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Kurzfassung

Absolute Positionsbestimmung ist heutzutage global und zu jeder Zeit verfügbar, dank
eines globalen Navigationssatellitensystems, wie zum Beispiel dem Globalen Positionsbe-
stimmungssystem (GPS). Aufgrund einiger Fehlerquellen und anderer Einflüsse ist dessen
Genauigkeit limitiert, beziehungsweise kann es zu einer totalen Signalblockierung kommen.
Sensor Fusion kann eingesetzt werden, um eine bessere Genauigkeit und erhöhte Ausfall-
sicherheit der Navigationslösung zu erreichen. Eine der meist angewendeten Methoden ist
die Integration eines inertialen Navigationssystems (INS), gestützt durch GPS-Messungen,
verarbeitet in einen Kalman-Filter.

In dieser Arbeit wurden zwei verschiedene GPS/INS Integrationsmethoden umgesetzt,
die auf inertialen Sensoren, Odometriedaten und GPS-Messungen beruhen. Die Algorith-
men sind so gewählt, dass der Berechnungsaufwand klein gehalten wird und die Systeme
für Echtzeitanwendungen einsetzbar sind. Auch die verschiedenen Abtastraten der Sen-
soren wurden berücksichtigt. Ebenfalls wurde eine Analyse der inertialen Sensorfehler
durchgeführt. Die Resultate werden anhand einer MATLAB Simulation präsentiert, die
auf verschiedenen zuvor durchgeführten Testmessungen basiert.

Abstract

Absolute position estimation is nowadays globally and always available due to Global
Navigation Satellite Systems, like the Global Position System (GPS). Because of several
error sources and other influences, the accuracy is limited or the signal may be blocked
completely. Sensor fusion techniques are used to achieve better accuracy and to increase
reliability. The most common integration method is an inertial navigation system (INS)
aided with GPS measurements, processed by a Kalman filter.

In this thesis two different GPS/INS integration methods are implemented, utilizing
inertial sensors, odometer data and GPS measurements. The algorithms are designed
to keep the computational complexity low and to be suitable for real time applications.
The multi-rate property of the sensors is considered as well. Also an inertial sensor error
analysis is performed. The results are presented by a MATLAB simulation, based on prior
taken measurement data sets.
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Chapter 1

Introduction

1.1 Motivation

In the last years the trend to electro mobility is constantly growing. The VIRTUAL
VEHICLE Research Center is a member of the European iCOMPOSE1 project with main
focus on energy efficiency enhancement in fully electric vehicles. To perform energy man-
agement in electric vehicles, it is very important to know not only about the traveled path,
but also about the range the vehicle is able to reach with the remaining capacity. One of
the key parts, is the estimation of the absolute position of the vehicle.

To get the absolute position on earth, there are different Global Navigation Satellite
Systems (GNSS) available. The most common nowadays is the Global Positioning Service
(GPS) (Hofmann-Wellenhof, Lichtenegger, and Wasle, 2007). This service provides 3D
information about the current position. As the name indicates, GPS is globally available,
but not all the time. Disturbances can occur and a reliable navigation solution is no
longer granted. Because of the limited accuracy, GPS alone is not adequate for every
application. The disadvantages of GPS can be compensated with sensor fusion techniques.
The integration of GPS with an Inertial Navigation System (INS) is therefore a typical
method (Wendel, 2011).

The goal of this thesis is to implement an sensor fusion algorithm for GPS/INS integra-
tion, which improves the absolute position estimation in terms of accuracy and redundancy.
The requirements on the algorithm are that it can be used in real-time application. The
hardware resources are limited and many other tasks should be performed on the same
automotive control unit. Therefore the computational complexity has to be kept low.

The development of the GPS/INS integration is based on prior executed test measure-
ments, provided by partner companies of the iCOMPOSE project. The derived fusion al-
gorithm should make use of as much measurement information as possible. The kinematic
vehicle dynamics are measured with an Inertial Measurement Unit (IMU) and odometry
data is available as well. The absolute position of the vehicle is measured with a GPS
receiver.

1Integrated Control of Multiple-Motor and Multiple -Storage Fully Electric Vehicles, www.i-compose.eu
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1.2. STRUCTURE OF THESIS 7

This work presents an overview on sensor fusion methods, especially for position es-
timation. The theory behind different navigation systems is discussed and finally two
different GPS/INS integration methods, their implementation and simulation results are
shown.

1.2 Structure of Thesis

Chapter 2 gives an overview about sensor fusion and state of the art position estimation
methods. Different implementation architectures and their characteristics are discussed,
that the choice of the chosen fusion technique is reasonable.

In Chapter 3 important navigation principles for this thesis are discussed. More specif-
ically, Section 3.1 is dealing with GPS and the principle behind absolute position estima-
tion. The main part is however explaining the theory behind inertial navigation. The
navigation equations for the INS mechanization and the second method based on odome-
try data are explained there.

Before the GPS/INS integration system model can be specified, an error analysis of
the used IMU sensor is performed in Chapter 4. The error model is analytically derived
and later used in the Kalman filter fusion algorithm to estimate the sensor bias drift.

The final GPS/INS integration with a detailed look at the system model, measurement
model and performed Kalman filtering steps is given in Chapter 5. Section 5.4 points out
how different sampling rates are handled and how the measurement data is preprocessed.

Finally the simulation results are presented and discussed in detail in Chapter 6. Chap-
ter 7 summarizes the main aspects of this thesis and gives an outlook for further research
based on this work.



Chapter 2

Sensor Fusion

Sensor fusion is a method of combining signals from different sources, to obtain more or
better information with less uncertainty as it would be possible with only one signal. The
sources are in general sensor signals, especially in context with sensor fusion. Sometimes
the term

”
sensor integration“ is used in the same context, but should not be mistaken

with embedding sensors into an system.

The signals from multiple devices are processed in fusion algorithms. Sasiadek (2002)
classifies these algorithms into three groups:

• probabilistic models

• least-squares techniques

• intelligent fusion

Among the first group are Bayesian reasoning, evidence theory or recursive operators.
Examples for the second category are Kalman filtering or uncertainty ellipsoids techniques.
Intelligent fusion methods are fuzzy logic or neural networks (Sasiadek, 2002).

The chosen method for this thesis is a Kalman filtering (KF) approach, which is justified
in Subsection 2.2.4.

Sensor fusion itself, is often classified as one of three groups in literature, regarding the
level of fused information.

• information fusion

• sensor fusion

• data fusion

The highest level, information fusion, is referred, when data cannot be represented in
numerical manner. Artificial intelligence methods are used for this kind of fusion. The
strict distinction between sensor and data fusion is not always possible: If fusion takes
place with raw data, rather than pre-processed sensor data, one can talk of data fusion.
In the other case, the notation sensor fusion is appropriate (Gustafsson, 2012).

There are many reasons to perform sensor fusion. A main reason for sensor fusion is to
increase redundancy and therefore increasing the quality compared to single sensors with

8



2.1. STATE OF THE ART 9

respect to accuracy, reliability and integrity. Another reason is to reduce costs. Low-cost
sensors, combined with a reasonable sensor fusion algorithm, yield results comparable
to measurements of one expensive sensor with better accuracy. This is achieved when
disadvantages of one sensor are compensated by advantages of the other sensor and vice
versa (Hoffman-Wellenhof, Legat, and Wieser, 2003).

The variety of application in which sensor fusion takes place nowadays is immense. A
field of application where the use of multi-sensor systems increased dramatically in the
last decade, is automotive industry. This is due to the rising number of Advanced Driver
Assistance Systems (ADAS) and subsequently, to develop autonomous driving vehicles.
To accomplish such a task, sensor fusion is an essential key feature (Maurer et al., 2015;
Siebenpfeiffer, 2014).

Fusion techniques often take advantage of complementary sensor properties. This is
why GNSS and INS are particularly suitable for fusion purposes, to estimate absolute
position. The long term stability, but limited accuracy of GNSS and the short term
accuracy of INS, are well matched complementarities. Since the INS solution is drifting
with time, mainly due to bias errors, it is possible to compensate this drift with aid of
an absolute position estimate, e.g. from GNSS. A further advantage is that INS provides
a full high rate position, velocity and attitude solution, with the capability to overcome
GNSS outages, thanks to complementary redundancy (Noureldin, Karamat, and Georgy,
2012; Wendel, 2011).

Table 2.1 summarizes some of the characteristics of GPS and INS and shows comple-
mentary properties of each other (Hoffman-Wellenhof, Legat, and Wieser, 2003).

Property GPS INS

navigation type absolute relative

working principle satellite-based (dependent) autonomous (independent)

accuracy (long term) high low

accuracy (short term) low high

reliability good very good

external disturbance very often not affected

availability average ∼ 100%

sampling rate 1-10Hz 50Hz-2kHz

Table 2.1: Comparison of GPS and INS properties

2.1 State of the Art

In this Section advanced fusion techniques for absolute position estimation are presented.
Not only sensor fusion methods, also solutions based on highly developed GNSS technology
are mentioned. The main focus is on ground based applications, like land-based vehicle,
robotic or pedestrian navigation.
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Global Navigation Satellite System

Today there are different GNSS Systems, such as GPS (America), GLONASS (Russia)
or the upcoming Galileo (Europe). All these systems provide an absolute global location
solution. The most important system today is GPS. The accuracy of GPS for civilian users
is limited to several meters. In addition to this limitation, the accuracy is also degraded
due to external signal disturbances like ionosphere delay, tropospheric delay or multipath
errors. But there are also internal error sources like receiver/satellite clock error or receiver
noise.

So called Satellite Based Augmentation Systems (SBAS) are used to improve GPS accu-
racy. There are different systems for each continent. The European service for example is
called European Geostationary Navigation Overlay Service (EGNOS). SBAS belongs to
the Differential GPS (DGPS) category and is transmitting additional information to com-
pensate errors from the various error sources. The achieved accuracy is about 1-3 meter
(Noureldin, Karamat, and Georgy, 2012);(Wendel, 2011).

DGPS itself is further categorized into Wide Area DGPS (WADGPS) and Local Area
DGPS (LADGPS). An example for WADGPS is the already mentioned SBAS. The coun-
terpart to SBAS is Ground Based Augmentation Systems (GBAS). In LADGPS, only a
single reference station serves users in a near surrounding. The idea is that errors which
affect the GPS receiver, are the same for the reference receiver, because of the small dis-
tance. If the exact position of the reference device is known, the occurred errors can be
estimated and transmitted to compensate them in the users GPS receiver. With advanced
LADGPS methods accuracy of a few millimeter is possible (Wendel, 2011).

Mansfeld (2013), Kaplan and Hegarty (2005) and Prasad and Ruggieri (2005) explain
GNSS systems in more detail.

GPS/INS Sensors

There are sensors available, which are already performing sensor integration of GNSS/INS
to achieve very accurate and robust navigation solution. An example of a highly accu-
rate INS with embedded GNSS receiver for real-time applications from SBG systems, is
the Apogee-N series. It supports Real Time Kinematics (RTK), TerraStar and Veripos
positioning services for centimeter precision. It is suited for marine, aerospace and land
applications. Even configurations for odometry data fusion are available (SBG systems,
2015).

Vision Based and Digital Information Methods

With increasing computational power, vision based methods became more relevant in the
last years. The aim is to detect lane markings, landmarks or traffic signs to estimate
the position of the car relative to object. Manufacturers offer Lane Departure Warning
(LDW) systems based on camera or laser systems such as Light Detection and Ranging
(LIDAR) to detect road lanes (Allen, 2011).

In Krzikalla et al. (2013) a project is described, which uses cameras and detailed digital
map data, providing information about landmarks and traffic signs. In combination with a
GNSS/INS integration it is possible to a achieve sub-meter accuracy. The idea is to reduce
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car accidents by transmitting the position of the vehicle with car-to-car communication.
Enhanced safety is only possible, if the position of the car is well known, not only absolute,
but also relative to its surrounding.

To solve such a complex task, Simultaneous Localization and Mapping (SLAM) must
be performed. This means to simultaneously create a map of the surrounding and to evalu-
ate the location in this map. In Schleicher et al. (2009), Estrada, Neira, and Tardos (2005)
and Tuna et al. (2012), SLAM techniques and its performance are well discussed. An ex-
ample for landmark based fusion methods can be found in Schmackers and Glasmachers
(2011).

There is also a less complex method than SLAM, which uses external map information.
Map-matching uses the characteristic of a vehicle to move along roads. If the vehicle is
placed on a road and the navigation solution indicates a position slightly apart, the location
can be corrected with information from a map database. This can be used especially in
urban areas, where the GNSS signal is often blocked or affected by multipath errors
(Jabbour, Bonnifait, and Cherfaoui, 2008).

For map-matching and other vision based methods, highly accurate digital maps are
necessary. The company Atlatec for example, offers a simple plug & play solution, to build
a personal high fidelity map. With such a system testing the own ADAS is possible or use
the data in presented fusion algorithms (Atlatec, 2015).

Artificial Intelligence

Learning algorithms are often denoted as Artificial Intelligence (AI) methods, because
they adapt to the current situation, by using old recorded data of similar situations. With
such an approach, SLAM can be improved, when the traveled path is repeated (Schleicher
et al., 2009).

In Wang and Gao (2007) two AI techniques, namely fuzzy logic and expert system
are discussed and their performance is validated with field tests. In some applications
traditional KF for low-cost Micro Electro Mechanical System (MEMS) GPS/INS is insuf-
ficient, due to hard controllable INS error drift and correct GPS data characterization.
With expert knowledge of the vehicle dynamics to reduce the INS error and a fuzzy system
to identify GPS degradation, a more reliable navigation solution is provided.

For a more detailed look at fuzzy Kalman filtering, expert systems or adaptive particle
filtering, see Jang, Sun, and Mizutani (1997), Kandel (1991) and Asadian, Moshiri, and
Sedigh (2005).

KF represents one of the best GPS/INS integration solution. Still KF operates on
given dynamic models, which are crucial for system performance. El-Sheimy, Chiang,
and Noureldin (2006) suggest an artificial neural network integration for INS and DGPS
measurements.

All the discussed methods so far are used for outdoor navigation. With the desire to get
a navigation solution in every environment, much research is done on indoor navigation
in recent years. The evolved coverage of Wifi networks and the now common smart-
phone technology are enabling Received Signal Strength (RSS) localization approaches
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(Avinash et al., 2010). Ahmad et al. (2006) use neural networks to determine the location
from the collected data.

Goswami (2012) and Werner (2014) describe indoor location methods in depth. Recent
PhD theses (Bauer, 2014; Dutzler, 2013) from Graz University of Technology, are also
dealing with indoor smartphone navigation.

Indoor navigation is not only interesting for pedestrian or robotic application. It can
also used for vehicle navigation in multi-storey car parks or environments, where GPS is
not available for a long period of time. Systems that navigate to the next free parking lot
are conceivable. Even indoor localization with GNSS is possible (Lachapelle, 2004).

2.2 GPS/INS Filter Design

This Section points out multiple architectures for GPS/INS integration. Characteristics
of different filter designs are discussed and as a result of the advantages or disadvantages,
the chosen method for this thesis is announced. Furthermore it will provide the reader
with an insight into terminology that is used in literature.

2.2.1 Uncoupled System

The simplest implementation for GPS/INS fusion is the uncoupled integration, also de-
noted as open-loop configuration (see Subsection 2.2.4). As it can be seen in Figure 2.1,
no information of the new estimated position is fed back. Since the INS solution is drifting
with time, so will the estimated result aided with GPS, without further correction. The
inertial data of the IMU and the measured GPS signals are pre-processed in the INS, re-
spectively in the GPS receiver using Kalman filtering techniques (decentralized filtering).
A simple selection scheme, where the INS solution (with last GNSS measurement as ini-
tial position) is only used during GPS outages, is given as example in Hoffman-Wellenhof,
Legat, and Wieser (2003).

