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Kurzfassung
Der Zerfall eines zylindrischen, gestörten Flüssigkeitsfreistrahles wird numerisch un-
tersucht im kapillaren Aufbruchsregime. In Simulationen von Mehrphasenströmungen
stellt die korrekte Erfassung der Phasengrenze eine schwierige Herausforderung dar.
In dieser Arbeit wird die Strömung von zwei nichtmischbaren Fluiden betrachtet,
konkret Wasser und Luft, unter der Verwendung von zwei verschiedenen “Volume Of
Fluid” (VOF) Methoden, dem “Koren Flux limiter” Verfahren und dem “High Res-
olution Interface Capturing” (HRIC) Verfahren, um die Phasengrenze Wasser/Luft
zu bestimmen. Gerade Vorhersagequalität des HRIC Verfahrens ist von besonderem
Interesse, weil es in kommerziellen CFD Softwareprogrammen (z. B. Comet, oder
Fluent) häufig verwendet wird. Für die Modellierung der Oberfächenspannungskräfte
wird das “Continuum Surface Force” (CSF) Modell verwendet. Rayleigh’s klassische
Theorie beschreibt den kapillaren Aufbruch, induziert durch eine zeitlich wachsende
Instabilität, ohne die Ausbreitung der Störung entlang der Flüssigkeitssäule zu berück-
sichtigen. Meier et al. (1992) widmenten sich dieser Problematik und stellten ihre
experimentellen Beobachtungen einer theoretischen Beschreibung der Laufzeittheorie
gegenüber, welche die gestörte Flüssigkeitsströmung durch die Lösung einer insta-
tionären eindimensionalen Impulsgleichung unter der Vernachlässigung von Reibungs-
und Oberflächenkräften beschreibt. Eine Reihe von gestörten Flüssikeitsstrahlen wurde
simuliert mit unterschiedlichen Amplituden und Frequenzen der Geschwindigkeitsmod-
ulation am Einströmrand. Die numerischen Ergebnisse haben gezeigt, dass die Laufzeit-
theorie ziemlich gut die Bedingungen am Düseneintritt wiedergibt, während die Bedin-
gungen stromaufwärts vom Punkt des Strahlzerfalles im Wesentlichen von Rayhleigh’s
Theorie des kapillaren Aufburchs bestätigen. Verglichen mit den Experimenten von
Meier et al. (1992) ergaben die numerischen Simulationen im Allgemeinen längere
Aufbruchlängen. Die vorausgesagten Änderungen der Aufbruchlänge für veränderte
Geschwindigkeitsmodulationen am Düseneintritt zeigten jedoch die gleichen Tenden-
zen wie in den Experimenten.





Abstract
The disintegration of a perturbed liquid cylindrical jet in the capillary breakup regime
is numerically investigated. In multi-phase flow simulations the accurate capturing
of the interface is a challenging task. The present work considers the flow of two
immiscible fluids, i.e. water and air, using two different volume of fluid (VOF) ap-
proaches, the Koren flux limiter scheme and the high resolution interface capturing
(HRIC) scheme to capture the liquid/gas interface. The performance of the HRIC
scheme is of special interest, because it is used in popular commercial CFD software
(e.g. Comet, Fluent). The surface tension force is computed using the continuum
surface force (CSF) model. Rayleigh’s classical theory describes the capillary breakup
induced by a temporally growing instability, without considering the propagation of
the perturbation along the liquid column. Meier et al. (1992) addressed this issue
by analyzing their experimental observations against a theoretical description of the
travelling time theory, which assumes the perturbed liquid flow as being governed by
a transient one-dimensional equation of motion neglecting viscous and surface ten-
sion forces. A series of perturbed liquid jets were simulated varying the amplitudes
and frequencies of the inflow velocity modulations. The numerical solutions showed
that the travelling time theory fairly well describes the conditions near the nozzle,
while the conditions near the liquid breakup occurring further downstream essentially
confirms Rayleigh’s theory on capillary breakup. As compared to the experiments of
Meier et al. (1992) the numerical simulations generally overpredicted the disintegra-
tion lengths. The predicted changes in the disintegration length for varying inflow
velocity modulations still exhibited the same tendencies as seen in the experiments.
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Nomenclature

Roman symbols
Symbol Description Dimension

c color function [−]
Co Courant number [−]
D diameter [m]
d number of faces of the control volume [−]
d normal vector to the cell face [m]
f frequency [1/s]
f force vector [N]
F numerical flux [−]
F filtering [−]
G cross-sectional area of the jet [m2]
g volumetric gravitational acceleration force [m/s2]
h disturbance radius [m]
I unit tensor [−]
K kinematic energy [J]
K kernel of smoothing [−]
k wave number [m−1]
m mode [−]
n normal unit vector at the boundary [m]
Oh Ohnesorge number [−]
p pressure [N/m2]
P surface energy [J]
R principal radius of curvature of the surface [m]
r radial coordinate [m]
Re Reynolds number [−]
S surface [m2]
s ratio of consecutive gradients [−]
T stress tensor [N/m2]
t time [s]
S rate of strain tensor [s−1]
U average advection velocity [m/s]
u velocity vector [u v w] [m/s]
V volume [m3]
We Weber number [−]
y lateral extension [m]
z axial coordinate [m]
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Greek Symbols
Symbol Description Dimension

α growth or damping function of the disturbance [m]
β parameter [−]
Γ surface of the computational domain [m2]
γ flux limiter function [−]
ε amplitude [−]
ζ blending factor [−]
θ cross-flow coordinate [rad]
ϑ actual time in Lagrange coordinates [s]
κ mean curvature [m−1]
λ wave length [m]
µ dynamic viscosity [kg/ms]
ξ potential [m2/s]
ρ density [kg/m3]
σ surface tension coefficient [N/m]
τ starting time of the flow particles in Lagrange coordinates [s]
φ azimuthal coordinate [rad]
Φ arbitrary velocity component [m/s]
ω growth rate [−]
∇ vector of spatial derivatives [m−1]



Subscripts and Superscripts
Symbol Description

0 reference quantities
1 denotes fluid one, i.e. water
2 denotes fluid two, i.e. air
b body
C center cell
D downwind cell
exp experiment
f face value
i indices of the disrcetized radial coordinate
in inflow
inl inlet of the liquid
j indices of the discretized cross-flow coordinate
k indices of the discretized azimuthal coordinate
lat lateral
out outflow
p control volume for p
∗ dimensionless parameter
n time step iterator
sim simulated
T travelling time theory
U upwind cell
u control volume for u
v control volume for v
w control volume for w
Φ control volume for Φ
σ dependency on the surface tension
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Abbreviations
CDS central difference scheme
CSF continuum surface force
ECBC extended boundedness criterion
GCBC general convective boundedness criterion
GL-CBC Gaskell and Lau’s convection-boundedness criterion
HRIC high resolution interface capturing
ICM interface capturing methods
ITM interface tracking methods
LUI linear-upwind interpolation
MAC marker and cell
NVD normalized variable diagram
KFL Koren flux limiter
PLIC piecewise linear interface calculation
SLIC simple line interface calculation
SOU second order upwind
TVD total variation diminishing
VOF volume of fluid



1 Introduction
The computational investigation of the effect of kinematic waves on liquid jet breakup
is motivated through the importance of the phenomenon of jet breakup. The dis-
integration of a liquid column can be found in many industrial applications. One
application is in inkjet printing, where printers use this phenomenon for a highly con-
trolled generation of small droplets to be deposited on a substrate. Another typical
application is the atomization using spray nozzles, where a continuous stream of liq-
uid is rapidly disintegrated into a highly dispersed distribution of small droplets. It is
hypothesized that jet breakup also occur in our lungs, Duclaux and Clanet (2004).
The breakup of liquid jets was already described in the pioneering work of Lord
Rayleigh (Rayleigh, 1878). Rayleigh applied a linear stability analysis to an infinite
liquid cylinder, where he could determine the most unstable perturbation mode, which
grows in amplitude with time, so that the column finally breaks up into a sequence of
individual droplets. Rayleigh’s results were confirmed in various experimental stud-
ies, like those of Haenlein (1931), Goedde and Yuen (1970) and others, although all of
these experimental investigations on jet breakup compared the observed spatial growth
rates with the temporal growth rates obtained from Rayleigh’s analysis. Keller and
Rubinow (1973) addressed this inconsistency, and they therefore solved the dispersion
equation governing the Rayleigh breakup regime for critical modes which lead to spa-
tially increasing perturbations instead of temporally increasing perturbations. They
found that the critical modes for spatial and temporal growth rates coincide at large
Weber numbers We = ρu2Dinl

σ
>> 1. Considering an infinitely long liquid column

all the aforementioned theoretical studies miss an important aspect inherently met in
real jet flow conditions: the travelling time effects of the perturbations triggered at
the nozzle exit. Following simple kinematic considerations the variation of the start-
ing velocity of the fluid elements at the inflow leads to the formation of kinematic
waves. Since the fluid elements injected with a higher velocity tend to surpass the
slower moving elements injected with a lower velocity before, the kinematic waves
steepen on their way downstream resulting in a significant distortion of the jet. Gra-
bitz and Meier (1983) investigated this effect providing an exact analytical solution of
the one-dimensional Euler equation based on the travelling time theory to describe the
evolution of the distorted liquid column downstream of the orifice. Meier et al. (1992)
conducted a comprehensive series of experiments, where they investigated the effect of
kinematic waves on jet break-down, which are triggered by inlet velocity modulations
with different frequencies and amplitudes. For the higher amplitudes they observed
a fairly good agreement with the results of the one-dimensional theoretical solution
calculated with the travelling time theory.
The present work numerically investigated the disintegration of a perturbed liquid
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16 Introduction

cylindrical jet in the capillary breakup regime. It shall be shown to which extent
the used computational approach can reflect the evolution of the disturbance until
the breakup of the liquid core, as it was observed in the experiment by Meier et al.
(1992). The comparison of the numerical results against the solution calculated with
the travelling time theory shall further give insight into the influence of the capillary
forces on the propagating disturbances, which is neglected in the travelling time the-
ory. The numerical simulations will consider some selected cases of the experiments of
Meier et al. (1992) varying the frequency and the amplitude of the sinusoidal velocity
perturbations. In these computations the incompressible Navier-Stokes equations are
numerically solved using the Volume-of-Fluid (VOF) method as two-phase flow model
(Hirt and Nichols, 1981). For the advection of the liquid-gas interface two different
VOF methods, the Koren flux limiter schem (Koren, 1993), and the high resolution
interface capturing (HRIC) scheme (Muzaferija et al., 1998), are tested and compared.
The obtained results shall also give insight into the performance of these alternative
approaches for treating the interface.

In chapter two the mathematical model is described in detail. The conservation laws
are formulated assuming the two-phase distribution as a one-fluid continuum. For this
approach constitutive relations are needed, and a color function is introduced. The
color function is by definition one at a point inside liquid phase and is zero at a point
inside the gas phase. To account for surface tension effects the continuum surface force
(CFS) model is used (Brackbill et al., 1992). The model interprets surface tension as a
continuous volumetric force acting in a volume containing an interface, rather than as
a dynamic boundary condition imposed at the sharp interface. Allowing for a scaling
to real flow conditions the governing equations are transformed to dimensionless form
using appropriate normalizations.

In chapter three an outline is given of the numerical model which is used to solve
the governing equations. The jet breakup of a water column is numerically simulated
using a cone-shaped computational domain, which is based on a spherical coordinate
system. A staggered grid is used, where the scalar variables are stored at the cell
centers of the control volumes and the velocity components are located at the cell
faces. Using a pressure-based incompressible flow solver the continuity equation is
not explicitly solved. The satisfaction of the continuity equation is incorporated into
the solution procedure of the momentum equations instead. For the integration of
the color function equation in time an explicit second-order accurate Adams-Bashfort
scheme is used. For integrating the equation of motion in time the so called ”projection
method”, (Prosperetti and Tryggvason, 2007), is used. For the spatial discretization
a finite volume approach is applied. Inflow, lateral and outflow boundary conditions
for all unknown variables are imposed. For the present case of a free jet flow the out-
flow boundary requires special attention to ensure numerical stability by eliminating
undesirable effects as far as possible.

In chapter four an introduction to volume of fluid (VOF) methods (Hirt and Nichols,
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1981) is given. The VOF method represents a very popular approach among various
other methods which have been developed for the challenging problem of interface
propagation in multiphase flow calculations. Basically, they can be classified into
two groups (Ferziger and Peric, 1996): First, interface tracking methods which define
a sharp interface, whose motion is followed. Secondly, interface capturing methods
which solve the equations of interest in the whole domain on a fixed grid and the
fluids on either side of the interface are marked. Two typical examples of interface
capturing methods are marker and cell (MAC) methods (Harlow and Welch, 1965),
and VOF methods. In the VOF method a transport equation for the color function
is introduced. VOF methods can be categorized into two groups dependent, how they
deal with the color function equation. First, the interface reconstruction methods use
the idea of geometric interface reconstruction. The transport equation of color func-
tion equation is not directly discretized to obtain a discrete algebraic representation
of the underlying differential transport equation. Instead, geometrical considerations
are used to model adequately the convection of the color function. Different inter-
face reconstruction methods were proposed and some of the more important ones are
mentioned. The second category are the high resolution schemes. The term ”high
resolution” scheme , introduced by Harten (1983), represents a class of conservative
schemes which produce solutions free from spurious oscillations and with high accu-
racy especially near discontinuities met in compressible flows like shocks, or contact
surfaces. As such, the class of high resolution schemes also provides good candidates
for the numerical solution of the color function equation. High resolution schemes are
essentially based on a flux limiter function approach or a normalized variable diagram
(NVD) approach. The general ideas of this concepts are given, and the two schemes
used in the present work, the Koren flux limiter scheme and the HRIC scheme, are
described in detail. Finally, a comparison between the two schemes is shown for a
simple one-dimensional test simulation.

In chapter five some important theories on the disintegration of jets are discussed.
The classical theory of Lord Rayleigh (Rayleigh, 1878) describes the disintegration
of liquid jets in the so called capillary breakup regime, where surface tension plays a
dominant role. Among other possibly destabilizing effects like aerodynamic forces or
turbulent fluctuations it has been shown by Meier et al. (1992), that pure kinematic
effects can strongly drive the disintegration of a jet as well without considering any
surface or body forces, which is generally termed travelling time theory.

In chapter six the numerical results are described in much detail. The fully converged
numerical solutions are compared against the corresponding experimental observation
of Meier et al. (1992) and against the predictions of the travelling time theory. The
observed agreement as well the discrepancies between the numerical/analytical results
and the experiments are discussed and interpreted.

In chapter seven conclusions from the most important findings are drawn, and sug-
gestions based on the results for future work are given.





2 Mathematical Model
The jet breakup of a water column surrounded by air is computationally investigated
using a continuum mechanics approach. The mathematical model for describing the
underlying transport phenomena of the two involved immiscible incompressible fluids
is the subject of this chapter. There are two possible ways of describing the flow of
two immiscible fluids:

• The whole domain of interest is divided into two subdomains by the interface. For
each subdomain the Navier-Stokes equations are solved for a single phase incom-
pressible flow and the two subdomains are connected via appropriate boundary
conditions. Surface tension effects must be incorporated into the boundary con-
ditions.

• For the whole domain of interest just one single set of governing equations is
solved. For this approach it is necessary to account for differences in the mate-
rial properties of the different fluids and to add appropriate interface terms for
the interfacial phenomena, such as surface tension, (Prosperetti and Tryggvason,
2007).

