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Abstract

In this master thesis recent findings about the function and behaviour of
layer 5 pyramidal neurons are outlined. The main focus lies on a secondary
spiking mechanism, the calcium spike, and how it is able to boost the com-
putational properties of single pyramidal neurons.
The practical part will deal with the design and implementation of a simple
layer 5 pyramidal neuron with additional compartments modelling two
dendritic areas separately. These areas are able to influence each other via
active signal propagation. Further an internal calcium spiking mechanism
is added, which triggers an output burst.
The model behaviour is further compared with experimental results and
showed to reproduce the results obtained by [Larkum, 2013]. Some addi-
tional simulations are carried out, which show how hidden parameters can
be automatically obtained from the model behaviour and how the bursting
mechanism can be used for learning.
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Kurzfassung

In dieser Masterarbeit werden die neuesten Entwicklungen und Erkennt-
nisse über die Funktion und das Verhalten von Layer 5 Pyramidenneuronen
vorgestellt. Der Hauptfokus liegt hierbei bei dem sekundären Spiking Mech-
anismus, dem Kalzium Spike, und dessen Auswirkungen auf die Rechen-
leistung und Komplexität von einzelnen Pyramidenneuronen.
Der praktische Teil der Arbeit beschäftigt sich mit dem Design und der Im-
plementierung von einfachen Layer 5 Pyramidenneuronen mit zusätzlichen
Compartments, welche zwei dendritische Regionen getrennt modellieren.
Diese Compartments sind in der Lage, sich gegenseitig über aktive Signal-
propagierung zu beeinflussen. Außerdem verfügt das Modell über einen
internen Kalzium Spike Mechanismus, welcher einen Burst an Spikes am
Ausgang auslösen kann.
Das Modell wird zuletzt mit experimentellen Resultaten verglichen und
es zeigte sich dass die Resultate von [Larkum, 2013] reproduziert werden
konnten. Zusätzlich werden Simulationen angeführt, die zeigen wie ver-
steckte Parameter des Modells automatisch extrahiert werden können und
wie der Bursting Mechanismus für das Lernen von synaptischen Gewichten
verwendet werden kann.
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1 Introduction

1.1 About Pyramidal Neurons

Pyramidal neurons, named after the pyramidal shape of their soma, are
found in the cerebral cortex, the hippocampus and the amygdala of all
mammalians studied so far [Scholarpedia, 2013b]. Layer 5 (L5) pyramidal
neurons have an apical as well as a basal dendritic tree, where the apical
dendrites extend up to layer 1 [Murayama and Larkum, 2009] [Larkum
et al., 2001]. This dendritic structure allows pyramids to receive a complex
set of inputs from all cortical layers. The axon of a pyramidal cell can even
extend further reaching both intra-cortical and subcortical areas [Manns
et al., 2004]. A typical sketch of a L5 pyramidal cell with outlined cortical
layers on the left can be seen in figure 1.1.
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1 Introduction

Figure 1.1: Typical L5 pyramidal neuron, taken from [Larkum et al., 2001]. The assigned
layers are plotted on the left. The drawing shows the cell body in layer 5 with
the apical dendritic tree going up to layer 1.

As 70% to 80% of the cortex consists of pyramids, they are proposed to be
the main determining factor for the superior performance of the cortex in
comparison to other brain regions [Larkum, 2013].
To date the cortex is believed to contribute to effects such as perceptual
learning and memory [Squire, 2004], and even consciousness [Crick and
Koch, 1998] [Merker, 2007]. Although Merker lined out the Sprague effect,
which could prove that the neocortex simply acts as a medium for higher
perceptual functions such as attention and consciousness and that the evo-
lutionary older regions of the brain, namely the midbrain and brainstem
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1 Introduction

areas are the main functional core which just uses the cerebral cortex as a
storage and calculation unit. Nevertheless they acknowledge that the cortex
is still an essential unit for consciousness.

As Larkum et al. [Larkum, 2013] already lined out, pyramidal neurons are
the most ubiquitous neuron type in the cortex. Elston [Elston, 2003] further
investigates the role of different pyramidal neuron structure on functional
segregation in cortical areas. The paper shows evidence that the complex-
ity of pyramidal neurons, including the size of their axonal and dendritic
connections, their branching pattern and the number and distribution of
synaptic inputs, varies across different functional areas, such as the pre-
frontal cortex and the visual processing areas V1 and V2. It is therefore
suggested that, although all cortical areas consist mostly of pyramids, the
specialized structure of the cells determines function.
This view can be combined with an in vitro experiment on mice carried
out to project slightly different L5 pyramidal neuron morphology to their
axonal target region. The experiment showed that pyramids connecting
to outer-cortical regions show varying features including dendritic branch
counts and the width of dendritic tufts depending on their projection area
[Hattox and Nelson, 2007].

The importance of an exact modelling of pyramidal neuron structures was
also demonstrated for memory tasks. Poirazi et al. showed that memory
could be explained not only by means of synaptic plasticity, but also by the
addressing of synaptic inputs on the dendritic tree. Various experiments
in vitro and in vivo mentioned in the paper have shown that axonal and
dendritic structures are able to change and emerge within minutes. More-
over, the advantages of a compartmental model are lined out, as multiple
separate integration units in the dendrites are able to account for a much
higher memory capacity compared to single summation units [Poirazi and
Mel, 2001].
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1 Introduction

1.2 Current Modelling Problems

The current problems in modelling the behaviour of pyramidal neurons can
be attributed to a large extend on the little understanding of their physi-
ology. Many papers have already raised the necessity of differentiating at
least between complex pyramidal cells, which are most common (up to 89%)
in the prefrontal cortex and simple pyramidal cells, which are common
in the primary visual cortex [Wang et al., 2006]. As is reviewed in section
3.1.6, not only the plasticity, but the whole transfer function and behaviour
(depression or facilitation) of synapses between interneurons and pyramids
and in between pyramids can change within minutes. Combined with the
fact that pyramidal neurons have 10.000-100.000 excitatory synapses and
1.000-10.000 inhibitory synapses [Spruston, 2008] [Scholarpedia, 2013b], but
also see Destexhe et al. [Destexhe and Pare, 1999] who defines 5.000-60.000
synaptic connections, this leads to a great modelling issue which is not
concerned.

In addition to the exact definition of synaptic connections, the distribution
of voltage-gated ion channels has to be taken into consideration. It has been
proven that these channels are the main generating power behind dendritic
spikes. However, there is still no general rule determining the distribution of
these channels in pyramidal neuron dendrites [Häusser et al., 2000]. It could
only be proven that their distribution changes during the brain development
and that they can be influenced and modulated by neurotransmitters.

Apart from the obvious missing features Körding and König explained that
simplifications of neuron models are necessary, as the simulation of large
networks with full-detailed neuron models are impossible with modern
computational resources [Körding and König, 2001]. Nevertheless they
argue that minor changes in neuronal models, like stepping away from the
standard point neuron model and including a secondary integration area in
dendrites, can still be simulated in large networks. A second integration site
would increase the computational power of neurons, allowing a larger class
of neural network algorithms to be implemented (see section 3.1.1).
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2 State of the Art

The practical part of this thesis deals with the implementation of a layer
5 pyramidal neuron model with active dendrites. This chapter provides
information about similar models, which have already been implemented.
The first section (2.1) will list some general suggestions which have been
made concerning the structure of pyramidal neuron models. The theoretical
and experimental findings leading to these suggestions are described in
chapter 3.

The subsequent sections will deal with the two most favoured concepts
of pyramidal neuron modelling: The representation as a two-layer neural
network (section 2.2) and as a compartmental model (section 2.3).

2.1 Modelling Principles

A recent review paper ([Major et al., 2013], especially figure 4) provides an
overview of some of the current modelling principles of pyramidal neurons.
Häusser et al. state that, in respect to a dendritic spiking mechanism, it was
observed that action potentials (APs) from the soma do not fully propagate
into the distal dendritic tree. As dendritic spikes still occur without the
backpropagating AP triggering it, it was therefore proposed that at least a
two-compartmental model is needed to account for the different spiking
behaviour. Two compartments, a proximal compartment consisting of the
soma, basal dendrites and axon triggering Na+ (sodium) spikes and a distal
compartment modelling the apical dendrites where fast Na+ and slow Ca2+

(calcium) spikes are initiated.
The paper further states that the coupling between these two zones depends
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2 State of the Art

on the oblique dendrites in between (see section 3.1.5). They therefore pro-
pose a 3-compartment model including a coupling zone [Häusser and Mel,
2003].

Major et al. on the other hand object that the formalization of the neuron in
three compartments ignores the possibility of local computations performed
in thin basal, oblique and tuft dendrites. These computations may be caused
by small sodium spikes or NMDA spikes (see section 3.1.2). They further
state that these effects are partially captured by a 2 or 3-layer feedforward
neural network. However, this formalization would counteract with the
former proposal of backpropagating APs, as no backpropagation can be
modelled in a feedforward network [Major et al., 2013].

2.2 Neural Network Representations

The first paper mentioned here tries to model two sites of synaptic integra-
tion including a second spike initiation zone (dendritic calcium spikes) with
the use of a two-layer neural network.
Based on the experimental results that postsynaptic bursting leads to LTP
[Pike et al., 1999] and that a dendritic calcium spike is able to trigger burst-
ing behaviour (see section 3.1.1) they proposed that the calcium spike is
mostly used for learning. To test their prediction a two-layer neural network
is used, with one input layer defined as a 4x4 or 9x9 raster which defines
the first input stream for the output neuron. The second stream consists of
an inhibitory signal of all other output neurons and is used as a learning
signal.
An additional learning signal is added to the input stream concerning learn-
ing as supervised learning is used. Biologically the second input stream can
be considered as a mixture of the backpropagating potential from the soma
in pyramidal neurons with apical dendritic input while the first layer of the
network can be considered as the input stream for proximal dendrites.
The paper neglects the influence of forward propagating potentials from
apical dendrites to the soma. They justify this simplification, as a forward
propagating voltages would influence the firing rate of the neuron and
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therefore interfere with the output. In this case no separation between a
preferred input-output function and the abstract learning signal can be
made [Körding and König, 2000].

In another approach an error-backpropagating network is used to describe
the two main dendritic trees of pyramidal neurons. Each of the two den-
drites is receiving two input streams, which are summed up linearly and
forwarded to the second layer of the network, representing the soma. The
authors favour an artificial neural network representation over a compart-
mental model as the exact biophysical foundations for a compartmental
representation of the dendrites is unknown. The neural network is used to
teach both dendrites an individual input-output transfer function [Ryder
and Favorov, 2001]. The following figure 2.1 shows a representation of the
proposed model.

Figure 2.1: Neuron model representation as a two-layer neural network, figure taken from
[Ryder and Favorov, 2001]. The two modelled dendrites are shown on the left
and right side of the soma (triangle in the middle). Each dendrite receives
two input streams, which serve as the first layer of the network. The input
streams are afterwards summed up and forwarded to the soma in the center,
representing the second layer of the neural network.

The last neural network representation mentioned here is not based on
cortical layer 5 pyramids, but on hippocampal CA1 pyramidal neurons.

7
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However, this study provides a good example of the mapping of active
dendrites onto an abstract two-layer neural network.
The dendritic tree was therefore separated in several areas based on its
spatial distribution. Each of these areas is treated as a separate thresholded
subunit providing the first layer of the neural network. The output of these
units is afterwards summed and again thresholded to get the whole cell
response. The simulation proved that it produced the same output firing
rate as a compared multi-compartment model with 21 different types of ion
channels [Poirazi et al., 2003].
Based on the theoretical chapter in this thesis the representation of this
model could also be compared to spatially distributed NMDA spikes (see
section 3.1.2.

2.3 Compartmental Models

This section will focus on compartmental models of cortical pyramidal
neurons. Only simple models (consisting of two to three compartments) will
be taken into consideration.

[Larkum et al., 2004] models a two compartmental integrate-and-fire (IAF)
model described by differential equations. A somatic and a dendritic com-
partment was used. The objective was to show that the active properties
of dendrites are used to backpropagate the somatic action potential and
perform a gain modulation along the dendritic path. This modulation in-
creases the influence of distal synaptic inputs, which contribute to the overall
neuron response in return (see section 3.1.4 for a better explanation). The
simulation results could be matched to experimental data.

