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Abstract

Cryptographic algorithms are widely used to provide protection for confidential information against

unauthorized access. The underlying cryptographic primitives are proven to be mathematically

secure. However, implementations of such primitives for specific applications can still leak some

valuable information through side channels or by introducing faulty behavior. Fault attacks par-

ticularly exploit these implementation-specific weaknesses by actively influencing the behavior of a

device in order to produce computational errors and, furthermore, to reveal secret information. The

strategies for influencing the behavior in order to induce faults are based on changing environmen-

tal operating conditions and vary depending on the applicable effort for an attack. Typical attack

strategies are, for instance, tampering with the clock signal or supply voltage level, influencing the

integrated circuit with focused laser beams or establishing electrical contact to the interconnect

lines. Particularly, due to the huge number of different available fault injection mechanisms, con-

sidering any potential threat for securing a device against fault attacks has become a challenging

task. The potential threat of fault attacks has to be considered particularly in scenarios, where an

adversary is able to gain physical access to the device. Sensor networks, smart-card systems or,

more generally, mobile devices are among such attack scenarios. Typically, microcontrollers are

used in these devices to implement a variety of different tasks, including cryptographic operations,

like authentication or data encryption.

This thesis presents an in-depth analysis of the vulnerability of two different microcontroller

platforms on fault attacks using clock glitch insertion and supply voltage manipulation. Both

strategies aim at inducing faults due to a timing-constraint violation of the logic blocks. To reveal

insight into the occurring effects, the influence of clock glitch attacks on the instruction processing-

sequence of several assembly instructions is investigated for both microcontrollers. Furthermore,

we present a novel approach of combining short-time underpowering with clock-glitch insertion to

increase the sensitivity of the device to fault injection. Results of practically performed experiments

on both micocontrollers show that the most reliable faults can be induced when attacking the fetch

stage of the instruction pipeline. In this case, fetching the new instruction is prevented and the

previous instruction remains in the fetch buffer. Different effects are observed when attacking

the execution stage of the instruction pipeline where an induced fault mainly results in erroneous

calculations. Finally, the effects of clock glitch attacks on the built-in hardware support for the

Advanced Encryption Standard (AES), provided by one of the two investigated microcontrollers,

are analyzed. Therefore, we present a fault-based black-box characterization for retrieving detailed

information about the underlying hardware structure. Derived from the obtained results when

attacking the AES encryption procedure, we introduce two key-retrieval attacks using only faulty

ciphertexts.

The presented results and the analysis of the effects of fault attacks on the investigated micro-

controllers reveal detailed information about the potential risk of these kind of attacks on specific

cryptographic primitives and implementations.

Keywords: fault attack, clock glitch, microcontroller, AES
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Kurzfassung

Kryptographische Algorithmen werden in vielen Bereichen eingesetzt, um vertrauliche Information

gegen unautorisierten Zugriff zu schützen. Die dafür zugrunde liegenden kryptographischen Primi-

tive gelten nachweislich als mathematisch sicher. Dennoch ist es möglich, dass anwendungsspezi-

fische Implementierungen dieser Primitive wertvolle Informationen über Seitenkanäle preisgeben.

Fehlerattacken versuchen Berechnungsfehler zu verursachen, indem sie das Verhalten eines Gerätes

aktiv beeinflussen, um so geheime Information herauszufinden. Diese Fehler werden durch gezielte

Veränderung von Betriebsbedingungen eines Gerätes erzeugt, wobei die dafür notwendigen Stra-

tegien von Manipulation des Taktsignals oder der Versorgungsspannung über die Beeinflussung

von integrierten Schaltkreisen mit einem fokussiertem Laserstrahl bis hin zur Herstellung von elek-

trischem Kontakt zu den Verbindungsleitungen des Schaltkreises reichen. Insbesondere die breite

Auswahl an unterschiedlichen Fehlermechanismen, erschwert die Anwendung eines zuverlässigen

Schutzmechanismus. Typische Ziele von Fehlerangriffen sind Sensor-Netzwerke, Smartcard Systeme

oder generell mobile Geräte, bei denen sich der Angreifer temporär Zugang zum Gerät verschaf-

fen kann. In solchen Systemen kommen üblicherweise Mikrocontroller zum Einsatz, da diese eine

Vielzahl von Aufgaben übernehmen können. Diese Aufgaben beinhalten, unter anderem, krypto-

graphische Operationen wie etwa Authentifizierung und Datenverschlüsselung.

Diese Arbeit beschreibt eine detaillierte Analyse der Schwachstellen von zwei unterschiedlichen

Mikrocontrollern bezüglich Fehlerattacken. Durch Einfügen von Störimpulsen im Taktsignal und

mittels Manipulation der Versorgungsspannung wird gezielt fehlerhaftes Verhalten hervorgerufen.

Beide Methoden verfolgen dabei den Ansatz einer Fehlergenerierung durch Verletzen der zeitlichen

Kriterien von Logikblöcken. Um die auftretenden Effekte zu beschreiben, wird der Einfluss von

Störimpulsen im Taktsignal auf die Ausführungssequenz von Assembler Instruktionen analysiert.

In diesem Zusammenhang stellen wir einen neuartigen Ansatz vor, der kurzzeitiges Absenken der

Versorgungsspannung mit dem Einbringen von Störimpulsen im Taktsignal kombiniert, wodurch

eine Erhöhung der Fehlerempfindlichkeit des Gerätes erreicht wird. Die Ergebnisse der durch-

geführten Experimente zeigen für beide Mikrocontroller, dass während des Ladevorgangs eines

Befehls am zuverlässigsten Fehler generiert werden können. Dabei wird das Laden eines neuen Be-

fehls verhindert und der zuvor geladen Befehl verbleibt im Befehlspuffer. Andere Effekte treten bei

einem Angriff auf die Befehlsausführung auf, wobei in diesem Fall vorwiegend falsche Berechnungs-

ergebnisse erzeugt werden. Abschließend werden die Auswirkungen von Störimpulsen im Taktsignal

auf die AES (Advanced Encrytpion Standard) Hardwareeinheit von einem der beiden Mikrocon-

troller analysiert. In diesem Zusammenhang präsentieren wir eine fehlerbasierte Charakterisierung

der Hardwarestruktur, sowie zwei davon abgeleitete Angriffe auf die AES Verschlüsselung. Beide

Angriffe benötigen lediglich fehlerhafte Geheimtexte um den geheimen Schlüssel zu erhalten.

Die Ergebnisse der auftretenden Effekte von Fehlerangriffen auf Mikrocontrollern stellen de-

taillierte Information über das potentielle Risiko dieser Angriffe auf kryptographische Primitive

und Implementierungen dar.

Stichwörter: Fehlerangriff, Taktsignal, Störimpuls, Mikrocontroller, AES
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Chapter 1

Introduction

Protecting secret information against unauthorized access has become an important aspect
in most kinds of modern devices nowadays. User data on smart phones, measurement data
in sensing networks or communication data over wireless links are just a few examples.
Depending on the field of application, different cryptographic algorithms and primitives
can be applied in order to ensure confidentiality, integrity and authenticity (CIA) of data.
When selecting cryptographic algorithms for devices dealing with sensitive data, the capa-
bilities for an attacker who physically accesses such a device are often disregarded. These
so-called physical attacks do not necessarily aim at mathematical weaknesses of algorithms
or implementations but rather take advantage of physically observable or manipulable pa-
rameters. In case of passive attacks, leaking side-channel information during cryptographic
calculations is observed and analyzed. Typical side-channel information is given by the
power consumption [22], the electromagnetic emanation [17], or timing behavior of a de-
vice used to retrieve secret information. With accurate time measurement for example,
it is possible to retrieve information about executed algorithms or processed data if the
required execution time varies depending on the given input data. With this approach,
Kocher [23] showed that it is possible to find the entire secret key of a cryptographic sys-
tem. In contrast to the passive side-channel attacks, fault attacks actively affect a device
and its operation by modifying physical/environmental parameters. Thus, it is possible
to enforce faulty behavior or wrong conditions in the attacked device. As a consequence,
induced faults typically result in erroneous calculations. This enables an attacker to gain
details about the implementation or to even extract secret information. Fault Attacks are
typically categorized into non-invasive, semi-invasive and invasive attacks. Covering the
manipulation of physical parameters like the temperature [18], the supply voltage [43] or
the clock signal [7] of a device, non-invasive attacks usually do not require conspicuous
modifications of the attacked device. As a result, it is highly probable that an attack re-
mains hidden. In contrast to non-invasive attacks, the group of semi-invasive and invasive
attacks requires more sophisticated approaches. The device package has to be removed
in order to get access to the inner semiconductor structure. By exposing the chip surface
to intense white light or focused laser beams, faults can be induced due to photoelectric
effects [27]. Skorobogatov and Anderson [37] presented an optical fault injection attack
on a microcontroller successfully influencing the content of memory cells. Removing the
device package in order to perform fault attacks has the advantage that fine-grain faults
can be injected in terms of timing as well as affected values. Detailed categorizations
of different fault attack methods including experimental approaches and a discussion of
feasible countermeasures are given by Bar-El et al. [8].

1



CHAPTER 1. INTRODUCTION 2

In general, limitations of fault attacks are given by the fact that physical access to the
device is required. However, concerning non-invasive attacks, an attacker only has to be
able to control a device for a certain period of time. Since the target remains intact, the
device can be returned after an attack inconspicuously without leaving visible traces. As
a consequence, mobile applications represent an interesting target group for non-invasive
fault attacks since it is easily possible to gain access for an attacker. Especially devices in-
volved in cryptographic procedures like smart cards, radio-frequency identification (RFID)
technologies and wireless sensing platforms have to be considered as potential targets. In a
wide range of these applications microcontrollers are used to perform several tasks, includ-
ing security-relevant calculations. Additionally, hardware-assisted cryptographic features
intensify the use of microcontrollers for applications dealing with sensitive data. The fea-
tures allow to speed-up cryptographic calculations on the one hand and decrease the power
consumption compared to a pure software implementation on the other hand.

This work analyzes the vulnerability of microcontrollers to non-invasive fault attacks
in a practical approach. Two different microcontroller platforms (Atmel ATxmega 256
and ARM Cortex-M0) are evaluated. For both microcontroller units (MCU), the focus is
put on a detailed analysis of how injected faults affect the instruction execution process.
Additionally, the AES (Advanced Encryption Standard) crypto engine of the ATxmega 256
is investigated in terms of vulnerability to fault attacks. Therefore, it is shown how
injected faults can be used to gain information about the underlying hardware structure
of the implementation of a cryptographic algorithm as well as how it is possible to retrieve
the secret key used for encryption. The presented results should serve as a basis for
investigating the potential risk of fault attacks on specific cryptographic primitives and
implementations.

1.1 Contribution

In this work we present the practical approach of injecting faults into two different micro-
controller platforms by applying non-invasive fault attacks. More precisely, the vulnerabil-
ities to clock glitch attacks targeting a selection of comparable instructions for the Atmel
ATxmega 256 and the ARM Cortex-M0 are analyzed. In this way, a direct comparison of
two different MCU architectures to similar fault injection is given. In addition to a fault
analysis of the instruction execution procedure, we present two key retrieval attacks on the
AES crypto engine of the ATxmega 256 by applying clock glitches during the encryption
procedure. In detail, this work provides the following contributions:

- Clock glitch attacks aim at violating the timing constraints of a device by apply-
ing a manipulated clock signal beyond the specified ratings. As a consequence,
the instruction execution procedure of a microcontroller can be influenced. Results
show, that inducing faults with accurate timing leads to a controlled manipulation
on both investigated microcontroller. In due consideration of the different MCU
architectures, we are able to compare the effects of similar faults on the two-stage
pipeline of the ATxmega 256 and the three-stage pipeline of the Cortex-M0. To pro-
vide a reliable comparison of both MCU platforms, the effects of clock glitches on
three different groups of instructions are evaluated: arithmetical/logical instructions,
branch instructions, and memory instructions.

- We introduce an approach of combining clock glitch attacks and supply voltage
attacks, where short-time underpowering of the device is simultaneously performed
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with a manipulation of the clock signal. The voltage level used for underpowering
is chosen in a way that only applying short-time underpowering does not affect
the device at all. The effective injection of faults is only done by simultaneously
inserting clock glitches to ensure accurate timing and reproducibility. Results show
that the efficiency of clock glitch attacks can be increased significantly by applying
this approach on the Cortex-M0.

- The Cortex-M0 provides a brown-out detection for monitoring the power supply.
This feature can serve as a simple countermeasure against underpowering attacks.
Therefore, we evaluate the brown-out detection by analyzing its response to supply
voltage reduction for different durations and voltage levels. By choosing appropriate
values for voltage and duration, the brown-out detection mechanism fails to detect
an underpowering attack.

- We further analyze how the AES crypto engine of the ATxmega 256 is influenced by
clock glitch attacks. Consecutively inducing single clock glitches during AES encryp-
tion makes it possible to retrieve information about the hardware implementation.
Depending on the attacked cycle of encryption, different erroneous ciphertexts are
observed, allowing to draw conclusions about the underlying hardware structure.
We present details about this approach of fault-based black-box characterization for
the AES crypto engine of the ATxmega 256 as well as the obtained results.

- Additionally, we present two key-retrieval attacks on the AES crypto engine of the
ATxmega 256 by injecting faults during AES encryption. By inserting clock glitches
during the final encryption round of the AES, an analysis of resulting erroneous
ciphertexts enables us to define two fault models for key-retrieval attacks. For both
attacks it is possible to reveal the secret key used for encryption only by observing
faulty ciphertexts.

1.2 Outline

The outline of this work is as follows: First, we discuss relevant related work in Chapter 2,
focusing on fault attacks performed on different applications and implementations. Next,
a general categorization and description of fault attacks is given in Chapter 3 including a
comprehensive discussion of how clock and supply voltage manipulation is used in order
to perform fault attacks. In Chapter 4 we introduce the fault injection setup and the
microcontrollers used for our experiments. A description of the attack scenarios and the
investigated instructions is given in Chapter 5 followed by the achieved results for the
Cortex-M0 and the ATxmega 256 in Chapter 6. Here we present common and individual
characteristics for both microcontrollers, obtained during our experiments. In Chapter
7 a general introduction to the Advanced Encryption Standard (AES) is given as well
as a description of the attack scenario for the AES crypto engine of the ATxmega 256.
Derived from the obtained results, the implementation analysis of the AES crypto engine
and the applied key retrieval attacks are explained in Chapter 8. Conclusions are drawn
in Chapter 9.



Chapter 2

Related Work

In recent years, considering fault attacks as potential threats to cryptographic applications
has become increasingly important. By now, a wide range of literature and publications
address these attacks covering hardware implementations as well as software implementa-
tions of cryptographic primitives. The focus of research for the category of non-invasive
fault attacks varies from theoretical analysis of specific cryptographic algorithms to im-
plementation attacks performed on devices in practice. Fault attacks can be categorized
depending on the intended impact on a device and which faulty behavior can be exploited.
Therefore, differential fault analysis (DFA), first introduced by Biham and Shamir [9], aims
at retrieving secret information by comparing correct and fault-induced results of a crypto-
graphic calculation. Yen and Joye [41] propose the concept of safe-error attacks analyzing
whether an injected fault leads to a erroneous calculation or not. The third category of
fault attacks are algorithm modifications where specific manipulations of cryptographic
calculations are exploited to retrieve secret information.

Djellid-Ouar et al. [13] discuss the effects of supply voltage glitches on complementary
metal-oxide-semiconductor (CMOS) circuits based on a detailed analysis of semiconductor
characteristics. Therefore, the effects of glitches influencing the behavior of D-flip-flops
on the one hand and combinational logic on the other hand are investigated and verified
by applying circuit simulations. An early work of Koemmerling and Kuhn [24] covers a
wide range of physical attack techniques on microcontrollers for extracting secret data.
Additionally, they give an overview about hardware countermeasures to prevent an attack
or at least to increases an attacker’s effort in order to succeed. Fuhr et al. [15] propose a
theoretical discourse of several fault attacks on the AES algorithm. Their approach relies
on non-uniform fault distribution models where only a set of faulty ciphertexts is necessary
to recover the secret key.

In addition to the aforementioned works, a huge number of reports present practically
applied attacks. Li et al. [26] discuss the impact of non-uniform distributed faults on a
hardware implementation of AES. Focusing on the circuit structure of the S-Box, they
state the reasons for the non-uniformity of faulty S-Box outputs and show that specific
values appear more likely under faulty conditions. By applying clock glitch attacks and
using hardware simulation, their theoretical assumptions could be verified. On this basis
they additionally presented an attack using electromagnetic interference in which they
successfully recovered several key bytes. Without using trigger signals for accurate fault
injection timing their attack scenario can be considered as very realistic. By tampering
with the supply voltage, Selmane et al. [35] describe a practical attack on AES co-processor
of a smart card. Based on underpowering of the device during the whole encryption

4



CHAPTER 2. RELATED WORK 5

process, setup time violations on the critical path of combinational logic lead to fault
injection. Beside the effect of multiple errors caused by lowering the supply voltage, they
were also able to induce single faults. An FPGA-based AES implementation was attacked
by Agoyn et al. [1] by applying clock glitches in order to induce faults. Practical clock
glitch attacks were used to characterize the injected faults and to verify their theoretical
analysis. Fukunaga and Takahashi [16] present practical fault attacks on a cryptographic
application-specific integrated circuit (ASIC). They developed an experimental setup for
injecting faults into a desired cycle of the six symmetric block ciphers implemented on the
ASIC to analyze the vulnerability on clock glitch attacks.

An attack based on manipulating the round counter of a round-based encryption algo-
rithm is shown by Choukri and Tunstall [10]. Therefore, an AES implementation running
on a microcontroller-based smart card was attacked using supply voltage glitches to reduce
the AES execution to only one round. Their work also provides information about how
the smart card is forced to faulty behavior in order to change the program flow of the AES
software implementation. Dehbaoui et al. [12] present another attack on manipulating the
round counter of an AES software implementation using electromagnetic pulses for fault
injection. They were able to prevent an incrementation of the round counter and to re-
dundantly execute an encryption round. Based on this approach, they describe a round
addition attack for recovering the secret key.

Schmidt and Herbst [33] performed a practical fault attack on the square and multiply
algorithm of a Rivest Shamir Adleman (RSA) implementation using supply voltage spikes.
In doing so, they were able to manipulate the program flow of the attacked microcontroller
implementation leading to skipped square operations further used to recover the secret key.
Focusing on the Chinese Remainder Theorem (CRT), Kim and Quisquater [20] present
another attack on an RSA implementation. By tampering with the power supply voltage,
they apply double-fault injection in order to first influence cryptographic computations
and second, to skip a fault detection routine. Due to this weakness, commonly used
countermeasures for secure RSA implementations can be bypassed.

So far, all practical attacks mentioned, target a specific cryptographic hardware or
software implementation. In contrast to these works, Moro et al. [28] present another
approach by not focusing on a specific implementation but rather analyzing the overall
behavior of an ARM Cortex-M3 microcontroller to electromagnetic fault injection. Based
on their experimental results, they present a fault characterization and analysis describing
how different attack parameters influence the microcontroller. Balasch et al. [7] use a
similar approach by applying clock glitch attacks on an Atmel ATmega 162 microcontroller
and investigating the effects of injected faults on the instruction set. Based on several
attacks on different instructions, they were able to show that varying timing parameters
for the clock glitch can lead to different manipulations on the executed instruction. In
particular, they analyze the effects on the program flow or the data flow and which parts
of the MCU are influenced by their attacks.