In this work the second approach is used. The governing conservation laws and the
methodology for incorporating the interface effects are described in this chapter.

2.1 Conservation laws
The fluid flow is mathematically described by three conservation laws, the conservation
of mass, momentum and energy. These laws completely determine the physical be-
haviour of the fluid. Considering isothermal incompressible flow just the conservation
of mass and momentum are needed to get a closed form for the unknown quantities u
and p.

Conservation of mass
In classical mechanics mass can neither be produced nor destroyed. Thus, the temporal
change of mass in a finite volume must be balanced by the net fluxes across the surface
of the volume. In a mathematical framework the conservation of mass can be written
as ∫

V

∂ρ

∂t
dV = −

∫
S
ρu · n dS. (2.1)

19



20 2 Mathematical Model

Here ρ is the density and u is the fluid velocity vector, S = ∂V the boundary of V ,
and n the cell-normal unit vector. By applying Gauss’ theorem to equation (2.1) the
differential form

∂ρ

∂t
+∇ · (ρu) = 0 (2.2)

is obtained. This equation is often called the continuity equation, see for instance
Spurk and Aksel (2007).

Conservation of momentum
In analogy to mass conservation, the momentum conservation can also be derived
from a finite volume consideration. Applying Newton’s second law to fluid motion,
the temporal change of momentum within a volume, including the momentum fluxes
across its surface must be balanced by external surface and body forces. This balance
is written as ∫

V

∂ρu
∂t

dV +
∫
S
(ρuu) · n dS =

∫
S
T · n dS +

∫
V
fb dV. (2.3)

Here, T is the stress tensor and fb is the volumetric body force. Again Gauss’ theorem
is applied and the differential form of the momentum equation is derived:

∂ρu
∂t

+∇ · (ρuu) = ∇ ·T + fb (2.4)

The diadic vector product uu is defined as:

uu := u · u>.

Assuming a Newtonian fluid the stress tensor is written as, see for instance Spurk and
Aksel (2007),

T =
(
−p− 2

3µ∇ · u
)
I + 2µS, (2.5)

where p is the pressure, µ the dynamic viscosity of the fluid, S = 1
2

(
∇u + (∇u)>

)
the

rate of strain tensor and I the unit tensor. The volumetric body force is composed
of a contribution due to gravitational forces and a contribution due to surface tension
forces:

fb = ρg + fσ
In the present work the effect of the gravitational forces is neglected, so that the only
body force is fσ, which is due to surface tension. Basically surface tension is a tensile
force tangential to the interface separating the two fluids, which tries to keep the fluid
molecules at the free boundary in contact with the rest of the fluid. Its magnitude
depends mainly of the material properties of the two fluids and the geometrical shape
of the interface. Although it acts only at the interface, the surface tension is modeled
here as a volumetric body force following the continuum surface force (CFS) model
proposed by Brackbill et al. (1992). A detailed description of this surface force model
is given in section 2.3.
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2.2 Constitutive relations
Constitutive relations have to be added to account for the different densities and
material properties of the two fluids. The local density and viscosity are computed as

ρ = cρ1 + (1− c)ρ2, (2.6)
µ = cµ1 + (1− c)µ2, (2.7)

respectively, where the subscripts 1 and 2 denote the different fluids. The function c
is called color function and is defined as:

c(x, t) =

1 for the point (x, t) inside fluid 1
0 for the point (x, t) inside fluid 2

(2.8)

With the above definitions two main difficulties arise:
• The density and the viscosity are piecewise continuous functions and are not

differentiable in the classical sense over the whole flow domain.
• Surface tension creates a pressure jump ∆p across a curved surface and the pres-

sure jump manifests itself only at the interface.

2.3 Continuum surface force model
The continuum surface force (CSF) model, introduced by Brackbill et al. (1992), is
used here to overcome the difficulties mentioned at the end of the previous subsec-
tion. The model interprets surface tension as a continuous volumetric force acting in
a volume containing an interface, rather than as a dynamic boundary value condition
imposed at the sharp interface.

Before explaining the CSF model in more detail some general aspects of surface tension
are said in advance. At the interface of fluids surface tension occurs. Surface tension
is an effect of attractive forces within the fluid at a microscopic level. These forces act
uniformly into all directions at particles inside the fluid. On the interface the forces
just act on one side because only particles of the same phase interact with each other.
In consequence the fluid has a tendency to minimize its surface area. The surface
tension coefficient σ is defined as the force along a line of unit length, where the force
is parallel to the surface but normal to the line, see for instance Spurk and Aksel
(2007). Surface tension is therefore measured in force per unit length. An important
aspect of surface tension is that it creates a pressure jump ∆p across a curved surface.
Based on a simple force balance at the interface it can be shown that the magnitude
of the pressure jump is a function of the mean interface curvature and the surface
tension coefficient

∆p = pi − po = σ
( 1
R1

+ 1
R2

)
= σκ, (2.9)
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where R1 and R2 are the principal radii of curvature of the surface, κ the mean cur-
vature, and p the pressure. The higher pressure is always on the concave side of the
interface, since surface tension results in a net normal force directed towards the center
of curvature of the interface.

In the CSF model the pressure jump ∆p is included into the momentum equations
as a volume force fσ = ∇p concentrated at the interface. The problem of non-
differentiability is overcome by introducing a transition region of small but finite
thickness h. Accordingly the color function is redefined as follows:

c(x, t) =


1 for the point(x, t) inside fluid 1
0 for the point(x, t) inside fluid 2
0 < c < 1 for the point(x, t) inside the transition region

To achieve such smoothly varying function c is convolved with a smooth kernel K,
which is as assumed as a quadratic B-spline. The new continuous color function c
is twice differentiable. In figure 2.1(a) the transition region with a line ab normal to
the different layers of the interface is shown. In figure 2.1(b) the smooth change of
the color function and the pressure profile in the transition region can be seen. It is
assumed that the variation of the pressure coincides in the transition region with the
variation of the color function.
Under the above assumptions and assuming a constant surface tension coefficient σ

(a) Transition region with a line ab nor-
mal to the different iso-contours of the
color function.

(b) Coincident change of the color func-
tion and the pressure profile.

Figure 2.1: Representation of the transition region. Figures from Ubbink (1997).

Brackbill et al. (1992) derived a volume force written as

fσ(x) = σκ(x)∇c(x). (2.10)

Since ∇c is only non-zero in the transition region, the volumetric surface tension force
fσ acts only in the transition region. The curvature of an arbitrary surface S at xS,
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κ, is calculated from
κ(x) = −∇ · n̂(x), (2.11)

where n̂ is the unit normal to the surface pointing into fluid 1 (see figure 2.1(a)). The
normal vector is obtained from the gradient of the smoothed color function

n(x) = ∇c(x). (2.12)

Using equation (2.12) the curvature κ is computed as

κ = ∇ · n̂ = −∇ ·
(
∇c
‖∇c‖

)
. (2.13)

The equation shown above for the curvature implird that for κ > 0 fluid 1 lies on the
concave side of the interface and for κ < 0 fluid 1 lies on the convex side as shown
in figure 2.2. Substituting (2.13) into (2.10) the volumetric surface tension force fσ is

Figure 2.2: The gradient of the color function ∇c and the sign of the curvature κ.
Figure form Ubbink (1997).

obtained just as only dependent of the color function c:

fσ = −σ
(
∇ ·

(
∇c
‖∇c‖

))
∇c (2.14)

It should be mentioned at this point that using the CSF method does not necessarily
require a smoothening of the color function. Several authors have directly implemented
a numerical approximation of equation (2.14) without smoothening the color function,
and no major problems occurred, see for instance Scardovelli and Zaleski (1999). Us-
ing the HRIC scheme in the present calculations, as will be shown, smoothening is
required.
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2.4 Transport equation for the color function for
incompressible phases

As noted as well by Hirt and Nichols (1981), the assumption of the incompressibility
of both fluids implies that the color function c has a zero material derivative, such
that

Dc

Dt
= ∂c

∂t
+ u · ∇c = 0. (2.15)

By a reformulation of the continuity equation the incompressibility condition can be
extended to a “single fluid” approach, as shown below:

∇ · u = −1
ρ

(
∂ρ

∂t
+ u · ∇ρ

)
= −1

ρ

Dρ

Dt

= −1
ρ

D

Dt
(c(ρ1 − ρ2) + ρ2)

= ρ2 − ρ1

ρ

Dc

Dt
= 0

2.5 Governing set of equations
The dimensional governing set of equations is rewritten, below in equations (2.16).

∂ρ

∂t
+∇ · (ρu) = 0 (2.16a)

∂ρu
∂t

+∇ · (ρuu) = −∇p+∇ ·
(
µ
(
∇u + (∇u)>

))
+ fσ (2.16b)

∂c

∂t
+∇ · (cu) = 0 (2.16c)

ρ = cρ1 + (1− c)ρ2 (2.16d)
µ = cµ1 + (1− c)µ2 (2.16e)

It represents a closed system of equations, which can be solved for the primitive vari-
ables u, p and c.

Experimental studies of flows are mostly carried out on a laboratory scale, and the
results are presented in dimensionless form, thus allowing for a rescaling to real flow
conditions. The same approach can be adopted in numerical studies as well. The
governing equations are transformed to dimensionless form using appropriate normal-
izations, which relate all variables to characteristic reference quantities, (Ferziger and
Peric, 1996).
Introducing the reference quantities L0, U0, ρ0 and µ0 the dimensionless variables for
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the presently considered problem can be written as

x∗i = xi
L0
, t∗ = tU0

L0
, u∗ = u

U0
, (2.17a)

µ∗ = µ

µ0
, ρ∗ = ρ

ρ0
, p∗ = p

ρ0U2
0
, f∗σ = L2

0fσ
σ

. (2.17b)

It is noted that no non-dimensionalization is required for c , which is already di-
mensionless by definition. Substituting the dimensionless groups into the governing
equations the dimensionless representation is obtained as:

∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗) = 0 (2.18a)

∂ρ∗u∗

∂t∗
+∇∗ · (ρ∗u∗u∗) = −∇∗p∗ + 1

Re∇
∗ ·
(
µ∗
(
∇∗u∗ + (∇∗u∗)>

))
+ 1

Wef
∗
σ (2.18b)

∂c

∂t∗
+∇∗ · (cu∗) = 0 (2.18c)

ρ∗ = cρ∗1 + (1− c)ρ∗2 (2.18d)
µ∗ = cµ∗1 + (1− c)µ∗2 (2.18e)

The following dimensionless numbers appear in the equations:
• The Reynolds number

Re := ρ0U0L0

µ0

can be understood as a ratio of inertial and viscous forces. They are also used to
characterize different flow regimes, such as laminar or turbulent flow. Laminar
flow occurs at low Reynolds numbers, where viscous forces are dominant, and
turbulent flow occurs at high Reynolds numbers and is dominated by inertial
forces. The critical Reynolds number, where the flow becomes unstable and
a transition from laminar to turbulent occurs, depends on the considered flow
configuration.
• The Weber number

We := ρ0U
2
0L0

σ

is the ratio of inertial forces to surface tension forces. It represents an impor-
tant parameter to identify the different regimes of liquid breakup ranging from
capillary breakup to spray atomization.

In the next chapter the numerical simulation methodology is discussed to explain in
detail the numerical methods used in the present computational investigations.





3 Numerical Model
In this chapter an outline is given of the numerical model which is used to solve the
governing equations. A numerical code, originally written by Boersma (1998), is used
as a flow solver tool for the present computations. It was primarily developed to
simulate single-phase cylindrical jet flow and it is written in Fortran and parallelized
with message passing interface (MPI). It was extended to deal with the two-phase
flow problem of atomizing high-speed liquid jets, (Heidron and Steiner, 2009). The
dimensionless governing equations (2.16a) - (2.16e) are solved in spherical coordinates.
The numerical method for solving the governing equations (2.18a) - (2.18e) is discussed
in the following separately for the time and space discretization.

3.1 Computational domain
The jet breakup of a water column is numerically simulated using a cone-shaped
computational domain, which is based on a spherical coordinate system. The com-

Figure 3.1: Schematical view of the computational domain. Figure from Walchshofer
(2011).

27
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putational domain is shown in figure 3.1. The indices of the discretized spherical
coordinates r, θ, φ are denoted by i, j and k, respectively. The inflow boundary is
denoted by Γin, the lateral by Γlat and the outflow by Γout. Using a spherical coor-
dinate system instead of a cylindrical was originally motivated to account inherently
for the lateral expansion of the jet with increasing distance from the orifice, so that
a sufficient distance between the outer edge of the boundary layer and the lateral
boundary Γlat is guaranteed. Thus, a significant motion generated by the jet basically
never reaches the lateral boundary, which would trigger numerical instabilities. In the
present simulations the radial distance of the inflow boundary is chosen large enough,
to obtain an almost cylindrical computational domain with a cylindrical jet at the
inflow.

3.2 Time discretization
The time discretization is relevant only for the solution of transport equations for
the color function and the momentum. Using a pressure-based incompressible flow
solver the continuity equation is not explicitly solved. The satisfaction of the continu-
ity equation is incorporated into the solution procedure of the momentum equations
instead.

Transport equation for the color function
For the integration of the color function equation (2.16c) in time an explicit second-
order accurate Adams-Bashforth scheme is used:

cn+1 − cn

∆t = 3
2A

n
c −

1
2A

n−1
c .

Therein, Anc represents the numerical approximation of the advection term at time tn,
hence

Anc ≈ −∇ · (cnun).
The computation of the advection term is a non-trivial task, because the steep gra-
dients of the color function has to be maintained. Using a diffusive upwind scheme
would excessively smear the gradient so the interfaces between the phases can finally
not clearly identified any more. Using on the other hand a very compressive downwind
scheme leads to unphysical minima and maxima, which finally leads to an unstable
solution. A detailed discussion of this important issue will be presented in section 4.

Momentum equation
For integrating the equations of motion (2.16b) in time the so called “projection
method”, see for example Prosperetti and Tryggvason (2007), is used. This approach
can be divided into three main steps, namely the predictor step, projection step and
pressure correction step.
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1. Predictor step:
First the momentum flux ρ̂u is calculated without accounting for the pressure
as follows using the same Adams-Bashforth scheme as shown above for the color
function c:̂(ρu)− (ρu)n

∆t = 3
2

(
An

u + Dn
u + fnσ

)
−1

2

(
An−1

u + Dn−1
u + fn−1

σ

)
(3.1)

An
u is the numerical approximation of the advection term at time tn, hence

An
u ≈ −∇ · (ρnunun).

Dn
u is the numerical approximation of the diffusion term at time tn, hence

Dn
u ≈ ∇ ·

(
µn
(
∇un + (∇un)>

))
.

fnσ is the numerical approximation of the surface tension term at time tn, hence

fnσ ≈ −σκn∇cn.

