

Requirements engineering and design

of human-centered information services

utilizing near-eye display devices

Master’s Thesis

by

Maximilian Johannes Walter Sachs

under supervision of

Univ.-Prof. Dipl.-Ing. Dr.techn. Siegfried Vössner
and

Dipl.-Ing. Dr.techn. Wolfgang Vorraber

Institute of Engineering and Business Informatics

Graz University of Technology

Graz, May 2014

Abstract

Recent developments in the space of Near-Eye Display Devices provide new venues for the

development of information services. These new devices and services could lead to process

improvements with regard to efficiency and effectiveness. This Master’s Thesis explores the

possibilities for process improvement with regard to medical surgeries by introducing

information services based on such devices. It will provide a theoretical perspective on

Requirements Engineering as a tool for system planning both in historical and in current

context. Alternatives to Requirements Engineering in its traditional and linear form are

explored by discussing the concepts of Agile Development Methods. Possible approaches to

combine these different software development and planning methods are mentioned.

Incremental Requirements Engineering is then used as a tool to gather information for the

design of a system which aims to utilize previously identified potential for improvement.

Based on the collected requirements, a system architecture is described and a Proof-of-

Concept implementation is provided, which satisfies the fundamental requirements posed by

previously identified use cases and serves as a basis for real-world tests.

Acknowledgments

I would like to take this opportunity to thank all people who supported me during the creation

of this Master’s Thesis.

First and foremost, I would like to thank Dipl.-Ing. Dr.techn. Wolfgang Vorraber and Univ.-Prof.

Dipl.-Ing. Dr.techn. Siegfried Vössner for giving me the opportunity to write this thesis and for

supporting me in the process.

In addition, I would like to thank the Krankenhaus der Elisabethinen Graz GmbH, Univ. Prof.

Ing. Dr. Gerhard Stark and the whole staff, who provided helpful insight into the well-

established processes in medical environments over the course of the overall project, which

this Master’s Thesis is a part of. I would like to thank DGKP Michael Weldi, Karlheinz Söls and

Josef Lemberger specifically, for answering all my questions regarding technical and medical

aspects.

Of course, I would also like to thank my family and friends without of whom I would not be

where I am today.

Introduction

A

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.1.1 Requirements Engineering ... 1

1.1.2 Near-Eye Display Devices ... 3

1.2 Problem Statement and Limitations .. 4

1.3 Structure of the Thesis .. 5

2 Requirements Engineering: Theory .. 7

2.1 A General Perspective on Requirements Engineering .. 7

2.2 On the History of Requirements Engineering ... 8

2.3 Definitions .. 9

2.3.1 Requirements Engineering ... 10

2.3.2 Requirement ... 10

2.3.3 Functional Requirement ... 11

2.3.4 Non-Functional Requirement ... 12

2.3.5 Stakeholder .. 13

2.3.6 System, Context and Environment ... 13

2.4 General Remarks on Requirements Engineering Approaches 14

2.5 State of the Art Requirements Engineering .. 16

2.5.1 Pre-Elicitation Phase ... 16

2.5.2 Elicitation Phase ... 17

2.5.3 The SOPHIST-REgelwerk for Requirement Sanitization 20

2.5.4 Requirement Specification ... 21

2.5.5 Requirement Validation ... 22

2.5.6 Requirements Management .. 24

2.6 Criticism ... 26

Introduction

B

2.6.1 Psychological Factors with regard to Requirements .. 26

2.6.2 The lack of a clear definition of Non-Functional Requirements 26

2.7 A Completely Different Approach: Agile Software Development 27

2.7.1 A Short Introduction to Agile Software Development Techniques.................... 29

2.7.2 Natural Emergence of Requirements in Agile Software Development Teams .. 35

2.7.3 Introducing Agile Aspects to Requirements Engineering 36

2.7.4 Traditional (linear) Requirements Engineering and Agile Software Development

– It depends on the Project ... 37

3 Requirements Engineering: Application ... 39

3.1 Categorization of Use Cases .. 40

3.2 Project Goals .. 41

3.3 Monitoring of Real Time Patient Data ... 42

3.3.1 Use Case Instance Explanation – Percutaneous Transluminal Angioplasty 42

3.3.2 Classification and Explanation .. 43

3.3.3 AS-IS-Analysis and Identification of Potential for Improvement 43

3.3.4 Description of Resulting Use Case .. 44

3.4 Navigation and Medical Imaging ... 47

3.4.1 Use Case Instance Explanation – Laparoscopic Cholecystectomy 47

3.4.2 Classification and Explanation .. 47

3.4.3 AS-IS-Analysis and Identification of Potential for Improvement 48

3.4.4 Description of Resulting Use Case .. 50

3.5 Viewpoint of Surgeon for Improved Assistance .. 52

3.5.1 Use Case Instance Explanation – Open Cholecystectomy 52

3.5.2 Classification and Explanation .. 53

3.5.3 AS-IS-Analysis and Identification of Potential for Improvement 53

3.5.4 Description of Resulting Use Case .. 55

Introduction

C

3.6 Recording of Medical Processes for Post-Evaluation and Teaching Purposes 57

3.6.1 Use Case Instance Explanation – Surgery Simulation Training 57

3.6.2 Classification and Explanation .. 58

3.6.3 AS-IS-Analysis and Identification of Potential for Improvement 58

3.6.4 Description of Resulting Use Case .. 60

3.7 Virtual Consultations ... 61

3.7.1 Use Case Instance Explanation – Open Cholecystectomy with Consultation 61

3.7.2 Classification and Explanation .. 61

3.7.3 AS-IS-Analysis and Identification of Potential for Improvement 62

3.7.4 Description of Resulting Use Case .. 63

3.8 Elicitation and Identification.. 65

3.8.1 Hardware Requirements .. 65

3.8.2 Functional Requirements ... 66

3.8.3 Non-Functional Requirements ... 66

3.9 Analysis and Specification ... 67

3.9.1 Indexing Format ... 67

3.9.2 Definitions .. 68

3.9.3 Functional Requirements ... 68

3.9.4 Non-Functional Requirements ... 70

3.9.5 Hardware Requirements .. 71

3.9.6 Conflicts .. 72

3.10 Applied Requirements Engineering – Conclusion ... 72

4 Design and Architecture ... 73

4.1 The Platform – Google Glass Explorer Edition ... 73

4.2 General Structure .. 75

4.2.1 Requirements for the system with regard to its general architecture 75

Introduction

D

4.2.2 Possible solutions ... 76

4.2.3 The choice behind the Thin-Client-Architecture .. 78

4.3 System, Context and Environment .. 80

4.4 Glass Client .. 81

4.4.1 Requirements for the Client Implementation .. 81

4.4.2 Possible solutions ... 82

4.4.3 The choice behind the GDK and the Immersion .. 82

4.5 Glass Server ... 82

4.6 Interfaces ... 84

4.6.1 Internal Interface – Glass Messaging Protocol... 84

4.6.2 External Interfaces ... 90

5 Implementation – Proof-of-Concept .. 93

5.1 General Choices ... 94

5.1.1 Glass Server .. 94

5.1.2 Glass Client ... 95

5.1.3 Communication .. 95

5.2 Capabilities... 97

5.2.1 Glass to Server Video Transmission ... 97

5.2.2 Glass to Server Picture Transmission ... 97

5.2.3 Glass to Server Audio Transmission ... 98

5.2.4 Server to Glass Video and Still Frame Transmission .. 98

5.2.5 Server to Glass Audio Transmission ... 98

5.2.6 Miscellaneous Features .. 99

6 Evaluation.. 100

7 Future Work and Conclusion .. 102

7.1 Data Security and Standards Conformity .. 102

Introduction

E

7.2 Further Use Cases and Functionality ... 102

7.3 Extension of Proof-of-Concept .. 103

7.4 Interfacing with already established systems ... 104

7.5 Conclusion ... 104

8 References ... I

9 List of Figures ... VI

10 List of Tables ... IX

11 Appendix .. X

11.1 BPMN Diagrams ... X

11.1.1 BPMN Legend ... X

11.1.2 Percutaneous Transluminal Angioplasty ... XI

11.1.3 Laparoscopic Cholecystectomy .. XII

11.1.4 Open Cholecystectomy ... XIII

11.1.5 Surgery Simulation Training .. XIV

11.1.6 Open Cholecystectomy with Consultation ... XV

Introduction

1

1 INTRODUCTION

In the following section the motivation behind this Master’s Thesis will be explained. In

addition to this, an overview over Requirements Engineering and Near-Eye Display Devices

will be given. The problem this thesis focuses on along with its limitations will be stated and

finally a structural overview over the individual parts will be given.

1.1 MOTIVATION

The central motivation behind this Master’s Thesis is the improvement of medical processes

by utilizing Near-Eye Display Devices. This is achieved by an analysis of the processes as they

are currently implemented, the identification of potential for improvement and finally the

development of a concept that utilizes this potential. The core process behind the analysis of

potential use cases during the development of this system is Requirements Engineering.

1.1.1 Requirements Engineering

Requirements Engineering has been recognized as an essential part of the software

development process early on. In fact, the following quote by Frederick P. Brooks can be found

in many articles on the subject:

“The hardest single part of building a software system is deciding precisely what to build. No

other part of the conceptual work is as difficult as establishing the detailed technical

requirements, including all the interfaces to people, to machines, and to other software

systems. No other part of the work so cripples the resulting system if done wrong. No other

part is more difficult to rectify later.” (Brooks 1987)

Many examples can be called upon to provide proof for the statement by Brooks, especially

in the field of software development where – mainly because of the complexity of large

projects – the stakes are usually high and problems occur frequently.

Introduction

2

Generally, it can be said that the cost of fixing an error during the development of a software

system is almost inversely exponential to the amount of time invested in the development

(see Figure 1), with an extreme peak once the software is in operation. (Boehm 1981)

Therefore, the early detection of potential problems is vital for project success. (Stecklein,

Dabney et al. 2004, Boehm 1981)

Figure 1: The relative cost to fix an error during different project development phases (figure modified from (Boehm 1981)).

For example, if a critical error is identified when the product is already available on the market,

the cost of fixing it might quickly be in the millions. Although not a software system, a notable

example for this phenomenon, which is passionately mentioned in software testing and

verification courses at universities, is the rather infamous Intel Pentium-FDIV-Bug which

caused wrong results for certain floating point calculations. (Nicely 1994)

Precisely because of this difficulty in rectifying errors in late stages of software development,

strategies have been proposed that involve extensive planning-phases, which ultimate led to

the birth of Requirements Engineering as a field of research.

The necessity for a solid understanding of the problem before or during system development

is one of the reasons why Requirements Engineering has been chosen as the basis of this

Master’s Thesis.

0

20

40

60

80

100

120

140

160

180

200

Requirements Design Code Development

Test

Acceptance Test Operation

R
e

la
ti

ve
 C

o
st

Development Phase

Relative Cost to fix an error during different development

phases

Introduction

3

1.1.2 Near-Eye Display Devices

Especially in the past five to seven years, the field of mobile computing underwent

tremendous changes and improvements. With the emergence of a mass market for Smart

Devices – Phones in particular –, small-form-factor hardware became more and more

important for the industry. This focal shift has led to massive developments with regard to

power consumption, networking and, most importantly, raw computing power.

Building a device that can be worn and operated with voice alone seems almost like the logical

next step and is exactly what Google is aiming at with Glass.

Figure 2: Google Glass Explorer Edition. The device which serves as the mobile platform for development during this thesis.

Figure 2 shows the Google Glass Explorer Edition which currently serves as the mobile

platform for the information system developed further down in this thesis (see section 4

below). A detailed overview over the platform and its features will be given in section 4.1

below.

With Google behind the development of such a device for the consumer market, it seems

reasonable to assume that this type of device will gain significance quickly in the coming

months and years. However, not only consumers may benefit from this technology, as

potential for a wide variety of projects, especially with regard to the improvement of already

existing processes, can be seen. Google Glass, as an early contender in this particular space,

serves throughout this thesis and the surrounding overall project as the basis for potential

improvements in medical environments.

Introduction

4

With the underlying Android platform (Google Inc. 2013a), Google Glass is essentially a smart

phone built into the frame of glasses. Besides all the features that are common in today’s

devices, like voice control and specifically designed user interfaces, Glass has one unique

feature: A semi-transparent display that is mounted in such a way that its image appears in

the corner region of the wearers eye. This screen, which is constantly in the user’s field of

vision, along with the capability to use speech as a means of interaction and common

hardware elements like a microphone and a camera, provides a whole new experience.

Starner (2013) describes this as the solution for what he sees as a fundamental problem of

Smart Phones. He argues, that by reducing the delay between what the user wants to do and

when he actually does it to a value below a certain threshold, the device becomes an

“extension of the self”. (Starner 2013)

This new development, where these small devices provide a means to display an image

without obstructing reality too much for the wearer, open up a wide variety of new

possibilities. The traditional HUD (“Heads-Up Display”) has been implemented in various ways

already, but always with the need for heavy machinery and the goal was often to provide a

way to overlay images onto the entire field of vision of the wearer. In these cases, the goal

was then, for example, to provide a way to view the skeleton of a patient whilst looking at

him, without having to alternate between the patient and a display with the medical image.

(Thomas, Sandor 2009)

The approach taken in this thesis is slightly different. Google Glass, as one of the early

contenders in this new space of electronics, serves as a potential platform for the systematic

exploration of potential for process improvement in medical processes. This will be achieved

by providing information in a fixed spot in the visual field of the user, rather than on top of his

entire field of vision, thus providing an additional information channel, instead of altering an

existing one.

1.2 PROBLEM STATEMENT AND LIMITATIONS

The aim of this thesis is the improvement of well-established processes in medical

environments with regard to performance, efficiency and / or safety.

Introduction

5

The process used to achieve this is a very systematic one. By utilizing Requirements

Engineering, especially with a focus on the Status-Quo and thus the analysis of processes as

they are in place at the current time and therefore the possibility to find weaknesses or

potential for optimization by working very closely with people who are involved (nurses,

technical and medical personnel and surgeons), use case scenarios are identified, which may

be improved by the introduction of an information service based on Near-Eye Display Devices.

It is the core task of this thesis to explore potential for improvement with regard to processes

as they are currently implemented in hospitals, specifically the Hospital of Elisabethinen in

Graz. Identified problems will then be used as a basis to develop solutions by utilizing Near-

Eye Display Devices such as Google Glass. To prove the viability of these solutions, a Proof-of-

Concept is developed that implements all capabilities that are fundamental to the overall

system design. In summary, the primary aim is to identify use cases in a methodological

manner, document them, design a system and finally implement a Proof-of-Concept which

demonstrates the potential of the technology.

1.3 STRUCTURE OF THE THESIS

This thesis is structured into three fundamental parts (see Figure 3): Theory, Requirements

Engineering of human-centered information services for use in medical environments and, in

part, the Development of these services.

Figure 3: The three fundamental parts of this thesis, along with a more detailed sub-division into five essential sections.

The first part of the more detailed structure outlined in Figure 3 above, Theory, provides a

theoretical overview over Requirements Engineering, both in historical and in current

context. The fundamental principles of the Requirements Engineering process will be

explained and new developments, especially with regard to Agile Software Development

approaches, will be discussed.

Introduction

6

The first of the three following parts is the Analysis of currently implemented processes in

medical environments which will focus strongly on how these processes are presently carried

out. What follows next is called Synthesis. At the core of this part lies the identification of

potential for improvement along with the specification of use cases that utilize such potential.

These use cases then provide the basis for the design of the system which is done in the next

part: Design. It aims to design a system which allows for the use cases outlined in the Synthesis

section to be performed.

The last section, Proof-of-Concept (PoC), will then describe the implementation of a Proof-of-

Concept of the system. This implementation aims to prove the viability of the overall system

design, will serve as a prototype for tests and aims to implement all important features at least

to such an extent that the full solution can be perceived as feasible. Furthermore, the Proof-

of-Concept will also serve as a tool for requirements validation during real world test cases.

The core criterion for the Proof-of-Concept is the ability to test the ideas behind all the use

cases that have been described throughout the Synthesis. It therefore has to provide all the

functionality that is necessary to test the viability of these use cases.

Requirements Engineering: Theory

7

2 REQUIREMENTS ENGINEERING: THEORY

This section will focus on the theoretical part of the Requirements Engineering process. It will

give a general overview of the topic, provide insight on the historical background, will then

discuss state-of-the-art approaches and finally attempts to draw comparisons with modern

Agile Software Development techniques.

2.1 A GENERAL PERSPECTIVE ON REQUIREMENTS ENGINEERING

Before the topic can be discussed in greater detail or even just in its historical context, a

general overview is necessary to be able to put it into perspective. What exactly is

Requirements Engineering? Why is it important? These are the questions that this section

aims to provide answers to.

As the publication of the IEEE Computer Society Press Tutorial in 1990 (Dorfman, Thayer 1990)

marked an important step in the history of Requirements Engineering, the definition by

Dorfman and Thayer may be the most fitting to answer the first question:

“Requirements Engineering is the science and discipline concerned with analyzing and

documenting requirements.” (Dorfman, Thayer 1990)

This, of course, begs the question of what exactly Requirements are. In short, a requirement

can be seen as a property or functionality that a system must have in order to be of use for

the user. Typically these requirements are then separated into two sub-categories: Functional

and Non-Functional. The former describing actual features of the system, the latter leaning

more towards conditions the system has to conform to. More detailed definitions can be

found in section 2.3 below.

Typically, the Requirements Engineering process is divided into several sub-processes which

on their own focus on specific parts of the overall process: Elicitation, Specification, Validation

and Management (Rupp, SOPHISTen 2009). The first process focuses on the actual

identification of requirements. This is normally achieved by either observing or interviewing

the people that are involved in the project (e.g. the end-users). What follows the initial

elicitation phase is typically a combination of negotiation and documentation. The

Requirements Engineer aims to remove any incoherencies between different requirements

Requirements Engineering: Theory

8

and might have to negotiate and find compromises as the involved parties typically aim to

achieve goals which are at least slightly divergent.

When the requirements have been documented and the system is being implemented, it is

necessary to validate them in order to ensure the system which is being built actually

conforms to the specified requirements and they describe the desired end result.

As such a software system is typically never complete and new challenges arise throughout

the development cycle, a management process is needed to be able to adapt to changing

aspects.

When building a system, there are two main problems which have to be faced: Building the

correct solution and building the solution correctly. In other words: What needs to be built

and how it needs to be built. (Balzert, Balzert et al. 2009) Requirements Engineering focuses

on the former.

2.2 ON THE HISTORY OF REQUIREMENTS ENGINEERING

Although the term Requirements Engineering seems to have appeared already relatively early

on as part of a technical report by Alfor and Lawson (1979), it gained substantial significance

with the IEEE Computer Society Press Tutorial released in 1990 (Dorfman, Thayer 1990). The

aforementioned publication contains a large collection of early standards and guidelines on

the topic of Requirements Engineering.

With regard to the surrounding research field – computer science – the two aforementioned

years 1990 (Dorfman, Thayer 1990), and especially 1979 (Alfor, Lawson 1979) are a remarkably

early point in time for the recognition of the significance of Requirements Engineering for the

long term success of a software development project.

Especially since the first conference on Requirements Engineering in 1994 (Dorfman, Byrne et

al. 1994) the number of publications per year increased greatly over time (see Figure 4).

Requirements Engineering: Theory

9

Figure 4: Requirements Engineering publications per year (figure modified from (Partsch 2010) which has been built utilizing

the data provided by (Davis 2010)).

The slight decrease in recent years that can be seen in Figure 4 is explained by Partsch (2010)

with the strong diversification the field underwent in the recent years which makes it difficult

to compile an exhaustive list of all publications.

Another important step in the development of Requirements Engineering as a fundamental

part of the software engineering process marked the foundation of the International

Requirements Engineering Board (IREB). It provides publications, training and certifications

(CPRE – Certified Professional for Requirements Engineering). The fundamental aim of this

organization is the provision of universally acceptable standards with regard to training and

qualification in the field of Requirements Engineering (IREB e.V., n.d.).

2.3 DEFINITIONS

In order to discuss different aspects of Requirements Engineering, it is first necessary to define

the basic terminology. The following paragraphs will define the fundamental concepts in a

short way for convenience and in a more elaborate way for completeness.

0

100

200

300

400

500
N

U
M

B
E

R
 O

F
P

U
B

LI
C

A
T

IO
N

S

YEAR

Requirements Engineering

Publications Per Year

Requirements Engineering: Theory

10

2.3.1 Requirements Engineering

For the sake of completeness, the definition that has already been given in the introductory

paragraph of this section will be repeated here.

Requirements Engineering defines all activities that take place before and during system

design and development which describe the capabilities, the resulting system must have. It

does not, however, dictate the actual development and implementation in any way. In short,

Requirements Engineering describes what a system should do, not how it should do it. (Partsch

2010) The industry recognized the significance of requirements for the software development

process quite early on (Alfor, Lawson 1979, Dorfman, Thayer 1990). To tackle this rather

complex task, the field of Requirements Engineering was born (Dorfman, Byrne et al. 1994).

With the creation of the term Requirements Engineering, the role of Requirements Engineer

has been established as well – a person (or a group) who specifically focuses on the elicitation,

documentation and management of requirements. A systematic approach to Requirements

Engineering as well as highly developed communicative skills are regarded as key abilities for

the Requirements Engineer, as he has to mitigate all conflicts and finally create a set of

requirements all stakeholders can agree upon. (Rupp, SOPHISTen 2009)

2.3.2 Requirement

A requirement is a property or functionality a system must have in order to be useful to the

user.

The IEEE defines requirement as follows:

(1) “A condition or capability needed by a user to solve a problem or achieve an

objective.

(2) A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

documents.