In all conscience there is only a small number of reports taking a similar approach
to those of Balasch et al. [7] and Moro et al. [28]. Similar to [7], this work relies on
investigating the impact of non-invasive fault injection attacks on two different MCU
platforms. In addition to [7], analyzing two MCU types on the impact of clock glitch
attacks allows us to specify relationships and give detailed comparisons based on the
observed results. This approach facilitates a generalizable characterization of the fault
injection effects on microcontrollers. Additionally, we present an implementation-specific
attack on the AES crypto engine of the ATxmega 256. Compared to the aforementioned
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practical attacks, we applied a black-box characterization of the AES implementation
based on faulty ciphertexts, to derive possible fault models. Based on the observed results,
we present two key retrieval attacks. A detailed contribution to this work is given in Section
1.1.



Chapter 3

Fault Injection Methodology

Typically, the access to processed data of a cryptographic device is severely restricted,
meaning that only specific input and output data is available to an adversary. Intermedi-
ate values during computation can be used to break a secure system. Fault attacks aim
at revealing such secret or obscured information by actively influencing a device in its op-
eration. The idea behind fault attacks relies on selectively manipulating or modifying the
behavior of a device in order to induce faults during computations. Therefore, the strate-
gies for manipulating the behavior of a device range from violating operation conditions
by taking influence on environmental parameters to penetration for physically accessing
the inner structure of the device. Regardless of the applied strategy, a restrictive condition
for performing active fault attacks is given by the fact that physical access to the device is
necessary. However, fault attacks represent a potential threat for cryptographic devices.
By analyzing the impact of the induced faults within the computation result, it is possible
to obtain secret information or implementation details. Fault attacks usually exploit weak
points of a specific implementation design and the underlying hardware structure of a
cryptographic primitive.

Due to a huge number of different applicable fault injection strategies, securing a
device against active fault injection is rather difficult. Furthermore, additional implemen-
tation overhead and hardware design constraints might lead to a reduced application of
proper countermeasures against fault attacks. In this context, Karaklajić et al. [19] present
an intuitive guide for overcoming the complexity of considering countermeasures during
hardware design.

In this chapter we introduce common fault injection strategies by a general description
of three different groups of active fault attacks: invasive attacks, semi-invasive attacks,
and non-invasive attacks. For each category general properties and the required effort
for performing an attack are presented. Following, we particularly focus on non-invasive
attack approaches used in our practical experiments for investigating the vulnerability of
microcontrollers to fault injection. Clock glitch attacks and supply voltage manipulation
are applied in the practical experiments, presented in this work. Furthermore, we explain
the underlying attack mechanism and how clock glitches and underpowering can influence
the hardware circuit based on timing constraints violations.

7
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3.1 Non-Invasive Fault Attacks

The group of non-invasive fault attacks are considered to be the simplest and certainly
cheapest form of active fault injection. In this case, faults are, for example, induced by
tampering with environmental conditions or supply signals without requiring sophisticated
modifications of the attacked device. Therefore, a rather cheap and simple equipment is
sufficient in order to perform these kind of attacks. The most important restrictions of non-
invasive fault attacks are given by the fact, that usually the entire device or several parts
of the device are influenced at once. Thus, focusing fault injection on a specific part of
the device is rather difficult which complicates a reliable localization of the induced faults
necessary to identify the affected part on the device. The most common non-invasive fault
attacks are based on the following fault injection strategies.

- Clock glitches. Variations in the clock signal can be applied to devices that re-
quire an external clock source. Adding additional clock edges with a shorter period
than supported by the device might cause, for instance, misinterpreted assembly
instructions executed on a microcontroller [7]. Therefore, clock glitch attacks aim
at manipulating the timing behavior of a hardware implementation by violating the
critical path delay of the combinational logic.

- Power supply manipulation. The approach of tampering with the power supply
voltage of devices again utilizes the manipulation of timing behavior similar to clock
glitch attacks. Precisely induced negative or positive spikes in the power supply line
can, for instance, be applied to a microcontroller in order to modify the program flow
[10] or used to influence the operation of an AES hardware implementation on a field-
programmable gate array (FPGA) [43]. In contrast to these attacks, underpowering
represents another approach for power supply manipulation. The supply voltage is
reduced below the specified operating range of a device for a certain period of time
until faults can be recognized.

- Temperature. Fault induction can be achieved by changing the temperature of an
electronic device to a very high or low temperature beyond the specified operating
range for correct operation. Heating up a microcontroller above 150 ◦C can induce
faults during operation [18]. In this context, Hutter and Schmidt [18] additionally
present data remanence attacks in which overheating is used to stress the internal
static random-access memory (SRAM) of a microcontroller in order to provoke a
stable power-up state of memory cells.

- Electromatgnetic pulses. High-frequency electromagnetic fields induce eddy cur-
rents in the chip which in turn can influence data signals. By inducing a high voltage
into an electromagnetic probe, it is possible to generate a field that can influence a
device in its operation. With this approach, Schmidt and Hutter [34] were able to
affect the SRAM content of a microcontroller and successfully injected faults during
computations.

3.2 Semi-Invasive Fault Attacks

Compared to non-invasive fault attacks, semi-invasive fault injection strategies require
a more sophisticated preparation of the attacked device. Usually, the package of the
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chip has to be partly removed in order to provide direct access to the surface of the
semiconductor where the entire chip die and its passivation layer remain intact. Once the
chip surface is exposed, semi-invasive attacks are performed without additional electrical
contact. Classified under the category of semi-invasive fault attacks, Skorobogatov and
Anderson [37] introduced the approach of optical fault injection. These kind of attacks
are based on the sensitivity of semiconductors to ionization caused by exposing them to
intense light sources. The occurring physical effects are based on the formation of electron-
hole pairs caused by the absorption of photons within the semiconductor material [38]. In
regions of p-n junctions the charge carriers generate a current capable of influencing the
state of a transistor. Skorobogatov and Anderson [37] demonstrate that an inexpensive
photo flash or an off-the-shelf laser pointer can be sufficient in order to perform optical
fault injection. However, modern semiconductor technologies with smaller structure sizes
and an increasing number of layers require very accurate optical fault injection techniques.
For instance, the wavelength of the light source used, the spot size of a laser beam and
the applied energy are important parameters for succeeding in optical fault injection.
Trichina and Korkikyan [39] use a yttrium aluminum garnet (YAG) laser for attacking
a microcontroller where the optical fault injection setup allowed the precise targeting of
the semiconductor circuit in the range of a few µm2. With the presented approach it is
possible to enforce skipped instructions when attacking a specific region with focused laser
beams. In general, optical fault attacks can target the front side as well as the rear side
of a chip [25]. Removing the package on the front side requires a sophisticated approach
including the usage of nitric acid in order to prevent mechanical damage of the chip die.
In contrast to that, accessing the chip on its rear side can be achieved in a rather simple
way by using a mill for removing the package material. In this case the substrate of the
semiconductor is protected from mechanical damage by the heat-sink metal plate which
can be removed after milling with pliers. For optical fault injection both strategies have
different advantages and disadvantages. As the transistors are placed at the front side, the
circuit structure can not be identified when opening the chip on the rear side. Additionally,
the substrate has to be penetrated by the laser beam and specific wavelengths are required
to reach the sensitive regions. When attacking from the front side, metal layers can hinder
the laser beam from hitting a specific target.

3.3 Invasive Fault Attacks

Similar to semi-invasive fault attacks invasive fault injection strategies demand for ex-
posing the chip on its front side. Usually, a silicon oxide or nitride layer covers the
semiconductor surface necessary for electrical and chemical protection of the chip. When
applying invasive fault attacks, this so-called passivation layer has to be removed in order
to gain access to the metal layers of the chip die. Once the interconnect lines of the semi-
conductor are exposed, the approach of microprobing allows to establish electrical contact
to the inner circuit structure of the device. Therefore, specific microprobing equipment is
essentially required in order to handle precise positioning of probing needles. Typically,
data and address bus lines are a good target choice for microprobing. For instance, ex-
trinsically influencing the value of an address bus allows to access specific memory content
of a device. In this context, Skorobogatov [36] provides an intuitive description of the
essential steps for performing invasive fault attacks. Beside the fact that fairly expen-
sive and sophisticated equipment is required, invasive fault attacks are the most powerful
approaches for fault injection. As the underlying injection mechanism is based on direct
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Figure 3.1: Sequential logic of a digital integrated circuit.

electrical contact to the affected target, faults can be induced in a very precise and se-
lective way. However, partial knowledge about the circuit structure is advantageous for
proper identification of potential targets on a chip.

3.4 Timing Constraints Violation

In our practical experiments on investigating the influence of non-invasive fault attacks on
the behavior of microcontrollers, we apply fault injection using clock glitches and supply
voltage manipulation. Both strategies rely on violating the timing constraints for proper
operation of the devices in order to provoke erroneous behavior. As illustrated in Fig-
ure 3.1, digital integrated-circuits usually consist of two parts. First, combinational logic
blocks for data processing and second, storage elements (e.g. D-flip-flops) to synchronize
the operations using a common clock signal. Between two rising clock edges, data prop-
agates through the combinational logic causing a propagation delay tp until the correct
output value of the combinational logic can be provided to the input of the receiving D-
flip-flop. In addition to the propagation delay tp, the critical path delay tcritical between
two flip-flops depends on several other parameters. First, the setup time ts of the flip-flop
defines the interval before the rising clock edge where a stable input value is required.
The hold time th defines a similar interval but after the rising clock edge is not considered
within the critical path delay. Second, the clock-to-output-delay tco describes the interval
required to obtain a valid output value by the flip-flop after the rising clock edge. Based on
the assumption that routing delays and clock skews between the flip-flops are negligible,
the critical path delay can be defined as the sum of tp, ts, and tco defined in Equation 3.1.
In order to ensure correct operation, the minimal clock period of Tclk has to be greater
than the maximum critical path delay tcritical of the circuit. Additionally, a stable input
signal is required during the time intervals ts before and th after the rising clock edge to
avoid metastable output behavior of the flip-flop.

tcritical = tp + ts + tco (3.1)

By violating the aforementioned timing constraints fault injection is possible either
through variations of the supply voltage level or by exceeding the maximal clock period
for proper operation. Djellid-Ouar et al. [13] describe the effects of supply voltage glitches
on CMOS circuits. Their simulation results show that influencing the combinational logic
by applying supply voltage glitches is possible. However, D-flip-flops appeared to be
resistant to an attack between two rising clock edges. Additional results on the impact of
clock and supply voltage glitches are presented by Zussa et al. [43] and Agoyan et al. [1].
Subsequently, two approaches for influencing the behavior of sequential logic are discussed
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Figure 3.2: Violation of the critical path delay due to clock glitch insertion. The shaded
area of d2in represents the unsteady output state of the combinational logic.

by means of the fault injection mechanism for violating the timing constraints using either
clock glitch insertion or underpowering.

3.4.1 Clock Glitches

The maximum operating frequency for a synchronous digital device is typically defined
by the longest critical path delay. Therefore, the supported clock frequency is defined
by a maximum value fmax which equals a minimum clock period Tmin required by the
device for correct operation. By decreasing the clock period below Tmin, the available
time between to rising clock edges may not be sufficient for providing the correct output
of a combinational logic block. As a result, the register may sample a wrong value if
either a stable but incorrect signal level is provided to a register’s input at the rising clock
edge or input signal transitions during the setup and hold time cause metastable behavior
of the register. Both effects can occur if the clock edge arrives before the output of the
combinational logic has settled to a stable value. Consequently, tampering with the clock
signal allows fault injection by violating the critical path delay tcritical of an operation.

In this context, the most intuitive approach for fault injection is overclocking where the
clock frequency of a device is increased to a value above the supported operating range.
However, faults may be induced during several operations of the device as each cycle is
affected by clock frequency modification. Thus, the applied clock frequency represents the
only attack parameter for determining the resulting effects. In contrast to overclocking, a
precise selection of the affected clock cycle is possible when applying the approach of clock
glitch insertion. In this case, the device operates on a nominal clock frequency within
the specified operating range. By adding one additional rising edge to the clock signal
an additional shortened clock period TGlitch is generated, violating the timing constraints
during a specific calculation if TGlitch < tcritical. Figure 3.2 illustrates the effects of an
inserted clock glitch, violating the critical path delay of the combinational logic. The
shaded area of d2in represents the unsteady output state of the combinational logic during
the transition interval. As it is not guaranteed that stable or correct input data d2in is
provided to the register at the rising edge of the clock glitch, an erroneous value may
be latched by the register. Based on this strategy, faults can be precisely induced by
selecting two attack parameters: the affected clock cycle and the shortened clock glitch
period TGlitch.
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3.4.2 Underpowering

Provoking timing constraint violations can be additionally achieved by manipulating the
supply voltage level. By decreasing the supply voltage level of a device, the propagation
delay tp of the combinational logic block can be increased. This effect relies, among others,
on an increased duration for loading the output capacitances of the integrated circuit [43].
In this context, underpowering describes a reduction of the supply voltage to a level below
the specified operating range of a device in order to induce faults. Figure 3.3 illustrates the
underlying principle of fault induction using underpowering. The propagation delay of a
combinational logic is increased to the effect that the critical path delay of an operation is
violated and wrong values are sampled by the registers at a nominal clock frequency. Sim-
ilar to overclocking, permanent underpowering of the device during the whole execution
of an algorithm may induce several faults in multiple calculations. In contrast, transient
underpowering can be applied by reducing the supply voltage only during specific oper-
ations, i.e. during specific time intervals. However, supply voltage changes are limited in
time due to unavoidable capacitive effects given, for instance, by parasitic capacitance of
supply lines or on-chip decoupling capacitors.

As introduced in Chapter 6, a combination of short-time underpowering and clock
glitch insertion is used in our practical experiments in which underpowering only serves
the purpose of increasing the propagation delay of an operation without actively inducing
faults. As a result, the sensitivity to additionally applied clock glitches can be increased.



Chapter 4

Fault Injection Setup

In order to implement the approach of non-invasive fault injection and to practically
perform experiments on microcontrollers, a specific fault injection setup is used. Figure
4.1 depicts a block diagram of the fault injection setup and the connection between the
involved components. An FPGA-based fault board acts as the core part of the fault
injection setup and provides the clock signal and the power supply voltage for the attacked
device, referred to as device under test (DUT). To synchronize an attack between the
fault board and the DUT, the trigger and reset signals are used. The attack parameters
for the clock glitch injection and the supply voltage manipulation are configured on the
control computer. Additionally, the DUT is connected to the control computer for the
configuration of a test application and for result communication after an attack. The
supply voltage and the clock signal are monitored using an oscilloscope.

In the following chapter, we first introduce the investigated microcontrollers, one Atmel
ATxmega 256 and one ARM Cortex-M0. Next, a description of the fault board is given,
including its features and attack capabilities. In this context, the clock glitch generation
and the supply voltage manipulation are explained. In order to provide a flexible use
for a wide range of devices, the fault board provides a specified interface. We designed
extension boards for both investigated microcontrollers which can be easily connected to
the fault board by utilizing this interface. A description of the two extension boards is
given at the end of this chapter.

4.1 Investigated Microcontrollers

The chosen target platforms for our practical experiments targeting non-invasive fault
injection are the Atmel ATxmega 256 and the ARM Cortex-M0, for which NXP’s LPC1114
implementation of the Cortex-M0 is used. Both microcontrollers are largely used in a wide
range of of applications. Although they are not dedicated to secure devices, they might
be used in security applications due to a huge number of supported features, including,
for example, the hardware support for AES encryption on the ATxmega 256. Moreover,
analyzing the vulnerability to fault injection of two different microcontroller platforms
allows a precise characterization and comparison of the occurring effects. Thus, it is
possible to identify common weak points which should be considered in general for security-
relevant applications. Following, we briefly introduce the ATxmega 256 and the Cortex-M0
by their features and properties, with a focus on architectural details, particularly relevant
in our experiments.

13
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Figure 4.1: Block diagram of the fault injection setup.

4.1.1 Atmel ATxmega 256

The Atmel ATxmega 256 is a low-power 8/16-bit microcontroller based on a Harvard ar-
chitecture, meaning that separated memories and buses are used for program memory
and data memory. The program is stored in an internal flash memory, which is accessible
via the program interface of the ATxmega 256 or by the software application executed on
the device. The data memory space linearly maps the I/O space starting at address 0x0,
followed by the internal Electrically Erasable Programmable Read-Only Memory (EEP-
ROM) and the internal Static Random-Access Memory (SRAM). The reduced instruction
set computer (RISC) architecture of the ATxmega 256 supports 142 instructions, comply-
ing with the Atmel AVR instruction set. Most of them execute in a single clock cycle.
Additionally, the 16-bit program memory bus allows to load a 16-bit instruction in a single
clock cycle resulting in a two-stage pipeline with one fetch stage and one execution stage
as shown in Figure 4.2. Based on this pipeline structure, one 16-bit instruction is loaded
from the program memory while the previously loaded instruction is executed simultane-
ously. Thirty-two 8-bit general purpose registers are available on the ATxmega 256where
the arithmetic logic unit (ALU) can access two registers during the execution of an in-
struction in a single clock cycle. For addressing of program memory or the data memory
space, 6 general purpose registers can be used. In this case, two registers are combined to
provide a 16-bit memory address.

fetch

fetch execute

Instruction 1

Instruction 2

Instruction 3

Cycle 1 Cycle 2 Cycle 3 Cycle 4

fetch execute

execute

Figure 4.2: Pipeline diagram of the Atmel ATxmega 256.

For our practical experiments we use the ATxmega 256A3 in a 64-pin thin quad flat
package (TQFP). This version of the ATxmega 256 series provides 256 KiB flash memory,
16 KiB SRAM and 4 KiB EEPROM. The maximal operating frequency is 32 MHz which
equals a minimal clock cycle duration of 31.25 ns. The required supply voltage is specified
between 1.6 V and 3.6 V with at least 2.7 V recommended when using a clock frequency
above 12 MHz. The available option of using an external clock source actually makes it
possible to induce clock glitches. Particularly interesting features of the ATxmega 256A3
are the hardware support for AES and a hardware multiplier. The so-called AES crypto
engine supports a key size of 128 bits and requires 375 clock cycles for the encryption
or decryption of a 128-bit data block. The hardware support for multiplication has a
capability of multiplying two 8-bit register entries. After two cycles for execution, the
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16-bit result is written to two dedicated 8-bit general purpose registers. Both features are
considered in our clock glitch attacks. For further information about the ATxmega 256 we
refer to the datasheet [6] and the user manual [5].

4.1.2 ARM Cortex-M0

The ARM Cortex-M0 represents the smallest available ARM processor based on the
ARMv6-M architecture. The low-power 32-bit processor implements a Von-Neumann
architecture, using the same 32-bit bus system for accessing the program and the data
memory. The program code is stored in an internal flash memory starting at address
0x0 in the linearly mapped memory address space followed by the internal SRAM. The
Cortex-M0 implements a RISC architecture and supports 56 instructions, most of them
correspond to the ARM Thumb instruction set. Only a few instructions supported by the
Cortex-M0 belong to the Thumb-2 instruction set which includes additional 32-bit instruc-
tions. However, most operations of the Cortex-M0 are performed with 16-bit instructions.
The instruction execution procedure of the processor is based on a three-stage pipeline
with one fetch stage, one decode stage, and one execution stage. Figure 4.3 depicts the
pipeline structure for executing 16-bit instructions. The fetch stage represents a conspic-
uous part of the pipeline. One fetch operation is performed in every second clock cycle,
where two 16-bit instructions are simultaneously fetched from program memory. As a con-
sequence, one instruction remains for either three or four clock cycles in pipeline although
instruction decode and execute is performed in every clock cycle. For data operations,
the Cortex-M0 provides thirteen 32-bit general purpose registers. Most of the instructions
only operate on the so-called low register (R0 to R7 ). For memory addressing, the 32-bit
address can be specified by the value of one general purpose register. Furthermore, several
address modes are available to support application-specific requirements.

fetch

fetch

decode execute

decode

fetch

fetch

execute

decode execute

decode execute

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Figure 4.3: Pipeline diagram of the ARM Cortex-M0.

