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die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
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Abstract

Proxy-type digital signatures enable an originator to delegate the signing rights for a set
of messages to a proxy. The proxy is then able to choose messages out of this set and issue
signatures on behalf of the originator on it. In this thesis we particularly concentrate on two
recent proxy-type digital signature schemes, namely the (extended) Blank Digital Signature
scheme (BDSS) [38–40] and the Warrant-Hiding Proxy Signature scheme (WHPSS) [37].
After giving a comprehensive overview of the schemes, we show how they can be modified in
order to use much more efficient Type-3 pairings instead of the originally proposed Type-1
pairings. Furthermore, several optimizations, significantly improving the performance of
the schemes are being introduced. Then, we present a library, compatible with PKIX,
integrating the optimized versions of the BDSS and the WHPSS respectively, within the
Java Cryptography Architecture (JCA), and the keying material into X.509 certificates. In
order to illustrate the flexibility of the proposed library, three signature formats, building
up on XML and PDF, are introduced. Finally, we give a detailed insight in the performance
of the protocols and our implementation.

Keywords: Proxy-Type Digital Signatures, Bilinear Pairings, BN Curves, Pedersen
Commitments, Polynomial Commitments, Vector Commitments, PKIX, X.509, Java,
Implementation, Optimization, Performance Evaluation
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Kurzfassung

Varianten von Proxy Signaturen erlauben es einem Originator die Zeichnungsrechte für
eine Menge von Nachrichten an einen Proxy zu übertragen. Der Proxy ist dann in der Lage
Nachrichten aus dieser Menge auszuwählen und im Namen des Originators zu signieren.
Diese Arbeit konzentriert sich auf zwei aktuelle Varianten von Proxy Signaturen, nämlich
das (erweiterte) Blank Digital Signature Schema (BDSS) [38–40] und das Warrant-Hiding
Proxy Signature Schema (WHPSS) [37]. Nach einem umfassenden Überblick über die
Schemata zeigen wir welche Modifikationen notwendig sind um anstatt der im Original
vorgeschlagenen Type-1 Pairings viel effizientere Type-3 Pairings zu verwenden. Weiters
stellen wir einige Optimierungen vor, die die Berechnungseffizienz beider Schemata signifi-
kant verbessern. Darauf aufbauend präsentieren wir eine mit PKIX kompatible Library,
welche die optimierten Versionen des BDSS und des WHPSS in die Java Cryptography
Architecture (JCA), bzw. das Schlüsselmaterial in X.509, integriert. Um die Flexibilität der
präsentierten Library zu illustrieren werden drei auf PDF bzw. XML aufbauende Signatur-
formate vorgestellt. Am Ende wird ein detaillierter Überblick über die Berechnungseffizienz
der Protokolle und unserer Implementierung gegeben.

Stichwörter: Varianten von Proxy Signaturen, Bilineare Pairings, BN Kurven, Pedersen
Commitments, Commitments zu Polynomen, Vektor Commitments, PKIX, X.509, Java,
Implementierung, Optimierung, Evaluierung der Berechnungseffizienz
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Chapter 1

Introduction

Digital signatures basically allow a signer to issue a signature on a message and, given the
message and the signature, any verifier is able to detect whether the message has been
altered after the signature issuance (integrity) and to verify whether the signer has actually
issued the given signature (authenticity). Nowadays, digital signature schemes are heavily
used in many practical applications such as for issuing advanced electronic signatures, being
legally equivalent to handwritten signatures, as defined in Directive 1999/93/EC of the
European Parliament and the Council of 13 December 1999 on a Community framework for
electronic signatures [81] or for ensuring integrity and authenticity of messages exchanged
amongst arbitrary communication parties.

However, some applications require to delegate the signing rights to another party
instead of directly signing the messages, which can be realized using proxy-type digital
signatures. Here, in contrast to conventional digital signatures, three parties are involved,
namely an originator, a proxy and a verifier. In such schemes, the originator delegates
the signing power (for some particular well defined set of messages) to a proxy. This
proxy can then produce a signature for a message and any verifier, given the message
and the signature, can check whether the proxy has produced the signature on behalf of
the originator (authenticity), the integrity of the message and, in case the originator has
restricted the message space, it can also be verified whether the given message is one of
the ”allowed” messages.

Blank Digital Signatures (BDS) [38, 39] are a special instance of proxy-type digital
signatures, allowing an originator to define and issue a signature on a template, containing
fixed and exchangeable elements and allowing a designated proxy to produce signatures for
instantiations of this template (messages). Given such a template signature, the proxy
creates a message by choosing one of the predefined values for each of the exchangeable
elements and issues a signature w.r.t. the template signature. When verifying this signature,
only the message and the corresponding signature are required and, thus, the verifier does
not learn anything about the unused choices in the exchangeable elements in the template
(privacy property). The extended Blank Digital Signature scheme (EBDSS) [40] further
extends this approach with the possibility to include a third type of elements, to be replaced
by arbitrary strings of predefined length (blank elements), into templates, and, thus, enables
a wider range of practical applications.

Similarly, the Warrant-Hiding Proxy Signature scheme (WHPSS) [37] serves for related
purposes. In contrast to the BDSS, it allows an originator to define a set of messages
and delegate the signing rights for it to a proxy. The proxy then chooses one message
out of this set and issues a signature based on this delegation. Again, only the chosen

1



CHAPTER 1. INTRODUCTION 2

message gets revealed on verification of such a signature, whereas the rest of the message
space stays private (privacy property). Due to their similarity, the BDSS could be used to
achieve a similar functionality as the WHPSS by defining a template containing just one
exchangeable element.

Accordingly, the question arises how the BDSS and the WHPSS would perform in
a practical implementation, and to which extent they can be integrated into off-the-
shelf cryptographic frameworks such as the Java Cryptography Architecture [71] and key
infrastructures such as PKIX [22].

1.1 Related Work

The basic concepts for building schemes, which allow an originator to delegate signing
rights to a proxy were introduced in [69, 82]. Both papers discuss, amongst others, an
approach where the delegation is represented by an originator-issued certificate describing
the delegation, which can then be verified by simply verifying the certificate and its contents.
In [60], Mambo et al. firstly introduced a proxy signature scheme. They refer to the
previously mentioned delegation-by-certificate approach as delegation-by-warrant approach.
This approach is of particular interest for this thesis, since the BDSS as well as the WHPSS
make use of it. Moreover, in [11, 12] more recent proxy signature schemes are discussed
and a security model for proxy signatures is proposed. This security model builds the basis
for the WHPSS construction.

Compared to the basic idea of proxy signatures, the WHPSS and the BDSS allow the
originator to explicitly restrict the proxy’s signing rights to sets of messages (WHPSS)
or templates (BDSS), respectively, whilst only the proxy-chosen message or the filled in
version of the template gets revealed to the verifier, enabling new applications which can
not be realized using only the aforementioned concepts.

Another, somewhat related, paradigm is the concept of sanitizable and redactable
signatures [4,16,45,66,78]. Sanitizable/redactable signature schemes allow for issuing a
signature on a piece of data, and certain (previously defined) parts of this data can then be
sanitized whilst the sanitizer is still able to provide a valid signature (without having access
to the secret signing key). Thus, to a certain extent, a similar behavior can be achieved
using the BDSS by quite simple modifications. Though, the BDSS does not allow for the
modification of the originally signed message and requires to compute a new signature on
the ”sanitized” message in such a case.

1.2 Applications

Basically, the (E)BDSS enables an originator to hand over a signed form (template),
containing fixed elements, exchangeable elements (and blank elements), to a proxy being
designated to sign an arbitrary instance of this form, i.e., a filled in form, on behalf of the
originator. Figure 1.1 illustrates the basic idea of the (E)BDSS by illustrating a protocol
execution. As shown in this figure, it is also possible to encode yes-/no-choices within a
template by simply encoding yes and no in an exchangeable element.

The (E)BDSS is applicable to any form, which requires to leave a few choices open
to an intermediary party, whilst the rest of the content is fixed and the unused choices
of the exchangeable elements do not get revealed on verification of an instance of this
form. For instance, a valid scenario would be, that an attorney makes a business deal
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...

Template T (blank form) Instantiation M (filled in form)

Originator Proxies Verifier

(T , σT , sk
T
P ) (M, σM)

Figure 1.1: Schematic (E)BDSS execution [40]

on behalf of a client, using a template, previously defined and signed by the client [39].
Furthermore, governmental organizations could publish or distribute signed forms, which
are intended to be completed and signed by any member of a specific group, e.g., any
citizen of a country [40]. In the former case, the privacy property of the (E)BDSS could be
of interest as well, whereas in the latter case this would, of course, be of no interest.

The WHPSS enables similar applications, with the difference that the originator can
define a set of messages and the proxy is then able to choose one message instead of filling
out a whole form. Thus, to a certain extent, the WHPSS is applicable to a subset of the
(E)BDSS use cases.

Finally, due to the similarity to sanitizable/redactable signatures, also use cases applying
to sanitizable/redactable signatures could be realized using the (E)BDSS or the WHPSS.

1.3 Outline

This thesis is basically composed of three parts building up on each other. Part I gives
an overview over the mathematical background (Chapter 2) as well as the cryptographic
building blocks (Chapter 3), being necessary to understand this thesis. On top of this,
Part II introduces the BDSS in Chapter 4 and the WHPSS in Chapter 5 respectively,
and discusses our optimizations regarding the performance of both schemes. The part
concludes with the discussion of the implications of the delegation of the signing rights to
multiple proxies in Chapter 6. Then, Part III gives a comprehensive overview of our Java
implementation of the aforementioned schemes in Chapter 7 and a detailed overview of
their performance in Chapter 8. Finally, conclusions are drawn in Chapter 9.



Part I

Background

4



Chapter 2

Mathematical Background

This chapter is intended to give a brief overview of the mathematical foundations, being
necessary to understand the contents of this thesis. Consequently, we recommend skipping
it for readers who are already familiar with the mathematical paradigms discussed here.
The whole chapter is composed of four sections. The first section gives a brief overview of
some complexity theory related topics in order to provide some background for the security
proofs of certain algorithms, whereas the remaining three sections build the mathematical
basis for the schemes used in this thesis. Firstly, number theoretic basics and the discrete
logarithm problem are discussed in Section 2.2. Secondly, elliptic curves are introduced in
Section 2.3 and, finally, Section 2.4 introduces bilinear pairings and presents a concrete
instantiation of bilinear pairings making use of elliptic curve groups.

The content of this chapter is a collection of definitions, theorems and examples, adopted
from diverse books [9,34,35,52,57,63,72,74,77,84] as well as lecture notes [59,75] to certain
courses held at the Graz University of Technology. Furthermore, miscellaneous other
resources were used [6, 31, 36, 48, 55, 58, 61]. Additional sources are explicitly marked by
in-text citations. Moreover, in some cases the proofs are omitted for a smooth readability.
Hence, we refer the reader to the aforementioned sources for a more detailed overview.

2.1 Complexity Theory

In complexity theory, a computational problem is a problem where, when given an input,
it is required to produce an output which conforms to certain properties. We will have a
closer look at computational problems in the following paragraphs.

Definition 2.1 (Formal language). Let Σ be a finite alphabet. Furthermore, we denote
Σ∗ =

⋃∞
i=0 Σi as the set of all strings resulting from arbitrarily adjoining elements out of

Σ. A formal language L is a subset of Σ∗.

Furthermore, we need to introduce the notion of (universal) Turing machines. A Turing
machine is a machine, which operates on an infinite sequence of cells, each containing a
single symbol out of an alphabet Σ. The machine can read the value of one cell at a time,
can write the value of one cell at a time and can move one step left and one step right on
the sequence in each step. Furthermore it stores an internal state q. The set of all possible
symbol and state pairs together with a left or right movement transition represents the
”instruction set” of the machine, e.g., when reading 1 in state 0 write 0, move left and set
the state q to 1. One such transition according to the transition function is further referred
to as a computational step. More formally this means:

5



CHAPTER 2. MATHEMATICAL BACKGROUND 6

Definition 2.2 (Turing machine [77]). A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept,
qreject) where Q,Σ,Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol #,

3. Γ is the tape alphabet, where # ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ→ Q× Γ× {L,R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept is the accept state, and

7. qreject is the reject state, where qreject 6= qaccept.

A universal Turing machine takes a description of a Turing machine M and an input x
and outputs M(x) if M terminates on the input of x and does not terminate otherwise. An
oracle Turing machine is a machine, which can write a sequence x on an additional band.
The oracle runs on input x and writes the output onto the band in one computational step
such that the oracle Turing machine can read it.

Although the Turing machine model is quite simple, the Church-Turing thesis basically
states that Turing machines can compute all functions that can be computed with modern
computers.

Definition 2.3 (Algorithm). An algorithm A is a sequence of computational steps for a
universal Turing machine (Definition 2.2), which transforms an input state to an output
state.

For the rest of this thesis, we assume an oracle to be a blackbox, which executes an
algorithm in one computational step but does not allow for any analysis or change of this
algorithm. Thereby, other algorithms can make use an oracle for their computations. An
algorithm A making use of an oracle O is further denoted as AO.

As one can derive from the definition above, one can make use of an algorithm for
solving a computational problem. For our further explanations we only consider algorithms
terminating on each input, i.e., after a finite number of steps.

Definition 2.4 (Time complexity). The number of steps an algorithm A takes on each
possible input x is referred to as the time complexity tA of A and is a function tA : Σ∗ → N.
The time complexity of A depending on the input length n, denoted by TA, is defined as:

TA(n) = maxx∈Σn{tA(x)}.

If for algorithm A there exists a polynomial p(x) such that there is an n0 ∈ N and for
every n ≥ n0 the time complexity TA(n) is bounded by p(n), then A is said to be a
polynomial-time algorithm.

Definition 2.5 (Probabilistic polynomial-time algorithm [33]). A probabilistic polynomial-
time algorithm is a polynomial-time algorithm (polynomially bounded Turing machine),
which allows for making random steps during the execution. With the number of such
random steps for input x being denoted by tM (x) and Mr(x) being the output of the machine
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for a fixed choice of random steps r, the output of such a machine M is a probability
distribution:

Pr[M(x) = y] =

∣∣{r ∈ {0, 1}tM (x) : Mr(x) = y}
∣∣

2tM (x)
.

Computational problems can either be decision problems or search problems, which are
introduced in the following definitions.

Definition 2.6 (Decision problem). Let L ⊆ Σ∗ be a be a language. A decision problem
requires to decide whether a given input x ∈ Σ∗ is contained in L.

Example 2.1. Let L be the set of all composite integers. A decision problem would be,
given an integer x, to decide whether x is composite or not.

Definition 2.7 (Search problem). Let R ⊆ Σ∗ × Σ∗ be a relation between inputs and
outputs. A search problem requires to find a y ∈ Σ∗ for a given x ∈ Σ∗ such that (x, y) ∈ R.

Example 2.2. Let R be a relation between the composite integers and their factors. A
search problem would be, given an integer x, to find the factors of x.

Complexity theory provides measures to classify computational problems according to
the difficulty of solving them in terms of required time and space. The most prominent
open question in this field is whether the class of polynomial-time algorithms P equals
the class of non-deterministic polynomial-time algorithms NP, i.e., whether P = NP
holds. Loosely speaking, P contains the problems being solvable in polynomial-time and
NP contains the problems which, when given a solution, the solution can be verified
in polynomial-time. Consequently, one is interested in establishing an ordering relation
between different (classes of) problems. Such a relation between two distinct problems
can be established by reducing one problem to another problem, which is discussed in the
following section.

2.1.1 Polynomial Reduction

A computational problem P1 reduces to a computational problem P2, if there is an algorithm,
that solves instances of P1 by using the algorithm for P2 as an oracle, i.e., transforms each
instance of P1 to an instance of P2 and the other way round for the solutions of P2 (see
Figure 2.1).

Instance p1
of P1

Solution to
p1

Reduction of P1

P2

Solution to

reduced p1

Reduction

of p1

Figure 2.1: Schematic view of a reduction [52]
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Definition 2.8 (Polynomial reduction [63]). If a reduction of a computational problem
P1 to a computational problem P2 can be performed in polynomial-time, P1 is said to be
polynomial-time reducible to P2:

P1 ≤P P2.

This, in turn, means that P2 is at least as difficult as P1 when P1 ≤P P2 holds true.
Basically, one distinguishes between Turing and Karp reductions [67]. Karp reductions

map single instances of a problem P1 to single instances of P2, whereas Turing reductions
use an oracle for solving a problem P2, which can be used a polynomial number of times,
as a subroutine for solving an instance of a problem P1.

2.1.2 Negligible Functions

Cryptographic primitives which provide information theoretic security are rare and often
not very practical. Most cryptographic schemes rely on computational problems which
are assumed to be hard and the respective security proofs are in a complexity theoretic
framework. Therefore, we need to define negligible functions.

Definition 2.9 (Negligible function [52]). A function ε is called negligible, if for every
polynomial p(·) there is an n0 ∈ N such that for all n ≥ n0

ε(n) ≤ 1

p(n)

holds true. For the rest of this thesis, we denote a negligible functions as ε(·).

Using negligible functions, the security of a scheme is proved by showing that for any
probabilistic polynomial-time adversary the probability of breaking the scheme is bounded
by a negligible function ε w.r.t. a security parameter κ, i.e., the breaking probability is
exponentially small.

2.1.3 One-way Functions

Based on the definition of negligible functions, one-way functions can now be introduced.

Definition 2.10. A one-way function f : X → Y is a function that can be evaluated in
polynomial time, but its inverse can not be efficiently computed. More precisely this means
that there exists a negligible function such that for every probabilistic polynomial-time
adversary A

Pr [A(f(x)) = x] ≤ ε(κ).

Trapdoor One-way Functions

Trapdoor one-way functions are one-way functions, which allow the efficient inversion of
the function when some additional information, i.e., the trapdoor information, is available.

2.1.4 Reductionist Security

Cryptographic paradigms often rely on mathematical problems P , for which it is assumed
that it is computationally infeasible (w.r.t. a security parameter κ) to find a solution s in
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polynomial time. This means that for all probabilistic polynomial-time adversaries A there
exists a negligible function ε such that

Pr [A(P ) = s] ≤ ε(κ).

We further refer to these problems as hard problems. When one now wants to prove
security of a scheme S, he can simply reduce a hard problem P to it such that

P ≤P S,

which shows that S is at least as hard as P . In other words, this means that if S could
be broken efficiently it could also be misused to solve the problem P , which proves the
security of S under the assumption that P is hard.

2.2 A Brief Overview over Number Theory

Number theory constitutes the very basic building block of cryptography and provides
the mathematical foundations for most state-of-the-art cryptographic protocols. Before
we are able to introduce more sophisticated concepts, we are going to introduce the basic
arithmetic rules for working with congruences in the following section.

2.2.1 Elementary Number Theory

For the rest of this thesis, we assume all numbers to be integers. The set of integers is
denoted by Z. Furthermore, all integers are treated to be equal when the remainder on
division by another integer is identical, i.e., all integers having the same remainder modulo
n are in one equivalence class.

Divisibility and Congruences

In order to define those equivalence classes and the arithmetic rules on representatives of
those equivalence classes, we start with the definitions for divisibility and congruences.

Definition 2.11. Given two elements a, n ∈ Z and an element q ∈ Z such that a · q = n
then a divides n. This relation is denoted as a | n.

Using the definition above, we are able to introduce the congruence relationship of two
integers a, b w.r.t. an integer n.

Definition 2.12. An integer a ∈ Z is congruent modulo n to another integer b ∈ Z if
n | (a− b). The congruence relation is denoted as a ≡ b mod n.

When taking a closer look at the congruence relation, we can derive that a ≡ b mod n
implies that a and b have the same remainder when divided by n.

Example 2.3. 17 ≡ 12 mod 5⇔ 5 | (17− 12).

Definition 2.13. The congruence relation is an equivalence relation ((i) - (iii)) with the
additional property (iv):

(i) Reflexivity: a ≡ a mod n
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(ii) Symmetry: a ≡ b mod n⇔ b ≡ a mod n

(iii) Transitivity: a ≡ b mod n ∧ b ≡ c mod n⇒ a ≡ c mod n

(iv) a ≡ a1 mod n ∧ b ≡ b1 mod n⇒ a+ b ≡ a1 + b1 mod n ∧ a · b ≡ a1 · b1 mod n

Definition 2.14. The integers modulo n are denoted as Zn = {x mod n : x ∈ Z}. This
set contains n equivalence classes {[0] , . . . , [n − 1]}, where the equivalence class [i] for i
would be {i, i± n, i± 2n, . . . }.
Usually, one chooses the integers {x ∈ Z : 0 ≤ x < n} as representatives for the equivalence
classes in Zn.

Example 2.4. Z5 = {0, 1, 2, 3, 4}. 5 ≡ 0 mod 5, 7 ≡ 2 mod 5.

