
Masterarbeit

Design and Implementation of a
Variant Rich Component Model
for Model Driven Development

Nicolas Pavlidis

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Betreuerin: Dipl.-Ing. Andrea Leitner
Begutachter: Dipl.-Ing. Dr. techn. Christian Kreiner

Graz, im Oktober 2011

Kurzfassung

Automobile Softwareentwicklung sieht sich seit jeher mit der steigenden Komplexität der
zu entwickelnden Software konfrontiert. Modellbasierte Entwicklung trägt dazu bei, die-
se Komplexität zu reduzieren und beherrschbar zu gestalten. Allerdings zieht steigender
Variantenreichtum in der Software wiederum steigende Komplexität nach sich. Das Ziel
muss es also sein auch diese Komplexität zu reduzieren. Software Product Lines bieten
hierfür einen systematischen Ansatz indem Variabilität, in den der Software zu Grunde
liegenden Modellen, explizit gemacht wird. Um daraus ein konkretes Modell ableiten zu
können, muss eine, dem Kontext entsprechende Konfiguration gewählt werden. Eine sol-
che Konfiguration kann dazu führen, dass ganze Teile des Basismodells entfernt werden
müssen.
Die vorliegende Arbeit beschäftigt sich mit dem Problem des konfigurationsbasierten,

automatischen und konsistenten Reduzierens von Modellen. Das konkrete Anwendungspro-
jekt HybConS beschäftigt sich mit der Entwicklung einer generischen Softwarearchitektur
für hybride Fahrzeuge. In der Autoindustrie wird Simulink als primäres Werkzeug zur
modellbasierten Entwicklung eingesetzt. Basierend auf solchen Simulink Modellen wur-
den drei Szenarien zur Anwendung von Variabilität identifiziert: 1) Alternative Imple-
mentierungen, 2) Optionales Verhalten und 3) Anwendung der genannten Szenarien auf
Zustandsautomaten. Diese Szenarien und die Möglichkeit Modelle automatisiert auf spe-
zifische Varianten reduzieren zu können bilden den grundsätzlichen Anforderungskatalog
dieser Arbeit.
Ergebnis der Arbeit ist ein Komponentenmodell, genannt Variant Component Model,

welches die Modellierung variabler Software Komponenten erlaubt. Um die automatische
Reduktion von Modellen auf spezifische Varianten zu ermöglichen, verfolgt das in die-
ser Arbeit beschriebene Komponentenmodell die Strategie, bestehende Modelle derart zu
manipulieren, dass sie nur mehr variantenspezifische Elemente enthalten.
Basierend auf dem entwickelten Komponentenmodell bietet die vorliegende Arbeit eine

prototypische Implementierung, die Simulink Modelle in eine dem Komponentenmodell
entsprechende Repräsentation überführt und die geforderte Reduktion auf spezifische Va-
rianten erlaubt. Zur Vereinfachung der Modellierung von Variabilität in Simulink wurde
eine Bibliothek mit hierfür spezifischen Blöcken entwickelt. Die bereits erwähnte Reduk-
tion gegebener Simulink Modelle wird durch das Generieren von Matlab Scripts erreicht,
die die nötige Information über zu entfernende Elemente enthalten.
Die vorliegende Implementierung ermöglicht schließlich die Umsetzung aller drei genann-

ten Szenarien. Damit ist es nun möglich 1) Simulink (und andere) Modelle mit genügend
Variabilitätsinformation anzureichern um diese 2) anschließend auf spezifische Varianten
reduzieren zu können.

Abstract

Automotive software development was ever since faced with raising complexity of the de-
veloped software. Model based development helps here to reduce this complexity. On the
other hand variability in the software adds additional complexity to it. Software Product
Lines provide a systematic approach to reduce this complexity by adding additional vari-
ability information to the models, thus making variability explicit in these models. In order
to derive concrete products from these variant rich models, a concrete configuration has to
be selected. Based on this selection it may happen that large parts of the model need to
be removed. This thesis addresses the problem of automatically and consistently reducing
models according to a selected configuration. The HybConS project, being the primarily
domain of this thesis, proposes a generic software architecture for hybrid vehicles. In the
automotive domain Simulink is the dominant tool for model based development. Based
on Simulink models three scenarios for the application of variability have been identified:
1) alternative implementations, 2) optional behavior and 3) applying those two scenarios
on state machines. These three scenarios and the ability to automatically reduce mod-
els to specific variants provide the basic requirement catalog of this thesis. The result is
a new component model, called Variant Component Model, that provides the ability to
model variant rich software components. To achieve automatic reduction of models the
component model follows the approach of removing elements from the model that do not
belong to a specific variant.
Based on this component model, a prototypical implementation is provided that maps

Simulink models to the Variant Component Model and reduces these models to specific
variants identified by provided configurations. Furthermore, Variant Modeling, a library
for Simulink has been developed, that provides blocks that help to enrich Simulink models
with variability information. The reduction step is accomplished by generating Matlab
scripts that contain information about the elements that need to be removed. Using this
implementation it is possible to successfully cover all required scenarios. Therefore, it is
now possible to 1) enrich Simulink models with variability information and 2) to reduce
these models to specific variants.

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
13.10. 2011 (signature)

Contents

List of Figures vii

List of Tables xi

List of Acronyms xiii

Acknowledgments xv

1. Introduction 1
1.1. Problem Scope and Definition . 1

1.1.1. The HybConS Project . 1
1.2. Motivation . 2

1.2.1. Selection of Different Alternatives 2
1.2.1.1. Desired Behavior . 2

1.2.2. Implementing Optional Behavior . 3
1.2.2.1. Desired Behavior . 3

1.2.3. Variable State Machines . 4
1.2.3.1. Desired Behavior . 5

1.3. Outline . 5

2. Related Work 7
2.1. Terminology . 7

2.1.1. Defining Variability . 7
2.1.2. Variation Points . 7
2.1.3. Variant . 8

2.2. Representing Variability . 8
2.2.1. Feature Oriented Domain Analysis 8

2.2.1.1. Feature Models . 8
2.2.2. Using Domain Specific Languages to Describe Variability 8
2.2.3. The Common Variability Language 9
2.2.4. Applying Variability to Model Driven Development 9
2.2.5. Generating Variant Specific Models 10
2.2.6. Compositional Variability . 11

2.2.6.1. Plain Propagation . 11
2.2.6.2. Direct Binding . 11
2.2.6.3. Orthogonal Propagation . 11
2.2.6.4. Top-Level Propagation . 11
2.2.6.5. Global Features / Reverse Propagation 12

i

2.3. Separating Concerns - The Software Product Line Modeling Process 12
2.3.1. Separating Problem from Solution 12
2.3.2. Splitting the SPL development process 13

2.3.2.1. Domain Engineering . 13
2.3.2.2. Application Engineering . 14
2.3.2.3. Merging Processes and Development Spaces 14

2.3.3. Tools to Implement the Software Product Line Engineering processes 14
2.3.3.1. pure::variants . 15
2.3.3.2. Matlab / Simulink . 18
2.3.3.3. Evaluation . 19

2.4. Component Models . 21
2.4.1. AUTOSAR . 22

2.4.1.1. AUTOSAR Overview . 22
2.4.1.2. Components and Ports . 23
2.4.1.3. AUTOSAR Compliance 23
2.4.1.4. AUTOSAR and Simulink 24
2.4.1.5. Migration to AUTOSAR 24
2.4.1.6. Tool Support . 24

2.4.2. The CompAA Component Model . 24
2.4.3. Multilevel Component Composition 25

2.5. Hypothesis . 26

3. Variant Component Model Design 27
3.1. Requirements to a Component Model for Variant Management 27

3.1.1. Generation of Valid Variants . 27
3.1.2. Reusability . 27
3.1.3. Simulink Integration . 27
3.1.4. Variation Point Dependencies . 28
3.1.5. Cross Cutting Effects . 28
3.1.6. Interoperability with AUTOSAR 28

3.2. Separating Concerns: Variation Points and Component Variability 28
3.3. Variation Point Model . 29

3.3.1. Variation Points . 30
3.3.1.1. Associating Variation Points to Features 31

3.3.2. Dependencies . 32
3.3.2.1. Logically Composed Dependencies 34
3.3.2.2. Resolving Dependencies . 34

3.3.3. Aspects . 35
3.3.4. Operations on the Variation Point Model 35

3.3.4.1. Adding Variation Points . 35
3.3.4.2. Updating a Variation Point 36
3.3.4.3. Adding Dependencies between Variation Points 36
3.3.4.4. Resolving Dependencies . 37
3.3.4.5. Remove Dependencies . 37
3.3.4.6. Remove Variation Points 39

ii

3.4. Components with Variability . 39
3.4.1. Development of Variant Rich Components 39
3.4.2. Terminology . 40
3.4.3. Component Structure . 42

3.4.3.1. AUTOSAR Interoperability 43
3.4.3.2. State Machines . 43

3.4.4. Variability Consumers . 44
3.4.4.1. Variability Realizers . 44
3.4.4.2. Variation Point Mapper . 45

3.4.5. Connectors . 45
3.4.5.1. Component Connector . 47
3.4.5.2. Variability Connector . 47

3.4.6. Implementing Aspects . 47
3.5. Embedding the Variant Component Model into SPLE 49

3.5.1. Identifying Roles and Activities . 50
3.5.1.1. Domain Developer . 50
3.5.1.2. Variation Point Modeler . 50
3.5.1.3. Component Developer . 51
3.5.1.4. System Architect . 51
3.5.1.5. Variant Developer . 52

3.5.2. Tools to support the Activities . 54
3.5.3. Deriving Variants . 55

4. Implementation 57
4.1. General Overview . 57

4.1.1. Tool Selection . 57
4.1.1.1. Problem Space . 57
4.1.1.2. Solution Space . 58

4.1.2. Selected Approach . 58
4.2. Simulink API . 59

4.2.1. Providing Configuration Information 59
4.2.2. Modeling Alternatives . 59
4.2.3. Modeling Optional Components . 60
4.2.4. Handling Variable Buses . 61
4.2.5. Variant State Machines . 63

4.2.5.1. Example on State Machine Variability 64
4.2.6. Additional Functions Provided by the Variant Modeling API 64

4.2.6.1. Exchanging Variation Points 64
4.2.6.2. Disabling Bus Signals . 65
4.2.6.3. Adjusting State Charts . 65

4.3. Variant Component Model Core Implementation 66
4.3.1. Abstracting Models from their Sources 66
4.3.2. Variant Family Model . 66
4.3.3. Generating Variants . 66

4.3.3.1. Binding a Component . 67
4.3.3.2. Storing Variant Configurations 68

iii

4.3.4. Implementing the Models . 69
4.4. Variant Component Model Simulink Interface 70

4.4.1. Simulink Model Provider . 70
4.4.1.1. Mapping Simulink Blocks to Components 70
4.4.1.2. Reading Components . 72
4.4.1.3. Handling Variability . 73

4.4.2. XML Variation Point Provider . 74
4.4.2.1. The Used Exchange Format 75
4.4.2.2. Parsing Variation Point Descriptions 76

4.5. pure::variants Integration . 77
4.5.1. Importing the VPM into pure::variants 77

4.5.1.1. Mapping to an External Model 77
4.5.1.2. User Interface for Import 78

4.5.2. Exporting Variants . 79
4.5.2.1. Extracting the Selected Configuration 79
4.5.2.2. Implementing the Export Wizard 79

4.6. Testing . 81
4.6.1. Test Strategies . 81

4.6.1.1. Using Fixtures to Remove Complexity from Tests 81
4.6.1.2. Factories for Test Data . 81

4.6.2. Testing the Variant Component Model Core 82
4.6.2.1. Testing the Models . 82
4.6.2.2. Testing Variant Generation 82

4.6.3. Testing the Simulink Model Provider 82
4.6.4. Integration Testing . 83

5. Results and Evaluation 85
5.1. Applying the Scenarios . 85

5.1.1. Selection of Different Alternatives 85
5.1.2. Implementing Optional Behavior . 87
5.1.3. Variable State Machines . 89

5.2. Applying the Variability Patterns . 91
5.2.1. Variant Component Model . 91

5.2.1.1. Plain Propagation . 91
5.2.1.2. Direct Binding . 91
5.2.1.3. Orthogonal Propagation . 92
5.2.1.4. Top Level Propagation . 92
5.2.1.5. Global Features . 92

5.2.2. Implementation . 93
5.3. Discussion . 93

6. Summary and Outlook 95
6.1. Future Work . 95

6.1.1. Further Integration into pure::variants 95
6.1.2. Further Automate Generation of Variants 96
6.1.3. Interface to AUTOSAR . 96

iv

6.1.4. Translation of Component Description Languages 96
6.1.5. Configuration of Parameters . 96

A. State Chart API 97
A.1. Delete States from State Charts . 97
A.2. Delete Transitions from State Charts . 97
A.3. Rerouting Transitions . 97
A.4. Changing Labels of Transitions . 98

B. Refactoring Simulink Models for Variability 101
B.1. Introducing Optional Subsystems . 101
B.2. Introducing Alternative Implementations . 103

Bibliography 105

v

vi

List of Figures

1.1. Scenario with different alternative implementations 2
1.2. After selecting one alternative unnecessary information is removed from the

model . 3
1.3. Optional behavior (dashed) that may or may not be part of a component. 3
1.4. The two variants of the component with the optional part enabled (left)

and disabled (right) . 4
1.5. State machines can be seen as special components whose optional states

affect its transitions . 4
1.6. The different variants of the state machine that either include or exclude

the optional state OptionalState. 5

2.1. The development activities assigned to different spaces of development (based
on [Berg et al., 2005] . 12

2.2. Domain Engineering provides the basic artifacts which are used by Appli-
cation Engineering to build concrete applications [Pohl et al., 2005] 13

2.3. Combining problem and solution space with the Domain Engineering and
Application Engineering processes results in an effective way to develop
variable software architectures . 15

2.4. Data and knowledge flow between pure::variants and Simulink embedded
in the SPLE processes . 16

2.5. Using the Variation Point Explorer to define Variation Points in Simulink . 19
2.6. Resulting code after applying either OPT_CAL or OPT_LOCAL profiles

on the same Simulink model . 20
2.7. The architecture of AUTOSAR, [Harald et al., 2004] 22
2.8. Subservices controlled by the component core and configured by adoption

points, based on [Lacouture and Aniorté, 2008] 25

3.1. The structure of the Variation Point Model 29
3.2. Mapping of optional features can be done automatically or selectively . . . 32
3.3. Mapping of alternative features to variation points 32
3.4. UML diagram showing the different entities that build the dependency con-

cept in the Variation Point Model . 33
3.5. An UML activity diagram showing the process of resolving a dependency . 34
3.6. Adding a Variation Point to the VPM is done after checking the constraints

the Variation Point and its value set must fulfill 36
3.7. The work flow to update a Variation Point in the VPM 37
3.8. The work flow describing how a dependency is validated before adding it

to the model . 38
3.9. The work flow describing how dependencies in the VPM are resolved 38

vii

3.10. Required steps to remove a dependency from the VPM 39
3.11. The work flow how to remove a Variation Point from the VPM 39
3.12. The development process for components that provide variability 40
3.13. Steps to define variability for a component 40
3.14. A class diagram showing the structure of the Variant Component Model . 41
3.15. Combining functional components with variability results in a new component. 41
3.16. The structure of components in the Variant Component Model 42
3.17. The structure of state machines used in the Variant Component Model. . . 43
3.18. The interface to connect components to variation points 44
3.19. Illustration showing how VariabilityRealizers and Connectors are used to

implement variability in a component . 45
3.20. Usage of VariationPointMapper to connect heterogeneous value sets 46
3.21. Structure of connectors provided by the Variant Component Model to con-

nect variability realizers to variable parts of a component 46
3.22. The work flow illustrating validation activities when adding a new connector

to the pool used by the VariabilityRealizer 47
3.23. The work flow describing how a ComponentConnector has to be added to

a Variability Realizers ConnectorPool . 48
3.24. The operation sequence executed to add a new VariabilityConnector be-

tween a VariabilityRealizer and a composed component 48
3.25. Adding an Aspect to be handled by a VariabilityRealizer 49
3.26. Setting the Aspect in a connector that connects to the component that

implements it . 49
3.27. The domain developer providing the Feature Model by identifying and

grouping features required by the analyzed domain 50
3.28. The activities a variation point modeler has to execute 51
3.29. The activities a component developer has to carry out to deliver a set of

reusable components . 52
3.30. The activities of the system architect to deliver the system architecture . . 52
3.31. The development process that system architect applies to deliver the system

architecture . 53
3.32. The activities of the variant developer to deliver different variants based on

the system architecture . 53
3.33. The tools and their relationship needed to develop software according to

Software Product Line Engineering . 54
3.34. Generating a new model per variant needs a central data base to store

information specific to elements of a certain source model 56
3.35. Preserve model specific information by providing a copy of the source model

which is adjusted when a variant is generated 56

4.1. The basic tool landscape consisting of pure::variants and Simulink selected
for the implementation . 57

4.2. Structural requirements to subsystems that provide alternative implemen-
tations . 60

4.3. Configuring an optional subsystem . 61

viii

4.4. Exemplary structure of the Variant Bus Creator and Variant Bus Selector
blocks . 62

4.5. Configuring a Variant Bus Creator . 63
4.6. An example how variability inside state machines has to be modeled 64
4.7. Removing the second signal from a Variant Bus Creator by invoking dis-

ableBusSignal . 65
4.8. Binding a system with variable components to a specific variant 67
4.9. The representation of the Simulink block Mux in the Variant Component

Model . 71
4.10. Mapping a variant switch to a Variability Realizer 73
4.11. The structure of BusComponent . 74
4.12. Mapping a Simulink model containing a Bus (and optional subsystems) to

a Variant Component Model Composite Component 74
4.13. The wizard page requesting the needed information from the user in order

to import variation points into pure::variants 78
4.14. The imported VPM integrated into pure::variants 79
4.15. The user interface to export a Variant Description Model (VDM) into Mat-

lab configuration scripts . 80
4.16. The adoption of Four Phase Testing applied during integration testing . . . 84
4.17. The UIs of the tools used in the Setup and Verify phases 84

5.1. Modeling alternatives in Simulink with the Variant Block Set 85
5.2. Converted representation of the model shown in Figure 5.1 86
5.3. Possible variants based on the system provided in Figure 5.1 87
5.4. Example on modeling optional subsystems and variable buses in Simulink

with the Variant Modeling API and the Variant Block Set 87
5.5. The representation of the system provided in Figure 5.4 using the Variant

Component Model . 88
5.6. Variants that can be derived from the system provided in Figure 5.4 88
5.7. A variant state chart that can be processed in order to extract minimal

variants from it . 89
5.8. Implementing the state machine from Figure 5.7 using the Variant Compo-

nent Model . 90
5.9. The variants that can be derived based on the model from Figure 5.8 90
5.10. Applying Plain Propagation to Variant Component Model components . . . 91
5.11. Orthogonal propagation of variability inside the Variant Component Model 92

B.1. Workflow to convert parts of a model into an optional subsystem 102
B.2. Workflow how to refactor existing implementations to alternatives 103

ix

x

List of Tables

2.1. The tool palette used to develop variant rich automotive software 15
2.2. Mapping pure::variants models to SPLE processes 16
2.3. The different blocks provided to model variability in Matlab / Simulink . . 18
2.4. The different variability mechanisms used to model different feature types . 18
2.5. Blocks from the Variant Block Set and their ability to be controlled using

variation points within pure::variants and Simulink 21
2.6. Different binding times and tools and their applicability 21

3.1. Actions provided by the VPM to handle different dependency cases 33
3.2. Logical operators provided by the VPM to develop more complex depen-

dencies . 34

4.1. Operation supported by the Variant Family Model 67
4.2. Operations supported by the Variant Generation Script 68
4.3. Simulink blocks that have corresponding concepts within the Variant Com-

ponent Model . 71
4.4. The structure of files to exchange variation point information 75
4.5. The structure of variation point values in the used exchange format 75
4.6. Elements used from the External Model to import the VPM 77
4.7. Test cases and their objectives for the Simulink model provider 83

5.1. Scenarios and patterns supported by the Variant Component Model and its
Simulink based implementation . 93

A.1. Synopsis of deleteStateFromStateMachine 97
A.2. Synopsis of deleteTransition . 98
A.3. Synopsis of reRouteTransition . 98
A.4. Synopsis of rewriteTransitionLabel . 99

xi

xii

List of Acronyms

AE Application Engineering

API Application Programing Interface

AOP Aspect Oriented Programing

AST Abstract Syntax Tree

AUTOSAR AUTomotive Open System ARchitecture

CCM CORBA Component Model

COM Component Object Model

CVL Common Variability Language

DD Data Dictionary

DE Domain Engineering

DSL Domain Specific Language

ECU Electronic Control Unit

EJB Enterprise Java Beans

FODA Feature Oriented Domain Analysis

IDE Integrated Development Environment

JAXB Java API for XML Binding

MDD Model Driven Development

MOF Meta Object Facility

OMG Object Management Group

RTE Run Time Environment

SWC SoftWare Component

UI User Interface

UML Unified Modeling Language

SDP Software Development Process

xiii

SPL Software Product Line

SPLE Software Product Line Engineering

VCM Variant Component Model

VDM Variant Description Model

VP Variation Point

VPM Variation Point Model

VPV Variation Point Value

XML eXtensible Markup Language

xiv

Acknowledgments

This thesis has been carried out at the Institute for Technical Informatics at Graz, Uni-
versity of Technology.

I want to thank my supervisors Andrea Leitner and Christian Kreiner for giving me the
opportunity to carry out this thesis. In endless discussions, regarding the different design
stages of this thesis, they always helped me to not get off the track and to constantly
improve my work. By providing fast deployed reviews on the various drafts of this thesis
they also helped to constantly improve the written part of my work.
I want to thank my parents, Barbara and Michael, for giving me the opportunity to

carry out my studies. Their continuous support has let me concentrate on my work. I
want to thank my sister Laura for having an open ear when I needed one.
I want to thank Marina Janisch for her continuous positive thinking especially, when I

was getting too “realistic” (in terms of pessimism).
Last, but certainly not least, I want to thank my friends for encouraging and supporting

me during my studies and during preparation of this thesis.

Nicolas Pavlidis
Graz, Austria, October 2011

xv

xvi

1. Introduction

Components [Szyperski, 1997] are black boxes that define a publicly available interface
to either send information to or to retrieve information from it. When it comes to con-
figuration of such components the same behavior is desirable. Configuration information
should be provided via a dedicated port to the component. The job of processing this
configuration is left to the component itself. The component behaves variable. Using
techniques known from Software Product Line Engineering, namely Domain Engineering
and Application Engineering, should help to model such components.

1.1. Problem Scope and Definition
Complexity of automotive software grew since the first piece of software was introduced
into cars [Broy, 2006]. Model based development helps to reduce complexity during soft-
ware development. Beside the complexity of the software itself the complexity of handling
different configurations grew. Introducing systematic management of different configura-
tions based on a common solution family and systematic reuse of that solution family is
therefore reasonable. Since such an approach does not affect only the deployment phase of
a software project [Pohl et al., 2005], e.g. “installing” the software into a car, an approach
is needed that provides a solution for all phases in software development.

1.1.1. The HybConS Project
The HybConS project was founded in cooperation of The Virtual Vehicle Competence
Center1, AVL2 and the Institute for Technical Informatics located at Graz University of
Technology. The aim of this project is to introduce a generic software architecture and,
therefore, systematic reuse into a software project implementing control software for hybrid
electrical vehicles. A generic architecture is desirable because of the various variants of
hybrid electrical vehicles which turn out to be very similar.
The software is implemented using Simulink, a model based development environment

provided within Matlab. Simulink models have a hierarchical structure consisting of so
called Blocks. Blocks can be grouped into so called Subsystems. This can be used to store
a group of connected blocks that implement a certain functionality into one named entity.
The version of Simulink used for development does not provide mechanisms to model
variability of such models explicitly. Although this has changed with the introduction
of Variant Subsystems in Simulink’s 2011b release one problem still remains: The ability
to reduce models to those parts a specific configuration requires. Therefore, the first
goal of this thesis is to provide a mechanism that can reduce Simulink models based on a
provided selection to only include those parts implied by this configuration. Since Simulink

1http://vif.tugraz.at
2https://www.avl.com/austria-headquarters

1

http://vif.tugraz.at
https://www.avl.com/austria-headquarters

2 1. Introduction

is only one possible environment for doing model based development the second goal of
this thesis is to abstract the desired mechanism to provide a generic representation of a
variable component model.

1.2. Motivation
One of the goals of this thesis is to make variability explicit. Before thinking about how
this can be achieved it is necessary to identify how variability can occur and which impact
these occurrences have on the implemented model. In the HybCons project different
scenarios were identified on how variability may be applied to Simulink models. Details
are provided below. Each scenario consists of a description, its impact on the models that
apply it and a brief explanation of the desired behavior.

1.2.1. Selection of Different Alternatives

Figure 1.1 shows a scenario where different alternative implementations are available. For
a concrete product one of them has to be chosen.

Simulink Subsystem

Alternative 1

Alternative 2

Alternative 3

Datainput

Datainput

Output

Output

Configinput

Figure 1.1.: Scenario with different alternative implementations

Switching between alternative implementations can have the following effects on the
Simulink model:

Different input ports Alternative components may require different ports. Ports may
differ on their count and / or on the types used.

Different output ports The same effect applies to ports provided by the different alter-
natives. Parts in the model consuming information provided by those alternatives
must be connected to the alternative selected by a particular variant.

1.2.1.1. Desired Behavior

A mechanism is needed that supports the selection of valid variants. In order to be
able to choose between alternative implementations an entity is needed that aggregates
all possible alternatives identified during Domain Engineering. This entity also needs to
store information when to select which alternative(s). The variant selection mechanism

1. Introduction 3

has to remove unnecessary parts of the implementation during the Application Engineering
process.
Figure 1.2 shows the resulting model after choosing one alternative.

Simulink Subsystem

Alternative 1

Datainput

Datainput

Output

Output

Figure 1.2.: After selecting one alternative unnecessary information is removed from the
model

1.2.2. Implementing Optional Behavior
In this scenario a component provides functionality that is part of some variants and is
omitted in others. Optional parts in such components are components themselves with
ports they require and/or provide. Figure 1.3 illustrates this using dashed lines to mark
the parts related to such an optional component.

Fixed

Optional

Datainput

Datainput

Datainput

Datainput

Output

Output Because of varying inputs the
bus needs to be configurable too

Simulink Subsystem

ConfigInput

Figure 1.3.: Optional behavior (dashed) that may or may not be part of a component.

This scenario is related to the one presented in the last section. The main difference
is that ports provided and / or required by optional components can be present in the
public interface of a component or may be omitted completely. This changes slightly if
the component that provides the optional behavior uses buses in its interface. In this case
the number of required or provided signals in the bus has to be changed in accordance to
the selected variant.