(3) A documented representation of a condition or capability as in (1) or (2).” (IEEE

Standards Board 1990)

Requirements Engineering: Theory

11

In the field of Requirements Engineering, the term is typically sub-divided into two categories:

Functional Requirements (see section 2.3.3 below) and Non-Functional Requirements (see

section 2.3.4 below).

However, there is another categorization scheme, which is usually mentioned in various works

on the topic and can even be combined with the functional / non-functional distinction

mentioned above: The KANO-Model (Kano, Seraku et al. 1984). It provides the fundamental

distinction between Dissatisfiers, Satisfiers and Delighters.

Dissatisfiers are features that are implicitly

expected by the customer and therefore are

often not even mentioned explicitly but are

regarded as absolutely essential for the

resulting system. The implementation of

Dissatisfiers is therefore absolutely necessary

but does not lead to any increase in customer

satisfaction (e.g. the implementation of speech

output in a car’s navigation system). Satisfiers

are the features that are normally

implemented and negotiated between

customer and developer (e.g. the calculation

of the shortest route in a car’s navigation system). They are directly proportional to the

amount of satisfaction the customer gains out of the resulting system. Finally, Delighters are

features, that may not be even mentioned by the customer but provide a significant increase

in satisfaction (e.g. the option to display traffic in routes and to include this data into the route

calculation in a car’s navigation system). (Kano, Seraku et al. 1984, Pohl, Rupp 2011)

2.3.3 Functional Requirement

A functional requirement describes a capability or a feature of the resulting system:

Something the system has to be able to accomplish.

Balzert et al. (2009) defines functional requirements as a function or service that the system,

or one of its parts, has to provide.

Figure 5: KANO-Model (figure modified from (Pohl, Rupp

2011)).

Requirements Engineering: Theory

12

Partsch (2010) provides a broader definition. According to him, functional requirements focus

solely on the functional aspects of the system, thus describing the tasks of the system and the

conditions it must fulfill to perform these tasks.

Pohl and Rupp (2011) again define functional requirements as those requirements that

describe the functionality that the system has to offer. However, they provide an additional

sub-categorization into functional, behavioral and data requirements.

In conclusion, it can be said that functional requirements describe what the system must be

capable of achieving actively.

2.3.4 Non-Functional Requirement

Non-functional requirements are a little more difficult to define in detail as there are many

definitions, some of them even a little contradictory. However, typically, non-functional

requirements are regarded as conditions which the system must fulfill.

The most obvious definition, according to Rupp et al. (2009), of non-functional requirements

would be simply every requirement that is not part of the set of functional requirements.

(Rupp, SOPHISTen 2009) However, as this definition certainly is too diffuse for utilization

during system planning and development, they provide another definition for which they

divide the set of non-functional requirements into two general sub-categories: Requirements

which directly affect the realization of the project and those who do not. They then provide

different examples for non-functional requirements, such as: Technological boundaries,

quality requirements or even legal obligations. (Rupp, SOPHISTen 2009)

The problem that has been stated in the initial short description of the term above is analyzed

more closely by Glinz (2007). He provides a list of differing definitions that rely on many

different publications on the topic. He then tackles this lack of a proper, universally accepted

concept of non-functional requirements and even requirements in general, by the

introduction of a completely new classification system which is described in greater detail in

section 2.6.2 below. (Glinz 2007)

In summary, non-functional requirements can be understood as all those requirements that

do not directly describe actual features of the system. Such requirements include factors like

Requirements Engineering: Theory

13

technical constraints, legal obligations and requirements with regard to the environment the

system has to be able to operate in.

2.3.5 Stakeholder

A stakeholder is a person who is directly or indirectly involved in the project. Typical examples

are customers, developers, managers or even IT-Support staff.

Partsch (2010) defines the term a little more generally. According to him, a stakeholder is a

party who is involved in the development of a future system and therefore demands the

satisfaction of certain requirements. In addition to this, he also mentions that one stakeholder

may have several different perspectives on the project and thus appears in more than one

stakeholder-“role”. Adding to the examples already mentioned in the short description above,

he provides an extensive list of stakeholder groups. (Partsch 2010)

Rupp et al. (2009) define stakeholder in a quite similar way but also propose a classification

scheme for every identified stakeholder which depends on their potential influence and

motivation. Their definition of the term focuses more on the potential to provide

requirements rather than on their interests with regard to the overall resulting system (see

section 2.5.1.2 below). (Rupp, SOPHISTen 2009)

Glinz and Wieringa (2007) define the term stakeholder not only as a person who is involved

and therefore has an influence on the resulting system, but also as being passively impacted

by it. (Glinz, Wieringa 2007)

In summary it can be said that the group of stakeholders includes all parties that are directly

or indirectly involved either in the development or the usage of the system.

2.3.6 System, Context and Environment

The differentiation between System, Context and Environment is regarded as fundamental for

the analysis of already established systems and the design of future solutions. (e.g. (Pohl, Rupp

2011, Partsch 2010, Rupp, SOPHISTen 2009)

Requirements Engineering: Theory

14

Figure 6: System, Context and Environment (figure modified from (Pohl, Rupp 2011)).

System describes all parts that directly belong to the system (e.g. hardware and software

components).

Context includes everything that is of relevance for the system’s requirements, but does not

directly belong to the system (e.g. users, interfacing modules, etc.).

Finally, the Environment denotes everything that is neither part of the system nor its context

and therefore is irrelevant for system development.

Based on (Rupp, SOPHISTen 2009, Partsch 2010, Pohl, Rupp 2011)

2.4 GENERAL REMARKS ON REQUIREMENTS ENGINEERING APPROACHES

This section will discuss general commonalities between different Requirements Engineering

approaches. In addition to this, a short overview of typical Requirements Engineering

processes is given.

Generally, Requirements Engineering can be subdivided into the following five fields (Paetsch,

Eberlein et al. 2003): Elicitation, Analysis, Documentation, Validation and Management.

However, there are some approaches that differ slightly. For example, Rupp et al. (2009) add

a Pre-Elicitation phase (see section 2.5.1 below) that contains an extensive AS-IS-Analysis of

any system that might be in place before the development of a new system, or, if there is not,

of the processes as they are currently carried out. In addition to this, they propose a special

method to sanitize identified requirements before documentation (see 2.5.3 below).

Requirements Engineering: Theory

15

Regardless of the specific implementation of Requirements Engineering, a small set of

processes seems to be essential and appears in all of them (Paetsch, Eberlein et al. 2003, Rupp,

SOPHISTen 2009, Partsch 2010). This set consists of:

• An identification phase, where requirements are determined for the first time

(typically called “Requirements Elicitation”)

• A documentation phase, where the identified requirements are then written down in

a formally specified manner (typically called “Documentation”)

• A validation phase, where the requirements are validated with regard to consistency

between what has been planned and what is actually necessary to implement the

system properly.

• And a management phase which accounts for the fact that software usually is

considered to be constantly evolving (e.g. in order to react to changes in the

environment).

It is worth mentioning that in traditional software development methods (e.g. the Waterfall

Model) and thus traditional (linear) Requirements Engineering, these steps are considered to

be sequential and directed. This means that after an initial Elicitation and Specification-Phase,

the system is implemented in its entirety. The problem with this approach is obvious: If the

underlying task, the environment or even the solution is too complex or dynamic to be

planned out completely beforehand, the approach is not viable. To account for this, different

software development models have been introduced which allow for free movement in both

directions of the sequence (e.g. the well-established V-Model). In addition to this, somewhat

as a counter movement to very elaborate planning processes, so-called “Agile Software

Development” methods have been proposed (see section 2.7 below). These approaches focus

on very short development cycles and strong involvement of the customer instead of

meticulous planning phases in the beginning of the development process.

The differences and potential synergies between Requirements Engineering and Agile

Software Development methods will be discussed further down in the document in section

2.7.4 below).

Requirements Engineering: Theory

16

2.5 STATE OF THE ART REQUIREMENTS ENGINEERING

This section aims to provide a theoretical overview on how Requirements Engineering

processes are typically utilized in current projects. There are many different implementations

of the standard Requirements Engineering-Process, as has already been outlined in section

2.4 above. Because of this reason, this part will mainly focus on the standard aspects of

Requirements Engineering and those which have been introduced by Rupp et al. (2009), as

their approach differs slightly in a few key aspects and has been used for the applied

Requirements Engineering in section 3 below. Processes which are unique or implemented

differently in the SOPHIST-Approach are explained separately in the sections that follow.

As has already been mentioned in the general description, the SOPHIST-Approach (Rupp,

SOPHISTen 2009) focuses not only on the traditional parts of Requirements Engineering but

also on an extensive AS-IS-Analysis before the building of the system and additionally offers

insight on efficient interview and observation methods. This strong focus on the pre-elicitation

phase is not typical to other approaches and will be described in the next section.

2.5.1 Pre-Elicitation Phase

The SOPHIST-approach (Rupp, SOPHISTen 2009) differs from the typical approach to

Requirements Engineering mainly by the strong focus on the AS-IS-Analysis of previously

implemented systems and processes before the new system is developed or even planned.

There are three distinct phases before the actual requirements are analyzed: AS-IS-Analysis,

Identification of stakeholders and definition of goals. (Rupp, SOPHISTen 2009) These phases

will now be explained in greater detail.

2.5.1.1 AS-IS-Analysis

This phase focuses primarily on the systematic analysis of the system as it is in place before

the new system is developed. It is also used to identify problems in processes as they are

currently carried out, which can then later be used as a basis for the elicitation phase. There

are many different ways to model such processes (e.g. Sequence-Diagrams or Flow-Charts).

The technique that will be used further down in this thesis is the Business Process Model and

Requirements Engineering: Theory

17

Notation (BPMN). The resulting diagrams can then be used to model the process as it is

currently implemented and to identify potential problems with existing routines.

2.5.1.2 Identification of Stakeholders

Identifying the central people involved in a project is extremely important. However, the

SOPHIST-approach (Rupp, SOPHISTen 2009) takes great care to identify and categorize all

involved stakeholders in a very detailed manner, e.g. by using tables with additional fields for

information like the relevance or availability of the stakeholder (Rupp, SOPHISTen 2009). This

then allows for a quick identification of those parties that can be involved strongly in the

development process and other parties who may not be able to invest as much time.

2.5.1.3 Definition of Goals

Before the elicitation phase can begin, a general list of project goals is devised. This list is then

used to provide an overall guide as to where the final system is headed (cf. Specification Level

0, section 2.5.2 below).

2.5.2 Elicitation Phase

In every Requirements Engineering process there is one phase where the requirements are

initially gathered for the first time.

To account for the different types and interests of stakeholders, the authors of the SOPHIST-

approach propose a number of different specification levels (Rupp, SOPHISTen 2009):

0. Very abstract specification, Goals, Visions

1. Use Cases, User Stories, Feature List

2. Actual Requirements, Test Cases, Feature List

3. Detailed Requirements, Technical Requirements, Interfaces, Test Cases, Feature List

4. Technical Requirements, Interface Description, Test Cases, Modules

Requirements classified under level 0 are more abstract visions and overall project goals than

actual requirements. They are typically used to convey a clear, though not very detailed,

picture of the complete system and its capabilities. Specification level 1 then refines these

overall ideas into use cases.

Requirements Engineering: Theory

18

The requirements, as they are typically understood, reside somewhere between levels 2 and

3. Level 4 focuses on the actual technical implementation and is therefore not essential for

most parties who are involved in the process (with an exception of programmers, designers

and other people who are directly involved in the development process).

For the actual elicitation of requirements, a number of different methods can be used. The

remaining part of this section will focus on a small subset, which has been used in the applied

Requirements Engineering following in section 3 below.

2.5.2.1 Interviews

The interview is arguably one of the most obvious choices for obtaining information. The big

advantage of this method is the ability of the Requirements Engineer to steer the discussion

into directions that seem to be the most promising ones with regard to the amount of

information that can be gathered. (Rupp, SOPHISTen 2009) However, interviews are typically

extremely hard to schedule as, especially if multiple stakeholders are required to be present

in the same interview, the involved people usually have only very little time to spare.

If, however, an interview can be scheduled, it provides an excellent way for the Requirements

Engineer to get the answers he needs.

To be completely sure that everything has been understood correctly, an interview protocol

should be created by the Requirements Engineer, which can then be sent to the participating

stakeholders, allowing them to read through it once again and approve of the contents. Rupp

et al. (2009) suggest a timeframe of a maximum of 48 hours between the actual interview and

the sending of the protocol.

Audio and video recordings can be of help, but need to be discussed with the involved

stakeholders first. In addition to this, it has to be considered that answers and involvement of

stakeholders might be hampered by the fact that they are recorded.

2.5.2.2 Questionnaires

Very similar to interviews, questionnaires are a widely used method for obtaining information.

The big advantage over the interview is that there is no need to schedule appointments, as

everyone involved can answer the questions whenever his schedule allows it. This inherently

Requirements Engineering: Theory

19

includes the disadvantage of not being present during the answering of the questions and

therefore providing clarification, if there are issues of understanding the content or intent of

the questions, and steering the discussion is, of course, not possible. (Rupp, SOPHISTen 2009)

Questionnaires are a list of either open questions, or questions provided with multiple

answer-possibilities which can then be sent to the stakeholders.

2.5.2.3 Observation

Observation has proven to be a very important technique for Requirements Engineering in the

applied part of this thesis for two reasons:

1) Stakeholders often cannot afford to offer time for interviews. Scheduling

appointments where all stakeholders who are essential for the topic are available is a

very time consuming process on its own.

2) The possibility to observe processes as they are carried out by the stakeholders during

their daily routine often reveals details and aspects that would not come up in

interviews, as the stakeholders are extremely familiar with these routines and regard

them as unimportant or simply forget to mention them.

In addition to this, the possibility of taking pictures during these processes can prove to be

vital as a basis for further discussion in interviews and for documentation.

There is a sub-category for the traditional observation, which is called Apprenticing. (Rupp,

SOPHISTen 2009) The method behind this approach does not solve the two problems outlined

above, as the stakeholders must be available and have to actively teach the observer the

actions they carry out during the process. The idea behind this method is that anything that

might be omitted or that is not entirely clear would be noticed immediately as the apprentice

– the Requirements Engineer – would have issues learning it. However, this method is only

used rarely as it requires a lot of time both from the Requirements Engineer and the

stakeholder, which at least the latter might not be able to offer. In addition to this, the

approach is impossible to use in some scenarios or environments (e.g. medical environments

– teaching a Requirements Engineer how to perform heart-surgery is absolutely impossible).

Requirements Engineering: Theory

20

2.5.3 The SOPHIST-REgelwerk for Requirement Sanitization

After the requirements have initially been identified, they are specified in a formal way.

However, one very interesting aspect to the SOPHIST-Approach is the method which they

propose to sanitize requirements systematically before documenting them properly.

Typically requirements are documented and certainly gathered in natural language (see

section 2.5.4 below). The big advantage is that all involved parties, especially the stakeholders,

do not need to have any experience in order to understand them. (Robertson, Robertson

2006) However, this is one of the potentially biggest problems of Requirements Engineering.

Since many decades, natural speech recognition and creation are regarded as very hard

problems in the field of computer science. What makes this field so extremely difficult is the

fact that this problem actually contains a multitude of sub-problems which are each very hard

to solve in their own right. Natural language is not exact, it contains sub-text, hidden meanings

and complicated constructs. In fact, there is even a field of research that focuses solely on the

problems that result out of this complexity: Natural Language Processing (NLP).

Apart from the problems that arise out of the language used, it is also necessary to gather

information exhaustively. The SOPHIST-REgelwerk (Rupp, SOPHISTen 2009) accounts for these

shortcomings by providing 18 rules, which, in theory, should lead to a well-formed and well-

defined requirements catalogue. There are several different aspects that are covered by these

rules. For example, a subset focuses on the analysis of numerals in requirements in order to

avoid specifications which are unspecific or too general. Another aspect that is paid close

attention to by the SOPHIST-Approach is the usage of what they call “good” main verbs. They

propose a number of different heuristics to identify such verbs and additional guidance with

regard to their usage, such as reducing the amount of them to just one per sentence while still

keeping the possibility of comprising a requirement out of multiple sentences. However, most

importantly, the analysis and preparation of requirements with respect to their factual

specifity and exhaustiveness is stressed repeatedly amongst these rules. Requiring all the

information that is necessary to exhaustively describe a system requirement is regarded as a

key factor in the Requirements Engineering process according to the SOPHIST-REgelwerk. This

not only includes the exhaustive analysis and specification of data, but also the removal of any

redundant information. (Rupp, SOPHISTen 2009)

Requirements Engineering: Theory

21

Especially with regard to this aspect, there are

many other very popular techniques which can be

used to formulate matters of fact exhaustively.

One example would be the MECE-Framework

which is used by McKinsey operatives (Rasiel

1999). MECE stands for Mutually Exclusive,

Collectively Exhaustive (see Figure 7), describing a way to convey information that covers a

topic to its entirety (collectively exhaustive) while splitting the sub-topics in such a way that

no intersections occur (mutually exclusive). (Rasiel 1999)

2.5.4 Requirement Specification

At some point during every Requirements Engineering process, the actual requirements have

to be formally specified and documented.

The most obvious and natural way would be to just document them as they are mentioned by

the stakeholders: In natural language. However, natural language is not always the best way,

as it is easy to formulate requirements that are too unspecific for system planning.

The logical next step would be to highlight specific parts of the text to increase readability and

to emphasize the important aspects of the requirement. (Partsch 2010) However, this does

not solve the problem explained above – it is still too easy to define requirements that have

no apparent value for system planning.

Moving away from natural language, but keeping text as the basis for the requirements

specification, another method would be using specific formulas or patterns to facilitate

comparisons and readability. One other big advantage of this approach is that there are

certain aspects, which cannot be left unspecified in the description of the requirement (e.g. if

the implementation of the requirement is legally binding or not).

Rupp et al. (2009) provide a simple way to achieve this goal by specifying a pattern which is

used to formally construct textual requirements (see Figure 8):

Figure 7: Typical MECE-Tree. The term at the top is split

into an exhaustive list of non-overlapping sub-

elements.

Requirements Engineering: Theory

22

Figure 8: Requirements formula used in this thesis (figure modified from (Rupp, SOPHISTen 2009)).

The schema shown in Figure 8 ultimately leads to requirements as they have been utilized

further down in the document (see 3.9 below). It assures that each requirement, if it is

documented in such a formalized textual way, includes all necessary elements. This includes,

for example, any legal obligations that are attached to the requirement. For example, if, as

the third part, “SHALL” is chosen, the developer is legally obliged to implement the

requirement (it is part of the contract). If “SHOULD” is used instead, it does not have to be

implemented necessarily (this becomes especially interesting, when deadlines are strict and

requirements get prioritized).

Although textual constructs are widely popular

for the documentation of requirements, there

are other ways to describe the desired system

behavior. (Partsch 2010) mentions a number of

different methods, including interaction- and

sequence diagrams (see Figure 9).

2.5.5 Requirement Validation

Requirements validation analyzes the documented requirements with regard to consistency

to the system the stakeholders expect. In collaboration with all involved parties and the list of

requirements, any remaining problems will be identified and an attempt of solving them will

be made. (Paetsch, Eberlein et al. 2003)

Figure 9: Typical sequence diagram as used for

Requirements Engineering by Partsch (2010).

Requirements Engineering: Theory

23

For inadequate requirements, two categories can be devised - Faults and Defects (Rupp,

SOPHISTen 2009):

• A requirement is defective, if it does not describe the desired system behavior

adequately (or fully).

• A requirement is faulty, if it describes a desired system behavior wrongly.

Similar to the problem outlined in Figure 1, late changes to requirements are more costly to

fix than early changes. (Partsch 2010) As a tool of ensuring the quality and validation of

requirements, Rupp et al. (2009) list a few different methods. Two of them, Reviews and

Prototypes, will be discussed in greater detail in the remainder of this section (Rupp,

SOPHISTen 2009):

2.5.5.1 Reviews

Reviews are a rather simple method for requirements validation. Typically, they are

subdivided into the following three subcategories (Pohl, Rupp 2011, Rupp, SOPHISTen 2009):

• Commenting

Commenting is certainly the easiest method for requirements validation. The list of

identified and documented requirements is given to a third-party, who reads them

carefully and checks for consistency and other issues. Any identified problems will be

reviewed by the Requirements Engineer and then fixed in the document. It is worth

mentioning, that this method greatly depends on the skill and experience of the third

party.

• Walkthrough

The walkthrough is a little bit more complicated. Instead of just giving a list of

requirements to a third party, the Requirements Engineer also explains the reasons

for the choices he made, thus establishing a common understanding between him

and the third-party. In addition to the advantages and disadvantages of Commenting,

the Walkthrough provides the ability to solve any misunderstandings during

discussions, but requires significantly more time from all involved parties.

Requirements Engineering: Theory

24

• Inspection

Inspections are a very formal way of validating requirements, typically including

multiple third-parties (inspectors) and formal check-lists.

2.5.5.2 Prototypes

Prototypes are implementations which provide an incomplete overview over the desired

functionality to offer the involved stakeholders a better perspective on certain aspects of the

resulting system. Especially with regard to user interface and overall usability, prototypes are

a valuable method to gather further information by demonstrating functionality to the

stakeholders. Implicit requirements, which did not become apparent during interviews or

observations (especially with regard to non-functional requirements like system-

responsiveness) can be analyzed easily by demonstrating a prototype. The Proof-of-Concept

that has been provided for the system designed further down in this thesis (see section 5

below) is such a prototype which proved to be valuable as a tool especially for the elicitation

and validation of non-functional requirements, such as image quality and frame rate.