Primality

Definition 2.15. A prime number p is an integer ≥ 2 such that for every integer k it
holds that

k | p⇒ k = 1 ∨ k = p.

The set of prime numbers is denoted by P.

Definition 2.16. The greatest common divisor of two integers a, b ∈ Z is the greatest
positive integer c ∈ N such that c | a ∧ c | b:

gcd(a, b) = max{c ∈ N : c | a ∧ c | b}.

The greatest common divisor of two integers a, b ∈ Z can be computed using the following
recursive formula: gcd(a, b) = gcd(a, b mod a) ∧ gcd(a, 0) = a.

Definition 2.17. If the greatest common divisor of two integers a and b is 1, a and b are
called co-prime or relatively prime.

Hence, the question if it is possible to count the numbers being co-prime to an integer n
arises. Defining a function for counting them, requires the following theorem.

Theorem 2.1 (Fundamental theorem of arithmetic). Every integer n ≥ 2 can be uniquely
(up to the ordering of terms) represented as a product of prime powers

n =
∏
pi∈P

peii

such that ei ∈ N0 and there are only finitely many ei > 0.

Based on this factorization, Euler defined the so-called ϕ-function (see Definition 2.18).
ϕ(n) counts the integers smaller than n being coprime to n. In other words, it counts the
invertible elements in Zn:

ϕ(n) = |{k : 1 ≤ k ≤ n ∧ gcd(k, n) = 1}| .

Definition 2.18 (Euler’s phi). The ϕ-function of an integer n = pe11 ·pe22 · · · pekk is computed
as

ϕ(n) =

k∏
i=1

pei−1
i (pi − 1).

The ϕ-function is multiplicative, i.e., ϕ(pq) = ϕ(p) · ϕ(q) whenever gcd(p, q) = 1.
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Note that if n is prime, we have ϕ(n) = n− 1, as all integers in ]0, n[ are relatively prime
to n. Furthermore, the following theorem holds true for any two coprime integers.

Theorem 2.2 (Euler-Fermat). For any two coprime integers a, n the congruence aϕ(n) ≡ 1
mod n holds true.

2.2.2 Groups

Based on the number theoretical basics introduced in the previous sections of this chapter,
we are now able to define the notion of groups.

Definition 2.19. A group (G, ·) is a set G together with a binary operation ·. For a group
(G, ·) the following properties hold:

(i) Associativity: a · (b · c) = (a · b) · c for all a, b, c ∈ G.

(ii) Neutral element: There is an element e ∈ G such that a · e = e · a = a ∀ a ∈ G.

(iii) Inverse element: There is an element a−1 ∈ G for each element a ∈ G such that
a · a−1 = a−1 · a = e.

In addition to that, for Abelian groups also the commutativity property holds:

(iv) Commutativity: a · b = b · a ∀ a, b ∈ G.

Definition 2.20. The order ord(G) of a group G is equal to the number of elements in G.
If this number is finite, the group is called finite.

Example 2.5.

� (Zn,+) with n ∈ N is an Abelian group. The neutral element w.r.t. the group
operation + is 0, whereas the inverse element of an element a ∈ Zn is −a.

� (Zp\{0}, ·) with p ∈ P is also an Abelian group. Note that it is crucial in this case
that the modulus p is a prime number, since taking an arbitrary modulus might violate
the inverse element property (see Section 2.2.3). The neutral element regarding the
group operation · is 1.

� (Zn\{0}, ·) with n /∈ P is not a group, since (Zn\{0}, ·) contains elements which are
not invertible (see Section 2.2.3).

� (Z5,+) with Z5 = {0, 1, 2, 3, 4} is a finite group of order 5.

For the rest of this thesis we denote Z∗n as the set of invertible elements modulo n

Z∗n = {k ∈ Zn : gcd(k, n) = 1}.

(Z∗n, ·) is a group and the order of Z∗n is ϕ(n).
Finally, some definitions related to the order of a group and some other related properties

are needed.

Definition 2.21. The order of an element a ∈ G is the smallest integer k, such that
ak = e. When no such integer exists, a is of infinite order.

The order of an element a ∈ G is denoted as ordG(a).
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Definition 2.22. A generator g of a group allows for expressing all elements in the group
as power of the generator:

∀ a ∈ G ∃ i ∈ Z : a = gi.

The order of a generator is always equal to the group order. If such a generator exists for
a group, the group is called cyclic.

Example 2.6. The order of 3 in Z∗5 = {1, 2, 3, 4} is 4. Thus, 3 is a generator of Z∗5 and
Z∗5 is cyclic.

1 : 31 ≡ 3 mod Z∗5
2 : 32 ≡ 4 mod Z∗5
3 : 33 ≡ 2 mod Z∗5
4 : 34 ≡ 1 mod Z∗5

For the rest of this thesis, a generator g of a group G is denoted as g ∈g G.

Definition 2.23 (Subgroup). Let (G, ·) be a group. A non-empty subset H of G is called
a subgroup of (G, ·) when H is again a group w.r.t. the group operation ·.
Definition 2.24 (Torsion subgroup). An r-torsion element a in a group G is an element
satisfying ar = e. The r-torsion subgroup of G is the set of all r-torsion points:

G[r] = {a ∈ G : ar = e}.
Theorem 2.3 (Lagrange). For any finite group (G, ·), the order of any subgroup (H, ·)
divides the order of (G, ·).
Theorem 2.4 (Sylow). Let G be a finite group with order ord(G) = m · pr with p ∈ P,
gcd(m, p) = 1 and r > 0. There exists a subgroup of order pr of G.

Theorem 2.5. The multiplicative group Z∗n, i.e., the multiplicative group of invertible
integers modulo n, is cyclic if n = 4, n = pα or n = 2pα, with p being an odd prime and α
being a positive integer.

Theorem 2.6. All subgroups of cyclic groups are cyclic.

2.2.3 Rings

A ring (R,+, ·) further extends the group definition by adding a second binary operation
+.

Definition 2.25. Let R be a set together with the two binary operations + and ·, respectively.
The following properties apply to a ring:

(i) (R,+) is an Abelian group with 0 as neutral element.

(ii) Associativity w.r.t. multiplication: ∀ a, b, c ∈ R : a · (b · c) = (a · b) · c.
(iii) Distributivity of the · operation over the + operation: ∀ a, b, c ∈ R :

� a · (b+ c) = (a · b) + (a · c) (left-distributivity)

� (b+ c) · a = (b · a) + (c · a) (right-distributivity).

Moreover, the ring is commutative if ∀ a, b ∈ R : a · b = b · a.

Definition 2.26. A ring (R,+, ·) with 1 is a ring containing an element 1 such that
a · 1 = 1 · a = a for all a ∈ R.

Example 2.7. (Z,+, ·) and (Zn,+, ·) are both commutative rings with 1.
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The Ring of Integers Modulo n

The integers modulo n, together with + and · constitute a ring. Obviously, (Zn, +) is
an Abelian group and also the associativity and the distributivity properties hold for the
integers modulo n.

However, we need to take a closer look at the inversion of integers and the properties
of invertible integers w.r.t. the multiplication operation in order to be able to define fields.

Modular Inverses

In order to be able to introduce modular inverses in (Zn,+, ·), we need to introduce a
method for efficiently computing the greatest common divisor of two integers a and b. The
Euclidean algorithm provides such a method (see Algorithm 2.1).

Algorithm 2.1 The Euclidean Algorithm

1: Input: a, b ∈ Z with a, b > 0, and w.l.o.g. a > b
2: while b 6= 0 do
3: Find q, r, such that a = b · q + r
4: a = b, b = r
5: end while
6: return a

Example 2.8. We compute the greatest common divisor of 931 and 147.

931 = 6 · 147 + 49

147 = 3 · 49 + 0
→ gcd(931, 147) = 49

The additive inverse of an element a ∈ Zn is −a since a−a ≡ 0 mod n. However, this is not
that simple for the multiplicative inverse a−1, which must fulfill a · a−1 ≡ 1 mod n. Such
an inverse only exists if gcd(a, n) = 1. The following theorem is the basis for computing
multiplicative inverse elements:

Theorem 2.7 (Bezout). For each pair of integers a, b, there exist two integers s, t such
that gcd(a, b) = s · a+ t · b.

Now, an extension of the Euclidean algorithm can be exploited for efficiently computing the
multiplicative inverse of a given integer, which only exists if the greatest common divisor
of the modulus and the element to be inverted is 1. The extended Euclidean algorithm
is executed in the same way as the Euclidean algorithm and then uses the intermediate
values q and r for substituting intermediate results and computing the integers s and t in
the way shown in the following example.

Example 2.9. We compute the modular inverse of 146 mod 931, i.e., an integer x such
that 146 · x ≡ 1 mod 931. Firstly, the Euclidean algorithm is executed:

931 = 6 · 146 + 55
146 = 2 · 55 + 36
55 = 1 · 36 + 19
36 = 1 · 19 + 17
19 = 1 · 17 + 2
17 = 8 · 2 + 1

2 = 2 · 1 + 0

→ gcd(931, 146) = 1
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Secondly we start from 1 = 17− 8 · 2 and substitute back:

1 = 17− 8 · 2 = 17− 8 · (19− 1 · 17) = 9 · 17− 8 · 19 = −8 · 19 + 9 · (36− 1 · 19) =
= 9 · 36− 17 · 19 = 9 · 36− 17 · (55− 1 · 36) = −17 · 55 + 26 · 36 =

= −17 · 55 + 26 · (146− 2 · 55) = 26 · 146− 69 · 55 = 26 · 146− 69 · (931− 6 · 146) =
= 440 · 146− 69 · 931

If we have a look at 440·146−69·931 ≡ 1 mod 931, we can immediately see that 69·931 ≡ 0
mod 931. Thus, we have 440 · 146 ≡ 1 mod 931 and 440 is our desired multiplicative
inverse x of 146 mod 931.

Note that there is also a recursive version of the extended Euclidean algorithm which is
omitted here for the sake of simplicity.

2.2.4 Fields

Finally, based on the definition of rings with 1 and multiplicative inverses in the previous
section, the notion of fields can be introduced.

Definition 2.27. A field (F,+, ·) is a commutative ring with 1, with the additional property
that each element is invertible w.r.t. multiplication. In other words, the following properties
hold true for a field:

(i) (F,+) is an (additive) Abelian group with neutral element 0.

(ii) (F\{0}, ·) is a (multiplicative) Abelian group with neutral element 1.

(iii) The distributivity property (see Definition 2.25 property (iii)) holds for (F,+, ·).

Definition 2.28 (Extension field). A field (F ,+, ·) is called an extension field of (F,+, ·),
if F ⊂ F . F is called a subfield of F in this case.

Definition 2.29. If the number of elements in F is finite, F is called a finite field.

In the following we use F to denote a finite field. As in the group case, the number of
elements in a field F is referred to as the order of the field. Note that a finite field F of
order q only exists if q is a prime power, i.e., q = pm for p ∈ P and m being a positive
integer.

Theorem 2.8. For each integer m and prime p, there is exactly one (up to isomorphisms)
field F of order q = pm. The field of order q is referred to as Fq.

Corollary 2.1. Given a finite field Fpm, for every positive divisor l of m exactly one (up
to isomorphisms) finite subfield of order pl exists.

Example 2.10. (Zp,+, ·) with p ∈ P is a finite field of prime order p.

Definition 2.30. The characteristic of a field F is the smallest integer n ≥ 1 such that∑n
i=1 1 = 0. If no such integer exists, the characteristic is 0.

Thus, the characteristic of a field F with order q = pm is p and m is called the extension
degree, which can be any positive integer. Depending on the extension degree m, we
distinguish between prime fields and extension fields. While prime fields have an extension
degree m = 1, m is greater than 1 for extension fields.
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Prime Fields

As already mentioned before, the integers modulo a prime p together with the addition
and the multiplication form a finite field. Accordingly, elements in a prime field Fp are
reduced modulo a prime p.

Extension Fields

Extension fields are constructed by reducing the elements in the polynomial ring Fp[X]
modulo a monic, irreducible polynomial f ∈ Fp[X] of degree m. An irreducible polynomial
f(X) is a polynomial which cannot be factored into other polynomials, each of a lower
degree than f(X). Formally, an irreducible polynomial can be defined as

f ∈ Fp[X] irreducible⇔ ∀ g | f ⇒ g ∈ F∗p ∨ g = f.

Note that constructing two extension fields from two different monic, irreducible polynomials
of degree m leads to two isomorphic field extensions. Formally, the extension field Fpm is
constructed as follows:

Fpm = Fq[X]/(f(X)) = {g mod f : g ∈ Fp[X]}.

With α being a root of f(X), the elements of Fpm can be written in additive representation
w.r.t. the generator α:

Fpm ∼= {am−1 · αm−1 + am−2 · αm−2 + · · ·+ a2 · α2 + a1 · α+ a0 | ai ∈ Fp}.

The addition of two field elements can then be performed in the same way as a usual
polynomial addition, whereas the multiplication is performed as a conventional polynomial
multiplication followed by a reduction modulo the chosen irreducible polynomial of degree
m. The reduction is, thereby, performed using a conventional polynomial division.

A special case of extension fields are the binary extension fields F2m , which allow for
very efficient field arithmetic due to the coefficients being in F2 = {0, 1}.

Towering Field Extensions

In certain implementations, it may be beneficial to make use of multiple different field
extensions, which, in turn, leads to a quite vast amount of implementation work, since each
field extension requires its own arithmetic. Thus, it is useful to make use of field extension
towers for odd extension degrees m, e.g., in the case of Fp6 it is beneficial to make use
of F

p32 . When mapping this to the aforementioned polynomial representation, there is a
polynomial of degree two, having its coefficients in Fp3 .

2.2.5 The Discrete Logarithm Problem

The security of some of the schemes discussed at a later point in this thesis, relies on
the assumption of the hardness of the discrete logarithm problem (DLP). The discrete
logarithm problem for multiplicative groups is defined as follows. Note that the following
problem can also be applied to appropriately chosen fields.

Definition 2.31. Let (G, ·) be a finite cyclic group of prime order p which is generated by
g and let x be an element out of Zp. Furthermore, let DLPA be a game, which, on input of
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gx, requires the adversary A to output x. If the output of A is correct, the game outputs 1
and 0 otherwise. The DLP is for A to win this game. The DL assumption in G states,
that for all probabilistic polynomial-time adversaries A there exists a negligible function ε
such that

Pr
[
DLPA(gx) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table 2.1).

The integer x is referred to as the discrete logarithm of gx to the base g.

2.2.6 The Diffie-Hellman Problems

Finally, the knowledge of the computational Diffie-Hellman (CDH) problem and the
decisional Diffie-Hellman (DDH) problem are crucial for understanding some of the
schemes this thesis builds up on. In the context of multiplicative groups, these problems
are defined as follows (see e.g. [70]). Again, the following problems can be applied to
appropriately chosen fields as well.

CDH Let (G, ·) be a finite cyclic group of prime order p which is generated by g. Moreover
we have gx, gy ∈ G with x, y ∈ Zp. Furthermore, let CDHA be a game, which, on
input of gx, gy, requires the adversary A to compute gxy. If the output of A is correct,
the game outputs 1 and 0 otherwise. The CDHP is for A to win this game. The
CDH assumption in G states, that for all probabilistic polynomial-time adversaries
A there exists a negligible function such that

Pr
[
CDHA(gx, gy) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table
2.1).

DDH Let (G, ·) be a finite cyclic group of prime order p which is generated by g. Moreover
we have gx, gy, gz ∈ G with x, y, z ∈ Zp. Furthermore, let DDHA be a game, which,
on input of gx, gy, gz, requires the adversary A to tell whether x · y ≡ z or not. If A’s
output is correct, the game outputs 1 and 0 otherwise. The DDHP is for A to win this
game. The DDH assumption in G states, that for all probabilistic polynomial-time
adversaries A there exists a negligible function such that

Pr
[
DDHA(gx, gy, gz) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table
2.1).

The above problems can be ordered according to their hardness as follows:

DDHP ≤P CDHP ≤P DLP.

Finally, we introduce the notion of gap Diffie-Hellman (GDH) groups, as well as the gap
Diffie-Hellman problem.

Definition 2.32 (Gap Diffie-Hellman group). Groups, in which the DDHP is easy, whilst
the CDHP is hard are called gap Diffie-Hellman groups.
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GDH Let (G, ·) be a finite cyclic group of prime order p which is generated by g. Further-
more, we assume that an adversary A has access to an oracle ODDH for solving the
DDH problem. The GDHP is for A to win the CDH game, whilst having access to
ODDH . The GDH assumption in G states, that for all probabilistic polynomial-time
adversaries A there still exists a negligible function such that

Pr
[
CDHA,O

DDH
(gx, gy) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table
2.1).

2.3 Introduction to Elliptic Curves

In the mid of the 1980s, the use of elliptic curve groups in public key cryptography was
proposed independently by Victor S. Miller [65] and Neal Koblitz [54]. Since then, this
topic attracted quite a lot of interest and, consequently, a lot of research work has been
put in it.

The security of elliptic curve cryptography (ECC) is based on the hardness of the
elliptic curve discrete logarithm problem (ECDLP). For properly chosen elliptic curves
there is no known sub-exponential time algorithm for solving the ECDLP. In contrast, for
finite fields sub-exponential time algorithms for solving the DLP are know. Thus, properly
chosen elliptic curve groups allow for using smaller security parameters which, in turn,
allows for faster computations. Table 2.1 gives an overview over the comparable strengths
proposed by NIST [6].

Bits of Secu-
rity

FFC (e.g.,
DSA, DH)

IFC (e.g.,
RSA)

ECC (e.g.,
ECDSA)

80
L = 1024

k = 1024 f = 160− 223
N = 160

112
L = 2048

k = 2048 f = 224− 255
N = 224

128
L = 3072

k = 3072 f = 256− 383
N = 256

192
L = 7680

k = 7680 f = 384− 511
N = 384

256
L = 15360

k = 15360 f = 512+
N = 512

Table 2.1: Comparable strengths proposed by NIST [6] with L being the size of the public
key and N being the size of the private key in finite field cryptography (FFC) setups and
k and f being the key sizes in integer factorization cryptography (IFC) and elliptic curve
cryptography (ECC) setups, respectively.

2.3.1 Elliptic Curve Arithmetic

An elliptic curve E with underlying field F , further referred to as E/F , is defined by the
so called (long) Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.1)
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The coefficients a1, . . . , a6 of (2.1) are elements of F , and are chosen in such a way that
the discriminant ∆ 6= 0. A nonzero discriminant ensures that E is smooth, i.e., every point
on the curve has exactly one tangent line. It is defined as follows:

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

 (2.2)

All points (x, y) ∈ F × F fulfilling (2.1), together with the point at infinity ∞ is further
referred to as E(F ).

Example 2.11. Figure 2.2 shows the points on the curve E : y2 = x3 + 2x + 5 for two
different underlying fields. Figure 2.2a shows E(R), whereas Figure 2.2b shows E(Z809).

(a) E(R) (b) E(Z809)

Figure 2.2: Plots of E : y2 = x3 + 2x+ 5 over different fields

The Group Law

In order to make use of elliptic curves in cryptography, an Abelian group structure is
required. Using the so called chord-and-tangent rule, the points on an elliptic curve with
underlying field F form an Abelian group (E(F ),+). Thereby, the point at infinity ∞
serves as neutral element. Figure 2.3 illustrates the point addition and doubling rules as
defined in Definition 2.33 and Definition 2.34.

For the following definitions of the group law it is crucial that a line through two points
on the elliptic curve intersects the curve at exactly one third point. As we will see, this
holds true for E(F ).

Definition 2.33 (Chord rule). The addition of two points P,Q ∈ E(F ) is performed by
firstly drawing a line trough P and Q. This line intersects the curve at a third point R,
which is reflected over the x-axis to obtain the point R. R then equals P + Q. See also
Figure 2.3a.

This operation is undefined when Q = P . Nevertheless, the point doubling can be performed
by using the following operation.
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Definition 2.34 (Tangent rule). When doubling a point P , one lays a tangent line through
the point, which results in an intersection of the curve at the point R. Reflecting R over
the x-axis leads to the point R which is equal to P + P = 2P . See also Figure 2.3a.

(a) Addition P +Q = R (b) Doubling P + P = R

Figure 2.3: Geometric addition and doubling of elliptic curve points [35]

There are also algebraic formulas for point addition and point doubling, which are omitted
here for the sake of simplicity. For more details we refer the reader to [35].

Definition 2.35. The number of points on an elliptic curve with underlying finite field Fq
is called the order of E over Fq and is denoted as #E(Fq).

A rough upper bound for this order can be found using the Weierstrass equation. It
provides at most two solutions for each x ∈ Fq. Thus, #E(Fq) ∈ [1, 2q + 1]. Hasse’s
Theorem provides a tighter upper bound as well as a lower bound for the order of an elliptic
curve over Fq.