The resulting velocity obtained from

û = ρ̂u
ρn+1

with ρn+1 = ρ1c
n+1 +(1−cn+1)ρ2 is in general not divergence-free, so that it does

not satisfy the continuity equation ∇ · û = 0.
2. Projection step:

In the second step the pressure gradient is added to yield the final momentum
flux at the new time step:

(ρu)n+1 − ̂(ρu)
∆t = −∇pn+1 (3.2)

The pressure at time step n+ 1 is also unknown and must be calculated as well.
Equation (3.2) is divided by the new density ρn+1, which yields

un+1 −
̂(ρu)
ρn+1︸ ︷︷ ︸
=:ũ

= − ∆t
ρn+1∇p

n+1. (3.3)

Taking the divergence of equation (3.3) and enforcing a divergence-free velocity
at the new time, i. e. ∇ · un+1 = 0, gives the Poisson equation for the pressure

∇ ·
(

∆t
ρn+1∇p

n+1
)

= ∇ · ũ. (3.4)

The solution of the Poisson equation is one of the most challenging problems
concerning the accuracy and computational costs. The Poisson equation (3.4) is
solved using an algebraic multigrid algorithm.
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3. Pressure correction step:
To get the final divergence-free velocity un+1 at time step tn+1, the predicted
velocity ũ is corrected by the gradient of the pressure:

un+1 = ũ− ∆t
ρn+1∇p

n+1.

3.3 Space discretization
For the space discretization a finite volume approach is used. The great advantage
of using a finite volume approach is that the numerical scheme is per definition con-
servative. This means the conservation of mass and momentum are guaranteed by
the numerical scheme. In the finite volume configuration volumetric average values
in each control volume are used. Furthermore it is assumed that the average values
coincide with the values at the center of the control volume.
A staggered grid is used, where the scalar variables are stored at the cell centers of
the control volumes and the velocity components are located at the cell faces. For
a better understanding the staggered control volumes for the pressure and velocities
are shown in figure 3.2. For simplicity a two dimensional configuration of cartesian
square control volumes with constant mesh size is shown. The control volume for the
pressure, centered at the (i, j) node is presented as grey-shaded area in figure 3.2(a).
The locations of the edges are identified by half-indices (i±1/2, j±1/2). The velocity
components are solved using different control volumes, as displayed in figure 3.2(b).
Using such staggered grids leads to a very robust numerical method which can be -
despite of the complex looking indexing - relatively easy to implement, (Prosperetti
and Tryggvason, 2007).
In the next sections the control volumes for the scalar variables (p, c, ρ, µ) are always
indicated by the subscript p, as Vp represents the control volume for the p. The control
volumes for the velocity components are indicated by subscripts u, v and w. In the
framework of the presently used volume of fluid (VOF) method, the color function at
control volume p, is defined as a volume concentration

c = Volume of fluid 1
Volume of the control volume . (3.5)

An introduction to VOF methods is given in chapter 4.

Transport equation for the color function
In the derivation of the numerical approximation for the advection term of the color
function equation (2.16c), its volume integral over the control volume Vp is rewritten
as a surface integral using Gauss’ theorem

Ac = − 1
Vp

∫
Vp

∇ · (cu) dV = − 1
Vp

∫
Sp

cu · n dS = − 1
Vp

d∑
fp=1

∫
Sfp

cu · n dS, (3.6)



3.3 Space discretization 31

(a) The pressure control volume, cen-
tered at the (i, j) node.

(b) The u-velocity and v-velocity control volume, centered at the (i + 1/2, j) and
(i, j + 1/2) node.

Figure 3.2: Control volumes for pressure and velocity components on a staggered two-
dimensional grid. Figures from Prosperetti and Tryggvason (2007).

where the faces of a control volume p are denoted by fp, and d is the total number
of faces of the control volume p. This expression is the exact representation of the
average advection term at control volume p. The surface integral is approximated
using the midpoint rule, where the integral is approximated as the integrand at the
cell face center multiplied by the cell face area. This approximation of the integral is
of second-order accuracy and it reads

d∑
fp=1

∫
Sfp

cu · n dS ≈
d∑

fp=1
cfpAfp · ufp =

d∑
fp=1

cfpFfp , (3.7)

where cfp and ufp represent the values at the center of the cell face. Afp is the face
area vector, and Ffp := Afp · ufp is the volumetric flux at the cell face for the control
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volume p.
The resulting discretized formulation of the advection term at control volume p reads

Anc := − 1
Vp

k∑
fp=1

cnfp
F n
fp
. (3.8)

The main problem of this approximation lies in the determination of the cell face value
of the scalar cfp , which is localized at the cell centers and not at the cell faces. A simple
linear interpolation would lead to over- and undershoots, which implies that the color
function would have values less than zero or greater than one. Many methods have
been developed to deal with this problem. In this present work two different schemes
are used for the numerical experiments to determine the cell face values cfp :
• Koren flux limiter scheme: It falls into the group of total variation diminishing

(TVD) schemes and uses the concept of a flux limiter function. Further expla-
nations are given in section 4.3.1.
• High Resolution Interface Capturing (HRIC) scheme: It is a scheme derived from

a normalized variable approach. Further explanations are given in section 4.3.2.

Momentum equation
The momentum equations carry advection, diffusion and surface tension terms, which
have to be numerically approximated. The following formulations are shown for an
arbitrary component denoted by Φ, which can represent u, v, w without any loss of
generality.

For the numerical approximation of the advection term into the direction of Φ the
same approaches as for the advection term of the color function equation are used
(Gauss’ theorem, midpoint rule), such that

AnΦ := − 1
VΦ

k∑
fΦ=1

ρnfΦ
Φn
fΦ
F n
fΦ
.

All quantities which are unknown at the centers of the faces of the control volume VΦ,
are approximated by linear interpolation.

The diffusion term involves second-order partial derivatives generally written as

∂

∂di

(
µ
∂Φ
∂dj

)
, (3.9)

where di and dj can be any direction. Just the approximation of the general term
(3.9) is considered without any loss of generality. Integration of the general term (3.9)
over an arbitrary control volume V gives∫

V

∂

∂di

(
µ
∂Φ
∂dj

)
dV = µi+Ai+

(
∂Φ
∂dj

)
i+
− µi−Ai−

(
∂Φ
∂dj

)
i−
,
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where i+ and i− refer to the values at the boundary faces with respect to the direction
di with the cell face areas Ai+ and Ai−. The partial derivatives into the direction dj
are approximated by a central difference scheme.

The surface tension terms involves the gradient of the color function and the curvature,
which is obtained as the divergence of the normalized gradient of c. The gradient of
the color function is approximated using a first-order forward difference scheme and is
denoted here by ∇Φ. The curvature κp, evaluated at the control volume p, is directly
calculated from the gradient of the color function c using again Gauss’ theorem

κp = −
[
∇ ·

(
∇c
‖∇c‖

)]
p

= − 1
Vp

n∑
fp=1

Afp ·
(

[∇c]fp

[‖∇c‖]fp

)
,

where the gradients [∇c]fp refer to the cell faces. The discretization of the surface
tension term for the Φ component finally reads

fnσ,Φ := −σκΦ∇Φc
n,

where κΦ is approximated by linear interpolation from the values at the cell centers
κp.

3.4 Boundary conditions
Inflow, lateral and outflow boundary conditions for all unknown variables u, p and c
must be imposed. For the present case of a free jet flow the outflow boundary requires
special attention to ensure numerical stability by eliminating undesirable upstream
effects as far as possible.

Inflow boundary condition
The inflow boundary contains the orifice of the nozzle, where the liquid-phase fluid 1
is injected with a given velocity uinl into the domain. The remaining part of the inflow
boundary Γin is assumed as occupied by the gaseous ambient fluid 2 at rest. For the
pressure a homogeneous von Neumann boundary condition is applied. Summing up
the following boundary conditions are imposed at the inflow:

u(x, t) =

uinl(x, t), for θ ≤ θinl, x ∈ Γin
0, for θ > θinl, x ∈ Γin

,

c(x, t) =

1, for θ ≤ θinl, x ∈ Γin
0, for θ > θinl, x ∈ Γin

,

∂p(x, t)
∂n

= 0 for x ∈ Γin.

θ ≤ θinl refers to the conditions inside the orifice and θ > θinl for the conditions
outside. For the von Neumann boundary condition a first-order forward difference
scheme is used here.
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Lateral boundary condition
Without any loss of generality the pressure is taken to be zero on the lateral boundary
Γlat. For the velocity a homogeneous von Neumann boundary condition is used and
just the presence of fluid 2 is assumed. In summary the lateral boundary condition
can be stated as follows:

∂u(x, t)
∂n

= 0 for x ∈ Γlat,

c(x, t) = 0 for x ∈ Γlat,
p(x, t) = 0 for x ∈ Γlat.

For the von Neumann boundary condition a first-order backward difference scheme is
used here.

Outflow boundary condition
The outflow boundary condition Γout is a bit more tricky to handle. Because of the
elliptic character of the equations the outflow boundary conditions can influence the
flow domain. If large vortical structures appear they are leading to extended regions
with reversed flow. If these structures reach the outflow boundary and a von Neumann
boundary condition is used significant reversed flow can arise at the boundary, which
can finally lead to numerical instabilities, (Fröhlich, 2006). To avoid this problem the
widely used convective boundary condition, written as

∂u
∂t

+ U out
∂u
∂n

= 0, (3.10)

is applied. The convective boundary condition enforces a predominantly outwards di-
rected motion using an average advection velocity U out instead of the local values. This
implies that a different partial differential equation is solved at the outflow boundary
as compared to the in the inner domain. It is in contrast a hyperbolic equation and
the formulation (3.10) has, for positive U out, a real outward directed characteristic
to prevent reversed flow. More detailed explanations for outflow boundary conditions
can be found in Fröhlich (2006). For the pressure and for the color function a ho-
mogeneous von Neumann boundary condition is applied. Summing up the following
boundary conditions are obtained at the outflow:

∂u(x, t)
∂t

+ U out(x)∂u(x, t)
∂n

= 0 for x ∈ Γout, U out(x) > 0,

∂p(x, t)
∂n

= 0 for x ∈ Γout,

∂c(x, t)
∂n

= 0 for x ∈ Γout.

All normal derivatives and the time derivative are approximated by a first-order back-
ward difference scheme.



4 Volume Of Fluid (VOF) Methods
Before explaining the basic ideas of the VOF method in more detail and working out
the main differences between the two presently applied interface capturing schemes,
the HRIC and the Koren flux limiter scheme, an introduction and literature review on
the fundamental concepts for the numerical simulation of multi-phase flow are given.

4.1 Introduction
There have been developed various methods for the challenging problem of interface
propagation in multiphase flow calculations. Basically, they can be classified into two
groups, (Ferziger and Peric, 1996):
• Interface Tracking Methods (ITM)
• Interface Capturing Methods (ICM)

In Figure 4.1 the main differences between the two methods are exemplarily shown.

(a) ITM:Marker particles on the interface and an interface
attached to a mesh surface.

(b) ICM:Fluids are marked by
massless particles or a volume
fraction function.

Figure 4.1: ITM and ICM in comparison. Figures from Ubbink (1997).

Interface Tracking Methods define a sharp interface, whose motion is followed. These
methods explicitly track the interface either by marking it with special marker points
(Daly, 1969), or by attaching it to a mesh surface which is forced to move with the
interface (Glimm et al., 1986). The advantage of ITM is that the position of the inter-
face is exactly known throughout the calculation, and no unphysical smearing of the
interface occurs, as it is typically observed with the ICM. On the other hand, if the

35
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interface is attached to a mesh surface, some problems may arise. Large distortions of
the mesh can be met, if the interface is subjected to deformations. As shown by Ra-
maswamy and Kawahara (1987) in numerical experiments on the collapse of a liquid
column, such large deformations can occur already at the beginning of the computa-
tion. To maintain a well defined mesh it would therefore be necessary to interpolate
a new mesh, which leads to additional computational effort. Another disadvantage is
that changes in the topology, like in wave breaking or droplet formation, are hard to
capture with ITM.

Interface Capturing Methods solve the equations of motion in the whole domain on
a fixed grid and the fluids on either side of the interface are marked. Two main
representations of interface capturing methods are marker and cell (MAC) methods
and volume of fluid (VOF) methods, which are explained in more detail in the next
sections.

Marker And Cell (MAC) Methods
Instead of defining an interface directly, one can also work with the regions occupied by
the considered fluids. The marker and cell method, or MAC method, was introduced
by Harlow and Welch (1965) for free surface flows. In the MAC method massless
marker particles are distributed over the volume to determine the interface with each
particle specified to move with the fluid velocity at its location. The interface lies
between regions with and without marker particles. A cell without marker particles
is considered to be empty. More precisely, a mesh cell containing markers, but having
a neighboring cell with no markers, is defined as containing an interface. A sketch of
a typical marker and cell mesh layout can be seen in figure 4.2. The actual location
of the interface must be determined by some additional computation based on the
distribution of markers within the cell.

Figure 4.2: Sketch of a typical marker and cell mesh layout. Figure from Ubbink
(1997).
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The MAC method was extended by Daly (1967), to allow the computation of two-
fluid phenomena. At the beginning the marker particles are classified according to
the fluid they represent and this classification holds for the whole flow calculation. A
mesh cell with marker particles from both fluids contains the interface. The approach
is also applicable in three-dimensional computations. The deficit of ITM to capture
topological changes is overcome by MAC methods. While MAC methods can describe
these changes in topology, it suffers from a significant increase in computational ef-
fort. Especially in three-dimensional calculations the movement of a large amount of
marker particles can cause intolerable computer costs.

The Volume of Fluid method, or VOF method, was introduced by Hirt and Nichols
(1981) for free surface flows. Like in MAC methods a fixed grid is used in the whole
domain. To reduce the computational effort a scalar color function c, or in the liter-
ature sometimes called indicator or marker function, is introduced instead of discrete
marker particles. The color function c, in the framework of VOF methods, is defined
as

c = Volume of fluid 1
Volume of the control volume . (4.1)

With the above definition three possible cases can arise:

• c = 1, control volume is totally filled with fluid 1.
• c = 0, control volume is totally filled with fluid 2.
• c ∈ (0, 1), control volume is partially filled.

In Figure 4.3 the values of the color function c for a smooth circular portion of fluid
1 specified on a square grid can be seen.

Figure 4.3: Representation of the volume fraction for a smooth circular portion of fluid
on a square grid. Figure from Scardovelli and Zaleski (1999).

As mentioned earlier the color function c obeys the transport equation

∂c

∂t
+∇ · (cu) = 0 . (4.2)
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The major difficulties connected with discretization of the transport equation of the
color function are:

• Boundedness of the color function: The color function c is bounded below by zero
and above by one. No unphysical over- and undershoots should appear.
• Sharpness of the interface: The sharpness of the interface should be maintained.

Numerical diffusion of the step-like interface profile should be avoided.

Many methods have been developed to satisfy these two constraints. Higher-order
schemes often not fulfill the boundedness but can maintain the step-like interface pro-
file. Lower order schemes are bounded but, lead typically to a smearing of the interface.

VOF methods can be categorized into two groups, depending on how they deal with
the color function equation (4.2):

• Interface reconstruction methods.
• High resolution schemes.

4.2 Interface reconstruction methods
Interface reconstruction methods use the idea of geometric interface reconstruction.
The transport equation of color function (4.2) is not directly discretized in the sense
of a partial differential equation. Instead geometrical considerations are used to model
adequately the convection of the color function. Usually these methods consist of two
steps. First, a reconstruction step is carried out to determine the shape of the inter-
face. Second, a propagation step is performed to obtain the new distribution of the
color function.
Different interface reconstruction methods were proposed, and some of the most pop-
ular approaches are briefly described below.

The simple line interface calculation (SLIC) method, see Noh and Woodward (1976),
has been developed to deal with two dimensional interfacial flow. The interface in
each control volume is reconstructed as a line parallel to one of the coordinate axes.
The reconstruction and propagations is done separately in each coordinate direction,
which implies that only cell neighbours in the considered coordinate direction are used
to determine the interface. This procedure is called operator splitting.

