
Master Thesis

Design and Implementation of a Fault
Emulation Environment for a Java

Virtual Machine

Michael Hraschan

————————————–

Institute for Technical Informatics
Graz University of Technology

Head of the Institute: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Römer

Reviewer: Ass.-Prof. Dipl.-Ing. Dr.techn. Christian Steger

Advisor: Ass.-Prof. Dipl.-Ing. Dr.techn. Christian Steger
Dipl.-Ing. Michael Lackner

Graz, February 2014

Kurzfassung

Java und Java Card Systeme sind oft Ziele von Attacken. Der Hauptgrund dafür sind
die oftmals sensiblen Informationen, welche auf der Karte gespeichert sind. Diese In-
formationen sind meistens Teile von sogenannten Applets, Applikationen, welche in der
Java Card Umgebung laufen. Einige dieser Applikationen befinden sich im Bereich von
Identifikations- und Bankanwendungen und benötigen deshalb sensible, anwenderspezifis-
che, Informationen. Diese Informationen müssen so gut wie möglich geschützt werden.
Angreifer sollten unter keinen Umständen Zugriff auf diese sensiblen Daten bekommen.
Aus diesem Grund wird derzeit in speziellen Forschungsthemen daran gearbeitet, Sicher-
heitsfeatures zu entwickeln, um genau dies zu verhindern. Diese Sicherheitsfeatures können
in Hardware (Security Module, Koprozessoren, ...), Software (Virtual Machine, Operat-
ing System (OS), ...) oder einer Kombination aus diesen bestehen. Ein Schwerpunkt der
aktuellen Forschungsarbeit basiert auf der Entwicklung von Sicherheitsfeatures zur Ver-
meidung von sogenannten Fehlerattacken.
Ein Problem, das vor allem Java Card Sicherheitsfeatures betrifft, sind die teils fehlen-
den Testumgebungen. Sicherheitsfeatures, egal ob in Hardware oder Software entwick-
elt, müssen auf ihre Funktionsfähigkeit und Funktionstüchtigkeit so einfach wie möglich
geprüft werden. Es bestehen bereits diverse Ansätze um Fehler zu simulieren, allerdings
setzen diese meist auf niederen Ebenen (Register Transfer Level (RTL)) an. Dies macht
es oft schwer, Sicherheitsfeatures auf höheren Ebenen, wie in diesem Fall einer Java Vir-
tual Machine, zu testen. Deshalb werden neue Ansätze benötigt, welche in dieser Arbeit
gesucht und entwickelt werden.

Stichwörter: Java, Java Card, Fault, Attack, Fault Attack, Simulation, Virtual Ma-
chine, LEON3, FPGA, Co-design, Hardware, Software

1

Abstract

Java and Java Card systems are often the target of attacks. The main reason for this
is that these systems more than often contain sensitive data (or have access to it). This
especially holds for Java Card systems which are used in identification and banking envi-
ronments.
Attackers should not get access to this sensible data by any means. Therefore, current
research topics consider the design and development of security features used in Java Card.
These security features can either be written in software (Virtual Machine, OS, ...), build
into the hardware or are a combination of both. One part of the research focuses on
security features to prevent fault injection on Java based systems.
However, only implementation of these security features is not sufficient. These mecha-
nism require an easy and fast way of testing to guarantee their functionality. There are
already several approaches on how to simulate fault injections to test such systems. One
drawback of these systems is that they do not consider the higher level approach which
is used in Java. It is therefore not perfectly suited to test these features. Hence, a new
approach is required which is covered in this project.

Keywords: Java, Java Card, Fault, Attack, Fault Attack, Simulation, Virtual Machine,
LEON3, FPGA, Co-design, Hardware, Software

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Danksagung

Diese Diplomarbeit wurde im Studienjahr 2013/2014 am Institut für Technische Informatik
an der Technischen Universität Graz durchgeführt.

Zuerst möchte ich Ass.-Prof. Dr.techn. Christian Steger, für die Betreuung und Begut-
achtung dieser Arbeit, danken. Weiters allen Beteiligten des Cocoon Projekts welche diese
Arbeit ermöglicht haben. Speziell meinem Betreuer Dipl.-Ing. Michael Lackner, welcher
immer Zeit für Diskussionen und Hilfestellungen hatte.

Besonders möchte ich mich bei meiner Familie bedanken, welche mich während des
Studiums immer unterstützt hat.

Graz, im Februar 2014 Michael Hraschan

4

Contents

1 Introduction 10
1.1 Motivation . 11
1.2 Main Goals of this Thesis . 12
1.3 Structure of this Work . 14

2 Related Work 15
2.1 Attacks on Java Card . 15

2.1.1 Java Type Confusion Attack . 16
2.1.2 Combined Attacks . 17

2.2 Fault Models and Types . 17
2.2.1 Mutant . 18
2.2.2 Saboteur . 19
2.2.3 Simulator Commands . 22

2.3 VFIT - VHDL-Based Fault Injection Tool 22
2.3.1 Fault Injection Techniques . 23
2.3.2 Design . 23

2.4 MEFISTO-L: VHDL Based Fault Injection Tools 26
2.4.1 Framework . 26
2.4.2 Design . 26

2.5 MFI - Modular Fault Injector . 29
2.5.1 Introduction . 29
2.5.2 Design . 30

2.6 Similarities to the Java Card Fault Injection Unit 32

3 Design of the Fault Injection Unit 35
3.1 FIU Design Approaches . 36

3.1.1 Software Only FIU (Byte-Code Layer) 36
3.1.2 Software Only FIU (Memory Layer) 37
3.1.3 Hardware-Software Co-designed FIU 38
3.1.4 Hardware Only FIU . 39
3.1.5 Final Design . 41

3.2 Fault Injection Hardware Unit . 43
3.3 FIU Software Module . 45
3.4 FIU PC Host . 45

5

4 Implementation of the Fault Injection Unit 47
4.1 Used Tools . 49
4.2 GRLIB LEON3 IP Library . 52

4.2.1 LEON3 Processor . 53
4.3 SimpleRTJ . 54

4.3.1 Structure of SimpleRTJ . 54
4.4 FIU Hardware Unit . 55

4.4.1 Memory Area Register . 56
4.4.2 Configuration Register . 56
4.4.3 AHB Bus Controller Unit . 57
4.4.4 Fault Trigger Unit . 59
4.4.5 Saboteur Unit . 61
4.4.6 FIU Assembly . 61
4.4.7 Hardware Testing . 64
4.4.8 Working Example . 64

4.5 FIU Software Module . 67
4.5.1 Client Module . 68
4.5.2 Communication Interface Module . 72
4.5.3 Data Provider Module . 74

4.6 FIU PC Host . 75
4.6.1 User Interface . 76
4.6.2 Communication Interface . 78
4.6.3 Fault Campaign Support . 79

5 Results 80
5.1 Platform Setup . 80
5.2 VHDL Synthesis Results . 82
5.3 Simulation Results . 83
5.4 Fault Injection Performance . 85
5.5 Attack Scenario . 86
5.6 Drawbacks . 89

6 Conclusions and Future Work 90
6.1 Conclusions . 90
6.2 Future Work . 91

A Code Examples 93
A.1 Client Socket Communication . 93
A.2 Server Socket Communication . 94
A.3 FIU Hardware Register Usage . 96
A.4 Fault Injection Unit SimpleRTJ Provider 96
A.5 Fault Campaign Sekelton . 97
A.6 C Program Testing Fault Injection . 98
A.7 Java Program for Fault Testing . 99

Bibliography 104

6

List of Figures

1.1 Basic Java Card Environment . 11
1.2 Project Overview . 13

2.1 VHDL-Based Fault Injection Techniques [BGGG05] 18
2.2 Types of Saboteurs. (a) Serial. (b) Parallel [BGGG05] 21
2.3 Possible Fault Models for Fault Injection Systems [GKS+11] 22
2.4 VFIT Block Diagram [BGGG05] . 25
2.5 Framework of Testing Fault Tolerance with MEFISTO-L [BPC98] 27
2.6 Structure of MEFISTO-L [BPC98] . 27
2.7 Scheme of the Modular Fault Injection System [GKS+11] 30
2.8 Schematic View of the Fault Controller of the Modular Fault Injector (MFI)

[GKS+11] . 31

3.1 Byte-Code Layer Design (Software (SW) Only) 36
3.2 Memory Layer (SW Only) . 37
3.3 Hardware-Software Co-Design . 38
3.4 Hardware Only . 39
3.5 Schematic View of the Serial Injection on the Bus and Parallel Computation 41
3.6 Schematic View of the Complete Design . 42

4.1 Schematic View of the Implementation . 48
4.2 Architecture of the Eclipse RCP [ECLa] . 50
4.3 Used Tools (Red Rectangles) During the Implementation 51
4.4 Development FPGA Board GR-XC3S-2000 Block Diagram [Gaib] 51
4.5 LEON3 Design for the GR-XC3S-2000 Development Board [Gaib] 52
4.6 LEON3 Core Components [Gai01] . 53
4.7 Overview of the Memory Structure of SimpleRTJ [Com] 55
4.8 Schematic View of the Modules in the FIU Hardware Unit 56
4.9 Simple AHB Transfer [ARM] . 57
4.10 Internal State Machine of the Bus Controller 59
4.11 Flow Chart of the Internal Trigger Logic . 60
4.12 Schematic View of the Serial Implementation of the Hardware Design . . . 62
4.13 APB Configuration Register . 63
4.14 Schematic View of the Hardware Test Setup 64
4.15 Schematic View of the Modules in the FIU Software Module 67
4.16 Overview of the Fault Injection Unit (FIU) Integration into SimpleRTJ and

the Initialization Routine . 70

7

4.17 Overview of the FIU Command Dispatch Routine and the Execution Eval-
uation . 71

4.18 Command Structure of the FIU Communication Protocol 73
4.19 Dialog for the FIU Adapter Configuration 76
4.20 User Interface of the FIU Host . 78

5.1 FIU Setup within the xconfig Tool . 81
5.2 Example Workflow of a Fault Setup in the FIU Host 88

8

List of Tables

2.1 Communication Interface Methods [GKS+11] 21

4.1 APB Memory Ranges . 65
4.2 Communication Interface Methods . 72

5.1 APB Memory Ranges . 81
5.2 Overview of the Space Requirements on a Spartan-3 FPGA for the FIU Units 82
5.3 Space Requirements of Different Hardware Setups with the Overhead to the

Original Design . 82
5.4 Results of the Different Simulation Scenarios using ModelSim 85
5.5 Results of the Time Measurements for Different Fault Setups using Model-

Sim and Real Hardware . 85

9

Chapter 1

Introduction

Java Card is a technology used in a variety of security relevant applications. In the begin-
ning, the technology was mainly used in smart cards or integrated circuit cards (ICCs).
Today, the technology is also used in mobile phones, embedded in secure elements (SEs),
set top boxes and other security critical devices. The main advantage of Java Card based
applications is that they can be used in a variety of systems. When a system supports
or provides a Java Card Runtime Environment (JCRE), it can install and run Java Card
applications, or as they are called in a Java Card environment, applets.

The basic architecture of a Java Card environment is displayed in Figure 1.1. Java
Card systems provide the possibility to support multiple applications installed in one
environment. This makes it possible, especially in smart cards, to avoid carrying multiple
hardware devices. This allows to store, for example, a banking application on the same
card as an identification applet. There is a wide range of applications that is available on
Java Card platforms. Some use cases for the operation of Java Card smart card applets
are:

1. Passports with image and biometric data verification

2. Payment applications like VISA and MasterCard

3. Identification cards with personal information and verification

4. Access control to buildings, computers and others

Depending on the use case, more or less sensible data is stored in this file structure.
For example, in a banking application, that may be certificates to validate the authentic-
ity of the card. Not every person, especially harmful attackers, should get access to this
sensible data. There are different approaches to protect this data against different access
methods.
First of all, the applications themselves protect the data from unwanted access. Not every
attacker, who is in possession of a card reader should be capable to retrieve information
from the card. Therefore, the applications use protection mechanism to fulfill authenticity,
availability and confidentiality.
Another illegal mean to get access to the sensible data on the device is by fault attacks.
By using these faults, an attacker can change the behavior of how data is processed inside

10

CHAPTER 1. INTRODUCTION 11

Banking Applet eGov Applet Ticketing AppletApplets

JCRE
Framework Classes

Industry-Specific
Extensions

Installer

Smart Card Hardware and Natie System

Java Card Virtual Machine Native Implementations

System Classes

Applet
Management

Transaction
Management

I/O Network
Communication

Other
Services

Figure 1.1: Basic Java Card Environment

the card. Furthermore, he can change the control flow and, for example, skip security
checks. There are different kinds of faults that a possible attacker could try to get access
to the security critical data of the device. The types of faults possible on a Java Card
system and how they operate are described later in this work.

1.1 Motivation

Java Card systems can contain sensible information which, in most cases, should not be
accessed by anyone, especially not by potential attackers. To avoid this, different security
measures are developed to protect this data. Current research topics focus on hardware
and software security features, especially at the Institute of Technical Informatics at the
Technical University of Graz [ITI].
The main goal of new security features is to protect the data not only by software means,
but also design and create hardware security modules. Software security units sometimes
lack the possibilities of hardware units, especially when it comes to fault attacks. While
software security units can suffer the same drawbacks regarding fault attacks as the soft-
ware they are added to (e.g. instruction skipping), this is far more complex to be used
with hardware security units. Software units also face the disadvantage of adding an ad-
ditional overhead to the execution time. Hardware units, when designed properly, can
be executed in parallel to the software and require a smaller overhead than a software
equivalent. Additionally, they can get access to information that software units do not
have access to.
In a previous work [LBL+13], such hardware security units were implemented and tested in
a smart card prototype. This prototype implemented several security features as described
in [LBH+13]. The security features were especially designed to protect Java Card systems
against fault attacks and implemented by four protection units: An integrity protection
unit, a bound protection unit, a control flow and a type protection unit. The integrity

CHAPTER 1. INTRODUCTION 12

protection unit is used to detect faults injected on a bus between the processor and the
memory. The bound protection unit prevents memory access outside of defined memory
ranges. The control flow protection unit checks if the current fetched byte-codes are inside
the code area.
All processor systems require a main memory module to store interim results and data.
This is also true for Java Card systems. More complex systems could have a bus sys-
tem which connects several components to each other, for example the processor with a
memory controller. This memory controller could be responsible for the memory access
of the system. When a Java Card virtual machine (VM) accesses a certain memory area,
the access is routed through the bus. An attacker could try to introduce faults on this
bus system, to change the data which is read and written into the memory. Most attack
scenarios introduced in Java Card systems focus on fault injection into the local variable,
operand stack and byte-code area of the memory.
A problem that occurs when designing and implementing hardware units is the testabil-
ity. While there are a lot of tools to help test software units, starting from simulators to
debuggers for real hardware, it is hard to test hardware units. Especially when it comes
to fault protection units.
Faults are not part of the original system design and therefore need to be somehow simu-
lated in the design. To do this fault simulation, it is often required to get a deep knowledge
of the underlying system. Getting this knowledge is in most cases a very time consum-
ing task. Another option would be to test the system against real faults. The drawback
with this approach is that real faults are hard to introduce, require a lot of setup time
and expensive equipment. Especially when it comes to precise faults, a real setup is very
complex and hard to perform.
There are several existing approaches to simulate fault injections. The problem with these
approaches is that they attach themselves on the RTL level. These approaches are set up
by specifying a number of clock cycles from the start until the fault is injected. These
fault simulators are hard to use when it comes to security features which work on a higher
level. For example, the bound protection unit described in [LBL+13] checks if accessed
data is inside the range of reserved VM memory. To easily test this security feature, it
would require a fault setup where a fault condition could be provided, when the program
accesses a specific memory range. Meaning, when the program accesses memory location
A, located in memory range B, a fault should be introduced. However, this approach is
not possible with the existing fault simulation models.
Therefore, a new fault injection approach is required, which allows to specify advanced
fault conditions. This would allow the user of the fault simulation to specify fault trigger
conditions other than a specific point in time dependent on the cycles performed in the
system. This approach should focus on parameters of the executed program, in case of this
work, the memory ranges accessed by a VM. When one of the specified memory ranges is
accessed, a fault should be introduced into the system.

1.2 Main Goals of this Thesis

All the previously described requirements should be fulfilled in the finished design and
implementation of this work. Therefore, the result of this project should be an easy to

CHAPTER 1. INTRODUCTION 13

use fault injection framework. It should be possible, to use the designed and implemented
features in existing projects without huge implementation efforts. Additionally, different
design approaches should be evaluated. All of these approaches should be considered and
evaluated against different criteria. These criteria are defined beforehand. The configura-
tion of faults should be easily understandable and fast to use. The design should consider
a modular and reusable approach, so that existing modules can easily be reused, modified
and integrated into existing projects.
Additional hardware units, required by the design, have to be synthesizable on a field-
programmable gate array (FPGA) development board. As defined before, hardware fault
injection units should be designed and implemented in a modular way. Another goal for
the hardware fault injection unit is that it has to work with zero-delay. This means that
every computation, and the fault injection itself, have to be performed in one cycle. This
is required so that existing hardware designs are influenced as less as possible.
The finished fault injection design should provide several fault modes which are described
in Chapter 2. This includes random and precise faults, as well as a library of fault models.
Additionally, multi-bit faults have to be supported. Multiple bits have to be affected by
a single introduced fault.
The final design should at least consist of two components: An FPGA board, consisting of
the processor and other hardware components representing the embedded device, includ-
ing all fault injection relevant modules, and a host tool, to setup the fault configurations.
This host tool should parse Java files and allow the user to easily inject faults by choosing
the fault position in the source code. Then the user can specify in which memory area
this fault can be introduced. An overview of the project structure is given in Figure 1.2.

Host PC

FPGA

Processor

Fault Injection Unit

Memory

Memory Read/Write

Memory Read/Write

JVM
Fault

Injection
Unit

Fault
Configuration

Fault Injection HostVM Control Commands

Fault- and VM Status

Java
Class
File

Fault
Project

Available Components

New Components

Figure 1.2: Project Overview

CHAPTER 1. INTRODUCTION 14

1.3 Structure of this Work

In Chapter 2 the related work to this project is described. It contains information on
current research in the field of fault emulation and current appropriate fault models.
Additionally, the related work chapter gives an overview on state of the art fault attacks
against the Java Card system. Furthermore, it describes a modular fault injector which
is implemented at the RTL layer. Chapter 3 presents the design of the project and all
the separate modules. It shows how the hardware module, VM and host is designed and
how they work. The implementation is presented in Chapter 4. It describes some of the
specific implementation details of all the modules and an evaluation design on a LEON3
development board. The results of the work and the respective overheads for each module
are shown in Chapter 5. In Chapter 6 a conclusion of this thesis and possible future work
are presented.

Chapter 2

Related Work

The related work of this thesis mainly focuses on three parts: State of the art attacks on
Java Card, fault types and methods used in related work, and already implemented fault
tools. Attacks on Java Card are described to understand how attacks affect a Java Card
system. This is required, so the possible fault options in a fault injection system can be
described.
Fault methods and types are analyzed to evaluate which of these methods should be
implemented for a VM based fault injection system. These fault types are compared to
each other and brought into implementation.
Finally, already existing fault injection tools are examined. The evaluation of these tools
will help during the design phase of the new fault injection tool.

2.1 Attacks on Java Card

The FIU proposed in this thesis, focuses on the simulation of fault injections. Fault attacks
are basically done by attackers which are trying to get access to a system. This chapter
focuses on analyzing which faults on Java Card exist and on the general nature of fault
attacks.
One major security drawback of the Java Card architecture is that programs can be
stored in writable memory (e.g. Electrically Erasable Programmable Read-Only Memory
(EEPROM) or Flash). This writable memory is more vulnerable against fault attacks
than read-only memory (ROM). When a potential attacker has knowledge of the position
of the memory and knows how to attack it, he may be able to change data, stored in the
memory. There are several attacks which were successfully performed on Java Card which
resulted in a behavioral change of the program. Some of these attacks are [Ver06]:

1. Physical Attacks: Classified as an active side-channel attack. Uses tampering of
the underlying hardware. Possible attacks are micro probing on the system bus or
using optical methods to read the ROM or similar means.

2. Fault Attacks: Classified as an active side-channel. Injects physical faults into
the system to tamper the environment and therefore change the programs behavior.
Fault attacks can have a variety of causes, such as supply voltage variation in ranges
that are not supported by the hardware, temperature variation out of the operation

15

CHAPTER 2. RELATED WORK 16

scope, external radiation, clock manipulation or any other mean to change the oper-
ating conditions. To efficiently perform fault attacks, these attacks have to be setup
so that they can be performed multiple times with the same operating conditions.

3. Observation Attacks: Classified as a passive side-channel attack. These kind of
attacks observe different operating conditions which are then used to get information
on the program flow or the hardware. A possible test setup could measure the
different power consumptions of various input data provided to a system. Depending
on the power measurements, the attacker could trace the data back to program
behavior. Another channel that could be exploited, is the timing behavior of the
hardware.

4. Malicious Code: This attack method uses possible bugs or malfunctions of the
executing hardware. The attacker introduces malicious code into the system which
is then executed by the hardware. If the hard- or software is not working properly,
certain effects could occur during execution of the program that are not intended.
These kind of attacks are also used efficiently on Java Card systems where malicious
applets are installed and executed on a Java Card environment.

The attack methods described above are ordered by the degree of invasiveness: the
physical attack as the most invasive and the malicious code insertion with the least invasive
attack possibilities. In most attack scenarios, these attacks are combined to perform
even more powerful attacks and to achieve the desired goals. In the referenced papers
[Ver06], these attacks are also referred as

”
combined attacks“ which will be described

later. Combined attacks are also often used to attack Java Card systems.

