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Kurzfassung

Testen von Software ist ein komplexer und zeitaufwändiger Prozess. Insbesondere im Kon-
text von sicherheitskritischen Systemen spielt dies eine äußerst wichtige Rolle. Normen
zur funktionalen Sicherheit, die den Entwicklungsprozess und die Qualitätssicherung die-
ser Systeme regeln, erfordern die Durchführung verschiedener Arten von Tests, die von
Tests für kleine Module (Units) bis zu Funktionstests für die vollständige Systemvalidie-
rung reichen. In der Praxis werden diese Testfälle entweder mit existierenden typ–sicheren
Unit Testing Frameworks, beispielsweise für C/C++, oder mit neuen angepassten Test–
Frameworks realisiert. Letzteres ist wegen vieler Faktoren, wie beispielsweise spezielle
Test–Frameworks, der Art der verwendeten Systeme, der Softwarearchitektur und der Viel-
falt der zur Verfügung stehenden Prozessoren oft der Fall. Derzeit verwenden die meisten
Domänen ein komponentenbasiertes (engl. component–based) Paradigma, um die Produk-
tivität der Entwicklung von Systemen durch die Wiederverwendung von bestimmten Teilen
der Software zu verbessern. Beim Testen können mehrere Probleme auftreten. Erstens gibt
es nicht viele Test–Frameworks für komponentenbasierte Systeme, und die existierenden
sind für gewöhnlich zugeschnitten auf bestimmte Domänen, wie zum Beispiel Fahrzeug-
technik, Medizintechnik oder Stationsleitsysteme. Zweitens legen Sicherheitsnormen im
Allgemeinen fest, dass Testfälle auf realer (und meist eingebetteter) Hardware ausgeführt
werden müssen, auch Berichte aus diesen Tests müssen reale Umweltbedingungen reflek-
tieren. Andernfalls könnten bereits bestehende Unit Testing Frameworks wiederverwendet
werden. Drittens werden Testfälle nicht immer mit Programmiersprachen spezifiziert und
können aus mehreren Beschreibungs– und Konfigurationsdateien bestehen.

In dieser Diplomarbeit wird eine textuelle domänenspezifische Sprache (engl. domain–
specific language) präsentiert, welche die Aufgabe der Spezifikation von konkreten
Testfällen für beliebige Test-Frameworks und Systeme erleichtert. Weiters wird eine lei-
stungsfähige Eclipse–Entwicklungsumgebung zur Verfügung gestellt, die einen Benutzer
während des Testprozesses unterstützt. Alle Teile wurden nach der Methodik der modell-
getriebenen Softwareentwicklung entwickelt. Die Innovation dieser domänenspezifischen
Sprache ist, dass sie automatisch zu UML Modellen kompiliert wird. Zusätzlich werden
diese UML Modelle nach der offiziellen Semantik der Spezifikationen von UML Version
2.4.1 und dem UML Testing Profile Version 1.2 aufgebaut, welche von der Object Manage-
ment Group standardisiert sind. Die daraus resultierenden UML Modelle können zu jeder
Notation transformiert oder mit Modellen von Software synthetisiert werden. Es wird das
Eclipse UML2 Projekt genutzt, um die UML Modelle zu konstruieren. Das Eclipse UML2
Projekt ist mit mehreren Tools und sogar mit kommerzieller Software kompatibel.

Ein Vorteil dieses Ansatzes ist, dass die Testfälle für verschiedene Testplattformen
gleichzeitig genutzt werden können. Unserer Meinung nach eignet sich das besonders für
die komponentenbasierte Entwicklung, bei der Komponenten für gewöhnlich im Vorhinein
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auf Entwicklercomputern getestet werden und in weiterer Folge wieder auf der Zielhardwa-
re. Unser Ansatz ermöglicht es, dass Testplattformen und Hardware sich weiterentwickeln
können, ohne dass Testfälle, welche in der vorgestellten domänenspezifische Sprache ge-
schrieben wurden, angepasst werden müssen. Die Sprache selbst ist aufgeteilt zwischen
Deklarationen und Definitionen. Die Deklarationen können im Voraus durch Testplatt-
formdesigner oder Maintainer spezifiziert werden, während die Definitionen von Software-
testern verwendet werden. Zum Beispiel kann ein Testplattformdesigner mögliche Kompo-
nententypen deklarieren, während ein Softwaretester Laufzeitobjekte von solchen Typen
definiert. Dieser Ansatz macht es leicht, Generatoren zu entwickeln, die Codes erzeugen
oder Testfälle mit Modellen von Software synthetisieren.

Bezüglich der Ergebnisse dieser Diplomarbeit wird der beschriebene Ansatz erfolgreich
in einem industriellen Projekt angewandt, um Unit Testfälle von Softwarekomponenten
nach der IEC 61131 Norm (eine Norm welche auf den industriellen Sektor im Allgemeinen
abzielt) zu entwickeln. Am Ende der Diplomarbeit wird ein Auszug aus dieser Anwendung
gezeigt, das heißt, es wird erläutert wie eine beispielhafte einfache Softwarekomponente aus
der oben genannten Norm definiert und unter Verwendung des vorgeschlagenen Ansatzes
getestet wird. Die Definition und das Testen der übrigen Softwarekomponenten wird in
einer ähnlichen Weise durchgeführt. Nicht zuletzt wird die Leistung des Ansatzes in Bezug
auf Zeit und Speicherverbrauch evaluiert.



Abstract

Testing software is a complex and time consuming process. Especially, in the context of
safety–critical systems, this is a crucial part. Standards for functional safety, which regu-
late the development process and quality assurance of these systems, require performing
various types of tests, ranging from tests for small-sized modules (units) to operational
tests for complete system validation. In practice, these test cases are either realized with
existing type–safe unit testing frameworks, for instance for C/C++, or with new custom
test frameworks. The latter is often the case because of factors such as specific test frame-
works, the nature of used systems and software architecture, and variety of available pro-
cessors. Currently, most domains use a component–based paradigm, to improve systems
productivity by reusing certain parts of software. Concerning testing, there can be several
problems. Firstly, there are not many test frameworks for component–based systems and
the existing ones are usually tailored to specific domains, like automotive, medical, or sub-
station automation systems for example. Secondly, safety standards, in general, specify
that test cases have to be executed on real (and usually embedded) hardware, and reports
from those tests have to reflect real environmental conditions. Otherwise, already existing
unit testing frameworks could be reused. Thirdly, test cases are not always only specified
with programming languages, but can consist of descriptions and configuration files.

In this thesis we present a textual domain–specific language which eases the task of
specifying concrete test cases for arbitrary test frameworks and systems. Further we pro-
vide a powerful Eclipse IDE that supports a user during the test process. All parts are
implemented following the model–driven software engineering methodology. The innova-
tion of this domain–specific language is, that it is automatically compiled to UML models.
Additionally, these UML models are constructed according to the official semantics of UML
version 2.4.1 and the UML Testing Profile version 1.2 specifications, which are standard-
ized by the Object Management Group. The resulting UML models can be transformed
to any notation or synthesized with models of software. We leverage the Eclipse UML2
project to construct the UML models. The Eclipse UML2 project is compatible with
several tools and also with commercial software.

An advantage of our approach is that the test cases can be leveraged for different test
platforms simultaneously. In our opinion, this is suited for component–based engineering,
where components are usually tested beforehand on developer computers and tested again
on target hardware. Our approach allows evolving the test platforms and hardware, with-
out adjusting the test cases written with the presented domain–specific language. The
language itself is divided into declarations and definitions. The declarations can be spec-
ified in advance by test platform designers or maintainers, while the definitions are used
by test engineers. For instance, a test platform designer may declare possible component
types, while a test engineer defines runtime objects of such types. This approach makes
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it easy to develop generators in order to produce code or to synthesize test cases with
models of software.

Concerning the findings of this thesis, we successfully apply our approach in an indus-
trial project to enable unit testing of software components developed according to IEC
61131 standard (a standard that targets the industrial sector in general). In the end of
the thesis we show an excerpt of this application, i.e., we show how an exemplary basic
software component from the aforementioned standard can be defined and tested using
the proposed approach. Definition and testing of remaining software components are con-
ducted in a similar way. Last but not least, we evaluate the performance of the approach
in terms of time and memory usage.
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Chapter 1

Introduction

In this thesis we present a textual domain–specific language, called “UML Testing Profile
Based Testing Language” (Ubtl), for specifying concrete test cases. The main advantage
of Ubtl is that Ubtl code is automatically compiled to UML1 models which use the UML
Testing Profile. These models are created according to the semantics of the corresponding
Object Management Group specifications. Such UML models can be further transformed
to test cases for arbitrary target platforms. Alternatively, the resulting UML models may
be synthesized with models of software.

1.1 Motivation

Concerning safety–critical systems, it is mandatory to perform various types of tests on
software, according to the desired quality level that has to be achieved (i.e., a Safety In-
tegrity Level (SIL) – a notation used in safety standards), [SS10]. These tests have to
be executed on the target hardware, in our case an industrial embedded system. Such
systems generally use an architecture based on the component–based paradigm, [Crn02].
A problem is that test frameworks have to be tailored to the specific architecture or sys-
tem. There is often no appropriate framework and the existing ones are restricted to a
specific domain, like automotive, medical, power plants, or substation automation sys-
tems. Moreover, many standards and guidelines that define systems and software archi-
tecture in aforementioned domains are closed specifications (the IEC 61131/499 industrial
component model and the IEC61850 specification for substation automation systems are
examples here). Consequently, the community targeting those domains is small, and there
are very few practical approaches that address testing on a detailed implementation level
(i.e., compared to automotive for example, where the AUTOSAR component model is
used, which is an open standard).

The architectures of component–based systems used in aforementioned domains over-
lap in many aspects. Hence, their difference is reflected in very few details, such as the
execution semantics of components, the encapsulation of functions, functional distribu-
tion, and coordination services. On the other side, the general concept of a component as
a unit of composition with well–defined interfaces remains the same.

1http://www.uml.org

1



2 CHAPTER 1. INTRODUCTION

To support the definition and realization of unit tests for arbitrary platforms and
specific domains, it is necessary to provide a generic definition of components and the
corresponding test cases. The further mapping of these definitions onto specific component
technology, specific test platform, specific test cases, and specific embedded system has to
be conducted within the extensible synthesis process.

The architecture of our industrial embedded system, used for demonstration purposes,
leverages the component–based paradigm. Components are tested with unit test cases di-
rectly on the hardware. Additionally, developers and test engineers test these components
on an operating system virtualized with QEMU2. The problem is that the concrete test
cases differ in their format and programming language. Unit test cases running on the
embedded system are defined with XML, while the test cases for the virtualized compo-
nents are specified with the C++ programming language. Both kind of test case notations
usually contain the same test logic.

The motivation for this thesis was to implement or leverage a domain–specific language,
preferred a textual one, for specifying these unit test cases abstractly and to translate
them into the two different formats. After a comprehensive research, we decided to build
a textual domain–specific language based on the UML Testing Profile ([Obj13c]). In our
opinion, pure UML is too complex and hard to learn compared to a textual language.

1.2 Goal

As mentioned above, our initial motivation was to implement a testing language for afore-
mentioned two specific different test platforms. This was our first goal. During develop-
ment, we expanded this goal to create a language which should be flexible and easy to
adapt for completely different platforms. So our final goal is to provide a textual language
which is abstract enough to only define the concrete test logic and can be transformed to
actual test cases running on arbitrary systems. The target test cases can be written with
any notation. To be precise, we defined the following subgoals:

Declarations/Definitions: Provide a textual notation, which allows specifying types,
classes, and interfaces beforehand. These declarations should be used by definitions,
like runtime objects and concrete test cases.

Flexibility: The concepts must be flexible enough to adapt them for different target
notations.

Adjustability: It must be possible to disable language features which are not supported
on a target platform.

Understandability: The textual domain–specific language must be easy to understand
and should use concepts of well–known programming languages. This is crucial for
the acceptance of a domain–specific language.

Levels of Testing: The domain–specific language must be usable for unit testing. It
may be applied on other levels of testing.

2http://www.qemu.org
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Usability: Provide an integrated development environment for Eclipse, which helps users
to create declarations and definitions in Ubtl.

Accuracy: The generated UML model must follow accurately the specified semantics of
the official UML and UML Testing Profile specifications by the Object Management
Group.

Consistency: The declarations and definitions, specified in Ubtl, must always be trans-
formed to UML in the same way. This is important for generators.

1.3 Thesis Structure

Chapter 2 covers topics related to this thesis. In Section 2.1 we give a short introduc-
tion to software testing. We discuss two fundamental testing strategies, different levels
of testing, and test specification languages. In Section 2.2 we explain Model–Driven
Software Engineering, including models, terminology and principles. We also give a short
overview of the Model–Driven Architecture and discuss Model–Driven Testing in relation
to Model–Based Testing. In Section 2.3 we give a brief overview of UML. In Section 2.4
we present the UML Testing Profile and explain details. Section 2.5 is about the Eclipse
Modeling Project. First we discuss the Eclipse Modeling Framework. Then we present the
UML2 project. After that we explain the Xtext framework, which we use for constructing
the Ubtl compiler and IDE. In the last Subsection we present three model–to–text tools
of the Eclipse open–source ecosystem.

In Chapter 3 we present our textual testing language Ubtl which compiles to UML
models. In Section 3.1 we identify four applications and show how Ubtl can be used. In
Section 3.2 we give a simplified overview of the software architecture. In Section 3.3
we first give an overview of the textual language elements and then explain them in detail.
In Section 3.4 we discuss how the single language elements are mapped to UML and the
UML Testing Profile. In Section 3.5 we present the customizations that we did of the
generated Ubtl IDE. Finally, in Section 3.6 we explain how we test the Ubtl compiler
and the corresponding IDE.

In Chapter 4 we show our use case of Ubtl. In Section 4.1 we explain an example
component and how we test it. In Section 4.2 we illustrate how an Ubtl test case
concerning this component looks like. Section 4.3 is about the transformation from the
Ubtl test case to a test case written in XML. In Section 4.4 we present the final XML
test case. In Section 4.5 we evaluate the use case with respect to time and file sizes.

Chapter 5 concludes the work.

In Chapter 6 we suggest additional useful features for Ubtl.
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Chapter 2

Related Work

2.1 Software Testing

Testing is the process of executing a program with the intent of finding errors, [MSB11].
It is a crucial part of every software development process or activity. One problem is the
time and money spent for testing software. According to Myers et al. [MSB11], it is still
true as a rule of thumb that testing takes in typical programming projects approximately
50% of the elapsed time and more than 50% of the total cost. With this thesis we try to
tackle this problem, in the context of specifying the same test case for different platforms.

In the following subsections we give a very short introduction to software testing.
First we discuss the two basic software testing strategies. Next we give an overview of the
different levels of testing based on the well–known V–Model. After that we discuss test
specification languages and present TTCN–3.

2.1.1 Software Testing Strategies

Fundamentally there exist two software testing strategies to identify test cases:

Black–Box Testing Like the name implies this strategy views a system under test (SUT)
as black–box. Often this strategy is called functional testing, [Rep09]. The term SUT
refers to a system which is being tested. The complexity of a SUT can range from
a method to an entire application. Black–box testing relies on the specifications of
a system to develop test cases. Also test data are solely derived from the specifi-
cations, [MSB11]. The internal behavior and structure of a SUT is not taken into
account, [MSB11]. A test case simply evaluates the behavior of a SUT by giving
pre–defined inputs and by examining if the outputs correspond to known correct out-
puts, [Rep09]. The problem with this approach is that a system has to be exhaustive
tested with all possible inputs to find all errors (exhaustive input testing). This is
not feasible, even for small programs, [MSB11]. Therefore several systematic test
development methodologies for black–box tests have been developed, for instance
equivalence class partitioning and boundary value analysis, [Rep09].

White–Box Testing In contrast to black–box testing, white–box testing uses the in-
ternal behavior and structure of a SUT. This strategy derives test data from an
examination of the programs logic (and often, unfortunately, at the neglect of the

5
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specification), [MSB11]. White–box testing is also known as structural testing. The
goal of this strategy is to test every statement of a program. The presumption is that
if all possible paths of control flow through the program are executed via test cases,
then the program is possibly completely tested (exhaustive path testing), [MSB11].
This strategy has two problems, [MSB11]. First the number of unique logical paths
could be extremely large. Second there could still be errors in a program: A program
could not match the specification. Also paths could be missing in the program. An
exhaustive path test might not uncover data-sensitivity errors, [MSB11].
Despite that it is unrealistic to cover all possible paths in a system, several helpful
techniques have been developed.

The combination of black–box testing and white–box testing is called grey–box testing,
where a test engineer has access to the systems source code, but test cases are executed
like black–box tests, [Rep09].

This thesis is only about black–box testing.

2.1.2 Levels of Testing

There exist a wide variety of software engineering process models, ranging from the Wa-
terfall model to agile methodologies like Extreme Programming, [Lin01]. We chose the
V–Model to explain the different levels of abstraction in the process of testing software.
Although this model has its drawbacks, it is useful for testing as a means of identifying
distinct levels of testing and for clarifying the objectives that pertain to each level, [Jor13].

Requirements 
Definition

Acceptance 
Level Testing

Functional 
System Design

System Level 
Testing

Technical 
System Design

Integration 
Level Testing

Component 
Specification

Unit Level 
Testing

Implementation

Figure 2.1: V–Model (based on [BDG+08])

Figure 2.1 illustrates the principle structure of the V–Model, [BDG+08]. On the left–
hand side we find the Construction Phases, while on the right–hand side reside the Testing
Phases.
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The software development process starts with the Requirement Definition phase. In
this phase requirements are gathered from the customers and possible users. These re-
quirements are the basis for the next phase called Functional System Design to develop
a functional model of the system. The functional model should be independent from the
future implementation of the system to avoid early design decisions, [BDG+08]. The ac-
tual architecture of the software is modeled in the Technical System Design phase. Such a
system is split into individual components and the interfaces between them are designed.
The Component Specification phase deals with the definition of the behavior of these
components. In the next step components are implemented and the Construction Phases
end.

The Testing Phases are based on the implementation, and leverage of the specifications
and requirements in order to verify and validate the products. Verification is concerned
with the correctness of individual products with respect to their specifications, and valida-
tion refers to the correctness of individual products with respect to the intended use of these
products, [Lin01]. Unit Level Testing tests the individual behavior of the different compo-
nents. The Integration Level Testing phase tests if the components interact correctly. It
ends when all components are integrated. System Level Testing targets the whole system
and the corresponding specified functionalities are tested. The last phase, called Accep-
tance Level Testing, is similar to System Level Testing, but based on the perspective of
the customers and users, [BDG+08].

Even though the V-model suggests a procedure where the testing phases are performed
after the construction phases, it is well known that the preparation of each testing phase
should start as early as possible, that is, in parallel to the corresponding construction phase.
This allows for early feedback regarding the testing phase, [BDG+08].

2.1.3 Test Specification Languages

In this thesis we refer to “test specification languages” in the sense of languages where
the test case logic is defined manually. We do not deal with concepts where test cases are
derived automatically from system models or formal models.

In general, one can specify test cases with the same programming language in which
a system is implemented. This is usually supported by xUnit frameworks. Examples
are JUnit for the Java programming language or the original SUnit for Smalltalk. The
drawback of this approach is that when a system is reimplemented in another programming
language, the test cases also have to be reimplemented. Test cases are tied up with
the programming language and have to be manually converted. It is also necessary to
implement them again when a test platform changes or a system is tested with a different
one, like in our case.

A higher level of abstraction is achieved when test cases are implement with a scripting
language or high–level general–purpose language, like Python or Tcl. A drawback is that
it may be necessary to write adapters in order to test a system. If the test specification
language is interpreted, the runtime must be available on the platform on which a system
is tested.

With this thesis we aim at providing a textual test specification language that is on
an even higher level of abstraction, where the test case logic is independent of any target
test platform or programming language. To achieve this, we leverage the UML and UML
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Testing Profile, which is also a way of defining test cases abstractly, but usually by using
the graphical syntax of UML. We discuss the UML Testing Profile in detail in Section
2.4. In the following we briefly give an overview of TTCN–3. TTCN–3 allows specifying
test cases abstractly, but the test cases are meant to be used inside a standardized test
system architecture. We present TTCN–3 to make the differences to our test specification
language obvious.