However, prototypes are extremely time consuming to implement and must be clearly

communicated as unfinished versions to the stakeholders. For the aforementioned reasons,

prototypical implementations are not always suitable for requirements validation. (Rupp,

SOPHISTen 2009)

2.5.6 Requirements Management

Requirements Management primarily describes the process behind managing the

requirements with regard to simple organization and to changes in the project that require

updates or new requirements.

Requirements Management is helpful in small, short-lived projects and it is absolutely

essential in big, complex projects, especially ones that take years to develop. Rupp et al. (2009)

even suggest using a dedicated Requirements Management tool to facilitate coping with a

rapidly growing number of requirements and their versions.

Requirements Engineering: Theory

25

The central aspects of Requirements Management according to Rupp et al. (2009) are:

• Information Flow: Exchange of information between all involved parties.

• Sequence and Activities: Roles and Responsibilities during the phases of the project.

• Interconnectivity: Relations between different Requirements Engineering elements.

• Analysis and Assessment: Detection of potential issues.

Especially interconnectivity and the overall information flow become very complex to handle

without a specialized tool as soon as the project grows past a certain point. The market with

regard to such tools (e.g. TopTeam Analyst, ReqMan, Psoda, PACE, etc.) has grown since

Requirements Engineering first gained significance, which can make it difficult to choose

between them. Carrillo de Gea et al. (2011) conducted a study on the topic of current

Requirements Engineering tools and found that especially the traditional software solutions

lack flexibility with regard to management and traceability of requirements. It is their opinion

that the market of these tools is changing fast and careful consideration, especially when it

comes to the sharing of data between different teams (and therefore different Requirements

Engineering tools) has to be taken before choosing a solution (Carrillo de Gea, Nicolas et al.

2011).

One technique to facilitate coping with complex requirement lists that is described by Rupp

et al. (2009) are Object-IDs. Every requirement receives an identifier which makes it easy to

find within the requirements document. The Object-IDs typically are not only IDs but UIDs,

meaning at least some part of the identifier is unique. This is especially useful, if the

requirement changes later on, as the unique part of the identifier still allows the Requirements

Engineer to find the requirement and to track it during the course of its development. The

method that is used further down in the applied Requirements Engineering-Part of this thesis

(see section 3.9.1 below) contains not only a unique identifier, but also information with

regard to the type of requirement (Functional, Non-Functional and even Hardware) and the

severity of it (obligatory, optional and obligatory in future version).

As has already been mentioned above, requirements can change during development. This

can be interpreted with regard to two aspects: Content and Status.

When a requirement changes its content, it is because it either did not describe a certain

aspect of the system in its entirety, or it described an aspect wrongly (see section 2.5.5 above).

Requirements Engineering: Theory

26

The status changes constantly during the life cycle of the requirement. Rupp et al. (2009)

mention the following exemplary phases a requirement can go through: Created (see section

2.5.2 above), Analyzed and Quality-Assured (see section 2.5.3 above), Designed,

Implemented, Tested and Accepted (see section 2.5.5 above). In addition to this, they stress

the necessity of versioning during the Requirements Engineering process. This means that for

every change, the previous version must be kept safe to allow for full traceability of changes.

(Rupp, SOPHISTen 2009)

2.6 CRITICISM

As most established processes, Requirements Engineering, especially in its traditional (linear)

form, has also been questioned and criticized by many (e.g. (Ralph 2013, Glinz 2007)). This

part of the thesis will give a short overview over some key aspects, where criticism can be

found and will then discuss an approach that has gained significant acceptance throughout

the development community especially in the past two decades: Agile Software

Development.

2.6.1 Psychological Factors with regard to Requirements

As has already been mentioned in the beginning chapter of this section, (linear) Requirements

Engineering is a rather traditional approach and therefore is often considered to offer too little

flexibility. But not only has this perceived inflexibility been criticized in the past, some go even

further and question the very essence of the Requirements Engineering Process – the

requirement. According to Ralph (2013), the biggest problem with requirements is the

psychological factor and what he perceives as the lack of a clear specification of the term

requirement. For example, according to his argumentation, the term “requirement” suggests

a feature which is absolutely obligatory, whereas in reality, prioritization and optional

requirements are used to circumvent such constraints. (Ralph 2013)

2.6.2 The lack of a clear definition of Non-Functional Requirements

A different perspective on the problem is described by Glinz (2007). According to his

argumentation, another apparent problem in the Requirements Engineering process can be

Requirements Engineering: Theory

27

found: The lack of a proper concept of requirements and specifically non-functional

requirements.

This unclearness in the concept behind the term is then tackled by him by the introduction of

a completely new classification scheme. This interesting approach keeps the term

requirement at its center but at the same time ignores all well-known sub-categories (e.g.

functional and non-functional requirements) and replaces them with four criteria:

Representation, Kind, Satisfaction and Role. These categories are then used to determine the

nature of the requirement. Apart from the inherent lack of clearness with terms like non-

functional requirements, this method solves another problem which Glinz calls

representation-dependence (e.g. a functional requirement can be a non-functional

requirement on another abstraction level). (Glinz 2007)

2.7 A COMPLETELY DIFFERENT APPROACH: AGILE SOFTWARE DEVELOPMENT

As an anti-thesis to the problems that mainly appear with very linear software development

techniques, a completely new approach has gained significance in the past two decades: Agile

Software Development.

Instead of focusing on the specification and documentation of a system, agile approaches

accept software as constantly evolving and therefore welcome change during the

development process. In order to be able to react on changing requirements and customer

needs, development cycles are very short, typically less than a month, and releases are

frequent. This and the very strong involvement of the customer leads to a highly agile

development process where changes can be implemented quickly and the customer has the

ability to follow the development process closely.

Requirements Engineering: Theory

28

Where Requirements Engineering values established processes, exhaustive documentation

and systematic approaches, Agile Software Development takes an entirely different approach:

Manifesto for Agile Software Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith

Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland

Dave Thomas

© 2001, the above authors
this declaration may be freely copied in any form,

but only in its entirety through this notice.

(Beck, Beedle et al. 2001)

According to the Agile Manifesto cited above, Agile Software Development has a number of

core principles:

Instead of relying on established processes and complex tools, direct communication in small

teams is encouraged. Release cycles are extremely short and every build must be complete

and functional. In addition to this, Test-Driven development is regarded as a better way to

document code than a traditional, written documentation, that poses the risk of being

outdated (of course, test cases can be outdated too, but they will stop functioning and

therefore will be noticed by the programmer). Finally, instead of complex contracts, Agile

Software Development tries to push in a direction where the customer is directly involved in

the software development process and therefore builds trust as he can intervene at any given

point in time. One of the most important factors in Agile Software Development practices is

the fact that change is not feared but rather embraced. Software is not planned exhaustively

in the beginning, it is developed from milestone to milestone.

However, this is of course no Silver Bullet. Agile Software Development definitely has its place

in the software industry, but there are projects, where traditional methods (e.g. the V-Model)

Requirements Engineering: Theory

29

are the better choice for the task. Examples would be projects that involve very strict

guidelines, or which are very large. (Haberfellner, de Weck et al. 2012)

As already mentioned above, Agile Software Development approaches can be understood as

the anti-thesis to the traditional (linear) software development process. However, efforts have

been made to draw comparisons between the two approaches and to identify possible

synergies by combining certain aspects. Software Development is not an exact science. There

are many ways to reach the same goal. Very systematic development approaches focus on

exhaustive planning in the beginning of the project, agile methods have their strengths in the

ability to react to changes. But there are also cases in between, where a combination of the

two approaches might become a fruitful strategy. These combinations, or rather the

exploration of how both fundamentally different approaches can influence each other, will be

discussed further in the sections below.

2.7.1 A Short Introduction to Agile Software Development Techniques

In order to be able to discuss advantages and disadvantages of both approaches, it is necessary

to briefly mention the most important contenders in the Agile Software Development field.

Generally, agile techniques try to distance themselves from traditional methodologies.

Especially very systematic approaches like the traditional Waterfall Model or – to a lesser

extent – the V-Model are regarded as inflexible.

Instead of fixed planning and conceptualization processes in the beginning of the

development cycle, change as a constant factor is accepted and even welcomed. This leads to

highly agile processes where cycles have to be short and releases frequent in order to be able

to minimize potential costs which arise out of the introduction of changes by factors like the

environment or the stakeholders.

As has already been mentioned in the paragraph above, there are a few properties which

appear in most agile methods:

• Short release cycles

• Frequent meetings

Requirements Engineering: Theory

30

• Little Documentation

• Strong involvement of the customer

• The reduction of communication barriers within the team

• Prioritization

2.7.1.1 Extreme Programming

Extreme Programming is one of the two agile approaches which can be found time and time

again in the software development industry. And it is indeed extreme in several aspects.

Extreme Programming has its origin in the Chrysler Comprehensive Compensation System (C3)

project in the late years of 1990. Kent Beck is widely regarded as the driving force behind the

phenomenon and was hired by Chrysler to optimize team performance in the C3-project,

during the course of which he formulated the common Extreme Programming (XP) practices.

(Copeland 2001) Beck then proceeded to provide insight to this new development process by

publishing a guide to XP in which he explains the fundamental processes behind the approach.

(Beck 1999)

XP combines many different aspects (see Figure 10) that are common to agile software

development approaches, e.g. the use of Refactoring, short release cycles, continuous

integration with some aspects that might be considered extreme, like the availability of a

constant on-site customer, a very strong reliance on testing and a process called pair-

programming. With the strong enforcement of constant testing, the resulting development

process typically involves two programmers per workstation, alternating between writing test

cases and developing the software. This achieves multiple things: Firstly, a code review is done

by the other programmer while the code is being written, secondly, test cases document the

system and are written before the code by the other programmer (forcing the test cases to be

written as meaningful, correct and self-explanatory as possible) and finally, a collective

knowledge base is created where everybody in the team becomes familiar with most aspects

of the system thus minimizing the risk posed by project members leaving the team and taking

valuable knowledge with them.

Requirements Engineering: Theory

31

Figure 10: The inter-relationship between the elements of XP (figure modified from (Beck 1999)).

Beck goes even as far as calling the XP teams “intellectual nomads” who are constantly

prepared to move, are highly flexible and are used to “traveling light”. (Beck 1999)

Another key aspect of XP is the so-called Planning Game. Beck (1999) divides it into three

distinct phases: Exploration, Commitment and Steering. In the first phase, Exploration, the

customer creates so-called “Story Cards”. These are sheets of paper that contain stories

describing interactions with the system from the viewpoint of a specific user. Now, the

development team estimates the effort that is required for the story to become reality within

the system. If the team is unable to estimate the story, the creator of the Story Card has to

split it into lesser complex sub-stories. The second phase, Commitment, then is used to

prioritize the written and estimated story cards with regard to their value (customer) and risk

(development). Because of the continuous estimation of story cards, the development-team

is able to devise a project velocity based on the time frame of the last iteration and the amount

of stories completed along with their estimated effort. This velocity is then used to either

estimate a date for the amount of story cards the customer chooses, or to estimate which

story cards can be realistically implemented until a deadline given by the customer. The third

phase, Steering, is then used to make alterations during development. These changes can

result out of bad estimations (features reveal a more complex side that was not part of the

consideration during the Exploration-phase), new user stories or similar actions. (Beck 1999)

Requirements Engineering: Theory

32

The combination of short release cycles, the planning game, very strict rules with regard to

testing and the close involvement of the customer lead to a highly flexible software

development process.

Clearly, not every company can afford to double the number of developers for pair-

programming. Near-complete unit test coverage is also very difficult to achieve and it certainly

is hard to explain the lack of documentation (substituted by tests and knowledge transfer) to

the management department. Extreme Programming is what the name implies: Extreme.

Precisely because of this reason, there is another very popular Agile Software Development

approach which is even more widespread than XP: Scrum.

2.7.1.2 Scrum

When a software development company or department calls their process agile, in the vast

majority of cases there is some variation of Scrum involved (see Figure 11). (VersionOne Inc.

2014)

Figure 11: Scrum (and its variants) are the most adopted agile development approaches according to the State of Agile

Survey (figure modified from (VersionOne Inc. 2014)).

In the remaining part of this section a brief introduction to the Scrum-process and its most

important aspects will be given. The following explanations of the process are based on the

0

10

20

30

40

50

60

P
E

R
C

E
N

T
A

G
E

DEVELOPMENT METHOD

Agile Methodology Used (by the participants of the State of

Agile Survey)

Requirements Engineering: Theory

33

official Scrum Guide (Schwaber, Sutherland 2013) by Ken Schwaber and Jeff Sutherland who

are regarded as the founders of the Scrum approach. (Schwaber 1997)

In general, there are three different roles within the Scrum approach

• The Product Owner manages the Product Backlog, a central list which includes all

features of the currently planned product release.

• The Developers (and Testers) are responsible for estimation and implementation of

the features described in the Product Backlog.

• Finally, the Scrum Master ensures that all processes run smoothly and the Scrum

approach is implemented properly within the team.

The core principle behind the development process is called Sprint. These sprints are very

short time periods, typically ranging between one and four weeks in duration, where

development takes place.

At the beginning of each sprint there is a meeting called “Sprint Planning” where the tasks for

the coming build are chosen by the team. A central aspect of the Scrum approach is the fact,

that every build is fully functional (although not feature complete, as the Sprint Backlog is only

a subset of the Product Backlog) at the end of the sprint and would potentially be shippable.

During the development period, all team members keep track of every work item that is

currently in development or that has been finished. An overview over this data is often

provided by so-called Burndown Charts (see Figure 12), which serve as a tool for future

estimations and help to identify problems quickly during development.

Requirements Engineering: Theory

34

Figure 12: Exemplary Burndown Chart - a central SCRUM tool that appears in many tools which support Scrum (e.g. Visual

Studio 2013 (Microsoft Corporation 2013))

At the end of each sprint there is a Review Meeting which reflects on all the work that has

been achieved during the sprint. The current system build is typically demonstrated to all

involved stakeholders as well. At this point, significant changes can be made.

Where the review meeting focused on the product, the Retrospective Meeting focuses on the

team. It is used to identify potential for improvement with regard to the team and the

development process.

The final core principle is the Daily Scrum which gives the development team 15 minutes at

the beginning of each day to discuss what has been accomplished during the day before, which

problems arose and what is planned for the current day. This again is a tool for quickly

identifying problems within the development process and also serves as a means for building

trust within the programming team.

As with all agile development methods, the short development cycle allows for increasing

accuracy in estimating the effort that has to be committed to the project. This, along with

tools such as the Burndown Chart, which shows the project’s progress over time, typically

increases moral and motivation within the team and builds trust on the side of the customer.

Based on (Schwaber, Sutherland 2013)

0

5

10

15

20

25

30

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

Day

8

Day

9

Day

10

Day

11

Day

12

Day

13

Day

14

Day

15

W
o

rk
 It

e
m

s

Time

Example Burndown Chart

Ideal Burndown Remaining Work

Requirements Engineering: Theory

35

2.7.2 Natural Emergence of Requirements in Agile Software Development Teams

A study conducted by Lan and Ramesh (2008) explored the natural emergence of

requirements and the utilization of Agile Requirements Engineering techniques in projects and

companies who embrace Agile Software Development.

During the course of the study, they identified seven Agile Requirements Engineering practices

(Lan, Ramesh 2008):

• Face-to-face communication over written specifications

• Iterative Requirements Engineering

• Requirement Prioritization goes extreme

• Managing requirements change through constant planning

• Prototyping

• Test-Driven Development

• User review meetings and acceptance tests

Ultimately, their findings were that the Agile Requirements Engineering used in these

companies had a highly iterative form, contrary to the traditional approach which aims to plan

the solution in its entirety before the development process starts. In addition to this,

exhaustive documentation has been perceived as less important than the close interaction

between developers and customers. Perhaps not surprisingly, these approaches emerged in

environments were the creation of traditional requirements specifications is inappropriate or

even infeasible and therefore a more agile approach is necessary. This, for example, is the case

with small projects and teams where knowledge can be passed around quickly from employee

to employee via personal interaction and where a high amount of flexibility is needed in the

development process. (Haberfellner, de Weck et al. 2012)

However, they do also state that Agile Requirements Engineering cannot replace traditional

Requirements Engineering completely as for every benefit found for the seven practices listed

above, disadvantages (or challenges, as they are called in the study) have been identified.

Thus, they advocate careful consideration before choosing agile approaches over the

traditional ones, as they can yield a significant benefit but might also hamper the development

process when used for the wrong project (Lan, Ramesh 2008).

Requirements Engineering: Theory

36

2.7.3 Introducing Agile Aspects to Requirements Engineering

The previous chapter focused on the use of Requirements Engineering techniques in already

established Agile Software Development processes. Waldmann (2011) tackles the problem

from a different perspective: Can agile aspects be introduced into established Requirements

Engineering processes?

The reasoning behind this is the very same one that initially led to the development of agile

approaches: The environment changes too fast and typically there are not enough resources

to solve the problem in its entirety, which then leads to prioritization and similar techniques.

The same is, of course, true as well for Requirements Engineering. Especially very complex

projects are hard to plan ahead completely, Requirements Engineers are scarce and late

changes during the process are to be avoided but do occur.

Waldmann (2011) then introduces an interesting concept: Focusing on those requirements

which are the most valuable from a customer perspective. In addition to this, requirements

are categorized according to a few specific key factors such as the implementation of similar

requirements in previous versions of the system. These key factors are then used to determine

if the requirement would benefit from detailed Requirements Engineering or not. Another

example for this would be domain specific knowledge which is available in form of experience

in the development team (these requirements would not need to be analyzed in great detail

as the developers would be very experienced in the domain and therefore would be very likely

to make few mistakes). (Waldmann 2011) This process of sorting requirements according to

their customer value closely resembles the prioritization process that is very common to Agile

Software Development approaches (see section 2.7.1).

Another very interesting idea is the introduction of frequent releases. This is another central

aspect of agile development techniques like Scrum (see section 2.7.1.2) and similar

approaches. There are typically multiple full releases within one year with running

development builds which are even more frequent. Waldmann (2011) proposes a separation

in at least two different releases, six and ten months after the start of the Requirements

Engineering process. They focus on basic, elementary requirements, which would be

extremely costly if done too late, and then subsequent updates to clarify further, where

additional clarification is needed. He also states that the attempt of providing one exhaustive

requirements document which serves all stakeholders is merely a suboptimal solution and

Requirements Engineering: Theory

37

therefore specialized documents for each and every different recipient should be preferred.

However, it is also stated that it is vital to inform the customer of any new planning approach,

as different stakeholders, especially those who are experienced with traditional development

processes, may be alienated by the changes introduced. (Waldmann 2011)

2.7.4 Traditional (linear) Requirements Engineering and Agile Software

Development – It depends on the Project

As can be seen in the sections above, there is actually an area between the two extremes,

which are exhaustive planning at the beginning of the system development and short cycles

with small goals in agile approaches. As with all the tools involved in the software

development process, it strongly depends on the project. When specific factors, which will be

described in the following, can be determined, traditional (linear) methods are superior, but

there are of course cases as well, where the high amount of flexibility in agile methods is key

for project success.

Haberfellner et al. (2012) provide a list of five criteria for deciding if agile or traditional

methods should be used (Haberfellner, de Weck et al. 2012):

• Size of the project: Small projects should prefer an agile approach, whereas big

projects may benefit more from traditional methods.

• Criticality: When there are strong legal constraints, or otherwise very strongly limiting

factors, traditional methods should be preferred.

• Dynamics of the environment: Highly dynamic environments are one of the reasons

why agile methods were developed. They provide significant advantages in such cases

because of their high amount of flexibility.

• Personnel: Highly qualified personnel is only necessary during the planning phase, the

implementation can be done by lesser qualified personnel in traditional approaches.

Agile methods require highly qualified personnel to be available during the entire

development process.

• Culture: Agile methods work better in environments where people prefer freedom and

responsibility with regard to their tasks. Traditional methods provide more security

and are preferred in some cases.

Requirements Engineering: Theory

38

Software is not developed using a strict set of rules. The survey mentioned in section 2.7.2

above clearly shows that in certain projects – even though the overall method utilized is an

agile one – the need for a more systematic planning approach can be perceived (Lan, Ramesh

2008). In such cases often an incremental approach to Requirements Engineering can be used.

This process does not require an exhaustive specification and documentation of all

requirements before the system is in development, but allows for the emergence of

requirements during the development.

The other perspective is possible as well, as can be seen in section 2.7.3 above. Companies

and project teams that adopt traditional (linear) software development approaches may find

the need for added flexibility. An example for this would be the introduction of elaborate

prioritization techniques with regard to the requirements in order to be able to react better

to deadlines and changing customer requirements.

In conclusion it can be said, that traditional software development methodologies, including

traditional (linear) Requirements Engineering, and Agile Software Development are

fundamentally different approaches, yet both have very clear advantages and disadvantages

depending on the project that is being developed. However, in some projects, the dogmatic

implementation of one single method may not produce as good results as a mixture of

different approaches would. In these cases, such a mixture can be considered in order to

achieve improved overall results.

Requirements Engineering: Application

39

3 REQUIREMENTS ENGINEERING: APPLICATION

This thesis is embedded into a research project (Vorraber, Vössner et al. 2014), aiming at

improving medical processes through the use of Near-Eye Display Devices. Instead of

implementing various ideas and prototypes, the very methodological approach of

Requirements Engineering has been utilized to identify use case scenarios where the

development of a human-centered information service could lead to improvements in terms

of process performance, efficiency and / or safety. This process will be described in detail in

the following sections.

It is worth mentioning that the process used in this section of the thesis is based upon the

SOPHIST-Approach (Rupp, SOPHISTen 2009) to Requirements Engineering as outlined above

(see section 2.5).

This thesis focuses mainly on medical processes such as interventions and surgeries. As can be

seen in Figure 13, five general “Use Case Classes” with specific real-world occurrences (“Use

Case Instances”) have been identified in a meeting with various stakeholders directly involved

in the project (Vorraber, Neubacher 2014).

