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Supervisor:
Ao. Univ.-Prof. Dipl.-Ing.

Dr. techn. Axel PINZ

January 17, 2012



  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommene Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 



SO TEACH US TO NUMBER OUR DAYS,
THAT WE MAY APPLY OUR HEARTS UNTO WISDOM.

A prayer of Moses



Abstract

The goal of this work is to enable the humanoid robot Nao to pick up foam cubes from
the floor. Based on image measurements Nao detects highly saturated, colored foam
cubes and approaches them. The cubes are specified by their histograms of their hue
and saturation channels. During the walking Nao receives feedback from the camera and
adapts its walking direction and speed. When it is finally next to a cube, it bows down
and picks up the cube. In the grasping part, the right arm of Nao is controlled, also based
on image measurements. For this purpose, the thumb of Nao’s right arm is projected onto
the floor plane. The resulting image point is used as the input for visual servoing. After
the grasping, Nao checks if the cube is in its hand. If this is not the case it stands up and
tries to pick up the cube once more. In the experiments, Nao was able to pick up the cube
in 88 % of the cases. The presented approach was also successfully tested on another Nao
humanoid robot.



Kurzfassung

Ziel dieser Arbeit ist, dem humanoiden Roboter Nao zu ermöglichen farbige Schaum-
stoffwürfel vom Boden aufzuheben. Mit Hilfe von Messungen in den Kamerabildern
findet der Roboter die farbigen Würfel und geht auf diese zu. Die Würfel werden durch
Histogramme ihres Farbtons und ihrer Sättigung bestimmt. Während dem Gehen werden
Richtung und Geschwindigkeit geändert, abhängig von den Kamerabildern. Wenn der
Roboter den Würfel erreicht hat, bückt er sich und greift diesen. Dies geschieht ebenso
mit Hilfe einer Regelung die auf Bildmessungen beruht. Hierzu wird der Daumen von
Nao’s rechter Hand auf den Boden projiziert. Der dadurch erhaltene Bildpunkt wird nun
als Eingangsgröße für den Regler verwendet. Nach dem Greifen kontrolliert Nao, ob
dieses erfolgreich war. Falls dies nicht der Fall ist, steht der Roboter nochmal auf und
versucht es erneut. In den durchgeführten Experimenten war Nao in 88% der Fälle in der
Lage, den Würfel vom Boden aufzuheben. Der präsentierte Ansatz wurde auch auf einem
zweiten Nao ausprobiert und lieferte ähnlich gute Ergebnisse.
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1
Introduction

For humans, picking up an item that lies on the floor is quite an easy task. Every one of us
has done this many times before. We are so familiar with this task, that no one will have to
concentrate much to solve it properly. But if you are confronted with the problem to teach
a robot to fulfil this task, then things are getting quite difficult. Easy tasks, natural for
humans, are hard problems for a robot. The goal of this work is to enable the humanoid
robot Nao [1] to pick up objects from the floor. Nao perceives its environment with its
camera. Based on the camera images, Nao should detect objects, walk towards them and
pick them up from the floor. All these should be autonomous actions. That means, Nao
should be able to fulfil this task without human support and all processing should run on
Nao. A successful pick up on the Nao robot faces several problems:

• limited on-board processing power

• inaccuracy during walking

• blurred images, caused by shakes while Nao is walking

• the absence of a backbone

• pincer shaped fingers of Nao’s hands

• limited motion space of Nao’s arm
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• high joint temperature, caused by long operations

To simplify the pick-up task and to overcome some of the limitations, the environment
where Nao operates was designed in the following way:

• The environment itself is without significant color.

• The objects, which should be picked up by Nao, are highly saturated, coloured foam
cubes.

• There are no obstacles in the environment.

• Nao operates in a small room (2m× 2m), delimited by a white border.

To get an impression of Nao and its environment, have a look at Figure 1.1.

Figure 1.1: The humanoid robot Nao in its “living room”. The task is to pick up such
small coloured foam cubes. The environment itself is without significant colors, whereas
the objects, that Nao should pick up, show highly saturated colors. There are no obstacles
in the “living room”.

Two main problems were solved independently, to fulfil the pick-up task:

1. Grasping a foam cube

2. Approaching the foam cube
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Grasping a foam cube: The process of grasping a foam cube was at first studied by
placing Nao next to a small table and let it pick up a foam cube, which lies on the table
(this preparatory work was done in my seminar project [2]). This approach, compared to
picking up the cube from the floor, has the advantages, that Nao’s joints are not getting hot
so quickly, because Nao sits in an upright posture. Another advantage of this approach
is, that the concept of grasping objects could be studied in a safe and fast way, because
Nao does not have to bend down to pick up the foam cube from the floor. The solution of
this concept by using visual servoing is flexible and can be adapted easily to grasp foam
cubes which lie on the floor.

Approaching the foam cube: Because of the lack of Nao’s processing power, it is
actually not possible to reconstruct the whole scene and to plan Nao’s motions according
to this reconstruction. Therefore, other solutions must be chosen. In this work, a reactive
scheme is applied. Nao may not be able to reconstruct the whole scene but it is able to
respond to the scene. During the walking towards an object, Nao reacts in a proper way
according to its visual perception.

1.1 The humanoid robot Nao

Nao [1] is an 85cm tall and 5kg heavy humanoid robot which is produced by a French
company, named ALDEBARAN Robotics. See figure 1.2(a) to get an idea how Nao looks
like. The robot has 25 degrees of freedom. Its onboard processing unit is a 500 Mhz AMD
GEODE processor which has access to a 256 MB SDRAM memory. A special version of
an embedded Linux operation system is running on it, that allows access to Nao’s sensors,
joints and other specific hardware. Because this work is using Nao’s camera for various
tasks, it is helpful that the OpenCV [3] vision library is also pre-compiled and ready
to use. The vision system of Nao consists of two cameras, placed in the head of Nao.
Because only one camera can be used at a time and because the cameras have no stereo
overlap (see figure 1.2(b)), stereo vision is not possible on Nao. Nao’s vision system can
provide the captured images in various sizes and color space formats. A detailed list can
be found in Nao’s user guide [1]. This short introduction addresses only some parts of
the vision system that are necessary for this work. One such part is the HSY [1] color
space. This is an approximation of the HSV (hue, saturation and brightness) color space,
as it can be found for example in [4]. The two channels, hue and saturation, are the same
in the HSV and HSY color space. The only difference between these two color spaces is
the third channel. Since the native color space format of Nao’s camera is the YUV422
[1], there is a speed up, if not the whole HSV color space is calculated. Just the hue and
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(a) Nao (b) Nao’s vision system

Figure 1.2: The humanoid robot Nao and its vision system (from [1]) .

saturation parts are calculated, the Luma channel of the YUV color space is used as an
approximation instead of the brightness channel of the HSV color space. This color space
(HSY) is used to specify the object, that should be picked up.

The pick up part in this work depends very strongly on Nao’s arms. The inverse

kinematic of Nao’s arms is provided by Nao’s framework. That allows the user to specify
a point in 3D space and Nao then calculates the joint angles in a way, that this point can
be reached. Nao’s hand consists of three pincer shaped fingers but it is not possible to
move them individually.

Nao’s framework also provides functions that allow a user to let Nao walk, by giving
the desired goal position or goal velocity. A walking pattern generator creates the neces-
sary joint commands and cooperates with a controller, that ensures a stable walk (see [5]
for further information).

To enable Nao to bend down, the framework provides methods to record joint angle
motions over time and repeat them. Similar to a video recorder, it is possible to record
motions and repeat them afterwards. Furthermore it is also possible to fine tune the mo-
tions.

1.2 Related work

The humanoid robot Nao is mainly used as the standard platform in the RoboCup soccer
league [6]. At the Institute of Electrical Measurement and Measurement Signal Process-

ing, previous work with Nao includes: human pose detection and mimicking, and color
blob detection [7] (the color blob detection algorithm is also used in this work); catego-
rization of objects, which are handed to Nao. This project uses sophisticated vision and
learning algorithms [8]; in my seminar project [2], I have done a lot of preparatory work,
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to enable Nao to grasps foam cubes. In this work, Nao was placed next to a table and the
goal was to grasp a foam cube, placed on the table in front of it. The presented concept
of visual servoing is very flexible and can be adapted to fulfil the pick-up task from the
floor.

The idea to fulfil vision based tasks with a robot is not new. For example, in [9]
a mobile robot was used to collect trash. The authors proposed “coupling vision and
action”. Based on image data, the robot was able to pick up trash (in their case, soda
cans, styrofoam cups and paper wads) and put it into a trash can. To identify the object,
the authors first search for regions of interest (ROI) using a color segmentation approach.
After that, they use an edge-based model to identify the different objects. Bollmann et al.
[10] are also using camera input to play Domino with a mobile robot. The robot searches
for Domino point cluster, and then it performs a template matching to determine which
Domino part is in front of it. In both works the mobile robot was not a humanoid robot,
instead it was a wheeled one. In [11] Nao also fulfilled a grasping task, where it took
a soda can out of the fridge. However, it was controlled by an external observer and the
fridge was constructed in a way that helped Nao grasping the can. Especially in RoboCup,
robots have to fulfil vision based tasks. For example in [12], Nao hits the ball in front of
it, depending on its visual input. In most cases the objects are largely color coded, to
simplify the image processing.

Great work was done in the domain of object grasping. Most of these approaches, for
example [13], use stereo vision to reconstruct the scene and industrial robot arms to grasp
the object. None of these abilities can be found on Nao. Another very interesting approach
is [14], in which a supervised learning method is used to learn the point on the object
where grasping is possible from synthetic images. However, this approach also uses stereo
vision and is focused on the learning task. A comprehensive survey about grasping can be
found in [15]. The chapter grasping in this book focuses on a mathematical formulation
of the grasping problem. With the help of mathematical models for the contact behaviour
and rigid-body kinematics and dynamics, the problem of grasping objects is addressed.
One of the first robotic hands was the Salisbury hand. This hand has three three-jointed
fingers. Compared to the three fingers of Nao, this hand is able to control all six degrees
of freedom of an object. Nao’s hand has not the capability to do this. Another difference
to our setting is, that for the grasping according to this book a model of the object is
necessary to plan the grasping position.