Jadi et al. also used a two-compartmental model, mapping a somatic and a
dendritic compartment described by differential equations. The two com-
partments were connected, allowing a dendritic current to passively spread
to the somatic compartment. The model was used to show the different
effects of inhibitory synaptic input depending on the location (either tar-
geted at the somatic or the dendritic compartment). They showed that
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the two-compartmental model could reproduce the effects compared to
a complex compartmental model consisting of 268 biophysically detailed
compartments as well as experimental findings in vitro [Jadi et al., 2012].

[Ilan et al., 2011] also used a two-compartment model of a layer 5 pyramid,
this time to demonstrate the effects of calcium spikes on the output func-
tion of the neuron. The model was described using ion channel densities,
short time plasticity was performed using STDP. The simulation especially
focused on the coupling effects in between the somatic and dendritic com-
partment. With correct parameter tuning the results could be matched to
experimental data, showing that the coupling between the compartments
varies over time.

Siegel et al. focused on the simulation of a conductance-based neuron model,
described by a mixture of leaky integrate-and-fire equations and ion-channel
summations. The neuron was split into two main areas, one receiving pro-
claimed top-down input and the other bottom-up (or sensory) input. Their
mathematical formalization allowed the active propagation of potentials
between the compartments. Furthermore, a spiking and bursting thresh-
old is implemented. The model was tuned to reproduce bursting behavior
whenever both input streams were active (as experimental data suggests, see
section 3.1.4). In the absence of highly correlated inputs triggering bursts,
the bottom-up input arriving at the somatic compartment showed to mainly
drive the neurons activity, while the top-down input only had a modulatory
effect on the total spike counts [Siegel et al., 2000].

The last compartmental model described here will also be used to confirm
and tune some parameters of the pyramidal neuron model introduced in
this thesis. Naud et al. 2013 used a two compartmental model of a pyramid,
focussing on reproducing the spiking and bursting behaviour of pyramidal
neurons in vitro.
The two compartments (somatic and dendritic) are both able to receive
current input. They can interact via passively spreading APs and active
propagation [Richard Naud and Gerstner, 2013].

9



3 Theory

The theoretical chapter in this thesis focuses on the latest insights into the
functional properties of Layer 5 (L5) pyramidal neurons. The first section
( 3.1)will deal with the properties of pyramids, discussing various aspects
such as the use of dendrites, the number and location of spike initiation
zones and the computational possibilities resulting from the underlying
functional description.
The second section ( 3.2) will focus on the modelling choices concerning
spiking neurons, in particular on the spike response model which will be
practically used. The description of the L5 pyramidal neuron model will be
introduced in chapter 4. The model will be implemented and included into
the latest NEST simulation environment. The possibilities and restrictions
of the NEST environment will be shortly discussed in section 3.3.

3.1 Pyramidal Neuron Properties

This section describes some of the main properties of layer 5 pyramidal neu-
rons. The discovery of a second spike initiation zone in pyramidal neurons,
the Ca2+ spike, has led to a variety of new theories about the function and
behaviour of pyramidal neurons.
It was further shown that the Ca2+ spike was unable to trigger with single
dendritic input. A preceding backpropagating action potential was necessary
to trigger the mechanism. This theory, named Backpropagation-activated
Ca2+ spike firing (BAC) (3.1.1), can be explained by active dendrites, which
allow the forward- and backward propagation of signals (3.1.3).
In reference to the BAC mechanism some advanced functional possibilities
are discussed here, which include the internal preprocessing and coinci-
dence detection of two information streams in a L5 pyramidal neuron (3.1.4).

10
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The computational power of pyramids can be further enhanced by including
inhibitory synaptic inputs both on distal and proximal dendrites. Some
findings show that inhibitory input, especially directed between the two
spike initiation zones around the oblique dendrites, can alter the functional
properties of pyramids by controlling the coincidence detection mechanism
and the propagation of signals along the dendritic path (3.1.5). The inclu-
sion of a secondary spiking zone and the ability of actively propagating
signals also led the way to more complex plasticity mechanisms, which are
both based on Spike-timing-dependent Plasticity (STDP) and Ca2+-spike
triggered plasticity (3.1.6). At last the possibility of multiple spike initiation
zones in distal dendritic branches is discussed (3.1.2). Figure 3.1 gives an
overview of the current believed spike initiation zones in pyramidal neurons.
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Figure 3.1: Spike initiation zones in pyramidal neurons, figure taken from [Antic et al., 2010].
The figure shows the three spike types discovered in pyramidal neurons. The
NMDA and Ca2+ spike are used for internal information processing, influencing
the main action potential initiation zone in the axon (subplot B3 on the right).
NMDA spikes (subplot B1 on the left) occur in the apical tuft, oblique and
basal dendrites. They have been observed in dendrites which are below a
certain diameter. The influence of the local apical NMDA spikes are summed
up near the main bifurcation point in the apical trunk. In combination with a
backpropagating potential from the oblique and basal synaptic inputs this can
may lead to a calcium spike (subplot B2).
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3.1.1 Calcium Spikes

The existence of dendritic calcium spikes has been widely proven in distinct
classes of neurons. [Hirsch et al., 1995] showed the existence of Ca2+ spikes
in layers 2, 3 and 5 of the cat striate cortex triggered by visual stimulation.
Experiments on L5 pyramidal neurons in the rat neocortex in vitro further
revealed a second spike initiation zone in distal dendrites [Schiller et al.,
1997]. Moreover, the findings suggested an underlying interaction mecha-
nism, as the initiation of the calcium spikes required the co-activation of
multiple receptor channels.
[Helmchen et al., 1999] performed in vivo calcium imaging on anaesthetized
rats targeting L5 pyramids. They compared their findings with L2/3 pyra-
mid recordings, which showed that L5 were capable of producing large
Ca2+ transients caused by attenuated somatic currents. These transients led
to immediate or delayed bursting behaviour.

[Larkum et al., 1999] later defined the term Backpropagation-activated Ca2+

spike firing (BAC). The experiments were performed in L5 pyramidal neu-
rons in the somatosensory rat neocortex in vitro. They showed that Na+

action potentials initiated in the axon back-propagate into the dendritic tree,
causing Ca2+ channels to open. In addition a current was injected into a
distal dendritic branch to test a proposed coincidence mechanism between
backpropagating action potentials (APs) and distal dendritic inputs.
The experiment showed no influence on the main spike initiation zone in the
soma for single backpropagating axonal APs as well as for single dendritic
input. However, a bursting behaviour was recorded in the main somatic
spike initiation zone whenever the dendritic input was applied 3-7ms after
the backpropagating potential. After 10-130ms nevertheless an inhibitory
effect was reported.
The bursting behaviour was defined by the general definition of at least
three APs within 20ms and less than three APs in the preceding 20ms. The
coincident input triggering a Ca2+ spike further caused a characteristic
burst pattern of 2-4 spikes at around 200Hz in the soma [Larkum et al.,
2004], [Larkum, 2013]. As the dendritic calcium spike produced more action
potential output as direct supra-threshold current injection into the cell
body, the papers further suggested that the distal dendritic input dominates

13



3 Theory

the input/output function of the pyramidal cell. Still it could be proven that
the backpropagating potential from proximal dendritic input was necessary
as the threshold for calcium spikes without a backpropagating current was
measured twice as high.

The existence of at least two spike initiation zones in neocortical L5 pyra-
midal neurons have since then been acknowledged [Ilan et al., 2011]. The
paper simulated a two-compartmental model of a L5 pyramid with active
dendrites. This showed that the broader Ca2+ spikes generate more somatic
Na+ spikes than vice versa, which led to the assumption that due to synap-
tic plasticity the distal synapses will dominate proximal ones. However,
experiments showed that the synapses are uniformly distributed along the
dendritic tree [Williams and Stuart, 2002], which could only be explained
by a varying degree of coupling between the two spike initiation zones (see
3.1.5).
On the contrary Stuart et al. still state that the only AP initiation zone lies
in the axon. However, they acknowledge the backpropagating Na+ action
potential into the dendritic tree following a spike. Also many experiments
are mentioned which show the activation of Ca2+ channels in the dendrite.
The sometimes resulting dendritic electrogenesis is considered an active
form of synaptic integration rather than an action potential initiation site
[Stuart et al., 1997] [Stuart and Sakmann, 1994]. Rapp et al. confirm via
recordings of neocortical L5 pyramids that the only AP initiation zone lies
in the axon [Rapp et al., 1996].

Position of Ca2+ Initiation Zone

The exact position of the calcium spike initiation zone for neocortical L5

pyramidal neurons is still being discussed. Larkum et al. use the thick apical
dendrite to measure Ca2+ spikes [Larkum et al., 2009]. They proclaim the
calcium initiation zone to be near the apical tuft [Larkum, 2013], especially
in a range between 550 and 900µm from the soma. The experiments were
performed on rat neocortical L5 pyramids both in vitro and in vivo.
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[Häusser et al., 2000] states the dendritic Ca2+ initiation zone to be around
920µm from the soma. A broader range is proposed by [Perez-Garci et al.,
2013] of 600− 900µm and [Schiller et al., 1997] of 550− 940µm from the
soma. [Ilan et al., 2011] even suggests the Ca2+ spike initiation zone can
extend from 450 to 900µm from the soma. All experiments were carried out
using in vitro slices of rat neocortical L5 pyramidal neurons. [Helmchen
et al., 1999] found out that the dendritic Ca2+ transients were always largest
proximal to the main bifurcation point of L5 pyramids.

3.1.2 NMDA Spikes

Apart from the discussed secondary spike initiation zone (calcium spikes),
some studies even suggest multiple spike-initiation zones along the apical
dendritic tree of pyramidal neurons. [Schiller et al., 2000] performed in vitro
experiments on L5 pyramids in rat sensory and motor areas. They found a
proof of local AP spikes or plateaus, which were caused up to 80 per cent by
N-methyl-D-aspartate (NMDA). These NMDA spikes have been recorded in
the small branches of the apical tuft dendrites. The paper even suggests the
possibility of dynamic spike-initiation zones, as the distribution of glutamate
which depends on the ongoing activity of the neural network, can attach
to NMDA receptors and therefore alter the physiology. Recently NMDA
spikes were found to be initiated in the apical tuft, apical oblique and basal
dendrites [Antic et al., 2010] compared to the existing sodium initiation
zone in the axon and calcium initiation zone around the bifurcation area of
the apical trunk.

Furthermore, a simulation was carried out using a compartmental model
of a L5 pyramid from the rat somatosensory cortex [Rhodes, 2006]. The
simulation results are consistent with the findings in vitro [Schiller et al.,
2000]. They both proved that NMDA spikes can be initiated without the
use of Na+ and Ca2+ currents. However, calcium and sodium currents both
proved to lower the threshold of NMDA spikes. The inhibition mechanism
was further compared, which showed that somatic inhibitory input had no
effect on the NMDA spikes, while inhibitory dendritic input suppressed the
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NMDA spike completely.

Larkum et al. also acknowledged that NMDA receptors may play a role for
local computations and even suggested that NMDA spikes are the dominant
mechanism by which distal synaptic input controls the firing of the neuron
[Larkum et al., 2009]. The experiments implied that distal tuft dendrites are
unable to support calcium electrogenesis, but are able to drive weak sodium
and NMA spikes. The dendritic thickness has proven to be a good predictor
of whether Na+ or Ca2+ (3.0µm and higher) electrogenesis occurs. The most
recent paper [Larkum, 2013] states an in vitro experiment which concludes
that NMDA spikes only affect the output of the pyramid if they are able
to trigger the Ca2+ spike initiation zone. It is therefore suggested that
some of the effects of NMDA spikes can be included into the mathematical
description of calcium spikes.

3.1.3 Use of Dendrites

The use of dendrites is still debated. Some experiments show that distal
dendritic EPSPs hardly influence the somatic membrane potential, which
would suggest that EPSPs are just passively spread along the dendritic tree.
Apart from that, it might be possible that the wide range of dendrites and
different locations of synaptic input defines a complication that needs to be
overcome by active dendritic properties, such as signal propagation (3.1.3).
Finally, another possibility, which would allow dendrites to act as a prepro-
cessor for synaptic input (3.1.3), is discussed.

Active or Passive

The first theory of dendritic function states that the size and shape of synap-
tic potentials, which reach the somatic main AP initiation site, could provide
significant information about the signal source. The dendritic structure
could therefore be used to act as a passive computational subunit, where
passively spread EPSPs influence each other according to the structural
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design of the dendrite [Häusser et al., 2000].