TTCN-3

The Testing and Test Control Notation version 3 (TTCN–3) is a standardized test spec-
ification language and test system architecture for communication–based systems. It is
standardized by the European Telecommunication Standards Institute (ETSI) and the
International Telecommunication Union (ITU–T) since the year 2000, [Sch10]. TTCN–
3 can be used for the specification of all types of reactive system tests over a variety of
communication ports. Typical areas of application are protocol testing (including mobile
and Internet protocols), service testing (including supplementary services), module testing,
testing of CORBA based platforms, APIs, etc. TTCN–3 is not restricted to conformance
testing and can be used for many other kinds of testing including interoperability, robust-
ness, regression, system and integration testing, [ETS14a].

It offers a textual language and two graphical formats, which can be used interchange-
ably. One graphical format is Message Sequence Chart based (similar to UML Sequence Di-
agrams), the other one uses a tabular format, [SGVGD08]. The core language of TTCN–3
is the textual one which can be interchanged between different tool vendors. The graphical
formats are mapped to the textual one according to the TTCN-3 specifications. TTCN–
3 allows importing data types from various sources, that are mapped to predefined data
types. The TTCN–3 standards specify imports from the languages ASN.1, IDL and XML,
[ETS14a]. TTCN–3 embeds test behavior in test cases. The definable test components
and SUTs, used by test cases, communicate over ports. The communication can be either
message–based or procedure–based. Message–based communication is based on an asyn-
chronous message exchange. The principle of procedure–based communication is to call
procedures in remote entities. This allows a test component to emulate the client or server
side during a test. Furthermore, unicast, multicast and broadcast communication are also
supported by TTCN–3, [SGVGD08].

Figure 2.2 illustrates the standardized test system architecture. In principle, the archi-
tecture and the contained entities can be realized in any programming language. TTCN–3
code is either compiled and executed, or interpreted by a TTCN—3 Executable (TE). It
can also contain a TTCN–3 runtime system, [ETS14b]. Note that the TTCN–3 standards
only specify the grammar of the TTCN–3 code, but do not specify an intermediate repre-
sentation or metamodel (see Section 2.2). Therefore it depends on the tool vendors how
this part is realized. The Test Management entity is responsible for the overall manage-
ment which includes test execution. The Test Logging (TL) entity maintains the test log.
The Component Handling (CH) entity distributes parallel components. The CH entity al-
lows the test management to create and control distributed test systems in a manner which
is transparent and independent from the TE, [ETS14b]. The Coding and Decoding (CD)
entity is responsible for external data used by message or procedure based communication
inside the TE. External codecs have a standardized interface, and can be used by different
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Figure 2.2: TTCN–3 test system architecture (based on [ETS14b])

TTCN-3 systems or tools, [ETS14b]. The SUT Adaptor (SA) realizes the communication
with the SUT. This adaptor has to be implemented for different SUTs, and offers a stan-
dardized interface to the TE. The Platform Adaptor (PA) implements external TTCN–3
functions and timers. TE communicates with the CH, TM, TL, and CD, entities via the
TTCN–3 Control Interface (TCI), which is standardized. The TTCN–3 Runtime Interface
(TRI) is also standardized and used by the TE for the communication with the SA and
PA. TCI and TRI are specified in CORBA IDL, [Obj12a].

A drawback of TTCN–3 is, in our opinion, that there is no free or open–source compiler
and test system. Also TTCN–3 code cannot be compiled to various test frameworks (for
instance JUnit) and is restricted to the standardized test system architecture.

2.2 Model–Driven Software Engineering

Model–Driven Software Engineering (MDSE) is a methodology where models are used for
all activities of software development, [BCW12].

MDSE (or sometimes called Model–Driven Engineering, MDE) promises improvements
in productivity, portability, interoperability, maintenance and documentation of software
or development processes, [KWB03]. The work in [HWRK11] mentions it is difficult
to provide absolute measures of the benefits of MDE. For instance, studies found in the
literature, have reported productivity gains ranging from -27% to +1000%, [WH12].

In the following subsections we present the theory of MDSE and discuss several aspects
of MDSE, starting by explaining what models are and how they can be used. After that
we explain acronyms concerning model–based and model–driven used in the literature.
Then we focus on basic principles of MDSE which are relevant for this thesis. We also
present the Model–Driven Architecture (MDA), a software development approach and a
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framework for standards provided by the Object Management Group (OMG). Last but
not least, we explain Model–Based Testing (MBT) and the term Model–Driven Testing
(MDT), including its relationship to MBT.

2.2.1 Models

Kühne [K0̈6] uses, in the context of MDE, the following definition for models, A model
is an abstraction of a (real or language–based) system allowing predictions or inferences
to be made. Von Bertalanffy [Von68] defines in his work a system as a set of elements in
interaction.

Abstraction is clearly a powerful capability, as it can hide unnecessary information.
Therefore models can represent the pure logic, for instance, of a complex software sys-
tem. Implementation details can be added in more precise models or by (semi)automatic
transformation processes.

Baerisch [Bae10] further differentiates the types of models by two characteristics:

• Formal or informal: A formal model uses a defined structure and semantics. It
can be automatically processed or transformed for its intended purpose. Obviously
informal models do not offer such possibilities.

• Prescriptive or descriptive: According to Bézivin [B0́5], a prescriptive model is
a representation of a system to build, while a descriptive model can represent an
existing system. Ludewig [Lud03] explains that when a descriptive model is modified
and then used prescriptively, it is called a transient model.

Similar to these characteristics, Brambilla et al. [BCW12] classify the use people make
of models as follows:

• Models can be used as sketches and therefore are only used for communication
purposes. Such models provide partial views of a system.

• Used as blueprints, models are complete and detailed specifications of systems. E.g.
a programmer could implement a system based on a blueprint.

• Last, but not least, models, instead of code, are used to develop systems.

In this thesis we use formal models, which are prescriptive, instead of code to develop
test cases.

Selic [Sel03] identifies in the context of model–driven development, five characteristics
of useful and effective models:

Abstraction As stated before, a model must remove or hide irrelevant details. Only then
it is suitable to cope with complex systems.

Understandability A good model must reduce the intellectual effort required for un-
derstanding. It should be intuitive or little information should be necessary for
understanding it.

Accuracy Selic [Sel03] states that a model must provide a true–to–life representation of
the modeled system’s features of interest.
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Predictiveness It should be possible to predict non–obvious properties of a modeled
system, through experimentation or formal analysis.

Inexpensiveness It must be significantly cheaper to construct or analyze a model than
a modeled system.

2.2.2 Terminology

In the literature there exist a lot of different acronyms dealing with model–driven and
model–based. Brambilla et al. [BCW12] made an overview of the relations between the
acronyms and the approaches. The following hierarchy is based on this overview and each
acronym is a subset of the preceding acronym.

MBE Model–Based Engineering is a process where models play an important role in the
development of software, but are not the source artifacts. They do not drive the
development. Brambilla et al. [BCW12] mention as an example that a designer could
specify a model of a system and then hands it over to programmers, who manually
implement it.

MDE In Model–Driven Engineering models are the key artifacts of all development re-
lated activities and tasks. The core principle is “Everything is a model”, [B0́4].

MDD Brambilla et al. [BCW12] state that Model–Driven Development is a development
paradigm that uses models as the primary artifact of the development process. Such
models are usually (semi)automatically transformed to implementations (e.g. code).

MDA Model–Driven Architecture is a vision of MDD by the OMG. OMG provides stan-
dards concerning various aspects of modeling. MDA uses these standards to define
a development approach.

According to this hierarchy, all model–driven principles and approaches are model–based,
but not all model–based techniques are model–driven. To be precise, MDSE is a subset of
MDE and only focuses on the development of software. However, in the literature, MDSE
is sometimes named MDE.

Concerning the practical part of this thesis, we heavily make use of OMG standards.
Therefore we give a short overview of MDA in Subsection 2.2.4.

2.2.3 Basic Principles

According to Brambilla et al. [BCW12], the main ingredients of MDSE are models and
transformations. We start with metamodeling, go on to modeling languages, and finally
explain transformations. These are the relevant principles for this thesis.

Metamodeling

MDSE relies on formal models. Formal models have to be defined with a concrete modeling
language, otherwise they would be arbitrary and informal. Such a modeling language
can also be defined by another modeling language. Basically, the process of modeling a
modeling language is called metamodeling, [BCW12].
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Figure 2.3: Four–layer metamodeling architecture (based on [B0́4])

Figure 2.3 illustrates a typical four–layer metamodeling architecture, that is used in
MDSE. Note that a modeling language is in fact a model.

M3 This layer is the basis of the metamodeling architecture. Its purpose is to provide
modeling languages for defining modeling languages. Usually a meta–meta–model is
defined reflexively, that means it can define itself. In practice, it does not make any
sense to define further meta layers, [BCW12]. In Figure 2.3 this behavior is described
by a conformsTo relationship. Meta–meta–models are similar to grammars like the
Extended Backus–Naur Form (EBNF). Such a grammar is used for defining different
programming languages and can also describe itself, [B0́5].

M2 The purpose of this layer is to describe modeling languages which are used on the next
layer for specifying the actual model. It has to conform to the meta–meta–model at
layer M3, like a programming language has to conform to its grammar.

M1 Models at this layer represent modeled systems. They have to conform to the corre-
sponding meta–model.

M0 That layer is not part of the modeling world and part of the real world. It consists
of real systems, which can be represented by models.

For demonstration purposes, we present the example hierarchy used in the OMG Uni-
fied Modeling Language (UML) Infrastructure specification [Obj11a]. Figure 2.4 illustrates
the example hierarchy. Note that OMG uses the notion instanceOf instead of conformsTo.
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Figure 2.4: UML example four-layer meta-model hierarchy (based on [Obj11a])

Meta Object Facility (MOF) is an OMG standard [Obj13a] for describing meta–models,
like UML. As we can see in Figure 2.4, UML concepts, like Attribute, Class or Instance,
are defined by the element Class of MOF. The user model on layer M1 uses instances of
the UML layer, for defining the class Video and an instance specification (snapshot) of
Video. Note that class specifications and instances (objects of classes) are defined on the
same layer. Finally such a Video class represents the real world concept of a video.

According to Brambilla et al. [BCW12], metamodels can be defined for:

• new programming or modeling languages

• new modeling languages for exchanging and storing information

• new properties or features to be associated with existing information (metadata)

Modeling languages

According to Brambilla et al. [BCW12], a modeling language is defined through three
parts:

Abstract Syntax: The abstract syntax of a modeling language is the metamodel. It
describes the structure of a language and how different elements are connected and
can be combined. It is independent of any particular representation or encoding,
[BCW12]. Usually a metamodel contains classes, attributes and associations for
describing the language. Such an abstract syntax can be further improved by con-
straints defined with constraint languages. For instance, a simple constraint would
be if the name of an element always has to start with an upper–case letter.

Concrete Syntax: Metamodels only define the abstract syntax, but not the concrete no-
tation of a modeling language. Concrete syntaxes are specific visual representations
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of a metamodel. They can be either textual or graphical. Of course, it is possible to
define both for one metamodel. Designers work with concrete syntaxes, when they
manipulate a metamodel. For instance, if the concrete syntax is graphical, they use
one or more diagrams.

Semantics: The correct usage and meaning of elements or the meaning of the different
ways they can be combined is described by semantics. Brambilla et al. [BCW12]
point out that the semantics of a language can be defined in various ways: by defin-
ing all concepts, properties, relationships and constraints through a formal language;
through practical implementations of code generators which implicitly define the se-
mantics of the language by generating code; or by defining in–place transformations
for simulating the model’s behavior.

Semantics

Abstract Syntax Concrete Syntax

Defines meaning Defines meaning
(derived)

Representations

Figure 2.5: The three parts of a modeling language and their relation to each other (based
on [BCW12])

Figure 2.5 highlights these parts and shows the relationships between them. Several con-
crete syntaxes can represent the abstract syntax. The semantics defines the meaning of
the abstract syntax and indirectly the meaning of concrete syntaxes. Brambilla et al.
[BCW12] state that all three parts are mandatory for a modeling language to be well
defined. For instance, a partial or wrong specification of the semantics enables the wrong
usage of a language and leads to misinterpretations of the meaning of language elements
and purpose. Different people may understand the concepts and models differently.

Modeling languages typically allow to define different models targeting static (or struc-
tural) or dynamic aspects of a problem or solution. The first aspect describes modeled
entities and their relations, while the dynamic aspect describes their behavior, e.g. actions
and interactions, [BCW12].

Generally, languages can be classified into two categories:

Domain–specific modeling languages (DSML) are languages designed for the pur-
pose to target a specific domain. They should ease the task of people that need to
describe things in that domain, [BCW12].
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General–purpose modeling languages (GPML or GML) are languages that can be
applied to any domain. Therefore they are more complex and more complicated to
understand than DSMLs.

Brambilla et al. [BCW12] mention that this distinction is not so deterministic and well–
defined. As an example, UML can be used to model any kind of vertical domain (GPML),
but can be seen as a DSML tailored to specify software systems. Also it is possible to
extend and customize UML for domain specific needs. We explain that in Section 2.3.

DSMLs and domain–specific languages (DSL), used in the non-modeling world, are
very similar. Therefore we use the terms DSL and GPL (general–purpose language), in
the context of this thesis, instead of DSML and GPML. Brambilla et al. [BCW12] note that
DSL is, in the modeling community, instead of DSML by far the most adopted acronym.
The same is true for the acronym GPL.

Using a DSL, instead of a GPL, offers several advantages. DSLs can improve the
development productivity, [Fow10]. Kelly and Tolvanen [KT08] state that domain–specific
approaches are reported to be on average 300–1000% more productive than general–purpose
modeling languages or manual coding practices. They limit the possibilities how to express
something, which leads to fewer mistakes and duplicates. Also they make it easier to
modify a system. Through abstraction they make it easier to focus on a problem and
less time is spent for dealing with details. DSLs can improve the communication between
domain experts by providing a clear and precise language to deal with a domain, [Fow10].
Learning a DSL can be easier than learning a GPL like UML, because domain concepts
are known or need to be known, no matter how a software is developed, [KT08]. Further
a DSL is usually less complex than a GPL. On the downside, it takes some time to build
an appropriate DSL and corresponding tools. After a DSL is built, it is often necessary to
constantly maintain and update the language and tools. Fowler [Fow10] mentions that,
fundamentally, the only reason for not using a DSL is, if the benefits are not worth the
cost of building a DSL.

Brambilla et al. [BCW12] highlight a few principles, which are necessary for a DSL to
be useful:

• A language must provide good abstractions for designers. It must be intuitive and
make life easier, not harder.

• A language must not depend on the expertise of one person for its adoption and
usage. Its definition must be shared among people and agreed upon after some
evaluation.

• A language must be kept updated based on the context and user needs.

• A language must come together with supporting tools and methods. Domain experts
want to maximize their productivity and are not willing to spend a lot of time for
defining methods or tools.

• A good DSL should be open for extension and closed for modifications, according
to the open–close principle, which states that software entities (classes, modules,
functions) should be open for extension, but closed for modification.
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Transformations

Model transformations play a crucial role in MDSE. Without transformations it would
be pointless to specify formal models. Czarnecki et al. [CH06] list several applications of
model transformations:

• Generating lower-level models from higher-level models.

• Generating code from models.

• Mapping and synchronizing among models at the same level or different level of
abstraction.

• Query–based views of systems.

• Model refactoring.

• Reverse engineering of higher-level models from lower–level models or code.

There exist three variants of transformations, [WNO12]:

• Model–to–Model is the transformation from a source model to a target model,
e.g. a platform–independent model is transformed to a platform–specific model.

• Model–to–System describes the translation of a model to system code, configura-
tion or text, e.g. a model is transformed to Java code.

• System–to–Model is the process of generating a model from an existing system,
e.g. a model is generated from Java code (reverse engineering).

In the literature, or depending on the context of a transformation, system is often replaced
by text or code.

Following the principle “Everything is a model”, transformations themselves can be
designed as models, [BCW12]. Figure 2.6 illustrates the simplest concept of a Model–to–
Model transformation. A transformation model has its own metamodel, while the actual
model maps elements of the source metamodel with elements of the target metamodel.
In the subsequent steps a transformation model is executed by a transformation engine,
which can take one or multiple source models to generate one or multiple target models.
The source and target metamodels may be the same. That can be useful for instance for
optimization or refactoring of models. According to Mens et al. [MG06], a transformation
which takes place between models, expressed by the same metamodel, is called an en-
dogenous transformation, while a transformation between different metamodels is called
exogenous. Further, if only one model is involved in an endogenous transformation, it is
called in–place, otherwise it is named out–place. Exogenous transformations are alway
out–place.

Note that Model–to–System and System–To–Model solutions can also involve transfor-
mation models. The model–to–text tool we use for the practical part is, in fact, depending
on transformation models for transforming models to texts.
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Figure 2.6: Model transformation concept (based on [WNO12])

2.2.4 Model–Driven Architecture

Model–Driven Architecture (MDA) is a software development approach proposed by the
OMG. The OMG describes that the three primary goals of MDA are portability, interop-
erability, and reusability through architectural separation of concerns, [Obj03].

OMG does not provide any tools implementing MDA. They purely concentrate on
developing standards together with the industry.

The MDA Guide [Obj03], OMGs MDA explanation, references several OMG standards,
like UML, MOF or XMI, which are also relevant for this thesis and widely used by the
industry and tool developers. We provide an in–depth discussion of UML in Section 2.3.
The Meta Object Facility [Obj13a] is a standardized meta–meta–model. Ecore, which is
discussed in Section 2.5, is an implementation of a simplified MOF version, called Essential
Meta Object Facility (EMOF, [Obj13a]). MOF (including EMOF) serves as metamodel
for modeling languages like UML (layer M3, see Section 2.2.3). XMI stands for XML
Metadata Interchange [Obj13b] and is a specification for XML documents. These are
used for serializing and exchanging models between different tools.

Concept

Figure 2.7 illustrates an overview of the MDA approach. OMG describes Viewpoints
on a system as a technique for abstraction using a selected set of architectural concepts
and structuring rules, in order to focus on particular concerns within that system, [Obj03].
The Computation Independent Viewpoint (CIV) is about the environment and the require-
ments of a system. The Platform Independent Viewpoint (PIV) deals with the operation
of a system, while the details of a specific platform are hidden. The Platform Specific
Viewpoint (PSV) adds platform details to PIV. MDA uses three kinds of abstraction
models. Each of these models is a view from a corresponding viewpoint. Several views
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Figure 2.7: MDA Overview (based on [SS09])

can be used for one viewpoint. That is because sometimes one model should not capture
all relevant information, or all information included into one model would be too fuzzy.
Using several models for one viewpoint can keep different concerns separated, but together
offer a comprehensive description of a system, [BCW12].

• Computation Independent Model (CIM) consists of requirements and what a system
is expected to do, also in relation to the environment. OMG mentions that it is
sometimes called domain model. It does not show any details of the architecture of
a system. Further, it can serve as vocabulary for domain practitioners and modeling
experts, [Obj03].

• Platform Independent Model (PIM) describes a system, but does not show any
details of a target platform. A PIM can be build independently from a CIM.

• Platform Specific Model (PSM) combines the specification of a system (PIM) with
information about how a system uses a platform. PSMs are used for generating the
system artifacts (e.g. code).

Each abstraction model can be transformed to one or more subsequent models. OMG
suggests to use marks for guiding the transformation process of PIM to PSM, [Obj03].
Marks are platform specific. Therefore an architect would take a PIM and mark several
elements (e.g. with stereotypes) to indicate their role. The transformation would then be
carried out, based on marks and a mapping (specification of a transformation), to generate
a PSM. The transformation of CIM to PIM is not covered by the MDA Guide.

A goal of MDA is to provide a framework, which integrates the existing OMG stan-
dards, [Ken02]. Therefore the intended modeling language is UML. UML can be further
specialized and extended for domain specific purposes. We explain that case in Section
2.3.
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2.2.5 Model–Driven Testing

Model–based testing (MBT) is a form of black–box testing (see Section 2.1). Utting et al.
[UL07] distinguish between four main approaches known as MBT:

• Generation of test input data from a domain model. The model contains information
about input values concerning a specific domain. The generation process consists of
selecting and combining of these values to generate useful input data for tests.

