
Graz University of Technology

Institute for Computer Graphics and Vision

Siemens CT RTC ICV VIA-AT

Master’s Thesis

Geometric Abstraction for Noisy

Image-Based 3D Reconstructions

Thomas Holzmann
Graz, Austria, April 2014

Thesis supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Thesis advisors

Dipl.-Ing. Christof Hoppe

Dipl.-Ing. Dr.techn. Stefan Kluckner

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

With state-of-the-art reconstruction methods it is possible to create scene reconstructions

resulting in a point cloud representation consisting of millions of points. As such a large

amount of data is not processable for many applications, an abstracted representation is

needed. However, creating geometrically abstracted models from image-based scene re-

constructions is challenging due to noise and irregularities in the underlying reconstructed

model. Many state-of-the-art approaches focus on extracting geometric structures from

laser scan data which usually contain less noise. Others approximate surfaces using priors

like geometric primitives or other parametric representation methods without introducing

different levels of detail.

In this thesis, we present a geometric modeling method for noisy, image-based recon-

structions dominated by planar horizontal and orthogonal vertical structures. At dominant

horizontal structures, we partition the scene into horizontal slices. As a whole slice contains

similar vertical scene properties, we create a binary inside/outside labeling represented by

a floor plan for each slice by solving an energy minimization problem. Consecutively, we

create an irregular discretization of the volume according to the individual floor plans and

again label each cell as inside/outside by minimizing an energy function. By adjusting the

smoothness parameter, we introduce different levels of detail.

In our experiments, we show results with varying regularization levels using syntheti-

cally generated and real-world data. We discuss the level of regularization and the error

with respect to geometry for different parameter settings and point out strengths and

weaknesses of our approach.

Keywords. geometric scene abstraction, computational geometry, graph cuts, image-

based 3D reconstruction

v

Kurzfassung

Mit aktuellen, bildbasierten Rekonstruktionsmethoden ist es möglich, Rekonstruktionen

von Szenen bestehend aus Millionen von Punkten zu erstellen. Für viele Anwendun-

gen ist diese große Datenmenge allerdings schwer prozessierbar und muss deshalb in eine

abstrahierte, vereinfachte Form umgewandelt werden. Aufgrund von Rauschen und Un-

regelmäßigkeiten in bildbasierte 3D-Rekonstruktionen ist es jedoch schwierig, geometrisch

abstrahierte Modelle zu erzeugen. Viele aktuelle Ansätze konzentrieren sich nur auf die Ex-

trahierung geometrischer Strukturen von Laser Scan-Daten, welche üblicherweise weniger

Stördaten enthalten. Andere Methoden approximieren Oberflächen mithilfe von Annah-

men wie geometrischen Primitiven oder anderen parametrischen Repräsentationen, ohne

der Möglichkeit der Erzeugung von unterschiedlichen Levels of Detail.

In dieser Arbeit präsentieren wir eine geometrische Abstraktionsmethode für bild-

basierte 3D-Rekonstruktionen. Wir spezialiseren uns auf Szenen, welche hauptsächlich

aus planaren horizontalen und vertikalen Strukturen bestehen. An dominanten horizon-

talen Strukturen wird das Modell in horizontale Ebenen unterteilt. Durch Lösen eines

Energieminimierungsproblems werden Bereiche der Ebene als Innen oder Außen markiert.

Der Übergang zwischen den beiden Bereichen resultiert in einem Grundriss der jeweili-

gen Ebenen. Unter Verwendung der Grundrisse wird eine irreguläre Diskretisierung für

das gesamte Volumen erstellt, wobei jede Zelle durch Minimierung einer Energiefunktion

wiederum als Innen oder Außen markiert wird. Mithilfe eines Regularisierungsparameters

ist es möglich, unterschiedliche Levels of Detail zu erzeugen.

In unseren Experimenten präsentieren wir Ergebnisse mit verschiedenen

Regularisierungsgraden unter Verwendung von synthetisch generierten und realen Daten.

Wir diskutieren den Regularisierungsgrad und den Fehler bezüglich der Geometrie für

unterschiedliche Parametereinstellungen und zeigen die Stärken und Schwächen unseres

Ansatzes auf.

vii

Acknowledgments

This work would not have been possible without the help of my supervisors Prof. Dr.

Horst Bischof, Dr. Stefan Kluckner and Christof Hoppe, who supported me continuously

during the work of my thesis. Thank you for all the discussions, for carefully proofreading

my thesis and for supporting me at further scientific goals in addition to the supervision

of my thesis.

I also want to thank the whole team at Siemens in Graz. They supported me with

discussions and with the possibility to use all the equipment and data from Siemens for

the work at my thesis. Additionally, I gained a lot of experience while working with them

besides my studies in the last years.

Last but not least, I want to thank my family and especially my parents. They gave

me the possibility to study and supported me during my whole studies.

This work was supported by the Austrian Research Promotion Agency (FFG)

and Siemens AG within the CONSTRUCT research project.

ix

Contents

1 Introduction 1

2 Related Work 7

2.1 Single-View . 7

2.2 3D Approaches . 8

2.3 Summary . 11

3 Theory and Background 13

3.1 Reconstruction of Point Clouds . 13

3.1.1 Structure from Motion . 13

3.1.1.1 Camera Calibration . 14

3.1.1.2 Image Feature Correspondences 14

3.1.1.3 Triangulation . 15

3.1.1.4 Multiview Reconstruction 16

3.1.2 Dense Reconstruction . 17

3.1.2.1 Patch-based Multi-view Stereo 17

3.2 From Points to Meshes . 18

3.2.1 Poisson Surface Reconstruction . 18

3.2.2 Surface Reconstruction Using Delaunay Triangulation 20

3.2.2.1 Delaunay Triangulation . 20

3.2.2.2 Reconstruction Method . 21

3.3 Energy Minimization via Graph Cuts . 22

3.3.1 The Energy Minimization Problem 22

3.3.2 Graph Cuts . 23

3.3.3 Energy Minimization Using the Expansion Move Algorithm 24

3.4 Mean Shift . 25

3.4.1 Intuitive Explanation . 25

3.4.2 The Mean Shift Procedure . 25

3.5 Summary . 27

xi

xii CONTENTS

4 Geometric Abstraction with Horizontal Slicing 29

4.1 Overview . 29

4.2 Slicing and Boundary Segmentation . 30

4.2.1 Slice Extraction . 30

4.2.2 Binary Segmentation . 31

4.2.2.1 Free Space Score . 31

4.2.2.2 Binary Labeling as an Energy Minimization Problem . . . 35

4.2.2.3 Outline Simplification . 36

4.3 Slice Combination . 37

4.3.1 Extrusion to 3D . 38

4.3.2 Volumetric Cells . 38

4.3.3 Regularization With Energy Minimization 41

4.4 Input Data and Preprocessing . 43

4.4.1 Reference Plane Estimation and Coordinate Transform 44

4.4.2 Densification of Point Cloud . 45

5 Experiments 47

5.1 Evaluation Metrics . 47

5.1.1 Dice Score . 48

5.1.2 Regularization Measure . 50

5.1.3 Hausdorff Distance . 50

5.2 Evaluation Data . 52

5.2.1 Synthetic Models . 52

5.2.2 Models from Real-World Image Data 53

5.3 Results . 56

5.3.1 Comparison to Commonly Used Mesh Simplification Methods 56

5.3.2 Level of Detail in Vertical Direction 57

5.3.3 Smoothing of Volumetric Cells . 57

5.3.4 Robustness Against Noise and Clutter 59

5.3.5 Limitations . 60

5.3.6 Processing Time . 61

6 Conclusion and Future Work 71

Bibliography 73

List of Figures

1.1 Sparse and dense point cloud. 1

1.2 Meshed 3D point clouds. 2

1.3 Google Earth - Manhattan. 3

2.1 Geometry using line segments . 8

2.2 Geometric representations computed from 3D data 10

2.3 CSG-based geometric representation . 10

3.1 Salient points and matches between two images. 15

3.2 Point correspondence geometry. 16

3.3 A patch and the photometric discrepancy function. 18

3.4 Oriented points and Poisson indicator function. 19

3.5 Voronoi diagram and Delaunay triangulation. 21

3.6 Graph cut expansion move. 24

3.7 Mean Shift mode estimation. 26

4.1 Overview of our processing workflow. 30

4.2 Slice boundary detection using mode estimation. 32

4.3 Slice boundaries depending on Mean Shift bandwidth. 32

4.4 Ray cast from camera to voxels. 34

4.5 Projected free space score of a slice. 35

4.6 Binary labeling and outline simplification of a slice. 37

4.7 Floor plans extruded to 3D. 38

4.8 Volumetric cell representation. 39

4.9 Outlines and volumetric cells projected to the ground plane. 40

4.10 Cell scores of a slice. 41

4.11 Volumetric cells with corresponding graph and neighbor weights. 43

4.12 Geometries with different values for λ. 44

4.13 Model with reference plane. 45

4.14 Point cloud densification. 46

5.1 Dice score. 48

xiii

xiv LIST OF FIGURES

5.2 Backprojected masks used for Dice score calculation. 49

5.3 Complexity scores from projected outlines. 50

5.4 Hausdorff distance. 51

5.5 Virtual camera views of synthetic model. 53

5.6 Synthetic models used for evaluation. 54

5.7 Images from Aspern building. 55

5.8 Real-world data models used for evaluation. 55

5.9 Comparison with Quadric Edge Collapse. 56

5.10 Points contained in a slice. 60

5.11 Results of the Joanneum model. 62

5.12 Dice and complexity scores of the Joanneum model (d = 10). 63

5.13 Dice and complexity scores of the Joanneum model (d = 25). 64

5.14 Results of the Centre model. 65

5.15 Results of the Aspern model. 66

5.16 Results of the Siemenscity model. 67

5.17 Processing time distribution. 69

List of Tables

5.1 Dice and complexity scores of the Centre model. 61

5.2 Dice and complexity scores of the Aspern model. 61

5.3 Dice and complexity scores of the Siemenscity model. 68

5.4 Processing time analysis. 69

xv

Chapter 1

Introduction

Recently, 3D reconstruction techniques have reached maturity in quality and performance.

For example, using Structure from Motion (SfM), it is possible to reconstruct a sparse point

cloud from an unordered set of images. As a result, a point cloud like in Figure 1.1 (left)

is reconstructed. There exists freely availably SfM implementations like Bundler [44] [45].

However, for many applications the density of the point cloud is not sufficient and

needs to be densified in an additional step. For this, a commonly used method is Patch-

based Multi-view Stereo (PMVS) [19], which delivers a dense point cloud like in Figure 1.1

(right). Having a sufficiently dense point cloud, it is possible to approximate the surface of

the 3D scene using meshing techniques (for example, Poisson surface reconstruction [27])

to get a watertight mesh of the whole scene (as in Figure 1.2).

Figure 1.1: Sparse and dense point cloud. Left, one can see a sparse point cloud recon-
structed with SfM. Many parts of the scene, especially surfaces with less texture, are
represented by just a few points. Right, the sparse point cloud densified with PMVS is
shown. Many surfaces have a better representation by points. However, windows and the
texture-less regions (for example, the left top roof) are still not reconstructed well.

1

2 Chapter 1. Introduction

In addition to image-based reconstruction methods, cost effective RGB-D sensors like

Microsoft Kinect [4] or Time-of-Flight cameras became available. With these devices,

it is possible to get 3D information of a scene even if no texture exists or the scene is

insufficiently lightened. However, as these sensors capture their own emitted light, they

are limited to a scene in a range of some meters in front of the sensor.

Figure 1.2: Meshed 3D point clouds. In this figure, some examples of reconstructions
created by Siemens are shown. Left, you can see a 3D reconstruction of a building of
the Siemens City in Vienna. Right, you can see a 2.5D reconstruction of a factory hall.
In comparison to full 3D, a 2.5D representation just visualizes the depth information in
one direction. In this case, for every position of an estimated ground plane the maximum
height above this position in the scenery is visualized.

With the availability of these reconstruction methods, it is possible to generate point

clouds of a scene consisting of millions of points. However, transmitting, visualizing,

processing and analyzing the acquired data is far from practical use within applications.

For example, an important use case is to transmit 3D data over the Internet and possibly

visualize the data using an Internet browser. Considering this, models must be simplified

and data has to be reduced. For example, as building models reconstructed with millions

of points usually are dominated by planar structures, they can be modeled easily by

a small number of planes which extremely reduces the amount of data. For example,

Google Earth [21] visualizes cities using simplified 3D models of buildings mainly consisting

of planar structures (see Fig. 1.3). Additionally, as the usage of mobile devices with

limited computing power (like smartphones or tablets) increases continuously, a simpler

representation of the 3D models has to be used to enable these devices to process and

visualize the data in a reliable and usable way. Therefore, it is crucial to transform

the 3D data into a compact representation and simultaneously preserve as much scenery

and relevant details as possible. Further, to extract semantic information out of a 3D

3

reconstruction, it has to be separated into semantic meaningful parts first. For example,

by separating a building model into floors, a floor plan can be extracted for each level

as each level contains similar vertical structures. With this information, it is possible

to create adjustably regularized geometric 3D models, which can be enriched easily with

additional semantic information.

Figure 1.3: Google Earth 3D Models. In Google Earth, many 3D models of cities are
available. The visualized buildings are a simplified, textured representation of the scenery
and therefore can be transmitted smoothly over the Internet. In this figure, you can see
parts of Manhattan.

An area, in which compact representations of 3D objects have already been used for

a long time is computer-aided design (CAD). In CAD, various approaches exist on how

to model 3D object volumes (as described in [3]). One approach is to represent the

volumes using wireframes, which are vectors describing the edges of volumes. Another

method is to represent the geometric structures using geometric primitives like planes.