To enable Nao to move its hand towards an object, a formalism called visual servo

control [16], [17] or visual servoing [18] is used. In this work the structure of image-based

visual servo (IBVS) is adapted and implemented. According to image measurements,
the hand motion is controlled. To do this, the interaction matrix has to be calculated,
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this is done by some exploration movements of Nao’s arm. Other approaches [21] are
calculating this matrix online. In section 2.3 the visual servo control approach is explained
in more detail.
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2
Essentials and their application

In this chapter, mathematical essentials of visual geometry and their applications are ex-
plained. Furthermore, the concept of visual servo control that is used to control Nao’s arm
motion is introduced and important results of the use of these essentials are presented.

2.1 The camera model

The camera model is based on the pinhole model, which maps a 3D world point X̃ =

(X, Y, Z)T to a 2D point x̃ = (x, y)T that lies in an image plane. In general, the camera
model is a function

cam : (X, Y, Z)T 7→
(
fX

Z
+ px,

fY

Z
+ py

)T
(2.1)

with f being the focal length and p = (px, py)
T the principal point, illustrated in figure

2.1. To achieve more generality, the camera model can be expressed in the homogeneous
framework. 

X

Y

Z

1

 7→
 fxX + Zpx

fyY + Zpy

Z

 =

 fx 0 px 0

0 fy py 0

0 0 1 0




X

Y

Z

1

 (2.2)
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Figure 2.1: Pinhole camera geometry (from [19], p154). Here the mapping of the 3D
world point X̃ onto the image plane is illustrated.

In practice, there may be two different focal lengths: one, according to the x- axis (fx)
and the other one according to the y- axis (fy ). In equation 2.2, the vector (X, Y, Z, 1)T

is the homogeneous form of the vector (X, Y, Z)T .

2.1.1 Camera internal parameter

Extracting the camera internal parameters (fx, fy, px, py) and rewriting equation 2.2 the
following result is achieved:

x = K[I | 0]X, (2.3)

with I being the 3 × 3 identity matrix, 0 a 3-null vector, X a 3D world point, expressed
in homogeneous coordinates, and K the camera calibration matrix

K =

 fx 0 px

0 fy py

0 0 1

 (2.4)

The huge advantage of this representation is, that the external orientation of the camera
can easily be included.

2.1.2 Camera external parameters

Until now it is considered, that all 3D points are represented relative to the camera. Now
the camera and the 3D point will be represented relative to a world coordinate frame.
Define R as the 3× 3 matrix which represents the camera rotation and t = −RcW as its
translation, both relative to a world coordinate frameW . Here cW represents the camera
center in the world coordinate frame. It is now possible to compose the camera matrix P:

P = K[R | t] (2.5)
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With this matrix, a 3D point XW , represented in the world coordinate frame W , can be
mapped to the homogeneous image point x with the equation

x = PXW (2.6)

Figure 2.2 illustrates the whole concept. Because of the homogeneous formulation of

b

b

b

W

C

c
W

b
X

W

bx

R

image plane

X

Figure 2.2: Camera and 3D point places relative to a world coordinate frameW . R is the
orientation of the camera in 3D space and cW is the center of the camera.

x = (x1, x2, x3)T the true image coordinates have to be calculated. For x3 6= 0, x =

x1/x3 and y = x2/x3 can be calculated.

2.1.3 Lens distortions

Until now, we have assumed that the mapping of the world unto the image plane is a linear
function. Recall 

X

Y

Z

1

 7→
 fxX + Zpx

fyY + Zpy

Z


is a linear function with respect to (X, Y, Z, 1)T . It is easy to understand, that this func-
tion is not an accurate model of the imaging process. Lens distortion must be taken into
account (The following explanations are based on [19] and [20], where additional infor-
mation can be found.). Figure 2.3 shows the effect of such a lens distortion. This sort of

radial distortion

correction

linear image

Figure 2.3: Effect of lens distortion. In this case a radial distortion is applied to a square
(from [19], p190).
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distortion takes place during the projection of the world onto the image plane. To take this
process into account, a correction function has to be defined. x̃ denotes the ideal image
point (non-distorted) of the world point X. To simplify it is supposed that the camera
center is in the origin of the world coordinate system and its rotation matrix is the 3 × 3

identity matrix. Furthermore it is assumed, that the principal point p = 0 and the focal
length f = 1. The ideal undistorted point x̃ = (x̃, ỹ, 1)T can be calculated, using the
equation 2.3.

(x̃, ỹ, 1)T = [I | 0]X (2.7)

The actual projected and distorted point xd = (xd, yd) is related to the ideal undistorted
point (x̃, ỹ)T by a radial and tangential displacement, modelled by the following equation
(from [20]) : (

xd

yd

)
= (1 + κ1 · r̃2 + κ2 · r̃4 + κ5 · r̃6)

(
x̃

ỹ

)
+

(
xt

yt

)
(2.8)

with r̃ =
√
x̃2 + ỹ2 being the distance from the center to the ideal undistorted point,

(1 + κ1 · r̃2 + κ2 · r̃4 + κ5 · r̃6) being the radial distortion factor and (xt, yt)
T being the

tangential distortion vector, defined as follows (from [20]):(
xt

yt

)
=

(
2κ3x̃ỹ + κ4(r̃2 + 2x̃2)

κ3(r̃2 + 2ỹ2) + 2κ4x̃ỹ

)
(2.9)

With the help of the radial distortion coefficients (κ1, κ2, κ5) and the tangential distortion

coefficients (κ3, κ4)it is now possible to correct the radial and tangential image distortion.
These coefficients are also part of the internal camera calibration.

In table 2.1 and table 2.2 the values of the individual coefficients are given. The radial
distortion coefficient κ5 is not listed, because its value is too low and does not affect the
calibration.

2.1.4 Results of the camera calibration

To solve the monocular grasping task, the camera of Nao has to be calibrated. For the
calibration task the Camera Calibration Toolbox for Matlab [20] is used. To perform the
calibration task, a set of images of a planar calibration pattern has to be taken. With the
help of this set, the calibration toolbox calculates in a first step the linear intrinsic parame-
ters (fx, fy, px, py). In a second step the distortion coefficients, radial as well as tangential,
are estimated. The results are the internal parameters and the external parameters during
the calibration process (orientation and translation of the camera). The result of the cali-
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bration of Nao’s bottom camera can be found in table 2.1. Figure 2.4 illustrates the impact
of the distortion. Because the whole image processing on Nao is done on images with a
resolution of 320 × 240, the images, that are used for the camera calibration, have the
same resolution.

Parameter Value Uncertainty
fx 379.74162 ±1.02104
fy 380.32080 ±1.02530
px 151.62371 ±1.49148
py 114.28645 ±1.33429

radial distortion (κ1, κ2) [0.31431,−1.10508] ±[0.02009, 0.13029]
tangential distortion (κ3, κ4) [−0.00016,−0.00092] ±[0.00179, 0.00204]

Table 2.1: Result of the calibration of Nao’s bottom camera.

Figure 2.4: Distorted (left) and undistorted (right) image of Nao’s bottom cam. The
intrinsic, or internal, calibration parameters can be found in table 2.1.

To complete the explanation of camera calibration, the used images are presented in
figure 2.5 and the camera position in space during the calibration process can be seen in
figure 2.6. The results of Nao’s top camera calibration can be found in table 2.2.

2.1.5 Calculation of an angle between two rays

With the help of a calibrated camera, the angle between two rays can be estimated [19].
Let us define x1 and x2 as two image points in homogeneous form. The corresponding
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Figure 2.5: The seven images, used for the calibration.

Parameter Value Uncertainty
fx 376.23709 ±0.78425
fy 376.69494 ±0.80820
px 164.97117 ±1.59096
py 116.48445 ±1.37492

radial distortion (κ1, κ2) [0.28675,−1.02994] ±[0.01777, 0.11198]
tangential distortion (κ3, κ4) [0.00413,−0.00097] ±[0.00177, 0.00217]

Table 2.2: Result of the calibration of Nao’s top camera.

rays are calculated according to d1 = K−1x1 and d2 = K−1x2. Here, K is the camera
matrix (see equation 2.4). The angle between d1 and d2 is calculated according to [19]
by the equation:

cos Θ =
dT1 d2√

dT1 d1

√
dT2 d2

. (2.10)

See figure 2.7 for a better visualization of the variables used in equation 2.10.

2.2 Iterative Estimation Methods

For this work, iterative estimation was used to enhance the measurement of the length of
Nao’s right thumb. This was done, because the position of Nao’s right thumb fingertip is
essential for the control of Naos’s arm motions. Figure 2.8 illustrates the desired vector
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Figure 2.6: Visualisation of the external parameters during the calibration process.

θ
C

d

d1

2

x1

x2

Figure 2.7: This figure (from [19], page 208) shows two image points (x1 and x2) and
their corresponding rays (d1 and d2). The angle between these two rays can be calculated
according to equation 2.10.

DHi . Based on image measurements the length is estimated. The mathematical essentials
(Gauss- Newton) can be found in [19], p597. The next section presents how the length is
estimated, using image measurements.