1.2.2.1. Desired Behavior

The needed behavior to implement optional parts is similar to alternative parts. An entity
is needed that aggregates optional and non optional parts during Domain Engineering
(DE). During Application Engineering (AE) the application engineer can choose between
enabling and disabling the optional part. If the optional part is enabled, the resulting
variant has to provide all items, e.g. the optional component itself, its ports and its
connections. If the optional behavior is disabled the corresponding behavior should be

4 1. Introduction

removed from the concrete product. Handling of additional interfaces provided by optional
behavior can be done in two different ways. Either the surrounding component provides
explicit interface ports for the optional part or a bus object is used which combines all
input and output data into one respective port. In both cases the varying interface needs
to be handled by the entity that manages it. Figure 1.4 shows the different results that
can be achieved applying the shown behavior using a bus object that collects the different
signals provided by the aggregated parts.

Fixed

Optional

Datainput

Datainput

Datainput

Datainput

Output

Output In this variant the bus
carries two signals

Simulink Subsystem

Fixed

Datainput

Datainput

Output

In this variant the bus carries
only one signal

Simulink Subsystem

Figure 1.4.: The two variants of the component with the optional part enabled (left) and
disabled (right)

1.2.3. Variable State Machines

As components have optional parts, state machines may have states that can be omitted
in certain variants. State machines, as states, can be seen as special components. The
main difference is that states always aggregate transitions or other states. This difference
just affects the structure of the components handled within the variability management
processes. From the variability management process’ point of view, states and state ma-
chines are components that provide variable behavior. Figure 1.5 shows such a variable
state machine component.

FixedState1

FixedState2

OptionalState

Needed if OptionalState
is included, otherwise omitted

Needed if OptionalState
is omitted, otherwise omitted itself

Figure 1.5.: State machines can be seen as special components whose optional states affect
its transitions

This scenario combines two variability concepts:

Optional states are either present or missing in the resulting state machine.

1. Introduction 5

Alternative transitions are needed to either serve or bypass an optional state, depending
on its presence in the resulting state machine.

1.2.3.1. Desired Behavior

To overcome the problems mentioned above, optional states should be treated similarly
to optional behavior as described in Section 1.2.2.1. If an optional state is selected to be
member of a variant all its incoming and outgoing transitions must also be member of that
variant. Alternatively, if this state is omitted, all of its incoming and outgoing transitions
must be removed from that variant. If a state is omitted a transition is needed that
bypasses that state. This way the state machine remains functional and valid. Figure 1.6
shows the different results that can be achieved using this work flow.

FixedState1

FixedState2

OptionalState FixedState1

FixedState2

Figure 1.6.: The different variants of the state machine that either include or exclude the
optional state OptionalState.

1.3. Outline
The objective of this thesis is to provide mechanisms that enable the implementation of
the provided scenarios and to provide mechanisms that enable variant specific reduction
of Simulink (and other) models based on a selected configuration. Chapter 2 provides an
overview on developments related to this problems. This includes development of variable
architectures and possibilities how component models can be developed in a variable way.
Chapter 3 provides the details on the design of the component model developed within

this thesis. In Chapter 4 the prototypical implementation of this component model is
explained in detail. This chapter also provides insights on how Simulink models can be
integrated into this component model.
Chapter 5 shows how the scenarios provided in this chapter can be applied using the

implementation presented in Chapter 4. Furthermore, this chapter provides inside how
different variability patterns can be applied to the developed component model.
Finally, Chapter 6 summarizes the results of this thesis and gives indications on possible

future work.

6 1. Introduction

2. Related Work

2.1. Terminology

2.1.1. Defining Variability

Variability “refers to the ability or tendency to change” [Pohl et al., 2005]. In terms of
software development this variability does not simply “occur but is brought about purpose”.
[Pohl et al., 2005] provides three basic questions how variability can be identified:

What does vary? The answer to this question clearly identify the items or properties of
items of the real world that may vary. [Pohl et al., 2005] refers to these items as
Variability Subjects.

Why does it vary? According to [Pohl et al., 2005] there are different reasons for an item
to vary ranging from different needs of different stakeholders to interdependencies
between varying items.

How does it vary? The answer to this question provides concrete shapes a Variability
Subject can take. [Pohl et al., 2005] refers to these “concrete shapes ” as Variability
Objects.

2.1.2. Variation Points

Variation Points (VPs) [Pohl et al., 2005] are links between domain artifacts and the con-
text of a real world application. Variation points, therefore, enrich those domain artifacts
with contextual information required to fulfill the specific needs a concrete software prod-
uct, derived from the domain artifacts, has.
Each variation point consists of three items:

• a unique identifier,

• a collection of values it can accept and

• its binding time

Variation points may depend on each other in a manner that the selection of one value
in VP A reduces the set of possible values selectable for VP B. [Pohl et al., 2005] refers to
such dependencies as Variability Constraints.
Since variation points link the reusable software artifacts to concrete products derived

from them, it is important to decide when a concrete variation point is bound to a concrete
value defined in its value collection. This decision point to ultimately bind a variation point
is known as the Binding Time of a variation point.

7

8 2. Related Work

2.1.3. Variant

A Variant [Pohl et al., 2005] is identified by a single value a Variation Point defines.
Variants can be associated to artifacts to indicate that those artifacts correspond the the
particular selection from the corresponding variation point.

2.2. Representing Variability

2.2.1. Feature Oriented Domain Analysis

Feature Oriented Domain Analysis (FODA) [Kang et al., 1990] is a method to perform
domain analysis based on features. A Feature is

. . . a prominent and distinctive user visible characteristic of a system . . .

[Kang et al., 1990]
Identifying those characteristics in different applications of a domain, and abstracting

them into a Feature Model is the main goal of FODA.

2.2.1.1. Feature Models

A Feature Model [Kang et al., 1990], as its name imply, contains the set of features that
make up the analyzed domain. Its hierarchical structure shows dependencies between
the different features and makes them explicit. Inside the Feature Model features can be
categorized into three levels:

Mandatory This features must be present in any application for the selected domain

Optional This features can be selected or deselected

Alternative Within a set of features exactly one must be selected

The last gap, expressing semantics between different features, is filled by composition
rules:

Requires References all optional or alternative features that must be selected in order to
be able to select a feature that depends on them

Mutually exclusive with References all features that must not be selected if a certain
feature was chosen.

2.2.2. Using Domain Specific Languages to Describe Variability

Feature Models provide a fixed, tree like structure for defining features different products
may have. There are cases when the design of such Feature Models get cumbersome.
[Voelter and Visser, 2011] describes an approach how Domain Specific Languages (DSLs)
can help to overcome this. Because DSLs are more flexible in terms of their definition and
the domain they are designed for, they can help to formulate problems more easily than
Feature Models that try to meet needs across different domains.

2. Related Work 9

2.2.3. The Common Variability Language

The Common Variability Language (CVL) [Haugen et al., 2008] implements a common
language to reflect variability independent from any used DSL but yet can be used with
any MOF [Object Management Group, 2006] based DSL. To accomplish this, a generic,
domain independent transformation process is needed. In [Haugen et al., 2008] this generic
transformation process is based on three distinct models:

The Base Model is the model defined by the DSL used to implement the solution family.

The Variation Model specifies variants that can be derived from the base model by using
variation elements that associate variability specifications. These variation elements
are built on top of a set of model elements provided by the used base model.

The Resolution Model is responsible to derive concrete products based on choices made
in the variation model.

To actually perform the transformation from a Base Model to a concrete product
[Haugen et al., 2008] defines a two stage transformation process consisting of Resolution
Transformation and Variability Transformation. The task of the Resolution Transforma-
tion is to apply resolutions defined within a Resolution Model to a Variation Model. The
result of this step is a new Variation Model containing elements that indicate the resolu-
tions done. The result of this step is the Resolved Variation Model. The Variability Trans-
formation finally executes the transformations identified during Resolution Transformation
on the base models referenced by the Resolved Variation Model. CVL was proposed for
standardization with the Object Management Group (OMG) (see [Haugen et al., 2010])

2.2.4. Applying Variability to Model Driven Development

[Dauenhauer et al., 2009] identifies two basic approaches of introducing variability into
Model Driven Development (MDD):

Variation Points in a Model In this approach variation points are represented by dedi-
cated elements in the modeling environment.

Merging Assets In this approach the model consist of several fragments representing the
variable parts. A product is derived by merging all fragments (assets) that belong
to the desired variant.

Pure::variants, shown in Section 2.3.3.1, is capable to use both approaches in its Family
Models, whereas the Variant Block Set shown in Section 2.3.3.2 can only use the first.
Also based on the second approach, [Dauenhauer et al., 2009] provides a modeling lan-

guage which raises variability to be a first class citizen of that language. The provided
language consist of Clabjects and Connectors. Clabjects represent placeholders for domain
specific model elements, such as sensors, and Connectors represent connections between
them. Each connector can be tagged with a Relation to express its intent. To express
variability of certain elements the enables and requires relations are provided. As the used
names indicate, an enables relation enables a certain Clabject in a specific variant, whereas
the requires relation requires a certain Clabject to be member of a chosen variant.

10 2. Related Work

Using this basic model elements three kinds of variable behavior can be expressed
[Dauenhauer et al., 2009]: 1) enabling/disabling of Clabjects 2) enabling/disabling of Con-
nectors 3) enabling/disabling of variant specific field values
All of this behavior is also required by the scenarios provided in Section 1.2. Although

[Dauenhauer et al., 2009] state that their approach is related to asset based variability the
connector concept can also be used with explicit model elements for variation points. The
model developed in this thesis uses an approach based on this concept.

2.2.5. Generating Variant Specific Models
One major goal of this thesis is to provide the developer the means to generate variant
specific models based on generic system architectures. [McRitchie et al., 2004] provide an
approach that achieves this for embedded systems which use C++ based development.
Components in this approach define so called “argument lists” to define their variable
behavior. In their paper they identify three major steps in order to create variant specific
components:

1. Analysis

2. Weaving

3. Generation

In the analysis phase the required work products are identified. These work products,
including their implementation, are gathered from a repository. From each work product
a Abstract Syntax Tree (AST) is generated which is used to find dependencies to other
work products.
In the weaving phase information from the analysis phase and the specification of the

argument list is used to deliver a variant specific component specification. This compo-
nent specification is obtained by annotating the AST of the component with information
about the internal composition of the component and identified dependencies within the
component.
In the generation phase, the variant specific work product is finally generated. The first

step is to generate the components implementation based on the annotated AST delivered
by the weaving phase. Finally, the components interface is generated so that the newly
created component can be used independently from its implementation.
Although the proposed approach is targeting code based instead of model based devel-

opment the general concept seems convincing. On the other hand there are two drawbacks
of the proposed solution:

Implementing different binding times Using the given approach it is not possible to im-
plement different binding times. The argument lists proposed by the paper are
always bound during the generation phase.

Configuration of Subcomponents Within the proposed approach subcomponents are al-
ways configured using arguments lists defined by their parent. Therefore, the model
only supports Plain Propagation[Reiser et al., 2009]. Subsequent sections of this the-
sis will show that this propagation pattern is incompatible to the patterns possible
within Simulink.

2. Related Work 11

2.2.6. Compositional Variability

[Reiser et al., 2009] defines three key features in order to achieve variability in components:

1. Provide a structure that embeds variability mechanisms into components.

2. Provide means to specify the variable parts in the components interface.

3. Provide a mechanism to map variants specified in the components interface to either
its internal structure or to its variable sub components.

Providing this features components can be designed with variability in mind and can
be reused systematically by selecting different (supported) configurations.
Beside this key features variable components have to implement [Reiser et al., 2009]

provides a catalog of five patterns on how variability may be propagated through different
levels of composition.

2.2.6.1. Plain Propagation

Plain Propagation is used by adding variability specifications from subcomponents to
the variant specification of the composite parent. Using this scheme of propagation the
composite component decides when and, more important, how to bind its subcomponent,
by propagating the selected variant back to the subcomponent.

2.2.6.2. Direct Binding

Direct Binding is used when variability of lower level components is bound to a specific
variant within the definition of their parent component. Therefore, the variability of the
subcomponent is not propagated to its parent.

2.2.6.3. Orthogonal Propagation

Sometimes Plain Propagation is not enough. This is the case when the propagation target
defines a different variability scheme as its composite parent component provides. To
avoid propagating such differences into the components interface the component can define
mappings on how a certain configuration item has to be modified in order to serve the
needs of its variable subcomponent.

2.2.6.4. Top-Level Propagation

Top-Level Propagation is the opposite to Orthogonal Propagation. Using this pattern the
component designer decides to let the configuration of a certain subcomponent flow from
the most high level parent component to it. [Reiser et al., 2009] defines two variants of
this pattern. In the first variant components in the different hierarchy levels above the
component in question can decide whether to directly provide a configuration (by for
example applying Direct Binding) or to hand over the job to the next hierarchy level. The
second variant strictly hands over the job of providing a configuration to the most outer
hierarchy level.

12 2. Related Work

2.2.6.5. Global Features / Reverse Propagation

This pattern reflects the fact that certain features are required which are needed on dif-
ferent subtrees of the component hierarchy but need to be configured consistently across
all occurrences. Aspect Oriented Programing [Kiczales et al., 1997] refers to such features
as Aspects.

2.3. Separating Concerns - The Software Product Line
Modeling Process

For the implementation of variability an appropriate development process is required.
Software Product Line Engineering provides processes provides such processes. A Software
Product Line is a

. . . set of software-intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way.

[Clements and Northrop, 2001]
Therefore, the general idea of Software Product Lines is to generate a variety of products

from a common software architecture using common mechanisms to derive those products.
Software Product Line Engineering (SPLE) refers to the processes how this can be accom-
plished in a systematic way. The following sections deal with these processes and the tasks
related to them.

2.3.1. Separating Problem from Solution

Problem Space Solution Space

Requirements

Domain
Analysis

Architecture

Implementation

Testing

Figure 2.1.: The development activities assigned to different spaces of development (based
on [Berg et al., 2005]

As shown in Figure 2.1 SPLE divides the different phases of software development,
requirements engineering, domain analysis, architecture, implementation and testing, into
two major groups [Berg et al., 2005]:

2. Related Work 13

Problem Space In problem space, the engineer does domain analysis and requirements
engineering in order to deliver a specification of the system to build. This specifica-
tion is independent from any technical realization.

Solution Space In solution space, concrete systems according to the specification using
architectural, implementation and testing skills of the engineers are build.

2.3.2. Splitting the SPL development process
Since variability has impact on both, the problem and the solution space, a process is
needed that helps to engineer this variability. The concept of SPLE defines two major
outcomes: Reusable software artifacts and concrete products. Reusable software artifacts
are parts of the software that are planed to be reused systematically for different variants,
i.e. concrete products, or even other projects. Concrete products on the other hand, as
their name imply, are software packages derived from those reusable software artifacts and
fulfill the specific needs of the desired product. Since the aim of SPLE is systematic reuse
of the various artifacts it is hard to model reusable software artifacts and concrete products
that rely on them within one process. Therefore SPLE splits this process vertically into
two parts [Pohl et al., 2005]:

• Domain Engineering (DE)

• Application Engineering (AE)

Figure 2.2 shows the relationship between these two processes.

Figure 2.2.: Domain Engineering provides the basic artifacts which are used by Application
Engineering to build concrete applications [Pohl et al., 2005]

2.3.2.1. Domain Engineering

The task here is to develop a software architecture consisting of reusable software artifacts
that can be controlled by variation points in order to derive concrete products within

14 2. Related Work

the AE process. Before being able to implement this software architecture and to define
variation points the different variants that are expected need to be chosen. The domain
needs to be bound to specific products, because being generic in all aspects would result
in unmanageable complexity. FODA is one mean to identify the needed features for a
given domain (see Section 2.2.1). After variant identification developing the software
architecture can start. The concept of variation points helps here to express which parts
of a software artifact vary [Pohl et al., 2005]. This makes it possible to control different
instances of the software core without adjusting the source code itself. The upper part of
Figure 2.2 illustrates the different activities inside the Domain Engineering process.

2.3.2.2. Application Engineering

The task here is to derive concrete products from the generic software architecture. This
means that all variation points have to be bound to the values needed for a specific
variant and to resolve dependencies between different variation points. Beside the concrete
implementation of the derived product the AE process also applies to all other artifacts
developed while doing DE including requirements, testing and documentation. These
activities are illustrated in the lower part of Figure 2.2.

Code generation Within automotive software code generation from models plays a major
role since generating code is the one of the major goals of MDD [Schmidt, 2006]. Because
of the very limited resources, in terms of processing power and memory found in hardware
used within the automotive domain, it is important to optimize generated code. Taking
variability into account code generation is even more important because, depending on the
selected variant, the code generator can remove code that is not needed by a particular
variant. To achieve this, the selection of proper binding times for variation points is
essential.

2.3.2.3. Merging Processes and Development Spaces

As stated in Section 2.3.2, DE and AE have impact on both, the problem and the solution
space defined in Section 2.3.1. Therefore, it seems reasonable to integrate both processes
into the problem as well as into the solution space.
The resulting four quadrants, illustrated in Figure 2.3, show the general activities when

doing Software Product Line based development and can be described as:

Quadrant 1 Identify variability

Quadrant 2 Technical realization of the identified variabilities

Quadrant 3 Specify concrete products

Quadrant 4 Implement concrete products

2.3.3. Tools to Implement the Software Product Line Engineering processes

The following sections describe the application of the processes shown in Section 2.3. To
successfully implement the SPLE processes a tool chain is needed. In case of this thesis

2. Related Work 15

Problem Space Solution Space

Domain
Engineering

Application

Engineering

Variability within the

problem area

Structure and selection

rules for the Product
Line platform

Specification of the

product variant

The needed platform
elements (and additional
required application elements)
of the chosesn variantQ3 Q4

Q2Q1

Figure 2.3.: Combining problem and solution space with the Domain Engineering and Ap-
plication Engineering processes results in an effective way to develop variable
software architectures

this tool chain needs to support the processing of Simulink models. Therefore, Simulink,
though not intended for SPLE, is analyzed. pure::variants on the other hand provides
mechanisms to enrich Simulink based models with variability information and provides
the ability to configure these models. Table 2.1 shows the used tools, their purpose and
the variability modeling process they’re involved in.

Tool Purpose Variability Process
DE AE

Simulink Functional modeling x
Simulation and testing x

TargetLink Code generation x
pure::variants Feature and Variant modeling x x

Table 2.1.: The tool palette used to develop variant rich automotive software

Using a tool chain raises the need to define the interaction points between the tools
involved with it. These interactions show which fragments are exchanged between the
tools and, more importantly, which fragments are required to start a task associated with
a certain tool. Figure 2.4 illustrates the identified interaction between pure::variants and
Simulink including the different roles associated with the tools.

2.3.3.1. pure::variants

pure::variants provides a modeling environment for the four quadrants listed in [Beuche, 2003].
These models are associated to Domain Engineering and Application Engineering. Ta-
ble 2.2 shows the models associated to these processes.
There are five steps in order to control variability within Simulink models using pure::-

16 2. Related Work

Feature Model
Simulink Model

1
ConfigValue Model

ConfigValue Output

Output

Variant Simulink Model

1
ConfigValue Model

ConfigValue Output

Output

Association Model

Variant 1

Variant 2

Variant n

Bound Simulink

Model 1

1
ConfigValue Model

ConfigValue Output

Output

Bound Simulink

Model n

3
ConfigValue Model

ConfigValue Output

Output

Bound Simulink

Model 2

2
ConfigValue Model

ConfigValue Output

Output

Generated

Application 1

int main()
{
 //code for this variant
 return(0);
}

Generated

Application 2
int main()
{
 //code for this variant
 return(0);
}

Generated

Application n
int main()
{
 //code for this variant
 return(0);
}

Family Model

pure::variants

Simulink / TargetLink

Domain Engineering

Application Engineering

Knowledge Flow

1

2

3

4 4

5

5

5

6

6

6

7

7

7

8

8

8

Bound Targetlink

Model 1

1
ConfigValue Model

ConfigValue Output

Output

Bound Targetlink

Model 2

1
ConfigValue Model

ConfigValue Output

Output

Bound Targetlink

Model n

1
ConfigValue Model

ConfigValue Output

Output

Workflow Transitions

Problem Space Solution Space

D
om

ai
n

 E
n

gi
n

ee
ri

n
g

A
p

p
li

ca
ti

on
 E

n
gi

n
ee

ri
n

g

Domain Scope

Associate the models and
define Assignments

Convert Simulink Model to TargetLink

Invoke the TargetLink code generator

1

2

3

4

5

6

7

8

Define Variation Points and
introduce Variant Block Set

Define Feature Model

Import Model from Simulink Propagate VDM to Simulink

Define the VDM

Application

Engineer

pure::variants

Domain Engineer

pure::variants
Domain Engineer

Simulink

Application

Engineer

Simulink

Figure 2.4.: Data and knowledge flow between pure::variants and Simulink embedded in
the SPLE processes

SPLE Process pure::variants Model

Domain Engineering Feature Model
Family Model

Application Engineering Variant Description Model
Variant Result Model

Table 2.2.: Mapping pure::variants models to SPLE processes

variants:

1. Define the Feature Model.

2. Import the functional Simulink model into a Family Model.

3. Associate the Feature Model to this Family Model.

4. Develop the Variant Description Model for each desired variant and

5. propagate the selected configurations back to Simulink.

2. Related Work 17

Feature Models in pure::variants are an implementation of [Kang et al., 1990] and re-
side in the first quadrant shown in Section 2.3.2.3. Feature Models in pure::variants start
with a so called root feature i.e. the name of the model. Below that root feature the
needed features and their type can be implemented. Beside the feature types, mandatory,
optional and alternative, defined in [Kang et al., 1990], pure::variants offers an additional
feature type called or indicating that at least one feature from a given feature set must
be selected [Beuche, 2003]. To model complex dependencies between different features
pure::variants provides the ability to implement Prolog statements to express those de-
pendencies [pure-systems GmbH, 2009].

Family Models in pure::variants [Beuche, 2003] are used to model the solution family.
Elements in a Family Model can have the same relations as defined for Feature Models.
Family Models consist of Components. Each Component can consist of other Components
and so called Part elements. Parts are logical elements representing key elements of the
component structure. Such elements can be the interface description (external) or a class
that implements a certain facet of the component (internal). Since such logical parts need
a physical representation so called Source Elements are provided. Such a Source Element
can be for example a file When importing Simulink models into pure::variants such a
Family Model is created. In this case the Family Model contains the different variation
points defined in Simulink (see Section 2.3.3.2).

Association Models Association models [pure-systems GmbH, 2009], as their name im-
ply, associate different models. They provide the gateway between the first and third
quadrant shown in Section 2.3.2.3. In case of enriching functional models developed using
Simulink, this model makes it possible to associate a previously defined Feature Model to
the variation points of the Simulink models. The key feature of Association Models is the
ability to define relationships between models, called Assignments. Unfortunately, these
Association Models seem to be provided only within the Simulink package provided by
pure::variants.

Assignments If assignments are added to the Association Model, a selection change in
one model can automatically affect elements in another models. This can be used to
adjust variation points in a Simulink model based on the feature selection in its associated
Feature Model. Assignments always consist of two parts:

Condition The condition when the assignment should be executed, i.e. if a certain feature
was selected.

The assignment operation itself In case of variation points the assignment operation will
assign a certain value out of a variation points value collection to that variation point.

Variant Description Models Application Engineering in pure::variants is done using a
so called Variant Description Model [Beuche, 2003]. Generally, VDMs are used to select
specific variants by selecting variable elements defined in Feature and Family Models.
The models that can be used by a VDM are collected in a so called Configuration Space.

18 2. Related Work

Association Models mentioned in the previous section are also defined within such con-
figuration spaces. In case of Simulink based Family Models the view for VDMs provided
by pure::variants contains an additional command to propagate the selected bindings of
variation points back to Simulink.

Variant Result Models Variant Result Models are responsible for storing the variant
specific parts of a Family Model. Identifying these parts is based on the selection done in
the corresponding VDM.

2.3.3.2. Matlab / Simulink

To be able to model variability within Simulink, pure::variants provides a special block set
called Variant Block Set [Dziobek et al., 2008]. The block set is divided into two categories:
Control Blocks and Variability Mechanisms. Table 2.3 shows the different blocks provided
in these categories.

Category Blocks provided

Control Blocks

VariantConstant Block
Variant Store
Variant Read
Variant Write

Variability mechanisms

Switch
If
Model
Chart
Enabled Subsystem

Table 2.3.: The different blocks provided to model variability in Matlab / Simulink

The functionality provided by these blocks is the same as of their non variant-related
counterparts in Simulink except that variability information can be assigned to them.
According to [Dziobek et al., 2008] some variability mechanisms can be used to model the
feature types presented in Section 2.3.3.1. This possibilities are summarized in Table 2.4.

Used block Expressed Feature Type
If Or Feature
Switch Alternative Feature
Enabled Subsystem Optional Feature

Table 2.4.: The different variability mechanisms used to model different feature types

The variability information for all of this blocks has to be provided in terms of variation
points. Once these variation points are defined they can be assigned to instances of these
blocks. Furthermore different instances of different blocks can share the same variability
information by just assigning the same variation point to them.
This feature is essential if the selection of a certain feature has impact on different

parts of the implementation. Using one variation point makes it possible to consistently

2. Related Work 19

switch between variants by adjusting the value of just one variation point.
To define variation points the mentioned block set provides a special tool called Variation

Point Explorer. Figure 2.5 shows this tool in action.

Figure 2.5.: Using the Variation Point Explorer to define Variation Points in Simulink

Code Generation In MDD code generation produces the executable products. Therefore,
generating code from variant-rich Simulink models can be seen as Application Engineering
in the Simulink domain as illustrated in the forth quadrant of Figure 2.4. Within the
automotive domain TargetLink has established itself as the main tool for generating code
from Simulink models. In order to use this code generator Simulink models need to use a
special block set provided by TargetLink. TargetLink provides auto conversion for existing
Simulink models. In this conversion Simulink blocks are replaced by their TargetLink
counterparts. This conversion also covers the Variant Block Set. This step can be done
fully automatically.
Furthermore, TargetLink provides different profiles to instruct its code generator how

to handle certain cases. [Beuche and Weiland, 2009] shows two profiles provided by Tar-
getLink that are important when dealing with the binding time issue. These profiles,
called OPT_CAL and OPT_LOCAL, control how constants get transformed into source
code. The first option tells the code generator that constants may change during runtime.
The second that it should treat them locally which means that the value of a certain
constant will not change. This behavior can be directly mapped to the different binding
times mentioned earlier. By using this profiles these two binding times can be applied to
the generated code, at least manually. Figure 2.6 illustrates the results of applying these
code generation profiles when generating code from a Simulink model.

