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Abstract

State-of-the-art single-channel speech enhancement methods are typically focussed on compen-
sating the influence of additive noise on magnitude only. Recent studies showed that modifying
the noisy spectral phase can yield improvement in quality and intelligibility of the enhanced
speech. This thesis presents a joint estimation framework of amplitude and phase based on the
maximum a posteriori criterion (MAP). Previous studies on joint MAP estimation of ampli-
tude and phase assumed a uniform distribution of the spectral phase. This resulted in phase-
insensitive amplitude estimators together with the noisy phase as the MAP estimate of phase.
Contrary, in this thesis a von Mises prior distribution of the spectral phase is considered. By
maximising the joint likelihood-function of amplitude and phase, two interdependent estimators
are achieved. Due to the non-linear linkage of the amplitude and the phase estimator, an iter-
ative procedure is introduced, in order to achieve an improved complex spectrogram of speech.
In a comparative study, the phase-insensitive and the phase-sensitive frameworks are evaluated,
showing that an improved phase can contribute positively to speech quality and intelligibility.

Zusammenfassung

Moderne Einkanal-Sprachverbesserungsmethoden versuchen üblicherweise den Einfluss von addi-
tivem Rauschen auf die Magnitude von Sprache zu kompensieren. Jüngste Studien zeigten, dass
durch Modifikation der verrauschten spektralen Phase die Sprachqualität und Verständlichkeit
verbessert werden kann. In dieser Arbeit wird vorgeschlagen, die Amplitude und Phase gemein-
sam nach der Maximum-a-posteriori-Methode (MAP) zu schätzen. Vorangegangene Studien
zur MAP Schätzung von Amplitude und Phase nahmen eine Gleichverteilung der spektralen
Phase an. Dies resultierte in einem von der Phase unabhängigen Amplitudenschätzer und der
verrauschten Phase als MAP Schätzer der Phase. Im Gegensatz dazu wird in dieser Arbeit eine
von Mises Verteilung der Phase angenommen. Das Ergebnis der Maximierung der gemeinsamen
Likelihood-Funktion der Amplitude und der Phase sind zwei voneinander abhängige Schätzer.
Aufgrund des nicht-linearen Zusammenhangs der beiden Schätzer wird eine iterative Methode
vorgeschlagen um ein verbessertes komplexes Spektrogramm zu erhalten. Eine abschließende
Vergleichsstudie zwischen der phaseninsensitiven und der phasensensitiven Methode zeigt, dass
eine verbesserte Phase zu höherer Sprachqualität und Verständlichkeit beitragen kann.





Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

date (signature)





Advances in Phase Aware Speech Enhancement

Contents

1 Introduction 9

2 Fundamentals 11
2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The Rayleigh Amplitude Model . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 The Super-Gaussian Amplitude Model . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Phase Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Circular Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Amplitude only Single-Channel Speech Enhancement . . . . . . . . . . . . . . . . 15

2.4.1 Short Time Spectral Amplitude Estimator . . . . . . . . . . . . . . . . . . 16
2.4.2 Prior SNR Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Phase Aware Speech Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Phase Estimation in Single Channel Speech Enhancement . . . . . . . . . 17
2.5.2 Phase-Aware Amplitude Estimation . . . . . . . . . . . . . . . . . . . . . 20

2.6 Iterative Speech Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Iterative Wiener Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 Constrained Iterative Wiener Filtering . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Iterative Wiener Filtering using Complex LPC Speech Analysis . . . . . . 25
2.6.4 Iterative Closed-Loop Phase-Aware Single-Channel Speech Enhancement 26

2.7 Joint MAP Estimation of Speech Amplitude and Phase Assuming Uniform Prior
Distribution of the Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.1 Godsill-Wolfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.2 Lotter-Vary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Proposed Contributions 31
3.1 Proposed Method Assuming Non-Uniform Prior Distribution of Phase . . . . . . 31

3.1.1 The MAP Spectral Phase Estimator . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 The MAP Spectral Amplitude Estimator assuming a Super-Gaussian Dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 The MAP Spectral Amplitude Estimator assuming a Rayleigh distribution 34
3.1.4 Relation to previous MAP Amplitude Estimators . . . . . . . . . . . . . . 35

3.2 Joint Estimation in STFT Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Analysis/Synthesis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 The Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 Noise PSD Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.5 Iterative Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Phase Estimation at Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Results 51
4.1 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

September 8, 2015 – v –



4.2 Pink Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Pink Modulated Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Babble Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 59



Advances in Phase Aware Speech Enhancement

1
Introduction

Single-channel speech enhancement addresses the need of compensating the impact of additive
noise on the perceived quality and intelligibility of speech. The applications of a speech en-
hancement system are manifold, including hearing aids, mobile phones and automatic speech
recognition. In the last decades, the research has been concentrating on enhancing the spectral
amplitude of speech only, neglecting the influence of the spectral phase. This was justified by
the findings in [1], where Wang and Lim reported that a more accurate phase does not help
to increase the performance in terms of equivalent SNR, when reconstructed with an indepen-
dently estimated amplitude. However, they admit that a more accurate phase estimate may be
important for improving the amplitude estimate.

State-of-the-art amplitude-only enhancement methods are formulated in the STFT domain,
motivated by its simplicity and computational efficiency. Using different distributions of the
speech spectral magnitude (e.g. Rayleigh, Super-Gaussian), the spectral phase is generally as-
sumed to be uniformly distributed. Thus MAP, ML and MMSE estimates of the phase are equal
to the noisy phase [3], whilst the amplitude estimate depends on the assumed prior distribu-
tion. Different criteria, such as the MMSE [3] or the MAP [5] have been used to derive the
corresponding amplitude estimators. Most of these estimators are a function of the prior and
posterior SNRs, which implies the necessity of a noise PSD estimator. The prior SNR can be
obtained by the decision directed approach presented in [3], as an alternative to the spectral
subtraction method, which yields artefacts called musical noise.

Amplitude-only enhancement is mostly capable of enhancing the perceived quality on the
expense of a degraded intelligibility, hence a trade-off between the two is needed. Recently, new
studies on the importance of phase for speech quality and intelligibility have been conducted,
highlighting the potential of incorporating phase estimation into speech enhancement systems
[2, 23,24].

The iterative method presented in [21] obtained a more accurate phase by synthesizing the
signal within iterations, improving the consistency of the enhanced spectra. In [20], Mowalee and
Saeidi used a phase-aware amplitude estimator together with a geometry based phase estimator,
in order to iteratively enhance the speech.

In [40], the artefacts due to the noise phase components, are met by phase randomization.
The randomization only takes place at low SNR regions, where mainly noise components are
expected.

More recently, statistical phase estimators have been introduced. The phase can be assumed
to consist of deterministic part (due to the fundamental frequency) and a stochastic part, mod-
elled by a von Mises distribution in [9, 12]. In order to obtain a phase estimate, the stochastic
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1 Introduction

contribution to the phase is of interest which means that the deterministic linear phase has to be
removed, yielding the unwrapped phase. Utilizing an unwrapped-phase-estimate for reconstruc-
tion and/or for amplitude estimation was reported to improve both, quality and intelligibility
of the degraded speech [9, 12,14,15,25].

This thesis examines the joint MAP estimators of amplitude and phase, assuming a von Mises
prior distribution of the unwrapped phase. The two estimators are interdependent and therefore
an iterative method is proposed to solve the non-linear equations.

The thesis is structured as follows; in chapter 2 previous methods and fundamentals of speech
enhancement in general and phase-aware single channel speech enhancement are presented.
Chapter 3 presents the derivation of the joint MAP estimators, as well as their implementation
in an iterative framework. Two iterative methods are reported, yielding different results, which
will be discussed in chapter 4. Chapter 5 concludes on the work and gives an outlook on possible
future work.
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2
Fundamentals

Typical single-channel speech-enhancement systems as shown in figure 2.1 consist out of three
processing blocks referred to as Analysis, Modification and Synthesis (AMS).

Noisy
speech

Analysis Modification Synthesis
Enhanced
Speech

Figure 2.1: Block Diagram of the AMS-System

The focus of this thesis lies on the modification block of the AMS system, the block in which
the actual speech-enhancement takes place.

2.1 Signal Model

To unify the notation for the rest of this thesis the following signal model based on the the
assumption of additive noise is used:

y(n) = s(n) + d(n), (2.1)

where s(n) indicates the clean speech, d(n) the additive noise and y(n) the noisy speech, all
sampled at time instance n · T .
A noisy DFT-coefficient at frame number λ and frequency index k is obtained by segmenting the
signal y(n) into (overlapping) frames, multiplying each frame with the window function w(n)
and applying a DFT on each frame:

Y (λ, k) =

N−1∑
n=0

y(λ∆ + n)w(n)e
−j2πnk

N , (2.2)

with N as the window length and ∆ indicating the frameshift. Y (λ, k) is the noisy DFT:

Y (λ, k) = S(λ, k) +N(λ, k) (2.3)
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2 Fundamentals

As every DFT-coefficient consists out of an amplitude and a phase part, it may be rewritten as
a complex exponential:

• Y (λ, k) = R(λ, k)ejϑ(λ,k)

• S(λ, k) = A(λ, k)ejα(λ,k)

• N(λ, k) = D(λ, k)ejφ(λ,k)

For the sake of simplicity in notation the frame index λ and the frequency index k will be
dropped wherever possible in the further course of this thesis. The definitions of the prior SNR
ξ and the posterior SNR ζ used in this thesis are:

Prior SNR: ξ ,
σ2
s

σ2
d

, (2.4)

Posterior SNR: ζ ,
R2

σ2
d

, (2.5)

with the noise power spectral density (PSD) σ2
d and the speech PSD σ2

s defined as follows:

Speech PSD: σ2
s , E

(
D2
)
, (2.6)

Nosie PSD: σ2
d , E

(
A2
)
, (2.7)

where E indicates the expectation value operator.

An estimate is indicated by a hat (e.g. ξ̂).

2.2 Statistical Models

Since different assumptions on the prior statistics of the spectral amplitude and phase yield
different estimation rules, the distributions relevant for this thesis are described in the following.

2.2.1 The Rayleigh Amplitude Model

To analyse the statistical properties of the DFT coefficients of speech, the following two assump-
tions are commonly made [26]:

1. the window length N in eq. (2.2) approaches infinity: N →∞

2. N is much longer than the correlation-span of s(n) (for clean speech: 10ms-30ms)

The central limit theorem states that the sum of a large number of independent random variables
is asymptotically normal-distributed if the variance is finite and positive ([30], p 278). Motivated
by this and considering that s(n) is sufficiently random, one can model the real and imaginary
parts of S as mutually independent, zero-mean Gaussian random variables for the case k /∈ {0, N2 }
. This model also implies that the variance splits equally onto the real and the imaginary part,
so that var(Re{S}) = var(Im{S}) = 1

2σ
2
S [26]:

pRe{S}(u) =
1√
πσ2

S

e
− u2

σ2
S , (2.8)

pIm{S}(v) =
1√
πσ2

S

e
− v2

σ2
S . (2.9)
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Since the real and imaginary part are independent from each other, the joint probability density
can be achieved by simply multiplying the two distributions:

pRe{S},Im{S}(u, v) = pRe{S}(u)pIm{S}(v) =
1

πσ2
S

e
−u

2+v2

σ2
S . (2.10)

The density functions of the amplitude A = |S| and the phase α = ∠S of S = u + jv can be
derived by converting eq. (2.10) to polar coordinates ([30], p 203):

p (A) =

2A
σ2
S

e
−A

2

σ2
S if A ∈ [0,∞)

0 otherwise

(2.11)

p (α) =

{
1

2π if α ∈ [−π, π)

0 otherwise
(2.12)

It is important to note that eq. (2.11) represents a Rayleigh distribution and eq. (2.12) a Uniform
distribution and that they are jointly independent from each other. Thus, their joint distribution
is equal to the product of the two densities:

p (A,α) = p (A) p (α) =
A

πσ2
S

e
−A

2

σ2
S (2.13)

On the supposition of additive Gaussian noise, the PDF of Y , conditioned on A and α can be
evaluated ([5], [26]):

p(Y |A,α) =
1

πσ2
d

e
− |Y−Aejα|

σ2
d (2.14)

By integrating over α, the conditional PDF of the noisy speech amplitude R is obtained [31]:

p(R|A) =
2R

σ2
d

e
−R

2+A2

σ2
d I0

(
2AR

σ2
d

)
, (2.15)

which corresponds to a Rice PDF with I0(.) being the modified Bessel function of the first kind
and the order zero.

