
Masterarbeit

Handling Variability in Unit Testing of
Automotive Control Software

Wolfgang Raschke

————————————–

Institut für Technische Informatik
Technische Universität Graz

Begutachter: UA DI Dr. Christian Kreiner.
Betreuer: DI Andrea Leitner.

Graz, im Februar 2012

Kurzfassung

Derzeit werden Hybridfahrzeuge in Hinblick auf Massenfertigung entwickelt. Tatsächlich
gibt es sehr viele mögliche Konfigurationen eines Hybridfahrzeuges, etwa Vollhybrid oder
Mildhybrid. Da es so viele mögliche Hardwarekonfigurationen gibt, ist es sehr schwer, mit
konventionellen Praktiken der Softwareentwicklung eine generische und wiederverwend-
bare Steuerungssoftware zu entwickeln.
Automotive Steuerungssoftware muss getestet werden. Die getestete Software besteht aus
mehreren Units. Auf Grund der hohen Komplexität automotiver Steuerungssoftware gibt
es sehr viele mögliche Kombinationen, einzelne Units in das Gesamtsystem zu integri-
eren. Die Auswahl der Tests und ihre Automatisierung muss diese Komplexität ebenfalls
berücksichtigen. Zusätzlich hängt die Steuerungssoftware auch von einer Parametrisierung
ab. Daher ist es schwer, wiederverwendbare Tests zu implementieren.
Der Zugang zu diesem Thema in dieser Masterarbeit orientiert sich an Testartefakten.
Diese beinhalten: Testpläne, Testfälle, Testdatensätze und Testsoftware sowie Testskripte.
Es wurde ein Testframework implementiert, das es ermöglicht, die Tests in der Sprache
zu formulieren, in der auch die getestete Software implementiert ist: Simulink. Zusätzlich
können diese Tests in Simulink mit Variabilitätsinformation angereichert werden, sodass
eine nahtlose Integration in die Software Product Line möglich ist.
In dieser Arbeit definieren Testpläne Variabilität auf Komponentenebene. Nur Units, die
in das Gesamtsystem integriert sind, werden von den Testplänen abgedeckt. Testpläne
repräsentieren einen Blickwinkel der Software Product Line - den problem space. Der so-
lution space hingegen ist der technische Blickwinkel und wird durch Testfälle, Testsoftware
und Testskripte abgedeckt.
Weil die getestete Software parametrisiert ist, wird Testfallwiederverwendung erst möglich,
wenn Testfälle auch Variabilität beinhalten. Testdatensätze werden von einer globalen
Repräsentation der Parameter sowie von Requirement-Modellen abgeleitet. Testdatensätze
gehören zum problem space der vorgeschlagenen Vorgehensweise. Der solution space wird
durch variable Teile innerhalb der Testfälle repräsentiert.
Es hat sich herausgestellt, dass das Testen von mehreren Units vollständig automatisiert
werden kann. Testfallwiederverwendung kann durch variable Teile innerhalb der Testfälle
stark erhöht werden. Die Haltung von Testplänen und Testdaten in einem Konfigurations-
managementsystem hat die Wartbarkeit des entwickelten Testframeworks erhöht.

Schlüsselwörter: Software Product Lines, Testartefakte, Test-Driven Development

3

Abstract

At the moment, hybrid vehicles are developed with respect to mass-customization. In
fact, there are lots of possible configurations of a hybrid vehicle, for instance full hybrid or
mild hybrid. Because there are so many possible hardware configurations it becomes hard
to develop a generic and reusable control software with conventional software engineering
practices.
Automotive control software has to be tested. The software under test consists of units.
Due to the complexity of automotive control software, the possible combinations of in-
tegrated units are very high. The selection of unit tests and the automation of their
execution has to regard this complexity, as well. Moreover, automotive control software
depends on variable parametrization and, thus, makes it difficult to build up a base of
reusable tests.
The approach followed in this thesis is centered around test artifacts. They include: test
plans, test cases, test reports, test data sets and test software and scripts. A test frame-
work has been developed that enables writing tests in the same language that is used to
develop the software under test: Simulink. Additionally, the tests written in Simulink can
be enhanced with variability information which allows seamless integration into a Software
Product Line.
Test plans in the scope of this thesis define variability on component level. Only units
that are integrated in a product will be covered by the test plans. Test plans define the
problem space of the developed Software Product Line. The solution space covers all tech-
nical realization aspects and is implemented by means of test cases and test software and
scripts.
Because the software under test is parametrized, test case reuse can only be achieved, if
test cases contain variability, as well. Test data sets are derived from a global represen-
tation of parameters and from requirements models. Test data sets define the problem
space of the proposed methodology. The solution space is represented by the variable
parts within test cases.
It turned out, that testing of several units can be automated fully. Test case reuse can
be increased to a high degree by introducing variable parts within test cases. Moreover,
keeping test data and test plans in a configuration management system has improved the
maintainability of the developed test framework.

Keywords: Software Product Lines, Test Artifacts, Test-Driven Development

5

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

7

Danksagung

This master thesis has been carried out at the Institute for Technical Informatics, Graz
University of Technology in cooperation with the virtual vehicle Forschungsgesellschaft
mbH. I wand to give thanks to the team of the virtual vehicle who kindly supported my
work with lots of help. DI (FH) Wolfgang Ebner helped a lot by answering questions.
I would like to thank Dr. Christian Kreiner and DI Andrea Leitner from the Institute for
Technical Informatics for their enthusiastic help and support.
Especially, I want to thank my family for great support and encouragement.

Graz, im Februar 2012 Wolfgang Raschke

9

Contents

Abbreviations 17

1. Introduction 19
1.1. Motivation . 19
1.2. Background . 19
1.3. Purpose and Scope . 19
1.4. Disposition . 20

2. Related Work 22
2.1. Aspects of Software Quality . 22
2.2. Test-Driven Development . 23

2.2.1. The Utmost Maxime: Test First . 23
2.2.2. TDD Process . 23
2.2.3. Additional Tools: Fakes and Mock Objects 24
2.2.4. xUnit . 25
2.2.5. mlUnit . 27
2.2.6. slUnit . 27

2.3. Software Product Lines . 29
2.3.1. Motivation . 29
2.3.2. Different Types of Reuse . 30
2.3.3. Systematic Reuse . 31
2.3.4. Two Development Cycles . 31
2.3.5. Commonality vs. Variability . 33

2.4. Testing Software Product Lines . 36
2.4.1. Test Artifacts . 36
2.4.2. Domain Testing Activities . 36
2.4.3. Application Testing Activities . 37
2.4.4. Interrelation . 38
2.4.5. SPL Test Strategies . 39
2.4.6. Testing Roles . 40

2.5. Testing in the Automotive Domain . 41
2.5.1. Classification Tree Method/Embedded Systems 41
2.5.2. Time Partition Testing . 43
2.5.3. A Signal Feature Concept . 45

2.6. Hypothesis . 46

3. Concepts 47
3.1. Selection of Test Frameworks . 47

3.1.1. slUnit . 47

10

3.1.2. mlUnit . 47

3.2. Separation of Spaces . 48

3.3. Development Process . 50

3.3.1. Domain Development Process With Focus On Unit Testing 51

3.3.2. Application Development Process With Focus On Unit Testing . . . 51

3.4. Test Artifacts . 53

3.4.1. Test Plans . 54

3.4.2. Test Data Sets . 54

3.4.3. Test Software and Scripts . 54

3.4.4. Test Reports . 54

3.4.5. Test Cases . 55

3.5. Problem Space . 55

3.5.1. Requirements Model . 55

3.5.2. Vehicle Config Model . 56

3.5.3. Software System Config Model . 56

3.6. Solution Space - pure::variants . 57

3.6.1. Unit Test Model . 57

3.6.2. Unit Test Model: test . 57

3.6.3. Unit Test Model: system . 59

3.6.4. Test Registry . 59

3.7. Solution Space - Simulink . 61

3.7.1. Test Bed . 61

3.7.2. Test Block . 61

3.7.3. Test Composite . 61

3.7.4. Test Case . 62

3.7.5. Test Case Implementation . 63

3.8. Signal Evaluation . 63

3.9. A Concept of a Pivot . 64

3.10. Hooking into Simulink . 65

4. Implementation 66
4.1. Overview of the Implementation . 66

4.2. The Test Framework . 68

4.2.1. Embedding Tests in Simulink . 68

4.2.2. Test Composite . 69

4.2.3. Test Case . 70

4.2.4. Assertions . 72

4.2.5. Test Report . 73

4.3. Variability Issues in Simulink . 74

4.3.1. The Variable Subsystem . 74

4.3.2. Variability within a Subsystem . 74

4.3.3. Simulink Organization . 75

4.3.4. Library Organization . 75

4.4. Referenced Simulink Blocks . 77

4.4.1. Overview of References . 77

4.4.2. The general Class . 80

11

4.4.3. The model ref Class . 83

4.4.4. The attributes and attribute Classes 85

4.5. Building up the Skeleton With Containers: The node class 87

4.6. Create a Variability Library . 90

4.6.1. Step 1: Create a Variability Library 90

4.6.2. Step 2: Create a Variability Library Folder 91

4.6.3. Step 3: Create a Simulink Library 91

4.6.4. Step 4: Create a Subsystem in the Simulink Library 92

4.6.5. Step 5: Create a Reference Library Folder 92

4.6.6. Step 6: Create Block References . 93

4.6.7. Step 7: Create Subsystem References 93

5. Case Study 95
5.1. System Description . 95

5.1.1. Overview of the Sample Project Software Architecture 95

5.1.2. Request Hybrid Modes . 96

5.2. Problem Space of the Case Study . 98

5.3. Deriving a Requirements Model by Example 100

5.4. Solution Space of the Case Study . 104

5.4.1. Test Bed . 104

5.4.2. Test Block . 104

5.4.3. Test Composite . 105

5.4.4. Test Case . 106

5.4.5. Test Case Implementation . 106

5.4.6. Unit Test Model: test . 107

5.4.7. Unit Test Model: system . 108

5.5. Test Data . 109

5.6. Goal Question Metric - Defined Goals of the Case Study 111

5.7. Goal Question Metric - Metrics of the Case Study 112

5.8. Goal Question Metric - Results of the Case Study 113

5.8.1. Results for Poet . 113

5.8.2. Results for SPL Test Framework . 115

5.9. Summary of all Metrics . 117

5.10. Break Even of the SPL Test Framework . 117

6. Conclusion 121
6.1. Lessons Learned . 121

6.1.1. Test Efficiency . 121

6.1.2. Test Quality . 121

6.1.3. Test Maintainability . 121

6.1.4. Availability of Information . 121

6.1.5. Usability . 121

6.1.6. Implementation of the SPL . 122

6.2. Future Work . 122

6.2.1. Parameter Override . 122

6.2.2. Improve Usability . 122

12

6.2.3. Integration Testing . 122
6.2.4. Testing for Verification vs. Testing for Debugging 123

A. Testing Software - Terminology 124

Literature 125

13

List of Figures

2.1. Development Cycle in TDD . 23
2.2. In xUnit it is Possible to Build a Tree Structure of Tests 26
2.3. xUnit Class Diagram . 26
2.4. Overview of all the Patterns in slUnit . 28
2.5. Single System Engineering vs. Product Line Engineering in Principle 29
2.6. Domain Engineering Activities on the Upper Layer 32
2.7. Application Engineering Activities on the Lower Layer 33
2.8. Building Blocks for a Graphical Representation of Variability 34
2.9. Sample Graphical Representation of Variability 34
2.10. Sample Graphical Representation of the Orthogonal Variability Model . . . 35
2.11. Basic Variability Mechanisms . 35
2.12. Composing Partial Test Cases . 38
2.13. CTM/ES Creating Time-Discrete Signals by Example 42
2.14. Components of Time Partitioning Testing 43
2.15. Example of Variablity Mechanisms in Time Partitioning Testing 44
2.16. Several Signal Features by Example . 45
2.17. Extraction of a Constant Signal Feature in Simulink 46

3.1. Transformation Process of the Proposed Methodology Including Artifacts . 49
3.2. Development Process Including Roles, Responsibilities and Artifacts 50
3.3. Test Artifacts are Represented and Implemented Within Different Tools . . 53
3.4. Sample software system config model Variant Description Model 56
3.5. Sample Unit Test Model, Main Parts . 57
3.6. Sample Unit Test Model, Test Part Expanded 58
3.7. Sample Unit Test Model, System Part Expanded 59
3.8. Sample Representation of a Test Registry in pure::variants 60
3.9. Sample Test Bed Including Test Block and Unit Under Test 61
3.10. Contents of the Test Block . 61
3.11. Contents of the Test Composite Including Test Cases and slUnit Multiplexer 62
3.12. Contents of a Test Case Including the Test Case Implementation 62
3.13. Contents of the Test Case Implementation 63
3.14. Sample Test Evaluation Code in Simulink 64
3.15. A Concept of a Pivot . 64

4.1. Overview of the Implementation . 66
4.2. Embedding Tests in Simulink . 68
4.3. Sample Components of a Test Composite 69
4.4. Sample Representation of a Test Composite in pure::variants 70
4.5. Sample Representation of a Test Case in pure::variants 72

14

4.6. Sample Test Report Showing the Test Results of Two Units 73
4.7. Example of a Subsystem Placeholder in Simulink, colored in magenta . . . 74
4.8. Example Simulink Library Including Alternatives of a Variable Subsystem . 74
4.9. Library Representation in UML . 76
4.10. Exploded View of a Sample Variability Library 77
4.11. Relation of the node class to all the Other Parts in pure::variants and Simulink 78
4.12. Creating a Reference in Simulink With the general Tab Selected 81
4.13. Creating a Reference in Simulink With the model ref Tab Selected 84
4.14. Creating Attributes in Simulink . 86
4.15. Node Hierarchy in Simulink and Their Counterpart in pure::variants 88
4.16. Creating a Tree With node Objects in the Tree Editor 89
4.17. Basic Steps When Creating a Variability Library 90
4.18. Step 2: Create a Variability Library Folder 91
4.19. Step 3: Create a Simulink Library . 91
4.20. Step 4: Create a Subsystem in the Simulink Library 92
4.21. Step 5: Create a Reference Library Folder 92
4.22. Step 6: Create Block References . 93
4.23. Step 7: Create Subsystem References . 93

5.1. Overview of the Sample Project Software Architecture 95
5.2. Functional Variants of Request Generation for Hybrid Modes 96
5.3. The User Can Select the Units Under Test in the software system config

variant description model . 98
5.4. The vehicle config model is represented in a pure::variants Feature Model . 99
5.5. The Requirements Model is Configured in a pure::variants Variant Descrip-

tion Model . 100
5.6. Sample Requirements Model . 103
5.7. Sample Test Bed Including Test Block and Unit Under Test 104
5.8. Contents of the Test Block . 104
5.9. Contents of the Test Composite Including Test Cases and slUnit Multiplexer 105
5.10. Contents of a Test Case Including the Test Case Implementation 106
5.11. Contents of the Test Case Implementation 106
5.12. Unit Test Model Showing the Representation of Test Cases and the Test

Suite . 107
5.13. Unit Test Model Showing the Representation of the Simulink Test Code . . 108
5.14. Defined Goals, Corresponding Questions and Metrics 111
5.15. Total Effort for Both Methodologies for Nvariants = 1..5 120

15

List of Tables

4.1. Mapping Between variation type and pure::variants variation type 80
4.2. Mapping Between Simulink Block Parameter and attribute name 85

5.1. Varying Values for two Different Vehicles 98
5.2. Mapping Between Test Cases, Requirements and OBTR TrsmGearAct, N

is the Number of Positive Gears . 99
5.3. Test Data for Vehicle 1 . 109
5.4. Test Data for Vehicle 2 . 110
5.6. Metrics in This Case Study and Their Description 112
5.7. Test Efficiency in Poet . 113
5.8. Test Quality in Poet . 114
5.9. Test Maintainability in Poet . 114
5.10. Test Reuse in Poet . 115
5.11. Test Efficiency in the SPL Test Framework 115
5.12. Test Quality in the SPL Test Framework 116
5.13. Test Maintainability in the SPL Test Framework 116
5.14. Test Reuse in the SPL Test Framework . 117
5.15. Summary of all Metrics . 117
5.16. Terminology for the Calculation of the Break Even 118
5.17. Effort for Developing, Creating and Running Tests 119
5.18. Break Evens for Nvariants = 1..5 . 119

16

Abbreviations

API Application Programming Interface
CCFM Consul Component Family Model
CTM Classification Tree Method
CTM/ES Classification Tree Method/Embedded Systems
DSL Domain Specific Language
EC Equivalence Class
FODA Feature Oriented Domain Analysis
FURPS Functionality Usability Reliability Performance Supportability
GQM Goal Question Metric
GUI Graphical User Interface
HF High Frequency
HTML Hypertext Markup Language
PC Personal Computer
RPM Revolutions Per Minute
SPL Software Product Line
SW Software
TC Test Case
TD Test Data
TDD Test-Driven Development
TP Test Plan
TPT Time Partition Testing
TS Test Software and Scripts
UML Unified Modeling Language
V Variant
VP Variation Point

17

1. Introduction

1.1. Motivation

At the moment hybrid vehicles are on the brink of being developed and manufactured
with respect to mass-customization. This encompasses a handful of compelling problems:
hybrid vehicles are in the prototype stage and control software has to cover many possible
configurations for fine-tuning. Myriads of possible vehicle configurations lead to more di-
verse control software configurations. Due to its multitude of hardware assembly variants,
hybrid vehicles confront developers with even more variant configuration possibilities as
composed to conventional vehicles.

1.2. Background

In the HybConS project currently a Software Product Line is under development. Software
Product Lines differentiate between commonalities and variabilities. This is especially im-
portant in the context of control units for hybrid vehicles because they share some common
features and differentiate enormously due to their huge amount of possible hardware con-
figurations. In order to cope with these problems, the HybConS project is defining a
generic and highly reusable software architecture.

Automotive software is highly safety-relevant. For this reason testing efforts add a huge
amount to development costs. Testing in Software Product Lines is a present challenge.
Test reuse is an important cost-cutting issue. Test management as well as test data stor-
age and the possibility of their integration in Software Product Lines will have a major
impact onto competitiveness.