Theorem 2.9 (Hasse). Let E be an elliptic curve defined over Fq. Then

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

Practical setups most likely make use of prime order subgroups of E(Fq), i.e., E(Fq)[p]. In
this context, the cofactor h is defined as follows.

Definition 2.36. Let E(Fq) be an elliptic curve group and let E(Fq)[p] be a p-torsion
subgroup of E(Fq). Then, the cofactor h of E(Fq) w.r.t. to the generator P ∈g E(Fq)[p] is
computed as

h =
#E(Fq)

p
.

A group is said to have almost prime order when h ≤ 4.
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Point Representation

When using the previously introduced affine coordinates, i.e., each point is represented by
a tuple (x, y) ∈ F × F , one inversion in the underlying field is necessary in order to double
a point and to add two points respectively. As inversions are the most expensive operation
in finite fields, they are circumvented using the notion of projective coordinates. The set
of projective points P(F ) is composed of

P(F )∗ = {(X : Y : Z) : X,Y, Z ∈ K,Z 6= 0}

together with the so-called line at infinity

P(F )0 = {(X : Y : Z) : X,Y, Z ∈ K,Z = 0}.

An equivalence relation between projective and affine points can be established in the
following way:

(X : Y : Z) ≡
(
X

Z
:
Y

Z

)
= (x, y) for z 6= 0.

All projective points on the line of infinity are mapped to the point at infinity ∞ in the
affine coordinate space. The projective (homogenized) version of the Weierstrass equation
looks the following way:

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (2.3)

Again, the algrebraic addition formulas are omitted here, and we refer the reader to [35]
for further details.

2.3.2 The Elliptic Curve Discrete Logarithm Problem

The security of elliptic curve cryptosystems relies on the assumption of the hardness of
the elliptic curve discrete logarithm problem (ECDLP). Similar to the discrete logarithm
problem (see Section 2.2.5), the ECDLP is defined as follows.

Definition 2.37. Let E be an elliptic curve defined over a field Fq, P ∈ E(Fq) a point
of prime order p and x · P ∈ E(Fq). Furthermore, let ECDLPA be a game, which, on
input of x · P , requires the adversary A to output x. If the output of A is correct, the
game outputs 1 and 0 otherwise. The ECDLP is for A to win this game. The ECDL
assumption in E(Fq) states, that for all probabilistic polynomial-time adversaries A there
exists a negligible function such that

Pr
[
ECDLPA(x · P ) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table 2.1).

2.3.3 Diffie-Hellman-Type Problems on Elliptic Curves

The Diffie-Hellman problems defined in Section 2.2.6 also apply to elliptic curve groups.
Since they are, except for the additive notation in the elliptic curve case, exactly the same
as the ones presented in Section 2.2.6 we do not restate them here.
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2.4 Bilinear Pairings

Bilinear pairings were firstly used for attacking the ECDLP in certain elliptic curve groups
by transforming it to an instance of the DLP (cf., [29,30,62,76]). However, the properties of
bilinear pairings are also useful for constructing cryptographic protocols. Joux was the first
one who discovered this. He proposed a scheme [46], based on pairings, allowing for a three
party key agreement. Subsequently, an identity based encryption scheme [14] and a short
signature scheme [15], both making use of pairings, were proposed. Henceforth, bilinear
pairings received quite a lot of attention, were used to construct various cryptographic
primitives which only work with pairings, such as functional encryption schemes, and a
reasonable number of protocols employing pairings exist today. A pairing is defined as
follows:

Definition 2.38. Let G1 and G2 be cyclic additive groups and GT be a cyclic multiplicative
group, all of prime order p: A bilinear pairing is a map of the form e : G1 × G2 → GT

and is called symmetric if G1 = G2 and asymmetric otherwise. Additionally, the following
properties must hold true for a bilinear pairing:

(i) Bilinearity: ∀ P,Q ∈ G1, R
′ ∈ G2 : e(P + Q,R′) = e(P,R′) · e(Q,R′) and ∀ P ∈

G1, Q
′, R′ ∈ G2 : e(P,Q′ +R′) = e(P,Q′) · e(P,R′).

(ii) Non-degeneracy: e(P, P ′) 6= 1, for P and P ′ being generators of G1 and G2

respectively.

(iii) e needs to be efficiently computable.

While symmetric pairings are also known as Type-1 pairings, asymmetric pairings can be
either Type-2 or Type-3 pairings. The difference between Type-2 and Type-3 pairings is
that an efficiently computable isomorphism Ψ : G2 → G1 exists for Type-2 pairings, whilst
for Type-3 pairings such an isomorphism is not known to exist.

For more information we refer the reader to [18,19].

Definition 2.39 (Embedding degree). Given E/Fq and E(Fq)[r] of order r with gcd(q, r) =
1, the embedding degree of E(Fq) is the smallest k such that r | qk − 1.

When bilinear pairings are implemented using elliptic curves, the ECDLP in G1 can be
transferred to the DLP in GT , which is an order p subgroup of the multiplicative group
F∗
qk

. This means that for reasonable small embedding degrees k, it can be easier to solve

the DLP in GT than to solve the ECDLP in G1 (see, e.g., [29, 30,62,76]).
Furthermore, in a quite recent attack1, the discrete logarithm on a curve over F(2257)24

was broken within 550 hours, which renders binary extension fields unusable for pairing
based cryptography. The method used for this attack was presented in [47], whereas an
optimized algorithm for this attack is shown in [5].

Elliptic curves which are suitable for the use with bilinear pairings are referred to as
pairing-friendly curves. In order for a curve to be suitable for the use with bilinear pairings
it is required to contain a subgroup of large prime order p which ensures that the ECDLP
is hard in G1 and G2, respectively. Further a pairing-friendly curve is required to have an
embedding degree small enough that computations in GT are feasible and large enough
that it is still intractable to solve the DLP in GT when appropriate security parameters
are chosen.

1https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305
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2.4.1 The Bilinear Diffie-Hellman Problem and Related Problems

Building up on the definitions in Section 2.2.6, the Diffie-Hellman related problems can
also be defined for bilinear pairings. For the sake of simplicity, we use Type-1 pairings
e : G×G→ GT for our explanations. However, these problems can also be transferred to
Type-2 and Type-3 pairings [18].

Definition 2.40 (Bilinear Diffie-Hellman problem (BDHP)). Let G,GT be finite cyclic
groups of prime order p and P ∈g G. Furthermore let e : G × G → GT be a bilinear
pairing. We are given (P, x · P, y · P, z · P ) and let BDHPA be a game, which, on input
of P, x · P, y · P, z · P , requires the adversary A to output e(P, P )xyz. If the output of A
is correct, the game outputs 1 and 0 otherwise. The BDHP is for A to win this game.
The BDH assumption states, that for all probabilistic polynomial-time adversaries A there
exists a negligible function such that

Pr
[
BDHPA(P, x · P, y · P, z · P ) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table 2.1).

Definition 2.41 (Decisional bilinear Diffie-Hellman problem (DBDHP)). Let G,GT be
finite cyclic groups of prime order p and P ∈g G and e : G × G → GT be a bilinear
pairing. Furthermore, let DBDHPA be a game, played by the adversary A. Thereby, A
gets (P, x · P, y · P, z · P ) and e(P, P )w, and determines whether w ≡ xyz mod p. The
game outputs 1 if A’s output is correct and 0 otherwise. The DBDHP is for A to win this
game. The DBDH assumption states, that for all probabilistic polynomial-time adversaries
A there exists a negligible function such that

Pr
[
DBDHPA((P, x · P, y · P, z · P ), e(P, P )w) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table 2.1).

Definition 2.42 (t-strong Diffie-Hellman problem (t-SDHP) [13,51]). Let G,GT be finite
cyclic groups of prime order p and P ∈g G and e : G×G→ GT be a bilinear pairing. Further,
let α ∈r Z∗p and let t-SDHA be a game, which on input of the tuple (P, αP, . . . , αtP ) ∈ Gt+1

for some t > 0 requires the adversary A to output
(
c, 1
α+cP

)
for any c ∈ Zp\{−α}. If

the output of A is correct, the game outputs 1 and 0 otherwise. The t-SDHP is for A to
win this game. The t-SDH assumption states, that for all probabilistic polynomial-time
adversaries A there exists a negligible function such that

Pr
[
t-SDHA(P, αP, . . . , αtP ) = 1

]
≤ 1

2
+ ε(κ)

holds true for all appropriately chosen p w.r.t. the security parameter κ (see Table 2.1).

Note that pairing friendly curves represent GDH groups. Thereby, one can use the pairing
as a DDH oracle, i.e., given an instance (P, x · P, y · P, z · P ) of the DDHP in G one simply
checks whether

e(x · P, y · P )
?
= e(z · P, P ) (2.4)

holds true, and, thus, implicitly verifies if x · y ≡ z mod p holds. However, it is assumed
that this DDH oracle does not give an advantage in solving the CDHP in G.

In our case, we make use of Barreto-Naehrig (BN) curves which are briefly introduced
in the following section.
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2.4.2 Bilinear Pairings over BN Curves

BN curves are pairing friendly curves supporting Type-3 pairings. They were originally
proposed by Barreto and Naehrig [8] and the curve equation looks as follows:

E : y2 = x3 + b.

where E is defined over some Fp with p ≡ 1 mod 3. The pairing e : G1 ×G2 → GT looks
as follows for BN curves:

e : E(Fp)[r]× E(Fp2)[r]→ Fp12 [r].

As it can already be derived from the previous equation, BN curves have an embedding
degree of 12. Thus, elements in GT have a bitlength of 12 · κ, with κ being the bitlength
of G1. Currently a bitlength of 256bit in G1 provides an appropriate level of security,
which leads to a bitlength of 3072bit in GT . This choice is ideal at the 128bit security
level w.r.t. the comparable strengths proposed by NIST [6], since the discrete logarithm
problem should be equally hard in the additive groups G1, G2 and in the multiplicative
group GT (see also Table 2.1).

Since the implementation of pairings is not part of this thesis, details regarding the
computation of pairings are omitted here and we refer the reader to [58, 61] for further
details.



Chapter 3

Selected Topics of Cryptography

Based on the mathematical foundations introduced in the previous section, this chapter is
intended to present the cryptographic background needed for understanding this thesis.
Again, it may be skipped by readers being already familiar with the concepts discussed in
this section.

This chapter is organized as follows. Section 3.1 constitutes an introduction to the
cryptographic basics. Section 3.2 then introduces the basic idea behind proxy signatures,
which are the basis for the schemes introduced later on. Finally, Section 3.3 gives an
overview over certain types of commitments being used by the aforementioned schemes.

3.1 Basic Notion

In this section we are going to introduce the basics of data encryption, as well as key
agreements, digital signatures and cryptographic hash functions. Similar to the previous
chapter, this section is based on various books [9, 35, 52, 63] as well as lecture notes [75] to
certain courses held at the Graz University of Technology.

In virtually any introductory literature to cryptography, the goals of cryptography are
introduced by the example of Alice and Bob, wanting to communicate over a potentially
insecure channel. This is modeled by an eavesdropper Eve, who listens on this channel and
potentially modifies transmitted messages (see Figure 3.1).

Alice Bob

Eve

Figure 3.1: Alice and Bob, communicating over a potentially insecure channel

Based on this example, the following basic cryptographic goals can be derived (see, e.g., [63]):

� Confidentiality: No one, except the desired recipient(s), should be able to read the

24
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contents of a given message. When, for example, Alice sends a message to Bob only
Bob should be able to read the contents of the message. This goal can, for instance,
be reached by using data encryption (see Section 3.1.1, Section 3.1.2, Section 3.1.3).

� Integrity: Given a message, any unauthorized modification of this message should
be detectable, e.g., Bob is able to detect any modifications of a message originating
from Alice. Integrity can, e.g., be ensured using message authentication codes (see,
e.g., [3]) or digital signatures (see Section 3.1.5).

� Authentication: This goal is concerned with the verification of the identity of
the communication parties (entity authentication) and the origin of messages (data
origin authentication). Note that data origin authentication implicitly provides data
integrity. One can reach this goal by using message authentication codes (see, e.g., [3])
or digital signatures (see Section 3.1.5).

� Non-repudiation: Given a message sent by a certain party, this party should not
be able to disclaim to be the sender of the message. For instance, using digital
signatures (see Section 3.1.5) would be a way for ensuring non-repudiation.

Depending on the used cryptographic primitive, or the combination of cryptographic
primitives respectively, one or more of the aforementioned goals can be met.

Before we are able to start over with our explanations, we firstly need to introduce
Kerckhoff’s principle.

Kerckhoff’s Principle Kerckhoffs [53] stated that the security of a cipher should only
depend on keeping the key secret, whilst all involved algorithms can be publicly known.
Today, this principle is applied to every cryptographic primitive involving secret information.

In the following sections we introduce encryption primitives, which provide confiden-
tiality of data. Thereby, one basically can distinguish between symmetric and asymmetric
encryption schemes which are discussed in Section 3.1.1 and Section 3.1.2 respectively.

3.1.1 Symmetric Encryption

In symmetric encryption schemes, denoted by Σ = (Gen,Enc,Dec), the identical key K is
used for decryption and encryption of a message m ∈ {0, 1}∗. Formally, the encryption
algorithm Enc as well as the decryption algorithm Dec with message m and ciphertext c
can be defined as follows:

c = EncK(m)

m = DecK(c)
(3.1)

Thereby, one requires that for all potential messages m we have m = DecK(EncK(m)) for
all K ∈ Gen(κ). For the rest of this thesis, we assume Gen to be an algorithm, outputting
the required keying material on input of a security parameter κ. Furthermore, we assume
an oracle to be a black box, allowing to execute a certain algorithm, whereas no further
information about this algorithm can be derived from the oracle.

Notion of security: In order to quantify the security of a given symmetric encryption
scheme Σ = (Gen,Enc,Dec), any state-of-the-art literature, e.g., [52], defines various security
measures, which are explained in the following paragraphs. The notion, as well as the
definitions for our further explanations were taken from [52].
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Firstly, we define the indistinguishable encryption property of a given symmetric cipher
when an eavesdropper is present. This property is defined in Definition 3.1, which, in turn,
is based on Game 3.1.

1. A key K is generated by running Gen(κ).

2. Adversary A gets the security parameter κ and outputs a pair of messages m0,m1 of the same length.
(These messages must be in the plaintext space associated with K)

3. A random bit b ∈ {0, 1} is chosen, and then a ciphertext c = EncK(mb) is computed and given to A.
We call c the challenge ciphertext.

4. A outputs a bit b′.

5. The output of the game is defined to be 1 if b′ = b, and 0 otherwise.

Game 3.1: The eavesdropping indistinguishability game PrivKeav
A,Π(κ) [52]

Definition 3.1 (EAV-security [52]). A symmetric encryption scheme Σ = (Gen,Enc,Dec)
has indistinguishable encryption in the presence of an eavesdropper if for all probabilistic
polynomial-time adversaries A there exists a negligible function ε such that

Pr
[
PrivKeav

A,Π(κ) = 1
]
≤ 1

2
+ ε(κ).

Secondly, the indistinguishable encryption property of a symmetric cipher with respect to
the chosen-plaintext attack can be defined. This is done in Game 3.2 and Definition 3.2,
respectively.

1. A key K is generated by running Gen(κ).

2. The adversary A gets the security parameter κ and oracle access to EncK(·), and outputs a pair of
messages m0,m1 of the same length.

3. A random b ∈ {0, 1} is chosen, and then a ciphertext c = EncK(mb) is computed and given to A. We
call c the challenge ciphertext.

4. The adversary A continues to have oracle access to EncK(·), and outputs a bit b′.

5. The output of the game is defined to be 1 if b′ = b, and 0 otherwise. (In case PrivKcpa
A,Π(n) = 1, we

say that A succeeded)

Game 3.2: The CPA indistinguishability game PrivKcpa
A,Π(κ) [52]

Definition 3.2 (CPA-security [52]). A symmetric encryption scheme Σ = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-plaintext attack if for all probabilistic
polynomial-time adversaries A there exists a negligible function ε such that

Pr
[
PrivKcpa

A,Π(κ) = 1
]
≤ 1

2
+ ε(κ).

Finally, we introduce the indistinguishable encryption property of a symmetric cipher for
chosen-ciphertext attacks (see Game 3.3, Definition 3.3).
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1. A key K is generated by running Gen(κ).

2. The adversary A gets the security parameter κ and oracle access to EncK(·) and DecK(·). It outputs
a pair of messages m0,m1 of the same length.

3. A random b ∈ {0, 1} is chosen, and then a ciphertext c = EncK(mb) is computed and given to A. We
call c the challenge ciphertext.

4. The adversary A continues to have oracle access to EncK(·) and DecK(·), but is not allowed to query
the latter on the challenge ciphertext itself. Eventually, A outputs a bit b′.

5. The output of the game is defined to be 1 if b′ = b, and 0 otherwise.

Game 3.3: The CCA indistinguishability game PrivKcca
A,Π(κ) [52]

Definition 3.3 (CCA-security [52]). A symmetric encryption scheme Σ = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-ciphertext attack if for all probabilistic
polynomial-time adversaries A there exists a negligible function ε such that

Pr
[
PrivKcca

A,Π(κ) = 1
]
≤ 1

2
+ ε(κ).

One state-of-the-art symmetric cipher, which is also marginally used in this thesis, is the
Advanced Encryption Standard (AES) [23] cipher developed by Daemen and Rijmen. The
AES cipher has been standardized by NIST in 2001 in order to replace the Data Encryption
Standard (DES) [1] cipher, which had become insecure.

What remains unsolved at this point is the problem of exchanging a symmetric key
amongst the communication parties in a confidential, integrity-protecting and authentic
way. Two possibilities for overcoming this problem are provided later in this section (hybrid
encryption) and in Section 3.1.4 (key agreement), respectively.

3.1.2 Public Key Encryption

In contrast to symmetric encryption, a public key encryption scheme, denoted by Π =
(Gen,Enc,Dec), distinguishes between two keys, namely, a secret key sk and a public key pk.
Whilst the secret key is only known to the owner of a so-called keypair (sk, pk), the public
key can be made publicly available. Note that this requires that it is hard to compute
the secret key from the public key. This is usually realized by using (trapdoor) one-way
functions. Formally the encryption function Enc and the decryption function Dec with
message m and ciphertext c can be defined as follows:

c = Encpk(m)

m = Decsk(c)
(3.2)

As in the symmetric case, it is required that for all potential messages m it holds that
m = Decsk(Encpk(m)) for all (sk, pk) ∈ Gen(κ). This way, anyone in possession of the
public key can encrypt messages for a given party A by using A’s public key pk. Once the
message is encrypted, A can decrypt the message using its secret key sk. Cryptosystems,
incorporating a public and a private key, are further referred to as public key cryptosystems.

Notions of Security: As in the symmetric case, we are going to introduce security
measures for public key cryptosystems. Again, the notion as well as the definitions have
been taken from [52].
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Similar to the symmetric case, the definition for security against chosen-plaintext
attacks looks as follows: Game 3.4 states the chosen-plaintext indistinguishability game,
whereas Definition 3.4 defines the security measure against this attack.

1. Gen(κ) is run to obtain keys (sk, pk).

2. Adversary A is given pk as well as oracle access to Encpk(·). The adversary outputs a pair of messages
m0,m1 of the same length. (These messages must be in the plaintext space associated with pk.)

3. A random bit b ∈ {0, 1} is chosen, and then a ciphertext c = Encpk(mb) is computed and given to A.
We call c the challenge ciphertext.

4. A continues to have access to Encpk(·) and outputs a bit b′.

5. The output of the game is defined to be 1 if b′ = b, and 0 otherwise.

Game 3.4: The CPA indistinguishability game PubKcpa
A,Π(κ) [52]

Definition 3.4 (CPA-security [52]). A public key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-plaintext attack if for all probabilistic
polynomial-time adversaries A there exists a negligible function ε such that

Pr
[
PubKcpa

A,Π(κ) = 1
]
≤ 1

2
+ ε(κ).

Note that in the asymmetric case CPA-security and EAV-security are the same, since any
adversary can simply perform an encryption using the public key (without oracle access).

At last, we state the chosen-ciphertext attack indistinguishability game, as well as
the definition regarding the security against these types of attacks here (see Game 3.5,
Definition 3.5).

1. Gen(κ) is run to obtain keys (sk, pk).

2. The adversary A is given pk and access to a decryption oracle Decsk(·). It outputs a pair of messages
m0,m1 of the same length. (These messages must be in the plaintext space associated with pk.)

3. A random bit b ∈ {0, 1} is chosen, and then a ciphertext c = Encpk(mb) is computed and given to A.

4. A continues to interact with the decryption oracle, but may not request a decryption of c itself.
Finally, A outputs a bit b′.