2.3.3.3. Evaluation

The workflow presented in Figure 2.4 shows that using the Variant Block Set can save a
lot of time for modeling variability in Simulink. Indeed a bit of work in terms of

• identifying variability,

20 2. Related Work

Binding Time:
online

(Profile OPT_CAL)

Void Subsystem(Void)
{

 if (Sa2_VAR_TL_Constant >= 0) {
 Sa1_Out1 = 1 /* 1. */;
 }
 else{
 Sa1_Out1 = 2 /* 2. */;
 }
}

Void Subsystem(Void)
{
 Sa1_Out1 = 1 /* 1. */;
}

Binding Time:
offline

(Profile OPT_LOCAL)

Void Subsystem(Void)
{
 Sa1_Out1 = 2 /* 2. */;
}

Generate
Variant 1

Generate
Variant 2

Generate
all Variants

Select
Binding Time

VAR_Test

VAR_Constant
VAR_BLOCK

1

BaseValue

1

ToAdd

Scope
VAR_Switch

VAR_BLOCK

+
+
Add

Figure 2.6.: Resulting code after applying either OPT_CAL or OPT_LOCAL profiles on
the same Simulink model

• defining variation points,

• defining Feature Models and

• defining assignments

needs to be done but the extra effort pays off fast when deriving concrete applications. It
is pretty straight forward to propagate different configurations to Simulink models and to
simulate them, by just selecting the desired variant and clicking the Propagate to Simulink
button.
But there’s a but: Within all blocks defined by the Variant Block Set only one actually

consumes variability information provided by its associated variation point: The Variant-
Constant block. All other blocks still reference variation points but do not process the
information provided to them. Even the remaining control blocks, VariantStore, Vari-
antRead and VariantWrite do not process variability information tough at least control
blocks are intended to do so. Table 2.5 summarizes these findings.
Another important aspect of variation points is their binding time. Section 2.3.3.2

shows how important the binding time is for code generation. But, even before code
is actually generated binding of variation points is important. By binding a model to
a specific variant, elements can be removed that are not related to this variant. In
[Beuche and Weiland, 2009] this binding time is called ModelConfigurationTime. Even

2. Related Work 21

Controllable
using VPs in

Control Block Variability
MechanismVariant Constant Variant Store

pure::variants X - -
Simulink X - -
Can be propagated from
pure::variants to Simulink X - -

Table 2.5.: Blocks from the Variant Block Set and their ability to be controlled using
variation points within pure::variants and Simulink

if code is generated and deployed binding of variation points is possible and is often called
calibration. Table 2.6 summarizes the possibilities of using binding times in Simulink and
TargetLink using the Variant Block Set.

Tools Binding Time
Control Block

Variability
Mechanism

Automatically
applicableVariant

Constant
Variant
Store

Simulink
Pre code generation - - - -
Post code generation X - -
runtime - - -

TargetLink
Pre code generation X - -
Post code generation X - -
runtime - - - -

Table 2.6.: Different binding times and tools and their applicability

Based on the scenarios provided in Section 1.2 an application of the ModelConfiguration
binding time would be preferable. Unfortunately, the Variant Block Set does not support
this binding time at all. Actually, the support of PreBuild binding is only achieved through
applying code generator logic as shown in Section 2.3.3.2.

2.4. Component Models
A Component model

. . . defines standards for (i) properties that individual components must satisfy
and (ii) methods, and possibly mechanisms, for composing components.

[Crnkovic, 2002]
A large number of component models have been developed and used in the last couple

of years. Most notable examples are CORBA Component Model (CCM), Component
Object Model (COM), Enterprise Java Beans (EJB) and .NET, at least on the client /
server application domain of software engineering. This thesis focuses on the problem of
enhancing components that 1) target the automotive domain and 2) are developed within a
model based environment like Simulink with variability. Because a model based approach
enforces explicitness such variability has to be defined explicitly too. Non of the mentioned

22 2. Related Work

component models handle variability explicitly or are usable within automotive software.
Therefore, this section focuses primarily on component models that try to handle at least
one of the mentioned focus points.

2.4.1. AUTOSAR
The AUTomotive Open System ARchitecture (AUTOSAR) has established itself as an
widely accepted standard to model and develop software in the automotive domain. Or-
ganized in a layered architecture[Autosar, 2009e], [Buschmann et al., 1996], it tries do de-
couple application level software components from the underlying hardware. Using these
scheme makes it possible that vendors of Electronic Control Unit (ECU) hardware can
provide interfaces in a standardized manner that can be used by software developers to
integrate them into their software.
The main problem that remains and that is not fully covered by the AUTOSAR spec-

ification is how to make existing software solutions for the automotive domain compliant
to the AUTOSAR standard.

2.4.1.1. AUTOSAR Overview

AUTOSAR consists of three major layers:

• Application Layer

• Runtime Environment Layer

• Basic Software Layer

Figure 2.7 illustrates the interactions of these layers.

Figure 2.7.: The architecture of AUTOSAR, [Harald et al., 2004]

2. Related Work 23

2.4.1.2. Components and Ports

The AUTOSAR specification [Autosar, 2009e] defines various types of components and
calls them SoftWare Component (SWC). Atomic Software Components represent so called
self contained software components. If composition of different components is needed the
so called CompositeType has to be used. Furthermore, AUTOSAR defines special purpose
component types to model sensors and actuators independent from their real hardware.
[Autosar, 2009e] provides the details for various component types that are defined.
To let components interact with each other so called ports can be defined. AUTOSAR

distinguishes between two kinds:

Receive Ports Ports of that type define required input values to the component. This
ports can be compared to parameters to a function in a common programing lan-
guage.

Provide Ports Ports of this type define output values a component provides. This con-
cept is equivalent to the concept of return values of functions in most programing
languages except the fact that a component can provide more than one provide port.

[Autosar, 2009e] provides more details on ports and how they have to be defined.

2.4.1.3. AUTOSAR Compliance

This section gives a short overview on how to make software compliant with the AUT-
OSAR standard. The main parts that need to be considered are the used hardware and
the implemented software components themselves. Since the RTE and the basic software
modules also need to be implemented, the implementation of this layer of the AUTOSAR
architecture needs also to be tested for comformety.

Hardware In order to use specific hardware it needs to provide an interface to enable
communication with the RTE.

Software Components Software Components, in the sense of AUTOSAR, are forced to
either just talk to each other via their defined ports or talk to the underlying hardware
only through the RTE. Therefore no direct interaction with specific hardware or specific
basic software modules is possible.

Run Time Environment and Basic Software Modules To connect the more abstract
software components to specific hardware the middle layer consisting of the RTE and the
Basic Software Modules is needed. The RTE needs to provide the interface to software
components to let them interact with the basic software modules. The basic software mod-
ules on the other hand need to interact with the hardware. Because all these interaction
points need to be stable the specification [Autosar, 2009f] provides the definition of a so
called Standardized Interface which has to be implemented by Basic Software Modules.
To test these implementation to be conforming to the specification a number of test runs
[Autosar, 2009a, Autosar, 2009b, Autosar, 2009c, Autosar, 2009d] need to be taken.

24 2. Related Work

2.4.1.4. AUTOSAR and Simulink

Simulink is the dominant tool for development of automotive software. The main reason is
the ability to develop the software model based and therefore, do development and testing
of the software inside the same environment. Therefore, it seems to be necessary to embed
the concepts AUTOSAR defines into the world of Simulink.
Fortunately, people who defined the AUTOSAR standard had also recognized this prob-

lem and released a guide [Autosar, 2009g] how to map AUTOSAR concepts to Simulink.
Though this guide does not imply tool support it provides enough information to make
existing Simulink models AUTOSAR compliant.

2.4.1.5. Migration to AUTOSAR

[Eisemann et al., 2009] defines an approach called Push Button Migration to migrate func-
tion models (such as the ones possible with Simulink) to AUTOSAR. The basic idea is to
use the existing models and enrich them with AUTOSAR compliant parameterization to
make it possible to generate AUTOSAR compliant models [Eisemann et al., 2009]. With
that migration in mind [Eisemann et al., 2009] defines a so called Bottom-Up approach
which starts with a set of functions that form the base of the overall architecture of the
Electronic Control Unit. Another approach is to start with the architecture of the Elec-
tronic Control Unit, implement the behavior in Simulink and re-import the components
back into the architecture design. This is called Top-Down Approach because it starts
with the overall design before implementing behavior.
The methodology defined in [Eisemann et al., 2009] is somehow bound to commercial

tools. [Kum et al., 2008] presents a more general approach. Looking at the very core of
both papers it seams to be reasonable to start from a model of the application that should
be ported to AUTOSAR instead of legacy handwritten code.

2.4.1.6. Tool Support

dSpace provides the Target Link package to be used within Matlab/Simulink. With the
appearance of AUTOSAR this package was enhanced with custom blocks targeting var-
ious concepts defined within AUTOSAR. Furthermore, they provide a migration tool to
port existing Simulink models into models suitable for AUTOSAR.
Unfortunately, no evaluation, especially for the migration tool, exists. So it is hard to

say if the tool behaves in the described way.

2.4.2. The CompAA Component Model

The CompAA component model proposed in [Lacouture and Aniorté, 2008] defines so
called adoption points for components. A component can have as much adoption points
as subservices. Each adoption point is connected to the sub service it controls. All sub
services are controlled by the so called Component Core. Each component in the CompAA
Component Model has to define such a core service. Figure 2.8 illustrates how components
in the CompAA component model are designed.
The CompAA component model is indented for highly distributed systems. Resolving

adaption points is done by agents that exchange information about the functional and non

2. Related Work 25

Core

Sub Service 4
Sub Service 3

Sub Service 2
Sub Service 1

Adoption Point

Figure 2.8.: Subservices controlled by the component core and configured by adoption
points, based on [Lacouture and Aniorté, 2008]

functional properties of the subservices they configure. Although automotive software is
distributed too, adopting the CompAA component model for the automotive domain is
problematic. Runtime service discovery is almost not present because communication be-
tween components should be reduced to a minimum. Configuration should be done before
deploying the software to the ECU network in the car. Furthermore, memory requirements
are tight, therefore runtime instances of components and of agents may be problematic too.
As mentioned, CompAA components need a dedicated core subservice. Such a component
core is not always necessary. Especially in Simulink based software development buses are
often used to collect results from subservices which are then consumed by other compo-
nents. Adoption points on the other hand seem to be very convincing. The only drawback
of them is that adoption points are assigned to subservices of the component rather than
to the component it self making configuration of the component harder. Nevertheless,
adoption points are adopted for the component model proposed in this thesis.

2.4.3. Multilevel Component Composition
Merijn de Jonge [de Jonge, 2004] identifies requirements for multilevel component compo-
sition and for multi level variability. Components that are used for multi level composition
need to meet the following requirements:

• They have to provide a required interface.

• They have to provide a provided interface.

• A mechanism has to be provided that maps required to provided interfaces.

For variability of such components [de Jonge, 2004] defines the following key criteria:

Variability Interface Each component has to define a separate interface which provides
information about different configurations of this component.

Variability Binding Each component has to provide mechanism to bind variation point to
a selected configuration.

Variability Mapping For every level, except the model root, a mechanism is needed that
maps a binding selected for a certain component to the variability interface of
one of its sub components, therefore orthogonally propagating this configuration
[Reiser et al., 2009].

26 2. Related Work

Based on this requirements [de Jonge, 2004] provides a framework that enables the im-
plementation of multilevel composition of executable components. Therefore, the paper
discussed here, does not provide a component model that implements the mentioned re-
quirements on its own. Instead it tries to integrate existing (binary) components into
a multi level composition hierarchy. Since this thesis focuses on providing a component
model that supports variability at modeling level this approach can not be taken. Nev-
ertheless the requirements to such a component model [de Jonge, 2004] defines are rea-
sonable. The only drawback of the proposed solution is, that it only supports Orthogonal
Propagation as defined in [Reiser et al., 2009] directly. Since Orthogonal Propagation and
Plain Propagation are very similar to each other [Reiser et al., 2009], Plain Propagation
may also be possible. But especially Top Level Propagation can not be achieved with this
approach, but is needed when using Simulink, as shown in Section 5.2.2.

2.5. Hypothesis
Non of the mentioned models or methodologies support the scenarios required in Sec-
tion 1.2 completely. Based on the SPLE processes, this thesis will provide an approach,
independent from concrete models, that is capable of supporting these scenarios. Fur-
thermore, a prototype will be provided that implements the proposed approach based on
Simulink and pure::variants. Because Simulink is the dominant tool for model based devel-
opment in the automotive industries it is selected as the environment for developing variant
rich models. pure::variants was selected based on the analysis of different tools for SPLE
given in [Kajtazović, 2011]. The Variant Block Set, described in Section 2.3.3, give a good
starting point to provide means to model variability in Simulink. The prototype imple-
mented in this thesis will, therefore, reuse concepts provided by it and extend it to suit the
needs implied by the required scenarios. The component models described in Section 2.4,
especially the CompAA Model [Lacouture and Aniorté, 2008] and the work presented in
[Dauenhauer et al., 2009] (see Section 2.2.4), gave hints how component models reflecting
variability have to be designed.

3. Variant Component Model Design

3.1. Requirements to a Component Model for Variant
Management

3.1.1. Generation of Valid Variants
The Generation of variants based on a set of core assets is one major goal of Software
Product Lines (SPLs). The focus in this thesis is on model based components. Therefore,
the core assets here are configurable components implemented in a model based environ-
ment that are reuseable for different variants. Beside functionality that all variants may
have in common there are aspects that vary from one variant to another. Valid variants
compose all these aspects that are needed to fulfill their intended functionality:

Requirement 1 (Minimal Variants): The component model has to support the appli-
cation engineer in selecting a valid variant that only aggregates those parts from a generic
component that are needed to fulfill the intended behavior of that particular variant.

This means that no unused functionality should be part of a variant. After deriving
a variant from a generic model no further configuration should be required (except post
build calibration).

3.1.2. Reusability
Components are subject to reuse across different variants and domains. Therefore, vari-
ability information provided by the component needs to be part of it and has to be provided
via an interface.

Requirement 2 (Cross Domain Reuse): Components that provide variability should
be reusable across different domains.

3.1.3. Simulink Integration
Most automotive software is implemented using Simulink. Therefore, a mechanism pro-
viding variability to components intended for the automotive domain should be integrated
into Simulink.

Requirement 3 (Simulink Integration): Integrate the mechanism that provide vari-
ability in Simulink components.

Integration means, that variability should be representable directly in Simulink models.
Furthermore, variants derived from variant rich Simulink models should be testable within
Simulink too. This makes it possible to introduce variability management seamless into a
Simulink based development process.

27

28 3. Variant Component Model Design

3.1.4. Variation Point Dependencies

Since components are connected to each other a feature selected in Component A may
affect availability of features in Component B. This dependencies need to be resolved
automatically to prevent application engineers from developing invalid variants.

Requirement 4 (Dependencies): Dependencies between different components and/or
variation points should be reflected in the component model. The component model should
provide a mechanism to select consistent variants according to their dependencies.

3.1.5. Cross Cutting Effects

Cross Cutting [Kiczales et al., 1997] appears if features “. . .must compose differently and
yet be coordinated [Kiczales et al., 1997]”. A famous example for such a feature is logging.
Various components may have data to log, on the other hand logging is not needed all
the time. Therefore, it should be possible to switch logging on or off without the need
to manually adjust components that provide logging. The difference to dependencies is
that dependencies are likely to be local, i.e. affect a rather small number of components.
Features that do “Cross Cutting” affect several components throughout the whole archi-
tecture.

Requirement 5 (Reflect Cross Cutting Effects): The component model should pro-
vide a mechanism to reflect cross cutting effects across component boundaries.

3.1.6. Interoperability with AUTOSAR

AUTOSAR established itself within the automotive industry as an acknowledged stan-
dard. Therefore, new developments in the area of automotive software should be compat-
ible to that standard.

Requirement 6 (AUTOSAR Interoperability): A component model intended to pro-
vide variability in automotive software should be compatible to AUTOSAR.

3.2. Separating Concerns: Variation Points and Component
Variability

When speaking about component variability two things need to be separated:

• Who controls the variability.

• Who consumes it.

If a component provides variability, information about possible configurations has to be
provided. Variation Points are used to provide the information which configurations are
possible. Components that implement that variants have to provide mechanisms to adjust
themselves according to that selection. Because Variation Points are domain specific,
and components may be reused across different domains, these two entities have to be
separated from each other. Therefore, the component model consists of two parts:

3. Variant Component Model Design 29

Variation Point Model: Contains all variation points and the dependencies between them.

Variant Component Model: Contains the components along with their variability de-
scription.

The interaction point between those two models is the interface that is shared between
Variation Points in the Variation Point Model (VPM) and Variability Consumers in the
Variant Component Model. This interface, called VariationPointInterface, provides infor-
mation about the name of a variation point, its value set and whether it is enabled or
not.
The following sections provide detailed information about the two models introduced

here and how they process the information provided by implementations of the common
interface for variation points introduced above.

3.3. Variation Point Model

The name of this model is borrowed from [Webber and Gomaa, 2004] but, as this section
will show, takes a completely different approach. The responsibility of this model is to
store all variation points and the dependencies between them. This model corresponds
conceptually to a Feature Model which is used by the application engineer to develop valid
variants as mentioned in Section 3.1.1. Therefore, variation points should be related to
features identified in an earlier step during domain engineering.

VariationPoint

- enabled : bool

- latestBindingTime : BindingTime

- name : string

- description : string

+ selectValue(in valueToSelect : string) : void

+ isEnabled() : bool

+ deselectValue(in valueToDeselect : string) : bol

Feature

- selected : bool

<<enum>>

BindingTime

+ PreBuild : BindingTime

+ PostBuild : BindingTime

VariationPointModel

+ addVariationPoint(in newVariationPoint : VariationPoint) : void

+ addDependency(in dependentee : string, in dependecyDescritption : Dependency) : bool

+ resolveDependencies() : VariationPoint [*]

+ updateVariationPoint(in toUpdate : VariationPoint) : bool

+ updateDependency(in toUpdate : Dependency) : bool

+ removeVariationPoint(in variationPointToRemove : string, out dependenciesToAdjust : Dependency [*]) : bool

+ removeDependency(in nameOfDependencySource : string, in nameOfDependencyTarget : string) : bool

Dependency

+ check() : bool

Aspect

- name : string

- enabled : bool

selectedValues

VariabilityConsumer

+ variationPointChanged(in changedVariationPoint : VariationPointInterface)

+

dependencySource

1

<<list>>

VariationPointValue

- enabled : bool

- name : string

- value : string

- type : string

- description : string

*

<<list>>

realizedFeatures

*

<<list>>
variationPoints*<<map>>

dependencies

*

dependencyTarget

1

<<list>>

values

1..*

<<list>>subFeatures*

VariationPointInterface

+ isEnabled() : bool

+ getName() : string

+ getDescription() : string

getSelectedValues() : VariationPointValue

<<list>>

subscriptions*

Figure 3.1.: The structure of the Variation Point Model

30 3. Variant Component Model Design

The VPM, illustrated in Figure 3.1, consists of two major parts: The Variation Point
and its dependencies. The following sections provide details on these parts, explaining
their structure, relationship and behavior. The last section of this chapter provides details
about the operations that can be executed on the VPM.

3.3.1. Variation Points

Variation Points are the basic building blocks of the Variation Point Model. As mentioned
in Section 2.1.2 a Variation Point consists of the following basic items:

• A name,

• a set of values,

• the set of currently selected values and

• the binding time, indicating when a particular value needs to be selected.

A Variation Point is identified by its name. This name can be chosen freely but must
be unique in the VPM.
Values identify the different variants a Variation Point can configure. Therefore, such

values, called Variation Point Value (VPV) are the basic building blocks of each Variation
Point.
As illustrated in Figure 3.1, a Variation Point Value in the VPM consist of five parts:

The name identifies the value in the value set of a variation point.

The data type indicates the type of the Variation Point Value.

The visibility indicates whether the Variation Point Value is selectable or not. If a value
is marked as invisible it can not be selected in the particular configuration. This can
happen due to dependencies (see Section 3.3.2 for more details) the corresponding
Variation Point may have.

The concrete value contains the actual data the Variation Point Value stores.

The description contains informal documentation about the Variation Point Value.

In the VPM it is possible to select multiple values simultaneously in one Variation Point.
This can be used to implement Variation Points for m:n feature sets as provided by the
or operator for features as defined in [Kang et al., 1990].
Variation Point Values aggregated by a Variation Point must fulfill the following con-

straints:

Constraint 1: Valid Variation Point Values must have set their name, data type and
concrete values.

Constraint 2: Names used for Variation Point Values must be unique inside the value
set of the corresponding Variation Point.

3. Variant Component Model Design 31

Constraint 1 is needed because the VPM has to prevent invalid variants from being
developed. If Variation Point Values would be allowed to e.g. have no concrete value, am-
biguities between different variants can happen. If the data type of a Variation Point Value
is missing, proper validation of Variation Points with a binding time set to PostBuild can
not be done. Unnamed Variation Point Values may lead to ambiguities when binding the
corresponding Variation Point to a concrete value. Constraint 2 is required because values
must be uniquely identifiable inside the value set of their corresponding Variation Point.
Ambiguous names make it impossible to validate a value selection done for a particular
Variation Point.

Because Variation Pointsmay depend on other Variation Points, as shown in Section 3.3.2,
they need a mechanism to be completely excluded from the variant derivation process. To
achieve this, Variation Points in the VPM can be enabled and disabled. A disabled Vari-
ation Point can not be bound to a specific value and, therefore, has no impact on any
variant unless it is re-enabled.
The information about the name of the Variation Point, its value set and if it is enabled

or not is communicated through implementing the VariationPointInterface interface (see
Section 3.2).
The implementation of this interface for the VPM further stores the latest possible

binding time for a particular Variation Point. The binding time can be used to verify that
all Variation Points are bound at the correct time before concrete variants are generated.
Binding a Variation Point is done by selecting a value out of its value set. Furthermore,
selecting a value starts resolving dependencies as shown in Section 3.3.2.2.

3.3.1.1. Associating Variation Points to Features

Since Variation Point serve as technical realizations for features provided by a Feature
Model they need to be related to those feature. Section 2.2.1.1 shows the different types of
features. These types need to be mapped differently. Relating features to Variation Points
makes it easier to develop valid variants as required by Requirement 1 in Section 3.1.1
because it reduces the need of manually adjusting Variation Points.

Mapping Mandatory Features Mandatory feature do not need to be mapped to Varia-
tion Points at all. These features are present in all variants and, therefore, no Variation
Point needs to control them.

Mapping Optional Features Mapping optional features can be done directly if the cor-
responding Variation Point provides a value set as shown in Figure 3.2a.
In this case, the Variation Point just needs to be connected to the optional feature.
If the mentioned value set can not be used, VPVs need to be chosen from the Variation

Point that can be mapped to the selection state of the desired feature. This ability is
illustrated in Figure 3.2b

Mapping Alternative Features Mapping alternative features is a generalization of map-
ping the selection state of optional features to special VPVs. When mapping alternative
features to a Variation Point each alternative needs to be mapped to a single Variation

32 3. Variant Component Model Design

Optional
Feature

Variation

Point

ValueSet:
True : 1

False : 0

realizes OptionalFeature

(a) Automated Mapping

Optional
Feature

Variation
Point

realizes OptionalFeature.selected
ValueSet:
UseOptFeature : 1

DontUseOptFeature : 2
realizes OptionalFeature.notSelected

(b) Selective Mapping

Figure 3.2.: Mapping of optional features can be done automatically or selectively

Point Value provided by the set of Variation Point Values. Mapping of alternative features
is illustrated in Figure 3.3.

Alternative
Feature

Alternatives::
Alt A

Alt B

Alt C

Variation
Point

UseAltA : 1

UseAltB : 2

UseAltC : 3

ValueSet:
realizes AlternativeFeature.AltA

realizes AlternativeFeature.AltB

realizes AlternativeFeature.AltC

Figure 3.3.: Mapping of alternative features to variation points

Mapping of features that are combined with the or operator is done the same way. For
each feature available in a or linked feature set one value from the value set of the Variation
Point is selected. If the feature is selected the appropriate value from the Variation Point
is added to its set of currently selected values.

3.3.2. Dependencies

Based on Requirement 4 defined in Section 3.1.4 Variation Points can affect each other.
This information is provided via Dependencies. Before defining how dependencies behave
and how they are validated it is important to define the different parts which form a
dependency.

Definition 1 (Dependency) Any relationship between two Variation Points, that de-
fines how one Variation Point has to be adjusted, if another Variation Point changes its
value.

3. Variant Component Model Design 33

Definition 2 (Dependency Source) A Variation Point whose selected value affects
other Variation Points.

Definition 3 (Dependency Target) The Variation Point that needs to be adjusted if
its dependency source changes its value.

Figure 3.4 gives an overview how this concept is accomplished in the VPM.

<<enum>>

LogicalOperator

And

Or

Not

EnableVariationPoint

execute()

ComplexDependency

<<enum>>

SimpleOperator

Equal

NotEqual

Dependency

check()

SimpleDependency

valueToCheck

operator

RestrictValueSet

valuesToHide

execute()

LogicalComposition

operator

RemoveRestrictions

execute()

DisableVariationPoint

execute()

actionOnFullfilledDependency1

<<list>>

subdependencies1..*

actionOnMissedDependency
Action

execute()
1

Figure 3.4.: UML diagram showing the different entities that build the dependency concept
in the Variation Point Model

Generally, dependencies are defined by selecting their source and target and by defining
their actions. In the simplest case a particular Variation Point depends on a concrete
value selection in another Variation Point. In this case the dependency only needs to
store the name of that concrete value and can compare the actual value of its dependency
source with this value. The behavior of the dependency in case it was either fulfilled
or missed is stored in so called Actions. The VPM currently supports two logic groups1

of actions, both containing two implementations to serve both cases of either fulfilled
or missed dependencies. Table 3.1 lists these groups with a description of the actions
belonging to them.

Action group Action Behavior

Enabling/Disabling
EnableVariationPoint Enables a Variation Point.
DisableVariationPoint Disables a Variation Point.

Change Value Set
RestrictValueSet Restricts the set of values selectable

for a Variation Point.
RemoveRestrictions Makes all values of a Variation

Point selectable.

Table 3.1.: Actions provided by the VPM to handle different dependency cases

1There exists no class or other entity representing action groups

34 3. Variant Component Model Design

3.3.2.1. Logically Composed Dependencies

Simple dependencies in the VPM can be used to compare required and actual values of
Variation Points. To be able to define more complex dependencies the VPM provides
the ability to compose simple dependencies with logical operators into more complex
ones. This is done by aggregating simple dependencies into a new dependency object that
combines the evaluation result of each aggregated dependency with a logical operator.
Table 3.2 lists all operators available for this task along with their possible number of
arguments and their meaning.