Signal 
Processing

INS

GPS Receiver

e.g. position
velocity

e.g. position
velocity
attitude

e.g. position
velocity
attitude

IMU

GPS/INS Integration
Kalman Filter

GPS KF

Mechanization

Figure 2.1: High level block diagram of an uncoupled system
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2.2.2 Loosely-Coupled System

A Loosely-Coupled (LC) system is characterized by feedback from the integration filter to
the INS. This feedback can be inertial bias sensor drifts or the newly estimated position to
correct the INS solution. This implementation is simple and robust. The block diagram of
a loosely-coupled system is shown in Figure 2.2. The main difference to a Tightly-Coupled
(TC) system (see Subsection 2.2.3) is that, like in the uncoupled structure, pre-processed
data is computed within the integration filter (decentralized filtering). Since the data from
the GPS receiver is filtered internally, the assumption of uncorrelated measurement noise
is violated. This can impair the performance or even cause instabilities. A disadvantage
compared to the TC system is that a GPS aiding is only available when the GPS receiver
is receiving a signal from more than four satellites. An advantage is that any GPS receiver
can be used for integration. The estimated errors, in general the state vector of the ESKF
(see Subsection 2.2.4) in an indirect LC formulation, must be set to zero after the error
is corrected. This is why no KF propagation step has to be computed (see Section 5.4)
(Wendel, 2011; Noureldin, Karamat, and Georgy, 2012).

In this thesis a LC structure is implemented. A TC system is not feasible with the
existing measurement data and available sensors (see Chapter 6).

Signal 
Processing

INS

IMU

GPS/INS Integration
Kalman Filter

GPS KF

Mechanization

GPS Receiver

e.g. position
velocity

e.g. position
velocity
attitude

e.g. position
velocity
attitude

e.g. position
       velocity
       attitude
       sensor errors

Figure 2.2: High level block diagram of a loosely-coupled system

2.2.3 Tightly-Coupled System

This architecture is a centralized integration, using only one master filter. With this
approach the problem of correlated measurements, due to cascaded Kalman filtering from
the GPS, is eliminated. Because raw measurement data from the GPS receiver (e.g.
pseudo-ranges) is processed, a GPS update is even possible with fewer than four visible
satellites. A TC architecture gives almost always a more accurate and robust solution
than a LC system. On the other hand, the integration complexity is much higher and a
standalone GPS solution is not available. Furthermore, the GPS receiver must provide
pseudo-range measurements and an input to feed back information (Figure 2.3).
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There is also a ultra-tightly coupled or deep integration, with the aim to exchange as
much information as possible between each block. In such a design it is possible to adjust
the GPS signal processing, which can only be done with access to internal hardware
(Wendel, 2011; Noureldin, Karamat, and Georgy, 2012).

GPS
Receiver

INS

Signal Processing

IMU

GPS/INS Integration
Kalman Filter

Mechanization

raw data: e.g.
pseudo ranges

e.g. position
       velocity
       attitude

e.g. position
       velocity
       attitude

e.g. position
       velocity
       attitude
       sensor errors

e.g. clock errors
 ephemeris data

Figure 2.3: High level block diagram of a tightly-coupled system

2.2.4 Direct vs. Indirect Method

There are two formulations for GPS/INS sensor fusion algorithms. The main difference
between these two, are the estimated states of the Kalman filter.

In direct formulation the KF estimates total quantities like position and velocity. In
indirect formulation, the KF operates on error states, like position or velocity error. These
errors are consequently corrected to get a full state estimate. The indirect KF is therefore
often called Error State Kalman Filter (ESKF) (Wendel, 2011; Gustafsson, 2012).

In Munguia (2014) it is stated, that most of the GPS/INS implementation with Kalman
filtering estimation technique, are using the indirect approach. This is because of the
reduced computation complexity compared to the direct method. In direct formulation
the Kalman filtering algorithm must be computed every time a new IMU measurement is
available. In indirect formulations this is only necessary when a new GPS measurement
is available. The sampling rate of the inertial data is usually higher than 50Hz, whereas
GPS measurements are taken every second for example. For the indirect method, the
non-linear INS navigation equations are used to derive the error propagation equations,
which are then represented as a linear, time varying system, to perform Kalman filtering.
The direct method interprets the navigation equations as non-linear system for the filter
design. Due to the non-linear behavior of the problem, an Extended Kalman Filter (EKF)
has to be used. The comparison between direct and indirect formulation shows that the
direct method has a slightly better performance during GPS outages. This is mainly
because the sensor noise of the IMU can be modeled correctly as measurement noise. In
contrast, the IMU noise is considered as system noise with indirect formalism. Otherwise
the overall system performance can be assumed as equal (Wendel and Trommer, 2001).
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In Noureldin, Karamat, and Georgy (2012) and Titterton and Weston (2004) the ESKF
is further divided into two groups. The feed-forward ESKF refers to the uncoupled design.
No information is fed back to the INS. The errors are growing unlimited with time. The
feedback ESKF corresponds to a loosely coupled system. The information of the estimated
errors is fed back to the INS to correct the navigation solution. With this method, the
estimated states of the ESKF, must be set to zero after the correction is done. It is stated
that an ESKF in feedback configuration, equals extended Kalman filtering (Gustafsson,
2012).

(Wendel, 2011) and (Noureldin, Karamat, and Georgy, 2012) also use the terms open-
loop or closed-loop for feed-forward and feedback formulation. They do not distinguish
explicitly between uncoupled and loosely-coupled systems. A loosely-coupled system, in
open-loop configuration, is basically uncoupled (see Figure 2.2).

Due to the reduced computational complexity the feedback ESKF (indirect approach)
is chosen for further investigations within this thesis instead of the direct method.



Chapter 3

Navigation Systems

In this Chapter different navigation systems used in this thesis are explained. They are
divided into two groups. The first one is a representative of a global absolute position
system, namely the well known GPS. The second one, is the group of Dead Reckoning
(DR) systems. Two methods, using a combination of both systems, are used in this
project.

3.1 Global Positioning System

GPS is the American GNSS for absolute position estimation on earth. The development
began in the early 1970’s and was declared operational in 1995. The system was first called
Navigation System for Timing and Ranging (NAVSTAR) for military purposes. Later on
the system was renamed in GPS for civilian applications. In the beginning the signal
quality was artificially reduced for civil uses, but since 2000, the jamming transmitters are
off-line.

The service is segmented into three parts:

• space segment

• control segment

• user segment

The space segment consists of minimal 24 satellites in the near earth orbit. With a
special constellation it is ensured that always, at least four satellites are visible (with a
clear view of the sky) for the GPS receiver. The satellites transmitting coded radio signals,
which are processed in the GPS receiver to estimate the current position.

The control segment is responsible for monitoring the state of the system. If necessary
they have to correct orbit trajectories and watch over clock integrity. There is one master
station controlled by the US.

With user segment, all military or civilian GPS receivers are meant. Today there are
countless application for GPS. In the beginning the most intended use was car navigation.
Nowadays nearly every smartphone has build-in a GPS receiver. Even digital cameras are
using GPS for geo-tagging.

16
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3.1.1 Working Principle

The GPS position estimation is based on a triangulation technique. With the knowledge of
time, the signal from a satellite traveled until it reached the GPS receiver and its velocity,
the distance to that satellite can be calculated. These are so called pseudo-ranges.

Figure 3.1 is an idealized example of a two dimensional triangulation problem. If there
are two satellites, i.e. two ranges, there are two intersection points of the circles. Only
with a additional satellite a unique solution can be found. In three dimensions, also three
satellites are theoretically sufficient, because the other possible solution would be in space
and is therefore not plausible.

This is only an simple explanation for triangulation and not usable in practice. To
get the time passed during transmission and reception, there would have to be a time
synchronization between each receiver and the satellite clocks which is not feasible. The
problem of the uncertain time measurement can be solved if a signal from a fourth satellite
is received. This is why GPS needs at least four satellites to provide a reliable navigation
solution.

S1

S2

S3

Figure 3.1: Two dimensional triangulation example

In Noureldin, Karamat, and Georgy (2012) it is stated that there is also the method
of carrier-phase measurement to calculate pseudo-ranges. The Doppler effect can be used
to calculate the velocity of the user.

3.1.2 Error Sources

As already mentioned, the accuracy and availability of GPS is limited. There are many
error sources that have negative impact on the received satellite radio signal. There are
not only external disturbances, but also internal ones. Here are some of the typically
encountered errors of a receiver from Noureldin, Karamat, and Georgy (2012).
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Multipath Errors
Multipath errors occur primary in urban environments, where the satellite signal is
reflected from various surfaces. The signal reaches the receiver from different paths,
not only a direct line of sight. The signals with longer path are delayed and cause an
position error. With carrier phase measurements, multipath errors can dramatically be
reduced.

Atmospheric Delay
The transmission time is affected by the atmosphere of the earth. Depending on the
angle of incidence, the signal has to travel a longer way through the atmosphere, chang-
ing the transit time of the GPS signal. The ionosphere delay depends on solar activity.
There is also a tropospheric delay due to a decreased speed relative to free space.

Clock Errors
Over time, the satellite clock is drifting away from the GPS time. The control segment
estimates the drift and transmit correction parameters to the satellites. The satellites
broadcast them to the GPS receivers via the navigation message. The GPS receiver
itself has a clock bias. With the pseudo-range measurement from a fourth satellite (see
Subsection 3.1.1), the bias can be estimated.

Receiver Noise
A random measurement noise caused by the electronics of a GPS receiver. It causes an
incorrect measurement of the transit time. The effect can be reduced with carrier phase
measurements.

A much more detailed explanation of GNSS and satellite based navigation is given in
Prasad and Ruggieri (2005), Hofmann-Wellenhof, Lichtenegger, and Wasle (2007), and
Mansfeld (2013).

3.2 Dead Reckoning

DR is a navigation principle, which uses sensors to measure the kinematic of a vehicle to
calculate its position. This is only possible if the initial position and other initial states
are known. In that sense, DR is a relative navigation system compared to GNSS. The new
calculated position depends on the previous one and so on.

Based on the used sensors, DR is separated into two groups. Inertial Navigation uses
inertial sensors (accelerometers and gyroscopes) and Odometry utilizes data from wheel-
and steering rotations. One of the implemented methods in this project uses wheel-speed
measurements in combination with inertial sensors.

This Section gives an overview of inertial navigation, but only aspects that are relevant
for this thesis are discussed. The here presented equations are required for GPS/INS
integration in Chapter 5.
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3.2.1 Inertial Navigation

Inertial navigation is an autonomous navigation method that provides information about
attitude, velocity and position. Since inertial navigation works according to the DR prin-
ciple, the vehicle’s current position is determined with knowledge of previous position and
sensor measurements. The sensor measurements for inertial navigation are accelerations
and angular rates by a triad of accelerometers and gyroscopes, measuring the six Degrees-
of-Freedom (6-DOF). The idea is to integrate the accelerations to calculate velocities and
a second integration leads to position. The angular rates are processed to achieve atti-
tude in terms of roll, pitch and yaw angle. To start the integration, initial conditions for
attitude, velocity and position are needed.

It is important that the mentioned integration is not a simple, separate integration of
the 6 DOF measurements. They are coupled through differential equation to get attitude,
velocity and position. The IMU measurements are taken in the body-frame of the vehicle.
For navigation purposes, velocity and position are only useful in the navigation-frame,
also called local-level frame. A transformation has to be performed. Coordinate frames
are discussed in Subsection 3.2.2.

The mechanism that resolves the IMU measurements into attitude, velocity and posi-
tion in the desired coordinate frame, is called mechanization process (see Subsection 3.2.2).
Especially for a strapdown (SD) system it is called strapdown-algorithm. It is named SD
because the IMU is strapped down onto the body of the moving platform. That is why
the IMU measurements are in body-frame coordinates.

The first inertial navigation systems were gimballed platform systems. In these systems
the inertial sensors are mounted on a platform, which always remains aligned with the
navigation frame. Torque motors rotate the platform in response to the gyroscope mea-
surements. The orientation angles (Euler angles) of the platform can be directly picked
off from the gimbals, without further integration. The accelerations have to be double in-
tegrated to get the position. Gimballed systems are mechanically complex, expensive and
bigger than similar strapdown systems. Strapdown systems have a higher computation
complexity but are now the dominant type, due to low power usage, flexibility, cheap in
purchase and lightweight construction thanks to MEMS technology.

The mechanization process is performed in the so called INS. The IMU is a module
of the INS and contains the Inertial Sensor Assembly (ISA). The ISA only consists of
an assembly of 3 orthogonal accelerometers and gyroscopes for all body-frame axis. The
different parts of an INS can be seen in Figure 3.2. In connection with a strapdown system
it is also called Strapdown Inertial Navigation System (SDINS) (Noureldin, Karamat, and
Georgy, 2012).

Since integration steps are performed, a bias offset in the measurements is crucial,
because it leads to a drift over time of the solution. An acceleration offset is causing
an second order error for position calculation. In Skog and Handel (2009) it is stated
that a gyroscope bias error will be the most influential part of velocity and position error.
Since the measured specific forces from the accelerometers are resolved into the navigation
frame, using the attitude information calculated from angular rates, a third order position
error is the result. Another explanation why attitude errors are fatal, is incorrect gravity
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compensation. If there is an error in the transformation of specific forces to the navigation
frame, the gravity can not be corrected properly. The earth gravity is much bigger than
the occurring vehicle accelerations under normal vehicle dynamics. This is why false
compensation leads to a large acceleration error, causing the INS solution to drift with
time (Noureldin, Karamat, and Georgy, 2012).

There is so much theory about inertial navigation that can not be covered in this
thesis. Excellent books that are the basis for this project are (Titterton and Weston,
2004), (Noureldin, Karamat, and Georgy, 2012). A detailed explanation about strapdown
algorithms and inertial navigation can be found there.

ISA
3 accelerometer

3 gyroscopes

IMU
A/D Converter

CPU
Calibration

INS
Mechanization Algorithm

Figure 3.2: Modules of an INS

3.2.2 INS Mechanization

The implemented mechanization equations are presented in this Section. Before the fi-
nal SD algorithm is declared, some conventions and definitions about coordinate frames,
attitude representation and the used world model must be made.

Coordinate Frames

In inertial navigation various coordinate frames are used. They are used to express the
position of a point in relation to a reference point. The four relevant frames are:

• The body-frame (b-frame) is fixed with the moving platform. The origin is within
the vehicle. It is very important that the sensitive axes of the IMU coincide with the
body-frame. If the IMU has an other internal orientation or is mounted otherwise,
the axes must be assigned correctly before computation. Precise orthogonal sensitive
axes are a prerequisite. The IMU measurements are taken in the b-frame and have
therefore a b-superscript (f b,ωb). The body-frame for the SDINS is shown in Figure
3.3. Be aware that the Reduced Inertial Sensor System (RISS) has a different b-frame
(see Figure 3.6).

• The center of the navigation-frame (n-frame) and the b-frame are the same.
The axes points to true north, east and down (NED) direction, whereas down means
parallel to the gravity vector. There is also a east, north, up (ENU) convention.
Both are right-handed coordinate frames. The NED-frame is used for SDINS and
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the ENU-frame for RISS mechanization. For navigation applications it is useful to
express velocities in the n-frame. The n-superscript notation indicates the reference
frame. If a component of the three dimensional velocity vector in the NED-frame is
selected, a corresponding subscript is used. For example, vneb,N is the north-velocity
in the n-frame. Noureldin, Karamat, and Georgy (2012) is using the term local-
level-frame with a l-superscript instead of n-frame.

• The inertial-frame (i-frame) is centered in the middle of the earth ellipsoid. The
z-axis is along axis of earth rotation. The x-axis is in the equatorial plane pointing
towards the vernal equinox (Noureldin, Karamat, and Georgy, 2012). The y-axis
completes a right-handed system. The i-frame is defined stationary in space. All
inertial sensors produce measurements in the b-frame relative to the i-frame. The
gyroscope measurement subscript notation ωbib is taking account of this fact.

• The earth-centered earth-fixed frame (e-frame) is almost equal to the i-frame.
The center and the z-axis are the same but rotates along with the earth. The x-axis
passes through the intersection of equatorial plane and Greenwich meridian. The
term ωeie = [0, 0, ωE ]T represents the earth rotation with respect to the i-frame,
resolved in the e-frame. There are two common representation of position in the
e-frame. Rectangular and geodetic coordinates. Rectangular coordinates are like
traditional Cartesian coordinates and therefore hard to interpret for navigating on a
spherical shaped surface. Geodetic coordinates are way more intuitive for navigation
application. They are defined as Latitude ϕ, Longitude λ and Height h (LLH)
(Noureldin, Karamat, and Georgy, 2012).

World Geodetic System 1984

The earth is not a perfect sphere, but somehow the shape of earth has to be approximated.
This is done by the World Geodetic System announced in 1984 (WGS84). It models the
earth as a ellipsoid that is made by rotating an ellipse about its minor axis. The axis
is coincident with the rotational axis of earth and the center is earth’s center of mass
(Noureldin, Karamat, and Georgy, 2012).

