

function is Non-deterministic Polynomial-time hard (NP-hard) for all
non-trivial configurations (u > 2 or m > 2) [1, 20]. The k-means
algorithm is therefore only a heuristic and may lead to local minima,
depending on the initial seeds. For small instances of the problem,
this is usually mitigated by repeating the algorithm several times with
different initial seeds.

The problem sizes of underhood flow vector fields do not allow
repeated application of the algorithm on current computers. In ad-
dition k-means suffers of the typical problem of purely point based
algorithms when applied to vector field clustering: scattered or even
disconnected clusters.

2.1.3 Centroidal Voronoi tessellation

One sophisticated point based k-means algorithm for vector field vi-
sualization and segmentation was devised by Du and Wang [9]. They
introduce Centroidal Voronoi Tessellation (CVT) and show that their
k-means algorithm produces such tessellations.A tessellation (term

from geometry) for
continuous spaces is

what a partition
(term from set

theory) is for sets.
For our cause they

are the same.

A tessellation of a set Ω ⊆ Rn consists of regions {Vi}
k
i=1 which are

gap free and non-overlapping.
A Voronoi tessellation or Voronoi diagram of Ω consists of the regions

{V̂i}
k
i=1. It is defined by a set of points {zi}

k
i=1 ∈ Rn which are termed

generators and a distance function dx. The Voronoi region for each
point zi is then defined as the union of all points that are closer to zi
than to any other point in {zi}

k
i=1 according to the distance function

dx (possibly one-sided):

V̂i =
{

x ∈ Ω | dx(x, zi) < dx(x, zj) for j = 1, · · · ,k, j 6= i
}

. (2.6)

A Centroidal Voronoi Tessellation is a Voronoi tessellation where the
generators {zi}ki=1 are also the mass centroids of their clusters. The
mass centroids or mass centers z∗ are the minimizers of the energy

2.1 related work from vector field visualization 19

defined by the sum of squared distances between all points and their
respective generators:

E(z,V) =
∫
V

d2x(x, y)dx. (2.7)

Du and Wang also define a total energy as the sum of the energies of
all regions. After initialization with n randomly selected points, their
algorithm tries to optimize this total energy by alternating updates of
the cluster centers and the cluster regions (k-means).

For distance computations they define a one-sided distance mea-
sure dp from a cluster point p = (xp, vp) with position xp and veloc-
ity vp to a center point m = (xm, vm) with position xm and velocity
vm:1 Measure what is

measurable, and
make measurable
what is not so.
– Galileo Galilei

dp(p,m) =
√
‖vp‖2 − ‖vp‖vp · vm +w‖vp‖2‖xp − xm‖2. (2.8)

The paper features an appendix explaining the reasoning behind this
choice. Basically their distance measure contains three parts:

1. the magnitude of the vector (‖vp‖2),

2. a term for angular similarity (‖vp‖vp · vm, where · is the scalar
product), and

3. a weighted term for spatial proximity (w‖vp‖2‖xp − xm‖2).

The weight parameter w encodes the relative importance of spatial
proximity. Low values of w emphasize flow similarity whereas high
values emphasize closeness of points. The authors suggest choosing
w ≈ 1

L2
, where L is the spatial diameter of the dataset. Figure 2.2

shows a simple 2d vector field and its tessellation with two different
spatial weights.2

The authors include several refinements for their method, includ-
ing update rules for non-uniformly distributed sample points. The
paper closes with visualization applications which are of little inter-
est in the context of this thesis.

One problem with this approach is the required computational ef-
fort for huge datasets. In the standard implementation, each of n
points needs to be compared to each of u cluster centers for each of
t iterations. The required computational effort is therefore O(n ·u · t).
Another problem is again the possible occurrence of irregular or dis-
connected clusters of both types depicted in Figure 1.8.

1 Some symbols adjusted to increase clarity.
2 The velocity magnitudes are not given, but, judging from the weights, they are simi-

lar to the spatial magnitudes.

20 related work

(a) 2d input vector field. (b) CVT clustering with
w = 0.5.

(c) CVT clustering with
w = 0.1.

Figure 2.2: Example for a CVT of a 2d vector field. The vector field is shown
at the left, with magnitude proportional to arrow length. In addi-
tion two clusterings with w = 0.5 and w = 0.1 are shown in the
middle and on the left respectively. (Original image in Cohen-
Steiner et al. [6]. The vector field (left) was simplified. The clus-
terings (middle, right) are depicted without color.)

2.1.4 Variational clustering

One promising approach to solve the problem of disconnected clus-
ters is the paper on Variational clustering by McKenzie et al. [21]. Their
work builds on renowned work from Cohen-Steiner et al. who in-
troduced variational shape approximation for mesh simplification [6].
Therefore Cohen-Steiner et al.’s work will be presented briefly now,
followed by McKenzie et al.’s work.

2.1.4.1 Variational shape approximation

Cohen-Steiner et al. cast shape approximation as variational partition-
ing problem [6]. Their ultimate goal is to approximate a 3d surface
mesh by a predetermined number of flat surfaces which are repre-
sented by proxies. Starting with an L∞,∈ distortion metric, they in-
troduce a global distortion measure to describe the deviation of the
original shape from the proxies.

Based on this measure, an algorithm similar to k-means is applied,
i. e., the alternating application of an assignment step and an update
step. Their problem (clustering surface tiles) is similar to the vector
field clustering problem, as it also contains connectivity information
and it is also undesirable to have disconnected clusters.

Their solution for keeping clusters connected is very elegant. In-
stead of defining an error measure that contains a strong spatial com-
ponent, they use a flooding approach. By utilizing region growing from
seed tiles according to a distortion measure they ensure connected
regions. For each resulting region of surface tiles they compute the
exact mean (the proxy). The most similar tiles to these proxies are then

2.1 related work from vector field visualization 21

the seed tiles for the next flooding iteration.3 Figure 2.3 illustrates the
approach.

Figure 2.3: Initial mesh partition obtained by flooding (left), proxies for the
partitions’ regions presented as ellipses (middle), and final sim-
plified mesh (right). (Image taken from Cohen-Steiner et al. [6].)

One drawback of the flooding approach is that small clusters can
be trapped in a local minimum between larger clusters, without any
possibility to “escape” into areas where they could be more useful.
Cohen-Steiner et al. mitigate this problem by applying region telepor-
tation, which uses a heuristic for finding trapped regions and moving
them to useful areas.

Their algorithm behaves similar to k-means, but produces connect-
ed clusters (regions). It requires only one parameter – the number of
clusters – and produces very good results in shape approximation.

2.1.4.2 Adaptations for variational clustering

McKenzie et al. adapt the approach of Cohen-Steiner et al. to vector
fields. Instead of 2d surface regions, their algorithm applies to 3d

regions in space [21].4 Surface elements, like triangles, are replaced
by volume elements, like tetrahedrons. The proxy of each region is
simply defined by a velocity vector Vi and its position xi.

The first distortion measure introduced in the paper is position inde-
pendent, i. e., it only uses velocity information. The distortion error of
a region Ri is defined as the integral over the squared L2-distances
between velocities v(x) at point x and the proxy Vi:

EL2 (Ri, Vi) =
∫∫∫

x∈Ri

‖v(x) − Vi‖2 dx. (2.9)

3 The exact distortion measures and mean computation formulas are interesting, but
irrelevant for this work.

4 McKenzie et al. treat mainly 2d vector fields in their paper, this summary concen-
trates on the 3d aspects and applications.

22 related work

In the discrete mesh, a region Ri consists of cells i with discrete ve-
locities vi and volumes |Pi|. Then the distortion error for one region
is

EL2 (Ri, Vi) =
∑
i∈Ri

‖vi − Vi‖2 |Pi|, (2.10)

where the optimal vector proxy for a region is the volume weighted
mean of its velocities

Vi =

∑
i∈Ri

|Pi|vi∑
i∈Ri

|Pi|
. (2.11)

The global error of any partition with k regions is then defined as the
summed distortion errors of all regions (E(R,V) =

∑k
i=1 E(Ri,Vi).

McKenzie et al. report, that this simple distortion error produces
“physically relevant partitions”. In addition they introduce higher
order measures which are based on divergence, gradient, and curl.
These higher order measures satisfy specific visualization purposes.

After defining how to measure the distortion and how to compute
average proxies from regions, the algorithmic framework of Cohen-
Steiner et al. can be applied without adaptation. At first, k random
seed cells are picked and their velocities are used as proxies for the
flooding stage. Afterwards, the average proxy for each region is re-
computed. From every region, the cell with the least distortion from
the region’s proxy is chosen as new seed cell, and the iteration starts
again.

Several stopping criteria can be applied, most importantly the max-
imum number of iterations and the minimal change of global distor-
tion. The authors also mention that the application of region teleporta-
tion similar to Cohen-Steiner et al. improves the results, but they do
not detail their heuristics. The paper is closed by visualization tech-
niques based on streamline tracing from the cluster centers.

Figure 2.4 shows the clustering result of the algorithm on a 3d car
dataset. Notice that the flow field concentrates on the vehicle cabin
and the vehicle vicinity and is different from an underhood flow field
in both resolution and the regions of interest.

By design, the described algorithm always produces connected re-
gions. Its results are expected to be “close to optimal”, even if the
optimality proofs of k-means cannot be applied directly. The only
input parameters are the number of clusters (u) and the stopping cri-
terion, i. e., the number of iterations (t) or some total error threshold
ε.

McKenzie et al. themselves do not state the required computational
effort, their largest 3d dataset is the car dataset shown in Figure 2.4
and has 1.25 million cells [21]. For the underhood flow application
however, the computational effort is a major concern, as the number

2.2 related work from medical image processing 23

Figure 2.4: 3d clustering result of the flow field “in the wake of a moving
automobile, 1.25 million tetrahedra” into 200 clusters at the left.
Exploded view of the same dataset at the right. (Image taken
from McKenzie et al. [21]. Additional visualization images omit-
ted.)

of cells n is very high. The required effort isO(n ·u · t). For 9.1 million
cells, 1000 clusters and 20 iterations this leads do 182 billion distance
computations.

Notice, that the simple L2-distance measure given in Equation 2.9
does not incorporate spatial information and only produces compact
regions under the assumption that cells with similar velocity lie com-
pact. This might not be the case for the complicated underhood flow
dataset and can lead to complex clusters.

Nevertheless, the algorithm is simple and powerful and a first can-
didate for implementation and comparison. It will therefore be evalu-
ated in the results section (Chapter 5). The two major concerns of the
algorithm, namely computational effort and the possibility of com-
plex clusters will also be analyzed and discussed.

2.2 related work from medical image processing

Similar to vector flow visualization, the visualization of medical dif-
fusion data poses problems because of data redundancy and finding
representations suitable for human interpretation. Although the field
is not directly related to vector field clustering, some of the methods
involve streamline clustering and are therefore interesting for this the-
sis.

2.2.1 Introduction to diffusion tensor imaging

Magnetic Resonance Imaging (MRI) is a widely used non-invasive 3d

imaging method in radiology. Diffusion MRI is a specialized form of

24 related work

MRI which produces a regular 3d grid with one scalar diffusion value
per voxel. The results are sufficient for analyzing isotropic regionsA vector can be seen

as tensor of rank 1.

While the mental
model for a 3d

vectors field is a
cloud of arrows, one

can think of 3d

tensor fields as a
cloud of ellipsoids.

of tissue. To completely capture areas with anisotropic diffusion, one
3 × 3 matrix, the diffusion tensor, per voxel is required. A diffusion
tensor encodes the diffusion rates into all directions. The method to
acquire data of this type is called Diffusion Tensor Imaging (DTI). It
combines several diffusion weighted images along several gradient
directions. As diffusion tensors are symmetric, at least 6 of these im-
ages are required, in addition to one reference image without diffu-
sion weighting [16].

2.2.2 Diffusion tensor imaging tractography

Fibrous structures are characterized by high diffusion in fiber direc-
tion compared to lower diffusion in the other directions, which is
restricted by physical or chemical barriers. Therefore, general direc-
tions of fibrous structures like muscles in the body or axons in the
brain can be derived from DTI scans.

This has proven particularly useful for determining the connectiv-
ity of white brain matter. The resulting directions allow tracing str-
eamlines in a similar way as in vector fields. In this domain stream-
lines are also called fibers, referring to their biological meaning. The
streamlines trace the direction of neural axons and therefore the con-
nectivity within the brain. However, traced streamlines do not directly
represent neural axons, because the dimensions of axon structures are
magnitudes below the resolution of DTI, which is a few mm3 [16] per
voxel. Instead they represent general axon directions, capturing sev-
eral axons going into similar directions [28].

DTI tractography algorithms try to identify and extract the neural
tracts which connect different parts of the brain. A well researched
method to achieve this is to generate the streamlines described above
and cluster similar ones to bundles. It is therefore similar to the novel
streamline bundling method proposed in this thesis.

The introductory statements on streamline clustering are based on
an excellent overview article by Schultz [28].

2.2.3 Distance measures for streamlines

The approaches for clustering similar streamlines in DTI tractography
are based on distance measures between two streamlines Fi and Fj.
The streamlines are represented by their points Pi = {p(i,1) . . .p(i,n)}

and Pj = {p(j,1) . . .p(j,m)}, respectively, which are implicitly connec-
ted by lines. Using this definition of discrete streamlines, two distance
measures are commonly used: the mean distance and the Hausdorff dis-
tance.

2.2 related work from medical image processing 25

2.2.3.1 Mean distance of two streamlines

The mean distance dµ between the streamlines Fi and Fj is defined
as ([28, notation adapted])

dµ(Fi, Fj) = dµ(Fj, Fi) =
dµ(Fi, Fj) + dµ(Fj, Fi)

2
, (2.12)

where the one sided distance dµ is defined as

This is the sum of
distances from every
point in Fi to its
closest neighbor in
the other streamline.

dµ(Fi, Fj) =

∑
p(i,k)∈Pi

(
min

p(j,l)∈Pj
‖p(i,k) − p(j,l)‖

)
|Pi|

. (2.13)

The one sided distances are depicted in Figure 2.5a and Figure 2.5b.
Notice that the streamlines can consist of a different number of points
and that the mean distance is symmetric.

(a) One sided streamline dis-
tance dµ(Fi, Fj).

(b) One sided streamline dis-
tance dµ(Fj, Fi).

(c) Hausdorff distance dH (in
this case dH = d̃H(Fi, Fj)).

Figure 2.5: Common distance measures in DTI streamline clustering. The mean streamline distance
dµ(Fi, Fj) is the average of dµ(Fi, Fj) (a) and dµ(Fj, Fi) (b). The Hausdorff distance dH
is the maximum of all closest distances, as shown in (c). (Images based on Schultz [28].
Adapted color and added labels.)

2.2.3.2 Hausdorff distance of two streamlines

Another distance measure occasionally used is the Hausdorff distance
dH, which is a “worst case distance”. It takes the maximum of all the
distances used for mean distance computation [28, notation adapted]:

dH(Fi, Fj) = dH(Fj, Fi) = max
(
d̃H(Fi, Fj), d̃H(Fj, Fi)

)
, (2.14)

where the one sided Hausdorff distance is defined as

d̃H(Fi, Fj) = max
p(i,k)∈Pi

(
min

p(j,l)∈Pj
‖p(i,k) − p(j,l)‖

)
. (2.15)

26 related work

Figure 2.5c shows the Hausdorff distance for two simple stream-
lines. The Hausdorff metric is also symmetric and allows different
point counts for the streamlines.

2.2.4 Streamline clustering approaches

Many streamline clustering methods based on these and similar dis-
tance measures have been proposed. For an extensive summary see
the overview paper of Schultz [28]. As an example, the next section
will discuss Corouge et al.’s work which also incorporates important
ideas for this thesis. Afterwards, other approaches will be described
in relation to Corouge et al.’s, and their applicability to this thesis
will be discussed.

2.2.4.1 Corouge et al.’s clustering approach

Corouge et al. use nearest neighbor clustering, where curves with dis-
tances below a given threshold are clustered together. Neighborhood
is transitive in their method, i. e., a streamline is part of a cluster if it
is close enough to any other streamline within this cluster. Their main
distance function is the mean distance dµ. In addition they employ
shape based metrics like length, center of mass and second order mo-
ments for clustering. They also suggest the usage of the Hausdorff
distance to reject outliers.

After clustering, they fit B-splines to the streamlines within a bun-
dle starting from a common starting plane. The B-splines allow equi-
distant sampling of all streamlines in a bundle, therefore providing
the framework for statistics on shape properties like curvature or vor-
ticity. These statistics can be used for defining a bundle by its prototype
and the shape property statistics [7].

Notice two aspects of Corouge et al.’s work, which will occur in
this works approach later, even if in completely different form:

1. The notion of the prototype, as the main representative of bun-
dles of streamlines.

2. The registration of points on streamlines to each other at similar
points on the curve.

2.2.4.2 Other clustering approaches

The fundamental differences of other works to Corouge et al.’s are
mainly adaptations of the distance measure. These adaptations in-
clude

• Ding et al.’s approach of computing distances of succeeding
streamline points, except of closest streamline points [8],

2.2 related work from medical image processing 27

• Brun et al.’s simplification of the Hausdorff distance by consid-
ering only streamline endpoints [3], and

• Zhang et al.’s sophisticated adaptation of the mean distance dµ
by dropping distances below a minimum distance threshold and
utilizing the minimum5 and the maximum6 of the one sided
mean distances instead of their average.

A clustering result example of Zhang et al. is shown in Figure 2.6.
Notice that only whole streamlines are clustered together.