Figure 13: The five Use Case Classes along with their real-world counterparts this thesis focuses on.

Requirements Engineering: Application

40

These are first classified using a classification scheme that is explained in section 3.1 below,

then briefly explained and then analyzed as they are currently implemented. The

aforementioned analysis is then used to identify potential for improvements, which in turn

serves as the basis for a detailed use case, which will be used for the design of an information

system (see section 4 below). In order to improve readability, only one use case will be

described at a time and explanation, analysis, identification of potential and use case

formulation will be described as a whole for each use case.

3.1 CATEGORIZATION OF USE CASES

To be able to systematically distinguish between the different use cases, a categorization is

necessary. Vorraber et al. (2014) have proposed the following scheme which will be used

throughout this Master’s Thesis for categorization (see Table 1):

Factor Characteristics

users per case 1 N

Data dynamics Static Dynamic

Collaboration Yes No

Information flow Unidirectional Bidirectional

Mode of operation Passive Active

Frequency of use High – daily Medium – weekly Low - monthly

Network coverage Local Regional National International

Table 1: Use Case classification scheme proposed by Vorraber et al. (2014).

The categories of the classification scheme outlined above will now be explained briefly,

ordered by their impact with regard to the classification of the use cases outlined in Figure

13.

1. Information flow: Especially the distinction between unidirectional and bidirectional

data flow is a key criterion for the classification of the use cases, as can be seen in

Figure 13.

2. Data dynamics: Another extremely important factor in the classification scheme

above is the distinction between static and dynamic data. The use cases described in

this thesis focus only on dynamic data (e.g. data that changes frequently over time).

It would, however, be interesting to explore static data as a source for Near-Eye

Display Devices in the future as well (see 7.2 below).

Requirements Engineering: Application

41

3. Frequency of use: The frequency of use should be fairly self-explanatory. The

significance of this criterion is its expression of the importance of the classified use

case (processes and use cases that occur daily are clearly more important than the

ones that are only performed on a monthly basis).

4. Network coverage: The network coverage provides information with regard to the

technical difficulties that have to be overcome. Consulting with a surgeon who

performs a surgery in another country poses a completely new set of problems (e.g.

latency, bandwidth, etc.).

5. # users per case: The number of users should be fairly self-explanatory. It denotes

the number of users that directly interact with the information service at any given

point in time during the use case.

6. Collaboration: Collaboration provides information with regard to the type of use case

and its (directly involved) users: Are two (or more) users directly collaborating using

the system?

7. Mode of operation: the mode of operation denotes if the wearer is actively

interacting with the system (e.g. through touch gestures), or not.

Based on (Vorraber, Vössner et al. 2014)

3.2 PROJECT GOALS

As described in section 2.5.1.3 above, it is part of the AS-IS Analysis to devise a general list of

goals that can be classified as requirements of specification level 0 (see section 2.5.2 above).

The fundamental goals for this project are based on early discussions with central

stakeholders.

1) Improvement of well-established processes in medical environments by introducing

Near-Eye Display Devices.

2) Provision of a way to conduct consultations without the need for the consulting party

to be locally present.

3) Provision of real-time patient data (e.g. vital signs) through a Near-Eye Display Device.

4) Provision of a possibility to allow other parties to include the wearer’s field of vision

into their routine (e.g. for improve assistance during surgeries).

5) Provision of the field of vision of the wearer for evaluation and teaching purposes.

Requirements Engineering: Application

42

3.3 MONITORING OF REAL TIME PATIENT DATA

One of the most interesting use cases is the monitoring of real time

patient data in the operating room during surgeries. This is especially

interesting with regard to minimally invasive surgeries, where an anesthesiologist usually is

not present and therefore the task of monitoring has to be done by the surgeon himself.

3.3.1 Use Case Instance Explanation – Percutaneous Transluminal Angioplasty

As a specific use case instance for the Monitoring

of Real Time Patient Data, the Percutaneous

Transluminal Angioplasty has been chosen. The

process behind this surgical intervention (see

Figure 14) will now be explained briefly: A

Percutaneous Transluminal Angioplasty (in short

“PTA”) is a minimally invasive procedure which

seeks to widen occluded (or narrow) arteries by

inserting a balloon catheter which is then inflated.

The procedure is typically conducted in a

minimally invasive way by inserting the catheter through a single small incision into a larger

artery (e.g. in the area of the thighs) and then navigating to the necessary spot using medical

imaging techniques (typically an angiogram).

Figure 14: Percutaneous Transluminal Angioplasty

performed with Google Glass. The surgeon receives

real time patient data onto his Near-Eye Display Device

(Vorraber, Vössner et al. 2014).

Requirements Engineering: Application

43

3.3.2 Classification and Explanation

In this section, the Percutaneous Transluminal Angioplasty will be classified (see Table 2)

utilizing the classification scheme outlined in section 3.1 above.

Factor Characteristics

users per case 1 N

Data dynamics Static Dynamic

Collaboration Yes No

Information flow Unidirectional Bidirectional

Mode of operation Passive Active

Frequency of use High – daily Medium – weekly Low - monthly

Network coverage Local Regional National International

Table 2: Classification of the Percutaneous Transluminal Angioplasty use case using the classification scheme proposed by

Vorraber et al. (2014).

3.3.3 AS-IS-Analysis and Identification of Potential for Improvement

The Percutaneous Transluminal Angioplasty is a surgical procedure that does not require full

narcosis of the patient and therefore does not have the need for an anesthesiologist to be

present at any given point in time. This, however, requires the surgeon to constantly monitor

the patients’ vital signs himself.

The process has been modeled using BPMN (see Figure 15) building on information gathered

through interviews with the involved stakeholders. Activities which could potentially benefit

from the introduction of Near-Eye Display Devices are highlighted.

The following part of the full BPMN diagram shows the activities which could benefit from

improvement by the introduction of Near-Eye Display Devices:

Requirements Engineering: Application

44

Figure 15: Percutaneous Transluminal Angioplasty AS-IS-Process Analysis (BPMN

excerpt)

Figure 16: BPMN Color Legend.

• Monitoring of patient:

As has already been mentioned above, in this particular kind of medical intervention,

the surgeon needs to monitor the patients’ vital signs on his own. However, there are

certain situations, where the surgeon loses the line-of-sight to the monitoring screen

(see Figure 14). Providing the patients’ data in a form where it is constantly visible to

the surgeon – no matter what he is doing at the moment – could improve efficiency as

well as safety.

The full BPMN diagram with all activities, actors and the overall process can be found in section

11.1.2 below.

3.3.4 Description of Resulting Use Case

In the following Table 3, the use case as it would appear with Google Glass as a new

information channel, is explained. This systematic form of specification (proposed by Rupp et

al. (2009)) has been chosen because it provides a very structured way to describe all necessary

information related to the process in a compact form.

Name Percutaneous Transluminal Angioplasty (Monitoring of Real Time

Patient Data)

Short Description This use case describes how Near-Eye Display Devices can be used

to display real time patient data (such as heart rate, blood

pressure or oxygen levels) at a fixed location in the field of vision

of the surgeon without the need of specifically having to locate a

monitoring screen positioned somewhere in the room.

Requirements Engineering: Application

45

Actors Patient, Surgeon

Prerequisites Local Network, Near-Eye Display Device (such as Google Glass),

server (PC running inside of the network with started server

application � Thin Client Architecture, see section 4.2.3 below),

medical data via standardized interfaces (such as VGA, DICOM

(DICOM Standards Committee 2011) or similar)

Trigger Start of the operation (where a constant observation of specific

patient data adds value, efficiency and / or safety to the process).

Typical Process • Operating room is prepared.

o Network is prepared.

o Near-Eye Display Device is started and connected

to the network.

o Server-PC is started, connected to the network and

server-application is launched.

o Data-Feed (e.g. a VGA-signal) is connected to the

server.

• Surgeon wears Near-Eye Display Device and is able to see

live data inside the display during surgery.

• After the surgery, the server application and the Near-Eye

Display Device are disconnected and may be switched off

until further application.

Remarks The use of a video signal like VGA yields the added benefit that

the received data looks exactly as it does on the monitoring

screen and therefore minimizes familiarization time for the

surgeon.

Table 3: Specific Percutaneous Transluminal Angioplasty use case, using the scheme proposed by Rupp et al. (2009).

Especially interventions and surgeries that do not require the presence of an anaesthesiologist

can benefit from the provision of the patient’s vital signs in the field of vision of the surgeon.

The use case outlined in Table 3 describes a surgical intervention where the interventionist

wears the Near-Eye Display Device and receives the data of the medical appliance that

monitors the patient’s vital signs. Therefore, no matter where the interventionist looks or

what he focuses on, the data is directly in front of him (see Figure 17, right). This allows him

to acquire the information he needs by simply refocusing instead of physically locating the

monitoring device in the room and actively having to focus on it.

Requirements Engineering: Application

46

Figure 17: Through the introduction of Near-Eye Display Devices, the interventionist cannot lose line of sight to the patient’s

vital signs anymore (right).

Requirements Engineering: Application

47

3.4 NAVIGATION AND MEDICAL IMAGING

There are many different surgeries that rely on medical imaging

techniques (such as roentgen imaging, angiograms, MRIs, etc.). A

special sub-category of these use cases are surgeries involving surgical-navigational-

instruments (which allow the surgeon to monitor the position of his instruments on a

predefined medical image, such as a roentgen image, in real time).

3.4.1 Use Case Instance Explanation – Laparoscopic Cholecystectomy

As a specific use case instance for Navigation and Medical Imaging, the Laparoscopic

Cholecystectomy has been chosen. The surgical process behind this surgery (see Figure 18)

will now be explained briefly: A Laparoscopic

Cholecystectomy is a minimally invasive

surgery, which aims to remove the

gallbladder. When the operation starts, the

stomach region is first inflated using an inert

gas (typically CO2), then pierced by a number

of so-called trocars, which provide a way for

other medical instruments to be inserted into

the stomach. One of these instruments is an

endoscope (which provides a visual image of

the inside of the stomach region). Using the endoscope and various medical instruments, the

gallbladder is separated from its surroundings (using an angiogram to determine which

connections can safely be severed) and then extracted through one of the trocars.

3.4.2 Classification and Explanation

In this section, the Laparoscopic Cholecystectomy will be classified (see Table 4) utilizing the

classification scheme outlined in section 3.1 above.

Factor Characteristics

users per case 1 N

Data dynamics Static Dynamic

Collaboration Yes No

Figure 18: Surgeon and assisting personnel focusing on the

endoscopic image during a Laparoscopic Cholecystectomy

(Sachs 2014a).

Requirements Engineering: Application

48

Information flow Unidirectional Bidirectional

Mode of operation Passive Active

Frequency of use High – daily Medium – weekly Low - monthly

Network coverage Local Regional National International

Table 4: Classification of the Laparoscopic Cholecystectomy use case using the classification scheme proposed by Vorraber et

al. (2014).

3.4.3 AS-IS-Analysis and Identification of Potential for Improvement

Due to the way the operating room at the Hospital of Elisabethinen is built (especially with

regard to oxygen outlets in the walls), the

patient has to be positioned in a very specific

way for this kind of surgery. This leads to a

sub-optimal positioning of medical

equipment, where the screen showing the

angiogram is behind the surgeon and the

screen showing the endoscopic image is in

front of him (see Figure 19, marked in red and

Figure 20, screens 1 and 2. Screen 3 is used

for surgery documentation in the Hospital

Information System - HIS).

Figure 20: The screen positioning in the operating room during a Laparoscopic Cholecystectomy at the Hospital of

Elisabethinen (Sachs 2014b).

Again, the process has been modeled using BPMN (see Figure 21) building on information

gathered through interviews with involved stakeholders. Activities which could potentially

Figure 19: Schematic overview of the operating room during

a Laparoscopic Cholecystectomy.

Requirements Engineering: Application

49

benefit from the introduction of Near-Eye Display Devices are highlighted. For a full legend,

please refer to 11.1.1 below.

The following activities might benefit from the introduction of Near-Eye Display Devices:

Figure 21: Laparoscopic Cholecystectomy AS-IS Process Analysis (BPMN exerpt)

• Endoscopy or Cholangiography:

Because of the placement of screens in the operating room, one is constantly outside

the field of vision of the surgeon (see Figure 19 and Figure 20). Displaying the contents

of one of these screens inside the Near-Eye Display Device could lead to an

improvement with regard to efficiency.

• Monitoring of patient:

This particular activity might benefit not as much as the other, because the

anesthesiologist monitors the vital signs, leaving the surgeon occupied with the actual

surgery.

The full BPMN diagram with all activities, actors and the overall process can be found in section

11.1.3 below.

Requirements Engineering: Application

50

3.4.4 Description of Resulting Use Case

In Table 5, the use case as it would appear with a Near-Eye Display Device as a new information

channel, is explained.

Name Laparoscopic Cholecystectomy (Navigation and Medical Imaging)

Short Description This use case describes how Near-Eye Display Devices may be

utilized to facilitate alternating between different medical images

during surgeries where multiple screens are used to visualize

different aspects of the operation.

Actors Patient, Surgeon

Prerequisites Local Network, Near-Eye Display Device (such as Google Glass),

server (PC running inside of the network with started server

application), medical imaging data via standardized interfaces

(such as VGA, DICOM (DICOM Standards Committee 2011) or

similar)

Trigger Start of the operation (where multiple medical monitoring

screens are utilized).

Typical Process • Operating room is prepared.

o Network is prepared.

o Near-Eye Display Device is started and connected

to the network.

o Server-PC is started, connected to the network and

server-application is launched.

o Medical Appliances (e.g. navigational or medical

imaging devices) are connected to the server via

standardized interfaces (e.g. VGA).

• Surgeon wears Near-Eye Display Device and therefore has

constant access to medical imaging data without the need

of physically locating the monitoring screen in the room.

• After the operation, the server application and the Near-

Eye Display Device are disconnected and may be switched

off until further application.

Remarks The aforementioned medical appliances are often located at

various different locations in the operating room, making it

difficult for the surgeon to switch between them in a quick

fashion. Providing one screen directly in front of the surgeon

could improve efficiency and / or safety.

Table 5: Specific Laparoscopic Cholecystectomy use case, using the scheme proposed by Rupp et al. (2009).

With the problems outlined in section 3.4.3 above, the provision of the angiogram in the Near-

Eye Display Device has been identified as a potential opportunity for process improvement.

Instead of having to alternate between the two central screens the surgeon has to rely on (see

Figure 22, left), he can focus specifically on the screen showing the transmission of the

Requirements Engineering: Application

51

endoscope (see Figure 22, right), while having the angiogram visible in the corner of his eye

through the display of his Near-Eye Display Device. This allows the surgeon to avoid having to

physically locate the angiogram’s screen and to alternate between it and the image of the

endoscope during the critical part of the surgery.

Figure 22: The introduction of a Near-Eye Display Device to the process of a Laparoscopic Cholecystectomy reduces the

number of necessary shifts with regard to the surgeon’s point of view.

Requirements Engineering: Application

52

3.5 VIEWPOINT OF SURGEON FOR IMPROVED ASSISTANCE

For aesthetic reasons, the incision used in most surgeries is kept as

small as possible. This is especially a problem in the area of the head

(ear, nose and throat), where the part of the body that is operated on (and therefore is cut

open) is typically extremely narrow. In an interview with stakeholders, it became apparent,

that in these cases, assisting in the operating room is extremely difficult and assisting

personnel often has to rely strongly on experience and non-verbal communication. Having the

point of view of the surgeon displayed on a screen during the operation could decrease the

amount of communication needed and therefore increase efficiency and possibly even safety.

As a specific use case instance for the use case class Viewpoint of Surgeon for Improved

Assistance, the Open Cholecystectomy has been chosen.

3.5.1 Use Case Instance Explanation – Open Cholecystectomy

The process behind the Open

Cholecystectomy will now be explained

briefly: The Laparoscopic Cholecystectomy

has already been outlined above (see section

3.4) but this kind of minimally invasive

procedure is not always a possibility, in which

case a traditional, “Open” Cholecystectomy

has to be performed. In this case a significantly

bigger cut is made through which the surgeon

performs the surgery. However, the incision is kept as small as possible (cf. Figure 23) which

provides only a very narrow window, offering just the surgeon a good point of view of the field

of operation. Then, similar to the Laparoscopic Cholecystectomy (see section 3.4 above), the

connection to the gallbladder is severed and it is extracted.

Figure 23: Open surgeries, especially with minimal incisions

are often too narrow to be clearly visible (especially) to the

assisting personnel. (Weldi 2014)

Requirements Engineering: Application

53

As can be seen in the sketch provided in Figure

24, the assistant (marked with “2”) who needs

to hold the wound open for the surgeon

(marked with “1”) to be able to operate

properly, has to stand on the opposite side of

the table. This provides him only with a very

limited view of the surgery itself. Therefore he

typically has to rely strongly on experience and

non-verbal communication for the surgery to

forgo smoothly.

3.5.2 Classification and Explanation

In this section, the Open Cholecystectomy will be classified (see Table 6) utilizing the

classification scheme outlined in section 3.1 above.

Factor Characteristics

users per case 1 N

Data dynamics Static Dynamic

Collaboration Yes No

Information flow Unidirectional Bidirectional

Mode of operation Passive Active

Frequency of use High – daily Medium – weekly Low - monthly

Network coverage Local Regional National International

Table 6: Classification of the Open Cholecystectomy use case using the classification scheme proposed by Vorraber et al.

(2014).

3.5.3 AS-IS-Analysis and Identification of Potential for Improvement

Similar to the two use cases that have already been analyzed in the sections above, this

process too has been modeled using BPMN. Again, activities which could potentially benefit

from the introduction of Near-Eye Display Devices have been highlighted. For a full legend,

please refer to section 11.1.1 below.

The following activities have been identified as the ones which could potentially benefit from

the introduction of Near-Eye Display Devices:

Figure 24: Sketch of the operating room during an Open

Cholecystectomy.

Requirements Engineering: Application

54

Figure 25: Open Cholecystectomy AS-IS-Process Analysis (BPMN excerpt)

• Assistance:

Because of the small size of the incision, even the surgeon has to position himself in a

cramped way to be able to see everything important. The assistant has almost no

chance of an adequate viewpoint and therefore has to rely strongly on experience and

intuition. The viewpoint of the surgeon, displayed on a screen inside the operating

room could be of great help in this particular scenario, as stakeholders have mentioned

in an interview.

• Monitoring of patient:

Again, this particular activity might benefit not as much as the other, because the

anesthesiologist monitors the vital signs, leaving the surgeon occupied with the actual

surgery.

Requirements Engineering: Application

55

3.5.4 Description of Resulting Use Case

Similar to the previous sections, the use case as it would appear with a Near-Eye Display Device

as a new information channel, is explained below (see Table 7).

Name Open Cholecystectomy (Viewpoint of Surgeon for Improved

Assistance)

Short Description This use case describes how a head-mounted camera, which is

often integrated in Near-Eye Display Devices such as Google

Glass, may be used during surgery to facilitate tasks which are

conducted by personnel other than the surgeon (e.g. the nurse,

who may benefit from a more direct perspective of the operating

area during processes such as suction).

Actors Patient, Surgeon, a third-party who benefits from the surgeons

viewpoint (e.g. Nurse)

Prerequisites Local Network, head-mounted camera (such as the one which is

integrated in Google Glass), server (PC running inside of the

network with started server application), Screen to display the

viewpoint of the surgeon (either via direct output from the

server, or by utilizing another thin-client in communication with

the server)

Trigger Start of the operation (where the viewpoint of the surgeon is of

value for the surrounding personnel e.g. in surgeries with very

narrow operating areas).

Typical Process • Operating room is prepared.

o Network is prepared.

o Head-mounted camera (such as the camera

integrated in Google Glass) is started and

connected to the network.

o Server-PC is started, connected to the network and

server-application is launched.

o Screen is started and connected to the server

(either directly, or over the network).

• Surgeon wears head-mounted camera and therefore

provides his viewpoint to the server.

• Personnel other than the surgeon may utilize this unique

viewpoint during critical actions.

• After the operation, the server application and the head-

mounted camera are disconnected and may be switched

off until further application.

Remarks None.

Table 7: Specific Open Cholecystectomy use case, using the scheme proposed by Rupp et al. (2009).

With the introduction of Near-Eye Display Devices into the process of an Open

Cholecystectomy, it is possible to make the viewpoint of the surgeon available to the assisting

Requirements Engineering: Application

56

personnel. Especially with regard to surgeries in narrow areas, this could improve the process

by providing a clear view of the operating area to all involved parties. The Near-Eye Display

Device is used as a camera and as a transmitter, which will then display the field of vision of

the surgeon to a screen for the assisting personnel (see Figure 26, right). This allows them to

utilize the unique point of view of the surgeon for the improvement of their assistance during

the surgery, which is normally hampered by their limited perspective on the operating field.

This could increase not only efficiency and effectiveness, by reducing the amount of verbal

and non-verbal communication needed during the surgery, but could also increase safety for

the patient.

Figure 26: The assisting personnel can improve their assistance by utilizing the unique point of view of the surgeon. This

allows them to avoid having to rely solely on their limited perspective of the operating field.

Requirements Engineering: Application

57

3.6 RECORDING OF MEDICAL PROCESSES FOR POST-EVALUATION AND TEACHING

PURPOSES

Training is vital for the processes in the operating room to run

smoothly, especially when it comes to medical emergencies where

timing and collaboration are essential for the overall success of the surgery.

There are already systems which aim to record simulations in an operating room and provide

them for post-evaluation such as SIMStation (Studiokonzept Medientechnik GmbH 2012) and

similar solutions. These systems, however, only provide one or multiple different camera-

perspectives of the operating room and the medical appliances in them. They typically do not

provide a mobile perspective (such as the point of view of the surgeon).