• Generation of test cases from an environment model. In that case, the model de-
scribes the expected environment of a SUT. An algorithm tries to generate sequences
of calls to the SUT. Utting et al. [UL07] mention that this approach cannot predict
the output values because the environment model does not model the behavior of the
SUT. Therefore only a crash/no-crash verdict may be possible to make.

• Generation of test cases with oracles from a behavior model. The model must
describe the expected behavior of a SUT, for instance the relationship between input
and output values. Based on such a model, executable test cases which include oracle
information can be generated. Oracle information can be represented in the form
of expected output values or automatic checks on output values, to test if they are
correct. Utting et al. [UL07] state that this approach is a more challenging task than
just generating test input data or test sequences that call the SUT but do not check
the results. The obvious advantage of such an approach is that the whole process of
specifying tests can be automatized.

• Generation of test scripts from abstract tests. Abstract tests are models of concrete
test cases or test suites. This approach focuses on transforming test models into low–
level executable test scripts. In our opinion, the advantage is that a test engineer
does not have to consider implementation details and can concentrate on the relevant
behavior of a test case. Further, an abstract test can be transformed into various
target platforms, without reimplementing a test case.

An extensive taxonomy of MBT can be found in the book [ZSM11].
Zander et al. [ZSM11] mention that most published case studies illustrate that utilizing

MBT reduces the overall cost of system and software development. A typical benefit of
using MBT techniques is about 20%–30% cost reduction. Such a benefit may even increase
to 90%.

Model–driven testing (MDT) is MBT, but in the context of MDA and OMG standards,
[ZSM11]. Dai [Dai04] explains the philosophy of MDA can be applied both on system
modelling and test modelling. Figure 2.8 highlights this approach. Like in MDA, the
modeling language of choice is UML. For the specification of test cases and test suites,
an UML profile called UML Testing Profile (UTP, see Section 2.4) is used. A platform
independent test design model (PIT), describing test cases on an abstract level, can be
derived from a PIM or built independently. The PIT may be transformed to a platform
specific test design model (PST) or directly to test code, if a PST is not necessary. An
additional transformation from a PSM to a PST can be used for enhancing a PST. After
each transformation step, the resulting test design model can be further refined, e.g. test
specific properties can be added or test behavior can be completed. Note that MBT
techniques can be used to generate test design models.
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Figure 2.8: MDT architecture (based on [Dai04])

In this thesis we use the MDT architecture, except that system design models do not
exist in our solution. In our case a test engineer has to manually create a PIT, which
could be transformed to a PST or directly to code. We demonstrate the latter case in the
practical part.

2.3 Unified Modeling Language

The Unified Modeling Language (UML) is a general–purpose modeling language, stan-
dardized by the OMG.

The development of UML was started at the year 1994, by Booch, Rumbaugh, and
shortly after supported by Jacobson, [PP05]. At the time a lot of different modeling
approaches and languages existed, which were mostly incompatible. Miles et al. [MH06]
mention, this time of confusion and chaos in the software modeling world is now rather
dramatically referred to as the “method wars”. The OMG accepted UML in 1997 and
released it as version 1.1. Since then, many revisions have been released, most notably
version 2 of UML in the year 2005, which was a huge improvement and is not compatible
with version 1. The current release of UML, at the time of writing, is 2.4.1, which was
standardized 2011. We use this version of UML and all following explanations of UML
are referring to version 2. UML is still getting improved and updated. The next version
will be 2.5, which is currently in a beta state.

In the following subsections, we first explain the specification of UML. Then we give a
brief overview of the different diagram types. The last subsection is about UML Profiles.
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2.3.1 Specification

UML is actually defined by four complementary specifications, [Obj11a]. All specifications
can be found on the OMG website and are freely available at http://www.omg.org.

UML Infrastructure This specification [Obj11a] describes the structure and contents
of the Infrastructure Library package, which is used for the UML metamodel and
also for related metamodels, like the Meta Object Facility (MOF) or the Common
Warehouse Metamodel (CWM), [Obj11a]. MOF is the intended metamodel for UML
and resides on metamodeling layer M3 (see Section 2.2.3). The primary target
audience of that specification are tool vendors.

UML Superstructure The Superstructure specification [Obj11b] is the formal defini-
tion of UML elements, their relations and diagrams. It is the authority of UML and
weighs over 700 pages.

Object Constraint Language The Object Constraint Language (OCL) [Obj12c] is a
simple language for defining constraints and expressions on model elements. For
instance, it is used for restricting possible values of properties or parameters. It is
also used by the Superstructure to define constraints on elements, which are both
human–readable and machine–readable.

Diagram Definition That specification [Obj12b] is about the graphical syntax. It de-
fines precisely what graphical elements are available, but not how their visual ap-
pearances look like. Further it enables the interchange of graphical information.

As mentioned in Section 2.2.4, UML leverages XMI for storing and exchanging models.

The work in [PP05] explains, it is important to realize that while the specification is the
definitive source of the formal definition of UML, it is by no means the be–all and end–all
of UML. UML is designed to be extended and interpreted depending on the domain, user,
and specific application. There are often several ways to represent a concept in UML,
where one has to choose which way suits the best. Pilone and Pitman [PP05] mention it is
intended that there is enough wiggle room in the specification to fit a data center through
it.

2.3.2 Diagrams Overview

An UML model does not have to be build by using diagrams. Diagrams are just the
concrete syntax of the abstract UML syntax. It is possible to set the abstract syntax
directly. Technically these two syntaxes are often kept separate, resulting in a XMI file
containing a model and a corresponding XMI file for the mapping of a model to graphical
elements and diagrams. In the practical part of this thesis, we generate UML models, but
do not create graphical mappings. However, to explain UML concepts and elements, we
present briefly the possible diagram types. The relevant diagram types for the practical
part are Class, Object, Package and Sequence Diagram.

UML diagrams can be classified into two categories: structure (static) and behavior
diagrams (Figure 2.9). Note that the boundaries between the different kinds of diagram
types are not strictly enforced, [Obj11b]. Often, one can legally use elements from one
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Figure 2.9: Taxonomy of UML diagrams (based on [Obj11b])

diagram type on another type, [Fow04]. Also elements in a structure diagram can reference
behavior diagrams or the other way around.

Structure diagrams show the static arrangement of the elements of a system. These
diagrams do not show how elements interact in respect of time. Brambilla et al. [BCW12]
explain that they are used extensively in documenting the software systems at two main
levels:

• One level of diagrams emphasize the conceptual items of interest of a system. These
diagrams provide a description of the domain and of the system in terms of concepts
and their associations, [BCW12]. The following diagrams describe this part:

– Class diagrams describe the structure of classes and interfaces of a system,
including their attributes, operations and relationships. Figure 2.10 illustrates
an example class diagram. UML is designed to be independent of any specific
object–oriented programming language. For instance, UML interfaces support
properties, while Java interfaces do not support properties. A class, like A,
realizing an UML interface, has to implement operations the same way they
are specified by the interface. An interface property could also be realized by
several operations, because they represent a state of a realizing class. The
class Y is an abstract class and cannot be instantiated. Class B generalizes
from Y and inherits the non abstract operation doSomething. Parameters of
operations can have four directions: direction in indicates that parameter values
are passed into a behavioral element (like an operation); inout indicates that
values are passed into a behavior element and then back out to the caller; out
indicates that values are passed from a behavioral element to the caller; return
indicates that values are passed as return values to the caller, [Obj11b]. Return
parameters are visualized at the end of an operation.

– Composite Structure diagrams describe the internal structure of classes
and the collaboration with their environment.
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Figure 2.10: UML Class Diagram example

– Object diagrams consist of instance specifications and their associations. An
instance specification represents an object of one or more classifiers, e.g. a
class, at a point in time (snapshot). Some tools allow the modeling of instance
specifications with Class diagrams and do not provide dedicated Object dia-
grams. Figure 2.11 demonstrates instance specifications of the classes specified
in Figure 2.10. With instance specifications it is possible to set concrete val-
ues through slots, but it is not mandatory to set all properties of classifiers.
Associations of classifiers are specified as links on instance specifications. The
concrete name of an instance specification is optional and may be empty.

Figure 2.11: UML Object Diagram example

• The other level of diagrams deals with the architectural representation of a system.
They provide a description of the architectural organization and structure of the
system, [BCW12]. These diagrams aggregate or base on the conceptual modeling,
that is done on the level explained above. The following diagrams describe this level:

– Component diagrams illustrate how a software system is split up into com-
ponents and show their dependencies, [BCW12]. A component is a modular,
reusable and replaceable part of a system that encapsulates the content.
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– Package diagrams show packages and their dependencies. Packages group
elements and provide namespaces for them.

– Deployment diagrams describe how software artifacts are assigned to nodes.
Artifacts represent physical elements, which are the result of a development
process, while nodes can represent either hardware devices or software execution
environments, [Obj11b].

Behavior diagrams show the dynamic aspects of objects of a system, including their
methods, collaborations, activities and state histories, [Obj11b]. Such dynamic interac-
tions can be described as a series of changes over time, [Obj11b]. Usually a behavior
diagram does not model all behaviors at once. Every model describes one or few features
of the system and the dynamic interactions they involve, [BCW12]. The following Behavior
diagrams exist:

• Use Case diagrams describe how external actors use a system. Typically, they are
used to capture the requirements of a system, that is, what a system is supposed to
do, [Obj11b].

• Activity diagrams show the overall flow of data and control for performing the
task, through an oriented graph where nodes represent the activities, [BCW12]. A
task must have a specific goal.

• State Machine diagrams are used to describe the states and state transitions of
the system, of a subsystem, or of one specific object, [BCW12]. This diagram type
can also express usage protocols, [Obj11b].

• Interaction diagrams emphasize the flow of control and data among the elements of
a system, [BCW12]. The following diagrams are Interaction diagrams:

– Sequence diagrams illustrate the communication between participants, called
lifelines, through a sequence of messages. Figure 2.12 shows the behavior of the
operation anOperation(), which is part of class A, specified in Figure 2.10. The
horizontal axis of the example diagram shows the messages between lifelines,
while the vertical axis visualizes the sequential ordering of messages over time.
The name self of the leftmost lifeline plays a special role. OMG defines that a
lifeline named with the keyword self represents the object of the classifier that
encloses the interaction that owns the lifeline, [Obj11b]. In our case class A owns
the operation anOperation() and therefore encloses the example interaction. So
the lifeline self represents class A. The other two lifelines represent properties
of the classes A and B. The arguments of method calls have to be concrete
value specifications, like instance specifications, expressions or literals. In our
case we could take an instance specification of class D as variable. Combined
fragments are used to describe a number of traces in a compact and concise
manner, [Obj11b]. In the example, we use a combined fragment of type loop
(an interaction operator) to specify that the operation doIt() is called 20 times.
Sequence diagrams allow the specification of ingoing and outgoing message
through gates. In our example we use a return message to specify the return
of an object of type D. The target of this message is a gate.
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Figure 2.12: UML Sequence Diagram example

– Communication diagrams are like simple sequence diagrams, except that
they illustrate lifelines and messages similar to Class or Object diagrams. They
cannot show combined fragments and the messages have to be numbered, oth-
erwise a designer cannot distinguish which message comes first.

– Interaction Overview diagrams describe the control flow between different
Interaction diagrams, which are visualized as nodes.

– Timing diagrams are a special form of Interaction diagrams that focus on
timing constraints and state changes. Timing diagrams are most often used
with real–time or embedded systems, [PP05].

2.3.3 UML Profiles

Profiles are a mechanism for adapting an existing metamodel with constructs that are
specific to a particular domain, platform or method, [Obj11a]. This mechanism can be
used to describe a DSL based on UML. Note that profiles cannot change the metamodel
and existing constraints. This could be done with MOF (meta layer M4), where one could
add or remove metaclasses, relationships and constraints. The drawback of manipulating
an existing UML metamodel is that the compatibility with UML tools breaks, because
other tools would work with a different metamodel. OMG mentions several reasons for
customizing the metamodel with profiles, [Obj11a]:

• Create a terminology that is adapted to a particular platform or domain.

• Give a syntax for constructs that do not have a notation.

• Specify a different graphical notation for already existing symbols. For instance to
use a picture of a computer instead of the ordinary node symbol.
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• Add semantics that is left unspecified in the metamodel.

• Add semantics that does not exist in the metamodel.

• Add constraints that restrict the way the metamodel and its constructs are used.

• Add information that can be used for model transformations.

Technically profiles are located at meta layer M1, but behave like they would be part
of layer M2. A profile itself is a package for stereotypes and constraints, which could be
further grouped in packages. Also profiles can import other profiles and packages. To
use a profile, it first has to be applied on an UML package and, after that step, one can
apply stereotypes on model elements and validate a model against constraints contained
in a profile. Note that stereotypes and constraints can be seen as a form of metadata,
therefore, if a model is exchanged with a different UML tool without the corresponding
profile, it is still a valid model. In that case, the missing stereotypes would be ignored.

Figure 2.13: Stereotype examples and their application

OMG specifies that a stereotype defines how an existing metaclass may be extended,
and enables the use of platform or domain specific terminology or notation in place of, or
in addition to, the ones used for the extended metaclass, [Obj11a]. The upper half of Figure
2.13 illustrates how stereotypes and constraints are defined, while the lower half visualizes
how these stereotypes are applied. The example stereotypes extend the metaclasses class
and property. Extensions can be marked as required, then the corresponding elements are
automatically stereotyped. Metaclasses are usually part of an UML metamodel modeled
with UML. Using the metamodel implemented with MOF is often not feasible, as it would
cross meta boundaries. However, OMG does not give any restrictions how metaclasses are
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actually implemented, [Obj11a]. The stereotype SpecialClass holds an attribute, in the
literature often referred to as tagged value, which can be used to specify metadata. Such
metadata can be relevant for instance in model transformations. The OCL constraint
in the example checks if the name of a stereotyped class has less than 20 characters.
Stereotypes can also provide custom icons and shapes, like the icons which are visualized
on StereotypedClass. We added NormalClass in the example to highlight the differences
to stereotyped elements.

2.4 UML Testing Profile

The UML Testing Profile (UTP) is a standardized profile (DSL) based on UML. According
to the specification [Obj13c] by the OMG, it can be used for designing, visualizing, specify-
ing, analyzing, constructing and documenting the artifacts commonly used in and required
for various testing approaches, in particular model-based testing (MBT) approaches.

The development of UTP was started by a consortium consisting of the organiza-
tions Ericsson, Fraunhofer FOKUS, IBM/Rational, Motorola, Telelogic and University of
Lübeck, [BDG+08]. OMG standardized UTP in the year 2005. At the time of writing, the
current version of UTP is 1.2, released in the year 2013, and we only refer to this version.

UTP is strongly influenced by TTCN–3 (see Subsection 2.1.3) and other testing tech-
niques, [SDGR03], but not limited to them. The UTP specification actually defines map-
pings to TTCN–3 and the Java unit testing framework JUnit, [Obj13c]. UTP can be used
on all levels of the V–Model (see Subsection 2.1.2), [BDG+08].

OMG enumerates several cases how people may use UTP along with UML, [Obj13c]:

• Specify the design and the configuration of a test system.

• Build the model-based test specification on top of already existing system models.

• Model test cases.

• Model test environments.

• Model deployment specifications of test–specific artifacts.

• Model test data.

• Provide necessary information pertinent to test scheduling optimization.

• Document test case execution results.

• Document traceability to requirements and other UML model artifacts.

In the practical part of this thesis, we use UTP for modeling the test architecture and
behavior. For modeling the test data, we use instance specifications, without using any
dedicated UTP concepts. The test management concepts of UTP are out of the scope of
the practical part.

The following subsections have the same structure and title like the sections of the UTP
1.2 specification [Obj13c]. Each subsection summarizes the corresponding stereotypes of
the specification.
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2.4.1 Predefined Type Library

Figure 2.14: UTP type library

The type library is an UML package, which provides interfaces and types for the UTP
profile and modeled test cases. Figure 2.14 illustrates this library. Arbiters are used for
assigning the final verdict to a test case. The setVerdict operation can be used in a test
behavior to update the current test case status. The arbitration algorithm for calculating
the final verdict can be user–defined. UTP suggests as default the following precedence of
verdicts, [Obj13c]: Pass < Inconclusive < Fail < Error.
Timers are used to observe and control test behavior. Also, a timer can be used to prevent
from deadlocks, starvation, and instable system behavior during test execution, [Obj13c].
When a timer expires, a timeout is automatically sent to the owning active class. A
constraint of the timer interface is, that properties realizing the timer interface can only
be owned by test components and test contexts.
The primitive type Timezone may be used to group test components together, which are
considered to be synchronized. By default it is illegal to compare time–critical events from
different timezones.

2.4.2 Test Architecture

Test architecture concepts are essential to specify structural aspects of a test environment
and a corresponding test configuration in order to embed and execute test cases against a
system under test, [Obj13c]. A test environment consists of elements which are necessary
to conduct test cases. A test configuration describes how these elements are connected
with a SUT. Figure 2.15 illustrates test environment and test configuration. UTP does not
provide any concepts for designing a SUT, this could be done with UML. However, UTP
is used for black–box testing, therefore only the public interfaces of a SUT are necessary.
The system under test may represent a single component (component testing), a cluster
of components (integration testing) or a complete system (system testing), [Obj13c]. The
complexity of a test configuration is always on the same level, regardless if a SUT consists
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Figure 2.15: Concepts of test environment and test configuration (based on [Obj13c])

of a single component or several components, [Obj13c].

Figure 2.16: Test Architecture stereotypes

OMG defines three stereotypes concerning the test architecture (Figure 2.16). The
stereotype TestComponent is used to tag classes, components or nodes that are part of
the test environment and communicate with other test components or the SUT. The
main purpose of test components is to stimulate the SUT with test data and to evaluate
whether the responses comply to the expected ones. In addition, test components can be
used to provide auxiliary, user-defined functionality during the execution of a test case,
[Obj13c]. The zone attribute can be used to group different test components in the same
timezone. The stereotype SUT is applied on properties of classifiers that represent systems
under tests. A SUT property is part of a corresponding test context. No internals of an
[sic] SUT are known or accessible during test case execution, due to its black-box nature,
[Obj13c]. A TestContext stereotype can be applied on UML elements which are both
a structured and a behaviored classifier, e.g. a class. It is used to group a set of test
cases. The composite structure of a test context may be used for specifying the test
configuration, which can illustrate the connections between test components before a test
case is started and the maximal number of connections and components during the test
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execution. In the practical part of this thesis we omit the composite structure. We apply
the stereotype TestContext on classes, which hold the relevant components as properties
and group test cases as operations. The testLevel tag can be used to specify the phase
of testing process where the text context resides. For instance, a custom value could be
“Component Testing”. A test context can be part of different test levels. The arbiter tag
has to be used for specifying the concrete arbiter implementation.

2.4.3 Test Behavior

Test behavior concepts are used to stimulate and observe a SUT in conjunction with a test
configuration specified by a test context. All behavior diagrams may be used to specify the
test behavior. Concerning the practical part, we decided to only use interactions. These
interactions could be visualized as Sequence Diagrams.

Figure 2.17: Test Behavior foundation

Figure 2.17 illustrates the foundation of the test behavior stereotypes. The stereotype
TestCase is used to indicate test cases. A test case is a concrete specification of a test
on a system, including the required test behavior with its test inputs, test conditions, and
test result, [Obj13c]. It has to be owned by a test context and therefore has full access on
the test configuration, global variables and helper methods. If TestCase is applied on an
operation, it cannot be applied on the corresponding behavior. A behavior also has to be
owned by the same test context. The return parameter of a test case has to be a verdict.
This verdict can be calculated by an arbiter or it is provided by the behavior. The priority
tag may be used to plan the execution order of several test cases. A test type indicates
what concrete quality criteria are going to be verified by the related test case, [Obj13c]. A
test case may realize a test objective which we discuss in Subsection 2.4.5. The actions
visualized in Figure 2.17 are used in the behavior of a test case to trigger correspond-
ing classifier. ValidationAction sets the verdict of a test case by calling the setVerdict
operation of an arbiter. An optional reason may be added. LogAction can be used to
specify what should be logged. The logging facilities can be implicitly implemented by the
run–time system or explicitly provided by a model. FinishAction immediately completes
the test case for a corresponding test component. Other components are not affected by
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a finish action, this has to be modeled explicitly. DetermAlt, short for deterministic alter-
native, is a CombinedFragment where the operands are evaluated in exact the same order
as they appear in the model (respectively diagram) regardless of the fact that the guards
of more than one InteractionOperand evaluate to true, [Obj13c]. The evaluation of the
guards starts after the involved components receive an event, like a message or time out
of a timer. We do not use this stereotype therefore we refer to the UTP specification for
a detailed explanation.