Figure 2.6: Streamline clustering result of axon fiber traces in a human brain
by Zhang et al. (Image taken from Zhang et al. [33].)

The usual streamline clustering algorithms in this field use the near-
est neighbor scheme and its variants, but region splitting approaches
have been introduced too [3, 24]. To reduce the required O(n2) dis-
tance computations for n streamlines, several adaptations have been
suggested [32, 19, 24].

The application of streamline-to-streamline distance measures and
greedy hierarchical algorithms are successful in DTI fiber clustering,
because the goal is to find bundles of entire streamlines.

5 For example min(dµ(Fi, Fj),dµ(Fj, Fi)).
6 For example max(dµ(Fi, Fj),dµ(Fj, Fi))

3
T H E O RY

If you think it’s
simple, then you
have misunderstood
the problem.
– Bjarne Stroustrup

The review of existing work showed that existing solutions for vector
field clustering suffer from at least one of the following problems:

1. The algorithmic decisions are simple, greedy, and local, which
leads to suboptimal results.

2. The algorithm optimizes globally, but potentially creates discon-
nected clusters for all meaningful distance functions.

3. The algorithm requires high computational effort.

The aim of this thesis is therefore to propose and evaluate a new
method which avoids the first two problems, while still requiring only
moderate computational effort. The core method investigated in this
thesis is streamline bundling. In addition applicability of the best can-
didate of existing methods, namely McKenzie et al. clustering, is eval-
uated.

Instead of describing the core method right away, the theory be-
hind the algorithmic components will be presented in the order of
processing. After introducing the mathematical notation, an overview
of the processing framework is given. It is then followed by the the-
oretic background for each of the individual processing blocks. This
approach provides a natural structure for the remaining chapter and
allows to easily match the contents of the theory and the implemen-
tation chapters.

3.1 mathematical notation

In the previous chapter, the mathematical notation of related work
was retained closely to the original. For the remaining work however,
consistent notation will be used. This notation is

employed to enable
usage of standard
labels and letters
without creating too
much confusion.

For mesh entities the usual mathematical font will be used: di for
points, ci for cells, and fi,j for cell faces. Sets of these entities will be
typeset using calligraphic font, e. g., Ri for sets of cells (regions) and
Ii,j for sets of cell faces (interfaces). Bold letters depict vectors.

For graph entities typewriter font will be used: vi for vertices, ei,j

for edges, and G(V, E) for a whole graph and its vertex and edge set.
All mesh and graph entities can feature attached values, e. g., the v(vi) is the velocity

at graph vertex vi
and v(di) is the
velocity at mesh
point di.

velocity at a mesh point, the volume of a mesh region or the volume
flow rate along a graph edge. For these attached values, function no-
tation will be used, e. g., v(.) is the velocity of an element, x(.) is its
position, and p(.) is its pressure. Notice that many functions apply to

29

30 theory

both mesh entities and graph entities. The actual meaning of different
functions will be explained right before usage.

3.2 processing framework overview

Though this be
madness, yet there is

method in it.
– William

Shakespeare

To derive flow graphs from CFD flow fields, several algorithmic steps
have to be performed. Some algorithmic steps are interchangeable,
other can be omitted. Figure 3.1 shows an overview of all important
algorithmic steps for this thesis.

The chart is divided into four major stages (blue rectangles and
text). In the preprocessing stage, the deficiencies of the input data are
removed and it is prepared for further processing. In the partitioning
stage the input data is partitioned into similar regions by one out of
three processing options: Streamline bundling, McKenzie et al. clus-
tering, or k-means clustering. The graph mapping stage replaces these
regions by single vertices within a flow graph. The according edge
data and vertex data is created by discrete integration over the re-
gions and their boundaries. One exception of this workflow is the
direct computation of approximate flow graphs from the result of
streamline bundling. Ideally, the resulting flow graph describes the
flow well enough to be utilized in an application stage.

On a finer level, the figure consists of processing blocks (black rect-
angles with text) and intermediate data (maroon text). The arrows
depict data flow and show that several paths of processing are possi-
ble through the graph. The “Graph collapse” block is optional (black
dashed) and can be omitted. Any path from the input (top) to one
of the application blocks (bottom) describes a valid processing chain.
The possible chains differ in required computational effort and in the
quality of the results.

3.3 preprocessing overview

When importing CFD data, or any complex data set for that matter,
care has to be taken about data inconsistencies and incompatibilities.
The occurring problems depend on the import/export functionality
of the used programs, i. e., the tasks of the preprocessing step depend
on the employed software.

The Toyota dataset was generated by a FLUENT 12 [12] simulation
and post-processed using the EnSight [10] software package. The
dataset shows two major problems after loaded into VTK [30]:

inconsistent normals : The point order of some of the cells is
wrong. Therefore the surface normals are pointing inwards for
some cells and outwards for others.

outer geometry : The dataset contains a thin layer of extra cells
which are outside of the actual car.

3.3 preprocessing overview 31

Application

Preprocessing

Partitioning

Graph mapping

Figure 3.1: Overview of the important processing modules for this thesis. The global view consists
of four stages (blue rectangles and text). These stages contain processing blocks (black
rectangles and text) and intermediate data (maroon text). Any path from top to bottom
is valid, i. e., some of the processing block groups are interchangeable with others. The
possible paths differ in processing time and quality of the results. Two applications
of flow graphs are considered, firstly visualization and exploration and secondly the
generation of resistance graphs. Some paths are better suited for visualization, while
others are better suited for producing resistance graphs.

32 theory

The simple problem of inconsistent surface normals is completely
treated in the implementation chapter (Section 4.2.1). The outside ge-
ometry problem is more difficult and will be introduced here.

3.3.1 Undesired outside geometry

Lisa: The basis of
this game seems to
be simple geometry.
All you have to do is
hit the ball . . . here.
(The ball is hit, gets
bounced around, and
goes into the hole.)

Bart: I can’t believe
it. You’ve actually
found a practical use
for geometry!

– The Simpsons

The Toyota dataset was cut out from a complete CFD simulation box
which simulated the inside and the outside of the car together. This
cutting process left some outside geometry attached to the dataset.

Figure 3.2 demonstrates this situation. The left image shows the
Toyota dataset from the back left side with the magnitude of velocity
encoded by color. The high velocity areas at the surface of the hood
(green) are undesired cells lying outside of the car. Dark blue areas
represent the low velocity right next to inside surfaces of the vehicle
hull.

Figure 3.2: Undesired cells lying outside of the car. The left image shows an outside view of the
unaltered Toyota dataset colored by velocity magnitude. The greenish cells are outside
of the vehicle hull and need to be removed, whereas dark blue cells are inside the
car and need to be kept. The right bottom image shows the close-up view of a cut
through the car. The outside cells (top) and inside cells (bottom) are separated by a
cell-free zone – the metal of the car hood. The top right image shows the smooth,
post-processed dataset for comparison.

The right bottom image shows a zoomed view of a longitudinal cut
through the car. The cell-free space separating inside and outside ge-
ometry was filled by the metal of the car hood during CFD simulation.
Outside and inside cells are therefore only connected at holes in the
vehicle hull (i. e., air inlets and outlets). At the top right, the dataset
is shown without any outside geometry. All surface areas are smooth
and blue, except of real interfaces to the outside.

The three main reasons outside geometry needs to be removed are:

3.4 partitioning 33

1. It makes the task of automatically finding air inlets and outlets
difficult.1

2. It potentially wastes clusters for outside geometry or makes bor-
der clusters inaccurate if they contain outside geometry.

3. It makes volume flow statistics over the dataset imprecise (e. g.,
total input flow and output flow).

For separating the outside from the inside cells, a criterion differen-
tiating them is required. Two observations and the resulting algorith-
mic ideas for removing outside cells will be discussed.

The first observation is that undesired regions are rough at the
surface, whereas desired regions are flat at the surface. This leads to
a region growing approach starting from exposed cells.

The second observation is that undesired regions are thin and con-
tain mainly stacked hexahedra and wedges. This motivates a depth
probing approach.

Details of these two approaches will be presented in Section 4.2.2.

3.4 partitioning

The partitioning phase takes the cleaned input mesh from the prepro-
cessing phase and outputs a partition of this input mesh.

In Figure 3.1 three alternative approaches to partitioning can be
identified. The theory for McKenzie et al. clustering (middle) was al-
ready treated in Section 2.1.4. k-means clustering (right) was already
treated in Section 2.1.2. Several distance functions for k-means are
possible, a good candidate is the distance function described for CVT

in Section 2.1.3 (Equation 2.8).
The leftmost partitioning option of Figure 3.1 is the core matter of

this thesis and consists of four processing blocks:

1. During the seeding phase seed points are selected from the mesh.

2. These seed points are used as starting points for tracing dense
streamlines in the stream tracing phase.

3. Streamline bundling finds bundles of similar streamline segments.

4. These bundles are then mapped back to the cells of the 3d mesh
to obtain the final partition during the map bundles to regions
phase.

The following sections will describe these processing blocks in de-
tail.

1 If outside geometry is removed, inlet and outlet surface tiles can easily be identified
by thresholding the angle between flow direction and surface normal. This is also
illustrated by Figure 3.2, where inlets and outlets correspond to the non-blue regions
in the top right image.

34 theory

3.4.1 Seeding

A streamline is the simulated path of a massless particle through a
flow-field and therefore a curve in 3d. To perform this simulation an
initial starting point for this particle needs to be defined. These points
are called seed points and the process of choosing them is referred to
as seeding.

In usual visualization applications the goal for seeding is to cap-
ture the flow with as few expressive streamlines as possible. There-
fore great effort has been put into designing sophisticated seeding
algorithms. McLoughlin et al. provides an excellent overview [22].

For this application however the requirement is to cover the 3d

dataset densely, without leaving regions uncovered by streamlines.
On the other hand, generating too many streamlines increases the
quality of the result, but at the cost of higher computational effort, es-
pecially during streamline bundling. Another important point is that
for car cooling applications, the regions near the inlets of the dataset
are of special importance. This is because the cooling components are
placed there and the velocities are usually high and the flow turbu-
lent. Two simple seeding strategies for generating feasible results are
random seeding and interface seeding.

Random seeding simply picks random points from all available
grid points.

Interface seeding picks points only at the inlets and outlets of the
dataset. This aims to capture the regions near these interfaces for
the mentioned reasons. For identifying grid points at inlets and out-
lets, the angle between velocity vector and surface normal vector is
thresholded. At inlets and outlets, the angle is high, whereas at other
surface areas the air flows along the vehicle hull, hence the angle is
small. Of all identified surface points the required number of points
is randomly chosen.

A good strategy is to apply hybrid seeding, which combines the
results of both strategies. Interface seeding ensures that regions near
the interfaces are covered very well, whereas random seeding ensures
adequate coverage of other areas.

Figure 3.3 shows the result of hybrid seeding as well as the sub-
results of random and interface seeding for the Toyota dataset.

3.4.2 Stream tracing

Stream tracing is the process of generating streamlines from seed
points. This is achieved by integration of the displacement in the vec-
tor field. The displacement is given by [22]

dx = vdt. (3.1)

3.4 partitioning 35

Figure 3.3: Result of hybrid seeding for the Toyota dataset. The blue points
are derived by random seeding whereas the red points are de-
rived by interface seeding.

The position x after time t of a particle is given by

x(t, x0(d)) =
∫t
0

v(τ)dτ, (3.2)

if it started at position x0(d) in point d at t = 0.
For discrete vector fields this integral is computed numerically. In

the simplest case, the particle is iteratively moved a small distance
(step size) according to the velocity at the current point (Euler Scheme).
To obtain velocity vectors for arbitrary points an interpolation scheme,
e. g., trilinear interpolation, is required. Usually higher order integra-
tion methods are employed to increase accuracy (e. g., Runge-Kutta
methods).

From an information processing standpoint, dense stream tracing
can be seen as a kind of subsampling, as the streamlines preserve the
essential features of the vector field around them.

Figure 3.4 shows a typical result of dense stream tracing. The tubes
around the streamlines are added for illustrational purposes. Notice
the subsampling characteristic: In this example, the dataset consists
of 2970 streamlines connecting 500 503 points. The input dataset –
the preprocessed Toyota dataset– contained 7.88 million points. By
improving the seeding strategy the number of streamlines could be
further reduced, as currently many regions are sampled too densely.
See Section 6.1 for improvement ideas.

36 theory

Figure 3.4: Result of dense stream tracing of the Toyota dataset at 190 km/h. Each streamline is
represented by one tube. The color encodes velocity magnitude.

3.4.3 Streamline bundling

Looking at Figure 3.4, identifying clusters with similar flow can be de-
scribed as a bundling problem. The goal is to find bundles of streamline
segments which are parallel and close to each other.

A useful analogy for this problem is the placement of cable ties.
What is a good method to organize a dense pack of cables using
cable ties?

3.4.3.1 Utility of streamline distance measures
For every problem,

there is one solution
which is simple,

neat, and wrong.
– H. L. Mencken

Streamline clustering from medical applications as described in Sec-
tion 2.2 is hard to apply to this problem, as bundles of streamline
segments are sought after, instead of bundles of whole streamlines.

The similarity measures for whole streamlines could be applied
to streamline segments too, but there is no simple way of aligning
these segments. Imagine two streamlines which start at the same in-
let, curve around different sides of the motor and meet again at an
outlet. Segments of both streamlines can probably be put into the
same streamline segment bundle at the outlet, but how to derive the
segments (defined by starting point, end point) that should be com-
pared using the distance measure? The only similarity in this case
is spatial closeness. The distances along the curves and even the dis-
tances between curve points however, can differ considerably.

3.4 partitioning 37

Therefore streamline distance measures and clustering methods
can only be applied if the segments are already known. This, however,
is part of the solution. Notice that the streamline distance measures
could be used to evaluate the quality of the resulting bundles. This
idea was not adopted for this thesis, as evaluation was performed at
a later stage, directly on the mesh partition.

3.4.3.2 Streamline bundling idea

Instead of overcoming the difficulties of adapting existing, distance
based solutions to the clustering of streamline segments, this work
suggests a geometrically driven method for streamline segment bu-
ndling. The main idea is illustrated in Figure 3.5.

(a) Initial slice. (b) Incremental slices.

Figure 3.5: The basic principle of streamline bundling. Starting from a proto-
type streamline with known position and orientation (blue), an or-
thogonal sweep plane (black) is intersected with all streamlines,
the initial slice (a). The sweep plane is moved along the prototype
performing repeated incremental slices at each point of the proto-
type (b). Finally, streamlines that are similar to the prototype in
all slices, the mates, are grouped together to form a bundle.

Repeated intersections of a sweep plane and nearby streamlines are
performed along a prototype streamline. The result of one intersection
of the sweep plane with nearby streamlines is called a slice. Starting
with an initial slice, locally similar streamlines (mates) will be inter-
sected by several slices in both directions along the prototype. Str-
eamlines which are part of all of these slices are part of the resulting
streamline bundle.

3.4.3.3 Streamline bundling problems

The idea for streamline bundling presented in the previous section is
simple, but additional effort is required to solve the following detail
issues:

prototype selection and processing : How are prototype str-
eamlines and starting points selected and in which order should
they be processed?

38 theory

streamline similarity : What are “nearby streamlines” and how
is the similarity of sliced streamlines defined?

stopping criterion : Moving the sweep plane farther along the
prototype creates longer bundles, but fewer mates will be part
of this bundle. When should the sweep plane stop?

bundle collision strategy : How to proceed if identified bun-
dles collide with each other, i. e., if the current bundle grows
into an existing one?

The following sections will discuss these issues and their proposed
solutions.

3.4.3.4 Prototype selection and processing

Notice that prototype selection is merely the selection of discrete
points along the streamlines. Stream tracing ensures that no point
is used for more than one streamline; therefore selecting a point also
selects a unique streamline.

An ideal prototype selection scheme would select prototype points
that lead to large bundles first, followed by prototypes which lead
to smaller and smaller bundles until the whole dataset is covered by
bundles. Several schemes to approximate this ideal goal are possible.

A simple but effective scheme is subsampling. For every nth point
on every streamline an initial slice is performed (e. g., n = 20). The
number of intersected, similar streamlines is used as an estimator
for the number of mates in the final bundle. Each subsampled point
has therefore an assigned rating, with all other points having a rating
of zero. The scheme is then to start streamline bundling from these
points in order of their rating, starting with the highest rated points
until all points are processed. This scheme requires only simple bun-
dle collision strategies, as existing bundles are expected to be larger
than new ones.

A related scheme is spherical voting. The principle is similar to the
one above, namely assigning a rating to each point and processing
the points in decreasing rating order. The difference lies in the gener-
ation of these ratings. Instead of explicitly computing a full slice for
some points, every point is visited once and votes for nearby, similar
points, thereby increasing their rating. After voting, every point has
a rating according to the density of similar points around it. “Nearby
points” are determined by a sphere of pre-specified radius. Points ly-
ing within this sphere can be efficiently computed using kd-trees. The
similarity of points is specified by the values attached to these points,
e. g., the velocities. The advantage of this method is that every point
gets a rating, instead of only a few subsampled ones. The approxima-
tion of good prototypes by point density however, does not produce
satisfactory results. This selection strategy is therefore only included
for completeness.

3.4 partitioning 39

Another possible scheme is random selection of prototype points.
The major advantage of this approach is its speed. The major dis-
advantage is that it is far from the ideal prototype selection scheme
outlined at the beginning of this section, i. e., selecting large bundles
first. To compensate for this problem, a good bundle collision strat-
egy, which allows replacing small, existing bundles by new, larger
bundles, is required.