1.3. Purpose and Scope

A control unit for hybrid electrical vehicles is under development with respect to software
reuse and adaptibility. Therefore, a Software Product Line is implemented by to cover all
possible functional variants.

For instance, a functional variant may be the implementation of recuperation during ser-
vice braking. This function would be desired by some vehicles but not by all. So, it is,
simply spoken a goal of the SPL to present the developer a simple switch where he could
determine the presence of the functional variant.

Dependent on the software configuration it should be possible to produce a selection of
corresponding test cases. Moreover, it will be able to create some generic test cases and

18

1.4. Disposition

fill them automatically with test data.

Currently, unit testing is performed by means of a unit testing software, called Poet.
Despite the fact that this is a proprietary company-internal product, it is insufficient for
the reasons:

• It is not possible to select test cases on the basis of a formal representation. Selections
have to be done by the tester on unit test level.

• Neither a connection between different units nor between test cases and requirements
are provided. Test cases can not be organized by any means of hierarchy. Testing
issues are just local (unit level) concerns.

• No global test data management is provided.

• Specified signals as well as signal evaluation criteria can only be defined as low level
data. No abstraction of signals and evaluation criteria is supported. No chance of
test reuse is provided.

This leads to the negation of reuse. Signals have to be drawn in a signal editor for each
test case. A lot of redundant hand-crafted work has to be done. The manual test data
generation is very error-prone and changes in test data cause a lot of work.

The scope of this thesis encompasses first, a systematic test case selection mechanism
based on a formal representation, and second, the connection between test data manage-
ment, test signals and test evaluation criteria. This includes a more abstract view on
signals which leads to an abstract reception of test cases. Those generic test cases provide
a missing link between test data and test cases.

1.4. Disposition

In Chapter 2 a first introduction to test related terminology is given. Section 2.2 gives
an overview on Test-driven development and the xUnit test paradigm. The mlUnit and
slUnit implementations of xUnit are presented. Section 2.3 deals with Software Product
Line principles in general. Software Product Line testing concerns are discussed in Sec-
tion 2.4. Finally, Section 2.4 treats problems and possible solutions that are apparent
in testing automotive embedded software.

Chapter 3 depicts general ideas that lead to the interlacing of pure::variants and Simulink,
first. Second, the implementation of test plans in pure::variants, Simulink and other test
frameworks is discussed. In problem space, modeling of requirements models, as well as
vehicle and software configuration models is described. Finally, the link between solution
space and test frameworks is explained.

In Chapter 4 the implementation of the concepts is described. Since the creation of
feature models can be done in pure::variants easily, it is not described here. The main
part of the implementation is the link between the test framework with family models and

19

1. Introduction

the generation of family models out of Simulink with the help of user interaction.

In Chapter 5, a case study has been carried out. First, the system under test and the
test conditions are described. The system under test is tested with two different software
configurations in order to prove the concept of Software Product Line testing techniques.
The results will be discussed.

Chapter 6 concludes this theses. Lessons learned are listed and future work is proposed.

20

2. Related Work

2.1. Aspects of Software Quality

Software quality aspects go beyond the correct fulfillment of the functional specifications.
Most of the time the functional specification is tested. Besides, some aspects are tightened
together so that a level of quality concerning aspect A may influence aspect B’s quality
[Vig10].

Software quality aspects can be described by using the FURPS-model. It is described
in [Vig10] and [CdPL09] and consists of the following parts:

Functionality covers the whole spectrum of demanded specifications.

• Adequacy means that the realization should stick to the requirements.

• Correctness means that the realizations sticks to the specification.

Usability covers all aspects of human computer interaction, f.i. comprehensibility, learn-
ability, ease of use and documentation.

Reliability is the ability to work in a predictable way.

• Maturity is a measure of how often software fails.

• Fault Tolerance is the ability to deal with faults that have been caused by problems.

• Recoverability is the ability to establish desired performance after a faulty state in
a certain time.

Performance is the ability to satisfy defined boundary conditions, such as:

• Timing Resources needed by an application.

• Memory Resources needed by an application.

Supportability is the ability to run on different platforms.

• Adaptibility How easy can software be adapted to different needs?

• Installability How easy can software be installed?

• Portability How easy can software be ported to different platforms?

21

2. Related Work

2.2. Test-Driven Development

TDD is the acronym for Test-driven development which is a more sophisticated approach
than simple and intuitive testing during development. TDD favors documentation and
check per requirement.

2.2.1. The Utmost Maxime: Test First

This approach should be viewed under a pragmatic perspective: each requirement is linked
with one or more tests [GSM04]. Before implementing a new functionality, the correspond-
ing tests have to be created.

One may compare writing software to writing texts. Human beings are very likely to
commit a lot of typing errors and even if they would re-read the written words they often
do not get aware of the committed errors. It seems somehow that human beings do not
read in a letter-after-letter manner but more likely in some more complex contexts of
meaning. They build up an inner world model that prevents them from finding errors. A
possible solution to detect mistakes is to let another person read the text. As well another
way to detect many mistakes is to read the text beginning at the end reading word after
word in the reverse order. This inversion of order somehow relates to TDD. A case study
has been conducted in [WMV03] that indicates that TDD helps reducing defect density.

2.2.2. TDD Process

Figure 2.1.: Development Cycle in TDD

The process of TDD (see Figure 2.1) has been described in [Bec09] and consists of the

22

2.2. Test-Driven Development

following five steps:

Quickly Add a Test

A test is added in order to cover a requirement. A requirement may need more than one
test. In this step only one test is added at a time. In TDD it is not clearly defined who
writes the tests: ”The unit tests might be written by the same developer or by a designated
tester” [GP07].

Run All Tests And See The New One Fail

The new test should be executed to test if it requires new code. If the new test case does
not fail, it does not require new code to satisfy its test specification and thus the test is
of no use. In this case the test has to be rewritten.

Make a Little Change

In this phase new code is implemented in order to let pass the latest test case. Only as
much new code should be written as is needed to achieve a pass when applying the new
test. This should guarantee, that all code branches are traversed.

Run All Tests And See Them Succeed

After each code change, all tests are executed automatically. If they pass, the process
continues at the next step.

Refactor to Remove Duplication

Refactoring relates to improving the written code by whatever aspect necessary. Regres-
sion tests can now be easily run after each code change. After the refactoring has been
accomplished, the process continues at the step, where a new test is added.

Link any Test Case with Meaning

Any test case must be linked with meaning [Eng03]. This is one of the advantages of TDD
since without these actions many test cases are thrown away or simply carried out by
typing a number (e.g. 9) somewhere (see Section 3.5.1). Apparently, this behavior does
not contribute to test case reuse. Each requirement is linked with a test case and provides
a form of documentation.

2.2.3. Additional Tools: Fakes and Mock Objects

Units are tested isolated and independently from each other. In unit testing, sometimes
test data generated from other units are needed. Because of the absence of other units,
test data have to be generated by means of fakes or mock objects.

Fakes

Fakes are simple objects, providing a simple workaround to prevent compiler errors [Vig10].

23

2. Related Work

Mock Objects

Mock objects support test data generation up to a very complex extent. They are simpler
than the real implementation counterparts but are able to imitate the behavior in an
appropriate way [Vig10].

2.2.4. xUnit

xUnit is a language independent unit testing framework and was developed and explained
first in [Bec11]. xUnit is free of the typical restrictions of a programming language and
can serve as a reference model to the diverging and different implementations of mlUnit1

and slUnit[DG07][Doh08]. mlUnit follows the object oriented paradigm, whereas slUnit
follows the paradigm of graphical programming in Simulink.

xUnit consists of five patterns:

• Test Case [Bec11]

• Test Suite [Bec11]

• Fixture [Bec11]

• Check [Bec11]

• Composite Pattern[DG07][Doh08]

The Test Case Pattern

A test case is an autonomous unit of testing. The preconditions of a test case have to be
created by means of a setup method. Because a test case is autonomous and preconditions
are defined, the order of execution of multiple test cases is independent.

The executable code of a test case is called test method. The name of a test method
starts with test.

Test Suite Pattern

A test suite consists of a set of test cases and test suites (see Figure 2.2). All parts of the
test suite are executed.

Fixture Pattern

A fixture is part of a test case, it provides the common configuration or the desired pre-
condition. A fixture can be implemented by means of setup and teardown methods in
object oriented test frameworks (see Section 2.2.5) or otherwise (see Section 2.2.6).

For instance, such a common configuration needed by a test case may be a connection

1http://sourceforge.net/projects/mlunit/

24

2.2. Test-Driven Development

Figure 2.2.: In xUnit it is Possible to Build a Tree Structure of Tests [Vig10]

to a database. The setup method is then responsible for creating this connection. After
the execution of the test case, the teardown method is responsible for closing the connec-
tion.

Check Pattern

Feedback is an essential part of testing. The check pattern returns two possible results:
failure or error. A failure is reported, if the test result does not correspond to the specifi-
cation. An error is reported in case of incorrect behavior, f.i. caused by divisions by zero,
exceptions not caught and the like. As a result of any execution of a test case or a test
suite, a test report is generated.

Composite Pattern

Figure 2.3.: xUnit Class Diagram [Doh08]

25

2. Related Work

In Figure 2.3 Test is the abstract basic class. One can derive a Test Case or a Test Suite
from it. As we can see, it is possible to build up a test tree. Inner nodes are always test
suites and leaves are test cases (Figure 2.2).

2.2.5. mlUnit

mlUnit2 is an implementation of xUnit in Matlab and is built up similar to other object
oriented frameworks such as jUnit3. mlUnit is built upon xUnit patterns, as well:

Test Suite Pattern A test suite consists of several test cases. All test cases in a test suite
are executed, if the test suite itself is executed.

Test Case Pattern A test case is executable and may contain several test methods. All
test methods within a test case are executed. By convention, all test methods begin
with the prefix test.

Fixture Pattern Each test case owns the two methods setup and teardown that constitute
the pre- and postcondition and are responsible for creating and restoring the test
context.

Check Pattern Assertions correspond to the xUnit check pattern. Assertions enable au-
tomatic evaluation of test routines. They compare expected results with the test
results. Assertions may detect failures that are forwarded to the test report. Errors
are reported as well.

2.2.6. slUnit

In slUnit[DG07][Doh08] the five patterns are mapped to Simulink (see Figure 2.4). The
so-called test objective is the subsystem under test.

Test Method Pattern Test methods are the slUnit counterparts of test cases. They pro-
vide test signals and have access to the signals generated by the test objective.
Besides, they do not have setup or teardown methods.

All Tests Pattern The all tests pattern corresponds to the test suite pattern. It means,
that a set of test methods is executed one after another. By connecting one after
another test method to the test objective, the multiplexer arranges a suite of tests.

Assertions Pattern Assertions are defined within a test method. Assertions are repre-
sented by special assertion blocks, that are part of slUnit. If an assertion is violated,
the corresponding block changes its color from green to red. The test method block,
that contains the assertion turns to red as well. In this manner, a failure is indicated
in slUnit.

2http://sourceforge.net/projects/mlunit/
3http://www.junit.org/

26

2.2. Test-Driven Development

Fixture and Composite Pattern The example of a test composite is gray shadowed in
Figure 2.4. The common code block is the realization of the fixture pattern (as op-
posed to the setup-method in mlUnit). Additional test methods and test composites
can be attached to the test composite. We can see, the composite pattern can form
a recursive tree structure.

Figure 2.4.: Overview of all the Patterns in slUnit [DG07]

27

2. Related Work

2.3. Software Product Lines

2.3.1. Motivation

Henry Ford is said to be the inventor of the assembly line and industrial mass production.
His philosophy was to build a cheap car so that every american would be able to buy one.
Due to his policy of cheap production there was only one model - the Model T - available
in one configuration [C+09].

Figure 2.5.: Single System Engineering vs. Product Line Engineering in Principle
[PBvdL05]

It was not until the year 1924 that Alfred Sloan from the General Motors Corporation
discovered diversity as a key factor to success. His approach did address not only the
practical needs of customers. Moreover he discovered that a car is more than a means
of transportation. People associate their success and social status with their cars. Addi-
tionally, he detected a need for comfort and luxury. He introduced a business strategy he
called a car for every purse and purpose [Pel06].
In the end, the Ford Motor Company was out-competed by the General Motors Corpora-
tions as Americas’ most successful car manufacturer.

As can be seen, diversity of products is a key factor to success in whatever business that
may outweigh conservative key factors such as time-to-market or cost. Lessons learned for
the software business: the time of mass customized standard products is over.

Systematic reuse has been successful in several areas, such as automobile development,
architecture and last but not least - software engineering [CN07].

28

2.3. Software Product Lines

2.3.2. Different Types of Reuse

Buy vs. Build

Following [Bro11] ”The most radical possible solution for constructing software is not to
construct it at all”. Buying standard software components seems to be the best reuse
strategy if possible. Consider operating systems: almost every company uses standard
PC’s with an operating system running on it. On the other hand, only very few companies
can afford to build an operating system on their own because it is tremendously expensive.
A license for an operating system becomes very cheap in contrast because of massive reuse.

Higher Level Languages

Higher level languages have a high impact on productivity: compare programming in
assembly language to programming in C. Basically, higher level languages make use of
reuse [Bro11].

Domain Specific Languages

DSL are tailored to specific domains or fields of application [vDKV00]. Examples for such
DSL are:

• Database Query Languages

• HTML

• Matlab/Simulink

DSL have the impact that experts in specific domains (such as control theory, physics,
mechanics) can easily use them without a deep knowledge of software engineering and
programming. For an example, consider Simulink, a graphical programming language
that is mainly used in physics, mechanics, signal processing and so on has improved
productivity of code generation enormously. On the other hand, DSL address only a
narrow scope of possible applications and thus are very unflexible compared to general
purpose programming languages [vDKV00]. In Simulink, simulating non-linear differential
equations becomes very easy; programming a sorting algorithm is nearly impossible.

Libraries

Reuse with libraries is often done halfhearted: it happens that a small team of software
engineers is assigned the task of writing libraries. Those libraries are seldom used for
several reasons [Str00]:

• The team, that develops libraries is not integrated in the development process of
application. Thus, the libraries would not match the need of the application devel-
opers.

• There is no emphasis on reuse. No regular training on how to use the libraries takes
place. Application engineers often do not know how to use the libraries in the right
way.

29

2. Related Work

• Reinventing the wheel is rewarded. If productivity is measured in lines of code, why
should anyone use libraries. Reusing libraries does produce few code, compared to
reinventing the wheel.

Clone and Own

In [CN+11a] clone and own is described as follows: ”Suppose you are developing a new
system that seems very similar to one you have built before. You borrow what you can from
your previous effort, modify it as necessary, add whatever it takes, and field the product,
which then assumes its own maintenance trajectory separate from that of the first product.
What you have done is what is called ’clone and own.’ ”.

In [CN+11a] it is argumented that the clone and own principle differs from Software
Product Lines in at least two ways: First, Software Product Lines are explicitly designed
for reuse. Second, in the clone and own principle, each product is viewed as a single entity,
thus a single entity will have no influence on the architecture of the common code base.

2.3.3. Systematic Reuse

Systematic reuse is ”domain focused, based on a repeatable process and concerned pri-
marily with the reuse of higher level lifecycle artifacts, such as requirements, designs and
subsystems” [FS94].

In the domain ”families of related systems” [FS94] are created in order to derive co-
herent and similar applications. The reusable parts that are created in the domain are
called core assets (see [CN+11b]) or domain artifacts (see [PBvdL05]).

Repeatable processes help formalizing reuse. In [PD93] it is stated ”that substantial qual-
ity and productivity payoffs will be achieved only if if reuse is conducted systematically
and formally”. Such repeatable processes are described in Section 2.3.4. If there are no
dedicated processes, reuse is exploited informally (ad-hoc) [PD93].

2.3.4. Two Development Cycles

In Software Product Line engineering, emphasis is put explicitly on reuse. Because, besides
technical issues, organizational issues are important, the development of products is split
into two development cycles: domain engineering and application engineering. Both of
them state explicitly several process steps, none of them may be leaved out for successful
product development [CN07].

Domain Engineering

Domain engineering is design for reuse [FS94]. In domain engineering (see Figure 2.6) a
common base of reusable core assets is developed [vdLSR07].

Product Management In product management, a set of similar products is defined. Not
only actual products are listed but possible future products as well. Product man-
agement includes scoping: in scoping the bandwidth of products is defined. If the

30

2.3. Software Product Lines

scope of products is narrow, benefits of reuse may be too small; if it is too large,
commonalities would shrink to a minimum, reverting the potential of a common ar-
chitecture. Scoping should be performed on evidence, such as return on investment,
marketing aspects and reuse economics [Sch02].

Domain Requirements Engineering In domain requirements engineering, all requirements
concerning the core assets are gathered, explicitly mentioning all commonalities and
variabilities among themselves.

Domain Design In domain design, an architecture is constructed, including all variable
parts.

Domain Realization In domain realization, a detailed software realization is implemented
with the help of variability mechanisms (see Section 2.3.5).

Domain Testing Domain testing covers all testing artifacts (see Section 2.4.1).

Figure 2.6.: Domain Engineering Activities on the Upper Layer [PBvdL05]

Application Engineering

In application engineering (see Figure 2.7), domain artifacts have to be instantiated, first.
Based on that, domain artifacts are extended to a complete product [vdLSR07].

Application Requirements Engineering In application requirements engineering, require-
ments are gathered that haven’t yet been covered by domain requirements.

Application Design All variabilities in the domain design are bound: it is instantiated.
Starting from this initial system, additional application aspects are covered, by ex-
tending it by the application design.

Application Realization In application realization phase, the product instance is built
from reusable domain realization artifacts. Additionally, product-specific function-
ality has to be implemented.

31

2. Related Work

Application Testing In application testing, the finished product is tested; test artifacts
previously defined in the domain cycle have to be completed.