For our practical experiments we use NXP’s implementation of the ARM Cortex-
M0, namely LPC1114FN28, available in a 28-pin dual inline package (DIP). The internal
memories are a 32 KiB flash memory for program code and a 4KiB SRAM. The clock
generation unit of the LPC1114 allows to bypass all internal clock sources in order to
use an external clock signal which is necessarily important for clock glitch injection. The
maximal operating frequency is 50 MHz which equals 20 ns for the minimal clock cycle
duration. Regardless of the used clock frequency, the supply voltage level can be chosen
between 1.8 V and 3.6 V. In contrast to the ATxmega 256, the LPC1114 does not support
hardware acceleration for cryptographic primitives. The integrated hardware multiplier is
capable of multiplying two 32-bit values into a 32-bit result in a single clock cycle. The
most significant 32-bits of the result are discarded. For further information about the
ARM Cortex-M0 we refer to the user guide [2]. Details about NXP’s LPC1114 can be
found in the data sheet [30] and the user manual [31]. For the rest of this work the name
Cortex-M0 implies the LPC1114FN28 implementation from NXP.
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Figure 4.4: Fault board of the fault injection setup.

4.2 Fault Board

The main part of our fault injection setup is a custom-made device for tampering with the
supply voltage and the clock signal. This so-called fault board is depicted in Figure 4.4.
A XILINX Spartan-6 XC6SLX45 FPGA is the main part of the fault board, providing
a flexible approach to control the entire attack procedure. Additionally, the FPGA is
responsible for clock glitch generation and the flow control of supply voltage manipulation
during an attack. The fault board provides a specified interface for connecting an investi-
gated target. Therefore, extension boards are used which have to be individually designed
for each device under test (DUT). In order to address a wide range of devices, the fault
board provides a huge number of configurable I/O pins in addition to several dedicated
pins for performing an attack. These dedicated pins are: the clock and power supply, the
trigger input, the serial communication interface, and the reset output. As illustrated in
Figure 4.1, the following signals are used for our experiments, targeting the ATxmega 256
and the Cortex-M0:

- Supply voltage. The supply voltage for the extension board is provided by the
fault board. Thus, configurable supply voltage manipulation is possible.

- Clock signal. The clock signal including the configurable clock glitch insertion for
an attack is generated by the FPGA of the fault board and can be directly applied
to the DUT.

- Trigger signal. The trigger input of the fault board allows to synchronize an attack
between the fault board and the test application running on the microcontroller.

- Reset signal. The reset signal is used to put the microcontroller into an initial
state at the beginning of an attack.

A control computer is used for configuration of the fault board and for communication
with the DUT. The fault board provides an universal serial bus (USB) interface with an
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Figure 4.5: Block diagram and timing chart of the clock glitch generation unit.

USB to serial converter, providing two separate serial interfaces. One of the serial interfaces
is connected to the FPGA. The second serial interface is used to communicate with the
DUT and therefore connected to the interface for the extension boards. Furthermore,
the power supply for the fault board is provided by the USB connector. Configuration
and communication via the serial interfaces are done via MATLAB scripts on the control
computer.

4.2.1 Clock Glitch Generation

The clock glitch generation unit of the fault board is based on the approach presented
by Endo et al. [14]. In doing so, two phase-shifted clock signals clk1 and clk2 are derived
from the nominal clock signal clk resulting in three signals with different phases. As
shown in Figure 4.5, t1 and t2 define the delays between the nominal clock signal and the
phase-shifted clock signals clk1 and clk2 on condition of t1 < t2. By switching between
these signals it is possible to generate a clock signal clkGlitch with an additional rising
edge. The functional principle of the clock glitch generation unit is depicted in Figure 4.5,
including a block diagram and the corresponding timing chart for the clock and control
signals. Two digital clock manager (DCM) of the XILINX Spartan-6 FPGA are used
to shift the phase of the nominal clock signal and to generate clk1 and clk2. The DCM
units are part of the FPGA clocking resources and provide a variable phase shift mode
for adjusting the phase shift of a clock signal during operation using a step size between
10 ps and 40 ps. Further information about the DCM units can be found in the user guide
for clocking resources of the XILINX Spartan-6 FPGA in [40]. A multiplexer is used to
select either the nominal clock signal clk or the shifted clock signal clk2 generated by
DCM2. The output signal of the multiplexer represents the glitched clock signal clkGlitch.
DCM1 is used to generate the shifted clock signal clk1 which is further combined with the
synchronized enable signal en sync. The resulting select signal muxsel is used to control
the multiplexer. The enable input signal en is synchronized with the nominal clock signal
clk using a D-flip-flop. Without inserting a clock glitch, the en input is low and the
multiplexer forwards the nominal clock signal clk to its output. In case of inserting a
clock glitch, the first rising edge of the affected clock cycle is still defined by the nominal
clock signal clk. As soon as the enable signal en sync is set to high-level with the rising
edge of clk, the multiplexer switches to clk2 at the rising edge of clk1. The resulting clock
signal clkGlitch is set to low-level due to the fact that clk2 is still low at this point. The
second rising edge of clkGlitch is defined by the rising edge of clk2. At the falling edge of
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Figure 4.6: Waveforms of the clock signal with a step width of 0.5 ns for TGlitch between
5 ns and 18 ns.

clk1 the select signal muxsel is set to low-level and the multiplexer forwards the nominal
clock signal clk again.

The fault board offers several configurable options for clock glitch generation. The
nominal clock frequency for the DUT can be chosen between 4 MHz and 120 MHz. A
trigger signal is used to synchronize clock glitch insertion and to precisely select the at-
tacked state of the DUT. The fault board allows to configure the number of clock cycles
between the trigger event and the glitch insertion as well as the number of consecutive
clock cycles manipulated with a glitch. Furthermore, the phase shifts for clk1 and clk2 can
be configured to specify the position of the additionally inserted falling and rising edge
within a nominal clock cycle.

For the clock glitch generation in our practical experiments we use a constant value for
clk1 when clk2 is varied according to the desired value for TGlitch. The clock glitch period
TGlitch is defined by the delay between the nominal rising edge of the clock signal and
the additionally inserted rising edge of the glitch. A nominal clock frequency of 24 MHz
(T ≈ 41.7 ns) is used to clock both investigated microcontrollers, the Cortex-M0, and the
ATxmega 256. For this clock frequency, TGlitch can be chosen approximately between 5 ns
and 18 ns. The minimal step width for TGlitch of approximately 40 ps is defined by the
DCM units of the XILINX Spartan-6 FPGA. It is notable that the value of TGlitch between
5 ns and 18 ns corresponds to an equivalent frequency between 55 MHz and 200 MHz which
is above the supported clock frequency range of both microcontrollers. Figure 4.6 depicts
the waveforms of the clock signal with a glitch period between 5 ns and 18 ns and a step
width of approximately 0.5 ns. TGlitch is measured between the positive edges of the clock
signal at a voltage level of 1.65 V.

4.2.2 Supply Voltage Manipulation

The supply voltage generation circuit of the fault board allows to select different supply
voltage levels for the DUT via a 4-to-1 multiplexer. Four linear voltage regulator are
available on the fault board to provide configurable voltages between 0 V and 5 V. In
order to configure the voltage levels, digitally controlled variable resistors are used. To
tamper with the supply voltage of the attacked device, the multiplexer allows to switch
between the four pre-configured voltage sources. The resistors and the multiplexer are
both controlled by the FPGA. As for the clock glitch insertion, the trigger signal is used
to synchronize the manipulation of the supply voltage with the DUT. A configurable delay
between the trigger event and the point in time of changing the supply voltage allows a
precise selection of the attacked state of the DUT. Thus, it is possible to change the supply
voltage of the attacked device during operation as the fault board additionally supports a
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Figure 4.7: Extension board for the Cortex-M0.

configurable duration for the voltage manipulation.
In our practical experiments, a nominal supply voltage of 3.3 V is used for the Cortex-

M0 and the ATxmega 256. The first of the four configurable voltage sources is set to
3.3 V and selected via the multiplexer to power the DUT. For underpowering, the second
voltage source is set to the underpowering voltage UGlitch. As the same trigger event is
used for clock glitch insertion and supply voltage manipulation, the voltage reduction is
synchronized with the inserted clock glitch during an attack by using the configurable
delay and duration. Further details about our approach of combining clock glitch attacks
with additional underpowering are given in Chapter 6.

4.3 Extension Boards

Investigated targets are connected to the fault board using custom-made extension boards.
The specified interface of the fault board provides a variety of signals supporting fault in-
jection, synchronization and communication with the device under test. Figure 4.7 and
Figure 4.8 depict the extension boards and the corresponding PCB layouts for the Cortex-
M0 and the ATxmega 256, respectively. Several signals are equally used on both extension
boards. The receive and transmit lines of the serial interface are directly connected to
the corresponding pins of the microcontroller using the internal Universal Asynchronous
Receiver and Transmitter (UART) module. An output pin of the microcontroller is con-
nected to the trigger input of the fault board to allow software-controlled trigger events
for synchronized fault injection. Furthermore, the reset signal of the MCU is controlled
by the fault board. The configurable I/O pins of the fault board are connected to free I/O
ports of the microcontroller even though they remain unused in our fault injection setup.
The clock signal of the clock glitch generation unit is directly connected to the external
clock input pin of the microcontroller. The built-in clock prescaler and phase-locked loop
(PLL) are deactivated. On both extension boards, the decoupling capacitors are sepa-
rately placed in parallel to additionally support precise power consumption measurement
and to minimize distortions due to capacitive smoothing. This circuit arrangement is
particularly important for differential power analysis (DPA) in which the varying power
consumption of a device is analyzed to retrieve information about the performed oper-
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Figure 4.8: Extension board for the ATxmega 256.

ations. Furthermore, disconnecting the capacitors from the supply voltage line during
underpowering attacks is necessary in order to provide accurate timing and acceptable
rise and fall times when changing the supply voltage level. As illustrated in Figure 4.7
and Figure 4.8, the extension boards allow a bottom-up placement of the microcontrollers
which is particularly important for invasive or semi-invasive attacks where access to the
bottom side of a device is advantageous for performing an attack (e.g. rear-side laser fault
injection). On both extension boards, the interfaces for programming the microcontrollers
are accessible via a pin header. For programming and debugging of the Cortex-M0, the
2-pin serial wire debug (SWD) interface is used. In case of the ATxmega 256, we use
Atmel’s 2-pin program and debug interface (PDI). Additionally, it is possible to power the
extension boards with the supply voltage provided by the programmer in order to allow
programming and debugging without a connection to the fault board.



Chapter 5

Instruction Set: Attacks

The possible vulnerability of microcontrollers to non-invasive fault attacks depends on a
variety of reasons including the central processing unit (CPU) structure and the corre-
sponding instruction execution procedure as well as the applied attack parameters. In
order to allow detailed insight into the resulting erroneous behavior of the ATxmega 256
and the Cortex-M0, the effects of clock glitch attacks are investigated on different in-
structions for both MCUs. In this chapter the investigated instructions are introduced,
including a detailed description of the applied attack scenario for our practical experiments.
Additionally, possible effects of injected faults on the instruction execution procedure of
microcontrollers are discussed.

5.1 Expected Fault Behavior

When applying clock glitch attacks on the execution procedure of instructions, two im-
portant characteristics have to be considered for analyzing the resulting behavior of an
MCU. First, the execution process of an instruction is separated into several stages based
on the pipeline architecture of the CPU. Second, results vary depending on the glitch
period TGlitch which defines the delay between the actual and the additionally inserted
rising clock edge. Thus, a specific state of the combinational logic is hit by the attack.
Based on the pipeline structure of the MCU, the execution process of an instruction is
commonly separated into the fetch stage, the decode stage and the execution stage. Dur-
ing the fetch stage, the instruction is loaded from program memory into an instruction
fetch buffer. A fault induced during this stage could possibly result in different or wrong
instructions, either by reading from a wrong memory address or by reading faulty data.
Similar effects occur if the instruction is correctly fetched but misinterpreted in the decode
stage. In this stage, a specific operation of the MCU is selected according to the opcode
of the instruction. Additionally, the involved operands are selected as specified within the
instruction. Again, it might be possible that different or wrong instructions are decoded
or wrong operands are selected. Finally, the execution stage is responsible for performing
the operation on selected operands or memory addresses. A fault in this stage might lead
to wrong calculations and wrongly or not updated registers or memory values. In case
of conditional branches, the program flow might be modified. In order to compare the
resulting behavior after an attack of the ATxmega 256 and the Cortex-M0 and to draw
meaningful conclusions, we focus on three classes of instructions for both MCUs: arith-
metical/logical instructions, branch instructions and memory instructions. According to
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Table 5.1: Investigated instructions of the ATxmega 256 and the Cortex-M0.

Instruction Class ATxmega 256 Cortex-M0

Arithmetical/Logical add Rd,Rn adds Rd,Rn

mul Rd,Rn muls Rd,Rn

lsls Rd,#imm

Memory ld Rd,X ldr Rd,[Rn]

st X,Rn str Rd,[Rn]

Branch breq label beq label

these three categories we have chosen a set of instructions, as summarized in Table 5.1
and introduced in the following section.

5.2 Investigated Instructions

Both MCUs, the ATxmega 256 and the Cortex-M0, implement a RISC architecture in
which the instruction set is commonly separated into instructions for data handling, in-
structions for data processing and instructions for program flow modification. Data han-
dling instructions include operations for transferring data from or to registers and memory
locations. The group of data processing instruction provide arithmetical operations usu-
ally performed on register data: addition, subtraction, multiplication, and division. In
addition, logical instructions for bitwise operations on data are assigned to this group.
For program flow modification, branch or conditional branch operations allow to change
the location of the program code execution. Based on this categorization, we selected com-
parable instructions for both MCUs and again defined three groups: arithmetical/logical
instructions, branch instructions and memory instructions. Table 5.1 gives an overview
of the attacked and investigated instructions. Regardless of the MCU architecture, each
instruction is described by the opcode and additional bits for the operands. The opcode
relates to a specific operation of the MCU where the involved operands can be a register,
a constant value or additional parameters for the instruction.

5.2.1 ATxmega 256

All investigated instructions of the ATxmega 256 are based on the Atmel AVR 16-bit
instruction set architecture. As stated in the instruction set manual for the ATxmega 256
in [4], the selected instructions can be described by the following features and attributes.

- add Rd,Rn. An arithmetic addition of two 8-bit values in registers Rd and Rn is
performed by this instruction. After the operation, the result equals the value of
the destination register Rd. The two registers Rd and Rn are specified within the
instruction, each by 5 bits. Therefore, Rd and Rn can be individually chosen from
the 32 available general purpose registers. The add instruction requires one clock
cycle for execution.

- mul Rd,Rn. This instruction performs a multiplication of the two 8-bit values in
registers Rd and Rn. The 16-bit product is stored in register R0 (low byte) and in
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register R1 (high byte). The two registers Rd and Rn can be chosen individually from
the 32 available general purpose registers. The mul instruction requires two clock
cycles for execution.

- breq label . A conditional branch is performed by testing the zero flag of the status
register of the MCU. The instruction breq should be immediately executed after an
instruction which influences the zero flag. In our test application, cp Rd,Rn is used
to perform a compare between two registers. If the values of Rd and Rn are equal, the
zero flag is set and the consecutively executed breq instruction branches relatively to
the program counter corresponding to the given value of label. The operand label

is given as operand within the instruction and represents the offset between -63 and
+64 from the actual value of the program counter. The breq instruction requires
two clock cycles if the condition is true and the branch is executed. Otherwise, one
clock cycle is required.

- ld Rd,X. This instruction loads one byte indirectly from the data space, e.g. the
internal SRAM of the MCU, to the register Rd using a 16-bit address pointer X.
Two 8-bit general purpose registers specify the value of X whereas R26 defines the
low byte and R27 the high byte of the address. The destination register Rd can be
chosen individually from the 32 available general purpose registers including the two
address registers. The ld instruction requires two clock cycles for execution when
accessing the internal SRAM.

- st X,Rn. With st X,Rn one byte of data given by the register Rd is stored to the
data space of the MCU. As for the equivalent load instruction, indirect addressing
is used. In this case, X defines the 16-bit destination memory address. Again, each
of the 32 general purpose registers can serve as source register Rd. In our test
application, data is written to the internal SRAM using this instruction in which
one clock cycle is required for execution.

5.2.2 Cortex-M0

The instructions selected for the Cortex-M0 are based on the ARM Thumb 16-bit in-
struction set architecture. The user guide of the Cortex-M0 in [2] describes the available
instructions of the Cortex-M0. In the following, the investigated instructions are intro-
duced.

- adds Rd,Rn. This instruction performs an arithmetic addition of the values given
by two 32-bit general purpose registers Rd and Rn. The result is written to the
destination register Rd. The applicable registers are restricted to R0 to R7. The
adds instruction requires one cycle for execution.

- muls Rd,Rn. The muls instruction multiplies the values specified by the two 32-bit
general purpose registers Rd and Rn. The least significant 32 bits of the product
are written to the destination register Rd. The instruction is again restricted to R0-
R7. ARM provides two possible hardware implementations for the muls instruction,
either requiring 32 cycles or one cycle for execution. In our practical experiments
we use NXP’s LPC1114 implementation which provides the one-cycle multiplier for
this instruction.
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- lsls Rd,#imm . In contrast to the ATxmega 256, we additionally analyzed the lsls

instruction of the Cortex-M0 which performs a logical left shift operation on the
32-bit register Rd. The shift length between 0 and 31 bits is defined by the constant
value #imm . After the operation, the result equals the value of Rd. For the execution
of lsls one cycle is required.

- beq label . The brq instruction performs a conditional branch to program counter
relative address specified by the operand label . The condition for executing the
branch depends on the value of the zero flag in the application program status
register of the MCU. A previous executed instruction is used in order to define the
condition. In our test application, cmp Rd,Rn is used to compare the values of two
registers. The offset to the program counter given by label can vary between -256
and +255 in case of conditional branching. The beq instruction requires either three
clock cycles if the condition is true and the branch is executed or one clock cycle if
the branch is not taken.

- ldr Rd,[Rn]. This instruction loads the register Rd with the 32-bit value from the
given memory address by Rn. The used registers are restricted to R0-R7. The ldr

instruction requires two cycles for execution.

- str Rd,[Rn]. The str instruction stores a 32-bit value at the memory address
defined by the register Rn. As for the similar load instruction, the registers are
restricted to R0-R7 and the execution requires two clock cycles.

5.3 Attack Scenario

This section describes the attack procedure used for analyzing the influence of fault attacks
on the instruction execution procedure of the ATxmega 256 and the Cortex-M0. The
fault injection setup is based on the fault board and the two extensions boards for the
investigated MCUs presented in Section 4. Regardless of the attacked MCU platform, a
test application is written in mixed C and assembly language for each instruction. Inline
assembly is used for the definition of the attacked instruction and for the initialization
of general purpose registers. To guarantee an unmodified instruction execution sequence
of the inline assembly block, automated code optimization is disabled for the attacked
code parts. Additionally, the test application is used to perform communication with the
control computer and to synchronize the attack with the fault board. The control computer
communicates with the microcontroller and the fault board using UART interfaces. As
illustrated in Figure 5.1, the test application and the operations performed by the control
computer comply with the following attack procedure:

- Initialization. In the initialization phase, the control computer configures the fault
board to define the desired attack parameters as given in Section 4.2, including the
glitch period TGlitch as well as the number of clock cycles between the trigger signal
is set and the clock glitch is injected. Additionally, the control computer requests
the fault board to reset the MCU. After the reset, the MCU starts an initialization
routine to configure the system clock for using the clock signal provided by the
fault board. The I/O port configuration is set for the trigger output signal and the
UART interface is initialized for communication with the control computer. After
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Figure 5.1: Sequence of operations performed during the clock glitch attack of an instruc-
tion on the ATxmega 256 or the Cortex-M0.

this procedure, the MCU signals this state to the control computer using the UART
interface.