Figure 2.18: Test Behavior defaults

UTP further defines the concept of default behaviors (Figure 2.18). A test case specifies
the expected behavior of a SUT, but if an unexpected behavior, which is not specified by
the test case, occurs, then a default behavior should handle such a situation, [Obj13c]. The
stereotype Default can be applied on all kinds of behavior, for instance State Machines or
Interactions. DefaultApplication can be used to associate a default behavior with a static
structural behavior, like an interaction fragment, action or state. We omit this concept in
the practical part, therefore we do not discuss these stereotypes in more detail.

For manipulating and accessing timers and timezone tags several action stereotypes are
defined by the UTP specification (Figure 2.19). UML already offers time constraints, but
the semantics are quite different to the time concepts of UTP. If an UML time constraint
does not hold, the entire behavior fails, while the UTP time concepts allow reacting on
time constraint violations. Therefore when a UTP timer fails it does not mean that the
whole test case fails (of course in most cases it does mean that), [Obj13c]. The TimeOut
event is meant to be used in State Machines, while the TimeOutMessage could be used in
Interactions if a timer fails.

2.4.4 Test Data

The intended way to specify test data is to use instance specifications. Data values could
be specified in–line within a behavior (e.g. by using literals), but this approach can be
error prone, decrease readability, as well as leading toward duplication, [BDG+08].

According to the UTP specification test data can serve different purposes, [Obj13c]:

• Data can be supplied with a stimulus, i.e. sent by a test case to a SUT, or retrieved
as a response, i.e. values returned by a SUT.

• Data can be used to define the initial state of a SUT needed to start a test case, i.e.
the precondition of a test case, and the expected state of a SUT after a test case
terminates, i.e. the postcondition of a test case.
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Figure 2.19: Test Behavior timer and timezone stereotypes

Figure 2.20: Test Data structural specification stereotypes

UTP provides three stereotypes for managing test data. These stereotypes aim at the
structural aspects of test data (Figure 2.20). A data pool is a classifier containing either
data partitions (equivalence classes), or explicit values; and can only be associated with
either a test context or test components, [Obj13c]. The structure of a DataPool may be a
simplified view of the actual container or database scheme. This concept is mainly used
when a test case is invoked repeatedly and where a data pool would provide different data
values for stimulating a SUT. A data partition is a container for a set of similar data
values. Different data partitions are meant to be used as equivalence classes in test cases.
A data partition can only be associated with a data pool. A data selector allows the
implementation of different data selection strategies, [Obj13c]. It can be only be applied
on operations hold by a data pool or data partition.

Further, UTP defines four stereotypes which deal with test data values (Figure 2.21).
A coding rule specifies how values are encoded and/or decoded, [Obj13c]. The tag coding
refers to the used coding scheme. The stereotypes LiteralAny and LiteralAnyOrNull are
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Figure 2.21: Test Data values stereotypes

wildcards. Wildcards allow any possible concrete data or explicitly the absence of data
values, [Obj13c]. The dependency stereotype Modification is a relationship between two
instance specification. For instance, it used if a new instance specification slightly modifies
or completes an already existing instance specification. The new instance specification can
overwrite, add or reuse slot values. This stereotype allows to create large sets of data by
avoiding redundancy, [Obj13c]. The instance specifications must have compatible types
and cyclic modifications are not allowed.

2.4.5 Test Management

The UTP test management concepts aim at the narrow scope of managing individual test
activities and tests (i.e., not the full project/test lifecycle). Test management is needed
since it is impossible to test a software system exhaustively, thus testing becomes a sam-
pling activity, which must be managed within cost, schedule, qualities, resources (human
and facilities), and risk aspects, [Obj13c]. In general there exist three test management
activities, [Obj13c]:

• Test Planning and Scheduling

• Test Monitoring and Control (including test execution)

• Test Results Analysis

Concerning the test planning and scheduling activity, UTP defines the stereotype
TestObjective (Figure 2.22). Test objectives textually specify the reasons, purposes and
targets of test cases. Test objectives must be measurable, thus, they must include suffi-
ciently precise information how to assess, respectively evaluate the behavior or reaction of
the system under test, [Obj13c]. However, they do not prescribe how a test case realizes
a test objective technically. Test objectives can be explicitly linked to test cases. They
should be specified before the actual test cases are constructed and executed. Later they
can ensure the traceability between requirements and test artifacts. The priority tag may
be used to specify the execution order of several test cases (scheduling).
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Figure 2.22: Test Management TestObjectiveSpecification stereotype

The test monitoring and control activity ensures that the testing process is performed
like it is defined by the test plans and models, [Obj13c]. UTP does not define any dedicated
concepts which support this test management activity explicitly, but the existing UTP
concepts can be leveraged.

Figure 2.23: Test Management test log stereotypes

UTP supports the test results analysis activity with three stereotypes, which are meant
to capture test results from test case executions (Figure 2.23). A test log is a fixed (im-
mutable) behavioral description resulting from the execution of a test case, [Obj13c]. It
contains several test steps, which can be any events of interest that happened during test
execution. For instance, a test log might be an interaction representing the executed op-
eration calls on the SUT. The test log may be automatically generated by a test execution
system. Test steps can be stereotyped with TestLogEntry, to enable a more precise analy-
sis of the corresponding test log. A constraint of TestLogEntry is that it is only allowed to
be applied on occurrence specifications which are visible to the test environment. Thus it
cannot be applied on occurrence specifications inside a SUT. Test logs can be associated
with test cases or test contexts by using a TestLogApplication.

2.5 Eclipse Modeling Project

The Eclipse Modeling Project (EMP, [EMP]) is a top–level project at Eclipse, [Gro09].
It focuses on the evolution and promotion of model–based development technologies within
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the Eclipse community by providing a unified set of modeling frameworks, tooling, and
standards implementations, [EMP]. EMP offers a wide variety of modeling technologies
grouped in the following sub–projects, [EMP]: Abstract Syntax Development, Concrete
Syntax Development, Model Development Tools, Model Transformation, Technology and
Research, and Amalgam. All technologies are licensed under the Eclipse Public License and
therefore open–source. Like most Eclipse projects, they are based on the Java platform.
The open–source nature of the EMP and the numerous tools build around or compatible
with the Eclipse Modeling Framework make it unique in the modeling world.

In the following subsections we discuss the Eclipse Modeling Framework, UML2, Xtext
and different model–to–text tools.

2.5.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF, [EMFb]) is the heart of the EMP ecosystem and
belongs to the Abstract Syntax Development project. EMF is essential for all other model-
ing techniques which are part of the EMP. It basically provides a meta–modeling language
called Ecore. Further, EMF includes code generation facilities to automatically generate
a Java implementation (API) of an Ecore model, a simple tree editor, and adapters for
editing and displaying generated model classes. The Java implementation is used to cre-
ate, serialize/deserialize and to manipulate models based on Ecore models. Per default,
models are serialized to XMI, which can be customized and replaced with other storage
formats.

Ecore models can be generated from various sources. EMF provides an extensible im-
port framework for creating Ecore models from different model formats, [SBPM08]. Im-
porters exist for instance for annotated Java code, Eclipse UML2 models, XML schemas
and Rational Rose. Rational Rose is supported, because it was used to bootstrap the
implementation of EMF. Of course, Ecore models can also be directly created. The Ecore-
Tools project ([Eco]) provides a graphical modeling editor, which makes it possible to
define a model like an UML class diagram.

Historically EMF was started by IBM to develop an implementation of MOF. But
the MOF model was very large and too complex, therefore they developed a drastically
simplified version of MOF named Ecore. Based on their work, OMG split MOF into
EMOF and Complete Meta Object Facility. Ecore and EMOF are quite similar, therefore
Ecore can read and write standard EMOF serializations, [EMFa]. EMF became an Eclipse
project in the year 2002, [SBPM08].

As stated above, Ecore is a meta–modeling language and resides on layer M3 (see
Subsection 2.2.3). Ecore is defined reflexively, so it can describe itself. Figure 2.24 shows
an overview of the main Ecore concepts. Note that this Figure does not represent the
actual Ecore implementation.

According to Brambilla et al. [BCW12], the main concepts are EClassifier including
EClass, EDataType and EEnum, as well EStructuralFeature including EReference and
EAttribute. Ecore has been developed with Java in mind, so all concepts seamlessly inte-
grate with it. EClass is similar to a Java class, it can have EAttributes, EReferences to
other EClasses and EOperations (not shown in Figure 2.24) for defining methods. Addi-
tionally EClasses can inherit from multiple other EClasses (eSuperTypes). An EClass can
be abstract and an interface. Note that an EClass has to be abstract if it is an interface.
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Figure 2.24: Ecore overview (based on [BCW12])

An EReference to an other EClass can be a containment, that means an EClass A owns a
referenced EClass B, otherwise EClass A just knows referenced EClass B. EReference can
also know an opposite EReference (eOpposite). For instance if EClass A owns an EClass
B, EClass B could know EClass A through an additional EReference. EMF would auto-
matically take care of such a relationship if marked as opposite. All EStructuralFeatures
have the multiplicity settings of ETypedElement in common. An EAttribute has to have
an eAttributeType of EDataType. EDataTypes are primitives like Integer or String. They
cannot have any attributes and represent data. Ecore already offers primitive Java types
and collections, like list or map, as EDataTypes. Custom EDataTypes have to map to an
existing Java class. In general, it is better to use EClasses for complex custom data types,
as EMF provides several benefits, e.g. serialization and notification. EEnum is a special
EDataType, where the possible values are restricted by the containing EEnumLiterals. It
behaves like a Java enum. An EClassifier can be part of an EPackage. EPackages group
such elements.

A more comprehensive explanation and overview of EMF can be found in [SBPM08].

2.5.2 UML2

The UML2 project ([MDTb]) is part of the Model Development Tools (MDT) project and
implements the OMG UML 2.x metamodel based on EMF. This project serves as the de
facto “reference implementation” of the specification and was developed in collaboration
with the specification itself, [Gro09]. The objectives of the UML2 project are to provide,
[MDTb]:

• a useable implementation of the UML metamodel to support the development of
modeling tools

• a common XMI schema to facilitate interchange of semantic models
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• test cases as a means of validating the specification

• validation rules as a means of defining and enforcing levels of compliance

UML2 only provides the metamodel, but does not provide any UML modeling tools.
MDT provides an UML modeling tool called Papyrus ([Pap]) for UML2. We use Papyrus
for the UML illustrations in this thesis.

Several commercial or open–source UML modeling tools can import/export UML2
compatible models. A list of these tools can be found at [MDTa]. Prominent commercial
tools which support UML2 are for instance Enterprise Architect, MagicDraw UML, and
IBM RSM/RSA. Note that the graphical representations of UML models can most of
the time not be interchanged between modeling tools. For instance, a diagram (concrete
syntax) drawn with Papyrus cannot be opened by Enterprise Architect, but the underlying
UML2 model (abstract syntax) is supported. In that case a user would have to create a
new diagram based on the model with Enterprise Architect. This is an issue which the
OMG tries to solve with the UML 2.5 specification.

2.5.3 Xtext

The Xtext project ([Xted]) is part of the Concrete Syntax Development project of the
EMP since 2008. It is a so called language workbench for designing textual languages,
ranging from DSLs to GPLs. Xtext is mainly developed by the Itemis AG, who offers
services and consulting around Xtext. Itemis AG is a Strategic Member of the Eclipse
Foundation and employs several Eclipse commiters of which some (in 2010 four commiters)
are working full time on Xtext, [ER10]. Companies like Google, IBM, BMW and many
others have built external and internal products based on Xtext, [EvdSV+13]. Concerning
the practical part we use an Xtext version based on version 2.

The first step to create a textual language with Xtext is to define the syntax with
Xtext’s grammar definition language. The grammar language is similar to EBNF, but
with additional features to achieve a similar expressivity as metamodeling languages such
as Ecore, [BCW12]. We discuss details of the grammar language when we present Ubtl in
the practical part. In general, a new Ecore model (layer M2) is derived from a specified
grammar, which describes the structure of its abstract syntax tree (AST), [Xtec]. Alter-
natively, it is possible to use an existing Ecore model to define a textual syntax for it.
This can be useful to provide an optional textual representation for an Ecore modeling
language which otherwise can only be represented graphically. In that case no additional
Ecore model is created and the framework operates on the existing one. The grammar
language also supports the reuse of already existing grammars. Further, an ANTLR v3
grammar is inferred from an Xtext grammar. Xtext leverages ANTLR v3 (ANother Tool
for Language Recognition) to generate a text–to–model parser written in Java. ANTLR
v3 relies on an LL(*) algorithm for generating the parser, [Bet13]. Additionally, Xtext
generates a model–to–text serializer. The Xtext framework seamlessly integrates these
components into the EMF environment. An Xtext model just looks like any other Ecore–
based model from the outside, making it amenable for the use by other EMF based tools,
[Xtec].

As mentioned above Xtext uses an Ecore model to represent a textual language in–
memory and this Ecore model represents the AST. Xtext generates a whole customizable
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compiler infrastructure to realize concepts like code generation/compilation, validation,
scoping or code formatting, which use the Ecore model to fulfill their task. All components
can be customized programmatically.

Additional to the compiler infrastructure Xtext generates, based on the grammar,
a customizable Eclipse IDE (Integrated Development Environment). The IDE supports
features like content assist, quick fixes, an outline view, a compare view, hyperlinking and
syntax coloring. For a user a custom Xtext IDE “feels” like the Eclipse Java IDE .

Xtext encourages language designers to test their languages. It provides several facili-
ties which make it easy to test an Xtext language with JUnit. It is even possible to test
the IDE with JUnit test cases.

Xtext keeps these three parts, compiler, IDE and JUnit test cases, logically separate in
three Eclipse plugins. The advantage of this is that a language compiler can be integrated
as a Java library within a normal Java program without any dependencies on the language
IDE or a running Eclipse instance.

The programming language of choice for customizing the generated infrastructure is
Xtend ([Xteb]). Xtend is a statically typed GPL. Syntactically and semantically it has
its roots in the Java programming language, but offers advanced features like lambda ex-
pressions (available in Java since version 8), operator overloading or template expressions,
[Xtea]. One of the goals of Xtend is to have a less “noisy” version of Java, [Bet13]. Xtend
is compiled to Java 5 compatible source code. Therefore it is 100% interoperable with
Java code and existing Java libraries, [Xtea]. Xtend itself is implemented in Xtext and it
is a proof of concept of how involved a language implemented in Xtext can be, [Bet13].
Alternatively the generated language infrastructure can still be customized by using the
Java programming language.

The Xtext framework and the generated classes are highly customizable because Xtext
relies on Google Guice. Google Guice ([Goo]) is a dependency injection framework for
Java 5 and above. Dependency injection is a software design pattern and makes it easy
to configure the dependencies between objects at runtime. In practice, this means that a
language designer can replace every part of Xtext with an own implementation. For more
information about Google Guice we kindly refer to the project homepage.

2.5.4 Model–to–Text Tools

In principle it is possible to develop a model–to–text generator in plain Java by using
the generated Java implementation of an Ecore model and the EMF libraries. According
to Brambilla et al. [BCW12], this approach has several drawbacks. Firstly, there is no
separation between static and dynamic code. Static code is generated for every element
the same way, e.g. package definitions or imports, while dynamic code is based on current
model information, e.g. class name or variable name. Secondly, the structure of a produced
code is embedded into the producing code, therefore it is complicated to grasp the final
output. Thirdly, a declarative query language is missing, which leads to a lot of type
casts, iterators, conditions or loops. Last but not least, the code for reading the input and
writing the produced output, has to be written over and over again.

These are reasons why languages dedicated to transform models to text (code) have
been developed. We present three such projects of the Eclipse open–source ecosystem.
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Xtend

As stated above in Subsection 2.5.3 Xtend is a GPL, which is compiled to the Java pro-
gramming language. Concerning model–to–text transformations, it offers a feature called
“template expressions”. Template expressions are multi–line strings, which can be param-
eterized. Additionally, conditions and loops are supported. A drawback is that reading
models and writing the output has to be manually programmed. Also the generated Java
implementation of a modeling language and EMF libraries have to be used. An interest-
ing feature is that white spaces are specially marked by the editor, therefore it is easy to
grasp the output structure. Xtend (starting with version 2) is the successor of Xpand, a
language purely dedicated to model–to–text transformations, [BCW12].

Epsilon Generation Language

The Epsilon Generation Language (EGL, [Eps]) is a template–based model–to–text lan-
guage with a textual syntax, developed by the University of York. It supports protected
areas (preserving hand–written code), formatting algorithms, traceability mechanisms and
cached operations. If a cached operation is called with the same arguments, the operation
is not processed a second time, instead a saved state is returned. It also has the ability to
create and call methods of Java objects. Because it is based on the Epsilon platform, it is
not limited to the EMF and can use other meta–modeling languages ([RPKP08]).

Acceleo

Acceleo ([Acc]) is a pragmatic implementation of the OMG standard MOF Model to Text
Transformation Language (MOFM2T, [Obj08]) for EMF. It is developed and mainly main-
tained by the company Obeo. It serves as reference implementation of the OMG standard
and offers some optional enhancements. Acceleo is part of the Model Transformation
project of the EMP. It is template–based and uses OCL for querying models. Like EGL
it supports protected areas, cached queries and traceability. If OCL is not enough for
calculating a result, it offers the ability to invoke Java code. Though a designer develops
Acceleo templates by using a standardized textual syntax, they are actually models based
on the metamodel described in the OMG standard. These models are used by an execution
engine to carry out transformations. Concerning integration into the Eclipse IDE, Acceleo
offers a customizable UI launcher for Acceleo projects.
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Chapter 3

UML Testing Profile Based
Testing Language

In principle, one can specify test cases with UML and UTP. In our opinion this has some
drawbacks. One is that a test engineer has to be trained how to use UML in order to
specify test cases. The reason is that UML is quite complex. Another one is that there
are several ways to specify the same thing in UML. That is a problem for code generators,
because a test engineer could specify constructs or classes which a generator simply does
not expect. A solution is that a test engineer has to follow written guidelines in order to
specify useful test cases, which makes it, in our opinion, impractical.

Due to that aforementioned drawbacks, we develop the UML Testing Profile Based
Testing Language (Ubtl), a textual DSL. With Ubtl the test platform designers can declare
types and components, which a code generator knows and transforms correctly. The
test engineer on the other side can use those declarations to define variables, runtime
components and test cases. Test cases specified with Ubtl are automatically transformed
to UML models, in conjunction with UTP, which can then be further processed. Ubtl offers
a concise textual syntax which is easier to learn than UML. It reduces the complexity of
UML. It is faster to specify test cases with Ubtl than with UML. Additionally, the Ubtl
code is automatically validated whether it contains errors or missing properties. Further,
the UML models are always generated in the same way from Ubtl code. That makes it
easy to process the UML models and to avoid ambiguousness. We also provide a powerful
IDE based on Eclipse for Ubtl.

In the following, we first discuss the applications of Ubtl, we identified. After that we
give a simplified overview of the Ubtl software architecture. Then we explain the textual
language elements of Ubtl. Next we show how the Ubtl compiler maps the resulting Ubtl
model to UML. We also present the changes to the generated IDE we made to make Ubtl
easier to use. Finally, we explain how we tested Ubtl.