2.2.1 The application of iterative estimation in the grasping task

In the grasping approach, the iterative estimation method is used to estimate the vector
from Nao’s right arm reference frame H to the finger tip of its thumb, DHi (in figure 2.8,
this vector is marked as red arrow). This vector is unknown as well as it is impossible to
measure the exact position of the origin of the reference frame. The idea is, to take a set
of N ≥ 2 images and calculate the desired vector. First, I set up a set of equations. For
a better understanding of the particular vectors or symbols, figure 2.9 can be consulted.
Let us start with the development of the measurement vector X. In this approach, we
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Figure 2.8: Illustration of the desired vector DHi (red arrow). This vector plays an impor-
tant role for the control of Nao’s arm motion.

measure the image coordinate points di where i = 1...N . This is the measurement of the
fingertip of the thumb in 3D space, namely DCi , in which C is the coordinate frame where
the camera is placed. According to equation 2.6 it is possible to map the 3D point DCi to
our measurement di.

di = PDCi (2.11)

Because the 3D point is relative to the coordinate frame of the camera, the camera matrix
can be expressed as

P = K[R | t] = K[I | 0] = [K | 0] (2.12)

Here I is the 3× 3 identity matrix and 0 is a 3 null vector. I definesH as the hand coordi-
nate frame and DHi is the finger tip of the thumb related to this frame. It is to mention, that
DHi = DHi+1 = DH is constant in every measurement, because the distance between the
arm coordinate frame and the finger tip of the thumb is constant. The mapping between
DH and DCi follows the equation

DCi = THC,iD
H (2.13)

where THC,i is the transformation from C to H. Rearranging equation 2.11 and using our
knowledge of the camera matrix, explained in equation 2.12, we project the measured
point back into 3D space and get

DCi =

(
K−1(δidi)

1

)
(2.14)
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Figure 2.9: This figure illustrates the set-up for the optimization task for N = 2 mea-
surements. The aim is to find the vector DH. Note that this vector is constant over all
measurements. HereH1 being the reference frame of the first hand position andH2 being
the reference frame of the second hand position. THC,1 and THC,2 being the transformation
matrices from the camera reference frame C to the first and second hand position. To get
an imagination of the meaning of the vector DH, have a look at figure 2.8.

where δi is the distance between the camera center and the 3D point. Inserting equation
2.14 into 2.13 results in (

K−1(δidi)

1

)
= THC,iD

H (2.15)

Rewriting this to cancel the 1 on the left side of the equation and bringing the λi on the
other side, we get

K−1di = liR
H
C,iD̃

H + lit
H
C,i (2.16)

Here RHC,i, the rotation matrix and tHC,i, the translation vector, are the results of the decom-
position of THC,i. li is the substitution of 1

δi
and D̃H is the inhomogeneous representation

of DH = (D̃HT , 1)T . There is only one more step needed to solve the problem of the two

b

x

y

z

World

b

z

x

y

Cam

RWorld

Cam

Figure 2.10: Illustration of the Nao coordinate frame rotation (left) and the usual computer
vision notation (right). The rotation matrix RWorld

Cam can be calculated easily. Note, that
the origin of both coordinate frames is the same.
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coordinate frames, explained in figure 2.10. The rotation matrix is

RWorld
Cam =

 0 −1 0

0 0 −1

1 0 0

 (2.17)

and so finally we can write our measurement equation as following:

RWorld−1
Cam K−1di = liR

H
C,iD̃

H + lit
H
C,i . (2.18)

The desired parameter vector P is defined as

P =



D̃H

l1

l2
...
lN


. (2.19)

All other vectors and matrices are known, and di is measured. We can now write the
measurement equation depending on the numbers of N measurements

RWorld−1
Cam K−1d1

RWorld−1
Cam K−1d2

...
RWorld−1
Cam K−1dN

 =


l1R

H
C,1D̃

H + l1t
H
C,1

l2R
H
C,2D̃

H + l2t
H
C,2

...
lNR

H
C,ND̃

H + lNt
H
C,N

 . (2.20)

2.2.2 Results of the iterative estimation

This section presents the results of the iterative estimation. The number of measurements
is N = 2. That means that there are 2 images (see figure 2.11) used to estimate the length
of Nao’s thumb. The desired parameter vector is now P = (D̃H T , l1, l2)T . The number of
experiments, in which I took 2 images was 5. After the experiment the mean and standard

deviation are calculated. The results of the estimation of DH can be found in table 2.3.
Figure 2.12 contains a sequence of images, that project the vector DH into the image
plane (displayed by the black dot in every image).
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(a) image 1 (b) image 2

Figure 2.11: Images used to calculate the desired vector DH. The measured image co-
ordinate points are marked in each image with a red dot. With this measurement and the
transformation matrices obtained by Nao’s framework, the desired parameter vector P is
calculated, where N = 2.

2.3 Visual Servoing

In this section the concept of visual servoing, or often called Visual Servo Control, is
introduced. A good tutorial to this topic is [16] and [17]. Here, I will use the notation
from this tutorial to outline the concept. The aim of vision-based control is to minimize
the error function

e(t) = s(m(t), a)− s? (2.21)

This error function is quite general. First this general formulation is explained and after-
wards it is shown, how this error formulation is used to control Nao’s hand to a desired
position in space. In this formulation, m(t) denotes image measurements (e.g. coordi-
nates of interest points) and the vector a contains parameters that represent additional
knowledge about the system. The vectors m(t) and a are used to formulate the visual

feature vector s(t) ∈ Rk. The desired feature vector is denoted as s?. We assume, that s?

is constant over time (the calculation of s? is explained in section 5.5). To accomplish the
control task we develop a velocity controller. Denote the spatial velocity of Nao’s hand
by vh(t) = (vx, vy, vz, ωx, ωy, ωz)

T where vx, vy, vz are the velocities of the hand in x-, y-
and z-direction, and ωx, ωy, ωz are the angular velocities. The relationship between ṡ(t)

and vh(t) is given by
ṡ(t) = Lvh(t) (2.22)

with L ∈ R(k×6) being the interaction matrix or also called feature Jacobian or Image

Jacobian Matrix [21]. Equation 2.21 is derivated in time and pasted into equation 2.22.
Thus we receive

ė(t) = Lvh(t) (2.23)
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experiment d1,x d1,y d2,x d2,y DHx DHy DHz
1 182 74 123 54 0.0029 -0.0041 -0.0424
2 130 89 134 123 0.0024 -0.0031 -0.0421
3 71 156 98 125 0.0037 -0.0026 -0.0409
4 66 90 152 73 0.0028 -0.0024 -0.0428
5 235 73 132 96 0.0002 0.004 -0.0502

mean1−5 0.0024 -0.00164 -0.04368
std1−5 0.001317 0.003221 0.003713
mean1−4 0.00295 -0.00305 -0.04205
std1−4 0.00054 0.000759 0.00082

Table 2.3: This table presents the results of the iterative estimation. Experiment num-
ber 5 seems to be an outlier (especially if we look at DHy ), because the arm was too far
away from the camera. mean1−5 and std1−5 are the mean and standard deviation over
all experiments, and mean1−4 and std1−4 are the mean and standard deviation from ex-
periment number 1 to experiment number 4. The measurements d1 = (d1,x, d1,y)

T and
d2 = (d2,x, d2,y)

T are measured in [Pixel] and the result vector DHy = (DHx , D
H
y , D

H
z )T

has the unit [m].

The aim is now, to ensure that the error e(t) decreases over time. To achieve this, we
can use an exponentially decreasing error function

ė(t) = −λe(t) (2.24)

and solve equation 2.23 according to this function. This is done by pasting equation 2.24
in equation 2.23 and solving the resulting equation for vh(t). As result we obtain

vh(t) = −λL+e(t), (2.25)

where L+ is the Moore-Penrose pseudo-inverse of L. This equation gives us now the
possibility to control Nao’s hand according to the measured error. Here, λ is the gain of
the controller and decides how fast the controller should respond to the measured error.

In section 3.4, the practical implementation and adaptation of this concept can be
found.

2.3.1 Image based visual servo

In the visual servo domain there is a distinction between image based visual servo (IBVS)
and position based visual servo (PBVS). The first approach uses the image coordinates to
define the visual feature s(t). In the second approach (PBVS), the pose of the camera or
hand, relative to a reference frame, is used to define s(t). In this work, the focus lies on the
image based visual servo (IBVS). Thus, the interaction matrix maps image coordinates
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(a) result image 1 (b) result image 2

(c) result image 3 (d) result image 4

Figure 2.12: A sequence of images taken during the arm movement. The black dots
represent the projection of DH onto the image plane. In this sequence the hand coordinate
frames are also displayed.

velocities to hand velocities according to equation 2.22.

2.3.2 The interaction matrix

In practice it is not possible to know L or L+ exactly, because the relations, that L mod-
els, can be very complex. Deguchi [22], for example, uses the main eigenvalues of the
principal component analysis for his image features.

A common way to estimate the interaction matrix is to make some exploration move-
ments and observe the change of the image feature with respect to the change of the hand
position. Let us denote ∆s as the variation of the image feature during the camera motion
∆vh and L̂ as the approximation of L. Using this notation we can rewrite equation 2.22
as

L̂∆vh = ∆s. (2.26)

We have k equations for k × 6 unknowns. Performing N ≥ 6 independent hand move-
ments (∆vh,1,∆vh,2, · · · ,∆vh,N ) and observing the according feature changes (∆s1,∆s2,

· · · ,∆sN ), it is possible to solve L̂ by
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L̂A = B (2.27)

with
A = (∆vh,1,∆vh,2, · · · ,∆vh,N) ∈ R6×N

and
B = (∆s1,∆s2, · · · ,∆sN) ∈ Rk×N

In practice (see [16]) , there are better results if the pseudo inverse of L̂ is estimated
directly according to

L̂+ = AB+ . (2.28)

Since in equation 2.25 the pseudo inverse is used to calculate the hand velocity, it is a
better choice of computation.
There also exist approaches, where the interaction matrix is estimated on-line during the
control. Interested readers should have a look at [17].

In this work, the calculation of the interaction matrix is done the following way: the
visual feature s(t) has the dimension of 2 (s(t) ∈ R2), because we just measure the image
point coordinates. The dimension of Nao’s hand velocity is also 2, because Nao’s hand
is moving in a plane and the orientation of Nao’s hand is not controlled (vh(t) ∈ R2). It
follows that ∆vh,i ∈ R2 and ∆si ∈ R2. Therefore, there are only two independent arm
movements necessary. The matrix A becomes now

A = (∆vh,1,∆vh,2) ∈ R2×2

and as a consequence of that, the matrix B becomes

B = (∆s1,∆s2) ∈ R2×2 .

As a consequence, the interaction matrix becomes a 2 × 2 matrix and can now be calcu-
lated. Because the interaction matrix is now a square matrix, no pseudo inverse is needed,
therefore equation 2.28 becomes

L̂−1 = AB−1 . (2.29)
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3
Grasping with Nao

This chapter presents how grasping with Nao was enabled. The main part of this chapter
is based on my seminar project [2], and the essential equations to understand this chapter
were already presented in chapter 2.