5. The output of the game is defined to be 1 if b′ = b, and 0 otherwise.

Game 3.5: The CCA indistinguishability game PubKcca
A,Π(κ) [52]

Definition 3.5 (CCA-security [52]). A public key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-ciphertext attack if for all probabilistic
polynomial-time adversaries A there exists a negligible function ε such that

Pr
[
PubKcca

A,Π(κ) = 1
]
≤ 1

2
+ ε(κ).
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3.1.3 Hybrid Encryption

Whilst asymmetric encryption schemes are typically too slow for larger messages, they do
not require a secure key exchange, since the public key pk is public by definition. In contrast,
symmetric ciphers are fast when encrypting large messages, whereas they incorporate the
problem of securely exchanging the secret key K.

Hybrid encryption schemes combine the advantages of both, symmetric and asymmetric
encryption schemes. Thereby, the message m, intended to be encrypted, is symmetrically
encrypted under a random key K. The small key K is then asymmetrically encrypted using
the recipients public key pk. Suppose that a party A wants to encrypt a message m for a
party B. Then, A symmetrically encrypts m under the random symmetric key K, which is
in turn encrypted using the public key pkB of party B:

A B
c = EncK(m)

cK,B = EncpkB(K)
c,cK,B−−−→

K = DecskB(cK,B)
m = DecK(c)

(3.3)

Note that hybrid encryption can also be used to encrypt data intended to be decrypted
by multiple parties. In this case, the data only needs to be encrypted once, whereas
the symmetric key K is separately encrypted for each party. The encrypted data is then
represented by the tuple (c, (cK,1, . . . cK,n)) for the recipients 1, . . . , n. PKCS#7 [49], for
instance, standardizes this paradigm under the name EnvelopedData.

Elliptic Curve Integrated Encryption Scheme

The elliptic curve integrated encryption scheme (ECIES) is used for encryption purposes
in our implementations. It is, e.g., standardized in [2] and provides means for public
key encryption using elliptic curve groups. Essentially, it is a hybrid encryption scheme
incorporating message integrity, i.e., providing CCA-security.

In order to present the basic algorithm we assume the following setup: We have a suitable
elliptic curve group E(Fq) with cofactor h and a generator P of a large prime order subgroup.
The recipient of the encrypted message B has the keypair (skB, pkB) = (dB, QB = dB · P ).

Furthermore, the following list shows the cryptographic primitives being required for
the ECIES to work:

� KDF: A key derivation function provides means for deriving a key from a piece of
data (an elliptic curve point in our case). For further details see, e.g., [20].

� MAC: A message authentication code, also known as keyed hash function, provides
means for authenticating a message w.r.t. a given key. See [3] for further details.

� An appropriate symmetric cipher, e.g., [2] proposes to use a simple exclusive or.

For a real world implementation of ECIES, additional details such as the validation of the
public key would have to be considered. Since the implementation is not part of this thesis,
these details are omitted for the sake of simplicity and only the encryption and decryption
algorithms are presented.
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Algorithm 3.1 Elliptic Curve Integrated Encryption Scheme - EncQB [35]

1: Input: E(Fq), P,QB ,m, h,KDF,MAC
2: while true do
3: Choose: k ∈r Z#E(Fq)

4: Compute R = k · P and Z = h · k ·QB
5: if Z =∞ then
6: continue
7: end if
8: (k1, k2) = KDF (xZ , R), with xZ being the x-coordinate of Z
9: Compute C = Enck1(m) and t = MACk2(C)

10: return (R,C, t)
11: end while

Algorithm 3.2 Elliptic Curve Integrated Encryption Scheme - DecdB [35]

1: Input: E(Fq), P, dB , h,KDF,MAC, (R,C, t)
2: Compute: Z = h · dB ·R
3: if Z =∞ then
4: return error
5: end if
6: (k1, k2) = KDF (xZ , R), with xZ being the x-coordinate of Z
7: Compute t′ = MACk2(C)
8: if t′ = t then
9: return m = Deck1(c)

10: end if
11: return error

Note that ECIES is correct, since it holds that:

h · k ·QB = h · k · dB · P = h · dB ·R.

3.1.4 Key Agreement

A key agreement constitutes a protocol for confidentially computing a common key over an
insecure channel. The probably most popular key agreement scheme is the Diffie-Hellman
key agreement [24], which also constituted the beginning of public key cryptography. This
protocol makes use of the hardness of the CDHP and works as follows. With P being a
generator of the used finite cyclic group G of order p, the parties A and B agree on a key
KAB in the following way.

A B
randomly choose x ∈ Z∗p randomly choose y ∈ Z∗p

X = x · P X−→
Y←− Y = y · P

KAB = x · Y = xy · P KAB = y ·X = yx · P

(3.4)

This scheme could, for instance, be instantiated by using an elliptic curve group, i.e.,
P ∈g E(Fq). When such an elliptic curve group is used, the scheme is referred to as elliptic
curve Diffie-Hellman (ECDH) key agreement.

When using a key agreement, one has to consider person-in-the-middle attacks as shown
in Figure 3.2. Thereby, an adversary Eve intercepts both message X and message Y and
establishes a shared key KAE with Alice, and a shared key KBE with Bob. Thus, Eve
is able to wiretap the whole communication, whilst Alice and Bob are not aware of it.



CHAPTER 3. SELECTED TOPICS OF CRYPTOGRAPHY 31

Person-in-the-middle attacks can, for instance, be prevented by authentically providing
certain algorithm parameters, e.g., the key agreement scheme shown in the next section
makes use of the authentic public keys of the communication parties. Instead of directly
using asymmetric encryption in the aforementioned case, one establishes session keys using
the key agreement. This way the leakage of a session key does not compromise the whole
system, since one can simply agree on a new key (forward secrecy).

Alice BobEve
ECDH ECDH

Figure 3.2: Person in the middle attack

The Elliptic Curve MQV Key Agreement

The following explanations are intended to illustrate the principle of the ECMQV key
agreement. For practical implementations of ECMQV, e.g., as standardized in [2], further
details need to be considered (see, e.g., [35]). However, they are omitted here since the
implementation of ECMQV is not part of this thesis.

Our illustration of the ECMQV is based on [35]. We assume that parties A and B
want to agree on a key. Given an appropriate elliptic curve group E(Fq) of order p, and
P ∈g E(Fq), A has the keypair (skA, pkA) = (da, Qa = da · P ), whereas B has the keypair
(skB, pkB) = (db, Qb = db · P ). Furthermore, with R being an elliptic curve point, r is the
integer representation of the x coordinate in Z∗p of R.

Based on the definitions above, we can introduce the ECMQV key agreement:

A B

kA ∈r Zp, RA = kA · P RA−→
RB←− kB ∈r Zp, RB = kB · P

sA = (kA + rA · dA) sB = (kB + rB · dB)
KAB = h · sA · (RB + rB ·QB) KAB = h · sB · (RA + rA ·QA)

(3.5)

Once a common point KAB has been computed, a key can be derived using an arbitrary
key derivation function KDF , see, e.g., [20]. If the public keys QA, QB of parties A and B
are provided in an authentic manner, there is no longer a possibility for man-in-the-middle
attacks.

Finally, it is easy to see that both parties obtain the same key, as it holds that:

h · sA · (RB +RB ·QB) = h · sA · (kB +RB · dB) · P =

= h · sA · sB · P =

= h · (kA +RA · dA) · sB · P = h · sB · (RA +RA ·QA).

3.1.5 Digital Signatures

Another application of public key cryptosystems are digital signatures schemes, denoted
by DSS = (DKeyGen,DSign,DVerify). They allow to provide authenticity of messages, i.e.,
identification of the sender and checking the integrity of a received message. Given a key
pair (skA, pkA) of a party A, the secret key skA is used to issue a signature σ on a message
m. Once the signature is issued, anyone in possession of the public key pkA can verify the



CHAPTER 3. SELECTED TOPICS OF CRYPTOGRAPHY 32

signature. The signing algorithm DSign as well as the verification algorithm DVerify for a
message m can be formally defined as follows:

σ = DSignskA(m)

DVerifypkA(m,σ) ∈ {1, 0}
(3.6)

For a digital signature scheme one requires, that for every potential messagem DVerifypkA(m,
DSignskA(m)) = 1 for all (sk, pk) ∈ DKeyGen(κ).

Notion of Security

Similar to the security definitions of encryption schemes, we can also define the security
of a signature scheme. In order to give a definition, we firstly need to introduce the
chosen-message attack unforgability game (Game 3.6) for digital signature schemes DSS =
(DKeyGen,DSign,DVerify). Based on this game, Definition 3.6 introduces the security
measure. The notion and the definition is, again, taken from [52].

1. DKeyGen(κ) is run to obtain keys (sk, pk).

2. Adversary A is given pk and oracle access to DSignsk(·). (This oracle returns a signature σ =
DSignsk(m) for any message m of the adversary’s choice.) The adversary then outputs (m,σ). Let
Q denote the set of messages whose signatures were requested by A during its execution.

3. The output of the experiment is defined to be 1 if and only if:

� DVerifypk(m,σ) = 1, and

� m /∈ Q.

Game 3.6: The CMA unforgeability game Signuf−cma
A,DSS (κ) [52]

Definition 3.6. A signature scheme DSS = (DKeyGen,DSign,DVerify) is existentially
unforgeable under an adaptive chosen-message attack if for all probabilistic polynomial-time
adversaries A, there exists a negligible function ε such that

Pr
[
Signuf−cma

A,DSS (κ) = 1
]
≤ ε(κ).

Elliptic Curve Digital Signature Algorithm

The elliptic curve digital signature algorithm (ECDSA), see, e.g., [31], constitutes a
standardized signature algorithm making use of ECC. Thereby, E(Fq) is an appropriate
elliptic curve group of prime order p and P ∈g E(Fq). The signer A randomly chooses an
integer dA ∈r Z∗p as secret key and computes the public key QA = dA · P .

In order to sign a message m, A firstly needs to uniquely encode the message m in
an appropriate way, e.g., by using a cryptographic hash function H such as discussed in
Section 3.1.7. The encoding of m is further referred to as H(m).
Algorithm 3.3 illustrates the DSign algorithm and Algorithm 3.4 the DVerify algorithm. It
can easily be shown why ECDSA is correct, since it holds that:

k ≡ s−1 · (H(m) + r · skA) ≡ s−1 ·H(m) + s−1 · r · skA ≡
≡ v ·H(m) + v · r · skA ≡ w1 + w2 · skA ≡ k mod p, and

w1 · P + w2 · pkA = ψ = w1 · P + w2 · skA · P = (w1 + w2 · skA) · P = k · P = (x, y).
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Algorithm 3.3 Elliptic Curve Digital Signature Algorithm - DSigndA [35]

1: Input: dA, H(m), E(Fq), p, P
2: while true do
3: Choose: k ∈r Zp
4: With (x, y) = k · P compute r = x mod p
5: if r = 0 then
6: continue
7: end if
8: Compute s = k−1 · (H(m) + r · dA) mod p
9: if s = 0 then

10: continue
11: end if
12: end while
13: return σ = (r, s)

Algorithm 3.4 Elliptic Curve Digital Signature Algorithm - DVerifyQA [35]

1: Input: σ = (r, s), QA, H(m), E(Fq), p, P
2: if r, s /∈ [1, p[ then
3: return 0
4: end if
5: Compute v = s−1 mod p
6: Compute w1 = H(m) · v mod p ∧ w2 = r · v mod p
7: Compute ψ = w1 · P + w2 ·QA
8: if ψ =∞ then
9: return 0

10: end if
11: (x, y) = ψ
12: if x 6≡ r mod p then
13: return 0
14: end if
15: return 1

3.1.6 Public Key Infrastructures

When using digital signatures and public key encryption in practice, some kind of binding
between a real world person and a public key pk is required in order to be able to ensure
the authenticity of a given public key. One possibility to achieve such a binding is to use
certificates, constituting a signed tuple (σ, (pkA, idA)), with idA denoting the identity of A
and σ being a signature for the message (pkA, idA). The signature on such a certificate
is, thereby, issued by a certification authority (CA), which needs to be trusted by all
participating parties. An infrastructure, providing such services, is called public key
infrastructure (PKI).

The probably most famous PKI implementation is specified in RFC5280 [22], commonly
referred to as PKIX. The basis of PKIX are so-called X.509 certificates. In addition to
the signed tuple (σ, (pkA, idA)), introduced along with the basic idea of certificates, X.509
certificates incorporate several additional fields such as, e.g., possibilities for restricting the
usage of the key or specifying a validity period for the certificate. Furthermore, PKIX [22]
defines means for revoking certificates and checking their revocation status, which can for
instance be useful in case of a key compromise. The revocation check can be performed in
two ways:

� Certificate Revocation Lists (CRLs) constitute signed lists of revoked certificates
together with a revocation date and a reason for their revocation. For further details
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Figure 3.3: Example X.509 certificate hierarchy

we refer the reader to [22].

� Online Certificate Status Protocol (OCSP) is defined in [68] and defines means for
requesting the status of a certificate at a webservice. It constitutes an alternative to
CRLs.

Note that considering too old CRLs might be misleading, since some certificates might have
been revoked in the timespan between issuance of the CRL and the time of the revocation
check. The same problem might arise when dealing with cached OCSP responses.

Typically, a PKI infrastructure is organized in tree form, i.e., a certificate is always
signed by the authority in the next higher level. Thus, once a CA certificate is trusted, all
of its child-certificates are trusted as well. Whereas the certification authorities are always
inner nodes in the tree, the end-entity certificates always constitute leafs in the tree (see
Figure 3.3).

3.1.7 Cryptographic Hash Functions

In a nutshell, hash functions are functions mapping from bitstrings of arbitrary length to
bitstrings of fixed length n:

H : {0, 1}∗ → {0, 1}n.

Definition 3.7. The following properties hold true for secure cryptographic hash functions:

(i) H is efficiently computable.

(ii) Preimage resistance: Given H(m), it is intractable to find m.

(iii) Second preimage resistance: Given H(m) and m, it is intractable to find m′,
such that H(m) = H(m′).

(iv) Collision resistance: It is intractable to find two messages m,m′ with m 6= m′,
such that H(m) = H(m′).

The size of the hash value space, i.e., 2n, gives a rough upper bound for finding collisions,
preimages and second preimages, since hashing 2n + 1 messages leads to at least one
duplicate hash value. This bound can be tightened for finding collisions by using the
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birthday paradox. For the following theorem, we assume an urn containing m balls
numbered from 1 to m to be in place. Then, n balls are drawn from the urn, with
replacement, i.e., after each draw, a ball with the same number is put back into the urn.

Theorem 3.1 (Birthday Paradox). For large values of n the first ball selected for the
second time is expected to be drawn after

√
πn
2 draws.

When applying the birthday paradox to the collision resistance of hash functions, the
number of expected trials can be reduced to 2

n
2 .

If there exists an attack for finding preimages or second preimages which can be
completed in asymptotically less than 2n steps, or there exists an attack for finding
collisions which can be completed in asymptotically less than 2

n
2 steps, respectively, a hash

function is considered to be broken.
Hash functions have many applications in cryptography, and are, thus, widely used,

e.g., for encoding the input of digital signature algorithms (hash-then-sign paradigm) in
order to enable efficient signatures for larger messages and to prohibit existential forgery
attacks. From a practical point of view, the most popular hashing algorithms are the NIST
SHA-1 and SHA-2 algorithms. Quite recently, NIST selected Keccak [10] as their SHA-3
hashing algorithm after expecting weaknesses in the SHA-2 algorithm.

3.2 Proxy Signatures

Since proxy signatures constitute the basis for the two schemes implemented in this thesis,
we want to briefly introduce the idea behind proxy signatures here. As already mentioned
in Chapter 1, proxy signatures were firstly introduced in [60].

In contrast to conventional digital signature schemes, involving a signer and a verifier,
proxy signature schemes involve three parties: an originator, a proxy and a verifier. Thereby,
the originator delegates the signing rights for some particular well defined set of messages
M = {M1,M2, . . . ,Mn} to a proxy. The designated proxy is then able to issue a signature
on a message out of the set M on behalf of the originator. Once such a signature has
been issued, any verifier is able to check whether the proxy has produced the signature on
behalf of the originator (authenticity), the integrity of the message and whether the given
message is one of the ”allowed” messages, i.e., contained in M.

1.
de
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gn

M Mi Mi

Originator Proxy

4. verify2. choose Mi

Verifier

Figure 3.4: Schematic view of a proxy signature scheme

3.2.1 Delegation-by-Certificate

Basically, most constructions make use of conventional digital signatures for building proxy
signature schemes. Thereby, the originator issues a so-called certificate by digitally signing
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a description of the delegation together with the identity of the designated proxy. The
proxy then issues a signature on a message conforming to the description of the originator.
This signature, together with the certificate signed by the originator constitutes the proxy
signature, which can be verified by simply checking both signatures and if the messages
conforms to the description. Whereas, the naive approach would suggest to issue multiple
certificates, each containing one possible message, state-of-the-art schemes often use a
signed warrant, describing the delegation.

3.3 Commitments

In cryptography, commitments are used to commit to a certain value without the need for
immediately revealing the value itself. From an abstract point of view, a commitment can
be compared with a locked box with a particular content, being handed over to a second
party without providing a key to the lock to open the box. Later on the key is provided
and the second party can make sure if the content is the claimed content. They are used
in many cryptographic applications, such as, e.g., the protocols implemented in this thesis.
A commitment is formally defined by two protocol steps:

� Commit(m) : In this algorithm a commitment C to a message m is computed. This
algorithm returns the commitment C and the open information O.

� Open(C,O) : This algorithm reveals message m in the commitment C w.r.t. the open
information O. It returns m on success and ⊥ otherwise.

For a commitment scheme we require that for all potential messages m and corresponding
tuples (C,O) = Commit(m) the algorithm Open(C,O) returns m. Before we are able to take
a closer look at the commitment schemes being required in the aforementioned protocols,
we firstly need to introduce the hiding and the binding property of commitments.

Definition 3.8 (Hiding property). The commitment C does not reveal the message m.

Definition 3.9 (Binding property). It should be infeasible to find an open information O′
such that given a commitment C with open information O, the Open algorithm accepts O′.
Hiding and binding can be either computationally or information theoretically (uncondition-
ally). But both properties can not be unconditional at the same time, since unconditional
hiding implies that there are multiple messages yielding the same commitment, which
breaks the unconditional binding property. Conversely, if there is only one possible message
m for each commitment (unconditional binding) it is impossible to achieve unconditional
hiding since one could simply try all possible messages in order to break the hiding.

The maximum length of the messages depends on the concrete scheme. Typically, one
uses the hash-then-commit paradigm analogously to digital signatures to support larger
messages.

3.3.1 Discrete Logarithm and Pedersen Commitments

Two quite simple ways of computing a commitment are provided by the discrete logarithm
and the Pedersen commitment. Both, discrete logarithm and Pedersen [73] commitment
schemes are based on the assumption of the hardness of the DLP. Whilst discrete loga-
rithm commitments are computationally hiding and unconditionally binding, Pedersen
commitments are unconditionally hiding and computationally binding.
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Discrete Logarithm Commitments

Let G be a finite cyclic group of order p and P ∈g G, a discrete logarithm commitment
w.r.t. the public parameter P (see, e.g., [21]) to a message m ∈ Zp is computed as follows:

C = Commit(m) = m · P. (3.7)

The open information O is m in this case. Discrete logarithm commitments are computa-
tionally hiding, since breaking the hiding property requires solving the discrete logarithm
problem. Furthermore, they are unconditionally binding, since there exists only one m ∈ Zp
such that (3.7) holds true.

Pedersen Commitments

Pedersen commitments [73] in turn, are unconditionally hiding and computationally binding.
These properties are achieved by computing a commitment as follows. Let G be a finite
cyclic group of order p and P,Q two distinct generators of G. A commitment C w.r.t. the
public parameters (P,Q) to a message m ∈ Zp is computed by randomly choosing r ∈r Z∗p
and computing

C = Commit(m, r) = m · P + r ·Q.
Here, the open information O = (m, r). The unconditional hiding property, however,
requires the discrete logarithm between P and Q to be unknown, and thus the public
parameters are required to be created by a trusted third party (TTP). The unconditional
hiding property stems from the fact that, due to the random choice of r, each element in
G has the same likelihood to be the commitment to a message m. Computational binding
is achieved due to the fact that breaking the binding property requires solving the discrete
logarithm problem.

Proof. We prove the computational binding property of Pedersen commitments by polyno-
mially reducing the discrete logarithm problem to it. Since Q = α · P for some unknown
α ∈ Z∗p the Pedersen commitment can be written as (m+ αr) · P . In order to break the
binding, one needs to find m′ and r′ such that m + αr = m′ + αr′ mod p. However,
rewriting this equation yields α = (m−m′) · (r − r′)−1. This is equivalent to solving the
discrete logarithm for Q which gives the desired contradiction.