This approximation is sufficient for most navigation applications. The WGS84 is the
common reference model nowadays and is also used in most GPS receivers. It is crucial
that the absolute positioning system and the inertial navigation system are using the same
reference world model.

Table 3.1 lists the most important parameters of the WGS84 (Wendel, 2011).

The two radii of curvature are of particular interest. As it can be seen, the radii are
functions of the position on earth, namely from the latitude ϕ. Re is the radius in east-
west direction and Rn in north-south direction. With knowledge of the n-frame velocity
and the radii of curvature, the position on earth in LLH coordinates can be calculated
through integration.
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name symbol value

semi-major axis a 6378137 m

semi-minor axis b 6356752.3142 m

flatness f 0.003352810664747

eccentricity e 0.0818191908426

meridian radius of curvature Rn a
1− e2

(1− e2sin2ϕ)3/2

normal radius of curvature Re
a√

1− e2sin2ϕ
earth’s rotation rate ωE 7.292115× 10−5 rad

s

Table 3.1: WGS84 World Model parameter

Gravity Model

Because of the shape of earth, the gravity is not constant everywhere on the surface. It
depends on the latitude ϕ and on the height h over the WGS84 ellipsoid. The gravity vector
combines the effect of gravitation and centripetal acceleration due to earth’s rotation. The
normal gravity vector in the n-frame has only one entry in the third component (Equation
3.1), because it coincides with the ellipsoidal normal. Note that the normal gravity vector
refers to the WGS84 ellipsoid and that the true gravity vector deviates from the normal
gravity vector by the deflection of the vertical.

gn = [0, 0, γ(ϕ, h)]T (3.1)

γ(ϕ, h) ≈ γ(ϕ)

(
1− 2

a

(
1 + f +m− 2fsin2ϕ

)
h+

3

a2
h2

)
(3.2)

where

m =
ω2
Ea

2b

GME
(3.3)

and

γ(ϕ) =
aγacos

2ϕ+ bγbsin
2ϕ√

a2cos2ϕ+ b2sin2ϕ
(3.4)

Equation (3.4) is called Formula of Somigliana and is only a function of latitude ϕ. In
Equation (3.2) it is extended to get a height dependency. This gravity model is typically
used in geodesy applications (Hoffman-Wellenhof and Moritz, 2006).

The parameters a,b,f and ωE refer to the WGS84 world model (Table 3.1). The other
parameters of Equations (3.4) and (3.3) are listed in Table 3.2.



3.2. DEAD RECKONING 23

name symbol value

gravity constant × earth mass GME 3.986004418 ×1014m3

s2

equatorial earth acceleration γa 9.7803267715 m
s2

polar earth acceleration γb 9.8321863685 m
s2

Table 3.2: Gravity model parameter

Attitude Representation

The main methods for attitude representation are in terms of Euler angles, direction
cosines or quaternions. The three methods have different characteristics and vary in
computational complexity. In this thesis direction cosines are not treated.

Solving the mechanization equations requires the parameterization of the rotation ma-
trix Cn

b , also labeled as Direction Cosine Matrix (DCM), especially used in aerospace
application. The DCM is needed to resolve the measured specific forces from the b-frame
into the n-frame.

Euler Angles
There are different ways to represent the attitude of an object. The most intuitive one is
in terms of Euler angles. The three angles roll φ, pitch θ and yaw ψ represent the angles
of a rotation about the x-,y- and z-axis in the n-frame. The relation between angular rates
and Euler angles is given in Equation (3.5 - 3.7).

φ̇ = (ωbnb,ysinφ+ ωbnb,zcosφ)tanθ + ωbnb,x (3.5)

θ̇ = ωbnb,ycosφ− ωbnb,zsinφ (3.6)

ψ̇ = (ωbnb,ysinφ+ ωbnb,zcosφ)/cosθ (3.7)

with the angular rate vector

ωbnb = [ωbnb,x, ω
b
nb,y, ω

b
nb,z]

T (3.8)

The DCM can be written as a function of Euler angles.

Cn
b =

cosθcosψ −cosφsinψ + sinφsinθcosψ sinφsinψ + cosφsinθcosψ
cosθsinψ cosφcosψ + sinφsinθsinψ −sinφcosψ + cosφsinθsinψ
−sinθ sinφcosθ cosφcosθ

 (3.9)

The advantage of attitude computation with Euler angles is that only three differential
equations are needed. The result is in Euler angles and the initialization can be done
directly with Euler angles too. On the other hand, the differential equations are non-
linear and therefore hard to solve. There is also a singularity in the solution for a pitch of
±90 degrees (see Equation 3.7), which is called gimbal-lock. Thus, this representation is
not suitable for some applications.
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Quaternions
The quaternion representation offers many advantages and is the most popular method
nowadays (Kuipers, 1999). The idea of quaternions is based on the Euler theorem. It
states that a transformation from one coordinate frame into another can be represented
by a single rotation about a vector Θ with respect to the reference frame. The magnitude
of the rotation is Θ and Θx

Θ ,
Θy

Θ andΘz
Θ are direction cosines of the rotation axis (Noureldin,

Karamat, and Georgy, 2012).

A quaternion is defined as a four parameter vector

qnb =


qa
qb
qc
qd

 =


cos(Θ

2 )
Θx
Θ sin(Θ

2 )
Θy

Θ sin(Θ
2 )

Θz
Θ sin(Θ

2 )

 (3.10)

with following relation

Θ =
√

Θ2
x + Θ2

y + Θ2
z (3.11)

and the constraint √
q2
a + q2

b + q2
c + q2

d = 1 (3.12)

The advantages of quaternions are no gimbal-lock and a reduced computational com-
plexity, because only four linear differential equations are needed do perform the attitude
computation. With an additional equation compared to Euler representation, there is
now one degree of freedom, described in Equation (3.12). This indicates that only three
independent quaternion parameter are sufficient to describe the rotation of a rigid body
(Noureldin, Karamat, and Georgy, 2012). The constrained is used during attitude com-
putation to normalize the quaternion and assure the orthogonality of the DCM.

The quaternion differential equation is shown in Equation (3.13). The performed
mathematical operation is a quaternion multiplication. Equation (3.14) is similar to (3.13),
only in matrix notation.

q̇nb =
1

2
qnb •

[
0
ωbnb

]
(3.13)

q̇nb =
1

2
Qn
bω

b
nb =

1

2


qa −qb −qc −qd
qb qa −qd qc
qc qd qa −qb
qd −qc qb qa




0
ωbnb,x
ωbnb,y
ωbnb,z

 (3.14)

The DMC can also be calculated from quaternions:

Cn
b =

(q2
a + q2

b − q2
c − q2

d) 2(qbqc − qaqd) 2(qbqd + qaqc)
2(qbqc + qaqd) (q2

a − q2
b + q2

c − q2
d) 2(qcqd − qaqb)

2(qbqd − qaqc) 2(qcqd + qaqb) (q2
a − q2

b − q2
c + q2

d)

 (3.15)
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A disadvantage when using quaternions is that Euler angles are not directly available.
For visualization of the attitude, Euler angles are the most intuitive representation. One
way to convert quaternions into Euler angles is to construct the DCM with Equation (3.15)
and then calculate Equation (3.16-3.18).

φ = arctan

(
Cnb,32

Cnb,33

)
(3.16)

θ = arcsin
(
−Cnb,31

)
(3.17)

ψ = arctan

(
Cnb,21

Cnb,11

)
(3.18)

To formulate the integration initial condition in terms of quaternion q0 from Euler angles,
Equations (3.19-3.22) is used.

qa = cos
φ

2
cos

θ

2
cos

ψ

2
+ sin

φ

2
sin

θ

2
sin

ψ

2
(3.19)

qb = sin
φ

2
cos

θ

2
cos

ψ

2
− cosφ

2
sin

θ

2
sin

ψ

2
(3.20)

qc = cos
φ

2
sin

θ

2
cos

ψ

2
+ sin

φ

2
cos

θ

2
sin

ψ

2
(3.21)

qd = cos
φ

2
cos

θ

2
sin

ψ

2
− sinφ

2
sin

θ

2
cos

ψ

2
(3.22)

The Aerospace Toolbox in MATLAB is used for implementation, because it provides
functions to convert freely between Euler angles and quaternions. See Appendix A for more
useful relations regarding attitude representation and quaternions. A detailed explanation
of quaternions can be found in Kuipers (1999) and Sola (2015).

Strapdown Algorithm

The SD algorithm is the mechanization process of converting the IMU measurements into
3D position, velocity and attitude. The triad of gyroscopes and accelerometers of an IMU,
mounted on a moving platform measures rotation rates ωbib and specific forces f bib about the
body axes with respect to the inertial frame. The accelerometers measure specific forces
rather than accelerations, because earth’s gravity is superimposed. For compensation a
gravity model is needed (Section 3.2.2).

In Figure 3.3 the body-frame axes and the direction of the positive rotation rate is
shown. The rotation rate is positive in clockwise orientation along the axis. The IMU
used in thesis is mounted in the vehicle that the sensitive axes (see Figure 3.4) align with
the assumed b-frame.

For attitude computation, the measured IMU rotation rates ωbib have to be corrected
due to Coriolis effect. Equations (3.23-3.25) are used for implementation. The two rota-
tion rate vectors are earth’s rotation rate vector ( 3.24) and transport rate vector (Equa-
tion 3.25), given in the n-frame. Therefore they have to be resolved into the b-frame
using the rotation matrix Cb

n (Equation 3.23). The sum of the two vectors is forming a
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xb

yb

zb

Figure 3.3: Body-frame of the vehicle for SDINS

new rotation vector (see Appendix A) like in Equation (3.26). This relation will be used
in Chapter 5. Now all components are know to compute Equation (3.14).

ωbnb = ωbib −Cb
n(ωnie + ωnen) (3.23)

ωnie =

 ωEcosϕ
0

−ωEsinϕ

 (3.24)

ωnen =


vneb,E
Re − h
−

vneb,N
Rn − h

−
vneb,Etanϕ

Re − h

 (3.25)

ωnin = ωnie + ωnen (3.26)

A correction of the measured specific forces due to Coriolis acceleration and the gravity
compensation is done in Equation (3.27). It is to mention that the cross product can be
rewritten into a matrix multiplication by using skew symmetric matrices. Equation (3.28)
is therefore equivalent to Equation (3.27). Appendix A provides more information about
skew symmetric matrices.

v̇neb = Cn
b f

b
ib − (2ωnie + ωnen)× vneb + gn (3.27)

v̇neb = Cn
b f

b
ib − (2Ωn

ie + Ωn
en)vneb + gn (3.28)
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Figure 3.4: IMU mounting in test vehicle

The position representation is done in LLH coordinates. If the NED velocity
vneb = [vneb,N , v

n
eb,E , v

n
eb,D]T is known, using the radii of curvature, the position is calcu-

lated through Equations (3.29-3.31). The matrix notation of the differential equations for
the vector pnLLH = [ϕ, λ, h]T is given in (3.33).

ϕ̇ =
vneb,N

Rn(ϕ)− h
(3.29)

λ̇ =
vneb,E

(Re(ϕ)− h)cosϕ
(3.30)

ḣ = vneb,D (3.31)

D−1 =


1

Rn(ϕ)− h
0 0

0
1

(Re(ϕ)− h)cosϕ
0

0 0 1

 (3.32)

ṗnLLH = D−1vneb (3.33)

The SD computation equations can be written in a compact vector notation. Equa-
tion (3.34) is a set of non-linear differential equations. To solve the differential equations,
a simple Euler method is used for integration (Equations 3.35-3.37). Chapter 6 shows that
this approximation method is sufficient with a sampling frequency of 50Hz (∆t = 0.02s).

ẋ :=

 q̇nb
v̇neb
ṗnLLH

 =


1

2
Qn
bω

b
nb

Cn
b f

b
ib − (2Ωn

ie + Ωn
en)vneb + gn

D−1vneb

 =: f (x(t)) (3.34)
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ẋ =
dx

dt
= f (x(t)) (3.35)

xk+1 − xk
∆t

≈ f(xk) (3.36)

xk+1 = xk + f(xk)∆t (3.37)

Figure 3.5 is the block diagram of a INS mechanization in the n-frame with all presented
dependencies in this Section. The strapdown computation is a recursive process. The
computation of the gravity g, Coriolis effect (ωnie,ω

n
en) and radii of curvature (Re, Rn) are

done in every iteration, based on the previous navigation result.

Note that the height is always negative with the chosen formulation (Equation 3.31),
since both, the body and the navigation z-axis, point downwards. This is why the sign in
front of the height h in Equations (3.29-3.30) may differ from other common formulations
found in literature.

A derivation of the INS equations and detailed discussed implementation methods for
SD computation is done by Titterton and Weston (2004).

Attitude

Body-frame 
to

Navigation-frame

Gyroscopes

IMU

Gravity
Model

Attitude
Computation

Coriolis 
Computation

Velocity

Position

Cb
n
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nveb

n

gn

fib
n

ωie
n+ωen

n

(2ωie
n    +ωen

n)xveb
n

q0

Accelerometer ∫ LLH 
Computation

Figure 3.5: Block diagram of an INS mechanization in the navigation frame. The grav-
ity model is described by Equations (3.1-3.4). The b-frame to n-frame transformation
of accelerations Cn

b f
b
ib is a part of Equation (3.27), where the DCM Cn

b is a result of
the attitude computation (Equation 3.14). The terms due to Coriolis effect (Equations
3.24-3.25) must be considered for attitude and velocity calculations. Finally the position
in LLH coordinates, given by Equations (3.29-3.31), is the navigation result of the INS
mechanization.

3.2.3 RISS Mechanization

The second DR method in this project is a RISS providing 3D position, velocity and
attitude. The navigation principle is based on a rho-theta technique, where the new
position is calculated from the traveled distance (here velocity) and knowledge about the
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direction of movement. The difference to the conventional SDINS is a reduced set of
inertial sensors. With this approach only two accelerometer to calculate the off-plane
motion (pitch & roll) and one gyroscope to calculate the heading are needed. The velocity
of the vehicle is measured using odometer data, namely wheel-speed sensors. This offers
some advantages compared to a full 3D IMU. This method is also chosen to make a proper
use of the wheel-speed measurements.

The main advantage is the reduced effect of bias errors in the navigation solution. The
accelerometers are used to calculate the off-plane motion without any integration process.
A small bias is therefore not as critical as the bias errors of the three gyroscopes in the full
IMU approach, involving an integration. The same goes for the calculation of the position
by a direct measurement of the velocity, rather than accelerations. Only one integration is
needed instead of two, reducing the consequences of accelerometer errors. The calculation
of a correct heading is possible by capturing the vertical rotation rate with a gyroscope.
The RISS approach is especially suitable for low-cost MEMS, which reduces the costs for
inertial sensors. Another advantage is the reduced computational complexity for attitude
and velocity calculation (Noureldin, Karamat, and Georgy, 2012).

As a disadvantage, the need of odometry data can be stated. But since the velocity is
measured anyway, the sensor data is nowadays accessible through internal CAN-Buses of
the car.

A RISS for 2D navigation is presented in Noureldin, Iqbal, and Okou (2008) to cut
the costs for land vehicle navigation. The first 3D RISS solution was proposed by Georgy
et al. (2010).

In Figure 3.6 the body-frame for the RISS, with all used sensors, is displayed. The
y-axis points toward forward direction and the x-axis towards transversal direction. The
navigation frame uses the ENU convention.

yb

xb

zb
Gyroscope

Accelerometer

Wheel-speed
Sensor

Figure 3.6: Body-frame of the vehicle for RISS
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The following RISS equations are given in discrete time formulation. The subscript k
indicates the current time epoch, whereas k-1 is the previous one. For a better readabil-
ity the superscript notation that indicates the coordinate frame is omitted. Instead the
corresponding coordinate axes are denoted with superscripts.

To calculate the tilt with respect to the E-N plane for static conditions using ac-
celerometers, check Equations (3.38 - 3.39). The pitch θ is calculated with the specific
force measurement fy of the y-axis in forward direction. The roll angle φ depends on
the transversal specific force fx and the pitch. The gravity g is calculated with the same
gravity model as in the SDINS approach.

θ = sin−1

(
fy

g

)
(3.38)

φ = sin−1

(
−fx

g cosθ

)
(3.39)

If the vehicle is moving, the specific force fy has to be compensated by the vehicle
acceleration aodk , derived from the measured odometer velocity (Equation 3.40). The
transversal accelerometer measurement must be compensated for the normal component
of acceleration (Equation 3.41), where ωzk is the measured rotation rate of the vertical
gyroscope.