Thus every volume has to be represented with their object borders as planes. A more

complex representation is the solid modeling, where basic three-dimensional geometric

forms (e.g. prisms, cylinders, spheres) have solid volumes added or subtracted from them.

Moreover, properties for surface or physical interaction can be introduced and assigned

to consistent geometric primitives. Another approach is to describe the geometry as a

parametric model. In this representation, every entity, such as a solid, a line, an arc or a

filtering operation has parameters associated with it. These parameters control the various

geometric properties of the entity and also the locations within the model, which enables

4 Chapter 1. Introduction

a compact scene representation.

In our work, we focus on extracting meaningful geometric structures out of man-made

environments, which are, in many cases, dominated by planar surfaces. Our approach is

mainly inspired by Reconstructing the World’s Museums by Xiao and Furukawa [48] and

Indoor Scene Reconstruction using Primitive-driven Space Partitioning and Graph-cut by

Oesau et al. [37]. Both are using horizontal slicing in order to extract meaningful horizon-

tal segments of a model originating from laser scanner data and process them separately.

Finally, they fuse the slices into a single geometry model using different regularization

methods.

In contrary, we develop a geometric abstraction method which takes any meshed point

cloud as input. This introduces new difficulties, as image-based reconstructions tend to

contain more clutter which has to be handled in an appropriate way by the geometric

abstraction method. Following the idea of [48], we first identify horizontal slices that are

limited by dominant horizontal planar structures. For each slice, we generate a 2D floor

plan by solving an inside/outside labeling problem in a global optimal manner formulat-

ing an energy minimization problem. With this approach, we create a labeling of the

slices which is robust against clutter and generate an initial semantic interpretation of

the scene represented by the individual floor plans. In order to integrate the particular

slice informations into a consistent 3D model, we create an irregular discretization of the

volume according to the individual floor plans. The obtained volume elements are again

labeled as inside/outside by minimizing an energy function. For an individual building,

the whole procedure results in a set of floor plans and an adjustably regularized geometric

abstraction of the input 3D point cloud.

In our experimental evaluation, we show that our approach massively simplifies

the input mesh while the results are geometrically consistent with the input data.

We evaluate our method on synthetic models from Trimble Warehouse [32] and on

models from buildings reconstructed from images taken by Siemens. We show that the

error usually increases when increasing the regularization level and demonstrate that

our approach is computationally efficient and delivers accurate results where existing

methods fail.

This thesis is structured as follows: In Chapter 2 we discuss state-of-the-art

point cloud abstraction methods. Chapter 3 gives background information about the

used algorithms in our workflow. In Chapter 4, we describe our processing chain in

5

detail. We define the input data and explain the individual processing steps. Chapter 5

describes the evaluation process and shows results for different configurations. In the last

chapter, we discuss our results and possible future improvements.

Chapter 2

Related Work

To transform images or 3D data into geometric structures, numerous approaches exist.

They can be divided into two categories depending on the input they use: single-view

approaches and 3D data approaches. The following sections discuss these approaches.

2.1 Single-View

Using a single view image, a lot of work has been done in order to reconstruct indoor

scenes in a constrained Manhattan world setting. Lee et al. [31] detect line segments

and perform geometric reasoning using the segments to generate multiple physically valid

structure hypotheses. These hypotheses are evaluated using a so-called orientation map,

which is a map that expresses the local belief of region orientations computed from line

segments. Similarly, Ramalingam et al. [39] recover the spatial layout of an indoor scene

based on line segment junctions. They argument that man-made structures have a big

amount of line segments and line junctions. Using this information, they can reconstruct

the geometry of an indoor scene. Figure 2.1 shows an example of junctions in a living

room.

Targeted at outdoor scenes, Gupta et al. [22] build up a blocks world taking into

account physical properties and interactions of objects. Their work is inspired by the

“Blocks World” work from Roberts [40] in the 1960’s, which was an early attempt to

construct a scene understanding system for a closed artificial world with textureless objects

by using a generic library of polyhedral block components.

However, as all those approaches rely on single 2D images, they are somehow restricted

to a special problem definition and are not able to handle large scenes.

7

8 Chapter 2. Related Work

Figure 2.1: Identifying geometry by line segments. In [39], according to the appearance of a
junction similar to a letter, the junctions are classified in types like L, T, Y, X. Using this
information, it is possible to reconstruct the geometry of an indoor scene (left). Similarly,
in [31] line segments are used to build geometry prototypes of indoor environments (right).

2.2 3D Approaches

To generate an accurate geometric representation of a scene, a 3D approach is necessary.

Having multiple 2D images available, one can reconstruct a point cloud using, for example,

SfM and possibly PMVS to densify the cloud.

Similarly, using a single view with additional depth information (RGB-D stream, e.g.

Microsoft Kinect), restricted 3D information becomes available in form of depth maps. As

the resulting data is not a complete 3D point cloud but just points seen from one view, it is

called 2.5D. However, with the additional information, further possibilities arise to analyze

the geometry of the scene. For example, Singh et al.[41] model indoor environments using

superpixel segmentation [7]. Using the additional depth information, the superpixels are

agglomerated to fragments which finally form planar structures. However, as the input

data is still limited to one view, this approach is also not able to represent large scenes.

Using 3D data, Labatut et al. [30] and Hoppe et al. [26] use a Delaunay Triangulation

to extract a mesh out of a (sparse) point cloud. The Delaunay Triangulation decomposes

3D point sets into tetrahedra (3D solids) and finally generates a triangular mesh of the

scene. With this approach, even meshing of sparse point clouds is possible. However, it

does not simplify the point cloud and does not introduce different levels of detail.

In [42], Sinha et al. contribute with robust plane-fitting of 3D points and lines using

strong vanishing point cues to infer their orientation. The proposed algorithm works

on sparse point clouds and is not limited to Manhattan scenes. As result, it creates

2.2. 3D Approaches 9

piecewise planar depth maps for each view which can be used to generate a geometric

model consisting out of planes.

Kluckner et al. [28] classify buildings on aerial imagery using super-pixel segmentation.

A dense 3D model is calculated and a geometric model with plane prototypes is constructed

taking the geometry and color information of the superpixels into account.

In Zebedin et al. [50], planes and surfaces of revolution, which are a natural descrip-

tion of domes and spires, are detected and an algorithm for fully automatic building

reconstruction from aerial images is proposed. This approach uses a region growing pro-

cess for detecting planes and models surfaces of revolution by a 3D curve, which moves

in space according to an euclidean motion. Using surfaces of revolution, this approach

can elegantly describe domes and spires where approaches based only on plane fitting may

fail. Further, due to an adjustable amount of regularization, different levels of detail are

introduced.

Similar to the moving 3D curve, in [47] a parametric method for reconstructing ar-

chitectural scenes from sparse point clouds is proposed. Profile curves are swept over a

network of transport curves in order to generate swept surfaces. To recover fine details, a

displacement map is applied. This approach works on sparse point clouds. Though, for

too sparse regions in the reconstruction it may create holes and therefore does not deliver

a watertight mesh of the whole scene.

All these methods reduce the amount of data by representing points with geometric

representations. However, they do not introduce different levels of detail, for which a

semantically enriched geometric model, would be needed.

In particular for indoor scenes, Xiao and Furukawa [48] introduce a system to auto-

matically reconstruct and visualize 3D models for large indoor scenes using ground-level

photographs and 3D laser points. A Constructive Solid Geometry (CSG) representation

consisting of volumetric primitives (solids), which imposes powerful regularization con-

straints, is used to model the scene. First, they split up the 3D model into horizontal

slices and process each slice individually in the 2D domain. All points of a slice are pro-

jected on an image plane and Hough Transform line detection is applied. With the lines

as limitations, rectangles are fit in the image and an optimal union of rectangles is calcu-

lated, which delivers a 2D CSG model. Finally, having all the rectangles extruded to all

slice boundaries as prototypes, an optimal 3D representation consisting out of a union of

cuboids (the final 3D CSG model) is created. Figure 2.3 illustrates the processing chain.

This approach massively simplifies the input data and creates a semantic description of

10 Chapter 2. Related Work

Figure 2.2: Geometric representations from 3D data. Zebedin et al. [50] model 3D scenes
using planes and surfaces of revolution. In this figure, you can see a reconstruction of the
old campus of Graz University of Technology. Image taken from [50].

the scene by creating an inside/outside labeling for each slice and finally merging the

slices together while optimizing an objective function. However, as it is based on Hough

Transform line detection and primitive fitting, it fails on image-based 3D reconstructions

containing more clutter.

Figure 2.3: CSG-based geometric representation. To represent a point cloud with geometric
structures, Xiao and Furukawa [48] first construct a 2D CSG model for each slice, which
can be extruded to the slice boundaries (first row). Using the 2D information from all
slices, they create an optimized 3D CSG model (second row). Finally, also multiple CSG
models can be merged (third row). Image taken from [48].

An approach for multi-level indoor scenes (i.e., whole buildings) not limited to orthog-

onal structures is proposed in [37]. First, permanent structures (walls, floor, ceiling) are

2.3. Summary 11

detected using horizontal slicing and wall directions are computed using Hough Trans-

form. For every slice, a triangular decomposition is created and extruded to 3D to form

so-called volumetric cells, which are right prisms with triangles as base faces. The volu-

metric cells are labeled as empty or occupied space using ray-casting and graph cut energy

minimization. Similarly to [48], this approach creates a semantically enriched geometric

representation of a building and introduces different levels of detail using laser scan data

as input. However, this approach is also not tailored to image-based 3D reconstructions

containing more noise and clutter.

2.3 Summary

In this chapter, we discussed various approaches how to transform scene information ac-

quired by images, laser scanners or RGB-D data into geometric structures.

There exist methods which use a single RGB image for this task, taking into account,

for example, line segments, junctions or physical properties. However, all these methods

are restricted to a special problem and are not able to handle large scenes.

Other approaches use an RGB image with an additional depth channel. Having this

additional information it is easier to find geometric structures. Though, as the information

is limited to one view, it is also not possible to model large 3D scenes.

Finally, most of the state-of-the-art work uses a 3D point cloud as input and recon-

structs geometry using plane fitting, parametric curves or fitting of pre-defined geometric

structures. Having 3D input data, it is possible to compute a geometric representation of a

whole scene. However, most of the work does not impose semantic constraints or uses laser

scan data as input, which contains less noise and clutter than image-based reconstructions.

Our work is inspired by [48] and [37], where the scene gets partitioned into horizontal

slices containing similar vertical structures. [37] introduces the concept of an irregular

space partitioning into volumetric cells, which can be used to optimize the resulting geo-

metric model using a Conditional Random Field (CRF). In contrary to these approaches,

we use input models reconstructed from image data which contain much more clutter and

noise than data obtained from laser scanners. This introduces many new problems for

which we find good solutions.

Chapter 3

Theory and Background

Contents

3.1 Reconstruction of Point Clouds 13

3.2 From Points to Meshes . 18

3.3 Energy Minimization via Graph Cuts 22

3.4 Mean Shift . 25

3.5 Summary . 27

3.1 Reconstruction of Point Clouds

There exist several different techniques to map real world scenes into point clouds. They

deliver sparse (e.g. Structure from Motion) or dense (e.g. Laser Scanners) reconstructions,

produce semi-dense point clouds out of sparse point clouds (e.g. Patch-based Multi-view

Stereo) or deliver 2.5D representation, where an additional depth value is captured with

an RGB image (e.g, RGB-D sensors like Microsoft Kinect). In this section, we discuss

some of these methods.

3.1.1 Structure from Motion

The Structure from Motion (SfM) approach takes overlapping 2D images as input, cal-

culates the pose of the cameras and reconstructs a sparse 3D point cloud by triangulat-

ing corresponding image points. Additionally, bundle adjustment is applied in order to

optimize the reconstruction. In this section, we first discuss some preliminary needed

13

14 Chapter 3. Theory and Background

knowledge and then explain how a sparse point cloud is reconstructed from an image set

of overlapping images using SfM.

3.1.1.1 Camera Calibration

In the following explanations, we assume to have images taken with a camera with a

known intrinsic camera calibration. The intrinsic calibration parameters define the internal

camera properties and are defined as

K =


fx s px

0 fy py

0 0 1

 , (3.1)

where fx and fy are the focal lengths in the direction of x and y, s is the skew factor and

px and py denote the position of the principal point.

The extrinsic camera calibration defines the relative pose of a camera center. It is

defined by a 3× 3 rotation matrix R and a 3× 1 translation vector t and can be described

as

C = −RT t. (3.2)

Using the intrinsic and extrinsic camera calibration, it is possible to assemble the

camera projection matrix P , which maps 3D points onto the image plane. The matrix P

is defined as

P = K[R|t] (3.3)

This camera representation is valid for a pinhole camera. However, as every camera

usually has a lens system which, in practice, is not perfect, lens distortion parameters

have to be taken into account. Usually, distortion is described as radial and tangential

distortion. Radial distortion defines the ”barrel” - effect of lenses, where straight lines

are transformed into curves, while tangential distortion results from the lens not being

parallel to the image plane.

For details please refer to [23]. Further, there also exist freely available implementations

for performing camera calibration (e.g., a Matlab implementation can be found here [10])

3.1.1.2 Image Feature Correspondences

In order to calculate the pose of the cameras, feature correspondences between images

have to be computed in advance. Therefore, for every image, salient points are detected

3.1. Reconstruction of Point Clouds 15

and feature descriptors of this points are calculated. As requirement, the detector and

descriptor algorithm has to be robust against translation, rotation and scale to a certain

degree. Commonly used algorithm for this task are, for example, the SIFT [34] and the

SURF [8] algorithm. Next, the feature descriptors of all images can be matched against

each other. Figure 3.1 shows the salient points and matches of two images.