2.2.2 The Super-Gaussian Amplitude Model

The prerequisite that the frame length N is much longer than the span of correlation of speech
is not met by common frame lengths ranging from 10 ms to 30 ms ([5]). This leads to less
Gaussian distributions of real and imaginary parts of the speech DFT coefficients. Therefore
several alternatives to the Gaussian speech PDF have been introduced, including Gamma dis-
tributed [32] and Laplacian distributed [33] speech priors. In 2005, Lotter and Vary presented
a parametric Super-Gaussian density function, which provides the ability to cope with different
frame lengths resulting in different distributions of the speech coefficients [5]:

p(A) =
µν+1

Γ(ν + 1)

Aν

σν+1
S

e
−µ A

σS , (2.16)

where µ and ν are the shape parameters of the distribution and Γ(.) denotes the Gamma function.
In [5], the authors obtained the set (µ, ν) via fitting the analytic parametric distribution of
eq. (2.16) to an empirical distribution of the speech coefficients. The parameters were chosen by
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means of the Kullback-Leibler divergence between the two distributions resulting in ν = 0.126
and µ = 1.74 , considering a frame length of 32 ms. Especially, the high density for low spectral
magnitude regions are well modelled by this distribution (see figure 2.2).

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

A

p
(A

)

 

 

Rayleigh
Gamma
Laplace
Super−Gaussian

Figure 2.2: Different PDFs of the amplitude of the speech DFT coefficients

2.2.3 Phase Model

The above discussed statistical models assume a uniform prior distribution of the phase. In the
last years, this hypothesis has been strongly doubted, e.g. [9, 11,25], and a more general model
has been used to describe the statistical properties of the unwrapped phase α. The von Mises
distribution is a circular distribution and is characterized by the following equation:

p(α) =
eκ cos(α−αµ)

2πI0(κ)
(2.17)

Here, αµ denotes the mean and κ the concentration parameter. The concentration parameter
illustrates, how strong the distribution is concentrated around its mean; the higher κ is, the
narrower the distribution p(α) gets. It is important to note that the Uniform distribution is a
special case of the von Mises distribution, as for κ→ 0, eκ cos(α−αµ) → 1 and I0(κ)→ 1, resulting
in p(α) = 1

2π . The concentration parameter is assumed to be large (expressing high certainty)
for highly voiced speech and rather small for unvoiced speech or noise dominated regions. How
to obtain the parameters of the κ and αµ is explained in section 2.3. Figure 2.3 clarifies the
influence of κ onto the von Mises distribution.
The von Mises distribution is a special case of the more general von Mises-Fisher distribution
[28], modelling the distribution of a p-dimensional vector x on a p− 1-dimensional sphere:

p(x) =
κ
p
2
−1eκµ

Tx

(2π)
p
2 I p

2
−1(κ)

. (2.18)

To achieve the von Mises distribution in eq. (2.17) p is set to p = 2 and x =
(

cosα
sinα

)
and

µ =
( cosαµ

sinαµ

)
. The special case p = 3 is called Fisher distribution and is commonly used in

order to analyse spherical data sets.
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−3 −2 −1 0 1 2 3
0
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κ = 0.001

κ = 20

Figure 2.3: Two zero-mean von Mises probability-density functions with concentration parameters κ = 0.001
and κ = 20

2.3 Circular Statistics

In order to obtain the von Mises parameters κ and αµ, the DFT coefficients can be analysed with
respect to their circular behaviour. A complex exponential with an unit amplitude z(n) = ejθ(n)

can be analysed according to the sample mean vector [29]:

ρ̄ =
1

N

N∑
n=1

z(n) (2.19)

The absolute value of the sample mean vector is given as [29]:

Z̄ = |ρ̄| (2.20)

Similar, the sample mean for the angle is defined [29]:

µ̄ = ∠ρ̄ (2.21)

The circular variance σ2
circ serves as a measure of directional spread, defined as follows [29]:

σ2
circ = 1− Z̄ = 1− I1(κ)

I0(κ)
(2.22)

The concentration parameter κ gives information about how concentrated the complex expo-
nential is around the mean angle. The circular variance is bounded to the interval [0 1] and as it
can be directly estimated from the observed data, κ can in turn be estimated by approximating
the inverse function of eq. (2.22).

2.4 Amplitude only Single-Channel Speech Enhancement

Conventional amplitude only speech enhancement methods assume that the spectral phase fol-
lows a Uniform distribution, hence the MMSE [3], ML and MAP [5, 8] estimates of the phase
are equal to the noisy phase. Although this thesis relies on the assumption that the unwrapped
spectral phase follows a von Mises distribution rather than a Uniform distribution, certain con-
cepts of amplitude only estimation are used for the implementation of the proposed estimator
in Chapter 3.
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2.4.1 Short Time Spectral Amplitude Estimator

Ephraim and Malah presented a Minimum Mean Square Error (MMSE) Short-Time Spectral
Amplitude (STSA) Estimator in [3]. Using the assumptions made in section 2.2.1, their model
yields the MMSE STSA estimator of form:

Â = Γ(1.5)

√
v

ζ
e−

v
2

(
(1 + v)I0

(v
2

)
+ vI1

(v
2

))
R, (2.23)

with

v =
ξ

1 + ξ
ζ. (2.24)

2.4.2 Prior SNR Estimation

Eq.(2.23) is clearly a function of the prior SNR ξ and posterior SNR ζ, hence, they need to be
estimated. Given a noise PSD estimate, the posterior SNR is obtained as follows:

ζ̂(λ) =
R2(λ)

σ̂2
d(λ)

. (2.25)

The prior SNR, as defined in eq. (2.4), depends on the speech PSD, which is not given. A simple
way to estimate the prior SNR is the method of power spectral subtraction:

ξ̂(λ) = max
[
ζ̂(λ)− 1, 0

]
. (2.26)

There have been proposed several variants of the spectral subtraction method in the literature,
all suffering form artefacts called musical noise. This is why Ephraim and Malah proposed to
estimate the a priori SNR with a decision-directed approach, deduced from weighing the power
spectral subtraction (the ML estimate of the prior SNR) against an estimate of the speech PSD
obtained by incorporating the previous estimated speech coefficient:

ξ̂(λ) = α
Â2(λ− 1)

σ2
d(λ− 1)

+ (1− α)max
[
ζ̂(λ)− 1, 0

]
, (2.27)

where α is the smoothing parameter in the interval [0, 1], chosen heuristically with α = 0.97.
The decision-directed approach was reported to help suppressing the musical noise efficiently
[3].
Since the decision-directed approach is sensitive to amplitude onsets it is prone to track noise
bursts that are not identified to be noise by the noise PSD estimator. To cope with this problem
Breithaupt et al. proposed an approach based on cepstro-temporal smoothing in [16]. The prior
SNR is smoothed recursively in the cepstral domain; higher cepstral coefficients (except those,
that represent the fundamental frequency f0) are smoothed stronger than lower coefficients,
representing the speech envelope. To this end a fundamental frequency estimation has to be
carried out, as the cepstral bins containing f0 information should stay untouched. The selective
amount of smoothing is set by a smoothing parameter similar to α in eq. (2.27). Estimating the
prior SNR in the cepstral domain has the advantage that it takes into account prior knowledge
about the speech production. From a fundamental frequency estimate the smoothing can be
focussed onto regions where speech is not likely to be present. The authors of [16] reported
a clearer speech signal and higher robustness to non-stationary noise types compared to the
recursive smoothing in frequency domain.
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2.5 Phase Aware Speech Enhancement

2.5 Phase Aware Speech Enhancement

Conventional speech enhancement methods only provide an estimate of the spectral amplitude.
Thus, the enhanced amplitude is used together with the noisy phase for reconstruction (fig-
ure 2.4). In order to obtain a better estimate of the complex speech coefficients, the information
carried by the phase has been incorporated in recent publications. A distinction between two
ways of doing this can be made:

1. Estimating the phase and applying it at the synthesis stage, replacing the noisy phase (see
section 2.5.1), scheme in figure 2.5

2. Using a phase-estimate as additional information for the amplitude estimation or joint
estimation of amplitude and phase (see section 2.5.2)

y = s+v STFT

Amplitude
Estimation

iSTFT ŝ

R Â

ϑ

Figure 2.4: Conventional speech enhancement, illustrated by a block diagram

y = s+v STFT

Amplitude
Estimation

Phase
Estimation

iSTFT ŝ

R

ϑ

Â

α̂

Figure 2.5: Amplitude enhancement together with phase enhancement. The independent estimates are used
together for synthesis. The phase estimator can incorporate knowledge about the amplitude too
(e.g. section 2.5.1).

2.5.1 Phase Estimation in Single Channel Speech Enhancement

In 1984, Griffin and Lim showed that the modified STFT of a signal does not fit to a time domain
signal, if the phase is not taken into account. Thus, they proposed an iterative procedure to
estimate the phase given the speech spectral amplitude, based on the inconsistency criterion
eq. (2.63). While the phase is updated within iterations, the amplitude is constrained to stay
constant over iterations [4]. If the clean speech amplitude spectrogram is perfectly known, this
approach yields perceptually good results. In real world scenarios, the amplitude is estimated,
hence the performance is limited [14]. Nevertheless, the method presented in [4] emphasizes that
the limits of amplitude-only enhancement can be pushed by incorporating knowledge about the
spectral phase.

This section provides an overview of phase estimation methods considered to be important
for the proposed method in Chapter 3.

STFT Phase reconstruction in Voiced Speech for an Improved Single-Channel Speech
Enhancement (STFTPI)

The STFTPI method [14, 15] is used as prior information on the phase for the phase-aware
amplitude estimators described in section 2.5.2 and 2.5.2. The basic principle of the STFTPI
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2 Fundamentals

method relies on the assumption that the speech follows a harmonic structure in voiced frames
. The authors proposed a harmonic model for the speech signal in these voiced frames:

s(n) =
H∑
h=0

2Ah cos (nωh + φh) , (2.28)

with H denoting the number of harmonics (i.e. the order of the model), φh the phase offset and
ωh the normalized angular frequency at harmonic index h:

ωh = 2π
fh
fs

= 2π
(h+ 1)f0

fs
. (2.29)

The harmonic model is combined with the common STFT-framework by assigning ω(k) (the
angular frequency at STFT bin k) to ωh of the nearest harmonic h. This is justified by the
assumption that in voiced speech, the complex exponential at h dominates the adjacent STFT
bins k. The described assignment is expressed by:

ωh(k) = arg min
ωh

|ωh − ω(k)| . (2.30)

For reconstruction purposes the authors presented two approaches:

1. phase reconstruction along time

2. phase reconstruction along frequency

The temporal derivative of the phase yields the instantaneous frequency IF. An approximation
of the IF is obtained by the phase difference of two consecutive frames. The reconstruction along
time makes use of the assumption that the fundamental frequency changes slowly over time and
does not change within a frame’s length; the recursive reconstruction of the phase along time is
given by:

φ(λ, k) = princ{φ(λ− 1, k) + ωh(λ, k)L}, (2.31)

with L and princ indicating the frame shift and the principal argument of the phase, respec-
tively.
Alternatively, the reconstruction along frequency is achieved by using the prerequisite of the
dominance of the harmonic h in the adjacent frequency bands. This along with the assumption
of a linear phase window is used to reconstruct the phase along frequency.