Piecewise linear interface calculation (PLIC) method, see Youngs (1982), uses lines of
any orientation to approximate the interface in a control volume. Continuity across
the cell faces is not required. Also for PLIC methods an operator splitting procedure
can be used. After each propagation step into one direction the interface has to be
reconstructed.
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Figure 4.4: An approximation to the interface is produced using an interface recon-
struction method such as SLIC or a more general piecewise linear approx-
imation. Figure from Pilliod and Puckett (2004).

In figure 4.4 the differences between the SLIC method and the PLIC method can bee
seen.

The advantage of interface reconstruction methods is their natural way to preserve
the sharpness of the interface. They were developed and tested for two-dimensional
problems. Complex expressions occur, especially in three dimensions, and an efficient
implementation is a hard task, see López and Hernández (2008). The difficulty of
the interface reconstruction becomes apparent in figure 4.5. The color function is
represented as shaded squares of a size proportional to the local volume fraction. In
the case on the left hand side shown the segment of a circle reconstruction is relatively
easy to accomplish. In complex situations, like in drop collision, reconstruction is
a much harder task. The difficulty in the reconstruction of the interface becomes
significantly higher when dealing with three-dimensional flow problems, where the
numerical resolution requires often unacceptable large computational resources. Other
methods without an interface reconstruction step are therefore used and preferred in
three dimensions. A popular alternative are high resolution schemes.
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(a) A well-behaved distribu-
tion of the color function, cor-
responding to a segment of a
circle.

(b) A more confused distri-
bution, corresponding to drop
collision.

Figure 4.5: Difficulty of the interface reconstruction. The color function is presented
as shaded squares of a size proportional to the volume fraction. Figures
from Scardovelli and Zaleski (1999).

4.3 High resolution schemes
Another approach is to discretize the color function equation (4.2) directly using a
higher order differencing scheme. The term ”high resolution” scheme, introduced by
Harten (1983), represents a class of conservative schemes which produce solutions free
from spurious oscillations and with high accuracy especially near discontinuities met in
compressible flows like shocks, or contact surfaces. As such, the class of high resolution
schemes also represent good candidates for the numerical solution of the color function
equation.
The color function equation is usually solved with a finite volume approach to ensure a
conservative scheme. Using a finite volume approach the fluxes of the control volume
interfaces have to be calculated. In one dimension the color function equation at
constant velocity u > 0 reduces to

∂c

∂t
+ ∂(uc)

∂x
= 0. (4.3)

Using the finite volume approach this equation can be integrated in space over a
control volume centered at point xi from xi−∆x/2 to xi + ∆x/2, assuming a uniform
mesh size ∆x. This gives the exact semi-discrete equation

xi+1/2∫
xi−1/2

∂c

∂t
dx+ (Fi+1/2 − Fi−1/2) = 0 (4.4)

with the definition Fi±1/2 := u · c(xi±1/2, t).
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The main problem in defining finite volume discretizations of the convective transport
equation (4.3) is the approximation of the fluxes across the cell faces. Using a staggered
grid the velocities across the faces are known, while the convected scalars have to be
approximated based on their known values at the cell centers. All of the schemes
considered here calculate face values using the upwind-biased stencil configuration
shown in Figure 4.6. It means that for the calculation of the face value cf only the

Figure 4.6: Upwind-biased stencil configuration.

values cU , cC and cD are used. This assumption is supported by the fact that the true
domain of dependence always upwind. From the various methods which have been
proposed to calculate the numerical fluxes two particular high resolution schemes are
used in the present calculations, namely, the Koren flux limiter scheme, Koren (1993),
based on the flux limiter approach and the high resolution interface capturing (HRIC)
scheme Muzaferija et al. (1998), based on the normalized variable diagram (NVD).
These two schemes are discussed in more detail in the following sections.

4.3.1 High resolution schemes based on flux limiters - Koren
flux limiter

The general idea of constructing high resolution schemes using flux limiters is to define
the numerical flux Ff in dependence of a low-order numerical flux F l

f and a high-order
numerical flux F h

f . The letter f indicates any face value. The two fluxes F l
f and F h

f

are combined through a flux limiter function γ as follows:

Ff (s) = F l
f + γ(s) (F h

f − F l
f ).

Therein, s represents the ratio of consecutive gradients of the solution defined by

s := cD − cC
cC − cU

.
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Sometimes s is inversely defined, like in the widely cited paper on flux limiters by
Sweby (1984).
The flux limiter function γ is defined in such a way that it diminishes to zero in regions
with extrema or discontinuities, so that the lower-order numerical flux approximation
is used. In smooth solution regions the flux limiter γ takes a value close to one to give
a highly accurate approximation scheme.

The lower-order numerical flux approximation F l
f ensures boundedness of the solution

but introduces numerical diffusion. Flux limiter methods remedy this by adding a
limited amount of the antidiffusive flux (F h

f − F l
f ). So the flux limiter function γ is

constructed in such a way that the limited antidiffusive flux (F h
f − F l

f ) is maximized
under the constraint that the numerical scheme does not produce spurious oscillations.

β-scheme formulation

Following the concept Leer (1985) many well-established linear higher-order schemes
can be classified as β−schemes. This concept is adopted for the derivation of the
presently used flux limiter proposed by Koren (1993) as well. Using the β−scheme
formulation the face value needed for the approximation of the fluxes is generally
written as:

cf = cC +
[

1 + β

4 (cD − cC) + 1− β
4 (cC − cU)

]
, β ∈ [−1, 1].

For β = 1, one gets the central difference scheme (CDS), where the face value is cal-
culated by linear interpolation from the two adjoining nodal values. For β = −1 the
linear-upwind interpolation (LUI) scheme is obtained (Atias et al., 1977), where the
face value is computed form a linear extrapolation of the two upwind nodal values.
It is the only fully upwind β-scheme which is sometimes called second order upwind
(SOU) scheme as well. For all other values β ∈ [−1, 1], a dynamic blending is obtained
between the CDS scheme and the LUI scheme.
Substituting the β−representation of c(xi+1/2, t) and c(xi−1/2, t) needed for Fi+1/2 and
Fi−1/2, into (4.4) respectively, and applying a Taylor-series expansions with a trunca-
tion error of order O(∆x3), we get:

∂c

∂t
+ u

∂c

∂x
+ 1

24∆x2 ∂3c

∂t∂x2 +
β − 1

3
4 ∆x2u

∂3c

∂x3 = O(∆x3), β ∈ [−1, 1].

It can be seen that for the steady convection equation any β-scheme discretization is
at least second-order accurate for a sufficiently smooth solution. For the specific value
β = 1

3 the interpolation becomes third-order accurate. This was the motivation for
Koren to use β = 1

3 .
These higher-order linear schemes still can produce unphysical oscillations, in partic-
ular in the presence of sharp gradients. This limitation is addressed by Godunov’s
famous theorem, stating that no linear convection scheme of second-order accuracy or
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higher can be monotonic (Waterson and Deconinck, 2007).
This limitation gave the motivation to introduce non-linear schemes which use con-
trolled fluxes to ensure boundedness.

Flux limiter approach corresponding to the β-schemes

The flux limiter approach used by Koren follows that of Roe (1987) and it differs
from that of Sweby (1984) in that the discretization of the spatial terms is completely
separated from the time discretization used. For the higher-order numerical flux F h

f

the LUI interpolation scheme, associated with β = −1, is used, and for the lower-order
numerical flux F l

f the first-order upwind scheme is applied. This leads to

Ff = u cf = F l
f + γ(s)[F h

f − F l
f ] = u cC + γ(s)

[
u
(3

2cC −
1
2cU

)
− u cC

]
,

resulting in a formulation for a constant veloctiy u > 0

cf = cC + γ(s)cC − cU2 .

The flux limiter function written in terms of a β-scheme reads, (Waterson and Decon-
inck, 2007):

γ(s) = 1 + β

2 s+ 1− β
2 .

For γ(s) = s the CDS scheme is obtained.

Boundedness criteria - TVD concept

As mentioned above boundedness criteria have to be imposed to ensure an oscillation-
free numerical solution. One approach used by Koren for his flux limiter derivation
is the total variation diminishing (TVD) concept. The TVD concept introduced by
Harten (1983) guarantee oscillation free numerical solutions for explicit conservative
numerical schemes.
An explicit conservative numerical scheme is said to be TVD, if

TV (cn+1) ≤ TV (cn), ∀n, where TV (cn) :=
∑
i

|cni − cni−1|.

The TVD concept was translated by Sweby (1984) into a set of conditions imposed
on the flux limiter functions. The constraints for a flux limiter function to ensure a
TVD behavior read:

0 ≤ γ(s) ≤ min(2s, 2), for s ≥ 0,
γ(s) = 0, for s < 0.

It should be noted that the second constraint does not arise directly from the TVD
requirement but is added as a safe treatment for extrema, (Waterson and Deconinck,
2007).
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Koren flux limiter

Koren followed the TVD related considerations to define a non-linear scheme based
on the flux limiter approach corresponding to β = 1

3 . The resulting flux limiter reads:

γ(s) = max
(

0,min
(

2s,min
(2

3s+ 1
3 , 2

)))
(4.5)

In Figure 4.7 the Koren flux limiter is plotted into the Sweby TVD region. The LUI
scheme, β = −1, and the CDS scheme, β = 1, are shown as well for completeness.

Figure 4.7: Koren flux limiter in the Sweby TVD region.

Sweby found a subdomain, where the TVD schemes are at least second order accurate,
(Sweby, 1984). It can be shown that this second-order TVD subdomain is represented
by the area, which is covered by the full range of β − schemes inside the TVD region
(Waterson and Deconinck, 2007). In Figure 4.8 the Koren flux limiter is displayed in
the Sweby second-order TVD region.

Multiple dimensions

The extension to multiple dimensions of the numerical scheme based on the Koren flux
limiter used in the present work is done in a relatively straightforward manner. The
one-dimensional case is extended to the three-dimensional case through dimensional
splitting, where each flux is calculated separately for each coordinate direction. No
theoretically rigorous extension of the TVD criterion to multiple dimensions has yet
been made, and so, when applying dimensional splitting such, schemes are technically
not TVD. Nevertheless, Koren showed in numerical experiments that the application
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Figure 4.8: Koren flux limiter in the Sweby second order TVD region.

of the simple dimensional splitting did not lead to unsatisfactory results proving his
concept as a robust discretization method without any tuning (Koren, 1993).

For the sake of completeness some important flux limiter functions which all lie in the
second-order TVD region are listed below as well:

• Superbee: γ(s) = max[0,min(2s, 1),min(s, 2)]
• MUSCL: γ(s) = max[0,min(2s, s+1

2 , 2)]
• Minmod : γ(s) = max[0,min(s, 1)]

• von Albada : γ(s) = s(s+1)
s2+1

4.3.2 High resolution schemes based on NVD - HRIC scheme
The alternative high resolution scheme for solving the convection equation used in the
present calculations is the high resolution interface capturing (HRIC) scheme proposed
by Muzaferija et al. (1998). The HRIC scheme is based on the normalized variable
diagram (NVD), as mentioned by Leonard (1979). All schemes discussed earlier are
based on the stencil configuration shown in figure 4.6, and the cell face value can be
written as

cf = f(cU , cC , cD).

It appears as advantage to go for a normalized variable formulation, where the normal-
ized face value c̃f depends only on one normalized variable to make comparison of the
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individual schemes easier. This can be achieved using the normalization introduced
by Leonard (1979), written as

c̃ = c− cU
cD − cU

,

so that the interpolation for cf = f(cU , cC , cD) is simplified to

c̃ = f(c̃C).

It can be seen that for c̃f = cC the FOU scheme is obtained, and for c̃f = 1 follows
the first-order downwind (FOD) scheme. All β−schemes can be expressed as a linear
relationship between the normalized face values c̃f and c̃C . Values of c̃C being between
0 and 1 indicate monotonic variation in the solution, while values lying outside this
interval indicate the presence of an extremum.

Boundedness criteria

The most widely applied boundedness criterion using the NVD is Gaskell and Lau’s
convection-boundedness criterion (GL-CBC), (Gaskell and Lau, 1988). For the deriva-
tion of GL-CBC the one-dimensional steady convection diffusion equation was dis-
cretized using a finite volume approach, and restrictions on the cell face values were
made under physical considerations to achieve a bounded numerical solution. Gaskell
and Lau’s two main requirements on a numerical scheme to ensure computed bound-
edness are convective stability (essentially enforcing an upwind bias) and interpolative
boundedness (the face value must be bounded by the upwind and downwind centered
control volume values). The GL-CBC states that a continues function or a piecewise
continues function c̃f = f(c̃C) yields a bounded finite difference approximation, if

c̃f = c̃C , for c̃C ≤ 0 and c̃C ≥ 1
c̃C ≤ c̃f ≤ c̃D, for 0 < c̃C < 1.

The GL-CBC can be seen graphically represented by a certain region in the NVD,
shown in Figure 4.9, where different linear schemes are plotted as well.
The GL-CBC and the associated region in the NVD have long been accepted as both
a sufficient and necessary condition for a scheme to provide boundedness (Yu et al.
(2001), Darvish (1993), Gaskell and Lau (1988)). However, it has been demonstrated
that this is not true. In Yu et al. (2001) it is shown that the GL-CBC is just a sufficient
condition for boundedness, and a new CBC was proposed. It was shown that schemes
satisfying the following constraints are also bounded:

c̃C ≤ c̃f ≤
c̃C
2 , for c̃C ≤ 0,

c̃C ≤ c̃f ≤
c̃C + 1

2 , for 0 ≤ c̃C ≤ 1,
c̃C + 1

2 ≤ c̃f ≤ c̃C , for c̃C ≥ 1.



4.3 High resolution schemes 47

Figure 4.9: NVD with the GL-CBC region and some linear schemes.

These new constraints is called the extended boundedness criterion (ECBC). In follow-
up studies it is shown that the GL-CBC and the ECBC represent two limiting cases of
the general convective boundedness criterion (GCBC) proposed by Wei et al. (2007).

High Resolution Interface Capturing (HRIC) Scheme

The HRIC scheme introduced by Muzaferija et al. (1998) essentially involves three
steps.

1.) GL-CBC based calculation of c̃f
The normalized cell face value is estimated from a scheme which continuously connects
the FOU and FOD schemes in the NVD. Accordingly the cell face value is computed
from the following expression:

c̃f =


c̃C , for c̃C ≤ 0,
2̃cC , for 0 < c̃C < 0.5,
1, for 0.5 ≤ c̃C ≤ 1,
c̃C , for c̃C > 1.

Figure 4.11 shows a graphical interpretation of the scheme in NVD.

2.) Consideration of the orientation of the interface
Downwind discretization may cause an alignment of the interface with the computa-
tional grid, (Ubbink, 1997). This implies that the direct use of the value of c̃f causes
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wrinkles in the interface, if the flow is parallel to the interface. To avoid this problem,
the discretization has to account for the angle θ between the unit normal vector on
the interface and the normal vector on the cell face d̂, as shown in Figure 4.10. As

Figure 4.10: Definition of the unit normal vector on the interface n̂ := ∇c
‖∇c‖ and the

unit normal vector on the cell face d̂.

mentioned earlier the unit normal vector on the interface is defined by the gradient of
the color function, written as

n̂ := ∇c
‖∇c‖

.

The face value c̃f is then corrected according to the following expression:

c̃?f = c̃f
√
| cos θ|+ c̃C(1−

√
|cosθ|)

The term cos θ = n̂ · d̂ approaches one, if the angle θ becomes very small and, it
approaches zero, if the angle θ is closed to π/2.