3.1 Applications of Ubtl

Ubtl code is always compiled to UML models. We identify four applications of this ap-
proach:

Application one: Figure 3.1 illustrates the first application. A test engineer could spec-
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Figure 3.1: Ubtl application number 1 shows how a test engineer could use the Ubtl IDE
and different code generators

ify test cases with the Ubtl IDE inside Eclipse. After the Ubtl compiler generates
an UML model, a test engineer can manipulate this model with a compatible UML
tool when necessary. Further, a test engineer could trigger a code generator by using
the UML model. This can happen inside Eclipse or by leveraging an external tool
which is compatible to the UML2 project. In Subsection 2.5.4, we present three
projects of the Eclipse ecosystem, which can be used to build a code generator. The
generated test cases can then be used by the target test environment. These final
test cases can be written in any programming/testing language or format like XML.
In the last step the test engineer obtains the test results of the final test platform.
The benefit of this approach is, that the test engineer does not have to know how
the test cases have to look like on the test platform. It is easy to support another
test environment, because just a different generator has to be developed. Another
benefit is that the test cases do not have to be written for every platform over and
over again. Even when there is only one target platform, Ubtl might be useful. For
instance, when the platform expects an XML file as a test input, it may be easier to
specify it with Ubtl than with XML.
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Figure 3.2: Ubtl application number 2 illustrates how Ubtl could be leveraged by other
tools

Application two: Ubtl could be used by other tools (see Figure 3.2). For instance, a
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MBT tool could specify resulting test cases or test data in Ubtl. The advantage
of this is that a tool does not have to be aware of any dedicated platform except
Ubtl. It would be easy to add other test platforms, without changing the front tools,
because the corresponding generators work with the UML model. The Ubtl compiler
can be leveraged as Java library in such an automatic process.

Ubtl IDE or Compiler

Software model

Software model 
with test cases

Generators

Ubtl
(Textual DSL)

UML & UTP
transformation

Figure 3.3: Ubtl application number 3 shows how Ubtl could be used in conjunction with
existing models

Application three: Ubtl can be used in conjunction with models of software (see Figure
3.3). The test cases would be specified with Ubtl, while the resulting UML models
could be transformed to test cases part of the software model or specified in the
same modeling language like the model. The advantage can be that it is easier to
specify test cases with Ubtl. Also the generators for the model of the software could
be reused for the test cases. This variant could be especially useful for component–
based system engineering, where the interfaces of components are often modeled,
for instance with the EAST–ADL UML2 profile. It would be easy to merge test
cases and components, and to synthesize concrete code and test cases. Additionally
components could be configured for testing purposes.

Ubtl IDE or Compiler

Ubtl
(Textual DSL)

UML & UTP Interpreter

Figure 3.4: Ubtl application number 4 illustrates how an interpreter could use the resulting
UML test cases

Application four: The resulting UML models do not have to be used by code generators
(see Figure 3.4). An interpreter could use an UML model as input to stimulate test
components or SUTs.
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3.2 Software Architecture

We chose to develop Ubtl based on Java and Eclipse projects because of two reasons: The
UML2 project and the Xtext project.

The UML2 project offers an accurate open–source implementation of the UML speci-
fications. Further, UML2 models are supported by many tools, including commercial ones
(see Subsection 2.5.2). This makes it a viable target for Ubtl. The Xtext framework makes
it easy, compared to other approaches, to create a DSL compiler and a full–blown Eclipse
IDE. It is actively maintained and still new features are introduced which can make a
DSL or the corresponding IDE more powerful. For a detailed explanation of the Xtext
framework see Subsection 2.5.3.

Ubtl Compiler
 
Based on the Xtext framework

Parser, Linker

Ubtl Model

Serializer

Validator

Ubtl Generator

.ubtl

UML2 Java Libraries

.uml

Ubtl Grammar

Ubtl Ecore Metamodel

transformed to

utp.profile.uml
utptypes.uml
ubtl.uml

uses

Figure 3.5: Ubtl compiler architecture

Figure 3.5 shows a simplified view of the relevant components of the Ubtl compiler
architecture. The Ubtl grammar, specified with the Xtext grammar, is automatically
transformed to the Ubtl metamodel, parser, linker, and serializer. The parser and linker
are responsible for reading an Ubtl file and generating an Ubtl model. Internally only the
Ubtl model is used. The serializer is responsible for transforming an Ubtl model back to the
textual representation. The validator contains our restrictions of Ubtl. The Ubtl generator
is used to transform an Ubtl model to an UML model. We specified this transformation,
like all customizations, with the Xtend programming language. It leverages the UML2
project for this task. Additionally it uses the predefined UML models utp.profile.uml,
utptypes.uml, and ubtl.uml. All these compiler components seamlessly integrate into the
EMF environment and can be used separately. Concerning front software, an Ubtl model
can be constructed directly without a textual representation. The Ubtl IDE, which is
automatically generated by the Xtext framework and customized by us (see Section 3.5),
also leverages the compiler components. A difference is that the IDE uses a different parser
for the content assist, which is in that case faster.
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3.3 Textual Language Elements of Ubtl

Declarations:
-Interfaces
-SUT Types
-Test Component Types
-Primitive Types
-Array Types
-Record Types
-Test Contexts

Definitions:
-Components
-Variables
-Test Cases

-Statements

May declare types.

Test Platform Designer,
Maintainer

Test Engineer,
Front Software

declares defines
uses

Figure 3.6: Logical separation of the Ubtl language elements

Figure 3.6 gives an overview of the language elements and how we logically separate them.
On the left hand side we see the different available declarations which can be specified
by test platform designers or maintainers. These declarations are known beforehand by a
code generator in order to transform the definitions which we can see on the right hand
side. A test engineer or front software may specify those definitions and test cases. Such a
definition uses the corresponding declaration as type. Definitions are the elements which
interact at runtime. If code generators allow it, a test engineer may also declare types.
Declarations, definitions, and test cases have to be specified inside packages and can exist
side–by–side. Concerning the test logic embedded in test cases, following statements can be
used: full variable definition, assignment, method call, set verdict, assertion, loop, foreach
loop, if statement, and log statement. These statements interact with the component and
variable definitions.

In the following, we explain the language elements of Ubtl in detail. We also explain
details about the Xtext grammar when concepts occur for the first time in the grammar
fragments. 1

General Restriction

A general restriction of the following language elements is that they can only reference
elements specified in the code above them. One reason is that the Ubtl–to–UML generator
generates the UML models top down. A behavior which could be of course changed. The
more important one is that we cannot assume that every possible target platform supports
a situation where an element a references an element b, while element b references element
a. An exception of this restriction are packages at the top level.

Ubtl Model

Grammar

UbtlModel:
packages+=Package∗

;

1See Listing A.1 in the Appendix for the complete Ubtl grammar. We provide the predefined Xtext
terminals which we import for the Ubtl grammar in Listing A.2. Further we provide a syntax graph of the
Ubtl grammar in Figure A.1.
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In general, parser rules are mapped to EClasses. In the grammar above, an EClass
UbtlModel with the feature packages is created. The += operator is used to indicate that
packages is a list.

Description
As the name implies UbtlModel is the root element. An Ubtl file represents an instance
of UbtlModel with zero to infinite packages.

Semicolon

Grammar

Semicolon:
(";")?

;

Semicolon is just a string. Therefore it does not exist in the Ecore model.
Description
Ubtl allows, like many programming languages, to end an element or statement with a
semicolon. However it is just optional and can increase readability.

Package

Grammar

Package:
"package" name=ID "{"
imports+=PackageImport∗
content+=PackageElement∗

"}" Semicolon
;

PackageImport:
"import" package=[Package|QualifiedPackageName] Semicolon

;

QualifiedPackageName:
ID("."ID)∗

;

PackageElement:
Package | Declaration | ComponentDefinition | FullVariableDefinition | TestCase

;

Xtext allows specifying cross references inside the grammar. For instance, PackageIm-
port references packages. The text between the square brackets refers to an EClass as
type and not to the parser rule. This information is actually used by the linker. Quali-
fiedPackageName is a mask for accessing packages. By default the name feature is used
by cross references to find an instance of an EClass.
PackageElement is an EClass and the super type of the comprised elements.

Description
Every Ubtl element, except Package and of course UbtlModel, has to be contained inside
a package. It acts like a namespace and groups language elements. A package automat-
ically inherits the elements of a parent package, which are specified before that package
inside the parent package. It is possible to import other packages to access contained
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elements, which are then automatically added to the scope of the parent. Also, packages
of other Ubtl files can be imported.
PackageElement represents elements which can be directly specified inside a package.
A useful feature of the Xtext framework is the support of Eclipse plugins. Ubtl files
can be encapsulated in plugins. An Ubtl project can import such an Eclipse plugin and
access the contained packages seamlessly.

Restrictions
A package has to provide a unique name, depending on the package level it is located.
For instance, two packages named demo are not allowed to exist side by side, but a
package demo can contain a package demo (another level). This restriction is still true
when packages with the same name are specified in different files and are held by the
same Ubtl project or by imported plugins.
Import cycles are not allowed. For instance package a cannot import package b, while
package b imports package a.
It is not allowed to specify PackageElements with the same name inside a package.
Also they cannot have the same name like an imported or inherited element of another
package.
It is not possible to import packages which are specified after an importing package,
except it is a top level package. For instance in the example package b.c.d cannot
import package b.c.e, but could import package g. This is due to the general restriction
which is explained in the first subsection.

Example

package a {
package a {}

}

package b {
package c {
package d {
import a.a

}
package e {}
package f {
import g

}
}

}

package g {
import b.c.d
import a
import b.c.e

}

Declaration

Grammar

Declaration:
"declare" (ObjectDeclaration|TestContextDeclaration) Semicolon

;

ObjectDeclaration:
InterfaceDeclaration|ComponentDeclaration|VariableDeclaration
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;

ComponentDeclaration:
SutDeclaration|TestComponentDeclaration

;

VariableDeclaration:
PrimitiveDeclaration|RecordDeclaration|ArrayDeclaration

;

Description
The grammar above illustrates how we classify different types of declarations logically.
Every declaration is initiated by the keyword declare. Declarations are used to specify
types.
All declarations have in common that they expect a mandatory attribute named uml-
Name. This is due to the fact that the name of a declaration has to be an ID (imported
from the Xtext terminals) which does not support whitespaces or special characters, but
the names of UML elements (and in particulars classes) can be arbitrary. The umlName
has to be unique inside the corresponding package hierarchy, but can be the same if a
package is imported.
A declaration can reference itself.

Restrictions
An umlName cannot be empty.

Signature Declaration

Grammar

SignatureDeclaration:
"signature" name=ID "(" (parameters += ParameterDeclaration (","parameters +=

ParameterDeclaration)∗)? ")" (returnParameter=ReturnParameterDeclaration)?
;

ParameterDeclaration:
(parameterDirection=ParameterDirection)? name=ID ":" type=[ObjectDeclaration]

;

enum ParameterDirection:
IN="in" | INOUT="inout" | OUT="out"

;

ReturnParameterDeclaration returns ParameterDeclaration:
{ReturnParameterDeclaration}":" type=[ObjectDeclaration]

;

ParameterDirection is transformed to an EEnum in the resulting Ecore model.
The notation {ReturnParameterDeclaration} indicates that a ReturnParameterDecla-
ration instance must be created when the rule is accessed, while the returns keyword
specifies that it is assigned as ParameterDeclaration. Therefore ParameterDeclaration
is a super type of ReturnParameterDeclaration.

Description
Signatures are method definitions. Ubtl currently does not support the specification of
method bodies (see Chapter 6). The syntax of parameters is borrowed from UML.
We do support method overriding (or in that case signature overriding). For instance,
a test component could specify a signature doSomething(x : float32) and a signature
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doSomething(x : int32). In that case the types of the parameters have to be different.
The correct signature is chosen depending on the argument types.
It is also possible to specify an optional ParameterDirection. See the explanation of
the UML Class Diagram in Subsection 2.3.2 for more information about parameter
directions. Per default the parameter direction is in.
We support the use of component declarations as the type of a parameter. It is also
permitted to specify an interface declaration as type. In that case components realizing
an interface can be used as arguments.
Also the declaration specifying the signature can be used as parameter type.

Restrictions
Signatures can only be specified inside a sut, test component, and interface declaration.
We only allow one return parameter, because that is the case in many programming
languages. A return parameter cannot have a name.
It is not allowed to override a signature, when the difference is the type of the return
parameter.
The parameter name has to be unique inside a signature.

Attribute Declaration

Grammar

AttributeDeclaration:
(required?="required")? "attribute" name=ID ":" type=[ObjectDeclaration]

;

The ?= operator specifies that the corresponding feature is of the type EBoolean. In the
grammar above required is set to true, when the keyword is used.

Description
Like the name attribute declaration implies, it is possible to specify attributes. The
syntax is similar to the one used in UML. A feature is to mark an attribute as required.
Then component and variable definitions have to specify a corresponding property. Like
the types of parameters, all kind of object declarations are allowed. Again, it is permitted
to use the encapsulating declaration as type.

Restrictions
Attributes can only be specified inside a sut, test component, interface, and record
declaration.
The name of an attribute has to be unique inside the scope of an object declaration.
Component declarations realizing an interface cannot override attributes and a different
name has to be chosen.

Interface Declaration

Grammar

InterfaceDeclaration:
"interface" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&(features+=(SignatureDeclaration|AttributeDeclaration) Semicolon)∗
)

"}"
;
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The & operator is used to specify unordered groups. Each element may occur in any
order, but it must appear once except it is optional like features.

Description
Ubtl supports interfaces. These can be useful for test case generators, to indicate that a
component is of an expected type with predefined signatures and attributes. Another use
case is to specify commands for generators by using attributes. Component declarations
can realize zero to infinite interfaces. The relationship realizes is equivalent to the
implements statement in the Java programming language.

Restrictions
Interfaces cannot realize other interfaces. This may change in future Ubtl versions.
If a component declaration realizes several interfaces, the attributes have to be unique.
For instance it is not allowed to realize two interfaces at the same time if they specify
attributes with the same name. Signatures are not a problem, as we support signature
overriding.

Example

package interface_declaration_demo {
//We import primitives for attributes and signatures
import primitive_declaration_demo

declare interface Interface_A {
umlName = "Interface A"

attribute a: int32
attribute b: string
signature doSomething(inout a: Interface_A): int32
signature doSomething()

}

declare interface Generator_Directive {
umlName = "Code Generator Directive"

required attribute generateCodeStub: bool
}

declare interface Simple_Common_SUT_Type {
umlName = "Simple Common SUT Type"

signature doIt()
}

}

SUT Declaration

Grammar

SutDeclaration:
"sut" name=ID ("realizes" interfaceRealizations+=[InterfaceDeclaration]

(","interfaceRealizations+=[InterfaceDeclaration])∗)? "{"
( ("umlName""=" umlName=STRING Semicolon)
&(features+=(SignatureDeclaration|AttributeDeclaration) Semicolon)∗
)

"}"
;

Description
SUT declarations describe the attributes and signatures of SUTs. They represent the
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target components of a testcase. Note that a SUT not necessarily has to be a component
on the target test platform. A test case generator, which knows the SUT type, could
use any representation.

Example

package sut_declaration_demo {
/∗We import primitives and interfaces.
Primitives are imported by the interface_declaration_demo package.∗/

import interface_declaration_demo

declare sut SutA realizes
Generator_Directive, Interface_A, Simple_Common_SUT_Type {
umlName = "Sut A"

attribute c: float32
signature run(): bool

}

declare sut SutB {
umlName = "Sut B"

signature connectTo(i: SutA): bool
signature run(): bool
signature manipulate(in i: SutA): SutA

}

declare sut SutC realizes Simple_Common_SUT_Type {
umlName = "Sut C"

signature doSomething(in arg: int32)
}

}

Test Component Declaration

Grammar

TestComponentDeclaration:
"testcomponent" name=ID ("realizes" interfaceRealizations+=[InterfaceDeclaration]

(","interfaceRealizations+=[InterfaceDeclaration])∗)? "{"
( ("umlName""=" umlName=STRING Semicolon)
&(features+=(SignatureDeclaration|AttributeDeclaration) Semicolon)∗
)

"}"
;

Description
A test component declaration is similar to a SUT declaration, except they differ in the
resulting UML model. Test components can be used for helper methods. For instance,
a test component could add math methods. See Chapter 6 for our vision how test
components could allow the implementation of method bodies in future versions of Ubtl.

Example

package testcomponent_declaration_demo {
import sut_declaration_demo

declare testcomponent SUT_Resetter realizes Generator_Directive {
umlName = "SUT Resetter"

signature reset(i: SutB): bool
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signature reset(i: Simple_Common_SUT_Type): bool

//Not possible, because SutA realizes Simple_Common_SUT_Type
//signature reset(i: SutA): bool

}

declare testcomponent TestResultsManager realizes Generator_Directive {
umlName = "Test Results Manager"

signature sendTestResults()
}

}

Primitive Declaration

Grammar

PrimitiveDeclaration:
"primitive" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("referenceableOnlyOnce""="referenceableOnlyOnce=BooleanValue Semicolon)?
&("requireName""="requireName=BooleanValue Semicolon)?
&("acceptDataType""=" acceptDataType=(
"IntDataType"|"IntHexDataType"|"UIntDataType"|"UIntHexDataType"|
"HexDataType"|"StringDataType"|"FloatDataType"|"BooleanDataType") Semicolon)

)
"}"

;

Description
Primitive declarations are used to specify the primitive types int, unsigned int, hex,
string, float, and boolean.
The attribute referenceableOnlyOnce means that a variable of this type can only be used
by one other variable once. This is useful for test platforms where properties of compo-
nents or variables are directly set and cannot reference other variables. Otherwise if two
variables reference a variable a and variable a is used in a test case it is not identifiable
to which container variable it belongs. When variable a can only be referenced by a
single variable, a test case generator can determine if it belongs to a container variable.
If requireName is set to true, then the name for a corresponding primitive variable always
has to be specified, even when it is defined inline for instance inside a record or array.
The default value of the two boolean attributes is false.

Restrictions
The length of the data of a primitive variable can be infinite. This is not adjustable in
the current version of Ubtl (see Chapter 6).

Example

package primitive_declaration_demo {
declare primitive int32 {
umlName = "Int32"
acceptDataType = IntHexDataType
referenceableOnlyOnce = true

}

declare primitive uint8 {
umlName = "UInt8"
acceptDataType = UIntHexDataType
requireName = true
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}

declare primitive float32 {
requireName = true
acceptDataType = FloatDataType
referenceableOnlyOnce = true
umlName = "Float32"

}

declare primitive string {
umlName = "String"
acceptDataType = StringDataType

}

declare primitive bool {
umlName = "Bool"
acceptDataType = BooleanDataType

}
}

Array Declaration

Grammar

ArrayDeclaration:
"array" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("referenceableOnlyOnce""="referenceableOnlyOnce=BooleanValue Semicolon)?
&(types=AcceptTypes Semicolon)
&("oneReferenceMultipleTimes""="oneReferenceMultipleTimes=BooleanValue Semicolon)?
&("requireNameOfPrimitiveVariables""="requireNameOfPrimitiveVariables=BooleanValue

Semicolon)?
)

"}"
;

AcceptTypes:
"acceptTypes""=" (acceptTypes=ObjectTypeSet|acceptArray?="array"|
acceptRecord?="record"|acceptPrimitive?="primitive"|acceptVariable?="variable")

;

ObjectTypeSet:
objectTypeSet+=[ObjectDeclaration] (","objectTypeSet+=[ObjectDeclaration])∗

;

Description
Arrays behave like arrays known from different programming languages. An array offers
the method get(...) to access contained elements.
The attribute referenceableOnlyOnce behaves like the same attribute specified by prim-
itive declarations.
The attribute oneReferenceMultipleTimes manages if a variable or component can be
referenced inside an array multiple times.
If requireNameOfPrimitiveVariables is set to true, an array expects names for inline
specified primitives.
An array can be set to accept several objects of specific types. It is also possible to
specify that an array accepts whole declaration categories, like array, record, primitive
or variable. If variable is chosen, then an array allows to reference all kind of variable
definitions.
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Restrictions
A restriction is that an array can only accept one component or interface declaration.
However, as it is possible to use an interface declaration, different kinds of derived
components can be used. We do not support several component or interface declarations
in an array, because in a foreach loop the control variable would have an undefined type.
Ubtl does not support undefined types.
Variable declarations cannot be mixed with component or interface declarations.

Example

package array_declaration_demo {
import testcomponent_declaration_demo

declare array ArrayA {
umlName= "Array A"
acceptTypes = Simple_Common_SUT_Type
oneReferenceMultipleTimes = true

}

declare array ArrayB {
umlName= "Array B"
acceptTypes = primitive
requireNameOfPrimitiveVariables = true
referenceableOnlyOnce = false // Optional, by default it is already false

}
}

Record Declaration

Grammar

RecordDeclaration:
"record" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("referenceableOnlyOnce""="referenceableOnlyOnce=BooleanValue Semicolon)?
&(attributes+=AttributeDeclaration Semicolon)∗
)

"}"
;

Description
Record declarations are used to describe a data structure which holds several member
values.
Like the other variable types, it offers the feature referenceableOnlyOnce.