Furthermore, trapdoor commitments allow for breaking the binding property when some
trapdoor information is known. For the Pedersen commitments introduced above, this
trapdoor information would be the discrete logarithm α between P and Q. In the following
section, we introduce a trapdoor commitment which is also known as chameleon hash
function.

3.3.2 Chameleon Hash Functions

Similar to hash functions, a chameleon hashing scheme CH = (CSetup,CKeyGen,CHash,
CForge) basically maps a string of arbitrary length to a hash value of fixed length. In
addition to that, a chameleon hash allows to find collisions for a given hash value with the
knowledge of a secret key. Furthermore, the properties in Definition 3.10 apply to a secure
chameleon hashing scheme.

Definition 3.10 (Secure CH [21]). For a secure chameleon hashing scheme the following
properties hold true.
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(i) Collision resistance: Without the knowledge of the secret key csk, it is intractable
to find two messages m,m′ such that CHash(cpk,m, r) = CHash(cpk,m′, r′).

(ii) Semantic security: No information about a message m can be derived from a given
hash value CHash(cpk,m, r).

Furthermore, the authors of [40] define the message-binding property of a chameleon hash
as follows:

Definition 3.11. A chameleon hashing scheme CH is message-binding if for all potential
messages the map m 7→ CHash(cpk,m, r) is injective.

The chameleon hash used in this thesis was proposed by Chen et al. [21]. According to their
definition, a chameleon hashing scheme is a tuple CH = (CSetup,CKeyGen, CHash,CForge).
Thereby, the system parameters are generated in CSetup, whereas CKeyGen is the key
generation algorithm outputting a keypair (csk, cpk). Moreover, CHash refers to the
computation of the initial hash value h = CHash(cpk,m, r), whereas CForge refers to the
collision computation for a message m′ such that CHash(cpk,m, r) = CHash(cpk,m′, r′).

Based on this definition, Chen et al. [21] define two schemes, namely a basic and a
full chameleon hashing scheme. The former allows to recover the secret key upon the
verification of a hash value, whereas the latter does not reveal any information about the
key upon the verification, i.e., it is key exposure free. Since we do not require key exposure
freeness, only the basic chameleon hashing scheme is presented here (see Scheme 3.1). This
scheme is message-binding [40], i.e., the map m 7→ CHash(cpk,m, r) is injective for all
potential messages m with fixed r and all keys (csk, cpk) ∈ CKeyGen(κ).

CSetup: Let G be a GDH group of prime order p and P ∈g G. The public parameters are pp = {G, p, P}.

CKeyGen: Each user chooses csk ∈r Z∗p as secret key and publishes the public key cpk = csk · P

CHash: Given the public key of a user, a is chosen randomly out of Z∗p and the tuple r = (a ·P, a · cpk) is computed.
Furthermore, the hash value H of a message m is computed as

CHash(cpk,m, r) = H = m · P + a · cpk.

The algorithm outputs the hash value H together with the randomizer r.

CForge: For any valid hash value H of a message m and the corresponding secret key csk the forgery for a message
m′ with m 6= m′ is computed as

CForge(csk, h,m, r,m′) = r′ = (a′ · P, a′ · cpk)

with a′ · P = a · P + (x−1(m −m′)) · P and a′ · cpk = a · cpk + (m −m′) · P . The algorithm outputs the
randomizer r′, leading to the desired collision.

Scheme 3.1: The basic chameleon hashing scheme [21]

It can easily be verified that the forgery of a given hash value works:

CHash(cpk,m′, r′) = m′ · P + a′ · cpk = m′ · P + a · cpk + (m−m′) · P =

= m · P + a · cpk = CHash(cpk,m, r).

When verifying the hash value for a given message, one can simply recompute the hash
value and compare it to the given hash value. Furthermore, one has to check whether
(P, cpk, a ·P, a ·cpk) is a valid Diffie-Hellman tuple, e.g., for an implementation using pairing
friendly curves as gap Diffie-Hellman group, check if e(P, a · cpk) = e(a · P, cpk) holds true.
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3.3.3 Polynomial Commitments

Based on the commitments introduced in Section 3.3.1, Kate et al. [51] proposed two
schemes for constant-size commitments to polynomials. Whilst the first scheme is based on
discrete logarithm commitments (PolyCommitDL), the second one makes use of Pedersen
commitments (PolyCommitPed).

Similar to the conventional discrete logarithm and Pedersen commitment case, poly-
nomial discrete logarithm commitments are computationally hiding, whereas polynomial
Pedersen commitments are unconditionally hiding. Unconditional binding cannot be
achieved for both commitment types, since there are many polynomials leading to the
same evaluation at certain points. Proofs for these properties are provided in [50]. These
proofs are, amongst others, based on different variants of the Diffie-Hellman problem. The
following list defines the basic protocol steps of a polynomial commitment scheme [51]
(slightly simplified for our purposes).

Setup(κ, t): In the setup phase an appropriate group G is chosen and a keypair (sk, pk)
for committing to a polynomial of degree ≤ t is generated.

Commit(pk, φ(x)): A commitment C w.r.t. the polynomial φ(x) is computed.

Open(pk, C, φ(x)): Outputs the polynomial φ(x) corresponding to the commitment C.

VerifyPoly(pk, C, φ(x)): Outputs 1 if C is a commitment to φ(x), 0 otherwise.

CreateWitness(pk, φ(x), i): Outputs the tuple (i, φ(i), wi), with wi being a witness for the
evaluation φ(i) of φ(x) at i.

VerifyEval(pk, C, i, φ(i), wi): Outputs 1 if φ(i) is the evaluation of the polynomial committed
to in C and 0 otherwise.

When the secret key sk is known, we have a trapdoor commitment. Thus, the Setup
step is required to be executed by a trusted third party in order to keep the trapdoor
information secret. Furthermore, [51] defines the following properties for a secure and
correct polynomial commitment scheme:

� Correctness: For all possible keys (sk, pk) = Setup(κ, t) and for all φ(x) it holds that
for all C = Commit(pk, φ(x)) the output of Open(pk, φ(x), i) is successfully verified
by VerifyPoly(pk, C, φ(x)), and for all tuples (i, φ(i), wi) = CreateWitness(pk, φ(i), i)
it holds that VerifyEval(pk, C, i, φ(i), wi) = 1.

� Polynomial Binding: For a commitment C to a polynomial φ(x) it is intractable to
find a polynomial φ′(x) 6= φ(x) such that VerifyPoly(pk, C, φ(x)) = VerifyPoly(pk, C,
φ′(x)) = 1.

� Evaluation Binding: For any commitment C and corresponding witness (i, φ(i), wi)
it is intractable to find a witness (i, φ(i)′, w′i) with φ(i) 6= φ(i)′ such that VerifyEval(pk,
C, i, φ(i), wi) = VerifyEval(pk, C, i, φ(i)′, w′i) = 1.

� Hiding: The commitment C does not reveal any information about the polynomial
φ(x).
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Setup(κ, t): Two groups G,GT , both of prime order p, providing κ-bit security are chosen. G and GT are
chosen in a way, that a bilinear pairing e : G×G→ GT exists. With P,Q ∈g G and an sk = α ∈r Z∗p
(chosen by a TTP), the tuple P = (P, αP, . . . , αtP ) is computed and the public key pk is as follows:

pk = (e,G,GT ,P).

Commit(pk, φ(x)): A commitment C = φ(α)P is computed. Since α is unknown, C is computed as

C =

deg(φ)∑
i=0

φi(α
iP )

with φi being the i’th coefficient of φ.

Open(pk, C, φ(x)): Outputs φ(x) for a commitment C.
VerifyPoly(pk, C, φ(x)): Outputs 1 if C = φ(α)P and 0 otherwise. The check is performed in the following

way.

C ?
=

deg(φ)∑
i=0

φi(α
iP )

Again, with φi being the i’th coefficient of φ.

CreateWitness(pk, φ(x), i): Computes ψi(x) and wi and outputs (i, φ(i), wi), i.e.,

with ψi(x) =
φ(x)− φ(i)

x− i compute wi = ψi(α)P.

VerifyEval(pk, C, φ(i), ψ(i), wi): Outputs 1 if φ(i) is the evaluation of the polynomial committed to by C at
i, 0 otherwise. The check is performed as follows.

e (C, P )
?
= e (wi, αP − iP ) · e (φ(i)P, P )

Scheme 3.2: PolyCommitDL [51]

Based on this, Scheme 3.2 and Scheme 3.3 illustrate the polynomial commitment schemes
as proposed in [51]. For the sake of simplicity, we assume Type-1 parings to be in place.
However, the scheme can also be used with Type-2 or Type-3 pairings. For instance,
Section 4.5.1 implicitly shows how to port this scheme to Type-3 pairings.

The equality of the pairings computed in VerifyEval for the discrete logarithm commit-
ments is easy to verify:

e (wi, αP − iP ) · e (φ(i)P, P ) = e(P, P )ψi(α)(α−i) · e(P, P )φ(i) =

= e(P, P )φ(α)−φ(i) · e(P, P )φ(i) = e(φ(α)P, P ) = e(C, P ).

Furthermore, it is easy to show that VerifyEval is correct in the Pedersen commitment case
(we assume that Q = rP ):

e(wi, αP − iP ) · e(φ(i)P + φ̂(i)Q,P ) = e(P, P )(ψi(α)+rψ̂i(α))(α−i) · e(P, P )φ(i)+rφ̂(i) =

= e(P, P )(φ(α)−φ(i)+r(φ̂(α)−φ̂(i)) · e(P, P )φ(i)+rφ̂(i) = e(P, P )φ(α)+rφ̂(α) =

= e(φ(α)P + φ̂(α)Q,P ) = e(C, P ).

3.3.4 Merkle Hash Trees

Merkle hash trees, as proposed in [64], were originally intended for one-time signatures
and are now heavily used for authenticating large pieces of data. Thereby, the data M is
divided into distinct blocks Mi and considered as a sequence

M = (M1,M2, . . . ,Mn).
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Setup(κ, t): Two groups G,GT , both of prime order p, providing κ-bit security are chosen. G and GT are
chosen in a way, that a bilinear pairing e : G×G→ GT exists. With P,Q ∈g G and an sk = α ∈r Z∗p
(chosen by a TTP), the tuples P = (P, αP, . . . , αtP ) and Q = (Q,αQ, . . . , αtQ) are computed and
the public key pk is as follows:

pk = (e,G,GT ,P,Q).

Commit(pk, φ(x)): A random polynomial φ̂(x) ∈ Zp[x] of degree t is chosen and a commitment C =
φ(α)P + φ̂(α)Q is computed. Since α is unknown, C is computed as

C =

deg(φ)∑
i=0

φi(α
iP ) +

deg(φ̂)∑
i=0

φ̂i(α
iQ)

with φi and φ̂i being the coefficients of φ and φ̂ respectively.

Open(pk, C, φ(x), φ̂(x)): Outputs φ(x) and φ̂(x).

VerifyPoly(pk, C, φ(x), φ̂(x)): Outputs 1 if C = φ(α)P + φ̂(α)Q and 0 otherwise. The check is performed in
the following way.

C ?
=

deg(φ)∑
i=0

φi(α
iP ) +

deg(φ̂)∑
i=0

φ̂i(α
iQ)

Again, with φi and φ̂i being the coefficients of φ and φ̂ respectively.

CreateWitness(pk, φ(x), φ̂(x), i): Computes ψi(x), ψ̂i(x) and wi and outputs (i, φ(i), φ̂(i), wi), i.e.,

with ψi(x) =
φ(x)− φ(i)

x− i ∧ ψ̂i(x) =
φ̂(x)− φ̂(i)

x− i compute wi = ψi(α)P + ψ̂i(α)Q.

VerifyEval(pk, C, φ(i), ψ(i), wi): Outputs 1 if φ(i) is the evaluation of the polynomial committed to by C at
i, 0 otherwise. The check is performed as follows.

e (C, P )
?
= e (wi, αP − iP ) · e

(
φ(i)P + φ̂(i)Q,P

)
Scheme 3.3: PolyCommitPed [51]

For each block Mi in the sequence, a hash value H(mi) is computed. The sequence of hash
values

H = (H(M1), . . . ,H(Mn)).

then constitutes the leafs of a binary tree, the so-called Merkle hash tree. The leafs of the
binary tree are attached from left to right. Once the sequence of hash values is computed,
the values for each inner tree node can be computed by hashing the concatenated values of
the left child-node l and the right child-node r. The computation of the root hash of such
a tree can be recursively defined as:

hparent =

{
H(l||r) if parent has two child nodes, and

H(l) otherwise.

This computation rule is recursively applied till the root of the tree is reached. Once the
root hash value is computed, one can simply authenticate a message Mi out of the sequence
by revealing the root hash value together with Mi and the values of the nodes in the
authentication path. Starting from the message Mi to be authenticated, the authentication
path is the sequence of all siblings on the unique path to the root of the tree. The upper
bound for the length of the authentication path is log2 n. Figure 3.5 shows an example
hash tree for 7 messages.

Using the tree in Figure 3.5, one can, for instance, authenticate M2 by simply computing
the root hash value as follows:

H(h1−4||h5−7) = H(H(H(M1,M2)||h34)||h5−7).
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M1 M2 M3 M4

H(M1) H(M2) H(M3) H(M4)

H(m1||m2) H(m3||m4)

H(h12||h34)

h12 =
H(m1||m2) h34 = H(m3||m4)

H(h1−4||h5−7)

M5 M6 M7

H(M5) H(M6) H(M7)

H(m5||m6) H(m7)

H(h56||h7)

h56 =
H(m5||m6) h7 = H(m7)

h1−4
= H(h12

||h34) h5−7 = H(h56 ||h7)

Figure 3.5: Merkle Hash Tree

Assuming that the root hash is provided in an authentic manner, one can authenticate
a piece of data Mi this way. Since only the hash values in the authentication path are
needed, the authentication of a value can take place without the knowledge of all remaining
data pieces but only log2 n additional hash values. This especially saves a lot of time and
bandwidth for large amounts of data.

Furthermore, Merkle hash trees can also be used as commitment scheme, i.e., the
root hash is the commitment. However, when opening a commitment, which constitutes
revealing the respective message Mi and corresponding authentication path, the direct
sibling H(Mi+1) or H(Mi−1) becomes public. This, in turn, allows an adversary for testing
arbitrary messages against the revealed hash values. In order to solve this problem one
can make use of so-called randomized Merkle trees.

Randomized Merkle Hash Trees

As already outlined above, the original Merkle tree construction allows for testing messages
against hash values which were revealed in a preceding opening phase. Thus, randomized
Merkle hash trees extend the original approach by using commitments with unconditional
hiding property for the leafs of the tree (leaf commitments). When now, one wants to open
a commitment, the elements in the authentication path do not reveal anything about the
other messages contained in the commitment.

Note that the simplest way of creating a hiding commitment is to hash the value of each
leaf together with a random number as for instance used within redactable signatures [45].

hi = H(mi||r) with r ∈r {0, 1}n for large enough n, e.g., n = 128.

This way, the previously outlined brute-force attack against elements in the authentication
path is no longer possible.

For the rest of this thesis we assume the leaf commitments to be Pedersen commitments
based on an elliptic curve group.

For our further explanations we also need the concept of vector commitments [17],
which can, for instance, be built from randomized Merkle hash trees.
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3.3.5 Vector Commitments

In this section we restate the notion of the vector commitment scheme shown in [17,37].
Basically, vector commitments allow for commiting to a vector and selectively opening the
commitment for certain elements out of this vector. The following list gives an abstract
overview over the algorithms presented in [37]. In contrast to the vector commitment
defined in [17], the used vector commitment requires no update functionality. However, as
discussed in [37], an update functionality could also be realized for the scheme in place.

VKeyGen: Generates the required parameters for the used commitment on input of a
security parameter κ.

VCommit: A commitment to a sequence of messages M = (M1, . . . ,Mn) w.r.t. a sequence
of randomizers R = (r1, . . . , rn) is computed and the commitment C is returned as
output.

VOpen: On input of a sequence of messages M, the corresponding randomizers R and an
index i referring to an element Mi in the sequence M this algorithm outputs the
open information WMi for the element at position i.

VVerify: Given a commitment C and an open information WMi together with an index i
and the corresponding Mi and ri, this algorithm recomputes the commitment and
outputs 1 if C equals the recomputed commitment and 0 otherwise.

As already outlined above, the aforementioned algorithms can be straightforwardly im-
plemented using randomized Merkle hash trees with C being the root hash of the tree
(see [37]) and the open information WMi being the authentication path for the element at
position i.
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Chapter 4

Blank Digital Signatures

In this chapter we provide a comprehensive overview over the Blank Digital Signature
scheme (BDSS) [38,39] as well as the extended Blank Digital Signature scheme (EBDSS) [40]
which was proposed as an extension to the BDSS. We discuss the basic building blocks, as
well as the principles of signature generation and validation and present the schemes in
detail. Both schemes build upon a combination of standard digital signature schemes (see
Section 3.1.5) and polynomial Pedersen commitments (see Section 3.3.3) as proposed by
Kate et al. [51].

This chapter is organized as follows. Firstly, we introduce the basic idea of the schemes
and we give a basic overview over the required setup. Then, the required encoding of the
inputs for both schemes is introduced and the schemes are stated. Since the BDSS and the
EBDSS only differ in the way of encoding templates and messages, most of the sections in
this chapter apply to both schemes. Finally we introduce our optimizations regarding the
reduction of the computation times of both schemes.

4.1 Basic Notion

The BDSS as well as the EBDSS, allow an originator to delegate the signing rights for
a certain template to a proxy. Based on such a delegation, the proxy is able to issue
a signature on a filled in version of the template (further referred to as instance of the
template) on behalf of the originator.

In the BDSS, a template T is a sequence of non-empty sets of bitstrings Ti, where such
sets are either called fixed or exchangeable, depending on the cardinality of the respective
set, i.e., exchangeable elements contain more than one bitstring, whereas fixed elements
contain exactly one bitstring. Such a template is formally defined as follows:

Ti = {Mi1 ,Mi2 , . . . ,Mik}, T = (T1, T2, . . . , Tn).

Given that, the template length is defined as the sequence length n of the template, while
the template size |T | is defined as |T | =

∑n
i=1 |Ti|. Once the template is defined, the

originator issues a signature for this template, which also specifies the proxy who is allowed
to produce signatures for instantiations of this template. Based on this so called template
signature, the designated proxy can choose concrete values for each exchangeable element
and compute a so called instance signature on an instance M of the template, which is
formally defined as M = (Mi)

n
i=1.

With the instance signature at hand, anyone is able to verify the validity of the instance
signature, i.e., if it is a valid instantiation of the template and the delegation, whilst the

45
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original template, i.e., the unused values of the exchangeable elements of the template, do
not get revealed. The authors of [39] refer to this property as privacy property. Figure 4.1
shows an exemplary BDSS protocol execution. As shown in this figure, it is also possible to
encode yes-/no-choices within a template by simply encoding yes and no in an exchangeable
element.

This is a demo-

template
instance

template ∨

with

This is a demo-

template
instance

template ∨

with

Template Signature
BgAAAOMEAAAA
FQOqDON

This is a demo-

instance ∨

with

Template Signature
BgAAAOMEAAAA
FQOqDON

This is a demo-

instance

with

Instance Signature
d/+tHlUWiAAAA
K1zAAAAAQMA

Create Template Issue Signature (T ) Choose values Issue signature (M)

ProxyOriginator

a checkbox. a checkbox. a checkbox. a checkbox.

Figure 4.1: Schematic view of the BDSS

The extended Blank Digital Signature scheme (EBDSS) further extends the BDSS with the
possibility for using so-called blank elements. These elements are intended to be replaced
by arbitrary strings of predefined maximal length l and are realized by using the basic
chameleon hashing scheme discussed in Section 3.3.2. Figure 4.2 illustrates a sample
template running through an EBDSS protocol execution.

This is a demo-

template
instance

template ∨

with
content

This is a demo-

template
instance

template ∨

with
content

Template Signature
BgAAAOMEAAAA
FQOqDON

This is a demo-

instance ∨

with
content

Template Signature
BgAAAOMEAAAA
FQOqDON

arbitrary

This is a demo-

instance

with
content

Instance Signature

arbitrary

d/+tHlUWiAAAA
K1zAAAAAQMA

Create Template Issue Signature (T ) Choose values Issue signature (M)

ProxyOriginator

and a checkbox. and a checkbox. and a checkbox. and a checkbox.

Figure 4.2: Schematic view of the EBDSS

4.2 Setup

Both schemes are designed for pairing friendly elliptic curve groups G with subgroups of
large prime order p and generator P . Subsequently, the following setup is assumed to be
in place

� A bilinear pairing e : G×G→ GT ,
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� a full-domain cryptographic hash function H : {0, 1}∗ → Zp,

� a digital signature scheme DSS = (DKeyGen,DSign,DVerify), and

� a public key infrastructure for retrieving the public signature keys.