Since the method proposed in [14] does not take into account regions lying between the har-
monics, important information is neglected. As the inter-harmonic frequency bands do provide
important components for sounds unlike vowels such as fricatives and plosives, the harmonic
model and the dominance-assumption do not fit well to real speech either. As a consequence
of the over-harmonisation produced by these shortcomings, the resulting enhanced speech was
reported to show buzzyness [11, 12]. An additional source of unnaturalness is the model-order
H, not explicitly estimated but limited to fit the frequency range up to 4 (kHz):

Hf0 ≤ 4(kHz) (2.32)

This of course does not reflect the actual order of the harmonic model and is only a coarse
estimate, relying on the fact that higher order harmonics appear being less prominent.
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Phase Estimation in Single Channel Speech Enhancement Using Phase Decomposition

In 2015, Kulmer and Mowlaee presented a phase estimation method relying on the decomposition
of the harmonic phase at time instant t(l), based on the source-filter concept of speech [25]:

ψ(h, l) = h

l∑
l′=0

ω0(l′)
(
t(l′)− t(l′ − 1)

)
︸ ︷︷ ︸

linear phase

+ ∠V (h, l)︸ ︷︷ ︸
minimum phase

+ ψd(h, l)︸ ︷︷ ︸
dispersion phase︸ ︷︷ ︸

Ψ(h,l)

, (2.33)

where Ψ(h, l) denotes the unwrapped phase, consisting of the minimum phase ∠V (h, l) and
the dispersion phase ψd(h, l). The fundamental frequency of the excitation is modelled by the
linear phase, whereas the minimum phase captures the phase of the vocal tract filter. The
dispersion phase component relates to the stochastic part of the excitation signal. The phase
wrapping, which is a major problem in phase estimation because due to the linear phase part,
the phase is wrapped along time. The goal of the phase decomposition method is to decouple the
instantaneous phase into linear and unwrapped parts. The unwrapped phase is then smoothed
in order to reduce the impact of noise, which distorts the unwrapped phase. This requires an
estimate of the linear phase, which is achieved by the underlying fundamental frequency denoted
by ω0 in eq. (2.33). When subtracting the linear phase estimate, the unwrapped phase Ψ(h, l)
is obtained. The temporal smoothing is implemented by the circular mean on the frames lying
within a 20 ms time-span (see eq. (2.21)). For reconstruction, the temporally smoothed phase
Ψ̂(h, l) is used:

ψ̂(h, l) = h
l∑

l′=0

ω̂0(l′)
(
t(l′)− t(l′ − 1)

)
+ Ψ̂(h, l). (2.34)

In order to transform the harmonic phase into a STFT phase, the phase of the DFT bins lying
within the main lobe width of the analysis window is set to ψ̂(h, l), since they are statistically
dependent. In contrast to the STFTPI method, where the phase of every DFT bin is assigned to
the nearest harmonic phase, the phase of bins lying outside the main lobe width stay untouched.
The time domain signal is then reconstructed by applying the inverse DFT and the overlap-and-
add procedure. The authors of [25] chose Blackman as the analysis window. It shows a high
side-lobe rejection, minimizing the influence of noise components lying near the harmonics. The
performance analysis showed a consistent quality improvement (predicted by PESQ) and even
improved intelligibility (predicted by STOI) for the f0 known scenario, where the f0 was obtained
from the clean reference speech signal.

MAP Phase Estimator

Based on the assumption of a von Mises distribution of the unwrapped phase component Ψ(h, l)
the authors of [9] proposed a MAP estimator of the harmonic phase. The signal model is given
as follows:

y(n) =

Hl∑
h=1

A(h, n) cos (hω0(n)n+ Ψ(h, n)) + d(n), (2.35)

The MAP estimate of Ψ(h, l) at frame index l is given by:

Ψ̂MAP (h, l) = arg max
Ψ(h,l)

p (y(l)|Ψ) p(Ψ)

p (y(l))
, (2.36)
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with p(Ψ) being the distribution of the unwrapped phase as defined in eq. (2.17), y(l) being the
noisy observation vector at frame index l and p (y(l)|Ψ) is:

p (y(l)|Ψ)) =
1√

2πσ2
d

N
e
− 1

σ2
d

∑N−1
n=0 (y(n)−A cos(hω0n+Ψ))2

. (2.37)

Solving for the given distributions yields the MAP phase estimator at harmonics [9]:

Ψ̂MAP = tan−1

−2A
σ2
d

∑N−1
n=0 y(n) sin (hω0n) + κ sin (αµ)

2A
σ2
d

∑N−1
n=0 y(n) cos (hω0n) + κ cos (αµ)

 , (2.38)

where N indicates the framelength and y(n) is the nth entry of y(l). The parameters of the von
Mises are estimated by applying the decomposition principle [25] onto the noisy observation in
order to obtain an unwrapped phase estimate. The true parameters κ and αµ of the distribution
are approximated from the noisy observation according to eq. (2.22) and eq. (2.21). The mean
value αµ is then obtained by adding the linear phase. The STFT representation needed for
synthesis is again obtained by the principle used for the phase decomposition method. Whereas
in terms of predicted quality in stationary noise the MAP phase estimator is only slightly better
performing than the STFTPI method, non-stationary noise types and evaluation in terms of
intelligibility show a big improvement [9]. Especially the lower sensitivity to the f0 estimation
errors in the signal plus noise scenario is important to note, as both, the phase decomposition
principle, as well as, the STFTPI method are very sensitive to such errors.

The MAP phase estimator already takes into account amplitude information and therefore is
different to the methods that fit to the scheme in figure 2.5.

2.5.2 Phase-Aware Amplitude Estimation

The aforementioned methods use the obtained phase estimate at the reconstruction stage only. In
the following, approaches to incorporate a phase estimate for amplitude estimation are discussed.

MMSE-optimal spectral amplitude estimation given the STFT-phase

In 2013, Gerkmann and Krawczyk proposed a phase-aware amplitude estimator optimal in the
MMSE sense, where they assumed that phase is given [13]. This is contrary to the uniform
assumption on phase, made in previous publications. The problem of estimating the speech
coefficient’s amplitude given the phase is formulated as follows:

Âβ = E
(
Aβ|R,ϑ, α

)
=

∫ ∞
−∞

Aβp (A|R,ϑ, α) dA, (2.39)

where β is a compression parameter that represents a generalization of the logarithmic amplitude
compression [17]. The estimation of (logarithmically) compressed spectral amplitudes has been
reported to be perceptually beneficial in [41]. To obtain the posterior p (A|R,ϑ, α), Bayes’
Theorem is used, defined as:

p(B|C) =
p(C|B)p(B)

p(C)
. (2.40)
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Further, the assumption that the clean speech amplitude is independent of the clean speech
phase (which means p(α) can be factorized out) gives:

Âβ =

∫∞
−∞A

βp (R,ϑ|A,α) p (A) dA∫∞
−∞ p (R,ϑ|A,α) p (A) dA

(2.41)

The assumption that the real and imaginary parts of the complex noise coefficients are inde-
pendent leads to the same conditional PDF of Y as in section 2.2.1. The speech-coefficient’s
amplitude distribution is assumed to follow a χ-distribution with shape parameter µ:

p(A) =
2

Γ(µ)

(
µ

σ2
s

)µ
A2µ−1e

− µ

σ2s
A2

. (2.42)

For the case that µ = 1, eq. (2.42) equals the Rayleigh distribution in eq. (2.11). By inserting
eq. (2.42) and eq. (2.14) into eq. (2.39) the solution is obtained:

Â =
(
E
(
Aβ|R,ϑ, α

))
=

√
1

2

ξ

µ+ ξ
σ2
d

(
Γ(2µ) + β

Γ(2µ)

D−(2µ+β)(ν)

D−(2µ)(ν)

) 1
β

, (2.43)

where D.(ν) denotes the parabolic cylinder function and ν is given as follows:

ν = −

√
2

ξ

µ+ ξ
ζ cos (ϑ− α) . (2.44)

As can be seen, the parameter ν contains the phase deviation ∆φ = ϑ−α which is incorporating
the phase information into the amplitude estimation. The lower the SNR, the larger the phase
deviation gets, thus more attenuation is applied. To deal with the fact that the clean phase is
unknown in practical scenarios, the authors proposed to use the phase estimation presented in
[14] in order to evaluate ν. In [10] the same authors use the voicing probability PHv achieved by
the f0-estimator PEFAC [19] to weight the phase-aware [13] and phase unaware [53] gainfunctions
(denoted by the subscripts):

Â[10] = PHvÂ[13] + (1− PHv)Â[53] (2.45)

This weighing helps to avoid employing an unreliable phase estimate at unvoiced frames while
profiting from the additional phase information at voiced frames. For the described estimation
scheme, the parameters of the speech amplitude’s distribution were chosen with β = µ = 0.5.
An improvement in PESQ has been reported, especially for the case of voiced speech.

Bayesian Estimation of Clean Speech Spectral Coefficients Given a Priori Knowledge of
the Phase

Unlike the method described above in [12], Gerkmann assumed the phase information obtained
from [15] to be uncertain. Hence he proposed a joint amplitude and phase estimator yielding
the CUP estimator (Complex spectral speech coefficients given Uncertain Phase information).
The CUP estimator is derived by solving

Ŝ(β) = E
(
Aβejα|Y, α̃

)
=

∫ ∞
0

∫ 2π

0
Aβejαp (A,α|Y, α̃) dαdA, (2.46)

where α̃ denotes the uncertain prior phase information, which is obtained by the STFTPI
algorithm proposed in [14, 15]. The joint posterior p (A,α|Y, α̃) is again obtained by using
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Bayes’ theorem:

p (A,α|Y, α̃) =
p (Y |α̃, A, α) p (α̃, A, α)∫ 2π

0

∫∞
0 p (Y |α̃, A, α) p (α̃, A, α) dAdα

(2.47)

To solve eq. (2.47) two assumptions are made:
If the clean phase α is given, α̃ does not contain further information, so that:

p (Y |A,α, α̃) = p (Y |A,α) , (2.48)

which is expressed by eq. (2.14) since the noise coefficients are assumed to be complex gaussian.
The second assumption is that speech amplitude and phase are independent of each other,

which helps to further simplify eq. (2.47):

p (α̃, A, α) = p(A)p(α, α̃) = p(A)p(α̃)p(α|α̃). (2.49)

The distribution of α around the prior information α̃ p(α|α̃) can be modelled by a von Mises
distribution with κ as a measure for the certainty of the prior information α̃. The same χ-
distribution as in [13] for the speech PDF is assumed. Given these models, eq. (2.47) can be
solved yielding the desired estimator of complex spectral speech coefficients given uncertain
phase information:

Ŝ(β) =

(√
1

2

ξ

µ+ ξ
σ2
d

)β
Γ (2µ+ β)

Γ (2µ)

∫ 2π
0 ejαe

ν2

4 D(−2µ−β)(ν)p(α|α̃)dα∫ 2π
0 e

ν2

4 D(−2µ)(ν)p(α|α̃)dα
, (2.50)

where ν is given as in eq. (2.44).