θk = sin−1

(
fyk − a

od
k

g

)
(3.40)

φk = −sin−1

(
fxk + vodk ω

z
k

g cosθk−1

)
(3.41)

The positive yaw angle ψ = tan−1
(
UE

UN

)
is defined relative to the north in clockwise

direction. Due to earth’s rotation rate and the change of orientation of the navigation
frame, two additional correction terms have to be considered in Equation (3.42). Similar
corrections are done in the SDINS mechanization.

ψk = tan−1

(
UE

UN

)
+ (ωEsinϕk−1)∆t+

vEk−1tanϕk−1

Re + hk−1
∆t (3.42)

Equations (3.43-3.45) are relations needed to calculate the yaw angle.

UE = sinψk−1cosθk−1cosγ
z
k − (cosψk−1cosφk−1 + sinψk−1sinθk−1sinφk−1)sinγzk (3.43)

UN = cosψk−1cosθk−1cosγ
z
k − (−sinψk−1cosφk−1 + cosψk−1sinθk−1sinφk−1)sinγzk (3.44)

γzk = ωzk∆t (3.45)
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There is also a simple approximation (Equation 3.46) for the yaw calculation, in case
of 2D navigation, neglecting the off-plane motions. It is not used in this project because
we consider 3D motion.

ψk = ψk−1 + (ωEsinϕk−1)∆t+
vEk−1tanϕk−1

Re + hk−1
∆t (3.46)

The overall system model with state vector xk is given in Equation (3.47). The cal-
culation of the LLH position is similar to the SDINS. The ENU velocity components,
calculated from the absolute measured vehicle velocity, are derived from Equation (A.14).
See Appendix A for more details.

xk =



ϕk
λk
hk
vEk
vNk
vUk
θk
φk
ψk


= f(xk−1,uk) =



ϕk−1 +
vNk−1

Rn + hk−1
∆t

λk−1 +
vEk−1

(Re + hk−1)cosϕk−1
∆t

hk−1 + vUk−1∆t

vodk sinψk−1cosθk−1

vodk cosψk−1cosθk−1

vodk sinθk−1

sin−1

(
fyk − a

od
k

g

)
−sin−1

(
fxk + vodk ω

z
k

g cosθk−1

)
tan−1

(
UE

UN

)
+ (ωEsinϕk−1)∆t+

vEk−1tanϕk−1

Re + hk−1
∆t


(3.47)

The input vector uk contains all measurement quantities.

uk =
[
fxk fyk ωzk vodk aodk

]T
(3.48)

The block diagram of the RISS mechanization is shown in Figure 3.7. With the chosen
b-frame and ENU convention, it is to mention, that the height h, in the RISS mechaniza-
tion, is always positive. Fore a more detailed look at RISS see Noureldin, Karamat, and
Georgy (2012).
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Figure 3.7: Block diagram of an RISS mechanization in the navigation frame. The attitude
computation is given by Equation (3.42) for the yaw angle and Equations (3.40-3.41)
respectively for pitch and roll angle. The gravity model (Equations 3.1-3.4) is the same as
for the strapdown algorithm. The transformation of the absolute odometer velocity into
the ENU frame is done according to Equation (A.14). The LLH position is calculated
similar to Equations (3.29-3.31), considering the ENU coordinate convention. The overall
system model for the RISS mechanization process is given by Equation (3.47).

The presented system models in this Chapter for SDINS and RISS mechanization are
used in Chapter 5 for GPS/INS integration. A system error model, necessary for the
the indirect integration method, is derived based on these models. To perform a correct
system error modeling, the inertial sensor errors are analyzed in the following Chapter 4.



Chapter 4

MEMS Sensor Error Analysis

This Chapter presents several of the error sources of inertial sensors, how to identify them
and sets up a sensor error model that is used for GPS/INS integration.

The analysis of inertial sensors is important, especially when low-cost sensors (MEMS
grade) are used. With an appropriate sensor error model the navigation error of an INS
can be reduced. In an GPS aided INS approach, this is important during GPS outages.

The measurements of the IMU are affected by different error sources (ISO/IEC, 2008).
They can be classified as deterministic and stochastic errors. Deterministic errors are for
example bias, scale factor, dead zone and misalignment. Stochastic errors are random
errors that occur randomly, for example in bias or scale factor errors over time. The bias-
drift or the non-linearity of the scale factor can be described as stochastic processes. The
deterministic errors are due to manufacturing or mounting defects and can be corrected
with an calibration of the sensors (Quinchia et al., 2013).

Since the measurements were performed by partner companies and the IMU was not
available to do test measurements by our own, deterministic errors are not further dis-
cussed. This Chapter focuses on the modeling of the stochastic bias-drift error. Widely
used techniques to analyze stochastic errors and to estimate stochastic error model pa-
rameters are variance and the autocorrelation.

In Section 4.1 the theory behind sensor error models is described while in Section 4.2
and 4.3 methods to identify the model parameters are discussed.

4.1 Sensor Error Modeling

A typical bias-drift of inertial sensors can be modeled as a combination of different stochas-
tic processes like White Noise (WN), Random Walk (RW) and first order Gauss Markov
(GM) processes (Quinchia et al., 2013). In Section 4.2 it will be shown that this statement
is valid for the used IMU in this project too.

A first order GM process is used to describe a large number of physical random process.
A simple mathematical expression is another benefit with this kind of modeling, shown
by Equation (4.1) in continuous form.

33
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ẋ = − 1

Tc
x+ wGM (4.1)

σ2
w,GM = 2βσ2

GM (4.2)

The driven noise variance σ2
w,GM (Equation 4.2) depends on the inverse correlation

time β = 1
Tc

and the covariance of the process σ2
GM . The zero mean random process

x, with correlation time Tc and driven noise wGM can also be expressed in time discrete
from (Equations 4.3-4.4). Since the model is used in an discrete KF algorithm, a discrete
representation of all processes is necessary.

xk = (1− β∆t)xk−1 + wk,GM (4.3)

σ2
wk,GM

= σ2
GM

(
1− e−2β∆t

)
(4.4)

A continuous RW process (Equation 4.5) describes the results of uncorrelated noise
during integration in the mechanization process. The discrete form is shown by Equation
(4.6), where wRW is uncorrelated white noise with variance σ2

wk,RW
.

ẋ = wRW (4.5)

xk = xk−1 + wk,RW (4.6)

σ2
wk,RW

= σ2
RW∆t (4.7)

The combination of GM, RW and WN is done with a discrete time invariant state
space model, where the state vector is xk = [xk,GM , xk,RW ]T and σWN is the standard
deviation of the WN process.

xk =

[
(1− β∆t) 0

0 1

]
xk−1 +

[
σGM

√
(1− e−2β∆t)

σRW
√

∆t

]
wk (4.8)

yk =
[
1 1

]
xk +

(σWN

∆t

)
vk (4.9)

The output yk represents the modeled bias-drift, where wk and vk are uncorrelated
white noise terms with unit variance. Note that the state-space model from Equation
(4.8) is of second order when all three processes are involved. For a 6-DOF IMU, a
12th order state-space model is needed, only to model the sensor errors. The proposed
conventional sensor error approach is chosen because it can be comfortably integrated
into discrete Kalman filtering and computational complexity is kept small, compared to
autoregressive processes for example.

In Section 4.2 it will be shown that a bias-drift does not necessarily consist of a com-
bination of all three processes. The following two Sections are presenting methods to
identify the underlying random processes of a inertial sensor and how to find the param-
eters β, σGM , σRW and σWN .
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4.2 Allan Variance

The Allan Variance (AV) is a method to provide information on the types and magnitude
of error terms of an inertial sensor. It is a technique operating in the time domain and is
basically representing the root mean square random-drift errors as a function of averaging
times (El-Sheimy, Hou, and Niu, 2008).

The AV was originally developed to observe the frequency stability of oscillators. Today
it is successfully used to analyze random inertial sensor errors. To perform an AV analysis
inertial measurement data under static conditions is needed. The method is popular
because it is simple to compute and easy to understand since it is a graphical analysis.
A drawback is that the accuracy of the estimation depends on the recorded data length.
Several hours of measurement data are suggested to get a reliable result. Since the AV is
working with the entire data length, the computation can take some time (Quinchia et al.,
2013).

There is also a method operating in the frequency domain by using the power spec-
tral density (Slavov and Petkov, 2010; Quinchia et al., 2013), but it is more difficult to
understand and not that intuitive.

4.2.1 Theory

With AV analysis it is possible to identify five basic noise terms for inertial sensors (IEEE,
1997). The terminology for two noise terms differs for gyroscopes and accelerometers
due to different measured quantities. Both sensor types have quantization noise, bias
instability and rate ramp in common. In case of gyroscopes there are angle random walk
and rate random walk, whereas for accelerometers they are called velocity random walk
and acceleration random walk.

There is a unique relation between the power spectral density and AV. In El-Sheimy,
Hou, and Niu (2008) a derivation of the AV from the power spectral density is done. A
detailed explanation of the AV analysis can also be found there and the basis for the
performed sensor error analysis is explained.

The different error sources appear with different slopes in the AV plot. It is normally
plotted as the square root of the AV versus averaging time τ with a log-log scale. Quan-
tization noise has a slope of -1 and rate ramp for example a slope of +1. These two
error sources are not further discussed because they do not appear in the sensor data. An
example for an AV plot is shown in Figure 4.1.

Three different error sources, resulting in three different slopes, can be detected for the
z-axis accelerometer. Velocity random walk results in a −1

2 slope and is caused basically
by WN. Bias instability appears as slope 0 and can be modeled with a GM process.
Acceleration random walk has a slope of +1

2 and refers to a RW process. The same is
valid for gyroscope angle random walk (slope −1

2) and rate random walk (slope 1
2).

The missing parameters σGM , σRW and σWN are calculated from identified error coef-
ficients through AV analysis. Velocity-/Angle random walk coefficients are labeled as Na

and Ng. Bias instability coefficients are Ba for accelerometers and Bg for gyroscopes. The
notation for acceleration and rate random walk is Ka and Kg, respectively.
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Figure 4.1: Example of a AV plot for z-accelerometer with different error sources

The parameters Na and Ng are found by reading the intersection point of slope −1
2

with τ = 1s on the y-axis, representing the Allan standard deviation. The bias instability
coefficients Ba and Bg are found at the minimum of the AV plot, where the slope is 0.
The numerical value for coefficients Ka and Kg are found at the intersection point of slope
1
2 with τ = 3s at the y-axis.

Note that the units in Figure 4.1 are in SI units s and m/s2. Often other units, like
m/s/h or deg/h are used in the AV plot. To find the correct intersection point, it is
important that both axis share the same unit in time. For the example of m/s/h, the
intersection with the x-axis is at τ = 1h (for Na, Ng) or τ = 3h (for Ka,Kg).

If other units than SI units are used in the AV plot, the error coefficients have to be
transformed afterwards to get the corresponding noise variances. This is presented in the
Subsection 4.2.3, regarding AV analysis.
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4.2.2 Computation

One way to compute the AV is in terms of output angle or velocity , since the AV analysis
can be used for gyroscopes as well as for accelerometers (El-Sheimy, Hou, and Niu, 2008).

In Equation (4.10) the term Ω(t′) refers to the gyroscope or acceleration measurement.
No lower integration limit is defined because only angle or velocity differences are used
in the definition. The integral quantity Θ(t) represents the output angle or velocity. The
measurements are made at discrete times t = k∆t, k = 1, 2, 3..., N , where N is the number
of measured data points. For a discrete set of samples Equation (4.10) is a cumulative
sum with simplified notation Θk = Θ(t = k∆t) (IEEE, 1997).

Θ(t) =

∫ t

0
Ω(t′)dt′ (4.10)

The cluster averages Θk(τ) are defined in Equation (4.11) and the index m = τ
τ0

depends
on the desired averaging time τ , where τ0 = ∆t. The definition of the AV is given by
Equation (4.12) where 〈〉 denotes the ensemble average.

Θk(τ) =
Θk+m −Θk

τ
Θk+m(τ) =

Θk+2m −Θk+m

τ
(4.11)

σ2
Allan(τ) =

1

2
〈
(
Θk+m(τ)−Θk(τ)

)2〉 (4.12)

To get an AV estimator, Equation (4.11) is substituted into Equation (4.12), which leads
to following Equation,

σ2
Allan(τ) =

1

2τ2
〈(Θk+2m − 2Θk+m + Θk)

2〉 . (4.13)

According to the AV definition, an AV estimator, by overlapping method (Freescale, 2015),
is given by Equation (4.14).

σ2
Allan(τ) =

1

2τ2

1

N − 2m

N−2m∑
k=1

(Θk+2m − 2Θk+m + Θk)
2 (4.14)

To get the Allan standard deviation σAllan(τ), used in the log-log plot for the analysis,
the square root is applied to the Allan Variance.

σAllan(τ) =
√
σ2
Allan(τ) (4.15)

Note that τ0 is the sampling time ∆t of the measurement data and therefore the
smallest possible averaging time, resulting in an averaging factor m = 1. The averaging
factor is restricted by m < N

2 (see Equation 4.14), which implies that the biggest possible
averaging time τ is half of the measurement time span. The desired τ value for AV
calculation must be an integer multiple of τ0.
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4.2.3 Allan Variance Analysis

The AV analysis is performed with a 30 minute static IMU measurement at a sampling
rate of 50Hz.

Figure 4.2 shows the results for the triad of accelerometers. All accelerometers have
a similar behavior for short and long cluster times. Only the x-axis accelerometer shows
a different characteristic for long cluster times. The reason could be that for long cluster
times, less measurements data points are available for AV calculation and the estimate
becomes not reliable any more. The velocity random walk is almost identical for the three
accelerometers. The smallest bias instability belongs to the y-axis accelerometer. The AV
analysis for accelerometers shows that the proposed sensor error model from Section 4.1,
consisting of a combination of WN, first order GM and RW processes can be applied. The
x-axis random error for long averaging times is modeled with a RW process too, assuming
the same behavior as the other accelerometers.
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Figure 4.2: Allan standard deviation for accelerometers

The Allan standard deviation plot in Figure 4.3 displays the result for gyroscopes.
Only one error source is dominant for all cluster times. An angle random walk with slope
1
2 is the main random error caused by WN. Therefore only values for Ng, but no values
for Bg and Kg are found.

The identified error coefficients are listed in Table 4.1. The AV plots are created with
a self implemented function for AV calculation, but the results are also validated with an
independent MATLAB function (Czerwinski, 2010), which provides an overlapping AV
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Figure 4.3: Allan standard deviation for gyroscopes

estimate. The results are almost identical, up to a residual of 10−7. Quinchia et al. (2013)
states that the parameters from AV estimation have to be considered as initial approx-
imation and manually tuned in the KF to obtain the desired performance. This is also
done in this thesis. The error coefficients are assumed larger as identified, because under
realistic dynamic road measurements, the errors can be assumed larger due to vibrations
caused by the engine, road condition and other influences affecting the measurements.
The parameters used for simulation, are listed at Table C.1 in the Appendix.

velocity random walk bias instability acceleration random walk

Na [m/s/
√
s] Ba [m/s2] Ka [m/s/s3/2]

accel x 1.05× 10−3 4× 10−4 6.2× 10−5

accel y 9.8× 10−4 2.76× 10−4 4.2× 10−5

accel z 1.05× 10−3 4.2× 10−4 8.4× 10−5

angle random walk bias instability rate random walk

Ng [rad/
√
s] Bg [rad/s] Kg [rad/s3/2]

gyro x 5.7× 10−4 - -
gyro y 5.1× 10−4 - -
gyro z 4.97× 10−4 - -

Table 4.1: Identified error coefficients from AV analysis

The error coefficients are used to calculate the system noise covariance matrix for the
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ESKF in the GPS/INS integration. In this approach the random sensor errors are treated
as system noise, like it is suggested in Wendel (2011).

The system noise covariance matrix Qk is explained in more detail in Chapter 5.
This Chapter only shows how to calculate the individual entries. In Equation (4.16) the
diagonal structure of the matrix is defined.