The second theory completely ignores the dendritic structure and states
the different locations of synaptic inputs along the dendritic tree as an
obstacle that needs to be overcome. By choosing active dendrites (presence
of propagating Na+ and K+ currents) the distance to the soma does not
matter [Destexhe and Pare, 1999]. This would line up with the point-neuron
hypothesis, where all synaptic inputs are equally integrated [Häusser and
Mel, 2003]. There exist also experiments which show the active properties
of dendrites. Neocortical L5 pyramids have proven to possess active Na+

channels all along the apical dendrite, while hippocampal L5 pyramids
show a distribution of active Sodium channels from the apical dendrite until
around 200µm from the soma [Stuart and Sakmann, 1994].

Information Processing Capabilities

Apart from the active properties of the dendrites, there exist many theories
about the computational power. Häusser et al. proposed that the dendritic
tree should be compartmentalized based on voltage-gated ion channel den-
sities and the synaptic activation pattern. The different compartments can
further take over the integration of synaptic input [Häusser et al., 2000].
[Polsky et al., 2004] provides experimental evidence (L5 neocortical rat
pyramidal neurons, in vitro) showing that thin dendrites act as compu-
tational subunits, which sum up synaptic input using a sigmoid kernel
function. They found out that nearby inputs are summed up sigmoidally
while spatially further distributed inputs are summed up linearly. This led
to an incompatibility with a global summation rule as proposed by the
point neuron hypothesis. In order to conform with the experimental data, a
two-layer neural network is necessary.
Larkum et al. also acknowledged that thin distal tuft dendrites, which re-
ceive the majority of synaptic inputs, as well as basal dendrites sum up
synaptic input with the use of NMDA spikes. The output of these computa-
tional subunits is passed on via actively propagating signals to one of the
two main synaptic integration sites, namely the axonal Na+ spike initiation
site and the apical Ca2+ initiation site [Larkum et al., 2009].
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The findings have further been confirmed by [Spratling, 2002], who states
that the apical dendrite has to act as a separate compartment, and [Xu et al.,
2012] erformed an in vivo experiment on mice tracking L5 pyramids in the
barrel cortex, an area of the somatosensory cortex associated with facial
whiskers of rodents [Manns et al., 2004]. They proved that the dendrites
actively integrate and process input.

However, [Behabadi and Mel, 2014] question the independence of dendritic
computational compartments as experimental data showed that backpropa-
gating potential from the soma resets the membrane potential in dendrites.
They developed a two layer neural network from the example in [Polsky
et al., 2004], where the first layer consists of multiple independent den-
dritic subunits, which use a non-linear input output function. The second
layer sums up the dendritic output and produces an output based on the
cells somatic firing-rate to current curve. Even though no backpropagating
effects have been applied to the simulation, the model still outperforms
passive dendritic models in predicting pyramidal neuron responses. As an
explanation they enlisted the possibility that pyramidal cells specialized in
minimizing the disruptive effects of backpropagation-mediated cross-talk
between dendritic subunits which would allow multiple dendritic compart-
ments to perform computations individually [Behabadi and Mel, 2014].
The implementation of a model with two sites of synaptic integration has
also been tested [Körding and König, 2001]. They showed that their neuron
model can implement learning principles of spatial and temporal continuity,
as used in image processing.

3.1.4 Coincidence Detection

The existence of active dendrites with information processing capabilities,
as discussed in the preceding sections (3.1.3 and 3.1.3), leads to a variety of
possibilities in which way to combine the two information streams and how
to make use of the enhanced computational properties of a neuron with two
independent sites of synaptic integration.
Siegel et al. lined out various anatomical and psychophysical studies which
show that top-down effects (or feedback signals) play an important role in
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the processing of sensor (feedforward) information [Siegel et al., 2000].
The source and target layer of pyramidal neuron axons is used as a classifier
for feedforward and feedback streams in the cortex [Spratling, 2002]. This
suggests that sensory driven or feedforward input arrives at the basal den-
drite, while top-down or feedback information is fed to the apical dendrite.
Spratling et al. further outline some possibilities of how to combine the two
information streams. The simplest form called Reconstruction handles the
two information streams equally. Both basal and apical input can trigger
the output spikes of the neuron, so the feedback stream can be used to
reconstruct sensory data when it is temporary unavailable.
Modulation, the second theory, handles the feedback signal as an amplifier
signal, which is able to enhance sensory data that matches the top-down
expectation and suppress data that is unexpected.
Finally, Suppression describes the vice versa principle of Modulation, and
could be used to filter the sensory input signal with the use of feedback
information so that only unexpected and new information is passed on. This
principle could also be used to provide error information or supervision for
learning at the basal synapses.
[Larkum, 2013] supports the Modulation theory in a more abstract way,
using the feedback stream as a predictor whether the neuron should fire or
not. The firing nevertheless is modulated by the feedforward input. Larkum
et al. defined the location of the coincidence detection in the dendritic com-
partment with a coincidence time of 20-30ms between distal dendritic EPSPs
and the backpropagating potential from the soma. The BAC mechanism is
therefore proposed as another mechanism for gain modulation. As the pas-
sive influence of synaptic inputs on the soma decreases with rising distance,
the gain modulation caused by the backpropagating signal ranges from 22%
to 72%, being highest at the most distal dendritic input locations [Larkum
et al., 2004].
Figure 3.2 shows an example of the three mentioned ways of combining two
information streams in neurons.
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Figure 3.2: Concept of three possible ways to combine two information streams,
Reconstruction a), Modulation b) and Suppression c). Figure taken from
[Spratling, 2002]. Plot a) shows the Reconstruction principle, where the two
input streams (a and b) were both summed up to produce the output func-
tion. Taken into account that only one of the two input streams is active at the
same time, one input stream can be used to reconstruct the output behaviour
if the other stream is missing. Plot b) shows the Modulation principle, where
both input signals are multiplied. One of the streams can therefore be used to
modulate the other one, changing the amplitude (influence) of the input signal.
Plot c) at last shows the Suppression principle, where the second input stream
(b) is subtracted from the first input (a). This principle can be used for error
calculation, where an output is only produced if the two signals do not match.

Other experiments confirmed the 30ms coincidence time window between
apical and basal input [Sjöström and Nelson, 2002] [Major et al., 2013]. In
addition the duration of a burst caused by simultaneously active input
streams also lasts around 30ms, which may incline that this time scale has a
special significance in the neocortex.
However, [Major et al., 2013] showed that the coincidence time window can
be altered (see section 3.1.5) by the location and activity of apical oblique
dendrites.

3.1.5 Inhibition & Coupling

Many experiments and computer simulations show that synaptic inhibition,
either specifically targeted or due to normal background activity, can alter
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the signal propagation properties of Na+ and Ca2+ currents in the dendritic
tree of pyramidal neurons [Häusser et al., 2000]. Rapp et al. showed that
background synaptic activity alone changes the backpropagation of somatic
APs. This behaviour can only be tested in vivo, which could be done us-
ing whole cell recordings in neocortical L5 rat pyramidal neurons. They
showed that a background activity of 1.5Hz led to a decrease of 15% of the
backpropagating somatic potential measured 550µm from the soma. 3Hz
background activity led to 27% decrease [Rapp et al., 1996].

Experiments further tested the effect of specifically located IPSPs on the
somatic potential. Pare et al. showed via in vivo experiments on neocortical
cat pyramids and computer simulations that proximal IPSPs prevented Na+

currents in the dendrite from interfering with the somatic membrane poten-
tial and even reduced the amplitude and duration of somatic spikes [Pare
et al., 1998]. [Gerstner and Kistler, 2002] also showed that inhibitory input
spikes are able to shunt information from reaching the soma. If located in
specific locations (see section 3.1.5) a few input spikes were able to shunt
input which was gathered by hundreds of excitatory dendritic synapses.
Nevertheless, other experiments showed that inhibitory postsynaptic poten-
tials were able to reduce the amplitude of distal dendritic spikes, while they
were not altering the amplitude of APs in somatic or proximal dendritic re-
gions [Tsubokawa and Ross, 1996]. It was therefore proposed that inhibitory
inputs just affect the backpropagating APs from the soma, changing actively
propagated signals to passively spreading potentials. The inhibition showed
to be most effective when evoked during a time window of less than 10ms
after a somatic spike.

The influence of inhibitory signals on Ca2+ spikes have further been focused
on. Self-initiated calcium spikes, which resulted without former backpropa-
gating potential from the soma and which could get inhibited by inhibitory
interneurons [Ilan et al., 2011], have been reported. Kim et al. also showed
that IPSPs were able to delay and partially or fully block dendritic spikes,
as was tested in vitro in somatosensory L5 rat pyramids [Kim et al., 1995].
Similar experiments also acknowledged that inhibitory inputs on the apical
trunk are able to delay or suppress dendritic Ca2+ APs, while they do
not influence proximal dendritic regions or the soma. They are therefore
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proposed to simply decouple the input streams and suppress the active
propagation up to 400ms [Larkum et al., 1999] [Helmchen et al., 1999].

E�ective Location for Inhibitory Input

The differences between inhibitory inputs targeting the soma and dendrites
of pyramids have been examined. Miles et al. show that only dendritic
inhibitory inputs are able to suppress the generation of calcium-dependent
APs. However, the experiment was carried out using CA3 pyramidal neu-
rons [Miles et al., 1996]. Besides an in vitro experiment on L5 pyramids
in rat somatosensory cortex revealed that inhibitory signals targeting the
soma suppress dendritic spikes as well as dendritic inhibitory inputs. The in
vitro study in combination with the simulation of a detailed compartmental
model showed that dendritic IPSPs influence the threshold of the dendritic
spike, while somatic IPSPs alter the amplitude of the calcium spike. This
behaviour is suggested to multiply the computational power of inhibitory
interneurons, as cortical circuits can therefore alter threshold and gain of
dendritic spikes individually [Jadi et al., 2012].

The most prominent location for inhibitory signals to connect to pyramidal
L5 neurons has proven to lie in the proximal dendritic region. Stuart et
al. have already mentioned that most inhibitory synapses have to connect
close to the soma to have the greatest influence on the somatic membrane
potential [Stuart et al., 1997]. This was acknowledged and specified to a
region from the soma to about 400µm from the soma [Gerstner and Kistler,
2002] [Larkum et al., 2001].
Häusser et al. also proposed that the coupling between the somatic and the
dendritic spike initiation zone depends on the oblique dendrites [Häusser
and Mel, 2003], a view which was proven through experiments and simu-
lation by [Schaefer et al., 2003]. The experiments further showed that the
geometry of proximal and distal oblique dendrites originating from the
main apical dendrite determine the degree of coupling between the spike
initiation zones. Oblique dendrites originating at a distance of over 140µm
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from the soma have shown to decrease coupling, while oblique dendrites
closer by increased it.

3.1.6 Plasticity

The first section deals with theories concerning the use of synaptic plasticity
in the neocortex (3.1.6). The subsequent sections will describe different theo-
ries about the reasons for synaptic plasticity in L5 pyramids. The complex
functional structure of pyramidal neurons leads to a variety of possible
plasticity controlling factors, such as the backpropagating somatic potential
and the Ca2+ spike and its intrinsic firing rate (3.1.6).

Use of Plasticity

Sourdet et al. [Sourdet and Debanne, 1999] mentioned that synaptic plastic-
ity changes are thought to be the fundamental mechanism underlying the
creation of persistent memory in the brain. The Hebbian learning princi-
ples, including long-term potentiation and depression (LTP and LTD) have
been verified in neocortical and hippocampal pyramidal neurons, while
non-pyramidal neurons have shown different results.
Markram et al. announced another theory saying that synaptic plasticity
is not only used for learning, but also represents the main information
processing mechanism in neocortical neural networks [Markram et al., 1998].
Due to mathematical analysis of the synaptic transfer function they found a
range of different possible functions depending on the linear representation
of the pre-synaptic firing rate as well as on the integral and differential.
As the synaptic plasticity can be changed individually, it is likely that a
single axon is distributing different features of a propagating spike train
towards different target neurons. The study further predicts that AP activity
patterns transmitted over an axon can change the synaptic transfer function
individually. This would lead to a different representation of the AP pattern
at the synapse, making iterations of synaptic transfer functions possible.
While the occurrence of both depressing and facilitating synapses on one
axon depending on the pre- and postsynaptic neuron has been extensively
studied in between interneurons and L5 pyramidal cells, another study
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suggests that this also occurs in between pyramids [Wang et al., 2006]. The
study has been carried out in vitro using slices of the medial prefrontal
cortex of adult ferrets.