3.4.3.5 Similarity of sliced streamlines
If people do not
believe that
mathematics is
simple, it is only
because they do not
realize how
complicated life is.
– John von
Neumann

Consider a single slicing plane starting at a slicing point2 and being
perpendicular to the streamline at this point. The plane intersects
many streamlines, close and distant, from the slicing point. The ques-
tion is: Which of the intersected streamlines are similar to the stream-
line at the slicing point? Similar streamlines can be part of this slice
and therefore of the bundle. Expressed in a different way, a stream-
line bundle consists of all streamline segments that are similar to the
prototype in every single slice of the bundle.

Each streamline consists of a chain of points with attached posi-
tion, velocity, and pressure. These values where derived from the ini-
tial vector field via stream tracing. In general, the intersection of a
streamline with the slicing plane does not coincide with any of the
discrete points that span the streamline (Figure 3.6). After the posi-
tion of the intersection point (x) is computed by intersecting the line
with the slicing plane, the other values at the intersection v and p are
interpolated from the neighbor points di and di+1.

Figure 3.6: Available values for streamline similarity. Starting from a slicing
point on a slicing line (blue) a perpendicular plane (thick ma-
roon line) is used to slice nearby streamlines. A nearby stream-
line (black) intersects the plane between point di and di+1. All
streamline points have a position x(d), a velocity v(d) and a pres-
sure p(d). At the intersection point these values are interpolated
(x, v, and p).

Using these values, the streamline bundling algorithm has to de-
cide which intersected streamlines are similar to the slicing stream-
line and should therefore remain in the bundle. The analyzed criteria

2 The slicing point for the initial slice is the prototype point. For incremental slices the
slicing points lies on the same streamline, but moves farther and farther away from
the prototype point.

40 theory

in this work are only based on values lying on the slicing plane (no
lookahead):

spatial proximity (radius): The distance r of the intersection
point x from the center x(d0):

r = ‖x(d0) − x‖. (3.3)

velocity angular similarity : The angle between the center ve-
locity v(d0) and the intersection velocity v (approximates the
intersection angle α):

sα = arccos
(

v(d0) · v
‖v(d0)‖ ‖v‖

)
. (3.4)

relative velocity magnitude similarity : The relative simi-
larity of the magnitudes of v(d0) and v. For easier thresholding,
the following measure is useful:

s‖v‖ = min
{
‖v(d0)‖
‖v‖

,
‖v‖
‖v(d0)‖

}
. (3.5)

relative pressure similarity : Measures how similar the pres-
sures p(d0) and p are in relation to each other. Analogous to
Equation 3.5 a good measure is

sp = min
{
p(d0)

p
,
p

p(d0)

}
. (3.6)

Several combinations of these criteria are thinkable. A very robust
possibility is using only the spatial proximity measure. Additional
criteria can be added depending on the application.

The thresholds for the criteria might also change from slice to slice.
For example, increasing the radius between slices allows cone-shaped
bundles. A more detailed discussion on the utilized combinations of
settings can be found in Chapter 5.

3.4.3.6 Slicing stopping criterion

Starting at the initial slice, the streamline bundle is expanded si-
multaneously into both directions along the prototype streamline by
repeated slicing. The resulting bundle consists only of streamlines
which are similar to the prototype in all slices, the mates. This im-
plies that the bundle potentially loses, but never gains mates during
expansion. Without a stopping criterion the resulting bundle would
contain only the prototype streamline. Therefore stopping criteria are
required. The following stopping criteria where implemented:

lost mate ratio : Stop a direction if the ratio of mates in the initial
slice to mates in the current slice drops below a given threshold.

3.4 partitioning 41

velocity magnitude change : Stop if the magnitude of the slice
point velocity changed too much since the initial slice.

direction change : Stop if the direction of the prototype changed
too much since the initial slice. This criterion prevents (or al-
lows) bent bundles and the amount of allowable bending.

streamline count minimum : Stop if the number of streamlines
in the bundle (prototype plus mates) drops below a fixed num-
ber, e. g., three. This ensures that no bundle is dropped because
it becomes too small.

Different combinations of these stopping criteria allow to tailor the
bundling result to specific applications. For the resistance graph ap-
plication, short and straight bundles with many streamlines are desir-
able. This can be achieved by strict thresholds on the lost mate ratio
and the directional change.

For visualization purposes, long and possibly bent bundles can be
desirable. In this case loose thresholds on the lost mate ratio and very
loose thresholds on directional changes lead to favorable results.

3.4.3.7 Bundle collision strategy

The previous sections described all criteria for generating the bun-
dle for a single prototype streamline and starting point. To cover the
whole streamline dataset with bundles, this step has to be repeated
multiple times. It will therefore occur that the current bundle expands
into an existing bundle. The following three strategies for these bun-
dle collisions where investigated, to match the prototype selection
schemes described in Section 3.4.3.4:

keep existing bundles : This strategy always keeps the existing
bundle and is especially useful if the probability of the existing
bundle being “better” than the current bundle is high. It is there-
fore well suited if intelligent prototype selection with prototype
ratings is used.

remove poor existing bundles : This simple strategy removes
the existing bundle completely, if the current bundle is “better”.
The definition of “better” can for example mean “more mates”
or “more covered volume”.

overwrite poor existing bundles : The idea for this strategy is
to overwrite overlapping parts of the existing bundle, if the cur-
rent bundle is better.

Figure 3.7 shows examples of these three strategies.

42 theory

(a) Keep existing bundles. (b) Remove existing bundles if
worse.

(c) Overwrite existing bundles if
worse.

Figure 3.7: Different bundle collision strategies. The maroon bundle already exists, whereas the
blue bundle is currently expanding from right to left. In (a) the existing bundle is
always kept, the expansion therefore stops. In (b), the existing bundle is completely re-
moved if the currently expanding one is better. In (c) the expanding bundle overwrites
any overlapping parts of bundles that are worse.

3.4.4 Mapping bundles to regions

In the final step of this partitioning algorithm, the dense streamline
bundles are mapped back to the 3d mesh. The simplest method is
nearest neighbor mapping, where each cell is mapped to its spa-
tially closest bundle. If the detected bundles do not cover the dataset
densely, this approach leads to bad assignments of cells that are too
far away from all bundles.

An alternative approach is to map each cell to its closest bundle,
but only up to a maximum distance. All cells that are too far away
from any bundle are assigned to a separate region. These dead zones
usually contain only a few streamlines curling at low speeds. Cluster-
ing these zones into disconnected regions has only little influence on
the quality of the result. Problems occur if the bundle coverage of the
dataset is poor or the chosen maximum distance is too small. Then in-
dividual, small dead zones merge together and form one large dead
zone, which is undesirable.

3.4.5 Streamline bundling recap

After the theory behind streamline bundling is discussed, there are
still open questions about the best configurations of the presented op-
tions for different tasks. Good configurations of the presented build-
ing blocks are not obvious from a theoretic point of view and will
therefore be described in Chapter 5.

3.5 mapping regions to a graph

Nature laughs at the
difficulties of

integration.
– Pierre-Simon de

Laplace

The previous stages resulted in a partition of the 3d mesh. This par-
tition is now mapped to a flow graph G(V = {vi}, E = {ei,j}) in the
obvious way: The regions Ri consisting of cells {ck : ck ∈ Ri} are

3.5 mapping regions to a graph 43

represented by vertices vi. Neighboring regions are connected by a
set of edges ei,j. The region Ri that led to a specific vertex vi will
be called vertex region. The common surface between two regions Ri
and Rj will be called edge interface Ii,j and leads to the edge ei,j. The
edge interface consists of individual cell faces {fr,s : cr ∈ Ri, cs ∈
Rj, cr and cs are neighbors}.

Center positions, pressures, velocities, and volumes of the above 3d

mesh entities (Ri, and ck) will be identified as the functions x(.), p(.),
v(.), and V(.) respectively. The areas, velocities, and normal vectors
of the above 2d mesh entries (fr,s, and Ii,j) will be described as the
functions A(.), v(.). and n(.) respectively.3

Accordingly, the values associated with graph entities (vi, and ei,j)
will be identified as: µ(.) for means, σ(.) for standard deviations, N(.)
for counts, V(.) for volumes, A(.) for areas, F(.) for scalar volume
flows, and F(.) for vector volume flows.

Read this paragraph
carefully, the
orientation of edge
values can be
confused very easily.

The volume flow over a border face between two cells i and j is
given by An · v, where A > 0 is the area of the face, v is its velocity,
and n is its unit normal vector. The orientation of n determines if the flow
is computed from i to j or from j to i. Therefore the projected area Aproj =

An in flow graphs of this thesis is an oriented measure, depending
on the edge direction. (An alternative approach would be to fix the
orientation of the projected area and switch the orientation of the
velocity according to the edge direction.)

In the following formulas, each edge exists twice; once for each
direction. The values of both directions differ only in the sign for ori-
ented values (Aproj, F, and F), and are equal for all other, non-oriented
values. The solution to avoid double computation will be treated in
Section 4.4.

The unit normal vectors will be represented by e0 = (1, 0, 0), e1 =

(0, 1, 0), and e2 = (0, 0, 1). There is something
in statistics that
makes it very similar
to astrology.
– Gian-Carlo Rota

For computing the weighted means and standard deviations, the
following formulas can be utilized to avoid holding all values in mem-
ory (running computation):

W0 = 0 Wi =Wi−1 +wi (weights)

µ0 = 0 µi = µi−1 +
wi
Wi

(xi − µi−1) (means)

Q0 = 0 Qi = Qi−1 +wi(xi − µi−1)(xi − µi) (helper sums)

σ0 = 0 σi =
√
Qi
Wi

(standard deviations)

(3.7)

Many applications are imaginable for flow graphs. It is therefore
hard to determine which data to store in vertices and regions. For

3 The normal vectors always point outwards, from the first index to the second index,
i. e., from i to j or from r to s.

44 theory

this reason, all natural vertex and edge values were evaluated and
associated to the graph. At the moment this includes the following
values:

vertex spatial means (vector): The weighed component-wise
average spatial position of the vertex region. The weights are
given by the cell volumes:

µx(vi) =
1

V(Ri)

∑
ck∈Ri

V(ck) x(ck). (3.8)

vertex spatial standard dev. (vector): The standard devia-
tions from the above means, weighted by cell volumes, and com-
puted separately for each component:

σx(vi) =

√√√√ 1

V(Ri)

∑
ck∈Ri

V(ck) (x(ck) − µx(vi))
2. (3.9)

vertex pressure mean (scalar): The pressure mean, weighted
by cell volume, within the vertex region:

µp(vi) =
1

V(Ri)

∑
ck∈Ri

V(ck)p(ck). (3.10)

vertex pressure standard dev. (scalar): The standard devi-
ation from the above mean, also weighted by cell volume:

σp(vi) =

√√√√ 1

V(Ri)

∑
ck∈Ri

V(ck) (p(ck) − µp(vi))
2. (3.11)

vertex velocity means (vector): The weighed component-wi-
se average velocity of the vertex region. The weights are given
by the cell volumes:

µv(vi) =
1

V(Ri)

∑
ck∈Ri

V(ck) v(ck). (3.12)

vertex velocity standard dev. (vector): The standard devi-
ations from the above means, weighted by cell volumes, and
computed separately for each component:

σv(vi) =

√√√√ 1

V(Ri)

∑
ck∈Ri

V(ck) (v(ck) − µv(vi))
2. (3.13)

3.5 mapping regions to a graph 45

vertex cell count (scalar): The number of cells within the re-
gion Ri that is represented by vi:

Nc(vi) = |Ri| . (3.14)

vertex volume (scalar): The volume of the region represented
by this vertex:

V(vi) = V(Ri) =
∑
ck∈Ri

V(ck). (3.15)

vertex face count (scalar): The number of cell faces at the
surface of the vertex region:

Nf(vi) = |{fr,s : r = i}| =
∑
j

Nf(ei,j). (3.16)

edge projected areas (vector): The projected areas of the in-
terfaces between the regions Ri and Rj to the xy-, xz-, and yz-
planes:

Aproj(ei,j) = −Aproj(ej,i) =
∑

fr,s∈Ii,j

A(fr,s)n(fr,s). (3.17)

edge velocity means (vector): The weighted component-wise
average velocity of the edge interface. The weights are given by
the cell face areas:

µv(ei,j) = µv(ej,i) =
1

A(Ii,j)

∑
fr,s∈Ii,j

A(fr,s) v(fr,s). (3.18)

edge volume flows , exact (vector): The sum of volume flows
over each individual face of the edge interface, i. e., the volume
flows are computed first for each projected face and accumu-
lated afterwards. Gives volume flows separated in x-, y- and
z-direction:

Fexact(ei,j) = −Fexact(ej,i) =
∑

fr,s∈Ii,j

A(fr,s)n(fr,s) · v(fr,s). (3.19)

edge volume flows , exact sum (scalar): The sum of the en-
tries of the above vector:

Fexact(ei,j) = −Fexact(ej,i) =

3∑
t=1

et · Fexact(ei,j). (3.20)

46 theory

edge volume flows , approx . (vector): The element-wise mul-
tiplication of “edge projected areas” and “edge velocity mean”
gives an approximate volume flow:

Fapprox(ei,j) = −Fapprox(ej,i) =

3∑
t=1

et
(
et ·Aproj(ei,j)

)
(et · µv(ei,j)).

(3.21)

edge volume flows , approx . sum (scalar): The sum of the en-
tries of the above vector gives the approximate scalar volume
flow rate:

Fapprox(ei,j) = −Fapprox(ej,i) =

3∑
t=1

et · Fapprox(ei,j). (3.22)

edge face count (scalar): The number of faces in the edge in-
terface:

Nf(ei,j) = Nf(ej,i) =
∣∣Ii,j∣∣ . (3.23)

vertex in flow (scalar): The total volume flow into this vertex;
determined by integration over the surface. This is the sum of
the negative “edge volume flow exact sum”-values (i. e., the in-
coming edges) multiplied by −1.

Fin(vi) = −
∑
j

min (0; Fexact(ej,i)). (3.24)

vertex out flow (scalar): The total volume flow out of this ver-
tex; determined by integration over the surface. This is equal to
the sum of positive “edge volume flow exact sum”-values (i. e.,
outgoing edges).

Fout(vi) =
∑
j

max (0; Fexact(ei,j)) (3.25)

3.6 mapping bundles to a graph

An alternative to calculating the exact flow graph from the partitioned
3d mesh is to calculate an approximate flow graph directly from the
bundles. This approach is faster and uses less memory than mapping
the bundles to the 3d mesh. As in the previous scheme, each bundle
results in one vertex. However, in contrast to the previous scheme,
an edge is created between two vertices, if the respective bundles are
directly connected by a streamline.

3.7 graph collapse 47

The calculation of vertex and edge data in this case is a rough es-
timation based on streamline counts and velocities. Therefore this
approach is applicable only to visualization tasks.

Even for visualization tasks of dense bundles however, the exact,
mesh-based calculation is advantageous, because the computational
overhead is not very large.

The only use case for this algorithmic step is therefore pure visu-
alization of sparse bundles. If only a few large bundles and their in-
terconnections are sought-after, a complete mapping to the 3d mesh
is not advantageous. In this case the flow graph has to be derived
directly from the sparse bundles.

Mapping from bundles to a graph has been implemented, but was
neither optimized nor utilized. It will therefore be excluded from fur-
ther discussion.

3.7 graph collapse

There is no way to directly influence the final number of vertices in
the flow graph during streamline bundling, because the number of
bundles cannot be enforced.

To reduce the number of vertices a series of edge collapses can
be performed. The graph operation edge collapse is the removal of
an edge from a graph by combining the two vertices that the edge
connects. Therefore, each edge collapse reduces the vertex count by
one. Figure 3.8 illustrates this operation for flow graphs.

(a) Before edge collapse. (b) After edge collapse.

Figure 3.8: The edge collapse operation for a flow graph. The maroon network depicts the graph,
whereas the black outlines show the underlying regions. The left figure shows the
graph before collapsing the blue edge ei,j. The right figure shows the graph after
collapsing it.

Three steps have to be performed during edge collapse:

1. Merge the edges of shared neighbors. In Figure 3.8a there are
two shared neighbors: vk and vl. The according edges need to
be merged: el,i with ej,l, and ei,k with ej,k. During merging,

48 theory

the edge directions have to be taken into account for oriented
values like volumetric flow rates.

2. Merge vertices vi and vj into vn. This involves combining the
vertex values described in Section 3.5 and associating the com-
bined values to vn. Most of the combinations are straight for-
ward, with the exception of the standard deviations. The fol-
lowing formula was used to combine standard deviations (for
vectors it was applied component-wise):

σ(vn) = σ(vi ∪ vj) =√
V(vi)

V(vn)
σ2(vi) +

V(vj)

V(vn)
σ2(vj) +

V(vi)V(vj)

V(vn)
(µ(vi) − µ(vj))

2,

where V(vn) = V(vi) + V(vj).
(3.26)

3. Remove the edge ei,j and its associated data.

3.8 flow graph error measures

For selecting good candidate edges to collapse, a global measure E(G)
is required. Then, by repeatedly collapsing the best current candidate
edge ei,j according to that error measure, the targeted number of
vertices is reached. The best candidate edge has the lowest increase
∆E(ei,j) of the global error measure. All vertex and edge values de-
scribed in Section 3.5 can be utilized to construct this error measure.
The error measure used within this thesis is the total Sum of Squared
Errors (SSE) for velocities, Ev(G). It is derived as follows.