The result of an experiment, presented at the end of this chapter, proves the function-
ality of the grasping concept.

3.1 Overview and main idea

The practical implementation of grasping on Nao is complicated by inaccuracies of the
kinematic, limited processing power, monocular vision and the pincer-shaped hand of
Nao. Because of inaccuracies of the positioning ability, a control approach has to be im-
plemented to fulfill the grasping task. Another difficulty for the grasping is, that the image
of the foam cube is partially or entirely occluded by Nao’s hand during the phase, where
Nao’s hand approaches the foam cube. The work with Nao showed, that the position and
orientation of Nao’s thumb is essential for successful grasping. For that reason the posi-
tion of the thumb is controlled in such a way, that the grasping can be accomplished. To
do this, the thumb is projected onto a plane, from now on called, the desired plane. This
projection is used as the input of a controller, that steers Nao’s arm to the right location.

To study this concept, Nao was first placed next to a table and its task was, to grasp
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a color coded foam cube, that lies on that table. Just one cube was on the top of the
table and the color of the table surface was unsaturated. Figure 3.1 shows this setting.
The advantage of this setting is, that Nao is in an upright posture and therefore its joints

Figure 3.1: Sketch of the proposed solution for the case when Nao sits next to a table.
This figure shows a cyan plane that visualizes, in which plane the positioning of Nao’s
arm is done. The virtual thumb (orange dot) is calculated as the projection of Nao’s thumb
(green) onto the desired plane (in this case the desired plane is the surface of the table).
The spatial orientation of the desired plane is estimated relative to Nao’s feet position.

are not getting hot so quickly. At the end of this chapter, the results are presented for
this setting. The presented concept is very flexible and can be adapted easily to the case,
where Nao has to pick up a foam cube from the floor. Major parts of the solution of the
grasping task are (point 1 and 2 are illustrated in figure 3.1):

1. calculating the desired plane

2. projecting the thumb onto the desired plane

3. controlling the arm movement according to the projected thumb

4. repeating steps 1-3 until the object is grasped
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3.2 Calculation of the desired plane

In order to solve the grasping task, the spatial orientation of a plane parallel to the floor
plane (the desired plane) has to be estimated. This plane could be the floor plane itself, or
the table surface. It is assumed, that the table surface has the same orientation as the floor
plane, only an additional offset, the table height, is added. This section explains how this
is done.

First, it is assumed, that the desired plane πT is parallel to the ground πTgr, where Nao
stands. With the help of the framework, provided by Nao, the orientation and position
of the ground plane can be estimated (it has the same orientation like Nao’s leg). The
spatial orientation of the desired plane can be computed by first setting the desired plane

parallel to the ground and afterwards specifying an offset along the z-direction. In the
case of picking up objects from the floor, the z-offset is 0.0 and in the case where Nao
sits next to a table, the z-offset is the table height. Figure 3.2 illustrates this estimation.
Mathematically the estimation of the desired plane can be expressed as follows: Define

TR
T

pR
1

T
b

b b

b

b

b

b

pR
3

pR
2

R

pT
3

pT
2

pT
1

o

Figure 3.2: This figure illustrates the estimation of the desired plane. Here, o being the
offset of the desired plane relative to the floor, pRi with i = 1 . . . 3 being three points
relative to the leg reference frameR and pTi with i = 1 . . . 3 being three points relative to
the torso reference frame T . From pTi , the desired plane is calculated.

R as the reference frame of the right leg and T as the reference frame of Nao’s torso.
Then TRT is the 4× 4 transformation matrix from T toR. The goal is now to estimate the
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desired plane relative to Nao’s torso reference frame T , denoted as πT . For this purpose
it is necessary to estimate three points in space, namely pT1 ,p

T
2 ,p

T
3 . These three points

can be used to estimate the desired plane. Because the desired plane is parallel to the
ground, it is also parallel to the reference frame of Nao’s right legR, when Nao stands on
the ground. By defining three points in this reference frame (R) and transforming them
into the torso reference frame T , the desired plane can be estimated. This plane is parallel
to the floor and relative to the torso reference frame T (see figure 3.2). The estimation of
the plane, relative to the reference frame of the right leg of NaoR, is easy. The following
three points are chosen relative toR:

pR1 =


0.1

0

o

1

 ,pR2 =


0

0.1

o

1

 ,pR3 =


0

0

o

1

 (3.1)

with o being the offset between ground and desired plane (e.g. the table heigh). If Nao sits
next to a table, this offset is given by the table height. The 0.1 in two of the three points
was chosen to fit properly to Nao’s scale. It has to be mentioned, that the transformation
is done in the homogeneous framework. The calculation of the points relative to the torso
reference frame T is straight forward, according to:

[
pT1 ,p

T
2 ,p

T
3

]
= TRT

[
pR1 ,p

R
2 ,p

R
3

]
(3.2)

With the help of these three points (pT1 ,p
T
2 ,p

T
3 ), it is now possible to determine the de-

sired plane. This calculation is based on the fact, that three points define a plane [19].
It follows, that all of these three points lie within the desired plane πT and therefore
the equations pT Ti πT = 0 has to be satisfied for every point i = 1 . . . 3. These three
equations are now assembled together, to one homogeneous linear system:pT T1

pT T2

pT T3

πT = 0 (3.3)

This equation system can be solved for πT using for example the singular value decom-
position (SVD) [19].

To verify the accuracy of the estimated desired plane, an experiment was set up. Six
points in this plane, that is parallel to the ground, are defined. In the experiment, the arm
was moved to each of these points and the offset between the ground plane πTgr and the
desired plane πT was measured. This procedure was repeated 15 times. The experiments
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showed, that the deviation angle between the estimated desired plane πT and the ground
πTgr is ∠(πT ,πTgr) = 4.4◦ ± 1.9◦. The result of the measurements can be found in table
3.1. The measured angle is sufficiently accurate for the purpose of the grasping task. If the

Measured heigh over the table [mm]
Experiment a b c d e f

1 82 74 81 83 83 82
2 78 76 81 80 80 81
3 79 71 81 80 78 82
4 78 75 80 81 78 82
5 83 79 83 83 84 85
6 82 74 81 83 83 81
7 81 73 81 82 83 81
8 78 77 80 82 82 81
9 83 75 82 83 83 85

10 81 76 81 83 82 82
11 79 78 81 82 82 82
12 79 78 81 82 82 82
13 80 78 82 83 83 84
14 83 80 84 85 84 85
15 83 80 83 83 84 86

Table 3.1: Measurements of the Experiment. The letters ‘a’ to ‘f’ stand for the different
arm positions.

worst case situation happens, that means an angle deviation of 6.3◦, the error in height,
when Nao moves its arm over a distance of 15[cm], is about 1.65[cm]. The work and
experience with Nao show, that 15[cm] of Nao’s arm motions is a proper value.

3.3 The virtual thumb concept

As a next step, the thumb is projected onto the desired plane. This leads to the virtual

thumb concept (see figure 3.3 for details). The position of the finger tip of the right thumb
relative to the torso reference frame T is denoted as DT . The position of the thumb
relative to the torso reference frame can be determined with the help of the transformation
THT from the torso reference frame T to the right hand reference frame H and the vector
DH, that represents the position of the thumb, relative to the right hand reference frame
H. The vector DH was already estimated (see subsection 2.2.1 and 2.2.2). Therefore it
can be written

DT = THTD
H =

(
D̃T

1

)
(3.4)
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Where D̃T is the location of DT in R3 after the normalization of DT . The desired plane

πT can also be represented in the following form:

πT =


nx

ny

nz

d̃

 =

(
nT

d̃

)
(3.5)

Where nT is the normal vector of the plane relative to T and d̃
||n|| is the normal distance

between the plane and the origin of the torso reference frame T . With D̃T and nT it is

Figure 3.3: This figure illustrates the projection of the thumb onto a plane. Here, nT

is the normal vector of the plane, DT is the vector that points from the torso reference
frame T to the thumb of Nao’s right arm and OT is the projection of Nao’s thumb onto
the plane (virtual thumb). The line l(µ)T is the parametrized line between DT and OT

and is parallel to the plane normal vector nT .

now possible to write down a parametrized line in R3, namely l(µ)T .

l(µ)T = D̃T + µnT (3.6)

For each µ ∈ R there exists a point, that lies on the line l(µ)T . The goal is now, to find
the intersection point between the line l(µ)T and the plane πT . The intersection point
satisfies the following equation:

l(µ)T
T
πT = 0 (3.7)

Solving this equation with respect to µ leads to

µ =
−(π1d1 + π2d2 + π3d3 + π4)

π1d1 + π2d2 + π3d3

, (3.8)
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where D̃T = (d1, d2, d3, d4)T and πT = (π1, π2, π3, π4)T . This intersection point is the
virtual thumb relative to the torso reference frame T , mathematically expressed as

OT = l(µ)T
∣∣
µ=
−(π1d1 + π2d2 + π3d3 + π4)

π1d1 + π2d2 + π3d3

. (3.9)

3.3.1 Projecting the virtual thumb onto the image plane

Given the virtual thumb relative to the torso reference frame and the transformation from
that frame to the camera frame, the virtual thumb can be expressed relative to the camera
reference frame C as

OC = TCT
−1
OT . (3.10)

With the help of the mathematical methods, presented in section 2.1, the virtual thumb is
projected onto the image plane. See figure 3.4 for the result of the calculation. The orange
dot in this figure is the projection of the virtual thumb into the image plane, the black dot
is the projection of Nao’s right hand thumb into the image plane and the orange line is the
projection of the normal vector nT of the desired plane. This calculation is done in every
control step.

Figure 3.4: Image of Nao’s bottom camera augmented by the virtual thumb (orange dot) ,
the normal vector of the desired plane (orange line) and the fingertip of Nao’s right hand
thumb (black dot).