In order to compensate the amplitude compression β the final speech coefficients are obtained
by:

Ŝ =

∣∣∣Ŝ(β)
∣∣∣ 1β∣∣∣Ŝ(β)
∣∣∣ Ŝ(β). (2.51)

Since solving the integrals in eq. (2.50) is computationally very expensive, the author of [12]
implemented the CUP estimator by incorporating a look up table with the four dimensions prior
SNR ξ, posterior SNR ζ, concentration parameter κ and phase difference ∆φ = α − ϑ. The
entries of the look-up table are obtained by numerical integration, which provides satisfactory
precision since the integration intervals are bounded to [0, 2π]. The chosen resolution for the
look up table has not been reported.

The experiment setup includes the phase reconstruction along frequency as described in [14]
for obtaining the prior phase information α̃, relying on the fundamental frequency estimate of
the PEFAC algorithm [19]. The degree of certainty of the prior information is given by κ, which
controls the influence of α̃. Thus, κ needs to be estimated. Gerkmann suggested to use the
voicing probability PHv(λ), given by the PEFAC algorithm:

κ(λ, k) =

{
4PHv(λ) if kfs

N < 4000Hz

2PHv(λ) if kfs
N ≥ 4000Hz

(2.52)

The noise PSD σ2
d is estimated according to [42]. The obtained estimate is then plugged into
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ζ = R2

σ2
d

, denoting the posterior SNR. The prior SNR estimation is implemented in a decision

directed way [3]. In contrast to the authors in [3], the smoothing factor α is chosen with
0.96 instead of 0.97, in order to have less speech distortions. While this setup leads to PESQ
improvement only, replacing the decision directed approach by the cepstro-temporal smoothing
based prior SNR estimation approach presented in [16] leads to a joint improvement in terms of
quality and intelligibility, predicted by STOI.

2.6 Iterative Speech Enhancement

Since in Chapter 3 the derived estimation rules for amplitude and phase will be combined in an
iterative procedure, the following section presents previous iterative methods, considered to be
important for the proposed iterative algorithm.

2.6.1 Iterative Wiener Filtering

In [34], Oppenheim and Lim proposed an Iterative Wiener filter (IWF) solution to jointly opti-
mize the Linear predictive coefficients (LPC) parameters of a noise-degraded speech signal, the
gain g and noise-free speech estimate s0 in a maximum a posteriori (MAP) sense. The authors
use the LP coefficients to obtain the speech PSD needed for the Wiener Filter:

H(ω) =
σ2
S(ω)

σ2
S(ω) + σ2

d(ω)
, (2.53)

with the speech PSD σ2
S(ω), given by:

σ2
S(ω) =

g2

|1−
∑K

k=1 ake
−jkω|2

, (2.54)

where g is the excitation-gain and ak are the LP coefficients from the all-pole-model of speech
of order K:

s(n) =
K∑
k=1

aks(n− k) + gw(n). (2.55)

Since the performance of the LPC procedures decreases in the presence of noise [35], the obtained
coefficients ak are inaccurate if obtained from the noisy observation. In order to refine the
coefficient estimates, Oppenheim and Lim proposed an iterative procedure, where ak is estimated
from the filtered speech yielding a new speech PSD estimate. Thus, the filter in eq. (2.53) is
updated accordingly for the next iteration. If the conditional probability density function of ak is
uni-modal, the method always converges to a global maximum [34]. Otherwise, the convergence
strongly depends on the initial values of ak. Besides this, the method has two major drawbacks
[36]:

1. the computational load is increased by iterations

2. a convergence criterion was not found, so that a heuristic maximum number of iterations
had to be employed

The Block diagram in figure 2.6 illustrates the basic principle of the Iterative Wiener filter, with
i being the iteration index.
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y = s+ n

LP-Analysis
speech PSD
estimation

Wiener Filter ŝ

a(i) σ̂2(i)
s

ŝ(i)

Figure 2.6: Block Diagram of the Iterative Wiener Filter, a(i) = [a
(i)
1 a

(i)
2 . . . a

(i)
K ]T

2.6.2 Constrained Iterative Wiener Filtering

The Lim and Oppenheim IWF solution suffers from formant drifts and pole-jitter over iterations.
To circumvent this undesired behaviour, Hansen and Clements, in [36], extended the IWF idea
by spectral constraints in order to obtain a more speech-like output. They reported consistent
improvement over the IWF for different speech classes in terms of both, perceived speech quality
and speech recognition accuracy for additive white and cockpit coloured noise at different signal-
to-noise ratios. The spectral constraints Hansen and Clements introduced can be divided into
two groups:

1. constraints across time (inter-frame)

2. constraints across iterations (intra-frame)

For the sake of computational efficiency, the constraints are applied in the LSP (Line Spectral
Pairs) domain. The LSP representation originates in rearranging the LPC polynomial [26]:

A(z) = 1−
K∑
k=1

akz
−k = 0.5 (P (z) +Q(z)) , (2.56)

where z = ejω and

P (z) = A(z) + z−(K+1))A
(
z−1
)
, (2.57)

Q(z) = A(z)− z−(K+1)A
(
z−1
)
, (2.58)

with P (z) and Q(z) characterizing the mirror and the anti-mirror polynomials, respectively. As
the roots of the polynomials P (z) and Q(z) occur in complex conjugated pairs, half as many
roots have to be computed as directly calculating the roots of A(z). If the roots of P (z) and
Q(z) interleave, A(z) is considered to be stable, which is very easy to check. The bandwidth
of a resonance is reflected in the distance of a pole of P (z) to the closest root of Q(z). Two
examples of constraints based on the LSP representation are described in the following:
(i) An inter-frame-constraint based on median-smoothing over 5 frames and flooring the afore-
mentioned separation of neighbouring roots by a minimum distance, keeps the algorithm from
resulting in unreasonable bandwidths for speech LPC poles. (ii) To ensure smooth transitions
of the formants across iterations, the same distance-parameter is used as an intra-frame con-
straint, indicating if a root corresponds to a formant; in this case the tracks of the formant
across iterations would be smoothed accordingly. Hansen and Clements were not able to find
a blind termination criterion for the iterative procedure, as the optimal number of iterations
(with respect to predicted speech quality) varied for different noise and SNR scenarios. Hence,
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they chose the iteration number empirically.
The scheme in figure 2.7 illustrates how the constraints are used to adapt the shadow filter H(ω).

y = s+v

LP

if i = 1:
ŝ(i−1) = y

else:
ŝ(i−1) = ŝ′(i−1)

Memory (for intra-
frame-constraints)

Transform LP coefficients to LSP

Apply Constraints

Convert back to LP coefficients

Construct noncausal Wiener
Filter: eq.(2.54), eq. (2.53)

Wiener
Filter

Repeat until ∆ε ≤ Threshold

ŝ

y

ŝ(i−1)

â
(i)
k

â
(i−1)
k

â
(i)
k

p̂
(i)
k , q̂

(i)
k , p̂

(i−1)
k , q̂

(i−1)
k

p̂
′(i)
k , q̂

′(i)
k

â
′(i)
k

H(i)(ω)

ŝ(i)

ŝ′(i−1)

Figure 2.7: Block Diagram of the Constrained Iterative Wiener Filter. With LP coefficient vector a(i) =
[a

(i)
1 a

(i)
2 . . . a

(i)
K ]T and the coefficient vectors of the Line Spectrum Pairs P (z) and Q(z): p(i) =

[p
(i)
1 p

(i)
2 . . . p

(i)
K ]T,q(i) = [q

(i)
1 q

(i)
2 . . . q

(i)
K ]T at iteration index i. p̂

′(i)
k , p̂

′(i)
k , q̂

′(i)
k and ŝ′(i−1) are the

estimates obtained by applying the inter- and intra-frame constraints.

2.6.3 Iterative Wiener Filtering using Complex LPC Speech Analysis

The conventional LPC model relies on the assumption that speech is stationary within the
analysis frame, hence it cannot model variations of the speech spectrum. To capture the time-
varying nature of speech, Funaki et al. proposed a time-varying complex auto regressive (TV-
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CAR) model in [37]. To this end, an analytic speech signal is assumed:

sc(n) =
s(n) + jsH(n)√

2
, (2.59)

where c indicates the complex nature of the target signal and the subscript H denotes the Hilbert
transform of the observed signal y(n). The LP coefficients in eq. (2.55) are adapted according
to the new signal model:

sc(n) =

p∑
k=1

acks
c(n− k) + gwc(n), (2.60)

where ack are now the complex-valued AR coefficients, modelled by a complex basis expansion.
The authors argued that the speech PSD estimate is refined by the assumption of an analytic
target signal by replacing ak in eq.(2.54) with ack. In [38], Funaki proposed to replace the LP in
the iterative Wiener filter by the TV-CAR method, resulting in the scheme shown in figure 2.8

y = s+ n

TV-CAR
speech PSD
estimation

Wiener Filter ŝ

ac,(i) σ̂2(i)
s

ŝ(i)

Figure 2.8: Block Diagram of the iterative Wiener Filter using the TV-CAR method instead of the conven-
tional LP, ac,(i) = [a

c,(i)
1 a

c,(i)
2 . . . a

c,(i)
K ]T

2.6.4 Iterative Closed-Loop Phase-Aware Single-Channel Speech Enhancement

Whereas the two aforementioned iterative methods are working in the linear prediction domain,
in 2013 Mowlaee and Saeidi [20] presented an iterative approach that combines a phase aware
amplitude estimator together with a phase estimator. The two estimators are used to estimate
the amplitude and phase spectra iteratively [20]:

To provide an initial amplitude estimate, the conventional Wiener filter is used. This estimate
is exploited to estimate a phase spectrum for speech components with a local SNR lower than
6 (dB). This is justified by the finding that for spectral components with SNRs larger than 6
(dB), the noisy phase is a decent estimate of the clean phase from a perceptual point of view
[22]. To refine the spectral amplitude estimate, the enhanced phase spectrum is fed back into
an amplitude estimator, now phase aware as defined in eq. (2.43). The parameters µ and β in
eq. (2.43) are set to µ = 0.5, modelling a more heavy-tailed prior than the χ-distribution [13]
and β = 1, respectively. The phase-aware amplitude estimator is of the form:

Â =

√
1

2

ξ

µ+ ξ
σ2
d

(
Γ(2)

Γ(1)

D−2(ν)

D−1(ν)

)
, (2.61)

where ν takes into account the phase deviation ∆φ = ϑ− α:

ν = −

√
2

ξ

µ+ ξ
ζ cos (ϑ− α) . (2.62)

– 26 – September 8, 2015



2.7 Joint MAP Estimation of Speech Amplitude and Phase Assuming Uniform Prior Distribution of the Phase

In this case α is assumed to be known by its estimate α̂, which was achieved by the geometry
method [39]. The so-obtained amplitude and phase estimates together build a complex speech

spectrogram estimate Ŝ
(i)

consisting of the entries Ŝ(i)(λ, k) = Â(i)(λ, k)eα̂
(i)(λ,k), where i denotes

the iteration index. As a stopping criterion, the authors used the inconsistency constraint derived
in [21]:

F (Ŝ
(i)

) = STFT
(

iSTFT
(
Ŝ

(i)
))
− Ŝ

(i)
, i : iteration index. (2.63)

The consistency criterion takes care of the fact that a modified STFT-spectrogram does not in
general correspond to an existing time domain signal. The iterative application of the phase and
the amplitude estimator improves the consistency of the modified spectrogram and was shown
to saturate across iterations, so that its use as a stopping criterion was well justified. The results
reported in terms of PESQ and segmental SNR showed superior performance compared to [3].
Figure 2.9 pictures the processing steps by a block diagram.

y = s+ v
Conventional
Amplitude
Estimator

Phase Esti-
mation [39]

Consistency
Check

Signal Re-
construction

Phase-Aware
Amplitude
Estimator

Ŝ
(c,i)

ŝ(i)

Ŝ
(i)
α̂

Ŝ,N̂

Ŝ
(i)

,ejα̂
(i)

Figure 2.9: Block Diagram of the iterative closed loop method proposed in [20]. Ŝ
(c,i)

denotes the STFT of the

reconstructed signal, STFT
(

iSTFT
(
Ŝ
(i)
))

, used for the consistency criterion. The spectrogram

estimate Ŝ
(i)

consists of the amplitude estimates from eq.(2.61) and the phase estimate achieved

by the geometry method presented in [39].