As a specific use case instance for the Recording of Medical Processes for Post-Evaluation and

Teaching Purposes, the simulation of a surgery has been chosen.

3.6.1 Use Case Instance Explanation – Surgery Simulation Training

The point of view of the

surgeon may prove to be a

helpful tool for teaching and

post-evaluation. According

to medical students, one big

problem when it comes to

the observation of surgeries

is that there is typically at

least one obstacle which is

blocking the view: The surgeon himself. Therefore, the ability to provide recordings of

operations (with, or without the student in the operating room) could prove helpful with

regard to teaching purposes. In addition to this, typical recording systems only provide fixed

perspectives of the operating room, rather than moving point-of-view ones (see Figure 27).

These moving perspectives could also provide helpful insights for students, as they can

observe what an experienced surgeon focuses on during the process. This becomes even more

interesting, when the Near-Eye Display Device has the capability of tracking the eye

Figure 27: Current recording setups often include only stationary cameras

(Krankenhaus der Elisabethinen GmbH 2013).

Requirements Engineering: Application

58

movement of the wearer, which Google Glass is not capable of at this point in time (see section

7.2 below).

Similar recordings could be also used for post-surgery-evaluation with the operating team

after the surgery.

3.6.2 Classification and Explanation

The Surgery Simulation Training Use Case will be classified in Table 8 utilizing the classification

scheme outlined in section 3.1 above.

Factor Characteristics

users per case 1 N

Data dynamics Static Dynamic

Collaboration Yes No

Information flow Unidirectional Bidirectional

Mode of operation Passive Active

Frequency of use High – daily Medium – weekly Low - monthly

Network coverage Local Regional National International

Table 8: Classification of the Surgery Simulation Training use case using the classification scheme proposed by Vorraber et

al. (2014).

3.6.3 AS-IS-Analysis and Identification of Potential for Improvement

The traditional process of recording surgeries for training and simulation processes has been

analyzed and potentially interesting activities have been highlighted (see Figure 28). An

excerpt is provided below (the full BPMN diagram with all activities, actors and the overall

process can be found in section 11.1.5 below), for a legend of the colors used in the BPMN

diagram, please refer to section 11.1.1 below:

Requirements Engineering: Application

59

Figure 28: Surgery Simulation Training AS-IS-Process Analysis (BPMN excerpt).

• Recording:

The recording system that is currently in use at the Krankenhaus der Elisabethinen Graz

GmbH provides multiple stationary HD cameras. The introduction of Near-Eye Display

Devices would allow for a completely new perspective: The Staff. For example, it could

be vital for post-evaluation (or even teaching purposes) to be able to follow the

movements of the surgeon with regard to the center of his attention. Similar to this, it

could be interesting to observe the head-movements of an anesthesiologist who faces

a medical emergency during an operation (e.g. “Cannot Intubate, Cannot Ventilate”).

These new recordings could then be used for improved post-evaluation and process

improvement or the teaching of medical students.

• Monitoring of patient:

Similar to the use cases outlined in the previous sections, it could be interesting to

provide the anesthesiologist with a portable way to monitor the dummy’s vital signs.

Requirements Engineering: Application

60

3.6.4 Description of Resulting Use Case

Again, similar to the previous sections, the use case as it would appear with a Near-Eye Display

Device is explained below (see Table 9).

Name Surgery Simulation Training (Recording of Medical Processes for

Post-Evaluation and Teaching Purposes)

Short Description This use case describes how a head-mounted camera (such as the

one integrated in Google Glass) may be used during a simulated

surgery to record the surgical process with the aim of analysis and

post-evaluation.

Actors Dummy, Surgeon, OP-Staff

Prerequisites Local Network, head-mounted camera (such as found in Google

Glass), server (PC running inside of the network with started

server application)

Trigger The start of the surgery simulation.

Typical Process • Operating room is prepared.

o Network is prepared.

o Head-mounted camera is started and connected to

the network.

o Server-PC is started, connected to the network and

server-application is launched.

o Recording is started.

• Surgeon wears head-mounted camera and therefore

provides his viewpoint to the server.

• After the simulation, the server application and the head-

mounted camera are disconnected and may be switched

off until further application.

• The recorded data may then be used at any given point in

time to analyze the conducted surgery or provide real-

world-data for post-evaluation meetings.

Remarks None.

Table 9: Specific Surgery Simulation Training use case, using the scheme proposed by Rupp et al. (2009).

The Near-Eye Display Device is worn by the surgeon (or any other party of the OP-Staff) and

the whole process is recorded in either visual, or audiovisual form. The resulting recordings

can then be used either for the education of medical students or for post-evaluation after

simulation trainings.

Requirements Engineering: Application

61

3.7 VIRTUAL CONSULTATIONS

Although rather rare, consultations do happen during surgeries,

especially with young and still inexperienced surgeons that do not

want to judge specific situations completely by themselves. The problem with consultations

in their current form is the time that is needed for the consulting surgeon to prepare himself

before entering the operating room (especially the process of cleaning is extremely time

consuming). However, there are situations where just a second opinion and a quick look could

suffice for the operating surgeon to continue the surgery.

As a specific use case instance for Virtual Consultations, the Open Cholecystectomy with

Consultation has been chosen.

3.7.1 Use Case Instance Explanation – Open Cholecystectomy with Consultation

The process behind the Open Cholecystectomy with Consultation will now be explained

briefly: Especially young and inexperienced surgeons might find themselves confronted with

a situation they are not completely comfortable judging on their own. In this case, a

bidirectional audiovisual link to a more experienced surgeon might provide both a relief for

the acting surgeon as well as a safer surgery for the patient.

3.7.2 Classification and Explanation

The Open Cholecystectomy with Consultation will be classified in Table 10 utilizing the

classification scheme outlined in section 3.1 above.

Factor Characteristics

users per case 1 N

Data dynamics Static Dynamic

Collaboration Yes No

Information flow Unidirectional Bidirectional

Mode of operation Passive Active

Frequency of use High – daily Medium – weekly Low - monthly

Network coverage Local Regional National International

Table 10: Classification of the Open Cholecystectomy with Consultation use case using the classification scheme proposed by

Vorraber et al. (2014).

Requirements Engineering: Application

62

3.7.3 AS-IS-Analysis and Identification of Potential for Improvement

Again, the traditional process with regard to a consultation during the surgery has been

analyzed and potentially interesting activities have been highlighted (see Figure 29). An

excerpt is provided below (the full BPMN diagram with all activities, actors and the overall

process can be found in section 11.1.6 below), for a legend of the colors used in the BPMN

diagram, please refer to section 11.1.1 below:

Figure 29: Open Cholecystectomy with Consultation AS-IS Process Analysis (BPMN excerpt)

• Assistance, Monitoring of patient

The base use case for this scenario was the Open Cholecystectomy. Therefore,

Assistance and Monitoring are identical to the processes outlined in section 3.5.3

above.

Requirements Engineering: Application

63

• Preparation, Enter operating room, Consultation

Especially the process of preparation takes a significant amount of time (first and

foremost the process of cleaning and sterilization before entering the operating room).

The introduction of a two-way data feed to provide the viewpoint, high-resolution

images and maybe even an audio line to a consulting surgeon might reduce the time

needed for consultation significantly and also, by minimizing the time spent by the

consulting surgeon, would increase efficiency (as the surgeon can use this time for

other activities).

The big advantage of a head mounted device in this case would be the possibility for

the consulting surgeon to have the exact viewpoint of the surgeon instead of one fixed

perspective, which he would have with a normal camera and being able to alter this

viewpoint by giving instructions to the surgeon performing the surgery via an audio

line (e.g. “look over there”). This in turn provides the consulting surgeon with a view

of the operating room which yields the added benefit that he does not have to rely on

a description of the situation (e.g. the oxygen levels of a patient), but can look at them

himself and is therefore able to use his natural pattern recognition abilities, which are

part of his experience as a surgeon. Especially the latter part, the ability to judge

situations by recognizing patterns on monitoring devices or on the patient have been

mentioned by stakeholders in several interviews.

3.7.4 Description of Resulting Use Case

The use case that has been identified using the basis provided in section 3.7.3 above will now

be described in Table 11.

Name Virtual consultations

Short Description This use case describes how a Near-Eye Display Device along with

a built-in camera, microphone and speaker may be used to

perform real time consultations without the need for the

consulting person to be locally present (and therefore being able

to perform such consultations more quickly and efficiently).

Actors Patient, Surgeon, Consulting Surgeon

Prerequisites Network, head-mounted device (such as Google Glass), server (PC

running inside of the network with started server application),

Thin-Client for the consulting surgeon (providing video and audio

in- and output)

Requirements Engineering: Application

64

Trigger The surgeon sees himself confronted with a situation which he

does not want to risk judging solely by himself. Therefore a

consultation is conducted with a fellow surgeon (ideally with

special experience on the specific matter).

Typical Process • Operating room is prepared.

o Network is prepared.

o Near-Eye Display Device is started and connected

to the network.

o Server-PC is started, connected to the network and

server-application is launched.

o Screen (or monitoring thin client device) is started

and connected to the server (either directly, or

over the network).

• Surgeon wears Near-Eye Display Device and therefore

provides his viewpoint along with additional data (sound /

speech) to the server via the built-in sensors.

• The Surgeon may trigger a consultation to any person

outfitted with either a thin client that is connected to the

server as well or the possibility to watch the process on

the server application itself.

• After the operation, the server application and the Near-

Eye Display Device are disconnected and may be switched

off until further application.

Remarks For consultations it should be possible to provide at least video-

out, high-quality photo-out and audio-in / -out. Video- and Photo-

In are of added benefit but may have to be used sparsely because

of data transfer limitations (the more data is transferred

simultaneously, the bigger is the challenge of providing adequate

performance).

Table 11: Specific Virtual Consultations use case, using the scheme proposed by Rupp et al. (2009).

By allowing the surgeon to trigger a consultation at any given point in time during the surgery,

thus giving him the possibility to establish a two-way audiovisual link to one of his colleagues,

the time needed for consultations can, in specific cases, be limited to an absolute minimum.

The necessity for the consulting surgeon to enter the operating room (which includes

extensive cleaning beforehand) is not given anymore. The consulting surgeon is connected to

the system as well (either by directly using the server application or by using another client

device), which allows him to communicate with and to give his advice to the operating

surgeon.

Requirements Engineering: Application

65

3.8 ELICITATION AND IDENTIFICATION

The information gathered in this section was obtained by using two techniques: observations

and open interviews. Specifically the interviews provided helpful insight in what especially the

medical staff expects out of the resulting system. The participating parties in these interviews

were part of the hospital’s medical staff and therefore are on specification level 2 and below

(see section 2.5.2 above).

In the following section, the collected requirements will be mentioned only briefly in the way

they have been mentioned in the interviews. Documentation, removal of conflicts and formal

specification will be provided in section 3.9 below.

It quickly became apparent that the aspects described in the following sections are regarded

as core criteria for the system with the aforementioned use cases in mind (see section 3

above).

3.8.1 Hardware Requirements

In addition to software requirements, a small number of hardware requirements have

been mentioned as well. They will be described in this section.

• The system has to be physically robust. Although medical appliances are handled with

care, physical impacts can occur (e.g. dropping the device). This should not render the

device unusable immediately.

• In addition to physical robustness, the system has to be cleanable. Sterility is another

issue, but it has to be possible to clean the device thoroughly (if, for example, drops of

blood reach it during a surgery).

• The device has to be able to be worn by different people (including surgeons who are

already wearing glasses).

• If the trigger for certain functionalities (e.g. taking high resolution pictures) is realized

as hardware rather than software, it should too be cleanable and robust.

Requirements Engineering: Application

66

3.8.2 Functional Requirements

What follows in this section are functional software and service requirements that have been

mentioned during the interviews and observations in the elicitation phase.

• A clear need for the transmission of video became apparent during the interviews.

Similar wishes have been mentioned for audio transmission as well.

• Similar requests have also been made for high-resolution photos.

• The system should ideally interface (or extend) the already established Hospital

Information System. For this, the example of automatically adding recorded pictures

to a patient’s health record has been brought up by stakeholders.

• Every action (be it video transmission, audio transmission, etc.) has to be cancelable at

any given point in time.

• If transmission of video and audio is possible, recording should be too.

• The system should be able to interface with existing medical appliances using

standardized interfaces.

• The system should in all cases be able to at least gather visual data from medical

appliances.

• The system should be able to provide video (and possibly audio) data to another

(consulting) surgeon.

• The aforementioned consultations should ideally work over the internet as well.

• The system should be able to be controlled from a PC by the surgeon’s unsterile

assistance (who has to interact with the PC in any case for live documentation of the

surgery).

3.8.3 Non-Functional Requirements

In this section, the non-functional requirements that have been brought up during the

elicitation-phase will be listed and described.

• The video quality has to be “good enough” (various resolutions have been tested and

for motion picture, an absolute minimum of 640x480 pixels has been identified).

• The system should be quick and responsive.

• The system should start quickly (OP-time is extremely expensive).

Requirements Engineering: Application

67

• The system should be simple (few clicks / menus for every action).

• The system has to ensure data security and privacy at all times.

• The system should be able to sustain video / audio transmission for a while (at least 2-

3 hours).

Of course, the requirements in these sections are very vague, as they are directly taken out of

the interview- and observation protocols. Because of this reason, they will be specified,

analyzed and documented in greater detail in the following section (see 3.9 below).

3.9 ANALYSIS AND SPECIFICATION

In this part of the thesis, the aforementioned requirements will be analyzed, any conflicts

between them will be removed, and finally they will be formally specified.

However, before the requirements can be specified in a systematic way, they have to be

sanitized. To achieve this, the SOPHIST-REgelwerk method (see section 2.5.3 above) has been

utilized. Documentation is then performed using the requirement specification method

discussed in the theoretical part of this thesis (see 2.5.4 above).

3.9.1 Indexing Format

As can be seen in sections 3.9.3 - 3.9.5, the requirements have been indexed using a specific

format. This schema will be explained in the following:

The index looks like this: FR-OBL-4. As can be seen clearly, the format consists of three distinct

parts (A-B-C). These will now be explained along with their possible values:

A) A shortened form of the type of requirement that is defined (e.g. Functional

Requirement). Possible values are: FR (Functional Requirement), NFR (Non-Functional

Requirement) and HR (Hardware Requirement)

B) A shortened indicator showing the severity of the requirement (e.g. implementation is

obligatory). Possible values are: OBL (obligatory), OPT (optional), FUT (obligatory in a

future version)

Requirements Engineering: Application

68

C) A unique global identifier to allow for identification of requirements, even if they

change during Requirements Engineering or system development.

3.9.2 Definitions

This section provides an overview (see Table 12) over the terminology that was used in the

following sections.

Expression Definition

System The system is regarded as “the system” as soon as the connection

between client and server has been established.

OP-Staff All personnel that is present during surgeries, including sterile and

non-sterile actors.

Core system

components

Glass Server and Glass Client (see Figure 32).

Non-authorized

personnel

Everyone who is not permitted to view the data without the patients

express permission.

System data All data that is either generated, received, transmitted by or

somehow associated with the system.

Medical cleaning

procedures

Standard cleaning procedures for medical appliances that do not

directly come in contact with the patient.

Hardware part Any hardware part that is part of the system. The PC, the Near-Eye

Display Device and possibly additional remote controls.

At any given point

in time

Every point in time between the establishment and termination of

the connection between the system’s components.

Table 12: Definitions of the terminology used in sections 3.9.3 - 3.9.5.

3.9.3 Functional Requirements

What follows in this section of the thesis are the functional requirements briefly mentioned

in section 3.8.2 above, specified using the pattern proposed by Rupp et al. (Rupp, SOPHISTen

2009) and the indexing scheme outlined in section 3.9.1 above.

Requirements Engineering: Application

69

Obligatory present and future Functional Requirements:

FR-OBL-1 At any given point in time the system shall provide the OP-Staff with the

ability to transmit video to a screen inside the operating room.

FR-OBL-2 At any given point in time the system shall provide the OP-Staff with the

ability to acquire high-resolution images.

FR-OBL-3 At any given point in time the system shall provide the OP-Staff with the

ability to end whichever transmissions are currently active (Video / Audio,

In / Out).

FR-OBL-4 At any given point in time the system shall provide the surgeon with the

ability to receive visual data from medical appliances inside the Near-Eye

Display Device.

FR-OBL-5 At any given point in time the system shall provide the surgeon’s unsterile

assistance with the ability to fully control all functionality of the system.

FR-OBL-6 At any given point in time the system shall provide the surgeon with the

ability to receive audio from another party who is connected to the system.

FR-OBL-7 At any given point in time the system shall provide the OP-Staff with the

ability to transmit high-resolution images to another party who is

connected to the system.

FR-OBL-8 At any given point in time the system shall provide the OP-Staff with the

ability to transmit video to another party who is connected to the system.

FR-OBL-9 At any given point in time the system shall provide the OP-Staff with the

ability to transmit audio to another party who is connected to the system.

FR-OBL-10 At any given point in time the system shall provide the surgeon with the

ability to receive high-resolution images from another party who is

connected to the system.

FR-OBL-11 At any given point in time the system shall provide the surgeon with the

ability to receive video from another party who is connected to the system.

FR-OBL-32 During video transmission the system shall provide the surgeon’s unsterile

assistance with the ability to choose between resolutions and compression

levels of the video image (see FR-OBL-1, FR-OBL-8 and FR-OBL-11).

Requirements Engineering: Application

70

FR-OBL-33 At any given point in time the system shall provide the surgeon’s unsterile

assistance with the ability to choose between resolutions and compression

levels for the pictures (see FR-OBL-2 and FR-OBL-7) that can transmitted.

FR-FUT-12 The system will be able to record the video stream sent by the Near-Eye

Display Device.

FR-FUT-13 The system will be able to record the audio stream sent by the Near-Eye

Display Device.

FR-FUT-14 The system will be able to record the video stream sent to the Near-Eye

Display Device.

FR-FUT-15 The system will be able to record the audio stream sent to the Near-Eye

Display Device.

Optional Functional Requirements:

FR-OPT-16 At any given point in time the system should be able to provide the OP-Staff

with the ability to transmit video to a screen outside the hospital.

FR-OPT-17 The system should be able to store recorded images inside the Hospital

Information System.

3.9.4 Non-Functional Requirements

What follows in this section are the non-functional requirements briefly mentioned in section

3.8.3 above, classified formally.

Obligatory present and future Non-Functional Requirements:

NFR-OBL-18 At any given point in time the system shall react visibly on any single

interaction within 0.5 seconds.

NFR-OBL-19 When the user starts a functionality the system shall provide this

functionality within 2 seconds.

Requirements Engineering: Application

71

NFR-OBL-20 When started, the system shall be responsive within 0.5 seconds.

NFR-OBL-21 When initiated by the user, the core system components shall establish

connection within 5 seconds.

NFR-OBL-22 At any given point in time the system shall ensure non-authorized personnel

cannot access system data.

NFR-OBL-23 The system shall be able to sustain continuous video transmission for a

minimum of 2 hours.

NFR-OBL-24 The system shall be able to sustain continuous audio transmission for a

minimum of 2 hours.

NFR-OBL-25 The system shall be able to provide video streaming with a resolution of a

minimum of 640x480 pixels.

NFR-OBL-26 The system shall be able to provide high-resolution photos with a resolution

of a minimum of 1920x1080 pixels.

NFR-OBL-27 The system shall be able to provide video streaming with 25 frames per

second.

NFR-OBL-28 The user shall be able to invoke every single functionality of the system

within 5 seconds.

3.9.5 Hardware Requirements

What follows in this section of the thesis are the hardware requirements briefly mentioned in

section 3.8.1 above, classified formally.

Obligatory present and future hardware Requirements:

HR-OBL-29 The OP-Staff shall be able to clean any hardware part of the system using

medical cleaning procedures.

HR-OBL-30 If dropped from a height of 1 meter onto solid ground, the system shall

continue functioning.

HR-OBL-31 Different users, including those who wear glasses, shall be able to wear the

Near-Eye Display Device.

Requirements Engineering: Application

72

3.9.6 Conflicts

In this section, potential conflicts between the requirements that have been outlined in

sections 3.9.3 - 3.9.5 above will be discussed and solutions for them will be provided.

With the current set of requirements, one potential conflict has been identified:

• NFR-OBL-25 - The system shall be able to provide video streaming with a resolution of

a minimum of 640x480 pixels.

• NFR-OBL-27 - The system shall be able to provide video streaming with 25 frames per

second.

With the current hardware platform (Google Glass), this is not possible because of the strong

(inverse) relation of resolution and frame rate with regard to the video transmission. The

limiting factors are the built-in CPU and Wi-Fi module (see section 4.6.1 below). Therefore an

additional requirement has been devised:

• FR-OBL-32 - During video transmission the system shall provide the surgeon’s unsterile

assistance with the ability to choose between resolutions and compression levels of

the video image (see FR-OBL-1, FR-OBL-8 and FR-OBL-11).

3.10 APPLIED REQUIREMENTS ENGINEERING – CONCLUSION

The sections above discussed the processes as they are currently carried out, the specific use

cases that are regarded as central for the system development and the requirements as they

appeared in interviews with stakeholders and during observation of processes in daily routines

of the medical staff. What follows now is the modeling and design of the system that will

satisfy these requirements (see section 4 below).

Design and Architecture

73

4 DESIGN AND ARCHITECTURE

This part of the Master’s Thesis discusses the design of the resulting system. Based on the use

cases outlined above and the requirements that have subsequently been identified, the

system has been designed. The choices that have been made during the conceptual phase will

be explained in detail in the following sections.

4.1 THE PLATFORM – GOOGLE GLASS EXPLORER EDITION

The platform for the system that will be developed is Google Glass, specifically the Explorer

Edition, as has already been mentioned in section 1.1.2 above.