Qk =


diag(qNa

) 0(3x3) 0(3x3) 0(3x3)

0(3x3) diag(qNg
) 0(3x3) 0(3x3)

0(3x3) 0(3x3) diag(qBa
) 0(3x3)

0(3x3) 0(3x3) 0(3x3) diag(qKa
)

 (4.16)

The diag() operator creates a diagonal matrix from the vectors qNa
= [qNax , qNay , qNaz ]T ,

qNg
= [qNgx , qNgy , qNgz ]T , qBa

= [qBax , qBay , qBaz ]T and qKa
= [qKax , qKay , qKaz ]T . All

those quantities are obtained through the AV analysis and parameters from Table 4.1. To
describe the relation between identified parameters and calculated covariances, the x-axis
accelerometer parameters are used as an example.

The spectral density in discrete time of the process driving noise of a WN process is
expressed in Equation 4.17, where σ2

WNax
is the variance of the WN process. Since the

identified parameters Na from the AV analysis are already in international system units,
no further conversion of units has to be done.

qNax =
σ2
WNax

∆t
=
N2
ax

∆t
(4.17)

The spectral density in discrete time for the first order GM process is calculated from the
bias instability parameter Bax and corresponding correlation time Tc,ax from Table 4.2.
In IEEE (1997) it is suggested to multiply Bax with factor 0.664 to get the same variance
σ2
GMax

as from the power spectral density approach.

qBax = σ2
GMax

(
1− e−2∆t/Tc,ax

)
(4.18)

σGMax = 0.664Bax (4.19)

The discrete spectral density for the acceleration random walk is expressed in Equation
(4.20). No further unit conversion has to be done, due to the usage of international system
units.

qKax = σ2
RWax

∆t = K2
ax∆t (4.20)

4.3 Autocorrelation

The autocorrelation analysis is used to identify the correlation time parameter Tc in the
GM process.

The first order GM process (Equation 4.1) has an exponentially decaying autocorrela-
tion function (Noureldin, Karamat, and Georgy, 2012). The autocorrelation is described
by Equation (4.21) and shown in Figure 4.4.
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Figure 4.4: Autocorrelation of a first order GM process

Rxx(τ) = σ2e−β|τ | (4.21)

Before the autocorrelation is calculated, the mean of the measurement data is removed.
To calculate a one dimensional autocorrelation function, jointly stationary random pro-
cesses are assumed. To identify the correlation time, it is suggested in Quinchia et al.
(2013) to perform wavelet de-noising, because otherwise the time correlation property
of the signal can not be seen. Without the de-noising the uncorrelated noise terms are
dominant, resulting in a peak, basically at time lag zero. A significant property of an
uncorrelated white noise process. The performed de-noising is done with a non-causal
moving average filter. The results are compared with the suggested level six wavelet de-
noising using the integrated MATLAB function wden in exemplary configuration. Both
methods provide a similar solution.

The autocorrelation is normalized, where the correlation time is reached at the 1
e

intersection line. In Figure 4.5 the autocorrelation for accelerometers is shown before de-
noising. After the de-noising (Figure 4.6) a correlation in the signals is visible. According
to the trend of the signals it must be presumed that more complex error processes, than a
first order GM process, are present. As a rough approximation, a first order GM process
is still chosen.

The autocorrelation analysis for gyroscopes is also performed. The comparison between
Figure 4.7 and Figure 4.8 indicates that even after de-noising, the remaining signal still
has a representative white noise component. This corresponds with the results from AV
analysis, where only an angle random walk is identified, but no bias instability or rate
random walk.

The identified correlation times are listed in Table 4.2.

accel x accel y accel z gyro x gyro y gyro z

correlation time Tc[s] 2.6 42 66 - - -

Table 4.2: Identified correlation times Tc for GM process
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Figure 4.5: Autocorrelation for accelerome-
ters before de-noising
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Figure 4.6: Autocorrelation for accelerome-
ters after de-noising
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Figure 4.7: Autocorrelation for gyroscopes
before de-noising
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Figure 4.8: Autocorrelation for gyroscopes
after de-noising

The autocorrelation analysis has its limitations. The calculated autocorrelation is an
estimation, because only a finite number of data points is available. The accuracy de-
pends therefore on the recorded data length. Furthermore due to the graphical fitting of
an exponential decaying function with a signal course of different behavior, there is room
for parameter variations. Like in the case of error coefficients, the correlation times can
be manually tuned inside the KF. This is not done for correlation times in this thesis,
because a variation (by factor 1/2 and 2) shows no effect on the simulation result.

The results from the AV and autocorrelation analysis presented in this Chapter are used
in the error model approach for GPS/INS integration. The system noise covariance matrix
Qk, for the ESKF in Subsection 5.2.2, is calculated by the identified error coefficients. The
bias-drift is estimated within the KF and used for online-calibration of the IMU.



Chapter 5

GPS/INS Integration

This Chapter presents how the GPS/INS integration is performed in detail. The chosen
sensor fusion method is Kalman filtering. In Section 5.1 the basic principles and relevant
equations of different kinds of KF are discussed. In Section 5.2 and 5.3 the equations for the
indirect approach are declared. The implemented fusion algorithm and other peculiarities
regarding the measurement data are presented in Section 5.4.

5.1 Kalman Filtering

Kalman filtering is a well known state estimation technique, not only for GPS/INS inte-
gration. It is used to estimate the states and the uncertainty of a system, that is corrupted
by noise terms. If the system is linear and the noise is unbiased, uncorrelated Gaussian
distributed, the KF is an optimal estimator, in a sense of minimal variance. There exist
some other variations of the KF, like the EKF, the unscented KF for non-linear systems,
or many others.

The Kalman filter is especially attractive for digital computation because the algorithm
works in a recursive scheme and is suitable for real time applications. The algorithm is
basically divided into two steps: the prediction step and the update or measurement step.
A notation is chosen, where x̂ denotes an estimated state. The (-) superscript symbolizes
a predicted or so called a priori quantity, whereas (+) labels a updated or a posteriori
value. The predicted state is based on the previous estimated state. With a new available
measurement, the predicted state is corrected with a weighted update to get the new
estimated state.

Kalman filtering is known for many years now and is successfully applied in numerous
technical domains. The theory behind Kalman filtering is complex and different math-
ematical disciplines are forming the foundation of the derivation. Only the relevant re-
lations and main equations which are describing the KF algorithm are discussed in this
work. There exists an extensive amount of literature related to Kalman filtering. For
general information on Kalman filtering the books by Grewal and Andrews (2008) and
Kim (2011) are recommended. The work of Wendel (2011) and Noureldin, Karamat, and
Georgy (2012) influenced the approach in this thesis to a large extend. Many aspects that
can not be covered here and a more detailed explanation of the equations and models can
be found there.

43
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5.1.1 Kalman Filter

The application of Kalman filtering requires a linear system (Equation 5.1) and measure-
ment model (Equation 5.2) in discrete time. If the system is in continuous time, the
conversion is shown in Appendix B.

xk = Φk−1xk−1 +Bk−1uk−1 +Gk−1wk−1 (5.1)

zk = Hkxk + vk (5.2)

It is assumed that the noise terms wk−1 and vk are unbiased, uncorrelated and Gaus-
sian distributed. The assumptions regarding system and measurement noise are described
by Equations (5.3-5.6). Qk and Rk are the system and measurement covariance matrices.
Because a noise source can affect more than one system state, the noise distribution matrix
Gk−1 takes into account the coupling of noise disturbances.

E[wk] = 0 E[vk] = 0 ∀k (5.3)

E[wkv
T
j ] = 0 ∀k, j (5.4)

E[wkw
T
j ] =

{
Qk k = j

0 k 6= j
(5.5)

E[vkv
T
j ] =

{
Rk k = j

0 k 6= j
(5.6)

The five Equations (5.7-5.11) are defining the KF algorithm. The first step is the prediction
of the state x̂−k and the error covariance matrix P−k .

x̂−k = Φk−1x̂
+
k−1 +Bk−1uk−1 (5.7)

P−k = Φk−1P
+
k−1Φ

T
k−1 +Gk−1Qk−1G

T
k−1 (5.8)

If a new measurement zk is available, the Kalman gain matrix Kk can be computed.
It serves as a kind of weighting matrix in Equation (5.10) for the new state estimate x̂+

k .
With Kk the algorithm determines how much the new measurement can be “trusted“.
The error covariance matrix is also updated (Equation 5.11).

Kk = P−kH
T
k (HkP

−
kH

T
k +Rk)

−1 (5.9)

x̂+
k = x̂−k +Kk(zk −Hkx̂

−
k ) (5.10)

P+
k = (I −KkHk)P

−
k (5.11)

After the calculation of all five Equations, x̂+
k and P+

k are used in the next iteration.
The calculation of the prediction step is independent of new measurement data. This
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is used in Section 5.4, where the prediction step is calculated with a fixed step size,
whereas the estimation step is only performed when a new measurement is available. This
circumstance allows the realization of a multi-rate system, since GPS measurements have
a different sampling rate compared to inertial sensors.

The iterative algorithm needs initial conditions to start the calculation. The initial state
x̂0 has a known mean x̂∗0 and a covariance P 0.

x̂∗0 = E[x̂0] (5.12)

P 0 = E
[
(x̂0 − x̂∗0)(x̂0 − x̂∗0)T

]
(5.13)

5.1.2 Extended Kalman Filter

If the system model (Equation 5.14) or the measurement model (Equation 5.15) is non-
linear, a so called EKF is used for Kalman filtering. The assumptions for the noise terms
are the same as for linear Kalman filtering.

xk = f(xk−1,uk−1) +Gk−1wk−1 (5.14)

zk = h(xk) + vk (5.15)

The Kalman filtering principle stays the same in the extended version. The five filter
Equations (5.16-5.20) nearly are the same. The difference is that for the calculation of
the predicted and estimated state, the non-linear models are used. The calculation of the
Kalman gain matrix Kk and error covariance matrices are unchanged. The non-linear
behavior is therefore approximated with the Jacobian matrices from Equation (5.21) and
(5.22).

x̂−k = f(x̂+
k−1,uk−1) (5.16)

P−k = Φk−1P
+
k−1Φ

T
k−1 +Gk−1Qk−1G

T
k−1 (5.17)

Kk = P−kH
T
k (HkP

−
kH

T
k +Rk)

−1 (5.18)

x̂+
k = x̂−k +Kk

(
zk − h(x̂−k )

)
(5.19)

P+
k = (I −KkHk)P

−
k (5.20)

Φk =
∂f(xk,uk)

∂x

∣∣∣∣
x=x̂k

(5.21)

Hk =
∂h(xk)

∂x

∣∣∣∣
x=x̂k

(5.22)

Because the computation of the matrices is based on an approximation, the EKF can
only be reasonably used if the non-linearities are not dominating and the noise parameters
are chosen carefully (Boutayeb, Rafaralahy, and Darouach, 1997).
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5.1.3 Error State Formulation

The indirect GPS/INS integration approach is using an error state formulation. The idea
behind this approach is to estimate the errors of the INS and subsequently correcting
them. This methodology has some benefits compared to the direct approach (see Subsec-
tion 2.2.4). Because the filter is estimating error states, rather than full states, the filter
is called ESKF (Wendel, 2011).

Assume a model like in Equation (5.23).

ẋ = f(x) +Bu+Gw z = h(x) + v (5.23)

An approximation for the system model by Taylor series expansion about some lineariza-
tion point x looks like:

ẋ ≈ f(x) +
∂f(x)

∂x

∣∣∣∣
x=x

· (x− x) +Bu+Gw (5.24)

The same principle can be applied to the estimated state vector.

˙̂x = f(x̂) +Bu ≈ f(x) +
∂f(x)

∂x

∣∣∣∣
x=x

· (x̂− x) +Bu (5.25)

Subtracting Equation (5.24) from Equation (5.25) yields to

˙̂x− ẋ =
∂f(x)

∂x

∣∣∣∣
x=x

· (x̂− x)−Gw (5.26)

With the definition of the error state vector ∆x = x̂− x, rewriting Equation (5.26) leads
to

∆ẋ =
∂f(x)

∂x

∣∣∣∣
x=x

·∆x−Gw (5.27)

Analogous the measurement model is derived the same way. Now a new linear system
in terms of error states is defined. The system and measurement matrices are Jacobian
matrices of the non-linear functions.

∆ẋ = F∆x−Gw (5.28)

∆z = H∆x− v (5.29)

F =
∂f(x)

∂x

∣∣∣∣
x=x̂

(5.30)

H =
∂h(x)

∂x

∣∣∣∣
x=x̂

(5.31)

After discretization of Equations (5.28-5.52), the KF algorithm from Subsection 5.1.1
can be applied to estimate the error states. If these estimated errors are used to correct the
states of the INS, then the corrected states become basically estimated full states. These
states are fed back to the INS for the next iteration. The state vector of the ESKF must
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be set to zero after every correction. Therefore a state prediction step for error states can
be omitted, since the last estimated error state is zero. Only the error covariance matrix
has to be calculated in every iteration. Wendel (2011) is calling this a closed-loop ESKF.
It is stated that an ESKF in feedback configuration, equals an EKF (Gustafsson, 2012).

5.2 Loosely-Coupled Strapdown Integration

This Section explains in detail the loosely-coupled approach for the full IMU based strap-
down algorithm of Subsection 3.2.2. An indirect design in error state space formulation
is chosen (see Section 2.2). With this design the measurements of the IMU are processed
in the prediction step of the filter, not in the measurement step, like it could be assumed.
The identified noise parameters of Section 4.2.3 are therefore used to describe the system
noise of the error state space model. The GPS measurements are aiding the INS naviga-
tion solution and are treated as real measurements, used in the update step within the
KF. In an ESKF, the residuals between INS and GPS navigation solution are processed,
rather than absolute position data. With this design it is possible to consider the multi-
rate behavior of the system, since the INS solution is computed with 50Hz, whereas a
GPS measurement is only available every second. Furthermore, the bias-drift is estimated
within the KF, based on the random sensor error processes from Section 4.1, to enable an
online sensor calibration.

To establish the error model for the ESKF, it is necessary to examine how errors prop-
agate within the INS mechanization. This is very complex for velocity and attitude errors
because the equations are non-linear differential equations, containing transformation ma-
trices, direction cosines and cross products. To form a linear error model, they have to be
linearized (Wendel, 2011). The derivation is only shown for the position error. Just the
final velocity and attitude error equations are presented, which are used in the state space
formulation. For the exact derivation see Wendel (2011) or Titterton and Weston (2004).

5.2.1 INS Error Equations

The error state vector is defined by (5.32). The position error ∆p is in units of meter.
The attitude error ∆ψ is given by three error angles, which are later used to form a
correction quaternion, since attitude representation is done by quaternions. Also the bias-
drift is estimated, represented by the GM process state vector ∆bGM,a and RW state
vector ∆bRW,a for accelerometers.

∆x =

(
∆xN ,∆xE ,∆xD︸ ︷︷ ︸
position error∆p

,∆vneb,N ,∆v
n
eb,E ,∆v

n
eb,D︸ ︷︷ ︸

velocity error∆vneb

, ∆α,∆β,∆γ︸ ︷︷ ︸
attitude error∆ψ

,

∆bGM,ax,∆bGM,ay,∆bGM,az︸ ︷︷ ︸
accel GM ∆bGM,a

,∆bRW,ax,∆bRW,ay,∆bRW,az︸ ︷︷ ︸
accel RW ∆bRW,a

)T (5.32)

The error equations are formulated in terms of error state variables, to form an error state
space model.
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Position Error

The change of latitude is described by following Equation:

ϕ̇ =
vneb,N
Rn − h

(5.33)

The position error in north direction is basically caused by the velocity error in north
direction ∆vneb,N and the height error ∆xD. Under the assumption of constant radii of
curvature, the Taylor series expansion of Equation (5.33) leads to

∆ϕ̇ =
∂ϕ̇

∂h
∆xD +

∂ϕ̇

∂vneb,N
∆vneb,N =

vneb,N
(Rn − h)2

∆xD +
1

Rn − h
∆vneb,N (5.34)

To calculate the position errors in units of meters, instead of radian, they are converted
with the corresponding factors. The advantage is that the position error in meters is much
more intuitive and that elements of the measurement covariance matrix do not cover a
large value range. This is important, because the inversion of a matrix with values of a
scope of 10−12 − 200, in the case of radian, is not trivial. The same methodology is used
for the longitudinal error, expressed as east error. The three position error Equations
(5.35-5.37) are:

∆ẋN = (Rn − h)∆ϕ̇ =
vneb,N
Rn − h

∆xD + ∆vneb,N (5.35)

∆ẋE = (Re − h)cosϕ∆λ̇ =
vneb,E tanϕ

Rn − h
∆xN +

vneb,E
Re − h

∆xD + ∆vneb,E (5.36)

∆ẋD = ∆vneb,D (5.37)

Velocity Error

The velocity error in Equation (5.38) is derived from Equation (3.28). The main causes
of velocity errors are accelerometer biases and false attitude information for coordinate
frame transformation.