In addition to that, the EBDSS requires

� a chameleon hashing scheme CH = (CKeyGen,CHash,CForge), based on the GDH
group G, with CKeyGen being a probabilistic algorithm, outputting the key pair
(csk, cpk) on input of the security parameter κ.

Building up on this setup, on input of a security parameter κ and an upper bound t ∈ N
for the size of a template, a TTP generates the public system parameters pp by choosing
α ∈r Z∗p and outputting

(H,G, e, p, P, αP, . . . , αtP )

in the BDSS case and
(H,CH,G, e, p, P, αP, . . . , αtP )

in the EBDSS case. Note that keeping α secret is crucial for the security of both schemes,
since this is the trapdoor for the polynomial commitment scheme.

4.3 Template and Message Encoding

Since the BDSS constructions are based on polynomial commitments, it requires a unique
polynomial encoding of the inputs for the signing algorithms, i.e., templates and messages.
The BDSS uses the following (unique) encoding for a template T with unique identifier
idT out of the set of all templates T. The encoding function t : T→ Zp[X] results in the
so-called template encoding polynomial, i.e., t(T ) = tT (X) ∈ Zp[X] with

T 7→
n∏
i=1

∏
M∈Ti

(X −H(M ||idT ||i)).

Further, an instantiation (message) M out of the set of all possible instantiations MT for
template T is encoded in the following way. Again, the encoding functionmT : MT → Zp[X]
results in the so-called message encoding polynomial, i.e., mT (M) = mM(X) ∈ Zp[X]
with

M 7→
n∏
i=1

(X −H(Mi||idT ||i)) .

Finally, the complementary message encoding polynomial mT ∈ Zp[X] is defined as

mT =
tT (X)

mM(X)
,

i.e., it contains the unused choices in the exchangeable element fields. The basic idea
behind this encoding is that all allowed elements in the template are roots of the template
encoding polynomial. As already mentioned before, the EBDSS additionally supports blank
elements, and, thus, the extended encoding is presented in the following section.
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4.3.1 Extending the Encoding for Blank Elements

In order to integrate the new element type, i.e., blank elements, into the existent encoding
of templates and messages, blank elements are treated similar as fixed elements. The
cardinality of the sets Ti corresponding to blank elements is 1. Further, blank elements are
initially set to ⊥, an encoding for the empty string, whereas ⊥ is replaced by an arbitrary
string of maximum length l in an instantiation of the template. As mentioned before, this
replacement is made possible by using a chameleon hash function.

The EBDSS uses the following (unique) encoding for a template T with unique identifier
idT . Assuming the same setup as above, the encoding results in the template encoding
polynomial tT (X) ∈ Zp[X] through the following map

T 7→
n∏
i=1


X −H(CHash(cpk, H(⊥), r)||idT ||i||li) for blank elements with

maximal length li, and∏
M∈Ti(X −H(M ||idT ||i)) otherwise.

Similar to the BDSS encoding, the instantiation (message) M results in the message
encoding polynomial mM(X) ∈ Zp[X] with

M 7→
n∏
i=1


X −H(CHash(cpk, H(Mi), r

′)||idT ||i||li) for blank elements with
maximal length li, and

X −H(Mi||idT ||i) otherwise.

The complementary message encoding polynomial is computed in the same way as previously
described. Since CHash outputs an elliptic curve point, a unique encoding of this point
again needs to be hashed using H [40]. Further the input of the chameleon hash is hashed
(using H) in order to enable larger message spaces. Thus, the authors of [40] define the
following Lemma.

Lemma 4.1. A composition of a secure chameleon hash function and a secure (full-domain)
cryptographic hash function is a secure chameleon hash function.

For convenience of the reader, we included the proof for the lemma, as shown in [40], in
Appendix C.2.

When comparing the BDSS and the EBDSS encoding, one can see that the output of
each encoding function is a polynomial f(X) ∈ Zp[X]. As already outlined before, this
means that it is possible to use the same scheme for both encodings.

4.4 Scheme

Formally, the authors of [39, 40] define a Blank Digital Signature scheme as a tuple
BDSS = (KeyGen, Sign,VerifyT , Inst,VerifyM) of polynomial-time algorithms. The following
list gives an abstract description of these algorithms.

4.4.1 Construction

KeyGen: On input of a security parameter κ and an upper bound for the template size,
the public parameters pp are generated.
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Sign: Given the template T , the public parameters pp, the private signing key of the
originator (dskO) and the public signing key of the proxy (dpkP), this algorithm
outputs a template signature σT and a private template signing key for the proxy
skTP .

VerifyT : Given the template T , the template signature σT , the public parameters pp, the
public signing keys of originator and proxy (dpkO, dpkP) and the template signing
key of the proxy skTP , it checks whether σT is a valid signature for T and outputs 1
whether this check succeeds and 0 otherwise.

Inst: On input of a template T , a corresponding instance M, a signature on the template
σT , as well as the public parameters pp, the private template signing key skTP and
the private signing key of the proxy dskP. It outputs a signature on the message σM.

VerifyM: When given an instance M of a template T , a signature on this instance σM,
the public system parameters pp and the public signing keys of proxy and originator
(dpkO, dpkP), this algorithm verifies whether σM is a valid signature on M and if M
is a correct instantiation of T .

Scheme 4.1 restates the protocol proposed in [40].

4.4.2 Security

Informally, the security of a BDSS is defined as follows.

Definition 4.1 (Security of a BDSS [38]). A secure BDSS fulfills the following properties:

Correctness: For all keys (dskO, dpkO) ∈ DKeyGen(κ), (dskP, dpkP) ∈ DKeyGen(κ),
pp ∈ KeyGen(κ, t) it is required that for any template T and honestly computed
template signature σT = Sign(T , pp, dskO, dskP) and corresponding skTP

� VerifyT (T , σT , pp, dpkO, skTP , dpkP) = 1 holds,

� for any honestly computed message signature σM = Inst(T ,M, σT , pp, sk
T
P , dskP)

the verification VerifyM(M, σM, pp, dpkP, dpkO) = 1 holds, and

� it is intractable to find a (skT
∗

P , T ∗) 6= (skTP , T ) such that σT verifies for
(skT

∗
P , T ∗).

Unforgeability: Without the knowledge of dskO, dskP and skTP it is intractable to forge or
existentially forge template or message signatures.

Immutability: When given skTP , dskP, T and σT it is intractable to forge or existentially
forge template signatures or to forge signatures for messages which are not described
in the template.

Privacy: It is intractable to determine template elements (except the ones revealed by
instantiations) without the knowledge of dskO, dskP and skTP .

Theorem 4.1 (Security of Scheme 4.1 [40]). Assuming that the t-SDH assumption in G
holds, the existence of secure hash functions and secure digital signature schemes, Scheme
4.1 is secure and correct w.r.t. Definition 4.1.

For a proof of the theorem above, we refer the reader to [40].
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KeyGen: On input (κ, t), choose an elliptic curve with a subgroup G of large prime order p generated
by P , such that the bitlength of p is κ. Choose a pairing e : G × G → GT and a full-domain
cryptographic hash function H : {0, 1}∗ → Zp for use with the encoding functions. Pick α ∈R Z∗p,
compute (αP, . . . , αtP ) and output pp = (H,G, e, p, P, αP, . . . , αtP ).

Sign: Given T , pp, dskO and dpkP, where T is a template of size |T | = ` and length n with ` > n, this
algorithm picks a unique idT ∈R {0, 1}κ, computes tT = t(T ) ∈ Zp[X], picks a secret ρ ∈R Z∗p and
computes

C = e(ρ · tT (α)P, P ) and τ = DSign(idT ‖C‖n‖dpkP, dskO)

and returns the template signature σT = (idT , C, n, τ) as well as skTP = ρ.

VerifyT : Given T , σT , pp, dpkO, skTP and dpkP, where T is a template of size |T | = ` and length n with
` > n, this algorithm checks whether |T | ≤ t. If not, it returns 0. Otherwise, it computes tT = t(T )
and checks whether

DVerify(τ, idT ‖C‖n‖dpkP, dpkO) = 1 ∧ e(ρ · tT (α)P, P ) = C.

If so, return 1 and 0 otherwise.

Inst: Given T ,M, σT , pp, sk
T
P and dskP, where T is a template of size |T | = ` and length n with ` > n, this

algorithm computes mM = mT (M) ∈ Zp[X]. Then, it computes

CM = ρ ·mM(α)P and µ = DSign(τ‖CM‖I, dskP).

It returns σM = (µ, CM, I, σT ).

VerifyM: Given M, σM = (µ, CM, I = (|Mi|)ni=1, σT ), pp, dpkP and dpkO this algorithm verifies whether

DVerify(τ, idT ‖C‖n‖dpkP, dpkO) = 1 ∧ DVerify(µ, τ‖CM‖I, dpkP) = 1 ∧

|I| = n ∧
n∑
i=1

|Mi| = |M|

On failure return 0, otherwise evaluate mM = mT (M) and check whether

e(mM(α)P, CM) = C

On success return 1 and 0 otherwise.

Scheme 4.1: (E)BDSS [40]

4.5 Tweaks and Optimizations

This section aims to provide an overview over the optimizations we made in order to
improve the efficiency of the schemes. We show how to use Type-3 pairings instead of
the inefficient Type-1 pairings as originally proposed. Since the degree of the encoding
polynomials seems to be the crucial bottleneck when executing the protocol, we further
propose a method for aggregating elements and thus reducing the degree of the encoding
polynomials.

4.5.1 Using Type-3 Pairings

Since the EBDSS is designed for Type-1 pairings, some modifications are necessary in order
to make it suitable for much more efficient Type-3 pairings e : G1 × G2 → GT whereas
P is a generator of G1 and P ′ is a generator of G2. As already outlined by the authors
of [40], the scheme can be used with Type-3 pairings by simply duplicating some of the
points in the system-wide parameters, i.e., some points in G1 also have to be mapped to
points in G2. In the following sections we discuss the required modifications. For all these
modifications it is crucial, that the counterpart Q′ in G2, of a point Q in G1, contains the
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same discrete logarithm as the point Q:

e(Q,P ′) = e(P,Q′)⇔ Q = aP and Q′ = aP ′ for a ∈ Zp.

Modified (Extended) Blank Digital Signature Scheme

Currently, the system-wide parameters pp of the EBDSS contain a set of multiples of a
point

P = (P, αP, . . . , αtP ).

For Type-3 pairings, the set has to be extended with the same multiples of a point P ′ ∈ G2

P ′ = (P, αP, . . . , αtP, P ′, αP ′, . . . , αtP ′).

Given that, one has to choose the appropriate representative of the required point in all
the computation steps, i.e., the representative in G1 or G2.

Since the changes in the instantiation phase (Inst) are a bit more extensive, we take a
closer look at them in this paragraph. The computation of the pairing

e(mM(α)P, CM)

requires the commitment to the complementary message encoding polynomial CM to be in
G2. Thus, the computation of CM in the instantiation step changes as follows

CM = ρ ·mM(α)P ′,

i.e., one needs to use the coefficients αiP ′ out of the public system parameters pp. The
value ρ ∈ Z∗p is a blinding factor which is required for the modified Pedersen polynomial
commitment.

Using the proposed modifications, only requires the computation of CM to be in G2,
which is carried out by the proxy. All other computations can be performed in G1 which is
ideal w.r.t. efficiency, i.e., the verification only requires cheaper computations in G1.

Modified Chameleon Hashing Scheme

The EBDSS utilizes the basic chameleon hashing scheme proposed in [21] to facilitate blank
elements. This chameleon hashing scheme, among others, requires to check if a given tuple
is a valid DH tuple, i.e., given (P, aP, bP, cP ) to check whether c ≡ ab (mod p) holds. Since
the authors of [40] use a pairing friendly elliptic curve group, which is a GDH group, this
check is performed in the following way:

e(aP, bP )
?
= e(cP, P ).

Using Type-3 pairings necessitates to modify the verification of the chameleon hashing
scheme, i.e., to additionally store aP ′, which in turn changes the DH tuple check as follows:

e(aP, P ′)
?
= e(P, aP ′) ∧ e(aP, bP ′)

?
= e(cP, P ′).
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4.5.2 Aggregating Elements

Arising from the fact that the degree of the template-/message-encoding polynomial has an
essential influence on the performance of the scheme, we propose two crucial modifications
for reducing the degree. Basically, the reduction can be achieved by using an alternative
template-/message-encoding, i.e., by aggregating the fixed elements and the blank elements.
The aggregation of the exchangeable elements cannot be done, since their separate encoding
is inevitable for the EBDSS to work. Note that this modified encoding is still unique and
preserves the security of the scheme as discussed in Appendix C.1.

Aggregating Fixed Elements.

The fixed elements can simply be aggregated by concatenating the identifier of the template,
the messages and the positions of the messages in the template as follows:

mi = Mi||i, M = m1||m2||...||mu

mfixed(X) = X −H(idT ||M)
(4.1)

This encoding binds the messages and the positions of the messages in a similar way as in
the original protocol [40], and, therefore, further explanations are omitted.

Aggregating Blank Elements.

In order to aggregate the blank elements, the homomorphic property of the used chameleon
hashing scheme is exploited:

CHash(cpk,m, r) + CHash(cpk,m ′, r ′) = (m + m ′)P + (a + a ′)cpk =

CHash(cpk,m + m ′, r∗) with r∗ = ((a + a ′)P , (a + a ′)cpk).

However, the aggregated evaluation of the chameleon hashes requires slightly more changes
than the aggregation of the fixed elements. Firstly, the template-encoding function for
blank elements has to be redefined (see (4.2)). Since the indices of the blank elements
are implicitly fixed by the indices encoded within the coefficients belonging to the fixed
elements and the exchangeable elements, an explicit encoding of the indices for the blank
elements can be omitted in this case. This originates from the fact that the blank elements
are empty in the template-signing phase, i.e., they can be arbitrarily exchanged amongst
each other without changing anything. Assuming that we have v > 2 blank elements in
the template, we obtain:

tblank(X) = X −H(l1||l2||...||lv||idT ||H(cpk, v ·H(ε), r)). (4.2)

Secondly, a new message-encoding function has to be defined (see (4.3)). Now, since we
have a concrete instantiation, the bitstrings contained in the blank elements are fixed and,
therefore, an inclusion of the indices is essential.

mi = H(Mi||i)
mblank(X) = X −H(l1||l2|| . . . ||lv||idT ||H(cpk,m1 +m2 + · · ·+mv, r

′)).
(4.3)

Both, the aggregation of the fixed elements and the aggregation of the blank elements
results in a monomial each, leading to a huge speedup regarding computation times.



Chapter 5

Warrant-Hiding Proxy Signatures

Usually proxy signature schemes use an originator-signed warrant for describing the
messages the proxy is allowed to sign on behalf of the originator. However, in a naive
approach, where the warrant contains all possible messages the proxy is allowed to sign,
all these messages are revealed to a verifier upon verification. In contrast, the Warrant-
Hiding Proxy Signature scheme (WHPSS) [37] allows to hide the message space from
the verifier by using schemes which do not reveal any information about the warrant,
whilst it is still possible to check if a signed message is in the warrant. This is realized by
using unconditionally hiding commitments to the message space, which allow to check set
membership, i.e., polynomial or vector commitments.

In this chapter we discuss the WHPSS as well as our optimizations regarding certain
computation steps. Similar to the previous chapter, we start with the introduction of the
basic notion and the setup. Later on, we are going to introduce the encoding as well as the
scheme itself. Finally, our performance optimizations are presented.

5.1 Basic Notion

In a nutshell, the WHPSS allows an originator to delegate the signing rights for a message
out of a well defined message space M to a proxy. The message space M is, thereby, a
non-empty set of bitstrings (messages) Mi, i.e., M = {M1, . . . ,Mn}. Once the delegation
is computed, the proxy is able to choose one bitstring Mi out of the message space M and
issue a so-called proxy signature on behalf of the originator for it. Similar to the EBDSS,
the WHPSS builds up on conventional digital signatures for certifying the delegation. For
committing to the message space and the messages the WHPSS defines two methods.
The first method (WHPSSPolyCommit) makes use of polynomial commitments (see Section
3.3.3), whereas the second method (WHPSSVectorCommit) is built upon randomized Merkle
hash trees (see Section 3.3.4). Both commitments ensure that the unused messages in the
message space are not revealed when verifying the instance signature (privacy property).

Figure 5.1 gives an abstract overview over a WHPSS protocol execution.

5.2 Setup

Since the WHPSS defines two somewhat different approaches for committing to the message
space and the chosen messages respectively, also the setup phases for these two approaches
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Figure 5.1: Schematic view of the WHPSS

differ. The following description gives an overview over the requirements for both variations
of the WHPSS.

PolyCommit: The polynomial commitment version requires a pairing friendly elliptic curve
group G with subgroup of large prime order p and generator P to be used. Further-
more, the following setting is assumed to be in place

� A bilinear pairing e : G×G→ GT ,

� a digital signature scheme DSS = (DKeyGen,DSign,DVerify), and

� a full-domain cryptographic hash function H : {0, 1}∗ → Zp.

VectorCommit: Similar to the PolyCommit setup one requires a digital signature scheme
DSS = (DKeyGen,DSign,DVerify). The vector commitments used in the WHPSS are
constructed from randomized Merkle hash trees (see Section 3.3.4), and, thus, a full-
domain cryptographic hash function H : {0, 1}∗ → Zp is required. Furthermore, one
needs to complete the setup phase of the used (unconditionally hiding) commitment
for the leafs of the tree.

Based on this setup, the inputs for the signing algorithms, i.e., the message space and the
messages need to be appropriately encoded. The following section gives a brief overview
over how the encoding works.

5.3 Message and Message Space Encoding

In contrast to the EBDSS, the encoding is quite simple in case of WHPSS. The message
space M as well as the messages Mi can be directly used in the vector commitment case
and no additional encoding is needed. Conversely, using polynomial commitments requires
a polynomial encoding of the message space M = {M1, . . . ,Mn}. Let M be the set of all
possible messages and φ : M → Zp[X]. The polynomial encoding of the message space
m(X) is computed by evaluating the encoding function φ atM, which is defined as follows:

M 7→
n∏
i=0

(X −H(Mi)).

Based on this encoding, the message space size |M| is the size of the set M. Since this
scheme requires the proxy to choose a single element Mi out of the set M, no separate
encoding for Mi is needed and Mi can be used as-is in the protocol.



CHAPTER 5. WARRANT-HIDING PROXY SIGNATURES 55

5.4 Schemes

In this section, we introduce WHPSSPolyCommit and WHPSSVectorCommit respectively. Ba-
sically the authors of [37] define four algorithms ((D,P),PS,PV, ID), based on [12] and
shown in the following section.

5.4.1 Constructions

Setup: On input of a security parameter κ and an upper bound for the size of the message
space t, this algorithm generates the public system parameters ppk. Note that ppk is
assumed to be an input to all subsequent algorithms.

(D,P): In this phase, the originator and the proxy jointly compute a delegation as well
as a proxy signing key skp. The originator, thereby, computes the delegation and
outputs the delegation certificate issued using its DSS secret key ski, whereas the
proxy verifies the delegation and composes the proxy signing key skp by joining the
proxy’s DSS secret key skj with the originators delegation.

PS: Here, the proxy chooses a message, and computes a so-called instance (proxy) signature
σP on this message w.r.t. the proxy signing key skp.

PV: In this step the instance signature σP is verified using the public keys of proxy pkj and
originator pki as well as the signed message M . On success, this algorithm outputs
1, and 0 otherwise.

ID: This algorithm outputs the identity of the proxy, when given the a proxy signature σP .

Building up on this abstract description, the authors of [37] define two constructions,
namely a construction using polynomial commitments and a construction using vector
commitments. Scheme 5.1 presents the scheme making use of polynomial commitments,
i.e., WHPSSPolyCommit. Note that the authors of [37] use a slightly different notation for the
used schemes. Thus, we assume the following renaming scheme of the previously presented
polynomial Pedersen commitment algorithms (see Section 3.3.3).

Commit→ PCommit, CreateWitness→ PCreateWit, VerifyEval→ PVerifyWit

Furthermore, the scheme building up on vector commitments (WHPSSVectorCommit) is
presented in Scheme 5.2.

5.4.2 Security

Informally, the security of a WHPSS is defined as follows.

Definition 5.1 (Security of a WHPSS [37]). A secure WHPSS fulfills the following proper-
ties:

Correctness: For all ppk ∈ Setup(κ, t) and for all outputs of skp = (D,P) using the
previously generated key ppk, it holds that for all warrants and proxy signatures for a
message m the algorithm PV accepts a message if m is in the warrant and rejects it
otherwise. Furthermore, ID is required to return the correct proxy.

Unforgeability: Without the knowledge of ski and skp it is intractable to forge delegations
and proxy signatures which are either inside or outside the warrant.
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(D,P): D and P are given local inputs pki, ski, j, pkj , ω and pkj , skj , pki, where ω = (Mi)
c
i=1 with c ≤ t.