3.3.2 Evaluation of the accuracy of the virtual thumb

The following experiment evaluates the accuracy of the thumb projection. A scaled paper
was fixed on the table and Nao was placed next to it. A small perpendicular was fixed
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on Nao’s right thumb. Nao’s hand was placed in several positions above the scaled paper.
Once the hand was positioned, two points were marked on the paper, first the position
of the perpendicular and second the position of the virtual thumb. Figure 3.5 illustrates
the result of the experiment. It can be seen, that there is a systematic offset between the

Figure 3.5: Result of the experiment to determine the accuracy of the virtual thumb. The
blue dots represent the position of the perpendicular, that means the true position. The red
dots represent the position of the virtual thumb. It can be seen, that there is a systematic
offset between the true projection of the thumb (blue) and the calculated projection (red).

projection, obtained with the help of a perpendicular, and the calculated projection, the
virtual thumb.

Figure 3.6 shows the error of the virtual thumb calculation. It should be noted, that
the calculation of the virtual thumb depends on the accuracy of each joint angle sensor,
because the used transformation matrices and arm positions are calculated with the help
of the sensor readings of the joints. For example, the right hand contains six joint sensors.

28



0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

error
x
 [mm]

e
rr

o
r y

 [
m

m
]

 

 

error

median

mean

Figure 3.6: Illustration of the error obtained by the projection of the virtual thumb.

To estimate the position of the thumb relative to the torso reference frame (this is the
vector DT in Figure 3.3) all of these six sensors are used, and therefore the error of each
of them accumulates.

3.4 Visual servo control of the virtual thumb

With the help of the virtual thumb and the explanations in section 2.3 it is possible to
formulate a control law. The goal is to control the arm movement of Nao’s right arm in
such a way, that the grasping can be accomplished. This section presents the control in
detail. The equations of section 2.3 are adapted to fit to the grasping problem on Nao.
The whole control of the arm movement is done in a plane that is parallel to the desired

plane and is called the motion plane. Because of the motion that happens in that plane,
two coordinates in R3 are free and one coordinate is constrained by the plane. In practice,
that means, that only two of the three coordinates have to be controlled, the third one is
calculated through the plane equation. Another difference to section 2.3 is, that only the
position of the finger tip of Nao’s right thumb has to be controlled, whereas the orientation
is not controlled. So the controlling task is simplified to control the position of a single
point in R3, more precisely to control the position of a point in the motion plane that lies
in R3.
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As a conclusion it can be said that the spatial velocity of the thumb in the plane is

vh(t) =

(
vx

vy

)
. (3.11)

The visual feature is the image point coordinate of the virtual thumb:

sh(t) =

(
sx

sy

)
. (3.12)

Therefore, the interaction matrix L̂ is a 2× 2 matrix:

ṡh(t) = L̂vh(t) . (3.13)

The control error is
e(t) = sh(t)− s?, (3.14)

where s? is the desired feature vector. The calculation of this vector is explained in de-
tail in section 5.5. For the ongoing explanation we just assure that s? exists and can be
calculated. According to equation 2.25 the control law is

vh(t) = −λL̂−1e(t), (3.15)

in which the inverse of the interaction matrix (L̂−1) is pre-calculated as it is explained in
subsection 2.3.2 (equation 2.29). The gain factor λ was set to be λ = 0.3.

Because the motion is done in R3 and the controller output is in R2, the third com-
ponent has to be determined according to the plane equation. We suppose that πTm is
the motion plane that is parallel to the desired plane πT . The missing coordinate can be
computed as following

pz,k =
−(πm,1 ∗ px,k + πm,2 ∗ py,k + πm,4)

πm,3
(3.16)

Where (px,k, py,k)
T is the position of the thumb in the motion plane at time k and is

calculated with the help of(
px,k

py,k

)
=

(
px,k−1

py,k−1

)
+

(
vx

vy

)
∆t (3.17)

Here ∆t = 0.5 is the sampling time and (vx, vy)
T are the velocities given by the control

law according to equation 3.15.
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3.5 A comparison between grasping from a table and picking-
up from the floor

Previous work [2] shows, that the area, where Nao could pick up objects is very limited.
In figure 3.7 the result of the grasping experiment from the table is shown. The areas,
marked with green squares are positions of the foam cube, where Nao was able to grasp
it. In the yellow areas Nao was able to grasp the cube, but sometimes it failed to do so.
The red areas mark positions, where Nao was unable to grasp the cube. The reason for
the failure cases is the limited motion space of Nao’s arm. Nao is unable to position its
arm in such a way, that it could grasp the foam cubes, placed in the red area. In the case

Figure 3.7: This figure shows the result of our grasping experiment. Green areas show
successful grasps, red ones failure cases. Most of the failures occurred in the red area
close to Nao’s body and are due to the restricted freedom of motion of Nao’s hand. Yellow
indicates occasional failure. The highlighted area marks the field of view of Nao’s bottom
camera.

when Nao has to pick up foam cubes from the floor, the motion space of Nao’s arm is
much more restricted. For this reason, Nao has to be positioned very exactly next to the
cube, before it bends down to grasp it. The next chapters present how Nao walks to an
object (chapter 4) and how it is positioned in such a way, that it is able to pick up foam
cubes (chapter 5). When all parts of the solution work together, Nao is able to pick up
foam cubes in 88% of the cases. Compared to the pick-up task from the table, where Nao
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could pick-up foam cubes in 74% of the cases, the solution presented in this work is very
robust.

More detailed information about the results can be found in [2], when Nao picks up
foam cubes from a table, and in section 5.7, when Nao picks up foam cubes from the
floor.
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4
Walking towards an object

This chapter presents the main ideas and concepts that enable Nao to walk towards an
object in its environment.

It should be noted at the beginning of this chapter, that some of the displayed images
have wrong colors. The reason for that is the used color space. All of the computation of
color images is done in the HSY color space, but to display these images, the OpenCV
computer vision library interprets them as RGB images and as a consequence, the images
are wrongly coloured.

4.1 Overview and main ideas

Nao’s framework delivers powerful functions that enable the user to specify a goal posi-
tion that Nao will approach. The weakness behind the function is the inaccuracy of the
walking. For example, it can not be guaranteed, that Nao walks one meter, if the goal po-
sition is one meter in front of it. The actual walking distance in reality is not the same as
the planned or commanded one and depends very much on the friction between the floor
and Nao’s feet. Furthermore this error increases, if Nao has to rotate about his z axis (that
means, if Nao has to turn or walk a curve). To solve this problem, a control approach was
chosen. Based on image measurements, the walking velocity is adapted. More detailed
information about the control loop can be found in section 4.3. The main idea behind the
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control loop is, that in a first step the object is detected in the current camera image. If
the object is detected, the head turns in such a way, that it looks towards the object. Now
Nao steers his walking in the direction, where his head looks. When Nao is getting closer
to the object, its speed is reduced until it stops in front of the object.

4.2 Specifying the object

As mentioned in chapter 1, Nao has a 500Mhz CPU. If computer vision algorithm should
be applied on Nao, the weak CPU is a really bottleneck. It is not easy to overcome this
problem, even if the images are sent to a faster external PC via WLAN. In this case the
processing is much faster, but the WLAN connection is the bottleneck, because the image
data has to be transferred during the walking and real-time cannot be guaranteed. To
speed up the image processing, objects were chosen, that are easy to detect in the images.
It was mentioned before, that Nao’s framework provides access to its camera images in
various colorspaces. This part is working with the HSY colorspace, an approximation
of the HSV colorspace. To simplify the task, we assume a setting with uncoloured and
unsaturated environment and coloured, highly saturated objects. This makes it easier to
detect the specific objects in the camera image and to speed up the necessary computation.
Figure 4.1 illustrates an image from Nao’s camera and its separation into its three different
channels in the HSY colorspace. As it can be seen in this figure (especially in figure
4.1(c)) the object detection is much simpler, if the object has a high saturation.

Based on this fact, objects are searched, by looking for highly saturated blobs in the
saturation channel. Once such a highly saturated blob is found, its bounding box is used
to separate it from the rest of the image. If there is more then one blob in the current
image, the blob with the largest area is chosen. Based on this bounding box, histograms
are calculated. One for the hue channel of the blob and one for the saturation channel of
the blob. These two histograms specify the object. Figure 4.3(b) and figure 4.3(c) show
an example of a cube and its histogram. In this case the histograms are calculated using
32 bins for each channel. Because a bounding box can be a very coarse approximation
of the object contour, the histograms will also contain hue and saturation information
from the background of the object and not from the object alone (see figure 4.4 for better
illustration and discussion of such a case).

4.3 The control loop

This section outlines the control loop. After specifying the object with the help of a
bounding box and two histograms, the object has to be detected in every image, and
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(a) cubes (b) cubes, hue channel (H)

(c) cubes, saturation channel (S) (d) cubes, brightness channel (Y)

Figure 4.1: This figure shows an image taken by Nao in its room. Figure 4.1(c) illustrates
the high contrast between the objects (coloured cubes) and the room (brown floor and
white walls).

according to the object position, Nao has to react in a proper way. Figure 4.2 illustrates
the relation between specifying the object (section 4.2) and the processing of the visual

input (section 4.3.1).