Figure 3.1: Salient points and matches between two images. In every image, salient points
and feature descriptors are calculated using the SIFT algorithm. The corresponding fea-
ture descriptors are matched (connected with lines in this figure). As you can see, there
exist some false matches, which can be eliminated using the Random Sample Consensus
(RANSAC) algorithm in following steps.

3.1.1.3 Triangulation

Having two images with point matches and the intrinsic camera calibration, it is possible

to reconstruct the 3D points of the matches. Epipolar geometry describes the relationship

between the two cameras and the reconstructed 3D points (see Fig. 3.2). Knowing that

the epipolar plane intersects the camera centers, the corresponding image points and the

reconstructed 3D point and simultaneously knowing the intrinsic and extrinsic camera

calibration, it is possible to reconstruct the 3D point using triangulation.

As we just know the intrinsic camera calibration, we still have to calculate the extrinsic

calibration, which is the relative pose of the cameras. This is achieved by estimating the

fundamental matrix F of the stereo setup. The fundamental matrix, which is a 3x3 matrix

of rank 2 with 7 degrees of freedom, is the algebraic representation of the epipolar geometry

and maps a point x in the first image to the corresponding epipolar line l′ in the second

16 Chapter 3. Theory and Background

image:

l′ = Fx. (3.4)

Further, two corresponding image points x and x′ fulfill the following equation:

x′TFx = 0. (3.5)

Though, it is also possible to retrieve the rotation matrix R and the translation vector t

(the extrinsic calibration) from the fundamental matrix.

There exist various algorithms for calculating the fundamental matrix F (or their spe-

cialization, the essential matrix E) using point correspondences of two images. Depending

on the algorithm, a different number of points is needed. For example, a simple algorithm

for estimating the fundamental matrix is the normalized 8-point algorithm as described

in Hartley and Zisserman [23]. Another method for estimating the essential matrix, as-

suming a calibrated camera setup, is the 5-point algorithm presented in Nister [36]. In

comparison to the 8-point algorithm, this method is able to handle coplanar structures.

Having determined the extrinsic calibration using the fundamental matrix, it is possible

to triangulate the image point correspondences and to reconstruct the 3D points.

Figure 3.2: Point correspondence geometry. The epipolar plane π intersects with the two
camera centers c and c′, with the 3D point X and the corresponding image points x and
x′ (left image). For an image point x in the first image, all possible corresponding image
points in the second image lie on the epipolar line l′ (right image). Image taken from [23].

3.1.1.4 Multiview Reconstruction

Usually, SfM is not applied on just two camera views, but on sets with multiple images.

As points can be seen in more than two cameras, we want to find the projection matrices

3.1. Reconstruction of Point Clouds 17

P i for all involved cameras i and the 3D points Xi, given a set of image coordinates xij ,

such that

P iXj = xij . (3.6)

As image measurements can be noisy, the equations P iXj = xij will not be satisfied

exactly. Therefore, bundle adjustment is usually used to estimate the projection matrices

P̂ i and 3D points X̂j . It computes a Maximum Likelihood solution assuming that the

measurement noise is Gaussian. More information about bundle adjustment can be found

in [23].

There exist several freely available SfM implementations. Bundler [43], for example, is

a widely used SfM tool which has been proven to show good performance also on large-scale

environments [5].

3.1.2 Dense Reconstruction

In many cases, the density of the point cloud computed with SfM is not sufficient in order

to apply further processing (for example, to generate a mesh including the point cloud).

Therefore, the generated point cloud usually gets densified. This results in a dense point

cloud approximating the same scene as the SfM model.

3.1.2.1 Patch-based Multi-view Stereo

PMVS is a widely used method to generate semi-dense point clouds out of sparse point

clouds. The algorithm, introduced by Furukawa and Ponce [19], reconstructs a set of

oriented points (i.e. points with their corresponding normals) covering the surface of an

object or a scene of interest.

A patch p, which is a set of oriented points, is a local tangent plane approximation of

a surface. It is a rectangle defined by its center c(p), its unit normal vector n(p) oriented

towards the cameras observing it and a reference image R(p) in which it is visible. More

concretely, one edge of the rectangle is parallel to the x-axis of the reference camera (the

camera associated with R(p)). Figure 3.3 illustrates a patch p.

A core part of the algorithm is the photometric discrepancy function g(p). It is defined

as

g(p) =
1

|V (p) \R(p)|
∑

I∈V (p)\R(p)

h(p, I, R(p)), (3.7)

where V (p) denote a set of images in which p is visible, and h(p, I1, I2) denotes a

pairwise photometric discrepancy function between images I1 and I2, which computes a

18 Chapter 3. Theory and Background

discrepancy score between the pixel color values of p projected onto I1 and I2 using normal-

ized cross correlation. The goal of the algorithm is to recover patches whose discrepancy

scores are small.

As the discrepancy function may not work well in the presence of specular highlights

or obstacles (e.g., pedestrians in front of buildings), further optimization steps are applied.

For a detailed description look at [19].

Figure 3.3: A patch and the photometric discrepancy function. A patch is a rectangle in
3D space with its center and normal denoted as n(p) and c(p) (left). The photometric
discrepancy function h(p, I1, I2) takes into account the pixel values of the patch p projected
onto the images I1 and I2 (right). Image taken from [19].

3.2 From Points to Meshes

Using the generated point cloud, an infinite surface gets generated including the generated

points. Such a surface is represented as mesh consisting of triangles. There exist several

meshing techniques with different requirements that deliver the surface mesh as result. In

this section, we discuss two well-known surface reconstruction approaches in more detail.

3.2.1 Poisson Surface Reconstruction

The Poisson surface reconstruction technique, as proposed by Kazhdan et al. [27], uses

a point set with its corresponding inward-facing normals as input data. The points are

assumed to be uniformly distributed over the model surface. As a result, it delivers a

watertight, triangular mesh.

This approach is based on the spatial Poisson problem. The Poisson equation is a

partial differential equation of elliptic type originally used in electrostatics, mechanical

3.2. From Points to Meshes 19

engineering and theoretical physics.

Kazhdan et al. [27] suggest to compute a 3D indicator function χ and then reconstruct the

surface by extracting an appropriate isosurface. The indicator function χ is defined as 1 at

points inside the model, and 0 at points outside. Their key contribution is the relationship

between oriented points (i.e. points with given normals defined as vector field ~V) sampled

from the surface of a model and the indicator function of the model. More precisely, they

analyze the gradient of the indicator function which is zero almost everywhere, except

near the surface of the model (Figure 3.4).

Figure 3.4: Using the oriented points, the indicator gradient and subsequently the indi-
cator function can be calculated. Finally, the surface is reconstructed by extracting an
appropriate isosurface. Image taken from [27].

The Poisson reconstruction creates a watertight, triangulated surface by approximating

the indicator function. The key challenge, the computation of the indicator function, can

be done by utilizing the relationship between the gradient of the indicator function and

the integral of the surface normal field.

The gradient field convolved with a smoothing filter F̃ is defined as

∇(χM ∗ F̃)(q0) =

∫
∂M

F̃p(q0) ~N∂M (p)dp. (3.8)

χM is the indicator function of a solid M with boundary ∂M . The smoothing filter F̃

is introduced to avoid unbounded values at the surface boundary due to the piecewise

constant indicator function. ~N∂M (p) is the inward surface normal at p ∈ ∂M , and F̃ (q) =

F̃ (q − p) is the translation of the smoothing filter F̃p(q0) to the point p. A proof of this

relationship can be found in [27].

As the surface geometry is not known until now, we cannot evaluate the surface inte-

gral. However, using the information of the input set of oriented points, it is possible to

20 Chapter 3. Theory and Background

approximate the integral with a discrete summation. This is defined as follows:

∇(χM ∗ F̃)(q0) =
∑
s∈S

∫
Ps

F̃p(q) ~N∂M (p)dp

≈
∑
s∈S
|Ps|F̃s.p(q)s. ~N ≡ ~V (q). (3.9)

Using the point set S to partition the solid boundary ∂M in patches Ps ⊂ ∂M , we can

approximate the integral of the patch Ps by scaling the value of the point sample s.p to

the area of the patch.

Subsequently, we want to solve χ̃ such that ∇χ̃ = ~V . As ~V is generally not integrable

(i.e. it is not curl free), an exact solution does not generally exist. However, a least-squares

solution can approximate the integral. For this, we apply the divergence operator to form

the Poisson equation

∆χ̃ = ∇ · ~V . (3.10)

For more information on how to solve this Poisson equation, look at [27].

Finally, the isosurface can be extracted using, for example, a Marching Cubes method

as described in [33].

3.2.2 Surface Reconstruction Using Delaunay Triangulation

The Delaunay triangulation approach, in contrary, requires a point set with its corre-

sponding camera information as input. It decomposes the point cloud into cells in the

shape of tetrahedra and calculates the visibility information for each cell using the camera

information. There exist approaches for (semi-)dense point clouds (Labatut et al. [30])

and also for sparse point clouds (Hoppe et al. [26]). As a result, these techniques deliver

a watertight, triangular mesh.

An irregular discretization of the space is created using a Delaunay Triangulation of

the 3D points. With such a discretization, the size of the discretized units is related to the

density of the underlying point cloud and can be efficiently adapted to new 3D information

[26]. The surface gets approximated as the interface between free and occupied cells of

the tetrahedra decomposition.

3.2.2.1 Delaunay Triangulation

Looking at a point set P = p1, ..., pn in Rd, the Voronoi cell associated to a point pi,

denoted by V (pi), is the the space that is closer to pi than to any other point in P. The

3.2. From Points to Meshes 21

Voronoi diagram, denoted by Vor(P), is the partition of space induced by the Voronoi

cells V (pi).

The Delaunay triangulation Del(P) of the point set P is defined as the counterpart of

the Voronoi diagram. All points p and q with a non-empty intersection of their Voronoi

cells V (p) and V (q), have a connecting edge in the Delaunay triangulation. Figure 3.5

illustrates a point set with its corresponding Voronoi diagram and Delaunay triangulation.

For more details look at [9].

Figure 3.5: The Voronoi diagram (gray edges) of a set of 2D points (red dots) and its
associated Delaunay triangulation (black edges). Image taken from [30].

The algorithmic complexity of the Delaunay triangulation of n points is O(n log n) in

2D and O(n2) in 3D. However, it has been proven that the complexity in 3D drops to

O(n log n) when the points are distributed on a smooth surface, which is the case in our

application for surface reconstruction [30].

3.2.2.2 Reconstruction Method

There exist different approaches on how to reconstruct a surface using a Delaunay trian-

gulation. However, we just focus on the method described in Labatut et al. [30].

Assuming a quasi-dense input cloud, a Delaunay triangulation consisting of tetrahe-

drons can be incrementally built from the 3D point cloud. Consequently, all the tetrahe-

drons are labeled either as inside or outside of the scene. The triangular faces between

adjacent tetrahedra having different labels build the output triangular mesh.

A global optimal label assignment is efficiently found using graph cuts (an explanation

of graph cuts can be found in 3.3.1). [30] constructs an energy function consisting of the

22 Chapter 3. Theory and Background

following terms:

E(S) = Evis(S) + λphotoEphoto(S) + λareaEarea(S). (3.11)

S is the surface to be reconstructed, Ephoto is the photo consistency term, which measures

how well the given surface S matches the different input images in which it is seen, and

Earea is the term which encourages surface smoothness. Both have their corresponding

positive weights, λphoto and λarea. Finally, the visibility term Evis(S) defines every tetra-

hedron as inside or outside of the scene. The basic idea behind this term can be described

as follows: If a vertex belongs to the final surface, it should be visible in the view it

comes from. Therefore, all the tetrahedra intersected by a ray going from the vertex to

the camera center of one of these views should be labeled as outside. Consequently, the

tetrahedron behind the vertex should be labeled as inside. For detailed information about

this approach look at [30].

3.3 Energy Minimization via Graph Cuts

As for the surface reconstruction problem in the previous section, graph cuts can be used

for many applications in computer vision to efficiently solve energy minimization problems.

A frequent early computer vision problem is the assignment of a label to each pixel of an

image. Common constraints for this task are smoothly varying labels with a simultaneously

sharp discontinuities preserving labeling. These problems can be expressed in terms of

energy minimization [11]. However, as minimizing an arbitrary non-regular function is

NP-hard [29], the problem is difficult regarding computation time. Using graph cuts, it

is possible to find a global minimum for a binary labeling problem and a local minimum,

which is in within a known factor of the global minimum, for multi-label problems [11].

3.3.1 The Energy Minimization Problem

As described in Boykov et al. [11], many early computer vision problems include estimating

a spatially varying quantity (such as intensity or disparity) from a noisy measurement.

Generally, such quantities are piecewise smooth: they vary smoothly on the surface of an

object, but change dramatically at object boundaries. Every pixel p ∈ P must be assigned

a label. We want to find a labeling f that assigns each pixel p ∈ P a label fp ∈ L, where

f is both piecewise smooth and consistent with the observed data.

3.3. Energy Minimization via Graph Cuts 23

These problems can be naturally described as energy minimization problems

E(f) = Esmooth(f) + Edata(f). (3.12)

Esmooth(f) is the smoothness term, which describes the extend to which f is not piecewise

smooth. Edata(f) is the data term describing the disagreement between f and the observed

data.

The form of Edata(f) is typically

Edata(f) =
∑
p∈P

Dp(fp), (3.13)

where Dp measures how appropriate a label is for the pixel p given the observed data.

The selection of Esmooth(f) is a critical issue, and many different approaches exist [11].

We just focus on the smoothness term

Esmooth(f) =
∑

p,q∈N
Vp,q(fp, fq), (3.14)

as described in [11] and [29]. N ⊂ P×P is a neighborhood system on pixels and Vp,q(fp, fq)

measures the cost of assigning the labels fp, fq to the adjacent pixels p, q. On the one hand,

this function is used to impose spatial smoothness, on the other hand, it should preserve

sharp structures, as pixels at the border of objects should often have very different labels.