2.7 Joint MAP Estimation of Speech Amplitude and Phase
Assuming Uniform Prior Distribution of the Phase

One novelty of this thesis lies in incorporating the assumption of a non-uniform prior distribu-
tion of the speech phase component into a joint Maximum a Posteriori (JMAP) estimation rule.
There have been JMAP estimators in the past, assuming uniform-phase prior; two of these noise
suppression rules will be presented in the following. They both assume the same prior distri-
bution on the spectral phase but they make different assumptions about the spectral amplitude
distributions namely:

1. Rayleigh Distribution (by Godsill and Wolfe in [8])

2. Super-Gaussian Distribution (by Lotter Vary in [5])

2.7.1 Godsill-Wolfe

In [8], Wolfe and Godsill presented three (computationally) efficient alternatives to the Ephraim-
Malah estimation rule in [3]. Amongst two other methods they introduced a Joint maximum a
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Posteriori Spectral Amplitude and Phase Estimator, where they assume independent, zero mean,
complex Gaussian Distributions of the speech and noise DFT-coefficients with variances σ2

s and
σ2
d:

S ∼ N2(0, σ2
s), (2.64)

N ∼ N2(0, σ2
d). (2.65)

The complex noisy speech DFT coefficients Yk = Rke
jϑk can be expressed by the sum of the

clean speech and the noise components:

Yk = Sk +Nk (2.66)

The described model yields the same marginal and joint distributions already mentioned in
section 2.2, equations eq. (2.11)-eq. (2.13). Godsill and Wolfe obtain the joint MAP estimator
by maximising the posterior distribution p(Ak, αk|Yk) (for the sake of notational convenience
the frequency index k will be neglected in the following):

p(A,α|Y ) = p(Y |A,α)p(A,α) =
A

π2σ2
sσ

2
d

e
− |Rejϑ−Aejα|

σ2
d

−A
2

σ2s (2.67)

Due to the monotonically increasing behaviour of the ln(.), it can be applied to eq. (2.67) in
order to simplify the differentiating needed to find its maximum.

J = ln(p(A,α|Y )) = −|Rejϑ −Aejα|
σ2
d

− A2

σ2
s

+ ln(A)− ln
(
π2σ2

sσ
2
d

)
(2.68)

The joint MAP estimates of the phase and the amplitude are now obtained by differentiating
eq. (2.68) with respect to both variables and setting the terms to zero:

α̂JMAP
Godsill/Wolfe = ϑ (2.69)

ÂJMAP
Godsill/Wolfe =

ξ +
√
ξ2 + 2(1 + ξ) ξζ

2(1 + ξ)
R (2.70)

Due to the assumption of a uniform phase prior probability density function, the joint MAP
phase estimate is equal to the observed noisy phase ϑ. The amplitude estimate is a function
of prior and posterior SNR. For analysis purposes the corresponding gain function that fulfils
Â = G ·R is often used:

GJMAP
Godsill/Wolfe =

ξ +
√
ξ2 + 2(1 + ξ) ξζ

2(1 + ξ)
(2.71)

2.7.2 Lotter-Vary

In 2005, Lotter and Vary proposed a JMAP estimation method in [5] where they jointly maximize
the posterior probability of amplitude and phase assuming uniform prior distribution of the
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phase:

Â = argmax
A

(p(A,α|Y )) = argmax
A

(
p(Y |A,α)p(A,α)

p(Y )

)
(2.72)

α̂ = argmax
α

(p(A,α|Y )) = argmax
A

(
p(Y |A,α)p(A,α)

p(Y )

)
(2.73)

Using the Super-Gaussian speech model in section 2.2.2 for P (A) and the independence as-
sumption of phase and amplitude p(A,α) = p(A)p(α) the log-likelihood function is obtained:

log(p(Y |A,α)p(A,α)) = log

(
µν+1

2π2σ2
dσ

ν+1
s Γ(ν + 1)

)
−
∣∣Y −Aejα

∣∣
σ2
d

+ νlog(A)− µ A
σs

(2.74)

Differentiating and setting to zero yields the desired estimates. The joint MAP estimate of the
phase is the noisy phase:

α̂JMAP
Lotter/V ary = ϑ (2.75)

The JMAP gain function for amplitude enhancement is given as follows:

ĜJMAP
Lotter/V ary = u+

√
u2 +

ν

2ζ
, (2.76)

with:

uLotter/V ary =
1

2
− µ

4
√
ζξ

(2.77)

There are no special functions, such as the Bessel-functions or the parabolic cylinder function
involved in the estimation rule, thus the computational complexity of this joint MAP method is
very low compared to MMSE estimators (e.g. [3, 12]).
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3
Proposed Contributions

Based on the methods presented in Chapter 2, the following Chapter introduces a novel approach
to estimate phase and amplitude in a joint way. The prior knowledge of the distribution of the
unwrapped phase is taken into account by incorporating it into the joint maximum a posteriori
framework.

3.1 Proposed Method Assuming Non-Uniform Prior Distribution of
Phase

The derivation of the proposed Joint MAP estimator follows the same principle as illustrated
in section 2.7.2 and 2.7.1. It maximizes the maximum a posteriori probability of Â and α̂ given
the observation Y = Rejϑ. The assumed amplitude-distribution is similar to the distribution
derived by Lotter and Vary:

p(A) =
µν+1

Γ(ν + 1)

Aν

σν+1
s

e−
Aµ
σs , (3.1)

whereas the distribution of the unwrapped phase is considered to be a Von Mises distribution
with concentration parameter κ and circular mean αµ instead of a uniform distribution:

p(α) =
eκ cos(α−αµ)

2πI0(κ)
. (3.2)

The assumption of independence of amplitude and phase yields:

p(A,α) = p(A)p(α) =
Aνµν+1

σν+1
s Γ(ν + 1)2πI0(κ)

eκ cos(α−αµ)−Aµ
σs . (3.3)

Taking into account the statistical model in section 2.2.1 gives us:

p(R,ϑ|A,α) =
1

πσ2
d

e
|Rejϑ−Aejα|

σ2
d . (3.4)

Similar to [5], the values for Â and α̂, that maximise p(A,α|R,ϑ), are searched. From Bayes’

Theorem we know that p(A,α|R,ϑ) = p(R,ϑ|A,α)p(A,α)
p(R,ϑ) . The maximisation is achieved by partial
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differentiating with respect to the variables A and α and setting the obtained derivatives to
zero. Since p(R,ϑ) is independent of A and α, it can be dropped in the further course of the
derivation. This yields the following likelihood function to maximise:

L(A,α) = p(R,ϑ|A,α)p(A,α) =
Aνµν+1

2π2σν+1
s Γ(ν + 1)I0(κ)σ2

d

e
κ cos(α−αµ)−Aµ

σs
+
|Rejϑ−Aejα|2

σ2
d . (3.5)

To simplify the differentiation of eq. (3.5) the log-likelihood function ln(L(A,α)) is evaluated
instead of L(A,α). This is possible, because the natural logarithm function is monotonically
increasing and therefore the solutions will not change due to the transformation:

{ÂMAP , α̂MAP } = arg max
A,α

L(A,α) = arg max
A,α

ln(L(A,α)). (3.6)

Additionally, all terms that are independent of A and α can be discarded, so that the equation
that remains to be solved is of a much more simple form than eq. (3.5):

ln(L(A,α)) = νln(A)− µ

σs
A+

|Reϑ −Aejα|2

σ2
d

+ κ cos(α− αµ), (3.7)

with |Rejϑ −Aejα|2 = R2 +A2 − 2AR cos(ϑ− α) and further neglecting R2:

ln(L(A,α)) = νln(A)− µ

σs
A+

A2

σ2
d

− 2AR

σ2
d

cos(ϑ− α) + κ cos(α− αµ) . (3.8)

As an approximation the amplitude and the phase are assumed to be independent, thus the
partial derivatives of eq. (3.8) can be taken in order to obtain the MAP estimates of A and α,
respectively.

3.1.1 The MAP Spectral Phase Estimator

In order to obtain the MAP-Phase estimate we set the derivative of ln(L(A,α)) with respect to
α to zero:

∂ln(L(A,α))

∂α
=

2AR

σ2
d

sin(ϑ− α)− κ sin(α− αµ)
!

= 0. (3.9)

Inserting sin(a− b) = sin(a) cos(b)− cos(a) sin(b) gives us:

2AR

σ2
d

(sin(ϑ) cos(α)− cos(ϑ) sin(α)) = κ (sin(α) cos(αµ)− cos(α) sin(αµ)) , (3.10)

sin(α)

cos(α)
=

2AR
σ2
d

sin(ϑ) + κ sin(αµ)

2AR
σ2
d

cos(ϑ) + κ cos(αµ)
. (3.11)

(3.12)

Resulting in:

α̂MAP = arctan

(
β sin(ϑ) + κ sin(αµ)

β cos(ϑ) + κ cos(αµ)

)
, (3.13)

where β = 2AR
σ2
d

. As the clean spectral amplitude A is not known the MAP estimate is incorpo-

rated instead, so that β = 2ÂMAPR
σ2
d

.
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Eq. (3.13) shows that the observation ϑ and the circular mean αµ are traded off against each
other by the weighting factors β and κ. At high SNRs, β becomes large and the the noisy ob-
servation ϑ is considered to be more reliable. For highly voiced regions, where the concentration
parameter κ is very large, the weight lies on the circular mean αµ.

Relation to previous MAP Phase Estimators

It can be shown that the STFT MAP Phase estimator in eq. (3.13) evaluated at harmonics is
equivalent to the harmonic MAP Phase estimator in [9], once the harmonics (ω) are resolved by
the DFT (i.e. ω = 2πk

NFFT
). To illustrate this, the following identities are used (exceptionally, to

show the relation between the two estimators, the frequency is indexed again):

Im{Y (k)} = R(k) sin(ϑ(k)) (3.14)

Re{Y (k)} = R(k) cos(ϑ(k)) (3.15)

Eq. (3.14) and eq. (3.15) as well as the DFT definition eq. (2.2) of Y (k) (neglecting the window
and the frame shift) can be plugged into eq. (3.13):

α̂MAP (k) = tan−1

 2A(k)
σ2
d(k)

Im
{∑N−1

n=0 y(n)e
−j2πnk

N

}
+ κ(k) sin (αµ(k))

2A(k)
σ2
d(k)

Re
{∑N−1

n=0 y(n)e
−j2πnk

N

}
+ κ(k) cos (αµ(k))

 , (3.16)

α̂MAP (k) = tan−1

−2A(k)
σ2
d(k)

∑N−1
n=0 y(n) sin

(
2πnk
N

)
+ κ(k) sin (αµ(k))

2A(k)
σ2
d(k)

∑N−1
n=0 y(n) cos

(
2πnk
N

)
+ κ(k) cos (αµ(k))

 . (3.17)

In order to obtain samples of the noisy observation at harmonics, its DFT representation is
sampled at frequency ω by convolution with the δ function:

Y (ω) =

N−1∑
n=0

y(n)e
−j2πnk

N ∗ δ(2πnk

N
− ωn) =

N−1∑
n=0

y(n)e−jωn. (3.18)

Using the harmonic Y (ω) in eq. (3.18) results in the MAP phase estimate at harmonics:

α̂MAP
h = tan−1

− 2Ah
σ2
d,h

∑N−1
n=0 y(n) sin (ωn) + κh sin (αµ,h)

2Ah
σ2
d,h

∑N−1
n=0 y(n) cos (ωn) + κh cos (αµ,h)

 , (3.19)

which is the same estimator as derived in [9]. The amplitude A, the noise PSD σ2
d as well as κ

and αµ need to be evaluated at harmonics only too, which is denoted by the subscript h.