Figure 2.7.: Application Engineering Activities on the Lower Layer [PBvdL05]

2.3.5. Commonality vs. Variability

Variability Modelling

When defining a portfolio of products, at least two presumptions will hold true: first,
products will have common parts in requirements, architecture, implementation and doc-
umentation. Second, products will have different parts in requirements, architecture,
implementation and documentation.

As a first step, it is reasonable to separate the common parts from the variable parts
and to find a notion of variability.

In [PBvdL05], three questions are proposed to define variability:

What does vary? ”Answering this question means identifying precisely the variable item
or property of the real world. The question leads us to the definition of the term
variability subject” [PBvdL05]. A variability subject is defined as follows: ”A vari-
ability subject is a variable item of the real world or a variable property of such an
item” [PBvdL05].

Why does it vary? ”There are different reasons for an item or property to vary: different
stakeholder needs, different country laws, technical reasons, etc.” [PBvdL05].

How does it vary? ”This question deals with the different shapes a variability subject can
take. To identify the different shapes of a variability subject we define the term
variability object” [PBvdL05]. A variability object is defined as follows: ”A variability
object is a particular instance of a variability subject” [PBvdL05].

32

2.3. Software Product Lines

Variability Representation

Variation Point A variation point is the SPL abstract view onto the real world variability
subject. A variation point may find its concretization within all kinds of possible
domain artifacts, such as architecture, requirements, test plans, etc. [PBvdL05].

Variant A variant is the SPL counterpart to the real world variability object. Variants
are owned by variation points and may include variation points, as well [PBvdL05].

Variability can be expressed explicitly in a graphical variability model [vdLSR07]. A set
of useful building blocks is depicted in Figure 2.8. Such a model consists of the aforemen-
tioned variation points and variants. Since both of them have to be linked together, the
concept of variability dependencies is introduced. Regarding the example in Figure 2.9, an
intrusion detection system may contain either a camera surveillance or motion sensors as
a variant but not both at the same time. This is called an alternative choice. The variant
cullet detection is optional and is not influenced by the other two variants [PBvdL05].

Figure 2.8.: Building Blocks for a Graphical Representation of Variability [PBvdL05]

So-called constraint dependencies are used to model constraints between variations or vari-
ations and variation points. They require each other or they exclude one from another.
Regarding the example in Figure 2.9, the selection of variant basic requires the selection
of the variants motion sensors and keypad [PBvdL05].

Figure 2.9.: Sample Graphical Representation of Variability [PBvdL05]

33

2. Related Work

The graphical representation is explicit and not embedded in the realization artifacts,
such as requirements, documentation, design. The concurrency of both, explicit graphical
notation as well as realization artifacts is favorable and called orthogonal variability model
[PBvdL05]. Figure 2.10 presents an example, where the graphical variability model is
related with a domain artifact (use case diagram). The interrelation between variants and
artifacts is modeled with artifact dependencies, that are graphical building blocks (regard
Figure 2.8) [PBvdL05].

Figure 2.10.: Sample Graphical Representation of the Orthogonal Variability Model
[PBvdL05]

Variability Realization

Figure 2.11.: Basic Variability Mechanisms [vdLSR07]

After [vdLSR07] there are three basic of variability mechanisms: adaptation, replacement
and extension.

Adaptation In adaptation technique, only one implementation is available; changes to
the software can be done via interfaces that might be: configuration files, run-time
parametrization, etc.

Replacement In replacement technique, there exist several variants of the implementation
which can be replaced; one of them can be chosen, or a product-specific version can
be implemented.

34

2.4. Testing Software Product Lines

Extension In extension technique, the architecture has to provide an interface to allow
addition of components. Those can be product-specific or not. For instance, plugins
relate to the extension mechanism.

2.4. Testing Software Product Lines

2.4.1. Test Artifacts

Test artifacts are defined in [PBvdL05] as follows: ”Test artifacts are products of the test
process containing plans, specifications, and test results”.

After [McG11] test artifacts include:

• Test plans

• Test cases

• Test reports

• Test data sets

• Test software and scripts

In [McG11] it is stated, that ”All test artifacts are under the control of the configuration
management system so that when a specific build of a system is recreated, the appropriate
test artifacts are also available”.

2.4.2. Domain Testing Activities

Domain testing cannot be viewed completely without any interrelation to application
testing. Regarding Software Product Line testing strategies, both, domain activities and
application activities have to be taken into account in parallel (see also Section 2.4.5).

Since Software Product Lines incorporate the virtue of early testing [PBvdL05], testing in
domain engineering appeals to be desirable. As testing is difficult in the construction phase
(regard requirements engineering, domain design), other validation techniques should be
considered. In [McG11] static-testing techniques are described for validating Software
Product Lines, namely inspections and architecture evaluation.

Inspections

After [McG11], inspections in the SPL context ”are intended to determine whether an
artifact is correct and complete”. A product is derived by taking choices at all variation
points, following some criteria [McG11]:

”An artifact is correct if it matches some standard deemed accurate by experts” [McG11].

”An artifact is complete if it addresses the full range of possible values as defined in its

35

2. Related Work

specification or the product line scope document” [McG11].

”An artifact is consistent if it does not contain any contradictions among its internal
components and does not contradict any other product line artifact” [McG11].

Architecture Evaluation

Architecture evaluation has been stated as a static testing technique in [McG11] and is
described in [PBvdL05] as ”a means to assess the architecture according to certain selected
quality requirements. The architecture is tested against a set of development scenarios”.
After [PBvdL05] those architecture evaluations take place under certain quality issues
against whom they are tested. Quality issues may be security or safety concerns, for ex-
ample.

With advancing maturity of the domain scope implementation, dynamic validation tech-
niques, namely tests become applicable. A compelling problem in domain scope testing
are absent variants [PBvdL05]. Absent variants are not developed in domain scope, if
they are needed for one or only few product instances. Generally spoken, the existence
of extension points leads to problems in domain testing since a fully composed product
is not available (see also Section 2.4.5). Dynamic domain validation can be subdivided in
the following processes: unit testing and integration testing.

Unit Testing

Domain unit testing resembles application unit testing, since both share the same problems
or strategies. It is in the nature of things that unit testing takes place without the
context of other units. If unit testing is too hard to accomplish, domain design should
be reconsidered [PBvdL05]. The problem of not instantiated extension points or absent
variants may be solved by test-driven techniques that help to create a unit test context
(see Section 2.2.3).

Integration Testing

Integration testing in domain engineering is hard to accomplish fully since components
occupy variants. The number of possible combinations often becomes very high, even if
few variation points are defined [PBvdL05]. Therefore, exhaustive integration testing in
domain engineering is not possible. Some SPL test strategies deal with domain integration
testing (see Section 2.4.5). Nevertheless they cannot be viewed completely isolated from
application integration testing.

2.4.3. Application Testing Activities

Even, if testing has been performed in the domain engineering phase it has to be repeated
in the application phase to reassure no side effects take place [PBvdL05]. Reuse of domain
test artifacts is desirable.

36

2.4. Testing Software Product Lines

Unit Testing

Test cases for common units are available, at least in form of a skeleton. Partly, it will
be necessary to change test data according to changes in application space. Variable test
cases and so-called absent variants will have to be implemented, as well [PBvdL05].

Integration Testing

In application engineering, all variants have to be selected [PBvdL05]. Integration testing
becomes applicable, since no exhaustive number of combinations of modules or components
has to be tested (see Section 2.4.5).

2.4.4. Interrelation

In Figure 2.12, Variant A is extended either by Module B or by Module D. The structure
of the product is reflected by the test structure. The Test Variant A is extended either
by Test Module B or by Test Module D. Following this argumentation, test cases can be
composed from partial test cases dependent on the product composition [McG11].

Figure 2.12.: Composing Partial Test Cases [McG11]

Tests Related to Variability

Since variants have to be selected during application engineering phase many configuration
problems may occur:

Absence of Variants It can happen that a variant has not been selected. [PBvdL05]
proposes some means to test this absence of variants. As well, some FODA-tools
provide means to check those dependencies and report configuration errors.

Application Dependencies [PBvdL05] states the problems of dependencies, which means
that selections are interrelated and dependent.

37

2. Related Work

One has to check whether:

• ”the presence of variants violates any restrictions” [PBvdL05].

• ”the absence of variants violates any restrictions” [PBvdL05].

FODA-tools, such as pure::variants allow to define restrictions as well as constraints and,
therefore, provide powerful means to prevent those configuration errors.

2.4.5. SPL Test Strategies

Brute Force Strategy

According to [PBvdL05] the brute force test strategy includes tests at all levels (unit test,
integration test and system test) for all possible configurations in domain space only.

Benefits are early uncovered defects, compliant with the idea of early testing. In inte-
gration testing the number of possible configurations rises enormously with the number
of variation points, so that even with some few variation points, the computing resources
would not suffice. Another drawback are so-called absent variants and extension points.
Using stubs incorporates other problems: after [PBvdL05] stubs do not reflect the reality
and stubs may contain defects as well. Therefore, stubs would have to be tested, too.

Pure Application Strategy

According to [PBvdL05] application testing is performed in application space only; domain
testing is neglected. This violates the domain space process, where testing is pointed out
explicitly (see Section 2.3.4). Going further, this neglecting means that benefits of Soft-
ware Product Lines can not be mapped to testing. In other words: testing is not stated
in the domain process and systematic test reuse does not take place. Test reuse is only
performed through means of test artifacts, if they are defined in domain space. The ben-
efits of early testing are lost: domain space components are tested in application space at
the moment they are released.

On the other hand, application testing is easy to accomplish, since it resembles single-
system testing. All variants are bound and available. All extension points are imple-
mented.

Sample Application Strategy

With this test strategy (see [PBvdL05]), one or some few sample applications are built
up already in domain engineering and testing is carried out, using this sample applica-
tion. The benefits are clear: no absent variants cause problems in testing. Early testing
is possible. Nevertheless, sample application testing is not able to address all possible
configurations, it can cover at least all commonalities with testing.

38

2.4. Testing Software Product Lines

Commonality and Reuse Strategy

After [PBvdL05] domain testing aims at testing common parts and preparing test artifacts
for variable parts. So, in domain testing test artifacts have to cover commonalities and
regard variable parts as well. Some of the variable test artifacts are then implemented in
application space.

This approach is the most sophisticated and perhaps most appealing. Despite this, one
has to take into account that implementing a test framework for this test strategy is a real
challenge and may pay-off only in variant-intensive Software Product Lines.

2.4.6. Testing Roles

The issue of testing roles is much discussed in literature [McG11][RGW03] regarding re-
sponsibilities and desired skills. According to [McG11] the following testing roles are
defined:

Test Manager

The test manager is in charge of assigning test resources to a specified product according
to quality requirements. This includes risk analysis, priorisation of tests and test cases
and selecting a subset of tests that should be conducted.

Test Architect

The test architect is responsible for the provision of the test and test automation frame-
work. In the scope of Software Product Lines, those frameworks are of high complexity.
According to [McG11] the architect specifies the test artifacts of the SPL. These test
artifacts are produced by different testing roles.

Tester

The tester implements the test cases in order to unveil actual and possible defects. The
testers role in TDD differs a little from the traditional one. In TDD (see Section 2.2),
testers put the cart before the horse: tests are created before implementing of the corre-
sponding functionality. In this context, tests assure that implemented functionality sticks
to requirements.

39

2. Related Work

2.5. Testing in the Automotive Domain

2.5.1. Classification Tree Method/Embedded Systems

CTM/ES [Con04][KM10][Wol11][Vig10] is the extension of CTM that enables discrete-
time testing. First we will have a shorthand look upon CTM and investigate CTM/ES
later on.

Equivalence Classes

Equivalence classes are described in [Vig10]. They are will be explained by a short exam-
ple, below.

Consider an automotve software unit that alerts the driver if the velocity of the vehi-
cle is higher than 130 km/h. It is useful to distinguish the possible input values in three
equivalence classes:

EC1: velocity < 0 (no alert)

EC2: velocity > 130 (alert)

EC3: 0 <= 130 <= velocity (no alert)

It is apparently not very efficient and of no use to test all values of every EC. The better
way is to find values at the borders of the ECs f.i.

EC1, test1: velocity = -10

EC1, test2: velocity = -1

EC2, test2: velocity = 0

EC2, test3: velocity = 10

EC2, test4: velocity = 120

EC2, test5: velocity = 130

EC3, test6: velocity = 131

EC3, test7: velocity = 140

Classification Tree Method

The Classification Tree Method is described in [Vig10] and is a more sophisticated way
to break down input values into different ECs. It is based on a graphical notation and
thus is more intuitive for test engineers. As the name states, CTM forms a tree. The root
represents the name of the unit under test. The nodes model so-called aspects that have
influence on the information processing inside the black box. By assuming aspects, testers
use some knowledge of the test objective’s inner implementation. This is called it a grey
box approach. The nodes constitute the equivalence classes.

40

2.5. Testing in the Automotive Domain

The process can be viewed as a four step cycle [Vig10]:

• Identify aspects that have influence on the systems behavior

• For every input parameter find reasonable equivalence classes

• Specify test cases: find a combination of equivalence classes for each of it

• Run the test cases

The Classification Tree Method has a severe drawback: it does not fit to discrete-time
systems. It is hardly possible to create time-varying test-input signals. Therefore, CTM
has been extended to the so-called CTM/ES.

Classification Tree Method / Embedded Systems

With CTM/ES [Con04][KM10][Wol11][Vig10] it is possible to create time-varying signals
in an easy and graphical way.

Figure 2.13.: CTM/ES Creating Time-Discrete Signals by Example [Wol11]

In Figure 2.13 some points in time are added that mark changes or transitions from one
equivalence class to another. These points in time are displayed as horizontal lines. By
marking this points the test engineer determines values of input signals at that specific
moment. Between this time points other values have to be created by means of interpola-
tion. These interpolations or transitions are displayed as a line between the marked points.
F.i. if a linear interpolation between two points is desired, the line would be dotted, if a
cubic spline interpolation is desired, it would be continuous.

41

2. Related Work

The process is a five-step cycle (see also [Vig10] and [Wol11]):

• Identify aspects that have influence on the systems behavior

• For every input parameter find reasonable equivalence classes

• Find adequate points in time

• Specify test cases:

– Find a combination of equivalence classes for each point in time (mark a point)

– Find the corresponding transition (by determining the line style)

• Run tests

2.5.2. Time Partition Testing

TPT is a common and widespread test description language in the embedded systems
domain and has been developed in [Leh04].

TPT-Diagrams

The TPT language is based on graphical notation for the purpose of intuitive understand-
ing. A test scenario is defined as a sequence of states. Each state can be linked with a
natural-language description (see Figure 2.15).

Figure 2.14.: Components of Time Partitioning Testing [Con04]

TPT-Diagrams consist of the following components (see Figure 2.14):

States A state represents a current phase in the test. It is entered and leaved by tran-
sitions. A state may consist of a sub-scenario. In TPT, a state is displayed as a
rectangle with a short natural language description.

42

2.5. Testing in the Automotive Domain

Junctions Junctions can embrace two or more transitions or branch them out. They are
no states, just a semantic graphical component.

Initial States An initial state is an entry point to a scenario.

Final States A final state terminates the scenario.

Transitions Transitions are connections between states, junctions initial and final states.
They represent the order, direction and orientation by which the diagram may be
traversed. Transitions are linked with a formal transition condition. They are de-
picted as arrows.

Parallelization TPT-diagrams allow parallelization of automata. This parallelization is
represented by a horizontal dotted line.

Variability Mechanisms

Introducing variability can enhance test case reuse as can be seen in the example from
[Leh04]. A test scenario may be starting an engine and simulating an engine speed error.
The scenario remains the same for many different engines and pre-conditions on a high
level. The generic sequence is:

• Start engine

• Wait for a specified engine speed

• Simulate the error.

An example of possible variations is given in Figure 2.15. Generating a specific test case
means to choose the appropriate variation. In terms of TPT, the structure with all the
possible variations is called testlet. By choosing a combination, a specific test scenario is
created.

Figure 2.15.: Example of Variablity Mechanisms in Time Partitioning Testing

43

2. Related Work

2.5.3. A Signal Feature Concept

Signal features serve as a means to analyze signals. Zander-Nowicka [ZN09] has considered
signal features as a way to generate signals, as well.

Figure 2.16.: Several Signal Features by Example [ZN09]

The drawback of many regression test evaluation methods is that a reference signal is
needed. This constitutes a problem, since:

• In TDD tests are created before the functionality is implemented. A reference signal
is usually obtained by recording the outputs of a module. Since there is no module
for creating a reference signal at the time tests are written, this is apparently a
contradiction.

• Of course, a reference signal can be created handcrafted, which causes a lot of work.

• In discrete-time signal processing, signals are treated as a series of values in time.
There is no abstract perception on signals that can serve for variability issues

In Figure 2.16 the two perceptions on signals are shown. The line illustrates the tra-
ditional discrete-time signal processing viewpoint. The signal feature concept extracts
so-called signal features. For example, in the diagram, the signal feature A (constant) is
displayed as a green line. Additionally, the signal feature has a duration time.

In the opinion of the author, signal features are important because they provide an easy
means to formulate expected results.

44

2.6. Hypothesis

Figure 2.17.: Extraction of a Constant Signal Feature in Simulink [ZN09]

A simple example has been described in [ZN09] and will be explained shortly. In Fig-
ure 2.17 a feature extraction of a constant in Simulink is depicted. The Signal is compared
with a time-shifted version of itself and the Signal is the sig input to the Relative tolerance
Block. The shifted Signal is the ref input to the Relative tolerance Block. The Relative
tolerance Block compares the two signals and allows a specified relative tolerance. After
[ZN09] ”the clock and the switch were introduced to prevent bad outputs derived from an
unfortunate choice of the initial output of the memory block. They provide no effect after
the first time step.”

2.6. Hypothesis

The goal of this thesis is to introduce a Software Product Line testing approach to auto-
motive control software, that is developed within the Matlab/Simulink environment.

As a first outcome of the analysis and synthesis of related work, a test-driven devel-
opment approach seems to be compelling. Test-driven development solutions are possible
to implement with the help of two test frameworks: mlUnit and slUnit. Another basic
idea of test-driven development is that a test case represents a requirement. Connecting
tests with requirements is a desirable feature since they provide a requirements-based test
selection mechanism and favor test case reuse as well.