∆v̇neb = Cn̂
b∆f bib − [Cn̂

b f
b
ib×]∆ψ − (2Ωn

ie + Ωn
en)∆vneb + [vneb×](2∆ωnie + ∆ωnen) (5.38)

The relation for the terms ∆ωnen, ∆ωnie is given by Equations (5.39-5.40). The partial
vector derivatives are further defined in Appendix B.2.

∆ωnen =

[
∂ωnen

∂(ϕ, λ, h)

] [
∂(ϕ, λ, h)

∂(xN , xE , xD)

]
∆p (5.39)

∆ωnie =

[
∂ωnie

∂(ϕ, λ, h)

] [
∂(ϕ, λ, h)

∂(xN , xE , xD)

]
∆p+

[
∂ωnen
∂vneb

]
∆vneb (5.40)

The estimated DCM Cn̂
b is calculated from a matrix multiplication. The new DCM

Cn̂
n for correcting the standard DCM Cn

b , contains the estimated attitude errors. An
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approximation of a DCM like in Equation (5.42) is only valid for small attitude errors
(Wendel, 2011). A multiplication of direction cosine matrices is equivalent to a connection
of rotations.

Cn̂
b = Cn̂

nC
n
b (5.41)

Cn̂
n =

 1 −∆γ ∆β
∆γ 1 −∆α
−∆β ∆α 1

 (5.42)

Attitude Error

The main reasons for attitude errors are uncompensated sensor biases and errors caused
by an incorrect compensation of the superimposed earth rotation rate in the angular rate
measurement.

∆ψ̇ = −Ωn
in∆ψ −∆ωnin +Cn̂

b∆ωbib (5.43)

The effects of earth rotation rate error and transport rate error are combined in ∆ωnin.

∆ωnin = ∆ωnie + ∆ωnen (5.44)

Sensor Errors

The only definitions missing in the error equations till now are the sensor errors ∆ωbib and

∆f bib. The measured specific force f̃
b
ib is the sum of real specific force f bib, a bias ba and

a noise term wWN,a.

f̃
b
ib = f bib + ba +wWN,a (5.45)

The estimated specific force can be written as

f̂
b

ib = f̃
b
ib − ba (5.46)

The sensor error ∆f bib is now defined by

∆f bib = f̂
b

ib − f bib = −∆ba +wWN,a (5.47)

From the AV analysis (Subsection 4.2.3) it is known, that the acceleration bias drift is a
combination of first order Gauss-Markov, random walk and white noise process.

∆f bib = −(∆bGM,a + ∆bRW,a) +wWN,a (5.48)

Analogous to the derivation of the acceleration error, the gyroscope error can be formu-
lated. Only a WN term is involved.

∆ωbib = wWN,g (5.49)
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5.2.2 Error State Space Model

A state space model of form (5.50) can be established from the error equations.

∆ẋ = F∆x+Gw (5.50)

A detailed view on the structure of the system is shown in Equation (5.51). How the
sub matrices of F are calculated is presented in Appendix B.2. The error state space
model is in continuous time, but for discrete Kalman filtering a model in discrete time is
required (see Appendix B.1). It is to mention that there exists a further simplified model
in Noureldin, Karamat, and Georgy (2012).

•
∆p

∆vneb
∆ψ

∆bGM,a

∆bRW,a

 =


F 11 I 0 0 0

F 21 F 22 F 23 −Cn̂
b −Cn̂

b

F 31 F 32 F 33 0 0
0 0 0 F 44 0
0 0 0 0 0




∆p
∆vneb
∆ψ

∆bGM,a

∆bRW,a

+


0 0 0 0

−Cn̂
b 0 0 0

0 Cn̂
b 0 0

0 0 I 0
0 0 0 I



wWN,a

wWN,g

wGM,a

wRW,a


(5.51)

The measurements ∆z of the measurement model (5.52) are the differences of the
navigation solution of INS and GPS. There is the possibility to use only position updates,
only velocity updates or both. The position differences must be converted from units of
radian into meter, since the position error state is in meters too. If velocity updates are
used, the measured absolute velocity vabs is either from GPS receiver or odometer. The
absolute velocity has be converted into NED-velocity components to form differences.

∆z = H∆x+ v (5.52)

∆zpos =

 (ϕ̂−INS − ϕGPS) · (Rn − ĥ−INS)

(λ̂−INS − λGPS) · (Rn − ĥ−INS)cosϕ̂−INS
ĥ−INS − hGPS

 (5.53)

∆zvel =

v̂
n−
eb,N − vabscosψcosθ
v̂n−eb,E − vabssinψcosθ
v̂n−eb,D − (−vabssinθ)

 (5.54)

∆zpos,vel =



(ϕ̂−INS − ϕGPS) · (Rn − ĥ−INS)

(λ̂−INS − λGPS) · (Re − ĥ−INS)cosϕ̂−INS
ĥ−INS − hGPS

v̂n−eb,N − vabscosψcosθ
v̂n−eb,E − vabssinψcosθ
v̂n−eb,D − (−vabssinθ)


(5.55)

The error states ∆x are connected with the residual measurements ∆z through the mea-
surement matrix H. According to which update quantities are used, different measure-
ment matrices are resulting.
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Hpos
(3×15)

=
[
I 0 0 0 0

]
(5.56)

Hvel
(3×15)

=
[
0 I 0 0 0

]
(5.57)

Hpos,vel
(6×15)

=

[
I 0 0 0 0
0 I 0 0 0

]
(5.58)

Due to different variations of measurements quantities, the measurement noise covari-
ance matrix Rk has to be adjusted. If only GPS position updates are used the matrix is
chosen like in Equation (5.59). The diagonal elements describe the uncertainty in north,
east and down direction in meter. For GPS receivers the height standard deviation is
larger (Hofmann-Wellenhof, Lichtenegger, and Wasle, 2007) than in latitude or longitude
direction. The used GPS receiver does not provide any information on the measurement
uncertainty by itself. Variances have to be assumed. Because of this lack in information
a diagonal structure is chosen, neglecting the correlation of the GPS navigation solution
caused by the internal KF.

Rpos =

σ2
xN

0 0
0 σ2

xE
0

0 0 σ2
xD

 (5.59)

If only velocity updates are used, the propagation of uncertainty has be considered,
since the NED velocity components are only available with a non-linear transformation (see
Equation A.14). According to the law of error propagation (Hoffman-Wellenhof, Legat,
and Wieser, 2003), the calculation of the Jacobian matrix J of the transformation vector
has to be performed. This yields

Rvel = J

σ2
vabs

0 0
0 σ2

ψ 0

0 0 σ2
θ

JT (5.60)

J =

cosψcosθ −vabssinψcosθ −vabscosψcosθ
sinψcosθ vabscosψcosθ −vabssinψsinθ
−sinθ 0 −vabscosθ

 (5.61)

If both, position and velocity updates are used, the covariance matrix in Equation (5.62)
is used.

Rpos,vel =

[
Rpos 0

0 Rvel

]
(5.62)

Now all components of the error state space model are defined to estimate the errors
with an ESKF. In the next subsection it is shown how to correct the predicted states with
the estimated errors, to get a full state estimate.
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5.2.3 Correction Step

In the correction step, the estimated errors correct the INS navigation solution, which can
be interpreted as a state prediction. The notation for predicted full states refers therefore
to the INS solution. Why these quantities can be interpreted as a prediction will be
explained in Section 5.4.

To get an absolute position estimate, the INS position has to be corrected such as in
Equations (5.63-5.65). Because the error estimates are in units of meter, a transformation
into radian for latitude and longitude is necessary.

ϕ̂+ = ϕ̂−INS −
∆x̂+

N

Rn − ĥ−INS
(5.63)

λ̂+ = λ̂−INS −
∆x̂+

E

(Re − ĥ−INS)cosϕ̂−INS
(5.64)

ĥ+ = ĥ−INS −∆x̂+
D (5.65)

The velocity is estimated by simply subtracting the velocity errors.

v̂n+
eb = v̂n−eb −∆v̂n+

eb (5.66)

The correction of the attitude is more complex because the attitude error is estimated
in terms of error angles. The attitude representation is in terms of quaternions. The
correction is done with the formulation of a correction quaternion qc (Equation 5.67-
5.69). To avoid a division by zero in Equation (5.69), in the case of no attitude error, an
approximation is used like suggested in Wendel (2011).

σc = −∆ψ̂
+

(5.67)

σc =
√
σTc σc (5.68)

qc =

 cos
σc
2σc

σc
sin

σc
2

 ≈
 1− 1

8
σ2
c +

1

384
σ4
c −

1

46080
σ6
c

σc

(
1

2
− 1

48
σ2
c +

1

3840
σ4
c −

1

645120
σ6
c

)
 (5.69)

A quaternion multiplication is performed to correct the attitude.

q̂n+
b = qc • q̂

n−
b (5.70)
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5.3 Loosely-Coupled RISS Integration

The LC RISS integration is very similar to the LC strapdown integration. The indirect
approach with error state formulation is used here as well. The computation algorithm,
later presented in Section 5.4, is also the same for this method. The difference is another
definition of the error state vector, since not all inertial sensors are used and odometer
measurements are involved. This approach is based on the work of Noureldin, Iqbal, and
Okou (2008) and Noureldin, Karamat, and Georgy (2012).

The error state vector for the LC RISS integration is defined in Equation (5.71). The
position error ∆pk is in units of radian for latitude and longitude errors. The velocity error
∆vENUk is given in the ENU frame convention. The last three error states are summarized
in the vector ∆ek, containing the yaw error ∆ψk, odometer scale factor error ∆vSFk and
z-gyroscope error ∆bk,gz. Note that only the yaw error is estimated. It is not necessary
to estimate pitch and roll. They are calculated from specific force measurements without
any integration process causing a drift over time.

∆xk =

(
∆ϕk,∆λk,∆hk︸ ︷︷ ︸
position error∆pk

, ∆vEk ,∆v
N
k ,∆v

U
k︸ ︷︷ ︸

velocity error∆vENU
k

, ∆ψk,∆v
SF
k ,∆bk,gz︸ ︷︷ ︸

yaw/odometer/z−gyro error∆ek

)T
(5.71)

It is to mention that no scale factor error for the wheel-speed sensors is modeled,
because no test measurement data was available. The state ∆vSFk is therefore not used,
but included if needed for further researches. Noureldin, Karamat, and Georgy (2012)
suggest a first order GM process to model the scale factor error.

5.3.1 Error State Space model

The structure of the error state space model in discrete form (Equation 5.72), is shown in
Equation (5.73). The sub matrices are summarized by Equation (5.74-5.76).

∆xk = F k−1∆xk−1 +wk−1 (5.72)

 ∆pk
∆vENUk

∆ek

 =

I F k−1,12 0
0 I F k−1,23

0 0 F k−1,33

∆pk−1

∆vENUk−1

∆ek−1

+

wk−1,∆p

wk−1,∆v

wk−1,∆e

 (5.73)

F k−1,12 =

 0 1
Rn+hk−1

∆t 0
1

(Re+hk−1)cosϕk−1
∆t 0 0

0 0 ∆t

 (5.74)

F k−1,23 =

 vodk−1cosψk−1cosθk−1 vodk−1sinψk−1cosθk−1 0

−vodk−1sinψk−1cosθk−1 vodk−1cosψk−1cosθk−1 0

0 vodk−1sinθk−1 0

 (5.75)

F k−1,33 =

1 0 −∆t
0 0 0
0 0 0

 (5.76)
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The measurement model has the same structure as in Section 5.2.2. Depending on
what GPS measurement quantities are used, the residuals (Equation 5.77-5.79) and the
measurement matrices (Equation 5.80-5.82) differ. Because the plane position errors are
in units of radian, no correction factor is needed like in Equation (5.53).

∆zk,pos =

ϕ̂−RISS − ϕGPSλ̂−RISS − λGPS
ĥ−RISS − hGPS

 (5.77)

∆zk,vel =

v̂E−RISS − vGPSsinψcosθv̂N−RISS − vGPScosψcosθ
v̂U−RISS − vGPSsinθ

 (5.78)

∆zk,pos,vel =



ϕ̂−RISS − ϕGPS
λ̂−RISS − λGPS
ĥ−RISS − hGPS

v̂E−RISS − vGPSsinψcosθ
v̂N−RISS − vGPScosψcosθ
v̂U−RISS − vGPSsinθ


(5.79)

Hk,pos
(3×9)

=
[
I 0 0

]
(5.80)

Hk,vel
(3×9)

=
[
0 I 0

]
(5.81)

Hk,pos,vel
(6×9)

=

[
I 0 0
0 I 0

]
(5.82)

5.3.2 Correction Step

The correction step in this approach is very simple. The estimated errors have to be sub-
tracted from the predicted values of the RISS mechanization. No further transformation,
like in the strapdown integration, is needed.

p̂+
k = p̂−k,RISS −∆p̂+

k (5.83)

v̂+
k = v̂−k,RISS −∆v̂ENU+

k (5.84)

ψ̂+
k = ψ̂−k,RISS −∆ψ̂+

k (5.85)
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Figure 5.1: Block diagram of a loosely-coupled system in indirect formulation

5.4 Loosely-Coupled Implementation

This Section explains in detail how the fusion algorithm works and how the particular
parts come together. The here presented principles are valid for both, the full IMU and
the RISS method. Figure 5.1 is showing a block diagram of a loosely-coupled system in
indirect formulation.

The closed loop ESKF is indicated with the feedback path. In this configuration the
mechanization navigation solution can be interpreted as a prediction of the full states, like
in an EKF, where the non-linear system model is used in the prediction step. The error
estimates are used to estimate the full states. The structure of Figure 5.1 resembles that
of an EKF (see Subsection 5.1.2). This will become more clear in the next Subsection.

Subsection 5.4.1 deals with the problem of different sampling rates of the sensors. The
implemented system is therefore a multi-rate system. In Subsection 5.4.2 some issues are
addressed regarding the measurement data.

5.4.1 Multi-rate System

The IMU and wheel-speed sensors have the same sampling rate of 50Hz. The GPS receiver
instead, has a sampling rate of 1Hz. The conventional KF algorithm has to be adapted,
because only in every 50th iteration, a measurement update is available. Taking a look
at the KF equation, one can see that the prediction step is independed of measurement
information. The idea is to compute the error covariance prediction matrix P−k in every
iteration, whereas the other KF steps are only computed if a measurement is available.
The period where no GPS measurement is available, is called prediction mode, because
only predicted values from the mechanization process are obtained. Figure 5.2 shows a
graphical visualization of the computation procedure.

While the algorithm is in prediction mode, the predicted quantities (P−k and x̂−k ) are
assigned to the estimated values (P+

k and x̂+
k ) to continue with the iteration loop. With

this method it is even possible to overcome GPS outages. It is no longer necessary that
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Figure 5.2: Flow chart of the GPS/INS integration algorithm

a GPS measurement is available every second. During prediction mode, the uncertainty,
represented by P−k , is growing with time. If the GPS signal is blocked for a long period
of time, the navigation solution will eventually diverge.

In the following the particular steps of the ESKF are presented. If a measurement
update is available, Equations (5.86-5.89) are computed. Like mentioned in previous
Sections, with the closed loop configuration, a prediction step of the error states is not
necessary. The the error states of the ESKF must be set to zero after the correction step.
Then there is no old estimated error ∆x̂+

k−1, that could be used for prediction, like in a
conventional KF.

The performed operations embedded within a structure like in Figure 5.1, are com-
parable to an EKF approach (see Subsection 5.1.2). For the calculation of the estimated
error covariance matrix P+

k , the Joseph form is suggested by Noureldin, Karamat, and
Georgy (2012). Equation (5.11) is a simplification under optimal conditions. A small
error in the calculation of Kk (Equation 5.87), could lead to very large errors when using
Equation (5.11).
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P−k = F k−1P
+
k−1F

T
k−1 +Gk−1Qk−1G

T
k−1 (5.86)

Kk = P−kH
T
k (HkP

−
kH

T
k +Rk)

−1 (5.87)

∆x̂+
k = Kk∆zk (5.88)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k (5.89)

If no measurement update is available, Equations (5.90-5.92) are computed by the ESKF.
These are the same Equations like in Figure 5.2.