The velocity SSE vector for one region (vertex) is defined es

Ev(vi) =
∑
ck∈Ri

V(ck) (v(ck) − µv(vi))
2. (3.27)

The direct computation requires the individual cell values V(ck) and
v(ck) and therefore does not allow deriving this measure for a graph
vertex. However, it can easily be computed from the velocity standard
deviations and region volumes that are stored with each vertex (see
Section 3.5) as

Ev(vi) = σ
2
v(vi)V(vi), (3.28)

which makes the scalar, total error of the whole graphThe calculation of
the norm was

postponed as long as
possible to minimize

directional errors.

Ev(G) =
∑
vi∈V
‖Ev(vi)‖. (3.29)

3.8 flow graph error measures 49

Finally, the cost of collapsing edge ei,j according to this error measure
is

∆Ev(ei,j) = ‖Ev(vn) − Ev(vi) − Ev(vj)‖, (3.30)

where vn is the merged vertex.

4
I M P L E M E N TAT I O N

In theory, there is no
difference between
theory and practice.
But, in practice,
there is.
– Jan L.A. van de
Snepscheut

The realization of the described algorithms is greatly aided by using
the VTK framework [30]. ParaView is a visualization application based
on VTK [25]. They will be shortly introduced in the next section. The
following sections will describe the implementation of the algorith-
mic building blocks in detail. Finally, the last section of this chapter
will briefly address the user interface.

4.1 vtk and paraview

VTK is an open source visualization framework for C++ and includes
a variety of algorithms and data structures to process and visualize
geometric data. It was introduced by Schroeder et al. [27].

All VTK algorithms and operations are encapsulated in classes with
the common interface vtkFilter. This approach allows the arbitrary
combination of compatible filters to filter chains. Each black block in
the processing overview of the previous chapter (Figure 3.1) is imple-
mented by a combination of these filters. Some of them came with
VTK, the others were implemented as part of this thesis. VTK also
supports the visualization of its data structures via OpenGL. Chaining
instances of vtkFilter and visualizing the output requires only a few
lines of code.

3d CFD mesh data is stored within an instance of vtkUnstructured-
Grid, surface and streamline data is stored within an instance of vtk-
PolyData, and graph data is stored within an instance of vtkGraph.

The former two data structures consist in essence of points, cells,
and associated data, which are all stored in arrays. Removing points
or cells from these structures would require the removal of elements
from the middle of arrays. It is therefore a slow operation and not
supported by public VTK interfaces. Hence, VTK algorithms usually
do not alter the input, but create a new output from scratch. The
vtkFilter interface enforces this convention by passing the empty
output data structure together with the inputs. This separation of
input and output encourages clean algorithms, but consumes more
memory.

Consider for example the preprocessing stage. Fixing the cell nor-
mals is possible in-place, because no cells or points are removed. For
removing the outside cells however, a separate output dataset is re-
quired. This almost doubles the required memory during this step to
about 2 GB for the Toyota dataset.

51

52 implementation

VTK has no direct user interface, but is accessed through C++ or any
of the other wrapper languages, like Java and Tcl. Sometimes constant
changes to the filter chain or the visualization settings are required,
for example during exploration of new datasets or debugging of new
filter outputs. The repeated compilation and execution for these small
adaptations quickly becomes a cumbersome task.

In these cases ParaView is a helpful additional tool. ParaView is aAll dataset figures of
this thesis where

rendered using
ParaView.

Graphical User Interface (GUI) front end for VTK, allows the creation
and adaptation of filter chains, and therefore makes most of the func-
tionality of VTK easily accessible.

4.2 preprocessing

Basic preprocessing steps can be performed directly in ParaView.
This includes loading data with different formats, cleaning unnec-
essary or redundant CFD values and removing uninteresting parts of
the dataset, like 2d surface structures.

More complex preprocessing steps, as the removal of outside ge-
ometry, are implemented as custom subclasses of vtkFilter.

4.2.1 Rectifying inconsistent surface normals

Figure 4.1 shows the four common cell types supported in this thesis,
together with their VTK names and point orders.

0 1

23

4
5

7 6

3

0
1

2

4

3

0
1

2

2

0
1

5

3
4

Figure 4.1: The common 3d cell types used for CFD simulations and their VTK names and point
orders. (Images taken from the document “VTK File Formats” [31].)

After importing the Toyota dataset into VTK, the surface normals
of most cells are flipped. This means that the points of most cells are
labeled in the wrong order. Consider for example, the tetrahedron in
Figure 4.1. After the points 0, 1, and 2 are fixed, point 3 is expected to
lie above the triangle when using the right hand rule. If point 3 is below
the triangle however, all surface normals point inwards instead of
outwards. Determining the source of the problem is out of scope for
this thesis, but it must lie either in EnSight export or in VTK import.

All tetrahedra, hexahedra, and pyramids show this problematic be-
havior. The surface normals of the wedges are correct, because they

4.2 preprocessing 53

have different point orders in EnSight and VTK which compensates
the problem.1

If a dataset is imported from EnSight and processed using VTK or
ParaView, newly created cells have the correct point order. This leads
to an even worse situation, where cells having either correct or incor-
rect surface normals are randomly mixed. Correct surface normals
are not only required for visualization, but more importantly for inte-
grating flows between regions in the “Map Region to Graph” module.

Therefore the correctness of surface normals has to be ensured for
all cells during the preprocessing phase. This is done by checking
simple geometric constraints and switching point orders if necessary.

The cells in VTK are stored within a linearized cell array that ar-
ranges the point Identifiers (IDs) for each cell in succeeding order. Fix-
ing surface normals can therefore be achieved by swapping the point
IDs of the affected cells. This does not affect the point coordinates or
any other cell. The applied checks and changes are as follows (see
also Figure 4.1):2

vtk_tetra : If ̂(0; 1; 2) points away from 3, swap the point IDs of 0
and 1.

vtk_hexahedron : If ̂(0; 1; 2) points away from 4, swap the point
IDs of 0 and 2, and the point IDs of 4 and 6.)

vtk_pyramid : If ̂(0; 1; 2) points away from 4, swap the point IDs of
0 and 2.

vtk_wedge : If ̂(0; 1; 2) points into 3, swap the point IDs of 0 and 1,
and the point IDs of 3 and 4.

4.2.2 Removing undesired outside geometry

The problem descriptions and basic solution ideas behind these algo-
rithms were treated in Section 3.3.1. The following sections cover the
implementation in greater detail.

4.2.2.1 Region growing

To separate the outside cells from the inside cells by region growing,
two problems need to be solved. The first one is finding appropriate

1 In VTK, the normal vector (using the right hand rule) of the wedge base points away
from the wedge. In EnSight this normal points into the wedge. Notice that the VTK
wedge is inconsistently defined to the other VTK cell types, which always have the
base normal pointing inwards. This has led to confusion in several cases in VTK. For
example the “Normal Glyphs Filter” of ParaView (Version 3.8.0) produces incorrect
results for wedges.

2
̂(0; 1; 2) denotes the normal vector of the plane which is defined by the three given

points using the right hand rule. (
−→
0; 1) denotes the vector pointing from the first

point to the second point. To determine if vectors point into or away from each other,
the scalar product is used.

54 implementation

seed cells to start the growing process, and the second one is find-
ing a suitable stopping criterion. Without a stopping criterion, the
outside region would grow also to inside cells, because outside and
inside cells are connected through holes in the vehicle hull, e. g., at
air intakes.

Figure 4.2: Closeup view of undesired geometry. The surface structure of
undesired geometry is rough. Some of the cells are very exposed
and only have one neighbor. The idea is to start region growing
from these exposed cells.

Figure 4.2 shows a closeup view of typical outside cells. Notice
the exposed cells at the surface near the top. These can be used to
start region growing. The first step in the region growing approach is
therefore to identify surface cells. This is achieved using the existing
vtkDataSetSurfaceFilter. Afterwards, exposed surface cells having
only a few neighbors are identified as seed cells.

Finding a suitable stopping criterion is more difficult. One possi-
bility is to grow only into cells with weak support, i. e., cells with
relatively few neighbors. Inside cells have strong support, because of
their compact arrangement, whereas outside cells have weak support,
as they are thin and contain holes. This approach leads to practical
results, but misses small islands of outside cells that support each
other.

Another idea is to grow only into cells that are within a certain
distance from the seed cells. For datasets with rough geometry at the
inlets however, like the Toyota dataset, this grows into inside cells
near the inlet too.

The best results can be achieved by combining both stopping cri-
teria. The problem that some rough inside cells near the inlets are
labeled as outside cells is reduced, but remains.

The best thresholds for the Toyota dataset are as follows:

• Surface seed cells are chosen to be pyramids and tetrahedra
with only one neighbor, or hexahedra and wedges with up to
two neighbors.

• Starting from the seed cells, the outside region grows only into
pyramids and tetrahedra with up to two neighbors, or into hex-
ahedra and wedges with up to three neighbors.

4.2 preprocessing 55

• The maximum distance of any cell from a seed cell (seed distance)
is a parameter of the filter.

4.2.2.2 Depth probing

Identifying the outside cells by depth probing is based on two obser-
vations:

1. Outside geometry is thin in at least one direction whereas inside
geometry is compact, and therefore thick, in every direction.

2. Outside geometry consists mainly of flat wedges and hexahe-
dra, i. e., it is mainly composed of stacks of hexahedra and
wedges.

These observations are utilized by performing a depth probe starting
at every surface cell of the whole dataset. Figure 4.3 demonstrates this
for all cells within a zoomed cut through the dataset.

Figure 4.3: Illustration of depth probing within a zoomed cut at the tran-
sition from outside cells to inside cells. Depth probes are per-
formed from all surface cells. Short stacks of cells are classified
as outside (maroon chains).

Starting from all faces at the surface, iteratively jump to the neigh-
bor at the opposite face of this cell, creating a stack of neighboring
cells. Stop if there is no cell at the opposite face, or a maximum depth
(i. e., number of jumps) is reached. In the former case, the whole stack
is considered “thin” and therefore classified as being outside (maroon
chains).

Notice that the notion of an opposite face is only defined for all
faces of hexahedra and the triangular faces of wedges. All other cell
types have several opposite face candidates. One approach to solve
this problem would be to create cell trees instead of cell chains. In
the current problem however, almost all cells are either hexahedra or
wedges stacked with their triangular faces. The jump to the opposite
face is therefore defined as follows:

1. If the cell is a hexahedron, jump to the obvious opposite face.

56 implementation

2. If the cell is a wedge and the incoming face is a triangle, jump
to the opposite triangle.

3. In all other cases:

a) If there is no neighbor cell at any opposite face, report the
end of chain, i. e., a thin stack was found.

b) If there is exactly one neighbor cell at any opposite face,
jump to this candidate.

c) Otherwise stop as if the maximum depth is reached.

Figure 4.4: Example of some depth probes with different cell types. Leftmost figure: Traversing a
stack of hexahedra with a final pyramid. Second from left: Same situation for wedges
and a tetrahedron. Second from right: Stop depth probe, if multiple neighbors are
found at opposite faces. Rightmost figure: Continue depth probe, if only one opposite
face connects a neighbor.

Figure 4.4 illustrates and explains the different jump types. All
stacks are traversed from top to bottom. The leftmost figure shows
how a stack of hexahedra is traversed. The bottom cell is a pyramid,
but has no other neighbors. The traversal is therefore valid, and the
stack will be classified as thin/outside. The second figure from the
left demonstrates the same situation for a stack of wedges and a fi-
nal tetrahedron. The figure next to it illustrates that depth probing is
stopped, if multiple jumps are possible. The classification in this case
is thick/inside. The rightmost example shows the same situation, but
with only one possible jump at the wedge, which is then performed.
This results in a thin/outside stack again.

A cell may be visited multiple times, if it is close to multiple faces
on the dataset surface. It is classified thin/outside, if it is part of any
thin stack. Therefore, after all surface tiles have been processed every
cell which is part of any thin stack is classified as being outside.

Results for both approaches to remove undesired geometry can be
found in Section 5.1.

4.3 partitioning

The theory behind the following sections can be found in Section 3.4.
The partitioning algorithm of McKenzie et al. was implemented as
described in their paper. From the implementation perspective, the

4.3 partitioning 57

k-means algorithm differs only in the details from McKenzie et al.’s
algorithm. Both implementations allow choosing from different dis-
tance measures, e. g., the distance function introduced by Du and
Wang.

The implementation of the streamline bundling algorithm is subject
of the following sections.

4.3.1 Seeding

Random seeding is straightforward, uniform, random sampling from
all available grid points. The first idea to improve random seeding
was to assign different selection probabilities to the grid points ac-
cording to their velocity. Increasing the selection probability of grid
points with low velocity was expected to increase the overall coverage
of the dataset. In practice however, the results of later stages did not
improve because streamlines starting at low velocity grid points are
quickly dragged into higher velocity areas.

For interface seeding, the first step is to find grid points which are
part of in- or outlets. This is accomplished by first selecting all grid
points at the dataset surface using the built-in VTK algorithm vtkData-

SetSurfaceFilter. Afterwards, the surface normals of these surface
grid points are computed by averaging over the normals of the neigh-
boring surfaces. This functionality also comes with VTK (vtkPolyData-
Normals).

At this point the surface normal vector n(di) and velocity v(di)
of all surface grid points di are known. Grid points at in- or outlets
have a small angle between these two vectors, whereas for other grid
points this angle is close to 90°. Interface grid points can therefore be
identified by thresholding this angle:

|cos(α)| =
∣∣∣∣ v(di)
‖v(di)‖

· n(di)
∣∣∣∣ > cos(αthres) (4.1)

From all surface grid points which satisfy this condition, the de-
sired number is randomly chosen.

The number of required seed points depends on the flow field com-
plexity of the dataset, i. e., to cover many small and detailed areas of
the dataset, many streamlines are required. The number and place-
ment of seed points also depends on the application. If only the main
flow paths are sought-after – e. g., for a visualization application –
fewer streamlines starting only from inlets and outlets will suffice.

4.3.2 Stream tracing

Stream tracing is a standard method and is included in VTK. vtk-

StreamTracer features many parameters to control the integration

58 implementation

scheme, the integration direction, the step size, and the termination
conditions.

The stream tracing phase consumes a minor part of the total compu-
tation time. Therefore the decisions for these algorithmic parameters
can be made to improve streamline quality instead of stream tracing
speed. Using the best available integrator type (Runge-Kutta 4.5) and
integrating into both directions is therefore an easy decision.

The Runge-Kutta integrators can automatically adapt the step size
during integration. The step size parameters allow defining the min-
imum, the maximum, and the initial step size. These lengths can be
defined either absolute or relative to the current cell size.

The termination settings can and should be used to reduce curling
streamlines in dead zones. The best way to reduce these curls is to set
a high terminal speed. This instructs vtkStreamTracer to stop stream
tracing if the particle velocity drops below the given threshold.

4.3.3 Streamline bundling

Science is what we
understand well

enough to explain to
a computer, Art is

all the rest.
– Donald E. Knuth

The main idea, the basic algorithm, and the theoretic formulas for
bundling streamline segments were already described in Section 3.4.3.
This section will connect these theoretic pieces using pseudo code and
accompanying text.

4.3.3.1 Data types

Before discussing the algorithm, the following basic data types are
described: slice, segment, bundle, and bundle store.

slice A slice is the result of the intersection of a plane with a
streamline field (Function sliceAt). It contains a list of intersections
and the following associated data:

1. A reference to the intersected streamline (e. g., cell ID of the
streamline).

2. A reference to the streamline point index before the intersection,
e. g., 5 if the streamline is intersected between its 5

th and 6
th

point.

3. The coordinates of the exact intersection.

4. The distance of the exact intersection to the slice point (the ra-
dius).

5. Interpolated values of all associated data (e. g., velocity, pres-
sure. . .) for the exact intersection.

As slices are just temporary structures, only insertion and iteration
are required. The list of intersections is therefore best within a dictio-
nary sorted by radius, because this is the usual iteration order.

4.3 partitioning 59

A point index on a
streamline is not the
point ID. It is an
index into the cell
array of this
streamline. The cell
array stores the
point IDs.

segment A segment specifies a part of a streamline and consists
of a reference to the streamline (cell ID), and the segment index inter-
val. The interval is specified by the first and last point index on this
streamline.

bundle A bundle is a list of segments. As the segments are usually
accessed by streamline cell ID, a dictionary is a good choice. The
dictionary must support multiple entries with the same key, because
different segments of the same streamline might be part of the same
bundle.

bundle store A bundle store is a collection of bundles. In the
current implementation, it also maintains an inverse map from point
IDs to their respective bundles.

4.3.3.2 Global bundling algorithm

The global bundling loop is simple. It traces bundles and adds them
to the bundle store until a stopping criterion is met (Algorithm 4.1).

Algorithm 4.1: Streamline bundling overview
Input: Streamlines
Output: Streamline segment bundles

1 perform prototype selection preprocessing;
2 repeat
3 protoPoint← select next prototype starting point;
4 bundle← traceBundle(protoPoint);
5 insert bundle into bundleStore according to collision strategy;
6 until any bundling stopping criterion met;

line 1 : Currently two prototype selection schemes are in use: sub-
sampling and random selection. The former one requires expen-
sive preprocessing, whereas the latter one requires none at all.
For a theoretic discussion of prototype selection schemes see
Section 3.4.3.4.