When regarding Software Product Lines, testing issues emerge to be more complex than
in single-system development. Dealing with the higher complexity demands is challenging
but comes with the price of systematic test reuse. Test case selection as mentioned above
does not reflect the whole spectrum of Software Product Line testing. The construction of
test artifacts seems to be sufficient to represent and classify all facets: test plans, test cases,
test data, test reports, test software ans scripts. All those parts will have to be tightened
together by some means. FODA-tools incorporate an appropriate way to connect them all.

Finally, the problem of evaluating tests is very compelling. The signal feature concept
presented in Section 2.5.3 seems to be an appropriate test evaluation mechanism that is
applicable to test-driven development. Signals features are not limited to test evaluation.
They enable test signal generation as well. The idea of enhancing signal features with vari-
ability in a Software Product Line context was rather inspiring and helped to bridge the
gap between Software Product Line Engineering and testing variant-intensive embedded
software.

45

3. Concepts

3.1. Selection of Test Frameworks

3.1.1. slUnit

slUnit was previously described in Section 2.2.6. Several reasons have led to the decision
to use slUnit:

slUnit is embedded in Simulink. This means that the tests can be written in the same
language as the implementation.

The source code of slUnit is open source: thus, it is easy to change slUnit in order to
integrate it with the other frameworks used in this thesis. slUnit has been changed in two
ways: first, the slUnit test automation mechanism has been removed because it provides
no possibility to create test reports in a textual form. The test execution is controlled by
mlUnit test methods in the framework developed in this thesis, instead. Second, slUnit
assertions have been replaced by Simulink assertions because slUnit assertions have a very
poor timing performance.

slUnit is not very complex. In order to build a prototypical implementation, it is de-
sirable that the underlying frameworks are not too complicated because it would take a
lot of time to get familiar with them, otherwise.

slUnit is explicitly designed for unit testing. It follows the patterns of xUnit.

3.1.2. mlUnit

mlUnit was previously described in Section 2.2.5. Several reasons have led to the decision
to use mlUnit:

mlUnit is a Matlab based test framework. Thus, it is relatively easy to use the Mat-
lab/Simulink API within the mlUnit test methods f.i. to start simulations and log signals.

The source code of mlUnit is open source: thus, it is easy to use and understand the
API of mlUnit.

mlUnit provides a very good means to generate test reports. It is possible to create a
test report for each unit under test. Additionally, it is possible to add together the test
reports of all units in one global test report.

mlUnit is explicitly designed for unit testing. It follows the patterns of xUnit.

46

3.2. Separation of Spaces

3.2. Separation of Spaces

FODA-tools are based on a separation of spaces: besides the two development cycles
(domain engineering, application engineering), implementations are split up into problem
space and solution space. Separation of spaces is important because Software Product
Lines are usually built up by experts out of different domains.

In the current thesis, the pure::variants software enables such a separation of spaces.
In Figure 3.1 the four different spaces of a pure::variants SPL are illustrated.

In domain space, feature models represent the what of the Software Product Line. The
what is modeled by domain experts that do not have to be familiar with the technical
solution that is implemented by software experts. Feature models are a generic definition
of problem, a specific definition is done in application space.

Family models are also located in domain space. The represent the how of the SPL:
the technical solutions that are usually created by software engineers. Family models are
connected with implementations of Simulink libraries. In order to connect them to a fam-
ily model, these Simulink libraries have to be enhanced with variability information.

The separation between feature models and family models is important because domain
experts have different views onto the SPL:

The requirements engineer does not know, how the requirements are implemented with
test cases. Thus, the requirements engineer has a non-technical view on the Software
Product Line. He creates the requirements model in pure::variants as a feature model.

The general features of a car, such as maximum velocity and acceleration are usually
not determined by automotive engineers. They are determined by management based on
a carefully scoped product portfolio. Thus, the general features provide in principle the
business side of the SPL. Therefore it is represented by a feature model: the vehicle config
model.

Which units are integrated into the software system represents the what of the SPL.
It is represented by the so-called software system config model, a feature model.

The unit test model is the technical counterpart of the requirements model. Thus, the
unit test model represents the how of the SPL and is represented by a family model.

The test registry provides test scripts in order to automate testing of several units. Thus,
it is a technical solution and is represented by a family model.

In application space, the variant description model is derived from the feature model,
which means that the generic problem definition is turned into a specific problem defini-
tion by selecting variants.

47

3. Concepts

When the problem is defined, the variant result model represents a specific technical
solution. The last step in pure::variants is the generation of desired implementation. In
Figure 3.1 the outcome of the generation are: Simulink unit tests, mlUnit tests and test
scripts. These implementations can be executed automatically and provide test reports
and test signals as a result.

Figure 3.1.: Transformation Process of the Proposed Methodology Including Artifacts

48

3.3. Development Process

3.3. Development Process

As can be seen in Figure 3.2, the development process is split up into two parts: domain
engineering process and application engineering process. The process steps are connected
with arrows which indicates the sequence of their execution. The involvement of the
different roles is also illustrated in Figure 3.2. Roles in the context of this development
process are a model to describe activities that are related and coherent. It is not mandatory
that each of the roles is assigned a different person.

Figure 3.2.: Development Process Including Roles, Responsibilities and Artifacts

49

3. Concepts

3.3.1. Domain Development Process With Focus On Unit Testing

Domain Requirements Engineering

In domain requirements engineering, the requirements engineer is responsible for gathering
reusable requirements, documenting them and deriving a domain requirements model (see
Section 5.3). The domain requirements model is realized as a pure::variants feature model,
which has to be created manually (see Section 5.3).

Domain Design and Realization

In domain design and realization, domain engineers are in charge of building the domain
software system config model and the domain vehicle config model.

The domain software system config model lists all units that are part of the software
system under test. It is a pure::variants feature model and has to be created manually.

The domain vehicle config model contains features that may change from one vehicle
to another. Such a feature may be for instance the maximum velocity of a vehicle. It is a
pure::variants feature model and has to be created manually.

Domain engineers in the context of this process are responsible for all non-testing ac-
tivities, such as software engineering.

The test registry connects all software units under test and allows the full automation
of the test process via test scripts. After the creating the test registry manually, the test
architect has to map the test registry with the domain software system config model.

Domain Testing

The test architect is responsible for creating reusable Simulink test libraries and enhancing
them with variability information; the connection of both constitutes the variability library
(see Section 4.3.4). Second, the variability library can be transformed to a family model
automatically: the unit test model. The last step to be done is to connect the unit test
model with the corresponding domain requirements model and the domain vehicle config
model. This step has to be carried out manually.

3.3.2. Application Development Process With Focus On Unit Testing

Application Requirements Engineering

Application requirements engineering means to configure the application requirements
model which is derived from its domain engineering counterpart. The configuration is
done by the tester who has to type in the appropriate test data, here.

Application Design and Realization

In application design and realization, the application engineers have to create a working
instance of the SPL. They accomplish this task by configuring the application vehicle config

50

3.3. Development Process

model and the application software system config model. These models are derived from
their domain counterparts and are used to configure the actual software.

Application Testing

In application testing, executable test artifacts are generated by the FODA-tool. The
Matlab script test registry.m (see also Section 3.6.4) has to be started manually. This
script navigates to the folder where the unit under test is contained and calls the run all.m
script there (see also Section 3.6.1). The run all.m script launches the mlUnit test suite
that controls all slUnit test cases in order to test the unit under test. After the execution
of all executable test artifacts, a global test report is generated automatically.

51

3. Concepts

3.4. Test Artifacts

As described in Section 2.4.1, test artifacts include: test plans, test cases, test reports,
test data sets, test software and scripts. Figure 3.3 gives an overview of the representation
of test artifacts within different tools.

Figure 3.3.: Test Artifacts are Represented and Implemented Within Different Tools

52

3.4. Test Artifacts

3.4.1. Test Plans

Test plans define which testing activities should be performed. In Figure 3.3 there are two
feature models depicted, that influence the selection of test cases:

Relation to Requirements Model The requirements model is described in Section 3.5.1.
As stated in Section 2.2.2, each test case should be linked with a requirement. Re-
quirements can be selected in the feature models; by implication only those test cases
will be conducted, that are linked with a selected requirement.

Relation to Software System Config Model The software system config model (see Sec-
tion 3.5.3) describes, which units are contained in the software. Test scripts are then
generated by the test registry that is linked with the software system config model.
The generated test scripts will only launch tests for the units selected in the software
system config model.

3.4.2. Test Data Sets

Test data are values needed by the test cases (see Figure 3.3). The test data sets are
provided by two feature models:

Relation to Requirements Model The requirements model is a feature model derived
from natural language requirements (see Section 5.3). It presents an interface to
the tester (see Section 3.5.1). He has to type in values here.

Relation to Vehicle Config Model The vehicle config model (see section 3.5.2) represents
values that can be derived from the components of a vehicle, f.i. the maximum torque
of the engine. The vehicle config model is desirable, since the corresponding test data
change with the variable properties of a car’s components.

3.4.3. Test Software and Scripts

Relation to Test Software The test software consists of slUnit blocks as well as of mlUnit
test cases and test suites. Such a composition of test software is able to run the tests
for a whole unit under test.

Relation to Test Scripts The test scripts are Matlab scripts to enable testing of more
than one unit under test in a proper way. Additionally, the test scripts save all
signals and put together all test reports.

3.4.4. Test Reports

Test reports are generated by the mlUnit framework. Those test reports are generated
for every unit under test. Since more then one unit can be tested, they have to be put
together. This task is accomplished via the test scripts generated by the test registry.

53

3. Concepts

3.4.5. Test Cases

Test cases are executeable test artifacts. Test cases are represented in Simulink as slUnit
TestCase blocks and in Matlab as mlUnit test case classes. All these parts have to be
connected to a pure::variants family model (see Figure 3.6, Figure 3.7): it is called unit
test model and is described in more detail in Section 3.6.1.

3.5. Problem Space

3.5.1. Requirements Model

To benefit from Software Product Line principles it is useful to derive a semi-formal re-
quirements model. The requirements model is implemented in pure::variants and helps to
provide test case reuse. It delivers a possibility for the user (the tester) to type in test
data that have to be manually calculated. In fact it is a better practice to provide values
in a requirements model than just typing it directly into the test case. This may seem
trivial but in fact, linking a test case with a requirement is the major driving force for this
thesis. Because it is so important, the author will cite the basic source of his inspiration,
that was stated anecdotal in [Eng03]:

”When making test cases the test engineer tends to write the test case immediately, and
instruct the tester f.I. the value ’9’. It is not explained however why this is. The test engi-
neer may initially have a good reason for choosing this value (say it is a boundary value),
but if it is not connected to a requirement or implementation decision, and if the ’why’ is
not known the test case may become virtually worthless, after a change in requirements or
in a new environment, f.I. A new product line, in which the component is used.”

Summarized, arguments for a requirements model are:

• The tester is presented explicitly an envelope (the requirements model). Values must
not be typed in the test case directly, because some test data may be derived from
other models (f.i. vehicle config model).

• Since the requirement is linked with a purpose and a description the tester knows
the why of the test case. Otherwise the test case would become worthless, if the
requirements associated with it changes.

• Because every value in the requirements model is treated as an envelope, it enables
test case reuse, since only variable values have to be entered. This can be done in a
FODA-tool that enables automatic test case generation.

• A requirement can be linked with more than one test cases. Therefore, values that
remain the same for some test cases just have to be typed in once. Error-prone
manual retyping of values is minimized, thus.

54

3.5. Problem Space

3.5.2. Vehicle Config Model

The vehicle config model contains all vehicle-specific values that change from one vehicle to
another. Some of the values are boundary values, they can be considered as vehicle specific
equivalence classes. Many test data can be directly mapped to those vehicle-dependent
values or derived from them in a mathematical way. The benefits are obvious: these values
must be typed in once for a specific vehicle and can be linked to test cases. Much nasty,
work-intensive and error-prone retyping can be avoided. For instance, if a value changes,
it has to be retyped once in the vehicle config model and not in all linked test cases. If
the number of test cases is high, testers would run into severe trouble finding all test cases
where values must be changed, otherwise.

3.5.3. Software System Config Model

In the HybConS project it is planned to configure the software components with the help
of a tool chain including pure::variants. This tool chain is currently in work and not avail-
able yet. Therefore the software system config model is implemented as a simple feature
model that provides switches so that the tester can choose the software units under test.
In Figure 3.4 the user can choose whether the unit ReqRecupMotrn is tested or not. Based
on the selection of units in the variant description model the corresponding test registry is
configured that is responsible for creating the appropriate test scripts for test automation.

Addionally, it is possible to select two alternative implementations of the unit ReqRe-
cupMotrn: ReqHybMotrn comp1 or ReqHybMod comp2. Based on the selection the imple-
mentation, the test case implementation is determined (see Section 3.7.4).

Figure 3.4.: Sample software system config model Variant Description Model

55

3. Concepts

3.6. Solution Space - pure::variants

3.6.1. Unit Test Model

The unit test model is the main part of the framework. In the scope of one unit under
test, it is responsible for the construction of:

• mlUnit test suite and test cases. In Figure 3.5 this is represented by the ps:component
test.

• The testing composition and parametrization in Simulink. This is represented by
the ps:component system in Figure 3.5.

• A Matlab script called run all that covers aspects of automation in the scope of the
unit under test. In Figure 3.5 it is represented by the ps:component automate.

Figure 3.5.: Sample Unit Test Model, Main Parts

3.6.2. Unit Test Model: test

The ps:component test consists of two other ps:components:

• test cases

• test suites

In Figure 3.6 the ps:component test cases owns for each test case again a ps:component, in
this example they are named ref TestA 1 and ref TestB 1. For each of the ps:components
representing a test case, a subdirectory is created. Within this subdirectory four files are
generated:

• setUp.m is created by the ps:part test case:tc setUp

• tearDown.m is created by the ps:part test case:tc tearDown

• createTest.m is created by the ps:part test case:tc createTest

• The constructor of the mlUnit test case is created by the ps:part
test case:tc createConstructor

56

3.6. Solution Space - pure::variants

The ps:component test suites is responsible for the creation of a mlUnit test suite. The
ps:part test suite:ts ref TestComposite creates one file that is responsible for the execution
of the test suite. In this example it consists of three ps:fragments:

• test ref TestComposite: This fragment creates a Matlab function and code for a test
suite, but no test cases are added in this fragment.

• test ref TestA 1 : In this fragment a line of code is generated, that adds the test case
ref TestA 1 to the test suite.

• test ref TestB 1 : In this fragment a line of code is generated, that adds the test case
ref TestB 1 to the test suite.

Figure 3.6.: Sample Unit Test Model, Test Part Expanded

57

3. Concepts

3.6.3. Unit Test Model: system

In Figure 3.7 the ps:component named system and its subtree is responsible for building
up and parametrizing the test system in Simulink. The ps:component system has no
functionality, it is inserted for structural reasons. All other ps:components represent a
counterpart in Simulink. They are either inner nodes or leaves:

• Inner nodes: Inner nodes always represent referenced subsystems (see Section 4.3.4).
Referenced subsystems can be test composites, test cases or normal subsystems.

• Leaves: Leaves may be all other types of Simulink blocks, f.i. Simulink Constant
Blocks.

Figure 3.7.: Sample Unit Test Model, System Part Expanded

Usually, the test code will be implemented in Simulink. For variable test data it is desirable
to influence them by means of a variant management tool.

3.6.4. Test Registry

The test registry (see Figure 3.8) is the part of software that helps to automate testing in
Matlab. During model transformation the Matlab script test registry.m is generated. It is
the only Matlab script that has to be started manually in order to run all tests (see also
Section 3.3.2).

In the config all part, code for the configuration of the implemented framework is gener-
ated. This is all in all, adding framework functions to the search path as well as initialising
the library.

58

3.6. Solution Space - pure::variants

The ps:component ConfigPoet is responsible for setting up the test environment.

The other parts of the test registry change the path to the unit under test and call the
automation script run all (see Section 3.6.1). Each of these parts can be linked with a
restriction and thus, the appropriate selection of tested units can be done by means of a
feature model.

The family model of the test registry has to be created manually which is not too compli-
cated and can easily be done by non-experts, too.

Figure 3.8.: Sample Representation of a Test Registry in pure::variants

59

3. Concepts

3.7. Solution Space - Simulink

3.7.1. Test Bed

The unit under test is ReqRecupMotrn (see Figure 3.9). The test block (see also Sec-
tion 4.2.1) is called test ReqRecupMotrn all. It provides the test code in Simulink. It
generates test data and evaluates the feedback from the unit under test.

Figure 3.9.: Sample Test Bed Including Test Block and Unit Under Test

3.7.2. Test Block

Figure 3.10 shows the contents of the test block. The test composite contains all test cases.
The Subsystem connects the output signals (test data) of the test composite with a bus.

The test block is represented as a ps:family (see Figure 3.7). The corresponding fam-
ily model in pure::variants is the so-called unit test model (see Section 3.6.1).

Figure 3.10.: Contents of the Test Block

3.7.3. Test Composite

The test composite (see also Section 4.2.2) in Figure 3.11 contains two test cases. The
Multiplexer1 is a slUnit multiplexer (see also Section 4.2.2). It connects the output of
exactly one test case with the unit under test.

The test composite is represented in the unit test model twice. First, the ps:component
test suites in Figure 3.6 is responsible for controlling the execution of test cases within the
test composite. For instance, the test case Test A1 is only executed, if the ps:fragment
test ref Test A1 is added to the ps:part test suite:ts ref TestComposite (see Figure 3.6).

60

3.7. Solution Space - Simulink

The ps:fragment test ref Test A1 itself is linked to a feature model, the requirements model
by means of a restriction. It is only added if the corresponding requirement is selected. A
sample mapping between requirements and test cases is listed in Section 5.2.

Second, it is represented by the ps:component TestComposite in Figure 3.7 for structural
reasons, only.