Restrictions
If a record declaration does not define any attributes, a warning is shown to the user. It
is still a valid declaration.

Example

package record_declaration_demo {
import array_declaration_demo

declare record RecordA {
umlName = "Record A"
attribute arbitrarySut: Simple_Common_SUT_Type
required attribute a: int32
attribute b: ArrayA
attribute c: SutB

}
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declare record RecordB {
umlName = "Record B"
attribute a: RecordA
referenceableOnlyOnce = true

}
}

Test Context Declaration

Grammar

TestContextDeclaration:
"testcontext" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("disableVariableDefinition""="disableVariableDefinition=BooleanValue Semicolon)?
&("disableLoop""="disableLoop=BooleanValue Semicolon)?
&("disableSetVerdict""="disableSetVerdict=BooleanValue Semicolon)?
&("disableAssignment""="disableAssignment=BooleanValue Semicolon)?
&("disableAssertion""="disableAssertion=BooleanValue Semicolon)?
&("disableForEachLoop""="disableForEachLoop=BooleanValue Semicolon)?
&("disableTimer""="disableTimer=BooleanValue Semicolon)?
&("disableIf""="disableIf=BooleanValue Semicolon)?
&("disableIfComplexCondition""="disableIfComplexCondition=BooleanValue Semicolon)?
&("disableIfOr""="disableIfOr=BooleanValue Semicolon)?
&("disableIfAnd""="disableIfAnd=BooleanValue Semicolon)?
&("disableIfEquality""="disableIfEquality=BooleanValue Semicolon)?
&("disableIfComparison""="disableIfComparison=BooleanValue Semicolon)?
&("disableIfNot""="disableIfNot=BooleanValue Semicolon)?
&("disableLog""="disableLog=BooleanValue Semicolon)?
)

"}"
;

Description
Test contexts are mandatory for test cases. They allow to disable specific Ubtl language
statements inside a test case. This can be useful when a target test platform does not
support an Ubtl feature. By default, everything is allowed inside a test case.
The name of a test context is separate to the names of other declarations or definitions.
For instance, a sut declaration named demo can exist side by side with a test context
named demo.

Example

package test_context_declaration_demo {
declare testcontext context {
umlName = "Context"

}

declare testcontext context0 {
umlName = "Context 0"

disableIf = true
disableLoop = true
disableAssignment = true

}
}
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Definition

Grammar

ObjectDefinition:
ComponentDefinition|FullVariableDefinition|DataDefinitionElement|ForEachVariableDefinition

;

Description
Definitions are instances of declarations. These are the objects which interact and are
used at runtime.

Property Definition

Grammar

PropertyDefinition:
name=ID "=" dataDefinition=DataDefinition

;

PrimitivePropertyDefinition returns PropertyDefinition:
{PrimitivePropertyDefinition}name="value" "=" dataDefinition=DataDefinition

;

ArrayPropertyDefinition returns PropertyDefinition:
{ArrayPropertyDefinition}name="content" "=" dataDefinition=DataDefinition

;

DataDefinition:
(data=Data)|(elements+=DataDefinitionElement ("," elements+=DataDefinitionElement)∗)

;

DataDefinitionElement:
variableOrValueType=[ObjectOrPrimitiveDeclaration] ((name=ID)? data=Data)?

;

Data:
(sign?="−")? (int=IntString| hex=HexString| string=STRING| float=FloatString|

boolean=BooleanString)
;

Description
A property realizes an attribute. If the type of an attribute is a primitive or array
declaration, then the values can be defined inline without using an extra primitive or
array. We also provide special properties for variables which realize primitives or arrays
(PrimitivePropertyDefinition, ArrayPropertyDefinition).

Restrictions
Only one property can realize a corresponding attribute.

Component Definition

Grammar

ComponentDefinition:
"comp" ((type=[ComponentDeclaration])|(timer?="timer")) name=ID ("{"
(properties+=PropertyDefinition Semicolon)∗

"}")? Semicolon
;
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Description
Component definitions specify instances of component declarations or the built in type
timer . The keyword to start a component definition is comp.
A timer offers two methods, start(expire: duration) and stop(), which correspond to the
timer interface specified by UTP. It does not offer any attributes to specify.

Restrictions
Components cannot be defined inside a test case.

Example

package component_definition_demo {
import sut_declaration_demo
import testcomponent_declaration_demo

comp SutA sut0 {
generateCodeStub = false // required due interface Generator_Directive
a = 0
b = "test"
c = 2.0

}

comp SutA sut1 {
generateCodeStub = true
a = int32 22
b = string optionalVariableName "demo"

}

comp SutB sut2 // no properties

comp SutC sut3

comp SUT_Resetter resetter {
generateCodeStub = true

}

comp TestResultsManager resultsManager {
generateCodeStub = false

}

comp timer t0
comp timer t1

}

Full Variable Definition

Grammar

FullVariableDefinition:
"var" ((type=[VariableDeclaration])|(duration?="duration")) name=ID
( (bigDefinition?="{"

(properties+=(PropertyDefinition| PrimitivePropertyDefinition| ArrayPropertyDefinition)
Semicolon)∗

"}")
|(smallDefinition?="=" dataDefinition=DataDefinition)

) Semicolon
;

Description
Full variable definitions can specify all different variable declaration types.
We provide two different concepts how the data of a variable can be specified. One
concept is to define the data by using a big definition. A big definition specifies prop-
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erties of variables. This concept has to be used when the type of a variable is a record
declaration. We also provide two properties for primitive and array declarations. The
other concept, called small definition, can only be used in conjunction with primitive or
array declarations. The small definition eases the task of defining such declarations.
We also provide a built in type called duration. Duration variables have to be used for
the start() method of timers.
Variables can be defined inside a test case. In that case the variable is not accessible
outside the test case.

Example

package full_variable_definition_demo {
import primitive_declaration_demo
import array_declaration_demo
import record_declaration_demo
import component_definition_demo

var int32 int0 = −20 // small definition

var float32 float0 { //big definition
value = 4.2

}

var bool bool0 = true

var string string0 = "Demo String!"

var ArrayA array0 = sut0, sut1, sut3, sut0 // different component declarations, but same
interface

var ArrayB array1 = int0, int32 a 2, int32 b −2, int32 c 10000

var ArrayB array2 {
content = float0, bool0, float32 a 2.2, string b "fff", int32 c −20000
/∗ If the following would be added to the array it would cause an error
∗ when a variable referencing int0 would be used inside a test case.
∗ The reason is that int32 can only be referenced once and
∗ array1 already references int0.
∗ It would work if array1 does not use int0 or if array1 would be
∗ specified inside a package which is not imported by this one.
∗/
// , int0

}

var RecordA record0 {
a = 0xff // required
b = array0
c = sut2

}

var RecordA record1 {
a = int32 a 0
b = sut0, sut1, sut3 //inline array

}

var RecordB record2 {
a = record0

}

var duration d0 = 20
var duration d1 = 40

}
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Testcase

Grammar

TestCase:
"testcase" testContext=[TestContextDeclaration] name=ID
block=Block

;

Description
Test cases need a test context as argument. See Section 3.4 for an explanation why this
is necessary.
The test case logic is specified inside the block.

Example

package testcase_demo {
import test_context_declaration_demo

testcase context case0 {
}

testcase context case1 {
}

}

Abstract Block

Grammar

AbstractBlock:
Block|OneStatementBlock

;

Block:
{Block}"{" (statements += Statement )∗ "}" Semicolon

;

OneStatementBlock:
statements += Statement

;

Description
Blocks serve as body of test cases, if statements, loops, and foreach loops.

Statement

Grammar

Statement:
FullVariableDefinition|
Loop|
SetVerdict|
AssignmentOrCall|
Assertion|
ForEachLoop|
IfStatement|
LogStatement

;
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Description
Statements are used inside a block. They specify the test case logic.

Object Reference

ObjectReference:
object=[ReferenceableObject] (features+=ReferenceFeature)∗ (methodCall?="("

(arguments+=Argument("," arguments+=Argument)∗)? ")")?
;

ReferenceFeature:
"." ((feature=ID)| get?="get""("(getElement=[DataDefinitionElement]|getPosition=INT)")")

;

Argument:
{Argument} ((reference=ObjectReference)|(data=Data))

;

Description
Object references enable to access components and variables.
A difference to most programming languages is that object reference operates on the
data actually defined. For instance, in the Java programming language it is possible to
access the attribute of an object even when it is null and the data is not defined. In Ubtl
one has to define a property of the corresponding attribute, specify the data and then it
can be accessed. Therefore, in Ubtl it is not possible to access values inside the structure
of the return parameter of a signature, because it is not defined. This limitation comes
from the nature of the UML model.
We also defined a special feature called get to access elements inside an array. An element
may be accessed by the position or by the name, if it is a primitive with a name specified
inline.
Arguments are used by method calls, assignments, assertions and if statements. We also
allow the definition of primitive variables inline as arguments.

Restrictions
Only objects defined above an object reference can be referred to.
The methodCall part of an object reference can only be used in the following rule.

Assignment and Method Call

Grammar

AssignmentOrCall:
reference=ObjectReference (assignment?="=" assignmentArgument=Argument)? Semicolon

;

Description
Assignments and method calls have the same parse rule, because both start with an
object reference. Otherwise the parser could not decide with which rule it is dealing
with.
An object reference, which is not a method call and not used in an assignment is ignored
by the Ubtl–to–UML generator.
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The return parameter of a method call can be assigned to a variable, component or
property. In that case the related object references still operate on the properties of
the existing variable or component. We assume that target platforms implement a real
assignment.

Restrictions
An argument cannot be assigned to the definition of a variable. In that case a variable
has to be defined first and then values can be assigned to it.
Different declarations cannot be used in assignments. Both parts have to be of the
same declaration. An exception to this rule is of course when a method call returns an
interface and the target component implements that interface.
In an assignment, the left reference has to be a primitive variable, with the exception
that the return of a method is stored in it. We implemented this restriction to prevent
mistakes like arrays of different size or undefined properties, which should not be accessed
in the following Ubtl code.
Duration variables cannot be used in assignments and only in method calls where the
target is the start() method of a timer.
Timer definitions cannot be assigned.

Example

package assignment_and_method_call_demo {
import test_context_declaration_demo
import full_variable_definition_demo
import component_definition_demo

testcase context case0 {
t0.start(25) // inline definition of a duration
var float32 localVariable = 2.2
localVariable = record2.a.b.get(0).c // equals sut0.c
var bool ret = false
ret = resetter.reset(sut1)
/∗ We always assume the target test platform handles the case
∗ when the statements between start and stop take longer. ∗/
t0.stop()

}

testcase context case1 {
sut0 = sut2.manipulate(sut0)
var int32 localVariable = 42
sut3.doSomething(localVariable)
sut3.doSomething(0xffa)

}
}

Set Verdict

Grammar

SetVerdict:
"setVerdict" "(" verdict=Verdict ")" Semicolon

;

enum Verdict:
NONE="none"|PASS="pass"|INCONCLUSIVE="inconclusive"|FAIL="fail"|ERROR="error"

;
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Description
As the name implies, a set verdict statement is used to manipulate the verdict of a test
case. We support the same verdicts like UTP.

Example

package set_verdict_demo {
import test_context_declaration_demo

testcase context case0 {
setVerdict(none)
setVerdict(pass)
setVerdict(inconclusive)
setVerdict(fail)
setVerdict(error)

}
}

Assertion

Grammar

Assertion:
"assert""("leftArgument=Argument assertionType=AssertionType rightArgument=Argument")"

Semicolon
;

enum AssertionType:
EQUAL="==" | GREATERTHAN=">" | LOWERTHAN="<" | GREATERTHANOREQUALTO=">="|
LOWERTHANOREQUALTO="<=" | NOTEQUAL="!="

;

Description
Ubtl comes with a built–in assertion statement. Assertions only work for primitive
variables.

Restrictions
Only primitives which use the same declaration can be compared.
At least one primitive variable has to be used, in order to determine the type. The other
argument can be data, if the primitive does not require a name.
Concerning records, arrays, and components, all values have to be compared individually.

Example

package assertion_demo{
import test_context_declaration_demo
import full_variable_definition_demo
import component_definition_demo

testcase context case0 {
assert(float0 == array0.get(0).c)
assert(1 < int0)
assert(record1.b.get(0).b != "Test")
var float32 float1 = 0.0
assert(sut0.c > float1) // Float32 requires a name

}
}
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Loop

Grammar

Loop:
"loop" "(" iterations=INT ")" block=AbstractBlock

;

Description
Loop is used to repeat a sequence of statements for a defined limit of iterations.

Example

package loop_demo {
import test_context_declaration_demo
import component_definition_demo

testcase context case0 {
loop(200)
sut0.run()

loop(50) {
sut1.doSomething(sut0)
assert(sut1.a < 100)

}
}

}

Foreach Loop

Grammar

ForEachLoop:
"foreach""("definitions+=ForEachVariableDefinition(","

definitions+=ForEachVariableDefinition)∗")"
block=AbstractBlock

;

ForEachVariableDefinition:
name=ID ":" reference=ObjectReference

;

Description
Foreach loops are used to iterate through one or several arrays. For instance, this can be
useful to call a method with different input data. Another use case is to check whether
results stored in an array are inside an expected range.

Restrictions
Arrays have to be of the same size.
The elements inside an array have to be of the same declaration type. In the case when
the type of an array is an interface, the components must implement the same interface.
Properties and methods of control variables are not accessible. Concerning properties
this is because the control variable does not hold any data in UML. Methods are not
callable because the control variable only exists as instance specification in UML and is
not a property of the enclosing test context.
For the same reason, it is not allowed to use a foreach control variable as a reference in
another foreach loop.
The name of a control variable must be unique inside a test case.



64 CHAPTER 3. UML TESTING PROFILE BASED TESTING LANGUAGE

Example

package foreach_demo {
import test_context_declaration_demo
import full_variable_definition_demo
import component_definition_demo

testcase context case0 {
foreach(x: array0, y: array1) { // Arrays have same size

resetter.reset(x)
assert(y > 0)

}
}

}

If Statement

Grammar

IfStatement:
"if" "("condition=Condition")" thenBlock=AbstractBlock
(=> "else" elseBlock=AbstractBlock)?

;

Condition:
Or

;

Or returns Condition:
And ({Or.left=current} "||" right=And)∗

;

And returns Condition:
Equality ({And.left=current} "&&" right=Equality)∗

;

Equality returns Condition:
Comparison (
{Equality.left=current} op=("=="|"!=")
right=Comparison

)∗
;

Comparison returns Condition:
Primary (
{Comparison.left=current} op=(">="|"<="|">"|"<")
right=Primary

)∗
;

Primary returns Condition:
"(" Condition ")" |
{Not} "!" "("condition=Condition")" |
Atomic

;

Atomic returns Condition:
{Atomic} argument=Argument

;

The => operator indicates, in the grammar above, that the first else the parser encoun-
ters belongs to the nearest if. Otherwise a parser could not decide to which if an else
belongs when several ifs are nested. This is also known as dangling else problem.
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The notation {Or.left=current} above is a tree rewrite operation. In that case a new
instance of the EClass Or is created and the current element to–be–returned is assigned
to the feature left.

Description
The grammar above illustrates how the if condition is split up into a parse tree. Or has
the least precedence while Primary the highest. Atomics just hold arguments. We were
inspired to implement the if condition in that way by the work of Bettini [Bet13].
Like in an assertion, it is possible to directly specify data, when the other part is a
primitive variable.

Restrictions
We only support the use of primitive variables for if conditions.
Though the grammar would allow it, we do not allow that a primitive variable can be
used without a comparison or equality rule. This was a design decision. Many target
platforms would probably allow it, but to be on the safe side, we restricted that for
instance a single boolean represents a condition.
Or and And can only be used to associate sub conditions and not atomics

Example

package if_demo {
import test_context_declaration_demo
import full_variable_definition_demo
import component_definition_demo

testcase context case0 {
if(int0 <= 2 && !(record0.b.get(0).b == "test" || sut0.c != float0))
setVerdict(pass)

else
setVerdict(fail)

//if(bool0) // not allowed
//{}
if(bool0 == true) // allowed
{
if(sut0.b != string0) {}

}
}

}

Log Statement

Grammar

LogStatement:
"log" "(" information=STRING ")" Semicolon

;

Description
The log statement may be used to send string messages to the test platform.

Example

package log_demo {
import test_context_declaration_demo

testcase context case0 {
log("Start!")
// ...
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log("Finish!")
}

}

Data Rules

Grammar

IntString returns ecore::EString:
INT

;

HexString returns ecore::EString:
HEX

;

FloatString returns ecore::EString:
IntString"."IntString

;

BooleanString returns ecore::EString:
"false"|"true"

;

BooleanValue returns ecore::EBoolean:
"false"|"true"

;

terminal HEX:
("0x"|"0X") ("A".."F"|"a".."f"|"0".."9")+

;

All rules above return an EDataType and are not mapped to EClasses.
Terminal rules, like HEX, are used by the lexer to generate tokens.

Description
We use the rules above to specify data. We always store data values as strings.
BooleanValue is only used by declarations to specify the settings.
Note that the rules for ID, INT, and STRING, can be found in Listing A.2

3.4 Mapping to UML

In general, UML models are only generated when an Ubtl file (in fact a UbtlModel) contains
at least one package with a test case. In that case all other packages which are related
to the test cases package, through imports or hierarchy, are also generated. We have
to generate all packages for each file in a separated way, because UML2 uses UUIDs to
access elements. These UUIDs are always set randomly when UML models are generated.
In our case, that means the packages generated for one file are not compatible with the
same generated packages used by another file. This is not a problem for code generators,
because they usually operate on the names of stereotypes or classes inside a UML model.
Generated packages are stored in different directories. The directory name is the same of
the corresponding file, without the .ubtl file ending.

We do not generate graphical diagrams (see Subsection 2.5.2). The following figures
are made by hand for explanation purposes.
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Package

All Ubtl packages are mapped to UML packages and the defined imports remain. We
store each top level package in a separate UML file as UML model. Figure 3.7 illustrates
a top level package with the default imports. An access dependency represents a private
import. The UTP Types package is in detail explained in Subsection 2.4.1. Concerning
the UBTL package, we discuss details of it in the following explanations. The Primitive
Types package is predefined by UML and provides primitives like String and Integer. We
use that package for the definition of data. Additional to these imported packages, UTP
is applied on the top level package in order to use the stereotypes.

Figure 3.7: Top level package with default imports

Component and Variable Declarations

Figure 3.8: Ubtl types interfaces

Component and variable declarations are transformed to UML classes which are con-
tained inside the corresponding UML package. Figure 3.8 illustrates the type interfaces,
part of the UBTL package, that are realized by component and variable classes.

Component declarations realize the Component interface, except a declaration realizes
an interface. In that case the interface generalizes from Component. The stereotype
TestComponent is applied on test component classes. Signatures are transformed to UML
operations with the same parameters and return type. The return parameter is named
return.
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Variable declarations realize the corresponding interfaces. The Array and Primitive
interface already provide the attributes which are implemented by their realizations.

When an Ubtl attribute is marked as required, the corresponding UML attribute has
the multiplicity one. Otherwise an attribute is optional (multiplicity zero to one).

We annotate the declaration classes with metadata of Ubtl. Metadata is added as
comment. It includes the name of a declaration in Ubtl and the different settings. In
theory it should be possible to transform declaration classes back to Ubtl declarations.

Definitions

Component and variable definitions are always transformed to instance specifications. We
use instance specifications to specify data. Data itself is stored as string. Instances are
used as arguments for operations or represent the initial state of a component. They are
contained in a child package named #InstanceSpecifications. A package in Ubtl cannot
have an ID starting with a number sign, therefore no name collisions are possible.

Component Definition

When a signature of a component definition is called in a test case, then the component
becomes part of the corresponding test context class as property. The default value of the
property refers to the instance specification. If the type of a component definition is a
SUT declaration, then the property is marked with the stereotype SUT.