- Synchronization. The synchronization stage starts after the test application has
finished the initialization routine of the MCU. The control computer prepares the
fault board for an attack. In this context, the clock glitch unit is armed, meaning
the fault board is sensitive to its trigger input. The execution of the test application
is resumed as soon as the fault board is ready and signals this state to the MCU
using again the UART interface.

- Trigger signal. To ensure a cycle accurate synchronization between the fault board
injecting the clock glitch and the microcontroller performing the instruction which
should be hit by the attack, the microcontroller rises its trigger output signal. Ac-
cording to the attack settings of the fault board, the clock glitch is inserted after the
predefined number of clock cycles after the trigger event.

- Instruction execution. Immediately after the trigger signal is set by the mi-
crocontroller, the test application starts with the execution of the inline assembly
code block. The affected instruction is then executed in compliance with the time
interval between the trigger event and clock glitch injection. To keep this time in-
terval constant and independent from other necessary assembly instructions, which
are executed between the trigger signal being set and the attacked instruction being
executed, nop instructions are used. Additionally, the attacked instruction is sur-
rounded by nop instructions to ensure proper execution of all other code parts and
to avoid any unpredictable side effects.

- Result communication. In the final step, all accessible CPU and general purpose
register values are transferred to the control computer and are further used for result
verification.
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For each investigated instruction, a reference execution is performed using the same
execution procedure but without inserting a clock glitch. Based on the approach of differ-
ential fault analysis (DFA), the results of the reference execution are compared with faulty
results after an attack was performed. To analyze the effects of clock glitches on different
execution stages of an instruction (fetch, decode, execute), attacks are repeated for each
instruction with different time intervals between the trigger signal is set and the clock
glitch is inserted. The clock period is only tampered within one clock cycle to prevent
simultaneously influencing several pipeline stages by one attack. Additionally, the impact
of the glitch period TGlitch on the resulting behavior of the MCU is observed by repeating
the attack for each instruction and again for each pipeline stage with different values for
TGlitch. Based on the different erroneous values and register entries after an attack, it is
possible to retrieve information about the affected hardware parts of the MCU and how
clock glitches can be used to manipulate the instruction execution procedure.



Chapter 6

Instruction Set: Results

This chapter describes in detail the obtained erroneous behavior of the Cortex-M0 and
ATxmega 256 in consequence of injected faults. For both microcontrollers, we present
common and individual results for the attacked instructions listed in Table 5.1. The in-
fluences of clock glitches on the attacked execution stage of an instruction are analyzed
individually. Additionally, we discuss the impact of the clock glitch period TGlitch on a
corresponding erroneous result. To characterize the effects of clock glitch attacks for the
Cortex-M0 and the ATxmega 256, the practically performed fault injection experiments
are based on a black-box scenario as no detailed information about the hardware imple-
mentation of the MCUs is available. In this context, we particularly aim at determining
attack procedures and parameters for retrieving reproducible and understandable results.
The presented results should serve as a basis for characterizing the MCU hardware imple-
mentation and further for defining fault models in order to point out weak spots of the
MCUs. In case of using the Cortex-M0 and the ATxmega 256 for security relevant ap-
plications, the identified vulnerabilities should be necessarily considered in particular. In
the following, we describe the obtained results for the Cortex-M0 and the ATxmega 256,
including the applied attack parameters and the attacked test applications for each in-
struction listed in Table 5.1. Furthermore, the results for both MCUs are compared to
identify common relations in their erroneous behavior caused by the applied clock glitch
attacks.

6.1 Cortex-M0

All attacks performed on the instruction set of the Cortex-M0 are based on the common
attack scenario presented in Section 5.3. After each attack, the values of the 32-bit general
purpose registers R0 to R12 are transferred to the control computer. Additionally, the
values of the stack pointer (R13), the link register (R14), and the program counter (R15)
are observed. As shown in Figure 4.3, the pipeline of the Cortex-M0 consists of three
stages, namely fetch stage, decode stage and execution stage. If only 16-bit instructions
are used, which is the case for all instructions investigated in our practical experiments,
two instructions are loaded from program memory into the instruction fetch buffer with
a single fetch operation. Considering the following decode and execution stage, the first
instruction is consecutively decoded and executed after the fetch stage. In contrast, the
second instruction is decoded and executed one clock cycle later. The delay cycle between
the fetch and decode stage for the second instruction causes a diversity in the number of
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clock cycles while an instruction stays in the pipeline. This effect has to be considered
when trying to insert a clock glitch during a specific pipeline stage of an instruction. In
our test applications, nop instructions are used for positioning the attacked instruction
within the pipeline, i.e. selecting whether the investigated instruction is the first or the
second one of the two 16-bit instructions fetched in one cycle. To ensure a constant time
interval between the trigger event released by the microcontroller and the clock glitch
inserted by the fault board, the nop instructions are placed in the source code before the
trigger output pin is set.

6.1.1 Underpowering

First attacks targeting the Cortex-M0 showed that this MCU type is rather insensitive to
clock glitch attacks. Regardless of the used system clock frequency and the glitch period
TGlitch, only an inconsiderable number of attacks led to mainly non-reproducible results.
In order to increase the impact of forced timing violations caused by injected clock glitches,
we used an approach of reducing the supply voltage level for a short period during the clock
glitch attack. As illustrated in Figure 6.1, the supply voltage of the Cortex-M0 is reduced
from 3.3 V in normal operation to UGlitch = 1.2 V. This value is beyond the minimum
operating voltage of 1.8 V given in the datasheet [30]. However, further experiments show
that by only applying underpowering without inserting a clock glitch, the operation of the
MCU is not influenced. Only after additionally inserting a clock glitch while the supply
voltage level is reduced, fault injection is possible. In this way, it is ensured that the
value of the clock glitch period TGlitch is primarily responsible for the resulting erroneous
behavior of the MCU.

In order to enable short-time underpowering on the Cortex-M0 extension board, the
decoupling capacitors between supply voltage and ground are not assembled. However,
changing the supply voltage requires several clock cycles until the actual voltage level
reaches the desired steady state, as shown in Figure 6.1. The reason for this effect are
parasitic capacities of the PCB and the integrated circuit of the MCU which have to
be recharged in case of changing the supply voltage level. Therefore, it is necessary to
tamper with the supply voltage several clock cycles before the clock glitch is inserted.
Additionally, accurate timing for attacks, inducing faults only by tampering with the
supply voltage would be rather difficult.

In contrast to only inserting clock glitches, additional underpowering might be de-
tected by an optional applicable brown-out detection (BOD) mechanisms provided by the
used Cortex-M0 implementation, NXP’s LPC1114. The brown-out detection monitors the
supply voltage level by comparing it to fixed reference voltage. The response characteristic
of the BOD is specified by the brown-out detection time tBOD which defines the minimal
duration, while the voltage has to be below the predefined voltage level to detect a sup-
ply voltage deviation. This feature usually allows microcontrollers to react to unreliable
power supply or flat batteries in order to bring the program or the application into a save
state. However, the brown-out detection might also be used as a countermeasure against
underpowering or supply voltage glitch attacks. To detect short-time underpowering at-
tacks with the brown-out detection, tBOD has to be below the duration of underpowering
necessary for the attack. The LPC1114 provides two strategies for handling detected de-
viations of the supply voltage. First, the brown-out interrupt to call a user-defined service
routine and second, the brown-out reset to restart the MCU. In case of an BOD reset,
the corresponding flag of the system reset status register is set. Thus, the reset source is
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Figure 6.1: Clock signal and supply voltage of the Cortex-M0 during an attack
(TGlitch = 10.0 ns, UGlitch = 1.2 V).

defined and can be determined by an application after the MCU is initialized again.
In our tests, we analyzed the response characteristic of the brown-out detection when

using either the brown-out interrupt or the brown-out reset. For both options, different
threshold voltages can be selected. The most sensitive configuration of the brown-out de-
tection is given for the highest selectable threshold voltage. This implies that the thresh-
old voltage is set to Uth,int = 2.8 V in case of analyzing the brown-out interrupt and to
Uth,rst = 2.71 V for the brown-out reset. To get independent results for both BOD options,
the brown-out interrupt and the brown-out reset are individually tested. In each test run,
short-time underpowering is applied to the Cortex-M0 by modifying the supply voltage ac-
cording to the voltage characteristics and underpowering duration as shown in Figure 6.1.
Therefore, only the supply voltage is changed without inserting clock glitches. Moreover,
the supply voltage is reduced by 0.1 V starting at the nominal supply voltage of 3.3 V.
In case of detecting the applied supply voltage reduction by the BOD mechanism, the
corresponding BOD event is signaled to the control computer. The state of the BOD reset
flag and the execution of the interrupt service routine, respectively, allow to distinguish
between BOD reset and BOD interrupt.

Results show that the brown-out interrupt service routine is correctly executed in a
range of 1.0V ≤ UGlitch < Uth,int. Instead of executing the interrupt service routine, two
effects are observed if UGlitch < 1.0 V. In about 10 % of repeatedly performed test cases
with UGlitch < 1.0 V, the actual program flow continued. In the remaining 90 %, a hard
fault exception occurred. In this case, the normal program flow is interrupted and the hard
fault handler is executed. Similar to an interrupt service routine, the hard fault handler
can contain a user-defined code for handling the exception. Compared to all other excep-
tions and interrupts, the hard fault exception is treated with the highest priority level.
Reasons for hard exceptions are either memory-related faults (e.g. bus errors) or program
usage faults (e.g. execution of an invalid instructions) as stated in [42]. For additionally
analyzing the response characteristic of the brown-out detection in respect of the detec-
tion time tBOD, further tests with different underpowering durations are performed. The
corresponding results show that the brown-out detection responds to supply voltage devi-
ation only if the supply voltage is below the predefined threshold voltage during at least
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Figure 6.2: Time interval of the clock glitch period TGlitch as a function of the underpow-
ering voltage UGlitch for successfully attacking the fetch and the execution stage of the
Cortex-M0.

two consecutive rising edges of the clock signal. In contrast to the brown-out interrupt,
the brown-out reset was correctly performed for all UGlitch < Uth,rst.

The presented results for the attacks on the instruction execution procedure of the
Cortex-M0 show that the fetch stage and the execution stage are influenced by clock glitch
attacks. Therefore, we additionally analyzed the relationship between the underpowering
voltage UGlitch and the clock glitch period TGlitch either attacking the fetch stage or the
execution stage. For each stage, Figure 6.2 depicts the range of TGlitch for successfully
inducing a fault as a function of the applied underpowering voltage level UGlitch. The
presented results are obtained by attacking the adds Rd,Rn instruction. Regardless of
the attacked stage, the lower and upper bounds of TGlitch increase with lower values for
UGlitch. Furthermore, the interval of TGlitch increases with a lower underpowering voltage
UGlitch. These effects confirm theoretical assumptions about the relation between the
supply voltage level and the resulting timing behavior of combinational logic. At an
underpowering voltage of UGlitch = 1.2 V, the intervals of TGlitch for affecting the fetch and
the execution stage do not overlap. Based on this fact, it is possible to attack either the
fetch or the execution stage by properly selecting the applied clock glitch period TGlitch.
For all attacks performed on the instruction execution procedure of the Cortex-M0 (in our
practical experiments), underpowering with UGlitch = 1.2 V is applied in addition to the
inserted clock glitch. Moreover, the brown-out detection feature is deactivated.

6.1.2 Arithmetical/Logical Instructions

To investigate the effects of clock glitch attacks for the group of arithmetical/logical in-
structions on the Cortex-M0, we attacked the adds, the muls, and the lsls instruction
as listed in Table 5.1. All attacks are performed by separately inserting a single clock
glitch in each pipeline during the sequence of processing an instruction. In order to re-
trieve meaningful results, injected faults are separately analyzed for each pipeline stage.
Thus, several attack parameters have to be considered. First, the number of clock cycles
between the trigger event and the clock glitch insertion defines the attacked pipeline stage.
In this context, the position of the attacked instruction within the program code influences
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the assigned position within the pipeline due to the fact that two 16-bit instructions are
fetched in one cycle. Referring to the pipeline structure of the Cortex-M0 depicted in
Figure 4.3, an instruction stays in the pipeline for either three or four consecutive clock
cycles. Second, the clock glitch period TGlitch influences the result of an injected fault,
depending on the attacked state of the combinational logic. For each investigated instruc-
tion, each pipeline stage is analyzed by applying clock glitch attacks with different values
for the clock glitch period TGlitch.

We first attacked the adds Rd,Rn instruction. The two registers Rd and Rn are initial-
ized with known values. Within the inline assembly segement, the attacked adds instruc-
tion is surrounded by nop instructions in order to separate the attacked instruction from
register initialization and result communication after an attack. The sequence of executed
instructions, including the corresponding position within the pipeline of the Cortex-M0, is
illustrated in Table 6.1. Regardless of the applied glitch period TGlitch, the decode stage
was not susceptible to fault injection. For that reason, we focus on the results achieved
by attacking the fetch and the execution stage for the adds instruction.

Table 6.1: Attack of a single adds Rd,Rn instructions and the corresponding position
within the pipeline of the Cortex-M0.

Instruction Cycle

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

nop F D E

nop F D E

nop F D E

adds Rd,Rn F D E

nop F D E

nop F D E

Fetch stage. Targeting the fetch stage of the instruction adds Rd,Rn, a clock glitch
is inserted in clock cylce i+2, referring to Table 6.1. Based on the resulting value of
register Rd which should contain the result of the addition, the adds is not executed
when using a glitch period TGlitch between 9.3 ns and 12.6 ns. Consequently, the value
of Rd remains unchanged from its initialization value. This behavior can be clarified by
considering the next instruction fetch at clock cycle i+4. If a clock glitch is inserted
during this stage, the adds Rd,Rn instruction is executed twice, again determined by the
resulting value of adds Rd. Repeating the attacks with different initialization values for
Rd and Rn leads to similar effects. By combining both observations, it is possible to state
assumptions about the resulting erroneous behavior. Without inserting a clock glitch in
cycle i+4, the two nop instructions are fetched as they are immediately located after the
adds instruction in the program code. When now inserting a clock glitch in cycle i+4, the
previous two instructions from the fetch stage in clock cycle i+2 remain in the instruction
fetch buffer and are consecutively decoded and executed. The actual instructions are
indirectly replaced by the instructions of the previous fetch stage and are, in further
consequence, not executed at all. Similar effects occur when the clock glitch is inserted
in cycle i+2. Instead of updating the instruction fetch buffer with the adds instruction,
the nop instruction fetched in clock cycle i stays in the fetch buffer. In summary, a clock
glitch attack on the instruction fetch stage prevents an instruction from being executed
by replacing it with the previously fetched instruction.

Execution stage. When attacking the execution stage of the adds Rd,Rn by inserting
a single clock glitch at cycle i+5, different effects occur compared to the attacks performed
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on the fetch stage. A glitch period TGlitch between 8.3 ns and 9.2 ns causes wrong results
in the destination register Rd of the addition adds Rd,Rn. The resulting erroneous values
vary depending on the applied clock glitch period TGlitch and the addends provided by the
values of Rd and Rn. When increasing TGlitch between 8.3 ns and 9.2 ns, the value of Rd is
increased too. Repeatedly performed experiments with the same initialization values of Rd
and Rn yield similar erroneous results, only determined by the applied TGlitch. However,
no relations between the faulty values and other register entries are observed. The wrong
results when attacking the execution stage of adds Rd,Rn are assumed to be caused by
timing violations of the combinational logic in case of inserted clock glitches. Depending
on the applied glitch period TGlitch, different results might be generated by the underlying
hardware implementation of the adder and be written to the destination register Rd.

In order to provide a more detailed evaluation of the influence of clock glitch attacks
on the adds instruction, an additional test scenario is used, targeting eight consecutively
executed adds Rd,#imm . Using this instruction, a constant 8-bit value #imm is added
to the value of the register Rd. After executing the addition, the result equals again the
value of Rd. The sequence of executed instructions including the corresponding position
within the pipeline of the Cortex-M0 is illustrated in Table 6.2. The used registers Rd
and Re are initialized to zero at the beginning. To identify the affected instruction after
a fault was injected, the constant values are chosen in a way, that the resulting erroneous
values of Rd and Re reflect, whether an instruction was skipped or executed twice.

Table 6.2: Attack on a set of adds Rd,#imm and adds Re,#imm instructions including
the corresponding position within the piepline of the Cortex-M0.

Instruction Cycle

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9

adds Rd,#1 F D E

adds Rd,#4 F D E

adds Rd,#16 F D E

adds Rd,#64 F D E

adds Re,#1 F D E

adds Re,#4 F D E

adds Re,#16 F D E

adds Re,#64 F D E

Fetch stage. When inserting a single clock glitch with a glitch period TGlitch between
8.3 ns and 9.2 ns during the fetch stage of the instructions adds Re,#1 and adds Re,#4 in
clock cycle i+4, the two instructions previously fetched in cycle i+2 remain in the fetch
buffer. Consequently, the instructions adds Re,#1 and adds Re,#4 are replaced by adds

Rd,#16 and adds Rd,#64. Subsequently, adds Rd,#16 and adds Rd,#64 are executed in
clock cycle i+6 or in clock cycle i+7, respectively. Similar behavior is obtained when
attacking the fetch stage in cycle i+2 or in cycle i+6. It is notable that four instructions
influence the erroneous result when attacking one fetch stage as two of them are skipped
and two are executed twice.

Execution stage. As shown in Table 6.2, one instruction gets executed in each
clock cycle. Therefore, only one instruction is affected by a single clock glitch inserted
in the execution stage. However, attacking the execution stage implies an attack on the
fetch stage in every second clock cycle. For example, if the execution of adds Rd,#16

is attacked in clock cycle i+4, the fetch operations for adds Re,#1 and adds Re,#4 are
additionally affected by this attack. As discussed in Section 6.1.1, the underpowering
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voltage of UGlitch = 1.2 V allows to separate TGlitch for either attacking the fetch stage or
the execution stage. Confirmed by the obtained results, the fetch stage is affected during
a glitch period TGlitch between 8.3 ns and 9.2 ns. Influencing the execution stage requires
a glitch period TGlitch between 9.3 ns and 12.6 ns. In contrast to that, inserting a clock
glitch in cycle i+2 only affects the execution of adds Rd,#4, depending on the used glitch
period TGlitch. Again, the decoding stage is not susceptible to the clock glitches inserted
during the attacks.

For the group of arithmetical/logical instructions, we additionally analyzed the influ-
ence of clock glitch attacks on the fetch and execution stage of muls Rd,Rn and lsls

Rd,#imm . Similar to the test scenario of the adds instruction, the used registers, Rd and
Rn are initialized within the inline assembly segment of the corresponding test application
for the Cortex-M0. For both, the muls and lsls instruction, we obtained equal results
compared to the previously analyzed adds instruction when attacking the fetch stage. In
this case, the fetch buffer is prevented from being updated with the new instructions from
the program memory and the previously fetched instructions remain in the fetch buffer.
The glitch period TGlitch for inducing faults lies between 9.3 ns and 12.6 ns once more.
In contrast to that, different effects are observed when attacking the execution stage of
either the muls Rd,Rn or the lsls Rd,#imm instructions. In case of attacking the ex-
ecution stage of lsls, the value of register Rd is set to zero for a glitch period TGlitch

between 8.3 ns and 10.7 ns. This effect occurs independent from the initialization value of
Rd and the number of left shifts defined by #imm. In order to influence the execution of
the muls instruction, a glitch period TGlitch between 10.2 ns and 20.7 ns has to be applied.
As a result, the register Rd is set to a variation of different values. As already observed
during the attacks of the execution stage of adds, the erroneous value of Rd increases
with a higher glitch period TGlitch. Although the erroneous values depend on the initially
assigned values of Rd and Rn as well as on the applied clock glitch period TGlitch, relations
to other register entries are not statable. The reasons for this behavior are assumed to be
caused by timing violations based on the inserted clock glitch. Therefore, the underlying
hardware multiplier of the Cortex-M0 is influenced in different intermediate states during
the calculation of the result depending on the applied glitch period.