Figure 3.11.: Contents of the Test Composite Including Test Cases and slUnit Multiplexer

3.7.4. Test Case

Figure 3.12.: Contents of a Test Case Including the Test Case Implementation

Figure 3.12 shows the contents of the test case TestA 1. The test case (see also Sec-
tion 4.2.3) contains simply a subsystem called test ReqRecupMotrn a 1. It is a place-
holder that enables variable subsystems (see also Section 4.3). The placeholder can be
filled during model transformation with the test case implementation which is either
test ReqRecupMotrn comp1 or test ReqRecupMotrn comp2. Variable test case implemen-
tations make it possible to test different implementations of the unit under test.

Each test case implementation is represented in the unit test model (see Figure 3.7): the
test case implementation test ReqRecupMotrn comp1 is represented by the ps:component
test ReqRecupMotrn comp1 in the unit test model. The test case implementation
test ReqRecupMotrn comp2 is represented by the ps:component test ReqRecupMotrn comp2
in the unit test model. Because only one of them can be selected, both of them have the
variation type ps:alternative.

61

3. Concepts

Each representation of the test case implementation (see Figure 3.7) is linked with the
software system config model (see Section 3.5.3) with a restriction.

3.7.5. Test Case Implementation

In Figure 3.13 the Simulink Constant Blocks colored in magenta create the output signals
(test data):

• DIAG EltMotTqMin

• OBEM EltMotTqMinContns

Both Simulink Constant Blocks are represented in the unit test model (see Figure 3.7).
Thus, the values of the Constant Blocks can be influenced by pure::variants. The repre-
sentation of the Simulink Constant Blocks in the unit test model can be linked with the
requirements model (see Section 3.5.1) or with the vehicle config model (see Section 3.5.2).

The feedback from the unit under test is evaluated in the validate subsystem. The feedback
data are compared with the signal DIAG EltMotTqMin.

Figure 3.13.: Contents of the Test Case Implementation

3.8. Signal Evaluation

Within a test case it has to be checked if the feedback from the unit under test is correct.
The signal evaluation follows the principles explained in Section 2.5.3 and will be explained
by an example, below.

Consider that you have to check if a signal remains between an upper level and a lower
level. In this example, the signal that has to be checked is called sig. It must be higher
than -10 and lower than 10. In Figure 3.14 the subsystem is lower checks whether sig
is lower than 10. If yes, its output will always be a logic high. The subsystem is higher
checks whether sig is higher than -10. If yes, its output will always be a logic high. The

62

3.9. A Concept of a Pivot

outputs of is higher and is lower are conjuncted with an and. If both inputs of the and
block are a logical high, the input of the assertion is high, and the assertion is not violated.
If one of the inputs of the and block changes to a logical low, the assertion is violated and
listed in the test report.

Figure 3.14.: Sample Test Evaluation Code in Simulink

3.9. A Concept of a Pivot

The concept of a pivot was rather inspiring throughout this thesis. All in all, the pivot
concept consists of the pivot itself (intermediate object hierarchy) and two sides (see Fig-
ure 3.15).

Figure 3.15.: A Concept of a Pivot

The left hand side is Simulink space. With the help of several GUIs it is possible to create
and save references to Simulink blocks. After the references have been created, it is possi-
ble to build up a hierarchy of objects, forming a tree, which includes the references. The
intermediate object hierarchy can be composed and saved with the help of a tree editor.

63

3. Concepts

Finally, it is possible to transform the object hierarchy to a pure::variants a family model.
The transformation to pure::variants is carried out by calling the toCCFM transformation
function on each of the objects in the hierarchy.

3.10. Hooking into Simulink

In fact, hooking into Simulink is not too difficult. It is possible to register a callback
with the Simulink context menu. By right-clicking on a Simulink block and selecting the
appropriate menu item, the callback function createModelRef is called. The callback re-
ceives a so-called callbackInfo object. This object contains all necessary information about
the location and parameters of the selected Simulink block. The idea behind providing a
context menu function is to enhance usability.

64

4. Implementation

4.1. Overview of the Implementation

Figure 4.1.: Overview of the Implementation

65

4. Implementation

The implementation (see Figure 4.1) includes two test frameworks:

• mlUnit (see Section 2.2.5)

• slUnit (see Section 2.2.6)

slUnit has three main building blocks in Simulink: test composite (see Section 4.2.2), test
case (see Section 4.2.3) and assertions (see Section 4.2.4).

Test composites are an envelope, that contain several test cases. In the original slUnit
implementation, a test composites has a test automation mechanism. This test automa-
tion mechanism has been removed, because no test reports in textual form can be retrieved.
Instead, the automation of test cases inside a test composite is controlled by mlUnit test
cases. So it is possible to create textual test reports. The second adaption was to mark a
test composite with the type TestComposite. Therefore the software can detect that the
test composite is of the type TestComposite when the test composite is referenced.

Test cases are part of the slUnit implementation, as well. They contain test code. Again,
they have been adapted by marking them with the type TestCase. Thus, the software can
determine that the test case is of the type TestCase, when it is referenced.

slUnit assertions check whether a condition is fulfilled. Since the slUnit assertion has
a very poor timing performance, it has been replaced by Simulink assertions.

mlUnit is a Matlab script based framework. It contains three main building blocks: test
suite, test case and assertion. mlUnit is used for controlling the execution of slUnit test
cases because slUnit is not capable of creating test reports in a textual representation.

A test suite is a collection of test cases that have to be executed. The mlUnit test suite
replaces the test automation that was used in slUnit before.

A test case is responsible for selecting a slUnit test case and starting the simulation.
During the simulation, test signals are recorded. After the simulation, a test report is
generated.

The libraries are responsible for keeping all information about the test code. Test code is
implemented in Simulink libraries and may contain Assertions, TestComposites and Test-
Cases. Moreover, it is possible to create references to Simulink blocks (see Section 4.4)
in order to influence them by means of a FODA-Tool. Variable subsystems are partly
implemented. In order to keep track of these parts, it is necessary to careful define the
structure of libraries. A part of the library, the subsystem reference (see Section 4.3.2)
can be transformed to a pure::variants family model, the so-called unit test model (see
Section 3.6.1). The unit test model contains all information necessary to configure tests
for one unit under test.

Graphical User Interfaces are a means to enhance Simulink models with variability in-
formation. The gathered information is stored in the reference library.

66

4.2. The Test Framework

The block reference editor enables enhancing a Simulink block with variability information
and storing this information as a block reference in the reference library.

The tree editor is able to connect all block references in the reference library. The con-
nection information is then stored as a subsystem reference that can be transformed to a
pure::variants family model.

4.2. The Test Framework

4.2.1. Embedding Tests in Simulink

In Figure 4.2 the unit testing context is illustrated. The unit under test contains the code
that should be tested. The test block includes all test cases for this unit.

Figure 4.2.: Embedding Tests in Simulink

The signal flow in Simulink follows the alignment of the arrows. Therefore, the test data
are generated in the test block and are directed towards the unit under test. Test data
are represented by green arrows.

The unit under test generates output data (as a response to the input data). They are
displayed in red color and are feedback to the test block, where the resulting test data are
evaluated.

The test block is a placeholder; it is empty and filled with a test composite including
test cases by executing a Matlab script that is generated by model transformation.

67

4. Implementation

4.2.2. Test Composite

Test Composite in Simulink

In slUnit, a test composite is represented by a subsystem that contains test cases (see also
Section 2.2.6). The original slUnit implementation of a test composite has been modified
in several ways:

First, it does not use the test automation mechanisms that are inherent in slUnit test
composites. slUnit test composites can not create textual test reports an thus the execu-
tion of test cases is controlled by mlUnit test cases in contrast.

Second, a test composite is marked as a subsystem of the type TestComposite. This is
important, when the test composite is referenced, because the software has to check some-
how that it is a test composite. The information is then stored within the model ref class
(see Section 4.4.3).

Figure 4.3.: Sample Components of a Test Composite

The test composite in Figure 4.3 contains four test cases. The output of the test cases are
forwarded to a slUnit multiplexer. The slUnit multiplexer connects the output of exactily
one test case (TestCase 1) with the unit under test. The selection of the forwarded signal
can either be done manually via a mask or automatically. It is done automatically by
executing the createTest test method within a mlUnit test case.

Test Composite in mlUnit

The mlUnit counterpart of a slUnit test composite is the test suite. Each of the test cases
that should be executed must be listed in the mlUnit test suite. mlUnit test suites are
automatically generated from a pure::variants feature model configuration.

Test Composite in pure::variants

For the test composite, a Matlab script file named test ref TestComposite.m is created.
Contents of that script are determined by several ps:fragments that are part of a family
model, the so-called unit test model. The ps:fragments are pieces of text inserted one after
another.

68

4.2. The Test Framework

Figure 4.4.: Sample Representation of a Test Composite in pure::variants

The first ps:fragment named test ref TestComposite contains code for an empty mlUnit
test suite. For each test case in this test suite, one line of code has to be generated, in
order to add a test case. This is done by means of all the other ps:fragments. Each and
every test case fragment has a restriction that is linked to a feature model.

4.2.3. Test Case

Test Case in Simulink

Test cases used in this framework are modified slUnit test cases (see Section 2.2.6). They
have been modified in two ways.

First, slUnit test cases have been modified, so that they do not use the slUnit test automa-
tion mechanism. The slUnit test automation mechanism has been removed, because it
can not create test reports in a textual form. Instead, the slUnit test cases are controlled
by mlUnit test cases which provides test reports in a textual form.

Second, the slUnit test case has been extended by the type TestCase. Therefore, the
software can determine its type, when the test case is referenced. This information is then
stored within the model ref class (see Section 4.4.3).

In Figure 4.3 the test case TestCase 1 is connected via the slUnit multiplexer with the
unit under test. Thus, the test data are generated within the test case and are directed
towards the unit under test. The unit under test generates a response, the test result.
The test result is feedback to the test case, where it is evaluated.

69

4. Implementation

Test Case in mlUnit

In mlUnit a test case is a folder with the name of the test case itself. The folder contains
a constructor with the same name as the test case. Additionally, there is a set up and
a tear down method. Moreover, one test method is created automatically, the method
createTest. Within this method, the multiplexer (see Figure 4.3) is controlled, in order to
connect the corresponding slUnit test case with the unit under test. When the simulation
is started, all the input and output signals are recorded. A test report is generated. All
slUnit assertions are checked within the test method createTest.

Test Case in pure::variants

The test case is reflected in a pure::variants family model (see Figure 4.5). In this exam-
ple, the ps:component ref TestA 1 represents a test case. For this test case, a directory
@ref TestA 1 is created. This directory is intended to contain all necessary files for a
mlUnit test case:

• set up.m

• tear down.m

• createTest.m

• createConstructor.m

The ps:part test case:tc setUp is responsible for creating the set up.m method. At the
moment, set up.m is an empty skeleton and might be filled manually, if needed. The
set up method is called by the mlUnit framework before test methods are executed. It is
part of the fixture pattern (see Section 2.2.5).

The ps:part test case:tc set tearDown is responsible for creating the tear down.m method.
At the moment, tear down.m is an empty skeleton and might be filled manually, if needed.
The tear down method is called by the mlUnit framework after test methods are executed.
It is part of the fixture pattern (see Section 2.2.5).

The ps:part test case:tc createTest is responsible for generating the test create.m method.
The file test create.m carries out all steps for creating the test and creating a test report.
Because this is not trivial, the file test create.m is composed of three text fragments.

The ps:part test case:tc createConstructor is responsible for creating the constructor of
the test case. By convention, the constructor must be named equally than the test case.

70

4.2. The Test Framework

Figure 4.5.: Sample Representation of a Test Case in pure::variants

4.2.4. Assertions

Assertions in Simulink

Assertions are provided by the slUnit framework but for the reason of a very poor timing
performance, they have been replaced by adapted Simulink assertions. Within such asser-
tion blocks, it is possible to enter a callback that is executed in case of a violated assertion.
The callback simply turns the background color of the assertion block from green to red.
A slUnit test case is started by the test create.m method within the corresponding mlUnit
test case. Before the execution of the test case, the test create.m method assures that all
assertion blocks within this test case are colored green. During the execution of the test
case, an assertion block will turn its background color to red, if it is violated. After the
execution of the test case, the test create.m method checks, if any assertion blocks have
changed their color to red. If yes, the test create.m method lists all assertions in a test
report (see Figure 4.6).

Assertions in mlUnit

Code in the create test method assures, that all Simulink assertions turn green before the
execution of the test case. After the test case has been executed, all violated assertions
will be colored red. Therefore, the create test method checks, if any assertion blocks have
changed their color to red. If yes, mlUnit assertions are called. mlUnit assertions are
automatically listed in the test report, if they are violated (see Figure 4.6). It is assured,
that the path to the violated Simulink assertion is contained in the test report.

71

4. Implementation

4.2.5. Test Report

A test report is the result of all tests. All violated assertions are listed here. In fact, the
test report in Figure 4.6 is the sum of all test reports of all tested units.

Figure 4.6.: Sample Test Report Showing the Test Results of Two Units

72

4.3. Variability Issues in Simulink

4.3. Variability Issues in Simulink

4.3.1. The Variable Subsystem

Variable subsystems enable the possibility for modeling differences in structure. They are
needed to implement variable test case implementations (see Section 3.7.5). In the current
thesis, variable subsystems are implemented as placeholders. They are filled with concrete
subsystems and data during model transformation.

Regarding a simple example: a sensory data preprocessing unit. Usually sensor data
come in from an analogue-to-digital converter as a number out of a range of values. This
number does not correspond to a physical unit and has to be converted mathematically by
some kind of calculation. The formula in charge will differ from one kind of a/d converter
to another. So, a variable subsystem is desirable to model those differences.

Figure 4.7.: Example of a Subsystem Placeholder in Simulink, colored in magenta

In Figure 4.7 the placeholder is the subsystem block called preprocessing variable. At the
beginning it has no contents. Because this block is linked from a library (see Figure 4.8),
the link information is accessible and further variability information can be gathered. All
variant subsystems of the preprocessing unit must be contained within this library. The
term library includes Simulink libraries and additionally saved variability information.

Figure 4.8.: Example Simulink Library Including Alternatives of a Variable Subsystem

4.3.2. Variability within a Subsystem

A subsystem is an encapsulation but despite this, a developer may want to parametrize
some items inside it. References provide the possibility for the user to export block specific
attributes to pure::variants family models. They are assembled interactively in Simulink
with the help of editors. pure::variants family models are capable of representing all kinds
of Simulink blocks as well as variable subsystems.

73

4. Implementation

4.3.3. Simulink Organization

Before the library organization is explained in Section 4.3.4, the basic organization of
Simulink is outlined now. Simulink is a programming language with graphical notation
and consists of the following four main components:

Simulink Models are executable programs within the Simulink interpreter. They contain
Simulink Blocks and Simulink Subsystems that are interconnected with signals.

Simulink Libraries are a non-executable collection of Simulink code.

Simulink Blocks represent states (such as Constant Blocks) or operations (such as math-
ematical operations).

Simulink Subsystems are containers around defined functionality. They may be com-
pared to functions in the functional programming paradigm.

4.3.4. Library Organization

The library organization is responsible for providing variable subsystems (see Section 4.3.1)
and variability within a subsystem (see Section 4.3.2). Both issues are necessary for imple-
menting variability within tests. The library has been developed only for the test system.
Because the implementation of the framework is a prototype, the library system is kept
as simple as possible. Searching for variants, subsystems and references is error-prone if
two items share the same name. Thus, the author of this thesis has avoided setting search
paths in the library. Due to this constraints a hierarchical library was considered as too
labor-intensive. The library is organized linear which works well for small libraries. In
Figure 4.9 the library organization is illustrated in UML. For a better understanding, the
library organization is shown additionally in an exploded view in Figure 4.10. In detail
the library is organized as follows:

root directory: lib All implementations of tests in Simulink, f.i. TestComposite, Test-
Cases have to be kept in a dedicated directory, because the software has to search
and find items within this directory. The location of this directory can be chosen
freely, the path to it has to be entered in the configuration script config all.m (see
also Section 3.6.4).

variability library The variability library supports variable subsystems that are needed
for testing. For each variable subsystem, one variability library has to be created.
The information concerning all alternatives of a variable subsystem is kept in this
library. A variability library is represented as a folder in the root directory. It
contains exactly one Simulink library and for each variant of a subsystem a so-called
reference library.

Simulink library This is an ordinary Simulink library, it contains all variants of a variable
subsystem: so-called referenced subsystems. The Simulink library is contained in the
variability library folder. It does not contain any information about variability.

referenced subsystem A referenced subsystem is a top level subsystem in the Simulink
library. Referenced subsystems may contain referenced Simulink blocks.

74

4.3. Variability Issues in Simulink

Figure 4.9.: Library Representation in UML

reference library For each referenced subsystem, a reference library has to be created that
contains all information about the dedicated referenced subsystem. The reference
library is represented as a folder within the variant library folder.

subsystem reference For each referenced subsystem, a subsystem reference has to be
created; it connects all the block references created in this subsystem. The subsystem
reference is built up with the tree editor depicted in Figure 4.16.

referenced Simulink Block This is an ordinary Simulink block after it has been refer-
enced. They can be referenced with a right mouse-click, and choosing the appropri-
ate item in the context menu. During the process of referencing, several settings can
be chosen with the help of an editor (see Figure 4.13).

block reference After the process of referencing a Simulink block, a block reference is
saved within the reference library folder.

75

4. Implementation

Figure 4.10.: Exploded View of a Sample Variability Library

4.4. Referenced Simulink Blocks

4.4.1. Overview of References

Referenced Simulink blocks provide to a means to export variability information to a
pure::variants family model. The corresponding parts and relations are depicted in Fig-
ure 4.11. In principle, the UML diagram reflects the concept provided in Section 3.9. The
classes in the middle of Figure 4.11 represent the pivot and are implemented in Matlab.
The pivot itself has two sides: the right hand side consists of Simulink parts. The left hand
side forms a pure::variants family model, namely the unit test model (see Section 3.6.1).

Developers will usually start with the definition of tests in Simulink space. Simulink
blocks can be enhanced with variability information, if needed: developers can specify
which Simulink Block Properties can be referenced by a pure::variants family model. It is
also possible to create variable subsystems. The process of exporting variable subsystems
to a pure::variants family model is not fully automated, at the moment.