3.) Consideration of the local Courant number
If the local Courant number

Co = uf · n̂ Sf∆t
VC

,

where uf is the current velocity at the cell face, Sf is the area of the cell face, and
VC is the volume of the control volume, is too large, explicit discretization schemes of
the color function equation may cause stability problems. To prevent this, the HRIC
discretization also takes into account of the Courant number according to the following
expression:

c̃??f =


c̃?f , for Co < 0.3,
c̃C + (c̃?f − c̃C)0.7−Co

0.7−0.3 , for 0.3 ≤ Co ≤ 0.7,
c̃C , for Co > 0.7.

(4.6)

Finally, the cell face value cHRICf is computed as follows:

cHRICf = ζcC + (1− ζ)cD
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with the blending factor ζ defined as:

ζ =
(1− c̃??f )(cD − cU)

cD − cC

For multiple dimensions the HRIC scheme is extended in the same way as the Koren
flux limiter scheme applying the algorithm separately into each direction.

4.4 Comparison of the Koren flux limiter scheme
and HRIC scheme

For a meaningful comparison of the two schemes the Koren flux limiter function is also
displayed in the NVD. We recall the general flux limiter formulation for a constant
velocity u > 0 in the one-dimensional case is written as

cf = cC + γ(s)cC − cU2 ,

Rewritten in normalized variables this expression becomes

c̃f = c̃C + γ(s) c̃C2 .

In Figure 4.11 the c̃f− values obtained from the Koren flux limiter scheme and from
equation (4.6) in the HRIC scheme neglecting the two correction steps are drawn in
the NVD for the one-dimensional case. The TVD region is shown, as well. It can be

Figure 4.11: The NVD for Koren flux limiter scheme and the HRIC scheme.
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observed that the Koren flux limiter scheme and the HRIC scheme are quite similar.
First both, are following the left border of the TVD region. At c̃C = 0.285 the Koren
limiter changes its gradient taking a lower path. They intersect each other again at
c̃C = 0.8 and continue on top of each other.
It can be concluded that the HRIC scheme has a bit more compressive nature, than
the Koren flux limiter scheme because of the faster transition to the FOD scheme,
whose compressive nature is well known, (Muzaferija et al., 1998). This conclusion
can be easily verified by a simple one-dimensional test case. In this test case the finite
volume approximation (4.4) is solved using a step function defiend by

c0(x) :=

1, for x < a,

0, if x ≥ a,

as initial condition. The integration in time is done using a simple Euler-forward
discretization. The computational domain extends within the range x ∈ [0, 2]. The
initial position of the step is a = 0.5, the velocity is set to u = 0.1 = const. The
time increments and the mesh size are ∆t = 0.1 and ∆x = 0.05, respectively, which
results in a Courant number Co = 0.2. The solution obtained after t = 5 is shown in
Figure 4.12. The HRIC scheme gives evidently a better approximation of the exact

Figure 4.12: Comparison of Koren flux limiter scheme and HRIC scheme for the one
dimensional test case.

solution than the Koren flux limiter scheme. Due to its more compressive nature the
HRIC scheme appears to be better suited to maintain sharp gradients. As for the
application in VOF methods dealing with two-phase flows, where the evolution of a
step-like colour function has to be numerically captured without unacceptably strong
smearing of the gradients, the HRIC scheme is expected to be superior to the Koren
flux limiter scheme.



5 Disintegration Theory of Jets
The present work considers the disintegration of liquid free jets surrounded by a gas
with much lower density, which may be essentially driven by two particular mecha-
nisms:
• Rayleigh instability (Rayleigh, 1878),
• Kinematic travelling time effects (Meier et al., 1992).

The classical theory of Lord Rayleigh (Rayleigh, 1878) describes the disintegration
of liquid jets in the so called capillary breakup regime, where surface tension plays
a dominant role. Among destabilizing effects like aerodynamic forces or turbulent
fluctuation it has been shown by Meier et al. (1992), that pure kinematic effects can
strongly affect the disintegration of a jet as well without considering any surface tension
or viscous forces, which is generally termed travelling time theory. In main practical
cases both mechanism are active. The theoretical analysis of both mechanisms shall
be described in more detail in the next sections.

5.1 Rayleigh instability
Lord Rayleigh could show in his famous paper, (Rayleigh, 1878), that so called cap-
illary breakup of a cylindrical liquid column into drops is caused by an unstably
increasing transfer of kinetic energy into surface energy and vice versa triggered by a
small deformation of the surface. It is precisely this Rayleigh instability, sometimes
called Plateau–Rayleigh instability, which is responsible for the pinch-off of thin wa-
ter jets emerging from kitchen taps. The Rayleigh or capillary breakup represents a
particular type of liquid disintegration, whose occurrence can be parametrized based
on the Reynolds and the Ohnesorge number, as shown in the nomogram in figure 5.1
due to Ohnesorge (1936). The Ohnesorge number defined as

Oh := µ√
ρσL0

=
√
We

Re
(5.1)

relates the viscous forces to the surface tension forces (Ohnesorge, 1936). It can be
expressed in terms of the Weber and Reynolds number. It can be seen that for small
Reynolds and Ohnesorge numbers the capillary forces are responsible for jet breakup.
The wind-induced breakup is driven by aerodynamic forces on the surface of the liquid.
Atomization is generally associated with high jet exit velocities with high overpressures
in the nozzle chamber upstream of the orifice.

51
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Figure 5.1: Different breakup regimes depending on the Reynolds and Ohnesorge num-
ber. (Ohnesorge, 1936).

In this section a theoretical description of this instability, established by Lord Rayleigh,
shall be given. For this theoretical analysis the following assumptions are made:
• The liquid is inviscid.
• The jet is of infinite length.
• Only capillary forces are considered.
• The jet just undergoes small deformations.
• The surroundings are evacuated and the gravitational forces are neglected.

The main idea of the analysis is that the sum of the surface energy and the kinetic
energy is independent of time, ∑

Ekin + Esurf 6= f(t).

An infinitely long quiescent cylindrical liquid column is considered as starting con-
figuration, whose surface is deformed by infinitesimal varicose perturbations on the
interface. Assuming a cylindrical coordinate system the instantaneous perturbed ra-
dius reads

h(θ, z, t) := h0 + f(θ, z, t) = h0 + αm(t) cos(mθ) cos(kz), (5.2)

where k is the wave number of the disturbance into the axial direction z, h0 the initial
radius of the undeformed cylindrical fluid column, m ∈ N is the mode of the periodic
perturbation into the direction θ, and αm(t) represents a growth or damping of the
disturbance in time in dependence of the the parameter m. The wave number k is
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connected to a corresponding wave length λ by

k := 2π
λ
. (5.3)

From the assumption that the jet just undergoes small deformations it is deduced that
f � h0. In figure 5.2 the disturbed and undisturbed jet are shown, where r and z
denote the radial and axial coordinates, respectively. The volume within one wave

Figure 5.2: Disturbed and undisturbed jet.

length can be calculated as

V =
∫ h

r=0

∫ λ

z=0

∫ 2π

θ=0
r dθdzdr

= 1
2

∫ λ

z=0

∫ 2π

θ=0
h2(θ, z, t) dθdz

= 1
2

∫ λ

z=0

∫ 2π

θ=0
[h2

0 + 2h0αm cos(mθ) cos(kz) + α2
m cos2(mθ) cos2(kz)] dθdz

A distinction is made between the cases m = 0 and m 6= 0, which yields:

m 6= 0 : V = λ(πh2
0 + π

4α
2
m), (5.5a)

m = 0 : V = λ(πh2
0 + π

2α
2
0). (5.5b)

A new constant parameter h̄ is introduced, which is based on the principle of mass
conservation written as

V = πh̄2λ = const.

Using the expression in equations (5.5a) and (5.5b) h0 is obtained as

m 6= 0 : h0 = h̄

√
1− α2

m

4h̄2
, (5.6a)

m = 0 : h0 = h̄

√
1− α2

0

2h̄2
. (5.6b)



54 5 Disintegration Theory of Jets

Analogously to the Volume V the surface S of the liquid within one wave length is
calculated as

S =
λ∫

z=0

2π∫
θ=0

√√√√1 +
(

1
h

∂h

∂θ

)2

+
(
∂h

∂z

)2

h dθdz

≈
λ∫

z=0

2π∫
θ=0

[
1 + 1

2

(
1
h

∂h

∂θ

)2

+ 1
2

(
∂h

∂z

)2 ]
h dθdz

=
λ∫

z=0

2π∫
θ=0

[
1 + 1

2 h2︸︷︷︸
≈h̄2

α2
mm

2 sin2(mθ) cos2(kz) + 1
2α

2
m cos2(mθ) sin2(kz)k2

]
h dθdz

= λ

[
2πh0 + π

4m
2α

2
m

h̄2
h0 + π

4k
2α2

mh0

]

Here again the assumption of small deformation was applied, so that the root was is
linearised and h2 was approximated by h̄2. Using a linearized approximation of (5.6a)
and (5.6b)

m 6= 0 : h0 ≈ h̄(1− α2
m

8h̄2
),

m = 0 : h0 ≈ h̄(1− α2
0

4h̄2
),

the surface area is obtain as

m 6= 0 : S = λ

[
2πh̄+ π

4
α2
m

h̄2
(k2h̄2 +m2 − 1)

]
,

m = 0 : S = λ

[
2πh̄+ π

2
α2
m

h̄2
(k2h̄2 − 1)

]
,

where higher-order terms associeted with α4
m have been neglected. The surface area

S is evidently composed of two parts:
• A non-deformed constant part λ2πh̄.

• A deformed non-constant part λπ4
α2

m

h̄2 (k2h̄2 +m2 − 1).
For the change in the surface energy only the deformed non-constant part is of in-
terest, so that only the deformed non-constant part multiplied by the surface tension
coefficient σ has to be considered for the surface energy P , which reads

m 6= 0 : P = λ
π

4
α2
m

h̄
(k2h̄2 +m2 − 1)σ,

m = 0 : P = λ
π

2
α2
m

h̄
(k2h̄2 − 1)σ.
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For the first case m 6= 0 the surface energy P is always greater than 0. Hence, it
always represents a sink of energy, and in consequence the jet stays stable. For the
case m = 0 the surface energy P is negative under the condition k2h̄2− 1 < 0 and the
jet gets unstable. This immediately leads to the conclusion that only perturbations
associated with m = 0 can lead to a capillary instability, and the wave length of the
perturbation must satisfy

λ > 2πh̄. (5.7)

The kinetic energy contained inside the considered volume may be generally written
as

K = 1
2ρ
∫
V
u2 dV, (5.8)

where ρ is the density of the liquid. Assuming inviscid flow the irrotational velocity
flied can be computed form a potential ξ written as u = ∇ξ. Using Greens first
identity the volume integral of the kinetic energy can be split into a surface integral
and a volume integral involving the Laplacian ∆ξ, which is identically zero in potential
flow. Accordingly, equation (5.8) becomes

K = 1
2ρ
∫
V

(∇ξ)2 dV

= 1
2ρ
[∫

S
ξ(∇ξ) · n dS −

∫
V
ξ ∆ξ︸︷︷︸

=0

dV

]

= 1
2ρ
∫
S
ξ(∇ξ) · n dS. (5.9)

The unknown potential is computed form the Laplace equation

∆ξ = ∂2ξ

∂r2 + 1
r

∂ξ

∂r
+ 1
r2
∂2ξ

∂θ2 + ∂2ξ

∂z2 = 0.

Using a separation ansatz
ξ = A(r)B(θ)C(z)D(t),

substituting this ansatz into the Laplace equation and multiplying by 1/(ABC) yields

A
′′

A
+ 1
r

A
′

A
+ 1
r2
B
′′

B
+ C

′′

C
= 0. (5.10)

Isolating the term C
′′
/C on the right hand side the equation becomes

A
′′

A
+ 1
r

A
′

A
+ 1
r2
B
′′

B
= −C

′′

C
= const = k2.

Since the left hand side depends only on independent variables r, θ and t and the right
hand side only on z, sides must be both equal to a constant. The equation

C
′′ + k2C = 0
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is solved, and the solution, which is consistent with the specification of the perturbed
radius r given by equation (5.2), reads

C = C1 cos(kz).

Substituting this solution into equation (5.10), separating the θ−dependent parts and
using the same arguments as above we obtain

r2A
′′

A
+ r

A
′

A
− r2k2 = −B

′′

B
= const = m2.

The equation
B
′′ +m2B = 0

is solved and the solution which is consistent with equation (5.2) reads

B = C2 cos(mθ).

The two solutions C(z) and B(θ) substituted into equation (5.10) yielding a differential
equation for A(r):

r2A
′′ + rA

′ − (m2 + k2r2)A = 0

The so obtained ordinary differential equation represents a modified Bessel differential
equation of order m, whose solutions may be written in terms of the modified Bessel
functions:

A(r) = C3Im(kρ) + C4Jm(kr)

Since Jm(kr) goes to infinity as r goes to zero, the integration constant C4 must be
zero to provide a finite solution at the center of the jet, reads

A(r) = C3Im(kr).

Collecting the results for the individual functions in the separation ansatz the potential
ξ can be rewritten as

ξ(r, θ, z, t) = Dm(t)Im(kr) cos(mθ) cos(kz). (5.11)

A relation between αm and Dm is found using the kinematic boundary condition at
the surface of the jet r = h(θ, z, t) written as

u = ∂h

∂t
+ w

∂h

∂z
+ v

∂h

h∂v
. (5.12)

Assuming small deformations the gradients with respect to z and θ are very small so
that equation (5.12) can be approximated as

∂h

∂t
= u = ∂ξ

∂r

∣∣∣∣∣
r=h̄

(5.13)
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The deviation of the kinematic boundary condition needs the assumption that the
gradients of h in radial direction r are huge compared to the gradients in axial direction
z. Substituting (5.2) and (5.11) into the kinematic boundary condition (5.13) yields:

dαm
dt

= kDm(t)I ′m(kh̄). (5.14)

Approximating the scalar product in equation (5.9) as ∇ξ · n ≈ ∂ξ
∂r

∣∣∣
r=h̄

the kinetic
energy is obtained as

K = 1
2ρ

λ∫
z=0

2π∫
θ=0

ξ
∂ξ

∂ρ

∣∣∣∣∣
r≈h̄

h̄ dθdz (5.15a)

= 1
2ρh̄D

2
mIn(kh̄)I ′m(kh̄)

λ∫
z=0

2π∫
θ=0

cos2(mθ) cos2(kz)dθdz (5.15b)

= 1
2ρh̄D

2
mIn(kh̄)I ′m(kh̄)πλk2 . (5.15c)

Using the relationship (5.14) and inserting it in (5.15c) yields for different m:

m 6= 0 : K = π

4λρh̄
2 Im(kh̄)
I ′m(kh̄)

1
kh̄

(
dαm
dt

)2

m = 0 : K = π

2λρh̄
2 I0(kh̄)
I
′
0(kh̄)

1
kh̄

(
dα0

dt

)2

Recalling the condition that the sum of the surface energy and the kinetic energy does
not vary in time, which implies

d

dt
(P +K) = 0, (5.17)

the following equation for αm is obtained:

d

dt

λπ4σα
2
m

a
(k2h̄2 +m2 − 1) + λ

π

4ρh̄
2 Im(kh̄)
I ′m(kh̄)

1
kh̄

(
dαm
dt

)2
 = 0. (5.18)

Transformation of the previous equation gives an ordinary second order differential
equation for αm(t) for all m,

d2αm
dt2

+ σ

ρh̄3
kh̄(k2h̄2 +m2 − 1)I

′
m(kh̄)
Im(kh̄)

αm = 0 ∀m,

with the exact solution

αm = C5e
iωt,
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Figure 5.3: Dispersion relation to show the dependence of the growth rate ω on the
wave number k for the Rayleigh instability.

where

ω2 = σ

ρh̄3
kh̄(k2h̄2 +m2 − 1)I

′
m(kh̄)
Im(kh̄)

.