4.3.1 Processing the visual input

Let us define Ik as the camera image at time k. According to the two histograms, that
specify the object, the back projection [3] Bk of the histograms is calculated for every
image Ik. Bk expresses how well a pixel in the image Ik is represented by the object
histograms. Pixels that have the same hue and saturation as the object, have higher values
than the others. For a better illustration see figures 4.3 and 4.4. To improve the robustness
of the object detection in the image, a threshold is applied to the back projection. In this
case, all other pixels are suppressed, that have not the maximum value. This step ensures,
that the artefacts, caused by the coarse bounding box representation of the object, are
eliminated. See figure 4.5 to see the effect of the threshold. From now on let us define Ok
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(a) Specifying the object:

(b) The control loop:
(a.2)

(a.1) (a.3)

(b.1)

(b.2)(b.3)

Figure 4.2: This figure illustrates the visual processing of the camera images. First, the
object has to be specified (a). To do this, we search the image for highly saturated blobs
(a.1). If there is more than one blob in the image, the blob with the largest area is chosen.
The bounding box of this blob is used to extract a patch from the image (a.2). After
that, the hue- and saturation- histogram of the patch is calculated (a.3). This procedure is
done at the beginning to specify the object. In each time step of the control loop (b) the
following operations are calculated: the back projection Bk from the histogram (a.3) is
calculated for the current image (b.1); a threshold Ok on this back projection is performed
(b.2); Ok is used to detect the blob of the object (b.3). If there exists more than one blob,
the blob with the largest area is chosen.

as the back projection after the threshold. As it can be seen very clearly in figure 4.5(b),
the object position in the image can now be extracted easily. This work uses a blob de-
tection, implemented by [7], to do this. Blobs are extracted out of Ok and the largest one
is chosen to be the object position. Figure 4.5(c) shows the result of the blob detection
and extraction. From now on, the tuple obb = (xul, yul, w, h) represents the bounding box
of the object, where (xul, yul) is the pixel coordinate of the upper left corner of the box,
w is the width and h is the height of the box. From this it follows, that the center of
the bounding box is oc = (xul + w/2, yul + h/2) = (oc,x, oc,y) ∈ R2. The next section
describes how the head is controlled according to oc.
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(a) input image (b) the specified cube

H

S

(c) H-S histogram of the cube (d) back projection

Figure 4.3: 4.3(a) shows the camera image represented in the HSY color space (this is the
reason for the wrong colours). In this image the object is specified by a bounding box. The
specified object is illustrated in 4.3(b) and its hue (H) and saturation (S) histogram can
be found in 4.3(c). The calculated back projection is represented in 4.3(d). The brighter
pixels are, the higher the values of the back projection. A closer look at 4.3(b) shows, that
parts of the floor are within the bounding box. This is the reason, why in 4.3(d) also some
parts of the floor get higher value. See figure 4.4 for a detailed discussion.

4.3.2 Controlling the head according to the object position

This section describes the control mechanism, that allows Nao to fixate an object by
looking towards it. From the previous section the object center is known as oc. The goal
of the approach, described in this section, is, that the head should turn in such a way,
that oc = tc. Where tc = (tc,x, tc,y) ∈ R2 is a desired pixel coordinate position. As it
is explained in chapter 2 (see equation 2.10), it is possible to estimate the angle between
the principal axis to a visual ray, obtained by reprojecting an image coordinate, when the
camera is calibrated. Nao’s framework provides a function, that delivers angles, given
pixel coordinates. Let us denote oa,k ∈ R2 as the angles between the principal axis and
the visual ray of oc and ta,k ∈ R2 as the angles between the principal axis and the visual
ray of tc. These angles are evaluated in every time step k. The control law, that moves the
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(a) slightly rotated cube (b) back projection of 4.4(a)

(c) image of a foam cube that
fits better into its bounding
box

(d) back projection of 4.4(c)

Figure 4.4: This figure illustrates the effect of the bounding box approximation. The back
projection provides better results, if the object fills the entire bounding box (as it can be
seen in figure 4.4(d) and figure 4.4(c)). Because parts of the floor are within the bounding
box, in figure 4.4(a) the floor appears also slightly in the back projection, shown in figure
4.4(b).

head in such a way, that over time oc becomes tc, is given as following:

ua,k = (oa,k − ta,k)hc . (4.1)

Here ua,k = (yawa,k, pitcha,k) ∈ R2 are the angles the head should turn around (figure
4.8(a) shows the head angles of Nao) and hc = (yawc, pitchc) ∈ R2 are controller gains,
respective for the head yaw angle and the head pitch angle. hc has to be chosen in such a
way, that the head motion is fast enough to follow an object and to ensure a stable control
loop. In this work the gains are chosen to be: yawc = 0.9 and pitchc = 0.4. Figure 4.6
contains a sequence of images, during a head motion so that oc becomes tc = (160, 80). In
Figure 4.7 the pixel coordinate values are drawn over time. Here the blue lines represent
the desired target position and the red lines are the current pixel coordinates of the object.
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(a) back projection (b) after the threshold

(c) tracked object

Figure 4.5: This figure illustrates the effect of the threshold (in 4.5(a) and 4.5(b) ). Figure
4.5(c) displays the result of the image processing. The object is marked with a red square
and its center is marked with a red circle.

As it was expected, the red curves approach the blue one over time. The next section
describes, how the head orientation effects Nao’s walking.

4.3.3 Walking velocity according to the head angles

The last sections explained, how Nao is able to track an object with its head. The idea is
now, that Nao walks in that direction, where its head looks. If the head looks left, because
the object lies on the left side, then Nao should turn to the left and vice versa. If the head
looks far away, Nao should walk faster, to approach faster to the object. Depending on the
head angles, the velocity of Nao’s walking is chosen. From now on hk,yaw is the head yaw
angle at time step k, and hk,pitch is the head pitch angle at time step k. Furthermore, vk,x
is the walking velocity in x- direction, that means straight ahead, at time step k and vk,Θ is
the velocity with which Nao turns, also at time step k. The framework of Nao provides a
function, that enables the user to specify the walking velocity of Nao. The only thing the
user has to be aware of is, that the values of the velocity must lie within−1.0 . . . 1.0. From
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(a) 0 (b) 1 (c) 2

(d) 3 (e) 4 (f) 5

(g) 6 (h) 7 (i) 8

(j) 9 (k) 10 (l) 11

Figure 4.6: Sequence of images taken during the control process. The red circle is the
calculated center of the object oc, the blue circle is the target position tc. Figure 4.7
contains the corresponding image positions over time.

[1] it is known that hk,yaw lies between −2.0857 . . . 2.0857[rad] and hk,pitch lies between
−0.6720 . . . 0.5149[rad]. For a better illustration of the different angles, see figure 4.8(a).

Let us define vk,Θ as the turning velocity of Nao. This velocity should depend on
Nao’s head yaw angle hk,yaw and is defined as follows:

vk,Θ = cΘ · h3
k,yaw (4.2)

cΘ ≥ 0
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Figure 4.7: Image coordinate positions over time. The blue lines are the target position
(blue circle in figure 4.6) and the red lines are the object positions (red circle in figure
4.6).

Here cΘ is a constant that describes, how fast Nao should turn.
As a second velocity, Nao’s forward velocity is defined as vk,x. This velocity depends

on the head pitch angle of Nao’s head (hk,pitch) and the turning velocity of Nao (vk,Θ) and
is defined as follows:

vk,x = (−exp(−cx · (−hk,pitch + cMD)) + 1) · (1− |vk,Θ|) (4.3)

cx ≥ 0

Here cx is a constant, that describes, how fast Nao should walk forward and cMD = 0.43.
This constant describes the angle at which Nao’s head looks maximally downwards. In
this work cx = 5.0 and cΘ = 0.8. Figure 4.8 shows an experimental plot of both functions.
As it can be seen in equation 4.3 and figure 4.8, the turning velocity also affects the
walking velocity. This leads to a slower speed, when Nao has to turn very hard.

Because of Nao’s software framework both velocities must lie between −1.0 and 1.0.

4.3.4 Stopping the walking

As stopping criteria the two velocities, vk,Θ and vk,x, are used to decide if Nao should
stop its walking. According to our previous discussion (see section 4.3.3), the current
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(a) Nao’s head angles (b) fΘ

(c) fx

Figure 4.8: Figure 4.8(a) shows the head angles of Nao (from [1]). Figure 4.8(b) is the
plot of the function fΘ with cΘ = 0.8, and figure 4.8(c) is the plot of function fx, with
cx = 5.0.

head angles have impact on Nao’s walking velocity. If Nao is getting closer to the object
(Nao’s head is tracking the object), the walking speed is reduced according to the head
angles. If the values of the two velocities are below a given threshold for a given timespan,
then Nao should stop the walking. In this work, the threshold for |vk,Θ| is 0.02 and the
threshold for vk,x is 0.21. If the calculated velocities are below these thresholds for k = 10

time steps, then Nao stops its walking.
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4.4 Experimental validation

To proof this concept an experiment was set up. An object was placed on three different
positions p1 = (1, 0.8), p2 = (1, 0) and p3 = (1,−0.3) in front of Nao (all units in meter),
where the x axis (first element of pi) directs in front of Nao and the y axis (second element
of pi) directs to the left side of Nao. The task was now, that Nao should walk towards the
objects. During the walking, the commanded walking velocities and the head angles were
monitored. Figure 4.9 shows the result of the experiment. First, it is important to note,

(a) hk,pitch (b) hk,yaw

(c) vk,x (d) vk,Θ

Figure 4.9: Plot of the head angles (figure 4.9(a) and 4.9(b)) and the resulting velocities,
calculated by the equations 4.3 (figure 4.9(c)) and equation 4.2 (figure 4.9(d)).

that the calculated velocities (vk,x and vk,Θ) can not be compared with the real walking
speed. The framework of Nao requires values between −1.0 . . . 1.0, so vk,x and vk,Θ have
to lie within this interval.

The recorded values for p1 are shown by the blue line (figure 4.9). The object lay in
front of Nao on the left side. Intuitively one would go forward and turn left, to approach
the object. This is the same way, that Nao walks, as it is expressed by the blue velocity
line in figure 4.9(c) and 4.9(d). If the object is “far” away (indicated by a negative head
pitch angle, see figure 4.9(a) and figure 4.8(a)), Nao moves faster. Because the object
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lies on the left side of Nao, it has to turn its head to the left and as a result, the speed is
reduced. This explains the drop of the velocity (in figure 4.9(c) ) at the beginning of the
walking.

The green line (this represents p2, the object lies straight in front of Nao) has no such
velocity drop, because the object lies directly in front of Nao. It can also be observed,
that there is a small velocity drop at the red line (p3, object in front of Nao at the right
side). The difference between the two velocity drops express the fact, that p1 lies farther
left, than p3 lies right. Therefore, Nao has to turn more to the left side, than it has to turn
to the right. In all three cases Nao stops its walking in front of the object. The presented
approach does not ensure, that Nao stops always at the same position in front of the object.
The fine positioning next to the object has to be done separately. This, and other system
relevant topics, are explained in the next chapter.