6.1.3 Branch Instructions

For the group of branch instructions, we analyzed the effects of clock glitch attacks on the
Cortex-M0 by attacking the beq label instruction. The influences of injected faults on
processing branch instructions are separately analyzed for each pipeline stage with different
values for the clock glitch period TGlitch. Therefore, a single clock glitch is inserted in each
attack run where the delay between the trigger event and the analyzed instruction is chosen
according to the attacked pipeline stage. Again, the pipeline structure of the Cortex-M0
has to be considered in our practical experiments, particularly focusing on the fetch stage,
when two 16-bit instructions are loaded from program memory during one clock cycle.
Furthermore, an additional instruction has to be executed immediately before beq label

in order to define the condition for the branch. In our test application, cmp Rd,Rn is used
to set the zero flag of the application program status register which is further accessed
by the beq instruction. Within the inline assembly code segment of the test application,
several operations are performed to provide meaningful results for evaluating the influence
of injected faults. First, the two registers Rd and Rn are initialized to equal values at the
beginning. In doing so, the condition for performing the branch with the cmp Rd,Rn
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instruction is satisfied. Second, the cmp instruction immediately followed by the attacked
beq instruction are subsequently placed after the initialization of the registers. Before
and after these two instructions, several nop instructions are inserted to prevent any side
effects or interferences with other code parts during the attack. The attacked part of the
assembly code segment is illustrated in Table 6.3, including the corresponding positions
of the instructions within the pipeline of the Cortex-M0. The third part of the assembly
code segment consists of the destination address for the branch instruction, defined by the
label. Known values are added to a previously initialized register before and after the label
in order to identify if the branch was carried out or not. As already observed during the
attacks of the adds instruction, the decode stage was not susceptible to fault injection in
case of attacking the beq instruction.

Table 6.3: Attack of the beq label instructions and the corresponding position within
the pipeline of the Cortex-M0.

Instruction Cycle

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

nop F D E

nop F D E

cmp Rd,Rn F D E

beq label F D E

nop F D E

nop F D E

Fetch stage. In normal condition, without inserting a clock glitch, the branch is
taken as the previously compared registers Rd and Rn are initialized to equal values. When
inserting a clock glitch during the fetch stage of beq label in clock cycle i+2, we obtained
the same behavior as for attacking the fetch stage of the adds instruction. The two nop

instructions fetched in clock cycle i remain in the instruction fetch buffer. Consequently,
the nop instructions are executed twice instead of executing the cmp and beq instruction.
Therefore, it is possible to prevent a branch and to further manipulate the program flow.
The clock glitch period TGlitch for successfully inducing this fault in the fetch stage is
between 9.3 ns and 12.6 ns. As depicted in Table 6.3, both instructions are positioned
within the pipeline in order to be fetched in one clock cycle. However, similar behavior
is observed, if the two instructions are fetched in different clock cycles and only one of
the corresponding fetch stages is attacked. In this case, either the compare or the branch
operation are not performed.

Execution stage. By inserting a clock glitch during the execution stage of the beq

label instruction in clock cycle i+5, we were not able to achieve any impact on the
behavior of the instruction. Independent from the applied clock glitch period TGlitch, the
branch instruction was correctly executed and the program flow continued at the position
defined by the label.

6.1.4 Memory Instructions

For the group of memory instructions of the Cortex-M0, we considered ldr Rd,[Rn] and
str Rd,[Rn] in our practical experiments. The influence of injected faults on processing
of instructions are separately analyzed for each pipeline stage, taking into account that
an additional clock cycle for execution is required by both instructions. Based on the
configurable delay between the trigger event and the analyzed instruction, a single clock
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glitch is inserted to a specific pipeline stage. Moreover, different values for the clock
glitch period TGlitch are used during the attacks. In order to reproduce the resulting
erroneous behavior after an injected fault, several operations are performed by the used
test application. A known value is stored to a specific address of the SRAM. The address
is further used by ldr and str to access the memory. The inline assembly code segment
contains the attacked load or store instruction. Additionally, the registers Rd, Rn are
initialized at the beginning of this segment. Therefore, Rd is set to a nonzero number and
the previously specified memory address is written to Rn. After the attacked instruction,
the SRAM is again accessed by an additional load instruction in order to read back the
written value. To prevent any interferences with other code parts, nop instructions are
inserted before and after the attacked instruction. In the following, the obtained results for
fetch stage and execution stage are presented for both investigated memory instructions,
ldr Rd,[Rn] and str Rd,[Rn]. However, attacks on the decode stage were ineffective
again.

Fetch stage. In contrast to arithmetical/logical and branch instructions where the
fetch buffer was prevented from being updated in case of inserting a clock glitch in the
fetch stage, deviations in the resulting effects for the ldr and str instructions are observed.
When inserting a clock glitch in the fetch stage of the ldr Rd,[Rn] instruction, the value
of Rd was set to zero instead of loading the value stored in memory at the address given by
the register Rn. Similar effects were observed for the str Rd,[Rn] instruction. In case of
attacking the fetch stage of this instruction, the stored value was zero instead of the value
in register Rd. Applicable to both instructions, a glitch period TGlitch between 10.2 ns and
10.9 ns led to this behavior.

Execution stage. Both investigated memory instructions require two clock cycles
for execution. Results show that only the second execution stage of either ldr Rd,[Rn]

or str Rd,[Rn] was vulnerable to an inserted clock glitch. In case of the str instruction
we observed that the SRAM address, stored in register Rn is written to the memory at the
given memory address instead of the value given by Rd. In contrast to that, the SRAM
address is loaded to Rd instead of the value stored in memory at the memory address
given by Rn when attacking the execution stage of the ldr instruction. In case of the
ldr, the resulting erroneous behavior corresponds to the operation of a register transfer
instruction, i.e. mov Rd,Rn. Both phenomena occur when applying a glitch period TGlitch

between 9.0 ns and 9.6 ns. For different values of TGlitch between 8.3 ns and 8.9 ns, neither
ldr Rd,[Rn] or str Rd,[Rn] are executed.

6.2 ATxmega 256

The attacks on the instruction execution procedure of the ATxmega 256 are also per-
formed by using the common attack scenario presented in Section 5.3. After each attack,
the values of the 8-bit general purpose registers R0 to R31 are transferred to the control
computer for further analysis of the induced faults. As shown in Figure 4.2, the pipeline
of ATxmega 256 consists of two stages, namely the fetch stage and execution stage. In
each clock cycle, a 16-bit instruction is loaded from the program memory while the previ-
ously fetched instruction is executed simultaneously. It turned out that, in contrast to the
Cortex-M0, the ATxmega 256 is more sensitive to clock glitch attacks and underpowering
was not necessary for successful fault injection. However, the ATxmega 256 provides a
brown-out detection mechanism with two modes of operation which are continuous and
sampled BOD. As stated in the datasheet [6], the brown-out detection time tBOD is 1 ms
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in sampled mode and 400 ns in continuous mode. Due to the fact that clock glitch attacks
without additional underpowering are sufficient for successfully inducing faults during
the instruction execution procedure of the ATxmega 256 and the time intervals of the
brown-out detection are far above the time we would require for short-time underpow-
ering, the brown-out detection was not further investigated. The presented results for
the ATxmega 256 are obtained by inserting clock glitches without using underpowering,
meaning that the supply voltage is left unchanged at the nominal voltage level of 3.3 V
during an attack.

6.2.1 Arithmetical/Logical Instructions

The investigated instructions for the group of arithmetical/logical instructions on the
ATxmega 256 include the addition of two registers values, using add Rd,Rn and the multi-
plication of two register values using mul Rd,Rn. The effects of clock glitch attacks on the
instruction execution procedure of these two instructions are analyzed individually for the
fetch stage and the execution stage. In contrast to the Cortex-M0, in each clock cycle one
16-bit instruction is fetched while the previously fetched instruction is executed. There-
fore, two instructions are affected by a single clock glitch depending on the applied clock
glitch period TGlitch. The following attack parameters have to be considered for attacks
on the instruction set of the ATxmega 256. First, the attacked stage of an instruction,
either fetch or execute, is determined by the number of clock cycles between the trigger
event for the fault board and the clock glitch insertion. Second, different erroneous results
can be expected, depending on the clock glitch period TGlitch.

The first instruction investigated in our practical experiments on the ATxmega 256 is
the add Rd,Rn instruction. In the used test application, the attacked instruction is placed
within the inline assembly code, including the initialization of the two 8-bit registers Rd

and Rn. In order to separate initialization and result communication from the attacked
instruction, nop instructions are inserted before and after add Rd,Rn. Table 6.4 illustrates
the sequence of executed instructions during the attack including the positions within the
pipeline.

Table 6.4: Attack of a single add Rd,Rn instruction and the corresponding position within
the pipeline of the ATxmega 256.

Instruction Cycle

i i+1 i+2 i+3 i+4 i+5

nop F E

nop F E

add Rd,Rn F E

nop F E

nop F E

Fetch stage. When attacking add Rd,Rn by inserting a clock glitch in the fetch
stage in clock cycle i+2, the resulting effects are similar to those already observed on
the Cortex-M0. Instead of performing the addition of the two values of register Rd and
Rn, the initialization value is still present in the destination register Rd after the attack.
This behavior can also be explained by the assumption that the fetch buffer is not updated
with the actual add instruction and the nop, previously fetched in clock cycle i+1, remains
in the fetch buffer. A glitch period TGlitch between 5.9 ns and 17.9 ns led to this result.
By inserting a clock glitch in the fetch stage of the nop instruction in cycle i+3, the
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add instruction remains in the fetch buffer and is consequently executed twice. The only
difference to the attack of the fetch operation in cycle i+2 is given by the fact that
another range of TGlitch between 9.3 ns and 15.3 ns is required. Different timing behavior
for updating the fetch buffer might lead to this variation of the time interval for TGlitch,
depending on the transition between the previous and the following value of the fetch
buffer.

Execution stage. Targeting the execution stage of add Rd,Rn, a clock glitch inserted
in cycle i+3 modifies the value of the destination register Rd. For a glitch period TGlitch

between 5.9 ns and 7.2 ns, Rd is changed to recurring wrong values without explainable
relations to other register or memory entries.

Considering now mul Rd,Rn, which is the second investigated instruction from the
group of arithmetical/logical instructions on the ATxmega 256, particularly interesting
differences are given compared to the add instruction. First, the 16-bit result of multiplying
Rd and Rn is divided into low and high byte and written to the 8-bit general purpose
registers R0 and R1. Second, the execution of mul Rd,Rn requires two clock cycles. Two
clock cycles have to be considered when attacking the execution stage of this instruction.
The attacked mul instruction is again placed between nop instructions within the inline
assembly code of the test application.

Fetch stage. When attacking the fetch stage of mul Rd,Rn, the instruction is not
executed using a glitch period TGlitch between 5.9 ns and 17.9 ns. This behavior complies
with the previously obtained results for the add instruction where the instruction fetch
buffer is not updated in case of inserting a clock glitch during the fetch operation. More-
over, the same time interval for the glitch period applies for both instruction. However,
we were not able to influence the next fetch stage in one of the following clock cycles, in
order to provoke a double-execution of the mul instruction.

Execution stage. Inserting a clock glitch in the second execution cycle of the mul

Rd,Rn instruction led to wrong multiplication results in register R1 when using a clock
glitch period TGlitch between 6.4 ns and 7.8 ns. In contrast to successfully manipulating
the high byte of the multiplication result which is stored in register R1 the correct value
for the low byte was written to R0. However, no effects were observed when attacking the
first execution cycle of the mul instruction. In this case, both result bytes were correctly
written to the the result registers, regardless of the applied glitch period TGlitch and the
initialization values of Rd and Rn.

6.2.2 Branch Instructions

For the group of branch instructions, we analyzed the behavior of the conditional branch
breq label , similar to the one investigated for the Cortex-M0. Both pipeline stages
are individually attacked by either inserting a clock glitch during the fetch stage or the
execution stage of the instruction. In order to fulfill the condition for taking the branch,
cp Rd,Rn is executed straight before the attacked branch instruction. The two registers
Rd and Rn are initialized with the same values, further setting the zero flag of the status
register after the cp Rd,Rn is executed. The destination address for the branch is defined
by label within the assembly code segment. Thus, the test scenario for the attack of the
breq label instructions equals the procedure already used for the Cortex-M0. Table 6.5
shows the attacked part of the assembly code segment with the corresponding positions
within the pipeline stages of the ATxmega 256.

Fetch stage. The fetch operation of breq label is attacked by inserting a clock glitch
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Table 6.5: Attack of a single breq label instructions and the corresponding position
within the pipeline of the ATxmega 256.

Instruction Cycle

i i+1 i+2 i+3 i+4 i+5

nop F E

cp Rd,Rn F E

breq label F E

nop F E

nop F E

in cycle i+2. As a result, the branch is not taken when using a glitch period TGlitch between
6.7 ns and 18.2 ns. Based on the effects observed in previous attacks of fetch stage, the cp

Rd,Rn instruction, fetched in clock cycle i+1 can be assumed to remain in the instruction
fetch buffer. Consequently, instead of executing the branch instruction, the cp instruction
is executed twice, which in turn allows a manipulation of the program flow without directly
influencing data. Moreover, executing cp Rd,Rn twice has only an impact on the following
instruction if the value of zero flag is crucial for this instruction. Additionally, the obtained
behavior complies with the effects already obtained for attacking the fetch stage of the
arithmetical/logical instructions.

Execution stage. The execution of the branch instruction breq label was not
vulnerable to the performed clock glitch attacks. When inserting a clock glitch in cycle
i+3, the branch is correctly taken, independent from the applied clock glitch period. Again,
this behavior matches the results obtained for the branch instruction of the Cortex-M0.

6.2.3 Memory Instructions

To investigate the effects of clock glitch attacks for the group of memory instructions
on the ATxmega 256, we attacked the ld Rd,X instruction and the st X,Rn instruction.
For each instruction, the fetch and the execution stage are attacked by inserting a single
clock glitch. In case of using ld Rd,X to load an 8-bit value from SRAM, one additional
clock cycle is required. Again, different values for the glitch period TGlitch are used in
order to cover the entire range of possible effects on the execution procedure for the
ld and the st instruction. Within the test application for the ATxmega 256 a known
value is written to a specific memory address of the internal SRAM. The 16-bit address
pointer X is initialized at the beginning of the inline assembly code segment by loading the
previously specified memory address. Additionally, the registers Rd and Rn are initialized
with nonzero numbers. After that, several nop instructions are placed before and after
the attacked memory instruction in order to prevent any influence of other instructions
to the resulting erroneous behavior. In case of the st instruction, the memory address
is accessed once again at the end of the assembly code segment in order to compare the
actual value after an attack with the correct one. In the following, the obtained results
for the ld Rd,X the st X,Rn instruction are presented.

Fetch stage. As already obtained in our previous experiments concerning the fetch
stage of the ATxmega 256, the instructions ld Rd,X and st X,Rn are not executed, when
inserting a clock glitch during the fetch operation. A glitch period TGlitch between 5.9 ns
and 17.9 ns provokes this behavior for both instructions. Again, the previous instruction
remains in the fetch buffer and is executed twice instead of the load or store instruction.
Thus, it is possible to manipulate the data flow by preventing data from being stored in
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memory or loaded to a register.
Execution stage. Attacking the st X,Rn instruction in the execution stage results

in wrong data written to the memory address given by the address pointer X. In case
of inducing this fault, correct memory addressing can be assumed due to the fact, that
only the memory location, defined by X is affected. Similar effects are observed when
ld Rd,X is attacked in the first clock cycle of execution. Instead of loading the correct
value from memory, wrong data was loaded to Rd after an attack. However, no relation
between the resulting wrong value of Rd and any value at a different memory location can
be stated. For both instructions, a glitch period TGlitch between 8.1 ns and 8.8 ns led to
this behavior. Additional effects are observed, when inserting a clock glitch with TGlitch

between 9.6 ns and 10.3 ns in the first execution cycle of ld Rd,X. In this case, the value
of Rd was zero, regardless of the stored value at the given memory address. In contrast
to the load instruction, the execution of st X,Rn was invulnerable for all other values of
TGlitch.

6.3 Discussion and Comparison

The obtained results show that clock glitch attacks can be used to influence the processing
of instructions on a microcontroller. Both investigated MCUs, the Atmel ATxmega 256
and the ARM Cortex-M0, are vulnerable to these kind of attacks. Due to the reproducible
behavior of the identified faults, it is possible to define reasonable fault models for specific
software implementations. Particularly for cryptographic primitives or any other security-
relevant application, the effects of clock glitch attacks have to be necessarily considered
during software development. Illustrated in Table 6.6 for the Cortex-M0 and in Table 6.7
for the ATxmega 256, the obtained results and effects are summarized. The fetch stage
exposed to be reliable in terms of the resulting erroneous behavior. The memory instruc-
tions of the Cortex-M0 represent the only exception. All other investigated instructions
of the Cortex-M0 and the ATxmega 256 show a similar behavior when inserting a clock
glitch during the fetch operation. Instead of loading the actual instruction from program
memory to the instruction fetch buffer, the previously loaded instruction remains in the
buffer and is consequently executed twice. Due to the additionally inserted rising edge
in the clock signal, the resulting shortened time interval is insufficient for updating the
instruction fetch buffer and the process of fetching a new instruction is undercut. A
modification of the program counter can be excluded. Otherwise, an instruction is ei-
ther executed twice if the program counter is not incremented or skipped if the program
counter gets incremented twice. A considerable difference between the Cortex-M0 and
the ATxmega 256 is given by the pipeline structures of the MCUs. When attacking the
fetch stage of the Cortex-M0, two 16-bit instructions can be influenced by a single clock
glitch. As a result, four instructions are responsible for the corresponding erroneous result
after a single attack of the fetch stage in which the two instructions previously fetched are
executed twice instead of two actual instructions. For successfully inducing this behavior,
the same interval for TGlitch applies for all investigated instructions of the Cortex-M0,
apart from memory instructions. Compared to this behavior, the fetch operation of a
single 16-bit instruction can be influenced in each clock cycle on the ATxmega 256. Thus,
two instructions are involved in a single attack of the fetch stage and further determine
the corresponding faulty result. Only the investigated branch instruction slightly differs
from the generally observed interval for TGlitch. In this case, the cp instruction replaces
the branch instructions when inserting a clock glitch during the fetch operation of the
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Table 6.6: Summary of the results for the investigated instructions of the Cortex-M0.