The pv model class is just an encapsulation that contains all information that is necessary
to enhance a Simulink Block with variability information. The variability information is
referenced by the classes: general, model ref and attributes and will be described further
in the following.

Simulink blocks are located in a subsystem that is contained in a Simulink library. In
principle, it is possible to reference a Simulink block only by its name. But this has

76

4.4. Referenced Simulink Blocks

Figure 4.11.: Relation of the node class to all the Other Parts in pure::variants and
Simulink

a severe drawback: it is not possible that two referenced Simulink blocks can have the
same name, even if they are located in different subsystems. So, the following location
information has to be extracted:

currentBlockName Name of the referenced Simulink block.

libName Name of the Simulink library where the reference is created.

fullPath Path to the referenced Simulink block beginning from the first level subsystem
in the Simulink library.

refPath If the referenced Simulink Block is of the type Subsystem and is linked from
another Simulink library, the path to the original Subsystem is displayed.

This location is needed in the pure::variants family model, because it generates a Matlab
script that is capable of modifying the referenced Simulink block. The model ref class is
responsible for referencing this location information.

Each Simulink block has so-called Simulink Block Properties. Simulink Block Properties
may be f.i. the Value of a Constant Block. The developer has to decide, which of these
Simulink Block Properties should be exported to the family model. Each Simulink Block
Property is referenced by the attribute class. The attributes class is a list of attributes
in order to enable referencing more than one Simulink Block Property. The process of
referencing is supported by a GUI (see Section 4.4.4).

The general class is responsible for pure::variants parametrization that has no relation
to Simulink. A GUI enables the input of the parametrization. These pure::variants pa-
rameters are f.i.: variation type or default selected. They are explained in more detail in

77

4. Implementation

Section 4.4.2.

All hierarchical information is represented with the help of the node class. The node
class has a member of a pv model class, that represents all non-hierarchical information.
Since the node class is capable of representing a hierarchy, it can build up a tree. More-
over, this class implements the ability of composing trees within a GUI. The GUI itself
loads node information from references that have been saved in files. Thus, the node class
must be able to save all its containing information to .mat files and to load all it from a
.mat file. In Matlab, objects can be represented as .mat files.

Finally, a tree of node objects can be transformed to a pure::variants family model. The
root node is then of the type ps:family (see Section 3.6.1), all the other nodes are of the
type ps:component.

78

4.4. Referenced Simulink Blocks

4.4.2. The general Class

The pure::variants representation of the general class is highlighted in fuchsia in Fig-
ure 4.12. The ps:component named DIAG EltMotTq has a name and a variation type.
They correspond to the unique name and variation type member variables in the general
class. Additionally, but not visible in Figure 4.12, the pure::variants default selected prop-
erty is aligned to the default selected field of the general class.

In Figure 4.12 the creation of a block reference is illustrated: with the general tab se-
lected, it is possible to select the variation type of the reference which could be: and, or,
andor. The mapping between variation type and pure::variants variation type is listed in
Table 4.1.

variation type pure::variants variation type

and ps:mandatory

or ps:optional

andor ps:alternative

Table 4.1.: Mapping Between variation type and pure::variants variation type

Also, the default selected property can be chosen by the user. The unique id of the
pure::variants counterpart, namely the ps:component DIAG EltMotTq, is displayed. Even
if it is not displayed in the pure::variants part of Figure 4.12, a unique id is needed by
each and every ps:component. It is calculated automatically but may be changed within
the editor.

The unique name property is determined automatically by the Simulink block name and
is equal to the currentBlockName in the model ref class. It may be changed within this
editor as well. Thus, more than one reference to a single block can be created. For exam-
ple, if a variable subsystem has two variants, for each of the variants a reference with a
different name can be created. This is needed to enable variable test case implementations
(see Section 3.7.4). At the moment the whole process of variable subsystems is not fully
implemented.

79

4. Implementation

Figure 4.12.: Creating a Reference in Simulink With the general Tab Selected

80

4.4. Referenced Simulink Blocks

4.4.3. The model ref Class

In Figure 4.13 the rectangle shaded in fuchsia embraces the pure::variants representation
of the model ref class. In the example it consists of the ps:fragment (outlined by the
rectangle) named create ref DIAG Elt Mot Tq Max. Within this fragment a piece of code
is implemented that enables the composition of Simulink models. The path to the refer-
enced block is assigned to the Matlab variable curr sys. If the referenced block is a linked
subsystem, this piece of code copies the subsystem from the library to the placeholder and
breaks the link to the library. Otherwise, it is a referenced Simulink block and must not
be linked from a Library. In this case the code neither copies anything nor breaks links to
a library.

In Figure 4.13 the cyan shaded part displays the GUI used to create a block reference
to the Simulink Constant Block DIAG Elt Mot Tq Max with the model ref tab selected.
The model ref tab consists of 4 text fields that contain the four different path information
necessary:

currentBlockName Name of the referenced Simulink block.

libName Name of the Simulink library where the reference is created.

fullPath Path to the referenced Simulink block beginning from the first level subsystem
in the Simulink library.

refPath If the referenced Simulink Block is of the type Subsystem and is linked from
another Simulink library, the path to the original Subsystem is displayed. This is a
kind of a pointer.

Those four parameters are calculated automatically from the Simulink model and do not
have to be entered in the GUI.

Additionally, three parameters not depicted in the GUI are calculated in Simulink:

is subsystem This value can be determined by the Simulink BlockType parameter. If this
parameter has the value Subsystem, is subsystem is set to 1, otherwise 0.

is test case TestCase blocks are subsystems, too. The only difference between subsystems
and test case blocks is the Simulink Block Parameter UserData. If the text within
this parameter is TestCase, is test case is set to 1, otherwise 0. To ensure, that the
UserData field contains the appropriate content, the block must be inserted from
the slUnit library.

is test suite is test suite is set to 1 if the UserData field contains TestComposite. The
test composite block has to be inserted from the slUnit library.

81

4. Implementation

Figure 4.13.: Creating a Reference in Simulink With the model ref Tab Selected

82

4.4. Referenced Simulink Blocks

4.4.4. The attributes and attribute Classes

The pure::variants part of the attribute and attributes classes is colored fuchsia in Fig-
ure 4.14. For each attribute one ps:fragment is created, which contains Matlab code that
sets the attribute of the corresponding Simulink block to the desired value. In this exam-
ple, the attribute is named Value. Therefore, the name of the ps:fragment is create Value

In Simulink all blocks have so-called Block Parameters. In the Simulink part of Figure 4.14
within the Simulink Constant Block DIAG EltMotTqMax the number 500 is shown. This
Simulink Block Parameter is called Value. Thus, the attribute name is called Value. The
number 500 itself is the corresponding Simulink Value of the Simulink Block Parameter
Value. Thus, the attribute value is 500. For a better understanding, the relation between
Simulink Block Parameters and the attribute class is depicted in Table 4.2 for this exam-
ple.

Simulink Block Parameter attribute name

Value Value

Simulink Value attribute value

500 500

Table 4.2.: Mapping Between Simulink Block Parameter and attribute name

It can be chosen, whether the attribute is fixed or not. Additionally the type of the at-
tribute can be selected either as integer or as string.

Simulink blocks may have more than one attribute. For example, the Simulink Pulse
Generator Block has the following parameters: amplitude, period, pulse with and phase
delay. Thus, there is a need for editing more than one attribute. The solution is a list of
attributes, called the attributes class. Within the editor it is possible to create, delete and
edit attributes.

83

4. Implementation

Figure 4.14.: Creating Attributes in Simulink

84

4.5. Building up the Skeleton With Containers: The node class

4.5. Building up the Skeleton With Containers: The node class

In Simulink, subsystems can contain subsystems itself. So, subsystems can build up a tree
of hierarchy (see Figure 4.15). Each of the subsystems in Figure 4.15 is a referenced sub-
system. It is desirable to keep the structure of hierarchy in the pure::variants family model.

All ps:components in Figure 4.15 represent their Simulink referenced subsystem counter-
parts. The arrows indicate the connection between parts in Simulink and pure::variants.

Because referenced subsystems can build up hierarchies, one Matlab class must be ca-
pable of containing itself: the node class (see Figure 4.11). In fact, the pv model class
contains all information of the location (currentBlockName, fullPath, libName, refPath)
and parameters of referenced Simulink blocks or referenced subsystems. The node class
is just a wrapper around the pv model class to enable a hierarchical tree structure of
all referenced parts. All subsystem references and block references are in fact node ob-
jects. In Matlab, it is possible to save objects to .mat files and load objects from .mat files.

In Figure 4.16 a tree editor for manually composing the hierarchy of nodes is depicted.
On the left hand side of the editor, the current tree of nodes is displayed. On the right
hand side, all block references and subsystem references are listed that are part of the
test ReqRecupMotrn all reference library:

• ref TestA 1

• ref TestB 1

• ref TestC 1

• ref TestComposite

• ref test ReqRecupMotrn a1

• ref test ReqRecupMotrn b1

• ref test ReqRecupMotrn c1

Inserting a new node in the tree structure is very simple - in Figure 4.16 in each of the
windows, a node is selected: ref TestB 1 in the left hand side window,
ref test ReqRecupMotrn b 1 on the right hand side. By clicking the 〈〈 button the selected
node on the right hand side is inserted as a child of the selected node on the left hand
side. If the inserted node represents a subtree, the whole subtree is inserted and displayed
unfolded in the left window. When composed, the tree can be saved as a subsystem refer-
ence. In the case of the aforementioned example, the name of the subsystem reference is
test ReqRecupMotrn all.mat, which equals the name of the root node of the tree. Since this
subsystem reference is on top of the hierarchy, it can be transformed into a pure::variants
family model. In fact, all subsystem references can be transformed to pure::variants, but
not all of the resulting family models make sense; thus the responsible test architect has
to take care.

85

4. Implementation

Figure 4.15.: Node Hierarchy in Simulink and Their Counterpart in pure::variants

86

4.5. Building up the Skeleton With Containers: The node class

Figure 4.16.: Creating a Tree With node Objects in the Tree Editor

87

4. Implementation

4.6. Create a Variability Library

The process of creating a variability library is rather complex. The flowchart in Figure 4.17
shows all necessary steps. For a better understanding all steps numbered in Figure 4.17
are explained in more detail in the following.

Figure 4.17.: Basic Steps When Creating a Variability Library

4.6.1. Step 1: Create a Variability Library

In the first step, developers have to decide which of the subsystems should be variable. In
fact, this step is the starting point of the process.

88

4.6. Create a Variability Library

4.6.2. Step 2: Create a Variability Library Folder

In step 2 a variability library folder is created within the root directory. In this example,
the root directory is called lib and the variability library folder subsystem variants 1 (see
Figure 4.18). All information concerning the variability library is stored within this folder.

Figure 4.18.: Step 2: Create a Variability Library Folder

4.6.3. Step 3: Create a Simulink Library

In step 3, an empty Simulink library is created that will contain all subsystem variants.
In Figure 4.19 it is named subsystem variants.mdl. It must be stored in the variability
library folder.

Figure 4.19.: Step 3: Create a Simulink Library

89

4. Implementation

4.6.4. Step 4: Create a Subsystem in the Simulink Library

In this step, a subsystem has to be created with the desired functionality (see Figure 4.20).
This subsystem is intended to have subsystem alternatives. Thus, the process repeats at
step 4 for each alternative subsystem, which is indicated by the loop in the flowchart in
Figure 4.17.

Figure 4.20.: Step 4: Create a subsystem in the Simulink Library

4.6.5. Step 5: Create a Reference Library Folder

To each variant subsystem defined in step 4, a reference library folder is assigned. This
folder has the same name as the assigned subsystem and must be contained within the
variability library folder (see Figure 4.21). All references to Simulink blocks that belong
to the corresponding subsystem will be stored in this folder.

Figure 4.21.: Step 5: Create a Reference Library Folder

90

4.6. Create a Variability Library

4.6.6. Step 6: Create Block References

In step 6, all block references are created (see Figure 4.22). The developer has to right-
click the desired Simulink block, first(1). By selecting the appropriate context-menu item
the GUI pops up(2). Within the GUI some parametrization is necessary. After that, the
block reference is stored automatically(3).

Figure 4.22.: Step 6: Create Block References

4.6.7. Step 7: Create Subsystem References

Subsystem references define the relationships between all block references within a sub-
system (see Figure 4.23).

Figure 4.23.: Step 7: Create Subsystem References

91

4. Implementation

First, the developer has to start the tree editor(1). With the help of the tree editor, the
developer interactively defines the relations between the block references. This process
is described in more detail in Section 4.5. Second, the gathered informations have to be
saved as a subsystem reference within the reference library folder(2).

If there are any alternative subsystems left, the process repeats at step 4. If not, the
variability library is fully defined. At this point, the variability library can be transformed
to a pure::variants family model by invoking the toCCFM method on the subsystem ref-
erence.

92

5. Case Study

5.1. System Description

In the HybConsProject, a generic automotive control software is under development. To
test and demonstrate the developed test methodology and the corresponding tool support,
a small sample project (see Figure 5.1) has been provided. To keep the case study simple
and small enough, the author has focused on a few components out of this sample project
for a better understanding. These components will be described shortly.

Figure 5.1.: Overview of the Sample Project Software Architecture

5.1.1. Overview of the Sample Project Software Architecture

The system consists of two main modules, that will be discusses below.

Provide Signals

This module is providing standardized signals for the next module (calculation of quasista-
tionary demands). The input data are sensory signals. Therefore, this module encompasses
signal preprocessing and normalization of signals [Kor10].

93

5. Case Study

Calculation of Quasistationary Demand

In this module, there are two main parts. The ReqHybMod (see [Kor10]) module calculates
demands for parameters (e.g. electric motor torque) for each of the hybrid modes. This
module will be described in detail, later on. The EnergyHybMgr (see [Kor10]) calculates
the available energy for each hybrid operation mode.

5.1.2. Request Hybrid Modes

Since the module ReqHybMod will be used as the system under test, it will be described
in more detail here. Within this module several functional variants calculate the quasista-
tionary demands (requests) for the dedicated generic hybrid modes. For the two functional
variants chosen for case study, the corresponding generic hybrid modes will be outlined
shortly.

Figure 5.2.: Functional Variants of Request Generation for Hybrid Modes

Hybrid Mode: Recuperation at Engine Motoring

After [Kor10], the generic hybrid mode Recuperation at Engine Motoring is defined as
follows:

”Recuperation means to convert the kinetic energy of the vehicle into electric power by
operating the E-Motor in generator mode at vehicle braking events. The generated energy
is used to supply the electrical devices on board and to charge the energy storage system.

The mode Recuperation at motoring is activated when driver demands vehicle decelera-
tion by engine braking (usually when both acceleration and brake pedals are not activated)

94

5.1. System Description

desired clutch torque is negative. In conventional vehicles, the engine is set to motoring
fuel cut-off operation mode. In this situation, some amount of negative E-Motor torque can
be added to the drive line thus increasing the braking effect. The kinetic energy can more
efficiently be recuperated and drivability improved, if combustion engine can be decoupled
from the drive line, and the E-Motor torque simulates the total engine drag torque.”

Hybrid Mode: Recuperation at Service Brake

After [Kor10], the generic hybrid mode Recuperation at Service Brake is defined as follows:

”Recuperation means to convert the kinetic energy of the vehicle into electric power by
operating the E-Motor in generator mode at vehicle braking events. The generated energy
is used to supply the electrical devices on board and to charge the energy storage system.

When the service brake is activated, some amount of negative E-Motor torque can be
added to the drive line, thus increasing the braking effect. In vehicles with brake-by-wire
systems, the negative E-Motor torque can to some extent substitute the effect of service
brakes.”

95

5. Case Study

5.2. Problem Space of the Case Study

The units under test are:

• ReqRecupMotrn

• ReqRecupSrvBrk

Which of the units are tested is defined by the software system config model. The short
name of it is swsys config (see Figure 5.3). The user can select here, which units should
be tested.

Figure 5.3.: The User Can Select the Units Under Test in the software system config vari-
ant description model

The vehicle config model defines vehicle-specific data, that change from one vehicle to
another. These data are listed in Table 5.1.

signal vehicle 1 vehicle 2 unit

OBVM VehV 0-300 0-120 km/h

OBEA BdNetPwrReq 0-2 0-5 kW

OBLG HvbatPwrDchaMaxPeak 20 50 kW

OBLG HvbatPwrChaMaxPeak 20 50 kW

OBSN HvbatSocNorm 0-100 0-100 percent

OBDA DrvrTqDmd 0-350 0-2500 Nm

OBDA CluTqReq 0-350 0-2500 Nm

OBEM EltMotSpd 0-7000 0-2500 rpm

OBCE EngSpd 0-7000 0-2500 rpm

OBVM VehA -10-10 -5-5 m/s2

OBTR TrsmGearAct -1-8 -5-21 -

OBCE EngTqMax 350 2500 Nm

OBCE EngTqFric - 30-0 - 60-0 Nm

OBTR GearbTqMax 500 3000 Nm

DIAG EltMotTqMin 200 350 Nm

DIAG EltMotTqMax 200 350 Nm

Table 5.1.: Varying Values for two Different Vehicles

The user can specify the data in the so-called vehicle config model. A snapshot of this
model is illustrated in Figure 5.4. The signal OBVM Veh V has a lower and an upper
value (see Table 5.1). In Figure 5.4 the lower value is represented by OBVM Veh V L.
The upper value is represented by OBVM Veh V H.

96

5.2. Problem Space of the Case Study

Figure 5.4.: The vehicle config model is represented in a pure::variants Feature Model

Each unit under test is tested with 20 different test cases. The same test cases are used
for both units. Figure 5.5 illustrates a variant description model that contains all four
requirements models. Each requirements model is linked with four test cases. The four test
cases linked with one requirements model differ only by the signal OBTR TrsmGearAct.
The mapping between requirements models, test cases and OBTR TrsmGearAct is listed
in Table 5.2. N is the number of positive gears, and corresponds to the upper value of
OBTR TrsmGearAct in Table 5.1.