P−k = F k−1P
+
k−1F

T
k−1 +Gk−1Qk−1G

T
k−1 (5.90)

∆x̂+
k = ∆x̂−k (5.91)

P+
k = P−k (5.92)

5.4.2 Time Synchronization

The test measurements were performed with a test vehicle, equipped with different mea-
surement systems. The data of interest for this project are IMU, GPS and wheel-speed
measurements. The data is transmitted and stored via CAN-Bus. This Subsection ad-
dresses some signal properties that have to be considered in the implementation.

Varying Sampling Rate

The proposed sampling rate of 50Hz, for IMU and wheel-speed sensors, is not exactly
constant. The sampling time of ∆t = 1

50Hz = 0.02s is slightly varying. Compare Figure 5.3
and 5.4 to see the different behavior of sampling rates.

Such an issue is often encountered when working with real sensors measurements. But
for simulation purposes in discrete time, one synchronized time vector is needed. The
wheel-speed measurements are linear interpolated to match with the time stamp of the
IMU measurement. The same problem arises with the used low-cost GPS receiver, whose
sampling rate is not constant as well.



58 CHAPTER 5. GPS/INS INTEGRATION

0.01984 0.01989 0.01994 0.01999 0.02004 0.02010 0.02015 0.02020
0

1000

2000

3000

4000

5000

6000

7000

Sampling Time [s]

N
um

be
r 

of
 S

am
pl

es

Figure 5.3: Varying 50Hz sampling rate for IMU measurements

Another characteristic of the GPS measurements is revealed by comparing the GPS
velocity with the wheel-speed data. Figure 5.5 shows a comparison of both signals. This
leads to the conclusion that the GPS velocity measurement is delayed. It may be expected
that the GPS position is delayed as well. Such a delay causes problems within the GPS/INS
integration, because the INS navigation solution, resulting from the IMU measurements,
does not correspond with the aiding GPS signal. In the post processing a time delay can
be corrected, but not for real time applications. The causes may be found in the internal
signal processing of the GPS receiver and the subsequently CAN-Bus transmission.

Similar problems with CAN-Bus networks are encountered in the dissertation by Magnus-
son and Odenman (2012).
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Figure 5.4: Varying 50Hz sampling rate for wheel-speed measurements
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Figure 5.5: Comparison of measured GPS and Odometer velocity



Chapter 6

Simulation Results

This Chapter compares the performance of the two implemented LC methods. The ab-
breviation LC SD refers to the loosely-coupled strapdown approach, whereas LC RISS
labels the loosely-coupled reduced inertial sensor system approach. Different estimated
quantities are of interest, like attitude, height and primarily the position in the plane.
One of the benefits of GPS/INS integration is the increased redundancy. The behavior
during GPS outages is therefore analyzed as well. To demonstrate the differences of the
SDINS and the RISS approach, first of all the navigation solutions of the mechanization
processes, without any GPS aiding, is shown. Section6.6 discusses the results presented
by this Chapter in more detail and provides conclusions for the simulation results.

This thesis is based on prior taken measurement data sets. The measurement itself
was not part of this thesis. The derived algorithms and results in this work are not
tested or validated under real time conditions. Only a post-processing analysis is done.
The presented results in this Chapter are achieved through computational simulation in
MATLAB. The measurements are taken in an rural area on particular test tracks. The road
trajectories contain many turns, some hills and cover a distance of about 4-5 kilometers
in 4-6 minutes.

Used Sensors

The carried out measurements and measurement data sets, which are the basis for this
thesis, are provided by partner companies of the iCOMPOSE project. From the measure-
ment setup is known that the sensor signals are transmitted via internal CAN-Bus of the
car. This will have some effects on the measurements, which is discussed in Section 5.4.2.

All GPS measurements in this thesis are made with the low-cost Navilock NL-302U
USB GPS receiver (NAVIlock, 2015).

The IMU, for INS mechanization, is a IG-500A sub-miniature Attitude Heading Ref-
erence System (AHRS) from SBG systems. This is a 9-DOF, MEMS technology based
sensor, that uses a set of 3 gyroscopes, accelerometers and magnetometers to detect 3D
motion. Thanks to the integrated EKF, which performs internal sensor fusion, the sensor
can give drift-less and accurate 3D orientation (SBG systems, 2011).

60



6.1. SDINS AND RISS MECHANIZATION 61

6.1 SDINS and RISS Mechanization

To demonstrate the differences of the navigation solutions provided by the completely
different SDINS and RISS approaches, a comparison of simulated tracks and heights is
presented. As initial attitude in terms of Euler angles, the first angles provided by the
AHRS sensor are chosen. The initial velocity is assumed as zero, since the vehicle is not
moving at the beginning of the measurement. The initial position is provided by the GPS
receiver.

Figure 6.1 compares the two simulated tracks without GPS aiding. A drift over time
for both solutions is observed. The drift for the SDINS is much larger, leading to an
divergent navigation solution after a few seconds. With the RISS approach on the other
hand, the the test track is recognizable. Only a part of the simulated SDINS track is
shown for better comparison with the RISS mechanization.

For RISS mechanization, signals from four wheel-speed sensors, each for every wheel,
are available. The odometer velocity is chosen as the arithmetic mean of all four wheel-
speed measurements.
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Figure 6.1: SD and RISS track comparison

The comparison of heights shows similar behavior as for tracks. In Figure 6.2 a di-
verging SDINS height is clearly visible. The RISS mechanization is able to provide a good
height simulation without any drift over time.

6.2 Attitude

The attitude is compared in terms of Euler angles. The heading, represented by the yaw
angle is compared based on four different data sources. These sources are the estimates
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Figure 6.2: SD and RISS height comparison

of the two implemented methods in this thesis, the heading of the GPS receiver and the
yaw angle provided by the AHRS sensor. For pitch and roll angle comparison, no GPS
quantity is available. The initial attitude in terms of Euler angles is given by the first
AHRS measurement.

6.2.1 Heading

Figure 6.3 shows the simulated results, compared to the GPS measurement and AHRS
estimates. The AHRS yaw angle is the only one that is significantly different. The
estimates of the two implemented methods are almost identical, even thought they are
acquired through completely different approaches for yaw calculation (compare Equation
3.14 and 3.42).

At the beginning of the measurement the GPS heading takes some time until it is
stabilized. No further information is available how the GPS receiver calculates the heading.
A simple calculation via the direction of traveled path or a built in compass is conceivable.

The angles of the implemented LC methods are reliable estimates of the yaw angle.
The low-cost GPS receiver is also able to give a good heading estimation. The AHRS
sensor can not ensure the promised accurate heading. Based on the orientation the car
should have had, according to the measured track, it can be examined, that the AHRS
heading is not reliable.

It is worth mentioning that the magnetic declination has to be considered in naviga-
tion applications. Devices which are using compasses or magnetometer are only able to
determine the heading with magnetic north as reference. Magnetic north and true north



6.2. ATTITUDE 63

0 20 40 60 80 100 120 140 160 180 200 220 240
−200

−150

−100

−50

0

50

100

150

200

time [s]

ya
w

[◦
]

GPS
LC SD
LC RISS
AHRS

Figure 6.3: Comparison of different headings

are not aligned. The difference between magnetic north and true north direction is called
magnetic declination. It depends on the position on earth and is slowly varying over time,
because the location of the magnetic north pole is varying. For navigation applications
which are using the ENU or NED frame, the true north direction is important. The dec-
lination is < 1.05◦ (NCEI, 2015) at the position where the test measurements are taken
(ϕ ≈ 51.19◦, λ ≈ 5.32◦). The AHRS sensor offers the option to consider the declination,
which was enabled during the measurements.

6.2.2 Pitch and Roll

The estimated pitch and roll angle from LC SD and LC RISS are compared with the
angles provided by the AHRS sensor in Figure 6.4 and 6.5.

For the calculation of the pitch angle the acceleration, measured by the odometer,
is needed. The acceleration is the derivative of the velocity with respect to time. If
the velocity measurement is noisy, a numerical derivative will increase the noise in the
acceleration signal. The effects are direct noticeable in pitch and roll angle, too. Therefore
the odometer velocity is smoothed with a causal moving average filter.

For the sake of a better comparison of pitch and roll angles, the LC RISS angles are
smoothed with an moving average filter (for visualization only).

Normally it is not possible to validate the results for pitch and roll angle. Nevertheless
one idea to validate the pitch estimates is to check the resulting heights of the RISS mecha-
nization, if an external pitch angle is used, instead of the proposed one in Equation (3.40).
The height is used as an indicator for the accuracy of pitch estimation, since the height
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Figure 6.5: Comparison of roll angles

in RISS mechanization depends only on the odometer velocity and the pitch angle (see
Equation 3.47).
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Figure 6.6 shows the different simulated heights and the measured GPS height. As
one can see the height of the RISS mechanization with internally calculated pitch, does
not drift. All other solutions tend to drift over time, especially the height calculated with
the pitch angle provided by the AHRS. A part of the drift could also be caused by a bias
in the velocity measurement. However the pitch provided by the AHRS does not seem
reliable, even though the difference to the other two pitch estimates is small.
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Figure 6.6: Comparison of RISS heights based on internal pitch, AHRS pitch and SDINS
pitch

6.3 3D Position

In this Section the position simulation results of the LC SD and LC RISS are presented.
One purpose of GPS/INS integration is to increase the accuracy of the absolute position
estimation. Since no highly accurate GPS reference position measurement is available for
this thesis, no reliable statement can be made if the accuracy really increased. In order
to still validate if the new estimated position is more reasonable than the low-cost GPS
measurement, a comparison of tracks with satellite plot overlay is chosen. Additionally
error ellipsis are used to visualize the uncertainty of the estimated positions.

Another purpose of GPS/INS integration is to increase redundancy, e.g. to overcome
GPS outages by providing a continuous navigation solution. Section 6.5 considers the
results regarding GPS outages.
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6.3.1 Track

The simulation of different tracks is shown in Figure 6.7 and 6.8. It is observed that at
several parts of the tracks the GPS/INS estimated positions are more reliable than the
GPS measurement, whereas there are also sections where the LC estimates are off the
road. In general, the LC RISS solution tends to provide a more accurate position than
the LC SD.
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Figure 6.7: LC SD and LC RISS track comparison 1

Even if no statement about the absolute position accuracy is possible, the uncertainty of
the estimation can be displayed. The error ellipsis show the 95% confidence interval of the
GPS measurement and the LC system estimation. The error ellipsis are calculated from the
covariance matrix Rk corresponding to the GPS receiver and the error covariance matrix
P+
k from the ESKF estimate. In Figure 6.9 and 6.10 the error ellipsis of both implemented

GPS/INS integrations are visualized. As a result of the applied fusion algorithm the
uncertainty is reduced, compared to the GPS measurement alone.

6.3.2 Height

The two fusion methods are able to estimate the 3D position, thus also height. Figure 6.11
compares the different heights. The estimated LC RISS height is very similar to the mea-
sured GPS height. The LC SD on the other hand shows a different behavior. Through
simulation it is observed that the LC SD height tends to drift over time, even with GPS
aiding. The reason could be an uncompensated bias in the inertial sensors, causing an
incorrect transformation into the navigation frame and resulting in a false gravity com-
pensation. The bias-drift is modeled and compensated like discussed in Chapter 4, but
a constant bias sensor error can not be identified from the static measurements, without

1Google Imagery c©2015 Aerodata International Surveys,DigitalGlobe
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Figure 6.8: LC SD and LC RISS track comparison
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Figure 6.9: LC SD error ellipsis with 95% confidence interval

exact knowledge about the attitude at that time. In Figure 6.11 the drift is minimized by
correcting an estimated bias in the z-accelerometer, found with trial and error method.
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Figure 6.10: LC RISS error ellipsis with 95% confidence interval
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Figure 6.11: Comparison of LC SD and LC RISS heights

6.4 Estimated Velocity Errors

Comparing the performance of the two implemented methods, it is also of interest to
compare the estimated errors. The velocity errors are chosen for comparison, because
characteristics of the two integration methods can be demonstrated. To compare velocity
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errors of the ENU and NED frame, the up velocity errors ∆vU+
k are inverted.

In Figure 6.12 the estimated velocity errors are presented. The estimated LC RISS
velocity errors are generally smaller than the LC SD velocity errors, for north and east
direction. This is expected, since the RISS mechanization uses more accurate absolute
velocity measurements, instead of acceleration measurements. The down velocity errors
for the LC RISS approach are greater than the LC SD quantity. This could be caused
by the strong varying pitch angle (see Figure 6.4) from the RISS mechanization, which is
used for the calculation of the up velocity vUk (see Equation 3.47).
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Figure 6.12: Comparison of estimated velocity errors

6.5 GPS outage

An interesting aspect is the behavior of the implemented systems during GPS outages.
One main reason to do GPS/INS integration is to overcome GPS outages and to provide a
continuous navigation solution. It is to mention that the GPS receiver provides a position
at any time of the test measurement. Therefore no GPS outages exist in the measurement
data. A GPS outage has to be simulated. A short 8 seconds and a long 30 seconds outage
are simulated.

In Figure 6.13 the navigation solutions for the 8 seconds outage are displayed. Both
solutions are almost equal and slightly off the road at the end the left turn, but still
reasonable for navigation applications.

Figure 6.14 shows the navigation solutions during the long 30 seconds outage. The
advantages of the RISS mechanization become clear now. The LC SD solution begins
to drift after the first turn. On the straight track, at the beginning of the outage, both
methods provide good solutions. The LC RISS is able to give a reliable navigation solution
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Figure 6.13: LC SD and LC RISS comparison during short GPS outage

during the whole outage, whereas the LC SD solution is only valid for about 16 seconds,
before the drift becomes too great.
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Figure 6.14: LC SD and LC RISS comparison during long GPS outage
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To examine the behavior of both methods in more detail, the uncertainty of the esti-
mates during an absent GPS signal is observed. Figure 6.15 and 6.16 show the error ellipsis
plots during the outage. The uncertainty of the LC SD integration is growing faster and
becomes much larger than the LC RISS method’s. During the outage the fusion algorithm
is always in prediction mode and the error covariance matrix P k is not updated by a new
measurement (see Figure 5.2).
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Figure 6.15: LC SD error ellipsis with 95% confidence interval during long GPS outage
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Figure 6.16: LC RISS error ellipsis with 95% confidence interval during long GPS outage
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One idea to obtain a reliable LC SD solution during long GPS outages is to reduce the
drift with velocity updates, provided by the wheel-speed sensors. The navigation solution
for the same 30 seconds outage is shown in Figure 6.17. The drift is completely gone. Still
the LC RISS solution is still more trustful.
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Figure 6.17: LC SD and LC RISS (with additional odometer velocity update) comparison
during long GPS outage

The error ellipsis plot for the LC SD velocity update method is displayed in Figure
6.18. Compared to Figure 6.15, the uncertainty is strongly reduced through this method.
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Figure 6.18: LC SD error ellipsis with 95% confidence interval during long GPS outage,
with additional odometer velocity update

6.6 Discussion

In this Section the observations of the previous Sections in this Chapter are further dis-
cussed. Other characteristics of the implemented systems that are not shown in the pre-
vious Chapter are discussed as well.

The comparison of the SDINS and the RISS mechanization without any GPS aiding
in Section 6.1 shows the fundamental differences of the two approaches. The stated ad-
vantages of the RISS model (see Subsection 3.2.3) are confirmed through simulation. The
3D RISS navigation solution drifts much less over time. At the end of a 4 minute long
simulation, the drift caused an 2.75 kilometer position error in the plane, compared to
the GPS measurement. The RISS error is only about 100 meters. The height error is
about 600 meters for the SDINS, but only about 1 meter for the RISS. A nearly drift-less
height estimation, like in Figure 6.2 with RISS mechanization, is not possible with all test
data sets. A drift over time is present in some cases, but still much smaller compared to
the RISS mechanization with external pitch from the AHRS sensor. The superior perfor-
mance of the RISS mechanization will be an advantage during GPS outages, which will
be discussed later. Different higher order integration methods are tested to compute the
mechanization process. The simulation shows, that there is nearly no difference between
higher order integration methods and a simple Euler method (Equation 3.37). The Euler
method is therefore sufficient for a simulation with 50Hz IMU measurement data.
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The analysis of the different attitude estimations in Section 6.2 leads to an unexpected
result. The heading provided by the AHRS sensor is not reliable. Based on the GPS
track, a plausibility check of the heading, respectively the yaw angle, can be performed.
The AHRS angle is too large and does not match with the road trajectory. This behavior
is also observed in Figure 6.3, where the difference accumulates to approximately 40◦,
compared to the LC headings. The yaw angles of both implemented methods and the
GPS heading are almost equal and provide a good estimation. The same behavior is
true for the pitch and roll angles. The AHRS pitch seems to be not correct as well,
like Figure 6.6 indicates. It is to mention that an incorrect AHRS attitude estimation is
present in all test measurements.