Backpropagation as a Source for Plasticity

Sjöström et al. are reviewing the potential effects of EPSPs in addition
to backpropagating postsynaptic APs for plasticity. To change dendritic
synapses, the AP initiated in the axon has to be backpropagated into the
dendritic tree [Sjöström and Nelson, 2002]. The influence of backpropaga-
tion was furthermore acknowledged [Häusser et al., 2000] and it was also
proclaimed that backpropagating APs could serve as a global rather than as
a local signal for synaptic plasticity [Paulsen and Sejnowski, 2000].
Häusser et al. lined out a different view where the spatial extent of propa-
gation is a varying and determining factor for the range of plasticity. This
would conclude that depending on the structure of dendrites and the mo-
mentary synaptic activity on the way, which influences the propagation
abilities, different parts of the dendritic tree would be invaded by the pre-
ceding axonal spike [Häusser and Mel, 2003].
Another theory suggests that dendrites can influence their plasticity indi-
vidually. Synapses at < 450µm from soma, in the paper called “proximal
”use the somatic Na+ spike as their STDP inducing signal, while “distal
”synapses use the Ca2+ spike [Ilan et al., 2011]. Körding also showed that
the triggering of calcium spikes could lead to LTP [Körding and König,
2000].

The implications of spreading depolarization and propagating APs on
synaptic plasticity have also been reviewed by Sourdet et al. [Sourdet and
Debanne, 1999]. Long-term potentiation (LTP) was shown to occur whenever
a postsynaptic backpropagating AP is paired with preceding pre-synaptic
stimulation in a time window of 50 to 240ms. However, these findings have
been refined as Debanne at al. showed that LTP is only induced if a burst
of 10 to 12 postsynaptic backpropagating APs is encountered in a time
window of 240ms. A burst of three to four APs showed no significant effect
on plasticity while single APs could even result in LTD if the time delay
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between the post- and pre-synaptic activity is around zero ([Sourdet and
Debanne, 1999], Figure 2A,D).
The importance of rate over timing, as traditionally thought of STDP, was
also acknowledged by [Sjöström and Nelson, 2002], who lined out that
multiple APs are needed to allow LTP for low frequencies. Paulsen et al.
further showed through in vitro experiments in adolescent and adult rat
and mice hippocampal pyramids that the pairing of single pre- and postsy-
naptic APs for the induction of LTP or LTD is only sufficient in premature
animals. Adult animals require postsynaptic bursts to induce LTP [Paulsen
and Sejnowski, 2000].

In contrast to burst-triggered LTP, Bi et al. [Bi and Poo, 1998] showed that
single postsynaptic APs require a very short coincidence time window of
20ms to induce LTP. This result was already proclaimed by [Sourdet and
Debanne, 1999], who proposed that single APs would require a higher
temporal sensitivity than bursts.

3.2 Neuron Modelling

3.2.1 Spike Response Model

In the practical part of this thesis the spike response model [Scholarpedia,
2014] will be used to describe the pyramidal neuron model. The spike
response model (SRM) is a generalization of the integrate-and-fire (IAF)
model. While the IAF neuron is described by differential equations, the SRM
is formulated using filters. Furthermore, the SRM can include a refractory
period.
In models such as the spike response model or the integrate-and-fire model,
neurons are viewed as units which sum up postsynaptic potentials resulting
of presynaptic spikes and generate a spike if a given threshold is reached. A
more advanced version of the IAF model, the leaky integrate and fire model,
which includes a term mapping the diffusion of ions through the membrane
over time causing a decay in membrane potential, has been proven to pro-
vide a good representation of in vitro recordings of L5 pyramidal neurons,
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for instance from sensorimotor cortex of adult rats in vitro [Paninski et al.,
2003].
There have also been a few theoretical and practical studies concerning the
issue of whether different forms of the spike response model representation
can account for the complexity of biological neurons. Jolivet et al. performed
a study using recordings of L5 pyramidal neurons from rat somatosensory
cortex in vitro. The neurons were stimulated using a fluctuating current.
These experimental results were compared to a simple SRM, where up to
75% of the recorded spikes could be reproduced and predicted with a time
precision of +/- 2ms [Jolivet et al., 2006].

Furthermore, the SRM has been compared to other theoretical models de-
scribing neurons. In a study by Kistler et al., the SRM has been compared
to a hodgkin-huxley representation, where over 90% of the spikes could be
reproduced using a stochastic input current [Kistler et al., 1997]. The model
was also compared to a conductance-based model, as the study showed that
a simple conductance-based model can be easily reduced to a threshold
model representation, such as the leaky integrate-and-fire model with an
exponentially rising spiking current depending on the input frequency or
the SRM [Fourcaud-Trocme et al., 2003].

3.2.2 Stochasticity

The role of stochasticity in neuronal modelling is also still being discussed.
Today most simulations use some kind of stochasticity, while others argue
that stochastic terms should be removed, as they are only representations
of nonlinear varying factors such as response saturation which might be
exploited [Paninski et al., 2004].
In general, two sources of noise are believed to exist for biological neurons.
Intrinsic noise is created by a stochastic release of neurotransmitters and
the resulting stochastic opening and closing of some ion channels. External
noise sources are regarded as random network activity, represented as
stochastic spiking input from other neurons. Usually, only the external noise
is modulated by using a poisson input current in addition to the target
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signal [Burkitt, 2006].
It has also been shown that a noisy threshold mechanism can account for
much of the unexplained unreliability and variability of biological neurons
[Jolivet et al., 2006]. Therefore, as further detailed information about the
intrinsic properties of neurons are missing, stochasticity provides a good
representation of otherwise unaccounted biological effects.

3.3 NEST Simulation Environment

As experimental studies imply that the neural activity of the brain is ob-
served using either only a few neurons via intracellular recording techniques
such as voltage clamp or patch clamp or a wide range of neurons (up to
106) by large-scale recording techniques such as electroencephalography
(EEG), functional magnetic resonance imaging (fMRI) or positron emission
tomography (PET) [Buzsaki, 2004].
Theoretical and computational models are therefore required to interpolate
the missing information and predict neuron states. As information process-
ing is believed to rely mostly on action potential changes and neuronal
spikes, many simulation techniques have emerged which focus on the simu-
lation of spiking neuron models [Brette et al., 2007].

In the practical part of this thesis the Neural Simulation Technology (NEST)
is used to simulate the pyramidal neuron behaviour. The NEST simulator
is an open source application built to simulate large networks of heteroge-
neous elements. It allows biologically realistic neuron models and neuronal
networks to be implemented on different levels of abstraction. While most
spiking neuron simulation tools use a bottom-up concept, mainly focusing
on the modelling and simulation of single neuron models, NEST uses a
top-down approach. This approach allows a network to be described using
abstract components, which can consist from single synaptic models or one
compartment of a neuron to a whole subset of neurons. The simulation
environment therefore makes the generation of a hierarchical structure easy,
where functional related neurons can be grouped together forming an ab-
stract component [Diesmann and Gewaltig, 2001]. Furthermore, NEST is
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built as a research tool, allowing flexible and easy adaptation of components
as new theoretical information gets available.

The components are designed using the object-oriented programming lan-
guage C++. The object-oriented approach especially makes different levels
of abstraction possible. Based on an abstract core class [Diesmann and
Gewaltig, 2001], all components need to implement specific methods and
basic functionality. As described later in this section the computation itself is
also handled in the component class, which allows different representations
of theoretical theories (for example, differential equations) to being imple-
mented in one simulation network. However, each component is restricted,
for example, each model can only send a single type of predefined event,
either spike event, current event, rate event or potential event. Even so, they
are able to receive several events from other components, which can be
applied repeatedly using different input channels. This can, for instance,
enable the attachment of different synaptic models with different behaviours
(facilitating or depressing) but one comprehensive event to a component
[Initiative, 2014].
In addition to the biologically inspired components, some abstract modules
are available, representing random number generators, signal generators
for currents, voltages and measurement tools such as spike detectors.

All components are hard-coded and compiled preceding a simulation. C++
is used to retain the best possible performance [Brette et al., 2007].
For the simulation itself a proprietary language called Simulation Language
Interpreter (SLI) is used. The main reason for using SLI is its support for
heterogeneous arrays. In contrast to C++, where memory management is
a major issue, SLI makes the assignment and maintenance of size-varying
data structures easy and efficient [Diesmann and Gewaltig, 2001]. In contrast
to an event-driven simulation, where a supervising scheduler is collecting
and queuing event, NEST uses a time-driven simulation approach, where
events (for example, spikes) are sent out and queued at the target neuron
[Brette et al., 2007]. This time-driven approach is especially useful for large
number of connections to simple components, as it allows a decentralized
memory organization without the need of a scheduler to queue, send and
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allocate events for thousands of target neurons.

SLI furthermore uses an internal dictionary structure and keyword parame-
ters in order to access and modify model parameters. This enables an easier
user interface where just two methods, which need to be implemented by
all abstract components, are required to modify a model [Diesmann and
Gewaltig, 2001].
The connections between components are also defined in the simulation
environment, allowing convergent, divergent, random and topological con-
nections to be implemented. Moreover, an additional delay, weight or whole
synaptic transfer model can be applied [Initiative, 2014]. The connections
are also checked for consistency at the time of creation.
In addition there exist a few programming language interfaces such as
python, which is used in this thesis, to access SLI commands.

Today the simulation of 104 neurons is common using NEST. Although 105

were already simulated using the simulation environment, this was only
possible by using external parallelization tools such as a Message Passing
Interface (MPI), which distributes the computation tasks along multiple
workstations of a cluster. A future release of NEST is planned to natively
contain multi-threading and message passing interfaces to allow larger neu-
ral networks being simulated. If 105 neurons can be simulated, the volume
of the cortex can be represented in a biologically realistic manner, with-
out the need of downscaling synaptic connections or neuron complexities
[Diesmann and Gewaltig, 2001].
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This chapter deals with the development of a design and simulation con-
cept for a L5 pyramidal neuron model. The first section (4.1) outlines the
requirements for the neuron model (4.1.1) and compares the model to its
biological prototype (4.1.2). After that, the mathematical basis for the com-
partmental model is derived (4.1.4). The second section (4.2) reformulates
the model into a hidden Markov model and outlines a simulation concept
to automatically retrieve some hidden model parameters.

4.1 Pyramidal Neuron Model

4.1.1 Requirements

The pyramidal neuron model developed in this thesis will be described
using the spike response model formalism [Scholarpedia, 2014]. For a short
introduction and explanation of this choice see section 3.2.1.
The model should further consist of four compartments, which divide the
neuron into three main dendritic input areas, namely an apical, an oblique
and a basal input area. Moreover, the soma will be described as a separate
compartment. The somatic and apical compartments will contain the two
main spike initiation sites, as predicted by theoretical results (see section
3.1.1). The description of more than two spike initiation sites (see section
3.1.2) will be omitted in this thesis for reasons of brevity.

The propagation mechanism in between the compartments is modelled by
a low pass mechanism. The oblique dendritic compartment can be used
to influence this propagation mechanism via inhibitory inputs (see section
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3.1.5 for explanation).
The model should also contain a stochastic firing mechanism based on a
simple exponential function as proposed by [Jolivet et al., 2006]. In addition
to an overlaid poisson input signal, this mechanism accounts for some
unreliable biological effects of pyramids as described in section 3.2.2.

4.1.2 Simpli�cations

In this section, a few of the applied simplifications of the pyramidal neuron
model in comparison with its biological realistic counterpart are listed.
First of all, no spatial differences in dendrites are taken into consideration.
Apart from the compartmentalization into four main regions, no differences
in synaptic location are recognized. Nevertheless, this modelling principle
is conform with some theoretical and experimental results which decline
the effects of spatial differences in synaptic inputs [Häusser et al., 2000]
[Destexhe and Pare, 1999].

As already described in section 4.1.1, only three main synaptic integration
sites (basal, apical and oblique dendritic compartments) and two spike
initiation sites (apical and somatic) are considered. As suggested by Larkum
et al. some experimental findings show that NMDA spikes are only used to
distribute the spatially distributed dendritic EPSPs and that their influence
can be included in the mathematical formalization of the dendritic calcium
spike [Larkum, 2013].