T
e
st

C
a
se

R
eq

u
ir
e
m
e
n
t
1

R
eq

u
ir
e
m
e
n
t
2

R
eq

u
ir
e
m
e
n
t
3

R
eq

u
ir
e
m
e
n
t
4

O
B
T
R

T
r
sm

G
ea

r
A
c
t

TestA 1 x 1
TestB 1 x 1
TestC 1 x 1
TestD 1 x 1
TestA 2 x 2
TestB 2 x 2
TestC 2 x 2
TestD 2 x 2
TestA 3 x 3
TestB 3 x 3
TestC 3 x 3
TestD 3 x 3
TestA 4 x N - 1
TestB 4 x N - 1
TestC 4 x N - 1
TestD 4 x N - 1
TestA 5 x N
TestB 5 x N
TestC 5 x N
TestD 5 x N

Table 5.2.: Mapping Between Test Cases, Requirements and OBTR TrsmGearAct, N is
the Number of Positive Gears

97

5. Case Study

The tester is supposed to type in test data in the requirements model. How a requirements
model can be derived is explained in Section 5.3.

Figure 5.5.: The Requirements Model is Configured in a pure::variants Variant Description
Model

5.3. Deriving a Requirements Model by Example

The derivation of a requirements model is shown on the example of one test case: E-motor
torque request - limitation by motoring torque.

• Name: E-motor torque request - limitation by motoring torque

• Description: In this testcase a charge request from the LV battery is simulated.
The charge power request (RCEM LvbatPwrReq) is set to a value. The other
two power requests (RCEM HvbatPwrMax and OBEA BdNetPwrReq) are set to
zero. All inputs which could limitate the requested E-motor torque at the out-
put are configured in a way that no limitation takes place (DIAG EltMotTqMin,
OBEM EltMotTqMinContns).

• Verdict Description: This testcase passes if the requested E-motor torque at the
output (RMRE EltMotTqReq) is at the given -50Nm what is given by the maximum
applyable torque in between the other limitations.

• Evaluation Criterion:

if(resultvector(’RMRE EltMotTqReq’) == -50)

setPassed(true);

end

To come to a semi-formal requirements model one has to remove redundancy from the
description of the test case. It is done andectodal here, as an example how it can be done.

’In this testcase a...’

This holds for each and every test case description and can be left away.

98

5.3. Deriving a Requirements Model by Example

’. charge request from the LV battery is simulated.’

This is a useful information but a test engineer won’t be interested in. It should be left
in the description. Leaving away those parts, leads to version 1.1 of the new requirements
model:

The charge power request (RM_LvbatPCEwrReq) is set to a value.

The other 2 power requests (RCEM_HvbatPwrMax and OBEA_BdNetPwrReq)

are set to zero. All inputs which could limitate the requested

E-motor torque at the output are configured in a way that no

limitation takes place (DIAG_EltMotTqMin, OBEM_EltMotTqMinContns).

Signals don’t have to be explained explicitely:

’The charge power request (RCEM_LvbatPwrReq) is set to a value.’

Only the signal name should be used here. This leads to no loss of information. Version
1.2 states:

RCEM_LvbatPwrReq is set to a value

RCEM_HvbatPwrMax and OBEA_BdNetPwrReq are set to zero.

DIAG_EltMotTqMin, OBEM_EltMotTqMinContns are configured

in a way that RMRE_EltMotTqReqs is not limited.

Signals should not be conjuncted with an and :

RCEM_HvbatPwrMax and OBEA_BdNetPwrReq are set to zero.

It it better practice to mention each of them explicitely. The result is version 1.3:

RCEM_LvbatPwrReq is set to a value

RCEM_HvbatPwrMax is set to zero.

OBEA_BdNetPwrReq ist set to zero.

DIAG_EltMotTqMin is configured in a way that RMRE_EltMotTqReqs

is not limited

OBEM_EltMotTqMinContns isc configured in a way that RMRE_EltMotTqReqs

is not limited

This version is quite readable at the moment but language redundancy can be removed
further and will lead to an even more precise formulation. The author decided that lan-
guage constructs, such as active or passive, do not provide any information. Example:
’RCEM LvbatPwrReq is set to a value’ has the same meaning with respect to testing
as ’Set RCEM LvbatPwrReq to a value’. To get away from those nasty natural language
constructs it is a good idea to introduce some math: for example the sign =.

99

5. Case Study

According to this, version 1.4 states:

RCEM_LvbatPwrReq = value_1

RCEM_HvbatPwrMax = 0

OBEA_BdNetPwrReq = 0

DIAG_EltMotTqMin = value_2; RMRE_EltMotTqReqs is not limited

OBEM_EltMotTqMinContns = value_3; RMRE_EltMotTqReqs is not limited

At the moment, there is no meaning for value 1, value 2 and value 3. One can give them
meaning by introducing datatypes:

int value_1;

int value_2;

int value_3;

By introducing variables, it is communicated to the tester to assign a value. By introducing
datatypes, the range of the value is determined. Therefore the final version 1.5 states:

int value_1;

int value_2;

int value_3;

RCEM_LvbatPwrReq = value_1

RCEM_HvbatPwrMax = 0

OBEA_BdNetPwrReq = 0

DIAG_EltMotTqMin = value_2; RMRE_EltMotTqReqs is not limited

OBEM_EltMotTqMinContns = value_3; RMRE_EltMotTqReqs is not limited

The model is semi-formal, because DIAG EltMotTqMin and OBEM EltMotTqMinContns
incorporate signal descriptions. They will be called attributes from now on. At this point
the requirement is ready to be transformed to a requirements model in pure::variants (see
Figure 5.6).

The current requirement is modeled as Requirement 1 in the feature model.

Values (RCEM HvbatPwrMax, OBEA BdNetPwrReq) that must not be changed by the
tester are set to a fixed value and can not be changed in the variant description model.
Fixed attributes are indicated by an F on the left hand side of the attribute name (value).

Those values that should be typed in by the tester (RCEM LvbatPwrReq, DIAG EltMotTqMin,
OBEM EltMotTqMinContns) do not contain a value. The value itself has a datatype in
the FODA-tool: ps:integer.

A brief signal description is provided as an attribute for the signals DIAG EltMotTqMin
and OBEM EltMotTqMinContns.

100

5.3. Deriving a Requirements Model by Example

Figure 5.6.: Sample Requirements Model

101

5. Case Study

5.4. Solution Space of the Case Study

The units under test are:

• ReqRecupMotrn

• ReqRecupSrvBrk

For each of them tests have been implemented. Because both units are tested with the
same code, the test implementation is explained for only one unit under test.

5.4.1. Test Bed

The unit under test is ReqRecupMotrn (see Figure 5.7). The test block (see also Sec-
tion 4.2.1) is called test ReqRecupMotrn all. It provides the test code in Simulink. It
generates test data and evaluates the feedback from the unit under test.

Figure 5.7.: Sample Test Bed Including Test Block and Unit Under Test

5.4.2. Test Block

Figure 5.8 shows the contents of the test block. The test composite contains all test cases.
The Subsystem connects the output signals (test data) of the test composite with a bus.

Figure 5.8.: Contents of the Test Block

102

5.4. Solution Space of the Case Study

5.4.3. Test Composite

The test composite (see also Section 4.2.2) contains all 20 test cases (see Figure 5.9). The
Multiplexer1 is a slUnit multiplexer (see also Section 4.2.2). It connects the output of
exactly one test case with the unit under test.

Figure 5.9.: Contents of the Test Composite Including Test Cases and slUnit Multiplexer

103

5. Case Study

5.4.4. Test Case

Figure 5.10 shows the contents of the test case TestA 1. The test case (see also Sec-
tion 4.2.3) contains a subsystem called test ReqRecupMotrn a 1. It is the test case imple-
mentation.

Figure 5.10.: Contents of a Test Case Including the Test Case Implementation

5.4.5. Test Case Implementation

In Figure 5.11 the Simulink Constant Blocks colored in magenta create the output signals
(test data). The feedback from the unit under test are evaluated in the validate subsystem.
The feedback data is comparerd with the following signals: DIAG EltMotTqMin and
OBEM EltMotTqMinContns.

Figure 5.11.: Contents of the Test Case Implementation

104

5.4. Solution Space of the Case Study

5.4.6. Unit Test Model: test

Figure 5.12 lists a ps:component for each of the 20 test cases, f.i. ref TestA 1. These
ps:components are responsible for creating mlUnit test cases. Each test case is linked with
a requirements model by means of a restriction: a mlUnit test case is only created, when
the corresponding requirement is selected in the requirements model variant description
model (see Figure 5.5).

A mlUnit test suite connects all mlUnit test cases. This test suite is represented by the
ps:component test suites.

Figure 5.12.: Unit Test Model Showing the Representation of Test Cases and the Test
Suite

105

5. Case Study

5.4.7. Unit Test Model: system

Figure 5.13 represents the structure of the Simulink test code. The test bed described in
Section 5.4.1 is represented by the ps:family test ReqRecupMotrn all.

The test composite described in Section 5.4.3 is represented by the ps:component Test-
Composite.

slUnit test cases are represented by all children of the ps:component test composite. The
test case described in Section 5.4.4 is represented by the ps:component TestA 1.

The test case implementation described in Section 5.4.5 is represented by the ps:component
test ReqRecupMotrn a 1. Within the test case implementation (see Figure 5.11) the Simulink
Constant Blocks are responsible for creating the test data. The following Simulink Con-
stant Blocks are represented by a ps:component:

• DIAG EltMotTqMax

• DIAG EltMotTqMin

• OBCE EngSpd

• OBCE EngTqFric

• OBEA BdNetPwrReq

• OBEM EltMotSpd

• OBCEN EltMotTqMinContns

• OBTR GearbTqMax

• OBTR TrsmGearAct

• RCEM HvbatPwrMax

• RCEM LvbatPwrReq

Figure 5.13.: Unit Test Model Showing the Representation of the Simulink Test Code

106

5.5. Test Data

5.5. Test Data

The test data generated by the developed framework for the two vehicles are listed in
Table 5.3 and Table 5.4.

T
es

t
C

a
se

R
C

E
M

H
vb

a
tP

w
rM

a
x

[k
W

]

R
C

E
M

L
vb

a
tP

w
rR

eq
[k

W
]

O
B

C
E

E
n

gT
qF

ri
c

[N
m

]

O
B

E
M

E
lt

M
o
tS

pd
[r

p
m

]

O
B

T
R

T
rs

m
G

ea
rA

ct
[-

]

O
B

T
R

G
ea

rb
T

qM
a
x

[N
m

]

O
B

C
E

E
n

gS
pd

[r
p
m

]

D
IA

G
E

lt
M

o
tT

qM
a
x

[N
m

]

D
IA

G
E

lt
M

o
tT

qM
in

[N
m

]

O
B

E
M

E
lt

M
o
tT

qM
in

C
o
n

tn
s

[N
m

]

O
B

E
A

B
d
N

et
P

w
rR

eq
[k

W
]

TestA 1 20 0 -30 1000 1 500 1000 200 -200 -200 0

TestB 1 0 10 -30 1000 1 500 1000 200 -200 -200 0

TestC 1 0 0 -30 1000 1 500 1000 200 -200 -2 0.25

TestD 1 20 0 -30 1000 1 500 1000 200 -200 -200 0

TestA 2 20 0 -30 1000 2 500 1000 200 -200 -200 0

TestB 2 0 10 -30 1000 2 500 1000 200 -200 -200 0

TestC 2 0 0 -30 1000 2 500 1000 200 -200 -2 0.25

TestD 2 20 0 -30 1000 2 500 1000 200 -200 -200 0

TestA 3 20 0 -30 1000 3 500 1000 200 -200 -200 0

TestB 3 0 10 -30 1000 3 500 1000 200 -200 -200 0

TestC 3 0 0 -30 1000 3 500 1000 200 -200 -2 0.25

TestD 3 20 0 -30 1000 3 500 1000 200 -200 -200 0

TestA 4 20 0 -30 1000 7 500 1000 200 -200 -200 0

TestB 4 0 10 -30 1000 7 500 1000 200 -200 -200 0

TestC 4 0 0 -30 1000 7 500 1000 200 -200 -2 0.25

TestD 4 20 0 -30 1000 7 500 1000 200 -200 -200 0

TestA 5 20 0 -30 1000 8 500 1000 200 -200 -200 0

TestB 5 0 10 -30 1000 8 500 1000 200 -200 -200 0

TestC 5 0 0 -30 1000 8 500 1000 200 -200 -2 0.25

TestD 5 20 0 -30 1000 8 500 1000 200 -200 -200 0

Table 5.3.: Test Data for Vehicle 1

107

5. Case Study

T
es

t
C

a
se

R
C

E
M

H
vb

a
tP

w
rM

a
x

[k
W

]

R
C

E
M

L
vb

a
tP

w
rR

eq
[k

W
]

O
B

C
E

E
n

gT
qF

ri
c

[N
m

]

O
B

E
M

E
lt

M
o
tS

pd
[r

p
m

]

O
B

T
R

T
rs

m
G

ea
rA

ct
[-

]

O
B

T
R

G
ea

rb
T

qM
a
x

[N
m

]

O
B

C
E

E
n

gS
pd

[r
p
m

]

D
IA

G
E

lt
M

o
tT

qM
a
x

[N
m

]

D
IA

G
E

lt
M

o
tT

qM
in

[N
m

]

O
B

E
M

E
lt

M
o
tT

qM
in

C
o
n

tn
s

[N
m

]

O
B

E
A

B
d
N

et
P

w
rR

eq
[k

W
]

TestA 1 50 0 -60 1000 1 3000 1000 350 -350 -350 0

TestB 1 0 10 -60 1000 1 3000 1000 350 -350 -350 0

TestC 1 0 0 -60 1000 1 3000 1000 350 -350 -2 0.25

TestD 1 50 0 -60 1000 1 3000 1000 350 -350 -200 0

TestA 2 50 0 -60 1000 2 3000 1000 350 -350 -350 0

TestB 2 0 10 -60 1000 2 3000 1000 350 -350 -350 0

TestC 2 0 0 -60 1000 2 3000 1000 350 -350 -2 0.25

TestD 2 50 0 -60 1000 2 3000 1000 350 -350 -200 0

TestA 3 50 0 -60 1000 3 3000 1000 350 -350 -350 0

TestB 3 0 10 -60 1000 3 3000 1000 350 -350 -350 0

TestC 3 0 0 -60 1000 3 3000 1000 350 -350 -2 0.25

TestD 3 50 0 -60 1000 3 3000 1000 350 -350 -200 0

TestA 4 50 0 -60 1000 20 3000 1000 350 -350 -350 0

TestB 4 0 10 -60 1000 20 3000 1000 350 -350 -350 0

TestC 4 0 0 -60 1000 20 3000 1000 350 -350 -2 0.25

TestD 4 50 0 -60 1000 20 3000 1000 350 -350 -200 0

TestA 5 50 0 -60 1000 20 3000 1000 350 -350 -350 0

TestB 5 0 10 -60 1000 20 3000 1000 350 -350 -350 0

TestC 5 0 0 -60 1000 20 3000 1000 350 -350 -2 0.25

TestD 5 50 0 -60 1000 20 3000 1000 350 -350 -200 0

Table 5.4.: Test Data for Vehicle 2

108

5.6. Goal Question Metric - Defined Goals of the Case Study

5.6. Goal Question Metric - Defined Goals of the Case Study

The GQM (Goal Question Metric) (see [vSB99]) is a means to assess if the goals of a
project have been met. Several questions help to identify aspects of each goal. Metrics
give answers to the questions.

The goals and questions defined to assess the results of the proposed framework are illus-
trated in Figure 5.14.

Figure 5.14.: Defined Goals, Corresponding Questions and Metrics

109

5. Case Study

5.7. Goal Question Metric - Metrics of the Case Study

The metrics used in this case study are described in Table 5.6.

Metric: tcreate

Description: The metric tcreate denotes the time necessary to create tests for one unit.

Metric: trun

Description: The metric trun describes the working time necessary to run all tests for
the selected units.

Metric: tchange

Description: The metric tchange describes the working time necessary to change a signal.

Metric: tconfig

Description: The metric tconfig is the time needed to configure a variant description
model in pure::variants.

Metric: preuse

Description: The metric preuse denotes the ratio between reusable test cases and not
reusable test cases in percent. A test case is reusable, if it does not change its test data
from one vehicle to another or if it can be configured in a variant description model.

Table 5.6.: Metrics in This Case Study and Their Description

110

5.8. Goal Question Metric - Results of the Case Study

5.8. Goal Question Metric - Results of the Case Study

The GQM has been conducted for the former test framework that is called Poet and for
the SPL test framework which is the proposed methodology. The same tests have been
implemented with both approaches.

5.8.1. Results for Poet

Goal: Test Efficiency

Question: How much effort does it take to create tests for 2 units?

Metric:
tcreate = 40 m

Description: The time tcreate has been measured when creating tests for 2 units
under test. Each unit under test is tested by 20 test cases. For each test case 11
constant signals have to be drawn.

Question: How much effort does it take to create tests for the
sample project (28 units) ?

Metric:
tcreate = 9.3 h

Description: The time tcreate for 28 units has been extrapolated by the assumption
that the effort for creating the above mentioned units constitutes the average effort
throughout the sample project.

Table 5.7.: Test Efficiency in Poet

Goal: Test Quality

Question: How much effort does it take to run tests for 2 units?

Metric:
trun = 2 m

Description: The time trun to run tests for 2 units has been measured. The time trun
is the time to open the first unit, run the tests for it plus the time to open the second
unit and run the tests for it.

111

5. Case Study

Question: How much effort does it take to run tests for the
sample project (28 units) ?

Metric:
trun = 56 m

Description: The time trun to run tests for 28 units has been extrapolated from the
effort to run tests for 2 units.

Question: How much effort does it take to run tests for the
sample project (28 units) in a year (250 days) ?

Metric:
trun = 233 h

Description: The time trun to run tests for 2 units has been extrapolated from the
effort to run tests for 2 units with the assumption that tests are carried out one time
each working day.