Instruction Pipeline Stage TGlitch Effects

ns

adds Rd,Rn Fetch 9.3 to 12.6 adds not executed
Execute 8.3 to 9.2 wrong results in Rd

muls Rd,Rn Fetch 9.3 to 12.6 muls not executed
Execute 10.2 to 10.7 wrong results in Rd

lsls Rd,#imm Fetch 9.3 to 12.6 lsls not executed
Execute 8.3 to 10.7 Rd set to zero

beq label Fetch 9.3 to 12.6 beq label not executed
Execute - no effects observed

ldr Rd,[Rn] Fetch 10.2 to 10.9 Rd set to zero
Execute 8.3 to 8.9 ldr Rd,[Rn] not executed

9.0 to 9.6 address written to Rd

str Rd,[Rn] Fetch 10.2 to 10.9 memory entry set to zero
Execute 8.3 to 8.9 str Rd,[Rn] not executed

9.0 to 9.6 address written to memory entry

branch instruction. All other investigated instructions are replaced by a nop. A rea-
sonable explanation for this behavior might be that the time interval for the transition
between the previous and the actual instruction varies, depending on the opcode of the
instructions when updating the fetch buffer. In general, skipping a specific instruction
provides a powerful opportunity for an attacker since almost any modification of data and
program flow is possible. In case of software implementations of cryptographic primitives,
skipping arithmetical or logical instructions might leak information about internal inter-
mediate states of cryptographic calculations. As a result, it might be possible to retrieve
secret information or other details about the implementation which can be further used
to reveal supposedly secure data. For example, skipping the addition of the final round
key during AES encryption allows to calculate the AES key if a pair of ciphertexts can be
generated from the same plaintext, one without performing the last round key addition.
In case of branch instructions, both MCUs, the Cortex-M0 and the ATxmega 256, showed
a vulnerability to clock glitch attacks during the fetch operation. Therefore, it is possible
to prevent entire code segments or loop iterations from being executed when skipping a
single branch instruction. As a consequence, leakage of secret information is again feasible,
based on program flow modifications. Side effects caused by the double-execution of the
previous instruction are minimized by the fact that branch instructions are usually exe-
cuted directly after compare instructions. When executing the compare instruction twice
instead of the branch, the CPU status flags are changed for the first instruction executed
after the attack. Additional modification of data or program flow is only possible if this
instruction is sensitive to one of the status flags. In summary, our practical attacks of the
fetch stage revealed a considerable weakness on both MCUs. Particularly the wide range
of TGlitch applicable in order to achieve the behavior of skipping instructions provides a
robust fault model.
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Table 6.7: Summary of the results for the investigated instructions of the ATxmega 256.

Instruction Pipeline Stage TGlitch Effects

ns

add Rd,Rn Fetch 5.9 to 17.9 add not executed
Execute 5.9 to 7.2 wrong results in Rd

mul Rd,Rn Fetch 5.9 to 17.9 add not executed
Execute 6.4 to 7.8 wrong results in Rd

breq label Fetch 6.7 to 18.2 breq label not executed
Execute - no effects observed

ld Rd,X Fetch 5.9 to 17.9 ld Rd,X not executed
Execute 8.1 to 8.9 wrong results in Rd

9.6 to 10.3 Rd set to zero

st X,Rn Fetch 5.9 to 17.9 ld Rd,X not executed
Execute 8.1 to 8.9 wrong value written to memory entry

In contrast to the obtained results for the fetch stage, different behavior can be ob-
served when inserting the clock glitch during the execution stage of an instruction. In
case of the investigated arithmetical and logical instructions, results show that faults can
be induced during the execution stage, leading to wrong calculation results in the desti-
nation register. Similar behavior can be observed for load and store operations on the
ATxmega 256 in which wrong values can either be loaded from or written to memory.
Beside inducing fault resulting in elusive wrong values, we were able to induce constant
faults by setting register values or memory entries to specific constant values. For example,
these values are zero or the memory address in case of load and store operations on the
Cortex-M0, depending on the applied glitch period. Again, the results of the attacks on
the execution stage reveal a thread on cryptographic software implementations for both
MCUs. Particularly the possibility of setting register or memory entries to specific known
values during cryptographic calculations might be used to retrieve secret information. Us-
ing the example of key addition during AES encryption, the final round key might be
accessible in the plaintext if the AES state bytes can be set to a constant known value in
a previous operation during encryption before the final round key is added.

So far, the presented results almost disregard the simultaneous influence of a single
clock glitch on several pipeline stages. In our test applications, nop instructions are
used in order to prevent any effects of other instructions on the attack results of the
investigated instruction. However, several instructions are affected by a single clock glitch,
when attacking a real software implementation of a cryptographic primitive. In this case,
several aspects have to be considered. As illustrated in Figure 4.3 for the Cortex-M0,
the fetch stage is only affected in every second clock cycle, whereas the execution of an
instruction can be influenced in every clock cycle. For the ATxmega 256, two instructions
are affected in every clock cycle, one in the execution and one in the fetch stage, as shown
in Figure 4.2. A properly chosen value for the glitch period TGlitch helps in some cases
to prevent an influence of several stages under consideration of the involved instructions.
Additionally, the underpowering voltage level can be used to change the interval of TGlitch,
as discussed for the Cortex-M0 in Section 6.1.1.



Chapter 7

ATxmega 256 AES Crypto Engine

In 2001, the National Instituted of Standards and Technology (NIST) announced the Ad-
vanced Encryption Standard (AES) based on the Rijndael cipher as successor to the Data
Encryption Standard (DES). Today, AES is widely established for symmetric-key cryp-
tography and is used for a huge number of security-relevant hardware and software ap-
plications. Due to the fact that the AES algorithm can be efficiently implemented in
hardware, security applications can benefit from an abundant availability of hardware-
supported cryptographic acceleration. A variety of microcontrollers also support this
feature in terms of cryptographic co-processing. In this context, the key used for encryp-
tion and decryption is typically stored within the device and is never directly exposed
through an interface of the device. However, fault attacks aim at revealing such secret
information by provoking undefined operation conditions or injecting faults specifically
during cryptographic calculations.

This chapter focuses on a fundamental description of the AES algorithm providing in-
troductory basics about the encryption procedure further relevant for the attacks presented
in Chapter 8. Additionally, the AES crypto engine of the ATxmega 256 is introduced with
its properties and features, followed by a description of the attack scenario used for our
experiments.

7.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a symmetric-key block cipher. Symmetric
ciphers use the same key for both the encryption and the decryption procedure of a mes-
sage. Block ciphers operate on fixed-length data blocks. In this context, AES uses a fixed
block length of 128 bits and supports three different key lengths of 128 bits, 192 bits, or
256 bits. The AES algorithm consists of repeatedly executed round operations performed
on a matrix representation of four-by-four bytes called state. Figure 7.1 illustrates how
the 16 state bytes a0, a1, . . . , a15 are arranged. The key length used for encryption or
decryption specifies the number of executed round iterations.

- A 128-bit key implies 10 round iterations.

- A 192-bit key implies 12 round iterations.

- A 256-bit key implies 14 round iterations.
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a0 a4 a8 a12

a1 a5 a9 a13

a14a10a6a2

a3 a7 a11 a15

Figure 7.1: Matrix representation of the AES state.

In the following description we focus on the AES version using 128-bit keys as this is
the only supported key length of the evaluated AES crypto engine on the ATxmega 256.
For more detailed information about the AES we refer to Paar and Pelzl [32] providing an
enlighten description of the AES and, of course, to the book [11] written by Rijmen and
Daemen, the two designer of Rijndael. Additionally, the official AES specification can be
found at [29].

Each of the aforementioned rounds, except for the last, consists of four transforma-
tions: SubstituteBytes, ShiftRows, MixColumns, and AddRoundKey. In order to provide
a similar encryption and decryption sequence, the last MixColumns transformation is
omitted. Figure 7.2 illustrates the encryption process based on the 128-bit version. The
ciphertext c = AESk(p) is generated by applying the AES algorithm to the plaintext p
using the key k. In addition to the repeatedly performed round operations, the state is
initialized at the beginning of the encryption procedure. In doing so, AddRoundKey is
used once to combine the plaintext with the initial key. Subsequently, the round opera-
tions are performed. For several processing steps within the round operations, finite field
arithmetic in the Galois-field GF (28) is used. Arithmetic operations in a finite field are
performed on a limited set of elements where the result of an operation is again one of
these elements. As the background of finite field arithmetic is not necessarily required
for an introductory description of the AES, we refer to [32] for further information about
AES-related Galois-field arithmetic.

7.1.1 SubstituteBytes

Confusion is one property used in cryptography to obscure the relationship between the
ciphertext and the key by making the statistical correlation as complex as possible. The
SubstituteBytes provides this property based on a nonlinear transformation performed
on the state. Each byte ai of the state is substituted by another byte bi where the
Rijndeal substitution box (S-Box) is used for the transformation of a given input value
ai, to a specific output value bi = S(ai). For any possible 8-bit input value, the S-Box
provides a bijective mapping to a corresponding 8-bit output value where the reverse
process is necessary for decryption. Mathematically, the S-Box is based on computing the
multiplicative inverse of a number in the Galois-field GF (28) and on applying an affine
transformation afterwards. However, for most hardware and software implementations of
AES the S-Box is usually realized as lookup table without implementing the mathematical
construct of it. For more detailed information and mathematical descriptions of the S-Box
we again refer to [11, 29, 32].

7.1.2 ShiftRows

Diffusion is another property used in cryptography to ensure that statistical structures of
the plaintext can’t be found in the statistics of the ciphertext. Thus, changing a single
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Figure 7.2: AES encryption procedure with a key size of 128 bits.

plaintext bit should affect many ciphtertext bits, widespread in the state. Diffusion on
a byte level is therefore given by a permutation using ShiftRows. As the name implies,
this transformation cyclically shifts the bytes of the state within a row. The ShiftRows
transformation is performed on each row where a specific offset is applied depending on
the row. The first row stays unchanged. The second row of the state is cyclically shifted
by one byte to the left, the third row by two bytes, and fourth row by three bytes. Figure
7.3 illustrates the ShiftRows transformation based on the AES state representation.

b0 b4 b8 b12

b1 b5 b9 b13

b14b10b6b2

b3 b7 b11 b15

ShiftRows

b0 b4 b8 b12

b5 b9 b13 b1

b6b2b14b10

b15 b3 b7 b11

no changes

one left rotation

two left rotations

three left rotations

Figure 7.3: ShiftRows transformation of the AES state.

7.1.3 MixColumns

In addition to the ShiftRows transformation, the MixColumns operation is the second part
of the diffusion step, mixing the four bytes in each column of the state. Concerning the
diffusion property, the value of each byte within a column influences the entire column.
The MixColumns operation can be understood as a matrix multiplication of each column
with a constant four-by-four byte matrix. Figure 7.4 illustrates how the output values
of MixColumns are calculated for the first column of state. The same constant matrix
is used for each column and in each round performing MixColumns. The additions and
multiplications used for the vector-matrix multiplications are applied in the Galois-field
GF (28). The addition in GF (28) represents an bitwise exclusive OR (XOR) operation.
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As shown in Figure 7.4, the constant matrix contains only the hexadecimal values 0x01,
0x02, and 0x03. Thus, the multiplication in GF (28) for AES only needs to consider three
operations. A multiplication by 0x01 results in no changes as 0x01 is the identity element.
Multiplication by 0x02 equals a left shift operation by one bit. By adding the original value
to the shifted value, multiplication by 0x03 can be done. Depending on the application,
also a lookup-table implementation for the vector-matrix multiplication in GF (28) might
be possible.

02 03 01 01

01 02 03 01

03020101

03 01 01 02

c0

c1

c2

c3

b0

b5

b10

b15

= ×

Figure 7.4: MixColumns transformation of the first column based on the vector-matrix
multiplication of the first column with a constant matrix, further applied to all columns
of the state.

7.1.4 AddRoundKey

AddRoundKey combines the actual state with a round key. As shown in Figure 7.5, each
byte ci of the state is bitwise XORed to the corresponding byte ki of the round key,
resulting in di = ci ⊕ ki. The AES key schedule is used to derive the 16-byte round keys
from the 16-byte initial key.

c0 c4 c8 c12

c1 c5 c9 c13

c14c10c6c2

c3 c7 c11 c15

AddRoundKey

di = ci ⊕ ki 

k0 k4 k8 k12

k1 k5 k9 k13

k14k10k6k2

k3 k7 k11 k15

state round key

d0 d4 d8 d12

d1 d5 d9 d13

d14d10d6d2

d3 d7 d11 d15

Figure 7.5: The AddRoundKey operation adds the round key to the actual state using the
XOR operation.

7.1.5 Key Schedule

The AES key schedule performs several transformations of the initial key including cyclic
shift operations of bytes within a column, substitutions using again the Rijndeal S-Box,
and additions of round coefficients. The following equations describe how the key bytes
kr,b for each round r = 0, . . . , 10 are calculated where b = 0, . . . , 15 indicates an individual
key byte in the matrix representation of the key. For the initial round r = 0, the initial
key k is used without modification: k0,b = k. For the other round keys, the first column of
the next round key kr,0, kr,1, kr,2, kr,3 is given in Equation 7.1. The bytes within the last
column of the previous round key are cyclically shifted by one byte and substituted using
the S-Box. After this, the bytes within the first column of the previous key are added
concluding with an addition of the round coefficient RCr to the first key byte kr,0. All
other key bytes kr,b for b = 4, . . . , 15 are then calculated using Equation 7.2. For a detailed
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description of the AES key schedule the following references are mentioned: [11, 29, 32].

kr,0 = kr−1,0 ⊕ S(kr−1,13) ⊕RCr

kr,1 = kr−1,1 ⊕ S(kr−1,14)
kr,2 = kr−1,2 ⊕ S(kr−1,15)
kr,3 = kr−1,3 ⊕ S(kr−1,12)

(7.1)

kr,b = kr−1,b ⊕ kr,b−4 (b = 4, . . . , 15) (7.2)

7.1.6 Decryption

Roughly speaking, AES decryption can be performed by applying the encryption procedure
in reverse order and using inverse round operations. For the inverse AddRoundKey, the
XOR operation can be applied again as XOR is its own inverse. It is notable that in
case of decryption, AddRoundKey starts with the last round key used for encryption,
meaning, the round keys are used in inverse order which in turn requires an inverse key
schedule. The MixColumns operation is inverted by using the inverse constant matrix
for multiplication. In the first round of decryption, inverse MixColumns is omitted, just
as MixColumns is not performed in the last round of encryption. Since the AES S-Box
provides a bijective mapping, an inverse S-Box can be used for the decryption procedure in
order to perform the inverse SubstituteBytes operations. In case of the inverse ShiftRows
operation, the bytes have to be shifted in the opposite direction according to the number
of shifts performed during encryption.

7.2 ATxmega 256 AES Crypto Engine

Beside a wide range of peripheral features typically implemented on microcontrollers,
the ATxmega 256 also provides an integrated hardware implementation of the Advanced
Encryption Standard (AES). Although the ATxmega 256 AES crypto engine exposed to
be vulnerable to side-channel analysis attacks [21] leaking the secret key, the existing
hardware support for AES facilitates the ATxmega 256 to be used in secure applications.
In this chapter, we introduce the characteristics and features of the ATxmega 256 AES
crypto engine.

Referring to the user manual [5] of the ATxmega 256 and the AES application note
[3], the AES crypto engine supports a key length of 128 bits for encryption or decryption
of 128-bit data blocks. The execution of one encryption or decryption procedure requires
375 clock cycles excluding key and state initialization. The AES crypto engine provides an
8-bit state register (STATE) and an 8-bit key register (KEY) for either writing to or reading
from the internal 128-bit state and key memories. To provide sequential access to these
registers, a zero-initialized internal 4-bit address pointer is used. Read or write operations
automatically increment the appropriate pointer. As stated in [5], the state and key
registers can only be accessed when no encryption or decryption operation is in progress.
Additionally, direct memory access (DMA) can be used to handle communication with
the AES crypto engine. The following step-by-step procedure describes how encryption
or decryption is performed.

- At the beginning, the control register (CTRL) is used to select encryption or decryp-
tion mode. Additionally, several optional features can be configured including the
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options of resetting the AES crypto engine, starting encryption/decryption auto-
matically after the state memory is loaded, or performing an XOR operation on the
current state entries and the values written to the state register (STATE).

- The AES interrupt can be enabled optionally using the interrupt control register
(INTCTRL).

- The key bytes are sequentially loaded into the key memory through the key register
(KEY). The initial AES key is used in case of encryption mode. For the decryption
mode, the key memory has to be initialized with the last round key used for encryp-
tion. This can be either achieved by calculating the last round key in software or by
performing a dummy encryption with the initial key as the last round key remains
in the key memory after encryption has finished.

- The data bytes are sequentially loaded into the AES state memory via the state
register (STATE), either using the plaintext for encryption or the ciphertext for de-
cryption.

- If the auto start mode is not enabled in the control register (CTRL), the AES crypto
engine is started by setting the start flag in the control register (CTRL).

- After the encryption/decryption is complete, the ready flag in the AES status register
(STATUS) is set and an interrupt is generated optionally. The state memory contains
the generated ciphertext in case of encryption or the plaintext in case of decryption.
The result can be again accessed by sequentially reading the state register (STATE).

As already mentioned, the final round key, in case of encryption or the initial key,
in case of decryption remains in the key memory. The key memory has to be initialized
repeatedly for consecutive encryption or decryption of multiple 128-bit data blocks. As
with the state memory, the key memory can be accessed after encryption or decryption by
subsequently reading the key register (KEY). Consequently, injected faults during the key
schedule operation of the AES crypto engine can be identified, improving the capabilities
of the fault-based black-box characterization of the AES crypto engine, shown in Chapter
8.1.

7.3 Attack Scenario

As already discussed in Chapter 6, the instruction execution procedure of the ATxmega 256
can be influenced by injecting faults using clock glitch attacks. In this section we describe
the attack procedure used for manipulating another particularly interesting feature of the
ATxmega 256: the AES crypto engine. To analyze the possible influence of fault attacks on
the AES crypto engine, clock glitch attacks are applied during the encryption procedure
of the AES crypto engine. The fault injection setup is based on the fault board and
the ATxmega 256 extension board described in Chapter 4. An important characteristic
of the AES crypto engine has to be considered in order to define an appropriate attack
scenario. The key and state memory can only be accessed after the entire encryption
procedure has finished. Consequently, the approach of differential fault analysis (DFA) is
used, comparing correct and faulty ciphertexts to investigate the impact of clock glitch
attacks. In order to obtain two comparable ciphertext pairs, each attack consists of a
reference execution without injecting faults and a second execution in which a clock glitch
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attack is applied. Additionally, the results may vary depending on the attacked clock
cycle of AES encryption as well as on the glitch period TGlitch used for the inserted clock
glitch. For attacking the AES crypto engine, a test application on the ATxmega 256 is
used to perform communication with the control computer, to synchronize the attack with
the fault board, and to execute the attacked AES encryption. The synchronization during
an attack between the microcontroller and the fault board is managed by the control
computer using UART communication for both the micrcontroller and the fault board.
As illustrated in Figure 7.6, the test application and the operations performed by the
control computer comply with the following attack procedure:

- Initialization. In the initialization phase, the control computer configures the fault
board to define the desired attack parameters as given in Section 4.2, including the
glitch period TGlitch and the number of clock cycles between the trigger signal is
set and the clock glitch is injected. Additionally, the control computer requests the
fault board to reset the ATxmega 256. After the reset, the ATxmega 256 starts an
initialization routine to configure the system clock for using the clock signal provided
by the fault board. The I/O port configuration is set for the trigger output signal
and the UART interface is initialized for communication with the control computer.
After this procedure, the ATxmega 256 signals this state to the control computer
using the UART interface.

- Synchronization. The synchronization stage starts by transferring a 128-bit AES
key and a 128-bit plaintext block from the control computer to the test application
via the UART interface. After the key and the plaintext are received by the mi-
crocontroller, the test application initializes the AES crypto engine according to the
procedure given in Section 7.2. The encryption mode is enabled and the key and
plaintext bytes are loaded into the key and the state memory of the AES crypto
engine respectively. After the AES initialization is finished, the microcontroller sig-
nalizes this state which in turn allows the control computer to prepare the fault
board for an attack. In this context, the clock glitch unit is armed, meaning the
fault board is sensitive to its trigger input. The execution of the test application is
resumed as soon as the fault board is ready.