Variable Definition

Variable definitions only exist as instance specifications. The elements contained in an
array are stored in a separate child package to avoid name collisions with other existing
variables.

When the name of a variable definition is unspecified, for instance when it is defined
inline, an UUID is generated as name. We mark such instance specifications with a special
comment. An exception to this rule are primitives or arrays specified inline as property.
In that case the name of the instance specification is a combination of the parent instance
name and the property name, separated by a number sign.

Duration variables are also mapped to instance specifications. The difference to other
variables is that the instance name is a combination of the variable name and the value,
separated with an equal sign. The reason for this is that the UTP type Duration is a
UML primitive type and does not specify any properties for embedding values.

In the case a variable is defined inside a test case, a call operation action is added to
the test case interaction, to indicate to a test platform where a variable is defined first.
We suggest that variables which are specified outside of a test case should be initialized
at the beginning of a test case. The call operation action is encapsulated in an action
execution specification, that is located on the self lifeline. The call operation action refers
to the initialize operation of the UBTLVariableInitializer class, illustrated in Figure 3.9.
This class is part of the UBTL package. The name of the action is initializeVariable. Such
an instance specification is stored in a child package of the instance specifications package.
The name of this package is a combination of the number sign and the test case name.
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Figure 3.9: UBTLVariableInitializer

Testcase

Test cases are added as UML operations to the corresponding test contexts which are
specified as parameter of Ubtl test cases. The test context class is always created on the
same package level like the test cases. Therefore, test cases with the same test context,
but located in different packages, do not share the same test context class. The name of
the test context class is the umlName of the Ubtl test context. It is possible to specify
several test cases with different test contexts inside a package. That case would result in
several test context classes inside an UML package. We save the settings and the Ubtl
name of a test context as comment in the package it is declared. Figure 3.10 illustrates
an example test context class. Components where a method is called in a test case are
added as properties to the test context. Components of the Ubtl type SUT are marked
with the UTP stereotype SUT. Test case operations are marked with the corresponding
stereotype. We also specify that an operation returns a verdict. This is specified by UTP
to be mandatory. We suppose that the target test platform implements the logic how a
verdict is assigned. Test context classes are the starting point for code generators.

Figure 3.10: Test context class example

Further, a test case is transformed to an interaction which could be drawn as Sequence
Diagram. The interaction is part of the test context class. The method feature of the test
case operation references the interaction. Ubtl statements of a test case are transformed
to messages or call operation actions. We use call operation actions to call operations on
predefined classes, like UbtlVariableInitializer in the subsection above. The arguments of
call operations actions are set as value pins and usually reference instance specifications.
Messages and operation calls are referenced by occurrence and execution specifications
which define the sequence an interaction is processed. By default an interaction owns a
lifeline called self which represents the test context class. All call operation actions are
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covered, encapsulated in an action execution specification, by the self lifeline. Messages
are referenced by message occurrence specifications and always go from the self lifeline to
component lifelines.

Object Reference

The information about the object reference itself is lost when Ubtl code is transformed
to UML models. The UML generator uses directly the target variable or component. For
instance when an element of an array is used as method argument, then the target instance
specification, representing the element, is leveraged as argument and not the array. For
some test platforms which do not manage data object–oriented it may be necessary to
activate the feature referenceableOnlyOnce of variable declarations. Then a user of Ubtl
is restricted to not reference it more than once and a code generator can decide whether
an instance specification is used by another one. EMF offers methods to ease this task.

Assignment

Assignments are transformed to call operation actions which target the setValue operation
of the class UBTLValueSetter. The name of the action is setValue. Figure 3.11 illustrates
this class, that is part of the UBTL package.

Figure 3.11: UBTLValueSetter

Method Call

The target component of a method call is added to the test context class. Inside the
interaction a lifeline is created which represents the component. The method call itself
is specified as message, referenced by message occurrence specifications. In the case the
return parameter of an operation is assigned to a variable or component, then the tar-
get instance specification, representing the variable or component, is used by the return
message as argument. Figure 3.12 illustrates a small example.

In the case the method of a timer is called, it is mapped to a call operation action
like it is specified by UTP. Figure 3.13 shows the target class which realizes the Timer
interface and is part of the UBTL package. The name of the call operation actions are
startTimer and stopTimer.

Set Verdict

The set verdict statement is transformed according to UTP. It results in a call operation
action, tagged with the stereotype ValidationAction and the name setVerdict. The target
operation setVerdict is part of the class UBTLArbiter (Figure 3.14). This class is part of
the UBTL package. We assume the target test platform processes the verdicts.
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Figure 3.12: Method call example

Figure 3.13: UBTLTimer

Assertion

Assertions are transformed to call operation actions which target corresponding operations
of the class UBTLAssert (Figure 3.15). The name of the action is assert.

Loop

Loops are transformed to combined fragments with the name loop. The interaction op-
erator is set to Loop. Concerning the guard, the minimum iteration is set to the feature
iterations of the Ubtl loop statement, while the specification is set to false. These are the
semantics of a loop according to the UML Superstructure specification [Obj11b].

Foreach Loop

UML does not provide a dedicated concept or semantics to represent foreach loops. We
leverage the combined fragment in conjunction with the interaction operator Loop. The
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Figure 3.14: UBTLArbiter

Figure 3.15: UBTLAssert

combined fragment is named foreach. The minimum number of iterations is set with the
size of the used arrays. The specification of the guard owns references to the instance
specifications of the foreach variables and arrays as operands. The instance specifications
are ordered in the way that the first operand refers to the foreach variable, while the
second one refers to the array. Figure 3.16 illustrates an example foreach loop.

Figure 3.16: Foreach example
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If Statement

An if statement is mapped to a combined fragment with the interaction operator alt.
Alternative fragments are the UML version of ifs. Figure 3.17 illustrates an example, like
it is generated by the Ubtl compiler. If conditions are mapped to expressions with the same
structure like the Ubtl parse tree. We use the symbol feature of expression to indicate what
operator is used or whether it is an atomic. Atomic expressions reference the corresponding
instance specifications. The parent expression is referenced by the specification feature of
the combined fragment guard. The name of the combined fragment is if.

Figure 3.17: If example

Log Statement

Log statements are transformed like it is specified by the UTP specification. It is repre-
sented as send object action, tagged with the stereotype LogAction. The name of the action
is log. The request pin of this action holds the information feature which is represented
just as literal string.
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3.5 Customizations of the generated IDE

The Xtext framework automatically generates a useful IDE for Eclipse. In the following
list we enumerate changes and additions to the Ubtl IDE:

• We customized the content assist. Though the default one is already very good, we
had to do this especially for Data proposals. The customized content assist proposes
the correct data type depending on the context. For instance if a variable expects a
float value, the content assist proposes 0.0 (Figure 3.18a). We adjusted the feature
proposal of ObjectReference. Only possible calls of features like methods, properties,
or the array method get() are displayed (Figure 3.18b). Further we customized
the proposal of properties. Depending whether a property is already defined in a
component or variable, the remaining available properties are shown (Figure 3.18c).
For arrays and primitive variables the properties content or value are proposed. We
also did a few minor customizations like the styling of the displayed strings, the
proposal of arguments, and the proposal of possible components and variables for
an assignment or method call.

(a) (b)

(c)

Figure 3.18: Ubtl content assist examples

• We added hover support. This is an optional feature of Xtext. If a user moves the
mouse over a reference of a declaration or definition, a pop–up is displayed which
illustrates attributes, settings, signatures and the umlName. Figure 3.19 illustrates
two examples.

• We adjusted the outline view to only display PackageElements. Figure 3.20 shows
the outline view with example content. If a user clicks on one of the displayed
elements, then the editor jumps directly to it inside the code.
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(a) (b)

Figure 3.19: Ubtl hover examples

Figure 3.20: Ubtl outline view

• We added custom images and labels for all language elements. The images and labels
are used by the outline view, while the content assist only uses the images.

• We provide a custom formatter. This feature is actually part of the compiler. Thus
Ubtl code can be also formatted without the IDE and Eclipse.

• We provide wizards for the creation of Ubtl projects and Ubtl files. The project
wizard is an optional feature of the Xtext framework and we customized it for Ubtl.

• We designed a custom icon for Ubtl files.

• By default an Ubtl file is compiled to UML when a user saves it. To ease the task
of compiling Ubtl files, we provide a generate command for the package and project
explorer. The command also works with multiple files. Figure 3.21 displays where a
user can find the command.
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Figure 3.21: Ubtl generate UML command

3.6 Testing Ubtl

We developed Ubtl by using the Test Driven Development (TDD) methodology. As test
platform we use the JUnit framework in conjunction with Xtext classes which ease the
task of testing a DSL. The test cases are implemented with Xtend.

TDD basically consists of the following steps, [Bec03]:

• Quickly add a test.
• Run all tests and see the new one fail.
• Make a little change.
• Run all tests and see them all succeed.
• Refactor to remove duplication.
• Repeat.

A great side effect of this approach is that modular code is written in order to test it. Also
it is easy to change a behavior and to check automatically whether something in the code
is broken. We appreciated that while we developed Ubtl.

Concerning the Ubtl compiler, we specified 235 JUnit test cases. These test cases check
each functionality in a separate way, including grammar, scope, validator, formatter, util
classes and UML generator. Note that most of these test cases test a functionality with
several inputs. Figure 3.22 illustrates successful JUnit runs and the test case classes.
According to the code coverage tool EclEmma, available under the Eclipse Public License,
we reach a coverage of 95.6% of the code we implemented. Concerning the IDE, we tested
the content assist with 18 test cases.

Though we tested Ubtl carefully, we cannot guarantee that it is free of any bugs.
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Figure 3.22: Successful JUnit runs



78 CHAPTER 3. UML TESTING PROFILE BASED TESTING LANGUAGE



Chapter 4

Use Case

We use Ubtl to specify test cases for components running on embedded systems. Each
component does a small task. These tasks range from simply adding two integers to com-
plex controllers or filters. Those components can be connected to compositions which
behave like applications. However, in the following we focus on unit testing of single
components. We test those components directly on an embedded system with test cases
specified in XML. These test cases are executed by the embedded system. We also test
them on a virtualized operating system with QEMU. In that case, the components are
tested in conjunction with a C++ framework and the test cases are written in the C++
programming language. Ubtl enables us to efficiently write a test case once and to test a
component on completely different test platforms with the same test case logic. Addition-
ally, we use Ubtl as back end for a software that generates test data and test cases. Figure
4.1 illustrates this test setup. On the upper half of this figure we see the front software.
It interacts with Matlab and test results. Further it is used to specify the system and
test data. From these specifications Ubtl test cases are derived. These Ubtl test cases are
then transformed to test cases for the embedded system and for the QEMU framework.
We leverage Acceleo for the different transformations. A benefit is that a test engineer
still has the opportunity to manipulate or adapt Ubtl code. Further, the software does
not have to be aware of different test platforms. The test platforms can evolve during
development, without changing the front software.

4.1 Test Workflow

As an example we present a unit test case for a component that implements the cosinus
function. Such a component has to be called with different input data to ensure that it
works correctly. We specify input data and expected output data, also called oracle data.
The oracle data represents the correct curve of the cosinus function. We test the component
by setting the input data, running it, and finally evaluating the component output against
the reference oracle data within specified thresholds. The thresholds represent the maximal
deviation between the calculated curve and the oracle data.
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Figure 4.1: Test Setup with front software

4.2 Specifying a Test Case for a Component in Ubtl – COS

Listing 4.1 illustrates our predefined packages for testing components. These two pack-
ages are used by a test engineer or front software to specify test cases. The package
component types declares the primitive and array variable types. We restrict these types
to be referenceable only once, so that a code generator can assume that a variable used
by a component only belongs to this one. The package component declares the test con-
text, an array named handle, the interface component, and the test components compo-
nent assertions and component monitor. Currently we do not support timer, setVerdict,
if, and log statements, therefore we disabled them inside the test context. The interface
component specifies several attributes, for instance the fixed inputs of a component. Each
attribute uses the array handle which accepts all primitive types. Additionally, the inter-
face offers the signature doWork() which is for all components the same and executes a
component. The test component component assertions offers specialized assertions. The
signature assertThresholdBounded asserts that the first operand equals the second operand
within a specifiable threshold. The component monitor is used to observe how a variable
changes while a test case is executed. All these declarations are known by a code gen-
erator beforehand in order to transform test cases. It operates on the umlNames of the
declarations.
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Listing 4.1: Predefined packages for testing components

package component_types {
declare primitive uint32 {
umlName = "UInt32"
acceptDataType = UIntHexDataType
referenceableOnlyOnce = true

}
declare primitive float32 {
umlName = "Float32"
acceptDataType = FloatDataType
referenceableOnlyOnce = true

}
// ...
declare array float32_array {
umlName = "Float32_Array"
acceptTypes = float32
oneReferenceMultipleTimes = false
referenceableOnlyOnce = true

}
// ...

}
package component {
import component_types

declare testcontext component_context {
umlName = "ComponentTestContext"
disableTimer = true
disableSetVerdict = true
disableIf = true
disableLog = true

}

declare array handle {
umlName = "handle"
acceptTypes = primitive
requireNameOfPrimitiveVariables = true
referenceableOnlyOnce = true

}

declare interface component {
umlName = "Component"
attribute fixedInputs: handle
attribute expandableInputs: handle
attribute outputs: handle
attribute parameters: handle
attribute systemVariables: handle
signature doWork()

}

declare testcomponent component_assertions {
umlName = "ComponentAssertions"
signature assertThresholdBounded(in operand1: float32, in operand2:
float32, in operand2_min: float32, in operand2_max: float32)
// ...

}

declare testcomponent component_monitor {
umlName = "ComponentMonitor"
signature set(in arg: float32)
signature set(in arg: uint32)
// ...

}
// ...

}
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Listing 4.2 illustrates the runtime objects and an example test case. The sut declaration
declares the cosinus component. It realizes the interface component. The component
definition cos represents the corresponding runtime object, with default values. Note that
we could define several components of the cosinus component declaration. The components
assertions and monitor represent the corresponding test component declarations. The two
arrays inputs and expected outputs hold the test data. We only specify a few values to
keep the resulting XML file small. In fact, we would have to test the component with
thousands of different test data. At the beginning of the test case we set the monitor to
observe the output variable OUT of the component cos sut. After that we iterate through
the input data and the expected outputs. In each iteration we set the input variable of the
component, run the component, and assert that the output is within an expected range.

Listing 4.2: Cosinus component test case

package testcases_component {
import component

declare sut sut_cos realizes component {
umlName = "COS"

}

comp sut_cos cos {
fixedInputs = float32 IN 0.0
outputs = float32 OUT 0.0
systemVariables = uint32 tA 1000

}

comp component_assertions assertions

comp component_monitor monitor

var float32_array inputs = float32 0.0, float32 4.514468643

var float32_array expected_outputs = float32 1.0, float32 −0.196630695

testcase component_context test {
monitor.set(cos.outputs.get(OUT))
foreach(i : inputs, j : expected_outputs) {
cos.fixedInputs.get(IN) = i
cos.doWork()
assertions.assertThresholdBounded(cos.outputs.get(OUT), j, −0.00001, 0.00001)

}
}

}

4.3 Transformation to XML

We leverage Acceleo to define the transformations from the UML model to the different
target platforms. See Subsection 2.5.4 for a short overview of different model–to–text
tools of the Eclipse ecosystem. Acceleo is, in our opinion, easy to use and offers a textual
notation which is standardized by the OMG. A generator can be used standalone or as
Java library without a running Eclipse instance. Listing 4.3 illustrates the logic of our
XML generator in pseudocode. Note that it does not matter where in the Ubtl code a
monitor is set. We always generate the corresponding call at the beginning of a test case.
VariableManager and QualifiedNameManager are Java classes. VariableManager holds
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the current value (in fact an instance specification) of a variable and remembers if a value
has recently changed through an UML assignment. QualifiedNameManager is responsible
for the XML name of variables. If a variable is hold by a component it has a special syntax,
while other variables have the name $Const{value}. Used variables of components, where
the component is not called, are transformed to constant values.

Listing 4.3: XML code generator pseudocode

Foreach Test Context "ComponentTestContext"
Foreach Test Case
Generate XML Header

// SETUP part of XML
Foreach Called "Component"
Set Instance Specifications In VariableManager And QualifiedNameManager
Generate XML Component Properties

Foreach "ComponentMonitor" "set" Call
Generate XML Monitor

// TEST part of XML
Foreach Interaction Fragment
If MessageOccurrenceSpecification And MessageSort::synchCall
If "Component" "doWork" Call
Check VariableManager
Generate XML Changed Component Properties

Generate XML
Else If "ComponentAssertions" Call
Generate XML Assertion

Else If "ComponentMonitor" "set" Call
Do Nothing

Else
Warning

Else If "Loop"
Iterate minint From loopGuard
Generate Contained Interaction Fragments

Else If "Foreach Loop"
Iterate minint From foreachGuard
Get Instance Specifications From foreachGuard
Set Instance Specifications In VariableManager
Generate Contained Interaction Fragments

Else If CallOperationAction
If "UBTLAssert" Call
Generate XML Assertion

Else If "UBTLValueSetter" Call
Set Instance Specification In VariableManager

Else If "UBTLVariableInitializer" Call
Reset Instance Specification In VariableManager

Generate XML Footer

4.4 Resulting XML code

Listing 4.4 illustrates the generated XML code by the Acceleo generator. We also generate
C++ code with a different Acceleo generator, which is a bit complexer, but roughly the
same. Therefore we omit to present this code. The XML code is used by the embedded
system in order to perform a test case on the system. The results of the monitor and the
assertions are sent back to a test engineer as report. Figure 4.2 shows the result which is
computed from our XML test case.
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Listing 4.4: Generated XML code

<?xml version="1.0" encoding="UTF−8" standalone="no" ?>
<RDL:ResourceDescription xsi:schemaLocation="urn:AH:COMPONENT:RDL:1.0 testschema.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance" xmlns:RDL="urn:AH:COMPONENT:RDL:1.0"
name="Component Test Specification">
<Content xsi:type="RDL:TestSpecification" name="test 1">
<Header id="test" type="resources.test.componentunittest" version="0.1.0" />
<Sequence>
<Run xsi:type="RDL:SetValueRun" type="SETUP">
<Specification name="Component{COS}.Inp{IN}" datatype="Float32" value="0.0" />

</Run>
<Run xsi:type="RDL:SetValueRun" type="SETUP">
<Specification name="Component{COS}.Out{OUT}" datatype="Float32" value="0.0" />

</Run>
<Run xsi:type="RDL:SetValueRun" type="SETUP">
<Specification name="Component{COS}.Sys{tA}" datatype="UInt32" value="1000" />

</Run>
<Run xsi:type="RDL:SetMonitorRun" type="SETUP" >
<Specification name="Component{COS}.Out{OUT}"/>

</Run>
<Run xsi:type="RDL:SetValueRun" type="TEST">
<Specification name="Component{COS}.Inp{IN}" datatype="Float32" value="0.0" />

</Run>
<Run xsi:type="RDL:CallMethodRun" type="TEST">
<Specification name="Component{COS}.Op{doWork}" />

</Run>
<Run xsi:type="RDL:AssertRun" type="TEST">
<Specification operand1="Component{COS}.Out{OUT}" operand2="$Const{1.0}"
operand2_min="$Const{−0.00001}" operand2_max="$Const{0.00001}"
operator="THRESHOLD_BOUNDED"/>

</Run>
<Run xsi:type="RDL:SetValueRun" type="TEST">
<Specification name="Component{COS}.Inp{IN}" datatype="Float32" value="4.514468643" />

</Run>
<Run xsi:type="RDL:CallMethodRun" type="TEST">
<Specification name="Component{COS}.Op{doWork}" />

</Run>
<Run xsi:type="RDL:AssertRun" type="TEST">
<Specification operand1="Component{COS}.Out{OUT}" operand2="$Const{−0.196630695}"
operand2_min="$Const{−0.00001}" operand2_max="$Const{0.00001}"
operator="THRESHOLD_BOUNDED"/>

</Run>
</Sequence>

</Content>
</RDL:ResourceDescription>

4.5 Evaluation of the Use Case

We evaluated Ubtl by using the cosinus test case with a different amount of values hold
by the arrays inputs and expected outputs. Figure 4.3 illustrates the results of our mea-
surement. The test case explained and specified above is the first one in the measurement.
The first bar named Ubtl refers to the case when a user generates UML code from Ubtl
code in Eclipse. It consists of the steps parsing an Ubtl file, validating the Ubtl model,
generating an UML model from the Ubtl model, and writing UML files. The second bar
Acceleo illustrates the seconds spent when a user generates an XML file of an UML model
in Eclipse. The bar Ubtl & Acceleo is a combination of these two generators, like they
are used in our software which generates test data and test cases. Involved steps are gen-
erating an UML model from an Ubtl model, initializing the Acceleo generator with the
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Figure 4.2: Returned test case report

generated UML model, generating and writing the XML file. It does not contain the steps
parsing an Ubtl file, validating an Ubtl model, and writing an UML file. Therefore it is
slightly faster than using these two generators separately in Eclipse when more values are
used. TP stands for test platform and illustrates the time spent for parsing an XML file
on the embedded system, initializing a test case, executing a test case, and generating the
results. We executed each case ten times and took the arithmetic mean. We executed our
measurements on a computer with an Intel Core i5–4200M CPU (2.5 GHz). The hard
disk has an average sequential read speed of 124,838 MB/s and a write speed of 100,455
MB/s. The RAM has an average speed of 10644,65 MB/s. We obtained those values
from Winsat, by executing it ten times and calculating the arithmetic mean. On a slower
system, Ubtl and Acceleo may take longer. As we can see in the measurement, Ubtl and
Acceleo generations take significantly longer when the amount of data is increased. Note
that we did not optimize the code of the generators with respect to speed, therefore it
may be possible to decrease their execution time. However, we think they are useable in
their current state.