Implementation of these schemes is straightforward, but there
is one implementation detail: For the initial slices during proto-
type subsampling, it is advisable to use stricter similarity thresh-
olds than for the following incremental slices. This ensures that
the assigned rating of an initial slice is a good estimator of the
bundle size not only for this one slice, but is also maintained
after a few incremental steps. Without this “reliable start”, a
subsampling slice could contain many streamlines at the very
edge of similarity. After a few incremental slices, most of these

60 implementation

would be dropped from the bundle because of dissimilarity. In
short, the initial rating would be less expressive.

lines 3 and 4 : After a prototype point has been selected, it is used
as a starting point for tracing a bundle. Function traceBundle

is treated in the following section.

line 5 : Finally the bundle is inserted into the bundle store accord-
ing to the bundle collision strategy. All three collision strategies
described in Section 3.4.3.7 are supported.

line 6 : No stopping criterion is required for bundling with subsam-
pling prototype selection. Streamline bundling is simply stopped
after all prototype candidates are processed. In order to sup-
port random prototype selection, there are three options to stop
the global bundling loop:

1. When a maximum number of bundles is reached.

2. When a minimum bundle coverage, i. e., the percentage of
streamline points which are bundled, is reached.

3. By user intervention (manual stop).

4.3.3.3 Bundle tracing function
We think in

generalities, but we
live in details.

– Alfred North
Whitehead

Bundling from a single prototype point is done by performing an
initial slice and moving it along the prototype streamline as described
in Section 3.4.3.2. Figure 4.5 illustrates the actual process in 2d.

Figure 4.5: Two-dimensional view of the formation of a bundle showing
streamlines (curved lines) with prototype streamline (thick curved
line), streamline points (dots), initial slice (vertical blue line), incre-
mental slices (other vertical lines), stop slices (maroon lines), the
incremental slice order (numbers), a lost mate (dashed line), and
the points in the final bundle (green).

At the initial prototype point (blue circle) an initial slice (blue line)
is created. In the subsequent steps, incremental slices are performed
along the prototype streamline. The incremental slices are carried out
at the prototype streamline points, and initially alternate into both

4.3 partitioning 61

directions. The expansion of the bundle proceeds until a stopping
criterion for each direction is met.

Alternating the initial directions aims to improve the bundles in
case of prototype selection by subsampling. Growing into only one di-
rection from “good” initial slices leads to smaller bundles than grow-
ing simultaneously into both directions. After the initial slice was per-
formed (0), the next incremental slice is at its right (1) and loses one
mate at the top. The next incremental slice (2) is immediately left of
the initial slice and preserves all mates. The third incremental slice (3)
would lose many non-parallel mates. It is therefore not incorporated
into the bundle and bundling is stopped in this direction. The follow-
ing three slices (4, 5, and 6) are performed into the only remaining
direction until finally the seventh slice stops the bundle tracing. All
green points are part of the fresh bundle.

Function traceBundle lists the bundle tracing algorithm.

Function traceBundle(protoPoint)
Input: protoPoint
Output: bundle

1 set initial slice radius in sliceParameters;
2 initialSlice← sliceAt(protoPoint, sliceParameters);
3 bundle← createInitialBundle(initialSlice);
4 adapt slice radius in sliceParameters according to
initialSlice;

5 repeat
6 oldBundle← bundle;
7 pick next slicePoint;
8 slice← sliceAt(slicePoint, sliceParameters);
9 bundle← mergeBundleWithSlice(bundle, slice);

10 if any slicing stopping criterion is met by bundle then
11 bundle← oldBundle;
12 stop iteration into current direction;
13 end
14 until iteration stopped for both directions;
15 clear bundle if it does not meet the minimum requirements;
16 return bundle;

line 1 : The slice parameters contain the similarity thresholds. For
the initial slice, a maximum bundle radius is employed. Using
no bundle radius (i. e., complete slice through the whole dataset)
is also supported, but slow for large datasets.

line 2 and 3 : After performing the initial slice (see Section 4.3.3.4),
the initial bundle is constructed from it (see Section 4.3.3.5).

line 4 : For incremental slices, the slice radius is given in relation
to the actual radius of the initial slice. The ratio is a parameter.

62 implementation

Notice that the actual radius of the initial slice is usually smaller
than the maximum initial bundle radius. Another parameter
controls the cone-shape of the final bundle, e. g., a value of 2.0
allows the bundle radius to increase up to twice the radius of
the initial slice.

line 6 : Incremental slicing starts by backing up the current bundle
to support rollback functionality.

line 7 : Afterwards, the next slice point is picked as explained in
Figure 4.5 and its accompanying text.

lines 8 and 9 : After the incremental slice has been performed (see
Section 4.3.3.4), it is merged with the current bundle (see Sec-
tion 4.3.3.6).

lines 10 to 12 : If the resulting bundle meets any slicing stopping
criterion, expansion in the current direction is stopped and the
merge is rolled back. Slicing stopping criteria are discussed in
Section 3.4.3.6

line 14 : The bundle tracing ends if expansion is stopped in both
directions.

line 15 : Finally, if the resulting bundle does not meet minimum
requirements, the bundle is cleared and an empty bundle is
returned. Currently implemented parameters are:

• The minimum number of slices the bundle consists of.

• The minimum length of the bundle in world coordinates,
measured along the prototype streamline.

• The minimum number of streamline segments in the bun-
dle.

4.3.3.4 Slice creation function
If you had done

something twice,
you are likely to do

it again.
– The Unix

Programming
Environment, by
Brian Kernighan

and Bob Pike

A slice is created by intersecting a plane, with dense streamlines. The
plane is given by a point and its normal vector. Function sliceAt

shows this process in detail.

line 1 : Most of the time, a slice is only required to contain inter-
sections up to the given radius from the slice point. Therefore
only a subset of all streamlines segments needs to be consid-
ered for intersection. A kd-tree over all streamline points is con-
structed in order to quickly find all points within the given ra-
dius. These points are then mapped to all streamline segments
that lie within the radius.

line 2 : The slice plane through the given slice point di is uniquely
defined by the slice point position x(di) and its normal vector
v(di)/‖v(di)‖.

4.3 partitioning 63

Function sliceAt(point, sliceParameters)
Input: point, sliceParameters
Output: slice

1 closeSegments← find streamline segments within given radius;
2 determine slicePlane from point;
3 foreach segment in closeSegments do
4 intersections← intersect segment with slicePlane;
5 foreach intersection in intersections do
6 append intersection and interpolation data to slice;
7 end
8 end
9 return slice;

lines 3 and 4 : Each of the close segments is then intersected with
the slice plane, by iterating over the individual line pieces of the
segment. This can result into multiple intersections of the same
streamline, if the streamline segment is curled.

lines 5 to 7 : All found intersections are stored within the slice, to-
gether with the interpolated values at the intersection points.

4.3.3.5 Initial bundle creation function

During initial bundle creation, the entries of the initial slice are pro-
cessed with increasing distance from the prototype point. The image
of Figure 4.6 (left) shows this principle.

mate total ratio

4 5 0.8
7 9 0.78

10 13 0.77

10 14 0.71

11 16 0.69

Figure 4.6: Depiction of initial bundle creation (left). The circle shows the 2d

projection of an initial slice with its initial slice radius (black circle).
The intersected streamlines are represented by points which are
numbered in processing order. Slice point (blue), mate points (ma-
roon), and non-mate points (black) are also highlighted. The table
at the right demonstrates the evolution of the slice mate ratio (“pu-
rity”) of the bundle. Bundle creation stops after point 16, when
the mate ratio drops below 0.7.

Starting with the prototype point 1 (blue), the sliced points are
added to the bundle if they are similar (mates), and ignored if not.

64 implementation

Counters keep track of the number of mates (maroon) and the num-
ber of total entries. Bundle expansion stops early, if the ratio “num-
ber of mates to number of total entries” falls below a pre-specified
threshold. This slice mate ratio allows to specify the initial bundle pu-
rity. Lowering the mate ratio enables non-circular bundles, but at the
cost of introducing noisy bundles.

The table in Figure 4.6 (right) shows how the slice mate ratio de-
velops for one specific example. Table entries are only given if an
additional non-mate was found (i. e., if the ratio decreases). The pro-
cessing is stopped if the mate ratio drops below 0.7. In the end, the
initial bundle contains the blue and all maroon segments.

Function createInitialBundle explains the process using pseudo
code. Implementation details are given in the following code descrip-
tions.

Function createInitialBundle(initialSlice)
Input: initialSlice
Output: bundle

1 totalCnt← 0;
2 mateCnt← 0;
3 foreach entry in initialSlice ordered by radius do
4 isIntersecting← does entry intersect an existing bundle?;
5 isSimilar← is entry similar to slice point (initial settings)?;
6 isMate← isSimilar and not(isIntersecting);
7 if isMate then
8 insert line segment of entry to bundle;
9 mateCnt← mateCnt + 1;

10 end
11 totalCnt← totalCnt + 1;
12 if mateCnt

totalCnt < minimum initial mate ratio then
13 Break;
14 end
15 end
16 return bundle;

line 4 : An initial slice entry might intersect segments of an exist-
ing bundle. These segments are never considered mates for the
initial slice, regardless of the collision strategy. The intersecting
segments are identified by querying the bundle store.

line 5 : Similarity measures were discussed in Section 3.4.3.5. In the
current implementation a threshold parameter for each of the
discussed similarity measures is provided. The final similarity
decision is a logical and of the individual similarity threshold
decisions.

4.3 partitioning 65

lines 7 to 10 : As bundle tracing does not introduce new points
into the dataset, only points lying completely within two slices are
part of the final bundle. For example, if a streamline is inter-
sected between the point at index 7 and the point at index 8,
the interval is (8, 7) and has length −1. If then, at an incremen-
tal slice, the same streamline is intersected between index 10

and index 11, the end-index of this interval will be shifted to be
10, making the interval (8, 10).

lines 12 to 14 : Application of the minimum initial mate ratio (pu-
rity) as discussed immediately before this listing.

4.3.3.6 Bundle-slice merging function

The merging of slices into bundles follows the same structure as the
initial bundle creation described in the previous section. The differ-
ences are highlighted in Function mergeBundleWithSlice and the fol-
lowing descriptions.

Function mergeBundleWithSlice(oldBundle, slice)
Input: slice
Input: oldBundle
Output: newBundle

1 mateCnt← 0;
2 totalCnt← 0;
3 foreach entry in slice ordered by radius do
4 breakBecauseIntersection← handle Intersections;
5 isSimilar← Is entry similar to slice point?;
6 isMate← isSimilar and not(breakBecauseIntersection);
7 if isMate then
8 if line of entry exists in oldBundle then
9 interval← find closest interval on line;

10 if distance(entry, interval) < maximum line segment
distance then

11 enlarge interval to include entry;
12 insert segment for interval into newBundle;
13 mateCnt← mateCnt + 1;
14 end
15 end
16 end
17 totalCnt← totalCnt + 1;
18 if mateCnt

totalCnt < minimum incremental slice mate ratio then
19 Break;
20 end
21 end
22 return newBundle;

66 implementation

line 4 : The check for intersections with existing bundles is differ-
ent from initial bundle creation, because the intersections are
handled according to the collision strategy (see Section 3.4.3.7):

keep existing bundles : Set breakBecauseIntersection to
true, if a collision was found.

remove existing bundles if worse : Remove the existing
bundle, if it has less mates then the currently traced bundle.
Set breakBecauseIntersection to true, if a collision with
an existing, but better bundle was found.

overwrite existing bundle if worse : Set breakBecause-
Intersection to true, if a collision with an existing, but
better bundle was found. Otherwise set it to false. Over-
writing is performed automatically during insertion into
the bundle store.

line 8 : If a slice entry is found to be a mate, a check if the streamline
is already a mate in the existing bundle is performed. (A mate
must be similar in all slices).

lines 9 and 10 : For helix-shaped streamlines multiple intervals of
the same streamline can be segments in the same bundle. There-
fore different intervals for the same streamline need to be main-
tained. If there are too many points along the streamline be-
tween the closest interval and the current intersection, the entry
is not considered a part of an existing interval. Hence, it is not
included in the bundle.

lines 11 and 12 : Once a valid line and interval is found, the inter-
val is extended to include the current entry, and the extended
segment is inserted into the new bundle.

lines 18 to 20 : The purity of the individual bundle slices can be
controlled – similar to the initial slice – using the incremental
slice mate ratio.

4.3.4 Mapping bundles to regions

The theory for this section was treated in Section 3.4.4. The implemen-
tation is presented in Algorithm 4.2.

lines 1 to 10 : The assignment of each cell to its closest streamline
bundle is straightforward using vtkKdTreePointLocator, vtk-
CellCenters, and standard VTK data structures.

line 5 : The threshold distance is a parameter of the algorithm. High
values assign all cells to their closest bundles.

4.4 mapping regions to a graph 67

Algorithm 4.2: mapBundlesToRegion
Input: bundles
Input: mesh
Output: meshPartition

1 build kd-tree from all bundled points in bundles;
2 foreach cell in mesh do
3 bundlePoint← find closest point to cell center in bundles by

utilizing kd-tree;
4 bundle← bundle of bundlePoint;
5 if distance(cell center, bundlePoint) < threshold then
6 mark cell as belonging to bundle in meshPartition;
7 else
8 mark cell as not belonging to any bundle;
9 end

10 end
11 foreach cell in mesh do
12 if cell does not belong to any region in meshPartition then
13 grow a new region from cell;
14 mark all cells of the new region in meshPartition;
15 end
16 end
17 return meshPartition;

lines 11 to 16 : If cells remain unassigned, simple region growing
is performed until all cells are assigned to a region. Notice that
only the first visited cell of each connected, unclustered region
triggers a region growing operation. After this operation all
other connected cells belong to the new region and do not start
further region growing.

4.4 mapping regions to a graph

To compute the vertex and edge values described in Section 3.5, some
implementation problems have to be solved. Basically the algorithm
needs to iterate over all cells and update the according vertex data. In
addition it needs to find interfaces to neighboring cells and update
the according edge data (summation phase).3

The final result should be a directed graph, with edge directions
matching the net flow rates between neighboring regions. Notice that
the individual interfaces between two regions can have different net

3 Usually numerical issues need to be addressed if many small values are accumulated
into a grand sum. This is even more true for sums of squared values which are
required for running standard deviation computations. The results of the “naive”
summation where therefore compared to results of summations within binary trees.
No differences where found, because the accumulated values are all within the same,
small magnitude.

68 implementation

flow directions. Therefore the edge direction is unknown until the
summation of all interface flow rates has been finished. In addition,
the naive approach would count each interface flow twice, once from
cell ci to its neighbor cj and once from cj to its neighbor ci. To solve
these problems the following approach was chosen:

• Each region is strictly linked to one fixed vertex by using or-
dered IDs.

• During the summation phase, a undirected graph is used. All
edges are implicitly oriented from higher to lower vertex ID. This
solves the edge orientation problem.

• During the summation phase, all interfaces from regions with
lower IDs to regions with higher IDs are ignored. This solves the
double counting problem.

• After the summation phase, the undirected graph is converted
into a directed graph. This is achieved by orienting edges with
positive flow rate from high vertex ID to low vertex ID and vice
versa.

The pseudo code is presented in Algorithm 4.3. There are no ad-
ditional descriptions, as the everything has been explained either by
Section 3.5 or the introductory text above.

Algorithm 4.3: mapRegionsToGraph
Input: partitionedMesh
Output: dirGraph

1 for each region create an empty vertex in undirGraph;
2 foreach cell in partitionedMesh do
3 region← region of cell;
4 vertex← vertex of region;
5 update vertex with data of cell;
6 foreach neighborCell of cell do
7 neighborRegion← region of neighborCell;
8 neighborVertex← vertex of neighborRegion;
9 if ID of region > ID of neighborRegion then

10 face← face between cell and neighborCell;
11 create/update undirEdge between vertex and

neighborVertex;
12 end
13 end
14 end
15 optionally convert undirGraph to dirGraph;
16 return dirGraph;

4.5 graph collapse 69

4.5 graph collapse

Section 3.7 treats the theory of graph collapse and explains the un-
derlying edge collapse operation. Graph collapse was implemented
for undirected graphs in this thesis.4 Several implementation problems
arise from the way VTK stores and manages undirected graphs. In-
stead of describing these problems and their solutions here, the sim-
pler implementation for directed graphs is listed in Algorithm 4.4. The
individual steps are thoroughly explained by Figure 3.8 and its ac-
companying notes.

Algorithm 4.4: graphCollapse
Input: inGraph
Input: targetVertexCnt
Output: outGraph

1 outGraph← copy of inGraph;
2 initialize errorList;
3 foreach edge in outGraph do
4 errorList(edge)← compute collapsing error of edge;
5 end
6 repeat
7 edge← edge with lowest collapsing error;
8 srcVtx← source vertex of edge;
9 dstVtx← destination vertex of edge;

10 edgePairList← edges to/from shared neighbor vertices;
11 foreach edgePair in edgePairList do
12 mergedEdge← merge edgePair into new edge connecting

srcVtx and shared neighbor;
13 insert mergedEdge into outGraph and into newEdgesList;
14 remove old edges in edgePair from outGraph;
15 end
16 remove edge from outGraph;
17 merge srcVtx and dstVtx into srcVtx;
18 delete (now isolated) dstVtx;
19 update collapsing error in errorList for all edges in

newEdgesList;
20 clear newEdgesList;
21 until number of vertices in outGraph 6 targetVertexCnt;
22 return outGraph;

70 implementation

4.6 user interface

For a list of all the
ways technology has
failed to improve the
quality of life, please

press three.
– Alice Kahn

Usually VTK filters are chained together using C++ code or any of the
supported wrapper languages (e. g., Python, Tcl, and Java). Alterna-
tively VTK filters can be made available to ParaView via plugins.

The problem with these approaches is the way VTK chains the filters
by default. It basically has two modes, namely

1. Store all intermediate data to Random Access Memory (RAM),
and

2. Store no intermediate data.

The length of the filter chain and size of the dataset makes both of
these approaches unsuitable for this thesis. If all intermediate data of
processing large datasets within long filter chains is stored to RAM,
memory becomes short quickly. If no intermediate data is stored at
all, even minor changes to late filters lead to the time intense re-
computations of the whole chain. To circumvent these problems, user
interaction wrappers for the filters were introduced.