2.1.1 Java Type Confusion Attack

Type confusion is an attack scenario for Java Card systems. Type confusion means that
an application which is executed in the VM, tries to store or read data with an illegal type
that is not valid. A Java Card applet may try to store an object reference as an integer.
When this scenario occurs, the application illegally gets the memory location where an
object is stored. In general, a VM should provide protection mechanism to protect the
application against type confusion attacks. Attack scenarios which use this type confu-
sion approach, are typically used in combination with malicious code injections and fault
attacks to get access to the system.
Java Card executes the installed applets in a sandboxed environment. This means that
every application got its own address space and the VM prohibits applications to access
memory ranges of other applications in the system. The sandboxed execution should also
prohibit the applications from accessing illegal memory areas which should not be accessed
by the applet.
Another problem that most Java Card environments face, is the static-only validation
of the applications. This static validation can either happen on-card or off-card. When
performed on-card, the application is validated at install time of the applet. The off-card
verification is performed in a secure and authorized environment outside the card. After
a successful off-card verification, the applet is signed with a secret key. This signature is
checked during the installation process to guarantee a good-natured applet. The problem

CHAPTER 2. RELATED WORK 17

with the on- or off-card approach is when an attacker changes the program during execu-
tion, this protection mechanisms do not work. A possible attack scenario which uses this
drawback could be the attacker somehow modifying the code, after the validation has been
performed. This would give him the opportunity to break the sandbox of the executed
applet. One attack that could be used to break this sandboxed environment, is a buffer
overflow attack. Buffer overflows are described in more details in [LBL+13], [Ver06] or
[BICL11].

2.1.2 Combined Attacks

Combined attacks use multiple attack approaches at once to get unintended access to the
system [BTG10]. As described above, one combination of a successful attack, is to use
physical attacks and malicious code. An example of this approach is given in [Ver06]. In
this example, the possible attacker has, in a first instance, written valid Java code which
was also verified by the Java byte-code verifier. This creates an installable file which can
then be installed in a Java Card environment. However, this program is written so that
a simple memory error leads to an error in the Java type system. This error is then
introduced by physical faults and allows the program to break out of the sandbox. When
the program is not sandboxed anymore, it can start to execute arbitrary code.
A concrete example using this approach is given in [Ver06]. The basic idea behind the
attack scenario is:

1. Create the valid program. This program has to be written so that simple changes in
the byte-code could lead to a type confusion attack. However, the original program
has to be valid and verified so it can be installed into the system.

2. Perform a power consumption analysis to see when the critical instructions are exe-
cuted.

3. Use an fault attack to skip the instructions. This skipping allows the program to
break the sandbox.

2.2 Fault Models and Types

To design and implement a fault injection unit for Java systems, existing fault injection
systems were analyzed. In addition to this task, the possibilities on how to inject faults
and what type of faults exist were studied. Figure 2.1 gives an overview of Very High
Speed Integrated Circuit Hardware Description Language (VHDL) based fault injection
techniques. A fault injection system can be categorized into two types: either they use
saboteurs to inject faults, or use mutants to introduce errors into the system. Another
approach, which cannot be implemented directly in hardware, but is used in several VHDL
fault injectors, are simulator commands.

CHAPTER 2. RELATED WORK 18

Figure 2.1: VHDL-Based Fault Injection Techniques [BGGG05]

2.2.1 Mutant

Mutants are the first form to inject faults into a system. Mutants are manipulated logic
elements or modified submodules. Every hardware design, normally consists of several
modules which interact with each other. Each of these submodules have tasks to perform
and several input and outputs. When the behavior of one of these submodules is changed,
and in response faulty values are generated, they are defined as mutants.
In normal operating conditions, mutants should not affect the system behavior. When
they are activated, they should behave like a faulty variant of the original. For mutants
to work, they have to be replaced by its mutant submodule. An example for this type of
fault system could be a memory controller which returns invalid data on specific memory
accesses. A mutant can be generated in three ways [BGB+08]:

1. Adding saboteurs to the structural model description

2. Modifying structural descriptions by replacing sub-components (e.g. exchange a
NOR gate by a NAND gate)

3. Modifying syntactical structures of behavioral descriptions

Normally, a model can contain a lot of possible mutations. Therefore, there has to be
a subset of representative faults considered at the RTL layer. Possible fault models that
can be used in accordance with mutants are:

1. Stuck-Then: If condition is changed to be always true.

2. Stuck-Else: If condition is changed to be always false.

3. Assignment Control: Changing or disturbing the assignment of a signal/value/-
variable.

4. Dead Process: Elimination of the sensibility list in a module/process.

5. Dead Clause: Elimination of a clause in a case.

6. Micro-Operation: Changing or disturbing an operator.

7. Local Stuck-Data: Changing or disturbing the value of a variable/constant/signal
in an expression.

8. Global Stuck-Data: Elimination of all modifications of a variable/signal in an
architecture.

CHAPTER 2. RELATED WORK 19

Some of these faults do not represent a physical fault. However, they can be used to
generate a somewhat erroneous behavior in a submodule.

Mutant Generation

Fault injection using mutants is more complex than other injection techniques such as
saboteurs. This is due to the spatial overhead required by the generation of mutants
[BGGG05], [GGBG03].
One approach for automatic, mutant-based fault injection is the generation of multiple
copies of the modules used in the architecture. Each of the copies had a modification (or
mutation) in the behavioral code [GGBG03]. The mutant modules were created using
a pre-defined configuration. This approach allowed the selection of the mutated model
which was created. All the generated mutants used a static approach, meaning that all
faults were permanent and started from the beginning of the execution of the program.
Another approach which was developed, had the goal to fix the problem with the static
nature of the mutants [GGBG03]. This dynamic approach uses guarded signals in addition
to the configuration mechanism. This makes it possible to stop the execution of the
original model, used in the architecture, and use a faulted model instead. The approach
used simulation commands to save the status of the simulation, save it to a configuration
file, and then use this setup to continue the simulation in another model. With this
dynamic approach, permanent, transient and intermittent faults can be used. However,
this implementation has some drawbacks [BGGG05]: The costs required to store the status
of the simulation were enormous. This simulation style was 100 times slower than using
other approaches due to the synchronization required between simulations [BGGG00].
A third approach towards mutant generation was proposed in [BGGG05]. This approach
gets rid of the synchronization issues by a brute force implementation. For this approach,
a mutated version of each model in the architecture is created. Therefore, a mutant is
generated for each possibility, defined in the configuration. The modifications mainly
include if and case statements, but other possibilities are described. The goal of this
approach is to allow the selection of the wrong and correct statements. For this to work,
a new signal is used which selects a particular mutated version. This new approach
reduces the temporal overhead, required by the simulation. Additionally, the overall size
requirements are shrunk, since only one architectural modified version is required which
contains all modifications.

Automatic Mutant Generation

From the mutant generation procedures described above, only the last one is feasible to
be used with automatic systems. To perform this, a potential tool only requires a VHDL
parser. This parser has to find the statements that should be modified, replace them with
new ones and add the required selection signals [BGGG05], [BGB+08].

2.2.2 Saboteur

Saboteurs are the other form of how faults can be injected into a system. They are small
circuit elements which change the system behavior. When not active, saboteurs should
not change the behavior of the system. When activated, they can disturb internal signals

CHAPTER 2. RELATED WORK 20

or directly inject faults into a submodule. In contrast to mutants, saboteurs do not require
the submodules to be changed. This has the advantage that the function of the submodule
does not need to be known. A saboteur is placed between two modules and changes the
signals depending on the trigger state of the saboteur.
In general, saboteurs can be differentiated between serial simple, serial complex and par-
allel insertion [GGBG03], [BGGG05], [BGB+08]. This depends on how the saboteurs are
inserted into the system. Another differentiation criterion for saboteurs is if they are ei-
ther uni- or bidirectional. Unidirectional saboteurs work only one-way, while bidirectional
saboteurs can work in read and write mode. A last classification that can be performed
for saboteurs are if they either work on a single signal (also referenced to as single-bit) or
multiple signals (also referenced to as multi-bit). The difference with single-bit saboteurs
is that each saboteur only affects one signal/bit at once. When multiple bits need to
be triggered, multiple saboteurs have to be added to the system. In contrast, multi-bit
saboteurs can change multiple signals/bits at one time. With this approach, bus attacks
can be simulated. With these types of classification, the following saboteurs can be placed
in a system [GGBG03]:

1. Serial Simple Saboteur - Placed between a source and a sink. Intercepts the
signal and modifies the value.

2. Serial Simple Bi-Directional Saboteur - Contains two input and output signal.
Also requires a read/write input that defines the fault direction.

3. Serial Complex Saboteur - Interrupts the connection of two outputs and their
inputs, modifying the received value.

4. Serial Complex Bi-Directional Saboteur - Consists of four input and output
signals and an additional signal to define the fault direction.

5. n-Bit Unidirectional Simple Saboteur - Used for unidirectional buses of n bits.
Consists of n serial simple saboteurs.

6. n-Bit Bi-Directional Simple Saboteur - Used for bi-directional buses of n bits.
Consists of n bi-directional simple saboteurs.

7. n-Bit Unidirectional Complex Saboteur - Used for unidirectional buses of n
bits. Consists of n/2 serial complex saboteurs.

8. n-Bit Bi-Directional Complex Saboteur - Used for bi-directional buses of n
bits. Consists of n/2 bi-directional complex saboteurs.

A serial saboteur is placed between the source and the sink of a module, whereas a
parallel saboteur is used as an additional source of a given signal. This behavior of serial
and parallel saboteurs is illustrated in Figure 2.2.
The internal architecture of saboteur units can either be behavioral or structural. Be-
havioral saboteur designs use a process with a sensitivity list and defined input/output
signals. A structural approach uses multiplexers for the internal logic [GGBG03].

Parallel saboteurs have two major drawbacks compared to serial saboteurs: First, they
are harder to implement. This is because on the one side, the resolution function of the

CHAPTER 2. RELATED WORK 21

Figure 2.2: Types of Saboteurs. (a) Serial. (b) Parallel [BGGG05]

Saboteur Mode Fault Type Description

Stuck-at-Zero Permanent Signal value of ’0’ until reload

Stuck-at-One Permanent Signal value of ’1’ until reload

Indetermination Permanent Undefined signal state until reload

Bridging fault Permanent No output propagation until reload

Negation of input Permanent Undefined signal state until reload

Bit flip Transient Output inverts input for one cycle

Artificial delay Transient Input to output propagation delay

Table 2.1: Communication Interface Methods [GKS+11]

signal has to be changed, and on the other side it is required to modify the data type of
the signal. Therefore, serial saboteurs are normally preferred.
Similar to the mutants, saboteurs can work in different fault modes. Each of the fault
modes have different effects on the signal the saboteur is attached to. An overview of
possible fault modes for saboteurs is given in Table 2.1. Figure 2.3 shows what effect
these fault modes have on the faulty signal. The first four modes in the table are equal to
direct circuit modifications. The bit-flip mode could be forced by short, intensive pulses.
Delayed faults can be used to simulate the behavior of operating voltage changes.

Automatic Saboteur Generation

Normally saboteurs have to be placed between a source and a sink in the system. There-
fore, system knowledge is required. However, there are approaches described which auto-
matically insert saboteurs into the system [BGGG05], [BGB+08], [GKS+11].
For the automatic placement to work, it is needed to parse the HDL code. This parsing
process analyzes the architecture of the model and generates a tree structure. This tree
structure is then used to place the saboteurs. For this to work, three steps are required:

1. Declaration of the signals, where required to activate the saboteurs. Additionally,
the fault mode needs to be selected.

2. Declaration of the components of the saboteurs.

CHAPTER 2. RELATED WORK 22

Figure 2.3: Possible Fault Models for Fault Injection Systems [GKS+11]

3. Insertion of the saboteurs between local and formal ports of the used components.
This may require new signals which are required to connect the saboteur to the local
ports and re-mapping of these signals.

2.2.3 Simulator Commands

A third approach towards fault injections in VHDL models are simulator commands. This
fault injection technique uses features provided by the underlying simulator to test faults
during simulation. An advantage of this approach is that the existing VHDL code does
not need to be altered. The simulator commands are used to change signals and values
during simulation time. However, this approach cannot be used in hardware and therefore
cannot be used in real hardware setups. Simulator commands allow to perform transient,
intermittent and permanent faults [BGGG05].
To generate a transient fault using this technique, the following pseudo-commands need
to be performed [GGBG03], [IR86]:

1. Simulate Until [injection instant]

2. Modify Signal [name] [faulty value]

3. Simulate For [fault duration]

4. Restore Signal [name]

5. Simulate For [observation time]

For permanent faults, the same steps as above are required, except that steps 3 and 4
have to be omitted.

2.3 VFIT - VHDL-Based Fault Injection Tool

VFIT stands for VHDL-based Fault Injection Tool and is a fault framework which places
saboteurs and mutants during the design phase. The placed saboteurs and mutants are

CHAPTER 2. RELATED WORK 23

then later used to inject faults into the system. The tool was developed by the Fault-
Tolerance System Research Group (GSTF) of the Technical University of Valencia.
The goal of the tool is to detect possible fault errors in the system as soon as possible.
Therefore, three categories for fault injection techniques are described: physical, software
implemented and simulation-based [BGGG05]. Simulation based fault injection uses com-
mands of the simulator to change the behavior of the simulation. This behavior change
can be the modification of values or timing of signals and variables. Simulator command
fault injection can be used to detect faults in a very early design state. Other techniques
which were used by VFIT alter the original VHDL code of the model. VFIT implements
all fault injection techniques which are illustrated in Figure 2.1 except the other techniques
branch. These techniques extend the VHDL language by adding new data types and sig-
nals. Another method uses modification of VHDL resolution functions. These new data
types and signals include the fault injection behavior. These techniques are not included
in VFIT, due to their huge complexity. They require the development of ad hoc compilers
and simulators as well as the introduction of control algorithms to manage the language
extensions [BGB+08].

2.3.1 Fault Injection Techniques

VFIT uses three basic techniques for fault simulation: saboteurs, mutants and simulator
commands. Since saboteurs and mutants were already described in Section 2.2, this sec-
tion will focus on the simulation command technique of VFIT. An overview of the design
of VFIT is given in Figure 2.4.
VFIT uses simulation commands, provided by the used simulator at different simulation
times. These commands are used to change the value or timing of signals and variables
in the model. This technique can be used to perform non-usual fault models, for exam-
ple delay faults. Additionally, simulation command based faults allow to inject transient,
permanent and intermittent faults. However, variables in VHDL cannot be changed per-
manent due to the nature of VHDL. This simulation technique is the simplest to implement
and does not need to change the hardware model. One drawback is that this fault injection
technique does not work in real environments.

2.3.2 Design

The main features that were defined for VFIT included:

• Model-Independent

• Build around ModelSim. ModelSim allows to control the simulation using Tcl com-
mands. These can be used to inject faults.

• Automatic fault injection using simulator commands. Additionally, saboteur and
mutant faults should be injected. However, this approach requires user interaction
for placing them.

• Permanent, transient and intermittent faults.

CHAPTER 2. RELATED WORK 24

• Different fault models including stuck-at (permanent), bit-flip (transient) and de-
layed and pulse (transient) fault models.

The fault injections for VFIT requires three stages and consists of five main elements.
The three stages are:

• Set-up: Specification of the parameters for the experiment. These parameters in-
clude model relevant parameters like workload file and workload duration. Param-
eters specific to the fault injection as injection technique, number of faults, target
duration and others. The last parameters to specify are used to define which analysis
to perform. This can either be error syndrome or the validation of a Fault-Tolerant-
System.

• Simulation: Here the fault simulation is performed. It consists of a golden run to
generate the reference values and some faulty runs which are compared to the golden
run.

• Analysis: At this stage all faulty runs are compared to the golden run. Depending
on the analysis type in the first stage, different measures are performed.

The main elements of the fault injection tool are:

• Tool Configuration: This module is used to set up the tool and simulator param-
eters

• Graphic Interface: A utility that helps the user to configure the injection cam-
paign. It allows the user to specify the fault points using a tree of the used model.

• Injection Manager: Uses the data, created by the configuration tool and the
graphic interface to perform the fault injections. First, a golden run is performed to
get reference parameters from the model. Then, the faulty runs are performed and
the generated data are traced.

• VHDL Simulator: Typically the used simulator. In the evaluation design proposed
in the paper, ModelSim was used.

• Result Analyzer: This tool compares the data created by the golden run with the
data created by the faulty traces searching for any mismatches.

Enhanced Fault Models

VFIT introduces new fault models for the saboteur implementation. Traditional fault
models for saboteurs were introduced at the beginning of this chapter. The newly intro-
duces fault models are:

• Unidirectional Serial Saboteur - Same structure as the Serial Simple Saboteur, but
allows new fault models to be injected.

• Bi-Directional Serial Saboteur - Similar to the Serial Simple Bi-Directional Saboteur,
but as before, allows new fault models. Additionally, the Read/Write control signal
is removed.

CHAPTER 2. RELATED WORK 25

Figure 2.4: VFIT Block Diagram [BGGG05]

• n-Bit Unidirectional Serial Saboteur - Replaces all unidirectional multi-bit models.

• n-Bit Bi-Directional Serial Saboteur - Replaces all bi-directional multi-bit models
and removes the Read/Write control signal.

These models were introduced to extend the previously defined models. The new
models can all be implemented using behavioral description. This simplifies the usage and
the code of a design. Additionally, the n-Bit versions of the saboteurs can be implemented
using generic parameters. Another advantage is that the overall number of saboteurs
required with these models can be reduced. The new fault models mentioned above that
can be used with these new saboteurs are pulse, short and bridging.

CHAPTER 2. RELATED WORK 26

2.4 MEFISTO-L: VHDL Based Fault Injection Tools

The first approach towards a VHDL based fault injector was described in the paper for
MEFISTO-L: A VHDL-Based Fault Injection Tool for the Experimental Assessment of
Fault Tolerance. The paper proposed an approach for testing Fault Tolerance Mechanism
(FTM). The main features of MEFISTO-L are the embedded fault code analyzer, the
observation and injection mechanism, their synchronization and their placement in the
target VHDL model [BPC98].
The main goal of this tool is to test the fault tolerance by introducing faults into a system in
an early design stage. Most systems are evaluated against their fault tolerance. The fault
tolerance is a measurement unit that shows how robust and how well the system reacts to
introduced faults. MEFISTO-L was the first step towards the problem of missing tools for
efficient fault tolerance coverage. The main goals that should be addressed by this work
were [BPC98]:

• Designing and developing means to determine the fault activity sets which are ap-
plied in a fault injection campaign.

• Perform efficient fault injection experiments. The goal is to create a minimal set of
input patterns that target all deficiencies in the FTM.

• Implement a tool to support this design process, MEFISTO-L.

2.4.1 Framework

The objective of simulated fault injections, is to evaluate the fault tolerance of a system as
soon as possible in the design stage. To assure this, the designed framework is integrated
into the system design activities. With this approach, the fault tolerance validation can
be done early in the development process. Figure 2.5 shows the framework proposed to
test the fault tolerance of a system included in the development process. For the test of
FTM, two main steps are required: Test pattern generation and test diagnosis.

2.4.2 Design

The main tool which is proposed in this work consists of three blocks. The structure of
these blocks can be seen in Figure 2.6. The three blocks are [BPC98]:

• Parsing Block - Extracts the data from the VHDL code required for the injection
campaign of the targeted model.

• Injection Block - Specification of the campaign. Used for the generation of the
mutant model.

• Result Extraction Block - Uses the traces of the simulation of the mutant model
to generate results.

After the campaign is set up, the experimental model is created out of it. The VHDL
design is enhanced with saboteur and probe components and a test hierarchy is built.
This hierarchy contains of a test bench at the top which controls the saboteurs. Then the

CHAPTER 2. RELATED WORK 27

Figure 2.5: Framework of Testing Fault Tolerance with MEFISTO-L [BPC98]

Figure 2.6: Structure of MEFISTO-L [BPC98]

CHAPTER 2. RELATED WORK 28

created VHDL code can be used in a simulator to simulate the experiment. When the
simulation is finished, the result extraction block evaluates the traces generated by the
simulated experiment.
The injection block is the main part of the model. It uses the data generated by the parsing
block to automatically generate the mutated model. There are six objectives which are
performed by the injection block [BPC98].

Description of the Source Model

Here the source model is analyzed and presented to the user, who can select the target
signals from the model hierarchy. Each level of this hierarchy can be described as Inputs,
Outputs and Bidirectionals or Described Signals.

Construction of the Target Signals

The user can select a list of target signals from the hierarchy of the source model. Each
of the selected signals is added to the list of targets for the injection.

Saboteur Placement

With this objective, the MEFISTO-L tool automatically generates the saboteur model.

Fault Model to Saboteur Assignment

When all target signals have been selected and the saboteurs have been placed, each
saboteur has to be assigned to a specific fault model. MEFISTO-L therefore provides a
library of saboteur units.

Probe Specification

Additionally, to the selected saboteurs which are placed in the system, probes are used to
specify observation points in the model. These observation points are used to collect data
which are required for the evaluation of the faults. One feature of the MEFISTO-L tool
is that the information collected by the probes can be used for the injection control and
therefore can be used to dynamically control the activation of the saboteurs.

Control Specification of the Saboteurs

At the top level module of the hierarchy, the control of the selected saboteurs is speci-
fied. This specification consists of logical expressions on predefined parameters. These
parameters can be [BPC98]:

1. Probe values placed anywhere in the model hierarchy.

2. Results of comparisons which use data from the probes as input.

3. A static clock probe, consisting of either the rising or falling edge.

These parameters allow the user of the system to active faults static or dynamic, where
each fault can either be permanent or transient.

CHAPTER 2. RELATED WORK 29

Definition of Predicates

During this last stage, observation conditions are specified which are used for the gen-
eration of the results for the fault injection campaign. These conditions are defined as
Boolean, using the status of the mutated model.

2.5 MFI - Modular Fault Injector

Similar to the MEFISTO-L fault injector, [GKS+11] describes another approach towards
a VHDL based fault injection model. This approach was developed at the Technical
University of Graz at the Institute of Technical Informatics. This fault injection approach
also focuses on the problems which arise with the increasing complexity of today’s hardware
models and their fault robustness. The difference of this approach towards previously
described designs is that this approach does not use single bit injections, but rather focuses
on faults on a wider range. The paper introduces a new fault injection strategy for test
pattern injection. As a second step, the generated fault structure is abstracted to a more
generic, higher level approach.