3.1.2 The MAP Spectral Amplitude Estimator assuming a Super-Gaussian
Distribution

The phase estimate is clearly a function of the spectral amplitude, in this case of the MAP-
estimate of the amplitude ÂMAP , which will be derived in the following. To this end, the
derivative of ln(L(A,α)) with respect to A is set to zero:

∂ln(L(A,α))

∂A
=
ν

A
− µ

σs
+ 2

A

σ2
d

− 2
R

σ2
d

cos(ϑ− α)
!

= 0, (3.20)
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which leads to the quadratic equation:

A2 −A
(
R cos(ϑ− α)−

σ2
dµ

2σs

)
+ ν

σ2
d

2
= 0, (3.21)

A2 −AR
(

cos(ϑ− α)−
σ2
dµ

2Rσs

)
+R2ν

σ2
d

2R2
= 0, (3.22)

A2 −AR
(

cos(ϑ− α)− µ

2
√
ξζ

)
+R2 ν

2ζ
= 0. (3.23)

By defining 2u = cos(ϑ− α)− µ
2
√
ξζ

the solution of eq. (3.23) is:

ÂMAP = uR+

√
R2u2 −R2

ν

2ζ
, (3.24)

ÂMAP = GMAPR. (3.25)

(3.26)

The corresponding estimation rule:

GMAP = u+

√
u2 − ν

2ζ
. (3.27)

Furthermore, since there is no access to the clean phase α:

u =
cos(ϑ− α̂MAP )

2
− µ

4
√
ξζ

. (3.28)

The MAP amplitude estimate is a function of the MAP phase estimate and vice versa. This
interdependency is used to implement a joint estimation rule, based on iterations in section 3.2
and 3.3.

3.1.3 The MAP Spectral Amplitude Estimator assuming a Rayleigh distribution

Using the Rayleigh amplitude model as presented in section 2.7.1 together with a von Mises
distribution of the phase yields the following posterior:

p(A,α|Y ) = p(Y |A,α)p(A,α) =
A

π2σ2
sσ

2
dI0(κ)

e
− |Rejϑ−Aejα|

σ2
d

−A
2

σ2s
+κ cos(α−αµ)

(3.29)

Taking the ln(.) and neglecting all terms independent of A and α leads the function to maxi-
mize:

L(A,α) = ln(A)− A2

σ2
d

+
2AR

σ2
d

cos (ϑ− α) + κ cos (α− αµ)− A2

σ2
s

(3.30)

The MAP phase estimator is independent of the assumed prior distribution of the amplitude,
therefore only the phase-aware amplitude estimator changes (obtained by differentiating with
respect to A and setting to zero):

GMAP
2 =

ξ cos (ϑ− α) +
√
ξ2 cos2 (ϑ− α) + 2(1 + ξ) ξζ

2(1 + ξ)
. (3.31)

– 34 – September 8, 2015



3.1 Proposed Method Assuming Non-Uniform Prior Distribution of Phase

If the phase deviation ϑ − α gets zero, the obtained estimator yields the phase-insensitive es-
timator of Godsill and Wolfe in [8], now being a special case of the phase-aware estimation
rule.

It is interesting to note that if the complex coefficients Y and S are orthogonal to each other
(which means that cos (ϑ− α) = 0), the amplitude estimate gets independent of the observation
R as it does not contain any information about the underlying amplitude A:

ÂMAP = GMAP
2 R = R

√
2(1 + ξ) ξζ

2(1 + ξ)
= R

√
ξσ2

d

R22(1 + ξ)
=

√
ξσ2

d

2(1 + ξ)
(3.32)

3.1.4 Relation to previous MAP Amplitude Estimators

In this section the relation of the phase-sensitive MAP amplitude estimator to its corresponding
phase-insensitive MAP estimator will be examined (corresponding means that the same prior
distribution of the STFT amplitudes is assumed). To this end it will be assumed that the noise
is known. The JMAP amplitude estimator of Lotter and Vary [5] eq. (2.76) can be considered
as a special case of the derived estimation rule in eq. (3.27).
The gainfunction in both cases yields:

G = u+

√
u2 +

ν

2 · ζ
, (3.33)

where for [5]:

uLotter/V ary =
1

2
− µ

4 ·
√
ζ · ξ

, (3.34)

and for the proposed method:

uproposed =
cos ∆φ

2
− µ

4 ·
√
ζ · ξ

, (3.35)

with the phase deviation ∆φ = ϑ−α. The statistical values of the prior SNR ξ and the posterior
SNR ζ will be replaced by their instantaneous values in this section:

SNRprior =
A2

D2
, (3.36)

SNRpost =
R2

D2
. (3.37)

If cos(ϑ − α) = 1 (which corresponds to the case ϑ − α = 0 → ϑ = α) the two estimators
are the same. To illustrate, how different the two amplitude-estimators behave (especially in
low SNR-regions), we plot the weights of the gainfunctions for different prior SNRs SNRprior
across the posterior SNR SNRpost (figure 3.2 and figure 3.3). As both SNRs are now given and
therefore the triangle of the speech-amplitude, the noise-amplitude and the amplitude of the
observation is well defined (figure 3.1), geometry implicitly provides the corresponding phase
deviation, which can be used for evaluating the corresponding weights.
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Y
=
R

e
jϑ

S = Aejα

N = Dejφ

∆φ

Figure 3.1: The triangle of observation, clean speech and noise

Applying the law of cosines yields the following equation:

D2 = R2 +A2 − 2AR cos ∆φ (3.38)

Which can be rewritten (dividing by D2) as:

1 = SNRpost + SNRprior − 2
√
SNRpostSNRprior cos ∆φ (3.39)

and solved for cos ∆φ:

cos ∆φ =
SNRpost + SNRprior − 1

2
√
SNRpostSNRprior

. (3.40)

The geometric relations also show that only certain combinations of prior and posterior SNRs
are valid, as the absolute value of the cosine cannot be larger than 1:∣∣∣∣∣SNRpost + SNRprior − 1

2
√
SNRpostSNRprior

∣∣∣∣∣ ≤ 1 (3.41)

Assuming the prior SNR is given, from eq. (3.41) we obtain a valid region for the posterior SNR:

SNRprior − 2 ·
√
SNRprior + 1 ≤ SNRpost,valid ≤ SNRprior + 2 ·

√
SNRprior + 1 . (3.42)

Lotter-Vary

Figure 3.2 shows that for high SNRs the gain functions suppress very similar, whilst for lower
SNR regions the phase aware amplitude estimator shows more noise suppression. The still very
often used STSA estimator of Ephraim and Malah [3] is also included in the analysis to show
how the different criteria (MMSE vs. MAP) and the prior distribution choice can affect the
estimation rule.
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Figure 3.2: Weights of the gainfunctions, JMAP: Super-Gaussian amplitude prior

Godsill-Wolfe

A similar picture is given in figure 3.3, where the phase-insensitive and the phase-sensitive
JMAP amplitude estimators derived from a Rayeigh amplitude model are compared with each
other. Again lower SNR regions tend to be more suppressed by the phase-aware than by the
phase-unaware method.
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Figure 3.3: Weights of the gainfunctions, JMAP: Rayleigh amplitude prior

3.2 Joint Estimation in STFT Domain

Since the amplitude estimate depends on the phase and vice versa the following section describes
how to connect the two estimators. The goal is to have a joint estimation framework that can
improve both, phase and amplitude of noise corrupted speech. The estimation rules in eq. (3.13)
and eq. (3.24) are non-linear, therefore it is a challenging task to jointly solve them analytically.
Hence, the estimators are connected by applying them iteratively. Interconnecting the two
estimators is not straightforward either, as there arise several questions. The most obvious
question is, whether to start with an amplitude or a phase estimate and which initial values to
use within the first iteration. The JMAP amplitude estimator of Lotter and Vary [5] is well
examined and known to perform superior to MMSE estimators in terms of noise reduction in
speech present segments [49] of a noisy signal. Thus, the choice to initialize α with the noisy
phase ϑ in order to obtain a first (phase-unaware) amplitude estimate seems to be a reasonable
choice. However, an initial phase estimate obtained by smoothing the unwrapped phase as in
[25] could be an alternative.

September 8, 2015 – 37 –



3 Proposed Contributions

Beside the question, which estimator to start with, it is also important to clarify, if the
iterative procedure should be applied framewise or for the whole signal. This problem arises,
when estimating the prior SNR decision directed [3] from frame to frame. The two approaches
will be referred to as:

• the inner loop (framewise estimation of amplitude and phase)

• the outer loop (iterating over the whole signal)

3.2.1 Parameter Estimation

In the following, the assignment of the parameters, needed for the JMAP estimator, will be
discussed.

The Super-Gaussian amplitude distribution is modelled by the parameters µ and ν, which
have been chosen with µ = 1.74 and ν = 0.126 in [5] as they minimise the Kullback-Leibler
divergence between the empirical distribution of speech coefficients and the parametric Super-
Gaussian distribution. The Kullback-Leibler divergence is an information theoretical measure,
which describes the discriminative power between two random variables emitted by different
probability density functions. The parameters µ and ν can also be chosen to fit other distribu-
tions such as the Gamma distribution, however, this thesis will stick to the parameters found to
give an optimal fit in an information theoretical way by Lotter and Vary.

The parameters of the von Mises distribution are directly estimated from the noisy observa-
tion. The sample mean angle αµ is calculated as described in eq. (2.21), while the concentration
parameter κ is estimated using the following approximation of the inverse of eq. (2.22) [43]:

κ =


2Z̄ + Z̄3 + 5 Z̄

5

6 if Z̄ < 0.53

−0.4 + 1.39Z̄ + 0.43
1−Z̄ if 0.53 ≤ Z̄ < 0.85

1
Z̄3−4Z̄2+3Z̄

if 0.85 ≤ Z̄
(3.43)

κ- and αµ-Estimation for the STFT-Domain

At harmonics, the unwrapped phase is obtained by removing the linear phase part due to the
fundamental frequency, hence the circular statistics of one harmonic can easily be estimated.
In the STFT domain, the unwrapped phase is approximated by a de-trended phase. In order
to obtain a trend phase, the STFT phase is smoothed with a 20 ms moving average filter. A
frameshift of one sample ensures that no wrapping-jumps of the phase are missed (up to fs

2 ).
Further the small frameshift provides a large number of data points, needed to obtain reliable
statistics. The trend phase is subtracted from the instantaneous phase yielding an unwrapped
phase. After compensating the phase shift due to the window, the circular statistics methods
described above are applied. The resulting κ estimate along time and frequency is pictured in
figure 3.4, left panel.

An alternative way of obtaining the κ estimate is to estimate it first at harmonics and assigning
the values at harmonic h to the STFT-bins lying within its main lobewidth. The outcome of this
method is illustrated in figure 3.4, right panel. As a a consequence of the underlying harmonic
model, κ shows a corresponding structure, which is more likely to fit speech if the model order
is estimated correctly. The mean value αµ can be assigned similar from harmonics to DFT-bins.