Operator Number of Arguments Meaning
And >= 2 True if all nested dependencies eval-

uate to true, false otherwise
Or >= 2 True if at least one of the nested de-

pendencies evaluates to true, false
otherwise

Not 1 Inverts the result of the nested de-
pendency

Table 3.2.: Logical operators provided by the VPM to develop more complex dependencies

3.3.2.2. Resolving Dependencies

Resolving dependencies is emitted every time the set of selected values of some dependency
source changes.

applyLogical
Operator

compareTo
StoredValue

<<iterative>>

retriveCurrentValue
OfDependencySource

selectNext
SubDependency

retriveCurrentValue
OfDependencySource

[simple dependency]

[has more sub dependencies]

[complex dependency]

[all subdependencies done]

compareTo
StoredValue

Figure 3.5.: An UML activity diagram showing the process of resolving a dependency

The first step when resolving dependencies is to check if they are fulfilled or not. In
case of simple dependencies this is done by checking if the set of selected values in the
dependency source contains the value stored in the dependency. If the dependency is
complex each of its nested dependencies need to be evaluated. How the evaluation results

3. Variant Component Model Design 35

of all nested dependencies are combined, is indicated by the logical operator the complex
dependency uses. In any case, the result of this evaluation process is a boolean value
indicating if the dependency is fulfilled or missed. Figure 3.5 illustrates this workflow.
For each case the dependency provides a separate action. Invoking these actions while
resolving dependencies is done by the VPM as shown in Section 3.3.4.4.

3.3.3. Aspects
According to [Kiczales et al., 1997] an Aspect is a part of a system that “can not be cleanly
encapsulated in a generalized procedure”. Aspects are required by Requirement 5 in Sec-
tion 3.1.5. Technically speaking there is no difference between Variation Points and As-
pects. Both provide the ability to either include or exclude a certain feature. The main
difference between this two concepts is their usage. Variation Points are used quite locally,
controlling features in one or at least in a small set of components. Aspects on the other
hand have a much bigger impact on variants that either use them or not. Aspects normally
control a larger set of components, maybe even all components, throughout the whole ar-
chitecture. Contrary to Variation Points that are connected to components, Aspects are
selected by components that want to implement them. This makes the usage of Aspects
much easier when modeling components and system architectures that use them.

Because of this major difference in terms of usage, Aspects are elements on their own in
the VPM. The same constraints defined for Variation Points also apply to Aspects, except
that Aspects are allowed to have no value set. However, Aspects may define a value set to
provide the ability to configure them too. A logger aspect, as mentioned in Section 3.1.5,
may define a value called logLevel to configure how much information should be logged
by each component.

3.3.4. Operations on the Variation Point Model
Since the VPM is responsible for managing Variation Points and providing valid variants
it needs some operations to provide those functionalities. To keep the model valid at all
times at least one constraint must be fulfilled after every change to the model:

Constraint 3: All Variation Points need to have unique names.

Unique names provide the ability to clearly identify each Variation Point by its name.

3.3.4.1. Adding Variation Points

Before a new Variation Point can be added to the model it has to fulfill some constraints
that are enforced by the model.

Constraint 4: If a Variation Point is added, it must not exist a priori in the VPM.

Constraint 5: The size of the value set must be greater than zero.

A Variation Point without any values makes no sense. At least one variant is always
selectable, therefore, a Variation Point without any values is not allowed in a valid VPM.
Figure 3.6b illustrates how the value set of a Variation Point is validated.

36 3. Variant Component Model Design

Figure 3.6a illustrates the work flow describing how a Variation Point is added to a
valid VPM and shows when it is rejected by the model.

check for unique

name inside model

addVariationPoint

ToModel

[name ambigious]

ValidateValueSet
[value set invalid]

[value set valid]

(a) Adding the Variation Point

<<iterative>>

check value count > 0

check if value is set

check if type is set

check if name is

unique

foreach value in

value set

[has more values]

[name ambigious]

[no type provided]

[no value set]

[validation done]

(b) Validating the Value Set

Figure 3.6.: Adding a Variation Point to the VPM is done after checking the constraints
the Variation Point and its value set must fulfill

3.3.4.2. Updating a Variation Point

If a Variation Point changes, i.e. the selected value changes, the model needs to be
informed about that change. Therefore, the VPM provides a method called updateVari-
ationPoint. The task of this method is to revalidate the provided Variation Point and
then to update its data in the model. Updating means that data of an existing Variation
Point needs to be changed:

Constraint 6: A Variation Point that needs to be updated must be present in the model.

Figure 3.7 illustrates how a particular Variation Point is updated in the VPM.

3.3.4.3. Adding Dependencies between Variation Points

Dependencies, as described in Section 3.3.2, are stored independently from their sources
and targets.
Dependencies in the VPM are stored in relation to their dependency sources. For both,

the dependency source and target, the following constraint must be fulfilled:

Constraint 7: Both, dependency source and dependency target, must exist in the VPM
before adding a dependency between them.

3. Variant Component Model Design 37

variationPointExists

updateData

selectedValue

Possible

ValidateValueSet

Warning

[not present in model]

[selected value valid]

[value set valid]

[value selection invalid]

[value set invalid]

[variation point enabled]

[variation point disabled]

variationPointToUpdate

variationPointModel

Figure 3.7.: The work flow to update a Variation Point in the VPM

If, for example, the dependency source would not exist, the dependency had no value to
decide if it is fulfilled or not. On the other hand, if the dependency target is missing, a de-
pendency is not necessary, because no behavior in conjunction with other Variation Points
can be implemented. Therefore, dependencies are only added if both parts, dependency
source and target, exist in the model. Otherwise the dependency is rejected.

Constraint 8: Values referenced in a dependency must exist in the referenced Variation
Point.

Since dependencies act on values placed in either the dependency source or in the de-
pendency target, the corresponding Variation Points must provide those values. If depen-
dencies would be allowed to reference non present values it may happen that resolving
them always fails and, therefore, the model produced is invalid. To avoid this, referenced
values are validated before adding a dependency to the VPM.
Figure 3.8 shows validation of dependencies.

3.3.4.4. Resolving Dependencies

Resolving dependencies needs to be done every time the set of selected values in a depen-
dency source changes. This is necessary to ensure valid variants at all times as required
in Requirement 1 and to support the application engineer during variant derivation. If a
Variation Point changes, all dependencies using it as their dependency source are collected
and are checked using the work flow defined in Section 3.3.2.2. Depending on the result
of this check the appropriate action provided by the dependency is invoked. as a result,
Variation Points are always valid according to the constraints defined for them. Figure 3.9
illustrates the dependency resolution.

3.3.4.5. Remove Dependencies

During Domain Engineering it may happen that previously defined dependencies are not
needed anymore in a later iteration. Furthermore, it may happen, that Variation Points

38 3. Variant Component Model Design

checkDependency

TargetExists

checkDependency

SourceExists

checkActionsSet

<<iterative>>

[dependencyTarget missing]

[dependencyTarget exists]

[dependencySource missing]

[actions are missing]

[dependencySource exists]

[actions all set]

[simple dependency]

ValueToCheck

Possible

[invalid value selected]

[value to check ok]

selectNext

SubDependency

[complex dependency]

[no more subdependencies]

[has more subdependencies]

Figure 3.8.: The work flow describing how a dependency is validated before adding it to
the model

<<iterative>>
findDependencies:

Dependency

resolveSingle

Dependency

CollectInvalidVariationPoint:

VariationPoint

[foundDependencies.hasMore() == false]

{bounds=*}

{bounds=*, ordering=ordered}

updateVariation

Point

[update failed][update successfull]

invokeActionOn

FulFilledDependency

invokeActionOnMissed

Dependency

[missed][fulfilled]

Figure 3.9.: The work flow describing how dependencies in the VPM are resolved

should be removed from the model that either act as dependency source or target. There-
fore, it is necessary to provide the ability to safely remove dependencies from the model.
A dependency can be uniquely identified by its source and target Variation Points. This

fact can be used to locate the dependency that should be removed in the VPM. First, all
dependencies that use the provided dependency source are collected. If such dependencies
exist, the dependency referencing the given target is selected. Since dependencies manip-
ulate their targets deleting them affects those targets too. Therefore, before removing a
dependency from the model its dependency target is reseted. After resetting a Variation
Point it is enabled and all of its values are selectable again. Therefore, any changes a
dependency may have done to a Variation Point are reverted. Figure 3.10 illustrates the

3. Variant Component Model Design 39

steps used to remove a dependency from a VPM.

check valid

dependency source

find dependency

using provided target

reset dependency

target

remove

dependency

[dependency found]

[valid dependency source]

[invalid dependency source]

[no dependency found]

Figure 3.10.: Required steps to remove a dependency from the VPM

3.3.4.6. Remove Variation Points

Removing a Variation Point has a major impact on Variation Points that depend on
it. Because Constraint 7 requires that both dependency source and target must exist
to form a valid dependency, dependencies referencing the removed Variation Point need
to be adjusted. Therefore, all dependencies referencing the removed Variation Point are
collected by this operation. If those dependencies are either removed or just adjusted
depends on the needs of the engineering process. Figure 3.11 illustrates the work flow of
the remove operation.

checkIfVariation

PointExists

collectDependencies

[not exists]

[exists] [no dependnecies]

[found dependencies]

checkIfIs

DependencySourceOr

DependencyTarget

Figure 3.11.: The work flow how to remove a Variation Point from the VPM

3.4. Components with Variability

3.4.1. Development of Variant Rich Components

The development of variable components can be decomposed into three steps which are
illustrated in Figure 3.12.
Before building a component that provides variability the required functionality has to

be identified. This functionality can be provided by several other, smaller granulated,

40 3. Variant Component Model Design

Select functional

Components
Identify

variable Parts
Define Component

Variability

Figure 3.12.: The development process for components that provide variability

components or has to be implemented from scratch. The component model refers to these
“smaller granulated components” as Functional Components.
The next step is to separate variable from common functionality. Common functionality

is always part of the component independent of any variant selection. The component
model proposed in this thesis supports the component developer to reflect the variable
part of a component during its development.
The final step is to define the variability of the new component. This step can be

decomposed into two sub steps illustrated in Figure 3.13.

Define Variability

Interface

Define Variant
Behavior

Figure 3.13.: Steps to define variability for a component

The first of these steps is to define the configuration interface that the new compo-
nent should provide to configure the different variants. This interface is shared between
components and variation points as shown in Section 3.3.1. It consists of a set of values
identifying the different variants provided by the component. After defining this interface
the values need to be mapped to the appropriate parts of the component. The compo-
nent model described here refers to these mappings as Connectors which are shown in
more detail in Section 3.4.5. To store such Connectors and actually map one connector
to a specific value, a special entity called VariabilityRealizer is used which is described in
Section 3.4.4.1.
Figure 3.14 gives an overview of the structure of the Variant Component Model.
The result of the process shown is always a new component aggregating functional

components and variability information as illustrated in Figure 3.15.

3.4.2. Terminology
Before providing more detail on the Variant Component Model itself, some terms used in
the subsequent sections need to be defined.
At first the core of each component model needs to be defined, the component:

Definition 4 (Component) “A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by third parties.”
[Szyperski, 1997]

Following this definition, a component needs to be developed decoupled from its envi-
ronment and possible other components [Crnkovic, 2002]. The only way a component can
communicate to its environment is via its interface.

3. Variant Component Model Design 41

VariabilityRealizer

+ exportConnector(in toExport : Connector)

+ addConnector(in connectorToAdd : Connector) : void

Connector

- triggeringValue : string

+ select(in trigger : VariabilityRealizer) : void

VariationPointMapper

- mappedValues : string

VariabilityConsumer

+ variationPointChanged(in changedVariationPoint : VariationPointInterface)

VariationPointInterface

+ isEnabled() : bool

+ getName() : string

+ getDescription() : string

+ getSelectedValue() : VariationPointValue

variabilityProvider

0..1

Component

- name : string

- codeBehind : string

+ addPort(in portToAdd : Port)

parentComponent1

ConnectorSelector

+ selectConnectors(in selectedValue : string, in selectingVariationPoint : VariabilityRealizer)

+ addConnector(in connectorToAdd : Connector) : void

<<list>>

exportedConnectors*

<<list>>

connectorPool1..*

cconnectors1

<<list>>

realziedAspects

providedAspect0..1

*

Aspect

- name : string

- enabled : bool

Figure 3.14.: A class diagram showing the structure of the Variant Component Model

Definition 5 (Compositional Component) A Compositional Component is a compo-
nent developed by selecting several smaller granulated components and weaving them
together into a new component [Sora et al., 2004].

Definition 6 (Subcomponent) A Subcomponent is a component aggregated by a Com-
positional Component.

Component composition is the heart of the proposed component model, since variability
of components is achieved by selecting subcomponents and weaving them into a new
compositional component along with the description of variability this new component
provides.

Variant Component

Functional
Components

Variability
Description

Figure 3.15.: Combining functional components with variability results in a new compo-
nent.

42 3. Variant Component Model Design

Definition 7 (Aspect Implementer) An Aspect Implementer is a component that im-
plements a certain aspect of the system, as defined in Section 3.3.3.

Aspect Implementers are used by components that provide functionality required by
aspects defined for the software system.

3.4.3. Component Structure

Based on the development process shown in Section 3.4.1 the structure of components
needs to be defined.

Component

name : string

codeBehind : string

addPort(in portToAdd : Port)

CompositeComponent

addPortLink(in linkToAdd : PortLink) : void

getSubComponent(in nameOfSubComponent : string) : Component

Port

name : string

portKind : PortKind

dataType : string

<<enum>>

PortKind

Input : PortKind

Output : PortKind

PortLink

StateMachine

aggregatedComponents

1..*

ports

*

portConnections1..*

sourcePort1

targetPort

1

Figure 3.16.: The structure of components in the Variant Component Model

At its very core each component has to provide a name and an interface. The interface
provides information about how a component can be embedded into a bigger system.
Basically, this interface has to be split into two parts [Crnkovic, 2002]:

Required Interface: Information that is needed by the component to fulfill its task.

Provided Interface: Information that is provided by the component to other parts of the
system.

Based on the port concept defined in [Autosar, 2009e] the required and provided in-
terfaces are modeled as ports. Inside the Variant Component Model each port knows by
itself if it is required or provided.
Compositional components aggregate several other components to form a new one.

As stated in Section 3.4.1, compositional components are subject to variability. When
designing components to take part in a SPL based development process a third part
in their interface is required: the configuration interface. The configuration interface
provides the information about different variants that can be served by the component.
This configuration interface is realized by the VariabilityRealizer concept described in
Section 3.4.4.1. To connect ports used in subcomponents to ports exposed in the interface

3. Variant Component Model Design 43

of a compositional component so called PortLinks are used. PortLinks connect ports to
indicate the flow of data between the compositional component and its subcomponents.
Because the component model does not reflect implementation details, these details

need to be provided elsewhere. To link the component descriptions to their corresponding
implementations, each component stores an identifier called codeBehind that serves as a
link to the implementation of the component.

3.4.3.1. AUTOSAR Interoperability

The structure of components used in this approach is very similar to the one used in
[Autosar, 2009e]. Since AUTOSAR does not define how component implementations
need to be represented too, the component description used can be directly mapped to
AUTOSAR component interface descriptions represented as XML files.

3.4.3.2. State Machines

As stated in Section 1.2.3, state machines can be seen as a special form of compositional
components. The main difference is, that state machines can not aggregate any component.
The possible subcomponents are limited to states and transitions. States and transitions
are very specific components too. They can only aggregate each other. Normally, the
direction of this aggregation is not important. For the proposed component model it was
defined that states aggregate transitions. This makes it easier to handle variability issues
with optional states in a particular state machine. Optional states need transitions that
integrate them into a state machine. If the state is omitted these transitions have to
be replaced with transitions that bypass the optional state. Referencing incoming and
outgoing transitions in a state makes it very simple to find those transition that need to
be replaced. Figure 3.17 illustrates the structure used for state machines.

StateMachine

Component

State

name : string

Transitiontransitions

parentMachine

1..*

1 <<list>>

outgoingTransitions*

states

1..*
<<list>>

incomingTransitions

*

Figure 3.17.: The structure of state machines used in the Variant Component Model.

The Variant Component Model does not validate the provided state machines. This
task is delegated to state machine development environments (e.g. Simulink Statecharts).
Therefore, like in ordinary components, state machines in the Variant Component Model
use the codeBehind identifier mentioned earlier, to reference those implementations.

44 3. Variant Component Model Design

3.4.4. Variability Consumers

The VariabilityConsumer concept provides an interface between components and variation
points. Therefore, each component defines its own Variation Point, a behavior similar to
private Feature Models required by [Reiser et al., 2009]. These component wide Variation
Points also act as the configuration interface provided by that component as required by
[de Jonge, 2004].

VariabilityConsumer

+ variationPointChanged(in changedVariationPoint : VariationPointInterface)

Figure 3.18.: The interface to connect components to variation points

Connecting a VariabilityConsumer to a VariationPoint means that the VariabilityCon-
sumer subscribes to the VariationPoint. If the currently selected value of a VariationPoint
changes, it informs all its subscribers using the method defined in the interface. This real-
ization of the Observer design pattern [Gamma et al., 1995] makes it possible to decouple
variation points from the configurable components.
The proposed component model currently supports two realizations of this interface

described in more detail in Sections 3.4.4.1 and 3.4.4.2: VariabilityRealizers and Varia-
tionPointMappers.

3.4.4.1. Variability Realizers

The VariabilityRealizer combines the roles of providing the configuration interface and
mapping values defined in that interface to connectors that select and/or configure subcom-
ponents. Therefore, Variability Realizers are responsible for the adaptivity of their compo-
nents and are based on theAdoption Point concept provided in [Lacouture and Aniorté, 2008].
Providing the configuration interface is done through implementing theVariationPointIn-

terface also implemented by VariationPoints as defined in Section 3.3.1. Therefore, the
same rules relevant for value sets in VariationPoints apply to value sets in VariabilityRe-
alizers. To store the different connectors the VariabilityRealizer uses a pool of them. The
so called ConnectorPool does the actual mapping between values from the value set and
connectors.
To successfully connect a VariationPoint to a VariabilityRealizer their value sets must

be compatible to each other.

Definition 8 (Compatible Value Sets) Two value sets are compatible if at least all
values of one set are present in the other set.

Applying Definition 8 to VariationPoints and VariabilityRealizers means that the used
VariationPoint needs to support at least all values required by the used VariabilityRealizer.
If this condition is not fulfilled, the corresponding entities can not be connected.

3. Variant Component Model Design 45

SubComponent 1
Connector 1

Connector 2

Connector 3

ValueSet:

1, 2, 3

VariabilityRealizer

VariationPoint
ValueSet:

1, 2, 3

SubComponent 2

SubComponent 3

CompositionalComponent

Figure 3.19.: Illustration showing how VariabilityRealizers and Connectors are used to
implement variability in a component

3.4.4.2. Variation Point Mapper

Since value sets of VariabilityRealizers need to be compatible to the one provided by
VariationPoints, reuse of components raises a problem. Its quite unlikely that variation
points used in one project are entirely equal to variation points used in another project.
Therefore, it is quite unlikely to meet the value set required by a particular components
configuration interface when reusing this component in another project. One approach
would be to adjust variation points so that they fit the value set required by the component.
This approach may not be appropriate because one variation point may configure different
components.
To solve this problem cleanly, the Variant Component Model provides a special vari-

ability consumer responsible for mapping physically incompatible value sets, called Vari-
ationPointMapper. Figure 3.20 illustrates the usage of such mappers.
The mapper acts as an adapter, as described in [Gamma et al., 1995]. When using

mappers, VariabilityRealizers need to subscribe to them instead of subscribing to the
VariationPoint directly. The mapper itself subscribes to the VariationPoint and informs
the VariabilityRealizer about new values by calling the method provided by the Variabil-
ityConsumer interface.

3.4.5. Connectors

Connectors, an application of the equally named concept provided in [Dauenhauer et al., 2009],
provide virtual channels between a VariabilityRealizer and parts of the component that
are controlled by it. There are two types of “parts” that may be controlled by a Vari-
abilityRealizer : alternative subcomponents and subcomponents that provide variability
on their own. The second case emerges from Requirement 2 identified in Section 3.1.2.
Reusing components that provide variability may also take place by composing them into
a new component. Using such a mechanism makes it possible to extend components with
new variants. Such a technique can be compared to extending a base class in object ori-

46 3. Variant Component Model Design

Part 1

Part 2

Connector 1

Connector 2

Connector 3

ValueSet:

1, 2, 3

VariabilityRealizer

VariationPoint
ValueSet:

x, y, z

VariationPointMapper
Mappings:

 x : 1, y : 2, z : 3

SubComponent 1

SubComponent 2

SubComponent 3

CompositionalComponent

Figure 3.20.: Usage of VariationPointMapper to connect heterogeneous value sets

ented programing. To fulfill both use cases the Variant Component Model provides two
different connectors: a connector to components, called ComponentConnector and one to
configuration interfaces of components, i.e. to a VariabilityRealizer provided by such com-
ponents, called VariationPointConnector. The structure of these connectors is illustrated
in Figure 3.21.

VariabilityRealizer

exportConnector(in toExport : Connector)

addConnector(in connectorToAdd : Connector) : void

ComponentConnector

select(in trigger : VariabilityRealizer) : void

setComponentToActivate(in componentToActivate : Component)

Connector

triggeringValue : string

select(in trigger : VariabilityRealizer) : void

VariationPointConnector

valueToSet : string

select(in trigger : VariabilityRealizer) : void

Component

name : string

codeBehind : string

addPort(in portToAdd : Port)

subscript

1

variabilityProvider

parentComponent

0..1

1
componentToControl

1

Figure 3.21.: Structure of connectors provided by the Variant Component Model to con-
nect variability realizers to variable parts of a component

As mentioned in Section 3.4.4.1 VariabilityRealizers aggregate a pool of connectors. If
a connector is selected, i.e. the corresponding variant was selected, the pool marks it
as “currently selected”. These marked connectors are used to derive the concrete variant
of the corresponding component. Figure 3.22 gives an overview on how connectors are
validated and added to the connector pool used by the VariabilityRealizer.

3. Variant Component Model Design 47

checkComponent

ToActivateExists

addConnectorToPool

checkValueToSet

Possible

[component missing][is variability connector]

[invalid]

[valid]

[component exists]

[is component connector]

Figure 3.22.: The work flow illustrating validation activities when adding a new connector
to the pool used by the VariabilityRealizer

3.4.5.1. Component Connector

ComponentConnectors connect VariabilityRealizers to components that implement vari-
ants provided by the surrounding compositional component. ComponentConnectors pro-
vide the ability to export interfaces provided by the subcomponents to the interface of
the compositional component that provides the variability. This ability is used during the
variant derivation process to build a variant specific and usable component. To identify
the subcomponent to activate, the connector stores a reference to it. In order to leave a
valid variability description Constraint 9 must be fulfilled.

Constraint 9: The component that is activated by a connector needs to be member of the
surrounding compositional component.

Figure 3.23 illustrates how ComponentConnectors are added to VariabilityRealizers.

3.4.5.2. Variability Connector

VariabilityConnectors are needed to provide the ability to compose components that pro-
vide variability into a new component. VariabilityConnectors, therefore, do a similar job
as VariationPointMappers do with the difference that they get their information from a
VariabilityRealizer instead of variation points. The mechanism used to establish such a
connector is the same as the one used with VariationPointMappers. The VariabilityReal-
izer of the subcomponent is a subscriber of the connector. The connector can now inform
the subcomponent about a changed variant selection using the VariabilityConsumer inter-
face. Figure 3.24 illustrates the steps that are needed to add a new VariabilityConnector
to a component.

3.4.6. Implementing Aspects

Two parts in the Variant Component Model are affected by Aspects: VariabilityRealizers
and Connectors. VariabilityRealizers handle variability in a component. Aspects provide
variability across component boundaries therefore, VariabilityRealizers need to handle

48 3. Variant Component Model Design

new

getSubComponent()

setComponentToActivate(connectorTarget)

foundSubComponent

getPool

addConnector

getRealizer

this.connectors

this.variabilityProvider

:Main
newConnector:

ComponentConnector
:VariabilityRealizer

varComponent:

CompositeComponent
:ConnectorSelector

Figure 3.23.: The work flow describing how a ComponentConnector has to be added to a
Variability Realizers ConnectorPool

:VariabilityRealizer :ConnectorPool
variableComponent:

CompositeComponent

newVarPointConnector:

VariationPointConnector
:Main

new

setValueToSelect

getVariabilityRealizer

this.variabilityProvider

setSubscriber

getConnectorPool

this.connections

addConnector

Figure 3.24.: The operation sequence executed to add a new VariabilityConnector between
a VariabilityRealizer and a composed component

Aspects too. Connectors on the other hand serve as selection mechanism for different
variants. In context of Aspects they provide connections to Aspect Implementers.
VariabilityRealizers store references to all aspects served by the surrounding compo-

nent directly. To successfully add such an aspect to a VariabilityRealizer the following
constraint must be fulfilled.

Constraint 10: An Aspect added to a VariabilityRealizer must be present in the corre-
sponding VPM.

3. Variant Component Model Design 49

Figure 3.25 illustrates how an Aspect is added to a VariabilityRealizer.

aspectisDefinedInVariation

PointModel

addAspectTo

Realizer

[not defined]

[defined]

Figure 3.25.: Adding an Aspect to be handled by a VariabilityRealizer

Connectors reference the Aspect that is implemented by the aspect implementer they
connect to. Because VariabilityRealizers control with aspects are implemented by a compo-
nent, connectors can only reference those aspects provided by them. Figure 3.26 illustrates
how an Aspect is set to be referenced by a connector.

aspectProvidedByParent

VarRealizer

setAspectIn

Connector

[aspect not provided]

[aspect provided]

Figure 3.26.: Setting the Aspect in a connector that connects to the component that im-
plements it

Technically, Aspect Implementers are equivalent to optional subcomponents. Therefore,
like any other component, they can be subject to variability. Selecting variants of Aspect
Implementers is only reasonable if the corresponding aspect is active. The VariabilityRe-
alizer needs to make sure that variant selection is only applied if this aspect is active. To
achieve this, the VariabilityRealizer checks before selecting any connector if it depends on
an Aspect. If such a dependency exits and the corresponding aspect is active, the requested
variant can be derived. If the aspect is inactive, i.e. not selected for the particular system,
the requested variant is rejected. To safely apply this pattern the following constraint
must be fulfilled.

Constraint 11: All connectors connecting to the same aspect component need to reference
the same aspect.

3.5. Embedding the Variant Component Model into SPLE

After defining the Variant Component Model, this section provides details on how the
Variant Component Model can be used inside SPL based software development. This
section especially provides information how tasks related to DE and AE need to be done
when using the Variant Component Model.

50 3. Variant Component Model Design

Similar to the situation when using the Variant Block Set to model variability within
Simulink and using pure::variants to configure it, the Variant Component Model also
needs some tool chain to support it. Furthermore, different tools need different actors and
activities in order to produce artifacts exchanged between those tools.

3.5.1. Identifying Roles and Activities
In each Software Development Process different roles and activities assigned to them can be
identified. In SPLE two separate processes exist 1) Domain Engineering and 2) Application
Engineering.
The following sections describe the different roles identified. Furthermore activities are

assigned to that roles. Those activities are mapped to the Variant Component Model and
finally, artifacts are described that need to be delivered by executing those activities.