This requires that V be a non-convex function of |fp − fq|. Such an energy function is

called discontinuity-preserving [29].

Energy functions like E are extremely difficult to optimize, as they are non-convex

functions in a space with many thousands of dimensions. General-purpose optimization

techniques (such as simulated annealing) traditionally have been used to minimize these

problems. However, such techniques require exponential time and are extremely slow in

practice. Using graph cuts it is possible to solve this problems efficiently [29].

3.3.2 Graph Cuts

Kolmogorov and Zabih [29] describe graph cuts as follows: Looking at a directed graph

G = (V, E), consisting of vertices (V) and edges (E) with nonnegative edge weights and

special vertices (terminals), called the source s and the sink t. The two terminals are

vertices with special properties: The source s is a vertex with zero in-degree and the sink

t is a vertex with zero out-degree. This graph can be partitioned into two disjoint sets S

24 Chapter 3. Theory and Background

and T such that s ∈ S and t ∈ T . Such a cut C = S, T is called s-t-cut and is a binary

labeling of the graph. The cost of the cut is the sum of costs of all edges that go from S

to T :

c(S, T) =
∑

u∈S,v∈T,(u,v)∈E

c(u, v) (3.15)

The minimum s-t-cut problem is to find a cut C with the smallest cost. As this problem

is equivalent to computing the maximum flow from the source to the sink, it can be solved

efficiently by computing the maximum flow between the terminals, according to a theorem

due to Ford and Fulkerson [17].

3.3.3 Energy Minimization Using the Expansion Move Algorithm

A very effective algorithm for energy minimization using graph cuts is the expansion move

algorithm introduced in [11]. It can be used for several important discontinuity-preserving

energy functions where V is a metric on the space of labels.

An expansion move is defined as follows: Consider a labeling f and a label α. A new

labeling f ′ is an α-expansion move from f if f ′p 6= α implies f ′p = fp. This means that the

set of pixels assigned the label α has increased when going from f to f ′ [29]. Figure 3.6

shows an example of an α-expansion move.

Figure 3.6: An example of an expansion move: The right image is a white expansion
move from the left image. Figure taken from [29].

The algorithm finds the lowest energy α-expansion move from the current labeling

by cycling through the labels α in a fixed or random order. If the expansion move has

lower energy than the current labeling, it becomes the current labeling. The algorithm

terminates at the local minimum, which means, that for any label α, there is no α-

expansion move from the current labeling that has lower energy than the current one. It

can be proven that this minimum is within a multiplicative factor of the global minimum

[11] [29].

3.4. Mean Shift 25

3.4 Mean Shift

Another commonly used algorithm in computer vision is the Mean Shift algorithm. Mean

Shift is a non-parametric mode estimation algorithm whose main application is to cluster

data without knowledge about the distribution of the data and the amount of clusters. The

algorithm was proposed in 1975 by Fukunaga and Hostetler [18]. Especially in Computer

Vision, Mean Shift is commonly used for tasks like segmentation, tracking or discontinuity

preserving smoothing, as described by Comaniciu and Meer [12].

3.4.1 Intuitive Explanation

Mean Shift considers the feature space as a probability density function. The local maxima

of the function are the modes of the data.

The algorithm is an iterative procedure consisting of following steps:

• For each data point, define a surrounding window with fixed size.

• Find the centroid of all points in the window and recenter the window at the centroid.

This shift is defined by the Mean Shift vector mh,G(x).

• Repeat until convergence.

The single parameter is the window size, called bandwidth. Figure 3.7 illustrates the

iterative Mean Shift process.

3.4.2 The Mean Shift Procedure

In this section, we discuss the technical details of the algorithm, like described in Co-

maniciu and Meer[12]. As we want to find local maxima of a probability density function,

we have to estimate a density function from the data points. Kernel density estimation

(known as the Parzen window technique in pattern recognition literature) is the most

popular density estimation method. Given a radially symmetric kernel K, bandwidth

parameter h and a set of d-dimensional points, the kernel density estimator is defined as

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
. (3.16)

We are interested only in a special class of radially symmetric kernels satisfying

K(x) = ckk
(
‖x‖2

)
, (3.17)

26 Chapter 3. Theory and Background

Figure 3.7: Principle of Mean Shift analysis (taken from [13]): To find the cluster center
of a point P1, iteratively find the centroid of the data points within a window around
P1 and recenter the window on the centroid. Repeat this procedure until the window is
stationary. This is an adaptive gradient ascent in the space of point densities.

in which case it suffices to define the function k(x) called the profile of the kernel, only for

x ≥ 0. The normalization constant ck,d, which makes K(x) integrate to one, is assumed

strictly positive.

Employing the profile notation of the Epanechnikov kernel (see [12]), the density gra-

dient estimator is obtained as the gradient of the density estimator. The gradient can be

written as

∇̂fh,K(x) ≡ ∇f̂h,K(x) =
2ck,d
nhd+2

n∑
i=1

(x− xi)k′
(∥∥∥∥x− xih

∥∥∥∥2
)
. (3.18)

We define the function

g(x) = −k′(x), (3.19)

assuming that the derivative of k exists for all x ∈ [0, inf), except for a finite set of points.

Using g(x) for profile, we define the kernel G(x)

G(x) = cg,dg
(
‖x‖2

)
(3.20)

3.5. Summary 27

Introducing g(x) into 3.18 leads to

∇f̂(x) =
2ck,d
nhd+2

[
n∑

i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)]∑n

i=1 xig
(∥∥x−xi

h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x
 . (3.21)

The first term is proportional to the density estimate at x computed with the kernel G

f̂h,G =
cg,d
nhd

n∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)
. (3.22)

The second term is the Mean Shift. It is the difference between the weighted mean, using

the kernel G for weights, and x, the center of the kernel (window)

mh,G =

∑n
i=1 xig

(∥∥x−xi
h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x. (3.23)

Using 3.22 and 3.23, 3.21 becomes

∇̂fh,K = f̂h,G(x)
2ck,d
h2cg,d

mh,G(x), (3.24)

which yields to

mh,G(x) =
1

2
h2c
∇̂fh,K(x)

f̂h,G(x)
. (3.25)

The Mean Shift vector mh,G(x) points toward the direction of maximum increase in density

and is proportional to the density gradient estimate at point x obtained with kernel K.

Iteratively shifting the density estimation window along the Mean Shift vector makes the

algorithm converge at local maxima, i.e. where ∇f(xi) = 0 is satisfied. For a proof of

convergence, see Comaniciu and Meer[12].

3.5 Summary

In this chapter, we discussed required background knowledge and methods applied in our

approach. We assume to have meshed point clouds reconstructed from image data (as

described in Section 3.1 and 3.2) as input for our workflow. For mode estimation used

for the partitioning of the model into horizontal slices, we use Mean Shift (as described in

Section 3.4). For the optimization in the slice domain and for the final 3D optimization,

we use energy minimization via graph cuts (as described in Section 3.3).

Chapter 4

Geometric Abstraction with

Horizontal Slicing

Contents

4.1 Overview . 29

4.2 Slicing and Boundary Segmentation 30

4.3 Slice Combination . 37

4.4 Input Data and Preprocessing . 43

4.1 Overview

Given a meshed point cloud and the corresponding camera poses C as input, we want

to extract relevant geometric structures of the scene. As precondition, we assume that

the scene is dominated by planar canonical structures. We apply preprocessing steps

to transform the model to a new coordinate system aligned with a reference plane and

perform a predefined, constant upsampling of the meshed point cloud. At dominant

horizontal structures, we partition the model into horizontal slices. A slice represents a

part of the model which includes mainly vertical structures and is bounded by horizontal

structures. For each slice, we create an inside/outside labeling, based on the visibility

information which results in a 2D floor plan. The individual floor plans are used to create

an irregular discretization of the volume into cells. Finally, we obtain a regularized 3D

model by labeling each cell as inside/outside using a CRF. As result, we generate a 3D

model consisting of geometric primitives.

29

30 Chapter 4. Geometric Abstraction with Horizontal Slicing

In the following sections, the processing steps will be discussed in detail. Figure 4.1

illustrates the different modules of our processing workflow.

Figure 4.1: Overview of our processing workflow. The input mesh gets partitioned into
horizontal slices which are parts of the model limited by dominant horizontal structures
and containing similar vertical structures. For every slice, an optimal inside/outside seg-
mentation based on the visibility information gets created resulting in a floor plan for each
slice. Finally, a 3D optimization is performed by solving an energy minimization problem
using an irregular partitioning of the scene based on the individual floor plans.

4.2 Slicing and Boundary Segmentation

In this section, we describe the processing of the point cloud in the slice domain. First, the

upsampled point cloud model gets partitioned into horizontal slices. A slice includes similar

vertical structures (for example, vertical walls) and is bounded by horizontal structures.

For each slice, we calculate an optimal 2D binary segmentation identifying parts inside or

outside of the object. The segmentation is performed by using the visibility information

that is associated with the input mesh. The polygonal line defined by the transition from

one segment to the other results in a floor plan.

4.2.1 Slice Extraction

In our workflow, similar to [48] and [37], slices are defined as parts of the model enclosed

by dominant horizontal structures. Such structures might be, for example, a horizontal

roof or different levels of a building.

4.2. Slicing and Boundary Segmentation 31

We find horizontal structures by projecting points with normals similar to the ground

plane normal (i.e. similar to the z-axis) onto the z-axis. On this one-dimensional data

(only the z-coordinate of each point is used), we apply mode estimation using Mean Shift.

Figure 4.2 illustrates this process. We use the centers of the modes as boundaries of the

slices. By adjusting the bandwidth parameter of Mean Shift, it is possible to generate

slice boundaries at all minor horizontal structures or just at the most important dominant

structures. The bandwidth parameter is calculated as a fraction of the model height. This

leads to independence of the model size and just the denominator d has to be defined:

bandwidth =
height

d
. (4.1)

Figure 4.3 shows the slice boundaries with different values of d. The Mean Shift bandwidth

parameter d is one of the two most important parameters in our workflow. It defines the

level of detail in the vertical direction.

Our approach is inspired by the approach in Oesau et al. [37], where also Mean Shift

is used to detect slice boundaries.

We tried different techniques to find slice boundaries. For example, we im-

plemented the method proposed in Xiao and Furukawa [48]. In their work, they create a

histogram of the number of 3D points in the gravity direction and convolve the histogram

with a Gaussian smoothing operator. The peaks of the histogram are defined as the slice

boundaries. Though, as we found out, the Mean Shift approach is much more stable in

terms of varying model properties.

4.2.2 Binary Segmentation

For every slice, we calculate a pixelwise binary labeling using the visibility information in

order to get a probability for every pixel for inside or outside of the object. Finally, we

create an optimized labeling by solving the problem as an energy minimization problem.

The discontinuity between differently labeled regions is then the resulting 2D floor plan.

4.2.2.1 Free Space Score

In order to calculate a binary labeling for a slice, we use the visibility information for each

position in the slice projected onto a 2D image matrix. We call this information free space

score, as it is the evidence for every pixel to be in free space (outside the object) or in

occupied space (inside the object).

32 Chapter 4. Geometric Abstraction with Horizontal Slicing

Figure 4.2: Points on faces with normals similar to the ground plane (black points) get
projected onto the z-axis. On this one-dimensional data (green line), we perform Mean
Shift mode estimation. The mode centers (red lines) are used as slice boundaries.

(a) d = 10

(b) d = 25

Figure 4.3: Vertical cut of model and slice boundaries (gray planes) calculated with Mean
Shift. In 4.3(a), the horizontal slicing parameter d is set to 10. The Mean Shift bandwidth
is high and slice boundaries are just created at very dominant horizontal structures. In
4.3(b), d is set to 25. The bandwidth is low and slice boundaries are also created at small
horizontal structures.

4.2. Slicing and Boundary Segmentation 33

To calculate this information, we create a free space score voxel grid spanned over

the whole scene. Every voxel gets assigned a score for free and occupied space calculated

from the visibility information. All voxels contained in a slice get projected onto an image

matrix which will be used for further processing.

Our free space score computation is based on the approach proposed in [48].

Visibility Testing

In order to get a correct inside/outside labeling of each voxel, we want to

find out if it is visible in one or more camera views. Therefore, we need to perform

visibility testing for every voxel. Using CGAL’s AABB tree structure [6], it is possible to

do the visibility tests in a performant way.

Free Space Score Voxel Grid

For each voxel vxyz in the grid V , we calculate a free space score, which is

an evidence for inside or outside labeling. The free space score is calculated as follows:

For each voxel vxyz ∈ V , we count the number of cameras a certain voxel is visible in.

Therefore, we cast rays from each voxel vxyz to all camera centers C. If a ray from vxyz to

a camera c ∈ C does not intersect the input mesh, vxyz is visible in c. The score for vxyz

is in free space is defined as

p(vxyz = free|visibility) =
{# cameras vxyz is visible in}
{max # visible cameras}

, (4.2)

where {max # visible cameras} is the maximum number of visible cameras a voxel

vxyz ∈ V contains.

For all the voxels vxyz ∈ V which have not been visible in any camera view, we define

the score that vxyz is in occupied space by calculating the distance of vxyz to the next

voxel v′xyz that is in free space, i.e. p(v′xyz = free|visibility) > 0:

p(vxyz = occupied|visibility) =
min(dist(vxyz, v

′
xyz),maxDist)

maxDist
, (4.3)

where dist(·) calculates the Euclidean distance between the voxel centers and maxDist,

which is a predefined maximum distance, truncates this distance. Hence, this formula is

closely related to the truncated signed distance function [49] which is used for example in

34 Chapter 4. Geometric Abstraction with Horizontal Slicing

surface extraction algorithms.