The motion can evidently become unstable only if ω is imaginary associated with
ω2 < 0 and ω = ±iωi. As mentioned earlier, this can occur only in the case m = 0 for
kh̄ < 1, see equation (5.7). The solution for the imaginary ωi represents the so called
dispersion relation written as

ω2
i = σ

ρh̄3
kh̄(1− k2h̄2)I

′
0(kh̄)
I0(kh̄)

. (5.21)

Any disturbance αm, whose wave number lies within the range

0 < kh̄ < 1 (5.22)

tend to infinity, which finally leads to a disintegration of the jet. In figure 5.3 the
dispersion relation is plotted. The maximum of the curve denotes the fastest growing
mode, which occurs at kopth̄ = 0.697. The wave length of this mode is

λopt ≈ 9.02h̄.

With the above equation a diameter of the resulting droplets can be estimated based
on th volumetric considerations

π

6D
3 ≈ πh̄2λopt,
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which yields the following expression:

D ≈ 1.89 · 2h̄ ≈ 1.89 · 2h0

Thus, the expected diameter of a droplet is approximately of the double size of the
initial diameter of the undeformed jet 2h0.

5.2 Travelling time theory
In contrast to the theory on capillary breakup established by Lord Rayleigh the trav-
elling time theory, as presented by Meier et al. (1992), neglects surface tension effects
while it considers kinematic effects, which lead to modulations of the local velocity
inside the liquid column, and finally to jet instability. As such, the theory assumes
an one-dimensional unsteady incompressible inviscid flow without surface tension and
gravitational acceleration. The pressure inside the jet is equal to the ambient pres-
sure. Thus the flow of the liquid column is determined only by the local instantaneous
velocity u(r, t) and the cross-sectional area G(r, t) of the jet, where the symbols t
and r denote the time and space coordinate into the flow direction, respectively. The
continuity equation and the momentum equation read

∂G

∂t
+ u

∂G

∂r
+G

∂u

∂r
= 0, (5.23a)

∂u

∂t
+ u

∂u

∂r
= 0. (5.23b)

The boundary conditions at the inlet r = 0 are imposed as

u(0, t) = uinl(t), (5.24a)
G(0, t) = Ginl(t). (5.24b)

Lagrangian coordinates are introduced:

t(ϑ) = ϑ, (5.25a)
r(ϑ, τ) = uinl(τ)(ϑ− τ). (5.25b)

The coordinate ϑ represents the actual time, and τ stands for the starting time of the
flow particles. The transformation of the conservation equations (5.23) into Lagrangian
coordinates yields

dG

dϑ
=

Gduinl

dτ

u− duinl

dτ
(ϑ− τ)

, (5.26a)

du

dϑ
= 0, (5.26b)

and transformed boundary conditions read

G(τ, τ) = Ginl(τ), (5.27a)
u(τ, τ) = uinl(τ). (5.27b)
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An arbitrary but fixed intervall τ ∈ [0, ϑ] is assumed and equation (5.26a) can be
rewritten as

dG

dϑ
= a(ϑ)G(ϑ), (5.28)

with the function
a(ϑ) =

duinl

dτ

u(ϑ)− duinl

dτ
(ϑ− τ)

.

The exact solution of equation (5.28) is

G(ϑ) = C1 exp(
∫ ϑ

τ
a(s)ds), (5.29)

where C1 is an arbitrary constant. From the fundamental theorem of calculus it follows
that ∫ ϑ

τ
a(s)ds = A(ϑ)− A(τ),

where A is an antiderivative of a and is given as

A(s) = duinl
dτ

ln |u(s)− duinl
dτ

(s− τ)| 1
du(s)
ds
− duinl

dτ

= − ln |u(s)− duinl
dτ

(s− τ)|,

because du(s)
ds

= 0 following equation (5.26b). Substituting the antiderivatives A(ϑ)
and A(τ) into (5.29) yields:

G(ϑ) = C1
uinl

|u(ϑ)− duinl(τ)
dτ

(ϑ− τ)|

Recalling the boundary conditions (5.27a), (5.27b) and equation (5.26) it can be seen
that

G(τ) = Ginl(τ) = C1

and
u(ϑ, τ) = uinl(τ).

The resulting theoretical solution in Langrangian coordinates can finally be written
as

G(ϑ, τ) = Ginl(τ)uinl(τ)
|uinl(τ)− duinl(τ)

dτ
(ϑ− τ)|

, (5.30a)

u(ϑ, τ) = uinl. (5.30b)

The present Lagrangian solution yields an instantaneous variation of the local veloc-
ity component u(r, t) and the cross-sectional area G(r, t) at a given instant of time
t = ϑ with r(ϑ, τ) obtained fom equation (5.25b). The cross-sectional area G be-
comes infinity, as the denominator in equation (5.30a) vanishes. The location of these
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singularities of cross-sectional area shall be determined considering a rotationally sym-
metric jet. The nozzle radius Rinl := Dinl/2 is assumed constant and the inlet velocity
is perturbed introducing a sinusoidal perturbation of the form

uinl(τ) = ujet(1 + ε sin(2πfτ)), (5.31)

where ujet is the unperturbed base velocity, f the frequency and ε the amplitude of
the modulation. Dimensionless quantities are introduced in using exactly the same
reference quantities as in the numerical flow simulations to obtain comparable results.
Thus, the following reference scales are used:

L0 := Dinl10, u0 := ujet
10 , t0 := L0

u0
= Dinl

ujet
100.

This yields the following dimensionless representation of the velocity inflow boundary
condition

ϑ∗ = ϑ

t0
, τ ∗ = τ

t0
, R∗ = R

L0
, f ∗ = ft0

u∗inl = uinl
u0

= 10(1 + ε sin(Ω∗τ ∗)), (5.32)

with the dimensionless frequency Ω∗ := 2πf ∗. Based on these assumptions a dimen-
sionless representation of the radius can be directly deduced from equation (5.30a)

R∗(ϑ∗, τ ∗) =

√√√√ R∗inl
2(1 + ε sin(Ω∗τ ∗))

|(1 + ε sin(Ω∗τ ∗))− εΩ∗ cos(Ω∗τ ∗)(ϑ∗ − τ ∗)| (5.33)

As already mentioned above, the solution becomes singular at points of infinite radius.
Downstream of the first point of infinite radius, the distribution of the flow material is
no longer unique. It is possible to find the shortest distance r∗p for the first singularity,
based on two conditions. One condition is that the denominator in equation (5.30a)
is zero,

D(ϑ∗, τ ∗) = ∂r∗

∂τ ∗
1
10 = −1− ε sin(Ω∗τ ∗) + εΩ∗ cos(Ω∗τ ∗)(ϑ∗ − τ ∗) = 0.

The second condition for the shortest distance r∗p is that r∗ is monotonously increasing
with respect to τ ∗, which implies

∂2r∗

∂τ ∗2
= −20εΩ∗ cos(Ω∗τ ∗)− 10εΩ∗2 sin(Ω∗τ ∗)(ϑ∗ − τ ∗) = 0.

Using both conditions the values ϑ∗p,T and τ ∗p,T can be obtained in a closed form as
follows:

τ ∗p,T = 1
Ω∗ arcsin

 1
2ε −

1
2

√
1
ε2

+ 8
 (5.34)

ϑ∗p,T = τ ∗p,T −
2

Ω∗ cot(Ω∗τ ∗p,T ) (5.35)
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The subscript T refers to the travelling time theory. Knowing these quantities the
first critical value r∗p,T can be obtained as

r∗p,T = 10[1 + ε sin(Ω∗τ ∗p,T )](ϑ∗p,T − τ ∗p,T ). (5.36)

It can be seen that equation (5.34) and (5.35) represent only one particular solution
of an inifinte number of periodic solutions which are associated with equation (5.33)
generalized to

τ ∗pl,T
= 1

Ω∗ arcsin
 1

2ε −
1
2

√
1
ε2

+ 8
+ 2lπ

Ω∗ , l ∈ Z. (5.37)

Each individual solution for l ∈ Z corresponds to a maximum cross-section, as the
denominator of equation (5.33) attains a local minimum, or become zero. Based
on the periodicity given by equation (5.37) the dimensionless distance between two
neighboring points of maximum cross-section can be calculated as

λ∗T = 20π
Ω∗

1 + ε

 1
2ε −

1
2

√
1
ε2

+ 8
 . (5.38)

In figure 5.4 the streamwise variation of the dimensionless radius R∗ obtained from
equation (5.33) for the parameters D∗inl = 1, Ω∗ = 100, ε = 2.5%, and ϑ∗ = 0.7 is
shown beginning from the position of the orifice r∗ = 0. The positions associated with

Figure 5.4: Streamwise variation of the dimensionless radius R∗ and position of max-
imum cross-section.

a local maximum cross-section are indicated by red crosses. Downstream of the first
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point of infinite radius, the distribution of the flow material is no longer unique. Fig-
ure 5.5 shows for the considered parameters the evolution of the characteristic lines,
which correspond to the trajectories of the material particles with different starting
time τ ∗. In the shown space-time domain the starting times τ ∗ are varying from 0 to
0.7 with ∆τ ∗ = 0.02. The thick black line indicates the ending time ϑ∗ = 0.7. The
characteristics remain always straight lines, whose inclination angle is determined by
the instantaneous inlet velocity according to equation (5.32) dependent of the starting
time τ ∗. The sinusoidal perturbation of the velocity leads to a converging/diverging
pattern of the characteristics in the space-time domain resulting in a periodic accu-
mulation of material. Positions with maximum cross-section but finite radius seen in
figure 5.4 near the orifice appear in figure 5.5 as regions on the line ϑ∗ = 0.7, where
characteristics are getting closer but do not intersect. The intersection point of two
neighboring characteristics located on the line ϑ∗ = 0.7, which is nearest to the orifice
(indicated by a circle in figure 5.5) corresponds to the position of the first singularity
given by equation (5.36). Since the travelling time theory is based on purely kinematic

Figure 5.5: Characteristic lines for different starting times τ ∗.

considerations, it is not supposed to describe the phenomenon of capillary breakup.
It is nonetheless a useful approach for describing the streamwise distribution of liquid
material emerging from a perturbed inflow. The strong local accumulation of liquid
due to the perturbations may lead to a breakup so that this essentially kinematic
mechanism prevails over the typical capillary instability mechanism.





6 Numerical Simulations
The present numerical computations of the disintegration of a liquid column consider
a perturbed jet flow configuration which was experimentally investigated by Meier
et al. (1992). Their experimental arrangement, the experimental conditions, and some
essential optical observations on the presently considered cases will be shown in more
detail in the following subsection.

6.1 Experimental results
The here simulated cases are taken from an experimental study of Meier et al. (1992),
who examined differently modulated jets at fairly low Weber numbers, so that the
flow conditions are basically well inside the capillary breakup regime. At the orifice
the inlet velocity uinl is modulated with a sinusoidal perturbation

uinl(t) = ujet(1 + ε sin(2πft)), (6.1)

where ujet is a constant average inlet velocity, ε is a dimensionless amplitude, and f a
frequency in Hertz (Hz). In figure 6.1 the main components of the apparatus for the

Figure 6.1: Schematic of the experimental facility. Figure from Meier et al. (1992).

flow experiments of Meier et al. (1992) are shown. A reservoir with an overflow outlet

65
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ensures a constant hydrostatic pressure. Inside a jet-chamber upstream of the nozzle a
periodically moving piston is used to realize the desired sinusoidal velocity modulation.
Four experimental cases were chosen as test cases for the present numerical studies. In
figure 6.2 photographs taken for the four considered experimental cases are shown. The

(a) Case I: Jet with a frequency f = 100Hz
and an amplitude ε = 2.5%.

(b) Case II: Jet with a frequency f = 100Hz
and an amplitude ε = 5%.

(c) Case III: Jet with a frequency f = 180Hz
and an amplitude ε = 2.5%.

(d) Case IV: Jet with a frequency f = 180Hz
and an amplitude ε = 5%.

Figure 6.2: Different jets for various modulation frequencies and amplitudes. The
diameter of the nozzle is 2.4mm, the mean jet velocity is ujet = 1m/s and
the Weber number is We = 34. Figures from Meier et al. (1992).

pictures were taken in 35mm format using high-resolution film material. For all four
experiments the diameter of the nozzle is Dinl = 2.4mm, the mean jet inlet velocity
is ujet = 1m/s. Using water at atmospheric ambient conditions as working liquid the
Reynolds, Weber and Ohnesorge numbers based on the nozzle inlet conditions read

Re = 2400, We = 34, Oh = 2.43 · 10−3,

respectively. Introducing the values of these dimensionless parameters into the nomo-
gram shown in figure 5.1 it becomes obvious that all four experimental cases lie inside
the capillary breakup regime. In table 6.1 the disintegration lengths are listed for each
experimental case. It can be seen that as the frequency is increased from 100Hz to
180Hz in the case ε = 2.5%, the disintegration length increases. It seems that the jet
gets stabilized through the higher frequency 180Hz. This tendency of stabilization was
also observed in other experimental cases examined in the study of Meier et al. (1992).
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Case Frequency Amplitude Disintegration length
I 100Hz 2.5% r∗p,exp = 13.3D∗inl
II 100Hz 5.0% r∗p,exp = 10.0D∗inl
III 180Hz 2.5% r∗p,exp = 27.8D∗inl
IV 180Hz 5.0% r∗p,exp = 8.9D∗inl

Table 6.1: Considered cases and experimentally observed disintegration lengths.

However no deterministic rule could be deduced, because there are also experimental
cases, where an increasing frequency caused a decreasing disintegration length. More-
over, increasing the amplitude from 2.5% to 5.0% reduces the disintegration length
for both frequencies to almost the same axial extension as seen from figure 6.2(b) and
6.2(d). In all experiments with the exception of case IV the diameters of the droplets
are approximately double in size of the inlet diameter. This is in consistence with the
Rayleigh instability theory. In case IV the diameters of the droplets are somewhat
smaller than the double in size of the inlet diameter.

6.2 Computational setup
All computations are performed on a multi-processor server of the Institute of Fluid
Mechanics and Heat Transfer at Graz University of Technology. The numerical pro-
gram used for the simulations is an inhouse Fortran code, which solves the governing
equations in a non-dimensional representation based on the following reference quan-
tities:

L0 := Dinl10, U0 := ujet
10 , t0 := L0

U0
= Dinl

ujet
100.

Using these reference quantities the dimensionless representation of the imposed inflow
boundary condition reads:

D∗inl = Dinl

L0
= 0.1, u∗jet = ujet

U0
= 10,

f ∗ = ft0, u∗inl = uinl
U0

= u∗jet(1 + ε sin(Ω∗t∗)),

with the dimensionless frequency Ω∗ := 2πf ∗. For all four considered cases the follow-
ing nozzle inlet conditions and material properties are assumed:

ujet = 1.0m/s, Dinl = 2.4 · 10−3m,
ρ1 = 984 kg/m3, ρ2 = 1.204 kg/m3,

µ1 = 1.0 mPa · s, µ2 = 1.8 · 10−2 mPa · s.