3.5.1.1. Domain Developer

The domain developer has the responsibility to identify features of the domain. According
to [Kang et al., 1990] the domain developer categorizes features into different groups as
listed in Section 2.2.1 and relates features to each other to describe dependencies between
them. By doing this the domain developer develops a Feature Model which can be used
by other roles to define the software architecture or to derive concrete variants. The role
of the domain developer including his activities is illustrated in Figure 3.27

Domain
Knowledge

<<activity>>

Identify
Features

<<activity>>

Categorize
Features

<<activity>>

Relate
Features

<<role>>

Domain
Developer

Feature
Model

Activity executed

Requires Artifact

Provides Artifact

Artifact

Figure 3.27.: The domain developer providing the Feature Model by identifying and group-
ing features required by the analyzed domain

The Variant Component Model does not provide abilities to do domain development in
the context of feature modeling. The Variant Component Model just references features,
provided by a feature model, to assign them to variation points.

3.5.1.2. Variation Point Modeler

The responsibility of the variation point modeler is to define variation points used in the
domain model to configure different variants during the variant selection process. The
variation point modeler defines the relationship between variation points and features
provided by a feature model. Furthermore, the variation point modeler defines dependen-
cies between variation points. The variation point modeler provides the VPM as defined
in Section 3.3. Figure 3.28 illustrates the role of the variation point modeler and his
activities.

3. Variant Component Model Design 51

Domain

Knowlege

<<activity>>

Define
Variation Points

<<activity>>

Define
Dependencies

<<activity>>

Identify & Define
Aspects

<<role>>

Variation Point

Developer

Variation
Point
Model

Activity executed

Requires Artifact

Provides Artifact

Artifact

<<activity>>

Relate VPs
to Features

Feature
Model

Figure 3.28.: The activities a variation point modeler has to execute

3.5.1.3. Component Developer

The job of the component developer is to deliver components that can be used to develop
the system architecture. The component developer selects existing functional components
and implements required functionality. After selecting functional components, variability
of components needs to be implemented. The VPM provides Variation Points to configure
those components. The component developer selects functional components according to
the identified variability (e.g. alternative components) and composes them into a new
component. According to the identified variability, the component developer implements
this variability for this component. The component developer delivers a set of components
that can be used by the system architect to compose the software architecture. Figure 3.29
shows the different activities of the component developer.
The Variant Component Model provides all necessary items to help the component

developer to execute his tasks. Components in the Variant Component Model provide
the ability to reference implementation details and to store the interfaces a component
requires and provides. VariabilityRealizers and Connectors provide the ability to model
and implement variability of components. The set of components the component developer
provides consists of variable and non variable components. Section 3.4.1 illustrates the
development process of variable components in more detail.

3.5.1.4. System Architect

The system architect has to develop the software architecture that results from the DE de-
velopment process. The system architect therefore, uses the components delivered by the
component developer and connects them. In the next step the system architect connects
variation points provided by the VPM to the components to make them configurable. If the
variation point is compatible to the configuration interface of the component, as defined
in Definition 8 in Section 3.4.4.1, this can be done directly. If these entities are not com-
patible the system architect has to define a VariationPointMapper (see Section 3.4.4.2).
Figure 3.30 illustrates the different activities of the system architect.

52 3. Variant Component Model Design

Domain
Knowledge

<<activity>>

Select Functional
Components

<<activity>>

Identify
variable Behaviour

<<activity>>

Identify
possible Aspects

<<role>>

Component
Developer

Com-

ponents

Activity executed

Requires Artifact

Provides Artifact

Artifact

Variation
Point

Model

<<activity>>

Define

Variability

<<activity>>

Compose Variant

Rich Component

Existing
Components

Figure 3.29.: The activities a component developer has to carry out to deliver a set of
reusable components

<<activity>>

Connect
Components

<<activity>>

Connect
VPs and Components

<<role>>

System
Architect

<<activity>>

Map incompatible

VPs to Components

Activity executed

Requires Artifact

Provides Artifact

Artifact

Variation

Point

Model

System
Architecture

Domain

Knowledge

Com-

ponents

Figure 3.30.: The activities of the system architect to deliver the system architecture

The system architect delivers the system architecture that is used by the variant de-
veloper to derive concrete variants from it. If the variant developer detects errors in
the system architecture the system architect is responsible to resolve them. Figure 3.31
illustrates the development process shown in this section.

3.5.1.5. Variant Developer

The variant developer is responsible for deriving concrete variants from the generic system
architecture provided by the system architect. The main activity the variant developer
has to perform is to bind variation points to concrete values and to select aspects to be

3. Variant Component Model Design 53

Component is
configurable

Connect

Variation Point

Connect
ComponentComponent is

not configurable

Insert next
Component

Select

Variation Point

Check
Compatibility
to Component

Connect Variation
Point

Define and connect
Mapping

Figure 3.31.: The development process that system architect applies to deliver the system
architecture

active or inactive in the concrete variants. Furthermore, the variant developer has to
resolve dependencies between different variation points. If behavior exists that is needed
by just one variant the variant developer may need to implement it. In terms of software
maintenance the variant developer is responsible to propagate changes in the generic sys-
tem architecture to the different concrete variants. Figure 3.32 illustrates the activities
the variant developer has to carry out.

<<activity>>

Select Variant

specific Features

<<activity>>

Implement Variant
specific Components

<<role>>

Variant
Developer

<<activity>>

Validate
Variant Selection

Activity executed

Requires Artifact

Provides Artifact

Artifact

Domain
Knowledge

System
Architecture

Feature
Model

Variants

<<activity>>

Select Vairant specific
Aspects

<<activity>>

Reflect Changes in the
System Architecture

Figure 3.32.: The activities of the variant developer to deliver different variants based on
the system architecture

To carry out these tasks the variant developer mainly uses the Feature Model and the
system architecture. By selecting features the Variant Component Model can determine
how to adjust variation points associated with them. Furthermore, the VPM provides the
ability to resolve dependencies between variation points automatically. Possible errors in

54 3. Variant Component Model Design

the system architecture need to be reported to the system architect who is responsible to
resolve them.

3.5.2. Tools to support the Activities

Based on the different roles and activities associated to them tools are needed that help
those roles to implement their tasks. There are five kinds of tools which are illustrated
in Figure 3.33. This tools are needed in order to develop applications that use the SPLE
processes described in Section 2.3

Problem Space Solution Space

D
o

m
ai

n
 E

n
gi

n
ee

ri
n

g
A

p
p

li
ca

ti
o

n
 E

n
gi

n
ee

ri
n

g

System

Architect

System
Architecture

Variation Point

Developer

Variaion
Point
Model

Component

Developer

Comp-
onents

Feature
Model

Variant 1

Variant N

Domain

Developer

<<use>>

<<use>>

<<use>>

Variant

Developer

<<use>>

<<report errors>>

<<description>> Interaction

Data Flow

Actor
Name

Developer

ArtifactName

<<provides>>

<<provides>>

<<provides>>

<<provides>>

<<use>> <<provides>>

<<provides>>

Domain
Knowledge

Domain
Knowledge

Domain
Knowledge

Domain
Knowledge

Feature
Modeling Tool

Architecture
Modeling Tool

Variation Point
Modeling Tool

Component

Modeling Tool

Variant Selection

 Tool Variant Testing &

Deployment Tool

Figure 3.33.: The tools and their relationship needed to develop software according to
Software Product Line Engineering

Feature Modeling Tool used by the domain developer to develop the Feature Model.

Variation Point Modeling Tool used by the variation point modeler to define variation
points and to relate them to features provided by the Feature Model. Furthermore,
this tool provides the ability to define aspects needed throughout the system archi-
tecture.

3. Variant Component Model Design 55

Component Modeling Tool is used by the component developer to model components
and their interfaces. Furthermore, this tool provides the ability to define and imple-
ment variability of components where needed.

Architecture Modeling Tool is used by the system architect to define interactions be-
tween components by connecting them. Furthermore, this tool provides the ability
to connect variation points to configuration interfaces provided by components.

Variant Selection Tool is used by the variant developer to derive concrete variants from
the generic system architecture. It assembles the Feature Model and the system
architecture and adjusts variation points based on the feature selection done by the
variant developer.

Variant Testing and Deployment Tool provides the ability to test concrete variants and
to deploy them to concrete devices, e.g. ECUs in the context of automotive software.
The functionality of this tool is not covered by this theses but it completes the image
of SPL based software development.

The tools are based on the different roles identified earlier. Each tool is associated to
a specific role. The exception here is the Variant Testing and Deployment tool, which
has no role assigned in the Variant Component Model. Each tool provides the ability to
execute the tasks associated with the role that uses it.
The mentioned tools need not to be viewed separated from each other. There can be

tools that unite functionality described in different tools. Simulink, for example, provides
the ability to model components and architecture in one single tool. Figure 3.33 illustrates
the relationship of these tools and how they are placed in the four quadrants of SPLE
described in Section 2.3.2.3.

3.5.3. Deriving Variants

Section 2.2.4 shows possibilities, how variability can be brought to a model based envi-
ronment. Based on the approach of using dedicated elements to model variability, this
section demonstrates how variants can be derived from models implemented using the
Variant Component Model. Basically there are two possibilities 1) to generate a new
model or 2) to remove elements from an existing model.
To generate a new variant specific model, information needs to be preserved that is

needed by the model’s environment. Simulink, for example, stores various informations
on how and where to display the blocks used within its MDL files. Therefore, a separate
entity is needed to remember this information. To actually map components within the
Variant Component Model to this information the codeBehind member can be used as
described in Section 3.4. Figure 3.34 illustrates this approach.
When removing components from an existing model no such Information Data Base

is required. On the other hand, a separate copy of the source model per possible vari-
ant is needed. Therefore, the problem of preserving information needed by the target
environment to process the models is moved outside the variant derivation tool.
Which approach to use depends on the actual use case and tool support. For example, if

the source model stores structure separated from layout the first approach can be preferred.

56 3. Variant Component Model Design

ModelInfo

Variant Component Model

Generate Variant

ComponentA ComponentC

Read Source Model

ComponentA

Info

ComponentB

Info

ComponentC

Info

Generated Variant

ComponentA

Info

ComponentC

Info

store Info

store Info

store Info

read Info

read Info

Source
Model

Figure 3.34.: Generating a new model per variant needs a central data base to store infor-
mation specific to elements of a certain source model

Variant Component Model

Generate Variant

ComponentA ComponentC

Read Source Model

ComponentA
ComponentB

ComponentC

Generated Variant

ComponentA

ComponentC

Copy
Source
Model

Source Model
create

use

Figure 3.35.: Preserve model specific information by providing a copy of the source model
which is adjusted when a variant is generated

If the sources models do not follow that scheme but can be copied easily the second
approach can be taken into account.
For the implementation of the first approach a mechanism is required to store the

required information per element, e.g. Component. The second approach requires a mech-
anism to automatically generate copies of the processed source models.

4. Implementation

4.1. General Overview

4.1.1. Tool Selection

In Chapter 3 an abstract tool chain is defined to support the Variant Component Model.
For a concrete implementation these tools need to be mapped to either already existing
tools or to tools that need to be developed. Figure 4.1 illustrates the tools selected to
support the Variant Component Model in the implementation of this thesis.

Problem Space Solution Space

D
o

m
ai

n
 E

n
gi

n
ee

ri
n

g
A

p
p

li
ca

ti
o

n
 E

n
gi

n
ee

ri
n

g

Variant Testing
in Simulink

Simulink

System
Architect

System
Architecture

Variation Point
Developer

Simulink /
pure::variants Variaion

Point
Model

Simulink

Component
Developer

Comp-
onents

Feature
Model

Variant 1

Variant N

pure::variants

Domain
Developer

<<use>>

<<use>>

<<use>>

pure::variants

Variant
Developer

<<use>>

<<report errors>>

<<description>> Interaction

Data Flow

Actor
Name

Developer

ArtifactName

<<provides>>

<<provides>>

<<provides>>

<<provides>>

<<use>> <<provides>>

<<provides>>

Domain

Knowledge

Domain

Knowledge

Domain

Knowledge

Domain

Knowledge

Figure 4.1.: The basic tool landscape consisting of pure::variants and Simulink selected for
the implementation

4.1.1.1. Problem Space

As shown in Section 2.3.3.1, pure::variants provides a lot of functionality especially for
SPLE. Furthermore, pure::variants is designed to be extensible to make use of existing

57

58 4. Implementation

tools. pure::variants Feature Models and Association Models provide functionality re-
quired by the Variation Point Model, defined in Section 3.3. Therefore, pure::variants was
selected to be the tool for the problem space related roles, Domain Developer and Variant
Developer, as defined in Section 3.5.1.

4.1.1.2. Solution Space

As already stated in Section 3.1.1, Simulink has a dominant role within development
of automotive software. Therefore, Simulink is the central part when developing auto-
motive software components that provide variability. The Variant Block Set, discussed in
Section 2.3.3.2, gives a first starting point for modeling variability within Simulink. There-
fore, Simulink was selected to be source for the implementation of the Variant Component
Model. The roles of the Variation Point Developer, Component Developer and System
Architect, as defined in Section 3.5.1, are located within Simulink.

4.1.2. Selected Approach
The approach used in this implementation is to convert the Simulink model into an instance
of the Variant Component Model. The variation points, defined with means of the Variant
Block Set are converted into an instance of the Variation Point Model, using a custom
XML based exchange format. These models are then loaded into pure::variants where
variants can be derived. Based on the selected configuration a Matlab script is generated
that contains information about how the Simulink model needs to be transformed. This
script has to be executed within Matlab to generate the desired variant.
The implementation of the Variant Component Model, as presented in Chapter 3, is

done in Java independently from pure::variants and is organized into three parts:

Variant Component Model core This part provides central interfaces to decouple the
generic models from concrete source models like Simulink. Furthermore, it provides
the implementation of the variant building algorithm and the interface to the Family
Model that is based on the Variation Point Model and Variant Component Model.

Variant Component Model core models This part provides the implementation for the
generic models presented in Section 3.3 and Section 3.4.

Variant Component Model integration This part implements the interface between the
component model core and Simulink – converting Simulink models into instances of
the Variant Component Model.

This Micro Kernel architecture [Buschmann et al., 1996] makes it possible to plug-in
different model sources without affecting parts that make use of them.
Simulink models are converted into an instance of the meta model provided by the

Variant Component Model. Therefore, the variant generation process is not specific to
Simulink models and can be used for other model based software development approaches
as well. Details on these different parts are given in Section 4.3 and Section 4.4.
To overcome shortcomings of the Variant Block Set identified Section 2.3.3.3, some

additional blocks and APIs are provided to support the roles related to component devel-
opment. These parts of the implementation are shown in more detail in Section 4.2.

4. Implementation 59

Last but not least Section 4.5 provides details on the implementation of the the Eclipse
plug-in for pure::variants. The task of this plug-in is to provide a hierarchical view on
variation points and to provide a graphical interface for importing Variant Component
Models and exporting the desired variants into Matlab scripts.

4.2. Simulink API

To be able to model all scenarios defined in the motivation section of this thesis new blocks
and guidelines are necessary. Some blocks are reused from the Variant Block Set and are
particularly interpreted while loading Simulink models into a Variant Component Model
instance. The following sections describe how the different scenarios can be achieved within
the implementation provided by this thesis. The newly introduced blocks are combined in
a library called Variant Modeling. This library provides an API to configure or manipulate
these blocks.

4.2.1. Providing Configuration Information

During simulation of the entire system information about the currently active configuration
is still provided by the Variant Constant block. The usage of this block has been described
in Section 2.3.3.2.

4.2.2. Modeling Alternatives

To represent alternatives in Simulink the Variant Multi Port Switch block provided by
the Variant Block Set has to be used. Alternatively, the Variant Switch, analyzed in
Section 2.3.3.2 can be used as well. Note that this block can only serve two alternatives
and can not be used with subsystems providing a composite signal. To facilitate post
processing, some structural guidelines need to be fulfilled. The control input of each
switch is required to be either directly connected to a Variant Constant block or to an
input port of the surrounding subsystem. This way, the connected input port becomes
part of the components configuration interface. The number of configuration ports between
the switch and the Variant Constant block does not matter, there just need to be a path
from the switch to the constant. The other structural requirement affects the alternatives
themselves. All behavior related to a certain alternative must be modeled inside a single
subsystem. On the one hand this reflects the design of variant components (see Section 3.4)
and on the other hand makes it easer to identify parts belonging to a certain alternative.
Figure 4.2 illustrates the structure required to model alternative implementations.
For automation and ease of usage the Variant Modeling Application Programing Interface

(API) provides a custom block that can be used to model alternatives within Simulink.
This block serves as a template which provides the basic structure of s subsystem that
provides alternatives. This structure consists of a Variant Multi Port Switch, a configu-
ration port connected to the control port of this switch and an output port connected to
the output port of the switch. To configure the number of alternatives and to select a
variation point used to control those alternatives a configuration dialog is provided. Fur-
thermore, the number of input ports for all alternatives can be configured. Based on the
number of values the selected variation point defined the configuration dialog generates

60 4. Implementation

Add

Out1
In1

In2

Multiply

Out1
In1

In2

2

In1

3

In2

1

configPort

AltSelector
VAR_BLOCK

1

Out1

VAR_Test
Alt1 = 1
Alt2 = 2

Figure 4.2.: Structural requirements to subsystems that provide alternative implementa-
tions

empty subsystems representing the different alternatives. Furthermore, input ports are
generated and connected to each of the alternative subsystems, and each alternative sub
system is connected to the already present variant switch.
Reconfiguration currently needs to be done manually since the provided configuration

dialog is only intended for initial configuration.

4.2.3. Modeling Optional Components

Within the Variant Block Set optional components can be modeled by using Variant
Enabled Subsystem blocks. For the proposed implementation these blocks are not enough,
because they do not provide information about the variant that enables them. Therefore,
optional subsystems are required to define three items:

1. A mask parameter called var_info providing the name of the variation point that
controls the optional subsystem (Note that all variability mechanism blocks defined
by the Variant Block Set define this parameter).

2. A mask parameter called triggeringValue providing the name of the value that
enables the optional subsystem. The used name must be defined by the variation
point provided via the var_info mask parameter mentioned above.

3. An Enabled Port used to simulate activation and deactivation of the subsystem. The
instance of the Variant Constant block providing variability information is connected
to this port.

Therefore, no special subsystem block needs to be used, and every subsystem block can
be made optional by just following the three requirements enumerated above. Accord-
ing to these requirements the Variant Modeling API provides another custom block that
predefines the required mask parameters and a basic structure consisting of the required
Enabled Port, an Inport and an Outport. The last two ports are directly connected to
each other.
Furthermore, a simple configuration dialog is provided that makes selection of variation

points and triggering values for the desired subsystem easier. The provided block and its
configuration dialog are shown in Figure 4.3.

4. Implementation 61

(a) Using the configuration dialog
OptionalSubsystem

Out1In1

(b) to configure an op-
tional subsystem

Parameter Name Parameter Value
var_info VAR_Test
trigger: OptSig1

(c) and its required mask parameters

Figure 4.3.: Configuring an optional subsystem

4.2.4. Handling Variable Buses

Optional subsystems may not only be connected to ports, they may also be connected
to buses. Buses are used to combine different signal sources into one composite signal.
Simulink defines two blocks that interact with such buses: The BusCreator and the
BusSelector. BusCreators are used to combine different signals into one composite
signal and BusSelectors on the other hand are used to extract the single signals from
the provided composite signal. If a certain signal source disappears in a certain variant,
for example by removing an optional subsystem, buses routing those signals need to be
adjusted.
Unlike subsystems, BusCreators and BusSelectors can not be masked in Simulink.

The Variant Block Set also provides no block that addresses this problem. Therefore,
the Variant Modeling API provides two variant adapters for buses. One adapter for
BusCreators, called VariantBusCreator and one for BusSelectors, called VariantBusS-
elector. Both blocks are simply subsystems that provide four mask parameters:

var_info The name of the variation point that configures the block related to the bus.

fixedSignals The number of signals that are fixed. These signals are part of any variant.

optionalSignals The number of optional signals. Each of this signals can be disabled
in specific variants.

triggerMappings The list of mappings from variation point values to ports of optional
signals. The list is formated using a colon separated list of assignments from signal
ports to variation point values, e.g. val1=in1;val2=in2. Each optional signal has
to be member of this list.

Since the Variant Bus Creator adopts the Bus Creator provided by Simulink is has a
fixed output port that is connected to the output port of the wrapped Bus Creator. The
number of input ports the Variant Bus Creator defines depends on the number of inputs
the Bus Creator is ready to consume.

62 4. Implementation

The Variant Bus Selector works similarly but has a fixed number of input port and
a variable number of output ports, since the number of provided signals depends on the
number of signals the underlying bus carries. Figures 4.4a and 4.4b show the structure
of variant buses using two signals.

2

In2

1

In1

1

Out1

VariantBusCreator

(a) Variant Bus Creator

1

In1

1

Out1

VariantBusSelector

2

Out2

(b) Variant Bus Selector

Figure 4.4.: Exemplary structure of the Variant Bus Creator and Variant Bus Selector
blocks

Since configuring such buses, especially the required list of mappings, can be compli-
cated, the Variant Modeling API provides a configuration dialog for this type of blocks.
The configuration dialog is organized as shown in Figure 4.5a.
To configure a variant bus three steps need to be performed:

Select Variation Point Selecting a variation point affects the number of optional signals
the variant bus provides. If no variation point is selected the variant bus acts like a
default bus block as provided by Simulink. In case a new variation point is needed,
the Variation Point Explorer provided by the Variant Block Set can be used.

Provide number of fixed signals Fixed signals will never change and are present in all
variants.

Define mapping of variation point values to optional signals By selecting items from the
two provided drop down lists called Variation Point Value and Optional Signal
mappings can be defined that are used by the variant bus block.

The number of signals provided by variant buses depends on the number of fixed signals
and on the number of optional signals. The number of optional signals is determined by
the number of values defined by the selected variation point.
The provided configuration dialog can be used for both, the Variant Bus Creator and the

Variant Bus Selector blocks since both blocks need the same the configuration information.
In fact, the major difference between those two blocks is the configuration of the wrapped
blocks’ type. Whereas the Bus Creator block just defines a parameter called Inputs which
represents the number of signals it consumes, the Bus Selector defines a parameter called
OutputSignals where the names of the signals are listed it provides.
Beside the configuration of the wrapped bus handling blocks and filling the required

mask parameters as mentioned above, the configuration code generates the required input
or output ports and connects them to the corresponding wrapped bus block. For example,
if a Variant Bus Creator should have one fixed signal and the used variation point defines

4. Implementation 63

two values this Variant Bus Creator finally has three input ports all connected to the inner
BusCreator This is illustrated in Figure 4.5. The same is done for Variant Bus Selectors
just generating output ports and connecting them to the output ports of a BusSelector.

(a) Using the configuration dialog

3

In3

1

In1

2

In2

1

Out1

(b) to configure a variant bus
(bus creator in this exam-
ple)

Parameter Name Parameter Value
var_info VAR_Test
fixedSignals 1
optionalSignals 2
triggerMappings OptSig1=In2;OptSig2=In3

(c) and its required mask parameters

Figure 4.5.: Configuring a Variant Bus Creator

4.2.5. Variant State Machines
Unfortunately, Simulink State Charts are not as flexible as Simulink subsystems. Neither
states nor transitions can be annotated to store variability information. Transitions are the
only place to store information about variability in a state chart by utilizing the conditions
that can be defined for them. To implement variability in state charts the following basic
setup needs to be performed:

1. Define a configuration port that is either directly connected to a variant constant
block or to another input port that has a path to such a block.

2. Define transitions that do the variant selection. Each of these transitions has to
define a condition comparing the actual value of the configuration port against the
value that identifies the variant implemented by this transition or its subsequent
state.

To clearly identify variant parts in a state machine the following structure is required:

1. All variable states or transition have to be grouped into a sub state having a name
with the prefix Var.

64 4. Implementation

2. This sub state has to have a junction point that collects all incoming transitions.
Incoming transitions have to be free from any conditions and actions.

3. Variant selection is done by transitions subsequencing the mentioned junction point.
The conditions of these transitions, as mentioned above, have to clearly define which
variant they select. If transitions need to implement behavior, this can be imple-
mented within their actions.

4. States that may be selected by different variants have no restrictions, except their
transitions. They may only have one incoming and one outgoing transition.

5. If a transition represents a variant on its own it has to leave the variant sub state
immediately.

4.2.5.1. Example on State Machine Variability

This short example shows how variability inside Simulink State Charts has to be defined.
The state machine receives an input parameter, called baseValue from the surrounding
Simulink model and defines two variants:
First Variant provides the result of adding 1 to the input value.

Second Variant provides a result equal to the input value.
The variants themselves are configured via the configPoint input port to the state chart.
This example is only used to illustrate the required structure so no further actions are
done.
Figure 4.6 shows the resulting state machine that defines the required variability.

Variant

Variant1

entry / result = baseValue + 1

[configPoint = 1]

[configPoint = 2] / {result = baseValue}

Fixed

Figure 4.6.: An example how variability inside state machines has to be modeled

4.2.6. Additional Functions Provided by the Variant Modeling API
4.2.6.1. Exchanging Variation Points

Variation points can only be stored using Simulink specific, binary based Data Dictionary
(DD) files. Because of their binary nature these DD files can not be used by the imple-
mentation since they can not be parsed without knowing the underlying structures. This

4. Implementation 65

problem was solved by defining a simple XML based exchange format for variation points
which is described in more detail in Section 4.4.2. To provide a confident way to ex-
port variation points defined within Matlab the Variant Modeling API provides a function
called storeVariationPointsToFile. This function takes a single argument represent-
ing the name of the file where the variation points should be stored. The function itself
collects all variation points currently defined within the Matlab workspace utilizing the
var_get function provided by the Variant Block Set. After collecting the variation points
they are converted by using Matlabs built in XML creation functions.

4.2.6.2. Disabling Bus Signals

Since Variant Buses are designed to adopt themselves to different variants it must be
possible to adjust them some how. The Variant Modeling API provides a function called
disableBusSignal that is capable to execute this task. This function takes two arguments
to identify 1) the Variant Bus it self and 2) the index of the signal that should be removed.
Since Simulink uses paths rooted at the first level model to identify elements within the
model this path is used to identify the Variant Bus. The function determines on its own
if the provided path to the Variant Bus leads to a Bus Creator or Selector, and therefore,
can be used for both types of buses. Figure 4.7 illustrates the result of an invocation of
this function.

3

In3

1

In1

2

In2

1

Out1

MyBusCreator

3

In3

1

In1

1

Out1

MyBusCreator

disableBusSignal(´MyBusCreator´,2);

Figure 4.7.: Removing the second signal from a Variant Bus Creator by invoking dis-
ableBusSignal

4.2.6.3. Adjusting State Charts

There are two different APIs provided by Simulink. The one used in this thesis to manip-
ulate Simulink models and another, more “object oriented” API, which has to be used to
manipulate state charts. Because this API involves more steps in order to get things done
the Variant Modeling API provides some functions to automate certain steps. For exam-
ple, before being able to remove a state 1) its parent state chart must be found and 2) the
state itself needs to be found based on its id. To finally remove the state its “destructor”
function needs to be called.
All these steps are done in one function call to deleteStateFromStateMachine provided

by the Variant Modeling API. Appendix A provides details for all functions provided by
the Variant Modeling API to manipulate state charts.