D picks a seed s ∈R Zp, computes ωH = {H(Mi) : i = 1, . . . , c} and m(X) = φ(ωH). Then, compute
r(X) ∈ Zp[X] with deg(r) = deg(m) = c with coefficients obtained evaluating f(s) as well as

C = PCommit(ppk,m(X), r(X)) and cert = DSign(C‖j‖pkj , ski).

It sets the proxy signing key of user j as skp′ = (pki, s, C, j, pkj , ω, cert) and sends it to P. Now, P
computes ωH and m(X) = φ(ωH) as well as r(X) from seed s. It checks whether

DVerify(cert,PCommit(ppk,m(X), r(X))‖j‖pkj , pki) = 1

If not, return 0 and terminate. Otherwise, set skp = (skj , skp
′), output skp and terminate. If P

returns 0, D aborts. Otherwise, also D terminates correctly.

PS: Given skp,M so that there is an index l with 1 ≤ l ≤ c and Ml = M , this algorithm computes ωH and
m(X) = φ(ωH) as well as r(X) from seed s. Then, it computes hM = H(M), rM = r(hM ) as well as

WM = PCreateWit(ppk,m(X), r(X), hM ) and σ = DSign(WM‖rM‖pki, skj),

and returns σp = (j, C,WM , rM , pkj , cert, σ).

PV: Given pki,M, σp = (j, C,WM , rM , pkj , cert, σ), this algorithm verifies whether

DVerify(cert, C‖j‖pkj , pki) ∧ DVerify(σ,WM‖rM‖pki, pkj) ∧ PVerifyWit(ppk, C, H(M), 0, rM ,WM )

yields 1. On success return 1 and 0 otherwise.

ID: Given σp = (j, C,WM , rM , pkj , cert, σ) output j.

Scheme 5.1: WHPSSPolyCommit [37]

Privacy: One can not efficiently decide whether a given message (except the ones being
revealed by proxy signatures) lies within or outside the message space of the warrant
without the knowledge of skp.

Theorem 5.1 (Security of Scheme 5.1 [37]). Assuming that the t-SDH assumption in G
holds, the existence of secure hash functions and secure digital signature schemes, Scheme
5.1 is secure and correct w.r.t. Definition 5.1.

Theorem 5.2 (Security of Scheme 5.2 [37]). Assuming the security of the used vector
commitment scheme, the existence of secure hash functions and secure digital signature
schemes, Scheme 5.2 is secure and correct w.r.t. Definition 5.1.

For proofs of the theorems above, we refer the reader to [37].

5.5 Tweaks and Optimizations

This section is dedicated to give an overview over our optimizations regarding the WHPSS.
In contrast to the WHPSSPolyCommit, the WHPSSVectorCommit does not leave any optimization
potential, except for an optimal implementation of the vector commitment scheme and
the digital signature scheme. Thus, this section mainly concentrates on WHPSSPolyCommit.
Firstly, we illustrate how to make use of much more efficient Type-3 pairings instead of the
originally proposed Type-1 pairings. Secondly, we introduce some optimizations regarding
the polynomial commitment scheme.
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(D,P): D and P are given local inputs pki, ski, j, pkj , ω and pkj , skj , pki, where ω = (Mi)
c
i=1. D picks a

seed s ∈R {0, 1}κ, chooses a secure PRG f : {0, 1}κ → ({0, 1}κ)c and computes R = f(s) and

C = VCommit(ω,R) and cert = DSign(C‖j‖pkj , ski).

It sets the proxy signing key of user j as skp′ = (pki, s, C, j, pkj , ω, cert) and sends it to P. Now, P
computes R from s and checks whether

DVerify(cert,VCommit(ω,R)‖j‖pkj , pki) = 1

If not, return ⊥ and terminate. Otherwise, set skp = (skj , skp
′), output skp and terminate. If P

returns ⊥, D aborts. Otherwise, also D terminates correctly.

PS: Given skp,M so that there is an index l with 1 ≤ l ≤ c and Ml = M , this algorithm computes R from
seed s, sets rM = (rl, l) and computes

WM = VOpen(l, ω,R) and σ = DSign(WM‖rM‖pki, skj),

and returns σp = (j, C,WM , rM , pkj , cert, σ).

PV: Given pki,M, σp = (j, C,WM , rM , pkj , cert, σ) with rM = (rl, l), this algorithm verifies whether

DVerify(cert, C‖j‖pkj , pki) ∧ DVerify(σ,WM‖rM‖pki, pkj) ∧ VVerify(C, l,M, rl,WM )

yields 1. On success return 1 and 0 otherwise.

ID: Given σp = (j, C,WM , rM , pkj , cert, σ) output j.

Scheme 5.2: WHPSSVectorCommit [37]

5.5.1 Using Type-3 Pairings

Similar to the EBDSS, the WHPSSPolyCommit can be ported to use Type-3 pairings by
duplicating some points in the public parameters, i.e., adding a G2 representative of certain
G1 points in the public system parameters. Currently, the public system parameters
contain the tuples P and Q

P = (P, αP, . . . αtP )

Q = (Q,αQ, . . . αtQ)

with P and Q being generators of G1. Using Type-3 pairings requires to extend the system
parameters with a tuple

P ′ = (P ′, αP ′)

with P ′ being a generator of G2, which enables to compute the Type-3 pairings in the
PVerifyWit step as follows:

e(C, P ′) ?
= e(wi, αP

′ − iP ′) · e(φ(i)P + φ̂(i)Q,P ′).

5.5.2 Hashing the Commitment

Moreover, it is possible to further speed up the proxy verification step PV by applying a slight
modification of the delegation step (D,P) and the proxy verification step PV. In addition
to the setting mentioned in Section 5.2, a cryptographic hash function H ′ : F∗

qk
[p]→ Zp is

required for this modification. Currently the commitment is verified using the following
comparison:

e(C, P )
?
= e(wi, αP − iP ) · e(φ(i)P + φ̂(i)Q,P ).



CHAPTER 5. WARRANT-HIDING PROXY SIGNATURES 58

Since the computation of a pairing is quite expensive, we propose to move one of the three
pairing computations to the delegation step (D,P) which is less time critical since it is only
performed once per delegation. This is achieved over the following modifications. Instead
of outputting C in the delegation step, we output

C′ = H ′(e(C, P ))

which, in turn, changes the check in the proxy verification step to

C′ ?
= H ′

(
e (wi, αP − iP ) · e

(
φ(i)P + φ̂(i)Q,P

))
.



Chapter 6

Delegation of Signing Rights to
Multiple Proxies

As already outlined by the authors of [40], it is possible to delegate the signing rights
to multiple proxies in the delegation-by-certificate approach. In order to achieve this,
an arbitrary description of a group of authorized proxies Ω is included in the delegation
certificate instead of the public key of one proxy. This way, any verifier can check the
identity of the proxy which has issued a given instance signature against the Ω parameter
contained in the delegation certificate. Whilst both, the BDSS and the WHPSS can easily
make use of this approach our explanations are based on the WHPSS for the sake of
simplicity. However, including such a description can have some impact on the privacy of
the proxies and on the privacy property of the used scheme, respectively.

This chapter firstly introduces a concept for the confidential distribution of the proxy
signing keys in order to sustain the privacy property of the schemes and then discusses
some ways of hiding the proxies using an appropriate commitment scheme in order to
prevent the group of authorized proxies from being revealed to a verifier. For completeness
reasons, we conclude this chapter with the concept of including an abstract description of
the delegation in the Ω parameter as shown in [40].

6.1 Hybrid Encryption of the Proxy Signing Keys

The schemes discussed in Chapter 4 and Chapter 5 respectively, both keep the message
space private when verifying a signature of a proxy (privacy property). When this property
is required together with the delegation of the signing rights to multiple proxies, certain
use cases may require a hybrid encryption of the proxy signing keys and the message space,
the delegation is based on. Let us consider a use case where a delegation is computed and
then distributed over a public webserver. Clearly, the Ω parameter prevents unauthorized
proxies from computing a valid instance signature in this case, but, nevertheless, the privacy
property gets lost due to the public availability of the message space. This, however, can
be circumvented using a hybrid encryption scheme as shown in Figure 6.1. For instance
one could make use of the PKCS#7 enveloped data [49] to prevent the leakage of the whole
message space.

Though, the identity of the proxies is revealed once an instance signature is issued,
since the proxies are contained in the Ω parameter of the signature. Consequently, the
following section shows two methods for circumventing this privacy issue.
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Figure 6.1: Hybrid encryption of the delegation parameters

6.2 Proxy Hiding

Basically, a selective hiding of the proxies contained in the Ω parameter can be achieved
by using any (unconditional hiding) commitment scheme which allows for selectively
opening the commitment for subsets of the data. For our explanations, we concentrate
on randomized Merkle hash trees (Section 6.2.1) and polynomial Pedersen commitments
(Section 6.2.2), respectively. In the following sections, we discuss the schemes used for
committing to the set of proxies. Since the schemes discussed in the following sections
can be seen as plug-ins of the BDSS and the WHPSS, the computation times presented in
Section 8.2.2 can simply be added to the BDSS/WHPSS computation times presented in
Section 8.2.1 in order to get an insight into the overall execution times with a number of
hidden proxies greater than one.

When using such a proxy hiding scheme as plug-in of a proxy-type signature scheme,
one needs to perform the Commit step of the proxy hiding scheme in the delegation phase
executed by the originator, whereas the Open step of the proxy hiding scheme needs to be
jointly computed by the originator and the proxy before the instantiation. The output of
the Open algorithm together with the additional verification information is then required to
be included in the instance (proxy) signature. Finally, the verification of the proxy hiding
commitment needs to be performed in the verification step of the proxy-type signature
scheme.

6.2.1 Randomized Merkle Hash Trees

As already outlined in [37], a vector commitment scheme can be built from randomized
Merkle trees. Since the scheme was not explicitly stated before, we restate a version
adopted for proxy hiding purposes, in Scheme 6.1.

VKeyGen: Generates the required parameters for the used leaf commitment on input of a security parameter
κ.

VCommit: On input of a sequence W = (w1, . . . , wn) of appropriately encoded proxy identifiers wi and a
sequence of randomizers R = (r1, . . . , rn) this algorithm computes and returns the root hash of the
randomized Merkle tree as Ω parameter for the respective scheme.

VOpen: Given the sequence W as well as the sequence R and an index i, the authentication path Wwi is
computed.

VVerify: Given a commitment Ω and an authentication path Wwi together with an index i and the
corresponding wi and ri, this algorithm recomputes the commitment and outputs 1 if Ω equals the
recomputed commitment and 0 otherwise.

Scheme 6.1: Proxy hiding using randomized Merkle trees [37]
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Note that the required parameters for the Merkle hash tree also need to be included in
the system parameters when using this proxy hiding setup. Furthermore, the commitment
needs to be included in the delegation certificate in order to have an authentic version of
the commitment at hand at verification time.

6.2.2 Polynomial Commitments

Another possibility for proxy hiding is to utilize polynomial commitments in a similar way
as they are utilized in the WHPSSPolyCommit. Thereby, the message space W is composed
out of the appropriately encoded proxy identifiers wi:

W = (w1, . . . , wn).

The encoding polynomial m(X) for the message space W is then computed using the
encoding function φ : W→ Zp[X], with W being the set of all possible proxy combinations,
and the map

W 7→
n∏
i=0

(X −H(wi)).

Once the encoding polynomial is computed, the polynomial Pedersen commitment scheme
can be executed as shown in Scheme 6.2.

PKeyGen(κ, t): Two groups G,GT , both of prime order p, providing κ-bit security are chosen. G and GT
are chosen in a way, that a bilinear pairing e : G× G→ GT exists. Furthermore G is required to
be a gap Diffie-Hellman group. With P,Q ∈g G and an α ∈r Z∗p (chosen by a TTP), the tuples
P = (P, αP, . . . , αtP ) and Q = (Q,αQ, . . . , αtQ) are computed and the public key pk is as follows:

pk = (e,G,GT ,P,Q).

PCommit(pk, φ(x)): A random polynomial φ̂(x) ∈ Zp[x] of degree t is chosen and a commitment Ω =
φ(α)P + φ̂(α)Q is computed. Since α is unknown, ω is computed as

Ω =

deg(φ)∑
i=0

φi(α
iP ) +

deg(φ̂)∑
i=0

φ̂i(α
iQ)

with φi and φ̂i being the coefficients of φ and φ̂ respectively.

POpen(pk, φ(x), φ̂(x), i): Computes ψi(x), ψ̂i(x) and wi and outputs (i, φ(i), φ̂(i), wi), i.e.,

with ψi(x) =
φ(x)− φ(i)

x− i ∧ ψ̂i(x) =
φ̂(x)− φ̂(i)

x− i compute wi = ψi(α)P + ψ̂i(α)Q.

PVerifyEval(pk, ω, φ(i), ψ(i), wi): Outputs 1 if φ(i) is the evaluation of the polynomial committed to by Ω
at i, 0 otherwise. The check is performed as follows.

e (Ω, P )
?
= e (wi, αP − iP ) · e

(
φ(i)P + φ̂(i)Q,P

)
Scheme 6.2: PolyCommitPed slightly modified for proxy hiding [51]

Again, the parameters, being required by the polynomial Pedersen commitments are
required to be included in the public system parameters. The output Ω of the commitment
is again intended to be included in the delegation certificate, such that an authentic version
of the commitment is available at verification time for comparison purposes.

The main difference between the two previously introduced proxy hiding schemes is
that the size of the commitment grows logarithmically with the number of proxies when
using randomized Merkle hash trees and is constant when using polynomial commitments.
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Conversely, the computations performed when using polynomial commitments are more
time consuming than the ones performed when using randomized Merkle hash trees. Thus,
choosing one scheme is always a tradeoff between computation time and commitment size
(see Section 8.2.2).

6.3 Abstract Description of the Delegation

For the sake of completeness another approach for a multi-proxy setup is discussed here.
This approach, is the approach which was initially proposed in [40] and is intended for
use cases which require a large number of proxies, e.g., when a governmental organization
delegates the signing rights for a template to all citizens of a country. In such a use case
the Ω parameter contains an appropriate encoding of the abstract group description, i.e.,
an appropriate encoding of the string ”All citizens of Country X”. Using such an approach,
however, requires special treatment when verifying the signatures, e.g., when considering
the aforementioned example, one would have to check if the signer is indeed a citizen of
the respective country.



Part III

Implementation Aspects
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Chapter 7

Implementation in Java and
Integration into JCA

In this chapter we provide an in-depth description of the implementation related aspects
of the optimized BDSS as well as the optimized WHPSS. We show how the schemes are
integrated into the Java Cryptography Architecture [71], the key material is integrated
into X.509 and propose three signature formats, namely, an XML signature format for the
BDSS and the WHPSS (Section 7.4.1,Section 7.4.2) and a PDF signature format for the
BDSS (Section 7.4.1).

7.1 Background

This section is intended to give a basic overview over the infrastructure our implementations
are integrated in. Moreover, we briefly introduce the BNpairings library, which is used for
the pairing computations.

7.1.1 Java Cryptography Architecture

The Java Cryptography Architecture (JCA) [71] constitutes an API, providing standard-
ized access to cryptographic algorithms. Each library, implementing this API, needs to
implement a so-called cryptographic provider, registering the provided algorithm implemen-
tations at the JCA. The desired provider is then set by the user of the library, and instances
of the algorithm implementations can be obtained using the JCA-provided factories, e.g.,
Signature or MessageDigest. For a comprehensive list of the provided factories see [71].
This way, entire implementations can be exchanged by simply setting another provider.
Furthermore, it is possible to register multiple providers, providing different algorithm
implementations. Figure 7.1 illustrates the different ways of retrieving a MessageDigest

implementation with multiple registered providers and gives a basic architectural overview
over the JCA. The figure can be interpreted in the following way. When no provider for
retrieving an algorithm is specified, the first provider implementing this algorithm is chosen.
Otherwise, the JCA chooses the implementation from the specified provider.

Since the way of using the implementations, once they are retrieved from the JCA, is
illustrated with concrete examples later in this chapter, further explanations are omitted
here. For a more detailed overview over the JCA, we refer the reader to [71].
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Figure 7.1: Basic JCA architecture [71]

7.1.2 BNpairings Library

The BNpairings [32] library by Geovandro and Barreto is a Java library, providing means
for efficiently computing pairings on BN curves [8]. The library provides multiple pairing
implementations such as the Tate [56, 79, 80] pairing, the Eta [7] pairing, the Ate [41]
pairing as well as the optimal Ate [83] pairing.

Thus, this section is dedicated to justify our choice regarding the used pairing. Since
our implementation aims at reaching minimal computation times, the obvious criteria
for choosing a pairing is the computation time needed for a single pairing evaluation
using a group size of 256bit. Table 7.1 gives an overview over the achieved computation
times on a single core of a Lenovo ThinkPad T420s with an Intel Core i5 2540M with
2.6/3.3 GHz and 8 GB of RAM. On the software side, Java 1.7.0 21 was used on top of
Ubuntu 12.10/amd64. Note that each value is an average over 100 executions in order to
eliminate unwanted influences such as the garbage collector.

Tate Eta Ate Optimal Ate

33.56ms 25.30ms 17.34ms 11.13ms

Table 7.1: Pairing computation times using the BNpairings library

Based on the timings in Table 7.1 and Figure 7.2 respectively, our choice fell on the optimal
Ate paring.

7.2 Overview

Figure 7.3 and Figure 7.4 provide a fine-grained overview over the computations and
the communication during a BDSS and a WHPSS protocol execution respectively. The
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Figure 7.2: Computation times in relation to the used pairing

gray boxes in the figures logically group consecutive computation steps to units with
defined input and output. For the sake of simplicity, we omitted the computation of the
system parameters and the visualization of the distribution of the public keys by the
TTP. However, we assume that the TTP provides means for retrieving the public keys in
an authentic manner, e.g., encapsulated within a X.509 certificate (see Section 7.3). To
provide maximum flexibility, the TTP implementation is left open to the user and it is only
required to register an arbitrary implementation of the ITTP interface at the TTPAdapter

contained in our library.
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Figure 7.3: Computations and communication in the (E)BDSS

From a JCA point of view, the system parameter generation phase (KeyGen) is wrapped in a
KeyPairGeneratorSpi implementation, being usable by any custom ITTP implementation
to generate the BDSS parameters pp and the WHPSS parameters ppk.

The subsequent steps, i.e., Step 2-5 in Figure 7.3 and Figure 7.4, are packed into two
SignatureSpi implementations each. The BDSS steps are included in the BDSSTemplate-

Signature (Step 2 and 3) and the BDSSInstanceSignature (Step 4 and 5), whereas
the WHPSS steps are included in the WHPSSTemplateSignature (Step 2 and 3) and the
WHPSSInstanceSignature (Step 4 and 5).

Moreover, both protocol implementations distinguish between a single- and a multi-
proxy setup by encoding the authorized proxies within a parameter Ω. In the single-proxy
setup, the fingerprint of the provided X.509 proxy certificate is encoded within Ω, whereas,
in the multi-proxy setup this encoding is open to the user, e.g., Ω could contain a suitable
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representation of the string ”All citizens of Country X”. Consequently, the multi-proxy setup
requires the user of the library to verify whether a proxy is authorized to issue an instance
signature, whilst this is done by the library in the single-proxy setup. The distinction
between the single- and multi-proxy setup is done by providing different parameters to the
JCA Signature instance (see Listing 7.1, Line 2-6 and 11-15).

Note that, if the privacy property of the schemes is required, a secure transmission of
the outputs of Step 2 in Figure 7.3 and Figure 7.4 is inevitable. Consequently, our library
provides means for ECIES (see Section 3.1.3) encryption and decryption.

In order to make the JCA Signature suitable for the aforementioned protocols,
the engineSetParameter method is overridden. This way, it is possible to supply
AlgorithmParameterSpec implementations containing the additional parameters, being
necessary for a protocol execution. Listing 7.1 provides an example for obtaining an BDSS
signature on a template. All other SignatureSpi implementations can be used in the same
way.