4.6.1 User interaction wrappers

The contract for User Interface (UI) wrappers is defined in the C++ in-
terface IUIWrapper. Implementations of this interface wrap chainable
VTK functionality and provide a unified interface to the UI layer. Each
instance usually wraps exactly one VTK filter. The interface supports
to set the mode of loading (“From file”, “From RAM”, “From both”, or
“None”) and saving (“To file”, “To RAM”, “To both”, or “None”). In
addition, the interface supports unified access to filter parameters,
which are split into simple parameters and advanced parameters. The in-
terface also specifies two actions, namely,

• update, which recomputes or loads the result of the underlying
VTK filter, and

• render, which renders this result.

The usual use case is to define a wrapper chain, which implicitly
defines a filter chain. After the user has selected the parameters for
saving, loading, and processing, a call of update triggers the actions
described in Algorithm 4.5.

This approach enables the user to tune saving and loading of in-
termediate results very precisely. A good default is to “save to” and
“load from” file, and to recompute if any parameter has changed.
Files are written to a user specified folder using fixed names for each
wrapper. The UI wrappers are designed mainly for data processing.

4 This is mainly because graph collapse was implemented before the converter from
undirected to directed graphs.

4.6 user interface 71

Algorithm 4.5: userInterfaceUpdate
Output: result

1 if result should be loaded and is loadable then
2 result← load from file or RAM, according to load settings;
3 else
4 inputs← trigger update on input wrappers;
5 result← recompute this wrapper using inputs;
6 save result according to save settings;
7 end
8 return result

The render action is only intended to preview the result. In-depth ex-
ploration of results is best accomplished by utilizing ParaView.

4.6.2 Graphical user interface

Read the directions
and directly you will
be directed in the
right direction.
– Doorknob, Alice
in Wonderland [4]

The front end for the user interaction wrappers was implemented us-
ing Qt [26]. Initially, the user selects one of the possible paths defined
in Figure 3.1. This automatically constructs and chains the according
filter wrappers. The following screens allow to jump from wrapper to
wrapper using the “Previous” and “Next” buttons. Figure 4.7 shows
an example screen for the surface clean wrapper. On each screen, the
settings of the wrapper can be adapted, and the update and render

actions can be triggered. The console at the bottom shows progress,
debug, and error messages.

72 implementation

Figure 4.7: Screenshot of the Qt-GUI with simple parameters, advanced parameters, autosave and -load
parameters, action buttons, and console output.

5
R E S U LT S

He [Taniyama] was
gifted with the
special capability of
making many
mistakes, mostly in
the right direction. I
envied him for this
and tried to imitate
him, but found it
quite difficult to
make good mistakes.
– Goro Shimura
(Nova program on
Fermat’s Last
Theorem)

This chapter starts with briefly discussing the results and limitations
of the preprocessing stage described in Section 3.3.1.

Afterwards, the applicability of streamline bundling and McKenzie
et al. clustering to resistance graph simulation is evaluated. This is
followed by the description of an envisioned flow graph exploration
tool that is based on streamline bundles. Both of these evaluations
are performed on the Toyota dataset. Finally the result of streamline
bundling on a centrifugal pump dataset is briefly discussed.

All computations were performed on a laptop with an Intel Core
2 Duo Central Processing Unit (CPU) with 2.4 GHz and 4 GB of RAM.
All stated calculation durations apply to this setup and do not include
the time for saving intermediate data to the hard disk.

5.1 preprocessing results

In Section 3.3.1 and Section 4.2.2 two approaches for removing unde-
sired outside geometry where discussed: region growing and depth
probing. The results for each of them will be discussed in the follow-
ing sections.

5.1.1 Region growing

The major problem with region growing is the removal of inside cells
near complex interface areas. No satisfying criterion could be derived
to stop regions from growing into these areas. For the Toyota dataset
all front inlets are problematic zones in this sense. The hybrid ap-
proach described in Section 4.2.2.1 leads to the results shown in Fig-
ure 5.1.

Figure 5.1a shows the result for region growing from exposed cells
up to a seed distance of 50. Not all outside cells were removed, but
some inside cells around the inlets already are. With a seed distance
of 85, almost all outside cells on the hood are removed, although
there is still outside geometry left at the vehicle bottom (Figure 5.1b).
In addition, the number of removed inside cells at the problematic
inlets is even higher.

The calculation durations where about 2 min for a seed distance of
50 and about 3 min for a seed distance of 85. Exact durations cannot
be given, as they varied due to the unpredictable handling of memory
requests by the Operating System (OS).

73

74 results

(a) Maximum seed distance of 50. (b) Maximum seed distance of 85.

Figure 5.1: Results of the region growing approach. Figure (a), shows the result for a seed distance
of 50. Not all outside cells are removed as desired (green cells on the hood), but some
inside cells already are (top right corner of the bottom inlet). Figure (b) shows the
same situation for a seed distance of 85. Outside geometry is largely eliminated, but
the problematic areas at the inlets lack even more inside cells.

5.1.2 Depth probing

The second approach for removing outside geometry was depth prob-
ing as discussed in Section 3.3.1 and Section 4.2.2.2. It removes almost
all outside cells for the Toyota dataset, which is illustrated in Fig-
ure 5.2.

Figure 5.2a shows the outcome of depth probing if the maximum
depth is set too low, in this case 3. Stacks that are higher than max-
imum depth are left untouched by the algorithm. Figure 5.2b shows
the outcome for the correct maximum depth for this dataset (5). The
image also demonstrates that depth probing is well suited for clean-
ing the Toyota dataset and similar datasets.

(a) Maximum depth of 3. (b) Maximum depth of 5.

Figure 5.2: Results of the depth probing approach. Figure (a), shows the result for maximum depth
of 3. Some stacks of outside cells are too high and are not removed as required (green
spots on the hood). Figure (b) shows the same situation for a maximum depth of 5. The
outside geometry is eliminated almost entirely without affecting any inside cells near
the inlets.

Nevertheless, two problems remain with depth probing. Figure 5.3
illustrates both of them.

The first problem (Figure 5.3a) is created by groups of self support-
ing cells, i. e., several stacks of cells with neighboring pyramids or
tetrahedrons at either end. These problems could be eliminated by

5.2 applicability for simulation 75

(a) Self supporting outside geom-
etry remains.

(b) Thin inside geometry removed.

Figure 5.3: Problems of the depth probing approach.

running the depth probing algorithm twice, thus removing the cells
from a perpendicular direction. However, as such islands are very
rare, this was not carried out.

The second problem is more severe. Imagine inside geometry that
is thin itself, i. e., that contains stacks of inside cells that are lower
than the maximum depth. All stacks of these type are removed by
the depth probing algorithm, even if this is not desired. The depth
probing approach is therefore useless for these datasets.

Fortunately there is only a small region with thin inside geometry
in the Toyota dataset. A pipe is running near the rear bottom of the
dataset and generates thin geometry within a small area. Figure 5.3b
shows how cells were erroneously removed from that area.

5.2 applicability for simulation

The best evaluation for the resistance graph simulation application
would be direct simulation. However, as stated before, a resistance
graph simulator is not available, as this thesis is a part of its prelimi-
nary work. In consequence, this section can only evaluate the funda-
mental properties of good flow graph partitions: spatial compactness
and similarity of velocities and pressures.

Usually, these two properties contradict each other. More compact
clusters are less similar and vice versa. Therefore, clustering algo-
rithms require the possibility to trade them off against each other.
For McKenzie et al.’s approach, this is accomplished through the dis-
tortion function. For streamline bundling, several of the described
parameters influence this trade off.

In the next section the employed error measures are explained.
The following section treats the choice of parameters for the simu-
lation application. Afterwards, the general characteristics of McKen-
zie et al.’s approach and streamline bundling are illustrated with the
help of a standard example. Finally, the error measures for different
operating points and region counts are compared briefly.

76 results

5.2.1 Error measures

The following error measures are computed on whole flow graphs
and measure the global error of the underlying partition. As the best
tradeoff between spatial closeness, velocity similarity and pressure
similarity is not known, they will be treated by three separate error
measures.

The spatial, velocity and pressure errors of the flow graphs (Ex(G),
Ev(G) and Ep(G) respectively) are defined as global SSEs. Ev(G) was
already defined in Section 3.8, in the context of choosing good candi-
date edges during the graph collapse stage. The spatial and pressure
errors are defined analogously as

Ex(G) =
∑
vi∈V
‖Ex(vi)‖, where Ex(vi) = σ

2
x (vi)V(vi), (5.1)

and

Ep(vi) = σ
2
p(vi)V(vi). (5.2)

5.2.2 Parameters for streamline bundling

One big disadvantage of streamline bundling is the large amount of
required parameters, even if the parameters are quite comprehensi-
ble and allow a great level of control. Thankfully, most parameters
never need to be modified, i. e., have well performing defaults. The
following paragraphs provide guidelines for all available parameters.

parameters for seeding and streamtracing The simula-
tion application requires a complete partition of the dataset. This can
only be achieved by dense streamlines traced from dense seed points.
For the Toyota dataset this leads to hybrid seeding with 3000 random
points and 5 % of all interface points (cos(αthres) = 0.8). Increasing
these values will improve the result slightly, but also increases the
processing time considerably.

The parameters for streamline tracing are explained in detail within
the VTK documentation.1 It is important to trace into both directions
and to set a high terminal speed (e. g., 0.5 m/s) to prevent curls. The
streamlines should be as long as possible (maximum propagation
length: 5 m, maximum step count per line: 10 000). The required time
for stream tracing can be reduced by increasing the step size param-
eters from the defaults (initial: 0.5 cells, minimum: 0.05 cells, maxi-
mum: 0.75 cells).

parameters for streamline bundling The different proto-
type selection and bundle collision strategies were discussed in Sec-

1 It can currently be found at http://www.vtk.org/VTK/help/documentation.html.

http://www.vtk.org/VTK/help/documentation.html

5.2 applicability for simulation 77

tion 3.4.3.4 and Section 3.4.3.7, respectively. To reach maximum cov-
erage a good choice is to overwrite existing bundles if worse.

The target is to create compact and similar regions. These are cre-
ated from short, thick bundles of parallel streamlines. The main pa-
rameter to create short, thick bundles is the “lost mate ratio” (0.75).
To avoid bent bundles, the total change of the prototype direction is
restricted to 15°.

The initial bundle purity (“initial slice mate ratio”) is set to 0.9 and
the size of the initial slice is restricted by the “initial slice radius” to
0.2 m. The maximum slice radius is set to twice the initial radius in
order to prevent extremely cone-shaped bundles.

Some outliers within the individual slices can be tolerated. There-
fore only the spatial proximity criterion – i. e., the radius – given in
Equation 3.3 is used for choosing mates, while all other criteria are
neglected.

parameters for the remaining steps All cells need to be
mapped to a region. Therefore no threshold-radius was employed
and each cell was mapped to its spatially closest bundle.

One could see this
approach as a
sophisticated way of
initializing a simple
region merging
algorithm.

The number of regions – and therefore the number of flow graph
vertices – cannot be chosen in advance for the streamline bundling
algorithm. Hence, graph collapse operations are required to thin the
graph to the final number of vertices. The employed version of graph
collapse has no parameters (see Section 3.7 and Section 4.5).

5.2.3 Parameters for McKenzie et al.

The two main parameters of McKenzie et al.’s algorithm are the tar-
geted number of regions and the number of iterations. The former is pre-
determined by the setup, the choice of the latter is discussed in the
Section 5.2.4.4.

Two distortion functions were selected to be included in the eval-
uation: McKenzie et al.’s own velocity-only distortion function (see
Equation 2.10) and another function suggested within their paper,
namely Du and Wang’s distance function (see Equation 2.8). For Du
and Wang’s distance function the user interface provides a velocity
influence factor between 0.0 and 1.0. Setting it to 0.5 leads to w = 1

2L2

as advocated by Du and Wang, 1.0 sets w = 0, and 0.0 translates to
w = 5

2L2
. The remaining values are linearly interpolated.

5.2.4 Standard example results

Nine configurations of the Toyota dataset were evaluated in this work.
These configurations arise from partitioning the datasets of the three
available operating points (30 km/h, 190 km/h and vmax) into 100, 500

78 results

and 1000 regions. This section discusses the central setup of this three-
times-three configuration table – 190 km/h and 500 regions – in detail.

5.2.4.1 Naive cuboid partitioning

By utilizing the error measures introduced in Section 5.2.1, the results
of the different approaches can be compared to each other. However,
they do not allow statements about the absolute quality of the results.

To enable absolute statements to some extent, a naive partition was
created to provide baseline errors. The partition is created by splitting
the dataset into cuboids of constant size, as depicted in Figure 5.4.
The dataset is split into 7, 10 and 11 evenly spaced intervals in x-, y-
and z-direction, respectively. After removing all empty cuboids, this
results in 506 regions; close enough to 500 to qualify for comparison.

Figure 5.4: Partition of the dataset into 506 cuboids of constant size. This
partition is used for comparison purposes.

Naturally, this partition leads to regions that are spatially very com-
pact. The velocity and pressure SSEs on the other hand should offer
plenty of space for improvement.

5.2.4.2 Error evaluation for the standard example

Table 5.1 shows the algorithms and settings for different setups. In
combination with the previous discussion on parameter selection, the
setups are completely defined.

Figure 5.5 shows a graphical illustration of the SSEs for all setups.
The three error measures are shown in three separate groups, which
are individually normalized to the SSEs of the naive cuboid partition.
Table 5.2 contains the according absolute values of the individual
bars.

The first observation is that no approach can match the compact-
ness of the naive partition (maroon). This is because the naive parti-
tion has a very good spatial layout. The higher spatial errors of the

5.2 applicability for simulation 79

Color Description

Naive cuboid partition
Streamline bundling with subsampled prototype selection
(5%). Leads to ≈ 3100 bundles. Then graph collapse.
Streamline bundling with random prototype selection to
3100 bundles. Then graph collapse.

McKenzie et al. with DuWang distortion function (velocity
influence 0.0, w = 5/L2). 5 Iterations.

McKenzie et al. with DuWang distortion function (velocity
influence 0.25, w = 2.5/L2). 5 Iterations.

McKenzie et al. with DuWang distortion function (velocity
influence 0.5,w = 1/L2). 5 Iterations.

McKenzie et al. with DuWang distortion function (velocity
influence 1.0, w = 0). 20 Iterations.

McKenzie et al. with velocity only distortion function. 20

Iterations.

Table 5.1: The setups (algorithms, settings and associated colors) for error
evaluation.

0

2

4

6

Spatial SSE.
1.0 = 0.0025 m2

Velocity SSE.
1.0 = 28.65 m2/s2

Pressure SSE.
1.0 = 7639 Pa2

N
or

m
al

iz
ed

SS
E

Naive cuboid
SLB: Subsampled prototype selection
SLB: Random prototype selection
McK.: DuWang, Vel.infl.: 0.0, w = 5/L2, 5 Itr.
McK.: DuWang, Vel.infl.: 0.25, w = 2.5/L2, 5 Itr.
McK.: DuWang, Vel.infl.: 0.5, w = 1/L2, 5 Itr.
McK.: DuWang, Vel.infl.: 1.0, w = 0, 20 Itr.
McK.: Velocity only, 20 Itr.

Figure 5.5: Absolute SSE values for different approaches and settings. All three error groups are
normalized to the SSEs of the naive cuboid partition. See Table 5.2 for the absolute
values.

80 results

Color Description Spatial Velocity Pressure
(m2) (m2/s2) (Pa2)

Naive cuboid 0.0025 28.65 7639

SLB: Subsampled 0.0081 18.36 7183

SLB: Random 0.0083 18.19 7526

McK: DuWang-0.00-5 0.0056 17.62 6869

McK: DuWang-0.25-5 0.0067 18.73 6813

McK: DuWang-0.50-5 0.0092 19.69 7495

McK: DuWang-1.00-20 0.0156 19.54 10 352

McK: VelocOnly-20 0.0146 4.15 5347

Table 5.2: Absolute SSE values for different approaches and settings. See Fig-
ure 5.5 for a graphical representation.

other approaches are therefore not as inadequate as it may seem, they
are expected.

Another critical observation concerns McKenzie et al.’s approach
with Du and Wang’s distortion function; the velocity and pressure
errors only depend slightly on the influence factor.2

Also notice, that no approach could decrease the velocity SSE nearly
as well as McKenzie et al.’s in combination with their own velocity
distortion function. This is also true for the Du and Wang distance
function with no spatial influence (w = 0, i. e., the function at its
velocity bias limit). The price for McKenzie et al.’s result is the high
spatial SSE.

5.2.4.3 Typical region shapes
Best insight can be
gained by directly

examining the
partitions in

ParaView. Use the
threshold filter to

isolate regions.

The different error structures shown in the previous section provoke
the examination of the region shapes for the different setups. To pro-
vide a good insight into the kinds of regions produced, the overall
clustering result of each setup is shown together with one typical
sample of an isolated region.

Figure 5.6a shows the partition created by the random streamline
bundling approach, before graph collapse. The dataset is segmented
into 3100 partitions (one partition per identified bundle). The param-
eters forced the algorithm to find thick, straight bundles. Therefore
the basic regions, which are covered by bundles, are shaped similar
to cylinders. However, because of outlier cells which are not directly
covered by a bundle, these basic regions can grow into more complex
shapes. Figure 5.6b shows a typical one, the elongated bulge at the
bottom right is due to uncovered outlier cells.