66 4. Implementation

4.3. Variant Component Model Core Implementation
Beside the implementation of the meta models the core of the Variant Component Model
implementation consists of two major parts:

Model Providers are responsible to map concrete model sources to the representation
defined by the used meta models.

Variant Family Model stores the instances of the Variation Point Model and Variant
Component Model and provides access to them. Further it provides the operations
to start the variant derivation process.

4.3.1. Abstracting Models from their Sources

To decouple the loading of models from their representation the core implementation
provides two basic interfaces called VariationPointModelProvider and ComponentModel-
Provider. Implementations of these interfaces are responsible to convert the representa-
tion of their specific sources into the respective models. Therefore, VariationPointModel-
Provider implementations have to provide a Variation Point Model and ComponentMod-
elProvider implementations have to provide the root component of the imported model.
Model Providers can be created through a factory class called ModelProviderFactory.

Following the Abstract Factory pattern described in [Gamma et al., 1995] this class pro-
vides creation methods for both model providers. To make model providers accessible to
the factory they need to be registered. To do this an identifier is required that is used to
lookup the provider while creating it.

4.3.2. Variant Family Model

Based on the term used within pure::variants the Variant Component Model provides a
Family Model that consists of the Variation Point Model and a variant component acting
as root of the used system. The Variant Family Model, represented by an equally named
class, provides operations for loading models and generating variants from these models.
Furthermore, the Variant Family Model provides shell methods to bind or unbind variation
points in the encapsulated VPM. Table 4.1 lists all operations supported by the Variant
Family Model along with a short description of each.
To be able to load models from different sources, for example Simulink, the Variant

Family Model utilizes the different model providers by requiring an instance of each.

4.3.3. Generating Variants

Generation of specific variants is based on the current configuration selected for the vari-
ation points. The variant generation it self is based on three basic steps:

1. Identify variable components.

2. Bind variable components.

3. Generate the variant.

4. Implementation 67

Operation Operation Description

Bind variation point
Binds a variation point in the stored VPM to a specific value.
The variation point and the selected value can be provided via
their concrete instances or via their names.

Unbind variation point Clears the selected values in the specified variation point.

Load models Loads the models specified by invoking the specified model
providers.

Generate variant Based on the current configuration a variant generated and
stored in the provided variant generation script instance.

Get prepared script Since Component Model Providers can generate a variant gen-
eration script too this operation provides access too it.

Table 4.1.: Operation supported by the Variant Family Model

The first two steps are executed recursively on the present component model. This
means before reducing a variable component the selected variant, its variable subcompo-
nents are reduced to this variant. Figure 4.8 illustrates this.

RootComponent

FirstlevelSC1

SecondlevelSC1

VarInfo SecondLevelSC1
VarInfo SecondLevelSC2

VarInfo SecondLevelSC1
VarInfo SecondLevelSC2

VarInfo RootComponent

1) BindToCurrentVariant()

FirstlevelSC2

1) BindToCurrentVariant()

1) BindToCurrentVariant() 1) BindToCurrentVariant()

SecondlevelSC2

2) storeVarInfo

2) storeVarInfo

2) storeVarInfo

2) storeVarInfo

Collected Variability Information

Figure 4.8.: Binding a system with variable components to a specific variant

4.3.3.1. Binding a Component

Binding a component means to remove all parts from it that do not belong to the desired
variant. In the Variant Component Model this is done by using the connectors the com-
ponent’s Variability Realizer defines. Since each connector defines a callback for handling
each of its selection states the variant derivation algorithm just needs to call the appropri-
ate callback method based on this selection state. Therefore, if the connector is exported
its onIncluded method is called, its onRemoved method is called otherwise. This behavior
is implemented within the bindToCurrentConfiguration method each variant component
defines.

68 4. Implementation

Removing Subcomponents Because the implemented approach removes components
that are not needed in certain variants, their connections to other components need spe-
cial attention. Subcomponents are always connected to other components. If a certain
component is removed in a particular variant its connections to other components or to
its parent component needs to be removed too. Removing connections may imply changes
in the parents components interface. This is the case if the port of the parent component
only connects to the removed subcomponent. In this case the port can be removed in the
specific variant.

Adding new Connections During variant generation it may happen, that port links need
to be added that were not part of the source model. An example for this case is given
in Section 4.4.1.2. To make this generally possible port links can be marked as virtual.
Virtual port links indicate that they are currently not present in the source model and
need to be added when generating a variant from it.

4.3.3.2. Storing Variant Configurations

All that is needed is a place to store the information the different connectors and their
callback methods provide. That’s where the VariantGenerationScript and VariantGener-
ationScriptOperation classes come into play. Variant Generation Scripts are responsible
to store instructions that should be executed against the model in order to generate the
specific variant. These instructions are implementations of the VariantGenerationScrip-
tOperation interface. To automate the instantiation of these instructions, the class im-
plementing the Variant Generation Script provides builder methods to create and store
instances of the desired instructions. Table 4.2 lists all operations supported by the Variant
Generation Script.

Operation Operation Description
Add line to model Adds a port link between two components.
Disable bus signal Disables a signal identified by its index in a bus component.
Remove component Removes a certain component from the model.
Remove port Removes a port from a certain component.
Remove port link Removes the connection between two components.
Rewrite transition Rewrites a transition between two states. This can be a change

of the source and / or target states and / or a change in the
label of the transition.

Table 4.2.: Operations supported by the Variant Generation Script

An instance of this class is used to store the information about items that should be
removed or added in a specific variant. Component Model Providers also provide such
scripts in order to inform the variant derivation process about items that have been re-
moved from the model when reading it. Such elements need to be removed from the target
model in case the variant is not newly created but manipulates an existing model, as done
in this implementation.

4. Implementation 69

Since Variant Generation Scripts just store information about actions that need to
be done, an environment is needed that actually executes these actions. Since these
environments differ between model sources an abstraction mechanism is needed. This
is done by the VariantScriptWriter. A Variant Script Writer supports the same set of
operations as the Variant Generation Script. A Variant Generation Script is executed
against a specific Script Writer. To find the right operation to call inside the Script Writer
a visitor mechanism, as defined in [Gamma et al., 1995], is used. The listings provided in
Listing 4.1 and Listing 4.2 illustrate this mechanism.

public void execute (Var iantCreator s c r i p tWr i t e r)
{

for (Var iantGenerat ionScr iptOperat ion cur rent : this . s c r i p tOpe ra t i on s)
cur rent . acceptCodeGenerator (s c r i p tWr i t e r) ;

}

Listing 4.1: The execute method of the VariantGenerationScript invokes the different
operations by calling their acceptCodeGenerator method

public void acceptCodeGenerator (Var iantCreator genera tor)
{

generato r . removeComponent (this . toRemove , this . parentOfRemovedComponent) ;
}

Listing 4.2: The invoked operation, in this case RemoveComponent, calls the appropriate
method on the provided variant generator

All operations listed in Table 4.2 available for Variant Generation Scripts are visitable
and accept a Variant Script Writer as argument of their acceptCodeGenerator method.
Therefore, the operations themselves can decide which method to call on the Script Writer
instance.

4.3.4. Implementing the Models

The needed stubs for the classes and methods of the VPM and Variant Component Model
were generated from the Unified Modeling Language (UML) models provided in Section 3.3
and Section 3.4.
The implementation of the stubs was directly derived from the rules defined in the

mentioned sections but was not generated since the tool used for modeling, BOUML1,
does not support generation of code from UML activity diagrams. To make instantiation
of members of the different models easier, item factories [Gamma et al., 1995] for both
models are provided:

VariationPointModelItemFactory A class providing methods to create instances of model
elements, e.g. VariationPoints, of the Variation Point Model.

ComponentModelItemFactory A class providing method to create instance of model el-
ements, e.g. Components, of the Variant Component Model.

1http://bouml.free.fr/

http://bouml.free.fr/

70 4. Implementation

Both factories are implemented using static methods which assign the provided param-
eters to the appropriate fields and return the newly created instance of the desired model
element. Listing 4.3 provides an example on how such factory methods are implemented.
public stat ic FunctionalComponent createFunctionalComponent (

S t r ing componentName , Port . . . por t s) throws Inva l idOperat ionExcept ion
{

FunctionalComponent r e s u l t = new FunctionalComponent () ;
r e s u l t . setName (componentName) ;

for (Port cur rent : por t s)
r e s u l t . addPort (cur rent) ;

return (r e s u l t) ;
}

Listing 4.3: A factory method that creates a new instance of a FunctionalComponent that
defines the specified ports

4.4. Variant Component Model Simulink Interface
4.4.1. Simulink Model Provider
The task of the Simulink Model Provider is to read Simulink models represented as text
based MDL files and to convert them into an instance of the Variant Component Model.
The actual parsing of MDL files is handed over to a library provided by the ConQAT2

project. This library reads MDL files and converts them into a Java object representation
that directly maps the Simulink Object Model to Java objects.
Therefore, the Simulink model provider needs to convert the object model provided by

this library into an instance of the Variant Component Model.

4.4.1.1. Mapping Simulink Blocks to Components

In the provided implementation the set of blocks Simulink offers is divided into two major
groups: 1) Blocks that carry relevant information 2) Block with no special information.
Relevant information in the context of the Variant Component Model is information that
can be used to either form a new component or that represents variability information of
a certain component. Table 4.3 lists all blocks that are mapped to concepts of the Variant
Component Model when reading the Simulink model.
Beside these blocks only the Variant Constant block located within the Variant Block

Set gets special treatment. If the binding time of the associated variation point is set to
PreBuild, instances of this block are always removed from the model.
All other blocks are treated uniformly by converting them into so called PlaceHolder-

Components. PlaceHolderComponents preserve the blocks interface but give no special
meaning to their type. To get a clue on the real type of the converted Simulink block
PlaceHolderComponents store the name of the block type. Figure 4.9 illustrates how an
instance of a PlaceHolderComponent looks like when used to represent a Simulink Mux
block.

2http://conqat.in.tum.de/index.php/ConQAT

http://conqat.in.tum.de/index.php/ConQAT

4. Implementation 71

Simulink Block Mapped Concept
Subsystem Composite Component
Variant Switch Variability Realizer
Variant Multi Port Switch Variability Realizer
Variant Bus Creator BusComponent
Variant Bus Selector BusComponent
InPort Port
OutPort Port
Line Port Link

Table 4.3.: Simulink blocks that have corresponding concepts within the Variant Compo-
nent Model

:Port

dataType = string

name = In2

portKind = PortKind.Input

:Port

dataType = string

name = Out1

portKind = PortKind.Output

:Port

dataType = string

name = In1

portKind = PortKind.Input

:PlaceHolderComponent

name = myMux

replacedType = Mux

Figure 4.9.: The representation of the Simulink block Mux in the Variant Component Model

To abstract away logic for processing different Simulink blocks from logic determining
the type of the Simulink block a Builder [Gamma et al., 1995] approach is used. For each
Simulink bock listed in Table 4.3 a separate handler is implemented. All of these handlers
implement the common SimulinkBlockHandler interface as shown in Listing 4.4.
public interface SimulinkBlockHandler
{

public void handleBlock (SimulinkModelProvider c a l l i n gProv id e r ,
CompositeComponent parent ,
Simul inkBlock blockToHandle)
throws SimulinkModelException ;

}

Listing 4.4: The SimulinkBlockHandler interface

The handleBlock method of this interface defines the following parameters:

parentComponent The parent component of the block to convert. A missing parent, i.e.
the parameter is set to null, indicates that the block to handle is placed inside the
root component, i.e. in Simulink terms the model, of the system,

callingProvider The Simulink Model Provider that has invoked the handler. Since

72 4. Implementation

Simulink models are build recursively, (using blocks that store other blocks) this can
be used to invoke the appropriate handlers of such nested blocks.

blockToHandle The actual Simulink block object, provided by the used ConQAT library,
that should be converted.

Since Simulink stores all non built-in blocks as references to their respective libraries
they are located in, instances of ConQATs SimulinkBlock class provide a fully qualified
block name. This fully qualified name formated as library.BlockType is used to invoke
the appropriate handler. This secondary lookup is implemented within a separate Simulink
block handler called ReferenceHandler. It obtains the referenced type and forwards this
type along with the provided SimulinkBlock instance and the parent component back to
the Simulink Model Provider that invoked the reference handler.
The SimulinkModelProvider itself just stores a mapping of block types to their appro-

priate handlers. Based on the types of nested blocks the SimulinkModelProvider selects
the appropriate handler. If no handler was found for the give type a default block handler
invokes the generation of PlaceHolderComponents as described earlier. Using this scheme
handlers only need to be registered for blocks that need special treatment. When reading
a Simulink model, the Simulink Model Provider instantiates a new composite component,
names it according to the name of the provided model and invokes the process of reading
this component. Therefore, Simulink models are treated like ordinary subsystems – as
composite components.

4.4.1.2. Reading Components

As mentioned in the previous section, Simulink subsystems are treated as composite com-
ponents. Subsystems may define variability by either using variant switches or nested
optional subsystems. The process of reading such components is done in three steps:

1. Read the components interface.

2. Read child components.

3. Read connections to surrounding components.

The component interface is derived from the name of the subsystem and the In- and
Outports it defines. Child components are handed back to the Simulink Model Provider
to decide how to handle these blocks. Reading connections to other components is
a bit more complex. Since the ConQAT library exactly maps the representation of
Simulink lines to Java SimulinkLine objects follow the scheme SourceBlock/PortIndex
-> TargetBlock/PortIndex. Since PortLinks in the Variant Component Model reference
ports defined by the appropriate components, these ports need to be looked up. Because
not all subcomponents can be read at once it may happen that referenced subcomponents,
including their ports, are not converted yet. Therefore, each subcomponent stores infor-
mation about connections referencing it in the model provider. This information is used
by the handler of the parent component to establish all required port links after reading
all of its subcomponents.

4. Implementation 73

4.4.1.3. Handling Variability

The Variant Component Model requires Variability Realizers that store connectors to parts
of the component that depend on certain variation points. Therefore, the blocks that
define variability within the Simulink models need to be mapped to this concept. The
general process is to determine which variation point configures the component and which
value of this variation point triggers a certain sub component. There are six blocks that
may provide variability: Variant Switch, Variant Multiport Switch, Optional Subsystem,
Variant Bus Creator and Variant Bus Selector. Except the two switches all blocks are
provided by the Variant Modeling Library. All these blocks define a mask parameter
called var_info. This parameter stores the name of the variation point that provides the
configuration information. Since all ComponentModelProviders have access to the used
VPM this information can be used to retrieve the actual variation point. By adding all
values this variation point defines, the Variability Realizer of the component in question
can be configured.

Mapping Variant Switches Both kinds of variant switches can be handled similarly.
The difference between these two is just the count of alternatives that can be mod-
eled with these blocks. The Variant Switch only supports two data inputs whereas the
Variant Multiport Switch supports any number of data inputs and, therefore, any num-
ber of alternatives. The triggering variation point value is determined by the index of
each data line. If the variation point used is called myVariationPoint the expression
myVariationPoint.getPossibleValues().get(indexOfDataLine) provides the required vari-
ation point value. This mechanism was used because variant switches provide no ability
to map signal lines to proper variation point values within Simulink. Therefore, the or-
dering of alternatives has an direct impact on variant selection of the given component.
Figure 4.10 illustrates this a mapping process.

Add

Out1
In1

In2

Multiply

Out1
In1

In2

2

In1

3

In2

1

configPort

AltSelector
VAR_BLOCK

1

Out1

VAR_Test
Alt1 = 1
Alt2 = 2

(a) Mapping from a Simulink variant switch

Variability
Realizer

trigger=Alt1

trigger=Alt2

ComponentConnector

ComponentConnector

1

Out1

Add

Out1
In1

In2

Multiply

Out1
In1

In2

2

In1

3

In2

(b) to a Variant Component Model Variabil-
ity Realizer

Figure 4.10.: Mapping a variant switch to a Variability Realizer

Mapping Optional Subsystems Beside the var_info parameter optional subsystems also
have to define a parameter called trigger as mentioned in Section 4.2. Therefore, the
required trigger for the component connector to this optional component can be uniquely
identified. When identifying an optional component by its required structure, a compo-
nent connector is created that activates this component with the identified trigger. This
connector is then added to the Variability Realizer of the parent component.

74 4. Implementation

Mapping Variant Bus Creators and Variant Bus Selectors From the component models
perspective Variant Bus Creators and Variant Bus Selectors can be treated similarly. They
are both buses either providing or consuming a variable number of signals. Therefore, they
are both modeled using a special component called BusComponent which is a specialization
of a FunctionalComponent provided by the Variant Component Model. The structure of
the Bus Component is illustrated in Figure 4.11.

BusComponent

- signalProviderMapping : String, String

+ getReplacedType() : String

+ mapSignalToProvider(in signalIndex : String, in signalProvider : String) : void

+ getSignalProviderByIndex(in signalIndex : String) : String

CompositeComponent

Figure 4.11.: The structure of BusComponent

Bus Components provide a mapping from indices of signals to variation point value
names in their triggerMapping parameter. This information can be directly used to gen-
erate connectors to this Bus Component. To reduce complexity an additional connector for
Bus Components is implemented too. This connector, called BusConnector, stores the in-
dex of the signal that should be disabled in case the corresponding variant was not selected.
Therefore, a Bus Connector generates a DisableBusSignal operation parametrized with
the stored signal identifier when its onRemoved method is invoked. Figure 4.12 illustrates
the mapping process of models containing buses and optional subsystems.

-C-

OptionConfig
VAR_BLOCK

1

Fixed

OptionalData

Out1
VariantBusCreator

Out1
In1

In2
1

Out1

(a) The Simulink model to map

Fixed

OptionalData

Out1
VariantBusCreator

Out1
In1

In2
1

Out1

Variability
Realizer

Component Connector

trigger = UseOptionalData

Bus Connector

trigger = UseOptionalData
signal = 2

(b) The resulting Variant Component Model
CompositeComponent

Figure 4.12.: Mapping a Simulink model containing a Bus (and optional subsystems) to a
Variant Component Model Composite Component

4.4.2. XML Variation Point Provider
As shown in Section 4.2.6.1, variation points from Simulink are exported in an XML based
format. On the Java side the task is to read these files and convert their content into an
instance of the Variation Point Model.

4. Implementation 75

4.4.2.1. The Used Exchange Format

The format used for exchange of variation points is based on an XML Schema. The schema
was designed using a visual designer provided as an plug-in for Eclispe. All elements of
this schema are located inside the tns XML namespace. The structure used in the XML
Schema directly reflects the structure of Variation Point Model Variation Points.
Inside the root element, called VariationPoints, elements of type VariationPoint

can be defined. Table 4.4 lists the required content of such elements.

Element Name Description Type Possible Values

name The name of the variation
point xsd:string Non empty

enabled The enabled state of the
variation point xsd:boolean true | false

BindingTime The latest possible binding
time of the variation point xsd:string PreBuild | Post-

Build

Values The collection of value this
variation point defines tns:VariationPointValue

At least one value
needs to be de-
fined

Table 4.4.: The structure of files to exchange variation point information

The values a variation point defines need to be specified using the value element. The
required contents of such elements are shown in Table 4.5. value elements do not define
any child elements only attributes are used.

Attribute Name Description Type Possible Values

name The name of the variation
point value xsd:string Non empty

value The actual value the varia-
tion point value stores xsd:string Non empty

enabled Indicates whether or not
this value is accessible xsd:boolean true | false, defaults to true

Table 4.5.: The structure of variation point values in the used exchange format

Listing 4.5 shows an example that uses the specified format to define variation points.
Note that namespace declarations are removed from the example.
<?xml version=" 1 .0 " encoding=" utf−8" ?>
<tn s :Va r i a t i onPo in t s>

<tns :Va r i a t i onPo in t>
<tns:name>VAR_Test</ tns:name>

<tns : enab l ed>true</ tn s : enab l ed>
<tns:BindingTime>PreBuild</ tns:BindingTime>
<tns :Va lue s>

<tns :Va lue name=" Variant1 " va lue=" 1 " />
<tns :Va lue name=" Variant2 " va lue=" 2 " />

76 4. Implementation

</ tns :Va lue s>
</ tn s :Va r i a t i onPo in t>

</ tn s :Va r i a t i onPo in t s>

Listing 4.5: Exemplary content of a variation point descriptions file

4.4.2.2. Parsing Variation Point Descriptions

Since an XML Schema was used to design the used file format it was possible to generate
the parser for this format. Java has built-in support for XML via its Java API for XML
Binding (JAXB) package. To generate the actual parser a tool provided by this package
needs to be invoked. The EclipseLink3 Eclipse plug-in provides a confident graphical
interface for invoking the code generator.
The code generator itself generates a number of classes, one for each element defined in

the schema, and the actual parser for the XML files. Parsing of files can then be done by
invoking the generated Unmarshaller class as shown in Listing 4.6.

@Override
public Variat ionPointModel loadVar iat ionPointModel ()
throws ModelProviderException

{
try
{

JAXBContext myContext = JAXBContext . newInstance (
" org . i t i . vcm . core .vpm. xml ") ;

Unmarshal ler var ia t ionPo intReader =
myContext . c reateUnmarsha l l e r () ;

Var ia t i onPo int s readVarPoints = (Var ia t i onPo int s)
var ia t ionPo intReader . unmarshal (new F i l e (this . xmlFileName)) ;

// genera te the v a r i a t i on po in t model
}
catch (JAXBException exc)
{

throw new ModelProviderException (
" Could␣not␣ read ␣XML␣data␣ f o r ␣ va r i a t i o n ␣ po in t s " , exc) ;

}
// catch ex cep t i on s occurr ing during model genera t ion

}

Listing 4.6: Using the Unmarshaller to parse an XML file into a Java object model

The Unmarshaller returns an instance of the class representing the root element. After
parsing the XML file the objects generated by the parser need to be converted into objects
required by the VPM. JAXB would provide a mechanism to automate this, but the used
model is small enough to convert it manually by simply looping through the elements
generated by the parser and instantiating the corresponding model elements with the
provided data.

3http://www.eclipse.org/eclipselink/

http://www.eclipse.org/eclipselink/

4. Implementation 77

4.5. pure::variants Integration

Extensions to pure::variants can be developed using techniques provided by the Eclipse
plug-in infrastructure. To let custom models interact with pure::variants models so called
External Models are provided. The necessary classes and interfaces are provided via
pure::variants’ core plug-in. pure::variants can use these External Models to display them
in a hierarchical structure, known from Feature Models, and to use them as source for
Variant Description Models.
Since Simulink models can not be edited directly only the Variation Point Model is

loaded into pure::variants for display.

4.5.1. Importing the VPM into pure::variants

4.5.1.1. Mapping to an External Model

Since both models, the Variation Point Model and the External Models are structured
hierarchically, both models can be mapped directly. The API provided for External Models
provide different elements for different depths inside the model. Table 4.6 lists the elements
used for the VPM import.

Model Element Used for
External Element Variation Points and Variation Point Values
External Property All members defined for Variation Points and Variation Point Values, e.g. their names
External Constant For the actual values the different properties store.

Table 4.6.: Elements used from the External Model to import the VPM

Each External Model has to have a root element specifying the type of the model.
Possible types for this root elements are limited to Family Model (CCFM) and Feature
Model (CFM). For the Variation Point Model the decision was made to represent it as a
Family Model because variation points are technical realizations of features. Because not
all models get imported into a pure::variants representation the root element defines two
properties called simulinkFile and variationPointsFile which hold the file names of
the Simulink model and the Variation Point Model. The latter is needed to implement
synchronization.
Below the root element the variation points are located. Each variation point is con-

verted into an External Element defining properties for its binding time and enabled state.
Since all elements within pure::variants have to have a name, the one defined for variation
points can be used here. External Elements representing variation points define child ele-
ments representing variation point values. These elements again define properties for each
of the members defined for variation point values.
The import process itself is started by loading the provided XML file using the Xml-

VariationPointProvider class shown in Section 4.4.2. The Variation Point Model pro-
vided is then converted into an External Model. The final import into pure::variants is
done using the ModelGenerator provided by the pure::variants SDK. The Model Genera-
tor reads the External Model and transforms it into a real pure::variants model and adds
this model to the selected project.

78 4. Implementation

4.5.1.2. User Interface for Import

The user interface to start the import of a VPM is implemented using a custom wizard.
The wizard is plugged into Eclipse using the com.ps.consul.eclipse.ui.pvimport.-
VariantImportWizards extension point provided by pure::variants. The real user interface
has to be developed in form of classes that are derived from WizardPage. Wizard Pages
can define their user interface as needed using elements provided by the Eclipse SWT
framework but always have the required wizard buttons (Next, Back, Finish) and a field
to display information about the currently active page. The Wizard Page developed for
importing variation points requests the following pieces of information:

Target model name is the name of the model that should be generated inside pure::var-
iants, thus the model displayed in the project tree.

Target model file is the name of the actual file where the target model should be stored.

Source Simulink model is the file that stores the Simulink model processed by this im-
plementation.

Source Variation Point Model is the XML file containing the variation points.

Figure 4.13 demonstrates the look and feel of the developed import wizard.

Figure 4.13.: The wizard page requesting the needed information from the user in order
to import variation points into pure::variants

After importing the required models, pure::variants presents the view on the newly
created Family Model shown in Figure 4.14.
Currently it is not possible to change variation points. Though it is possible to change

their contents inside pure::variants, changes will not affect the selected sources. Therefore,
the usage of the imported VPM is limited to include them in Configuration Spaces to derive
concrete variants.

4. Implementation 79

Figure 4.14.: The imported VPM integrated into pure::variants

4.5.2. Exporting Variants

Within pure::variants, variants are designed using Variant Description Models as explained
in Section 2.3.3.1. Therefore, the best place to get the selected configuration to be used
for the Matlab scripts is such a Variant Description Model.

4.5.2.1. Extracting the Selected Configuration

Internally VDMs are organized in so called Configuration Targets which are stored by Vari-
ant Elements. These targets reference the corresponding elements in the source models.
Such references include 1) the model containing the configured elements, 2) the elements
that are configured and 3) the selected configuration for those elements.
Since configuration targets only reference elements by their identifiers, these elements

need to be resolved in order to obtain their data. To automate this task the core plug-in
of pure::variants provides the so called TargetResolver. The purpose of this resolver is to
lookup the path of a given target and provide the corresponding element in the referenced
pure::variants model.
The resolved elements are now used to generate the desired configuration script. Because

the needed models are not present to this point4, they now need to be loaded. After
obtaining the Variant Family Model the selected configuration is propagated to this model.
With this variation point selection the desired configuration script for Matlab is generated.