- Trigger signal. To ensure a cycle-accurate synchronization between the fault board
injecting the clock glitch and the microcontroller performing the AES encryption
which should be hit by the attack, the microcontroller rises its trigger output signal.
According to the attack settings of the fault board, the clock glitch is inserted after
the predefined number of clock cycles after the trigger event.

- AES execution. Immediately after the trigger signal is set by the microcontroller,
the test application starts the AES encryption engine by setting the appropriate
bit of the AES control register. For a period of 375 clock cycles, nop instructions
are executed on the microcontroller to avoid any unpredictable side effects until the
encryption procedure completes. Simultaneously, the clock glitch is inserted to the
clock signal by the fault board in compliance with the predefined attack settings.
As a consequence, one of the 375 clock cycles used by the AES crypto engine for
encryption is tampered.

- Result communication. After the encryption is complete, the test application
accesses the state memory of the AES crypto engine containing the 128-bit ciphertext
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Figure 7.6: Sequence of operations performed during an attack of the AES crypto engine.

block and the key memory containing the 128-bit final round key. In this way, the
values are transferred to the control computer using the UART interface. Based
on a reference execution, without injecting a fault a differential fault analysis is
possible. Analyzing the relation between the clock cylce tampered by the attack and
the resulting faulty ciphertext in particular allows assumptions about the internal
hardware architecture of the AES crypto engine.



Chapter 8

AES Crypto Engine: Attacks and
Results

The following chapter gives a detailed description of the attacks performed on the AES
crypto engine of the ATxmega 256 based on the attack scenario stated in Section 7.3. Fur-
thermore, the obtained erroneous behavior of the AES crypto engine is analyzed by using
faulty ciphertexts in order to draw meaningful conclusions about internal hardware struc-
tures. At the beginning, vulnerable hardware parts of the AES crypto engine are identified
by investigating faulty ciphertexts on the basis of differential fault analysis. Consequently,
a black-box characterization of the AES hardware implementation is possible, providing
the necessary information for defining a fault model. In contrast to implicitly assuming
a specific fault model for an attack, our approach starts with defining fault models based
on the results, obtained in our practical experiments. The identified fault characteristics
of the AES crypto engine result in two key retrieval attacks. The fault model for both
attacks relies on a manipulation of the S-Box substitution during the final AES encryption
round. By applying clock glitch attacks during the S-Box substitution, it is possible to
change specific values within the AES state. In this context, we show how the entire AES
key can be derived from 100 faulty ciphertexts with a probability of above 92 % percent.
Additionally, we present how 14 faulty ciphertexts can be sufficient for retrieving the entire
key with a probability of above 99 % provided that one of the 16 AES key bytes is known
or correctly guessed.

8.1 Fault-Based Black-Box Characterization

Attacking a hardware implementation of a cryptographic algorithm without having de-
tailed information about the hardware structure requires a more sophisticate approach
compared to attacks of known implementations. In case of attacking the AES crypto
engine of the ATxmega 256, the only information is given by the fact that the AES al-
gorithm and its underlying operations are known. Thus, only rough assumptions about
the encryption process are possible, knowing only the sequence of operations necessary for
encryption or decryption and the number of cycles required by the AES crypt engine in
order to encrypt or decrypt a 128-bit data block. Fault-based black-box characterization
aims at retrieving hardware implementation details based on the error propagation of a
fault induced during a single clock cycle. The relation between the affected clock cycle and
corresponding erroneous ciphertext allows a more precise specification of AES hardware
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implementation.

8.1.1 Attack Procedure

The attack procedure used in order to perform a block-box characterization of the AES
crypto engine complies with the attack scenario presented in Section 7.3. The entire
encryption procedure of a 128-bit data block requires 375 cycles. Depending on which
clock cycle is manipulated by inserting a clock glitch, different active circuit parts of the
AES crypto engine can be affected. The second important attack parameter is the glitch
period TGlitch. In case of inserting a clock glitch, TGlitch defines the manipulated delay
between two rising clock edges. The resulting erroneous behavior depends on the path
delay of the combinational logic as well as on the processed values. Roughly speaking,
the attacked clock cycle specifies in which part of the circuit a fault is injected. In this
context, TGlitch defines how the injected fault influences the circuit and consequently the
processed data. To determine the influence of a single clock glitch inserted during AES
encryption, a separate attack is performed for each of the 375 clock cycles. Moreover, the
clock glitch period TGlitch is varied between 5 ns and 12.5 ns. To simplify result evaluation
and to avoid varying effects caused by different processed data, the same 128-bit plaintext
block and the same 128-bit key are used for all attacks. The calculated ciphertexts and the
last round key accessible in the key memory of the AES crypto engine are transferred to
the control computer after each attack and are compared to a reference result in order to
identify injected faults. For the following black-box characterization differences between
the correct and a faulty ciphertext are analyzed on a byte level. This implies that a
ciphertext byte is stated as faulty if at least one bit differs from the corresponding correct
ciphertext byte.

8.1.2 Attack Results

To identify the glitch period TGlitch for which the AES crypto engine produces the highest
number of corrupted bytes within the ciphertexts, repeated attacks with a variation of
the glitch period TGlitch are performed. Results show that attacking the AES encryption
procedure using a glitch period TGlitch of 5.7 ns leads to a maximum number of induced
faults. Figure 8.1 illustrates the faults in individual bytes of the resulting ciphertext after
inducing a clock glitch in the corresponding clock cycle. For comparison, attacking clock
cycle 320 influences byte 2, 5, 8, and 15 in the final ciphertext where a clock glitch in cycle
340 has no effects on the ciphertext. Based on this fault illustration, a characterization of
the AES hardware implementation is possible as follows.

Key schedule. In order to identify faults in the ciphertext relying on manipulation
of the key schedule, differential fault analysis of the final round key bytes is used. By
comparing the final round key after an attack with the correct final round key, we are able
to identify the time period during encryption when the key schedule is performed. Faults
injected in the key schedule procedure reappear in the form of faults in the ciphertexts.
Shown in Figure 8.1, the affected clock cycles are: 263 to 267 for the eighth round key,
299 to 301 for the ninth round key, and 333 to 335 for the final round key.

Substitute bytes. Beside the faults induced during the key schedule, the other
faults shown in Figure 8.1 appear in similar intervals (clock cycle 244 to 259, 278 to 293,
312 to 327, and 345 to 360). In each of these intervals, fault injection is possible in 16
consecutive clock cycles leading to the assumption that the same AES operation is executed
in these intervals. Therefore, each of these intervals belong to a specific encryption round.
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Figure 8.1: Faults in the ciphertext bytes after attacking each clock cycle of AES encryp-
tion. The attacked clock cycle is plotted on the x-axis and the resulting ciphertext bytes
on the y-axis where the bold marker symbol + indicates a fault in the ciphertext.

Depending on the attacked round, different fault distribution within the ciphertext can
be explained by the varying number of AES operations performed after the clock glitch
attack. The last sequence between clock cycle 345 and 360 shows that only one byte is
influenced in each clock cycle. If we now look at cycle 312, four ciphertext bytes are
repetitively affected in the sequence of 16 clock cycles. By expecting that, again, only
one byte is modified by the attack, the following considerations are necessary in order to
define a relation between the fault distribution and the performed AES operation. First,
each byte is influenced in four consecutive clock cycles. Second, four varying bytes are
influenced by one clock glitch. Both observations can be explained by the fact that one
MixColumns operation is performed after a single AES state byte was manipulated by
the attack. Consequently, the faulty value of one byte is spread by MixColumns to four
bytes of the state. Additionally, Figure 8.2 illustrates the pattern of the influenced bytes
within the AES state between clock cycle 312 and 327. The distribution of faulty bytes
within the state shows that the faults are injected before one ShiftRows operation. By
combining all observations made about the AES encryption procedure, the SubstituteBytes
exposed as the attacked operation, which is confirmed by the following assumptions and
considerations:

- Only one S-Box is implemented in hardware, and is sequentially used to substitute
one state byte in each clock cycle. Therefore, 16 clock cycles are required in each
AES round to perform SubstituteBytes. Moreover, consecutive attacks between clock
cycle 345 and 360 show that the AES bytes are consecutively manipulated.
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Figure 8.2: Distribution of faulty ciphertext bytes within the AES state, depending on
the attacked clock cycle.

- The MixColumns operation is omitted in the final encryption round. Consequently,
a single fault injected during one clock cycle of SubstituteBytes in the final round is
not spread over an entire column of the state.

- Based on the resulting pattern of fault propagation between cycle 312 and 327,
only one MixColumns operation and only one ShiftRows operation are subsequently
performed to the attack. Regardless of which byte of the column is affected by the
attack, MixColumns spreads the fault over the entire column.

- As no additional MixColumns operation is performed after AddRoundKey in the
ninth round, AddRoundKey appeared to be not affected by the attacks.

- Only one ShiftRows operation is performed after the attack on SubstituteBytes in
the ninth round in clock cycle 312 and 327. Based on the fault distribution depicted
in Figure 8.1, this ShiftRows operation is executed before SubstituteBytes of the final
round.

- Deviating from the sequence of AES operations given by the AES specification in
Chapter 7, ShiftRows is executed before SubstituteBytes as the first operation in
each round.

Beside the key schedule of the AES crypto engine, SubstituteBytes is the only AES
operation influenced by clock glitch attacks. As SubstituteBytes is used within the key
schedule, it is very likely that the resulting faults in the round key bytes are based on
the same manipulation of the S-Box substitution. The black-box characterization of the
AES crypto engine leads to the encryption sequence illustrated in Figure 8.3 for the ninth
and the final AES round. The key schedule and the ShiftRows operation are performed
first in each round followed by the vulnerable SubstituteBytes operation. MixColumns
and AddRoundKey are not influenced by the performed clock glitch attacks. The precisely
classified faults during SubstituteBytes and the direct relation between the attacked clock
cycles and the corresponding modified byte provide the basis for the key retrieval attacks
presented in the following section.

8.2 Key Retrieval Attack

This section describes the key retrieval attacks derived from the obtained erroneous be-
havior of the AES crypto engine based on the attacks performed during the black-box
characterization in Section 8.1. For the black-box characterization, we analyze faults on
byte level meaning that a single bit fault is sufficient to imply a ciphertext byte being
faulty. In order to define a fault model for the key retrieval attacks, we focus on a refined
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Figure 8.3: Fault-based characterization of the encryption sequence for the ninth and the
final AES round.

analysis of faults injected during the SubstituteBytes operation of the final AES encryption
round. The injected faults are therefore analyzed on the bit level as a function of the glitch
period TGlitch. Depending on TGlitch of the inserted clock glitch during SubstituteBytes,
different erroneous S-box output can be generated. As a result, wrong byte values are
inserted by SubstituteBytes into the AES state matrix before the AddRoundKey operation
adds the final round key to the state. In the following, we present the obtainable output
values of the S-box and how these values can be used to define the fault models for the
key retrieval attacks. Moreover, a detailed description of the attacks and the results of
our practical experiments are given.

8.2.1 Bitwise Fault Analysis of the S-Box Output

As shown by the fault distribution in Figure 8.2, a single ciphertext byte can be manip-
ulated by attacking the SubstituteBytes operation of the final AES round between clock
cycle 345 to 360. Thus, inserting a glitch in one of the clock cycles between 345 to 360
leads to a fault in the corresponding state byte a0 to a15. After a fault is injected into one
of the state bytes, the only operation which changes the value of this byte subsequently
to SubstituteBytes is the final AddRoundKey operation. In the applied attack scenario,
the only way of fault identification during the encryption procedure of the AES crypto
engine of the ATxmega 256 is given through the resulting erroneous ciphertext. In order
to determine the induced faults straight after SubstituteBytes, the final round key is again
xored to the resulting ciphertext. As the XOR operation is its own inverse, the resulting
values are equivalent to the values of the state before AddRoundKey which in turn rep-
resent the output values of the S-box after SubstituteBytes. Consequently, the erroneous
S-box output is accessible if a known key is used for the fault analysis.

By applying clock glitch attacks to the SubstituteBytes operation, timing violations
of the combinational path of the S-box logic lead to wrong output values. Considering
a single clock glitch attack during the S-box operation of one state byte, the resulting
erroneous value depends on a relation between the glitch period TGlitch and the transition
of the previous S-box output to the new output value for the actual byte. The glitch
period TGlitch defines the point in time when the S-box calculation is hit by the attack
and furthermore, at which state of the S-box output transition the faulty value is written
to the AES state.

To analyze the influence of the glitch period TGlitch on the resulting faulty S-box output,
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Table 8.1: S-Box output values for state byte a4 after inserting a single clock glitch during
SubstituteBytes with different values for TGlitch.

TGlitch,min ∆TGlitch S-Box Output

ns ns

4.50 0.62 10101010
5.16 1.16 01010101
6.36 0.44 01010100
6.84 0.12 01000100
7.00 0.08 00000100
7.12 0.64 00000000
7.80 0.08 00100000
7.92 0.44 00101000
8.52 0.32 00101010
8.88 3.62 10101010

the attack procedure is based on the scenario given in Section 7.3. A single clock glitch
is inserted during the SubstituteBytes operation of state byte a4 in clock cycle 349 of the
AES encryption. To define the S-box output of the previous byte a3 and the actual byte
a4 for the SubstituteBytes operation of the final round, a precalculated key and ciphertext
pair is used. Therefore, the key and ciphertext are chosen in a way that the S-box output
in the final encryption round for a3 is set to 0b01010101 and for a4 to 0b10101010 in
binary notation. Using these values ensures that each bit has to be toggled during the
S-box output calculation for a4. By varying the glitch period TGlitch between 4.5 ns and
12.5 ns, a set of faulty ciphertexts is generated. To determine the faulty value of the S-box
output, the key byte k4 of the final round key is xored to corresponding byte a4 of the
ciphertext for each of these ciphertexts. Table 8.1 shows the resulting erroneous S-box
outputs for a4 as a function of TGlitch. The time interval for a specific output value of
the S-box is given by ∆TGlitch starting from TGlitch,min. Explained by the fact that the
S-box calculation is not started until TGlitch reaches 5.16 ns, the correct output for the
AES state byte a4 of 0b10101010 is generated. The S-box calculation finishes after 8.88 ns
where in turn an inserted clock glitch has no effect on the output. Between 5.16 ns and
8.88 ns one can observe a transition of the individual bits from the previous S-box output
of a3 (0b01010101) to the correct output for a4 (0b10101010). In this range of TGlitch

two particularly interesting effects occur. First, starting at 5.16 ns, the previous value of
the S-box from a3 is again inserted to the state byte a4, leading to a duplicated entry
in the AES state after the SubstituteBytes operation. Second, starting at 7.12 ns, all bits
of the S-box output are set to zero, leading to a zero entry in the AES state after the
SubstituteBytes operation. Both effects can be obtained in a sufficient time interval for
TGlitch of either 1.12 ns for the duplicate entry or 0.64 ns for the zero entry in case of the
S-box output transition from 0b01010101 to 0b10101010.

In order to define generally applicable ranges for TGlitch, we performed additional
clock glitch attacks on the S-box output transition for the state byte a4 at clock cycle
349. Precalculated key and ciphertext pairs are used to specify the S-box output for the
state bytes a3 and a4 in the final encryption round. In doing so, all possible S-box output
values for a3 between 0 and 255 are used. Corresponding to these values, the output for
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Figure 8.4: Success rate of the clock glitch attack on the SubstituteBytes operation of one
AES state byte in the final encryption round. Successful attacks are separated by means
of either setting the state byte to zero or to the previous S-box output value.

a4 is chosen in a way, that the inverse value has to be calculated by the S-box operation.
For example, if the S-box output for a3 is 0b00000001, a S-box transition to 0b11111110
is required. For each of the resulting 256 key and ciphertext pairs, single clock glitch
attacks with varying glitch period TGlitch are performed in cycle 349 of the AES encryption
procedure. By evaluating the time intervals of TGlitch in which the value of the state byte
a4 is either set to the S-box output of a3 or to zero, it is possible to identify values for the
glitch period TGlitch with high success rates. Based on these results, Figure 8.4 illustrates
the success rates for changing the value of a4 either to zero or to the duplicated output of
a3. Starting at a glitch period TGlitch of about 5 ns, the quickly increasing probability of
producing a duplicate S-box output shows that this effect occurs almost regardless of the
previous or the approaching S-box output. Therefore, the highest success rate of 96 % can
be achieved with a glitch period TGlitch of 5.24 ns. With 55 % at a glitch period TGlitch

of 7.87 ns, the maximal success rate for setting the state entry to zero is considerably
smaller than for getting a duplicate. This effect can be explained by a stronger variation
of the time interval where the S-box output is set to zero. Depending on the previous and
the approaching S-box value, varying timing behavior of the transition between these two
values is given. In addition to the evaluation of the S-box output for transitions between
inverse values where each bit of the S-box output has to be flipped, the same behavior
can also be observed when the transitions between other values is attacked. Therefore,
the time intervals for getting duplicate S-box output or setting the S-box output to zero,
also exist for S-box transitions between two values where a3 and a4 are equal or at least
one bit stays the same.
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Figure 8.5: Consecutive inserted clock glitches starting at cycle 345, respectively at cycle
346 and the corresponding distribution of the duplicated values within the AES state
matrix after the attacked SubstituteBytes operation.

8.2.2 Attack 1: Duplicating AES State Entries

The first attack we present is based on the observation of duplicate S-box output en-
tries in the AES state after applying clock glitch attacks to the SubstituteBytes oper-
ation in the final encryption round. So far, only one clock glitch was inserted during
an attack, leading to a single fault on one byte of the state. The SubstituteBytes op-
eration of the final round requires 16 consecutive clock cycles and in each cycle one
state byte is substituted. By inserting consecutive clock glitches during the S-box op-
eration between clock cycle 345 and 360, duplicate entries can be produced within the
entire AES state. The clock glitch period TGlitch of 5.24 ns is therefore chosen based on
the maximal success rate determined in previous attack experiments as shown in Figure
8.4. By applying eight clock glitches during the S-box operation starting at clock cycle
345, it is possible to produce consecutive duplicates within the AES state. The entries
a0, . . . , a15 describe the values within the AES state after SubstituteBytes of a reference
execution without applying clock glitches. In case of using the same key and cipher-
text pair and inserting eight consecutive clock glitches starting at cycle 345, the 16 bytes
of the AES state after the attacked SubstituteBytes operation are organized as follows:
a0, a0, a2, a2, a4, a4, a6, a6, a8, a8, a10, a10, a12, a12, a14, a14. As a result, only eight different
values are present within the state after an attack with a distinct distribution of dupli-
cate entries. In each case, two consecutive state bytes have the same value. Starting the
attack with seven consecutive inserted clock glitches at clock cycle 347 leads to a similar
behavior. The duplicates are shifted by one position within the state resulting in the fol-
lowing distribution of the values: x0, a1, a1, a3, a3, a5, a5, a7, a7, a9, a9, a11, a11, a13, a13, x1.
The two bytes x0 and x1 represent variable values without a relation to other values of
the state after an attack. Figure 8.5 illustrates the correlation between the sequence of
inserted clock glitches and the corresponding distribution of duplicate values in the state.
In case of inserting a clock glitch, the combinational logic of the S-box implementation
is in a settled condition at the first rising edge of the clock signal. The S-box operation
for the corresponding state byte produces a correct result. At the next rising edge of the
clock signal, a violation of the combinational path leads to a faulty S-box output. With
the appropriate choice for the delay between these tow rising edges specified by the glitch
period TGlitch, it is possible to achieve the desired S-box output values.
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So far, knowledge of the encryption key is necessary for analyzing the behavior of
the AES crypto engine to fault attacks. Information about the faulty S-box outputs of
SubstituteBytes in the final encryption round can be retrieved by xoring the final round
key to the corresponding faulty ciphtertext. However, the key is usually not known to
an adversary who tries to break a cryptographic application. For a realistic and practical
attack scenario we define the following constraints and preconditions:

- An adversary has access to the device and is able to induce faults during the Sub-
stituteBytes operation in the final round, in order to produce the aforementioned
duplicate values in the AES state before the final round key is added.