2.5.1 Introduction

The approach discussed in this paper targets the increasing complexity of circuits. An-
other problem that modern circuits face is that circuits get smaller and smaller and get
more and more sensitive to external influences like radiation and thermal and electrical
degradation. This can lead to faults, which can happen at any time of the program flow.
Also they can be transient or even permanent. This can lead to a change of the behavior
of the system and lead to security breaches. This can allow an attacker to get access to
parts of the system he is not intended to.
Therefore, recent research topics focused on simulation and emulation of faults in a system.
The target platform of these systems were often FPGAs, due to their flexibility. A fault
injection system which uses this approach, and is also discussed in this paper, is shown in
Figure 2.7. Different ways are proposed to perform fault injection. One approach uses the
reconfiguration features of the used FPGA. However, since this feature is not supported
on all platforms, this heavily limits the choices of the platform. Another way described is
to use saboteurs or mutants, as described in Section 2.2.
To support a wide range of possible fault setups, it is necessary to fulfill several design
goals. First of all, a standardized test interface is required. Secondly a wide selection
of fault models have to be provided. Several fault models were already described in the
sections before. In this project, two separate approaches toward introduced faults are
inspected. Faults that occur due to radiation or degradation can be simulated by single
random faults. However, since the main focus is on security relevant faults, these can
happen at multiple locations at once. Therefore, a multi-bit fault model is required.
For an easy setup, this paper proposes a controlling element which is executed on a per-
sonal computer. This element uses a simple communication protocol that can be used to
set up the fault system.

CHAPTER 2. RELATED WORK 30

Figure 2.7: Scheme of the Modular Fault Injection System [GKS+11]

The main goal of this paper and the modular fault injection approach were [GKS+11]:

• Fully modular design

• Multi-bit injection

• Online-testing support

2.5.2 Design

For the modular fault injector, several goals were defined for the design. One goal was
to support, in contrast to the MEFISTO-L [BPC98], the multi-bit fault injection. This
allows fault patterns to change several bits in one configured fault. Additionally, the
design supports multi-mode saboteurs to insert multiple different saboteurs in the sys-
tem. Another goal of the project was its standardized communication interface to allow
simple communication with the fault injection unit. This interface uses a General Pur-
pose Input/Output (GPIO) port. Other goals were scalability for automatic placement of
saboteurs and an internal storage to store fault configurations. The scalability is required,
since extensive fault injection campaigns often require a large amount of saboteur units.
Following a description of the components used in the MFI.

Fault Injection Controller

The fault injection controller is responsible for activating and setting the mode of the
configured saboteurs. It is the main part of the MFI and consists of two interfaces. One
of the interfaces is the previously mentioned GPIO interface. This interface is used to
set up the fault controller of the MFI by writing test patterns into the memory of the
controller. This memory is then used to control the activation and mode of the saboteur
units. The other interface is used to connect all saboteurs in the system to the controller.
Every saboteur in the unit has its own active signal in the design. An overview of the
schematic view of this design is given in Figure 2.8.
The GPIO interface can be used to create automated fault injection campaigns. Since this
interface is easy to use, fault campaigns can easily be set up. The proposed evaluation

CHAPTER 2. RELATED WORK 31

Figure 2.8: Schematic View of the Fault Controller of the MFI [GKS+11]

design of this paper uses a PowerPC which is integrated into the FPGA board to configure
the fault campaigns. The advantage of this approach is that the test engineer does not
need to know the fault system itself.
The main parts of the fault controller are the interface to the saboteur units, the GPIO
interface for the fault campaign setup, a memory controller which writes the fault setups
into the internal memory, the memory itself and the control logic which is responsible for
the activation of the saboteurs.

Saboteurs

The saboteurs used in this paper were designed as described in Section 2.2. To be more
precise, the saboteur units used were unidirectional, serial simple saboteurs. Therefore,
the saboteur only affects a single signal and works only in one direction. The available
fault models in such a design are shown in Table 2.1.

Fault Pattern Support

Fault patterns are used to map the saboteurs to their fault locations. In most cases, not
every fault pattern has to be tested in the fault campaign. The fault patterns have to be
defined beforehand and should cover most of the hardware. In the MFI, the fault patterns
are created by a random number generator. This approach is used for demonstration
purposes only, different to the fault pattern generation described in Section 2.4.

CHAPTER 2. RELATED WORK 32

Automatic Saboteurs

As described before, the MFI uses automatic saboteur placement to avoid the time consum-
ing manual placement. The placement works similar to the automatic placement described
in Section 2.3. To place the saboteurs in an existing design, the vMAGIC VHDL parser
library [vMA] was used. This allows to parse the code and automatically insert saboteur
units. These saboteurs are then automatically linked to the fault injection controller so
they can be connected to the test patterns.

Attack Scenarios

Additionally, a possible attack scenario was described in the paper. This setup was also
used as inspiration for a possible attack scenario in the Java fault injection unit. The steps
of the scenario are:

1. Run Golden Model - A golden model is executed. This is used to get the information
on the Device Under Test (DUT) and the expected behavior.

2. Store Information - The information, generated by the golden model is stored for
later comparison.

3. Reset DUT - Reset DUT to start with plane model.

4. Load Test Pattern - Test patterns for the current campaign are loaded into the
memory.

5. Run DUT to Attack - Start execution of the DUT. The execution is halted when a
saboteur unit has to be activated.

6. Activate Saboteurs - Depending on the fault patterns the corresponding saboteur
units are activated.

7. Run DUT to End - DUT is continued until the execution is finished.

8. Deactivate Saboteurs - All saboteurs are deactivated again.

9. Check Results - The results of the executed DUT are compared to the golden model.
If the results are not equal, a fault analysis will have to be performed.

When all test patterns were executed, the MFI stops. Otherwise, the next setup is
performed and starts again at step Reset DUT.

2.6 Similarities to the Java Card Fault Injection Unit

Before the design and implementation of the Java Card fault injection unit, the designs
and approaches described above were studied. Most of the tools explained beforehand
were used on VHDL models. The saboteurs, mutants and simulation commands were
applied on signals and values. The fault injection tool user defines signals and values in
the architecture, where faults should be introduced. Therefore, the VHDL architecture
had to be scanned and a syntax tree was created. This syntax tree is then used to specify

CHAPTER 2. RELATED WORK 33

the faults. The newly proposed VM fault injection tool of this work uses a different
approach. The fault injector is attached to a bus, where high-level fault conditions can
be specified. The problem with previous tools was that fault triggers were dependent on
other signals or simple counting schemes. With the new approach, more complex fault
triggers can be used.
The following techniques explained in the tools described above, were reused in the new
fault injection tool:

• Saboteurs - The basic approach to introduce faults into the system is equal to
the saboteurs described above. The fault injection unit described in this thesis is
attached between two bus components. This can be, for example, a processor and
a memory controller. However, the saboteur approach is only applicable on bus
systems.

• Fault Modes - Since the design uses saboteurs on a bus to introduce faults, the
same fault modes that were described above can be used. This includes stuck-at-zero,
stuck-at-one, indetermination, bridging, negation of input and bit flip.

• Client/Server Approach - For the setup of the fault campaign, a client/server
approach is used. A similar approach is described in the MFI. The injection unit
probably runs in an embedded device. It is insufficient to re-program this embedded
device every time a new fault pattern needs to be tested. Therefore, a server is
implemented which uses common communication ports to set up the client which
runs on the embedded device. This allows to perform complex fault campaigns on a
remote device without the need to re-program the device.

• Attack Setup - The attack setup is similar to the setup of the MFI. First, the
setup is performed on the server. Then the attack scenario is executed and at the
end the results are compared with reference data. A more detailed attack scenario
is provided in Chapter 5.

Some aspects of the design described above are very different. These differences are:

• Buses Only - All of the designs described in Chapter 2 allow to place saboteurs
on single or multiple signals. This permits a more flexible approach on the saboteur
placement. However, these other fault injection designs do not enable to use more
complex fault triggers which affect multiple signals. The approach described in
this thesis focuses on saboteurs placed on buses and triggers which use bus-specific
features to inject faults.

• Automatic Placement - MEFISTO-L and the MFI allowed automatic saboteur
placement. To setup a fault campaign, the architecture is scanned by a VHDL
parser. The user is then presented with the available signals and values where
saboteurs can be placed. With the approach described in this thesis, this is currently
not supported. The required hardware unit to inject faults is placed on buses and
not signals. Therefore, the architecture had to be scanned for bus connections.
Depending on the used architecture, the bus interfaces can be defined very differently.

CHAPTER 2. RELATED WORK 34

• Higher Layer Trigger - The approaches which place saboteurs and mutants in the
VHDL code mainly use triggers, depending on other signals. These trigger sequences
are very simple and are often not sufficient for more complex requirements. In this
paper a trigger is required which is based on memory range information dependent
on the actual state of the Java VM. When this memory range is accessed on the bus,
the fault unit should be triggered. To the best of our knowledge, this is the first
work, where such a complex trigger approach is used.

• Hardware-Software Co-Design - For the setup of the fault campaign, a hardware-
software co-design approach was implemented in this thesis. Previous designs only
allowed to setup fault-campaigns with static trigger data. During the fault cam-
paign, this data was only changed marginally. In the new approach, specific trigger
dependent data is dynamically assigned during the execution of a program. The fault
injection user specifies what he wants to test, but does not require any information
on where this data is placed in the memory.

Chapter 3

Design of the Fault Injection Unit

For the design of the FIU, several approaches were considered. Each of the designs were
valued against defined factors. These factors were namely:

1. Ease of implementation

2. Ease of integration

3. Usability

4. Re-usability and modularity

5. Possibilities of simulation

Every design was valued against these points. A short description of the factors and
how they were put into value is shown below.

Ease of Implementation

The design should be easy to implement and not overly complicated. It should be separated
into several sub-modules which can be used without each other.

Ease of Integration

The finished modules of the design should be easily integrated into an existing design.
All modules themselves should allow the possibility to be used as a standalone variant.
If a module should be integrated into an existing design (independent if it is a hardware,
software or co-design approach), there should not be major changes required on the existing
design.

Usability

After the integration, faults should be easily injected into the running system. The design
is supposed to be intuitively usable and ought require a minimum amount of studying to
be used.

35

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 36

Re-Usability and Modularity

As already described above, the FIU should be designed in a modular way. This improves
the re-usability of the separately implemented modules. A goal of the final design is that
every module can be used standalone and can be integrated into an existing design.

Possibilities of Simulation

The faults simulated by the final design of the FIU suppose to be as real as possible. The
user of the FIU should be provided with multiple possibilities of faults and the precision
of those faults. An optimal solution offers all fault types that were described in Chapter 2.
The simulated faults should differ from real faults as little as possible.

3.1 FIU Design Approaches

According to the factors that were described above, several approaches were designed and
evaluated. The four designs that were evaluated are two software only approaches, one
hardware software co-design approach and a hardware only approach.

3.1.1 Software Only FIU (Byte-Code Layer)

This software only approach introduced a new layer which is placed alongside the original
Java VM. Every time a Java byte-code is executed, the control flow of the program is
switched to the FIU. The FIU then checks if any faults need to be performed. If a fault
should be simulated, the memory that the byte-code accessed, is directly altered (either
before or after the byte-code execution).
If the injection unit is implemented this way, the memory would be altered after (or before)
the byte-code execution. However, this is not how real faults should behave. To simulate
a real fault, the fault should be introduced during the memory access. The memory access
should not be introduced before or after the byte-code execution.
Other advantages and disadvantages are listed below. A schematic view of the design is
provided in Figure 3.1.

Virtual
Machine

Fault
Injection

Unit

CPU Memory

Figure 3.1: Byte-Code Layer Design (SW Only)

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 37

Advantages

1. Software only approach

2. Easy to reuse

3. Easy implementation

4. Easy integration into existing software

Disadvantages

1. Faults are simulated before or after the
”
real“ memory access

2. Does not simulate fault on memory access

3. Software overhead (execution time)

4. Does not simulate a real fault

3.1.2 Software Only FIU (Memory Layer)

The second software only approach that was evaluated, introduced a new memory layer.
This memory layer separates the memory accesses, required by the VM from the real
memory accesses, performed by the processor. Every time a byte-code is executed and
tries to alter the memory, the memory access should be routed through the new layer.
This approach would introduce the fault during the byte-code execution, and not before
or after as the approach described before. Since every memory access is routed through
this memory layer, every time an access is performed, the FIU needs to evaluate if a fault
should be introduced or not. This would result in a huge increase of the execution time.
Another problem with this approach would be the clear separation between the memory
layer and the VM. This approach would be feasible only if the VM or other software is
build upon this approach. Otherwise, there would be a big implementation effort (search
and replace all memory accesses in the software).
Other advantages and disadvantages are listed below. A schematic view of the design is
provided in Figure 3.2.

Virtual
Machine

Fault
Injection

Unit

CPU Memory

Memory Access Layer

Figure 3.2: Memory Layer (SW Only)

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 38

Advantages

1. Software only approach

2. Easy to reuse

3. Memory altered during byte-code execution

Disadvantages

1. Fault is only simulated on memory access, not on the bus

2. Virtual machine or other software has to be based on this approach

3. Memory access through new memory layer, hard to separate

4. Software overhead (execution time)

5. Huge effort to integrate into existing software

3.1.3 Hardware-Software Co-designed FIU

The hardware-software co-design approach works, as the first software-only approach,
alongside the existing VM. Additionally, a new hardware module is introduced. This
hardware module is responsible for the evaluation of the fault conditions and the fault
injection itself. The hardware module should be designed in a way, so that it can be reused
in other designs. This can be achieved by enabling a bus interface (for example Advanced
Microcontroller Bus Architecture (AMBA)) or other common interface definitions on the
hardware unit. With this approach, the hardware unit can be used in every design, where
a suitable bus interface is implemented.
The software part is used as a communication and configuration interface. Additionally,
it is responsible at configurating the hardware unit with the desired fault conditions. The
advantage of this approach is that the configuration can easily be performed by a server
which is connected to the device. Especially when the used hardware already provides
software drivers for the used communication port, this approach is a good choice. Another
advantage is that every module can be reused in other designs. This makes it easy to reuse
the FIU and exchange the communication interface.
Other advantages and disadvantages are listed below. A schematic view of the design is
provided in Figure 3.3.

Virtual
Machine

Fault
Injection

Unit

CPU Memory
HW Fault
Injection

Unit

Figure 3.3: Hardware-Software Co-Design

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 39

Advantages

1. Small, simple hardware unit for the fault injection

2. Hardware unit can be designed to be easily ported

3. Small software implementation for the communication and setup of the hardware
unit

4. Easy integration into existing software

Disadvantages

1. Design and implementation of both hardware and software unit

2. Requires access and changes in the hardware design

3.1.4 Hardware Only FIU

The hardware only approach is similar to the hardware-software co-design approach. The
difference is that the possible communication link needs to be established in hardware. A
possible predefined fault configuration needs to be stored directly in hardware. The disad-
vantage to this design is that the communication link may vary from hardware to hardware
which makes it hard to port and reuse. Every time a hardware change is performed, the
communication link needs to be re-evaluated. Other hardware dependent features need
also be ported to the new hardware.
Other advantages and disadvantages are listed below. A schematic view of the design is
provided in Figure 3.4.

Virtual Machine

CPU Memory
HW Fault
Injection

Unit

Figure 3.4: Hardware Only

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 40

Advantages

1. No software implementation effort

2. No overhead in software

3. Every software can be used (no alteration)

Disadvantages

1. Complex hardware unit

(a) Communication

(b) Fault injection

(c) Configuration

2. Hard to assure re-usability

(a) Different test environments may require different communication channels

(b) Different processor may have different memory access approaches

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 41

3.1.5 Final Design

The first software solution is far away from simulating a real fault. The second software so-
lution would have required a huge implementation effort. A hardware only solution would
have the downside of the porting possibilities. The best overall solution was chosen as the
hardware-software co-design approach. The reason was the simplicity and re-usability of
the co-design solution.
The co-design solution allows to simulate faults which are very similar to real faults (in-
jection during memory access on the bus). Due to a clean separation of the implemented
modules, a high re-usability can be provided. An approach to the final design is displayed
in Figure 3.6.
As show in Figure 3.6, the proposed design is split into a client and a server part. The
client part consists of the hardware and software module, responsible for the fault injec-
tion, while the server part is responsible for the configuration. Basically, the FIU user
utilizes the server to specify the fault configuration by defining at which point during the
Java applet execution he wants to introduce the faults. The software part of the client
implements a basic communication protocol which is used to transmit and receive the
information between the server and the client.
Apart from the re-usability of the design, another goal was set for the design. The hard-
ware unit has to work with zero-delay, meaning that every computation and the fault
injection itself has to be performed in one cycle. This is needed, so the FIU does not
influence existing hardware logic and can be used in a wide range of hardware design.
The drawback of this approach is the larger hardware requirement. To achieve this goal,
all hardware faults that can occur during execution are performed in serial, while all
computations for these faults run in parallel and are illustrated in Figure 3.5.

Figure 3.5: Schematic View of the Serial Injection on the Bus and Parallel Computation

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 42

M
e

m
o

ry
B

u
s

V
M

C
P

U
Fa

u
lt

 In
je

ct
io

n

H
a

rd
w

a
re

 U
n

it

So
ft

w
ar

e
H

ar
d

w
ar

e

B
u

s

Fa
ul

t
In

je
ct

io
n

So
ft

w
ar

e
U

n
it

B
u

s

Fa
u

lt
 In

je
ct

io
n

C

lie
n

t

R
em

o
te

 H
a

rd
w

a
re

Lo
ca

l C
lie

n
t

C
o

m
m

 P
o

rt

F
ig

u
re

3.
6:

S
ch

em
at

ic
V

ie
w

of
th

e
C

om
p

le
te

D
es

ig
n

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 43

3.2 Fault Injection Hardware Unit

The hardware unit is the main part of the FIU. It is responsible for the fault injection as
well as the storing of fault configurations. The fault configurations are stored in hardware
so that the faults can be introduced without any delay.
As displayed in Figure 3.6, the hardware unit is placed into the bus between the processor
and the memory unit. As described in Chapter 2, this is a saboteur behavior. The defined
bus interface has the advantage that the FIU can easily be reused for another DUT.
Two main configurations are provided by the hardware unit: memory area configurations,
which define the memory range that the FIU observes, and fault configurations, which
define what and when a fault happens. The number of memory configurations is easily
configurable in the hardware model so that it can be adapted to the required hardware
resources. A more detail view on the design of the configuration registers is given below.
Beside the configuration registers, the hardware unit consist of a bus controller unit, a
fault trigger unit and a fault injection unit. Every module is described in more details in
the sections below.

Bus Controller Unit

The bus controller in the hardware unit is responsible for converting the signals provided
from the bus interface to signals that can be used by the fault trigger and the configuration
registers. The bus controller needs to handle all bus relevant features as, for example, burst
modes, wait cycles, differentiate between read and write cycles and others.
Following data needs to be provided by the bus controller:

• Read/Write signal

– According to the bus specification, the bus controller needs to check if a read
or write is performed on the bus.

• Number of bytes read

– Some buses may allow multiple byte reads and writes (e.g. 32-bit bus). Since
the FIU works on byte basis, the controller has to provide the system with the
number of bytes read or written on the bus.

• Address

– Not every bus system has a clear addressing scheme. The bus controller is
responsible for providing a clear address signal to the system.

Configuration Registers

Since the FIU hardware unit needs to differentiate between different memory areas and
configurations, two types of registers which are accessible to the bus are provided. One is
used to store the memory range that the FIU trigger observes, and the other stores the
actual fault configuration.
The number of memory areas and configurations can be configured in the hardware model.
This allows to scale the FIU to the hardware limitations. Due to the nature of the

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 44

design of the FIU (zero-delay fault injection), for each m memory areas, m ∗ n fault
configurations are required. Each memory area works separately and therefore requires
its own configurations. This can result in large space requirements on the FIU part.
The memory area configuration is very simple and only stores two a-byte values, where a
is the configured address width. These two values represent the lower and upper memory
range of a memory area.
The fault configuration register is more complex. It stores the required access count when
the trigger should be activated, the fault mode as defined in Chapter 2, a mask to select
which bits of a byte should be effected by the fault and a status bit which defines if the
configuration was already triggered. This is required so that every fault is only triggered
once. For a more detailed description on the functionality of the configuration registers,
see Chapter 4.

Fault Trigger Unit

The fault trigger unit validates if the fault conditions are met. The fault trigger is provided
with the necessary signals from the bus controller and counts the number of accesses on
the bus. Each memory area and every fault configuration is provided with its own fault
trigger. Therefore, additionally to the count and address signals from the bus controller,
the fault trigger requires the memory area and fault configuration stored in the registers.
Following data is provided by the fault trigger:

• Trigger signal

• Fault position on the bus

– As already mentioned at the bus controller, the FIU works on byte basis. When
the bus is wider than a byte, the fault trigger is responsible for providing
information which byte on the bus needs to be altered by the injected fault.

Saboteur Unit

At the core of the FIU lies the saboteur unit. The saboteur unit uses the signals from the
fault trigger and applies the faults on the bus. As with the fault triggers, each memory
area and each configuration has its own saboteur unit. This is required to provide a zero-
delay fault injection. The saboteur unit was implemented according to the fault models
as described in Chapter 2. The following fault models are implemented in the saboteur
unit:

• Stuck at one

• Stuck at zero

• In-determination

• Negate input

• Bridging

• Bit flip

• Override

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 45

3.3 FIU Software Module

The hardware module works alongside a software module. This software module is re-
sponsible for the configuration of the hardware module. The software module can be used
as a standalone variant or in cooperation with a server/client architecture.
Like the hardware unit, the software module was designed in a modular way. As before,
the goal was to make all the parts as easy to exchange and reuse as possible. There-
fore, different modules were defined. These software modules are the FIU controller, a
communication module and the data provider.

FIU Controller

The FIU controller contains the logic for configuring the hardware unit. The main software
(e.g. VM) needs to give control to the FIU controller before a byte-code is executed. The
FIU controller then evaluates if a fault should be introduced. Additionally, the FIU is
responsible for the data collection, required for the execution and the communication
sequence handling.