4.5.2.2. Implementing the Export Wizard

As user interface for exporting the desired Matlab script again a wizard was chosen. This
time the com.ps.consul.eclipse.ui.pvexport.VariantExportWizards extension point
has to be used to plug-in the implemented export wizard. This extension point requires the
wizard implementing class to implement the IVariantsExportWizard interface provided

4The VPM is only loaded during import but not stored to reference it later because it is not, as the
Variant Component Model, physically compatible to pure::variants models

80 4. Implementation

by the pure::variants SDK. This interface provides the ability to filter model types that can
be handled by the export wizard. The method used is called isApplicable and requires
an instance of ModelInfo as its only argument. Since the implemented wizard can only
handle Variant Description Models, it checks the type of the selected model provided in
the ModelInfo argument to be of VDM_TYPE as shown in Listing 4.7.
@Override
public boolean i sApp l i c ab l e (ModelInfo i n f o)
{

return (i n f o . getType () . equa l s (ModelConstants .VDM_TYPE)) ;
}

Listing 4.7: Checking if the selected model is a VDM

In the second method required by the IVariantsExportWizard called setup, initializa-
tion stuff for the wizard can be implemented. The version for the Matlab export wizard
does two things in its setup method: 1) Extract the Family Models referenced by the
selected VDM 2) Initialize and add the wizard page used by this wizard.
The Family Models are needed because a VDM can reference an arbitrary number of

them and each of them needs a separate configuration.
In its performFinish method the tasks described in Section 4.5.2.1 are executed for all

Family Models referenced by the selected VDM using the provided information gathered
by the UI of this wizard.

The User Interface The user interface of the wizard is also implemented using wizard
pages. Figure 4.15 shows the appearance of the implemented UI.

(a) Select the VDM to export (b) Configure target model and script file
name

Figure 4.15.: The user interface to export a VDM into Matlab configuration scripts

To successfully generate a configuration script two pieces of information are needed:
1) the name of the script file itself and 2) the name of the model the generated script
should manipulate.
Because an arbitrary number of Family Models can be referenced by VDMs it must

be possible to generate an arbitrary number of configuration scripts. To offer this the
implemented wizard page provides a drop down element to associate the different Family

4. Implementation 81

Models with their respective target files. The wizard itself is blocked from being finished
until all Family Models are associated with the required information.

4.6. Testing

This section deals with testing of the provided implementation. It does not deal with
testing of the different variants that can be generated from different models. Most of
the test cases are implemented using JUnit5 tests. This framework is tightly integrated
within Eclipse making it possible to run and debug the tests within the IDE. Test data
was obtained by either utilizing processing rules or by models developed within Simulink.
Integration testing has to be done manually, because it requires to run generated scripts
within Matlab.

4.6.1. Test Strategies

4.6.1.1. Using Fixtures to Remove Complexity from Tests

Test Fixtures [Beck, 2002] provide the ability to use the same test data in multiple test
cases. Therefore, the complexity of setting up the test is moved away from the test case
and, much more important, is not reimplemented once per test. The test framework is
responsible to invoke the generation of the fixtures and the test case itself can just use
the data. There are two possible ways to define such fixtures: Fresh Fixtures and Shared
Fixtures [Meszaros, 2007]. The first implies that the fixture is generated once per test,
whereas the latter states that the same instance of the test fixture is used for all tests within
the test suite. The tests implemented for the Variant Component Model implementation
make heavy use of fresh fixtures, because a lot of tests manipulate the models that are
created within the fixtures and therefore, every test needs a new fresh instance of the
model to run independently.

4.6.1.2. Factories for Test Data

Test fixtures remove complexity from the test cases, but how to implement those fixtures?
The core of the Variant Component Model implementation, as described in Section 4.3,
already provides factories for the different elements defined by its models. Apart from
the required testing of these factories, they can be used to setup test fixtures too. By
composing multiple calls to these factories into one method more complex objects can
be created. Using such a Delegated Setup [Meszaros, 2007] makes it simpler to setup
the different fixtures by removing the complexity of building the composition of different
model elements from the setup method of those fixtures. Utilizing the Standard Fixture
pattern, which can be found in [Meszaros, 2007] too, further simplifies the generation of
test fixtures, by reducing required parameterization when invoking the test data factories.
For example, if the standard fixture requires input ports to be named in and output

ports out followed by an index starting at 1 the generation method for such components
just needs to know the number of input and output ports. With no such standard fixture

5http://www.junit.org

http://www.junit.org

82 4. Implementation

the same method needs to take two lists representing the desired names for input and
output ports.

4.6.2. Testing the Variant Component Model Core

4.6.2.1. Testing the Models

The test data used to test the Variant Component Model core is derived from the pro-
cessing rules and constraints defined for it. Chapter 3 defines various constraints that
imply valid models. All this constraints where taken to test if the corresponding methods
1) work as expected when those constraints are fulfilled and 2) fail as expected when those
constraints are not fulfilled.
Constraint 3 for example requires variation points to be named uniquely within the

VPM. This constraint implies two test cases:

Adding a new variation point This should work properly since the variation point does
not yet exist.

Adding two variation points with the same name This action should fail by throwing
an exception.

Based on this schema test cases against all constraints and processing rules defined for
the two core models, the Variation Point Model and Variant Component Model, were
implemented.

4.6.2.2. Testing Variant Generation

To test if variants are generated accurately, the number and contents of VariantGen-
erationScriptOperation instances need to be checked. In their fixture the different test
cases store an instance of the Variant Family Model which aggregate an instance of the
VPM and an instance of a composite component which represent the variant model. Each
test case defines an instance of VariantGenerationScript with the expected operations.
These operations are generated by invoking the methods the VariantGenerationScript
provides manually. After setting up the expected result each test binds a certain variation
point and invokes the variant generation algorithm by calling the Variant Family Models
generateVariant method. After that, the two scripts are compared. The result of this
comparison indicates whether the test was successful or not.

4.6.3. Testing the Simulink Model Provider

Test data for this tests are real Simulink models. Table 4.7 lists the different test cases
developed within Simulink with their test objectives.
For each test case described in Table 4.7, a separate test suite exists. Each of these test

suits defines a fixture containing the hand coded versions of the models that should be
imported. This fixture definitions use the techniques shown in Section 4.6.1. Furthermore
testing of variant derivation from the given models is tested within these suites using the
same approach as shown in Section 4.6.2.2. Therefore, the defined fixtures can be reused
directly.

4. Implementation 83

Test Case Name Test Objective
AlternativesTest Test a model that uses alternative subsystems

AlternativesWithTemplateTest Test a model that uses the template for alternative
subsystems presented in Section 4.2.2

BusTest
Test a model that uses variant buses as presented in
Section 4.2.4 and optional subsystems as presented in
Section 4.2.3

StateMachineTest Test a model that uses a variable state machine using
the scheme defined in Section 4.2.5.

Table 4.7.: Test cases and their objectives for the Simulink model provider

4.6.4. Integration Testing
Since integration testing requires to execute scripts within Matlab, it can not be done
fully automatically. Though done manually the approach of doing a Four Phase Test
[Meszaros, 2007], also used by JUnit, is still applied. During the Setup Phase the test
models are prepared, parsed and the required Matlab scripts are generated. In the Ex-
ercise Phase the generated scripts are executed within Matlab. The Verification Phase
is executed by comparing the model generated by Matlab against a prebuilt model that
represents the desired variant. The Tear Down Phase is accomplished by reverting the
manipulated model to its state before executing the test. The models used for comparison
remain the same during all phases of the tests. Each test uses a Shard Fixture consisting
of the source model, variation points exported from this source model and one model per
variant that can be derived from the source model. Therefore, each variant generated
from the source model represents a separate test case. The test data used here is the same
as used for testing the Simulink model provider as shown in Section 4.6.3. This process,
illustrated in Figure 4.16, is applied for all models individually.
To support the test process two tools were developed for the Setup and Verification

phase. The first, shown in Figure 4.17a, provides the ability to load and parse the source
models and to generate the scripts to be executed within Matlab. The second tool, shown
in Figure 4.17b provides the ability to compare two models. This tool is used to compare
the variants generated by the scripts against those variants generated manually.

84 4. Implementation

Setup Shared Fixture for Test Suite

Develop the
Source Model

Export

Variation Points

Make 2 Copies per
Variant of

the Source Model

Derive each Variant
 Manually

Four Phase Test

Setup

- Parse the source model
 and the file containing
 the variation points
- Bind the variation
 to form the desired
 Variant
- Generate the script
 deriving the desired
 Variant

Exercise

- Execute the script
 generated during Setup
 within Matlab

Verify

- Compare the model
 produced in the
 Exercise phase
 against the one
 produced manually

Tear Down

- Revert the manipulated
 model to make the
 test repeatable

Done once per test suite

Done once per test case (variant)

Figure 4.16.: The adoption of Four Phase Testing applied during integration testing

(a) Tool to setup the different test cases (b) Tool to compare test- and expected re-
sults

Figure 4.17.: The UIs of the tools used in the Setup and Verify phases

5. Results and Evaluation

5.1. Applying the Scenarios
The component model developed in this thesis is motivated by some scenarios provided
in Section 1.2. Until now the implementation of them with means of Simulink and
pure::variants is not possible. This section gives an overview how this scenarios can now be
implemented using the Variant Component Model. The following sections provide details
on the different scenarios in terms of 1) modeling them inside Simulink, 2) representing
them using the Variant Component Model and 3) how the resulting variants that can be
achieved.

5.1.1. Selection of Different Alternatives

The key aspect of this scenario is that a component can provide different alternatives
from which one has to be chosen. As mentioned in Section 4.4.1.3 modeling alternatives
in Simulink is achieved with Variant Switches. Figure 5.1 illustrates a model providing
two alternative calculation methods (Add and Multiply) modeled using the mentioned
mechanism.

Add

Out1
In1

In2

Multiply

Out1
In1

In2

2

In1

3

In2

1

configPort

AltSelector

VAR_BLOCK

1

Out1

VAR_Alts
Alt1 = 1
Alt2 = 2

-C-

AlternativeConfig

VAR_BLOCK

Figure 5.1.: Modeling alternatives in Simulink with the Variant Block Set

To be able to choose between different alternatives a Variation Point is needed that
provides the configurations for the different alternatives. In the given example this Vari-
ation Point consists of two values Alt1 and Alt2. These values are mapped to the port
indices of the corresponding Variant Multi Port Switch. The “AlternativeConfig” con-
stant provides the currently selected configuration during simulation of the variant rich
model.

85

86 5. Results and Evaluation

When minimal variants are needed the Simulink system needs to be converted into the
representation defined by the Variant Component Model. A converted version of Figure 5.1
is given in Figure 5.2.

Variability
Realizer

trigger=Alt1

trigger=Alt2

ComponentConnector

ComponentConnector

1

Out1

Add

Out1
In1

In2

Multiply

Out1
In1

In2

2

In1

3

In2

Variation Point
VAR_Alts

Figure 5.2.: Converted representation of the model shown in Figure 5.1

The Variability Realizer is used instead of the Variant Multi Port Switch. The switch
itself and the Variant Constant block are removed from the model. Instead of the Variant
Constant the variation point VAR_Alts is used as the desired configuration provider.
For each alternative one variant can be derived from this model. Each of these variants

is represented as a separate Simulink model. Listing 5.1 gives an example of the scripts
used to generate variants from Simulink models.

load_system (’ Alternat ivesWithTemplateTestFirstVar iant ’) ;
d e l e t e_ l i n e (’ Alternat ivesWithTemplateTestFirs tVar iant /Subsystem ’ ,

’Add/1 ’ , ’ A l t S e l e c t o r /2 ’) ;
d e l e t e_ l i n e (’ Alternat ivesWithTemplateTestFirs tVar iant /Subsystem ’ ,

’ Mult ip ly /1 ’ , ’ A l t S e l e c t o r /3 ’) ;
d e l e t e_ l i n e (’ Alternat ivesWithTemplateTestFirs tVar iant /Subsystem ’ ,

’ con f i gPor t /1 ’ , ’ A l t S e l e c t o r /1 ’) ;
%(. . .)
de le te_block (’ Alternat ivesWithTemplateTestFirstVar iant / con f i gPo in t ’) ;
de l e te_block (

’ Alternat ivesWithTemplateTestFirstVar iant /Subsystem/Subtract ’) ;
de l e te_block (

’ Alternat ivesWithTemplateTestFirstVar iant /Subsystem/Mult ip ly ’) ;
de l e te_block (

’ Alternat ivesWithTemplateTestFirstVar iant /Subsystem/A l tS e l e c t o r ’) ;
add_line (’ Alternat ivesWithTemplateTestFirstVar iant /Subsystem ’ ,

’Add/1 ’ , ’Out1/1 ’) ;
save_system (’ Alternat ivesWithTemplateTestFirstVar iant ’) ;
c lose_system (’ Alternat ivesWithTemplateTestFirstVar iant ’) ;

Listing 5.1: Excerpt from the generation script for the first variant selecting the Add –
alternative from the model shown in Figure 5.1

Listing 5.1 shows how subsystems are removed including all their connections to other
components. Figure 5.3 shows the different systems that can be derived based on the used
Variation Point.

5. Results and Evaluation 87

Add

Out1
In1

In2

2

In1

3

In2

1

Out1
Multiply

Out1
In1

In2

2

In1

3

In2

1

Out1

Figure 5.3.: Possible variants based on the system provided in Figure 5.1

5.1.2. Implementing Optional Behavior
As already stated in Section 1.2, implementing optional behavior is very similar to imple-
menting alternatives. The key essence of this scenario is to provide variability on Simulink
buses. Indeed, alternatives may also be connected to a bus. As shown in Section 4.2.4,
two special blocks called Variant Bus Creator and Variant Bus Selector are provided by
the Variant Modeling API. Figure 5.4 shows a system that uses both of these blocks each
in combination with an optional subsystem.

-C-

OptionConfig

VAR_BLOCK

1

Fixed

OptionalData

Out1
VariantBusCreator

Out1
In1

In2
1

Out1

VAR_Opt

UseOpt = 1

VAR_EnableOpt

Enable = 1

Disable = 0

-C-

OptionConfig

VAR_BLOCK

OptionalProcessing

In1
VariantBus

Selector

In1
Out1

Out2
1

In1

Sender Receiver

Fixed

In1

Figure 5.4.: Example on modeling optional subsystems and variable buses in Simulink with
the Variant Modeling API and the Variant Block Set

As mentioned in Section 4.4.1.3, the mapping process of models that use buses involves
the utilization of a special Connector called BusConnector. The model, shown in Fig-
ure 5.4, defines a Variation Point whose single value indicates whether or not to use the
optional subsystems called OptionalData and OptionalProcessing. Note that the two
Variant Constant blocks are only needed for simulation purposes.
Figure 5.5 shows the converted representation of the Simulink model provided in Fig-

ure 5.4. This illustrates how all non component related blocks are removed and how variant
behavior is implemented using the Variability Realizer and the connectors provided by the
Variant Component Model1.
For the variant that includes the optional subsystems no changes in the model are nec-

essary. Therefore, the variant that disables the optional subsystem is shown in Listing 5.2.
load_system (’ BusTestFirstVar iant ’) ;
d e l e t e_ l i n e (’ BusTestFirstVar iant ’ , ’ OptionConfig /1 ’ ,

’ Opt iona lDisp lay / enable ’) ;
d e l e t e_ l i n e (’ BusTestFirstVar iant ’ , ’ OptionConfig /1 ’ ,

’ OptionalData/ enable ’) ;
d e l e t e_ l i n e (’ BusTestFirstVar iant ’ , ’ OptionalData /1 ’ ,

’ VariantBusCreator /2 ’) ;
1And indeed the custom connector for buses

88 5. Results and Evaluation

de l e t e_ l i n e (’ BusTestFirstVar iant ’ , ’ Var iantBusSe lec tor /2 ’ ,
’ Opt iona lDisp lay /1 ’) ;

de l e te_block (’ BusTestFirstVar iant /OptionalData/ t r i g g e r ’) ;
de l e te_block (’ BusTestFirstVar iant /Opt iona lDisp lay / t r i g g e r ’) ;
d i s ab l eBusS igna l (’ BusTestFirstVar iant /VariantBusCreator ’ , ’ 2 ’) ;
d i s ab l eBusS igna l (’ BusTestFirstVar iant /Var iantBusSe lector ’ , ’ 2 ’) ;
de l e te_block (’ BusTestFirstVar iant /OptionConfig ’) ;
de l e te_block (’ BusTestFirstVar iant /OptionalData ’) ;
de l e te_block (’ BusTestFirstVar iant /Opt iona lDisp lay ’) ;
save_system (’ BusTestFirstVar iant ’) ;
c lose_system (’ BusTestFirstVar iant ’) ;

Listing 5.2: The script adjusting variant buses and removing optional sub systems

Variability
Realizer

trigger=UseOpt

ComponentConnector

trigger=UseOpt

BusConnector

1

Out1

1

Fixed

OptionalData

Out1
VariantBusCreator

Out1
In1

In2

Variability
Realizer

trigger=UseOpt

ComponentConnector

trigger=UseOpt

BusConnector

VariantBus
Selector

In1
Out1

Out2
1

In1

OptionalProcessing

In1

Fixed

In1

Variation
Point

VAR_UseOpt

Figure 5.5.: The representation of the system provided in Figure 5.4 using the Variant
Component Model

Listing 5.2 contains calls to the disableBusSignal function mentioned in Section 4.4.1.3.
This function is responsible for adjusting Variant Bus blocks. Figure 5.6 illustrates the
two variants that can be derived from the sample model provided in Figure 5.4.

1

Fixed

OptionalData

Out1
VariantBusCreator

Out1
In1

In2
1

Out1

1

Fixed

OptionalProcessing

In1
VariantBus
Selector

In1
Out1

Out2
1

In1

Sender Receiver

1

Fixed

VariantBusCreator

Out1
In1

1

Out1

1

Fixed

VariantBus
Selector

In1
Out1

1

In1

Sender Receiver

Figure 5.6.: Variants that can be derived from the system provided in Figure 5.4

5. Results and Evaluation 89

5.1.3. Variable State Machines

As already mentioned in Section 1.2.3 optional states within a state machine imply two
variability mechanism at once: 1) Enabling/Disabling an optional state 2) Selection of
alternative transitions.
In order to separate variable from non variable parts Section 4.2.5 introduced a structure

that makes it possible to identify variable parts in a certain state chart. Figure 5.7 shows
a state chart defining variability.

Variant

Val1

entry / result = baseValue + 1

[configPoint = 2] / {result = baseValue}

[configPoint = 1]

Fixed

Simulink State Chart

1

configPoint

2

baseValue

1

result

-C-

AlternativeConfig
VAR_BLOCK

VAR_StateConfig

UseVal1 = 1
OmitVal1 = 2

Figure 5.7.: A variant state chart that can be processed in order to extract minimal vari-
ants from it

The state chart in Figure 5.7 shows that the concept pair of a Variarbility Mechanism /
Variability Control Block, as it is used by the Variant Block Set[Dziobek et al., 2008](see
Section 2.3.3.2), is applied here. The decision point(called Junction within Simulink State
Charts) acts as an indicator that variability is applied, whereas the different transitions
control which variant is selected. As the most right transition in Figure 5.7 shows a
transition can actually implement a variant on its own using its action. In the given
example this is done by assigning baseValue to result. Figure 5.8 illustrates how the
state chart given in Figure 5.7 can be implemented using the Variant Component Model.
This model shows that the Connector concept implemented in Section 3.4.5 can also be

applied to state machines. The usage of specialized components is needed because states,
for example, may only reference other states or transitions, but, for example, must not
reference a multiplexer component.
Based on the model provided in Figure 5.8 two different variants can be generated.

Listing 5.3 shows the most relevant parts of the script generated to derive the variant
including the optional state.

load_system (’ S ta t e f l owTes tF i r s tVar i an t ’) ;
d e l e t e_ l i n e (’ S ta t e f l owTes tF i r s tVar i an t ’ , ’ A l t e rna t i veCon f i g /1 ’ ,

’VAR_MyChart/2 ’) ;

90 5. Results and Evaluation

de l e t e_ l i n e (’ S ta t e f l owTes tF i r s tVar i an t /VAR_MyChart ’ , ’ c on f i gPo in t /1 ’ ,
’ ␣SFunction␣/2 ’) ;

reRouteTrans i t ion (’VAR_MyChart ’ , 31 , 25 , 30)
r ewr i t eTran s i t i onLabe l (’VAR_MyChart ’ , 31 , ’ ’) ;
de l e te_block (’ S ta t e f l owTes tF i r s tVar i an t /VAR_MyChart/ con f i gPo in t ’) ;
d e l e t eT ran s i t i on (’VAR_MyChart ’ , 29) ;
d e l e t eT ran s i t i on (’VAR_MyChart ’ , 11) ;
de l e te_block (’ S ta t e f l owTes tF i r s tVar i an t /Al t e rnat iveCon f i g ’) ;
deleteStateFromStateMachine (’VAR_MyChart ’ , 6) ;
save_system (’ S ta t e f l owTes tF i r s tVar i an t ’) ;
c lose_system (’ S ta t e f l owTes tF i r s tVar i an t ’) ;

Listing 5.3: The script that generates the variant that includes the optional state defined
in Figure 5.7

Val1TransitionFixed

Term

Transition

Variability

Realizer

trigger=Alt2

ComponentConnector

trigger=Alt2

ComponentConnector

2

baseValue

1

result

Simulink State Chart

Variation Point

VAR_StateConfig

Figure 5.8.: Implementing the state machine from Figure 5.7 using the Variant Component
Model

The numbers used as arguments in the various calls to adjust the state chart correspond
to the SSIDNumber parameters generated by Simulink State Charts for states and tran-
sitions. Note the calls to reRouteTransition and rewriteTransitionLabel are used
to bypass elements removed from the model that deal with variant selection, i.e. the
Junction illustrated as Desicion element in Figure 5.7.
Figure 5.9 show the minimal state machine variants that can be achieved.

Variant

Val1

entry / result = baseValue + 1

Fixed

Variant

Fixed

{result = baseValue}

Figure 5.9.: The variants that can be derived based on the model from Figure 5.8

5. Results and Evaluation 91

5.2. Applying the Variability Patterns
To evaluate the applicability of the patterns provided in [Reiser et al., 2009](see Sec-
tion 2.2.6) the concept needs to be separated from the implementation. Some patterns
are not applicable for Simulink models although they can be achieved using the concept
provided in Chapter 3. Therefore, the next section provides details on how the patterns
can be applied to the Variant Component Model, and Section 5.2.2 provides details on
patterns that can be applied to Simulink models.

5.2.1. Variant Component Model
5.2.1.1. Plain Propagation

Plain Propagation[Reiser et al., 2009](see Section 2.2.6.1) can be achieved by utilizing the
Variability Connector. Imagine there are two components, Parent and Child with Child
defining two variants, VarOne and VarTwo. These two variants can be added to the Vari-
ability Realizer of Parent. To propagate the selected variant back to Child, Parent defines
two Variability Connectors, one for each variant, connecting Parent’s Variability Re-
alizer and Child. Each Variability Connector sets the same value that is triggering it,
therefore plainly propagating the configuration selected for Parent. Additionally, the Vari-
ability Realizer of Parent defines both variants provided by Child. Figure 5.10 illustrates
this.

trigger=UseOptional

trigger=NestedConfig;
valueToSet=NestedConfig

VariabilityConnector

ComponentConnector

OptionalNonVariant

Child

Variability

Realizer
UseOptional

NestedConfig
Variability

Realizer

NestedConfig

Parent

Figure 5.10.: Applying Plain Propagation to Variant Component Model components

If a VariationPoint is connected to Parent and provides a variant that needs to be
propagated to Child the registered Variability Connector informs the Variability Realizer
of Child about the selected variants, as shown in Section 3.4.5.2.

5.2.1.2. Direct Binding

Within the Variant Component ModelDirect Binding[Reiser et al., 2009](see Section 2.2.6.2)
can be achieved through a special Variation Point that always provides the same value.
Although the Variation Point Model presented in Section 3.3 does not directly provide
such a variation point, its constraints only require that each Variation Point provides at
least one variant(see Constraint 5). A “constant” Variant Point, always providing the
same variant is therefore accepted by the model.

92 5. Results and Evaluation

5.2.1.3. Orthogonal Propagation

Orthogonal Propagation [Reiser et al., 2009] (see Section 2.2.6.3) is interesting, because it
supports the mapping from a variant accepted by a component to a variant accepted by
another component, therefore promoting reusability of variant components. Components
which are part of the Variant Component Model support this again by using Variabil-
ity Connectors. Since multiple connectors can be defined for the same trigger, different
variants can also be merged into one, as shown in [Reiser et al., 2009]. Take again our
Components Parent and Child. This time we don’t want to export variant behavior of
Child into the interface of Parent but let certain variants defined for Parent configure
certain variants for Child. This time the used Variability Realizers do not just propa-
gate the trigger, they define a certain variant out of the set provided by Child. Using
this scheme, variants selected for Parent are converted to the one expected by Child.
Figure 5.11 illustrates this design.

trigger=UseOptional

trigger=NestedConfig;

valueToSet=SubConfig

VariabilityConnector

ComponentConnector

OptionalNonVariant

Child

Variability

Realizer
UseOptional

NestedConfig
Variability

Realizer

SubConfig

Parent

Figure 5.11.: Orthogonal propagation of variability inside the Variant Component Model

5.2.1.4. Top Level Propagation

There is no direct connector in the Variant Component Model that supports Top Level
Propagation as defined in [Reiser et al., 2009] (see Section 2.2.6.4). Using connectors for
this kind of propagation would make little sense either, because this would imply some
form of, at least, Plain Propagation. To achieve Top Level Propagation in the Variant
Component Model the Variability Realizer of any component can directly subscribe to a
Variation Point no matter to which hierarchy level the component is assigned to.

5.2.1.5. Global Features

Global Features (see Section 2.2.6.5) are directly supported by the Variant Component
Model via the Aspect concept shown in Section 3.4.6. Aspects in the Variant Component
Model are defined globally and components that want to contribute to this aspects connect
their contributing parts to the desired aspect.

5. Results and Evaluation 93

5.2.2. Implementation
To analyze the implementation it is first important to analyze the abilities provided by
Simulink. Simulink does not provide the ability to model all patterns. Variation points
within Simulink can only be defined globally. Simulink subsystem can not define their “pri-
vate Feature Model” as would be required. Essentially, variation points within Simulink
are more related to Global Features than to the local Feature Models required by most of
the patterns. Therefore, every subsystem no matter on which hierarchy level consumes
the same “Feature Model”, in terms of Simulink variation points. There is just one tweak
here: The required usage of Constant Block to “propagate” the selected configuration to
Variability Mechanisms as shown in Section 2.3.3.2. This can be used to implement a
Direct Binding facility, by not using the Variant Constant block from the Variant Block
Set but the built-in Constant block built into Simulink.

5.3. Discussion
Section 5.1 has shown the application of the Variant Component Model on the scenarios
provided in Section 1.2. Furthermore, the proposed concept supports all patterns for
variability propagation(see Section 2.2.6). Unfortunately, the implementation can not
come up with such a support. The reason is, that the implementation can only support
patterns that are applicable to its source models. Since Simulink only supports a subset of
the patterns, as shown in Section 5.2.2 only this subset is supported by the implementation.
Using another model source other patterns would be supported, for example models based
on [de Jonge, 2004] would support Orthogonal Propagation. Table 5.1 summarizes the
results provided in this chapter.