Although the synaptic plasticity is modelled using a rate-based learning al-
gorithm (see section 5.4.4 in chapter 5), no spike-timing-dependent plasticity
(STDP) is used in this thesis. Additionally according to recent theoreti-
cal results the synaptic plasticity does not only depend on spike-timing-
dependent plasticity (STDP), but also on the propagation properties of
neurons. In the distal dendritic compartment long-term potentiation (LTP)
is believed to rely on the backpropagating potential from the soma [Häusser
et al., 2000] [Körding and König, 2001] [Paulsen and Sejnowski, 2000]. Other
findings indicate that LTP in the apical dendrite is induced by Ca2+ spikes,
while LTP in dendrites proximal to the soma use Na+ spikes as their main
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source of plasticity [Ilan et al., 2011]. However, as the backpropagating
current is modelled and already considered in the dendritic synaptic inte-
gration sites, the influence of backpropagation can be easily added to the
existing model described here.

4.1.3 Model Schematic

In this section the main schematic of the model with input- and output-
streams is printed. Figure 4.1 shows a typical sketch of a pyramidal neuron
taken from [Sjöström et al., 2008] and the separation of the neuron into four
major compartments. The compartment separation is based on its biological
behaviour, mapping the soma and the apical, oblique and basal dendrites
separately. The compartments are later referred to based on their capital let-
ter (A for apical compartment, B for basal, O for oblique and S for somatic).
Figure 4.1 on the right shows the abstract representation of the neuron
model with the input currents arriving at the two main integration sites
(input stream a arrives at the apical compartment, responsible for calcium
spike integration and input stream b arrives at the basal compartment). The
input stream for oblique dendrites has been omitted for simplicity. Never-
theless, it is implemented in the model and can be used in a subsequent
simulation.
Furthermore, the abstract representation holds the propagating currents,
namely uFP

A representing the forward propagating action potential from the
apical to the somatic compartment and uBP

S representing the backpropagat-
ing potential from the soma.
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Figure 4.1: Conceptual L5 pyramidal neuron model. The neuron drawing was taken from
[Sjöström et al., 2008]. The neuron was divided into four compartments. The
A(pical) compartment is able to receive synaptic inputs (a). The apical membrane
potential uFP

A is then propagated through the O(blique) compartment to the
S(omatic) compartment. The B(asal) dendritic compartment on the bottom is
also able to receive synaptic input (b) and the basal membrane potential uFP

B
also propagates into the somatic compartment. The soma then combines the
two potentials and triggers an output spike whenever a stochastic threshold is
reached. Additionally the somatic membrane potential uBP

S is back-propagated
into the A(pical) compartment, which may triggers a calcium spike.
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4.1.4 Model Description

This section describes the mathematical basis of the model. It is divided
into four subsections, each dealing with one of the major compartments as
outlined in figure 4.1.
The effects of the various propagating potentials can be best overviewed by
the simulation comparing the pyramidal neuron model with the Larkum
experiments (see section 5.4.1).

Distal Apical Dendritic Compartment (A)

The distal apical dendritic compartment, abbreviated as A, sums up the
EPSPs of the apical dendritic tree. The postsynaptic potentials are summed
up linearly depending on the εA kernel modelling the time course of the
EPSP.
Furthermore, the backpropagating somatic membrane potential (uBP

S ) is
added to the membrane potential. The membrane potential uA therefore
lines up to:

uA(t) = urest + ∑
a

wa ∑
f

εA(t− t f
a ) + uBP

S (t) (4.1)

In equation 4.1 the EPSP time course (ε) is summed up over all presynap-
tic spikes f . It is afterwards multiplied with the synaptic weight wa and
summed up again over all apical synapses. Additionally the backpropagat-
ing membrane potential from the somatic compartment uBP

S is added.

The EPSP time course is given by:

εA(∆t) = ∆t · e

(−∆t
τRise

)
(4.2)

A single exponential is used as the low pass function for the somatic
membrane potential propagating from the somatic to the apical dendritic
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compartment:

uBP
S (t) = uS · γS−A(t) (4.3)

Where the γ kernel describes the low pass characteristic between the
S(omatic) and the A(pical) compartment (S-A):

γS−A(t) = (1− e

( −t
τS−A

)
) (4.4)

The role of the parameters are summarized in table 4.1.

a presynaptic neurons connected to the apical compartment

εA(t− t f
a ) time course of the response to an incoming spike f

uBP
S (t) backpropagating (BP) potential from the somatic compartment

τRise rise time for the activation function applied to the

synaptic efficacy, can be different for each compartment

τS−A lowpass time constant between S(omatic) and

A(pical) compartment

Table 4.1: Variables used in the apical dendritic compartment representation

Oblique Dendritic Compartment (O)

In accordance with the theoretical findings of oblique dendrites to act as
regulators for back- and forward-propagation and inhibition (section 3.1.5)
the oblique dendritic compartment, abbreviated as O, is used to change the
low pass function of the backpropagating somatic membrane potential uBP

S
and the forward propagated apical membrane potential uFP

A .

In order to determine which low pass function should be used, the compart-
ment needs to sum up its inhibitory synaptic input. The resulting membrane
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potential is calculated as follows:

uO(t) = urest + ∑
o

wo ∑
f

εO(t− t f
o ) (4.5)

If the inhibitory synaptic input reaches a certain threshold ϑO the propa-
gating voltages are low pass filtered using a different time constant τ Inh

x−y.
Therefore, if uO(t) > ϑO the following equations hold:

uBP
S (t) = uS · γInh

S−A(t) (4.6)

uFP
A (t) = uA · γInh

A−S(t) (4.7)

With γInh as follows:

γInh
S−A(t) = (1− e

 −t
τ Inh

S−A


) (4.8)

γInh
A−S(t) = (1− e

 −t
τ Inh

A−S


) (4.9)

The role of the parameters are summarized in table 4.2.
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o presynaptic neurons connected to the oblique compartment

εO time course of the response to an incoming spike

ϑO stochastic threshold

uS(t) membrane potential of the soma

uBP
S (t) backpropagated (BP) membrane potential from the somatic

compartment to the apical (A) compartment

uA(t) membrane potential of the distal dendritic compartment (A)

uFP
A (t) forward-propagated(FP) membrane potential from the distal

dendritic compartment (A) to the soma (S)

τ Inh
S−A lowpass time constant between somatic and

apical compartment during inhibitory input

τ Inh
A−S lowpass time constant between A(pical) and

S(omatic) compartment during inhibitory input

Table 4.2: Variables used in the oblique dendritic compartment representation

Somatic Compartment (S)

The somatic compartment acts as the main spike initiation site. It receives
input from all other dendritic compartments and combines the propagated
voltages.
The somatic membrane potential consists of the propagating apical mem-
brane potential (uFP

A ) and the propagating basal membrane potential (uFP
B ).

The oblique membrane potential uO is not considered in the formula as it
already influences the potential by changing the propagation mechanism to
and from the apical compartment.

uS(t) = urest + uFP
A (t) + uFP

B (t) + ηBAC(t− t̃) + ηS(t− t̂) (4.10)
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The term ηS is the so called response kernel, describing the form of the
somatic membrane potential after a spike was created. ηBAC describes the
form of the backpropagating calcium spike at the soma respectively.

Usually, the calcium spike is triggered in the apical dendrite, as discussed
in section 3.1.1. However, in this mathematical representation there is no
difference if the calcium spike is created in the apical compartment and
propagates into the soma, or if the propagating membrane potential from
the apical compartment is used to trigger an abstract representation of the
calcium spike influence in the soma. This second principle is used here. The
propagated apical dendritic membrane potential uFP

A is compared to the
threshold value ϑBAC. In case the threshold is exceeded t̃ is set to t, marking
the starting point of the calcium spike and the calcium spike response kernel
ηBAC is initialized.
ηBAC is modelled by a rectangular pulse, followed by a fixed refractory
period. During the pulse time the somatic membrane potential is set above
the Na+ threshold level, triggering a burst of APs.

If uFP
A (t) > ϑBAC :

t̃ = t
(4.11)

For t̃ < t < t̃ + ∆dead :
ϑBAC = ∞

(4.12)

Equation 4.11 describes the refractory period of the BAC firing mechanism.
After the ignition of the calcium spike at time t̃ the threshold for triggering
another calcium spike ϑBAC is set to infinity until the refractory period ∆dead
is over.

The sodium spiking mechanism, which serves as the output function of the
pyramidal neuron is triggered if the somatic membrane potential uS exceeds
the threshold value ϑS. In order to account for unreliable biological effects,
a stochastic threshold following a single exponential is used.

p(spike) ∝ eαNorm·(uS(t)−ϑS) (4.13)
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The influence of the sodium spike on the somatic membrane potential ηS
and the following refractory period is modelled as follows. In these formulas
t̂ marks the position of the sodium spike:

ηS(t− t̂) = −ϑS · e

 t̂− t
τ


(4.14)

For t̂ < t < t̂ + ∆dead :
ϑS = ∞

(4.15)

The following equations describe the form of the propagating voltages from
the dendritic compartments. If oblique dendritic inputs are desired, the
inhibitory effects may change the low pass function of the propagating
potential from the apical compartment, as described in section 4.1.4.

uFP
A (t) = uA · γA−S(t) (4.16)

uFP
B (t) = uB · γB−S(t) (4.17)

With the respecting low pass kernela as follows:

γA−S(t) = (1− e

( −t
τA−S

)
) (4.18)

γB−S(t) = (1− e

( −t
τB−S

)
) (4.19)

The role of the parameters are summarized in table 4.3.
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ϑBAC threshold for the calcium spike (BAC mechanism)

ϑS threshold for the sodium spike

t̃ time of last BAC threshold crossing

ηBAC form of the plateau voltage applied to the soma through

BAC mechanism, should lead to a bursting behaviour

of about 30ms [Larkum et al., 2004]

ηS(t− t̂) form of the Na+ spike and after-spiking

potential ([Benuskova, 2003] for examples)

αNorm normalization factor for stochastic threshold

τ time constant for reset of membrane potential

after spike, 1-10ms [Benuskova, 2003]

∆dead deadtime

Table 4.3: Variables used in the somatic compartment representation

Basal Dendritic Compartment (B)

The basal dendritic compartment is the second input integration site of the
pyramidal neuron model. As theoretical and experimental data suggest, in-
put data arriving at the apical dendritic tree, will mostly consist of feedback
(or top-down) information, while input arriving at dendrites proximal to the
soma, most of the basal dendritic tree will deliver feedforward (or sensory)
information (for theoretical background see section 3.1.4).

The main function of the basal compartment is the integration of the excita-
tory and inhibitory postsynaptic potentials.

uB(t) = urest + ∑
b

wb ∑
f

εB(t− t f
b ) (4.20)
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The resulting membrane potential of the basal dendritic compartment uB is
then forward propagated into the soma to contribute to the spiking mecha-
nism.

The role of the parameters are summarized in table 4.4.

b presynaptic neurons connected to the basal compartment

εB(t− t f
b ) time course of the response to an incoming spike f

Table 4.4: Variables used in the basal dendritic compartment representation
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4.2 Simulation Concept

4.2.1 Simulation Objectives

The first two simulations are performed to tune the parameters of the pyra-
midal neuron model to reproduce experimental results. Following the work
of [Larkum, 2013] and [Richard Naud and Gerstner, 2013] we modelled the
BAC firing mechanism and neuron compartments, which is briefly reviewed
here.

Larkum coined the term of the BAC firing mechanism first, describing the
effects of active dendrites, propagation and a secondary spike initiation zone
in one term. These effects are conform with the latest insights in pyramidal
neuron biology (see chapter 3) and should also be proven in the simulation.
Furthermore, the latest paper by Larkum et al. focuses on the advanced
computational abilities of pyramidal neurons by combining two information
streams. The ability of a single neuron to perform complex operations like
coincidence detection is proposed as one of the main factors determining
the advanced capabilities of the cerebral cortex [Larkum, 2013]. In reference
to these theoretical assumptions the effects of coincidence detection and
dual information stream processing will be also addressed in the simulation
(see section 5.4.1).

Naud et al. used a similar two-compartmental model to reproduce the
spiking and bursting behaviour of biological pyramidal neurons. The paper
provides simulation results about the dependencies between spike and burst
occurrences and the respective current levels. These results will be used
to tune the parameters of the proprietary pyramidal model (see section 5.4.2)

The third simulation will focus on demonstrating the information process-
ing abilities of the pyramidal neuron model. Two neurons will therefore
be connected in series. In addition each neuron will receive a sinusoidal
distributed current input overlaid with a spiking poisson input. The net-
work is then manually tuned to perform a filter and coincidence detection
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operation on the input streams, creating a bursting pattern whenever the
input signals are correlated and spikes whenever one of the input signals is
active (section 5.4.3).