As we aim to have a free space score between -1 and 1 for each voxel, we set the inside

probability as negative score and the outside probability as positive score.

score(v) =

{
p(vxyz = free|visibility) if v = visible

p(vxyz = occupied|visibility)(−1) if v 6= visible
(4.4)

Figure 4.4 illustrates the ray cast used for free space score calculation.

Further normalization will be executed depending on the application domain.

Figure 4.4: Ray cast from camera to voxels. The red voxels in front of the surface can
be seen in the camera view and get assigned a positive free space score. The blue voxels
behind the surface cannot be seen and get assigned a negative free space score.

In the slice domain, given the free space scores for each voxel, we can easily define the

scores for each pixel bxy in the 2D slice plane by averaging the scores of the voxels:

p(bxy = free|visibility) =
∑
z

p(vxyz = free|visibility)

n
, (4.5)

where n is the voxel dimension in z-direction of the slice. The score that a pixel is occupied

is defined in the same way.

To calculate the visibility information of each voxel, we use the Computational Ge-

ometry Algorithms Library (CGAL) to perform visibility tests from each camera to each

voxel center.

CGAL is an open-source C++library with the goal to provide easy access to efficient

and reliable geometric algorithms [1]. With the AABB (axis-aligned bounding box) tree

component in CGAL, it is possible to perform efficient intersection and distance queries

against sets of finite 3D geometric objects [6]. The AABB tree data structure first converts

the geometric input data into primitives, and then creates a hierarchy of axis-aligned

4.2. Slicing and Boundary Segmentation 35

bounding boxes out of them. This data structure is used to speed up queries.

Figure 4.5 shows free space scores from one slice projected to 2D. Though, as will be

discussed later, the free space score is not just used for every slice separately, but also for

the final 3D regularization of our workflow.

Figure 4.5: Projected free space score of a slice. All voxels within a slice are projected
onto a 2D matrix. Every pixel gets a score for being inside and outside, depending on
the sum of all corresponding voxels (blue means higher inside, red higher outside score).
Using this information, a binary segmentation of the slice is calculated.

4.2.2.2 Binary Labeling as an Energy Minimization Problem

With the projected free space score as input, we want to calculate a pixelwise binary

labeling for inside and outside. As we want to regularize the geometric structure, we favor

a smoothly varying labeling. Simultaneously, as we aim to keep important details, we

want to preserve sharp discontinuities. Solving this problem as an energy minimization

problem using graph cuts can efficiently fulfill those requirements.

To set up the energy minimization problem, we define the regular pixel grid to be a

graph and every pixel to be a graph node. Every node has edges to its adjacent pixel

nodes. Hence, neighboring pixels in the image are also neighboring nodes in the graph.

The energy which has to be minimized can be expressed as

E(L) =
∑
p∈I

Edata(L(p)) +
∑

p,q∈N
Esmooth(L(p), L(q)), (4.6)

where I denotes the set of pixels in the image, N is the 4-neighborhood of every pixel,

and L is the (binary) labeling

36 Chapter 4. Geometric Abstraction with Horizontal Slicing

The data terms Edata are set according to the free space scores for each pixel for free

(outside) and occupied (inside) space.

Edata(lp) =

{
p(bxy = free|visibility) if lp = outside

p(bxy = occupied|visibility) if lp = inside
, (4.7)

where p(bxy = free|visibility) and p(bxy = occupied|visibility) are the free space scores

for each pixel as defined in Equation 4.5 and lp is the label of the corresponding pixel p.

The smoothness terms Esmooth for the transitions from one to another label are set

to be constant, as we do not want do introduce different smoothness properties in this

processing step. Such a configuration is called a Markov Random Field (MRF), in contrast

to an Conditional Random Field (CRF), where smoothness values for neighbors are set

individually.

Esmooth is defined as

Esmooth(lp, lq) =

{
0 if lp = lq

1 else
. (4.8)

To compute a solution for the energy minimization problem in a performant way, we

solve it using graph cuts. Figure 4.6(a) shows the result of the binary labeling using graph

cut energy minimization.

4.2.2.3 Outline Simplification

For the creation of the geometric 3D model, we just need the outline of the inside-labeled

pixels. Though, as the previously calculated segmentation delivers a pixel-wise border, we

apply an additional regularization step to retrieve a polygonal outline resulting in a floor

plan.

We chose to use the Ramer-Douglas-Peucker algorithm [15] for this task. However,

there is no need to use exactly this algorithm. It can be replaced by more sophisticated

methods like proposed in Heber et al. [24].

The goal of the Ramer-Douglas-Peucker algorithm is to reduce the number of points

in a curve that is approximated by a series of points. In our case, we have a curve point at

every pixel and want to simplify this curve (i.e. reduce the amount of curve points) while

simultaneously preserving the geometry of the curve.

The algorithm works globally with a predefined distance dimension ε > 0. In the first

iteration it creates a line hypothesis including just the beginning and the end point. At

4.3. Slice Combination 37

(a) Binary Labeling (b) Simplified Outline

Figure 4.6: Binary labeling and outline simplification of a slice. Using graph cut energy
minimization and the projected free space scores, a binary labeling for inside and outside is
calculated. The result can be seen in 4.6(a). On the binary labeling, outline simplification
is applied. As a result, we get a polygonal line as in 4.6(b).

each iteration, it finds the point with the maximum distance to the line hypothesis. If this

point has a smaller distance than ε, the algorithm aborts and the current line hypothesis

is the result. If the point has a bigger distance than ε, the point is added to the line

hypothesis and the algorithm continues with the next iteration.

The algorithm produces a polygonal line as in fig. 4.6(b), which can be easily extruded

to 3D.

4.3 Slice Combination

In comparison to 3D models generated from laser scanner data, 3D models reconstructed

from image data tends to contain much more noise and clutter. Therefore, extruding the

2D slice segmentations to 3D does not lead to a sufficiently regularized geometric model.

We apply a further regularization step by partitioning the whole possible occupied space

into irregular shaped volumetric cells and create an optimal inside/outside labeling using

energy minimization.

38 Chapter 4. Geometric Abstraction with Horizontal Slicing

4.3.1 Extrusion to 3D

We generate an initial geometric representation of the point cloud by extruding the floor

plans of every slice to the slice boundaries. An example for an extruded model is shown

in Figure 4.7. With this method, most of the inside-labeled space, i.e. the space occupied

by objects, is covered by geometric structures. However, as we just regularized within

every slice separately, edges can arise due to noise. Further, small irregularities that just

occur in one slice are not necessarily wanted to be in the geometric model. Therefore, this

simple method of creating a geometric model does not fulfill all of our requirements. We

need further regularization surpassing the boundaries of the slices.

Figure 4.7: Object outlines extruded to 3D. For every slice, the floor plan is extruded be-
tween the slice boundaries. With this method, we already get a fairly regularized geometric
model. However, usually most of the slices have slightly varying floor plans. Therefore,
vertical surfaces are not smooth and needs to be regularized in a further regularization
step.

4.3.2 Volumetric Cells

As we want to regularize the geometric model using energy minimization via graph cuts,

we represent the whole model as a graph. For this, we create a partitioning of the model

into irregularly shaped volumetric cells with each cell becoming a graph node. The

concept is illustrated in Figure 4.8(a). We define volumetric cells as right prisms with

triangles as base faces.

4.3. Slice Combination 39

(a) Vertical Cut

(b) Top-View of Two Slices

Figure 4.8: Top: Vertical cut through volumetric cells. Vertical cut of a volumetric cell
representation of a simple model consisting of two slices. The black lines are the volumetric
cells spanned over the whole scene and the red lines are the outlines of the extruded slices
approximating the point cloud (blue dots). A graph is spanned over the whole scene
setting cells with a shared face as neighbors (green lines). Bottom: Top-view of binary
labeling of both slices. As you can see, a noisy point cloud leads to slightly varying object
outlines in each slice. Therefore, the model extruded from the binary labellings does not
consist of smooth vertical surfaces.

The creation of the partitioning into volumetric cells works as follows:

• Projection of floor plans to the ground plane. We want to keep the possibility

that all calculated floor plans in the slices can become outlines in the final, 3D-

regularized geometric model. Therefore, as a first step, we project the floor plans of

all slices onto the ground plane. If lines intersect, we have to split them as we need

a line set with no intersections for the next steps. Figure 4.9(a) shows the projected

floor plans on the ground plane.

• Triangulation. The volumetric cells are defined to have triangles as base faces.

Therefore, we apply a 2D Constrained Delaunay Triangulation (CDT) [38] on the line

40 Chapter 4. Geometric Abstraction with Horizontal Slicing

set of the projected floor plans on the ground plane. Using a CDT, it is guaranteed

that specific lines (in our case, the projected floor plans) remain lines in the final

triangulation. We use CGAL’s CDT component [1] for this step. Figure 4.9(b)

shows the triangulated outlines.

• Extrusion of the Triangles. Finally, we create volumetric cells with the triangles

of the CDT as base faces. We extrude all triangles in all slices, which means, between

their slice boundaries. As a result, we get a space decomposition of the whole possible

space the geometric model could occupy. Figure 4.11 shows the cell decomposition

of the whole scene.

(a) Projected Outlines (b) Volumetric Cells

Figure 4.9: Outlines and volumetric cells projected to the ground plane. All floor plans get
projected to the ground plane. If lines intersect, they are split into smaller line segments.
In 4.9(a), the individual line segments with varying colors are shown. Next, the outlines
are triangulated using a Constrained Delaunay Triangulation. Figure 4.9(b) shows the
result of the triangulation. As one can see, the irregularities from floor plans of different
slices lead to many similar lines near the object borders.

Next, a free space score for every volumetric cell is calculated. For this, the free space score

voxel grid that was already calculated for the slice-wise binary segmentation is reused. We

calculate an inside and outside score for each cell by summing up the contained free space

score voxels. We normalize the cell score with the slice height (which is also the height of

the cell) and the size of the base face. Figure 4.10 visualizes the cell scores of one slice.

4.3. Slice Combination 41

Figure 4.10: Cell scores of a slice. This image shows the cell scores of volumetric cells of
one slice. Red means a higher inside score than outside score, blue means a higher outside
score.

4.3.3 Regularization With Energy Minimization

Having calculated the volumetric cells, it is possible to create a graph which encompasses

the whole model. In the graph, every volumetric cell is a node and all cells that share a

common face are neighbor nodes. Again, we are using graph cut energy minimization to

regularize the geometric model, which is now represented by volumetric cells.

Using the volumetric cell representation representation, we massively reduce the com-

putation complexity compared to a similar computation in a regular voxel grid. Addi-

tionally, as we keep the floor plans of the individual slices, we keep important details and

enforce smoothing along structures in the input model.

Similar to the slice domain application, for each node n ∈ N , we set two data terms

Edata based on the free space score of the volumetric cells. As we already calculated one

score for inside and one for outside for each cell, we can directly use these scores for the

data terms.

In difference to the approach in Section 4.2.2.2, where the graph is defined by the

regular pixel grid, we have an arbitrarily shaped graph consisting out of volumetric cells

in this application. Further, as we want to create a CRF to favor smooth surfaces at

the object boundaries, we introduce additional constraints in the regularization process.

For this, we set the graph node’s smoothness terms Esmooth individually. Esmooth defines

an individual smoothing penalty for every neighbor cell pair. Additionally, we weight

42 Chapter 4. Geometric Abstraction with Horizontal Slicing

Esmooth with an adjustable parameter λ, which is the second of the two most important

parameters in our workflow (besides the Mean Shift bandwidth parameter d). λ is the

parameter which adjusts the amount of the final 3D regularization.

We create the following energy minimization problem:

E(L) =
∑
p∈I

Edata(L(p)) + λ
∑

p,q∈N
Esmooth(L(p), L(q)), (4.9)

where I denotes the set of all volumetric cells, N is the neighborhood of every cell and L

is the (binary) labeling

The data terms, Edata(lp), are defined as

Edata(lp) =

{
insideScore(p) if lp = inside

outsideScore(p) if lp = outside
, (4.10)

where insideScore(p) are the summed up positive free space scores within the volumetric

cell and outsideScore(p) are the summed up negative free space scores.

In our approach, the neighbor smoothness penalties from one cell to their neighboring

cells, Esmooth(p, q), depend on the amount of points near the face of adjacent cells. Using

the densified point cloud, we count the points which are near this face reduced by a margin

to ignore insignificant data like, e.g., noise near the object boundaries. With this approach,

two neighboring cells having dominant structures (for example, a wall) near their adjacent

face get penalized while cells without structures near their adjacent face get most likely

smoothed into the same group.

Esmooth(lp, lq) =

 0 if lp = lq
1

1+
#{points near facep,q}

area of facep,q

else
, (4.11)

where {# points near facep,q} is the amount of points which have a smaller Euclidean

distance to the face than a fraction of the model size.

The result has the value 0 < Esmooth(lp, lq) ≤ 1, where Esmooth(lp, lq) is near 0 when

lots of points are near the adjacent face, which means there are scene structures. In this

case, no smoothing is wanted and due to Esmooth(lp, lq) ≈ 0, the smoothness penalty is

near 0. Esmooth(lp, lq) is 1, when no point is near the adjacent face, which means that the

total smoothness penalty is completely adjusted by λ.

Figure 4.11 shows the volumetric cells with their corresponding graph and the neighbor

weights.

4.4. Input Data and Preprocessing 43

Figure 4.11: The volumetric cells with their corresponding graph and neighbor weights.
The yellow lines represent the volumetric cells extruded to the slice boundaries. The blue
and red lines are the corresponding graph which gets optimized using graph cut energy
minimization. The color of the graph’s edges represent the neighbor weights weightp,q
from vertex p to vertex q. Blue is defined to be a weight near 0, which means that there
are many structures near the adjacent face of the two cells. In opposite, red is defined
to be a weight near 1, which means not many structures exist near the adjacent face.
This volumetric cell representation consists of 4669 cells, while the voxel space used for
computations of this model consists of 31360K voxels. Therefore, such a representation
massively reduces the computation complexity.