The subscript 1 indicates water, and the subscript 2 indicates air. Using the above
parameters the reference time becomes t0 = 0.24s. The geometry of the presently used
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Figure 6.3: Computational domain.

domain is sketched in figure 6.3. The counting of the radial coordinate pointing into
the streamwise direction starts with r∗ = 0 at the inlet boundary. The streamwise
and lateral extensions of the domain are 80D∗inl and 5D∗inl, respectively. In table 6.2
all important parameters for the numerical simulations are listed. Nr, Nθ, Nφ are the
number of cells in streamwise, lateral, and azimuthal directions, respectively, and N is
the total number of cells. It is noted that the here considered flow can be assumed as
axisymmetric, so that the resolution in the azimuthal direction is irrelevant. Therefore,
the minimum possible number of grid cells admitted by the spatially three-dimensional
code is chosen for the azimuthal direction.

Domain size and grid: Material properties: Dimensionless numbers:
streamwise extension: r∗max = 80D∗inl ρ∗1 = 1 Re = U0ρ1L0

µ1
= 2400

lateral extension: y∗max = 5D∗inl ρ∗2 = 1.223 · 10−3 W̃e = ρ1U2
0L0
σ

= 3.4
grid resolution: µ∗1 = 1
Nr = 2304 µ∗2 = 1.8 · 10−2

Nθ = 80
Nφ = 4

N = 737280

Table 6.2: Key parameters for the numerical simulations.
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6.3 Numerical results
As noted in the previous subsection, four different cases were computed and analyzed.
All of these simulations were carried out using two alternative approaches for capturing
the liquid/gas interface, the Koren flux limiter (KFL) scheme and the HRIC scheme.
All calculations were started from the same initial condition, prescribed as a continuous
water column with the diameter of the orifice extending from the inlet to the outlet
of the domain.

Figure 6.4: The liquid color function at time t∗ = 0.14.

The streamwise velocity of the initial water column was set to u∗ = 10, while the other
components were set to zero. The velocity of the ambient air was initialized with zero
into all directions. Even without imposing any perturbation on the jet inlet velocity the
initial accommodation of the prescribed water column to a solution, which satisfies
the balances of mass and momentum, introduces sufficiently high perturbations to
trigger a capillary breakup of the column. Figure 6.4 exemplarily shows contours
of the liquid color function obtained at a relatively early stage at t∗ = 0.14. Here
the liquid column has evidently started to break up, but the shown solution is still
far aways from a temporally converged state. Therefore, all simulations were run
until the disintegration length exhibited neither increasing nor decreasing tendency
anymore, but stably varied within a certain narrow range of a couple of jet diameters
in distance. Depending on the considered inflow perturbation this converged state
could be reached already after approximately two up to eight flow-through times. The
flow-through time for the presently considered cases is

t∗ = r∗max
U∗jet

= 0.8. (6.2)

6.3.1 Numercial results obtained with the Koren flux limiter
scheme

All numerical experiments described in this subsection are done with the Koren flux
limiter scheme. The initial condition is always the starting solution mentioned above.
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Case I

The characteristic parameters for the inflow perturbation in this case are:

ε = 2.5%, f = 100Hz,
Ω∗ = 2πft0 = 150.80, u∗inl = 10(1 + 0.025 sin(Ω∗t∗)).

In figure 6.5(a) the contours of the liquid color function are shown at t∗ = 1.78, which
corresponds to roughly two flow through-times. It can be seen that the disintegration
length extends approximately to the point r∗p = 22D∗inl. The diameters of the predicted
droplets, especially downstream of r∗ = 35D∗inl, are approximately of the double size
of the initial diameter of the undeformed jet, which is consistent with the Rayleigh
breakup theory. As compared to the experiment the simulated disintegration length
is evidently longer than the experimental one, being r∗p,exp = 13.3D∗inl. Regarding
the position of the first singularity in the solution of the travelling time theory as
breakup position the evaluation of equation (5.36) would give a disintegration length
r∗p,T = 26.5D∗inl. The wave length (= distance between two neighboring maxima in
R∗) predicted by the travelling time theory is:

λ∗T = 4.2D∗inl.

In figure 6.5(b) the upper plot shows the simulated contours of the color function
together with streamwise variation of the dimensionless radius of the jetR∗ analytically
obtained from equation (5.33), and the wave lengths λ∗sim, λ∗T in the near-field of the
orifice. The simulated wave length which is obtained as the distance between two
neighboring maximum cross-sections of the liquid is λ∗sim = 3.7D∗inl in this region.
The wave length predicted by the travelling time theory is evidently greater than the
simulated wave length. It can be also seen that the simulated contours do not agree
with the pattern of the travelling time theory. In figure 6.5(b) the lower plot shows
the contours of the liquid color function near the breakup of the liquid into individual
droplets. The simulated wave length is here around λ∗sim = 3.4D∗inl, which is a bit
smaller than the simulated wave length in the near-field of the orifice.

Case II

The second numerical test case differs from case I only in the twice as high amplitude
of the perturbation ε. The characteristic parameters of this case are:

ε = 5.0%, f = 100Hz,
Ω∗ = 2πft0 = 150.80, u∗inl = 10(1 + 0.05 sin(Ω∗t∗)).

In figure 6.6(a) the solution of the contours of the color function are shown at t∗ =
1.77, which is somewhat beyond approximately two flow-through times. It can be
observed that the disintegration length r∗p = 22D∗inl is the same as in case I. Increasing
the amplitude from ε = 2.5% to ε = 5.0% does evidently not cause a significant
change in the predicted disintegration length for a frequency f = 100Hz. Again
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the calculated disintegration length is longer than the experimental one, i.e. r∗p,exp =
10.0D∗inl. The travelling time theory predicts a disintegration length r∗p,T = 13.2D∗inl
given by equation (5.36). The wave length predicted by the travelling time theory and
the simulated counterpart in the near-field of the orifice are:

λ∗T = 4.2D∗inl, λ∗sim = 3.5D∗inl.

This discrepancy can also be seen in figure 6.6(b) in the upper plot, where the wave
length predicted by the travelling time theory is smaller than the simulated wave
length. The underlying predictions for the clustering of material differ somewhat more
than in case I. The simulated wave length in near-field of the orifice is smaller in case
II than in case I. The wave length predicted by the travelling time theory stays almost
the same in the cases I and II,as the higher amplitude ε = 5% changes the result
only in the second digit. The lower subplot in figure 6.6(b) shows the conditions
immediately upstream of the disintegration point, where the simulated wave length
is around 3.6D∗inl. The simulated wave lengths in the near-field of the orifice and
upstream of the disintegration point are evidently nearly the same.

Case III

The numerical simulation for case III applies the same amplitude ε for the velocity
inlet perturbation as in case I, but with an increased frequency f . The characteristic
parameters are:

ε = 2.5%, f = 180Hz,
Ω∗ = 2πft0 = 271.43, u∗inl = 10(1 + 0.025 sin(Ω∗t∗)).

In figure 6.7(a) the contours of the liquid color function are shown at t∗ = 8.18. In
this case the simulation had to be run for a much longer dimensionless time to reach a
converged solution as compared to the cases I and II. The axial extension of the domain
was increased to 100D∗inl to avoid any upstream effect of the outlet boundary condition
on the liquid breakup. The converged solution exhibits a disintegration length around
70D∗inl. Increasing the frequency from f = 100Hz to f = 180Hz, while keeping
ε = 2.5% the same, evidently exerts a stabilizing effect also in the numerical solution.
As such the numerical solution features correctly the experimentally observed tendency
that the increase in frequency increases the disintegration length. Its quantitative
extension is, however, significantly overpredicted as compared to the experiments,
where the disintegration length extends only to r∗p,exp = 27.7D∗inl. Again the diameters
of the droplets are approximately of the double size of the initial diameter of the
undeformed jet as predicted by the Rayleigh instability theory. The travelling time
theory predicts a disintegration length and a perturbation wave length, as obtained
from equations (5.36) and (5.38), r∗p,T = 14.7D∗inl and λ∗T = 2.3D∗inl respectively.
In the upper subplot of figure 6.7(b) it can be seen that the wave length predicted by
the travelling time theory is smaller than the simulated wave length in the near-field of
the orifice, which is λ∗sim = 2.7D∗inl. This is in contrast to the cases I and II, where the
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travelling time theory always predicted larger values than the simulations. The lower
plot of figure 6.7(b) indicates an increase of the simulated wave length compared to the
value obtained in the near-field of the orifice. In the shown region near the breakup
of the liquid into individual droplets the simulated wave length is around 4.7D∗inl.

Case IV

Case IV assumes the same conditions as case III but with an increased perturbation
amplitude ε. The characteristic parameters are:

ε = 5.0%, f = 180Hz,
Ω∗ = 2πft0 = 271.43, u∗inl = 10(1 + 0.05 sin(Ω∗t∗)).

In figure 6.8(a) the simulated contours of the color function obtained at t∗ = 5.19
are shown. The disintegration length is r∗p = 64D∗inl. Alike in case III the numerical
simulation had to be run over several flow through times until a converged solution
was reached. Increasing the amplitude from 2.5% to 5.0% with a frequency f =
180Hz causes a decrease in the simulated disintegration length from about 70D∗inl
(case III) to about 64D∗inl. The same effect is observed in the experimental results,
see figure 6.2, but in the experimental results the relative quantitative reduction of
the disintegration length is much stronger, where it is reduced from r∗p,exp = 27.8D∗inl
to r∗p,exp = 8.9D∗inl. Similar to the case III the numerical results reflect correctly the
experimentaly observed tendency, but not the quantitative extent of the changes. The
perturbation wave length predicted by the travelling time theory and that obtained
from the simulations are λ∗T = 2.3D∗inl, and λ∗sim = 2.6D∗inl, respectively. This is
well visible in figure 6.8(b) in the upper plot, where the simulated wave length of the
perturbation is bigger than the wave length predicted by the travelling time theory. In
this particular case the travelling time theory seems to give a quite accurate prediction
of the disintegration length. The evaluation of the equation (5.36) gives a value r∗p,T =
7.3D∗inl, which is close to the experimental results. Comparing the upper with the
lower plot in figure 6.8(b) a streamwise increase of the simulated wave length can
be observed. Accordingly, the simulated wave length seen in the lower plot of figure
6.8(b) upstream of the disintegration point is around 3.4D∗inl, which is greater than
value obtained in the near-field of the orifice.
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(a) Contours of liquid color function at t∗ = 1.78 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.5: Case I: f = 100 and ε = 2.5%; Solution obtained with the Koren flux
limiter scheme.
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(a) Contours of liquid color function at t∗ = 1.77 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.6: Case II: f = 100 and ε = 5.0%; Solution obtained with the Koren flux
limiter scheme.
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(a) Contours of liquid color function at t∗ = 8.18 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.7: Case III: f = 180 and ε = 2.5%; Solution obtained with the Koren flux
limiter scheme.
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(a) Contours of liquid color function at t∗ = 5.19 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.8: Case IV: f = 180 and ε = 5.0%; Solution obtained with the Koren flux
limiter scheme.
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6.3.2 Numerical results obtained with the HRIC scheme
All numerical experiments described in this section are carried out using the HRIC
scheme for capturing the liquid/gas interface. The same initial conditions were pre-
scribed, as it was done in the computations with the Koren flux limiter scheme. Before
describing the numerical results obtained with the HRIC scheme in detail one particu-
lar aspect of the implementation of the HRIC scheme shall be outlined in the following.

Filtering of the color function

As mentioned above in subsection 2.3 using a rather compressive interface capturing
scheme may cause spurious perturbations appearing as wrinkles in the iso-contour
lines of the color function. These small scale irregularities generally lead to difficulties
in the computation of the surface tension force fσ, which is very sensitive to any
local perturbations of the curvature computed from the instantaneous distribution of
the color function. Using alternatively the rather diffusive Koren flux limiter scheme
inherently produces a fairly smooth distribution of the color function, so that no
such difficulty arises. This was not the case for the more compressive HRIC scheme,
where the surface tension had to be computed from a solution of the colour function,
which was smoothened by a filtering procedure. The effect of this procedure shall be
demonstrated here by the results of a simple test simulation. As seen from the iso-
contour lines of the liquid color function associated with the values c = 0.1, 0.5, 0.9,
and 0.95 in figure 6.9(a), the flow field is initialized with a cylindrical column of liquid,
whose radius is 0.5D∗inl, and axial length is 2.5D∗inl. A uniform initial velocity field
is prescribed for the liquid as well for the ambient gas, being u∗ = 10 into the axial
direction, and zero into all other directions. Imposing such a uniform velocity field
the liquid should simply be advected downstream at a constant velocity u∗ = 10,
while it attains an ellipsoidal shape due the action of the capillary forces. In figure
6.9(b) the contour lines of the color function obtained with the Koren flux limiter
scheme at t∗ = 7.0 · 10−2 are shown. The contour lines of the color function obtained
with the HRIC scheme at t∗ = 7.0 · 10−2 without any filtering for the computation of
the capillary forces are plotted in figure 6.9(c). While the liquid element reaches the
expected axial position extending within 12D∗inl ≤ r∗ ≤ 14.5D∗inl in the results of the
Koren flux limiter scheme, the solution of the HRIC scheme stays evidently behind.
Computing directly the surface tension force from the color function field produced
by the HRIC scheme translates obviously into a significant retardation of the motion
of the liquid. This unphysical retardation can be impeded by computing the surface
tension forces with a spatially filtered representation of the color function. This can
be clearly seen in figure 6.9(d), where the solution of the HRIC scheme using a filtered
color function for the computation of the surface tension forces is shown. The artificial
loss of momentum is sufficiently reduced, so that the axial distance passed by the liquid
is nearly the same as in figure 6.9(b). A filtering procedure based on the Simpson rule,
which is defined as

F(ci) = 1
6ci−1 + 2

3ci + 1
6ci+1, (6.3)
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was applied here three times into radial and azimuthal directions r∗ and θ, respectively.
This filtering concept was used for all numerical simulations carried out with the HRIC
scheme. By doing so the compressive nature of the HRIC scheme is preserved in the
advection of the interface, while eventually occurring wrinkles in the solution for the
color function do not unphysically perturb the surface tension force.

Case I

In figure 6.10(a) the solution of the color function is shown at t∗ = 2.17. It can be
seen that the disintegration length extends approximately to the point r∗p = 14.5D∗inl,
which is only bit longer than the experimental one, i.e., r∗p,exp = 13.3D∗inl. For this case
the HRIC scheme yields evidently a quantitatively much better agreement that the
Koren flux limiter scheme, which considerably overpredicts r∗p. Again the predicted
diameters of the droplets are approximately of the double size of the initial diameter of
the undeformed jet as predicted by the Rayleigh instability theory. The simulated wave
length in the near-field of the orifice is obtained as λ∗sim = 3.9D∗inl, which is somewhat
longer than that produced by the Koren flux limiter scheme. It is still shorter than the
wave length predicted by the travelling time theory as seen from figure 6.10(b) in the
upper plot, where the color function contours and the dimensionless radius of the jet
R∗ given through equation (5.33) are shown. As seen from the lower subplot in figure
6.10(b) the simulated wave length near the breakup of the liquid is around 4.2D∗inl,
which is somewhat greater than the value obtained in the near-field of the orifice.