The forth simulation focusses on the implementation of an abstract parame-
ter learning algorithm. It will be further described in the subsequent section
4.2.2.

In the last simulation a learning algorithm will be implemented which
focuses on the adaptation of synaptic weights based on the calcium spiking
mechanism (see section 5.4.4).

4.2.2 Parameter Learning Algorithm

This simulation will implement an abstract parameter learning algorithm.
For this reason the pyramidal neuron is reformulated into a hidden markov
model (HMM) representation, which allows the description of hidden states
and observables.
A HMM will be necessary as only a few of the variables, such as the somatic
membrane potential and spike count, are made observable. The expectation
maximization algorithm and its respective version for HMMs, the Baum-
Welch algorithm, is proposed as the main parameter learning technique.
The parameter extraction process is shown on the example of the spiking
threshold (ϑ). For this reason the somatic membrane potential and the re-
spective output spikes were recorded during a simulation. These values
were used to build the state transition matrix. With the use of the Baum-
Welch algorithm the spike probability matrix depending on the internal
HMM states was inferred. Through adaptation of the pyramidal neuron
equations the spiking threshold could then be extracted by using the state
at the maximum of the spike probability matrix.
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HMM Translation

Figure 4.2 shows the simulation concept. It outlines the representation of
the neuron model as an hidden markov model [Bengio and Frasconi, 1995].
The somatic membrane potential uS determines the hidden state Yt of the
HMM. The spiking output of the neuron serves as observation variable Xt.
The transition probabilities between the states and from each state to the
possible observation values are calculated using the Baum-Welch algorithm.

Figure 4.2: HMM Simulation model. The figure shows the Bayesian network HMM rep-
resentation. Xt are the observed variables of the model, in this case the spike
output of the neuron is used. Yt is the hidden state at time t. The possible
voltage levels of the somatic membrane potential are chosen as states of the
model. The formulas for the transition probabilities between the states (At) and
the probabilities of a certain state given an observation (Bt) are derived from
the pyramidal neuron model description in this chapter.

The following equations deal with the translation of the pyramidal neuron
model into the hidden markov model. For reasons of simplicity the refrac-
tory period after each spike is omitted.

Y hidden states
X output variables
θ parameters

Y = {uS} (4.21)
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X = {Spikeoutput} (4.22)

θ = {wA, wB, ϑ, ϑBAC, uBAC, α} (4.23)

The Probability between states (At) is calculated by taking into account
the exponential decay of the somatic membrane potential uS. The spiking
probability (Bt) is calculated using the stochastic threshold and including
both input streams and the BAC mechanism.

At = P(Yt = j|Yt−1 = i)
= P(uS,t = j|uS,t−1 = i)

= δ(uS,t−1 · e−t/τ − j)

= δ(i · e−t/τ − j)

(4.24)

Equation 4.24 shows the probability matrix At in between the states i and
j. The states describe a voltage level of the discretized somatic membrane
potential uS.

Bt = P(Xt = xt|Yt = j, θ)

= P(Xt = Spike/NoSpike|uS,t = j, uA,t, uB,t, ηBAC,t)

= exp((uS,t − ϑ) · α) · re fBAC,t

(4.25)

The variable πi describes the prior probability to the network states Yi. In
this case the resting potential of the neuron is used as a prior probability,
resulting in a delta distribution.

πi = P(Y1 = i)
= δ(uS,t=1 − i)

(4.26)
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The following equations (4.27 - 4.35) show the derivation of the final formu-
las for At and Bt as can be viewed in equations 4.36 and 4.37.

uS,t = uFP
A,t + uFP

B,t + BAC + uS,t−1 · e−t/τ (4.27)

uFP
A,t = uA,t−1 · γA−S(t) (4.28)

uA,t = ∑
a

wa ∑
f

εA(t− t f
a ) + uA,t−1 · e−t/τ + uBP

S,t (4.29)

uBP
S,t = uS,t−1 · γS−A(t) (4.30)

uFP
B,t = uB,t−1 · γB−S(t) (4.31)

uB,t = ∑
b

wb ∑
f

εB(t− t f
b ) + uB,t−1 · e−t/τ (4.32)

The BAC mechanism is represented as a plateau potential with a fixed burst
time (with time constant τBURST) and a refractory period (with time constant
τre f r) following. These times are independent from the spiking time and
refractory period following a single spike.
Whenever the voltage in the apical compartment uA rises above the BAC
threshold ϑBAC, the variable ηBAC becomes positive. Afterwards, it decays
slowly back to zero via an exponential decay defined by τBURST. During this
time, the heaviside step function H() is applied to ηBAC and multiplied with
uBAC, resulting in the intermediate variable BAC representing the plateau
potential which is directly applied to the somatic membrane potential.

BAC = H(ηBAC,t) · uBAC (4.33)
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ηBAC,t = ηBAC,t−1 · e−t/τBURST + uA,t−1 − ϑBAC (4.34)

The refractory period after a bursting period is calculated using equation
4.35. The term (1− H(ηBAC,t · e−t/τBURST)) is the inverse of equation 4.33. It
is 1 except during the plateau potential period, where it takes the value
zero.
(e−t/(τBURST+τre f r)) on the other hand is only positive during the plateau
potential period and the refractory period afterwards. By multiplying the
two terms, only the refractory period remains. After that, the heaviside
step function is again applied to the term and subtracted by 1, which leads
to a term which is only positive outside of the refractory period after the
bursting. By multiplication of this term re fBAC to the spiking probability
the refractory period is applied.

re fBAC,t = 1− H((ηBAC,t · e−t/(τBURST+τre f r)) · (1− H(ηBAC,t · e−t/τBURST)))

(4.35)

By combining the equations above, the final results for At and Bt are ob-
tained representing figure 4.2:

At = P(Yt = j|Yt−1 = i)
= P(uS,t = j|uS,t−1 = i)

= δ(uS,t−1 · e−t/τ − j)

= δ(i · e−t/τ − j)

(4.36)
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Bt = P(Xt = xt|Yt = j, θ)

= P(Xt = Spike/NoSpike|uS,t = j, uA,t, uB,t, ηBAC,t)

= exp((∑
a

wa ∑
f

εA(t− t f
a ) + uA,t−1 · e−t/τ + uS,t−1 · γS−A(t)) · γA−S(t)

+ (∑
b

wb ∑
f

εB(t− t f
b ) + uB,t−1 · e−t/τ) · γB−S(t)

+ H(ηBAC,t−1 · e−t/τBURST + uA,t−1 − ϑBAC) · uBAC)

+ uS,t−1 · e−t/τ − ϑ) · α)
· (1− H((ηBAC,t · e−t/(τBURST+τre f r)) · (1− H(ηBAC,t · e−t/τBURST))))

(4.37)

Through mathematical rearrangement the HMM representation can be
changed, leading to the formula 4.38 (only changed formulas are printed):

Bt = exp((∑
a

wa ∑
f

εA(t− t f
a ) + uA,t−1 · e−t/τ) · γA−S(t)

+ (∑
b

wb ∑
f

εB(t− t f
b ) + uB,t−1 · e−t/τ) · γB−S(t)

+ H(ηBAC,t−1 · e−t/τBURST + uA,t−1 + uS,t−1 · γS−A(t)− ϑBAC) · uBAC)

+ uS,t−1 · (e−t/τ + γS−A(t) · γA−S(t))− ϑ) · α)
· (1− H((ηBAC,t · e−t/(τBURST+τre f r)) · (1− H(ηBAC,t · e−t/τBURST))))

(4.38)
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Parameter estimation

Threshold After the translation of the model into a HMM representation
in section 4.2.2 the Baum-Welch algorithm is used to get the estimated
probability distributions.
Therefore the somatic membrane potential uS is discretized linearly into V
steps ranging from its minimum value at the resting membrane potential to
the maximum above threshold level. The prior probability πi of each state
can be set using a delta distribution, as the probability is only 1 for the
resting potential.
The transition probability matrix between the states i and j Ai,j (see fig-
ure 4.4) is determined by the time course of the somatic membrane potential.

Figure 4.3: Discretized somatic membrane potential. The upper plot shows the somatic
membrane potential uS measured during the simulation. The lower plot shows
the discretized somatic membrane potential. The voltage was divided into ten
discrete steps, which serve as the internal state of the HMM.
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Figure 4.4: State transition matrix A. The plot shows the transition probabilities between
any two states i and j. It can already be observed that the states are progressive
with state i leading to state i + 1 until the threshold is reached.

After setting the initial probabilities π and At the probability matrix Bt
is randomly initialized and trained using the Baum-Welch algorithm (see
figure 4.5).
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Figure 4.5: Spike probability matrix B. The upper plot shows the real distribution of the
spiking probability over all states. The highest probability is at state 10 (which
equals −50mV, the threshold level in the simulation). As a stochastic threshold
is used, there is also a smaller probability that the neuron spikes before reaching
the threshold which was mapped as an exponential decay. The lower plot shows
the predicted probability distribution after application of the Baum-Welch
algorithm.

With the use of the predicted probability distribution matrix Bt the threshold
value can be extracted.
The theoretical formula for the probability matrix Bt was already derived in
the previous section 4.2.2.

Equation 4.25 is now used to extract a formula for the threshold value.
For this reason the state with the highest spiking probability (state at Bmax)
is used. This state value is used to infer about the underlying threshold
level. The BAC refractory period can be omitted in this formula as no burst
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was detected.

Bmax = exp((uS − ϑ) · α)
Bmax

α
= exp((uS − ϑ)

log(
Bmax

α
) = uS − ϑ

ϑ = uS − log(
Bmax

α
)

(4.39)
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This chapter describes how the proprietary NEST implementation of the
pyramidal neuron can be used. The parameters which are adjustable are
listed, as well as their respective default values (section 5.1 and 5.3). Further
some mathematical translations, which were necessary to comply with the
NEST environment, are shown.
The second part of this chapter shows the carried out simulations in order
to compare the implemented model with experimental data and show some
application examples of the model as a gateway function and for learning
(section 5.4).

5.1 General description

The NEST implementation currently holds four compartments (Apical,
Oblique, Somatic and Basal). Every compartment, except the somatic one, is
able to receive excitatory and inhibitory synaptic inputs.
The synaptic inputs can be adjusted in weights when connecting them to
the pyramidal neuron model. Furthermore, the time constant for excitatory
and inhibitory inputs can be adjusted. The resulting input spike can be read
out with or without the connected weight.

Moreover, all compartments are able to receive a static current input and a
changing current over time.

The spike and BAC mechanism threshold can be adjusted as well as the
resting potentials of all four compartments. The duration of the plateau
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potential and the refractory period after a spike and after the BAC mecha-
nism can be further changed. Stochasticity is enabled for both single spike
events and BAC threshold crossings. The stochasticity value can be adjusted
between 0.0 (stochastic firing independent of threshold, leading to constant
spiking) and 100.0 (no stochasticity, spikes are emitted exactly at threshold
crossing).

In addition the low pass values between the compartments can be changed.
In this revision only three values (Apical to Soma, Basal to Soma, Soma to
Apical) are used.

5.2 Mathematical translation

In accordance with the discrete time steps used in the NEST simulation
environment, a discrete integration of some mathematical formulas has to
be performed. This was done using the techniques provided in [Rotter and
Diesmann, 1999] [Hirsch et al., 1974].

5.2.1 EPSP Kernel

The EPSP time course, represented by εx with x naming the corresponding
compartment, has to be translated.
The conversion is shown here using the example of the apical dendritic
compartment, therefore εa. The time-continuous representation of the kernel
is as follows:

εa(t) = t · e

( −t
τRise

)
(5.1)

Epsilon follows the Alpha Function (See upper left part in figure 5.1). For
reasons of readability 1/τRise is substituted with the symbol a in the follow-
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ing equations.