To illustrate the walking of Nao in a more meaningful way, a second experiment was
set up. The cube was placed randomly inside the room and Nao had to walk towards it.
During the walking, the motion of Nao was captured with a video camera. The result of
this experiment is presented in figure 4.10. In this figure, the red ellipses represent the
discrete states of Nao’s walking trajectory.
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(a) Sequence 0 (b) Sequence 1

(c) Sequence 2 (d) Sequence 3

(e) Sequence 4 (f) Sequence 5

(g) Sequence 6 (h) Sequence 7

(i) Sequence 8 (j) Sequence 9

Figure 4.10: This figure illustrates the trajectory of Nao, while it walks towards a blue
foam cube. The red ellipse like shapes represent the position of Nao’s head tactile sensor
(the discrete state of Nao’s trajectory). The position of the blue foam cube is marked with
a blue square.
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5
Description of the whole system

Chapter 3 and chapter 4 presented the main part of this work. It was shown how the
virtual thumb concept works, that is used for the grasping purpose, and how Nao should
walk towards an object. The following chapter points out, how all things work together to
enable Nao to pick up objects from the floor. For an overview of the whole data processing
flow, have a look at figure 5.1. In the current chapter of the work, it has to be ensured,
that Nao stands in the right place (fine positioning of Nao), bows down in a proper way
and checks, if it was able to grasp the object. If Nao was not able to pick up the object,
the whole pick up procedure has to be repeated.

5.1 Looking for an object

As mentioned already in chapter 4, the colors of the used objects are very saturated.
Therefore, in the first step, Nao looks for very saturated objects. To do this, Nao’s head
looks into several directions. At each of these directions, an image is captured and anal-
ysed, if a highly saturated object is within it. This is done with the help of a blob detection
algorithm, presented in [7]. If Nao is not able to find the cube, it turns and repeats the
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Start

User press start

Stand up
Adjust head

Search for object

Found object

Quit

Walk to object

Fine positioning Nao

i++

i < 4

Bow down

Grasp object

Stand up

Hand is empty

j++

j < 3

NOYES

Room is empty

j=0

i = 0

NO

YES

Picked up object

YES NO

YES

NO

Can't pick up object

Figure 5.1: Flowchart of the whole system. For a detailed explanation of key functions,
see: “Search for object” - section 5.1; “Walk to object” - section 5.2 and chapter 4; “Fine
positioning Nao” - section 5.3; “Bow down” - section 5.4; “Grasp object” - section 5.5;
“Stand up” - section 5.6;

search again. Here is the list of angles for the search strategy (all angles in [rad]):

hpitch = (−0.4363, 0.0, 0.4363)

hyaw = (−1.047,−0.524, 0, 0.524, 1.047)

Θ = (2, 2, 0)

Here, hpitch are the angles of the head pitch anlge, hyaw are the angles of the head yaw
angle, and Θ are the angles of the body rotation.

The size of the blob area, returned by the blob detection algorithm, has to be above
a threshold (th = 500). This prevents the detection of small highly saturated objects in
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the room. If Nao is not able to find an object, after going trough all of these angles, it
is assumed, that the room is empty. Otherwise, this routine delivers the bounding box
around the object.

5.2 Walking towards the object

With the bounding box, received by the previous routine, the cube is specified as it is
explained in chapter 4. Then Nao walks towards object and stops next to it. The only
thing that can be said about the position where Nao stops is that Nao stops “near” to the
object, but of course, this is not accurate enough. The next section deals with the fine
positioning of Nao, relative to the object.

5.3 Fine positioning of Nao

After getting near to the object, Nao’s position is iteratively adjusted, so that it is able to
grasp the object, if it bows down. This section explains first, how the object distance is
calculated. Afterwards it describes an experiment, that was used to estimate the goal po-
sition of Nao, relative to the object, so that a high rate of successful grasping is achieved.

5.3.1 Estimation of the object position

As it was explained earlier, the object is represented by its bounding box. Let us denote
the center of the bounding box in homogeneous pixel coordinates as o. With the help of
a calibrated camera it is possible to project this point back into the world. If K is the
calibration matrix, this is done with OCam = K−1o, with OCam being the ray from the
camera center though the pixel coordinate point o. Because Nao uses another coordinate
system than the camera framework, this ray must be converted into the Nao reference
frame system. This is done by simply rotating it (In chapter 2 the same thing is done.
For a better understanding look at figure 2.10 and equation 2.17) with the rotation matrix
RWorld
Cam , this leads to OC = RWorld−1

Cam OCam, with OC being the ray relative to the camera
reference frame C. Furthermore define πTf as the floor plane relative to the torso reference
system T , TCT as the homogeneous transformation from the torso reference frame T to the
camera reference frame C and TCN as the transformation from the Nao reference frameN
to the camera reference frame C. The origin of the Nao reference frame N is the average
of the two feet positions and its x-axis looks always forward [1]. This reference frame
is useful for the distance measurement, and the position of Nao relative to the object
is relative to this reference frame. In a first step, the plane πTf is transformed into the
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camera reference frame C by applying the equation πC = TC TT πTf . What is searched for,
is the intersection point between the plane πC = (π1, π2, π3, π4)T and the parametrized
ray O(ν)C , which is O(ν)C = (νOx, νOy, νOz, 1)T . This is done by solving the equation
πC T ·O(ν)C = 0 for ν, which has the result

ν =
−π4

π1Ox + π2Oy + π3Oz

. (5.1)

After the evaluation of O(ν)C with the calculated ν, the result has to be transformed into
the Nao reference frame N . This is done by

ON = TCNO
C . (5.2)

Here, ON is the position of the object, relative to the Nao reference frame N and is
originally defined by his pixel coordinates o. The next section describes how the position
is found at which the grasping ability of Nao could be improved.

5.3.2 Finding a good distance between Nao and the object

Nao was placed next to the object. The position of the object was calculated according
to the method presented in the previous section. Afterwards, Nao bows down and tries to
grasp the object. In an experiment, it was noted, at which position Nao could grasp the
object. Figure 5.2 shows the results of this record.

The plot of the result of the experiment shows that there is no significant cluster, at
which Nao was able to pick up the object. But this experiment provides a coarse guess,
where the object should lie relative to Nao. Based on these findings, a target position
po = (0.35,−0.06) (units in meter) of the object relative to Nao was selected.

The question is now, if this choice is sufficient. First, this experiment has an inherent
disadvantage, because the object position is measured, while Nao is standing. During the
bow down phase, Nao’s position also changes. This change in position depends on the
friction between Nao’s feet and the floor and can not be determined, because it is a very
stochastic process. To illustrate this, the error e between the measured distance when Nao
stands, and the measured distance after the bow down phase, was calculated according to
e = pdown − pup, where pdown is the distance from Nao to the object when Nao is next
to the floor and pup is the position of the object relative to Nao, when Nao stands. Figure
5.3 shows the results of this experiment.

It can be seen, that the deviation along the y axis of Nao is very high, compared to
the deviation along the x axis (σx = 0.0077 and σy = 0.0312; units in meter). This
means, that during the bow down phase, Nao slips to the left or to the right relative to the
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Figure 5.2: Position of the object relative to Nao during the experiment with 36 runs.
In the case of the blue squares, Nao was able to grasp the object, contrary to the red
diamonds, where it was not able to pick up the object. The axis with the “Y [m]” label is
the axis, that is parallel to Nao’s y axis, which means, the positive direction of this axis
points to the left of Nao. The positive x axis points in front of Nao.

object. This error has to be taken into account. Therefore, an iterative pickup approach
was chosen. After the fine positioning, Nao tries to pick up the cube and afterwards it
checks, if the pickup was successful. If this does not happen, Nao stands up, repeats the
fine positioning, and tries to pick up the cube again. Because of the stochastic process
during the bow down phase, Nao may not be able to grasp to cube at the first time. If this
happens, Nao tries it a second time. The experiment, presented at the end of this chapter,
will proof that this concept works quite well, despite the displacement during the bow
down phase.

So the fine positioning of Nao ensures, that Nao stands at a desired position relative to
the object, but this position itself does not guarantee that Nao is able to grasp the object.
This is caused by the displacement during the bow down phase.
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Figure 5.3: Distribution of the error e = pdown − pup (number of experiments= 30). The
axis with the “eY [m]” label is the axis, that is parallel to Nao’s y axis, which means, the
positive direction of this axis points to the left of Nao. The positive x axis points in front
of Nao. This experiment shows a great deviation along the y axis.

5.4 Bowing down

Nao’s framework allows to record motions and to repeat them afterwards. This function
was used to enable Nao to bow down to the floor. Figure 5.4 shows an image sequence of
Nao while it bows down.

Because Nao has no backbone, it is not a trivial task to let it bow down. During the
bow down phase it has to be ensured, that Nao does not fall forward. To overcome this
problem, Nao supports itself with its left arm. Afterwards, the grasping is done with the
right arm.

5.5 Grasping the object

After Nao has bowed down to the floor, it has to grasp the object. This is done with the
method, described in chapter 3. This section presents the details, that are necessary for the
implementation, but not for the understanding of the overall process. First, the bounding
box of the object obb = (xul, yul, w, h) is extracted. The target position s? = (s?x, s

?
y), that

the virtual thumb should approach, is the center of the bottom line of the bounding box
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(a) 0 (b) 1 (c) 2

(d) 3 (e) 4 (f) 5

(g) 6 (h) 7 (i) 8

Figure 5.4: Sequence of images taken during bow down process.

plus an offset, mathematically expressed as

s?x =
xul + w

2
+ xoffset

s?y = yul + h+ yoffset ,

with xoffset = 3 and yoffset = 40 being the offset in pixel coordinates in x and y direction.
After the target position s? is defined, the motion plane is defined. This plane is parallel
to the floor with an offset of 75[mm] above the floor. The right arm moves now into
the motion plane. As it is known from chapter 2 and chapter 3, the interaction matrix is
required to control the arm in a proper way. This matrix is precomputed with the help of
some exploration movements of the right arm. The result of this pre-computation is:

L̂−1 =

(
−0.001291 0.0004441

−0.0003545 −0.0007072

)
.
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After that, the controller is initialized with a controller gain of λ = 0.25 and a period time
of 300[ms]. The controlling is done, until the norm of the error e(t) is below a threshold
fTh = 5[Pixel], that means, ||e(t)|| ≤ fTh, or the controller is unable to reach the target
position with less than 40 control steps.