Communication Module

For the communication with the environment, which can either be a server or a standalone
program, the software part of the FIU provides a communication module. This module
defines a communication protocol which can then be used to communicate with the core.
The protocol is very simple and contains partially a header and the data. The header
only contains the executed command and its length. The communication module also
defines a defined interface which needs to be implemented for communication purposes.
This defined interface allows to exchange the communication easily.

Data Provider

The third module is the data provider. The FIU controller needs certain information
from the VM. This information is provided from the data provider. If the software is
exchanged with a different one, the data provider needs to be changed to suite the new
one. For example, to use different Java VM in accordance with the FIU controller, the
FIU controller could request the current program counter, memory ranges of the operand
stack and local variables and other information, required for the execution.

3.4 FIU PC Host

Since the FIU client may run on a different device or a device with no user input support,
a simple host was designed to configure the client remotely. Again, the host was designed
in order to be used in a variety of environments. The communication link is separated
from the rest of the host so it can be exchanged very easily.
The host provides all features to configure the client. The host user has to set up fault
configurations, create fault injection points and has to specify which data needs to be
inspected. This information can then be used to set up the FIU client. The setup and
evaluation of the fault injection happens in four stages:

CHAPTER 3. DESIGN OF THE FAULT INJECTION UNIT 46

1. Setup fault configurations

• The FIU client needs to be configured before run-time. All fault relevant con-
figurations (access count, fault type and mask) need to be configured before
the execution of the program.

2. Setup fault injection points

• Faults should be injected as precise as possible. The host provides possibilities
to setup the fault point at byte-code layer. This means that the FIU user can
specify the exact byte-code where the fault should occur.

3. Run Java applet under test

• The host provides the possibility to run and control the flow of the Java applet
under test. The FIU user should have the possibility to run and stop the Java
applet under test at any given point. This ensures that the user can always
evaluate the current state of the Java applet under test and the injected faults.

4. Evaluate the impact of the injected faults

• To evaluate the fault injection, the host allows the user to inspect memory
data on the client. Since the FIU is mainly focused on working in cooperation
with a Java Virtual Machine (JVM), the client should provide access to local
variables, fields and static members. This allows the user to easily evaluate
injected faults.

A diagram of the setup work-flow is provided in Figure 5.2.

Chapter 4

Implementation of the Fault
Injection Unit

The design described in the previous chapter was implemented on a predefined environ-
ment. The design was permuted on a FPGA development board with a LEON3 processor.
The main parts of the implementation are:

• LEON3 IP library from Aeroflex Gaisler [Gaib]

• SimpleRTJ as a Virtual Machine [Com]

• Xilinx GR-XC3S-2000 development board [Gaid]

• Eclipse 4 RCP as a development tool for the host [ECLa]

An overview of the system and the integration of the FIU is shown in Figure 4.1.

47

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 48

SD
R

A
M

(O

n
-B

o
ar

d
)

A
M

B
A

 A
H

B
 B

u
s

JV
M

(s

im
pl

eR
TJ

)

C
PU

(L
eo

n
 3

 –
 S

in
gl

e
C

or
e)

H
ar

d
w

ar
e

Fa
u

lt

In
je

ct
io

n
U

ni
t

So
ft

w
a

re

H
a

rd
w

ar
e

A
M

B
A

 A
H

B
 B

u
s

So
ft

w
ar

e
Fa

ul
t

In
je

ct
io

n
U

n
it

A
M

B
A

 A
PB

 B
u

s

Fa
u

lt
 I

n
je

ct
io

n
 C

lie
n

t
(J

av
a)

FP
G

A
 B

o
ar

d
PC

 C
lie

n
t

U
A

R
T

F
ig

u
re

4.
1:

S
ch

em
at

ic
V

ie
w

of
th

e
Im

p
le

m
en

ta
ti

on

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 49

4.1 Used Tools

The technical implementation is done using the LEON3 IP library from Aeroflex Gaisler
[Gaia] which is available under the GPL license. The advantage of this IP library is that
it is highly customizable, open-source, fully-generic and synthesizable for an FPGA or a
silicon implementation. The hardware FIU was implemented in the hardware description
language VHDL. The FIU was integrated into an existing LEON3 design, provided by
Aeroflex Gaisler for the FPGA development board. The FIU was attached to the system
using the system AMBA bus. For configuration purposes, the Advanced Peripheral Bus
(APB) was used. The integration as a saboteur was placed between the LEON3 and the
memory controller using an Advance Hi-Performance Bus (AHB) interface. To test the
hardware design, the AMBA test framework from the IP library was used. This assured
the basic functionality of the implemented bus controller. The simulation was performed
once using Modelsim SE 6.5b [Gra], and once using the Xilinx alternative ISIM [Xil] which
was delivered with the development environment. To test the design on the FPGA board,
the design was synthesized using Xilinx ISE 14.2 [Xil]. After that, the generated bitfile
was used in combination with Xilinx Impact to download the design onto the FPGA.
The FPGA development board used for the evaluation, is the GR-XC3S-2000 manufac-
tured by Pender Electronic Designs [Gaic]. Most of the I/O interfaces were disabled during
testing to keep the hardware overhead to a minimum. Components that were used on the
board included the Xilinx Spartan-3-2000 FPGA, the Joint Test Action Group (JTAG)
port for programming purposes and the two serial RS232 interfaces for communication
purposes. One of the serial interface was used for GRSIM to debug programs on the
LEON3. The other serial interface was used to communicate directly with the FIU. An
overview of the development board is shown in Figure 4.4.
The FIU software module was implemented in bare C using the C99 standard. This stan-
dard guarantees a wide range of compatibility, since it is very basic and most compilers
support this standard. To test the cross-compatibility to different processors, the software
module was compiled with different compilers:

• GNU GCC compiler for x86 instruction set compatible processors [GNU]

• Cygwin GCC compiler for x86 instruction set compatible processors [GNU]

• Scalable Processor ARChitecture (SPARC) Bare C Compiler (BCC) compiler for
SPARC instruction set compatible processors provided by Aeroflex Gaisler [Gaib]

• Small Device C Compiler (SDCC) for Intel MCS51 based microprocessors [SDC]

For evaluation purposes, the FIU client was embedded into the Simple Real Time Java
(SimpleRTJ) VM [Com]. This VM is a specially optimized for running in embedded en-
vironments. It can run standalone on any given processor that provides a C compiler
without any needs of an OS. The SimpleRTJ VM supports basic features like thread sup-
port, a garbage collector and a class linker. The VM does not support dynamic linking
(as in normal Java), but rather uses a class linker which creates a binary with all linked
classes. Therefore, it uses static linking much like Java Card.
The client, including the integration into the SimpleRTJ VM, can be build using Make-
files. The Makefiles are designed so that the FIU client can easily be removed from the

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 50

final design and also exchange different modules (e.g. for communication).
The FIU host was written in Java using Java Platform Standard Edition (J2SE). Using
the JVM, the host can be installed on any Personal Computer (PC) where the JVM is
ported. The host uses the Eclipse Rich Client Platform (RCP) 4 [ECLa]. The RCP pro-
vides many features which allow implementing nearly any client application. It allows a
model-based user interface and a service-oriented programming model. It is also easy to
extend existing programs using plug-ins and features. An overview of the features and the
architecture of the Eclipse RCP is illustrated in Figure 4.2. The core of an Eclipse RCP
4 project is the application model. The application model describes the structure of the
application. It defines all visual and non-visual components of the application. The visual
parts are windows, parts, menus and so on. Non-visual parts are key bindings, commands
and handlers. The model describes the structure of the application, but not the content of
the individual user interface components. The content is provided by the source code. An-
other non-visual part are model addons. They are globally registered components that can
enhance the application with additional functionality. Addons are flexible and can be ex-
change to alter the behavior of the application without the modification of code. Another
library used for the server implementation was RXTX [RXT]. This library provides Java
applications the access to required serial communication interfaces. This library was used
to establish the connection between the server and client over a serial communication port.

Figure 4.2: Architecture of the Eclipse RCP [ECLa]

Apache Maven [Apa] was used for building the FIU host. Maven is a build automation
tool used for Java projects. The advantage of maven over other build tools is its depen-
dency management and build procedure, which makes it easy to build modular projects.
This is especially true when the project should be build on different machines. Maven
requires mainly the definition of the used modules (structure) to build the project, which
requires less setup time than an Ant scripts. For the Eclipse 4 RCP host build, the maven
plugin Tycho was used [Eclb]. An overview of the software and hardware used during the
implementation of the FIU architecture is given in Figure 4.3.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 51

Spartan 3
FPGA

GRMON

Impact

Netlist

Xilinx ISE

Binary File

Leon 3 System
+ FIU (VHDL)

Synthese LEON3
System + FIU

BCC Linker

VM Core BCC
Compiler

FIU Client

FIU Comm

FIU HW
Driver

FIU Provider

BCC
Compiler

BCC
Compiler

BCC
Compiler

BCC
Compiler

Creation of the FIU Client

Serial
Interface

Host PC

FIU Hardware Unit
(VHDL)

FIU Hardware
Unit Creation

javac Maven FIU Host

FIU Comm

FIU Setup + Configuration

Figure 4.3: Used Tools (Red Rectangles) During the Implementation

Figure 4.4: Development FPGA Board GR-XC3S-2000 Block Diagram [Gaib]

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 52

4.2 GRLIB LEON3 IP Library

For the hardware design, the GRLIB IP Library from Areaflex Gaisler [Gaib] was used.
The IP Library is available under the GPL license. The library provides several IPs which
can be used to generate a hardware design. The IPs provide a AMBA interface which
make them easy to use. All of the cores are synthezisable and therefore usable on our tar-
get device. The library also comes with pre-made designs for several development boards.
One design is available for the GR-XC3S-2000 board which was used for evaluation.
In the predefined design, the LEON3 processor core is used. The processor is highly
customizable through VHDL configuration files and a provided configuration tool. The
processor uses the AMBA AHB bus and the AMBA APB bus. The AHB bus is used for
high performance devices, such as the memory controller, the Universal Serial Bus (USB)
controller and the Ethernet controller. The APB bus is mainly used for configuration pur-
poses, but also for low-performance devices such as the serial controller. All components
connected to the LEON3 processor can be accessed using memory mapping. Therefore,
Aeroflex Gaisler uses an own bus detection routine which will not be handled here but can
be found in the GRLIB IP Library documentation.
The provided design was modified for the needs of the project. Several modules were
disabled which were not used (e.g. ethernet and USB controller). For debug purposes
the JTAG interface and the Debug Support Unit (DSU) were used. An overview of the
design, that was used for evaluation, is shown in Figure 4.5. The DSU supports register
modifications, break-point setups and memory reads and writes.

LEON3
Single-Core
Processor

Ethernet
MAC

Serial DBG
Link

JTAG Dbg
Link

SpaceWir
e Links

Mutli-core
CAN-2.0

AHB
Controller

Memory
Controller

AHB/APB
Bridge

VGA PS/2 UART Timers IrqCtrl
I/O
Port

PROM I/O SDRAM

8/32-bits
memory bus

AMBA APB Bus

AMBA AHB Bus

Figure 4.5: LEON3 Design for the GR-XC3S-2000 Development Board [Gaib]

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 53

Figure 4.6: LEON3 Core Components [Gai01]

4.2.1 LEON3 Processor

The LEON3 processor is a SPARC v8 instruction set compatible Reduced Instruction
Set Computer (RISC) processor. SPARC is an instruction set mainly used in Oracle/Sun
products. The processor is a 32-bit architecture using a Harvard architecture with separate
instruction and data caches. An overview of the LEON3 core components is given in
Figure 4.6. Another feature of the LEON3 is the integer unit with a 7-stage pipeline
which allows faster execution. The 7 stages of the pipeline are [Gai01]:

• Fetch - The next instruction is fetched. This can happen either from the cache or
the memory.

• Decode - Instruction is decoded and addresses are generated.

• Register access - Operands are read from the register file or from internal data
bypasses.

• Execute - Instruction is executed.

• Memory - Data cache is read or written.

• Exception - Traps and interrupts are resolved.

• Write-back - The result is written back to the register file.

For the FIU to work properly, the data cache was disabled. The hardware unit is placed
on the bus between the processor and the memory controller. When the cache is enabled,
the unit would not receive all memory accesses. This would result in an inconsistent
behavior of the FIU.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 54

4.3 SimpleRTJ

SimpleRTJ [Com] is a small Java VM implementation especially designed for embedded
environments. This VM is highly customizable and most of the features can be enabled or
disabled through configuration files. It was used for the evaluation implementation where
the FIU software unit was integrated. SimpleRTJ implements an old version of the Java
byte-code standard. It supports implementations on Java source level 1.1 and native code
execution.
The VM can be compiled for most 8/16/32 bit embedded systems, as long as there is a C
compiler available. The advantage of this VM is that is does not require any underlying
OS. Everything, including memory management, is performed by the VM. Other features
of this VM are:

• Thread Support - Implements time sliced pre-emptive multi-threading.

• Garbage Collection - Automatically heap clean-up of objects that are no longer
needed.

• Memory Allocation - A simple memory management unit is implemented.

• Heap Management - Free spaces on the heap are managed.

• Class Linker - The executed binary is linked before execution. This allows faster
execution since dynamic linking is not required.

4.3.1 Structure of SimpleRTJ

Memory

SimpleRTJ has built in support for managing the heap memory required by the appli-
cation. The VM needs a provided memory location for the heap memory during the
start-up phase. This allows dynamic heap sizes which can be easily changed for different
environments. This allows the VM to be run without any OS. An overview of the memory
structure is shown in Figure 4.7.

When the VM is initialized, the heap memory is split into several sections which can
be seen in Figure 4.7. Each one of these sections contain various data elements for the
Java application. The Java application heap section (used for storing arrays and object
instances) is allocated from the heap area that lays between the object references and the
method frames sections [Com].
During the execution of the Java application, the heap section grows upwards when arrays
or objects are created. SimpleRTJ creates all class instances with the same size. This size
is equal to the largest class instance in the current application. This makes the memory
management easier and faster. When an array is created, the memory manager allocates
as much memory as necessary for storing all array elements.
SimpleRTJ supports enabling and disabling the garbage collector. When the garbage
collector is enabled and no free more memory is available, then the garbage collector is
invoked and frees all objects that are no longer referenced. Additionally, the garbage
collector may perform heap compaction if the available memory falls under a certain level.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 55

Class Locks

Software Timers

Stacktrace Buffer

Java Application Static Fields

Constant String Cache

Threads Table

Object References Table

Method Frame Stack

Heap Start

Heap End

Figure 4.7: Overview of the Memory Structure of SimpleRTJ [Com]

Method Frame Structure

Every time a method is called in the Java application, a method frame is created. This
frame stores all method relevant data, such as the stack pointer, local variables and the
program counter of the current method. The method frame section grows dynamically
downward as new methods are called during the execution process. To ease the memory
management and the garbage collection process, every frame is allocated the size of the
largest frame in the program. This means that the space requirement of the largest possible
frame structure (in the case of SimpleRTJ, this is the frame with the most local variables)
is used for every frame. A method frame with three local variables requires the same
amount of memory as a method frame with only one local variable.

4.4 FIU Hardware Unit

The FIU hardware unit is located in the lowest layer of the design. It is implemented
in a hardware description language, namely VHDL. The unit is built from several sub-
modules, which all themselves can run separately. This ensures that the design can easily
be adapted for other bus systems. The design used for evaluation implements an AMBA
AHB bus as interface between the processor and the memory controller. Therefore, the
implemented controller was implemented using the AHB specification. For configuration
purposes the APB bus was used. A schematic view of the hardware modules is illustrated

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 56

AHB Bus
Controller

Read
Trigger

Read
Trigger

Read
Trigger

...

Write
Trigger

Write
Trigger

Write
Trigger

..
.

M*N

M … Number of memory areas
N … Number of configurations

M*N

Saboteur

Saboteur

Saboteur

Saboteur

Saboteur

Saboteur

...
..

.

Fault
Configuration

Fault
Configuration

Fault
Configuration

Fault
Configuration

Fault
Configuration

Fault
Configuration

Memory Area
Configuration

Memory Area
Configuration

...

Memory Area
Configuration

Memory Area
Configuration

..
.

M

M

Figure 4.8: Schematic View of the Modules in the FIU Hardware Unit

in Figure 4.8.

4.4.1 Memory Area Register

One type of registers are the memory area registers. They are implemented in a standalone
module so that they can be reused in the assembly for another bus interface. The register
can be configured to be synchronous or asynchronous by a configuration flag. The memory
area register stores the upper and lower bound of the memory area, watched by the fault
trigger. The width of the stored addresses can be configured and were chosen 32-bit in the
evaluation project (since the LEON3 is a 32-bit processor with 32-bit addresses). Each
direction, read and write, got their own configuration registers.

4.4.2 Configuration Register

Another type of registers are the configuration registers. They are implemented in a
standalone module so they can be reused in the assembly for another bus interface. The
register can be configured to be synchronous or asynchronous by a configuration flag. It
is used to store the main information about when and what fault should be introduced
into the system. This includes the access count for the trigger, the fault mode and mask
for the saboteur unit and the flag if this specific configuration has already been triggered.
Each memory area has its own configurations so that every memory area can be handled
independently.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 57

4.4.3 AHB Bus Controller Unit

The bus controller is responsible for counting the number of memory accesses on the bus.
Therefore, the controller has to implement all bus relevant features. Additionally, to ac-
complish the zero-delay goal, these evaluations have to be performed in a single cycle so
that the bus communication is not altered. This also enhances the portability into other
bus systems since the original system is not slowed down.
The bus controller was implemented for the AHB bus, where simple bus transfer consists
of an address and a data phase. In the most simple scenario, each of these cycles requires
one clock cycle. This simple transfer is displayed in Figure 4.9. After an address was put
on the bus, the data is either read or written in the following cycle. The master and client
can specify if they are ready over the HREADY signal. When the read or write requires
more cycles to be performed, the HREADY signal remains low.

Figure 4.9: Simple AHB Transfer [ARM]

The AHB bus is a high-performance, multi-master bus, intended for devices which
require high transfer rates. To accomplish this, the bus specifications describe several
features which also need to be implemented by the bus controller [ARM]:

• Burst transfers - Higher transfer rates are achieved by consecutive read/write cycles
without an address phase.

• Split transactions - When an operation lasts longer than expected, the master can
choose to split the transaction and finish it later. In the meantime the bus can be
used for other operations.

• Single cycle bus master handover - Master can switch the bus access within one
cycle.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 58

• Single clock edge operation - Operations are only performed on a clock edge, not
both.

• Non-tristate implementation - The bus can perform either a read or write access.
There are no other states such as an idle state.

• Wider data bus configurations (64/128 bits) - The bus can be configured to be wider
than 32-bits. The AHB allows bus widths up to 128-bit.

For the bus controller to work correctly in all given environments, all these features
need to be considered, implemented and tested. To accomplish this, the controller has an
internal state machine implemented which switch through the address, data (separated for
read and write cycles), error and split transaction state. This state machine is illustrated
in Figure 4.10. The states are:

• Idle - The controller remains in this state until a read or write is performed on the
bus. As per AMBA specification, this is detected when an address change occurs.

• Read - This state indicates that a read is performed on the bus. From this state,
the bus can switch back to the idle state (when there is no new transfer immediately
after the current one) or to the read or write state (when there is a new transfer im-
mediately after the current one). Additionally, the controller detects error responses
from the client and split transactions. When an error response is received (HRESP
signal), the controller switches to the error state. A split transaction is detected
when the HRESP signal contains a split response and leads to a switch to the split
state. A split transaction can only occur during a read.

• Write - This state indicates that a write is performed on the bus. From this state
the bus can switch back to the idle state (when there is no new transfer immediately
after the current one) or to the read or write state (when there is a new transfer
immediately after the current one). Additionally, error responses, as described in
the read state, are supported.

• Error - When in the error state, the client reported an error for the current transac-
tion. In this state, the error response which is sent by the client is ignored because
it need to be handled by the master. After that the controller switches back to the
idle state.

• Split - When a split transaction occurs, the bus controller waits until the client
notifies the master that he is ready. After that the controller switches back to the
read state.

Additionally, to the state machine described above, the bus controller needs to output
the number of bytes which are read or written from or to the bus. As described in
Chapter 3, the FIU works on byte basis. Since the AHB bus can be up to 128-bit wide,
and therefore can read up to 16 bytes simultaneously, the controller needs to detect the
data size requested by the master. This is done by analyzing the size signal of the bus.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 59

Idle

Read

Write Error

Split

Figure 4.10: Internal State Machine of the Bus Controller

4.4.4 Fault Trigger Unit

The fault trigger is responsible for the evaluation of the fault conditions. It gets a signal
from the bus controller whether or not a read or write is active. Additionally, the trigger
is provided with the number of bytes read from the bus. From the configuration register,
the trigger gets the memory area range and the number of accesses required for the trigger
to be active. A flowchart of the trigger is given in Figure 4.11.

Each time a read or write is performed, the trigger first evaluates if the address on
the bus is inside the configured memory area. Additionally, the trigger checks if the
current configuration has already been triggered. This is achieved by a flag, stored in the
configuration. Every fault configuration is only triggered once. After that, a new fault
needs to be configured. When the address is inside the memory area and the configuration
was not triggered, then the current access count is increased. This access count is stored
in the configuration.
The trigger was implemented in a way, that it only counts and triggers in the range of
the memory area. For example, when the bus tries to read 4 bytes from an address that
is only 3 bytes in the memory range, than the counter is only increased by 3 bytes. This
prevents any fault injections outside of the memory range and helps the FIU user to have
full control of the fault unit.
When all computations have been performed, the trigger unit checks if the trigger should
be active during the current read or write cycle. Therefore, the current access count is
compared to the access count stored in the configuration. When this condition is met,
three signals are generated on the output:

• Trigger signal - Signal to indicate that a fault injection needs to be performed. This
is provided to the saboteur unit.

• Configuration trigger signal - Required to define that the configuration has been
triggered. This avoids multiple triggers of one configuration.

• Data position signal - This signal is required to specify the position on the bus where

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 60

Start Address in range
and not triggered?

Increase current
access count

Yes
Is overflow

access?