Figure 30: Exploded Google Glass Explorer Edition, CC BY-NC-SA 3.0 (Torborg, Simpson 2014). Feature outlines have been

added.

Output Input Sensors Connectivity Control

Prism (1) Camera (2) Light (3) USB Button (5)

Speaker (6) Microphone (3) Motion Bluetooth Touch Pad (4)

 Touch Pad (4) Magnetic Field Wi-Fi Voice

 Button (5) Gravity

Table 13: Google Glass Explorer Edition Features, classified.

The features of Google Glass (see Figure 30 and Table 13) will now be explained briefly along

with their functionality, both in general and in medical context. The explanations of the visible

Design and Architecture

74

features have been sorted to concur with the order in Figure 30 in which they have been

outlined from front to back.

1. Prism: The prism serves as a half-transparent screen which is used to display generic

visual data.

Context: With regard to medical environments, this screen can be used for various

purposes, e.g. displaying static or dynamic medical data such as patient records or vital

signs (see section 3.3 above).

2. Camera and Microphone (3): Both, camera and microphone, can be used to acquire

audiovisual data from the device’s environment.

Context: In medical environments the possibility to transmit live audiovisual data can

be used for improved assistance by providing the wearer’s point of view (see section

3.5 above) or to enable virtual consultations (see section 3.7 above).

3. (Not visible) proximity and ambient light sensor: These sensors can be used to react

to blinking and to determine if the device is currently being worn.

Context: In a medical context, blinking could be used as a trigger for acquiring pictures

from the camera.

4. Touch Pad: The touchpad can be used to interact with the system via touch gestures

(e.g. swiping or tapping).

Context: Due to the high standards with regard to hygiene, the touch pad cannot be

used in medical environments.

5. Camera button: A generic Button which is used for taking pictures during normal

operation.

Context: Similar to point 4, the camera button cannot be used reasonably in medical

scenarios.

6. Speaker: The speakers can be used as a means to play audio data (e.g. for calls or

consultations).

Context: The speaker can be used in medical environments to either gather the

attention of the wearer (e.g. the surgeon) or to allow for communication during

consultations (see section 3.7 above).

Design and Architecture

75

What follows now are sensors and important functionality that is not visible in Figure 30:

• Various movement and location related sensors (e.g. Accelerometer, Gyroscope or

Magnetometer). (Google Inc. 2013b)

Context: In medical environments, gestures like nodding could be used for taking

pictures or triggering other functionalities.

• Voice Recognition: Voice control is used during normal operation to interact with the

system.

Context: Unfortunately this functionality is not easily usable outside the immediate

Operating System (e.g. inside an application), because of the lack of Trigger-Phrases.

Finally, Glass can interface with other electronic hardware by utilizing Wi-Fi, Bluetooth and

USB. The latter is also used for charging the device. (Google Inc. 2014a)

4.2 GENERAL STRUCTURE

In this first sub-section of the explanation of the system design, the overall architecture will

be discussed.

4.2.1 Requirements for the system with regard to its general architecture

The following overall requirements have been identified as key factors for the resulting

system. They will be used to devise a global system architecture that will support these

conditions.

1. Usability

The system must be easy to use. No extensive training should be needed to teach

the OP-Staff how to work with it. This includes, for example, the ability to remote

control the Near-Eye Display Device, as the device’s interfaces for interaction (e.g.

the touchpad) are not sophisticated enough to be used as a means for system

interaction with regard to medical processes.

Corresponding Requirements: NFR-OBL-18, NFR-OBL-19 and NFR-OBL-28.

Design and Architecture

76

2. Performance

The system must be highly performant. It must be able to provide high-quality

video, audio and image data, while responding to any and every action by the user

in a timely manner.

Corresponding Requirements: NFR-OBL-18, NFR-OBL-19, NFR-OBL-20, NFR-OBL-

21, NFR-OBL-25 and NFR-OBL-26.

3. Compatibility

The system should be compatible with pre-established medical systems.

Interfacing via standardized interfaces (visual link, VGA or, in the future, HL7 /

DICOM direct interfaces).

Corresponding Requirements: FR-OBL-4, FR-OPT-17

4. Runtime

The system has to be able to sustain its core functionality (e.g. video streaming) for

a specific amount of time (e.g. 2-3h).

Corresponding Requirements: NFR-OBL-23, NFR-OBL-24

5. Data Security

The data that is processed and / or generated by the system must not be obtainable

by unauthorized personnel.

Corresponding Requirements: NFR-OBL-22

4.2.2 Possible solutions

With regard to the overall system architecture, there are three possibilities for system design

that were explored. They will now be listed and explained briefly.

After the explanation, the requirements outlined in section 4.2.1 above will be used to choose

one approach (see Table 14) which will then be further explained in section 4.2.3 below. What

follows is the list of possible system architectures along with brief explanations.

• Fat-Client architecture: The traditional “fat-client” architecture describes a system

that is fully self-contained. In this particular case, the system would be implemented

Design and Architecture

77

in its entirety on Google Glass as a platform (as the Near-Eye Display Device is the

central part of the system).

However, especially due to the limited capabilities of Google Glass, or Near-Eye Display

Devices in general, which are of course always subject to the size of the built-in

hardware with regard to their performance, out-sourcing a part of the necessary

calculations can be considered. This can either be onto a local server, or onto the

“cloud” that gained significance over the last few years.

• Cloud-computing: A thin-client architecture with all computationally intensive

calculations done on dislocated servers would solve the problem of limited hardware

capabilities of Near-Eye Display Devices. However, data security is an extremely

delicate topic, especially with regard to electronic health records, where there are

highly complex legal obligations to fulfill.

• Traditional thin-client architecture: Instead of interfacing with the “Cloud”, a system

architecture can be designed that relies on a local server instead of hardware that

might be positioned at a distant computing center. This yields the added benefit of

being inherently more secure than the cloud-approach but still offers significantly

more performance than Google Glass itself.

Architect.

Criterion
Fat-Client Cloud Thin-Client

Usability
Performance

Compatibility
Runtime

Data Security

Table 14: Comparison of different system architecture alternatives.

Figure 31: Criteria Satisfaction

Legend.

The solutions discussed above have been listen in Table 14 with the degree to which they

satisfy the criteria that will now be explained briefly:

• Usability: The traditional thin-client architecture has the need for a server to be

running on hardware in the same network. This server can have a graphical interface

thus providing advanced interaction patterns involving mouse and keyboard which are

much more versatile than the small touchpad of Google Glass that would have to be

Design and Architecture

78

used both with the Fat-Client and with the Cloud approach (assuming no third client is

developed solely for interaction with the cloud server).

• Performance: As the Fat-Client would have to do all computation on the hardware of

the Near-Eye Display Device, the other two alternatives are inherently superior.

• Compatibility: Running the server-application directly on a PC inside of the operating

room (which is already present as a Terminal for the Hospital Information System)

provides an easy way to interface with medical appliances, as they can be connected

over interfaces to the PC.

• Runtime: The less calculations are done on the Near-Eye Display Device, the less

energy is consumed, which in turn results in prolonged battery life.

• Data Security: The need for an Internet-connection with the Cloud-Approach makes it

inherently less secure.

4.2.3 The choice behind the Thin-Client-Architecture

A traditional “Fat-Client” design pattern does not need any additional hardware except for the

machine the system runs on. However, this means that all features must be implemented

directly on the system which is inherently more taxing on the (client-system’s) hardware than

only a minimal implementation.

If, however, some of the computational work can be done on a different piece of hardware,

ideally a more powerful one, often an overall improvement in terms of performance can be

achieved.

As Google Glass is, compared to traditional X86 (or X64) hardware, fairly limited in its

computational capabilities, a Thin-Client model has been chosen. This allows the system to be

split into two fundamental parts: Glass Server (running on the more powerful hardware) and

Glass Client (running directly on Glass). Both applications communicate over the network,

utilizing well established protocols such as TCP and UDP.

This system architecture leads to a minimal overall system consisting of the following

elements (see Figure 32):

Design and Architecture

79

• A PC with the server application (Glass Server). All computationally intensive tasks are

done on this hardware. In addition to this, most of the system interaction will be done

using the interfaces provided by Glass Server as well.

• Google Glass with the client application (Glass Client). A minimal client

implementation, which serves as mere extension of the server (providing a means of

transmitting and receiving audiovisual data).

• A wireless network for TCP and UDP-Communication with at least two ports open.

Figure 32: Schematic overview over the (minimal) overall System.

Why is this design superior in this particular case?

• Demanding tasks are done on hardware that is far more powerful. This leaves less work

for the client which runs on the limited platform (Google Glass).

• The fact that less computational work is performed on Google Glass reduces the heat

generated by the device. There are no fans in Google Glass. If the device runs too hot,

the integrated parts reduce clock speed to avoid overheating, which then results in an

overall decrease of performance.

• Google Glass is fairly limited with regard to user interaction. Very few buttons, a

touchpad and the lack of a way to use “trigger-words” (specific word combinations

that trigger voice recognition and control) inside of an application make it extremely

hard to design a functional, yet versatile user interface. The Thin-Client Design allows

complex tasks to be remotely controlled by the server application (Glass Server) using

well-established interaction-paradigms (based on Mouse and Keyboard).

Design and Architecture

80

4.3 SYSTEM, CONTEXT AND ENVIRONMENT

Based upon the classification by Rupp et al. (2009), the system and its environment has been

divided into the following three fundamental parts: System, Context and Environment (see

Figure 33). These categories, along with their elements with regard to this particular system

will be explained in greater detail below.

Figure 33: Schematic overview over the elements of System, Context and Environment, based on the classification scheme by

Rupp et al. (2009)

• System: The system itself and all parts of it.

o Glass Server (Local Server) holds the full implementation of the system

allowing the client to be minimal.

o Glass Client (Google Glass) is an extension of the server. Providing the wearer

with audiovisual data from the system and the server with audiovisual data

from the wearer’s point of view.

o Wireless Switch (or wireless router) is used to establish the network

connection between Glass Server and Glass Client.

o In some specific cases (e.g. consultations), another client might become also

part of the system. This then again would be a thin client with a minimal

implementation leaving the computationally intensive tasks to Glass Server.

Design and Architecture

81

• Context: Everything that comes in direct contact with the system.

o Medical Appliances, which provide data over standardized interfaces (e.g. a

heart-rate monitor, see section 3.3 above)

o Assisting staff who uses data that is generated by the system (e.g. for

improved assistance, see section 3.5 above)

o The surgeon’s (unsterile) assistance who controls the system by interacting

with the server.

o Consulting surgeons who may benefit from data generated by the system as

well (see section 3.7 above).

• Environment: Everything that can be considered important, but does not come in

direct contact with the system (yet).

o Most notable in this category is the Hospital Information System. With regard

to information flow, this system is the most important part of the hospital and

would therefore be very interesting to interface with (see section 7.4 below).

4.4 GLASS CLIENT

The following section will describe the client that runs on the Google Glass platform. As has

already been mentioned above (see section 4.2 above), Glass Client is merely a thin client. The

choices behind its design and remarks with regard to the actual development for the platform

will be provided in the following sections.

4.4.1 Requirements for the Client Implementation

With Google Glass as the platform, the choices for programming language and APIs are

extremely limited. One requirement, which will already suffice for the choice made in section

4.4.2 below, is the transmission of real-time video and photo data. Other requirements will

not be listed in this paragraph, as the criterion mentioned before (video transmission) can only

be achieved with a single development alternative.

Design and Architecture

82

4.4.2 Possible solutions

There are three fundamental ways to develop for Google Glass as a platform at this point in

time:

• The Glass Development Kit (GDK): Java-based Development Platform very similar to

the Android Development Kit (ADK). In fact, GDK is an extension of the ADK.

• The Mirror API: RESTful API based development on top of typical web development

paradigms.

• Hybrid Glassware: MirrorAPI applications that can invoke GDK-counterparts.

The requirement mentioned in section 4.4.1 above, the transmission of real-time video and

photo data, is absolutely impossible to achieve with the MirrorAPI, as it does not allow real

time communication with the camera and microphone modules (cf. (Google Inc. 2014b)).

Therefore, the GDK approach had to be used.

4.4.3 The choice behind the GDK and the Immersion

The client has been designed with the “Immersion”-Pattern (Google Inc. 2014c) in mind. This

requires the GDK as a basis (with Java as the development language) and provides a way to

completely block out all other interfaces thus being able to take complete advantage of the

screen and the built-in sensors and devices.

The GDK is the only development platform on Google Glass that allows for real-time low-level

API access (for interfacing with the camera and the microphone device). This is a fundamental

condition for the continuous transmission of video and audio data.

4.5 GLASS SERVER

As with the Glass Client in the sections above, this section will describe the Server-part of the

system that runs on a PC. The design choices behind the architecture, the programming

platform and the GUI-Choice will be explained in the sections that follow.

For the Glass Server application, there are no restrictions with regard to the programming

platform.

Design and Architecture

83

The server has been designed with C# and the current version of .NET (4.5.1) in mind.

However, no techniques were taken into consideration, which could not be implemented

using other languages as well. C# was the primary choice because of its ability to rapidly

develop applications with graphical user interfaces. These user interfaces are necessary for

various parts of the system, including user interaction (cf. FR-OBL-5) and video display (cf. FR-

OBL-1). With regard to performance, the Proof-of-Concept (see section 5 below) has been

tested on a number of different devices, including Desktop PCs and Laptops and the

performance has been deemed sufficient, even though C# is no native programming language

and therefore has inherent performance disadvantages.

The other obvious choice would have been Java, especially since the client is already

implemented in Java with the GDK as the underlying platform. However, since the project

partner (Krankenhaus der Elisabethinen Graz GmbH) and all other people involved in the

project primarily use Windows as an operating system, platform-independence was not an

issue. Therefore C# has been chosen, as it provides a number of advantages with regard to

system API-Access (because of .NET) and the development of graphical user interfaces

(Windows Presentation Foundation - WPF). WPF has been chosen as the front-end

development platform, as it is regarded as the successor to WinForms and thus is the

standardized way to develop user interfaces for C# applications on Windows.

As an overall development strategy, the Model/View/ViewModel (or MVVM) (Gossman 2005)

pattern has been utilized. MVVM describes a very elegant way to separate graphical user

interfaces from application logic and is widely used with regard to C# WPF applications.

The Model/View/ViewModel design pattern consists of three distinct parts: Model, View and

ViewModel (see Figure 34). (Gossman 2005)

• View: In clean MVVM, the View does not contain

any logic at all.

• Model: Everything that is not directly related to the

user interface (e.g. data layer and application logic).

• ViewModel: Combines View and Model. The View

“binds” itself to the ViewModel, which instantiates

and uses the classes provided by the Model.

Figure 34: Schematic overview over the

relation between View, Model and

ViewModel in the MVVM-Pattern as it is

described by Gossman (2005).

Design and Architecture

84

The concept of Data Binding, which essentially, through the usage of an Observer-Pattern,

enables the user interface to update itself, allows for the View to be completely without

background-logic. This facilitates the development of rich graphical user interfaces, which in

the case of WPF are written using a language called XAML. This is especially useful, when

applications are developed for a number of devices (e.g. Smart Phones, Tablets and Desktop

PCs), as the actual logic of the application can (ideally) be absolutely identical, yet look

completely different on every platform.

4.6 INTERFACES

It immediately becomes clear that the design outlined in section 4.2.3 above requires the

definition of interfaces for communication not only internally – between Glass Client and Glass

Server – but also externally, with medical appliances and similar equipment. These interfaces

will be explained in greater detail in the following two sections.

4.6.1 Internal Interface – Glass Messaging Protocol

As has already been stated, internal communication between Glass Server and Glass Client is

vital for the overall functionality of the system. The chosen platform – Google Glass – does

only support the IEEE 802.11b/g specification for wireless data transfer at this given point in

time (Google Inc. 2014a) and thus can only perform within the tight limits of the respective

standards which are a maximum of 11 Mbit/s (1.375 MiB/s, IEEE 802.11b) and 54 Mbit/s (6.75

MiB, IEEE 802.11g). (LAN/MAN Standards Committee of the IEEE Computer Society 2000,

LAN/MAN Standards Committee of the IEEE Computer Society 2003)

However, it should be noted, that at the time of writing, only an early prototype (the so-called

“Explorer Edition”) was available (Google Inc. 2014d). Future versions, including the actual

consumer version, could and likely will improve regarding connectivity.

Precisely because of this reason, a custom binary messaging protocol has been created: The

Glass Messaging Protocol (GMP). The advantage of such a custom binary protocol is the ability

to avoid virtually any overhead that is imposed by other structures (like XML / JSON based

messaging formats). The details of the communication protocol will be discussed in the

sections below.

Design and Architecture

85

4.6.1.1 Handshake

In order to be able to establish the initial connection, the two devices, Glass Client and Glass

Server, must find each other in the network. Unfortunately, because of the limitations

regarding usability in Near-Eye Display Devices, this is not a trivial task.

4.6.1.1.1 Possible Solutions

With regard to the location of the devices in the network, various solutions have been

explored and will be briefly explained below. A set of requirements has been devised and the

concepts will be evaluated using them (see Table 15). What follows is a list, including brief

explanations, of the explored solutions:

• Fixed IPs: It would suffice, if one of the two devices has the IP of the other which then

can be used to establish a TCP-connection as a basis for all further communication. The

trivial way to do this would be a hard-coded IP-Address in one of the devices.

• QR-Codes: Similar to the procedure that is used to add new Wi-Fi connections to

Google Glass, a QR-Code could be used to obtain the IP of the server. The server

application would open a Socket and would then encode the information of the Socket

(IP and Port) in form of a QR-Code and display it. The user then scans the QR code after

initially launching the Glass Client to obtain the IP and Port of the server which then

can be used to establish a TCP-connection for further communication.

• Local DNS: A local domain name system along with “fake domains” could be used to

mask the dynamically generated IPs with a static domain name.

• Local UDP-Beacons: The server could use periodic local (xxx.xxx.xxx.255) message

broadcasts to provide its position (IP and Port) in the network. The client listens for

these broadcasts and thus is able to establish a connection to the open socket of the

server.

Design and Architecture

86

Solutions

Criteria
Fixed IPs QR-Codes Local DNS

Local UDP-

Beacons

Efficiency
Usability

Simplicity
Maintainability

Portability

Table 15: Possible handshake concepts along with their advantages and disadvantages.

Table 15 gives a quick overview over the various solutions discussed above and their degree

of satisfaction with regard to the criteria that will be explained in the following:

• Efficiency: The connection must be established quickly and efficiently. All automatic

methods have an inherent advantage over methods that require user interaction with

regard to the time needed until the connection can be fully established.

• Usability: Similar to the Efficiency requirement, the key factor behind this is too the

interaction with the user. The less interaction is needed, the simpler the process for

the user.

• Simplicity: All approaches are fairly manageable with regard to their implementation.

However, especially QR-Code-Scanning is significantly more time consuming to

implement, as Google seems to be unwilling to provide their QR-Code API which is

used for adding new Wi-Fi networks at this time of writing.

• Maintainability: The less the solution relies on the necessity of additional hardware

and software, the easier it is to maintain.

• Portability: The system has to function on many different networks. Hard-Coded IPs

are impossible to use on all networks, as policies do not always allow for specific

hardware to consistently use the same IP in the network.

4.6.1.1.2 The choice behind the UDP Message Beacon

The solution that finally went into the system design is a little more complicated than fixed IPs

but has the advantage of being completely automatic, thus requiring no user interaction at all.

As has already been briefly explained in the overview provided in section 4.6.1.1.1 above, the

general concept behind this approach can be summarized as follows:

Design and Architecture

87

• The Server provides a continuous messaging beacon in form of a local broadcast packet

that is sent repeatedly on a pre-shared port (e.g. 9095). It contains the socket

information (IP and Port) of the server.

• The client can listen for this beacon, extract the IP and Port of the server and use this

information for the establishment of a proper two-way connection.

The process will now be explained in a more detailed manner in the remaining part of this

section.

Figure 35: Schematic overview over the Glass Messaging Protocol connection establishment.

As outlined in Figure 35 above, both applications need to be started to find each other. Upon

system start both immediately start a loop in which they reside until the TCP-connection has

been established.

The Server-Loop contains the continuous transmission of a simple UDP-Packet containing its

IP (the IP of the Network Interface Card that is connected to the local wireless network) and a

Port (which defaults to 9090). The structure of the packet is very similar to the one of the

Design and Architecture

88

messages outlined in the Glass Messaging Protocol (see section 4.6.1.2 below). It consists of a

Marker-field for identification and the IP and Port (see Figure 36).

MARKER IP PORT

Figure 36: Contents of the UDP-Beacon Packet

The included IP and Port allow the Glass Client to establish a proper TCP-Connection with Glass

Server. To be able to receive this packet, a UDP-Socket is opened on the client. This socket

then waits for the correct packet to arrive. As soon as the packet arrives, the IP and Port can

be used to establish the TCP-Connection. When the TCP-Connection has been established, the

UDP-Beacon is disabled and arbitrary messages can be sent back and forth. The handshake is

now complete and general communication can begin.

4.6.1.2 General Communication

For the reasons outlined in section 4.6.1 above, a custom communications protocol, the Glass

Messaging Protocol (GMP) has been developed. This way, communication overhead can be

reduced to a minimum. As the protocol is built on top of already established protocols on the

transport layer (OSI Layer 4 (Zimmermann 1980)), it was necessary to introduce a message-

based form of communication, as the underlying protocol (TCP) is stream-based. To achieve

this, a general message consists of several fields containing information about the contained

data. The following table provides an overview over the fields (see Table 16):

Field name Field content

Marker A specific magic number which indicates the start of a message (4

bytes).