Objective Concept Implementation
Scenario

Selecting Alternatives X X

Optional Components X X

Optional States X X

Variability Patterns
Plain Propagation X -
Direct Binding X X

Orthogonal Propagation X -
Top Level Propagation X X

Global Features X X

Table 5.1.: Scenarios and patterns supported by the Variant Component Model and its
Simulink based implementation

As the scenario part of Table 5.1 indicates the Variant Component Model now defines
the needed ModelConfiguration binding time as described in [Beuche and Weiland, 2009]

94 5. Results and Evaluation

for Simulink models. Simulink models can now be reduced to specific variants. By uti-
lizing concepts of the Variant Block Set and implementing an explicit meaning to certain
Simulink blocks this reduction step is now explicit and is not hidden behind code generator
options as shown in Section 2.3.3.2.
Beside the scenarios, the provided component model and its implementation fulfill al-

most all requirements defined in Section 3.1. The analysis of the scenarios has shown,
that the Variant Component Model is capable of generating minimal and valid variants
based on a provided configuration as required by Requirement 1. Reusability as required
by Requirement 2 is achieved through separating configuration providers from configura-
tion consumers, i.e. components, on one hand, and on the other by providing the ability
to define mappings between physically incompatible, yet logically compatible, configura-
tion sets. The Variant Modeling library for Simulink provides seamless integration for
modeling variability in Simulink based models as required by Requirement 3. The VPM,
as a submodel of the Variant Component Model, provides explicit mechanisms do define
dependencies between variation points. By providing Aspects as explicit model element
inside the Variant Component Model crosscutting effects as required in Requirement 5 can
be explicitly modeled. The only exception to fulfilled requirements is Requirement 6 which
requires interoperability to AUTOSAR. But since the Variant Component Model is de-
coupled from concrete model sources the fulfillment of this requirement can be achieved
by implementing a model provider that is capable of reading AUTOSAR based system
descriptions. Section 6.1 provides more details on this issue.

6. Summary and Outlook
The goals of this thesis were to 1) provide a component model that provides the ability to
model variability of components and 2) to integrate this component model in Simulink.
Section 1.2 has introduced three scenarios, based on Simulink, how variability may occur

in model based software development. These are:

1. Selecting between alternative components.

2. Enabling / Disabling of optional components.

3. Selecting alternative / optional states and / or transitions in state machines.

Based on these scenarios, this thesis provides a component model called Variant Com-
ponent Model that provides 1) a hierarchical structure for component composition and
2) explicit model elements to implement variability of components. With the Variant
Component Model it is also possible to implement different propagation patterns for vari-
ability.
The implemented model is divided into two parts:

• The Variation Point Model and

• the actual components that provide variability.

This separates the configurable entities, called Variability Consumers, from the entities
that provide the actual configuration, called Variation Points and makes it possible to
reuse Variability Consumers independently from the used Variation Point Model.
Based on this component model the prototype, shown in Chapter 4, has been developed.

First, this prototype integrates Simulink models into the Variant Component Model and
second, provides mechanisms to integrate variability into Simulink models. Integration of
Simulink models is done by mapping certain concepts from Simulink to concepts provided
by the Variant Component Model, e.g. Simulink Subsystems to Variant Component Model
Composite Components. Section 3.5.3 proposes two alternative ways how variants from
Simulink models can be derived. The implemented prototype uses the second alternative,
which means to remove items from a copy of the variant rich source model. Chapter 5
shows that the goals of this thesis have been reached by showing how the different scenarios
can be implemented and how variability information can be propagated between Variant
Component Model components based on the appropriate patterns mentioned earlier.

6.1. Future Work
6.1.1. Further Integration into pure::variants
In a productive environment it is reasonable that variation points may be adjusted in-
side pure::variants. Currently this has to be done inside Simulink. The VPM needs to

95

96 6. Summary and Outlook

be regenerated to synchronize it with the data currently present within pure::variants.
The Variant Block Set provides an API to manipulate and create variation points within
Simulink programmatically. Therefore, this API only needs to be instrumented using a
similar mechanism used in this thesis to remove blocks from Simulink models.

6.1.2. Further Automate Generation of Variants
The implemented variant derivation process requires the Variant Developer (see Sec-
tion 3.5.1.5) to provide a copy of the source model which can be manipulated. Although
the step of creating these copies may be automated it is more reasonable that the vari-
ant derivation process creates a new variant specific model on its own, as described in
Section 3.5.3.

6.1.3. Interface to AUTOSAR
Currently no implemented interface between the Variant Component Model and AUTO-
SAR is provided. To provide such an interface two steps need to be carried out:

1. Map AUTOSAR variability concepts to those provided by the Variant Component
Model

2. Map AUTOSAR component descriptions to those of the Variant Component Model

Providing such mappings enables usage of AUTOSAR system descriptions whithin the
Variant Component Model. Furthermore, is gets possible to directly export variants de-
rived from Variant Component Model into an AUTOSAR system description.

6.1.4. Translation of Component Description Languages
Having a meta model that can mediate between different representations of the same
information makes it indirectly possible to convert between these representations. The
Variant Component Model is such a meta model and component description languages,
such as AUTOSAR and Simulink do provide similar information on the implemented
system. Therefore, it may be possible to read a model in format A and write it in format
B, e.g. read Simulink and write AUTOSAR.

6.1.5. Configuration of Parameters
Blocks in Simulink provide the ability to define parameters for them. Such parameters
are grouped in so called Masks. For example, Constants get their concrete value from
a parameter called Value. It is reasonable that different variants may define different
values for certain parameters, e.g. different values for Constants. To provide this ability
components may store certain parameters in their definition. Additional connectors to
these definitions may than provide the variant specific value for them.

A. State Chart API

This chapter provides details on the API provided with the Variant Modeling library to
manipulate state charts. This API is utilized by Matlab scripts that need to reduce state
machines to specific variants.

A.1. Delete States from State Charts
To delete a state from a state chart the function deleteStateFromStateMachine is pro-
vided. The state chart is identified by its name and the state by its SSIDNumber. Both
values are provided as arguments to the mentioned function (see Table A.1). The function
itself first tires to find the state chart with the given name and then the state itself. If both
are found, the state is deleted by calling its destructor function provided by Simulink. In
case the state or the state chart are not found a appropriate error message is prompted.

Function Name: deleteStateFromStateMachine

Returns: nothing

Error conditions:
State chart not found
State not found

Arguments
Name Type Description
stateMachineName String The name of the state chart.
stateId int The SSIDNumber of the state that should be removed

Table A.1.: Synopsis of deleteStateFromStateMachine

A.2. Delete Transitions from State Charts
Deleting transitions is similar to deleting states as described above. The function de-
leteTransition provides this scheme for transitions. Again the name of the state chart
the a SSIDNumber identifying the transition have to be provided. Table A.2 provides the
complete synopsis of this function.

A.3. Rerouting Transitions
Rerouting transitions means to change the source and / or the target state of a certain
transition. The function reRouteTransition implements this behavior. It always requires

97

98 A. State Chart API

Function Name: deleteTransition

Returns: nothing

Error conditions:
State chart not found
Transition not found

Arguments
Name Type Description
stateMachineName String The name of the state chart.
transitionId int The SSIDNumber of the transition that should be removed

Table A.2.: Synopsis of deleteTransition

the identifiers of both the source and the target state. If a state remains the same the
unmodified identifier of this state can be used to indicate that it should be kept. Table A.3
provides the complete synopsis of this function.

Function Name: reRouteTransition

Returns: nothing

Error conditions:

State chart not found
Transition not found
New Source State not found
New Target State not found

Arguments
Name Type Description
stateMachineName String The name of the state chart.
transitionId int The SSIDNumber of the transition that should be removed.
newTransitionSource int The SSIDNumber of the new source state.
newTransitionTarget int The SSIDNumber of the new target state.

Table A.3.: Synopsis of reRouteTransition

A.4. Changing Labels of Transitions
The function rewriteTransitionLabel provides the ability to change the label of a certain
transition identified by its SSIDNumber. Note that it is not possible to just change parts
of the label, e.g. the condition. If parts from the old label should be kept, they need to be
part of the newly provided label. The function performs no validation on the new label.
Table A.4 provides the complete synopsis of this function.

A. State Chart API 99

Function Name: rewriteTransitionLabel

Returns: nothing

Error conditions:
State chart not found
Transition not found

Arguments
Name Type Description
stateMachineName String The name of the state chart.
transitionId int The SSIDNumber of the transition that should be removed.
newLabel String The new label the given transition should use.

Table A.4.: Synopsis of rewriteTransitionLabel

100 A. State Chart API

B. Refactoring Simulink Models for
Variability

Section 4.2 provides the required structure for different representations of variability in
Simulink. This chapter provides details on how existing models can be refactored to meet
these structural requirements. A simple pattern language [Buschmann et al., 2007] is used
to define those refactorings. This language consists of four parts:

• A problem description,

• a short description of the solution,

• a graphical workflow showing how to achieve the solution and

• a description of the different steps.

All refactorings have a common precondition: A Variation Point has been defined that
covers the desired variants.

B.1. Introducing Optional Subsystems

The Problem

Parts of the model need to be part of certain variants but have to be omitted in others.

The Solution

Introduce an optional subsystem that contains all of these parts in order to disable it in
variants where it is not needed.

The Workflow

Figure B.1 illustrates the steps to achieve an optional subsystem from an existing model.

Description of the Different Steps

Introduce new Subsystem

All optional parts need to be grouped into a single subsystem. If such a subsystem is
already present, this step can be omitted.

101

102 B. Refactoring Simulink Models for Variability

Is Subsystem?
No

Yes

1

Convert Implementation

to Subsystem

Add Enabled Port

to Subsystem

2

Define Mask Parameters

var_info and

triggeringValue

3
Add Variant Constant

 to Model and connect it

to the Enabled Port

5

Implementation

to convert

Define separate Variation

Point for Simulation

6
Assign Variation Point

to Optional Subsystem

and select the Trigger

4

Assign Variation Point

to Variant Constant block

7

Figure B.1.: Workflow to convert parts of a model into an optional subsystem

Make the Subsystem Toggleable

In order to be able to simulate different variants within the whole solution family, an
Enabled Port is needed. This makes it possible to switch off the optional subsystem
without generating variants for small test runs. Therefore, such a port has to be added to
the optional subsystem.

Define Mask Parameters and Assign Concrete Values to them

As shown in Section 4.2.3, optional subsystems need to define at least two mask parameters
called var_info and triggerValue that provide the configuring variation point and the
value that enables the optional subsystem. Therefore, these two parameters need to be
defined.
After defining those parameters the desired values need to be assigned to them.

Add a Variant Constant

To make use of the previously added Enabled Port, a block is needed that provides
configuration to it. Therefore, a new Variant Constant block has to be added to the
model. Since this block will provide the configuration during simulation of the solution
family it has to be connected to the Enabled Port of the optional subsystem.

Define Variation Point for Simulation

Since Enabled Ports only accept two values (0 means disabled, >0 means enabled) a
variation point is needed that can provide these values. Since it is not feasible to mix
variation points meant to control the model with variation points only needed for simu-
lation, a separate variation point for that purpose has to be defined. It has only to store

B. Refactoring Simulink Models for Variability 103

two values indicating whether or not the optional subsystem should be enabled during
simulation.
This newly introduced variation point has to be assigned to the Variant Constant

block introduced in the last step.

B.2. Introducing Alternative Implementations
The Problem
Parts of the model need to be handled differently in different variants.

The Solution
Collect different implementations for different variants into dedicated subsystems and
switch them according to the variant they implement, thus making these implementations
alternative.

The Workflow
Figure B.2 illustrates the workflow, showing how different existing implementations can
be refactored into alternative subsystems.

5
Assign the Variation Point

to the Variant Constant and

to the Variant Switch

Add Variant Switch
to Model

2

3

Connect all Alternatives
to the Data Ports

of the Switch

Alternative

Implementations

to convert

Add Variant Constant

to the Model and connect
it to the Control Port

of the Switch

Are Subsystems?
Convert all Alternative

Implementations

to Subsystems

1

4

Figure B.2.: Workflow how to refactor existing implementations to alternatives

Description of the Different Steps
Convert Implementations to Subsystems

Each alternative implementation has to be represented as a separate subsystem. Therefore,
all parts belonging to an alternative have to be grouped into a subsystem. This step can

104 B. Refactoring Simulink Models for Variability

be omitted if such subsystems already exist.

Add a Variant Switch

Section 4.2.2 states that a Variant Switch has to be used to model the selection of alterna-
tive subsystems. Although both types, Variant Switch and Variant Multiport Switch
are supported it is reasonable to always use the Variant Multiport Switch because it
is more flexible.

Connect the Alternatives

All alternative subsystems have to be connected to data ports of the Variant Switch
added in the last step. Note, that the ordering of the alternatives on the Variant Switch
is important, as described in Section 4.2.2.

Add a Configuration Provider

For simulation purposes an explicit configuration provider is necessary. The workflow
illustrated states to use a Variant Constant. Alternatively, a dedicated configuration
port can be used which is connected to such a constant. In any case, the used configuration
provider has to be connected to the control port of the used Variant Switch.
Finally the variation point controlling which alternative to use has to be assigned to the

used Variant Constant and to the used Variant Switch.

Bibliography

[Autosar, 2009a] Autosar (2009a). AUTOSAR BSW & RTE Conformance Test Specifi-
cation Part 1: Background. http://www.autosar.org/download/R4.0/AUTOSAR_PD_
BSWCTSpecBackground.pdf.

[Autosar, 2009b] Autosar (2009b). AUTOSAR BSW & RTE Conformance Test Specifica-
tion Part 2: Process Overview. http://www.autosar.org/download/R4.0/AUTOSAR_
PD_BSWCTSpecProcessOverview.pdf.

[Autosar, 2009c] Autosar (2009c). AUTOSAR BSW & RTE Conformance Test Speci-
fication Part 3: Creation & Validation. http://www.autosar.org/download/R4.0/
AUTOSAR_PD_BSWCTSpecCreationValidation.pdf.

[Autosar, 2009d] Autosar (2009d). AUTOSAR BSW & RTE Conformance Test Speci-
fication Part 4: Execution Constraints. http://www.autosar.org/download/R4.0/
AUTOSAR_PD_BSWCTSpecExecutionConstraints.pdf.

[Autosar, 2009e] Autosar (2009e). Software Component Template. http://www.autosar.
org/download/R3.2/AUTOSAR_RS_SoftwareComponentTemplate.pdf.

[Autosar, 2009f] Autosar (2009f). Specification of RTE. http://www.autosar.org/
download/R3.2/AUTOSAR_SWS_RTE.pdf.

[Autosar, 2009g] Autosar (2009g). Applying Simulink to AUTOSAR. http://www.
autosar.org/download/AUTOSAR_SimulinkStyleguide.pdf.

[Beck, 2002] Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[Berg et al., 2005] Berg, K., Bishop, J. and Muthig, D. (2005). Tracing software product
line variability: from problem to solution space. In Proceedings of the 2005 annual
research conference of the South African institute of computer scientists and information
technologists on IT research in developing countries SAICSIT ’05 pp. 182–191, South
African Institute for Computer Scientists and Information Technologists, Republic of
South Africa.

[Beuche, 2003] Beuche, D. (2003). Composition and Construction of Embedded Software
Families. PhD thesis, Otto-von-Guericke-Universität Magdeburg.

[Beuche and Weiland, 2009] Beuche, D. and Weiland, J. (2009). Managing Flexibility:
Modeling Binding-Times in Simulink. In Proceedings of the 5th European Conference
on Model Driven Architecture - Foundations and Applications ECMDA-FA ’09 pp.
289–300, Springer-Verlag, Berlin, Heidelberg.

105

http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecBackground.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecBackground.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecProcessOverview.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecProcessOverview.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecCreationValidation.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecCreationValidation.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecExecutionConstraints.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_PD_BSWCTSpecExecutionConstraints.pdf
http://www.autosar.org/download/R3.2/AUTOSAR_RS_SoftwareComponentTemplate.pdf
http://www.autosar.org/download/R3.2/AUTOSAR_RS_SoftwareComponentTemplate.pdf
http://www.autosar.org/download/R3.2/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/download/R3.2/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/download/AUTOSAR_SimulinkStyleguide.pdf
http://www.autosar.org/download/AUTOSAR_SimulinkStyleguide.pdf

106 Bibliography

[Broy, 2006] Broy, M. (2006). Challenges in automotive software engineering. In Proceed-
ings of the 28th international conference on Software engineering ICSE ’06 pp. 33–42,
ACM, New York, NY, USA.

[Buschmann et al., 2007] Buschmann, F., Henney, K. and Schmidt, D. C. (2007). Pattern-
Oriented Software Architecture Volume 4: A Pattern Language for Distributed Com-
puting. Wiley.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and
Stal, M. (1996). Pattern-Oriented Software Architecture Volume 1: A System of Pat-
terns. Wiley.

[Clements and Northrop, 2001] Clements, P. and Northrop, L. (2001). Software product
lines: practices and patterns. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[Crnkovic, 2002] Crnkovic, I. (2002). Building Reliable Component-Based Software Sys-
tems. Artech House, Inc., Norwood, MA, USA.

[Dauenhauer et al., 2009] Dauenhauer, G., Aschauer, T. and Pree, W. (2009). Variability
in Automation System Models. In Proceedings of the 11th International Conference on
Software Reuse: Formal Foundations of Reuse and Domain Engineering ICSR ’09 pp.
116–125, Springer-Verlag.

[de Jonge, 2004] de Jonge, M. (2004). Multi-level Component Composition. In 2nd
Groningen Workshop on Software Variability Modeling (SVM’04), (Bosch, J., ed.), num-
ber 2004-7-01.

[Dziobek et al., 2008] Dziobek, C., Loew, J., Przystas, W. and Weiland, J. (2008). Func-
tional Variants Handling in Simulink Models. last visited: 20.02.2011.

[Eisemann et al., 2009] Eisemann, U., Stichling, D. and Stroop, J. (2009). Success-
ful AUTOSAR Migration. Online version, german: http://www.elektroniknet.
de/automotive/technik-know-how/test-entwicklungstools/article/1629/0/
Erfolgreiche_AUTOSAR-Migration/, last visited: 10.10. 2011.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. E. and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[Harald et al., 2004] Harald, H., Klaus-Peter, S., Helmut, F., Jürgen, B., Lennart, L.,
Jean, L., Jean-Luc, M., Kenji, N. and Thomas, S. (2004). AUTomotive Open System
ARchitecture - An Industry-Wide Initiative to Manage the Complexity of Emerging
Automotive E/E Architectures. In Convergence International Congress & Exposition
On Transportation Electronics pp. 325–332,.

[Haugen et al., 2008] Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G. and Svend-
sen, A. (2008). Adding Standardized Variability to Domain Specific Languages. In
Software Product Line Conference, 2008. SPLC ’08. 12th International pp. 139 –148,.

http://www.elektroniknet.de/automotive/technik-know-how/test-entwicklungstools/article/1629/0/Erfolgreiche_AUTOSAR-Migration/
http://www.elektroniknet.de/automotive/technik-know-how/test-entwicklungstools/article/1629/0/Erfolgreiche_AUTOSAR-Migration/
http://www.elektroniknet.de/automotive/technik-know-how/test-entwicklungstools/article/1629/0/Erfolgreiche_AUTOSAR-Migration/

Bibliography 107

[Haugen et al., 2010] Haugen, O., Moller-Pedersen, B., Olsen, G. K., Svendsen, A.,
Fleurey, F. and Zhang, X. (2010). Model driven development of highly configurable
embedded Software intensive Systems.

[Kajtazović, 2011] Kajtazović, N. (2011). Evaluation of variant management capabilities
of automotive software engineering tools. Master’s thesis Technische Universität Graz
Austria.

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. and Peterson,
A. S. (1990). Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
report Software Engineering Institute Carnegie Mellon University.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M. and Irwin, J. (1997). Aspect-oriented programming. In ECOOP’97
— Object-Oriented Programming vol. 1241, of Lecture Notes in Computer Science pp.
220–242. Springer-Verlag Berlin/Heidelberg.

[Kum et al., 2008] Kum, D., Park, G.-M., Lee, S. and Jung, W. (2008). AUTOSAR
migration from existing automotive software. In International Conference on Control,
Automation and Systems, 2008. ICCAS 2008. pp. 558 –562,.

[Lacouture and Aniorté, 2008] Lacouture, J. and Aniorté, P. (2008). CompAA : A Self-
Adaptable Component Model For Open Systems. In Fifteenth IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems (ECBS 2008)
pp. 19 –25,.

[McRitchie et al., 2004] McRitchie, I., Brown, T. J. and Spence, I. T. (2004). Managing
Component Variability within Embedded Software Product Lines via Transformational
Code Generation. In Software Product-Family Engineering vol. 3014, of Lecture Notes
in Computer Science pp. 98–110. Springer Berlin / Heidelberg.

[Meszaros, 2007] Meszaros, G. (2007). XUnit Test Patterns: Refactoring Test Code.
Addison-Wesley.

[Object Management Group, 2006] Object Management Group (2006). Meta Object Fa-
cility (MOF) Core Specification Version 2.0. http://www.omg.org/spec/MOF/2.0/
PDF/.

[Pohl et al., 2005] Pohl, K., Böckle, G. and van der Linden, F. J. (2005). Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[pure-systems GmbH, 2009] pure-systems GmbH (2009). pure::variants User’s Guide.
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/
pv-user-manual.pdf. last visited: 20.02.2011.

[Reiser et al., 2009] Reiser, M.-O., Kolagari, R. and Weber, M. (2009). Compositional
Variability - Concepts and Patterns. In 42nd International Conference on System Sci-
ences, 2009. HICSS ’09. Hawaii pp. 1 –10,.

[Schmidt, 2006] Schmidt, D. (2006). Guest Editor’s Introduction: Model-Driven Engi-
neering. Computer 39, 25 – 31.

http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf

108 Bibliography

[Sora et al., 2004] Sora, I., Cretu, V., Verbaeten, P. and Berbers, Y. (2004). Automating
Decisions in Component Composition Based on Propagation of Requirements. In FASE
vol. 2984, of Lecture Notes in Computer Science pp. 374–388, Springer.

[Szyperski, 1997] Szyperski, C. (1997). Component Software: Beyond Object-Oriented
Programming (ACM Press). Addison-Wesley Professional.

[Voelter and Visser, 2011] Voelter, M. and Visser, E. (2011). Product Line Engineering
using Domain-Specific Languages. In 14th International Conference on Software Prod-
uct Lines (SPLC 2011), Proceedings CPS.

[Webber and Gomaa, 2004] Webber, D. L. and Gomaa, H. (2004). Modeling variability
in software product lines with the variation point model. Sci. Comput. Program. 3,
305–331.

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgments
	Introduction
	Problem Scope and Definition
	The HybConS Project

	Motivation
	Selection of Different Alternatives
	Desired Behavior

	Implementing Optional Behavior
	Desired Behavior

	Variable State Machines
	Desired Behavior

	Outline

	Related Work
	Terminology
	Defining Variability
	Variation Points
	Variant

	Representing Variability
	Feature Oriented Domain Analysis
	Feature Models

	Using Domain Specific Languages to Describe Variability
	The Common Variability Language
	Applying Variability to Model Driven Development
	Generating Variant Specific Models
	Compositional Variability
	Plain Propagation
	Direct Binding
	Orthogonal Propagation
	Top-Level Propagation
	Global Features / Reverse Propagation

	Separating Concerns - The Software Product Line Modeling Process
	Separating Problem from Solution
	Splitting the SPL development process
	Domain Engineering
	Application Engineering
	Merging Processes and Development Spaces

	Tools to Implement the Software Product Line Engineering processes
	pure::variants
	Matlab / Simulink
	Evaluation

	Component Models
	AUTOSAR
	AUTOSAR Overview
	Components and Ports
	AUTOSAR Compliance
	AUTOSAR and Simulink
	Migration to AUTOSAR
	Tool Support

	The CompAA Component Model
	Multilevel Component Composition

	Hypothesis

	Variant Component Model Design
	Requirements to a Component Model for Variant Management
	Generation of Valid Variants
	Reusability
	Simulink Integration
	Variation Point Dependencies
	Cross Cutting Effects
	Interoperability with AUTOSAR

	Separating Concerns: Variation Points and Component Variability
	Variation Point Model
	Variation Points
	Associating Variation Points to Features

	Dependencies
	Logically Composed Dependencies
	Resolving Dependencies

	Aspects
	Operations on the Variation Point Model
	Adding Variation Points
	Updating a Variation Point
	Adding Dependencies between Variation Points
	Resolving Dependencies
	Remove Dependencies
	Remove Variation Points

	Components with Variability
	Development of Variant Rich Components
	Terminology
	Component Structure
	AUTOSAR Interoperability
	State Machines

	Variability Consumers
	Variability Realizers
	Variation Point Mapper

	Connectors
	Component Connector
	Variability Connector

	Implementing Aspects

	Embedding the Variant Component Model into SPLE
	Identifying Roles and Activities
	Domain Developer
	Variation Point Modeler
	Component Developer
	System Architect
	Variant Developer

	Tools to support the Activities
	Deriving Variants

	Implementation
	General Overview
	Tool Selection
	Problem Space
	Solution Space

	Selected Approach

	Simulink API
	Providing Configuration Information
	Modeling Alternatives
	Modeling Optional Components
	Handling Variable Buses
	Variant State Machines
	Example on State Machine Variability

	Additional Functions Provided by the Variant Modeling API
	Exchanging Variation Points
	Disabling Bus Signals
	Adjusting State Charts

	Variant Component Model Core Implementation
	Abstracting Models from their Sources
	Variant Family Model
	Generating Variants
	Binding a Component
	Storing Variant Configurations

	Implementing the Models

	Variant Component Model Simulink Interface
	Simulink Model Provider
	Mapping Simulink Blocks to Components
	Reading Components
	Handling Variability

	XML Variation Point Provider
	The Used Exchange Format
	Parsing Variation Point Descriptions

	pure::variants Integration
	Importing the VPM into pure::variants
	Mapping to an External Model
	User Interface for Import

	Exporting Variants
	Extracting the Selected Configuration
	Implementing the Export Wizard

	Testing
	Test Strategies
	Using Fixtures to Remove Complexity from Tests
	Factories for Test Data

	Testing the Variant Component Model Core
	Testing the Models
	Testing Variant Generation

	Testing the Simulink Model Provider
	Integration Testing

	Results and Evaluation
	Applying the Scenarios
	Selection of Different Alternatives
	Implementing Optional Behavior
	Variable State Machines

	Applying the Variability Patterns
	Variant Component Model
	Plain Propagation
	Direct Binding
	Orthogonal Propagation
	Top Level Propagation
	Global Features

	Implementation

	Discussion

	Summary and Outlook
	Future Work
	Further Integration into pure::variants
	Further Automate Generation of Variants
	Interface to AUTOSAR
	Translation of Component Description Languages
	Configuration of Parameters

	State Chart API
	Delete States from State Charts
	Delete Transitions from State Charts
	Rerouting Transitions
	Changing Labels of Transitions

	Refactoring Simulink Models for Variability
	Introducing Optional Subsystems
	Introducing Alternative Implementations

	Bibliography