No

Reduce access
count by

overflowed
values

Yes

Access count larger
than configured

counter?

No

Set
configuration

triggered

Calculate and
set data
position

Activate trigger
output

Figure 4.11: Flow Chart of the Internal Trigger Logic

the fault needs to be active. This is required by the saboteur unit to perform the fault
on the correct position. The position is calculated by subtracting the current access
count (without the currently active read/write) from the configured one. When a
read or write is performed, that is smaller than the bus width (e.g. 1 byte read from
4 byte bus), than an additional offset is added. This offset is bus dependent and is
required to specify where the read or written byte is on the bus. The behavior of
the calculation is described in more detail in Section 4.4.8.

All these computations are performed in a single clock cycle, which helps to achieve
the zero-delay FIU.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 61

4.4.5 Saboteur Unit

The saboteur unit is the main part of the hardware fault injector. It is responsible for
changing the values according to the fault that was configured and the signals provided
by the fault trigger. Each cycle, the saboteur unit checks if a fault should be injected
by a signal, provided by the trigger unit. The fault gets then placed at the position
that was calculated in the trigger unit as described above. Depending on the configured
fault and the fault mask, the data on the bus is manipulated. Following fault modes are
implemented in the saboteur unit:

• Stuck at one - All bits set in the mask will be one during the bus transaction where
the fault is active.

• Stuck at zero - All bits set in the mask will be zero during the bus transaction where
the fault is active.

• Indetermination - All bits set in the mask will be set to an unknown/random value
during the bus transaction where the fault is active.

• Negate input - All bits set in the mask will be negated (zero becomes one, one
becomes zero) during the bus transaction where the fault is active.

• Bridging - For each bus transaction, the value of the previous bus access is stored
in the trigger unit. When the bridging fault mode is active, the trigger will set the
bus data to the previous value, when the fault is active.

• Bit flip - All bits set in the mask will be flipped during the bus transaction, where
the fault is active. This is the same as with negating the input, but only lasts one
cycle.

• Override - The value on the bus is replaced with the mask during the bus transaction,
where the fault is active.

4.4.6 FIU Assembly

All FIU components need to be assembled correctly to work as intended. In the evaluation
design, the APB bus was used to configure the registers and the AHB bus as saboteur
interface between the processor and the memory. Therefore, the required signals for the
top module are the reset and clock signal, the APB and AHB bus signals to the memory
and processor.
One goal of project was that the faults and the evaluations required for introducing the
faults need to be performed in a single cycle. This is required so that the original hardware
design is affected as less as possible. To achieve this, each memory area and each config-
uration has its own trigger and saboteur unit. Additionally, each area works in read and
write direction. Therefore, every memory area requires two times the number of trigger
and saboteur units.
As an example, the total number of hardware components required for an FIU configu-
ration with 3 memory areas and 2 configurations is calculated. First of all, 3 memory
registers for the memory areas are required. For each of these memory areas, 2 configu-
rations are generated. Each configuration requires a configuration register, a trigger and

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 62

a saboteur. Therefore, for 1 configuration, 3 components are required. This results in a
total of 3 ∗ 2 = 6 components required for one memory area. The example uses 3 mem-
ory areas, therefore 6 ∗ 3 = 18 components are required for all memory areas. Now the
bi-directional flow needs to be added to the calculation. This doubles the number of com-
ponents required for one memory area. This concludes the total number of components
required for the configurations to 18 ∗ 2 = 36. At last, the two memory area registers are
added to the number of components. This leads to the final result of 36 + 3 = 39 required
components for this example. For this approach to work correctly, the saboteur units need
to be connected in serial on the bus. One disadvantage of this approach is that the more
configurations, and therefore saboteurs are needed, the longer the critical path becomes.
Also the design can increase in size quickly which is described in Chapter 5. A schematic
view of this complete design which gives an overview of the serial approach of the saboteur
units is given in Figure 4.4.6.

Memory Area n Memory Area 1

Saboteur 1Saboteur 2Saboteur n Saboteur n-1 ...
AHB InAHB Out

Mema
rea 1

Config
1

APB In

Trigger 1

AHB Bus
Controller

Mema
rea 1

Config
2

Trigger 2

Mema
rea n

Config
1

Trigger n-1

Mema
rea n

Config
2

Trigger n ...

Figure 4.12: Schematic View of the Serial Implementation of the Hardware Design

APB Register Access

To configure the memory areas and the configurations for each memory area, an APB bus
interface was implemented. The hardware user can access the registers using this APB
bus interface. To address the registers, the least 9 bits of the address strobe of the bus
are used. The 9 bits are assigned as:

• Bit 0 to 1 - Ignored. Since the bus has a width of 32-bit, only every fourth address
can be accessed. The addresses go from 0 to 4 to 8 and so on.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 63

• Bit 2 - Defines which register should be accessed. For the fault configuration, one
register is used for the access count and the fault type, and the other one for the
fault mask. Regarding the memory areas, one register is used for the upper memory
range and the other is used for the lower memory range. If the bit is set to 0, the
first register is accessed. Otherwise the second register is accessed.

• Bit 3 to 6 - Used to address all the registers. For the first configuration register,
these 4 bits are set to 0x0, for the second register to 0x1 and so on. This is the same
for the configuration as well as the memory area registers.

• Bit 7 - Only used for read and write registers. With this bit the FIU can differ if
the data on the bus is destined for a read or a write configuration. For memory
area configurations this bit is ignored. If the bit is set to 0, read configurations are
accessed. Otherwise write configurations are accessed.

• Bit 8 - Separates between configuration and memory area registers. A 0 defines that
a configuration is accessed. Otherwise a memory area configuration is accessed.

For the configuration register, two, from the APB bus accessible, registers are required.
The first register contains the access count and the fault type. This is illustrated in Fig-
ure 4.13. The other register contains the fault mask.

031 710

Unused Access CountFault Type

7:0 Access Count – Defines how much bus accesses are required for the fault to be injected.
10:7 Fault Type – Defines the fault type: 0: Stuck at one

1: Stuck at zero
2: Indetermination
3: Negate input
4: Bridging
5: Override
6: Bit Flip
7: Normal

Figure 4.13: APB Configuration Register

With the description above, the following memory ranges are reserved and accessible
by the APB bus:

• Read Fault Configuration Registers: 0x000 - 0x07A

• Write Fault Configuration Registers: 0x080 - 0x0FF

• Memory Area Registers: 0x100 - 0x1FF

This means, when the FIU is mapped to address 0x80000000 in the system, the first
read register is accessible at address 0x80000000. The second read register is accessible
at address 0x80000004 and so on. The first write register would be mapped to address

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 64

Fault
Injection

Unit

Master
Emulator

AHB Slave
Emulator

AHB Slave
Emulator

Memory
Test
Data

APB
Controller

Fault Configuration Fault Configuration

AHB
Controller

Simulated
Memory

Read/Write

Simulated
Memory

Read/Write

Test Data

Figure 4.14: Schematic View of the Hardware Test Setup

0x80000080, the second write register to 0x80000084 and so on.
The memory ranges that are available, scale with the configuration of the registers. The
more configurations are set in the configuration, the wider is the range where registers
are accessible. For example, two configurations would result in four read registers. There-
fore, the addresses from 0x000 to 0x01C are accessible. For a more detailed view see
Section 4.4.8.

4.4.7 Hardware Testing

To test the hardware unit before using it in the FPGA board, it was tested in a testbench
using the AMBA test framework, delivered with the GRLIB IP library. The test setup
is illustrated in Figure 4.14. The AMBA test framework consists of an emulated slave
and an emulated master. The master can either be set up from file or directly from the
testbench. The master is set up to configure all faults in the FIU hardware unit. After
that, some registers are read from the AHB slave (which is placed between the FIU and
the emulated master). Since the AMBA test framework fulfills the basic standards of the
AMBA specification, simple test cases could be tested against the design.

4.4.8 Working Example

This section will give an overview of a working example for the hardware unit and will
also describe how the hardware unit is behaving. For this example it is assumed that
the hardware unit was configured with 2 memory areas and 2 fault configurations per
memory area. This results in a total of 8 configurations. As for the memory mapping,
the example considers that the APB configuration bus of the hardware unit is mapped to
address 0x80000000. The result would be a memory mapping as given in Table 4.1. The
addresses scale with the number of configured configurations. The more configurations
are set up, the more addresses are available to configure. The values from Table 4.1 are

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 65

Conf. Type Area Conf. Number Address Register Values

Read Register

1
1

0x80000000 0 Fault type, access count
0x80000004 1 Fault mask

2
0x80000008 0 Fault type, access count
0x8000000C 1 Fault mask

2
1

0x80000010 0 Fault type, access count
0x80000014 1 Fault mask

2
0x80000018 0 Fault type, access count
0x8000001C 1 Fault mask

Write Register

1
1

0x80000080 0 Fault type, access count
0x80000084 1 Fault mask

2
0x80000088 0 Fault type, access count
0x8000008C 1 Fault mask

2
1

0x80000090 0 Fault type, access count
0x80000094 1 Fault mask

2
0x80000098 0 Fault type, access count
0x8000009C 1 Fault mask

Memory register
1 -

0x80000100 0 Memory area upper address
0x80000104 1 Memory area lower address

2 -
0x80000108 0 Memory area upper address
0x8000010C 1 Memory area lower address

Table 4.1: APB Memory Ranges
Memory addresses for the working examples on the APB bus with an offset of

0x80000000.

interpreted as follows: The first column defines which type of register is accessed. This
can either be a read configuration (for faults in read direction), a write configuration (for
faults in write direction) or a memory area configuration (to set up memory ranges). The
second column defines for which memory area the configuration is used, meaning a value
of 1 defines that the configuration is used in accordance of memory area 1. This is only
relevant for read and write configurations. The third column, the configuration number,
defines which configuration in this memory area is accessed. The address column defines
the accessible address. The register column defines which register of the configuration is
accessed. Each configuration has two registers which need to be written to. For memory
areas, this is the lower- and upper memory range. For fault configuration registers, this is
on the one hand the access count and fault type, and on the other the fault mask.
The FIU acts as a saboteur and therefore needs to be placed on the bus between a master
and the slave (this can be seen in Figure 4.14). During this example the slave is assumed
to be mapped to address 0x40000000 on the bus. The steps required to configure and
setup a fault are described below.

1. At the start, the hardware unit needs to be configured. Therefore, the registers
described in Table 4.1 need to be written. For the FIU to work as expected, at
least one memory area and one configuration needs to be configured. To configure
the memory area, the value 0x40001000 is written to address 0x80000100, and the

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 66

value 0x40000000 to address 0x80000104. Now the FIU observes the memory from
address 0x40000000 to 0x40001000.

2. After the memory area configuration is written, the fault needs to be configured.
In this example a write fault will be set up. Therefore, address 0x80000080 and
0x80000084 need to be written. The register at address 0x80000080 will be written
according to Figure 4.13. For an access count of 4 and a negate input fault type,
this value is set to 0x304. The mask on address 0x80000084 is set to 0xFF so that
every bit is affected by the fault.

3. After the FIU configuration, a bus write into the observed memory area must be
performed. To trigger the FIU, four bytes must be written into the observed memory
area. In this example, a four byte variable is written with the value 0x30000.

4. When the value is put on the bus, the bus controller of the hardware module will
detect a 4-byte write access on the AHB slave. The controller will set the write-access
output signal to high and also sets the detected access count to 4.

5. The trigger will receive the activate and access count signal from the controller. The
current access count is zero, and the configured trigger access count is 4. The 4
bytes from the current write command will be added to the current access count
and will result in a total of 4. After that, the trigger evaluates if the fault condition
which is met (current access count is equal to configured access count). Therefore,
the triggered flag of the configuration is set to one and the trigger output flag for
the saboteur unit is also set to one. The data position on the bus, where the fault is
introduced, is set to the 4th byte. The trigger calculates the data position dependent
on the current access count.

6. The saboteur unit for the configured memory area receives the trigger signal and
the data position. Additionally, it gets the fault type from the configuration. With
these values, the saboteur unit can trigger the fault. The original value of 0x30000
is changed to 0xFF030000 since the 4th byte is inverted.

7. Finally, the AHB slave receives the modified value. When the AHB slave is ready
and received the value, the FIU stops the fault injection. Every other access onto
the slave is performed without a fault.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 67

4.5 FIU Software Module

The FIU software module of the evaluation implementation is the middle layer between
the hardware unit and the host. One main goal is to implement a reusable approach.
Therefore, the design uses the C99 standard which is supported by most compilers. The
implementation also does not use any operating system dependent functions, such as dy-
namic memory allocation. This allows running the software unit in a minimal environment
without any operating system. The drawback of this is that every required memory buffer
has to be defined at program start.
There are 4 main parts of the module: The communication interface module, the client
module, the data provider module and the hardware driver. The communication module
defines a simple communication protocol, used to communicate with the host. The com-
mands used by the protocol range from configuration commands to run time commands to
halt the execution of the VM. A more detailed description of the communication protocol
is given in Section 4.5.2. The client module is the core of the system. It is responsible
for the setup of the communication and the hardware unit and is also responsible for the
data exchange between the FIU and the VM. Another module is the data provider which
is dependent on the used VM and is required to provide all the data to the VM. This is for
example the current Java program counter as well as the current state and internal data
of the VM. A more detailed description can be found in Section 4.5.3. The last module
is the hardware driver. This driver was especially made for the evaluation example and
can be used for the APB bus to configure the hardware unit. All the modules described
above are designed in a modular way so that they can easily be exchanged for different
requirements. An overview of the modules and how they interact with each other is given
in Figure 4.15.
For the software module to work correctly, the SimpleRTJ VM needs to give control to the
client at two points: once for the initialization at the start-up of the VM, and then after
each byte code instruction is executed. A flow chart of the initialization and execution
routine is given in Figure 4.16(b).

FIU Software Module

Communication
Interface Module

Client Module
Data Provider

Module
SimpleRTJ VM

Hardware Driver
FIU Hardware

Module
APB

UART
Communication

Module

Hardware Configuration

VM
Dependent

Data

VM
Dependent

Data

Control
Commands

Control
Commands

Figure 4.15: Schematic View of the Modules in the FIU Software Module

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 68

4.5.1 Client Module

The client module of the FIU software unit is responsible of controlling the communication
routine with the host using the communication interface module and the data collection
using the data provider module. The client module defines the communication order and
when a fault is triggered.
To fully integrate the FIU into an existing VM, two modules need to be implemented and
adapted to the needs of the new VM. The first module is the data provider. The data
provider provides data, required by the FIU. This can be the current program counter
position, the memory area of the local variables or other VM dependent data. The second
module is already implemented and needs to be integrated into the VM implementation.
It is a predefined interface which activates the FIU software unit. This is required for the
software modules to perform their work. For the FIU to work correctly, the program flow
has to give control to the FIU at four places:

1. At the VM initialization: Here, the FIU needs to perform its own setup routine.
This resets the software configuration of the FIU and initializes the communication
with the host. Additionally, the program flow stops at this point until a Run com-
mand has been received. Here, the host can configure the faults using the commands
defined in the communication interface.

2. After each byte-code execution: At this point the client evaluates if a fault needs
to be introduced into the system or not. After each byte-code the client checks all
configured break-points and evaluates if one is set for the current program counter.
When a break-point is reached, the fault is configured in the hardware unit of the
FIU system. Additionally, the program execution can be halted at any Java byte-
code when the specified flag is set. This program halt is used when the host wants
to inspect the value of a Java variable or restarts the program execution.

3. When an exception has occurred: The host has to be notified about exceptions
that occur during program execution. This allows the host to react and eventually
restart or replace the current program.

4. At the end of the program: When the program has ended, the host is notified.
The VM does not remain in a command dispatch routine but rather stops.

These are the only changes required in the VM. They are required so that the FIU can
run and eventually stop the VM from execution.

The communication between the client and the host is done in three stages:

1. During the initialization of the FIU: Here the communication is initialized. Dif-
ferent communication ports require different initializations. For example, a socket
implementation could instantiate a new socket and connect to the server. An exam-
ple of a Unix socket implementation is given in Appendix A.1.

2. After the VM has started but has not executed any byte-code: At this
position of the program flow, the VM is halted by the FIU until a Run or equivalent
command is received. This VM halt helps to setup the machine, the break-points,

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 69

fault injection points and other features. All these initializations have to be done
through the communication interface with the appropriate commands.

3. When the byte-code is executed: As described above, before each byte-code
execution the VM requires the control flow of the program to check if any break-
points are reached. The break-points can be set up to halt the execution. When
this happens, the communication interface listens to new commands that may be
received. All commands that are available during initialization are available here.
The FIU host can therefore reset the execution at any given point of the program
flow.

In the enumerations above, the term
”
break-points“ was used. Break-points in the

context of the FIU are not handled the same as normal break-points in languages like C or
Java. FIU breakpoints store additional information if either a fault should be injected or
not. Fault injection at a break-point is optional. Another use of break-points can be the
halting of the execution of the VM. This may be used to restart the program execution or
inspect variables. Both of these features, execution halt and fault injection, can be used
simultaneously. When a fault should be introduced during a break-point, the break-point
also stores the memory area where the fault is introduced, the fault configuration and the
direction of the fault (read or write).
Memory and fault configurations are generally separated into software and hardware con-
figurations. When the FIU host configures the client and sets up the memory areas and
fault configurations, all these configurations are stored in software. The client has its
own memory area to store this information. The actual hardware configuration happens
later, when a break-point is reached and a fault configuration should be performed. This
approach has the advantage that the software can store much more configurations as the
hardware (dependent on the available memory). As described in Section 4.4, the hard-
ware unit can be very limited in storing memory areas and fault configurations. All the
configurations stored in hardware, are performed simultaneously. Most of the time these
configurations are enough. But it may happen that during the whole program execution,
multiple faults at multiple locations may be used. To make this process as smooth as
possible, the host can configure all the faults in software. Therefore, they do not have to
be configured later in the program flow. After every byte-code execution, new faults can
be configured in hardware. So for every byte-code in the program flow, the maximum of
simultaneous configurable faults is only limited by the available hardware registers of the
hardware fault injection. This behavior can also be observed in Figure 4.16(a). The sub-
process of the initialization routine is displayed in Figure 4.16(b). Figure 4.17(a) shows
how commands are dispatched during the initialization and after the byte-code execution.
At last, Figure 4.17(b) shows the break-point evaluation after each byte-code.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 70

Fa
u

lt
 In

je
ct

io
n

 U
n

it
 In

te
gr

a
ti

o
n

 in
to

 S
im

p
le

R
T

J

Fault Injection
Unit

SimpleRTJ

En
d

In
it

ia
liz

at
io

n
R

un

V
M

 S
ta

rt
V

M

In
it

ia
liz

at
io

n

FI
U

In

it
ia

liz
at

io
n

P
ro

ce
ss

C

om
m

an
d

s

Ex
ec

ut
e

N
e

xt

B
yt

e
co

de
Er

ro
r?

P
ro

gr
am

 E
nd

?
St

o
p

 V
M

N
o

ti
fy

 H
os

t
o

f
P

ro
gr

am
 E

nd
N

o
ti

fy
 H

os
t

o
f

Er
ro

r

N
o

Ye
s

C
he

ck

Ex
ec

ut
io

n
B

re
ak

Ye
s

N
o

P
ro

gr
am

 E
nd

(a
)
F
lo
w
ch
a
rt

o
f
th
e
F
IU

In
te
g
ra
ti
o
n
in
to

S
im

p
le
R
T
J

Fa
u

lt
 In

je
ct

io
n

 U
n

it
 In

it
ia

liz
a

ti
o

n
 P

ro
ce

ss

Initialization

H
ar

d
w

ar
e

In
it

ia
liz

at
io

n
C

lie
nt

 In
it

ia
liz

at
io

n
H

ar
d

w
ar

e
In

it
ia

liz
at

io
n

St
a

rt
 In

it
ia

liz
at

io
n

R
es

e
t

Br
ea

kp
o

in
ts

an

d
Co

n
fig

u
ra

ti
on

s
C

le
a

r
Re

ce
iv

e
Bu

ff
e

r
Se

tu
p

 F
IU

 H
ar

dw
ar

e
A

d
dr

es
s

Se
tu

p
 H

ar
dw

ar
e

C
on

fi
gu

ra
ti

o
n

W
a

it
 fo

r
In

it
ia

liz
at

io
n

M
es

sa
ge

C
om

m
u

n
ic

at
io

n

In
it

ia
liz

ed
?

N
o

En
d

(b
)
F
lo
w
ch
a
rt

o
f
th
e
F
IU

In
it
ia
li
za
ti
o
n
R
o
u
ti
n
e

F
ig

u
re

4
.1

6
:

O
ve

rv
ie

w
of

th
e

F
IU

In
te

gr
at

io
n

in
to

S
im

p
le

R
T

J
an

d
th

e
In

it
ia

li
za

ti
on

R
ou

ti
n

e

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 71

P
ro

ce
ss

 C
o

m
m

an
d

s

Command Processing

C
om

m
an

d
Ex

ec
u

ti
on

C
om

m
an

d
Re

ce
iv

e

St
a

rt
A

p
pl

ic
at

io
n

P
au

se
d?

R
et

ur
n

N
o

W
a

it
 fo

r
C

om
m

u
n

ic
at

io
n

H

ea
d

er
Ye

s
Ex

te
nd

ed

C
om

m
an

d
?

W
a

it
 fo

r
R

em
ai

n
in

g
B

yt
e

s
Ye

s
Ex

ec
ut

e
Co

m
m

an
d

N
o

(a
)
F
lo
w
ch
a
rt

o
f
th
e
C
o
m
m
a
n
d
D
is
p
a
tc
h

Ev
al

u
a

ti
o

n
 o

f
th

e
E

xe
cu

ti
o

n
 S

ta
tu

s
o

f
th

e
Fa

u
lt

 I
n

je
ct

io
n

 U
n

it

Check Execution

C
om

m
an

d
P

ro
ce

ss
in

g
B

re
ak

-p
o

in
t

Ev
al

u
at

io
n

St
a

rt
Is

 B
re

ak
-P

oi
nt

R

ea
ch

e
d?