Finally, we get the regularized 3D geometry model with a regularization level (or level

of detail) depending on λ. Figure 4.12 shows the results with an appropriate value for λ.

4.4 Input Data and Preprocessing

For our workflow, we set some requirements on the input data and apply preprocessing

steps.

In the preprocessing, we transform the model to a canonical coordinate system aligned

with a reference plane and perform a predefined, constant sampling of the meshed point

cloud.

As input data, our workflow requires a meshed point cloud with the corresponding

camera poses. The point cloud may be a sparse or a dense point set, reconstructed, for

example, with SfM and optionally densified (for example, with PMVS [19]). Using this

point cloud, one can apply meshing techniques like Poisson surface reconstruction [27] or

44 Chapter 4. Geometric Abstraction with Horizontal Slicing

(a) λ = 0.0 (b) λ = 3.5

(c) λ = 0.0 (d) λ=3.5

Figure 4.12: Geometries with different values for λ. As you can see in these examples, when
enforcing a high value of λ, outer surfaces of objects get smoother and small irregularities
in the model vanish. With λ = 0.0, smoothing is disabled and just the summed-up free
space scores inside the volumetric cells decide about inside or outside. The higher the
value of λ is set, the smoother the surfaces get. More results are shown in Chapter 5.

Delaunay triangulation [30] to create a mesh out of the point cloud.

Due to our preprocessing steps, the density of the input points do not significantly

affect the quality of the result. However, as we apply horizontal slicing on the whole

model, the type of scenery is very important. Our main assumption is that the scene

mainly consists out of horizontal planar structures and orthogonal vertical surfaces.

4.4.1 Reference Plane Estimation and Coordinate Transform

To ease the processing of the model, it gets transformed into a new coordinate system

aligned with an estimated reference plane. This plane can be the ground plane, but also

any other dominant plane structure. As we assume that the scene consists out of horizontal

planar structures and orthogonal vertical surfaces, this eases further processing steps like

4.4. Input Data and Preprocessing 45

the partitioning into horizontal slices or the neighbor weights calculation used in 3D graph

cut optimization.

We create a reference plane hypothesis, where a maximum of points (usually, the

area near the ground plane is assumed to have the maximum of points) has a small

Euclidean distance to the hypothesis. We iteratively calculate the result using RANSAC

(Random Sample Consensus [16]). However, also other approaches for estimating the

ground plane are possible. For example, there exists methods to estimate the ground

plane using the orientation of the camera views used for the reconstruction [46]. Having

the plane information, for all further processing the coordinate system of the point cloud

gets transformed to the reference plane.

Figure 4.13: A model with the estimated reference plane (gray). In this case, the reference
plane is the ground plane. However, our approach also works if the reference plane, for
example, is the roof.

4.4.2 Densification of Point Cloud

As the input model can have an arbitrary density, we apply a constant upsampling to the

point cloud mesh. Using a constantly sampled point cloud, we have several advantages:

To find horizontal structures in the point cloud, we need to detect modes of horizontal-

oriented points. Without a constantly sampled cloud, modes cannot be found reliably.

In the last processing step, the 3D optimization, it is crucial to have a constantly

sampled point cloud. We calculate cell neighbor weights depending on the amount of

points near the shared face of adjacent cells. Figure 4.14 illustrates the upsampling of a

point cloud.

46 Chapter 4. Geometric Abstraction with Horizontal Slicing

(a) Input Point Cloud

(b) Densified Point Cloud

Figure 4.14: In 4.14(a) you can see the input point cloud with spatially varying sampling.
After the densification step, we get a constantly dense sampled point cloud (as in 4.14(b)).

Chapter 5

Experiments

Contents

5.1 Evaluation Metrics . 47

5.2 Evaluation Data . 52

5.3 Results . 56

The main goal of our work is to regularize meshed 3D point clouds and simultaneously

reduce the amount of data. In our experiments, we show the deviations with respect to

geometry of the computed geometric model to a ground truth model and to which amount

model simplification can be achieved.

Our algorithm has been implemented in C++ using the Graph-Cut library [11] to solve

energy minimization problems. For visibility testing, we use the axis-aligned bounding box

(AABB) tree components from CGAL [6]. For distance calculations in 3D space, we use

the Fast Library for Approximate Nearest Neighbors (FLANN), as described in [35].

5.1 Evaluation Metrics

In this section, we introduce metrics needed for the evaluation. We discuss the Dice

score, which is used to compare backprojected object masks, the Hausdorff distance used

to visualize differences between two 3D models and a regularization measure based on

projected line segments.

47

48 Chapter 5. Experiments

5.1.1 Dice Score

In our evaluation, we make use of an error measure which approximates the perceived error

of humans by comparing the computed geometry and the ground truth model. For this,

we backproject the geometry and the ground truth into every camera view and compute

the backprojection error. As measure, we use the Dice score.

The Dice score, introduced in [14], relates the area of two segments |E1| and |E2| with

the area of their mutual overlap |E1 ∩ E2|, such that

dice(E1, E2) =
2|E1 ∩ E2|
|E1|+ |E2|

, (5.1)

where | · | denotes the area of a segment. If the two segments are completely identical, the

score is 1. Contrary, if there is no overlap, the score is 0. This concept is visualized in

Figure 5.1.

Figure 5.1: Dice score. The Dice score is defined as the doubled area of the mutual overlap
of E1 and E2 divided by the summed area of E1 and E2. Identical segments have a score
equal 1, segments without overlap a score equal 0.

Backprojecting the 3D models into the camera views, we get object masks for each

view, represented by an image matrix. With this masks, we have a segmentation for the

geometry and for the ground truth and can compare them using the Dice score. Figure 5.2

illustrates the score calculation. We calculate the mean, the median and the variance over

all images in order to compare different parameter settings for a data set.

As the dice score drastically fluctuates by changes on images where just a small part

of the backprojected model is captured, we skip camera views where the backprojected

part of the ground truth model covers less than 5% of the total model surface.

5.1. Evaluation Metrics 49

(a) Ground Truth (b) Reconstructed Geometry

(c) Error between 5.2(a) and 5.2(b), Dice Score = 0.9706

(d) Dice Score = 0.9791 (e) Dice Score = 0.9259

Figure 5.2: Backprojections used for Dice score. In 5.2(a) and 5.2(b) one can see the
ground truth model and the reconstructed geometry backprojected into a camera view. In
5.2(c), the error between both is marked in red. The error is defined to be the area where
the both backprojected masks do not overlap. This information is used for the calculation
of the Dice score. In 5.2(d) and 5.2(e) one can see the error masks from different views.
Having a big error (as in 5.2(e)), the Dice score decreases.

50 Chapter 5. Experiments

5.1.2 Regularization Measure

As a main goal is to regularize the input data, we have to define a measure for the degree of

regularization. We project the outlines of each slice (i.e., the vertical faces of the geometric

model) onto the ground plane and count the number of unique lines as a complexity score.

The score is defined as

complexity(M) = countUniqueLines(∀slices ∈M : projectOutlinesToGroundP lane()),

(5.2)

where M is the model and countUniqueLines(·) returns the number of unique line seg-

ments The more lines exist, the less regularization could be achieved. A visualization of

this concept is shown in Figure 5.3.

(a) λ = 0.0, complexity = 477 (b) λ = 3.5, complexity = 140

Figure 5.3: Complexity scores from projected outlines. In this Figure, one can see the
outlines of all slices projected onto the reference plane. The individual line segments are
encoded in different colors. Left, the line segments projection of a geometric model with
λ = 0.0 can be seen. It contains many similar line segments due to slightly different
outlines of the slices. Right, the projection of a model with λ = 3.5 is visualized. As you
can see, more segments at object boundaries are merged into common segments identical
in all slices. Additionally, the small objects vanish completely. As a result, the complexity
score decreased from 477 to 140 unique line segments.

5.1.3 Hausdorff Distance

Given two 3D meshes, the Hausdorff distance computes the error between these meshes.

As we use synthetic models and reconstructions of these models (see Section 5.2.1), we

5.1. Evaluation Metrics 51

use this measure to relate the reconstructions to the original synthetic model. However,

as we do not want to evaluate the whole 3D reconstruction pipeline, this measure should

just be an indicator for how well the synthetic model was reconstructed.

Given two point sets X and Y , the Hausdorff distance dH(X,Y) measures the longest

distance from a point in set X to the nearest point in set Y . It is defined as

dH(X,Y) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }, (5.3)

where sup denotes the supremum (also referred to as the least upper bound) and inf

denotes the infinum (also referred to as the greatest lower bound). Figure 5.4 illustrates

this relationship. For more details, we refer the reader to [25].

Figure 5.4: Hausdorff distance. The Hausdorff distance is defined as the maximum of
supx∈X infy∈Y d(x, y) and supy∈Y infx∈X d(x, y). It is the longest possible distance to di-
rectly move from set X to set Y .

The Hausdorff distance between two meshes is computed by sampling one of the two

and finding for each sample the closest point over the other mesh. In our experiments,

we use the Hausdorff distance computation implemented in Meshlab [2]. The computed

Hausdorff distances for our models can be seen in Figure 5.6.

52 Chapter 5. Experiments

5.2 Evaluation Data

Unfortunately, it does not exist a commonly used evaluation dataset with the possibility

to compare our results directly with results of other approaches. However, we choose to

evaluate on some freely available synthetic models from the Trimble 3D Warehouse [32]

(formerly known as Google Warehouse). Additionally, we evaluate on some real-world 3D

reconstructions. For both types, we use models from buildings which meet our require-

ments (i.e., horizontal planar structures and orthogonal vertical surfaces) up to a certain

degree.

5.2.1 Synthetic Models

In order to evaluate our workflow with a correct ground truth, we compute the geometry

of synthetically generated models form the Trimble 3D Warehouse. The Trimble 3D

Warehouse is a collection of user-generated, synthetic 3D models. It contains objects like

chairs or desks, but also models from buildings from all over the world.

For our evaluation, we choose two building models with different complexity. The

models can be seen in Figure 5.6. The model in Figure 5.6(a) is the Joanneum building

in Steyrergasse, Graz. We chose this one because it is a simple model which fits well to

our requirements. It predominantly consists of orthogonal horizontal and vertical planar

structures. The second model in Figure 5.6(b), is the Evansville Auditorium and Conven-

tion Centre (in the following named Centre). It is more complex because it consists of

dominant horizontal planar structures, but containing rounded orthogonal vertical struc-

tures. Even though these structures can not be modeled perfectly with our approach, they

can be approximated well by a polygonal line.

As input for our workflow, we use reconstructions from the synthetic models. We first

texture the model with a random texture and create virtual camera views capturing the

whole scene. As result, we get camera views as shown in Figure 5.5. Then, we reconstruct

the scene with SfM and PMVS and finally mesh the point cloud using the Poisson surface

reconstruction method.

For evaluation, we compare the computed geometry with the ground truth, which is

the original synthetic model.

5.2. Evaluation Data 53

Figure 5.5: Virtual camera views of synthetic model. As a synthetic model usually has
large regions with homogeneous texture structures, it first gets textured with a random
texture. Consecutively, virtual camera views are created to reconstruct the model using
SfM.

5.2.2 Models from Real-World Image Data

We also evaluate models reconstructed from real-world image data using SfM, PMVS

and Poisson triangulation. Again, we use two models from buildings which meet our

requirements up to a certain degree.

The first model, which can be seen in Figure 5.8(a), is a reconstruction of a building in

Aspern, Vienna. It is a rather simple model which suits our requirements well. However,

as it is created using real-world image data captured from an unmanned aerial vehicle

(UAV), it contains more noise and clutter. This occurs mainly due to untextured parts of

the scenery and surfaces consisting out of glass. In Figure 5.7 some images used for the

reconstruction process are printed.

The second model is the reconstruction of the Siemenscity in Vienna (Fig. 5.8(b)). It

contains very challenging parts, as it contains sloped vertical structures which cannot be

represented exactly in our horizontal slicing-based geometric models. However, supposing

a sufficiently high level of detail in the horizontal direction (i.e., a sufficiently small Mean

Shift bandwidth), they can be approximated by stairway-like structures.

Using real-world models, we do not have a correct ground truth. However, as we need

a model to compare our results against it, we use the significant parts of the reconstructed

model (i.e, the model reduced by the ground plane) as if it were the ground truth.

54 Chapter 5. Experiments

(a) Joanneum - Synthetic Model (b) Centre - Synthetic Model

(c) Reconstructed Model (d) Reconstructed Model

(e) Hausdorff Distance (f) Hausdorff Distance

Figure 5.6: Synthetic models used for evaluation. In the first row, one can see the synthetic
models from the Joanneum building and the Evansville Auditorium and Convention Centre
taken from Trimble Warehouse and in the second row the corresponding reconstructions.
In the third row, the Hausdorff distance between the synthetic and the reconstructed
model is visualized. Blue means a high, red a low Hausdorff distance.

5.2. Evaluation Data 55

Figure 5.7: Images from Aspern building taken from an UAV. As you can see, it contains
many surfaces consisting of glass. Additionally, a part of the roof is completely white,
which also leads to clutter in the reconstruction (bottom left image).

(a) Aspern (b) Siemenscity

Figure 5.8: Real-world data models used for evaluation.

56 Chapter 5. Experiments

5.3 Results

We evaluate our approach on the four mentioned models using different parameter settings

for the smoothing parameter λ and for the Mean Shift bandwidth parameter d. For every

model, we choose parameter settings which demonstrate strengths and weaknesses of our

approach. The results with their corresponding error and complexity measures are printed

below.