- The only accessible information of the encryption procedure is the resulting cipher-
text of the encryption of an unknown key and plaintext pair. Therefore, key and
plaintext remain hidden from an adversary.

- The same key is used during the encryption of several 128-bit plaintext blocks.
Plaintext data blocks can vary in each attacked encryption procedure.

- As shown in Figure 8.5, at least two independent attacks of the SubstituteBytes
operation are necessary: first, starting at clock cycle 346 with eight consecutive
inserted clock glitches and second, starting at clock cycle 347 with seven consecutive
inserted clock glitches.

The duplicate values in the AES state before adding the final round key result in a
direct relation between two consecutive ciphertext bytes. Consequently, it is possible to
calculate the final round key bytes. For the description of this relation and the resulting
method of calculating the final round key, the following terms are used:

- The final round key bytes are defined by k0, . . . , k15.

- The erroneous ciphtertext bytes, corresponding to the duplicate state entries a0, a2,
a4, a6, a8, a10, a12, a14 after attacking the SubstituteBytes operation are defined by
ca,0, . . . , ca,15.

- The erroneous ciphtertext bytes, corresponding to the duplicate state entries a1, a3,
a5, a7, a9, a11, a13 and x0, x1 after attacking the SubstituteBytes operation are defined
by cb,0, . . . , cb,15.

Two consecutive bytes of the ciphertext ca,0, . . . , ca,15 build a relation, based on du-
plicated entries in the state after SubstituteBytes. This relation can be described by
Equation 8.1. The same relation is valid for the ciphtertext bytes cb,0, . . . , cb,15. In this
context, Equation 8.2 is used by considering the offset of the duplicated entries in the
state after SubstituteBytes. On condition that both ciphertexts were calculated using the
the same key, Equation 8.3 can be used to retrieve the final round key bytes. By applying
Equation 8.3 to the two faulty ciphtertexts, each key byte k1, . . . , k15 can be derived from
the value of k0. This implies that one key byte has to be known, in order to calculate
the remaining 15 bytes of the final round key. Either 256 tries are necessary or a known
plaintext/ciphertext pair can be used for determining the missing key byte. Additionally,
the second attack on the AES crypto engine of the ATxmega 256, presented in Section
8.2.3, can be applied for retrieving the missing key byte. Once the final round key is
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revealed, the inverse AES key schedule can be used subsequently for calculating the initial
AES key.

ki ⊕ ca,i = ki+1 ⊕ ca,i+1 (i = 0, 2, . . . , 12, 14) (8.1)

ki ⊕ cb,i = ki+1 ⊕ cb,i+1 (i = 1, 3, . . . , 11, 13) (8.2)

ki = ca,i−1 ⊕ ca,i ⊕ ki−1 (i = 1, 3, . . . , 13, 15)
ki = cb,i−1 ⊕ cb,i ⊕ ki−1 (i = 2, 4, . . . , 12, 14)

(8.3)

The capability of this attack for successfully calculating the correct key bytes relies
on the assumption that each inserted clock glitch during the SubstituteBytes operation
induces the desired fault behavior for producing duplicate entries in the AES state. As
depicted in Figure 8.4, a success rate of 96 % can be achieved for a single byte when
generating one duplicate entry in the state. To verify the success rate for retrieving the
entire key, we performed 2000 attacks on the encryption procedure. The glitch period
TGlitch of 5.24 ns is used for the consecutive inserted clock glitches. By starting the attack
at clock cycle 345 with 8 glitches, 1000 erroneous ciphertexts (ca) are generated. The
other half of erroneous ciphertexts (cb) is generated by starting the attack at clock cycle
346 with 7 glitches. In each attack, the same key is used to encrypt randomly chosen
128-bit plaintext blocks. By applying Equation 8.3 to the resulting erroneous ciphertexts,
1000 possible keys are calculated. For each calculation a pair of ca and cb is used and
the first key byte k0 is assumed to be known. By comparing each calculated key with the
correct key, it is possible to specify a success rate for retrieving the correct key. Table 8.2
shows the individual rates for successfully retrieving the key bytes k0, . . . , k15. Due to the
fact that k0 is assumed to be known, the success rate for k0 is set to 100 %. Table 8.2
additionally presents the success rates when using either three, five, seven, nine, or eleven
pairs of ciphertexts ca and cb. Corresponding to the number of used pairs, a majority
decision can be used for individually selecting each key byte. Equation 8.3 shows that
the result for a key byte ki depends on the value of the previous calculated key byte ki−1.
In this context, an error propagation is given, which leads to a continuously decreasing
success rate between the first and the last calculated key byte. When using more then
one ca/cb pair, it is possible to select the most probable value for each key byte before its
value is used for the calculation of the next key byte. In doing so, a success rate higher
than 99 % for determining the entire key can be achieved by only using seven ca/cb pairs.
However, it is assumed that the first key byte k0 is known.

8.2.3 Attack 2: Zeroing AES State Entries

In addition to the key retrieval attack, based on duplicated AES state entries 8.2.2, another
approach for an attack is given by the fact, that with a proper choice for the glitch period
TGlitch, the S-box output can be forced to zero. As shown by the bitwise fault analysis of
the S-box output in Section 8.2.1, a single clock glitch during the SubstituteBytes operation
in the final encryption round can lead to the effect of setting the appropriate state byte
to zero before AddRoundKey adds the final round key bytes to the state. If that occurs,
the key byte is directly available in the resulting ciphertext regardless of all previous
AES transformations. By inserting consecutive clock glitches between cycle 344 and 359
during the S-box operation, it is possible to achieve the desired behavior for several AES
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Table 8.2: Success rates for retrieving the correct final round key bytes, when using the
given number of erroneous ciphertext pairs, ca and cb. Key byte k0 is assumed to be
known.

Key Byte Success Rate

1 ca/cb 3 ca/cb 5 ca/cb 7 ca/cb 9 ca/cb 11 ca/cb

k0 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
k1 98.2 % 99.7 % 100.0 % 100.0 % 100.0 % 100.0 %
k2 93.8 % 99.1 % 99.8 % 100.0 % 100.0 % 100.0 %
k3 91.1 % 99.0 % 99.7 % 100.0 % 100.0 % 100.0 %

k4 81.9 % 96.8 % 99.3 % 100.0 % 100.0 % 100.0 %
k5 78.9 % 96.5 % 99.1 % 100.0 % 100.0 % 100.0 %
k6 76.5 % 96.2 % 99.1 % 100.0 % 100.0 % 100.0 %
k7 75.3 % 96.1 % 99.1 % 100.0 % 100.0 % 100.0 %

k8 71.9 % 95.5 % 99.1 % 99.9 % 100.0 % 100.0 %
k9 62.5 % 94.1 % 98.9 % 99.9 % 100.0 % 100.0 %
k10 56.1 % 91.4 % 98.6 % 99.9 % 100.0 % 100.0 %
k11 49.1 % 88.2 % 98.2 % 99.9 % 99.9 % 100.0 %

k12 43.6 % 85.9 % 97.8 % 99.9 % 99.9 % 100.0 %
k13 38.2 % 85.3 % 97.6 % 99.8 % 99.9 % 100.0 %
k14 35.0 % 84.3 % 97.3 % 99.8 % 99.8 % 100.0 %
k15 30.1 % 79.9 % 96.6 % 99.7 % 99.8 % 100.0 %
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Figure 8.6: Consecutive inserted clock glitches starting at cycle 344, respectively at cycle
345 and the corresponding distribution of the zeros within the AES state matrix after the
attacked SubstituteBytes operation.

state bytes by a single attack run. The clock glitch period TGlitch of 7.12 ns is chosen
according to the maximal success rate determined during the bitwise fault analysis of the
S-box operation illustrated in Figure 8.4. Under the assumption that a0, . . . , a15 describe
the values within the AES state after SubstituteBytes of a reference execution without
applying clock glitches. When eight clock glitches are inserted consecutively starting at
cycle 344, the values a0, a2, a4, a6, a8, a10, a12, a14 are zero. Starting the attack one clock
cycle later, at cycle 345, the values a1, a3, a5, a7, a9, a11, a13, a15 can be forced to zero. Two
faulty ciphertexts ca and cb are necessary for retrieving the final round key. Figure 8.6
illustrates the correlation between the sequence of inserted clock glitches and the values
of the state which are set to zero after the attacked SubstituteBytes operation of the
final encryption round. Depending on the glitch period TGlitch, every second rising edge
of the clock signal violates the timing constraints of the combinational path of the S-
box operation, further leading to the desired S-box output of zero. In order to define a
practicable attack procedure based on the resulting erroneous behavior of SubstituteBytes,
the following constraints and preconditions are given:

- An adversary has access to the device and is able to induce faults during the Substi-
tuteBytes operation in the final round in order to produce the aforementioned zeros
in the AES state before the final round key is added.

- The only accessible information of the encryption procedure is the resulting cipher-
text of the encryption of an unknown key and plaintext pair. Therefore, key and
plaintext remain hidden from an adversary.

- The same key is used during the encryption of several 128-bit plaintext blocks.
Plaintext data blocks can vary in each attacked encryption procedure.

- As shown in Figure 8.6, at least two independent attacks of the SubstituteBytes
operation are necessary, starting at clock cycle 344 and at 345 respectively with
eight consecutive inserted clock glitches.

Assuming that every inserted clock glitch leads to the desired behavior of the S-box
operation, two faulty ciphertexts ca and cb are sufficient in order to retrieve the final round
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Table 8.3: Success rates for retrieving the correct final round key bytes when using the
given number of erroneous ciphertext pairs, ca and cb.

Key Byte Success Rate

1 ca/cb 5 ca/cb 10 ca/cb 20 ca/cb 30 ca/cb 40 ca/cb 50 ca/cb

k0 55.0 % 79.9 % 94.1 % 98.8 % 99.8 % 99.9 % 99.9 %
k1 25.8 % 37.6 % 62.9 % 77.4 % 89.5 % 93.7 % 95.0 %
k2 26.7 % 68.4 % 78.7 % 91.9 % 96.0 % 98.3 % 98.9 %
k3 26.0 % 36.0 % 58.5 % 76.6 % 82.8 % 87.4 % 92.9 %

k4 49.0 % 71.2 % 89.5 % 97.0 % 99.6 % 99.7 % 99.9 %
k5 24.1 % 54.5 % 71.0 % 82.8 % 89.3 % 91.7 % 94.2 %
k6 19.8 % 24.2 % 49.0 % 69.4 % 79.3 % 87.6 % 93.3 %
k7 26.7 % 39.4 % 60.7 % 81.0 % 86.0 % 90.9 % 94.3 %

k8 45.5 % 82.8 % 92.5 % 96.5 % 99.0 % 99.6 % 99.4 %
k9 22.7 % 32.0 % 59.4 % 80.3 % 91.6 % 96.7 % 99.9 %
k10 37.0 % 59.7 % 82.9 % 96.7 % 98.9 % 99.7 % 99.7 %
k11 20.4 % 27.5 % 57.5 % 76.9 % 90.2 % 93.9 % 97.1 %

k12 45.1 % 70.2 % 88.8 % 96.6 % 99.8 % 99.8 % 99.9 %
k13 28.3 % 40.8 % 72.0 % 88.1 % 95.5 % 97.7 % 99.3 %
k14 24.1 % 33.8 % 64.7 % 83.3 % 93.7 % 96.8 % 98.4 %
k15 20.9 % 30.7 % 54.9 % 77.7 % 88.6 % 92.9 % 95.1 %

key. In this case, ca expose the final round key bytes k0, k2, k4, k6, k8, k10, k12, k14 and cb
exposes k1, k3, k5, k7, k9, k11, k13, k15. However, a stronger variation of the time interval
where the S-box output is set to zero leads to a lower success rate compared to the first
attack which is based on producing duplicate entries in the AES state. Therefore, the
success rate for retrieving the entire key highly depends on the capability of the attack
for setting each S-box output for the 16 S-box operations in the final encryption round to
zero. To verify the achievable success rate for retrieving the entire key, we performed 2000
attacks on the encryption procedure, using a glitch period TGlitch of 7.12 ns. The first 1000
faulty ciphertexts (ca) are generated by inserting 8 consecutive clock glitches starting at
clock cycle 344 and the second 1000 faulty ciphertexts (cb) starting at clock cycle 345.
The first column of Table 8.3 illustrates the average rates for successfully retrieving the
individual key bytes k0, . . . , k15, based on the 2000 faulty ciphertexts. It appears that the
average success rates for the key bytes k0, k4, k8, k12 are about twice as high compared to
the success rates for the other key bytes. Assuming that an adversary is able to generate
several faulty ca/cb ciphertext pairs, the success rates can be increased by using a majority
decision. Table 8.3 additionally shows the corresponding success rates when using either
5, 10, 20, 30, 40, or 50 ciphtertext pairs to determine the most probable key bytes. The
ciphertext pairs are randomly chosen from the test set of 2000 faulty ciphertexts and each
evaluation is repeated 1000 times in order to get representative results. Results show that
it is possible to retrieve the entire key with a probability higher than 92 %, using 50 faulty
ca/cb ciphertext pairs.
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8.2.4 Discussion and Comparison

The bitwise fault analysis of the S-box output when attacking the SubstituteBytes oper-
ation in the final encryption round allows to define two fault models for a key retrieval
attack. Depending on the glitch period TGlitch, it is either possible to produce duplicated
values in the AES state by SubstituteBytes or AES state entries are set to zero before the
final round key is added. With the approach of inducing duplicated entries, a success rate
higher than 99 % for retrieving the correct key is achievable with only 14 faulty ciphertexts.
Table 8.2 gives an overview about the capabilities of this attack. The only limitation is
given by the fact that the first byte of the final round key k0 has to be known in order
to calculate all other key bytes. However, the second presented attack can be utilized
to determine the first key byte. Results show that the rate for successfully retrieving k0
is higher than 99 % when 60 additional faulty ciphertexts are used. This attack can be
applied on the 16 consecutive executed S-box operations in order to reveal the entire AES
key. In this case, 100 faulty ciphertexts lead to a success rate higher than 92 %. Table
8.3 presents the corresponding results. The difference in the number of necessary faulty
ciphertexts and the lower success rate compared to the first attack is given by a higher
variation of the time interval in which the S-box output is set to zero. These time intervals
differ depending on the transition between the previous and the new output value of the
S-box. Therefore, it is more challenging to define a general value for the glitch period
TGlitch. With both presented attacks, the final round key can be revealed and further used
to calculate the AES key by applying the inverse AES key schedule.
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Conclusions

In this thesis we have analyzed the effects of non-invasive fault attacks on two different
microcontroller platforms: ARM Cortex-M0 and Atmel ATxmega 256. Fault attacks based
on clock glitch insertion and supply voltage manipulation were applied. In a variety of
practical experiments we have identified and characterized common and individual faults
for both MCUs by investigating the processing sequence of assembly instructions for the
two-stage pipeline of the ATxmega 256 on the one hand, and for the three-stage pipeline
of the Cortex-M0 on the other hand. The resulting behavior to clock glitch attacks on
the instruction-fetch operation in particular was very reliable for both MCUs. Similar and
well-definable attack parameters, almost regardless of the analyzed instruction could be
revealed. In this context, we have shown that the fetch operation can be manipulated to
the effect that the previously fetched instruction remains in the instruction fetch buffer
instead of loading the new instruction. Under consideration that the attacked instruction is
replaced by the previous one rather than entirely skipped, the observed faults in the fetch
stage allow precise and deterministic modifications of the program flow. Consequently,
an adversary is able to essentially influence implementations of cryptographic algorithms,
e.g. by preventing verification routines from being executed or by skipping entire code
segments.

Furthermore, we have observed that faults can be injected into the execution of in-
structions. In case of attacking the execution stage, data flow manipulation is possible
and the resulting behavior highly depends on the attacked instruction. The results of the
practical experiments showed that both microcontrollers can be forced to produce wrong
calculation results when attacking the execution stage of the instruction pipeline. Partic-
ularly, faults in the execution of memory operations, e.g. load and store instructions, led
to constant values either loaded from or written to memory. When using a single clock
glitch during an attack, applicable fault models have to consider parallel processing of
instructions depending on the individual pipeline structure of the MCU. Regardless of the
investigated instruction and the attacked stage of processing, we were able to precisely
define time intervals for the clock glitch period resulting in reliable and constant fault
injection for all investigated scenarios.

A, to the author’s knowledge novel approach, consisting of the combination of short-
time underpowering and clock glitch insertion has been used to significantly improve the
sensitivity to fault attacks on the investigated device. The applied supply voltage reduction
led to an increased path delay of the combinational logic which, in turn, increased the
sensitivity of the attacked device to fault injection, using clock glitches. In this context,
we have identified a relation between the reduced voltage level and the time interval for

64
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the clock glitch period leading to successful fault injections.
In the second part of this thesis we have analyzed the effects of clock glitch attacks

on the AES crypto engine, a hardware accelerator for AES encryption/decryption, im-
plemented on Atmel’s ATxmega 256. Implementation-specific details and affected AES
operations were identified during a fault-based black-box characterization of the AES
crypto engine. By analyzing the resulting faults within the ciphertexts after consecutively
inserting a single clock glitch in every execution cycle of the encryption procedure, the
SubstituteBytes operation appeared to be reliably susceptible to fault injection using clock
glitch attacks. Thus, we have observed that the SubstituteBytes operation can be forced
either to generate duplicated values in the AES state or to set specific bytes of the AES
state to zero depending on the clock glitch period. Based on these results, we have intro-
duced two key-retrieval attacks targeting the final AES encryption round. Both attacks
are very powerful due to the fact that only faulty ciphertexts are required to reveal the
secret key.

Within the scope of investigating the potential of non-invasive fault attacks, we have
identified several reliable fault models and vulnerabilities for both microcontrollers which
make them potential targets for these kind of attacks. Underlined by the fact that rel-
atively cheap equipment is sufficient for successfully performing clock glitch insertion
and power supply manipulation, protection against fault attacks is necessarily required
for security-relevant applications where microcontrollers are involved. The described at-
tacks were implemented on unprotected devices and without any countermeasures against
fault injection in order to identify common fault mechanisms and to understand potential
threats rather than verify specific defense mechanisms. The aim of this work is to provide
results which serve as a basis for implementing adequate countermeasures. The obtained
vulnerabilities of the microcontrollers can already be considered during early development
stages of secure software or hardware designs. However, countermeasures often come along
with tradeoffs between implementation effort, performance losses and the level of protec-
tion. Therefore, proper identification of potential threats and a precise understanding of
underlying fault injection mechanisms is necessary to provide efficient protection against
fault attacks and to minimize the required implementation overhead.



Appendix A

Definitions

Abbreviations

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
ASIC Application-specific Integrated Circuit
BOD Brown-Out Detection
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
CRT Chinese Remainder Theorem
DCM Digital Clock Manager
DFA Differential Fault Analysis
DIP Dual Inline Package
DMA Direct Memory Access
DPA Differential Power Analysis
DUT Device Under Test
EEPROM Electrically Erasable Programmable Read-Only Memory
FPGA Field-programmable Gate Array
MCU Microcontroller Unit
PDI Program and Debug Interface
PLL Phase-Locked Loop
RFID Radio-Frequency Identification
RISC Reduced Instruction Set Computer
RSA Rivest Shamir Adleman
SWD Serial Wire Debug
SRAM Static Random-Access Memory
TQFP Thin Quad Flat Package
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
YAG Yttrium Aluminum Garnet
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