One way to deal with the model order problem was presented in [12]; Gerkmann proposed to
assign κ proportional to the voicing probability (see eq. (2.52)), using different factors for low
and high frequency regions.
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Since κ can be assumed to be SNR dependent (the higher the concentration parameter, the
higher the SNR) another empirical estimation was examined; Assigning κ to a multiple of the
posterior SNR:

κ̂ = P ζ̂, (3.44)

where the factor P relating κ to the posterior SNR needs to be empirically chosen. The mean
value αµ can in turn be estimated by the de-trending method or by assigning it from harmonics.
In section 3.2.5 the approaches are compared with respect to their effects on noise suppression.
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Figure 3.4: Time-frequency representations of κ, obtained by (left) unwrapping the phase at harmonics,
(right) unwrapping the phase by detrending; both for cean speech

3.2.2 Analysis/Synthesis Setup

The STFT setup for the iterative JMAP follows closely the setup chosen by Lotter and Vary, since
the parameters of the amplitude distribution depend strongly on that setup. Only the window
was adapted, because the Blackman window was found to be suitable for phase enhancement
since it has a high side-lobe rejection. However, this is on the cost of a wider main lobe [50].
The main lobe width of a Blackman window with length N is given as follows [50]:

∆ωmlw =
12π

N
(3.45)

The ability to seperate harmonics from each other depends on the fundamental frequency and
on the main lobe width:

∆ωmlw
2

fs ≤ 2πf0 (3.46)

For a chosen window length of 32 ms at a sampling frequency of fs = 8 (kHz), the smallest
frequency value that can be resolved by the window is:

f0,min =
12π

4 · 256 · π ( samples)
8000

( samples)

(s)
= 46.88 ( Hz) (3.47)

These equations assume that the window is centred around the harmonic, which is usually not
the case in the STFT domain. However, as an approximation the chosen window along with the
window length is appropriate for the estimator. This is the case for speech, where fundamental
frequencies f0 > 80 (Hz) can be expected. While the parameter estimation is carried out at
a frame shift of 1 sample, the estimation itself uses a frame shift of 1

8 of the frame length.
Figure 3.5 illustrates the impact of the window onto the separation of the harmonics.
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Figure 3.5: Two harmonics windowed by a Blackman window with length 32 (ms). The left panel shows two
harmonics that cannot be separated due to the window (fh1 = 99.61 (Hz), fh2 = 120.12 (Hz) );
two separable harmonics are shown on the right panel (fh1 = 99.61 (Hz), fh2 = 200.20 (Hz) ).
(blue, solid) harmonic 1, (red, solid) harmonic 2, (black, dashed) sum of the two harmonics.

3.2.3 The Stopping Criterion

To find the optimal number of iterations, a stopping criterion is needed. One requirement
such a stopping criterion has to fulfil is that it should reflect the main purpose of speech-
enhancement; improving the quality and/or the intelligibility of the noise-corrupted speech. In
order to asses the quality and/or intelligibility improvement, the reference signal is needed.
Since the clean speech is not accessible in real world applications, directly optimizing on the
quality or intelligibility is not possible. In [34] this problem stayed unsolved and a heuristic
stopping criterion had to be employed, whereas in [20] the consistency criterion showed sufficient
convergence.

Since the estimates of phase and amplitude should both maximise the same log-likelihood
function given in eq. (3.8), an intuitive way of assessing the convergence of the iterative method
is the tracking of the log-likelihood function across iterations. Figure 3.6 shows how the function
gets saturated after one iteration.
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Figure 3.6: Saturation of the log-likelihood function across iterations, utterance: GRID-corpus [51], ”bin
blue at l 4 soon”, speaker A50
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To get a better insight in how the iteration number influences the estimates directly, the
change of the MAP-phase and amplitude (i.e. gainfunction) across iterations was analysed:

∆α̂MAP
i =

2

Nλmax

λmax∑
λ=1

N
2∑

k=1

(
α̂MAP
i (λ, k)− α̂MAP

i−1 (λ, k)
)2

, i = 1, 2, ..., (3.48)

∆GMAP
i =

2

Nλmax

λmax∑
λ=1

N
2∑

k=1

(
GMAP
i (λ, k)−GMAP

i−1 (λ, k)
)2

, i = 1, 2, ..., (3.49)

with λ, λmax, i, k and N being the frame index, the frame number, the iteration index, the
frequency index and the framelength. The start value α̂MAP

0 (λ, k) is initialised with the noisy
phase ϑ. Figure 3.7 shows how the estimates converge. However, iterating by means of maximis-
ing the joint posterior probability does not inherently provide the best result in terms of quality
or intelligibility. To this end the maximum number of iterations has been chosen heuristically,
motivated by the performance in quality and intelligibility, which turned out to be the best
after two iterations. This choice again is well justified by the convergence behaviour shown in
figure 3.7, which illustrates that after two iterations there is hardly any change in the estimates.
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Figure 3.7: Convergence across iterations of (left) gain function (right) phase estimate

3.2.4 Noise PSD Estimation

The noise PSD estimate is obtained using the Unbiased MMSE-Based Noise Power Estimator
proposed in [42]. It takes into account the Speech Presence Probability into the MMSE estima-
tion of noise. The method has been reported to outperform state-of-the art techniques such as
the minimum-statistics approach [18].

3.2.5 Iterative Estimation

In the STFT-domain, the iterative procedure performed best, when using the inner loop im-
plementation i.e. the decision directed prior SNR at frame λ is estimated with respect to the
amplitude estimate Â(λ − 1), obtained by the iterative procedure. Starting with an initial
phase-unaware amplitude estimate, two iterations are carried out. The corresponding block
diagram is given in figure 3.8. Bold letters denote a full STFT spectrogram, whilst λ indicates
the frame number for the decision directed prior SNR estimation. The maximum value of the
iteration index i is the empirically found maximum number of iterations, denoted by a capital
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I. The operator DD(.) is used to clarify that the prior SNR ξ is estimated using the decision
directed approach described in eq. (2.27) [3]. The κ used for the phase estimation is obtained
by the de-trending method described in section 3.2.1. Estimating it at harmonics yields higher
noise suppression but more musical noise (see spectral peaks in figure 3.9). If κ is assigned
proportional to the posterior SNR and αµ is estimated at harmonics the musical noise gets de-
emphasized on the cost of more speech suppression. The resulting performance depends highly
on the assignment of the factor P connecting κ and the posterior SNR so that no consistent
assignment could be found. As a trade-off between the two methods, the κ and αµ assignment
by the de-trending method yielded the best results.

Figure 3.10 illustrates how the estimator works in magnitude domain as well as in phase
domain. While the circular variance gives information on how dense the circular data is around
its mean, the group delay is defined as the negative derivative of the phase with respect to the
frequency and has been reported to be correlated with the perceived quality of speech [46] ; its
structure is shown in the lower panel of figure 3.10.
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Figure 3.8: Block Diagram of the inner loop
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Figure 3.10: Spectrogram, circular variance and group delay, 2 Iterations. The scores predicting quality
(PESQ), intelligibility (STOI) and phase recovery (HPSNR) are shown on the top of each
panel.

From figure 3.10 it can be seen, that especially the group delay structure is well restored by
the iterative method.

3.2.6 Evaluation

Since listening tests are very time-consuming, instrumental metrics, predicting the performance
of enhanced speech, are commonly used. In order to choose an optimal number of iterations
with respect to predicted intelligibility and quality, the performance across iterations has been
monitored. For evaluation purposes the GRID corpus [51] together with different noise-types
taken from the NOISEX-92 database [52] has been used. After two iterations, degradation in
predicted quality and intelligibility has been observed, so that the maximum iteration number
was chosen accordingly with two. The metrics used for this evaluation are described in the
following. A detailed summary of the obtained results, using the settings in Table 3.1 (settings
and parameters of the iterative joint MAP estimator), is given in Chapter 4.
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Parameter Settings

sampling frequency fs 8 kHz
framelength 32 ms
frameshift, JMAP estimator 4 ms
frameshift, parameter estimation 0.125 ms
window type Blackman
FFT-length 256

ν (shape parameter of the Super-Gaussian distribution) 0.126

µ (shape parameter of the Super-Gaussian distribution) 1.74
Number of Iterations 2
Floor of the gain-function -25 dB

Table 3.1: Simulation system settings

Evaluation of Speech Quality

The PESQ (Perceptual Evaluation of Speech Quality) is recommended by ITU-T [44] for the
evalution of perceptual quality. It uses a cognitive model of quality to compare the outputs of
a perceptual model, fed with the original and the degraded speech signal. Its range is bounded
to the interval [−0.5, 4.5], where 4.5 denotes the maximum performance with respect to quality.
Although, originally introduced to evaluate speech processed through networks, it showed the
highest correlation with overall speech quality in [45], where the PESQ-score was investigated in
terms of speech enhancement. Nevertheless, the PESQ has to be applied with caution, as it is
sensitive to over-harmonization of the signal. Thus, speech enhancement algorithms that force
a strictly harmonic structure in enhanced signals (e.g. STFTPI [14, 15]) perform outrageous in
PESQ, while resulting in a buzzy speech quality [12,46].

Evaluation of Speech Intelligibility

The Short Time Objective Intelligibility (STOI) measure proposed in [48] was developed for
methods, where noisy speech is processed by a time-frequency weighting. The correlation co-
efficient of ρ = 0.95 with intelligibility demonstrates it to be highly appropriate, in order to
instrumentally predict the intelligibility. Most amplitude-only enhancement methods only im-
prove quality but degrade intelligibility. At the same time a better phase estimate was reported
to yield a better intelligibility performance in [24, 50]. The STOI is obtained by segmenting
the STFT of the input signals (the noisy signal and its underlying clean speech signal) in 15
one-third-bands, with the lowest center frequency being 150 (Hz) (justified by the fact that
this is approximately fitting the cochlea characteristics). Silent regions are removed and the
remaining bands are normalized and smoothed along time (around 300 ms [18]). Both input
signals are processed the same way and at this stage, a short-time sample correlation coefficient
between the two is calculated. Averaging the resulting correlation coefficients along time and
sub-bands yields the STOI-measure, bounded to the interval [−1, 1]. The STOI was successfully
used in [11,50] to evaluate and predict the speech intelligibility obtained by phase-aware speech
enhancement methods.

Evaluation of Phase Recovery

Besides the metrics for quality prediction presented in [46], Gaich and Mowlaee proposed two
new metrics in [47] (the unwrapped HPSNR and the unwrapped RMSE) in order to capture
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3.3 Phase Estimation at Harmonics

the phase impact on speech intelligibility. The unwrapped harmonic phase SNR (UnHPSNR) is
defined as follows:

UnHPSNR =

∑
h,λA

2(h, λ)∑
h,λA

2(h, λ)
(

1− cos
(

Ψ(h, λ)− Ψ̂(h, λ)
)) , (3.50)

with Ψ(h, λ) and Ψ̂(h, λ) denoting the clean unwrapped phase and its estimate at harmonic
h and frame index λ, respectively. The unwrapped phase values are achieved by applying a
pitch synchronous framing and removing the linear phase part introduced by the fundamental
frequency as proposed in [6]. The unwrapped root mean square error (UnRMSE) is given by
the following equation:

UnRMSE =

√√√√√∑h,λA
2(h, λ)

(
Ψ(h, λ)− Ψ̂(h, λ)

)2∑
h,λA

2(h, λ)
(3.51)

Both metrics use the clean amplitude as a weighting which means that the perceptually impor-
tant harmonic regions are emphasized. Only the phase recovery is taken into account, therefore
clean phase yields an infinite UnHPSNR and an UnRMSE of 0, if reconstructed with the clean
amplitude. These upper bounds cannot be reached with noisy amplitude (see [21]). In [47], the
UnRMSE was reported to have the highest correlation with subjective intelligibility compared
to state of the art methods for speech corrupted with white noise .