Figure 4.3: Measurement with different numbers of input and output values
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Figure 4.4 shows the different file sizes of Ubtl, UML, and XML code in bytes. The
UML file sizes include all generated UML models. The Ubtl file sizes only consist of the
testcases component package. Obviously a test case written with Ubtl is more compact
than with UML and XML.

Figure 4.4: File sizes of Ubtl, UML, and XML code
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Conclusion

All together, we can say that we reached the goal to construct a textual test specification
language which is abstract, flexible, and easy to use. The resulting UML models enable
us to transform test case logic to arbitrary platforms. We successfully apply Ubtl for our
use case in an industrial project, where we use Ubtl for testing single components. The
separation between declarations and definitions makes it simple to realize generators for
any notation. The Eclipse Ubtl IDE offers several features to help users in the task of
specifying types, objects, and test cases.

Currently Ubtl is suited for unit testing. For the other levels of testing it lacks certain
features like mock objects, test component operations, or test configurations. However,
despite this missing features, Ubtl may be successful leveraged on other levels.

We could have implemented Ubtl in the way, that the generated models are not build
with UML or do not depend on UTP. In our opinion, this would be the same like reinventing
the wheel. UML simply offers a compatibility with other tools, we would have never
reached. UTP is actively maintained by several companies and people. It is standardized
and offers well–thought–out concepts.

Compared with TTCN–3, Ubtl test cases can be used for arbitrary systems, nota-
tions, or test frameworks, while the TTCN–3 test cases are restricted to be used by the
standardized TTCN–3 test architecture.

In our opinion, Ubtl is especially useful if different platforms with incompatible test
case notations are present. It may also be used when there only exists one test platform,
and the final test notation is too complicated. Further Ubtl can be used when the test
platform is still under development.
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Chapter 6

Future Work

Ubtl is in its current state far away from being perfect. In the following we discuss features
which we identified to be useful, but had not the time to implement and were out of scope
for this thesis.

Test Component Operations

At the moment it is only possible to specify signatures of operations. A useful feature
would be to allow the specification of an operation body similar on how test cases are
specified. The scope of such an operation body would be limited to parameters and the
properties of a test component. In UML it would be simply realized as interaction part of a
test component. This feature would allow the specification of mock objects which simulate
the behavior of components. Another use case would be helper methods programmed with
Ubtl. Such methods could be reused to set up or tear down components and entire test
cases. Listing 6.1 illustrates how the syntax could look like in action. The second operation
realizes a signature defined by the interface demoInterface.

Listing 6.1: Test Component operations

declare testcomponent demo realizes demoInterface {
umlName = "Demo"
required attribute math : Float32Math

operation arithmeticMean(in arg : float32_array): float32 {
var float32 sum = 0.0
var float32 n = 0.0
foreach(x : arg) {
sum = math.add(sum, x)
n = math.add(n, 1.0)

}
var float32 mean = 0.0
mean = math.divide(sum, n)
return mean

}

operation realizes doSomething(sut0 : demoSut) {
var boolean x = false
x = sut0.doIt()
return x

}
}
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Enhanced Primitive Variables

Currently only the data type of primitive variables can be specified. However, it is not
possible to specify properties like maximal data size. For instance, it is not possible to
specify that an integer is limited to 32 bits or that a string is limited to 100 characters.
Therefore, a useful feature would be a matching mechanism for primitive variables like it
is provided by TTCN–3. In TTCN–3 for instance one can restrict the range of numeric
values or define string patterns.

Data Modification

Another useful enhancement would be to implement the data modification dependency of
UTP. This concept is actually borrowed from TTCN–3. Listing 6.2 illustrates how this
concept could look like in Ubtl. Variable b automatically inherits aProperty and arrayOne,
while it overrides arrayTwo. It also adds the property anOptionalProperty which is not
specified by the variable a. In UML the relationship between the instance specifications
would be illustrated with a modification dependency. Ubtl would have to create a dummy
value for each inherited value, otherwise it would not be possible to reference a value
in a test case and to decide whether it belongs to variable a or b. The names of the
dummy values could start with a special symbol to indicate that the values are a result
of a modification. It depends on the executing test system if values are actually copied
or if references on the values of for instance variable a are used. The advantage of this
concept is that it makes it easy to create different variables which are actually only slightly
different. It could also be applied for components concerning data properties.

Listing 6.2: Ubtl data modification

var aType a {
aProperty = 34
arrayOne = int32 0, int32 1
arrayTwo = int32 2, int32 3

}

var aType b modifies a {
arrayTwo = int32 2, int32 1
anOptionalProperty = 1

}

Type Conversion

Ubtl does not allow changing the type of a variable into an other. In some cases this feature
could be useful, for instance to assign an integer to a float variable or to compare an integer
with an other integer type. Therefore we suggest the possibility to make an explicit cast,
where the syntax is similar to the Java programming language. Implicit casts should not be
possible as they could lead to mistakes and unexpected behavior. Additionally it should be
possible to disable this feature inside a test context and a primitive declaration. It could
be possible to define compatible types inside a primitive declaration. Note that type
conversion can be simulated in the current version of Ubtl by providing a test component
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which offers corresponding signatures (Listing 6.3). However a standard way of doing that
would be better.

Listing 6.3: Test Component which provides type conversion

declare testcomponent TypeConversion {
umlName = "TypeConversion"

signature cast(in i : int32): float32
signature cast(in f : float32): int32

}

Arithmetic Operators

Like type conversion, at the moment arithmetic operators have to be simulated by using a
test component. Again a standard way could make the Ubtl code easier to read and would
make code generators less specialized. Also it should be possible to disable this feature
within test contexts and primitive declarations.

Constant Variables and Components

In the current version there are no restrictions to alter the data of variables and compo-
nents. It is just possible to disable all assignments in test cases by a test context. An
enhancement for test engineers would be to allow the specification of constant objects.
The keyword could be const instead of var.

Diagrams

Ubtl currently only generates the abstract syntax of UML. If it is in the future possible
to exchange diagrams between different tools then Ubtl could generate Class Diagrams
and Sequence Diagrams for test cases. This feature would make it easier to manipulate a
generated UML model with UML tools. Also the diagrams could be used for documenting
test cases.

Test Configuration

UTP offers the possibility to define a test configuration which specifies the possible con-
nections between component objects. A test configuration uses the composite structure
for structured classifier in UML and is part of a test context, [Obj13c]. This feature could
be useful in Ubtl for integration testing. Listing 6.4 illustrates how test configurations
could be realized in Ubtl. We could introduce the concept configuration which allows to
connect runtime component objects. Such a configuration would be used by a test case.
The optional feature restrictTestContext may be used to restrict the available components
inside a test case. If this feature would be set to false all available components can be
called. If two test cases use the same test context, but different test configurations, they
would be part of two different test contexts.
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Listing 6.4: Ubtl test configuration

package testcases {
comp sutA sut0
comp sutB sut1
comp tcompA tc0
comp tcompA tc1

configuration aConfiguration {
restrictTestContext = false
connect tc0 and sut0
connect tc0 and sut1
connect sut0 and tc1
connect sut1 and tc1

}

testcase aContext case uses aConfiguration {
//...

}
}
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Ubtl Grammar

Listing A.1: Ubtl grammar

grammar org.iti.ubtl.Ubtl with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate ubtl "http://www.iti.tugraz.at/ubtl"

/∗
∗ Parser Rules
∗/

UbtlModel:
packages+=Package∗

;

Package:
"package" name=ID "{"
imports+=PackageImport∗
content+=PackageElement∗

"}" Semicolon
;

PackageImport:
"import" package=[Package|QualifiedPackageName] Semicolon

;

QualifiedPackageName:
ID("."ID)∗

;

PackageElement:
Package | Declaration | ComponentDefinition | FullVariableDefinition | TestCase

;

Declaration:
"declare" (ObjectDeclaration|TestContextDeclaration) Semicolon

;

ObjectDeclaration:
InterfaceDeclaration|ComponentDeclaration|VariableDeclaration

;

InterfaceDeclaration:
"interface" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
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&(features+=(SignatureDeclaration|AttributeDeclaration) Semicolon)∗
)

"}"
;

ComponentDeclaration:
SutDeclaration|TestComponentDeclaration

;

SutDeclaration:
"sut" name=ID ("realizes" interfaceRealizations+=[InterfaceDeclaration]

(","interfaceRealizations+=[InterfaceDeclaration])∗)? "{"
( ("umlName""=" umlName=STRING Semicolon)
&(features+=(SignatureDeclaration|AttributeDeclaration) Semicolon)∗
)

"}"
;

TestComponentDeclaration:
"testcomponent" name=ID ("realizes" interfaceRealizations+=[InterfaceDeclaration]

(","interfaceRealizations+=[InterfaceDeclaration])∗)? "{"
( ("umlName""=" umlName=STRING Semicolon)
&(features+=(SignatureDeclaration|AttributeDeclaration) Semicolon)∗
)

"}"
;

Feature:
SignatureDeclaration|AttributeDeclaration|PropertyDefinition

;

SignatureDeclaration:
"signature" name=ID "(" (parameters += ParameterDeclaration (","parameters +=

ParameterDeclaration)∗)? ")" (returnParameter=ReturnParameterDeclaration)?
;

ParameterDeclaration:
(parameterDirection=ParameterDirection)? name=ID ":" type=[ObjectDeclaration]

;

enum ParameterDirection:
IN="in" | INOUT="inout" | OUT="out"

;

ReturnParameterDeclaration returns ParameterDeclaration:
{ReturnParameterDeclaration}":" type=[ObjectDeclaration]

;

VariableDeclaration:
PrimitiveDeclaration|RecordDeclaration|ArrayDeclaration

;

PrimitiveDeclaration:
"primitive" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("referenceableOnlyOnce""="referenceableOnlyOnce=BooleanValue Semicolon)?
&("requireName""="requireName=BooleanValue Semicolon)?
&("acceptDataType""=" acceptDataType=(
"IntDataType"|"IntHexDataType"|"UIntDataType"|"UIntHexDataType"|
"HexDataType"|"StringDataType"|"FloatDataType"|"BooleanDataType") Semicolon)

)
"}"

;
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RecordDeclaration:
"record" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("referenceableOnlyOnce""="referenceableOnlyOnce=BooleanValue Semicolon)?
&(attributes+=AttributeDeclaration Semicolon)∗
)

"}"
;

AttributeDeclaration:
(required?="required")? "attribute" name=ID ":" type=[ObjectDeclaration]

;

ArrayDeclaration:
"array" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("referenceableOnlyOnce""="referenceableOnlyOnce=BooleanValue Semicolon)?
&(types=AcceptTypes Semicolon)
&("oneReferenceMultipleTimes""="oneReferenceMultipleTimes=BooleanValue Semicolon)?
&("requireNameOfPrimitiveVariables""="requireNameOfPrimitiveVariables=BooleanValue

Semicolon)?
)

"}"
;

AcceptTypes:
"acceptTypes""=" (acceptTypes=ObjectTypeSet|acceptArray?="array"|
acceptRecord?="record"|acceptPrimitive?="primitive"|acceptVariable?="variable")

;

ObjectTypeSet:
objectTypeSet+=[ObjectDeclaration] (","objectTypeSet+=[ObjectDeclaration])∗

;

TestContextDeclaration:
"testcontext" name=ID "{"
( ("umlName""=" umlName=STRING Semicolon)
&("disableVariableDefinition""="disableVariableDefinition=BooleanValue Semicolon)?
&("disableLoop""="disableLoop=BooleanValue Semicolon)?
&("disableSetVerdict""="disableSetVerdict=BooleanValue Semicolon)?
&("disableAssignment""="disableAssignment=BooleanValue Semicolon)?
&("disableAssertion""="disableAssertion=BooleanValue Semicolon)?
&("disableForEachLoop""="disableForEachLoop=BooleanValue Semicolon)?
&("disableTimer""="disableTimer=BooleanValue Semicolon)?
&("disableIf""="disableIf=BooleanValue Semicolon)?
&("disableIfComplexCondition""="disableIfComplexCondition=BooleanValue Semicolon)?
&("disableIfOr""="disableIfOr=BooleanValue Semicolon)?
&("disableIfAnd""="disableIfAnd=BooleanValue Semicolon)?
&("disableIfEquality""="disableIfEquality=BooleanValue Semicolon)?
&("disableIfComparison""="disableIfComparison=BooleanValue Semicolon)?
&("disableIfNot""="disableIfNot=BooleanValue Semicolon)?
&("disableLog""="disableLog=BooleanValue Semicolon)?
)

"}"
;

ObjectDefinition:
ComponentDefinition| FullVariableDefinition| DataDefinitionElement| ForEachVariableDefinition

;

ComponentDefinition:
"comp" ((type=[ComponentDeclaration])|(timer?="timer")) name=ID ("{"
(properties+=PropertyDefinition Semicolon)∗

"}")? Semicolon
;



96 APPENDIX A. UBTL GRAMMAR

VariableDefinition:
FullVariableDefinition|DataDefinitionElement|ForEachVariableDefinition

;

FullVariableDefinition:
"var" ((type=[VariableDeclaration])|(duration?="duration")) name=ID
( (bigDefinition?="{"

(properties+=(PropertyDefinition| PrimitivePropertyDefinition| ArrayPropertyDefinition)
Semicolon)∗

"}")
|(smallDefinition?="=" dataDefinition=DataDefinition)

) Semicolon
;

PropertyDefinition:
name=ID "=" dataDefinition=DataDefinition

;

PrimitivePropertyDefinition returns PropertyDefinition:
{PrimitivePropertyDefinition}name="value" "=" dataDefinition=DataDefinition

;

ArrayPropertyDefinition returns PropertyDefinition:
{ArrayPropertyDefinition}name="content" "=" dataDefinition=DataDefinition

;

DataDefinition:
(data=Data)|(elements+=DataDefinitionElement ("," elements+=DataDefinitionElement)∗)

;

ObjectOrPrimitiveDeclaration:
ComponentDefinition|FullVariableDefinition|PrimitiveDeclaration

;

DataDefinitionElement:
variableOrValueType=[ObjectOrPrimitiveDeclaration] ((name=ID)? data=Data)?

;

Data:
(sign?="−")? (int=IntString| hex=HexString| string=STRING| float=FloatString|

boolean=BooleanString)
;

TestCase:
"testcase" testContext=[TestContextDeclaration] name=ID
block=Block

;

AbstractBlock:
Block|OneStatementBlock

;

Block:
{Block}"{" (statements += Statement )∗ "}" Semicolon

;

OneStatementBlock:
statements += Statement

;

Statement:
FullVariableDefinition|
Loop|
SetVerdict|
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AssignmentOrCall|
Assertion|
ForEachLoop|
IfStatement|
LogStatement

;

ReferenceableObject:
ComponentDefinition|FullVariableDefinition|ForEachVariableDefinition

;

ObjectReference:
object=[ReferenceableObject] (features+=ReferenceFeature)∗ (methodCall?="("

(arguments+=Argument("," arguments+=Argument)∗)? ")")?
;

ReferenceFeature:
"." ((feature=ID)| get?="get""("(getElement=[DataDefinitionElement]|getPosition=INT)")")

;

Argument:
{Argument} ((reference=ObjectReference)|(data=Data))

;

AssignmentOrCall:
reference=ObjectReference (assignment?="=" assignmentArgument=Argument)? Semicolon

;

Loop:
"loop" "(" iterations=INT ")" block=AbstractBlock

;

SetVerdict:
"setVerdict" "(" verdict=Verdict ")" Semicolon

;

enum Verdict:
NONE="none"|PASS="pass"|INCONCLUSIVE="inconclusive"|FAIL="fail"|ERROR="error"

;

Assertion:
"assert""("leftArgument=Argument assertionType=AssertionType rightArgument=Argument")" Semicolon

;

enum AssertionType:
EQUAL="==" | GREATERTHAN=">" | LOWERTHAN="<" | GREATERTHANOREQUALTO=">="|
LOWERTHANOREQUALTO="<=" | NOTEQUAL="!="

;

ForEachLoop:
"foreach""("definitions+=ForEachVariableDefinition(","

definitions+=ForEachVariableDefinition)∗")"
block=AbstractBlock

;

ForEachVariableDefinition:
name=ID ":" reference=ObjectReference

;

IfStatement:
"if" "("condition=Condition")" thenBlock=AbstractBlock
(=> "else" elseBlock=AbstractBlock)?

;
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Condition:
Or

;

Or returns Condition:
And ({Or.left=current} "||" right=And)∗

;

And returns Condition:
Equality ({And.left=current} "&&" right=Equality)∗

;

Equality returns Condition:
Comparison (
{Equality.left=current} op=("=="|"!=")
right=Comparison

)∗
;

Comparison returns Condition:
Primary (
{Comparison.left=current} op=(">="|"<="|">"|"<")
right=Primary

)∗
;

Primary returns Condition:
"(" Condition ")" |
{Not} "!" "("condition=Condition")" |
Atomic

;

Atomic returns Condition:
{Atomic} argument=Argument

;

LogStatement:
"log" "(" information=STRING ")" Semicolon

;

ContentSuperType:
PackageElement|DataDefinitionElement|ForEachVariableDefinition

;

IntString returns ecore::EString:
INT

;

HexString returns ecore::EString:
HEX

;

FloatString returns ecore::EString:
IntString"."IntString

;

BooleanString returns ecore::EString:
"false"|"true"

;

BooleanValue returns ecore::EBoolean:
"false"|"true"

;



99

Semicolon:
(";")?

;

/∗
∗ Terminal Rules
∗/

terminal HEX:
("0x"|"0X") ("A".."F"|"a".."f"|"0".."9")+

;

Listing A.2: Xtext Terminals

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Copyright (c) 2008 itemis AG and others.
∗ All rights reserved. This program and the accompanying materials
∗ are made available under the terms of the Eclipse Public License v1.0
∗ which accompanies this distribution, and is available at
∗ http://www.eclipse.org/legal/epl−v10.html
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

grammar org.eclipse.xtext.common.Terminals hidden(WS, ML_COMMENT, SL_COMMENT)

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

terminal ID : ’^’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)∗;
terminal INT returns ecore::EInt: (’0’..’9’)+;
terminal STRING :

’"’ ( ’\\’ (’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) | !(’\\’|’"’) )∗ ’"’ |
"’" ( ’\\’ (’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) | !(’\\’|"’") )∗ "’"

;
terminal ML_COMMENT : ’/∗’ −> ’∗/’;
terminal SL_COMMENT : ’//’ !(’\n’|’\r’)∗ (’\r’? ’\n’)?;

terminal WS : (’ ’|’\t’|’\r’|’\n’)+;

terminal ANY_OTHER: .;
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Figure A.1: Ubtl syntax graph
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