H
al

t
Ex

ec
ut

io
n

?
P

ro
ce

ss

C
om

m
an

d
s

C
on

fi
gu

re
 H

W

U
ni

t?

Se
t

M
e

m
o

ry
 A

re
as

fo

r
Fa

u
lt

 In
je

ct
io

n
 in

H

W
 U

n
it

Se
t

Fa
u

lt

C
on

fi
gu

ra
ti

o
n

in
 H

W

U
ni

t

N
o

ti
fy

 H
os

t
w

it
h

C

ur
re

n
t

Pr
og

ra
m

C

ou
n

te
r

Ye
s

Ye
s

N
o

Ye
s

R
et

ur
n

N
o

N
o

(b
)
F
lo
w
ch
a
rt

o
f
th
e
E
x
ec
u
ti
o
n
E
va
lu
a
ti
o
n
a
ft
er

B
y
te
-C

o
d
e
E
x
ec
u
ti
o
n

F
ig

u
re

4.
17

:
O

ve
rv

ie
w

o
f

th
e

F
IU

C
om

m
an

d
D

is
p

at
ch

R
ou

ti
n

e
an

d
th

e
E

x
ec

u
ti

on
E

va
lu

at
io

n

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 72

Method Name Return Type Description

init communication() Boolean Used to initialize the communication. Ev-
ery communication dependent data should
be initialized here. For example, the hard-
ware unit can be set up in this routine. The
return value defines if the initialization suc-
ceeded or not.

close communication() None Closes the communication. This is called at
the end of the VM life-cycle.

transceive() Integer Performs a transmit and receive. Returns
the received bytes.

transmit() Integer Transmits the given bytes to the host. Re-
turns the number of transmitted bytes.

receive() Integer Receives the number of specified bytes. Re-
turns the number of received bytes.

is data available() Boolean Returns if data is available at the communi-
cation port or not.

Table 4.2: Communication Interface Methods

4.5.2 Communication Interface Module

The communication interface module is separated into two parts. One part is written once
and does not change, depending on the communication port that is used for communication
(Universal Asynchronous Receiver Transmitter (UART), Ethernet, ...). This unchangeable
part defines the communication protocol and handles the communication. The hardware
dependent communication interface is used by the already implemented communication
unit. For every new communication port a new interface implementation is required. The
interface that needs to be implemented, dependent on the communication port that is
used, is shown in Table 4.2. An example of an implementation of the communication
interface, using Unix sockets is given in Appendix A.1. The communication interface
does not necessarily require a client/host implementation. A local implementation is also
possible where the commands are directly coded into the implementation. This allows to
set up standalone implementations without the use of a host interface.

Communication Protocol

For data exchange with the server, a simple communication protocol was implemented.
Since the FIU software unit does not use dynamic memory allocation, a fixed receive and
transmit buffer is initialized at the start time of the program. The communication is
bi-directional, meaning that both the host and the client can issue a command. After
each transmitted command, a response is required. This response is required so the host
and client know, when a command has finished. Therefore, each command consists of a
request and response part.
The structure of the commands are simple. Each command consists of a header and then
the data. The data contains the length of the command in bytes, and a command code

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 73

to identify the command. With those two parameters, the server and client know how
much bytes they can expect from the communication. Every command requires a header
byte. The data is optional. Command and response messages do not need attached data.
A diagram of the structure of the commands is given in Figure 4.18. An overview of the
most important commands with a detailed description can be found below.

Header

Length Command

Data

2 bytes 2 bytes

< 252 byte

Figure 4.18: Command Structure of the FIU Communication Protocol

• Synch - Initiated by the host. Used to synchronize the host to the client. Provides
all data, required for the host to calculate fault positions and data to check if the
used client is valid.

• Memstat - Initiated by the host. Returns the memory status of the client. For
example, how much heap space is left and how much strings are used.

• Inspect - Initiated by the host. Inspects a Java variable and returns the value.
The host needs to specify which variable needs to be inspected and what type of
variable the host wants to inspect. This can either be a local variable, a field, a
static variable, an array or an object.

• Set Break - Initiated by the host. Sets a break-point at a specified location in the
code. The break-point contains the code position, a flag which indicates if whether
or not a fault should be indicated and what fault should be triggered. Additionally, a
flag needs to be provided if the VM should be halted. This break point functionality
is required when the host wants to inspect a variable.

• Set Memarea - Initiated by the host. Sets a software memory area in the client.
This memory area can then be referenced by a break-point.

• Set FIU Configuration - Initiated by the host. Equal to the Set Memarea com-
mand, but uses fault configurations. Can be referenced by break-points.

• Run - Initiated by the host. Starts or continues the execution of the VM. For this
command to work, the software module has to be in the command dispatch routine.

• Abort - Initiated by the host. Cancels the current execution of the VM. After this
command is executed, the VM is halted.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 74

• Restart - Initiated by the host. Restarts the execution of the current program in
the VM.

• Break - Initiated by the host. Breaks the execution of the current program in the
VM. The program can be resumed using the Run command.

• Set Param - Initiated by the host. Sets start parameters of the program, executed
in the VM. These parameters are the starting arguments for the Java program.

• Download - Initiated by the host. Replaces the current program in the memory of
the VM with the program transferred during this command. In general, this com-
mand is called multiple times since the largest data chunk that can be transmitted
is limited to 252 bytes.

• PC Position - Initiated by the client. Notifies the host that the client stopped or
halted at a specific program counter position.

• Program End - Initiated by the client. Notifies the host that the program execution
has ended and the VM has halted.

4.5.3 Data Provider Module

The FIU data provider is the third module of the software implementation. The data
provider is VM dependent, therefore every VM has to implement the data provider inter-
face. This abstraction is used, so the client can work independent of the used VM. The
data provider merely provides a simple interface which needs to be implemented. An ex-
ample implementation for the SimpleRTJ VM is given in Appendix A.4. The explanation
of the required interface functions is given below. Most of these data provider functions
are Java frame dependent. This Java dependency means that they work on information
like memory region locations which change for every executed method.

• Fill Synch - Provides all the values for the synchronization command described in
Section 4.5.2. Since these values are dependent on the implementation details of the
currently used VM, this data collection method is outsourced.

• Fill Memory Stats - Provides all the values for the memory stats command, de-
scribed in Section 4.5.2. Since these values are dependent on the VM, this data
collection method is outsourced.

• Set Program Memory - Sets the program memory at a specific offset. This
function is used when a program is downloaded to the VM. The VM has to exchange
the byte-code of the current memory with the provided one.

• Is Program Counter Reached - Evaluates whether or not a specific program
counter is reached in the program execution.

• Get Current Operand Stack Memory Range - Returns the upper and lower
memory bounds of the operand stack of the current frame in the memory. This is
required to dynamically set the memory areas for the fault injection.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 75

• Get Current Local Variable Memory Range - Returns the upper and lower
memory bounds of the local variables of the current frame in the memory. This is
required to dynamically set the memory areas for the fault injection.

• Get Current Program Counter Memory Range - Returns the upper and lower
memory bounds of the program counter of the current frame in the memory. This
is required to dynamically set the memory areas for the fault injection.

• Get Current Byte-code Area Memory Range - Returns the upper and lower
memory bounds of the byte-code area in the memory. This is required to dynamically
set the memory areas for the fault injection.

• Inspect Local Variable - Used for the inspect command. Inspects a local variable
of the current frame.

• Inspect Field - Used for the inspect command. Inspects a field of the object where
the current frame is executed.

• Inspect Variable - Used for the inspect command. Inspects an arbitrary variable
in the memory. Can be an object or a native value.

• Inspect Current Object - Used for the inspect command. Inspects a value of the
object where the current frame is executed.

• Inspect Array - Used for the inspect command. Inspects an array in the program.

• Inspect Object - Used for the inspect command. Inspects a value of an arbitrary
object where the current frame is executed.

4.6 FIU PC Host

The last part of the FIU is the host implementation. The host is used to remotely set up
the fault injection unit. Often, the used VM is not executed on the same machine as the
host and therefore needs remote configuration. This is especially true when the VM runs
on an embedded device or a remote FPGA as in our reference implementation.
One of the most important features of the host is, to provide an intuitive and easy user
interface to make fault injections as easy as possible. It is not sufficient, when every time
a new test environment is set up or small changes are made, all memory offsets have to
be analyzed. Injecting a fault has to be as easy as writing the code itself. Therefore, in
the reference implementation an editor-like user interface was created.
Figure 5.2 in Chapter 5 shows an example workflow of a fault injection setup. This is the
basic workflow with all the required steps to perform a fault injection using the proposed
FIU host. When the host is started, the first thing to do is to open a project. The project
consists of a created debug file. In this reference implementation, this debug file is created
by the class linker of the SimpleRTJ VM. This file contains several debug information,
such as detailed information of the program counter. Additionally, is shows all methods,
fields and other information. After the project was opened, a connection adapter has to be
selected and configured. There can be multiple adapters defined, for example a connection

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 76

adapter for Unix sockets and one for serial connections. An adapter configuration for a
serial interface port is shown in Figure 4.19. It shows how specific parameters of the
communication may be configured. More details are listed in Section 4.6.1.
The next step is to connect to the client, using the configured adapter. When a connection
was established, a synchronization command is exchanged as described in Section 4.5.2.
After that, all fault relevant configurations need to be made. This includes the memory
area, fault and inspection configuration. When this step is done, the configuration has
to be downloaded to the client. Optionally, the current binary can be downloaded if
necessary.
This is the end of the configuration setup. The next step is to control the program flow
of the Java program, stored in the VM. At the beginning, the program has to be started.
When a break-point is reached, the inspection utility can be used to evaluate if certain
variables contain expected values. When this condition is satisfied, the normal program
flow ends. Otherwise the program can be reconfigured and restarted.

Figure 4.19: Dialog for the FIU Adapter Configuration

4.6.1 User Interface

For the implementation of the user interface, an application model for Eclipse RCP 4 was
generated. This application model is used to describe not only the General User Interface

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 77

(GUI), but also the structure of the application in Extensible Markup Language (XML).
It defines all visual and non-visual elements of the application. Visual parts are, for exam-
ple, menus, toolbars, windows and so on. Non-visual parts are handlers, commands and
key-bindings.
The main purpose of the application model is to describe the structure of the application
rather than the content of the individual user interface components. This means that the
application model describes what parts are available, but not what these parts contain.
In the reference example, this may be the part containing the editor with the source code.
The existence of this part is described in the application model, but the data is provided
from the source code.
Another feature of the Eclipse 4 RCP application model are model addons. These are
globally registered objects which enhance the application with additional functionality.
These addons can easily be exchanged without modifying the existing code. In the evalu-
ation design, this was used to convert the responses received from the client into general
objects understood by the application.
An image of the user interface is shown in Figure 4.20. The image shows the main screen
of the FIU host. It shows an open project with several information displayed.

• Class Information - Shows information on the debug project. It shows all classes
statically linked to the project. Additionally, it shows all methods, fields and the
line number information if debug information is present.

• Client Information - This information is available after the host has successfully
connected to the client. This part shows all information provided by the client such
as the available heap space, the name of the program stored in the memory and
others.

• Communication Log - Displays all the information about the communication be-
tween the host and the client. It shows the name of the command and the transmitted
bytes in hexadecimal values.

• Fault Configuration - Here, all software fault configurations are listed that were
configured, using the GUI. It shows details such as the fault type and the access
count.

• Fault Injection Point - This part shows all fault injection points, configured in
the host. Is shows the program count, pass count and other information.

• Inspection Configuration - Shows all inspection configurations.

• Source Window - Displays the sources of the current project. This is also used to
set up the fault configurations. The host automatically detects the cursor position
and calculates the program counter at this location. Additionally, the source window
supports search functionality and syntax highlighting for Java programs.

• Byte-Code Window - The byte-code window shows the byte-code instructions at
the current cursor point of the source window. This can be used to set up the fault
in more detail and set it at a specific byte-code instruction, rather than a source-line.

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 78

There are also two menus visible on the top. The main menu is used for managing the
project, setting up the communication interface, configuration of the memory areas and
fault injection points as well as inspection configurations and connecting to the client. The
toolbar in the second row is used to control the program flow of the program executed in
the VM. These elements are only enabled, when connected to the VM and a valid program
is loaded. At the bottom, the current connection status is shown as well as the current
program counter that is selected in the source window.

Figure 4.20: User Interface of the FIU Host

4.6.2 Communication Interface

As for the client interface, the host uses an expandable and exchangeable method to
integrate new communication ports. Therefore, an existing abstract class, the Abstract-
StreamServer class, has to be implemented and the missing methods have to be added.
An example for a Unix socket implementation is given in Appendix A.2. The following
methods have to be implemented by a new communication interface to be active:

• Get Name - Returns a representative name for the communication interface. This
is mainly used to display the interface to the user in a readable and understandable
way (e.g.

”
Serial Server“ for a serial communication port).

• Get Description - Similar to Get Name, this is only used for displaying purposes.
This method should return a description about the communication interface (e.g.

”
Server which uses serial port to communicate with the fault injection unit client“

for a serial communication port).

• Connect - Performs the connection to the client. After calling this connect method,
the host should be connected to the client and is able to exchange data. For example,

CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION UNIT 79

an initialization message could be exchanged to validate a connection.

• Get Required Properties - Returns all connection properties that may be set and
changed by the user. This is used to provide a general configuration routine for all
communication interfaces. For a socket communication interface, this may be the
port, for a serial communication interface the baud rate and number of data bits.

• Set Property - This sets a connection property for the communication implemen-
tation. This is used to provide a general configuration routine for all communication
interfaces.

• Initialize Server - This method is called after the configuration has been performed
for the communication interface. There, the communication interface may perform
some pre-connect setups.

• Disconnect - Disconnects the host from the client. After this method is called, the
connection should be closed and ready for a new connection.

4.6.3 Fault Campaign Support

Another feature of the FIU host is the support of a so called fault campaign. Fault
campaigns allow the user to perform multiple fault scenarios in one session, where the
fault setup can be changed before each fault scenario. This is done by providing a fault
script, which is based on the ECMAScript standard. The skeleton of such a fault campaign
setup is shown in Appendix A.5. To set up a fault campaign, this skeleton can be used
and expanded.
When a new fault campaign is started, the user defines the number of configurations which
should be iterated and, additionally, the number of fault points to iterate. The total
number of fault campaigns is numberOfConfIterations ∗ numberOfPointIterations.

Chapter 5

Results

The proposed fault injection unit was split into a hardware and a software unit. Both of
these modules were integrated into an existing system. To prove the functional correct-
ness and effectiveness of the proposed design, it was evaluated on a LEON3 SPARC V8
processor by Gaisler Research [Gaib].
The setup consisted of an FPGA development board with a Spartan-3 XC3S2000. Simu-
lation results were acquired using the ModelSim software, provided by Mentor Graphics
[Gra]. The results of the implemented tool were evaluated for the resulting size of the
VHDL design, the overall increase of the design compared to the original one, the simu-
lation speed and the fault injection performance using real hardware (FPGA board). At
last, an overall attack scenario was described, how it works and how the FIU helps to
realize it.

5.1 Platform Setup

The used LEON3 processor is configured as a single-core implementation with the default
setup for this development board (GR-XC3S-2000). Several unused components were
disabled, such as the USB controller, to reduce the overall size of the hardware. The
hardware unit is placed between the LEON3 processor and the used memory controller
and can be configured using the xconfig tool provided by the Gaisler IP library. With
this tool, the number of memory areas and configurations can be configured. For this
evaluation 2 memory areas with 2 configurations are used. This setup is configured with
the tool xconfig as shown in Figure 5.1. The FIU configuration on the APB bus is mapped
to address 0x80000A00 and therefore results in the memory mapping as displayed in
Table 5.1.
The software unit was used in combination with the SimpleRTJ VM and uses the serial
port of the development board to communicate with the server. The server was running on
a Windows 7 environment with the Java Development Kit (JDK) 7u51 and Java Runtime
Environment (JRE) 7u51. Additionally, to the serial port, the board was connected via
Ethernet to use the debug unit of the LEON3. The server was used to set up the fault
campaign and test the fault injection unit.

80

CHAPTER 5. RESULTS 81

Figure 5.1: FIU Setup within the xconfig Tool

Conf. Type Area Conf. Number Address Register Values

Read Register

1
1

0x80000A00 0 Fault type, access count
0x80000A04 1 Fault mask

2
0x80000A08 0 Fault type, access count
0x80000A0C 1 Fault mask

2
1

0x80000A10 0 Fault type, access count
0x80000A14 1 Fault mask

2
0x80000A18 0 Fault type, access count
0x80000A1C 1 Fault mask

Write Register

1
1

0x80000A80 0 Fault type, access count
0x80000A84 1 Fault mask

2
0x80000A88 0 Fault type, access count
0x80000A8C 1 Fault mask

2
1

0x80000A90 0 Fault type, access count
0x80000A94 1 Fault mask

2
0x80000A98 0 Fault type, access count
0x80000A9C 1 Fault mask

Memory register
1 -

0x80000B00 0 Memory area upper address
0x80000B04 1 Memory area lower address

2 -
0x80000B08 0 Memory area upper address
0x80000B0C 1 Memory area lower address

Table 5.1: APB Memory Ranges
Memory addresses for the evaluation setup on the APB bus with an offset of

0x80000A00.

CHAPTER 5. RESULTS 82

Module Look-Up-Tables Slices

AHB Bus Controller 98 51

Access Trigger 227 123

Saboteur 160 97

Configuration Register 5 3

Memory Area Register 1 1

Table 5.2: Overview of the Space Requirements on a Spartan-3 FPGA for the FIU Units

Memory Areas Configurations Look-Up-Tables Overhead [%] Slices Overhead [%]

0 0 14067 0 7748 0.0

1 2 16111 14.5 8757 13.0

1 4 18041 28.3 9659 24.7

2 2 18065 28.4 9846 27.1

2 4 23104 64.2 12218 57.7

3 2 20649 46.8 10975 41.7

3 4 26098 85.5 13088 68.9

Table 5.3: Space Requirements of Different Hardware Setups with the Overhead to the
Original Design

5.2 VHDL Synthesis Results

The FIU hardware unit was used on a Spartan-3 FPGA. Therefore, the synthesization
was done by the Xilinx ISE design suite. The synthesis results of each submodule of the
hardware unit are illustrated in Table 5.2. The synthesis results including all hardware
components using different hardware setups with a varying number of memory areas and
configurations for the hardware unit are illustrated in Table 5.3. This size estimations
include the complete design, including the LEON3 and all other required components. It
can be seen that the size and the overhead to the original system hardly depend on the
number of memory areas and configurations required by the system. This can result in
an overhead from 13% to 70%. Depending on the number of configurations, the increase
of space requirements when an additional memory area is added, is varying. When the
system is configured with 2 configurations, the size increase is smaller than for a system
with 4 configurations.
The overall increase in space requirements can be associated due to the serial structure
of the hardware unit. For each new configuration, 2 ∗ m new access triggers, saboteurs
and configuration registers are added to the system, where m represents the number of
memory areas. The same goes for every new memory area that is added. For each memory
area, 2∗n∗m new components required, where m represents the number of memory areas
and n the number of configurations.

CHAPTER 5. RESULTS 83

5.3 Simulation Results

Before the system was evaluated on hardware, the correct behavior was evaluated by sim-
ulation using the ModelSim software package. The simulation evaluation was performed
in three steps: The hardware unit with an emulated bus master and slave, the complete
system with the LEON3, using a simple test program written in C and the complete imple-
mentation with SimpleRTJ, using a simple test scenario in a Java program. The results of
these simulations are given in Table 5.4. All simulations were performed using 2 memory
areas with 2 configurations.

Basic FIU Hardware Verification

This chapter shows a simple simulation scenario where the basic functionality of the FIU
hardware unit is tested. It includes the hardware unit, an emulated master (which would
represent the processor) and an emulated slave (representing the memory). However,
neither the software module of the FIU nor the host are included in this test scenario.
The emulated master and slave are part of the Gaisler IP library [Gaib] and can be
configured which addresses are read/written. This simulation setup evaluated the proper
use of the APB configuration registers and the AHB master/slave interface. The simulation
consisted of the configuration of a memory area, two fault configurations and a simple fault
injection, while reading from the emulated slave which represents the memory. This fault
injection consisted of four consecutive 8-bit reads, where after the fourth read, the fault
is triggered. The fault configuration used an access count of 4 and a Stuck-At-Zero fault
model. The fault mask was set to 0xFF. An example of the configuration setup using the
emulated master is listed in Listing 5.1. The example configures two registers on address
0x10000000 and 0x10000004. The four reads performed on the bus to trigger the fault
are shown in Listing 5.2. The simulation consisted of VHDL code only, so no software
program was used to inject the faults. The time requirements of this simulation using the
ModelSim simulator is shown in Table 5.4.

1 ahbwrite (x”10000000” , x”00000104” , ”10” , ”10” , ’ 0 ’ , 1 , f a l s e , ahbtbc t r l) ;
wait f o r c l k p e r i o d ;

3 ahbtbmidle (true , ahbtbc t r l) ;
wait f o r c l k p e r i o d ;

5 ahbwrite (x”10000004” , x”000000FF” , ”10” , ”10” , ’ 0 ’ , 1 , f a l s e , ahbtbc t r l) ;
wait f o r c l k p e r i o d ;

7 ahbtbmidle (true , ahbtbc t r l) ;
wait f o r c l k p e r i o d ;

Listing 5.1: Configuration of the fault registers using the methods provided by the Gaisler
IP library

ahbread (x”20000040” , x”AAAAAAAA” , ”00” , 2 , f a l s e , ahbtbc t r l) ;
2 ahbread (x”20000040” , x”BBBBBBBB” , ”00” , 2 , f a l s e , ahbtbc t r l) ;

ahbread (x”20000040” , x”CCCCCCCC” , ”00” , 2 , f a l s e , ahbtbc t r l) ;
4 ahbread (x”20000040” , x”DDDDDDDD” , ”00” , 2 , f a l s e , ahbtbc t r l) ;

Listing 5.2: Four consecutive reads from the AHB slave using the methods provided by
the Gaisler IP library

CHAPTER 5. RESULTS 84

Attack Scenario using a C Program

The attack scenario using a C program uses the complete system as illustrated in Fig-
ure 4.5. All components are connected to the LEON3 using the AHB and APB bus
system. Neither the memory nor the processor is emulated. The LEON3 is set up without
a caching system and without a Memory Management Unit (MMU). This enhances the
simulation speed and is not used for these small examples. This simulation was performed
to see how the FIU reacts in a real environment whith real, simulated, components. This
allowed to find all remaining problems with the implementation. The used test program
written in C is listed in Appendix A.6. At the beginning, the used variables are defined.
After that, the memory areas and fault configurations are set up and stored in the hard-
ware. The setup of the hardware unit was done using the implemented driver for the FIU
integration into the LEON3 system. After that, the values are read two times to evaluate
that the FIU works with two consecutive setups. Once a trigger was triggered, it does not
fire again. Only after a new configuration is written to the registers, the FIU injects a
new fault. The time requirements of this simulation is shown in Table 5.4.