3.3 Phase Estimation at Harmonics

The STFT Domain is not necessarily the best choice for speech enhancement as it is a redundant
representation in speech inactive regions. The authors of [9, 14] argue that the phase of regions
near a harmonic is dominated by the phase of the harmonic itself. Therefore, combining a
harmonic phase estimator together with the STFT amplitude estimator is the next option to
be examined. As a consequence of the different frame setups, found to be optimal for the phase
estimator proposed in [9] and the amplitude estimator, the frame-setup recommended in [9] was
chosen. After assigning the phase values within the main lobe width of the analysis window, the
STFT representation of the phase is obtained.

The harmonic representation used for the phase estimator is obtained by the HMPD matlab
library [6] which uses a pitch synchronous framing, hence the output DFT lengths of the phase
estimator depend on the underlying fundamental frequency f0. After applying the phase-aware
MAP amplitude estimator on these frames, an overlap-and-add synthesis procedure is carried
out. This helps to have a consistent spectrogram for the next iteration. The estimation procedure
is initialised with a phase estimation step. The framework used to implement the joint estimator
is the outer loop (schematic in figure 3.11).
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y = s+n f0

STFT

σ̂2
d

α̂MAP ÂMAP

iSTFT ŝ(i)

f̂
(i)
0 α̂(i)

R,ϑ

σ̂2
d

Â(i)

ŝ(i)

Figure 3.11: The block diagram of the outer loop.

Since the iterative procedure starts with the phase estimation step, the amplitude Ah in
eq. (3.19), needs to be initialized. This is achieved by using the noisy DFT-amplitude as a first
amplitude estimate. (R) is interpolated to the harmonics in time and frequency (Rh) so that:

Âh
(0)

= Rh (3.52)

In the second iteration, the phase-aware amplitude estimate can be used. With iteration index
(i) it follows

α̂
(i)
h = tan−1

−2Â
(i−1)
h

σ2
d,h

∑N−1
n=0 y(n) sin

(
ω(i)n

)
+ κ(i) sin

(
α

(i)
µ

)
2Â

(i−1)
h

σ2
d,h

∑N−1
n=0 y(n) cos

(
ω(i)n

)
+ κ(i) cos

(
α

(i)
µ

)
 (3.53)

Since the enhanced time-domain signal is fed back for iterations, the estimates of the von Mises
parameters κ and αµ are also updated within iterations. The synthesis is carried out by a
iSTFT with pitch-synchronous frame-lengths. To incorporate the estimated harmonic phase,

it is assumed that the phase of the DFT-bins is dominated by the harmonic phase α̂
(i)
h if they

jointly lye within the main lobe width of the analysis window [9]. Therefore these phase-values
are set to the harmonic phase. This procedure is illustrated for one frame in figure 3.12.
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Figure 3.12: Assignment of harmonic phase to DFT phase. (blue) original DFT-phase, (red) harmonic
values, (green, dashed) new DFT phase with harmonic phase assigned to the DFT-bins lying
within the main lobe width of the analysis window
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After the phase assignment the joint MAP amplitude estimation is carried out followed by the
iSTFT. The estimator’s performance tends to drop after more than two iterations (figure 3.13),
which again led to an empirical choice of maximum iteration number of I = 2.
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Figure 3.13: Performance in terms of PESQ, STOI, unwrapped RMSE and HPSNR drops after more than
two iterations (∆ denotes the difference between the enhanced and noisy utterance). Averaged
over: 50 utterances (GRID [51]), 4 noise types (white, pink, pink modulated, babble) [52], SNR:
−5, 0, 5 and 10 (dB)

The f0 estimator used to obtain the fundamental frequencies of the speech signal is the PEFAC
estimator, known to be robust against non stationary noise types such as wind-noise [19]. To
update the fundamental frequency within iterations, a smoothing dependent on the voicing
probability Pv is applied. This helps to stabilize the fundamental frequency-estimate across
iterations, in order to avoid a fundamental frequency drift across iterations:

f̂
(i)
0 = Pvf̂

(i)
0 + (1− Pv)f̂ (i−1)

0 (3.54)

Figure 3.14 and figure 3.15 illustrate how the harmonic structure of speech is restored across
two iterations. The strong over-harmonisation of the amplitude after the second iteration yields
a high buzzyness in the signal. The circular variance and group-delay structures fit well to the
clean-speech, the obtained phase recovery is well reflected in the UnRMSE results in Chapter 4.
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Parameter Settings

sampling frequency fs 8 kHz
frame length pitch synchronous
frame shift pitch synchronous
window type Blackman
FFT-length pitch synchronous

ν (shape parameter of the Super-Gaussian distribution) 0.126

µ (shape parameter of the Super-Gaussian distribution) 1.74
Number of Iterations 2
Floor of the gain-function -25 dB

Table 3.2: Outer Loop Settings
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Figure 3.14: Spectrogram, circular variance and group delay 1 Iteration. The scores predicting quality
(PESQ), intelligibility (STOI) and phase recovery (HPSNR) are shown on the top of each
panel.
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Figure 3.15: Spectrogram, circular variance and group delay 2 Iterations. The scores predicting quality
(PESQ), intelligibility (STOI) and phase recovery (HPSNR) are shown on the top of each
panel.
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4
Results

The following Chapter presents the obtained performance of the proposed estimators, predicted
by the instrumental metrics PESQ, STOI, UnHPSNR and UnRMSE (see section 3.2.6). The
proposed methods are evaluated with different settings to illustrate upper and lower bounds and
the importance of a good phase estimate for amplitude estimation as well as for reconstruction.
The scenarios examined are:

• noisy phase for amplitude estimation and noisy phase for reconstruction (which is equiva-
lent to the phase insensitive estimator of Lotter-Vary)

• noisy phase for amplitude estimation and MAP phase for reconstruction (inner loop)

• MAP phase for amplitude estimation and noisy phase for reconstruction (inner loop)

• MAP phase for amplitude estimation and MAP phase for reconstruction (inner loop, pro-
posed)

• clean phase for amplitude estimation and noisy phase for reconstruction (inner loop)

• clean phase for amplitude estimation and MAP phase for reconstruction (inner loop)

• MAP phase for amplitude estimation and MAP phase for reconstruction (outer loop, pro-
posed)

• MAP phase for amplitude estimation and MAP phase for reconstruction, f0 from clean
speech (outer loop)

• clean phase for amplitude estimation and clean phase for reconstruction, f0 from clean
speech (inner loop)

Since the frame-setup used for the outer loop is pitch-synchronous, the different scenarios used
for the inner loop cannot be combined without any interpolation (which results in degraded
performance). Thus, the only additional scenario for the outer loop is the oracle-f0 scenario,
which shows how sensitive the method is to f0-estimation errors.
The results obtained by the inner loop implementation show consistent but rather small improve-
ment. One reason is surely the sub-optimal assignment of the prior distribution parameters κ
and αµ. Nevertheless, the promising upper bounds of the performance motivate for further
investigation of this problem. In contrast, the outer loop implementation shows very large im-
provement in objective scores. In white noise it outperforms even the clean phase scenario in
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terms of PESQ (figure 4.2), which indicates the sensitivity of the PESQ to over-harmonisation.
Intelligibility, predicted by UnRMSE and STOI is also improved by the outer loop.
In the following, the results are presented in the form of bar-plots, one for each noise-type and
metric. Figure 4.1 shows the corresponding legend for the bar-plots and Table 4.1 summarises
the evaluation-setup. The results are reported in the form of ∆-scores, where ∆ denotes the
difference between the scores obtained by the processed speech and the scores of the noisy speech.

Evaluation-Setup

global SNR -5, 0, 5, 10 (dB)

noise types white, pink, pink modulated, babble from [52]
number of utterances 50

speech database GRID [51]

Table 4.1: Simulation system settings

 

 

Lotter/Vary (Inner Loop− Amplitude Estimation: Noisy Phase, Reconstruction: Noisy Phase)

Inner Loop− Amplitude Estimation: Noisy Phase, Reconstruction: MAP Phase

Inner Loop− Amplitude Estimation: MAP Phase, Reconstruction: Noisy Phase

Inner Loop− Amplitude Estimation: MAP Phase, Reconstruction: MAP Phase

Inner Loop− Amplitude Estimation: Clean Phase, Reconstruction: Noisy Phase

Inner Loop− Amplitude Estimation: Clean Phase, Reconstruction: MAP Phase

Outer Loop− Amplitude Estimation: MAP Phase, Reconstruction: MAP Phase

Outer Loop + oracle f 0 for Phase Estimation

Inner Loop− Amplitude Estimation: Clean Phase, Reconstruction: Clean Phase

Figure 4.1: Legend
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4.1 White Noise

4.1 White Noise
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Figure 4.2: PESQ-scores for white noise. The outer loop outperforms the clean phase, which emphasizes the
sensitivity of PESQ to over-harmonisation.

−5 0 5 10

−0.05

0

0.05

∆
 S

T
O

I

Global SNR (dB)

Figure 4.3: STOI-scores for white noise.
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Figure 4.4: UnRMSE-scores for white noise.
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Figure 4.5: UnHPSNR-scores for white noise.

4.2 Pink Noise
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Figure 4.6: PESQ-scores for pink noise.
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Figure 4.7: STOI-scores for pink noise.
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Figure 4.8: UnRMSE-scores for pink noise.
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Figure 4.9: UnHPSNR-scores for pink noise.

4.3 Pink Modulated Noise
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Figure 4.10: PESQ-scores for modulated pink noise
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Figure 4.11: STOI-scores for modulated pink noise
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Figure 4.12: UnRMSE-scores for modulated pink noise
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Figure 4.13: UnHPSNR-scores for modulated pink noise

4.4 Babble Noise
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Figure 4.14: PESQ-scores for babble noise
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Figure 4.15: STOI-scores for babble noise
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Figure 4.16: UnRMSE-scores for babble noise
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Figure 4.17: UnHPSNR-scores for babble noise
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5
Conclusion

This thesis presented a joint MAP amplitude and phase estimator. In contrast to previous
joint MAP estimators, the uniform prior distribution of phase was replaced by a von Mises
distribution, yielding two interdependent estimators of phase and amplitude. Since a closed
form solution for the estimator was not found, an iterative procedure has been proposed. To
this end two different implementations have been examined, showing contradictory objective as
well as subjective performance.

In the course of the analysis of the two estimators, the need of reliable information on the
parameters of the phase prior distribution has been found to play a key role in the phase
estimation procedure. Obtaining these parameters directly from the noisy observation appears
to be an unfavourable approach, therefore future work may be directed towards the parameter
estimation of the von Mises distribution. Nevertheless, the upper bounds of the proposed method
very well pronounce the need of a reliable phase estimate, both for reconstruction and even more
prominent for amplitude estimation.

As most amplitude-only STFT speech enhancement methods are only capable of improving
the perceived quality, incorporating a phase estimate has the potential to improve intelligibility
at the same time. This encourages to find new estimators that take the complex nature of speech
DFT coefficients into account.

Furthermore, the outer loop implementation, which tends to over-harmonise the enhanced
speech, reveals that state-of-the art objective quality measures are not capable of reliably pre-
dicting the perceived quality achieved by phase-aware speech enhancement. A strong buzzyness,
surely degrading the quality (as confirmed by informal listening tests), helps to improve the
PESQ score to a certain extent. This is emphasized by the fact that the PESQ upper-bound
(clean phase for amplitude estimation and clean phase for reconstruction) is even exceeded by
the outer loop implementation for certain SNRs and noise-types.
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