Case II

In figure 6.11(a) the solution of the color function is shown at t∗ = 1.80, which repre-
sents a bit more than two flow-though times. It can be observed that the disintegration
length is r∗p = 11D∗inl. An increase of the amplitude from ε = 2.5% to ε = 5.0% for a
fixed frequency f = 100Hz evidently reduces the disintegration length predicted with
the HRIC scheme. This reduction was not observed in the corresponding results of the
Koren flux limiter scheme. The HRIC scheme even yields a fairly good quantitative
agreement with the experimental results, where the disintegration length decreases to
r∗p = 10D∗inl as the amplitude ε is increased, as seen in figure 6.2. The simulated wave
length in the near-field of the orifice predicted with the HRIC scheme is λ∗sim = 4.0D∗inl,
which again exceeds somewhat the corresponding prediction of the Koren flux limiter
scheme. Again the wave length predicted by the travelling time theory is greater than
the wave length obtained from the simulation, as seen in figure 6.11(b) in the upper
plot. The wave length measured from the simulated contours shown in the lower plot
of 6.11(b) is around 3.9D∗inl. The wave lengths obtained in the near-field of the orifice
and immediately upstream of the breakup are evidently almost the same.

Case III

In this particular case the domain length was increased to 100D∗inl like in the case
III for the Koren flux limiter scheme to ensure a sufficiently long axial distance of
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the breakup zone to the outlet boundary. The converged solution shown in figure
6.12(a) at t∗ = 3.93 exhibits a disintegration length around 70D∗inl. Similar to the
solution obtained with the Koren flux limiter scheme the solution obtained with the
HRIC scheme overpredicts the stabilizing effect of the increase in the frequency from
100Hz to 180Hz as compared to the experiments. Again the predicted diameters of
the droplets are approximately of the double size of the initial diameter. The per-
turbation wave length obtained from the simulations in the near-field of the orifice
is λ∗sim = 2.7D∗inl. In the upper plot of figure 6.12(b) it can be seen that the wave
length predicted by the travelling time theory is smaller than the wave length pre-
dicted by the simulation in the near-field of the orifice. The tendency of a streamwise
increasing simulated wave length before reaching the point of jet breakup can be from
a comparison to the lower plot of figure 6.12(b), where a wave length λ∗sim = 3.5D∗inl
is measured.

Case IV

In figure 6.13(a) the numerical solution obtained with the HRIC scheme at t∗ = 3.2
can be seen in the whole domain. Using the HRIC scheme predicts evidently almost
the same quantitative reduction in the disintegration length for this case, as it was
obtained with the Koren flux limiter scheme. With this respect the solution obtained
with either scheme exhibits the right tendency, although the predicted disintegration
lengths always exceed significantly the corresponding experimental values. The wave
length in the near-field of the orifice predicted by the simulation is λ∗sim = 2.7D∗inl. In
the upper plot of figure 6.13(b) it is well visible that the wave length in the near-field
of the orifice is bigger than the wave length predicted by the travelling time theory.
In figure 6.8(b) the lower plot indicates again an axial increase of wave length. The
simulated wave length immediately upstream of the disintegration point seen in the
lower plot of figure 6.8(b) is around 3.9D∗inl. Alike in case III the simulated wave
length near the breakup of the liquid is greater than the wave length in the near-field
of the orifice.
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(a) Initial condition of the test simulation at t∗ = 0.

(b) Contour lines at t∗ = 7 · 10−2 obtained with the Koren flux limiter scheme.

(c) Contour lines at t∗ = 7 · 10−2 obtained with the HRIC scheme using directly the color
function for the computation of the surface tension forces without prefiltering.

(d) Contour lines at t∗ = 7 · 10−2 obtained with the HRIC scheme using a filtered color
function for the computation of the surface tension forces.

Figure 6.9: Test simulation of liquid cylinder moving in a uniform velocity field; con-
tour lines of liquid color function associated with values c = 0.1, 0.5, 0.9,
and 0.95, at different times.
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(a) Contours of liquid color function at t∗ = 2.17 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.10: Case I: f = 100 and ε = 2.5%; Solution obtained with the HRIC scheme.
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(a) Contours of liquid color function at t∗ = 1.80 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.11: Case II: f = 100 and ε = 5.0%; Solution obtained with the HRIC scheme.
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(a) Contours of liquid color function at t∗ = 4.81 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.12: Case III: f = 180 and ε = 2.5%; Solution obtained with the HRIC scheme.
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(a) Contours of liquid color function at t∗ = 3.2 shown in the full domain.

(b) Upper subfigure: Contours of the liquid color function, the dimensionless
radius R∗ predicted by the travelling time theory plotted as white line, and
the wave lengths λ∗

sim and λ∗
T in the near-field of the orifice.

Lower subfigure: The simulated wave length λ∗
sim immediately upstream of

the disintegration point.

Figure 6.13: Case IV: f = 180 and ε = 5.0%; Solution obtained with the HRIC scheme.
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6.4 Interpretation and discussion
In table 6.3 the essential parameters and results obtained from the numerical and
analytical computations, and from the experiments for all cases I, II, III and IV are
summarized for comparison.
The abbreviationKFL stands for Koren flux limiter. The simulated wave length in the
near-flied of the orifice is indicated by the abbreviation ori. The simulated wave length
immediately upstream of the disintegration point is indicated by the abbreviation
dp. The subscript exp refers to the experimental results, and the subscript T to the
travelling time theory.

Case VOF f ε r∗p/ λ∗sim/ λ∗sim/ r∗p,exp/ λ∗T/ r∗p,T/
scheme (in Hz) (in %) D∗inl D∗inl D∗inl D∗inl D∗inl D∗inl

(ori) (dp)
I KFL 100 2.5 22 3.7 3.4 13.3 4.2 26.5
II KFL 100 5.0 22 3.5 3.6 10.0 4.2 13.2
III KFL 180 2.5 70 2.7 4.7 27.8 2.3 14.7
IV KFL 180 5.0 64 2.6 3.4 8.9 2.3 7.3
I HRIC 100 2.5 14.5 3.9 4.2 13.3 4.2 26.5
II HRIC 100 5.0 11 4.0 3.9 10.0 4.2 13.2
III HRIC 180 2.5 73 2.7 3.5 27.8 2.3 14.7
IV HRIC 180 5.0 62 2.7 3.9 8.9 2.3 7.3

Table 6.3: Essential parameters and results obtained from the computations and
experiments.

As a salient feature the numerical simulations predicted a longer disintegration length
r∗p than it was observed in the experiments for all cases. With this respect the most
significant deviation between the experimental results and the numerical results ap-
pears in case IV, and the best agreement is found in case I in the prediction obtained
with the HRIC scheme.
In general, the HRIC scheme still produced a better agreement with the experiments
than the Koren flux limiter scheme. This indicates that using a rather diffusive scheme
like the Koren flux limiter may effectively exert a stabilizing effect, which shifts the
breakup of the liquid farther downstream. Accordingly, the stabilizing effect appears
as less pronounced in the results of the less diffusive, i.e., more compressive, HRIC
scheme.
In the cases I and II the predicted disintegration lengths of the HRIC scheme come
quantitatively very close to the experimental results. The predictions reflect very well
the experimentally observed decrease in the disintegration length as the amplitude ε
is increased from 2.5% to 5%. This reduction is not featured by the results obtained
with the Koren flux limiter scheme for the cases I and II.
Assuming the travelling time theory the wave length of the perturbation of the liquid
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surface is analytically obtained from equation (5.38) dependent of the frequency and
the amplitude. As such it does not vary with streamwise position. Considering rather
small amplitudes ε = 0.025 and ε = 0.05 the wave lengths are always very close to
λT

Dinl
≈ ujet

fDinl
. The wave lengths, which were measured from the numerically obtained

contours of the liquid color function, expectedly reflect this inverse dependence of
frequency in the region close to the orifice as well.
It is interesting to note that the simulations predict near the nozzle always somewhat
shorter wave lengths than the travelling time theory for the cases with the smaller
frequency (cases I and II), while they do the opposite for the cases with the higher
frequency (cases III and IV).
For the cases I and II the numerically predicted wave lengths do not significantly
change downstream to the point of liquid breakup. In contrast, for the cases III and
IV the predicted wave lengths become significantly longer immediately upstream of
the breakup. Rayleigh’s theory on capillary breakup offers a possible explanation for
this observed increase. One essential conclusion of the Rayleigh instability theory is,
see equation (5.22), that only perturbations with a wave number in the range

0 < kh0 < 1 (6.4)

can lead to capillary instabilities under the assumption that h̄ ≈ h0. Using k = 2π
λ
,

Dinl = 2h0 and λ = ujet

f
the condition (6.4) can be rewritten as

0 < πfDinl

ujet
< 1. (6.5)

Substituting ujet = 1m/s, Dinl = 2.4 · 10−3m and the frequency f = 100Hz yields

kh0 = πfDinl

ujet
= 0.75.

Thus, a stimulation of the capillary instabilities is caused by a perturbation signal
with a frequency f = 100Hz. It is not far away from the fastest growing mode, which
occurs at kh0 = 0.697, see figure 5.3. For a frequency f = 180Hz it follows

kh0 = πfDinl

ujet
= 1.36.

Thus, no stimulation of the capillary instabilities is triggered by a perturbation fre-
quency f = 180Hz, because kh0 ≥ 1. This explains the extended disintegration
lengths and longer perturbation wave lengths upstream of the breakup, as the initially
introduced high frequency perturbation has to be propagated farther downstream un-
til a low frequency mode associated with long wave length has grown strong enough to
cause a capillary breakup. Accordingly, the wave lengths observed in the numerical re-
sults for the cases III and IV are increased from the level introduced at the orifice to a
higher level upstream of the breakup, which satisfies the condition (6.4). This increase
is not observed in the cases I and II, where the initially introduced wave number of
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the perturbation already satisfies the condition (6.4), necessary for capillary breakup
according to Rayleigh’s theory.
Is the numerically predicted phenomenon of a shift to higher wave lengths also observed
in real flow experiments? This question can’t be answered satisfactorily based on the
underlying experimental results. The resolution of the used pictures is too low to
obtain wave lengths especially in the near-field of the orifice. Further experimental
studies are necessary. Nevertheless in all the experimental results the droplets had
roughly the double size of the inlet diameter, which is consistent with the Rayleigh
instability theory on capillary breakup.
The numerical results obtained with either interface capturing scheme could reproduce
the increase in the disintegration length caused by the increase of the frequency of
the inlet velocity perturbation, as observed in the experiments in case III. Despite
this good qualitative agreement, the predicted increase of the disintegration length
exceeds significantly the experimentally observed value. This quantitative discrepancy
clearly illustrates the limits of the presently used VOF based schemes for predicting
accurately the position of liquid breakup. This shortcoming is not surprising. The
breakup of a continuous portion of liquid into individual droplets basically involves a
singularity, because the relevant length scale, i.e., the thickness of the liquid locally
goes to zero. This pages a fundamental problem to any numerical simulation, because
it is impossible to resolve a vanishing length scale. A further possible source of the
observed quantitative disagreement can be associated with the idealized boundary
condition at the inlet, which can cause a stabilizing effect. The prescribed box-shaped
velocity profile contains less kinetic energy than the real rather curved velocity profile.
As a consequence, less kinetic energy is available to be transformed into surface energy
and back, which is the underlying mechanism of the capillary instability. As such,
possible differences to the real inlet boundary conditions can also help to explain,
why the simulated disintegration length r∗p was always longer than the experimental
disintegration length r∗p,exp.
As for the effect of the change in the amplitude of the perturbation the simulations al-
ways show the correct tendency, i.e., a reduced disintegration length as the amplitude
is increased. This is consistent with the experiments, although the predicted disinte-
gration lengths quantitatively disagree considerably especially in the high frequency
cases III and IV.
The travelling time theory has proven some potential to describe the accumulation
of material in the perturbed liquid column near the orifice. However, interpreting
the occurrence of the first singularity, where the analytically predicted radius goes to
infinity, as streamwise position of the liquid breakup yields no adequate description
of this phenomenon. Being based only on kinematic wave propagation and neglecting
the effect of surface tension the analytical solution given by equation (5.36) always
predicts reduced disintegration lengths for increased perturbation frequencies and/or
amplitudes. This is exactly the opposite tendency of that observed in the case III in
both the experiments and in the numerical results.





7 Conclusions and Outlook
The influence of kinematic waves on jet breakup has been computationally investi-
gated. The considered scenario is a liquid (water) free jet surrounded by a gas (air)
with much lower density. The mathematical formulation used for the numerical simu-
lation is based on an one single fluid approach, so that in the whole domain of interest
just one single set of governing equations is solved. A color function was introduced to
distinguish the liquid from the gas phase. The continuum surface force (CSF) model
was used to account for surface tension effects. Two different VOF methods for cap-
turing the liquid/gas interface, the Koren flux limiter scheme and the HRIC scheme,
were implemented and compared. The performance of the HRIC scheme is of special
interest, because it is used in popular commercial CFD software (e.g. Comet, Fluent).
Eight numerical simulations were performed imposing a certain variation of sinusoidal
velocity modulations at the inlet. The obtained numerical solutions were compared
against the corresponding experimental observations of Meier et al. (1992) and against
the predictions of the travelling time theory (Grabitz and Meier, 1983).
In summary, the following conclusions can be drawn from the computational investi-
gations:

• The numerical simulation predicted in general more stable jet flow conditions
than observed in the experiments. This means that in every numerical experi-
ment the predicted disintegration length was longer than that of the experiments.
This quantitative disagreement does not only reveal possible deficiencies of the
applied schemes, it also points at the fundamental problem of liquid breakup,
which involves a vanishing spatial length scale excluding an numerical resolution.
Possible differences of the prescribed inflow conditions to the real condition may
be an additional reason for the observed deviations.
• The HRIC scheme gives in general a better agreement with the experimental

results than the Koren flux limiter scheme. This is especially seen for the cases
I and II associated with the lower frequency of the velocity modulation.
• In all numerical experiments the simulated wave length in the near-field of the

orifice was somewhat different from the wave length predicted by the travelling
time theory. The differently predicted clustering of the flow material can be
attributed to the effect of surface tension and viscous forces, which are neglected
by the travelling time theory.
• In the case III the numerical results reflect correctly the experimentaly observed

stabilizing tendency, but not the quantitative extent of the changes. The stabi-
lizing effect can be explained based on the Rayleigh instability theory, because

89
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the imposed inlet velocity perturbations in the case III are associated with wave
numbers, which are outside the stimulation range 0 < kh0 < 1.
• In all numerical simulations the correct tendency of the effect of the change in the

amplitude is obtained. Increasing the amplitude yields to a reduced disintegration
length, which is consistent with the experiments.
• A streamwise increase of the simulated wave lengths could be observed in the cases

III and IV. The simulated wave lengths immediately upstream of the breakup
reached a level which always satisfies the inequality 0 < kh0 < 1.

Based on the results obtained in this work, suggestions for possible improvements and
future work are proposed, as outlined below:

• Investigation of the influence of the perturbed inflow velocity profile: A modu-
lated parabolic velocity profile should be prescribed at the inlet as an alternative
to the modulated box-shaped profile.
• Using an alternative concept for describing the two-phase flow instead of the VOF

approach, for example a level set approach.
• Further real flow experiments in the capillary breakup regime could be made to

examine if the predicted streamwise increase of the wave lengths is also visible in
real flow experiments.
• More numerical simulations could be made to determine a specific frequency fmax

and amplitude εmax, where the disintegration length r∗p,max reaches a maximum.
The same could be made to determine the modulation which leads to a minimum
disintegration length r∗p,min.
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