εa(t) = t · e−t·a (5.2)

This can be rewritten as:

ε
′′
a(t) + (2a)ε

′
a(t) + a2εa(t) = 0 (5.3)

In order to solve this 2nd order differential equation it is divided into two
first order differential equations:

y1 = aε + ε
′

y2 = ε
(5.4)

The derivations are therefore as follows:

y
′
1 = −a · y1

y
′
2 = y1 − a · y2

(5.5)

The new existing system is now rewritten in Matrix style:

y
′
= A · y + b · x (5.6)

[
y
′
1

y
′
2

]
= A ·

[
y1
y2

]
+

[
0
0

]
(5.7)

[
y
′
1

y
′
2

]
=

[
−a 0

1− a

]
·
[

aε + ε
′

ε

]
(5.8)

The time discrete version of y can afterwards be calculated using the formula
yk+1 = eA∆ · yk + xk+1 according to [Rotter and Diesmann, 1999].

eA∆ =

[
e−∆a 0

∆ · e−∆a e−∆a

]
in reference to [Hirsch et al., 1974] (5.9)
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y1 and y2 were afterwards added up and create the Alpha shaped postsy-
naptic potential when added to the membrane potential.
The Alpha function was applied to all possible excitatory and inhibitory
synaptic inputs of the model. The shape can be varied by changing the
parameter τRise for the respecting compartment.
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Figure 5.1: Alpha synapse function and membrane potential. The upper left subplot shows
the alpha function which is applied to the synaptic input and creates the
EPSP. The upper right subplot shows the application of the alpha function to
three input spikes. The lower left subplot shows the EPSPs of the three input
spikes with an additional exponential decay. Finally the lower right figure
shows the time course of the membrane potential for three input spikes when
applied to a leaky integrate-and-fire neuron in NEST. When comparing the
lower two subplots it can be seen that a synaptic alpha function in addition
to an exponential decay can obtain a similar behaviour with a much easier
description.
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Lowpass:

uBP
S (t) = uS · (1− e

( −t
τS−A

)
) (5.10)

uA(t) = urest + ∑
a

waεa(t− t̂) + uBP
S (t) (5.11)

5.3 NEST Simulation Parameters

The following tables list the parameters that can be read out or set during
simulation.
The values filled in have been adjusted in order to fit to the biological basis
of the Larkum papers [Larkum et al., 2004][Larkum et al., 1999]

5.3.1 General Parameters

type name value
parameters parameter standard

name value
resting potential after spike V_reset -60.0
spike threshold V_th -55.0
refractory period after spike t_ref 2.0
plateau potential activated due to BAC mechanism V_bac -54.0
bac mechanism threshold V_th_bac -30.0
bac mechanism refractory period t_ref_bac 0.1
time constant for plateau potential t_spike_bac 5.0
stochastic threshold factor alpha 2.5
stochastic threshold factor for BAC mechanism alpha_bac unused

Table 5.1: General simulation parameters
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5.3.2 Apical Compartment

type name value
inputs receptor preferred

name weight
excitatory synaptic apical_exc 1800.0
inhibitory synaptic apical_inh unknown
current apical_current -
parameters parameter standard

name value
membrane capacitance C_m 250.0
membrane time constant tau_m 10.0
excitatory synaptic rise time tau_syn_ex 2.0
inhibitory synaptic rise time tau_syn_in 2.0
static current I_e 0.0
minimum potential V_min −∞
resting potential E_L -70

low pass time constant to Apical compartment LP.A 0.0
low pass time constant to Oblique compartment LP.O 0.0
low pass time constant to Somatic compartment LP.S 150.0
low pass time constant to Basal compartment LP.B 0.0
observable values record

name
membrane potential V_m.A
excitatory input spikes spikes_ex.A
inhibitory input spikes spikes_in.A
excitatory input spikes with weight weighted_spikes_ex.A
inhibitory input spikes with weight weighted_spikes_ex.A

Table 5.2: Simulation parameters for apical dendritic compartment
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5.3.3 Oblique Compartment

type name value
inputs receptor preferred

name weight
excitatory synaptic oblique_exc unknown
inhibitory synaptic oblique_inh unknown
current oblique_current -
parameters parameter standard

name value
membrane capacitance C_m 250.0
membrane time constant tau_m 10.0
excitatory synaptic rise time tau_syn_ex 2.0
inhibitory synaptic rise time tau_syn_in 2.0
static current I_e 0.0
minimum potential V_min −∞
resting potential E_L -70

low pass time constant to Apical compartment LP.A 0.0
low pass time constant to Oblique compartment LP.O 0.0
low pass time constant to Somatic compartment LP.S 0.0
low pass time constant to Basal compartment LP.B 0.0
observable values record

name
membrane potential V_m.O
excitatory input spikes spikes_ex.O
inhibitory input spikes spikes_in.O
excitatory input spikes with weight weighted_spikes_ex.O
inhibitory input spikes with weight weighted_spikes_ex.O

Table 5.3: Simulation parameters for oblique dendritic compartment
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5.3.4 Somatic Compartment

type name value
inputs receptor preferred

name weight
current soma_current -
outputs receptor name preferred weight
spike event - -
parameters parameter standard

name value
membrane capacitance C_m 250.0
membrane time constant tau_m 10.0
static current I_e 0.0
minimum potential V_min −∞
resting potential E_L -70

low pass time constant to Apical compartment LP.A 3.0
low pass time constant to Oblique compartment LP.O 0.0
low pass time constant to Somatic compartment LP.S 0.0
low pass time constant to Basal compartment LP.B 0.0
observable values record name
membrane potential V_m.S

Table 5.4: Simulation parameters for somatic compartment
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5.3.5 Basal Compartment

type name value
inputs receptor preferred

name weight
excitatory synaptic basal_exc 40.0
inhibitory synaptic basal_inh unknown
current basal_current -
parameters parameter standard

name value
membrane capacitance C_m 250.0
membrane time constant tau_m 10.0
excitatory synaptic rise time tau_syn_ex 2.0
inhibitory synaptic rise time tau_syn_in 2.0
static current I_e 0.0
minimum potential V_min −∞
resting potential E_L -70

low pass time constant to Apical compartment LP.A 0.0
low pass time constant to Oblique compartment LP.O 0.0
low pass time constant to Somatic compartment LP.S 15.0
low pass time constant to Basal compartment LP.B 0.0
observable values record

name
membrane potential V_m.B
excitatory input spikes spikes_ex.B
inhibitory input spikes spikes_in.B
excitatory input spikes with weight weighted_spikes_ex.B
inhibitory input spikes with weight weighted_spikes_ex.B

Table 5.5: Simulation parameters for basal dendritic compartment
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5.4 Simulation Results

5.4.1 Comparison to Larkum Paper

The focus of this simulation was to compare the proprietary layer 5 pyramid
model with the experimental results obtained in [Larkum, 2013]. It could
be shown, that with correct parameter tuning, the pyramidal neuron model
behaves similar to the biological records obtained by Larkum et al.
In the first figure 5.2 the experimental setup can be observed. Two inde-
pendent input signals were applied on two locations of a layer 5 pyramidal
neuron. A small current pulse (blue) was applied to the basal dendrite, while
a current spike (red) was applied to the apical dendrite. The experiment
showed that the basal current was able to trigger single output spikes, but
only a coincident application of the apical and basal current triggered the
internal calcium spike mechanism which resulted in a burst of three action
potentials.
These experimental findings were replicated using the proprietary model.
The results can be observed in figures 5.3-5.5. The figures show the mem-
brane potentials in the upper part of the figure and the spike and current
events applied to the neuron in the lower part.
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Figure 5.2: Figure taken from [Larkum, 2013] for reasons of comparison. Larkum showed
the effects of a single dendritic spike input (red curve, Istim) and a basal dendritic
current pulse (blue curve, Istim). The figure shows that a single apical spike
input does not trigger a spike, but propagates into the somatic compartment. A
single basal input current on the other hand is able to trigger a single somatic
output spike, and it propagates into the soma as well as into the apical dendritic
tree. The last plot on the right shows the influence of a combined apical spike
and basal current input. The combined input triggers a dendritic calcium spike
which is represented as a long apical plateau potential.

64



5 Implementation

Figure 5.3: Simulation of an apical input spike in reference to Figure 5.2. The figure shows
the development of the somatic and apical membrane potential (first plot) as
well as the somatic spike output (second plot), the apical spike input and
the basal dendritic current input (third and forth plot). The first plot shows
that the apical dendritic spike input forces a membrane potential uprising
in the form of an alpha synapse. This potential is propagated to the somatic
compartment, which also shows a rising voltage potential. However no output
spike is produced as the somatic membrane potential is always below threshold
(black dotted line)
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Figure 5.4: Simulation of a basal input current in reference to Figure 5.2. The forth plot on
the bottom shows the input current applied to the basal dendritic compartment.
This leads to a rising somatic membrane potential (first plot, black curve) until
the spiking threshold (black dashed line) is reached and a spike is omitted. The
first plot also shows that the basal and somatic membrane potential propagate
into the apical dendritic compartment, leading to a small rise of the apical
membrane potential as well (red curve)
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Figure 5.5: Simulation of a combined apical spike/basal current input in reference to
Figure 5.2. The figure shows the influence of a combined input of a current
applied to the basal compartment (forth plot) and a spike input applied to
the apical dendritic compartment (third plot). As can be seen in the first plot,
the combined input leads to a rise in the somatic membrane potential (black
curve). Additionally the basal membrane potential is propagated into the apical
compartment, forcing a rise of the apical membrane potential (red curve). This
rise of the apical potential in combination with the apical spike input leads to a
threshold crossing for a dendritic Calcium spike (red dashed line). The calcium
spike is represented by a long plateau potential which gets propagated into the
somatic compartment and forces a burst (here: three) of APs.
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As in the Larkum paper, a single dendritic stimulation (as simulated at
10ms using excitatory synaptic input) only minor changed the somatic
potential. A somatic current injection (here simulated with current input
to the somatic compartment at 110ms) caused a single spike to occur and
be also backpropagated to the apical compartment causing a rise in the
potential.
Finally, the combined input (current injected in the soma followed by a
small dendritic input at 220ms) induced the BAC firing mechanism and
caused a short burst of action potentials in the soma. The duration of the
plateau potential was adjusted in order to conform with the number of
spikes observed in the biological cell.
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5.4.2 Comparison to Naud Paper

The objective of this simulation was to compare the proprietary layer 5

pyramidal neuron to the experimental results from [Richard Naud and
Gerstner, 2013].
Naud et al. recorded the mean currents applied to the apical dendritic tree
and the soma of a pyramidal neuron. The currents were then plotted around
the detected output spikes and output bursts of the neuron, which are
shown in figure 5.6.
The experiments especially focussed on the current distribution exactly at
the spike and burst trigger time. They showed that the somatic current is
always higher around a triggered output spike, while the apical current is
higher around a triggered burst.
These results were compared with the proprietary model. Figure 5.7 shows
the average current applied to the pyramidal neuron 20ms before and after
a spike (upper subfigure) and after a burst (lower subfigure). A burst was
detected using the definition from [Larkum et al., 2004]. A burst was defined
as at least three APs within 20ms and less than three APs in the preceding
20ms.
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Figure 5.6: Figure taken from [Richard Naud and Gerstner, 2013] for reasons of comparison.
Two random input currents were applied to the apical dendrite and the soma.
After that the spike and burst events of the neuron were detected and the input
currents around all spike and burst events were summed up. The two plots
show the input currents around a spike event (plot C, spike is triggered at time
t = 0) and a burst event (plot D, burst is triggered at time t = 0).

70



5 Implementation

Figure 5.7: Average current around spikes (upper subplot) and bursts (lower subplot) in
reference to Figure 5.6. The upper subplot shows the input current applied to the
somatic compartment (black curve) and the input current applied to the apical
dendritic compartment (blue curve), as measured around all triggered output
spikes of the neuron. It shows that the somatic current has got a higher peak
around the single spikes, therefore it is determining the spiking behaviour. The
lower subplot shows the input currents as measured around all detected output
bursts. Here the plot shows that the apical current has got a higher potential
around the bursting time, therefore determining the bursting mechanism.
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In the simulation a poisson current was applied to both the apical and
the basal dendritic compartment. Backward- and forwardpropagation was
used as in the experiment before. Compared to figure 5.6 taken from
[Richard Naud and Gerstner, 2013], the current values are smaller and
the current leading to bursting behaviour is rising after the burst event. This
can be explained by the applied plateau potential which was not used in
the experiment from [Richard Naud and Gerstner, 2013]. Otherwise the
behaviour of the simulations match. For the spiking current the somatic cur-
rent has got a higher peak, determining the spiking behaviour. Concerning
bursts, on the other hand, the apical current is higher.
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5.4.3 Coincidence Detection via Manual Parameter

Tuning

This section describes the simulation results obtained by using two L5

pyramidal neurons in series and tuning the parameters to get a two-fold
coincidence detection. The results can be interpreted as a low-level filter
mechanism finding abstract object representations by coincidence detection
with a given feedback signal and forwarding the resulting objects depending
on the current attention level. Figure 5.8 shows the simulation setup. For
reasons of simplicity the oblique dendritic compartment is not used in the
current model simulations.
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Figure 5.8: Possible connectivity model of two pyramidal neurons. The plot shows the two
steps in information processing. First of all the left pyramidal neuron performs
a coincidence detection of the input streams x and y. The output of the first
neuron serves as input for the apical compartment of the second neuron. The
second neuron on the right then performs a coincidence detection of the first
output and the third input stream z.