5.3.1 Comparison to Commonly Used Mesh Simplification Methods

A commonly used mesh simplification method is Quadric Edge Collapse introduced in [20].

This algorithm iteratively reduces the number of faces and vertices by removing edges from

the mesh and simultaneously merging vertices. The best edge to remove is selected using

a quadric error metric.

Figure 5.9 shows the result of Quadric Edge Collapse mesh simplification in comparison

to a result of our approach. As you can see, our approach delivers more regularized mod-

els following concrete assumptions of the scene (piecewise planarity, dominant horizontal

structures). Further, in comparison to Quadric Edge Collapse, our approach does not just

deliver a simplified mesh but a scene description consisting of slices and their correspond-

ing floor plans. With this information we already deliver a weak semantic description of

the scene which can be enriched easily with additional semantic information.

(a) Quadric Edge Collapse (b) Our Approach

Figure 5.9: Comparison with Quadric Edge Collapse. Left, one can see a simplified mesh of
the Joanneum model using the Quadric Edge Collapse Simplification method of Meshlab.
The target number of faces was set to 2288, which is the number of faces a good resulting
model of our approach (right) contains.

5.3. Results 57

5.3.2 Level of Detail in Vertical Direction

As already discussed earlier, a higher Mean Shift bandwidth (i.e., a lower value for the

parameter d) leads to lesser slices and therefore to a lower level of detail in the vertical

direction. In contrary, a lower Mean Shift bandwidth leads to more slices and a higher

level of detail in the vertical direction.

For the Joanneum model (results can be seen in Fig. 5.11), d set to 10 is not a suffi-

cient level of detail in the vertical direction as not all dominant horizontal structures are

detected as slice boundaries. As some slice boundaries get positioned between dominant

horizontal structures (due to the properties of the Mean Shift), artifacts arise (for example,

in Fig. 5.11(a)). With d set to 25, all important horizontal planar structures are detected

and good results can be achieved with an appropriate value for λ.

Looking at the results for the Centre model in Fig. 5.14, it seems as if with d = 10

the Mean Shift bandwidth is sufficiently small to detect slice boundaries at most of the

dominant horizontal structures. However, with d = 25 and a higher value for λ, also a

similar level of regularization is reached.

In the results of the Siemenscity model in Figure 5.16, one can see that even sloped

structures can be approximated by stairway-like structures. Depending on the value for

d, the quantization is finer or coarser. With d = 35, the sloped structures already get

approximated quite well.

Generally, one can observe that a too high value for the bandwidth parameter d (i.e.,

a too low bandwidth) is not as crucial as a wrong parameter for λ. More smoothing can

compensate the incorporated irregularities due to a too low bandwidth up to a certain

degree. Contrary, a too high bandwidth may eliminate important details and introduce

artifacts. To solve this problem, a generic value for d would be desirable. Though, as the

detection of correct slice boundaries depends on the model properties, a generic value for

d is hard to find. As the Dice score increases significantly until all dominant horizontal

structures are detected and afterwards usually develops with minor increases, one possi-

bility would be to start with a low value for d and increase it until the Dice score does

increase less than a given threshold. Having found an optimal d, the level of detail would

be adjustable only with the parameter λ.

5.3.3 Smoothing of Volumetric Cells

The second important parameter in our workflow is the smoothing factor λ

used in the volumetric cells energy optimization. Even if the level of detail

58 Chapter 5. Experiments

in the vertical direction is too fine, more smoothing can compensate the

incorporated irregularities. Generally, the Dice score decrease and the Dice score

standard deviation and the level of regularization increases when increasing the value for λ.

In Figure 5.11 one can see the results of the Joanneum model. Even for this

simple model that consists mainly of orthogonal horizontal and vertical planar structures,

with a low value for λ many small irregularities are incorporated in the resulting

geometry. This leads to a high Dice score, but also a high complexity score (which can

be seen in Fig. 5.13). Contrary, a too high value for λ leads to vanishing of parts of the

model in this case (see Fig. 5.11(f)).

Looking at Figure 5.12 in more detail, one can observe that the Dice scores up to

λ = 1 slightly increase. Usually, the Dice score decreases when increasing λ, as more

regularization means a higher error with respect to the ground truth. However, in this

case, as too few slices are generated to represent all the important horizontal structures, a

slightly higher smoothing leads to an increase of the Dice score. For λ > 1, the Dice scores

and the complexity scores decrease simultaneously as expected. Starting from λ = 3, the

whole model is represented as one cuboid, having the same Dice score and complexity

score for many higher values for λ.

The graph for d = 25 in Figure 5.13 shows a more continuous development of the Dice

score. However, starting at λ = 5, the model starts to shrink extremely and subsequently

the Dice score also decreases a lot. At λ = 7 (not included in the graph any more) the

model completely vanishes due to an over-regularization. Generally, one can see that the

mean and the median follow a similar trend and the standard deviation increases when

enforcing more smoothing.

For the Centre model (results in Figure 5.14), the Dice scores in Table 5.1

decrease and the standard deviation increases for both values for d when increasing the

value for λ. Simultaneously, the complexity score decreases as expected. At certain

values for λ (for d = 10 at λ = 4.5 and for d = 25 at λ = 7.8) parts of the model start to

vanish (see Fig. 5.14(f)). At a slightly higher λ the model vanishes completely.

In the results for the Aspern model in Figure 5.15 one can see that the small

second building at the left side of the reconstruction vanishes already with low smoothing.

This can also be observed looking at the Dice scores in Table 5.2, where the score rapidly

5.3. Results 59

decreases at d = 10 between λ = 0.0 and λ = 1.0 and at d = 25 between λ = 1.0 and

λ = 1.5. This happens due to the lack of neighboring volumetric cells with high inside

free space scores and the lack of solid structures directly at the vertical cell boundaries,

which influence the neighbor weights in the CRF.

A similar effect can be observed at d = 25 at the right side of the scene. A tiny

part is visible in the geometric model at λ = 0.0 due to clutter which gets smoothed

out quickly. Though, at a high value of λ the model gets over-smoothed and the space

between the small clutter object and the parts of the model are all smoothed into the

resulting geometric model.

The results for the Siemenscity model can be seen in Figure 5.16. When

enforcing low smoothing, an additional object at the right side is included in the

geometric model. As this originates from vegetation, it is not included in the ground

truth model. Therefore, as one can see in Table 5.3, the Dice score initially rises while

increasing the value of λ. However, after the unwanted object vanished due to sufficient

regularization, the Dice scores develop as usual and decrease constantly.

Another over-smoothing effect can be observed in Fig. 5.16(e), where the whole space

surrounded by structures of the model gets smoothed into the resulting geometric model.

As such a free space surrounded by occupied space contains many neighboring volumetric

cells which have a higher inside score, it is likely that this space gets smoothed into the

geometric model.

5.3.4 Robustness Against Noise and Clutter

As we use models from image-based reconstruction methods, they usually contain error

data. In Figure 5.8 one can see that the models reconstructed from real-world image data

contains a lot of noise and clutter due to missing texture or errors in the reconstruction

process. However, even in reconstructions with images from randomly textured synthetic

models (as in Figure 5.6) noise exists as a result of errors in the reconstruction process.

In Figure 5.10 one can see points contained within a slice projected on an image matrix.

Methods like [48] use Hough line detection to detect the outlines of objects on an image

matrix like this. However, as far too many lines get detected in such an image using Hough

Transform line detection, this method is computationally inefficient and does not deliver

good results for noisy scenes.

The results show that due to the regularization in the slice domain and in the 3D

60 Chapter 5. Experiments

Figure 5.10: Points contained in a slice. In this figure, all points within a slice are projected
onto an image matrix. The left image is a slice of the Siemenscity model computed with
d = 10. One can see that errors in the reconstruction and sloped vertical structures lead to
many points along the object boundaries. The right image is again taken from Siemenscity,
but with d = 25. In this example, clutter in horizontal surfaces leads also to clutter in this
image. With this difficulties, it is hard to find object outlines using, for example, Hough
Transform line detection.

domain using volumetric cells containing the outlines of the slice segmentations, we achieve

good results even in presence of noise and clutter. For example, in Fig. 5.11(b) one can

see the resulting geometric model from the Joanneum model with λ = 0.0 which leads to

irregularities at the different slices. Contrary, at Fig. 5.11(d), where λ = 4.5, the model

only contains smooth surfaces and simultaneously covers the original model well. For the

Aspern model, which is a model created from real-world image data and therefore contains

much more clutter, the results (which can be seen in Fig. 5.15) also show smooth surfaces

when enforcing enough smoothing.

5.3.5 Limitations

As our approach is based on piecewise planarity in the horizontal (due to horizontal slicing)

and in the vertical direction (due to an approximation by a polygonal line), rounded and

horizontal sloped structures can not be represented exactly.

However, as one can see in Figure 5.14, vertical rounded structures get reconstructed

well with a polygonal line. Even horizontal sloped surfaces can be approximated with

5.3. Results 61

d λ Dice Score: median mean std.deviation complexity

10 0.0 0.9697 0.9639 0.0219 111

10 2.0 0.9693 0.9634 0.0220 99

10 4.5 0.9099 0.8554 0.1165 67

25 0.0 0.9723 0.9692 0.0186 390

25 4.0 0.9717 0.9678 0.0188 240

25 7.8 0.9478 0.9353 0.0396 175

Table 5.1: Table of Dice scores and complexity scores of the Centre model. As one can ob-
serve, the complexity values drop with increasing λ and increasing Mean Shift bandwidth.

d λ Dice Score: median mean std.deviation complexity

10 0.0 0.9679 0.9660 0.0148 124

10 1.0 0.9497 0.9369 0.0535 72

10 3.5 0.9400 0.9266 0.0539 51

25 0.0 0.9705 0.9695 0.0133 480

25 1.0 0.9705 0.9685 0.0138 241

25 1.5 0.9501 0.9391 0.0519 198

25 3.5 0.9465 0.9347 0.0540 148

25 4.5 0.8995 0.8960 0.0545 128

Table 5.2: Table of Dice scores and complexity scores of the Aspern model.

stairway-like structures as can be seen in Figure 5.16. Depending on the Mean Shift

bandwidth, the quantization gets coarser or denser. Setting the parameter d to 35, the

slope is approximated reasonably well. Again, compared to [48], such structures can be

approximated better with our approach than using Hough Transform line detection, as

Hough Transform line detection on projected slices (as in Figure 5.10) can just detect

the beginning or the end of slopes while our approach finds an optimal object outline

depending on the free space score.

5.3.6 Processing Time

In Table 5.4, the processing times for the different geometry models are listed. Generally,

most of the time is needed for the computation of the free space score which includes

the visibility tests and the distance calculations for inside-labeled voxels. Therefore, the

number of cameras used for visibility testing and especially the size of the voxel space

are the most crucial processing time factors. Figure 5.17 visualizes the distribution of

the time needed for the different modules. The free space score computation needs 96%

of processing time. Additionally, this can be seen at the times needed for the Aspern

62 Chapter 5. Experiments

(a) d = 10, λ = 0.0 (b) d = 25, λ = 0.0

(c) d = 10, λ = 2.0 (d) d = 25, λ = 4.5

(e) d = 10, λ = 4.0 (f) d = 25, λ = 6.0

Figure 5.11: Results of the Joanneum model. The Joanneum model is a simple synthetic
model which fulfills our requirements well. Therefore, selecting a good d and λ, we get a
good geometric representation. With too much smoothing, the whole model gets smoothed
into one block or parts of the model start to vanish.

5.3. Results 63

(a) Dice Scores

(b) Complexity Scores

Figure 5.12: Dice scores and complexity scores of the Joanneum model (d = 10.) In the
top figure, one can see the mean and median Dice scores over all images, the corresponding
standard deviation and the minimum and maximum Dice score. In the bottom Figure,
the mean Dice score and the complexity measure is set into relation.

64 Chapter 5. Experiments

(a) Dice Scores

(b) Complexity Scores

Figure 5.13: Dice scores and complexity scores of the Joanneum model (d = 25).

5.3. Results 65

(a) d = 10, λ = 0.0 (b) d = 25, λ = 0.0

(c) d = 10, λ = 2.0 (d) d = 25, λ = 4.0

(e) d = 10, λ = 4.5 (f) d = 25, λ = 7.8

Figure 5.14: Results of the Centre model. This model contains rounded orthogonal vertical
structures, which just can be approximated by polygonal lines in our approach. However,
as you can see, even these structures get approximated well by a polygonal line. In
Fig. 5.14(e) and Fig. 5.14(f) parts of the model start to vanish due to over-smoothing.

66 Chapter 5. Experiments

(a) d = 10, λ = 0.0 (b) d = 25, λ = 0.0

(c) d = 10, λ = 1.0 (d) d = 25, λ = 3.5

(e) d = 10, λ = 3.5 (f) d = 25, λ = 4.5

Figure 5.15: Results of the Aspern model. As the input model is created using real-world
image data, it contains more clutter. However, despite this the reconstructed geometry
looks well. With too much smoothing, parts not belonging to the model gets smoothed in
the result.

5.3. Results 67

(a) d = 25, λ = 0.0 (b) d = 35, λ = 0.0

(c) d = 25, λ = 2.0 (d) d = 35, λ = 2.0

(e) d = 25, λ = 6.0 (f) d = 10, λ = 2.0

Figure 5.16: Results of the Siemenscity model. This model contains sloped structures,
which just are approximated by slicing-based geometric models. However, supposing a
sufficiently high level of detail in the vertical direction (i.e., a sufficiently small Mean Shift
bandwidth), they can be approximated well by stairway-like structures. When enforcing
too much smoothing, the free space between the parts of the model gets smoothed into
the model.