Simulation with SimpleRTJ

The last simulation scenario uses the same hardware setup as the scenario using the C
program. The difference with this scenario is that it does not use a simple C program to test
the functionality. The complete SimpleRTJ VM is included in the test setup and executed
on the LEON3 in a simulated environment. Additionally, the FIU is integrated to configure
the faults. The executed program is illustrated in Appendix A.7 and will be described
later in Section 5.5 of the results chapter. This simulation is the nearest approach to a real
fault injection using real hardware. The only difference is that the communication to the
host is missing (not feasible/possible). However, the host communication was simulated
using a buffer with the commands in the C program. The FIU reacts as if there was a real
communication with an external system, bus does not really need a real connection. This
was done by simply using a byte-buffer with the corresponding commands. The simulated
command sequence is:

• Reset Breakpoints - At the start of the program, all breakpoints are reset. In a
simulated environment, this is not necessary because the hardware is in a clear state
after the start-up. This test program was also used with real hardware where it is
required and therefore included.

• Set Memory Area 1 - The first memory area was set up using the range of the
local variables in the VM.

• Set Memory Area 2 - The second memory area was set up using the range of the
local variables in the VM.

• Set Fault Configuration - A fault setup is configured, using Stuck-At-Zero, an
access count of 1 and the mask 0xFF.

• Set Break-Point - Set the first break-point which is used to set up the fault con-
figuration in the hardware. At this point the FIU is ready to inject faults.

CHAPTER 5. RESULTS 85

Simulation Type Simulated Time Simulation Time

Emulated Master/Slave 142ns 524ms

C Program 10ms 363us 146ns 3min 7sec

SimpleRTJ Program 444ms 348us 971ns 1hours 50min 8sec

Table 5.4: Results of the Different Simulation Scenarios using ModelSim

Fault Test Type Simulated Time Simulation Time Hardware Time

C Program 10ms 363us 146ns 3min 7sec <1sec

SimpleRTJ Program 444ms 348us 971ns 1hours 50min 8sec <1sec

Fault Campaign (Average) ≈ 500ms ≈ 2hours ≈ 6.5sec

Table 5.5: Results of the Time Measurements for Different Fault Setups using ModelSim
and Real Hardware

• Set Break-Point - Sets a second break-point. This is used to evaluate if the injected
fault triggered at the correct point. This break-point is then used to read out the
modified variable.

• Run - Runs the program until both breakpoints have been reached.

The time results of this simulation are shown in Table 5.4.

5.4 Fault Injection Performance

Table 5.4 shows the simulation time for different use cases. The emulated master/slave
approach can only be used in a simulated environment but is the only one feasible regarding
the simulation time. The second approach can be used in hardware and as a simulated
setup. The 3 minutes 7 seconds required for the simulation are still feasible, however,
it does not include the complete system, including an executed Java program. The last
setup which simulates the complete system, including a VM and a executed Java program,
has a very long simulation time of nearly 2 hours. The time requirements are too high
to efficiently test VM systems regarding faults. Table 5.5 shows the results using real
hardware for the last two fault injection approaches. Additionally, a third approach which
uses a fault campaign to test several fault injections consecutively is added to the table.
For the fault campaigns, an average of 100 fault injection setups were used to get the
size estimations. It can be seen that the speedup of the hardware execution is massive.
With this setup, numerous faults can be set up and tested in an efficient way. The last
test setup which uses a fault campaign requires a stable communication with the FPGA
board. The communication and configuration using the serial interface is very slow and
requires about 5 seconds of the overall test time. A test time decrease could be achieved
by accelerating the speed of the communication link.

CHAPTER 5. RESULTS 86

5.5 Attack Scenario

This section focuses on describing an attack scenario which uses the FIU components
to introduce faults into the system. For this scenario, the hardware module, the FIU
client and host are required. The Java program which is executed in the VM is listed in
Appendix A.7. The scenario shown in the source listing is a simplified pin verification
program. During this attack scenario, a fault will be introduced during a writer operation
performed on the operand stack. When the method for the pin verification is called on
line 16 of the source code, the return value is put onto the operand stack and a fault is
introduced to the system. The basic steps to set up the fault injection from the FIU host
are illustrated in Figure 5.2 and are straightforward. The main steps to setup and prepare
the fault injection are:

• Analyze the Java Code - At the beginning, the source code of the program
has to be analyzed. In this attack scenario, a simple pin verification is performed.
Depending on the return value of the validatePin method, the amount stored in the
application is decreased or not. In line 31 the validatePin method is called with
the pin 4321. When the method is analyzed, it becomes visible that the pin 1234
is expected as the input. Therefore, in a normal scenario, the method will always
return false. However, we want to return true at line 19 of the source. The next
step is to analyze the byte-code at that line, to see what is executed.

• Analyze the Byte Code - After the code position, where the fault should be
injected has been found, the byte-code is analyzed. The example shows the byte-
code for the return statement. From Figure 4.20 it can be seen that the executed
line consists of two byte-codes: iconst 0 and ireturn. The interesting byte-code is
iconst 0, which places a constant value of 0 onto the operand stack. The 0 represents
the value of the false. To successfully introduce a fault and change the boolean
return value of the method from false to true, a 1 instead of a 0 has to be put onto
the operand stack. At this point the user knows, where he wants to inject a fault
(iconst 0 byte-code) and what the fault should do (replace the 0 with a 1). To collect
all necessary data and perform a successful fault, an analyzation of the C code of
the executed byte-code is required.

• Analyze the C Code - This step is not always required, depending on the user
knowledge of the used VM. It is necessary to see how many memory accesses on the
operand stack are performed during the execution of the byte-code. The byte-code
executed for iconst 0 in the SimpleRTJ VM is shown in Listing 5.3. This byte-code
is very simple and only performs one write onto the operand stack. Each entry on
the operand stack consists of a 32-bit value, and therefore 4 8-bit values are written
at this point.

• Setup Fault Routine - Now, all required data is collected. To set up the fault in
the FIU host, the user has to add a fault configuration and a fault injection point.

– Memory Area - First, the user has to configure the used memory areas. Only
one memory area is required in this fault scenario and has to be set to the
operand stack.

CHAPTER 5. RESULTS 87

– Fault Configuration - For the fault configuration, the fault number, fault type,
access count and mask are required. The fault number is an arbitrary value
from 0 to 32, which represents a software fault configuration in the FIU client.
The fault type can either be Stuck-at-One or Negate Input, since both of these
fault types result in a 1 stored on the operand stack instead of the 0. Since
only one access is performed during the byte-code execution, the access count
is set to 1. The mask can be set to any uneven value (this always leads to the
first bit to be 1 in the mask). In this example it is set to 0xFF.

– Fault Injection Point - For the fault injection point, the injection number, pro-
gram count, pass count, the memory area and fault direction have to be set up.
The injection number represents a software injection point in the FIU client (in
most cases an ascending index number). The program count is known from the
source code analysis and can be read using the GUI of the host. In this case
it is 1249. The pass count can be set to 0, since the fault should be injected
when the injection point is reached for the first time. The memory area is set
to the memory area of the operand stack and the fault direction has to be set
to WRITE.

• Setup Evaluation - Concerning the fault attack, it has to be evaluated if it was
successful or not. Therefore, at some point of the program, the execution needs to
be halted and a value has to be retrieved. This value can then be compared to a
reference value. In this attack scenario, the amount variable is used. In a normal
program execution, the amount variable should be 10 at the end of the program
execution. In the attack scenario, this value should be changed to 9. The user can
set an additional break-point at line 40 to halt the program execution. When this
point is reached, the user can use an inspection configuration to read the variable. In
the attack scenario, the amount variable is a local variable in slot 2. This information
can be retrieved by looking into the

”
Class Information“ part of the GUI.

• Run Program - After everything is set up, the program can be executed. After
each executed byte-code, the FIU client evaluates if an injection- or break-point is
reached. So when the program counter reaches the byte-code of the return statement
(program counter 1249), the FIU software module evaluates the fault configuration
and configures the hardware unit. Therefore, the memory area and the fault con-
figuration are stored in the hardware unit. After that, the C code for the byte-code
is executed. Now the VM accesses the memory area of the operand stack and the
hardware unit triggers a fault. Due to the fault setup, the value 0 is changed to 255.
When the VM now reads this value from the operand stack, it is interpreted as a
Boolean true instead of a false.

• Evaluate - When the second break-point is reached, the execution is halted and the
host is notified. Now the user can use the inspection configuration to retrieve the
value of the amount variable. When 9 is returned, the attack was successful. Oth-
erwise the attack was unsuccessful and the user has to analyze the fault parameters.

CHAPTER 5. RESULTS 88

i n t16 i c o n s t (in t16 va l) {
2 vm sp−>i = va l ;

vm sp++;
4 re turn ACTION NONE;
}

Listing 5.3: Executed C Code for the iconst Byte-Code

Program Start

Open Project

Select & Setup
Connection

Adapter

Add Fault
Configurations

Add Fault
Injection Points

Add Inspection
Configurations

Connect to
Client

Setup Memory
Areas

Download
Configuration

Program
Download
Required?

Download
Binary Source

Yes

Download
Configuration

No

Start Program
Execution

Wait for Break-
Point

Inspect
Variables

Conditions
Satisfied?

No Restart Program

Program End

Figure 5.2: Example Workflow of a Fault Setup in the FIU Host

CHAPTER 5. RESULTS 89

5.6 Drawbacks

During the implementation and evaluation of the FIU components, a problem occurred in
combination with the LEON3 processor. Since the hardware unit is placed between the
processor and the memory controller, the caching system and the MMU of the LEON3
were disabled. This was done to avoid cache accesses and to count all memory accesses.
For write accesses performed on the memory, everything works as expected: When a 8-bit
value is written by the processor, this 8-bit value is put onto the bus and stored into the
memory. The same holds for 16- and 32-bit values. The FIU hardware unit can count all
memory accesses according to the implemented bus standard.
When a read access is performed by the LEON3, the behavior of the bus access is not
as imagined. For reasons unknown, every time a read (ld, ldub, etc.) is performed in the
processor, the processor executed 8 consecutive 32-bit reads from the memory controller.
This behavior occurs independent of the size of the read value (8, 16, 32 bit). When the
processor executes a ld instruction from address 0x400ffee4, all values from the address
range 0x400ffee0 to 0x400ffefc are read from the bus and therefore the memory controller.
This leads to problems with the setup of the FIU hardware unit, since every one of these
accesses is counted. Therefore, when this whole memory area is in range of the configura-
tion of the hardware unit, the count is set to 8∗4 = 32. This leads to the issue that precise
faults cannot be performed for read accesses. To counter these problems, fault campaigns
can be used to evaluate different access counts.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Within this thesis, the design and implementation of a Java fault injection system was il-
lustrated. A LEON3 system has been implemented, including the fault injection hardware
module which injects the faults into the system and which is controlled by the software
unit and the host PC.
At the beginning of this thesis, different designs towards a Java fault injection system were
evaluated. The final conclusion was that a hardware/software co-design approach is the
best solution due to its flexibility, portability and realism of fault simulations. This design
was then implemented, consisting of three main parts: the hardware unit, the software
unit and the host.
The hardware unit was designed to be used within a bus system. The system is intended
to be used in a broad range of applications and different environments, and therefore a
standardized interface has to be used. Depending on the used bus system, a bus controller
needs to be implemented to get a working fault injection system.
The reference implementation was done on a LEON3 development board with a mounted
Spartan-3 FPGA. For the hardware unit, the system AMBA bus was used: the APB for
the configuration and the AHB as fault interface. The hardware unit is intended to inject
faults on the bus between the LEON3 processor and the memory controller. Therefore, the
hardware fault injection unit was placed between these two communication parts. With
this setup, the hardware unit can be configured to inject faults when certain memory
addresses are accessed. The software unit was integrated within the SimpleRTJ VM im-
plementation. Therefore, several data providing functions had to be implemented which
are used by the FIU software unit. Additionally, the VM had to be changed to be con-
trollable by the software unit. The communication between the client and the host was
implemented using the serial UART interface of the FPGA board.
Additionally, to the hardware and software unit, a host was implemented. Since the
system is mostly intended to be used in embedded devices, an easy-to-use configuration
interface had to be added. The host interface is intended to help the user to set up a fault
scenario. This is done by providing useful features which allows browsing the source code
and find the exact location of a certain byte-code where a fault should be injected. Simple
mechanism to control the control flow of the executed Java program are also part of the

90

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

host. The host is implemented in Java, and uses the EclipseRCP technology to generate
a user-friendly user interface.
To set up a fault scenario using the tool implemented in this thesis, several steps need to
be performed. At first, the exact location, where the fault should be introduced in the
system needs to be found. The host provides the user features to help with this task.
When the location (program count) has been found, a new fault setup needs to be added
to the system. This includes the fault type and an access count. This fault configuration
is bound to a specific location in the executed Java program. When the VM running on
the embedded device reaches this location in the code, the hardware unit is configured
and observes the memory accesses to the memory from that point on. When the fault
conditions are met (access count), the fault is triggered. When the Java program has been
completed or is halted, the user can use an inspection feature provided by the host to
evaluate if the fault was a success or not.
At the end of the thesis, the hardware overhead and performance of the fault injection
framework was evaluated. The hardware overhead of the fault injection system hardly
depends on the number of configuration registers and memory areas used by the hardware
unit. Another factor increasing the hardware size was that the hardware unit was de-
signed to work with zero-delay, so the original system is not altered in any way (regarding
the clock cycles). The hardware overhead compared to the overall reference system was
measured to be between 13% to 70%. When the system was compared, regarding the sim-
ulation time and the time required to execute on hardware, a speedup of approximately
6000 times was observed. Due to the high complexity of the complete system, simulation
is not a sufficient medium to inject faults. At last, an attack scenario was shown which
described how the complete system interacts with each other to inject a fault into the
system.

6.2 Future Work

1. Thread Support - The current implementation of the FIU does not support
threads. Since this system is mainly intended to be used with Java Card systems, this
feature was not that relevant for the implementation. However, it may be supported
in the future.

2. Other Bus System Support - Currently, only the AMBA AHB system is sup-
ported by the system. To reuse the system in an easy way, other bus systems could
be supported. Therefore, a new bus controller needs to be implemented.

3. Other VM Support - Currently, the only supported VM is SimpleRTJ. This VM
is not a Java Card VM, but rather a subset of the JVM standard. Other VM support
would require additional data providers.

4. Enhanced Communication Interface - The currently selected communication
interface is the serial port. Since this is not a very fast communication interface, the
main time during a fault injection is required to transfer the data to the embedded
device. This is especially true for small programs which have a short execution
time. Additional communication interfaces (e.g. Ethernet) could enhance the fault
performance.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 92

5. Extended Campaign Scripting Interface - The scripting interface for the fault
campaigns is currently very simple. Only the basic functionality is provided. An
extended scripting interface could enhance the possibilities of the fault campaigns.

6. Automatic Placement - Other VHDL base fault injection frameworks support
automatic placement of saboteur units. However, these frameworks focus on single-
line saboteur placement. The algorithm is quite easy, searching the VHDL code
for signals where saboteurs can be placed. Using a similar approach for the FIU
proposed in this thesis would be rather complex, since bus systems and connections
need to be searched in the code.

Appendix A

Code Examples

A.1 Client Socket Communication

1 #inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

3 #inc lude <uni s td . h>
#inc lude <s t r i n g . h>

5 #inc lude <sys / types . h>
#inc lude <sys / socket . h>

7 #inc lude <sys / i o c t l . h>
#inc lude <ne t i n e t / in . h>

9 #inc lude <netdb . h>

11 #inc lude <conf . h>
#inc lude <fiu comm . h>

13 #inc lude <f i u comm socket con f . h>

15 i n t sock fd ;
i n t portno = FIU COMMPORT;

17 s t r u c t sockaddr in se rv addr ;
s t r u c t hostent ∗ s e r v e r ;

19

bool in i t communicat ion () {
21 sock fd = socket (AF INET, SOCK STREAM, 0) ;

i f (sock fd < 0) {
23 p r i n t f (”ERROR opening socket \n”) ;

r e turn 0 ;
25 }

27 s e r v e r = gethostbyname (” l o c a l h o s t ”) ;
i f (s e r v e r == NULL) {

29 f p r i n t f (s tde r r , ”ERROR, no such host \n”) ;
r e turn 0 ;

31 }
bzero ((char ∗) &serv addr , s i z e o f (s e rv addr)) ;

33 s e rv addr . s i n f am i l y = AF INET ;
bcopy ((char ∗) s e rver−>h addr , (char ∗) &serv addr . s i n addr . s addr ,

35 se rver−>h l ength) ;
s e rv addr . s i n p o r t = htons (portno) ;

93

APPENDIX A. CODE EXAMPLES 94

37 i f (connect (sockfd , (s t r u c t sockaddr ∗) &serv addr , s i z e o f (s e rv addr)) <
0) {
p r i n t f (”ERROR connect ing \n”) ;

39 re turn 0 ;
}

41

re turn 1 ;
43 }

45 void c lose communicat ion () {
c l o s e (sock fd) ;

47 }

49 uint32 t r an s c e i v e (u int8 ∗ req , u int32 req l ength , u int8 ∗ resp ,
u int32 r e sp l eng th) {

51 t ransmit (req , r eq l eng th) ;
r e turn r e c e i v e (resp , r e sp l eng th) ;

53 }

55 uint32 r e c e i v e (u int8 ∗ resp , u int32 r eq l eng th) {
re turn read (sockfd , resp , s i z e o f (u int8) ∗ r eq l eng th) ;

57 }

59 uint32 transmit (u int8 ∗ resp , u int32 r eq l eng th) {
re turn wr i t e (sockfd , resp , s i z e o f (u int8) ∗ r eq l eng th) ;

61 }

63 bool i s d a t a a v a i l a b l e () {
i n t count ;

65 i o c t l (sockfd , FIONREAD, &count) ;

67 re turn count > 0 ;
}

Listing A.1: Example Implementation of an FIU Client Communication Interface for Unix
Sockets

A.2 Server Socket Communication

pub l i c c l a s s FIUSocketServer extends AbstractStreamServer {
2

pr i va t e f i n a l s t a t i c S t r ing PROPERTYKEYPORT = ”port ” ;
4

pr i va t e ServerSocket s e rve rSocke t ;
6 pr i va t e Socket c l i e n t S o c k e t ;

8 pr i va t e i n t port ;

10 pub l i c FIUSocketServer () {
super () ;

12 }

14 @Override
pub l i c S t r ing getName () throws IOException {

APPENDIX A. CODE EXAMPLES 95

16 re turn ”Socket Server ” ;
}

18

@Override
20 pub l i c S t r ing ge tDe s c r i p t i on () throws IOException {

re turn ” Server which uses TCP/IP socke t s to communicate with the f a u l t
i n j e c t i o n un i t c l i e n t ” ;

22 }

24 @Override
protec ted void connectToCl ient () throws IOException {

26 s e rve rSocke t = new ServerSocket (port) ;

28 l og . i n f o (”Waiting f o r c l i e n t to connect . . . ”) ;
c l i e n t S o c k e t = se rve rSocke t . accept () ;

30 l og . i n f o (” Server i n i t i a l i z e d . Socket connected . ”) ;

32 setInStream (c l i e n t S o c k e t . getInputStream ()) ;
setOutStream (c l i e n t S o c k e t . getOutputStream ()) ;

34 }

36 @Override
pub l i c Map<Str ing , Object> ge tRequ i r edProper t i e s () {

38 Map<Str ing , Object> props = new HashMap<Str ing , Object>() ;
props . put (PROPERTYKEYPORT, 6666) ;

40 re turn props ;
}

42

@Override
44 pub l i c void se tProper ty (S t r ing name , S t r ing value) {

i f (name . equa l s (PROPERTYKEYPORT))
46 port = In t eg e r . valueOf (value) ;

}
48

@Override
50 protec ted void i n i t i a l i z e S e r v e r () throws IOException {

}
52

@Override
54 protec ted void disconnectFromCl ient () throws IOException {

super . d i sconnectFromClient () ;
56

i f (c l i e n t S o c k e t != nu l l)
58 c l i e n t S o c k e t . c l o s e () ;

60 i f (s e rve rSocke t != nu l l)
s e rve rSocke t . c l o s e () ;

62 }

64 }

Listing A.2: Example Implementation of an FIU Host Communication Interface for Sockets

APPENDIX A. CODE EXAMPLES 96

A.3 FIU Hardware Register Usage

A.4 Fault Injection Unit SimpleRTJ Provider

uint8 ∗ APPNAME = (uint8 ∗) ”DEBUGAPP ” ;
2

void f iuF i l lSynchResponse (f i u r e s p s y n c h t ∗ re sp) {
4 resp−>heap = (uint32) ABS LOC(con f ig−>heap s ta r t) ;

resp−>r e f s = con f i g−>r e f e r e n c e s ;
6 resp−>s t r i n g s = con f ig−>s t r i n g s ;

resp−>threads = con f ig−>threads ;
8 resp−>app s ta r t = (uint32) ((u int32 ∗) con f i g−>app s ta r t) ;

resp−>t im e s l i c e = con f ig−>t im e s l i c e ;
10 resp−>t imers = con f ig−>t imers ;

resp−>events = con f i g−>events ;
12 resp−>unicode = ENABLE UNICODE;

resp−>c l v e r = SWVER;
14

copyMem(resp−>app name , APPNAME, 9) ;
16 }

void f iuF i l lMemstat (f i u r e sp memsta t t ∗ re sp) {
18 resp−>heap = (uint32) ABS LOC(con f ig−>heap s ta r t) ;

resp−>r e f s = con f i g−>r e f e r e n c e s ;
20 resp−>s t r i n g s = con f ig−>s t r i n g s ;

resp−>threads = con f ig−>threads ;
22 }

void fiuSetProgramMemory (u int32 o f f s e t , u int32 length , u int8 ∗ data) {
24 copyMem(con f ig−>app s ta r t + o f f s e t , data , l ength) ;
}