Type A single byte which indicates the type of the message.

Size An unsigned integer (4 bytes) which contains the length of the

payload in bytes.

Payload The binary data of the message (containing text, image, audio, etc.).

Table 16: The different fields in a GMP-message and their content.

Design and Architecture

89

These fields are then encoded into a binary data stream and sent to the Glass Client or Glass

Server at the other end of the connection. Thus, a message can be visualized the following

way (see Figure 37):

...

MARKER TYPE SIZE PAYLOAD

Figure 37: Schematic representation of the messages in the Glass Messaging Protocol.

Both clients scan the incoming traffic for the Marker until it has been fully identified as a

continuous sequence in the network stream. As soon as this happens and thus the beginning

of a message has been identified, further parts of the message can be read into pre-specified

buffers. The size-field is used to determine the end of the message.

This has one significant advantage: Because of the transmission of the actual message size,

internal network buffers can be used to their maximum and therefore performance does not

need to be limited by reading single bytes at a time during the transfer of a message. If,

however, the system cannot identify a message correctly, it automatically can fall back to

scanning for the Marker (which does, in fact, read one byte at a time). During normal

operation and by using a reliable protocol like TCP, the scanning should only ever occur at the

beginning of each message, thus maximizing the performance by switching to large buffers

whenever possible.

Of particular interest with regard to the Glass Messaging Protocol is the Type-Parameter along

with the Payload-field. In contrast to the Marker-field in the beginning, which is merely a

sequence of four bytes, and the Size-field, which is a 32-Bit Integer, the Type-field actually

carries information not only about the nature of the message but also about the way the data

is encoded in the Payload-field.

The following table (see Table 16) gives an overlook over the different types of messages and

their payloads.

Design and Architecture

90

Message-Type Message-Payload

Text Text encoded as UTF-8 byte stream.

Image / Video The image data encoded as JPEG byte stream. As the video

transmission is Motion JPEG (MJPEG), the byte stream in a video

message is JPEG as well. The built-in APIs for video and audio

streaming have proven to be extremely unreliable with regard to

quality and consistency of transmission. This is further corroborated

by the fact that a recent update for Google Glass removed the native

video call functionality, as it did not satisfy Google’s quality standards

(Google Glass Team 2014). Therefore MJPEG has been devised as a

custom solution. The implementation of an advanced video codec like

MP4 could increase efficiency even more (see section 7.3 below)

Request Contains just a single byte containing the nature of the request. For

further information, please refer to the code documentation.

ImageQuality The first byte contains the target (Video 0, Photo 1), an integer

containing the width follows (4 byte), then another integer containing

the height (4 bytes). An additional integer containing the compression

quality (0 – 100; 4 bytes) follows and finally another integer which

contains the frame limiting rate (0 – 30; 4 bytes).

ImageResolutions A continuous stream of width / height pairs (8 byte each, 4 byte per

width / height).

Audio A raw pulse-code modulation byte stream (8000 Hz, 16 bit, mono).

Table 17: The different message types and their payload.

4.6.2 External Interfaces

This section describes the various ways how data can be transmitted into the system and how

it is then used throughout the service.

4.6.2.1 Glass Client

For the sake of completeness, the interfaces that are used to obtain and emit data will now

be discussed briefly in the points below:

• Camera

To be able to provide video transmission and high-resolution still-frames, it is

necessary to obtain the data on the client side. For this purpose the built-in camera of

Glass is used. By utilizing the provided low-level APIs (Google Inc. 2014e), real time

binary image data can be obtained from the camera module.

Design and Architecture

91

• Microphone

Similar to video and photo outlined above, sound can be transmitted from the client

to the server as well. In order to do this, the built-in microphone in Glass can be

utilized. The provided APIs (Google Inc. 2014f), again low-level binary data interfaces,

are used to obtain pulse-code modulation data.

• Display and Speaker

Any data that is received has to be made available to the user. The built-in prism and

speaker are used for video / image and audio rendering.

4.6.2.2 Glass Server

Apart from the client itself, which is able to provide video and audio data, the server has to be

able to provide data obtained from its surroundings as well. These interfaces are outlined

below:

• Generic video interface

Perhaps most important for the system, especially in its early stages, where users are

not yet accustomed to the service, is the generic video interface. The interface is

constructed in such a way that it is able to obtain images, either still or in motion, from

a common generic source plugged into the PC which is connected to the system (e.g.

the PC running Glass Server). This allows for the system to provide visual data, in the

way the surgeons are used to seeing it, directly from the medical appliances that

produce them by either filming the screen via, for example, an USB-Camera or by

directly interfacing with the image signal (e.g. VGA or similar standards) using

hardware interfaces such as VGA Interface Cards.

• Direct access to medical data in the Hospital Information System

There are different proprietary and non-proprietary standards (e.g. HL7 (Health Level

Seven International 2013)) which provide a way to interface directly with the hospitals

information system. With the use cases mentioned above (see section 3 above) as the

basis for the system’s design, these standards were not part of the focus of this thesis.

However, as these protocols might become part of the system in the future, it has been

Design and Architecture

92

designed in a way which makes it easily extendable (e.g. the generic way in which the

communication has been implemented, see 5.1.3 below).

Implementation – Proof-of-Concept

93

5 IMPLEMENTATION – PROOF-OF-CONCEPT

The system that was described in sections 3 and 4 above has been implemented in its

fundamentals to proof the viability of the underlying concepts (e.g. proof that video, audio or

general data transmission is possible using a local network only). This implementation will now

be discussed briefly in the following sections.

As has already been described in section 4.2 above, the system has been divided into two

fundamental parts: Glass Server (see Figure 38) and Glass Client.

The goal behind this Proof-of-Concept implementation was to prove the viability of the

solutions that have been devised during the Requirements Engineering in section 3 above.

Therefore the central motivation is that all the technical aspects, which have to be available

for the use cases (see Figure 13) to be possible, have been implemented at least

fundamentally.

The absolutely vital functions, based on the requirements outlined in section 3.9.3 above, are

therefore:

• Video and Audio In and Out (see FR-OBL-1, FR-OBL-6, FR-OBL-8, FR-OBL-9, FR-OBL-11,

FR-OPT-16, NFR-OBL-23, NFR-OBL-24, NFR-OBL-25 and NFR-OBL-27)

• Remote Control (see FR-OBL-3, FR-OBL-5, FR-OBL-32 and FR-OBL-33)

• Displaying arbitrary data in the Near-Eye Display Device (see FR-OBL-4)

• High-Resolution Still Frames (see FR-OBL-2, FR-OBL-7, FR-OBL-10 and NFR-OBL-26)

• Local LAN without Internet and without Google Services (see NFR-OBL-22)

Implementation – Proof-of-Concept

94

Figure 38: Screenshot of the Glass Server Proof-of-Concept.

5.1 GENERAL CHOICES

In this section, general development choices behind Glass Server and Glass Client will be

explained. For a more detailed explanation of the system and the code behind it, please refer

to the code documentation.

5.1.1 Glass Server

As has already been outlined in section 4.5 above, the server has been developed using C#

with the current version of .NET (4.5.1), Visual Studio 2013 Ultimate and Windows 8.1.

The reason for this choice is that this system is primarily a Proof-of-Concept, so Rapid

Application Development (RAD) was a factor that went into consideration. C# has very strong

support for RAD.

The Proof-of-Concept has been tested on a number of different devices for various durations

of time and no problems with regard to performance have been noted. With C# as the

language of choice, WPF has been chosen as the front-end development platform. The

application has been developed using the MVVM pattern (see section 4.5 above). In addition

to the already mentioned platforms and frameworks, two Third-Party-Libraries have been

utilized for Camera and Microphone access (see section 5.1.3.1 below).

Implementation – Proof-of-Concept

95

5.1.2 Glass Client

It was already mentioned in section 4.4.3 above that the GDK is necessary as the platform for

development of the client application. This results largely out of the inability to access low-

level hardware (e.g. Camera and Microphone) with MirrorAPI as the target platform.

Internally, the system is kept to a minimum with regard to complexity, as it is merely a Thin-

Client (see section 4.2.3 above). All hardware access is handled through the provided Google-

APIs (e.g. (Google Inc. 2014e) and (Google Inc. 2014f)) and the communication is handled in

separate classes which provide Callback-Events for the GUI to be able to react to incoming

messages (e.g. Video).

5.1.3 Communication

The server’s and the client’s communication implementation are very similar and completely

encapsulated in their own classes. For reasons of simplicity, only the server implementation

will be explained in the following. However, the client implementation is very similar and can

be found fully explained in the code documentation.

The message protocol that provides the basis for the communication described in this section

has been outlined in great detail in section 4.6.1.2 above.

Figure 39: An UML Class Diagram providing an overview over the TCP / UDP-Server-Classes and the Messaging architecture.

Implementation – Proof-of-Concept

96

Figure 39 provides a compact overview over the classes involved in the communication. The

most interesting part is the Message class. Its most notable member would be the

asByteArray virtual method, along with all the constructors of the inheriting child classes,

which accept byte arrays as well. This allows for the server to implement a Send(Message

msg) method that internally can extract the data of a Message by using its capability to export

itself to a byte array. This enables the server to handle new messages, without having to

implement various different Send-Methods.

Another notable method is the ServerLoop()-Method in TCPServer. As soon as the

connection is established, the server listens in an endless loop on the TCP-Channel in order to

receive TCP-Packets containing Message-Data (which is then assembled inside of the loop and

passed through a Callback-Method to the UI), until Stop() is called.

In addition to this, the UDPBeacon-Class can be seen. It is used in the beginning of the

ServerLoop()-Method of the TCP-Server to broadcast its position as outlined in section

4.6.1.1 above.

5.1.3.1 Third Party Libraries

For the development of the Glass Client application no Third-Party-Libraries were utilized.

Glass Server does rely on two external libraries which will be listed below along with their

licenses and purpose:

• AForge.NET

Used for Camera access and handling on the PC-side. It is licensed under LGPL v3 (Free

Software Foundation 2007) and can be found at: http://www.aforgenet.com/ [last

accessed: 2014-04-27]

• NAudio

Used for Microphone access and handling on the PC-side. It is licensed under Ms-PL

(Microsoft Corporation 2007) and can be found at http://naudio.codeplex.com/ [last

accessed: 2014-04-27]

Implementation – Proof-of-Concept

97

5.2 CAPABILITIES

This section provides an overview over what the Proof-of-Concept currently is able to provide

in terms of functionality. In this section the features of the overall system will be described as

a whole, without specific differentiation between its server and client part.

5.2.1 Glass to Server Video Transmission

The Proof-of-Concept is able to provide a constant video stream from the

device (Google Glass) to the server application. The stream can be altered

in its quality either by using pre-defined settings like “Low Quality”

(320x240x50, the last parameter denotes the image quality), “Medium

Quality” (640x480x75) and “High Quality” (1280x720x75), or by using

virtually any resolution that is supported by the client device along with

dedicated sliders for Framerate-Limiting and Compression Quality (see

Figure 40). In addition to this, at any point in time the incoming stream can

be recorded using the corresponding button (the recorded file is encoded

using MPEG4 compression).

5.2.2 Glass to Server Picture Transmission

On top of the video transmission outlined in section 5.2.1 above, the Proof-

of-Concept is also capable of providing high-resolution still frames either

during video transmission or during normal operation, obtained through

the camera integrated in Google Glass.

Similar to the video-transmission, the picture quality too can be altered

using either pre-defined settings like “Low Quality” (640x480x50),

“Medium Quality” (1280x720x75), “High Quality” (1920x1080x75) and

“Very High Quality” (2592x1944x75), or by using very similar sliders as the ones outlined in

section 5.2.1 above, along with the choice of every picture-resolution supported by the

camera in the device (see Figure 41). In addition to this, the received picture can be saved

using the corresponding button (in which case it will be saved as lossless PNG).

Figure 40: "Expert"-

Settings for video

transmission.

Figure 41: "Expert"-

Settings for picture

transmission.

Implementation – Proof-of-Concept

98

5.2.3 Glass to Server Audio Transmission

Especially for Virtual Consultations (see section 3.7 above), audio transmission is, in addition

to video and picture, as well a key aspect.

The Proof-of-Concept, in its current form, provides the possibility to stream audio from Glass

to the server in 8000Hz, 16 bit Mono quality. Using the corresponding button, it is possible to

record this audio stream into a 16bit WAV file.

5.2.4 Server to Glass Video and Still Frame Transmission

Similar to the outbound video and picture transmission, it is also possible

to send a continuous video stream or single frames from the server to the

Google Glass Device. The different quality levels provided for both actions

are limited to “Low Quality” (160x90x50), “Medium Quality” (320x180x75)

and “High Quality” (640x360x75).

Higher resolutions are not supported since they cannot be displayed on the

prism integrated in Google Glass, which supports only a maximum of

640x360 pixels (Google Inc. 2014c). By using the “Expert”-View, Framerate-

Limiting and Compression Quality can be controlled as already described in

section 5.2.1 above.

In addition to this, the server application supports any generic webcam device. If the PC

running the application has multiple devices connected (e.g. in case of a laptop: an inbuilt

camera and an external USB-Webcam and possibly even an USB-VGA-Interface), a menu is

provided to switch between these devices (see Figure 42).

Of course, both, the outgoing video stream, as well as any sent pictures, can be saved to the

hard drive using the corresponding buttons (formats are MPEG4 and PNG).

5.2.5 Server to Glass Audio Transmission

Similar to the functionality outlined in section 5.2.3 above, it is also possible to transmit audio

from the server to the client.

Figure 42: "Expert"-

Settings for inbound

video and photo

transmission.

Implementation – Proof-of-Concept

99

The Proof-of-Concept provides the possibility to stream audio from the server to Glass in

8000Hz, 16 bit Mono quality. Using the corresponding button, it is again possible to record

this audio stream into a 16bit WAV file.

5.2.6 Miscellaneous Features

This section contains all features, which are too insignificant to be mentioned in their own

section.

• Indication of current Battery level

The server application is able provide information regarding the current battery status

of the client device. This is indicated by symbols such as and .

• Dedicated Windows

Clicking on the images on the bottom of the server application opens up the image or

video-feed in a dedicated window for closer inspection.

• Zooming-functionality

The windows that can be opened by clicking on the images provide the possibility to

zoom into the picture or video feed.

• Server to Glass Text Messages

As a proof that the system can send arbitrary data between the devices, the possibility

to send text messages has been implemented as well.

Evaluation

100

6 EVALUATION

In this part, the fundamental goal of the thesis will be evaluated: The improvement of medical

processes by introducing Near-Eye Display Devices. The Proof-of-Concept will serve as the

basis for this evaluation. The findings that are described in the following are based on

observations of surgeries conducted with the Proof-of-Concept as a supporting tool and on

interviews (and questionnaires) with the involved stakeholders before and after the surgeries.

As a test case, a Percutaneous Transluminal

Angioplasty (see section 3.3 above) has been

performed and has also been discussed by

Vorraber et al. (2014).

The interventionist used the Proof-of-

Concept to monitor the vital signs of the

patient (see Figure 43).

During the observation and conversations

with the interventionist before and after the

surgery, the following aspects were noted

(and are also, in part, described in the publication by Vorraber et al. (2014)):

• The interventionist relied fully on the Proof-of-Concept and did not use the monitoring

device in the operating room, which was provided as a backup (marked in Figure 43

with a red circle in the background).

• One particular fact that has been mentioned multiple times by the interventionist is

that there are situations, where he has to physically turn away from the monitoring

device (see Figure 43). This causes him to lose the line of sight to the patient’s vital

signs. The Near-Eye Display Device solves this problem by providing the necessary data

in a constant spot within the wearer’s field of view.

• Another interesting aspect was that the interventionist, who had already finished the

process and went to a different room to fill out a questionnaire, suddenly noticed a

different pattern within the vital signs which he still was monitoring in the corner of

his eye and re-entered the operating room to check on his patient.

Figure 43: Percutaneous Transluminal Angioplasty. The

interventionist faces situations where he has no direct view to

the patient or his vital signs. Near-Eye Display Devices allow

for continous monitoring. (Vössner 2014) Circles have been

added.

Evaluation

101

• The pattern that has been mentioned before has also been described as a very

important factor. The medical staff, across the board, stressed the importance of

patterns and pattern recognition. Rather than constantly reading values, surgeons

seem to rely strongly on patterns on medical devices. A change is immediately noticed

and reacted upon. This advocates the use of interfaces that do not change the way

surgeons are used to seeing their data.

In conclusion, this test case showed that Near-Eye Display Devices do, in fact, have the

potential to increase efficiency and safety. However, the data cannot diverge significantly

from its usual visual appearance as the surgeons rely strongly on this presentation. Thus, with

regard to providing visual information, it seems that only the channel may be changed, not its

content or its visual representation.

Future Work and Conclusion

102

7 FUTURE WORK AND CONCLUSION

In the short confines of a Master’s Thesis it is difficult to completely grasp the scope of a big

project, especially one that is to be used in medical environments. Below, a number of

suggestions, current shortcomings and future ideas will be discussed.

7.1 DATA SECURITY AND STANDARDS CONFORMITY

Whereas technical aspects have been discussed extensively throughout the course of this

thesis, other factors such as security and standards-conformity have been only touched upon

briefly.

In most countries there are strict standards with regard to medical appliances and software,

especially concerning data security and privacy. The latter was already an implicit part of this

project through the isolated custom network communication, which does not have the need

for the data to leave the network of the hospital. In use cases like remote consultation, well-

established techniques like VPN-Networks can be used to ensure data security and integrity

by establishing a secure network over the internet. Especially when the system is extended

via interfaces to the Hospital Information System, laws and standards must be followed to the

letter and strong encryption might become necessary to protect patient data.

7.2 FURTHER USE CASES AND FUNCTIONALITY

This thesis mainly focused on five use cases. However, there is tremendous potential for Near-

Eye Display Devices. A few ideas that have come up during the creation of this thesis in

discussions and research include:

• Triggering functionality with hardware controls: A surgeon could take a picture with a

Bluetooth-Footpedal or a remote control.

• Providing static patient data (e.g. Electronic Health Records) to the medical staff for

use in ward rounds. The Beth Isreal Deaconess Medical Center in Boston is currently

exploring such possibilities. (Halamka 2014)

• Utilizing eye tracking to indicate where the wearer was looking on picture and video

streams. This feature is not yet integrated in Google Glass. However, it seems

Future Work and Conclusion

103

reasonable to assume that such a feature will eventually be implemented (the

corresponding patent has already been filed (Raffle, Wong et al. 2012)).

• Similar to the static data outlined in the Electronic Health Records use case above,

planning-pictures might be interesting as well, especially with regard to aesthetic

surgery.

• Another interesting aspect would be the observation of students in late phases of their

training. The possibility to observe and intervene via an audio link might provide a

useful method to judge the students’ abilities without alienating him by the physical

presence of the examiner, as currently explored by Vallurupalli et al. (2013).

7.3 EXTENSION OF PROOF-OF-CONCEPT

The Proof-of-Concept that has been developed during the course of this Master’s Thesis is not

a complete system. The primary goal behind the development of the proof was to show the

feasibility of the ideas behind the system and the use cases.

In addition to the full development of the system, the proof can also be improved in terms of

efficiency. Opportunities for such improvement would, for example, be the communication

stack and image compression.

Currently, almost all (with the UDP-Beacon and therefore the initial connection-handshake as

an exception) communication is done over TCP. However, especially the data intensive parts

(images, video and audio) could be transmitted over a secondary UDP-based channel. TCP

ensures that every bit arrives at the corresponding device, but it does it at a cost of efficiency.

UDP does not have this feature and is therefore generally better suited to transmit video and

audio data. One could even go as far as implementing a complete video streaming protocol

like RTP / RTSP either directly for the transmission between Glass Client and Glass Server (and

therefore open up the possibility for non-system clients to receive the stream as well) or for

transmission to other clients with Glass Server as the source (thus keeping the connection

between Glass Client and Glass Server exclusive).

Video is currently encoded as Motion JPEG (MJPEG), which means that images are only

compressed with regard to their content but not with regard to how the content changes over

time. Implementing a different compression standard (e.g. MPEG4) would almost certainly

Future Work and Conclusion

104

lead to an improvement in terms of efficiency and overall performance, provided that this

compression does not pose too much stress on the integrated hardware in the Near-Eye

Display Device. With that in mind, even a two-factor compression would be a possibility, using

simple compression algorithms for the transmission of data between Glass Client and Glass

Server and advanced compression (and even encryption) algorithms for transmission to other

clients, e.g. over the Internet.

7.4 INTERFACING WITH ALREADY ESTABLISHED SYSTEMS

Virtually all hospitals have some kind Hospital Information System which builds the backbone

of the information flow between all processes and appliances utilized in the hospital.

In case of the Krankenhaus der Elisabethinen GmbH Graz, this system is called KIS (short for

“Krankenhausinformationssystem”). During interviews with various stakeholders, it became

apparent that interfacing with this system would be a welcomed feature. One stakeholder

went even as far as proposing a complete encapsulation of the resulting system inside this

Hospital Information System. This might, however, prove to be very complicated or even

impossible to do. However, interfacing with the system itself should in theory be possible. One

example would be the transmission of high-resolution photos the surgeon takes during a

surgery to the system which then stores them alongside other patient data. Various medical

appliances (e.g. the endoscope) currently in use during surgeries offer similar functionalities,

hinting at the possibility that there are standards and protocols that could be used to support

such a feature.

7.5 CONCLUSION

Requirements Engineering is a very central part of this thesis. One may argue that the

traditional (linear) approaches of Requirements Engineering are not used any more in modern

software development projects. However, this seems untrue, as there are project-types,

especially big ones, which still benefit from thorough planning in the beginning of, and even

more so from iterative planning during the development process, as has been outlined in

section 2.7.4. Agile Development Methods do, to some extent, provide better tools for specific

projects. In addition to this, there seems to be even a grey area, where superiority of agile and

Future Work and Conclusion

105

traditional approaches cannot be identified clearly. In these cases, a mixture of both might be

advisable (see sections 2.7.2 and 2.7.3).