After the target is reached, the arm is rotated in such a way, that the y axis of the
arm is parallel to the floor. This is done by converting the desired plane πT (this plane
is relative to the torso reference system T and is equal to the floor plane) into the right
arm reference system R with the equation πR = TR T

T πT . The resulting normal vector
of the plane πR is nR = (nx, ny, nz)

T (this vector can be constructed from the first three
elements of πR [19]). Now the normal vector nR is projected onto the yz plane of the
right arm reference system R, which leads to nY Z = (ny, nz)

T . The angle Φ is the angle
between the z axis of R and the projection of the plane’s normal vector, called nY Z and
is calculated according to Φ = sin−1 ny

‖nY Z‖
. By rotating the arm about −Φ the y axis of

the right arm reference systemR is parallel to the floor.
Now the left arm moves 25[mm] upwards. This causes, that Nao tilts slightly forward

and the right arm therefore moves downwards. After that, the right arm moves 30[mm]

along the normal vector of the desired plane towards the object and grasps it. After sitting
up again, Nao checks (by looking for a highly saturated blob in its hand), if the grasping
was successful. If that is not the case, Nao stands up, does the fine positioning, bows
down and tries to grasp the object again.

5.6 Standing up

Similar to the implementation of the bow down phase, the stand up phase was imple-
mented, based on the recorded joint angles. Figure 5.5 shows Nao while standing up. It
must also be ensured again, that Nao does not fall while it stands up. Therefore it supports
itself with its right leg (see figure 5.5 (a) and (b), where Nao’s right leg supports itself).

5.7 Experiments and results

To verify the functionality of the presented concept, an experiment was set up. In this
experiment Nao was put into the room, described in chapter 1. A coloured foam cube was
placed randomly into the room (The distance between the foam cube and the room border
was at least 30[cm]). The task was now, to pick up the foam cube, no matter where the
cube lies relative to Nao. This experiment was repeated 50 times and it was monitored
if Nao was able to pick up the cube or not, and if it was able to pick up, how many
times the fine positioning, bowing down and grasping task had to be done, until Nao had
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Figure 5.5: Sequence of images taken during the standing up process.

successfully grasped the cube. Table 5.1 presents the results of this experiment. In 80

Outcome of the experiment Number Percent
Pick up was successful 40 80

Nao grasped the cube the first time 32 80
Nao needed two trials to grasp the cube 7 17.5
Nao needed three trials to grasp the cube 1 2.5

Pick up failed 10 20

Table 5.1: Results of the pick up experiment.

percent of the cases, Nao was able to pick up the foam cube, that was placed randomly
inside the room. In 80 percent of these cases, it grasped the cube the first time. Only in 20
(17.5 + 2.5) percent it had to stand up and try to grasp the cube again. The result shows,
that the assumptions taken in section 5.3 are acceptable.

What happened when Nao was unable to pick up the cube? Table 5.2 gives an
overview of the various reasons, why Nao was unable to pick up the foam cube. These
reasons are now examined in more detail.

Hand is empty: In this case Nao picked up the cube successfully, but he was unable to
recognize that the cube was in its hand.

Nao fell: During the bow down phase, Nao tilted forward and fell. This happened
only once and the reason for that could be found in the temperature of Nao’s joints. To
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Reasons for failing Number
Hand is empty 2
Nao fell 1
Lost cube during walking 4
Nao pushed the cube away from it 1
Room is empty 2

Table 5.2: Reasons, why Nao was unable to pick up the foam cube.

overcome this problem, it has to be ensured, that the joint temperature is not too high.

Lost cube during walking: Nao lost the cube during the walk towards it. Figure 5.6
shows a patch from a cube, that Nao lost during the walking. It can be seen, that a large

Figure 5.6: Cube patch, that was lost during the walking of Nao.

area of the patch (and therefore also of the histogram) is the background (in this case the
floor). Therefore, the back projection of the histogram will also vote for the floor and the
robustness of the tracking will decrease.

Nao pushed the cube away: In this case Nao pushed the cube away, which resulted in
a never ending walk.

Room is empty: Nao was not able to find a cube inside the room.

Based on the outcome of this experiment, some improvements were made. The reason
for the Hand is empty failure could be found in the parameters of the blob detection
algorithm [7]. When Nao has grasped (or not grasped) the cube, it sits up and checks its
right hand if a highly saturated blob is in it. The area of this blob has to be larger than a
certain threshold. In the case of the Hand is empty failure, this threshold was too high, so
the threshold level was reduced.
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The case where Nao fell should be overcome by paying attention, that the temperature
of Nao’s joints is not too hot.

To prevent the Nao pushed the cube away case, the threshold, when Nao should stop,
was increased to let Nao stop earlier.

The case where Nao was unable to detect the cube (Room is empty) was overcome by
decreasing the threshold for the blob area (this is similar to the Hand is empty case).

In the following experiment, Nao was placed in the middle of the room. The orien-
tation is not strictly defined. In one experimental run, Nao tried five times to pick up
the cube. Before the experiment was started, the maximal joint temperature had to be
less than 40◦C. After the five runs, the “naoqi” main executable was restarted. A blue
coloured cube was placed randomly within the room. The distance to the room border
had to be larger than 30[cm].

The results of this experiment are presented in table 5.3. It can be seen, that Nao’s

Outcome of the experiment Number Perscent
Pick up was successful 44 88

Nao grasped the cube the first time 36 81.82
Nao needs two trials to grasp the cube 7 15.91
Nao needs three trials to grasp the cube 1 2.27

Pick up failed 6 12

Table 5.3: Result of the second pick up experiment.

pick up ability is higher than in the first experimental run. Table 5.4 shows the reasons,
when Nao was unable to pick up the blue foam cube. It can be seen that the threshold, that

Reasons for failing Number
Hand is empty 3
Nao fell 1
Lost cube during walking 2

Table 5.4: Reasons, why Nao was unable to pick up the foam cube.

is used to decide, if the cube is in Nao’s hand, is still too high. It should be noted, that in
the hand is empty case, Nao was able to pick up the cube, but it was unable to recognize
that.

5.8 Robustness of the results

To verify the robustness of the presented approach, the approach was tested on another
Nao humanoid robot. The result of the test should demonstrate, that the presented ap-
proach does not depend on the specific Nao robot, on which the program was developed.
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In this experiment, the same setup was used, as in the experiments before. The difference
was another Nao robot and just five pick up tasks were run, instead of fifty. In all of these
five runs, Nao was able to pick up the blue foam cube. In four out of five cases, it was
able to do this at the first time. In only one case Nao needed three trials to pick up the
cube. This experiment shows, that the presented approach can be used also on another
Nao humanoid robot.

Another interesting result is, that the exact calibration of the camera is not that impor-
tant, as originally thought. As mentioned before, the only thing that was changed between
the experiments was the robot, but the camera calibration remains the same. This shows,
that the functionality of the robot does not depend strongly on the used camera calibra-
tion and is therefore robust against parameter variations of the camera parameters. To get
an impression of the order of the variation, table 5.5 shows the parameter variation be-
tween Nao’s top camera and its bottom camera. The order of magnitudes of the parameter
variations could also be expected between two different robots.

Parameter bottom camera top camera standard deviation
fx 379.74162 376.23709 1.752265
fy 380.32080 376.69494 1.81293
px 151.62371 164.97117 6.67373
py 114.28645 116.48445 1.099

radial distortion [0.31431,−1.10508] [0.28675,−1.02994] [0.01378, 0.03757]
tangential distortion [−0.00016,−0.00092] [0.00413,−0.00097] [0.002145, 0.000025]

Table 5.5: Typical parameter variations of the camera calibration.

It is important to notice, that the tests were made on a Nao humanoid robot V3.3, as
other versions have shorter arms and therefore the grasping would not be possible.
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6
Conclusion

The work shows that vision based picking up of objects with the humanoid robot Nao is
possible. This task was accomplished with the help of algorithms, known from computer
vision [4] and geometry [19], and the usage of the software frame work, provided by
Nao [1]. One of the best tools to solve this task was the implementation of feedback
controllers. These controllers were used to move Nao’s arm in such a position that it was
able to grasp the foam cube, and to enable Nao to walk towards the cube. The work with
Nao shows, that a feedback is essential to solve the pick up task properly. A vision process
in the feedback loop can be a very time consuming calculation. Because of the limited
processing power of Nao, only simple computer vision algorithms were implemented. If
an application had no time constraints (In the case when Nao walks towards a cube, there
is a strong time constraint), more sophisticated algorithm could be used on Nao (this was
done for example in [8]).

A strength of Nao is its software framework. The framework provides a lot of useful
functions that work right away. The teach in phase to start programming with Nao does
not take a long time. This is a very proper work of ALDEBARAN Robotics, especially
when keeping in mind, what a complex system Nao is.

As mentioned before, a weakness of Nao is its low processing power, especially when
image processing is required. In this work only simple image processing routines were
used, to overcome this weakness. As mentioned, the grasping task is confronted with
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problems, caused by the inaccuracy of Nao’s positioning ability. It was necessary to
overcome these problems with the help of feedback controllers.

In further work, the presented solution can be used, for example to tidy up a small
room with Nao. In this case, more sophisticated algorithms have to be used to distinguish
between different objects. More object properties have to be taken into account, to solve
this. For example an edge model of the object could be used(this was done in [9]). In
all of these works, the low processing power has to be kept in mind. To overcome this
low processing power, the images could be sent to a remote PC to do the processing on
a faster CPU, but our experience has shown, that online processing via WLAN involves
other problems in the domain of time critical network communication.

The work with Nao shows, that this robot platform has a great benefit because it is easy
to start working with. In the field of image processing creativity is needed to overcome the
processing power bottleneck. It is to be hoped that ALDEBARAN Robotics will increase
the processing power of Nao’s CPU.
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