68 Chapter 5. Experiments

d λ Dice Score: median mean std.deviation complexity

10 0.0 0.9496 0.9507 0.0160 146

10 0.5 0.9538 0.9544 0.0145 112

10 2.0 0.9422 0.9430 0.0200 62

25 0.0 0.9708 0.9677 0.0151 512

25 1.0 0.9791 0.9773 0.0089 282

25 2.0 0.9776 0.9757 0.0091 219

25 6.0 0.8501 0.8224 0.0944 13

35 0.0 0.9743 0.9694 0.0154 1136

35 1.0 0.9827 0.9813 0.0065 657

35 2.0 0.9794 0.9778 0.0091 503

Table 5.3: Table of Dice scores and complexity scores of the Siemenscity model. For this
model, the Dice score increases with low values for λ due to a small reconstructed object
originating from clutter. However, with a higher smoothing the object vanishes and the
scores develop as expected.

model, where a higher voxel space size leads to a drastically increased computation time.

However, a higher number of slices, which leads to more separate 2D processing steps and

more volumetric cells, does not significantly influence the total processing time.

Though, as our main goal was not a perfect processing time performance, there still

exist many possibilities to optimize the code. For example, one possibility would be to

move the computation of the free space scores, which are computations using a voxel space,

to the GPU.

However, having calculated the free space scores it is possible to compute results with

varying parameter settings without a big computational cost. For example, when changing

the parameter λ, just the 3D Graph Cut part has to be recomputed which can be done

in a few seconds (depending on the model). When changing the parameter d more parts

have to be recomputed. However, as the free space score computation is by far the most

time-consuming part, all the slice computations in 2D and the computations in 3D can be

done in about one minute (depending on the model). Therefore, in terms of computational

complexity, an algorithm for finding the optimal value for d could be implemented.

5.3. Results 69

Model # Slices # Cameras Voxel Space Size Computation Time (sec)

Joanneum (d = 10) 4 683 600x542x60 991

Joanneum (d = 25) 13 683 600x542x60 1019

Centre (d = 10) 4 935 600x678x60 1846

Centre (d = 25) 7 935 600x678x60 1869

Aspern (d = 10) 4 151 700x560x80 2907

Aspern (d = 25) 7 151 700x560x80 2978

Siemenscity (d = 10) 3 213 600x604x60 991

Siemenscity (d = 25) 7 213 600x604x60 1049

Siemenscity (d = 35) 11 213 600x604x60 1171

Table 5.4: Processing time. All the results are computed on an Intel Xenon X5675 with
16 GBs RAM.

Figure 5.17: Distribution of processing time for the separate processing steps. The free
space score computation (orange) takes nearly all of the processing time (96%), while
the final smoothing (light blue) just needs 0.74% of the total time. The processing time
behavior printed in this figure has been observed by processing the Joanneum model with
d = 25.

Chapter 6

Conclusion and Future Work

In this thesis we have proposed a novel approach for extracting geometric structures from

meshed input point clouds dominated by planar horizontal and orthogonal vertical struc-

tures. Compared to similar techniques which focus on point clouds acquired by a laser

scanner, we have used input models reconstructed from image-based reconstruction meth-

ods. Due to a higher amount of clutter and noise in these reconstructions, additional

problems arise for which we have found robust solutions. We create geometric abstrac-

tions of meshed 3D point clouds by initially partitioning the model into horizontal slices.

We perform an optimization-based inside/outside labeling resulting in a floor plan for

each slice and finally merge all slices together. For this, we partition the whole scene into

volumetric cells based on the floor plans and solve an energy minimization problem. By

modifying the smoothness parameter λ and a bandwidth parameter d used for the detec-

tion of dominant horizontal structures, the level of detail of the geometric abstraction can

be adjusted. In our experiments we have shown that our approach delivers reliable results

on noisy input data and that even scenes not fulfilling our requirements completely can

be approximated.

In our extensive experimental evaluation we have delivered results based on synthet-

ically generated models and models reconstructed from real-world image data. We have

analyzed the complexity and the error with respect to resulting geometric details using

different parameter settings. We have shown that our approach delivers reliable results

even in the presence of clutter and noise. Even though we do not handle rounded and

sloped structures, we have empirically shown that rounded orthogonal vertical structures

will be approximated by a polygonal line and even horizontally sloped structures can be

approximated by piecewise planar structures.

71

72 Chapter 6. Conclusion and Future Work

We further have shown that our approach is computationally efficient and that the

most complex part is the free space score calculation, which can be optimized and reused

for computations with changed parameter settings.

In future work, one improvement would be to implement an algorithm to find an opti-

mal value for d. As the computational cost of slice extraction and 2D slice computations

is relatively small, one possibility would be to increment the value for d until an optimal

value has been found. Having automatically calculated d, the level of detail would be

adjustable only with one single parameter λ. As recomputing the model with a changed λ

just needs some seconds, a level of detail adjustment on-the-fly could be realized. However,

the proposed method still needs to be elaborated and evaluated in more detail.

Generally, as the main focus of our work was not to optimize the workflow with respect

to processing time, many improvements can still be made in this area. For example, the

visibility tests and the distance queries in the voxel space which are needed for the free

space score calculation could be implemented efficiently on the GPU or using OpenGL

which would massively improve the processing time performance.

For handling large-scale scenes, an additional pre-processing step which partitions the

scene into separate objects would be beneficial. Due to varying object properties, this

could improve the detection of slice boundaries and consequently the overall reconstruction

quality would be improved.

Another promising approach to improve the reconstruction quality and simultaneously

add semantic information to the model is to use 2D information propagated to 3D. For

example, segmentation methods on the 2D images could be used to detect and classify

various segments. This information could be propagated to 3D space leading to a se-

mantically enriched model and to an understanding of the simplified scene representation.

Additionally, different levels of detail for differently classified objects could be introduced

as well.

BIBLIOGRAPHY 73

Bibliography

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[2] MeshLab, an open source, portable, and extensible system for the processing and

editing of unstructured 3D triangular meshes. . http://meshlab.sourceforge.net/,

2012.

[3] Engineer’s Handbook - Types of CAD. http://engineershandbook.com/Software/

cad2.htm, 2013.

[4] Kinect for Windows - Voice, Movement and Gesture Recognition Technology. http:

//www.microsoft.com/en-us/kinectforwindows/, 2013.

[5] S. Agawal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building rome in a day.

In Proceedings International Conference on Computer Vision, 2009.

[6] P. Alliez, S. Tayeb, and C. Wormser. 3d fast intersection and distance computation

(aabb tree). In CGAL User and Reference Manual. CGAL Editorial Board, 4.3

edition, 2013.

[7] S. Anand, M., V. Singh, and S. Kluckner. Heteroscedastic superpixel segmentation.

Siemens internal technical report, 2012.

[8] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In Pro-

ceedings European Conference on Computer Vision, 2006.

[9] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press,

1998.

[10] J.-Y. Bouguet. Camera calibration toolbox for matlab. http://www.vision.

caltech.edu/bouguetj/calib_doc/.

[11] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph

cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1222–

1239, 2001.

[12] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–

619, 2002.

http://www.cgal.org
http://meshlab.sourceforge.net/
http://engineershandbook.com/Software/cad2.htm
http://engineershandbook.com/Software/cad2.htm
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

74

[13] D. Dementhon. Spatio-temporal segmentation of video by hierarchical mean shift

analysis. In Center for Automat. Res., U. of Md, College Park, 2002.

[14] L. R. Dice. Measures of the amount of ecologic association between species, volume 26.

Ecological Society of America, 1945.

[15] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. The Canadian Cartographer,

1973.

[16] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fit-

ting with application to image analysis and automated cartography. Communication

Association and Computing Machine, 24(6):381–395, 1981.

[17] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,

Princeton, NJ, USA, 1962.

[18] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function,

with applications in pattern recognition. Information Theory, IEEE Transactions on,

21(1):32–40, Jan. 1975.

[19] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stereopsis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2010.

[20] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In

ACM Trans. on Graphics (SIGGRAPH), pages 209–216. ACM Press/Addison-Wesley

Publishing Co., New York, 1997.

[21] Google. Google earth, 2014. http://www.google.com/earth/.

[22] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Image understanding

using qualitative geometry and mechanics. In Proceedings European Conference on

Computer Vision, 2010.

[23] R. Hartley and A. Zisserman. Multiple View Geometry In Computer Vision. Cam-

bridge University Press, 2000.

[24] S. Heber, R. Ranftl, and T. Pock. Approximate envelope minimization for curvature

regularity. In Proceedings European Conference on Computer Vision, 2012.

http://www.google.com/earth/

BIBLIOGRAPHY 75

[25] J. Henrikson. Completeness and total boundedness of the hausdorff metric. MIT

Undergraduate Journal of Mathematics, 1999.

[26] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof. Incremental surface extraction

from sparse structure-from-motion point clouds. In Proceedings British Machine

Vision Conference, 2013.

[27] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Euro-

graphics Symposium on Geometry Processing, 2006.

[28] S. Kluckner and H. Bischof. Image-based building classification and 3d modeling with

super-pixels. In International Archives of Photogrammetry and Remote Sensing, 2010.

[29] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph

cuts? In Proceedings European Conference on Computer Vision, 2002.

[30] P. Labatut, J.-P. Pons, and R. Keriven. Efficient multi-view reconstruction of large-

scale scenes using interest points, delaunay triangulation and graph cuts. In Proceed-

ings International Conference on Computer Vision, 2007.

[31] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single image structure

recovery. In Proceedings IEEE Conference Computer Vision and Pattern Recognition,

2009.

[32] T. N. Limited and Google. Trimble 3d warehouse, 2014. http://sketchup.google.

com/3dwarehouse/.

[33] W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface reconstruc-

tion algorithm. In ACM Trans. on Graphics (SIGGRAPH), 1987.

[34] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings

International Conference on Computer Vision, 1999.

[35] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic al-

gorithm configuration. In International Conference on Computer Vision Theory and

Applications, 2009.

[36] D. Nister. An efficient solution to the five-point relative pose problem. In IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2004.

http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/3dwarehouse/

76

[37] S. Oesau, F. Lafarge, and P. Alliez. Indoor scene reconstruction using primitive-

driven space partitioning and graph-cut. In Eurographics Symposium on Geometry

Processing, 2013.

[38] L. Paul Chew. Constrained delaunay triangulations. Algorithmica, 4(1-4):97–108,

1989.

[39] S. Ramalingam, J. K. Pillai, A. Jain, and Y. Taguchi. Manhattan junction catalogue

for spatial reasoning of indoor scenes. In Proceedings IEEE Conference Computer

Vision and Pattern Recognition, 2013.

[40] L. Roberts. Machine perception of 3-d solids. PhD. Thesis, 1965.

[41] M. Singh, V. Singh, S. Anand, and S. Kluckner. Fast statistical approach for semantic

3d modeling of indoor scenes from point cloud data. Siemens internal technical report,

2012.

[42] S. N. Sinha, D. Steedly, and R. Szeliski. Piecewise planar stereo for image-based

rendering. In Proceedings International Conference on Computer Vision, 2009.

[43] N. Snavely. Bundler: Structure from motion (sfm) for unordered image collections.

http://www.cs.cornell.edu/~snavely/bundler/.

[44] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring image collections

in 3d. In ACM Trans. on Graphics (SIGGRAPH), 2006.

[45] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo

collections. International Journal of Computer Vision, 2007.

[46] A. Wendel, C. Hoppe, H. Bischof, and F. Leberl. Automatic fusion of partial recon-

structions. In Proceedings International Society for Photogrammetry and Remote

Sensing, 2012.

[47] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Schematic surface reconstruction. In

Proceedings IEEE Conference Computer Vision and Pattern Recognition, 2012.

[48] J. Xiao and Y. Furukawa. Reconstructing the world’s museums. In Proceedings

European Conference on Computer Vision, 2012.

[49] C. Zach. Fast and high quality fusion of depth maps. In International Symposium

on 3D Data Processing, Visualization, and Transmission, 2008.

http://www.cs.cornell.edu/~snavely/bundler/

BIBLIOGRAPHY 77

[50] L. Zebedin, J. Bauer, K. Karner, and H. Bischof. Fusion of feature- and area-based in-

formation for urban buildings modeling from aerial imagery. In Proceedings European

Conference on Computer Vision, 2008.

	Introduction
	Related Work
	Single-View
	3D Approaches
	Summary

	Theory and Background
	Reconstruction of Point Clouds
	Structure from Motion
	Camera Calibration
	Image Feature Correspondences
	Triangulation
	Multiview Reconstruction

	Dense Reconstruction
	Patch-based Multi-view Stereo

	From Points to Meshes
	Poisson Surface Reconstruction
	Surface Reconstruction Using Delaunay Triangulation
	Delaunay Triangulation
	Reconstruction Method

	Energy Minimization via Graph Cuts
	The Energy Minimization Problem
	Graph Cuts
	Energy Minimization Using the Expansion Move Algorithm

	Mean Shift
	Intuitive Explanation
	The Mean Shift Procedure

	Summary

	Geometric Abstraction with Horizontal Slicing
	Overview
	Slicing and Boundary Segmentation
	Slice Extraction
	Binary Segmentation
	Free Space Score
	Binary Labeling as an Energy Minimization Problem
	Outline Simplification

	Slice Combination
	Extrusion to 3D
	Volumetric Cells
	Regularization With Energy Minimization

	Input Data and Preprocessing
	Reference Plane Estimation and Coordinate Transform
	Densification of Point Cloud

	Experiments
	Evaluation Metrics
	Dice Score
	Regularization Measure
	Hausdorff Distance

	Evaluation Data
	Synthetic Models
	Models from Real-World Image Data

	Results
	Comparison to Commonly Used Mesh Simplification Methods
	Level of Detail in Vertical Direction
	Smoothing of Volumetric Cells
	Robustness Against Noise and Clutter
	Limitations
	Processing Time

	Conclusion and Future Work
	Bibliography