With the tools provided by (incremental) Requirements Engineering, a system has been

designed and a prototype has been developed to prove its viability. At its center, five specific

use cases have been identified which were developed by working closely with the people

involved in medical processes. The Proof-of-Concept has then been tested with a subset of

these use cases (see section 6 above) to validate the requirements that have been previously

negotiated with all involved stakeholders (see section 3.9 above). The platform behind the

system and the Proof-of-Concept is Google Glass.

Google Glass as a platform, or even similar devices by other manufacturers, hold enormous

potential for process improvement in various different environments. The limited set of use

cases and the system designed in this thesis are just a small part of all the ideas that are

potentially interesting.

With Google as the technology giant behind the development of such Near-Eye Display

Devices, it seems reasonable to assume that there will be a lot of development in the coming

months and years. Even if Google Glass does not succeed (or does so only in specific branches),

there almost certainly will be other devices because of the push Google is making at the

moment. The system, processes and use cases discussed in this thesis can be implemented for

various different devices. Merely the technical implementation of the Proof-of-Concept has

been developed specifically for Google Glass, but is portable to other platforms with moderate

time and effort as well.

The central idea behind this kind of device is to simplify well established routines and there is

definitely potential for such improvement with regard to medical processes as well, as has

become apparent in the various interviews and observations with medical personnel

throughout the course of this thesis.

In conclusion, it can be said that Near-Eye Display Devices do, in fact, yield potential for

process improvement, including medical processes. There is still a lot of work to do until a final

system can be implemented and brought into daily medical routine, as there are certain

aspects which have to be brought into consideration (especially legal aspects, security aspects,

proprietary interfaces, etc.). The aim of this thesis was to explore possibilities for such

Future Work and Conclusion

106

improvement and to prove that a solution with Google Glass as its platform is a viable

possibility. However, since there is such a huge potential behind the platform and the

processes involved, there are many other use cases that are worth exploring (see section 7.2

above) in the future. It is my personal opinion that Near-Eye Display Devices such as Google

Glass and its successors will have a similar impact on existing processes as the Smart Phone

did, when it first gathered significance around the year 2007.

References

I

8 REFERENCES

ALFOR, M.W. and LAWSON, J.T., 1979. Software Requirements Engineering Methodology

(Development).

BALZERT, H., BALZERT, H., KOSCHKE, R., LÄMMEL, U., LIGGESMEYER, P. and QUANTE, J., 2009.

Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. 3rd ed.

Spektrum Akademischer Verlag.

BECK, K., 1999. Extreme Programming Explained. Addison-Wesley.

BECK, K., BEEDLE, M., BENNEKUM, A.V., COCKBURN, A., CUNNINGHAM, W., FOWLER, M.,

GRENNING, J., HIGHSMITH, J., HUNT, A., JEFFRIES, R., KERN, J., MARICK, B., MARTIN, R.C.,

MELLOR, S., SCHWABER, K., SUTHERLAND, J. and THOMAS, D., 2001. Manifesto for Agile

Software Development. Available from: <http://www.agilemanifesto.org/>. [05 March 2014].

BOEHM, B.W., 1981. Software Engineering Economics. Prentice-Hall.

BROOKS, F.P., Jr., 1987. No Silver Bullet Essence and Accidents of Software Engineering.
Computer, 20(4), pp. 10-19.

CARRILLO DE GEA, J.M., NICOLAS, J., ALEMAN, J.L.F., TOVAL, A., EBERT, C. and VIZCAINO, A.,

2011. Requirements Engineering Tools. IEEE Software, 28(4), pp. 86-91.

COPELAND, L., 2001. Extreme Programming. [online] Available at:

<http://www.computerworld.com/s/article/66192/Extreme_Programming> [Accessed 22
April 2014].

DAVIS, A.M., 2010. Requirements Bibliography. [online] Available at:
<http://www.reqbib.com/index.htm> [Accessed 12 May 2014].

DICOM STANDARDS COMMITTEE, 2011. Digital Imaging and Communications in Medicine

(DICOM). National Electrical Manufacturers Association. [online] Available at:
<http://medical.nema.org/standard.html> [Accessed 10 May 2014]

DORFMAN, M., BYRNE, E.R., GARCIA, S.M., HARWELL, R.M., MILLER, L., SABOR, B., SWEENEY,

T.P. and WHITE, S., 1994. Requirements engineering standardization, Proceedings of the First

International Conference on Requirements Engineering 1994, pp. 57-63.

DORFMAN, M. and THAYER, R.H., 1990. Standards, guidelines, and examples on system and

software requirements engineering. IEEE Computer Society Press.

FREE SOFTWARE FOUNDATION, 2007. GNU Lesser General Public License (Version 3). [online]
Available at: <http://www.gnu.org/licenses/lgpl.html> [Accessed 27 April 2014].

References

II

GLINZ, M., 2007. On Non-Functional Requirements, 15th IEEE International Requirements

Engineering Conference 2007, pp. 21-26.

GLINZ, M. and WIERINGA, R.J., 2007. Guest Editors' Introduction: Stakeholders in
Requirements Engineering. IEEE Software, 24(2), pp. 18-20.

GOOGLE GLASS TEAM, 2014. #GlassUpdates are back with KitKat for Glass, photo bundles &

more. [online] Available at: <https://plus.google.com/+GoogleGlass/posts/gNS3JvHEdvV>
[Accessed 03 May 2014].

GOOGLE INC., 2014a. Tech specs. [online] Available at:
<https://support.google.com/glass/answer/3064128>. [Accessed 01 April 2014].

GOOGLE INC., 2014b. Add a cat to that. [online] Available at:

<https://developers.google.com/glass/develop/mirror/stories#add_a_cat_to_that>.
[Accessed 27 April 2014].

GOOGLE INC., 2014c. Immersions. [online] Available at:
<https://developers.google.com/glass/develop/gdk/immersions>. [Accessed 27 April 2014].

GOOGLE INC., 2014d. The Glass Explorer Program. [online] Available at:
<http://www.google.com/glass/start/how-to-get-one/>. [Accessed 01 April 2014].

GOOGLE INC., 2014e. ADK Camera API. [online] Available at:

<http://developer.android.com/reference/android/hardware/Camera.html>. [Accessed 23
April 2014].

GOOGLE INC., 2014f. ADK AudioRecord API. [online] Available at:

<http://developer.android.com/reference/android/media/AudioRecord.html>. [Accessed 23
April 2014].

GOOGLE INC., 2013a. Glass Development Kit. [online] Available at:
<https://developers.google.com/glass/develop/gdk/index>. [Accessed 18 April 2014].

GOOGLE INC., 2013b. Location and Sensors. [online] Available at:

<https://developers.google.com/glass/develop/gdk/location-sensors>. [Accessed 18 April
2014].

GOSSMAN, J., 2005. Introduction to Model/View/ViewModel pattern for building WPF apps.

[online] Available at:

<http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx>. [Accessed 29
April 2014].

HABERFELLNER, R., DE WECK, O.L., FRICKE, E. and VÖSSNER, S., 2012. Systems Engineering:

Grundlagen und Anwendung. 12th ed. Orell Füssli.

References

III

HALAMKA, J., 2014. Wearable Computing at BIDMC. [online] Available at:

<http://geekdoctor.blogspot.co.at/2014/03/wearable-computing-at-bidmc_12.html>.

[Accessed 22 April 2014].

HEALTH LEVEL SEVEN INTERNATIONAL, 2013. Health Level Seven International. [online]

Available at: <http://www.hl7.org/> [Accessed 04 May 2014]

IEEE STANDARDS BOARD, 1990. IEEE Standard Glossary of Software Engineering Terminology.

Institute of Electrical and Electronics Engineers.

IREB E.V., n.d.. Mission. [online] Available at: <http://www.ireb.org/mission.html> [Accessed
12 May 2014].

KANO, N., SERAKU, N., TAKAHASHI, F. and TSUJI, S., 1984. Attractive Quality and Must-Be
Quality. Journal of the Japanese Society for Quality Control, 14(2), pp. 39-44.

KRANKENHAUS DER ELISABETHINEN GMBH, 2013. Videoassistierte Simulation von Notfällen

im OP. [video online] Available at: <http://www.elisabethinen.at/ger/Filme/Filmbeitrag-

SALUS-Preisverleihung-2013> [Accessed 04 May 2014].

LAN, C. and RAMESH, B., 2008. Agile Requirements Engineering Practices: An Empirical Study.
IEEE Software, 25(1), pp. 60-67.

LAN/MAN STANDARDS COMMITTEE OF THE IEEE COMPUTER SOCIETY, 2003. IEEE Standard

for Information Technology - Telecommunications and Information Exchange Between

Systems - Local and Metropolitan Area Networks - Specific Requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical

Layer Extension in the 2.4 GHz Band. Institute of Electrical and Electronics Engineers.

LAN/MAN STANDARDS COMMITTEE OF THE IEEE COMPUTER SOCIETY, 2000. Supplement to

IEEE Standard for Information Technology - Telecommunications and Information Exchange

Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-

Speed Physical Layer Extension in the 2.4 GHz Band. Institute of Electrical and Electronics

Engineers.

MICROSOFT CORPORATION, 2013. Work in sprints. [online] Available at:
<http://msdn.microsoft.com/en-us/library/vstudio/ee191595.aspx> [Accessed 28 April 2014].

MICROSOFT CORPORATION, 2007. Microsoft Public License (Ms-PL). [online] Available at:
<http://www.microsoft.com/en-us/openness/licenses.aspx> [Accessed 27 April 2014].

NICELY, T.R., 1994. Bug in the Pentium FPU. [online] Available at:
<http://www.trnicely.net/pentbug/bugmail1.html> [Accessed 04 May 2014].

PAETSCH, F., EBERLEIN, A. and MAURER, F., 2003. Requirements engineering and agile

software development, Twelfth IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises 2003, pp. 308-313.

References

IV

PARTSCH, H.A., 2010. Requirements-Engineering Systematisch. Springer Berlin Heidelberg.

POHL, K. and RUPP, C., 2011. Requirements Engineering Fundamentals. Rocky Nook.

RAFFLE, H.S., WONG, A. and GEISS, R., GOOGLE INC. 2012. Unlocking a screen using eye

tracking information. U.S. Pat. 8,235,529.

RALPH, P., 2013. The illusion of requirements in software development. Requirements

Engineering, 18(3), pp. 293-296.

RASIEL, E.M., 1999. The McKinsey Way. McGraw-Hill.

ROBERTSON, S. and ROBERTSON, J., 2006. Mastering the Requirements Process. 2nd ed.
Addison-Wesley Professional.

RUPP, C. and SOPHISTEN, 2009. Requirements-Engineering und -Management: Professionelle,

Iterative Anforderungsanalyse für die Praxis. 5th ed. Carl Hanser Verlag München Wien.

SACHS, M. 2014a. Laparoscopic Cholecystectomy. [photograph] (Internal Collection)

SACHS, M. 2014b. Laparoscopic Cholecystectomy, Room. [photograph] (Internal Collection)

SCHWABER, K. and SUTHERLAND, J., 2013. The Scrum Guide. [pdf] Available at:

<https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf>
[Accessed 04 May 2014].

SCHWABER, K., 1997. SCRUM Development Process. In: J. SUTHERLAND, C. CASANAVE, J.

MILLER, P. PATEL and G. HOLLOWELL, eds. 1997. Business Object Design and Implementation:
OOPSLA'95 Workshop Proceedings: Springer London, pp. 117-134.

STARNER, T., 2013. Project Glass: An Extension of the Self. IEEE Pervasive Computing, 12(2),
pp. 14-16.

STECKLEIN, J.M., DABNEY, J., DICK, B., HASKINS, B., LOVELL, R. and MORONEY, G., 2004. Error

Cost Escalation Through the Project Life Cycle. [pdf] NASA Technical Reports Server (NTRS).

Available at: <http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf>
[Accessed 07 May 2014].

STUDIOKONZEPT MEDIENTECHNIK GMBH, 2012. SIMStation Product Sheet. [pdf] Available at:
<http://www.simstation.eu/media/SIMStation.pdf> [Accessed 23 April 2014].

THOMAS, B.H. and SANDOR, C., 2009. What Wearable Augmented Reality Can Do for You. IEEE

Pervasive Computing, 8(2), pp. 8-11.

TORBORG, S. and SIMPSON, S., 2014. What's Inside Google Glass?. [online] Available at:

<http://www.catwig.com/google-glass-teardown/> [Accessed 28 April 2014].

References

V

VALLURUPALLI, S., PAYDAK, H., AGARWAL, S.K., AGRAWAL, M. and ASSAD-KOTTNER, C., 2013.

Wearable technology to improve education and patient outcomes in a cardiology fellowship

program - a feasibility study. Health and Technology, 3(4), pp. 267-270.

VERSIONONE INC., 2014. State of Agile Survey.

VORRABER, W. and NEUBACHER, D., 2014. Besprechungsprotokoll: Abstimmungsbesprechung

User Group (Internal Report).

VORRABER, W., VÖSSNER, S., STARK, G., NEUBACHER, D., DEMELLO, S. and BAIR, A., 2014.

Towards human-centered medical information services using near-eye display devices such as
Google Glass. Submitted to: Journal of Medical Systems.

WELDI, M., 2014. Surgery. [photograph] Internal Collection.

WALDMANN, B., 2011. There's never enough time: Doing requirements under resource

constraints, and what requirements engineering can learn from agile development, 19th IEEE

International Requirements Engineering Conference 2011, pp. 301-305.

VÖSSNER, S., 2014. Percutaneous Transluminal Angioplasty. [photograph] Internal Collection.

ZIMMERMANN, H., 1980. OSI Reference Model-The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications, 28(4), pp. 425-432.

List of Figures

VI

9 LIST OF FIGURES

Figure 1: The relative cost to fix an error during different project development phases (figure

modified from (Boehm 1981)). .. 2

Figure 2: Google Glass Explorer Edition. The device which serves as the mobile platform for

development during this thesis. ... 3

Figure 3: The three fundamental parts of this thesis, along with a more detailed sub-division

into five essential sections. .. 5

Figure 4: Requirements Engineering publications per year (figure modified from (Partsch 2010)

which has been built utilizing the data provided by (Davis 2010)). ... 9

Figure 5: KANO-Model (figure modified from (Pohl, Rupp 2011)). ... 11

Figure 6: System, Context and Environment (figure modified from (Pohl, Rupp 2011)). 14

Figure 7: Typical MECE-Tree. The term at the top is split into an exhaustive list of non-

overlapping sub-elements. ... 21

Figure 8: Requirements formula used in this thesis (figure modified from (Rupp, SOPHISTen

2009)). .. 22

Figure 9: Typical sequence diagram as used for Requirements Engineering by Partsch (2010).

 .. 22

Figure 10: The inter-relationship between the elements of XP (figure modified from (Beck

1999)). .. 31

Figure 11: Scrum (and its variants) are the most adopted agile development approaches

according to the State of Agile Survey (figure modified from (VersionOne Inc. 2014)). 32

Figure 12: Exemplary Burndown Chart - a central SCRUM tool that appears in many tools which

support Scrum (e.g. Visual Studio 2013 (Microsoft Corporation 2013)) 34

Figure 13: The five Use Case Classes along with their real-world counterparts this thesis

focuses on. .. 39

Figure 14: Percutaneous Transluminal Angioplasty performed with Google Glass. The surgeon

receives real time patient data onto his Near-Eye Display Device (Vorraber, Vössner et al.

2014). .. 42

Figure 15: Percutaneous Transluminal Angioplasty AS-IS-Process Analysis (BPMN excerpt) . 44

Figure 16: BPMN Color Legend. ... 44

List of Figures

VII

Figure 17: Through the introduction of Near-Eye Display Devices, the interventionist cannot

lose line of sight to the patient’s vital signs anymore (right). .. 46

Figure 18: Surgeon and assisting personnel focusing on the endoscopic image during a

Laparoscopic Cholecystectomy (Sachs 2014a). .. 47

Figure 19: Schematic overview of the operating room during a Laparoscopic Cholecystectomy.

 .. 48

Figure 20: The screen positioning in the operating room during a Laparoscopic

Cholecystectomy at the Hospital of Elisabethinen (Sachs 2014b). .. 48

Figure 21: Laparoscopic Cholecystectomy AS-IS Process Analysis (BPMN exerpt).................. 49

Figure 22: The introduction of a Near-Eye Display Device to the process of a Laparoscopic

Cholecystectomy reduces the number of necessary shifts with regard to the surgeon’s point

of view. ... 51

Figure 23: Open surgeries, especially with minimal incisions are often too narrow to be clearly

visible (especially) to the assisting personnel. (Weldi 2014) ... 52

Figure 24: Sketch of the operating room during an Open Cholecystectomy. 53

Figure 25: Open Cholecystectomy AS-IS-Process Analysis (BPMN excerpt) 54

Figure 26: The assisting personnel can improve their assistance by utilizing the unique point

of view of the surgeon. This allows them to avoid having to rely solely on their limited

perspective of the operating field. ... 56

Figure 27: Current recording setups often include only stationary cameras (Krankenhaus der

Elisabethinen GmbH 2013). .. 57

Figure 28: Surgery Simulation Training AS-IS-Process Analysis (BPMN excerpt). 59

Figure 29: Open Cholecystectomy with Consultation AS-IS Process Analysis (BPMN excerpt)

 .. 62

Figure 30: Exploded Google Glass Explorer Edition, CC BY-NC-SA 3.0 (Torborg, Simpson 2014).

Feature outlines have been added. ... 73

Figure 31: Criteria Satisfaction Legend. ... 77

Figure 32: Schematic overview over the (minimal) overall System. .. 79

Figure 33: Schematic overview over the elements of System, Context and Environment, based

on the classification scheme by Rupp et al. (2009) .. 80

Figure 34: Schematic overview over the relation between View, Model and ViewModel in the

MVVM-Pattern as it is described by Gossman (2005). .. 83

List of Figures

VIII

Figure 35: Schematic overview over the Glass Messaging Protocol connection establishment.

 .. 87

Figure 36: Contents of the UDP-Beacon Packet ... 88

Figure 37: Schematic representation of the messages in the Glass Messaging Protocol. 89

Figure 38: Screenshot of the Glass Server Proof-of-Concept. ... 94

Figure 39: An UML Class Diagram providing an overview over the TCP / UDP-Server-Classes

and the Messaging architecture... 95

Figure 40: "Expert"-Settings for video transmission. ... 97

Figure 41: "Expert"-Settings for picture transmission. .. 97

Figure 42: "Expert"-Settings for inbound video and photo transmission. 98

Figure 43: Percutaneous Transluminal Angioplasty. The interventionist faces situations where

he has no direct view to the patient or his vital signs. Near-Eye Display Devices allow for

continous monitoring. (Vössner 2014) Circles have been added. .. 100

List of Tables

IX

10 LIST OF TABLES

Table 1: Use Case classification scheme proposed by Vorraber et al. (2014). 40

Table 2: Classification of the Percutaneous Transluminal Angioplasty use case using the

classification scheme proposed by Vorraber et al. (2014). .. 43

Table 3: Specific Percutaneous Transluminal Angioplasty use case, using the scheme proposed

by Rupp et al. (2009). ... 45

Table 4: Classification of the Laparoscopic Cholecystectomy use case using the classification

scheme proposed by Vorraber et al. (2014). ... 48

Table 5: Specific Laparoscopic Cholecystectomy use case, using the scheme proposed by Rupp

et al. (2009). ... 50

Table 6: Classification of the Open Cholecystectomy use case using the classification scheme

proposed by Vorraber et al. (2014). ... 53

Table 7: Specific Open Cholecystectomy use case, using the scheme proposed by Rupp et al.

(2009). .. 55

Table 8: Classification of the Surgery Simulation Training use case using the classification

scheme proposed by Vorraber et al. (2014). ... 58

Table 9: Specific Surgery Simulation Training use case, using the scheme proposed by Rupp et

al. (2009). .. 60

Table 10: Classification of the Open Cholecystectomy with Consultation use case using the

classification scheme proposed by Vorraber et al. (2014). .. 61

Table 11: Specific Virtual Consultations use case, using the scheme proposed by Rupp et al.

(2009). .. 64

Table 12: Definitions of the terminology used in sections 3.9.3 - 3.9.5. 68

Table 13: Google Glass Explorer Edition Features, classified. .. 73

Table 14: Comparison of different system architecture alternatives. 77

Table 15: Possible handshake concepts along with their advantages and disadvantages. 86

Table 16: The different fields in a GMP-message and their content. 88

Table 17: The different message types and their payload. .. 90

Appendix

X

11 APPENDIX

11.1 BPMN DIAGRAMS
In this section a legend for the BPMN diagrams used in the Master’s Thesis will be provided.

In addition to this, the full diagrams to the excerpts used throughout the document will be

included.

11.1.1 BPMN Legend

For the BPMN diagrams, the standard elements have been used. However, in order to convey

additional information, specific colors have been used. These will now be explained:

• Swim Lanes occur in two distinct colors:

o Red indicates unsterile actors

o Blue indicates sterile actors

• Actions may occur in yellow, indicating potential for

process improvement through the introduction of Near-

Eye Display Devices.

Appendix

XI

11.1.2 Percutaneous Transluminal Angioplasty

Appendix

XII

11.1.3 Laparoscopic Cholecystectomy

Appendix

XIII

11.1.4 Open Cholecystectomy

Appendix

XIV

11.1.5 Surgery Simulation Training

Appendix

XV

11.1.6 Open Cholecystectomy with Consultation