2 There is room for even greater spatial influence by using higher values for w. How-
ever, the need for this was not anticipated (currently a “velocity influence factor” of
0.0 yields a four times higher w than recommended by Du and Wang.

5.2 applicability for simulation 81

(a) Whole partition. (b) Isolated
region.

Figure 5.6: The left image shows a typical partition created by the streamline bundling ap-
proach. It illustrates the state after mapping the bundles to regions (≈3100 partitions),
but before reducing the vertices by collapsing edges. The right image shows one typical
example region from this partition, a cylinder-shaped region with a bulge that stems
from uncovered cells.

Figure 5.7a shows the situation after graph collapse was performed
on the streamline bundling result. As the collapse operation is purely
velocity guided, complicated shapes are theoretically possible. In prac-
tice, complicated shapes only occur in low interest areas, i. e., in bor-
der areas with relatively low velocity. The regions in the center area
usually stay compact during the graph collapse stage.

Figure 5.7b shows a partition after graph collapse at the transition
between these two areas. The colors encode the regions before graph
collapse. The top region lies adjacent to the center region and is there-
fore compact, even though it consists of 10 bundle regions. The bot-
tom extension branch curls into a low velocity region and happened
to have similar velocity to the bulk at the top.

Figure 5.8a displays the partitioning outcome of McKenzie et al.
clustering with the velocity-only distortion function. The global opti-
mization nature of the algorithm is immediately recognizable by the
smooth region borders. Also notice the sound segmentation of the
inlet regions. The little colored disturbances that are visible in some
of the regions are due to flat regions that develop near the surface of
calm areas. The disturbances stem from the regions lying beneath.

The individual regions are smooth and rounded and tend to be
more complex than the ones shown previously. See Figure 5.8b for an
example.

Figure 5.9a shows the overall partition of McKenzie et al. clustering
with the Du and Wang distance function and the recommended w

(velocity influence factor 0.5). The outcome looks very similar to the
previous one, but lacks the small disturbances because of stronger
spatial bias.

82 results

(a) Whole partition (b) Isolated region.

Figure 5.7: The left image shows a typical partition of the streamline bundling approach for the
Toyota dataset. It illustrates the state after collapsing edges to reach 500 vertices. The
right image shows one typical example region from this partition.

(a) Whole partition. (b) Isolated region.

Figure 5.8: A partition created by McKenzie et al.’s algorithm with their own velocity-only
distortion function (left). The right image shows one typical example region from this
partition.

5.2 applicability for simulation 83

(a) Whole partition (b) Isolated region.

Figure 5.9: A partition created by McKenzie et al.’s algorithm with Du and Wang’s distance
measure (left). The right image shows one typical example region from this partition.

The distance function produces similarly shaped cluster as the
velocity-only distortion function. Apart from that, it has the tendency
to produce more elongated clusters like the one shown in Figure 5.9b

5.2.4.4 Required iterations for McKenzie et al.’s approach

Figure 5.10 and Figure 5.11 show the error development for 40 itera-
tions of McKenzie et al. clustering. The former illustrates the develop-
ment for the velocity-only distortion function, the latter for Du and
Wang’s distance function. Don’t make the

mistake of thinking
Du and Wang’s
distance measure
produces poor
results. Iteration
zero is the situation
after the initial
flooding stage,
which can already be
a good partition.

From these two plots, reasonable iteration counts can directly be
derived. 20 iterations is a reasonable choice for the velocity-only dis-
tortion function, as the minor improvements after that do not justify
the increased calculation time. When utilizing Du and Wang’s dis-
tance function, there is no use in iterating very long. The algorithm
manages to drive down the distortion function, but this does not im-
prove the relevant error measures. Five iterations suffice in this case.

When comparing the values of the two plots, please account for
the normalization factors. The plots are mainly meant for guiding the
choice of the number of iterations.

5.2.4.5 Calculation durations
If computers take
over (which seems to
be their natural
tendency), it will
serve us right.
– Alfred Alistair
Cooke

All durations in this section correspond to the full Toyota dataset
at 190 km/h. The durations for reading the input, fixing the surface
normals and cleaning the dataset from outside geometry is the same
for all approaches (30 s, 5 s, and 1 min 50 s, respectively). It totals to
about 2 min 30 s.

The required time for McKenzie et al.’s approach (velocity-only
distortion function) and 500 target clusters is about 1 min 35 s per
iteration. Including setup, 20 iterations required 47 min 19 s for the

84 results

0 5 10 15 20 25 30 35 40 45 50
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.87 m10/s4

3.88 m2/s2
5089 Pa2

0.0167 m2

Iterations

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

McKenzie distortion. 1.0 = 2.41 m10/s4

Velocity SSE per cell. 1.0 = 6.18 m2/s2

Pressure SSE per cell. 1.0 = 7377 Pa2

Spatial SSE per cell. 1.0 = 0.0156 m2

Figure 5.10: Error development of McKenzie et al.’s algorithm over 40 iterations with the velocity-
only distortion function. All four value series are normalized to start at 1.0 – see
the legend for normalization factors. As expected, the distortion series is constantly
decreasing, and the global velocity and global pressure SSEs are both correlated with
it. As a tradeoff, the global spatial SSE increases over its initial value.

0 5 10 15 20 25 30 35 40 45 50
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

9756010 m2/s2

19.23 m2/s2

7551 Pa2

0.0095 m2

Iterations

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

McKenzie distortion. 1.0 = 12888400 m2/s2

Velocity SSE per cell. 1.0 = 19.64 m2/s2

Pressure SSE per cell. 1.0 = 8365 Pa2

Spatial SSE per cell. 1.0 = 0.0096 m2

Figure 5.11: Error development of McKenzie et al.’s clustering over 40 iterations with Du and
Wang’s error measure. All four value series are normalized to start at 1.0 – see the
legend for normalization factors. Here, the distortion series decreases too, but it seems
to be a mediocre choice for driving down the “real” error functions.

5.2 applicability for simulation 85

standard example. Mapping the partition of 500 regions to a graph
required 5 min 47 s. Therefore this approach requires a total processing
time of 55 min, when ignoring the times for storing sub results to the
hard disk. As large amounts of memory are requested from and re-
turned to the Operating System, the processing time can vary by a
few minutes.

Streamline bundling consists of more steps, but the individual steps
are carried out faster. Hybrid seeding was finished after 1 min 5 s,
stream tracing required 2 min 32 s.

The computational requirements of streamline bundling depend
heavily on the used parameters. For the same bundle count, proto-
type selection by subsampling requires significantly more time than
random prototype selection. As the results of both approaches are
comparable (see Table 5.1), it is advisable to use random prototype
selection for this application. The 3100 bundles were created after
2 min 13 s with random prototype selection.3 Mapping the bundles to
regions is a rather quick operation and was finished after 1 min 44 s.
Mapping these regions to a graph is the same operation as in the
McKenzie et al. processing chain and required 4 min 13 s. The final
collapse graph operation took 13 s.

Hence, the streamline bundling approach required a total processing
time of 15 min for this application. As before, memory handling by the
Operating System leads to varying processing durations.

5.2.5 Results for different configurations

Figure 5.12, Figure 5.13 and Figure 5.14 illustrate the behavior for
all configurations. The results were created using McKenzie et al.’s
approach. All plots show the expected behavior, namely,

• all error measures decrease with increasing region count,

• the spatial SSE is invariant against velocity changes, and

• the velocity and pressure SSEs decrease with decreasing veloc-
ity.4

.

5.2.6 Discussion of results for simulation

This section discussed the results of the implemented algorithms for
the resistance graph simulation application. It showed that the meth-
ods cover the different tradeoffs between spatial similarity and veloc-
ity and pressure similarity quite well.

3 The subsampling approach would have taken at least 20 min.
4 The pressure and velocity SSE at 30 km/h are not zero. They are just too small for the

scale of the y-axis, which must contain a squared error measure of pressure values
in Pa and m2/s2, respectively.

86 results

100 200 300 400 500 600 700 800 900 1,000
0

0.02

0.04

0.06

Region count

Sp
at

ia
lS

SE
[m
2

] 30 km/h
190 km/h
vmax

Figure 5.12: Spatial SSE for different operation points (velocities) and region
counts. As expected, the spatial SSE decreases with increasing
region count and is invariant to velocity changes.

100 200 300 400 500 600 700 800 900 1,000
0

5

10

15

Region count

Ve
lo

ci
ty

SS
E

[m
2
/
s2

]

30 km/h
190 km/h
vmax

Figure 5.13: Velocity SSE for different operation points (velocities) and region
counts. As expected, the spatial SSE decreases with increasing
region count and decreasing velocity (less turbulence).

100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

·104

Region count

Pr
es

su
re

SS
E

[P
a2

]

30 km/h
190 km/h
vmax

Figure 5.14: Pressure SSE for different operation points (velocities) and re-
gion counts. As expected, the pressure SSE decreases with in-
creasing region count and decreasing velocity (less turbulence).

5.3 applicability for visualization 87

When designing a resistance graph simulator, it is advisable to start
with results from McKenzie et al.’s approach. The available choices
for this algorithm cover the tradeoffs very well, and the algorithm is
simple to configure.

If computation time is of primary concern, one could also look into
the streamline bundling approach. It is more fragile and has many
parameters, but it computes considerably faster.

To answer the question about the suitable trade-off for resistance
graph simulation with certainty, direct simulation is required. How-
ever, it is expected that similarity of velocities is more important than
spatial compactness.

5.3 applicability for visualization

An attempt at
visualizing the
Fourth Dimension:
Take a point, stretch
it into a line, curl it
into a circle, twist it
into a sphere, and
punch through the
sphere.
– Albert Einstein

Streamline bundling is well suited for identifying large and homoge-
neous regions within flow fields, but it is not suited for partitioning
turbulent, non-uniform areas. Hence, it is not the optimal choice for
the simulation application, as a full partition is required there. How-
ever it can be of great value for visualization applications.

To shortly sketch the idea, imagine a streamline bundling algorithm
that is configured to identify large, possibly bent bundles of parallel
streamlines. Afterwards, by mapping these bundles to regions, a flow
graph can be constructed from these regions. Then, two representa-
tions of this flow graph can be displayed to the user: the 3d regions of
the initial dataset, and the streamline bundles leading to these regions.
A third abstract visualization of the flow graph can guide navigation.

The following sections detail different aspects of this idea. Notice,
that the described system is only envisioned, not implemented. All
screen shots were manually created with the help of ParaView.

5.3.1 Flow graph representations

When exploring 3d flow fields there are two important aspects of the
individual regions associated to each vertex:

1. The location and extent of a region, and

2. The flow properties within this region.

. A suitable representation for the first aspect is the 3d region itself
(3d representation), whereas a suitable representation for the second
aspect is the underlying streamline bundle (bundle representation).

Both of the above representations are still too complex to be under-
stood as a whole for large datasets. If many 3d regions and stream-
line bundles are displayed at the same time, they hide each other
and obscure the view to the overall picture. A third representation

88 results

is required that introduces some structure and reduces the complex-
ity. One possibility for this representation is a visualization based on
simple 3d primitives, like cylinders and arrows (simple representation).

Figure 5.15 demonstrates these three representations for the same
path within the Toyota dataset. The blue wireframe representation of
the region outline aids user orientation.

(a) 3d cell representation. (b) Bundle representation. (c) Simple representation.

Figure 5.15: Different representations of paths through a flow graph.

5.3.2 Interactive flow graph exploration

Imagination is more
important than

knowledge.
– Albert Einstein

The three described representations and the underlying flow graph
can be combined into an interactive user interface for exploring and
visualizing flow fields. Starting from a default view, the user can in-
teractively explore the dataset by tracing paths through the graph
and displaying the associated regions. A click on any inlet traces the
strongest path within the underlying flow graph and displays it in
simple representation. At any time, the user can switch between the
different representations of any path.

Relatively strong edges that are not yet expanded can be displayed
as 3d arrows. Clicking on them could expand the strongest path start-
ing from that particular edge.

The following example outlines the envisioned interaction.

5.3.2.1 Exploration example

Figure 5.16 shows the beginning of the interaction. The car hull is
rendered as a black wireframe to provide initial context. The user
chooses to trace the flow graph from two inlet regions, one at the top
left inlet and the other at the right of the bottom inlet. The two paths

5.3 applicability for visualization 89

are shown in the simple representation; the magenta colored arrows
indicate possible extension points.

The user decides to switch the upper path to the 3d representation,
the lower path to bundle representation, and to color both paths by
velocity magnitude. The result is shown in Figure 5.17. In order to un-
derstand the underlying partitions of the paths and to choose the next
extension point, the user colors both paths by region ID (Figure 5.18).
By tracing one of the upper extension points, the visualization in Fig-
ure 5.19 is obtained. The displayed information becomes overwhelm-
ing. Finally, the user switches back to the simple representation to get
an overview of the situation, as shown in Figure 5.20.

Figure 5.16: Interaction step 1: Initial configuration with black hull wireframe for context and two
traced paths in simple representation.

90 results

Figure 5.17: Interaction step 2: Situation after hiding the hull and switching the top path to 3d and
the bottom path to bundle representation. Both are colored by velocity magnitude.

Figure 5.18: Interaction step 3: Result of coloring Figure 5.17 by region identifier.

5.3 applicability for visualization 91

Figure 5.19: Interaction step 4: The result after expanding one of the upper extension points. The
screen starts to look cluttered.

Figure 5.20: Interaction 5: After switching back to the simple representation for all paths, the situ-
ation is clear again.

92 results

5.4 results for the centrifugal pump dataset

The Centrifugal pump dataset contains three flow simulations of a
centrifugal pump that differ only in the simulation approach. It was
provided for the IEEE Visualization Contest 2011 [5]. Figure 5.21 dis-
plays a view of the dataset cut in half.

Figure 5.21: The centrifugal pump dataset cut in half and colored by velocity
magnitude.

The original goal of the contest was turbulence modeling, which
cannot be provided by the algorithms presented in this thesis. Never-
theless the dataset is a good candidate to evaluate streamline bundl-
ing, because the general flow of a centrifugal pump is well defined.

The parameters for applying streamline bundling to this dataset
were set quite strictly, with small differences in angular velocity (20°
for initial slices and 40° for incremental slices) and high mate ratios
(0.9 for initial slice, 0.8 for incremental slices and 0.7 to stop bundl-
ing). Prototype selection was performed using subsampling, bundle
collisions were always resolved by keeping the existing bundle.

Figure 5.22 shows the streamline bundling result with similar view
settings as in Figure 5.21. A full view of the result is shown in Fig-
ure 5.23.

The inlet in the middle of the dataset is nicely segmented into one
bundle (violet bundle), except of the circular flows at the boundaries
of the inlet tube. The turbulent flow within the impeller is covered
by many small bundles. The result in this region could definitely be
improved to better emphasize the flow between the blades of the im-
peller. The circular flow at the outer ring of the pump is acceptably
covered by thick bundles.

5.4 results for the centrifugal pump dataset 93

Overall, the bundles cover the dataset quite well and almost as ex-
pected. The result would definitely allow exploring the dataset using
the methods described above. However, some improvements are re-
quired to better accommodate the inherent circular flows within the
dataset and its resulting flow graph.

Figure 5.22: Result of streamline bundling for the Centrifugal pump dataset. The result was cut in
half to increase insight.

94 results

Figure 5.23: Result of streamline bundling for the Centrifugal pump dataset. Full view.

6
C O N C L U S I O N

I have not failed.
I’ve just found
10,000 ways that
won’t work.
– Thomas Alva
Edison (1847-1931)

This work was motivated by the construction of car cooling systems.
At first two of the main existing engineering paths, namely expert
generated resistance graphs and CFD simulations, were explained. Af-
terwards, a third path combining the advantages of the former two
was suggested, CFD-derived resistance graphs. To derive such graphs,
CFD simulation results (flow fields) need to be simplified to meaning-
ful flow graphs. This can be achieved by clustering similar cells of
the CFD simulation result. Furthermore it was argued that meaning-
ful flow graphs can also aid in understanding flow fields of other
domains and that they can be employed for visualization purposes.

During the discussion of related work, the main shortcoming of
existing point-based cluster algorithms was identified to be the inher-
ent creation of disconnected clusters. McKenzie et al.’s adaption of
variational shape approximation was identified as the best existing
candidate for creating flow graphs to enable resistance graph simula-
tion.

As McKenzie et al.’s algorithm was expected to require high com-
putational effort, a new method for partitioning flow fields was pro-
posed. The main idea behind streamline bundling is to densely cover
the dataset with streamlines and bundle parallel and spatially close
streamline segments. Afterwards the cells of the flow field are as-
signed to their closest streamline bundle in order to derive a complete
partition.

Related work for clustering streamlines was identified in the field
of medical image processing (diffusion MRI). All suggested methods
cluster whole streamlines instead of streamline segments. A short
discussion showed why these methods cannot be extended easily to
bundle streamline segments.

The actual streamline bundling algorithm consists of several steps.
After preprocessing the dataset, meaningful seed points have to be iden-
tified. Starting from these seed points a stream tracer generates stream-
lines. The actual streamline bundling algorithm is based on repeated
intersections of the dataset by a sweep plane which is moved along a
prototype streamline. Streamline segments that are intersected by all
of these sweep planes are combined to form a bundle.

The main drawback of the proposed solution is the high number of
parameters that are required for seeding, for stream tracing, for proto-
type selection, to measure similarity, to resolve bundle collisions, and
to define stopping criteria. However, for specific applications, many of
these parameters can be fixed to default values.