Table 5.8.: Test Quality in Poet

Goal: Test Maintainability

Question: How much effort does it take to configure tests for 2 units?

Metric:
tconfig = 40 m

Description: In Poet it is not supported to configure test data from an external source.
The tests have to be created newly for each variant. The time tconfig corresponds to the
time tcreate in Table 5.7.

Question: How much working time does it take to configure tests for the
sample project (28 units) ?

Metric:
tconfig = 9.3 h

Description: In Poet it is not supported to configure test data from an external source.
The tests have to be created newly for each variant. The time tconfig corresponds to the
time tcreate in Table 5.7.

Question: How much working time does it take to change a global signal in
20 test cases ?

Metric:
tchange = 2 m

Description: The time needed to shift a certain constant signal in 20 test cases
has been measured.

Table 5.9.: Test Maintainability in Poet

112

5.8. Goal Question Metric - Results of the Case Study

Goal: Test Reuse

Question: What is the percentage of reusable test cases for the sample project?

Metric:
preuse = 19 %

Description: Reusable test cases in the context of Poet are test cases where
test data do not change from one vehicle to another for sure. Those test cases
are so-called driving cycles that remain the same for each vehicle.

Table 5.10.: Test Reuse in Poet

5.8.2. Results for SPL Test Framework

Goal: Test Efficiency

Question: How much effort does it take to create tests for 2 units?

Metric:
tcreate = 16 h

Description: The time tcreate has been measured when creating tests for 2 units
under test. Each unit under test is tested by 20 test cases. For each test case 11
constant signals have to be drawn and referenced by pure::variants.

Question: How much effort does it take to create tests for the
sample project (28 units) ?

Metric:
tcreate = 224 h

Description: The time tcreate for 28 units has been extrapolated by the assumption
that the effort for creating the above mentioned units constitues the average effort
throughout the sample project.

Table 5.11.: Test Efficiency in the SPL Test Framework

Goal: Test Quality

Question: How much effort does it take to run tests for 2 units?

Metric:
trun = 1 m

Description: The time trun to run tests for 2 units has been measured.

113

5. Case Study

Question: How much effort does it take to run tests for the
sample project (28 units) ?

Metric:
trun = 1 m

Description: It is assumed that the automated tests can be executed on a dedicated
data processor. Thus, the time trun is the time needed to start the automated test scripts.
This time remains always the same, independent of the number of units under test.

Question: How much effort does it take to run tests for the
sample project (28 units) in a year (250 days)?

Metric:
trun = 4 h

Description: It is assumed that the automated tests can be executed on a dedicated
data processor. Thus, the time trun is the time needed to start the automated test scripts
once a day.

Table 5.12.: Test Quality in the SPL Test Framework

Goal: Test Maintainability

Question: How much working time does it take to configure tests for 2 units?

Metric:
Time to configure vehicle config model: tconfig = 10 m
Time to configure requirements models: tconfig = 20 m

Question: How much working time does it take to configure the
sample project (28 units) ?

Metric:
Time to configure vehicle config model: tconfig = 10 m
Time to configure requirements models: tconfig = 5 h

Description: The time tconfig corresponds to the time needed to configure the vehicle
config model and the requirements models for the sample project.

Question: How much working time does it take to change a global signal in
20 test cases ?

Metric:
Time to configure vehicle config model: tchange = 1 m

Description: The time needed to shift a certain constant signal in 20 test cases
has been measured. This is done by configuring the variant description model.

Table 5.13.: Test Maintainability in the SPL Test Framework

114

5.9. Summary of all Metrics

Goal: Test Reuse

Question: What is the percentage of reusable test cases?

Metric:
preuse = 95 %

Description: Reusable test cases in the context of the SPL framework are test cases
that can be configured by a variant description model. Some test cases differ enormously
from a variant to another. In these cases, modelling differences by a variant description
model becomes unprofitable compared to manually creating the test cases.

Table 5.14.: Test Reuse in the SPL Test Framework

5.9. Summary of all Metrics

The metrics determined in Section 5.8.1 and Section 5.8.2 are summarized in Table 5.15.

M
et

ri
c

P
oe

t

S
P

L
T

es
t

F
ra

m
ew

o
rk

R
ef

er
en

ce
(P

oe
t

/
S

P
L

)

tcreate (2 units) 40 m 16 h Table 5.7 / Table 5.11

tcreate (sample project) 9.3 h 224 h Table 5.7 / Table 5.11

trun (2 units) 4 m 1 m Table 5.8 / Table 5.12

trun (sample project) 56 m 1 m Table 5.8 / Table 5.12

trun (sample project per year) 233 h 4 h Table 5.8 / Table 5.12

tconfig (2 units) 40 m 30 m Table 5.9 / Table 5.13

tconfig (sample project) 9.3 h 5.2 h Table 5.9 / Table 5.13

tchange 2 m 1 m Table 5.9 / Table 5.13

preuse 19 % 95 % Table 5.10 / Table 5.14

Table 5.15.: Summary of all Metrics

5.10. Break Even of the SPL Test Framework

To calculate the break even of the proposed methodology, a simple model is used. The
terminology is given in Table 5.16.

115

5. Case Study

Term:
tdevelop

Description: The time to develop the test framework tdevelop is the upfront investment.

Term:
tcreate

Description: The time tcreate is the initial effort to create tests for all units of the sample
project.

Term:
tconfig

Description: The time tconfig is the effort to configure tests for all units of the sample
project.

Term:
tmaintain

Description: The time tmaintain is the effort to create/configure tests for all units of the
sample project for all variants.

Term:
Nvariants

Description: Nvariants is the number of variants that have to be tested.

Term:
full test run

Description: In a full test run all variants are tested.

Term:
test run

Description: In a test run one variant is tested.

Term:
nrun

Description: The number of full test runs is nrun.

Term:
trun

Description: The time trun is the effort that has to be spent on each test run.

Term:
ttotal

Description: The total time ttotal that has been spent on testing is a function of.
the number of test runs nrun and tested variants Nvariants.

Table 5.16.: Terminology for the Calculation of the Break Even

116

5.10. Break Even of the SPL Test Framework

The total time ttotal that has been spent on testing is a function of the number of test
runs nrun and tested variants Nvariants and is calculated as follows:

ttotal(nrun, Nvariants) = tdevelop + tmaintain(Nvariants) + trun · nrun ·Nvariants (5.1)

The time needed to maintain tests can be estimated as follows:

tmaintain(Nvariants) ≈ tcreate + tconfig · (Nvariants − 1) (5.2)

The data necessary for calculation are listed in Table 5.17.

Test Framework tdevelop tcreate tconfig trun
Poet4 400 h 9.3 h 9.3 h 56 m

SPL Test Framework5 600 h 224 h 5.2 h 1 m

Table 5.17.: Effort for Developing, Creating and Running Tests

In Figure 5.15 the total effort as a function of the number of test runs is shown for both
test methodologies. The break even is the point where the number of full test runs and
the total effort equals for both methodologies. The break evens for Nvariants = 1..5 are
listed in Table 5.18.

Nvariants Full Test Runs Total Effort

1 638 835 h

2 315 840 h

3 208 845 h

4 154 850 h

5 122 855 h

Table 5.18.: Break Evens for Nvariants = 1..5

4The time tdevelop has been estimated for the implementation of the xUnit functionality of Poet.
5The time tdevelop has been measured during development.

117

5. Case Study

Figure 5.15.: Total Effort for Both Methodologies for Nvariants = 1..5

118

6. Conclusion

6.1. Lessons Learned

6.1.1. Test Efficiency

Creating tests in the proposed methodology is a very time consuming task, because the
implementation is a prototype. The time for creating tests could be decreased, if the
implementation is optimized. Nevertheless, it turned out, that it pays off in the long term
(see Section 5.10).

6.1.2. Test Quality

The effort for running tests is minimized by the proposed methodology. It is not dependent
on the number of units under test. So, it can be assumed, that testing will be performed
more often. Thus, defects will be discovered sooner which will cut development costs.
Unfortunately, it is very hard to measure the cost savings achieved by a higher test quality.

6.1.3. Test Maintainability

It is possible to create generic test cases and configure them by means of a FODA-tool. It
is also very important that a test signal that is part of several test cases can be changed
in a single place: the vehicle config model or the requirements model. Typing errors can
be minimized, thus.

6.1.4. Availability of Information

At the moment a lot of information is available in the field of testing embedded systems
with regard to Software Product Lines. Nevertheless, this thesis was the result of the
synthesis of some loose coherent cornerstones. Picking out the right parts from each of
them has lead to a suitable solution.

Information concerning Matlab/Simulink was very well available. The pure::variants in-
formation was sufficient. mlUnit and slUnit are rarely documented. Since both have been
developed with the TDD approach, a lot of test cases have substituted a conventional doc-
umentation in prose. All in all, TDD has proven to serve as an alternative documentation
in these cases.

6.1.5. Usability

At the moment, it seems that the framework is too complicated to use. This is a problem,
since no one will be able to play around with the framework without some training lessons.
This will cost a lot of time. Since time is rare and expensive, people won’t get the full

119

6. Conclusion

potential of the developed framework. In the end, it would have been better to build a
smaller prototype with fewer features, so that people don’t have problems using it.

6.1.6. Implementation of the SPL

In this thesis the full range of test artifacts has been covered. The selection of test cases and
units under test works fine. Test reports are generated automatically by the framework.
The most compelling problem are test data sets because it is difficult to represent time-
discrete test data in a FODA-tool. A possible solution to that problem may be the
signal feature concept described in Section 2.5.3 in combination with representing those
signal features in a pure::variants feature model, namely the requirements model (see
Section 3.5.1). It is also possible to link requirements with test cases which serves as an
alternative documentation.

6.2. Future Work

6.2.1. Parameter Override

Parameter overrides are used to vary some states of the unit under test. In terms of xUnit
this means to create context as described in Section 2.2.4. At the moment only empty
setup and teardown methods are created by the framework. Parameter overrides can be
done by manually writing code into the two methods. It is desirable to implement an
automation of that process. It will be a real challenge to come to a solution with high
usability.

6.2.2. Improve Usability

Usability is one of the major problems of this prototype. There are several ways to improve
usability: First, by creating a family model, a lot of work has to be done in self-made tools.
It will be better to relocate work to standard software, such as Simulink and pure::variants,
as far as possible. That means: references to Simulink blocks should not be saved as node-
objects but only as family models. So the user can build up a collection of references in
pure::variants. The composition of those references can be accomplished in pure::variants
then, which will be much simpler and more stable.

6.2.3. Integration Testing

This thesis focuses on unit testing, only. Integration testing should be considered as
well. Integration testing will be much more compelling as unit testing, regarding the
existent Software Product Line. In another part of the HybConS project, variable state
machines have been implemented. Variable state machine may perhaps pave the way
to integration testing. Another possibility is to derive test cases from use cases that
incorporate variability, too.

120

6.2. Future Work

6.2.4. Testing for Verification vs. Testing for Debugging

Testing for debugging (see [Zel09]) is in principle the counterpart of Test-driven develop-
ment and both may complement each other well. Usually, when a defect is detected one
has to reconstruct the input data that has led to the defect. So, one has to write a test
case that reconstructs the defect. Further, refactoring of the test case has to be done in
order to find the point, where the defect is barely uncovered. Following this principle, it
is possible to link a test case with a defect.

121

A. Testing Software - Terminology

Quality The totality of features and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs. Customer’s needs are usually translated
into features and characteristics witch specific criteria. Needs may include aspects of
usability, safety, availability, reliability, maintainability, economics and environment.
Needs must be specified in such a manner that we know when we have satisfied
them (they must be testable): The term quality is not an expression of a degree of
excellence [IEE90].

Testing Validation [IEE90].

Test Specification Describes the test criteria and the methods to be used in a specific
test to assure the performance and design specifications have been satisfied. The
test specification identifies the capabilities or program functions to be tested and
identifies the test environment [IEE90].

Validation The process of evaluating a product or service to ensure compliance with the
specified requirements [IEE90].

Verification The process of evaluating a product or service at a point in the process (or
at the end of the process) to ensure correctness and consistency with respect to the
products and standards provided as input to that process [IEE90].

Requirement 1) a condition or capability needed by a user to solve a problem or achieve
an objective
2) a condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification or other formally imposed
document
3) a documented representation of a condition or capability as in definition 1 or 2
[IEE90].

Failure An externally visible error in the program behavior. Also known as malfunction
[Zel09].

Fault Synonym for defect [Zel09].

Error 1) An unwanted and unintended deviation from what is correct, right or true. 2)
Synonym for infection. 3) Synonym for mistake [Zel09].

Defect An error in the program - especially one that can cause an infection and thus a
failure. Also known as bug or fault [Zel09].

122

Bibliography

[Bec09] Kent Beck. Test-Driven Development By Example. Signature Series. Addison-
Wesley, 2009.

[Bec11] Kent Beck. Simple Smalltalk Testing: With Patterns. http://www.

xprogramming.com/testfram.htm, visited 2011.

[Bro11] Frederick Brooks. No Silver Bullet: Essence and Accidents of Soft-
ware Engineering. http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/

NoSilverBullet.html, visited 2011.

[C+09] Barrow Colin et al. Business Plans For Dummies. John Wiley & Sons, 2009.

[CdPL09] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On Non-Functional
Requirements in Software Engineering. In Conceptual Modeling: Foundations
and Applications, pages 363–379, 2009.

[CN07] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns . Addison Wesley, 2007.

[CN+11a] Paul Clements, Linda Northrop, et al. A Framework for Software Product
Line Practice, Version 5.0. http://www.sei.cmu.edu/productlines/frame_
report/pl_is_not.htm, visited 2011.

[CN+11b] Paul Clements, Linda Northrop, et al. A Framework for Software Product
Line Practice, Version 5.0. http://www.sei.cmu.edu/productlines/frame_
report/coreADA.htm, visited 2011.

[Con04] Mirko Conrad. Modell-basierter Test eingebetteter Software im Automobil.
PhD thesis, Technische Universität Berlin, 2004.

[DG07] Thomas Dohmke and Henrik Gollee. Test-Driven Development of a PID Con-
troller. Software, IEEE, 24(3):44–50, 2007.

[Doh08] Thomas Dohmke. Test-Driven Development of Embedded Control Systems:
Application in an Automotive Collision Prevention System. PhD thesis, Uni-
versity of Glasgow, 2008.

[Eng03] Erwin Engelsma. Test Evolution. http://www.esi.es/Cafe/pdf/Test_

strategy_methodology_and_process.zip, 2003.

[FS94] Wiliam B. Frakes and Isoda Sadahiro. Success Factors of Systematic Reuse.
Software, IEEE, 11(5):12–19, 1994.

123

Bibliography

[GP07] Atul Gupta and Jalote Pankaj. An experimental Evaluation of the Effective-
ness of the Test Driven Development. In Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, pages 405–
416, Washington, DC, USA, 2007. IEEE Computer Society.

[GSM04] A. Geras, E. M. Smith, and J. Miller. A Prototype Empirical Evaluation of
Test Driven Development. In Proceedings of the 10th International Sympo-
sium on Software Metrics, pages 405–416, Washington, DC, USA, 2004. IEEE
Computer Society.

[IEE90] IEEE Computer Society. IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990), March 1990.

[KM10] Alexander Krupp and Wolfgang Müller. A systematic approach to the test
of combined HW/SW systems. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 323–326. IEEE, 2010.

[Kor10] Evgeny Korsunsky. Generic hybrid control SW architecture. Technical Report
1.0, AVL List GmbH (internal), July 2010.

[Leh04] Eckhardt Lehmann. Time Partition Testing - Systematischer Test des kon-
tinuierlichen Verhaltens von eingebetteten Systemen. PhD thesis, Technische
Universität Berlin, 2004.

[McG11] John McGregor. Testing a Software Product Line. Technical report,
CMU/SEI, visited 2011.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line
Engineering. Springer, 2005.

[PD93] Rubén Prieto-Dı́az. Status Report: Software Reusability. Software, IEEE,
10(3):61–66, 1993.

[Pel06] William Pelfrey. Billy, Alfred, and General Motors: The Story of Two Unique
Men, a Legendary Company, and a Remarkable Time in American History .
Mcgraw-Hill Professiona, 2006.

[RGW03] Doris Rauh, Helmut Goetz, and Josef Weingaertner. Test Process and Imple-
mentation. http://www.esi.es/Cafe/pdf/Test_modeling_and_tooling.

zip, 2003.

[Sch02] Klaus Schmid. A Comprehensive Product Line Scoping Approach and Its
Validation. In Proceedings of the 24th International Conference on Software
Engineering, pages 593 – 603, Washington, DC, USA, 2002. IEEE Computer
Society.

[Str00] Bjarne Stroustroup. The C++ Programming Language: Special Edition. Ad-
dison Wesley, 2000.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
an annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

124

Bibliography

[vdLSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
in Action: The Best Industrial Practice in Product Line Engineering. Springer,
2007.

[Vig10] Uwe Vigenschow. Testen von Software und Embedded Systems: Professionelles
Vorgehen mit modellbasierten und objektorientierten Ansätzen. dpunkt.Verlag,
2010.

[vSB99] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: A
Practical Guide for Quality Improvement of Software Development. Mcgraw-
Hill Professional, 1999.

[WMV03] Laurie Williams, E. Michael Maximilien, and Mladen Vouk. Test-Driven De-
velopment as a Defect-Reduction Practice. In Proceedings of the 14th In-
ternational Symposium on Software Reliability Engineering, pages 34 – 45,
Washington, DC, USA, 2003. IEEE Computer Society.

[Wol11] Robert Wolff. Klassifikationsbaummethode für eingebettete Systeme
(CTM/ES). http://www2.informatik.hu-berlin.de/~hs/Lehre/

2006-SS_SpezTest/10_Wolff_CTM-ES_Ausarbeitung.pdf, visited 2011.

[Zel09] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Mor-
gan Kaufmann, 2009.

[ZN09] Justyna Zander-Nowicka. Model-based Testing of Real-Time Embedded Sys-
tems in the Automotive Domain. PhD thesis, Technische Universität Berlin,
2009.

125