The following figures 5.9 and 5.10 show the possible behaviour of two
interconnected pyramidal neurons as displayed in 5.8.
In this case the preprocessing pyramidal neuron performs a sensible coinci-
dence detection between the first two input streams (figure 5.9, red and blue
input streams, black output spiking pattern), resulting in bursting behaviour
whenever both inputs are correlated.
The post-processing neuron uses the third input stream as a gateway func-
tion. Whenever the third input stream (blue signal) shows none to less
activity, all signal passing is blocked, otherwise the output stream generated
by the preprocessing neuron (red input) is passed on unchanged.
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At this time of the simulation only excitatory synaptic inputs are used.
By also using also inhibitory synapses in both the apical and the basal
compartment, more complex input-output functions can be modelled.

Figure 5.9: Input-Output activity of the pyramidal neuron in layer 1. The figure shows
two synaptic input streams. The apical input stream (red) arriving at the distal
apical dendritic compartment and the basal input stream (blue) arriving at the
basal dendritic compartment of the pyramid. The last plot on the bottom shows
the output behaviour of the neuron according to the inputs. It can be observed
that the basal input causes the neuron to spike, but only coincident input of
both apical and basal spikes triggers the internal calcium spike mechanism and
forces an output burst.
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Figure 5.10: Input-Output activity of the pyramidal neuron in layer 2. In this simulation
the output of the first pyramidal neuron (see figure 5.9) is used as input to the
apical dendritic compartment of the second pyramidal neuron (red). To the
basal dendritic compartment a sinusoidal poisson input is applied (blue). Even
though bursts are received in the apical compartment, the calcium mechanism
is only triggered if minor basal input is applied coincidently. The second
neuron can therefore be viewed as a gateway function, which lets the output
of the first neuron through whenever any kind of basal activity is present. This
simple mechanism could may be relayed to attention (see chapter 3
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5.4.4 Learning Algorithm

In this simulation a pyramidal neuron was applied with five apical and
five basal input streams. Each input stream attached itself to the pyramidal
neuron compartment with an initial synaptic connection weight.
The weights were only altered during an active calcium spike (output burst)
of the neuron. During the bursting period the synaptic weights of active
inputs were strengthened by a linear factor, while non-active inputs were
weakened. After some training time the weights have properly adapted.
Only the weights of input synapses which showed coincident activation
during the bursts were increased according to their activity.
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Figure 5.11: Connection model of the pyramidal neuron with five apical and five basal
synaptic inputs. The figure shows the setup for the simulation consisting of
one pyramidal neuron with five apical synaptic inputs (wa,1 − wa,5) and five
basal synaptic inputs (wb,1 − wb,5). The pyramidal neuron will trigger bursts
whenever two inputs are active at the same time. During the bursting period,
the synaptic weights of the inputs active are strengthened, while inactive
synapses are weakened.
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Figure 5.12: Evolution of the synaptic weights during learning. The figure shows the
schematic end result of the synaptic weight learning. The plot on the left
displays the weight development of the five apical and five basal synaptic
weights. It can be observed that the first apical and basal synaptic weight
was strengthened, while all other weights were weakened. This was obtained
because only the first two synaptic input streams were active at the same time,
as can be observed in figure 5.13

The weight update rule was based on the experiment by [Körding and König,
2000]. Körding et al. compared the apical dendritic membrane potential
of their neuron model to a threshold. Whenever the apical membrane
potential exceeded the threshold a learning event was induced, which
allowed synaptic plasticity. During this learning phase the synaptic weights
were updated according to their pre-synaptic firing rate.
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In this experiment we used a similar algorithm. As the pyramidal neuron
model only sends out spike events, the firing rate had to be extracted by
averaging over T = 100 time steps with a ∆t of 0.1ms (see equation 5.12).

rate(t, ..., t + T) =

t+T

∑
t

spiket

T
(5.12)

Whenever a calcium spike is triggered due to the BAC firing mechanism, an
output burst is automatically created. This burst reflects in the output firing
rate of the pyramidal neuron.
An output burst was declared whenever the firing rate of the pyramidal
neuron exceeded a threshold value (see figures 5.13 to 5.16, the plot on the
bottom shows the mean output firing rate of the neuron with the red curve
marking burst events. As can be observed the detected bursts match with
the internal calcium spike events).
The activation of each synapse during the bursting phase was then calculated
by summing over all pre-synaptic spikes f caused by a single synaptic input
i during the bursts. This value was then averaged over all pre-synaptic
spikes during the bursting period of the neuron (see equation 5.13).

α(i) =

∑
f

spikei

∑
i

∑ f spikei
(5.13)

The α(i) value can be seen as the probability of the ith input synapse to
being active during the calcium spike period. The weights of the respective
synapse were afterwards strengthened whenever the α(i) value exceeded
the adaptation threshold ϑadapt. Otherwise the weight was weakened:

If α(i) > ϑadapt :

wi = wi · β, β > 1.0
(5.14)

If α(i) ≤ ϑadapt :

wi = wi · γ, γ < 1.0
(5.15)

Depending on the weight adaptation factors β and γ the algorithm can be
adjusted to converge very fast. However in some simulations where there
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is a lot of noise input, which may could also trigger output bursts, small
adaptation factors might be feasible.
In contrast to the learning principle by [Körding and König, 2000] the weight
updates are not based on the pre-synaptic firing rate. In this simulation
only the influence of the synaptic input stream in comparison with all other
input streams is determining whether the weight is strengthened or weak-
ened. This update rule allows the pyramidal neuron model to specialize on
specific synaptic input streams in an environment with small firing rates.

In the following example the first apical and the first basal input stream
were active at the same time, triggering an output burst in the pyramidal
neuron. As the rate of the apical input stream is slightly higher during the
bursting period, the weight of the first apical input stream is more increased
than the first basal input stream. All other inputs weights were weakened
as they did not contribute to the bursts.
Figure 5.13 shows the initial behaviour of the pyramidal neuron. It can be
observed that the first and the third apical input stream are active at the
same rate, but only the first apical input stream (red) shows coincident
activation with one of the basal input streams (blue), therefore triggering a
single output burst.
Figures 5.14 visualizes the behaviour of the neuron after the weight adap-
tation. It is observable that the bursting mechanism was feasible for the
neuron to specialize on the first apical input stream and ignoring all other
activation. Due to this adaptation also minor coincidence between the first
apical and first basal input stream now trigger a bursting behaviour.
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Figure 5.13: Input-Output behaviour of the pyramidal neuron for synchronous and asyn-
chronous apical input. The figure shows the five input streams applied to the
apical synapses (red) and the basal synapses (blue). The black spiking plot
shows the output behaviour of the pyramid. The last plot finally shows the
extracted output firing rate of the neuron, with bursts marked in red. The
figure shows that the pyramidal neuron only shows activity whenever the
apical (red) and basal (blue) input stream are active at the same time. If the
activation is high enough a burst is triggered, which is used for learning. Dur-
ing the bursting period the synaptic weights of active inputs are strengthened,
while inactive input weights are weakened. This leads to the output behaviour
observable in figure 5.14
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Figure 5.14: Input-Output behaviour of the pyramidal neuron for synchronous and asyn-
chronous apical input after weight adaptation. The figure shows the final
behaviour of the pyramidal neuron to the same input streams as in figure 5.13.
During the bursts the synaptic weights of the active input streams (first apical
input stream (red) and first basal input stream, blue) were strengthened, while
the influence of the other inputs was weakened. This lead to a specialization of
the pyramidal neuron on the first apical and first basal input stream, triggering
more bursts whenever both are active.

The initial result of the second simulation can be seen in figure 5.15. It shows
that the first and third basal input stream (blue) are active at a high rate. As
all basal synaptic inputs are added and integrated in the basal compartment
of the neuron, this leads to a constant activation and therefore a constant
output spiking behaviour. Nevertheless an output burst is only triggered if
the neuron also receives apical input (red).
Due to the weight adaptation during the bursts the neuron successfully
specialized on the basal input synapses which were active during the bursts.

83



5 Implementation

The final behaviour of the model with adapted synaptic weights can be
observed in figure 5.16.

Figure 5.15: Input-Output behaviour of the pyramidal neuron for synchronous and asyn-
chronous basal input. The figure shows the five input streams applied to the
apical synapses (red) and the basal synapses (blue). The black spiking plot
shows the output behaviour of the pyramid. The last plot finally shows the
extracted output firing rate of the neuron, with bursts marked in red. The
figure shows that the pyramidal neuron only shows activity whenever the
apical (red) and basal (blue) input stream are active at the same time. If the
activation is high enough a burst is triggered, which is used for learning. Dur-
ing the bursting period the synaptic weights of active inputs are strengthened,
while inactive input weights are weakened. This leads to the output behaviour
observable in figure 5.16
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Figure 5.16: Input-Output behaviour of the pyramidal neuron for synchronous and asyn-
chronous basal input after weight adaptation. The figure shows the final
behaviour of the pyramidal neuron to the same input streams as in figure 5.15.
During the bursts the synaptic weights of the active input streams (first apical
input stream (red) and first basal input stream, blue) were strengthened, while
the influence of the other inputs was weakened. This lead to a specialization of
the pyramidal neuron on the first apical and first basal input stream, trigger-
ing more bursts whenever both are active. In comparison to the pre-learning
situation, where the neuron showed an almost constant spiking behaviour, it
now only shows activity according to its input streams it specialized on.
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6.1 Results

The simulation results obtained in this thesis have shown to comply with
experimental results obtained by [Richard Naud and Gerstner, 2013] and
[Larkum, 2013]. It was further shown that by reformulating the model into
a HMM representation, some parameters of the model can be obtained
automatically.
The practical neuron model described here currently uses the intrinsic cal-
cium spike mechanism to influence the spiking behaviour, triggering bursts
whenever a feasible count of correlated input spikes arrive both at the basal
and apical dendritic compartments. Theoretical findings suggest that the
calcium spike is also a main factor in determining long term plasticity and
learning in dendrites. Some papers (for example, [Körding and König, 2000],
see description in chapter 2) have already focused on the influence of Ca2+

spikes on learning, while neglecting the effects on the output function of
neurons.
The last simulation carried out (section 5.4.4) combined both effects of cal-
cium spikes, using the extended spiking behaviour of the pyramidal neuron
to trigger learning. In this case the output bursts, which occur during cal-
cium spikes, were used to change the synaptic weights of input synapses
which were active during the bursting period. It could therefore be shown
that the pyramidal neuron is not only able to combine two independent
information streams arriving at its apical and basal dendrites, which reflects
in its output spiking behaviour. The neuron model is also able to adapt
its synaptic weights, specializing on the input streams which trigger the
calcium spiking mechanism.
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6.2 Outlook

With the inclusion of calcium spikes and their resulting bursting behaviour,
bursting events can be added to single spike events and their respective
timing as the main information in spiking neuron networks.
In the last simulation the bursting behaviour was already used to trigger
synaptic plasticity in a single pyramidal neuron. However only the neuron
triggering the bursts adapted its synaptic weights. In future simulations the
bursting behaviour and especially the reaction of other pyramidal neurons
or interneurons in the cortex on bursts could be considered.

The question whether postsynaptic neurons are able to detect bursts and for-
ward the information has already been addressed [Larkum et al., 2004]. The
paper states an interesting fact, namely that the coincidence time window
between feedforward input arriving at the proximal dendrites and feedback
input arriving distally is about 30ms, which is about the same duration of a
triggered burst. This leads to the question of whether this level of precision
holds a special significance in the neocortex.
The importance of bursts was also acknowledged by experiments performed
during slow-wave sleep. During this phase the former experience patterns
were repeated automatically at a higher frequency, triggering active bursts
in the neocortex. Including the ability of postsynaptic neurons to detect and
react to this bursting behaviour could lead to the assumption that bursts
are a main determining factor for memory [Paulsen and Sejnowski, 2000].
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