26 bool isPCReached (u int32 brkPC) {
i f (CONVERT(REL LOC(vm pc)) == brkPC)

28 re turn true ;
r e turn f a l s e ;

30 }
void getCurrentOSMemoryRange (f iu memrange t ∗ range) {

32 f rame t ∗ cur r f rame = th r a c t i v e−> cur r f rame ;

34 uint32 s p s i z e = f r ame s i z e − curr f rame−>method−>l o c a l s − FRAME HDR SIZE;
range−>addr lo = (uint32) (cur r f rame + curr f rame−>method−> l o c a l s +
FRAME HDR SIZE) ;

36 range−>addrhi = range−>addr lo + s p s i z e ;
}

38 void getCurrentLVMemoryRange (f iu memrange t ∗ range) {
uint32 l o c a l s = th r a c t i v e−>curr f rame−>method−> l o c a l s ;

40

range−>addr lo = (uint32) &(th r a c t i v e−>curr f rame−>l o c a l s [0]) ;
42 range−>addrhi = ((u int32) &(th r a c t i v e−>curr f rame−> l o c a l s [l o c a l s])) +

s i z e o f (va l u e t) ;
}

44 void getCurrentPCMemoryRange (f iu memrange t ∗ range) {
range−>addr lo = ((u int32) th r a c t i v e−>cur r f rame) + s i z e o f (f rame t ∗) +

s i z e o f (va l u e t ∗) ;
46 range−>addrhi = ((u int32) th r a c t i v e−>cur r f rame) + s i z e o f (f rame t ∗) +

s i z e o f (va l u e t ∗) + s i z e o f (u int8 ∗) ;
}

APPENDIX A. CODE EXAMPLES 97

48 void getCurrentBAMemoryRange (f iu memrange t ∗ range) {
range−>addr lo = (uint32) con f ig−>app s ta r t ;

50 range−>addrhi = (uint32) (con f i g−>app s ta r t + FIU BA SIZE) ;
}

52 uint32 in spe c tLoca lVar i ab l e (u int32 object , u int16 s l o t) {
re turn th r a c t i v e−>curr f rame−> l o c a l s [s l o t] . va l ;

54 }
uint32 i n s p e c t S t a t i cVa r i a b l e (u int32 object , u int16 s l o t) {

56 re turn s t a t i c s t a r t [s l o t] . va l ;
}

58 uint32 getFIUPC () {
re turn (u int32) REL LOC(vm pc) ;

60 }

Listing A.3: Example Implementation of an FIU Data Provider for SimpleRTJ

A.5 Fault Campaign Sekelton

function setupFaultRun (runSetup , c o n f I t e r a t i o n) {
2 runSetup . c on f i g u r a t i o n s = 1 ;

runSetup . i n j e c t i o nPo i n t s = 2 ;
4 }

6 function s e tupFau l tCon f igurat ion (numConf , conf , c o n f I t e r a t i o n) {
conf . number = numConf ;

8 conf . accessCount = c on f I t e r a t i o n + 1 ;
conf . mask = 255 ;

10 conf . faultType = 0 ;
}

12

function setupFaultPoint (numPoint , point , c on f I t e r a t i on , p o i n t I t e r a t i o n) {
14 i f (numPoint == 0) {

point . number = numPoint ;
16 point . pc = 1306 ;

po int . passCount = 0 ;
18 point .memareaConfNum = 0 ;

po int . ha l tExecut ion = fa l se ;
20 point . conf igureFIU = true ;

po int . d i r e c t i o n = "WRITE" ;
22 point . memarea = 0 ;

po int . f au l tCon f i gu r a t i on = 0 ;
24 } else i f (numPoint == 1) {

point . number = numPoint ;
26 point . pc = 1318 ;

po int . passCount = 0 ;
28 point .memareaConfNum = 0 ;

po int . ha l tExecut ion = true ;
30 point . conf igureFIU = fa l se ;

}
32 }

34 function s e tup In spec t i onCon f i gu ra t i on (in spec t i on , c on f I t e r a t i on ,
p o i n t I t e r a t i o n) {

i n s p e c t i on . inspect ionType = "LOCAL" ;

APPENDIX A. CODE EXAMPLES 98

36 i n s p e c t i on . ob j e c t = 0 ;
i n sp e c t i on . s l o t = 2 ;

38 }

40 function a s s e r t In spe c t i onVa lu e (value , c on f I t e r a t i on , p o i n t I t e r a t i o n) {
return value == 10 ;

42 }

Listing A.4: Skeleton Script for a Fault Campaign

A.6 C Program Testing Fault Injection

i n t main () {
2 p r i n t f (” S ta r t i ng FIU t e s t \n”) ;

4 uint8 value1 = 0 ;
u int8 value2 = 0 ;

6 uint8 va lue2 1 = 0 ;
u int32 value3 = 0 ;

8 uint32 value4 = 0 ;
u int32 value5 = 0 ;

10

f i u c o n f i g u r a t i o n t f i u c o n f = { FIU HW BASE ADDRESS, FIU HWMEMAREAS,
FIU HWCONF PERMEMAREA } ;

12 f i u hw i n i t (& f i u c o n f) ;

14 f iu memarea t memarea1 = { ((u int32) & value1) + s i z e o f (u int8) , (u int32) &
value5 } ;

f iu memarea t memarea2 = { ((u int32) & value1) + s i z e o f (u int8) , (u int32) &
value5 } ;

16

// Setup memory areas
18 f i u s t o r e memar ea con f i gu r a t i on (&memarea1 , 0) ;

f i u s t o r e memar ea con f i gu r a t i on (&memarea2 , 1) ;
20

// Setup f a u l t c on f i g u r a t i o n s
22 f i u c o n f i g t conf1 ;

f i u c o n f i g t conf2 ;
24 f i u c o n f i g t conf3 ;

f i u c o n f i g t conf4 ;
26

f i u s e t a c c e s s c o u n t (13 , &conf1) ;
28 f i u s e t f a u l t t y p e (FAULT TYPE NEGATE INPUT, &conf1) ;

f i u s e t mask (255 , &conf1) ;
30

f i u s e t a c c e s s c o u n t (14 , &conf2) ;
32 f i u s e t f a u l t t y p e (FAULT TYPE NEGATE INPUT, &conf2) ;

f i u s e t mask (255 , &conf2) ;
34

f i u s e t a c c e s s c o u n t (15 , &conf3) ;
36 f i u s e t f a u l t t y p e (FAULT TYPE NEGATE INPUT, &conf3) ;

f i u s e t mask (255 , &conf3) ;
38

f i u s e t a c c e s s c o u n t (16 , &conf4) ;

APPENDIX A. CODE EXAMPLES 99

40 f i u s e t f a u l t t y p e (FAULT TYPE NEGATE INPUT, &conf4) ;
f i u s e t mask (255 , &conf4) ;

42

value1 = 123 ;
44 value2 = 152 ;

va lue2 1 = 12 ;
46

uint8 ∗value1p = &value1 ;
48 uint8 ∗value2p = &value2 ;

u int8 ∗ value2 1p = &va lue2 1 ;
50

// Stor ing c on f i g u r a t i o n s
52 f i u s t o r e c o n f i g u r a t i o n (&conf1 , 0 , 0 , 1) ;

f i u s t o r e c o n f i g u r a t i o n (&conf2 , 0 , 1 , 1) ;
54 f i u s t o r e c o n f i g u r a t i o n (&conf3 , 1 , 0 , 1) ;

f i u s t o r e c o n f i g u r a t i o n (&conf4 , 1 , 1 , 1) ;
56

// Reading va lue s
58 p r i n t f (”Value1 : %d ; Expected : 123\n” , ∗value1p) ;

p r i n t f (”Value2 : %d ; Expected : 152\n” , ∗value2p) ;
60 p r i n t f (”Value2 1 : %d ; Expected : 12\n” , ∗ value2 1p) ;

62 // Stor ing c on f i g u r a t i o n s
f i u s t o r e c o n f i g u r a t i o n (&conf1 , 0 , 0 , 1) ;

64 f i u s t o r e c o n f i g u r a t i o n (&conf2 , 0 , 1 , 1) ;
f i u s t o r e c o n f i g u r a t i o n (&conf3 , 1 , 0 , 1) ;

66 f i u s t o r e c o n f i g u r a t i o n (&conf4 , 1 , 1 , 1) ;

68 // Reading va lue s second time
p r i n t f (”Value1 : %d ; Expected : 123\n” , ∗value1p) ;

70 p r i n t f (”Value2 : %d ; Expected : 152\n” , ∗value2p) ;
p r i n t f (”Value2 1 : %d ; Expected : 12\n” , ∗ value2 1p) ;

72

re turn 0 ;
74 }

Listing A.5: Test Program used to evaluate the FIU using a C Program

A.7 Java Program for Fault Testing

import javax . events . ∗ ;
2 import javax .memory . ∗ ;

4 c l a s s Va l idat i onPro j extends Thread
{

6 s t a t i c S t r ing CORRECT PIN STRING = ” letMeEnter ” ;

8 s t a t i c S t r ing newLineStr ing = System . getProperty (” l i n e . s epa ra to r ” , ”\ r \n
”) ;
s t a t i c byte [] newLineBytes = newLineStr ing . getBytes () ;

10

s t a t i c void main (St r ing [] a rgs)
12 {

new Val idat i onPro j () . s t a r t () ;

APPENDIX A. CODE EXAMPLES 100

14 }

16 pub l i c boolean va l i da t eP in (i n t pin) {
i f (pin == 1234)

18 re turn true ;
r e turn f a l s e ;

20 }

22 pub l i c void except ion () {
}

24

pub l i c void run ()
26 {

i n t pinEntry = 4321 ;
28 i n t amount = 10 ;

boolean pinVal id ;
30

i f (va l i da t eP in (pinEntry)) {
32 amount = amount − 1 ;

} e l s e {
34 except ion () ;

}
36

p r i n t l n (”New Amount : ” + amount) ;
38 }

40 s t a t i c i n t Count = 0 ;
s t a t i c void p r i n t l n (S t r ing s)

42 {
pr in t (s) ;

44 pr in t (newLineStr ing) ;
Count++;

46 }
s t a t i c nat ive void p r i n t (S t r ing s) ;

48 }

Listing A.6: Test Program written in Java used to evaluate the FIU Integration into
SimpleRTJ

Glossary

communication interface is used as a term to describe the implementation for a specific
communication port. In this context it is mostly referenced to in software description
to separate between the physical port and a software interface implementation for
this port. 38, 68, 69, 72, 78, 79

communication port references a physical communication port. This can either be a
Ethernet adapter or a serial port. 38, 68, 72, 78, 79

fault campaign consists of several fault pattern. They are used to test a hardware
system with a large amount of faults. In general a fault campaign should evaluate a
system of its fault tolerance.. 30, 33, 85

fault condition is a point where a fault is introduced into the system. A fault condition
could be specified by time or other conditions, as, for example, a memory access at
a specified memory area. 12

memory area is a pre-defined range in a memory. The memory area defines the start
address and end address of a region in the memory. 43

zero-delay is used to describe operations which happen in one cycle. This term is only
used during the hardware description and means that the no additional clock cycles
are required for the operation. 13, 41, 44, 57, 60

101

Acronyms

AHB Advance Hi-Performance Bus. 49, 52, 55, 57, 58, 61, 64, 66, 83, 84, 90, 91

AMBA Advanced Microcontroller Bus Architecture. 37, 55, 58, 63, 64, 90, 91

APB Advanced Peripheral Bus. 49, 52, 55, 61–64, 67, 80, 83, 84, 90

BCC Bare C Compiler. 49

DSU Debug Support Unit. 52

DUT Device Under Test. 32, 43

EEPROM Electrically Erasable Programmable Read-Only Memory. 15

FIU Fault Injection Unit. 7, 15, 35–38, 41, 43–47, 49, 50, 53–55, 58–75, 77, 79, 80, 82–84,
86–92

FPGA field-programmable gate array. 13, 29, 30, 47, 49, 63, 75, 80, 82, 85, 90

FTM Fault Tolerance Mechanism. 26

GPIO General Purpose Input/Output. 30

GUI General User Interface. 76, 77, 87

ICC integrated circuit card. 10

J2SE Java Platform Standard Edition. 50

JCRE Java Card Runtime Environment. 10

JDK Java Development Kit. 80

JRE Java Runtime Environment. 80

JTAG Joint Test Action Group. 49, 52

JVM Java Virtual Machine. 46, 50, 91

MFI Modular Fault Injector. 7, 30–33

102

Acronyms 103

MMU Memory Management Unit. 84, 89

OS Operating System. 1, 2, 49, 54

PC Personal Computer. 50

RCP Rich Client Platform. 50

RISC Reduced Instruction Set Computer. 53

RTL Register Transfer Level. 1, 12, 13, 18

SDCC Small Device C Compiler. 49

SE secure element. 10

SimpleRTJ Simple Real Time Java. 49, 54, 55, 75, 83, 84, 86, 90, 91

SPARC Scalable Processor ARChitecture. 49, 53

SW Software. 40

UART Universal Asynchronous Receiver Transmitter. 72, 90

USB Universal Serial Bus. 52

VHDL Very High Speed Integrated Circuit Hardware Description Language. 17, 19, 22,
23, 26, 27, 29, 31–33, 49, 52, 55, 80, 83, 92

VM virtual machine. 12, 13, 15, 16, 32, 33, 36, 37, 45, 49, 54, 67–69, 72–76, 78, 80,
84–87, 90, 91

XML Extensible Markup Language. 76

Bibliography

[Apa] Apache. Project homepage of apache maven. http://maven.apache.org/.
Accessed: 2014-01-09.

[ARM] ARM. AMBA Bus Specifiation. http://www.arm.com/products/system-
ip/amba/amba-open-specifications.php. Accessed: 2014-01-08.

[BDH11] G. Barbu, G. Duc, and P. Hoogvorst. Java Card Operand Stack:Fault At-
tacks, Combined Attacks and Countermeasures. In E. Prouff, editor, Smart
Card Research and Advanced Applications, volume 7079 of Lecture Notes in
Computer Science, pages 297–313. Springer Berlin Heidelberg, 2011.

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of the IEEE,
94(2):370–382, 2006.

[BGB+08] J.-C. Baraza, J. Gracia, S. Blanc, D. Gil, and P.-J. Gil. Enhancement of
Fault Injection Techniques Based on the Modification of VHDL Code. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 16(6):693–
706, 2008.

[BGGG00] J.-C. Baraza, J. Gracia, D. Gil, and P. Gil. A prototype of a VHDL-based
fault injection tool. In Defect and Fault Tolerance in VLSI Systems, 2000.
Proceedings. IEEE International Symposium on, pages 396–404, 2000.

[BGGG05] J.-C. Baraza, J. Gracia, D. Gil, and P. Gil. Improvement of fault injection
techniques based on VHDL code modification. In High-Level Design Vali-
dation and Test Workshop, 2005. Tenth IEEE International, pages 19–26,
2005.

[BICL11] G. Bouffard, J. Iguchi-Cartigny, and J.-L. Lanet. Combined Software and
Hardware Attacks on the Java Card Control Flow. In E. Prouff, editor, Smart
Card Research and Advanced Applications, volume 7079 of Lecture Notes in
Computer Science, pages 283–296. Springer Berlin Heidelberg, 2011.

[BPC98] J. Boue, P. Petillon, and Y. Crouzet. MEFISTO-L: a VHDL-based fault
injection tool for the experimental assessment of fault tolerance. In Fault-
Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth Annual Inter-
national Symposium on, pages 168–173, 1998.

104

BIBLIOGRAPHY 105

[BTG10] G. Barbu, H. Thiebeauld, and V. Guerin. Attacks on java card 3.0 combin-
ing fault and logical attacks. In Proceedings of the 9th IFIP WG 8.8/11.2
international conference on Smart Card Research and Advanced Application,
CARDIS’10, pages 148–163, Berlin, Heidelberg, 2010. Springer-Verlag.

[CI03] H. C. Chien-In. Behavioral test generation/fault simulation. Potentials,
IEEE, 22(1):27–32, 2003.

[Com] RTJ Computing. Homepage of simplertj. http://www.rtjcom.com/. Ac-
cessed: 2014-01-08.

[ECLa] Project homepage of eclipse rcp. http://www.eclipse.org/home/categories/rcp.php.
Accessed: 2014-01-09.

[Eclb] Eclipse. Eclipse Typcho Project. http://eclipse.org/tycho/. Accessed: 2014-
01-09.

[Gaia] Aeroflex Gaisler. GRLIB IP Core Users Manual. Version 1.3.0 - B4133, July
2013.

[Gaib] Aeroflex Gaisler. Homepage of aeroflex gaisler. http://www.gaisler.com/.
Accessed: 2014-01-08.

[Gaic] Aeroflex Gaisler. Homepage of pender electronics. http://www.pender.ch/.
Accessed: 2014-01-09.

[Gaid] Aeroflex Gaisler. LEON3 GR-XC3S-1500 Template Design. October 2006.

[Gai01] Gaisler Research. The LEON Processor Users Manua, 2001.

[GGBG03] D. Gil, J. Gracia, J.C Baraza, and P.J Gil. Study, comparison and application
of different vhdl-based fault injection techniques for the experimental valida-
tion of a fault-tolerant system. Microelectronics Journal, 34(1):41 – 51, 2003.
¡ce:title¿Special Section on Defect and Dault Tolerance in {VSLI} Systems
(DFT)¡/ce:title¿.

[GKS+11] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock, and J. Haid. Modular
Fault Injector for Multiple Fault Dependability and Security Evaluations. In
Digital System Design (DSD), 2011 14th Euromicro Conference on, pages
550–557, 2011.

[GNU] GNU. Homepage of gnu gcc. http://gcc.gnu.org/. Accessed: 2014-01-08.

[Gnu13] Gnu. Using the GNU Compiler Collection, 2013.

[Gra] Mentor Graphics. Modelsim se 6.5. http://www.model.com/. Accessed:
2014-01-09.

[IR86] R. K. Iyer and D. J. Rossetti. A Measurement-based Model for Workload
Dependence of CPU Errors. IEEE Trans. Comput., 35(6):511–519, June 1986.

BIBLIOGRAPHY 106

[ITI] ITI. Homepage of the Institute of Technical Informatics.
https://www.iti.tugraz.at. Accessed: 2014-01-10.

[Koc96] P.-C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’96, pages 104–
113, London, UK, UK, 1996. Springer-Verlag.

[LBH+13] M. Lackner, R. Berlach, M. Hraschan, R. Weiss, and C. Steger. A Defensive
Java Card Virtual Machine to Thwart Fault Attacks by Microarchitectural
Support. In International Conference on Risks and Security of Internet and
Systems (CRiSIS). in press, 2013.

[LBL+13] M. Lackner, R. Berlach, J. Loinig, R. Weiss, and C. Steger. Towards the Hard-
ware Accelerated Defensive Virtual Machine Type and Bound Protection. In
S. Mangard, editor, Smart Card Research and Advanced Applications, vol-
ume 7771 of Lecture Notes in Computer Science, pages 1–15. Springer Berlin
Heidelberg, 2013.

[MMLC11] J.-B. Machemie, C. Mazin, J. Lanet, and J. Cartigny. SmartCM a smart card
fault injection simulator. In Information Forensics and Security (WIFS),
2011 IEEE International Workshop on, pages 1–6, 2011.

[MP08] W. Mostowski and E. Poll. Malicious Code on Java Card Smartcards: Attacks
and Countermeasures. In G. Grimaud and F.-X. Standaert, editors, Smart
Card Research and Advanced Applications, volume 5189 of Lecture Notes in
Computer Science, pages 1–16. Springer Berlin Heidelberg, 2008.

[Ora11a] Oracle. Java Card Platform - Runtime Environment Edition, 2011.

[Ora11b] Oracle. Java Card Platform - Virtual Machine Specification, Classic Edition,
2011.

[Pey99] Patrice Peyret. Java Card Technology for Smart Cards - Architecture and
Programmer’s Guide. Pearson Education, 1999.

[RXT] RXTX. Homepage of rxtx project. http://rxtx.qbang.org/. Accessed: 2014-
01-20.

[SDC] Project homepage of sdcc. http://sdcc.sourceforge.net/. Accessed: 2014-01-
09.

[STB97] V. Sieh, O. Tschache, and F. Balbach. VERIFY: evaluation of reliability using
VHDL-models with embedded fault descriptions. In Fault-Tolerant Comput-
ing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual International
Symposium on, pages 32–36, 1997.

[Ste05] Craig Steiner. The 8051/8052 Microcontroller: Architecture, Assembly Lan-
guage, And Hardware Interfacing. Universal Publishers, 2005.

BIBLIOGRAPHY 107

[Ver06] O. Vertanen. Java type confusion and fault attacks. In L. Breveglieri, I. Koren,
D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in
Cryptography, volume 4236 of Lecture Notes in Computer Science, pages 237–
251. Springer Berlin Heidelberg, 2006.

[VF10] E. Vetillard and A. Ferrari. Combined Attacks and Countermeasures. In
D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, editors, Smart Card Re-
search and Advanced Application, volume 6035 of Lecture Notes in Computer
Science, pages 133–147. Springer Berlin Heidelberg, 2010.

[vMA] vMAGIC. vmagic vhdl source parser.
http://sourceforge.net/projects/vmagic/. Accessed: 2014-02-09.

[Xil] Xilinx. Xilinx ise 14.2. http://www.xilinx.com/. Accessed: 2014-01-09.