95

96 conclusion

For the resistance graph application, McKenzie et al.’s approach
was shown to be the best overall choice, with streamline bundling
having advantages only in calculation speed. Further experiments
with a resistance graph simulator will be required to determine if
the accuracy of the generated flow graphs is sufficient.

Finally, possible visualization applications of streamline bundling
and flow graphs were discussed.

6.1 future work

Humans would
definitely place cable

ties differently,
wouldn’t we?

When looking at the result figures of the bundling stage, there is
clearly potential for improvements. This section briefly treats the most
promising ideas for enhancements.

Instead of separate seeding and stream tracing phases, a promising
alternative would be a hybrid approach that combines them. The hy-
brid tracer could alternate between placing random seed points and
tracing streamlines. By placing the seed points in the largest gaps
between existing streamlines, dense coverage of the dataset could be
achieved with fewer streamlines. A single parameter could be used
to stop tracing if the largest gap is below a predefined threshold.

Several promising improvements come to mind for streamline bu-
ndling. The first of these applies to bundle tracing. Currently the stop-
ping criteria for tracing a single bundle are arbitrary and not very
direct. A fast volume measure for streamline bundles could improve
this. The tracing could stop, if the volume begins to decrease, which
would happen if the loss of streamlines (diameter) decreases the vol-
ume more than the increase of steps (length) increases it. This would
naturally lead to bundles covering the highest possible volume, with-
out the need to artificially favor thin elongated or thick short bundles.

Another improvement concerns the collision strategy. The “over-
write existing bundles if worse” collision strategy can lead to dis-
connected or degenerated bundles. The “remove existing bundles if
worse” strategy on the other hand, makes local, binary decisions –
if two good bundles overlap at only one streamline, one of them is
removed. A less local bundle collision approach that compares final
bundles against each other and solves collisions globally is expected
to improve the results significantly.

In general, the streamline bundling idea would certainly benefit
from a less local approach of generating bundles and trading them of
against each other.

In summary, streamline bundling is not yet applicably for general
purpose applications handling arbitrary flow fields. Too many param-
eters have to be set and the influence on the result is too indirect for
most of these parameters.

However, the two applications discussed in this thesis could be
served by the current framework. Resistance graph simulators can

6.1 future work 97

readily be built using the implementation of McKenzie et al.’s algo-
rithm. In well defined domains, the current state of streamline bu-
ndling already produces viable results for visualization applications,
because most of the parameters can be fixed.

A
C O N T E N T S O F T H E A C C O M PA N Y I N G D V D

format : DVD-R, Single Layer, ISO9660-Format

path : /

/application/ Contains UIChain for 64 bit versions of
Windows (installer).

/data/ Contains all datasets that where used
within this thesis.

/data/rawdata/ Datasets as they were received (EnSight
format).

/data/cleandata.zip Cleaned datasets that are ready to use
with UIChain.

/dev/ Files and information for developers.

/dev/software/ Some of the required software for
developers on Windows.

/dev/install.txt . . Installation instructions for developers.

/dev/UIChain.zip . . Source code of UIChain.

/references/ Contains all cited references.

/references/related/ Contains related material that was not
cited.

/results/SST_vis . . 3d results for the pump dataset, as
presented in Section 5.4.

/Thesis.pdf The electronic version of this thesis.

99

/
/application/
/data/
/data/rawdata/
/data/cleandata.zip
/dev/
/dev/software/
/dev/install.txt
/dev/UIChain.zip
/references/
/references/related/
/results/SST_vis
/Thesis.pdf

B I B L I O G R A P H Y

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas
Popat. NP-hardness of Euclidean sum-of-squares clustering. Ma-
chine Learning, 75:245–248, May 2009. (Cited on page 18.)

[2] Robert Bringhurst. The Elements of Typographic Style. Version
2.5. Hartley & Marks, Publishers, Point Roberts, WA, USA, 2002.
(Cited on page 105.)

[3] A. Brun, H. Knutsson, H. J. Park, M. E. Shenton, and C.-F. Westin.
Clustering fiber tracts using normalized cuts. In Seventh In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI 2004), Lecture Notes in Computer
Science, pages 368–375, Rennes - Saint Malo, France, September
2004. (Cited on page 27.)

[4] Lewis Carroll and John Tenniel. Alice in Wonderland. Peter
Pauper Press, Mount Vernon, NY, 1953. (Cited on pages 1, 12,
and 71.)

[5] Centrifugal pump dataset. Centrifugal pump dataset (SST simu-
lation). Data provided for the IEEE Visualization Contest 2011 for
the VisWeek 2011 held in Rhode Island Convention Center, Prov-
idence, USA. The data is courtesy of the Institute of Applied Me-
chanics, Clausthal University, Germany (Dipl. Wirtsch.-Ing. An-
dreas Lucius)., 2011. URL http://viscontest.sdsc.edu/2011/

dataset/dataset.html. (Cited on pages 92, 93, and 94.)

[6] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Vari-
ational shape approximation. In ACM SIGGRAPH 2004 Papers, SIG-

GRAPH ’04, pages 905–914, New York, NY, USA, 2004. ACM. (Cited
on pages 20, 21, and 22.)

[7] Isabelle Corouge, Sylvain Gouttard, and Guido Gerig. Towards a
shape model of white matter fiber bundles using diffusion tensor
MRI. In Biomedical Imaging: Nano to Macro, 2004. IEEE International
Symposium on, volume 1, pages 344–347, 2004. (Cited on page 26.)

[8] Zhaohua Ding, John C. Gore, and Adam W. Anderson. Classi-
fication and quantification of neuronal fiber pathways using dif-
fusion tensor MRI. Magnetic Resonance in Medicine, 49(4):716–721,
2003. (Cited on page 26.)

[9] Qiang Du and Xiaoqiang Wang. Centroidal voronoi tessellation
based algorithms for vector fields visualization and segmenta-
tion. In Proceedings of the conference on Visualization ’04, VIS ’04,

101

http://viscontest.sdsc.edu/2011/dataset/dataset.html
http://viscontest.sdsc.edu/2011/dataset/dataset.html

102 bibliography

pages 43–50, Washington, DC, USA, 2004. IEEE Computer Society.
(Cited on pages 18, 19, 57, 77, 80, 81, 83, and 84.)

[10] EnSight. Ensight engineering visualization software. Compu-
tational Engineering International, Inc. (CEI)., 2010. URL http:

//www.ensight.com. (Cited on pages 30, 52, 53, and 99.)

[11] Brian S. Everitt. Cluster analysis. Heinemann Educational for So-
cial Science Research Council, London, 1974. (Cited on page 9.)

[12] FLUENT 12. ANSYS FLUENT Flow Modeling Simulation Software
(Release 12). ANSYS, Inc. Southpointe, 275 Technology Drive,
Canonsburg, PA 15317, USA, 2010. URL http://www.ansys.com.
(Cited on page 30.)

[13] R. L. Hardy. Multiquadric equations of topography and other
irregular surfaces. Journal of Geophysical Research, 76, 1971. (Cited
on page 16.)

[14] Bjoern Heckel, Gunther Weber, Bernd Hamann, and Kenneth I.
Joy. Construction of vector field hierarchies. In Proceedings of the
conference on Visualization ’99: celebrating ten years, VIS ’99, pages
19–25, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
(Cited on pages 12, 15, 16, and 17.)

[15] KULI. Software for vehicle heat management optimization. KULI

is a Software of: Engineering Center Steyr GmbH & Co KG,
Steyrer Strasse 32, 4300 St.Valentin, Austria, 2010. URL http:

//www.kuli.at. (Cited on page 2.)

[16] Denis Le Bihan, Jean-François Mangin, Cyril Poupon, Chris A.
Clark, Sabina Pappata, Nicolas Molko, and Hughes Chabriat.
Diffusion tensor imaging: Concepts and applications. Journal
of Magnetic Resonance Imaging, 13(4):534–546, 2001. (Cited on
page 24.)

[17] Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transac-
tions on Information Theory, IT-28(2):129–137, March 1982. (Cited
on page 17.)

[18] J. B. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967. (Cited on page 17.)

[19] Mahnaz Maddah, Andrea Mewes, Steven Haker, W. Grimson,
and Simon Warfield. Automated Atlas-Based Clustering of
White Matter Fiber Tracts from DTMRI. In Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI 2005), volume
3749 of Lecture Notes in Computer Science, pages 188–195. Springer
Berlin, Heidelberg, 2005. (Cited on page 27.)

http://www.ensight.com
http://www.ensight.com
http://www.ansys.com
http://www.kuli.at
http://www.kuli.at

bibliography 103

[20] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadara-
jan. The Planar k-means Problem is NP-Hard. In Proceedings
of the 3rd International Workshop on Algorithms and Computation,
WALCOM ’09, pages 274–285, Berlin, Heidelberg, 2009. Springer-
Verlag. (Cited on page 18.)

[21] Alexander McKenzie, Santiago V. Lombeyda, and Mathieu Des-
brun. Vector field analysis and visualization through variational
clustering. In IEEE EUROGRAPHICS VGTC Symposium on Visualiza-
tion, 2005. (Cited on pages x, 12, 20, 21, 22, 23, 29, 30, 33, 56, 57,
73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 87, 95, 96, and 97.)

[22] Tony McLoughlin, Robert S. Laramee, Ronald Peikert, Frits H.
Post, and Min Chen. Over two decades of integration-based, ge-
ometric flow visualization. Computer Graphics Forum, 29(6):1807–
1829, 2010. (Cited on page 34.)

[23] D. Mumford. and J. Shah. Optimal approximations by piece-
wise smooth functions and associated variational problems. Com-
munications on Pure and Applied Mathematics, 42(5):577–685, 1989.
(Cited on page 11.)

[24] Lauren J. O’Donnell and Carl-Fredrik Westin. Automatic tractog-
raphy segmentation using a high-dimensional white matter atlas.
IEEE Transactions on Medical Imaging, 26(11):1562–1575, November
2007. (Cited on page 27.)

[25] ParaView. Paraview, open-source, multi-platform data analy-
sis and visualization application. Released by Kitware, Inc.,
28 Corporate Drive, Clifton Park, NY 12065 USA, 2010. URL
http://www.vtk.org. Version 3.8.0. (Cited on pages 51, 52, 53,
70, 71, 80, 87, and 105.)

[26] Qt. Qt – cross-platform C++ application framework. Released un-
der GNU Lesser General Public License (LGPL) version 2.1. by
Nokia Norge AS, Sandakerveien 116, NO-0484 Oslo, Norway.,
2010. URL http://qt.nokia.com/. Version 4.6.2. (Cited on
pages xi, 71, and 72.)

[27] William J. Schroeder, Kenneth M. Martin, and William E.
Lorensen. The design and implementation of an object-oriented
toolkit for 3d graphics and visualization. In Proceedings of the 7th
conference on Visualization ’96, VIS ’96, pages 93–ff., Los Alamitos,
CA, USA, 1996. IEEE Computer Society Press. (Cited on page 51.)

[28] Thomas Schultz. Feature Extraction for DW-MRI Vi-
sualization: The State of the Art and Beyond, 2009.
URL http://www.ci.uchicago.edu/~schultz/papers/

schultz-dwmri-feature-survey-2010.pdf. To appear in:

http://www.vtk.org
http://qt.nokia.com/
http://www.ci.uchicago.edu/~schultz/papers/schultz-dwmri-feature-survey-2010.pdf
http://www.ci.uchicago.edu/~schultz/papers/schultz-dwmri-feature-survey-2010.pdf

104 bibliography

Proc. Dagstuhl Scientific Visualization Workshop 2009. ISSN

1862-4405. (Cited on pages 24, 25, and 26.)

[29] Toyota dataset. Toyota Prius 3d CFD dataset. Model delivered to-
gether with the software packages RadTherm and RadThermIR
by Thermoanalytics Inc. CFD flow simulation by ViF., 2010. URL
http://www.thermoanalytics.com/products/radtherm. (Cited
on pages xi, 3, 4, 7, 8, 30, 32, 34, 35, 36, 51, 52, 54, 73, 74, 75,
76, 77, 82, 83, and 88.)

[30] VTK. VTK – the visualization toolkit. Released under BSD License
by Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065 USA,
2010. URL http://www.vtk.org. Version coming with ParaView
3.8.0. (Cited on pages xi, 30, 51, 52, 53, 57, 66, 69, 70, and 76.)

[31] VTK File Formats. VTK File Formats for VTK Version 4.2x. Ex-
cerpt from VTK User’s Guide. Accessible through Kitware VTK

documentation site, 2011. URL http://www.vtk.org/VTK/help/

documentation.html. (Cited on page 52.)

[32] Yan Xia, And Turken, Susan Whitfield-Gabrieli, and John
Gabrieli. Knowledge-based classification of neuronal fibers in
entire brain. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI 2005), volume 3749, pages 205–212. Springer
Berlin, Heidelberg, 2005. (Cited on page 27.)

[33] Song Zhang, Stephen Correia, and David H. Laidlaw. Identify-
ing White-Matter Fiber Bundles in DTI Data Using an Automated
Proximity-Based Fiber-Clustering Method. IEEE Transactions on
Visualization and Computer Graphics, 14:1044–1053, September
2008. (Cited on page 27.)

http://www.thermoanalytics.com/products/radtherm
http://www.vtk.org
http://www.vtk.org/VTK/help/documentation.html
http://www.vtk.org/VTK/help/documentation.html

colophon

The style of this thesis was deliberately chosen with emphasis on ty-
pography instead of space conservation. It therefore features large
margins to improve readability. Furthermore the margins provide
space for quotations, interesting facts and, possibly, your notes.

The following text is adopted unchanged from the Colophon of the
classicthesis package. I want to thank all of the mentioned people
for their contributions to this wonderful template:

This thesis was typeset with LATEX 2ε using Hermann
Zapf’s Palatino and Euler type faces (Type 1 PostScript
fonts URW Palladio L and FPL were used). The listings are
typeset in Bera Mono, originally developed by Bitstream,
Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s ge-
nius as presented in The Elements of Typographic Style [2]. It
is available for LATEX via CTAN as “classicthesis”

All illustrations where created using Inkscape.1 The plots were gen-
erated in MATLAB;2 automatic conversion for the LATEX graphics pack-
age PGF and TikZ3 was conveniently done using a slightly modified
version of matlab2tikz.4 The 3d figures of the datasets were rendered
using ParaView [25].

Final Version as of December 5, 2011 at 12:55.

1 http://www.inkscape.org.
2 http://www.mathworks.de/products/matlab/index.html.
3 http://sourceforge.net/projects/pgf/.
4 http://win.ua.ac.be/~nschloe/content/matlab2tikz.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/
http://www.inkscape.org
http://www.mathworks.de/products/matlab/index.html
http://sourceforge.net/projects/pgf/
http://win.ua.ac.be/~nschloe/content/matlab2tikz

S TAT U T O RY D E C L A R AT I O N

I declare that I have authored this thesis independently, that I have
not used other than the declared sources / resources, and that I have
explicitly marked all material which has been quoted either literally
or by content from the used sources.

Graz, Austria, December 2011

Benjamin Hopfer

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Algorithms
	Acronyms
	1 Introduction
	1.1 Construction of car cooling systems
	1.1.1 Expert generated resistance graphs
	1.1.2 Computational fluid dynamics
	1.1.3 CFD-derived resistance graphs

	1.2 The Toyota dataset
	1.3 Understanding 3d flow fields
	1.4 Related research topics
	1.4.1 Applicability of cluster analysis
	1.4.2 Applicability of image segmentation

	1.5 Proposed solution

	2 Related work
	2.1 Related work from vector field visualization
	2.1.1 Vector field hierarchies
	2.1.2 k-means clustering
	2.1.3 Centroidal Voronoi tessellation
	2.1.4 Variational clustering

	2.2 Related work from medical image processing
	2.2.1 Introduction to diffusion tensor imaging
	2.2.2 Diffusion tensor imaging tractography
	2.2.3 Distance measures for streamlines
	2.2.4 Streamline clustering approaches

	3 Theory
	3.1 Mathematical notation
	3.2 Processing framework overview
	3.3 Preprocessing overview
	3.3.1 Undesired outside geometry

	3.4 Partitioning
	3.4.1 Seeding
	3.4.2 Stream tracing
	3.4.3 Streamline bundling
	3.4.4 Mapping bundles to regions
	3.4.5 Streamline bundling recap

	3.5 Mapping regions to a graph
	3.6 Mapping bundles to a graph
	3.7 Graph collapse
	3.8 Flow graph error measures

	4 Implementation
	4.1 VTK and ParaView
	4.2 Preprocessing
	4.2.1 Rectifying inconsistent surface normals
	4.2.2 Removing undesired outside geometry

	4.3 Partitioning
	4.3.1 Seeding
	4.3.2 Stream tracing
	4.3.3 Streamline bundling
	4.3.4 Mapping bundles to regions

	4.4 Mapping regions to a graph
	4.5 Graph collapse
	4.6 User interface
	4.6.1 User interaction wrappers
	4.6.2 Graphical user interface

	5 Results
	5.1 Preprocessing results
	5.1.1 Region growing
	5.1.2 Depth probing

	5.2 Applicability for simulation
	5.2.1 Error measures
	5.2.2 Parameters for streamline bundling
	5.2.3 Parameters for Mc Kenzie et al.
	5.2.4 Standard example results
	5.2.5 Results for different configurations
	5.2.6 Discussion of results for simulation

	5.3 Applicability for visualization
	5.3.1 Flow graph representations
	5.3.2 Interactive flow graph exploration

	5.4 Results for the centrifugal pump dataset

	6 Conclusion
	6.1 Future work

	A Contents of the accompanying DVD
	Bibliography
	Colophon
	Declaration