The reason why the AHRS Euler angles are not correct, could be the internal magne-
tometer fusion algorithm, which should actually provide an accurate attitude estimation.
The sensor was mounted inside the fully electrical powered test vehicle, where external
magnetic fields may distort the earth’s magnetic field. A magnetometer fusion algorithm
is not suitable for such an environment. Further investigations are beyond the scope of
this thesis.

The performance comparison of both implemented systems with the GPS measurement
in terms of accuracy is not feasible, since no highly accurate reference measurement is
available. A visual comparison is done by comparing the simulated tracks with a satellite
plot overlay. Figure 6.7 and 6.8 shows a selection of different simulated track sections. At
some parts of the track the simulation results are more reliable than the GPS measurement
and on other parts the GPS position seems more plausible. At straight tracks or turns, it
may happen that the LC position estimates are off the road. The LC RISS provides in
nearly all simulations the better absolute position estimation, due to the advantages of the
proposed RISS mechanization. It is to mention that the absolute position measurements
from the low-cost GPS receiver, is good from the beginning. The signal was never blocked
according to the provided GPS status signal. The track trajectories are always reasonable
and only in a few cases slightly beside the road, based on comparison with satellite plots.
This is why the standard deviation for the GPS measurement is chosen σϕ,λ = 3.5m
and σh = 5.5m for the height measurement. The results from the simulated LC SD and
LC RISS could be further improved by assuming less measurement noise or assuming
increased system noise. Too small or too large noise terms are not representing realistic
conditions and can not be justified.

The LC SD height estimation presented in Figure 6.11 suffers from a drifting behavior,
despite GPS aiding. The reason could be an uncompensated bias in the inertial sensors,
causing an incorrect transformation into the navigation frame and resulting in a false grav-
ity compensation. The bias-drift is modeled and compensated like discussed in Chapter 4,
but a constant bias sensor error can not be identified. A correct bias compensation of
the non-statistical part of the bias error, is only possible with a sensor calibration prior
the measurement. The drift in the height estimation for the LC SD is reduced by sub-
tracting a constant z-acceleration, identified experimentally. The noise variance for the
z-accelerometer is also increased, more than for the other sensors (see Table C.1).
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It is worth mentioning that velocity aiding, additionally to the GPS position aiding,
do not increase the absolute position accuracy. For all simulations presented in Chap-
ter 6, only position aiding is used, except for the long LC SD GPS outage with noted
velocity update (see Figure 6.17). There are several reasons why a velocity update does
not increase the accuracy, in some cases even worsen the result. For the LC RISS a GPS
velocity update is not recommended, because the RISS mechanization is based on odome-
ter velocity measurements, which are already more accurate than the GPS velocity. For
LC SD two velocity signal sources, one from the GPS receiver and the other from the
wheel-speed sensors, are available. The wheel-speed measurement is favored because of
increased accuracy and GPS velocity is not available during GPS outages anyway. Because
in both cases only the absolute velocity is measured, rather that the NED velocities, a
non-linear transformation has to be performed (see Appendix A). An approximation for
the uncertainty propagation and the usage of estimated Euler angles, leads to an incorrect
velocity update. However, a velocity update, like it is presented in Section 6.5, is success-
fully used to overcome long GPS outages.

The increased reliability of GPS/INS integrated systems during GPS outages are pre-
sented in Section 6.5. It is shown that for short outages of about 8 seconds, both im-
plemented methods can still provide a reliable navigation solution. For the simulated 30
second outage, the LC SD is not able to provide a reasonable absolute position. During
the outage, both systems are in prediction mode, which means that the navigation solution
corresponds to the SDINS, or the RISS mechanization navigation solution respectively (see
Section 6.1). The behavior of both mechanization methods is already discussed. A better
LC RISS navigation solution, even during long GPS outages is expected, like it is verified
in Figure 6.13.

In addition, some effort was spent on obtaining a reliable navigation solution for long
GPS outages for the LC SD method. This is achieved with odometer velocity updates.
Wheel-speed measurements are available, even during GPS outages. They are used to
perform velocity updates, instead of GPS position updates. Figure 6.17 proves that due
to this approach, it is possible to get a trustworthy solution again. The LC SD method,
with odometer velocity updates during GPS outages, utilizes information of all available
sensors.

Various simulations of GPS outages showed that even the LC RISS method is not
always able to provide a good position estimate during GPS outages. For example, if
the outage occurs at a time when the yaw angle is badly estimated, the solution becomes
less dependable over time as well. It is to mention that a GPS outage effects the height
estimation in the same way, as for the track. The height estimation during an outage for
LC RISS is still reliable, whereas the LC SD height tends to drift and for long outages it
seems to diverge.
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The visualization of the estimated position uncertainty is done by plotting error ellipsis
95% confidence interval. Figure 6.9 and 6.10 indicate that the uncertainty is decreased,
compared to the GPS measurements. The decreased estimated ESKF uncertainty for both
LC systems is almost equal. Without any GPS outages, the mean standard deviation of
the settled ESKF estimate, is for the LC SD about σϕ,λ ≈ 1.4m, whereas for the LC RISS
it is about σϕ ≈ 1.4m, σλ ≈ 1.44m.

The uncertainty for GPS outages is presented by Figure 6.15 and 6.16. The comparison
shows that the uncertainty of LC SD technique grows faster and becomes therefore much
larger than for the LC RISS. This corresponds to the LC SD drifting behavior, which
leads to a bad navigation solution. The uncertainty during an outage is reduced by using
odometer velocity updates (see Figure 6.18). Then the uncertainty is comparable to the
LC RISS method.



Chapter 7

Conclusion and Outlook

In this thesis two different GPS/INS integration methods are derived and tested via
numerical simulation. The integration architecture is a loosely-coupled system in indi-
rect configuration (see Section 2.2). The fusion method is based on Kalman filtering
(Section 5.1). The two implemented methods operate in the discrete time domain, based
on the recursive KF scheme. Therefore the algorithms are suitable for real time applica-
tions. Due to the indirect configuration the errors of the inertial navigation system are
estimated and used for correction to get full estimated states. The KF corresponding to
this kind of estimation is called ESKF. With this integration technique a fusion algorithm
is designed that considers the multi-rate property of the used sensors (see Section 5.4).
With the implemented method it is even possible to consider several sensors with more
than two different sampling rates, as long as the sampling rates are integer multiples of
each other. The method is therefore not restricted to the 50Hz/1Hz inertial sensors/GPS
receiver sampling rate setup of this thesis. The algorithms are suitable for arbitrary sen-
sor configurations which provides high flexibility. The fused data is provided by inertial
sensors, wheel-speed sensors and a GPS receiver. The loosely-coupled system based on
the full IMU strapdown approach utilizes inertial sensor measurements, GPS position
measurements and even odometer velocity measurements to overcome GPS outages with-
out drifting. The loosely-coupled reduced inertial sensor system uses odometer and GPS
position measurements.

The basis for the GPS/INS integration are the two mechanization processes. The first
one is the strapdown algorithm, using inertial measurements to calculate the 3D attitude,
velocity and position. The second one is the reduced inertial sensor system mechanization,
based on odometer and a reduced set of inertial sensors to also compute 3D attitude,
velocity and position (see Chapter 3). To correctly describe the errors of the INS, an
inertial sensor error analysis is performed, with tools as AV plot and autocorrelation
function (see Chapter 4). The algorithms are derived by defining the error equations
formulating the INS errors. The computation steps of the GPS/INS integration algorithms
are then explained in detail in Chapter 5. The simulation results show the different
behavior of the LC SD and the LC RISS system. As a result it is found out that the
integration methods provide a better attitude estimation as the AHRS sensor. Without
highly accurate reference trajectory, no reliable statement about the absolute position
accuracy can be made. However, another advantage of GPS/INS integration is shown:
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the reliability of the system is increased during GPS outages. With additional odometer
velocity updates, even the LC SD system is able to overcome long absent GPS signals.

For the use in real time applications the properties of the CAN-Bus network have
to be further investigated. The time delay between the different sensor measurements
can cause major problems for GPS/INS integration. Further research is also necessary
to identify and correct the bias offset of the inertial sensors. Even with GPS aiding a
complete compensation of the drift is not always possible. Based on this thesis advanced
integration approaches are conceivable. The algorithms could be used in combination with
digital map information, realizing a map aiding system. A different approach is the use
of steering angle measurements for heading calculations. The heading can be applied as
additional aiding source for the KF or to derive a completely new vehicle dynamics model,
based on steering angle and odometer measurements.



Appendix A

Inertial Navigation

This Chapter provides additional relations used in this thesis, which are useful to under-
stand the derivations in Chapter 3 and Chapter 5.

The vector cross product of a = [ax, ay, az]
T and b = [bx, by, bz]

T can be written as a
matrix/vector multiplication.

a× b = Ab (A.1)

where A is the skew symmetric matrix

A =

 0 −az ay
az 0 −ax
−ay ax 0

 (A.2)

The notation in (A.3) is used to indicate a skew symmetric matrix.

A = [a×] = skew(a) (A.3)

Equations (A.4 - A.8) are used when operating with rotation rates. The skew sym-
metric matrix notation holds for rotation rates as well.

ωnie = −ωnei (A.4)

ωnin = ωnie + ωnen (A.5)

Ωn
ie = [ωnie×] , Ωn

en = [ωnen×] (A.6)

Ωn
ie = −Ωn

ei (A.7)

Ωn
in = Ωn

ie + Ωn
en (A.8)
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The DCM is an orthogonal matrix and therefore the following relations hold.

Cn
b = Cb,−1

n = Cb,T
n (A.9)

Cn
bC

b
n = I (A.10)

A quaternion multiplication is done according to Equation (A.11).

q1 • q2 =


a
b
c
d

 •

e
f
g
h

 =


a −b −c −d
b a −d c
c d a −b
d −c b a



e
f
g
h

 (A.11)

An alternative formulation to Equation (3.14) is also possible. Here the rotation rates
are written in matrix notation instead of quaternions.

q̇nb =
1

2
Ω(ωbnb)q

n
b (A.12)

where

Ω(ωbnb) =

−Ωb
nb,(3×3)

... ωbnb,(3×1)

· · · · · · · · ·

−ωb,Tnb,(1×3)

... 0

 =


0 ωbnb,z −ωbnb,y ωbnb,x

−ωbnb,z 0 −ωbnb,x ωbnb,y
ωbnb,y −ωbnb,x 0 ωbnb,z
−ωbnb,x −ωbnb,y −ωbnb,z 0

 (A.13)

The ENU velocities for the RISS mechanization in Equation (3.47) are obtained with
the transformation in (A.14). The graphical representation is given in Figure A.1.
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Figure A.1: Absolute velocity measurement in the ENU navigation frame
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Appendix B

GPS/INS Integration

B.1 Time continuous to time discrete

The time continuous system of form (B.1) can be converted into a time discrete system
(B.2).

ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t) (B.1)

xk = F k−1xk−1 +Bk−1uk−1 +Gk−1wk−1 (B.2)

The system dynamic matrix can be approximated with a abort Taylor series expansion
after the linear term (Eq.B.3).

F k = eF∆t ≈ I + F∆t (B.3)

For the control vector coupling matrix Bk there are different approximations available
(Wendel, 2011). The approximations are the same for the noise distribution matrix Gk.

Bk ≈
1

2
(I + F k)B∆t (B.4)

Bk ≈ F kB∆t (B.5)

Bk ≈ B∆t (B.6)

The system noise covariance matrix in continuous time is defined in Equation (B.7).
The discrete system noise with corresponding discrete covariance matrix is calculated by
Equation (B.8-B.9).

E[w(t)w(τ)T ] = Qδ(t− τ) (B.7)

wk =
1

∆t

∫ tk+1

tk

w(τ)dτ (B.8)

Qk = E[wkw
T
k ] =

Q

∆t
(B.9)
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B.2 Loosely-Coupled Strapdown Integration

With Equations (B.10-B.17) all matrix elements of the error dynamic system matrix from
Equation (5.51) are defined.

F 11 =


0 0

vneb,N
Rn−h

vneb,Etanϕ

Rn−h 0
vneb,E
Re−h

0 0 0

 (B.10)

F 21 = [vneb×]

(
2

[
∂ωnie

∂(ϕ, λ, h)

]
+

[
∂ωnen

∂(ϕ, λ, h)

])[
∂(ϕ, λ, h)

∂(xN , xE , xD)

]
(B.11)

F 22 = − (2Ωn
ie + Ωn

en) + [vneb×]

[
∂ωnen
∂vneb

]
(B.12)

F 23 = −
[
Cn̂
b f

b
ib×
]

(B.13)

F 31 = −
([

∂ωnie
∂(ϕ, λ, h)

]
+

[
∂ωnen

∂(ϕ, λ, h)

])[
∂(ϕ, λ, h)

∂(xN , xE , xD)

]
(B.14)

F 32 = −
[
∂ωnen
∂vneb

]
(B.15)

F 33 = −Ωn
in = −[ωnin×] = −[(ωnie + ωnen)×] (B.16)

F 44 =

−βax 0 0
0 −βay 0
0 0 −βaz

 (B.17)

The missing partial vector derivative matrices to finally compute the error dynamic
matrix F are given by Equations (B.18-B.21).

∂(ϕ, λ, h)

∂(xN , xE , xD)
=

 1
Rn−h 0 0

0 1
(Re−h)cosϕ 0

0 0 1

 (B.18)

∂ωnie
∂(ϕ, λ, h)

=

−ωEsinϕ 0 0
0 0 0

−ωEcosϕ 0 0

 (B.19)

∂ωnen
∂(ϕ, λ, h)

≈

 0 0 0
0 0 0

vneb,E
(Re−h)cos2ϕ

0 0

 (B.20)

∂ωnen
∂vneb

=

 0 1
Re−h 0

− 1
Rn−h 0 0

0 − tanϕ
Re−h 0

 (B.21)



Appendix C

Used Parameters

Table C.1 lists the actually used error coefficients for the simulation. The parameters
are increased by the factor 2.5, compared to the identified values, because under real
conditions the noise can be assumed larger. The parameters for z-axis accelerometer are
increased up to a factor of 7.5 (for Naz), to reduce the drift in height simulation (see
Subsection 6.3.2). The parameters are found by trial and error.

velocity random walk bias instability acceleration random walk

Na [m/s/
√
s] Ba [m/s2] Ka [m/s/s3/2]

accel x 2.625× 10−3 1× 10−3 1.24× 10−4

accel y 2.45× 10−3 6.9× 10−4 8.4× 10−5

accel z 7.875× 10−3 2.1× 10−3 3.36× 10−4

angle random walk bias instability rate random walk

Ng [rad/
√
s] Bg [rad/s] Kg [rad/s3/2]

gyro x 1.425× 10−3 - -
gyro y 1.275× 10−3 - -
gyro z 1.2425× 10−3 - -

Table C.1: Error coefficients used for simulation
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Appendix D

List of abbreviations

ADAS Advanced Diver Assistance System
AHRS Attitude Heading Reference System
AI Artificial Intelligence
AV Allan Variance
CAN Controller Area Network
DCM Direction Cosine Matrix
DGPS Differential Global Positioning System
DOF Degrees of Freedom
DR Dead Reckoning
EKF Extended Kalman Filter
ENU East-North-Up
ESKF Error State Kalman Filter
GM Gauss-Markov
GNSS Global Navigation Satellite System
GPS Global Positioning System
IMU Inertial Measurement Unit
INS Inertial Navigation System
ISA Inertial Sensor Assembly
KF Kalman Filter
LC Loosely Coupled
LDW Lane Departure Warning
LIDAR Light Detection and Ranging
LLH Latitude, Longitude, Height
MEMS Micro Electro Mechanical System
NED North-East-Down
RISS Reduced Inertial Sensor System
RSS Received Signal Strength
RW Random Walk
SBAS Satellite Based Augmentation System
SD Strap-Down
SDINS Strap-Down Inertial Sensor System
TC Tightly Coupled
WADGPS Wide Area Differential Global Positioning System
WGS84 World Geodetic System 1984
WN White Noise
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