1 Signature signature = Signature.getInstance("BDSSTemplateSignature");
2 SingleProxyOSPS osps = new SingleProxyOSPS(pkOrig, skOrig,
3 pkProxyDss, sysParams, pkProxyDss.getFingerprintSHA());
4 //MultipleProxyOSPS osps = new MultipleProxyOSPS(pkOrig,
5 // skOrig, sysParams, omega);
6 signature.setParameter(osps);
7 signature.initSign(skOrigDss);
8 signature.update(template.toByteArray());
9 byte[] templateSignature = signature.sign();

10

11 SingleProxyPVPS pvps = new SingleProxyPVPS(pkOrig, pkOrigDss,
12 pkProxyDss, sysParams);
13 //MultipleProxyPVPS pvps = new MultipleProxyPVPS(pkOrig,
14 // pkOrigDss, sysParams);
15 signature.setParameter(pvps);
16 signature.initVerify(pkOrigDss);
17 signature.update(template.toByteArray());
18 boolean success = signature.verify(templateSignature);

Listing 7.1: Java code for obtaining an BDSS template signature
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7.3 Encoding and Key Representation in X.509

The need for storing and transferring the intermediate results, i.e., template-, instance-
and proxy-signatures, necessitates a serialized representation of the aforementioned objects.
Consequently, a compact encoding with minimal overhead is desired in order to keep the
transmission times low and to enable the de-/encoding on constrained devices. Due to
the overhead of ASN.1 [42], we propose a lightweight encoding which is similar to the
BER/DER [43] encoding of ASN.1 and works in the following way. Each block starts with
a magic number byte in order to uniquely identify the block contents. After the magic
number an arbitrary number of data blocks, each prefixed with 4 length bytes, can follow.
This format also allows for the encapsulation of blocks within a data block of another
block, suiting our needs for signature representation. Furthermore, the encoding is unique,
which is crucial for cryptographic applications.
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Figure 7.5: Signature encoding format

Based on this encoding format, means for integrating the keying material as public key
info into X.509 certificates [22] are provided in our implementation. This way, it is possible
to use X.509 provided methods for ensuring key authenticity and integrity. Furthermore,
the revocation mechanisms of PKIX [22] can be put to use. For the sake of completeness,
we included the object identifiers for the keys to be integrated into X.509 certificates in
Appendix B.2.

In order to (re-)extract the serialized keys from the public key info, our Java crypto-
graphic provider provides the appropriate KeyFactorySpi implementations, being capable
of extracting the keys from a X509EncodedKeySpec. Since the design of our library aims at
maximum flexibility, it is open to the user to encapsulate the keys within a X.509 certificate
or to employ other mechanisms. Consequently, we do not limit the user to one signature
format, enabling a broad spectrum of applications.

7.4 Proposed Signature Formats

In the following subsections, we introduce two example signature formats for the BDSS as
well as one signature format for the WHPSS, which can be seen as basic formats, covering
all protocol related issues. However, these formats are easily extendable for certain use
cases requiring additional parameters.
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7.4.1 BDSS Signature Formats

In the BDSS case, we define a XML and a PDF signature format. Whilst the former is
suited for many different applications, the latter is intended to illustrate the applicability
of the BDSS to a widespread application such as PDF forms.

Defining an XML Signature Format

In order to facilitate the usage of XML, we added Java Annotation for XML binding
(JAXB) annotations, as defined in [28], to the classes serving as input-/output-containers.
Using these annotations together with the appropriate XML schema allows for an easy
processing using the JAXB marshalling and unmarshalling routines provided by the Java
platform. In a nutshell, the BDSS needs an appropriate representation for templates
and instances of those templates. Furthermore, appending a signature to a template and
instantiations should be possible. Listing 7.2 and Listing 7.3 show the proposed signature
format, with ”?”, ”+” and ”*” denoting the multiplicity of the tags, i.e., ”?” means at
most once, ”+” means at least once and ”*” means any number of times. Whilst the
template schema allows for multiple message tags within one templateentry tag, the
instance schema requires to choose one message for each templateentry and to encode it
in a series of message tags. To allow for blank elements, the message tag contains a type

attribute and a length attribute. Since the blank elements are left empty in the template,
the text tag in the message tag can be omitted. However, the text tag is required in
the instance. The signature, being attachable to both, the template and the instance,
basically contains the encoded signaturevalue of the BDSS template-/instance-signature,
the keyid identifying the originator-specific public key and the X.509 certificates of TTP,
originator and proxy. Whilst the signaturevalue tag is required once a signature tag is
included, the other fields are optional.

1 <template id="...">
2 (<templateentry>
3 (<message type="blank||exch||fix" length="[Integer]">
4 (<text>[String]</text>)?
5 </message>)*
6 </templateentry>)+
7 (<signature>
8 <signaturevalue>[Base64 encoded string]</signaturevalue>
9 (<keyId>[String]</keyId>)?

10 (<ttpcert>[Base64 encoded string]</ttpcert>)?
11 (<originatorcert>[Base64 encoded string]</originatorcert>)?
12 (<proxycert>[Base64 encoded string]</proxycert>)?
13 </signature>)?
14 </template>

Listing 7.2: BDSS template format

Since we propose XML as standard signature format, our library directly includes means
for marshalling and unmarshalling objects.



CHAPTER 7. IMPLEMENTATION IN JAVA AND INTEGRATION INTO JCA 70

1 <instance id="...">
2 (<message type="blank||exch||fix" length="[Integer]">
3 <text>[String]</text>
4 </message>)+
5 (<signature>
6 <signaturevalue>[Base64 encoded string]</signaturevalue>
7 (<keyId>[String]</keyId>)?
8 (<ttpcert>[Base64 encoded string]</ttpcert>)?
9 (<originatorcert>[Base64 encoded string]</originatorcert>)?

10 (<proxycert>[Base64 encoded string]</proxycert>)?
11 </signature>)?
12 </instance>

Listing 7.3: BDSS instance format

Moving to PDF as an Alternative Signature Format

Arising from the fact that signable PDF Forms seem to be an essential application of the
BDSS, a proof-of-concept implementation utilizing PDF as signature format is introduced
in this subsection. The PDF file manipulation is, thereby, done using the iText® Java
library [44]. In order to model the element types being required by the BDSS, the TextField,
providing the possibility for encoding text fields (fixed and variable) and multiple choice
fields, is put to use. The variable fields can be exploited to encode the blank elements,
since the TextField also allows for defining a maximum length of the variable text. Fixed
fields and multiple choice fields can be used without any additional configuration. Figure
7.6 shows a sample template and a corresponding instance, both containing a signature.

(a) Signed template (b) Signed instance

Figure 7.6: BDSS PDF signature format

In addition to Adobe Reader provided means for signing PDF forms, using the proposed
signature format facilitates to prove that an instance is a correct instantiation of a template,
whilst the unused choices of the exchangeable elements still stay private (privacy property).
In contrast, when using Adobe signed forms, one can either choose to ensure the privacy
property or to show that an instance is a correct instantiation of a template. This owes
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from the fact that ensuring the privacy property would require to keep the original form
secret, whereas keeping the original form secret prevents from proving that an instance is
a correct instantiation of a template.

As the purpose of this implementation is to serve as demonstration for the possibility
to easily switch over to PDF as signature format, only the Base64 encoded BDSS signature
value is attached to the signed document. Nevertheless, the inclusion of arbitrary attributes,
such as the ones shown in the signature tag in Listing 7.2, can be easily performed.

7.4.2 WHPSS XML Signature Format

Similar as in the proposed BDSS XML signature format, we also made use of JAXB [28]
annotations for the WHPSS signature format, which allows for an easy processing in Java.
In the WHPSS case, appropriate representations of the message space and the instances of
this message space are needed. Again, a signature is required to be attachable. For our
following explanations we use the notation already outlined in the previous section, that is,
”?”, ”+” and ”*” denote the multiplicity of the tags, i.e., ”?” means at most once, ”+”
means at least once and ”*” means any number of times.

Listing 7.4 shows the proposed message space format, which contains at least one
messageentry. Furthermore, the same signature as in the BDSS format is attachable.

1 <message id="...">
2 (<messageentry>[String]</messageentry>)+
3 (<signature>
4 <signaturevalue>[Base64 encoded string]</signaturevalue>
5 (<keyId>[String]</keyId>)?
6 (<ttpcert>[Base64 encoded string]</ttpcert>)?
7 (<originatorcert>[Base64 encoded string]</originatorcert>)?
8 (<proxycert>[Base64 encoded string]</proxycert>)?
9 </signature>)?

10 </message>

Listing 7.4: WHPSS message space format

Computing an instance of such a message space requires an encoding as shown in Listing
7.5. This encoding requires to choose one messageentry out of the set of messageentries
in the message space format and to encode it into a single messageentry tag. Moreover,
means for encoding an optional signature of the aforementioned format are provided.

1 <messageInstance id="...">
2 <messageentry>[String]</messageentry>
3 (<signature>
4 <signaturevalue>[Base64 encoded string]</signaturevalue>
5 (<keyId>[String]</keyId>)?
6 (<ttpcert>[Base64 encoded string]</ttpcert>)?
7 (<originatorcert>[Base64 encoded string]</originatorcert>)?
8 (<proxycert>[Base64 encoded string]</proxycert>)?
9 </signature>)?

10 </messageInstance>

Listing 7.5: WHPSS message instance format



Chapter 8

Performance Evaluation

Based on the previously introduced efficient implementations of the optimized protocols,
we give a comprehensive overview over the performance of the (E)BDSS and the WHPSS
in this chapter. Furthermore, we discuss our performance evaluation results of the two
proxy hiding approaches introduced in Chapter 6.

This chapter is organized as follows. Firstly, we introduce our test setup and the
strategy which we used for our timings. Then, the results of the performance evaluation
of both, the (E)BDSS and the WHPSS are presented and compared. Subsequently, the
performance of the proxy hiding schemes, presented earlier in this thesis, are discussed.

8.1 Test Setup

For the timings, we utilize the BNPairings library [32] for computing the optimal Ate
pairing [83] on BN curves [8] with 256 bit group size and an embedding degree of 12. In
order to obtain the required digital signatures, we utilize ECDSA (see Section 3.1.5) with
the NIST P-224 curve [31]. The timings were performed on a single core of a Lenovo
ThinkPad T420s with an Intel Core i5 2540M with 2.6/3.3 GHz and 8 GB of RAM. On
the software side, Java 1.7.0 21 was used on top of Ubuntu 12.10/amd64.

Timing Strategy: Basically, our timing strategy is quite different for the (E)BDSS and
the WHPSS. Whilst the timing strategy in the (E)BDSS comes down to measuring the
execution time of the four protocol steps (Step 2-5 in Figure 7.3) for different template
sizes and template compositions, the timing strategy in the WHPSS measures the execution
time of both, the WHPSSPolyCommit and the WHPSSVectorCommit, for different message space
sizes. Similarly, in the proxy hiding case we illustrate the influence of the number of proxies
on the computation times. In order to isolate unwanted timing related influences, e.g.,
the garbage collector, each timing presented in this chapter represents the mean of 100
consecutive runs.

8.2 Results

In this section we present the performance evaluation results of the two proxy-type signature
scheme implementations and the two proxy hiding approaches respectively.
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8.2.1 Proxy-Type Signature Schemes

Table 8.1 shows the (E)BDSS computation times for template sizes ranging from 3 to 1000.
For the purpose of illustrating the influence of the distribution of the element types on
the timing, we provide timings for three different element type distributions, namely a
distribution without blank elements, a uniform distribution of blank, exchangeable and
fixed elements and a distribution without exchangeable elements. The used distribution is
indicated by the percentage values in the top row of Table 8.1 ([exchangeable]%-[blank]%-
[fixed]%). Figure 8.1 gives an overview over the computation time with increasing template
size.

50%-0%-50% 33%-33%-34% 0%-50%-50%
Template Instance Template Instance Template Instance

|T | Sign Verify Inst Verify Sign Verify Inst Verify Sign Verify Inst Verify

3 18 17 16 14 32 68 73 65 28 63 60 62
5 20 19 16 16 30 65 70 63 28 63 60 62

10 23 23 27 17 34 69 81 63 28 63 61 63
15 27 27 37 18 35 70 81 64 27 62 60 62
30 35 34 57 21 44 79 102 67 27 63 60 62
50 51 50 100 26 52 86 124 71 28 62 60 62
70 63 62 132 30 60 95 145 73 27 62 60 62

100 83 82 185 37 72 107 178 77 27 62 60 62

150 115 115 270 47 96 131 243 86 28 62 61 62
300 220 219 536 81 163 199 416 107 28 63 60 62
500 371 370 903 128 258 293 651 139 28 63 61 63

1000 770 765 1811 244 509 544 1254 214 28 64 61 64

Table 8.1: (E)BDSS timings for various template sizes in milliseconds
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Figure 8.1: (E)BDSS computation times in relation to the template size, with the percentage
values conforming to the number of the particular element types ([exchangeable]%-[blank]%-
[fixed]%).

As expected, the computation times depend heavily on the degree of the template encoding
polynomial. Consequently, using a template without blank elements leads to the largest
computation times (Figure 8.2a). Increasing the amount of blank elements, whilst reducing
the fixed elements (Figure 8.2b) reduces these computation times, as the degree of the
polynomial reduces due to the aggregated evaluation of the chameleon hash for the blank
elements and the hash for the fixed elements (see Section 4.5.2). Moving on to the usage
of a template without exchangeable elements further reduces the polynomial degree to a
constant degree of 2, as the blank elements and the fixed elements are aggregated within
one mononomial each. Consequently, this case leads to constant computation times of
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below 65ms, being independent of the template-size, for each step (Figure 8.1c).
From a practical point of view, most forms are mainly composed out of blank and

fixed elements, extended by a quite small amount of exchangeable elements. Therefore, we
expect the practical execution time to be somewhere between the case shown in Figure
8.2b and the case with constant computation times (< 65ms) for each step, which is
perfectly acceptable for practical use. Furthermore, we assume practical template sizes to
be below 100 elements, and, thus, every step can be performed within below 190ms for
each algorithm.

Moreover, Table 8.2 shows the computation times for both WHPSS variants with
message space sizes from 3 to 1000. Since the separate encoding of the elements, is crucial
for the WHPSS to work, the computation times grow drastically with increasing message
spaces. This arises from the high polynomial degree in the WHPSSPolyCommit case and from
the large number of leaf commitments in the WHPSSVectorCommit case. Nevertheless, the

Polynomial Commitments Vector Commitments
Message Space Instance Message Space Instance

|T | D P PS PV D P PS PV
3 21 21 7 31 8 8 5 4
5 26 27 12 30 13 13 10 4

10 39 40 25 31 27 27 23 4
15 52 53 39 31 40 40 37 4
30 91 91 78 31 79 80 77 4
50 145 146 132 31 132 134 130 4
70 198 199 184 31 186 186 183 4

100 279 281 265 31 265 266 262 4
150 414 419 403 31 400 400 396 4
300 839 840 824 31 797 797 795 4
500 1423 1431 1411 31 1333 1331 1330 4

1000 3019 3035 3011 31 2663 2661 2660 4

Table 8.2: WHPSS timings for various template sizes in milliseconds

verification step of the instance signature PV runs in constant time in the polynomial
commitment case and increases logarithmically with the message space size in the vector
commitment case. Since, PV is the step which is performed most often, the scheme is
still useable for practical applications which do not require a fast computation of the
delegation and the instantiation. Furthermore, again a message space size of 100 and below
is considered to be realistic for real world applications, which means that every protocol
step can be performed within < 285ms, which seems to be acceptable for most practical
use cases.
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Figure 8.2: WHPSS computation times in relation to the message space size

When comparing this to the (E)BDSS, which could be used to achieve a similar behavior
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by using a single exchangeable element field containing all messages out of the message
space, the (E)BDSS performs better in most steps and, thus, it might be beneficial to use
the (E)BDSS instead of the WHPSS. However, when a fast verification of the instance
signature is required, whereas the runtime of the other algorithms does not matter at all,
we recommend using the WHPSS.

8.2.2 Comparison of the two Proxy Hiding Approaches

This section aims at giving an overview over the performance of the proxy hiding feature
described in Chapter 6. First of all, choosing one of the proxy hiding approaches is always
a tradeoff between the size of the witness and the required computation times. Whilst the
witness size in the vector commitment scheme grows logarithmically with the number of
proxies, the size of the commitment in the polynomial commitment scheme is constant.
Conversely, the computations performed in the vector commitment scheme are less time
consuming than the ones performed in the polynomial commitment scheme.

Polynomial Commitments Vector Commitments
|W| PCommit PCreateWit PVerifyWit PCommit PCreateWit PVerifyWit

3 20 6 29 7 5 2
5 25 11 29 13 10 2

10 38 25 29 26 23 2
15 52 39 29 39 36 2
30 92 80 29 78 76 2

50 148 132 29 131 128 2

70 201 187 29 183 182 2
100 281 267 29 260 260 2
150 419 405 29 399 398 2
300 841 823 29 798 802 2
500 1426 1413 29 1335 1334 2

1000 3023 3016 29 2685 2691 2

Table 8.3: Proxy hiding computation times for different numbers of proxies in milliseconds

Table 8.3 as well as Figure 8.3 illustrate the computation times for different numbers
of proxies. As expected, the vector commitment version outperforms the polynomial
commitment version for a larger number of proxies, i.e., the difference in the timings grows
with increasing number of proxies. Furthermore, proxy hiding will most likely make no
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Figure 8.3: Computation times in relation to the number of proxies

sense for use cases exceeding 50 proxies, since an abstract description of the delegation, e.g.,
an appropriate encoding of the string ”All people in Group A”, would be more practical
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in such a case. For use cases up to 50 proxies every step can be performed in < 150ms,
independent of the used commitment, which is totally acceptable.



Chapter 9

Conclusion

In this thesis we have optimized the (E)BDSS from [38–40] as well as the WHPSS from [37]
regarding performance and introduced a JCA-based interoperable framework for the
aforementioned schemes, providing an easy to use API. In order to illustrate the capabilities,
concerning the integration into other applications, two signature formats for the (E)BDSS
and one signature format for the WHPSS are proposed. We expect the PDF signature format
for the (E)BDSS to be very important for practical applications, since the templates and
messages can be viewed using standard tools, i.e., an appropriate PDF viewer. Furthermore,
we do not expect any problems when integrating the XML Signatures proposed in Section
7.4.1 and Section 7.4.2 into other XML signature formats such as XMLDSig [25] or the
various types of XML Advanced Electronic Signatures [26]. The latter format would, in
turn, enable long term signature validation [27], which could be of particular interest for
(E)BDSS signed contracts.

From a practical point of view, the (E)BDSS execution times presented in Chapter 8
seem totally acceptable, since practical templates will most likely have a template-size of less
than 100, leading to computation times of less than 190ms for any template constellation.
Since the WHPSS does not perform that well and the same behavior can be modeled using
the (E)BDSS, the usage of the (E)BDSS in practical applications might be beneficial.

To conclude, this thesis shows that the (E)BDSS and the WHPSS are fully feasible for
practical use. Thus, a next interesting step would be to increase the practical usability
over integrating (E)BDSS within a plug-in of a PDF reader. Furthermore, an investigation
of the relationship between (E)BDSS and redactable/sanitizable signatures would be of
interest for the future.

Finally, from a performance point of view, an investigation regarding the optimization
potential and, if necessary, an optimization of the used library for computing the pairings
would be of interest.
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Appendix A

Definitions

A.1 Abbreviations

BDHP Bilinear Diffie-Hellman Problem
BDS Blank Digital Signatures
BDSS Blank Digital Signature Scheme
CA Certification Authority
CDHP Computational Diffie-Hellman Problem
CRL Certificate Revocation List
DBDHP Decisional Bilinear Diffie-Hellman Problem
DDHP Decisional Diffie-Hellman Problem
DH Diffie-Hellman
DHP Diffie-Hellman Problem
DLP Discrete Logarithm Problem
DSS Digital Signature Scheme
EBDS Extended Blank Digital Signatures
EBDSS Extended Blank Digital Signature Scheme
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDL Elliptic Curve Discrete Logarithm
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
FFC Finite-Field Cryptography
gcd Greatest Common Divisor
IFC Integer-Factorization Cryptography
JCA Java Cryptography Architecture
KDF Key Derivation Function
MAC Message Authentication Code
NIST National Institute of Standards and Technology
PKCS Public Key Cryptography Standards
PKI Public Key Infrastructure
SHA Secure Hashing Algorithm
TTP Trusted Third Party
WHPS Warrant-Hiding Proxy Signatures
WHPSS Warrant-Hiding Proxy Signature Scheme
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A.2 Used Symbols

a ∈g G The element a is a generator of the group G
a ∈r G The element a is randomly selected out of the set G
P1 ≤P P2 The computational problem P1 is polynomial reducible

to the computational problem P2

ε A negligible function
Pr[·] The probability of the argument stated within the braces
a−1 The multiplicative inverse of an element
P The set of all primes
R The set of real numbers
N The set of natural numbers
N0 The set of natural numbers with 0
Z The set of integers
Zn The set of integers modulo n
Z∗n The set of invertible integers modulo n
Zp[X] The ring of polynomials with coefficients in Zp
deg(f) The degree of a polynomial f
∀ Forall quantifier
∃ Existential quantifier
F A finite field
Fq A finite field with q = pm

F2m A binary extension field
Fpm A prime extension field
E/F An elliptic curve E defined over field F
E(F ) The set of all points on an elliptic curve E over the field F

together with ∞
#E(F ) The order of an elliptic curve group E defined over the field F
E(F )[p] The order p subgroup of an elliptic curve group defined over the field F
e A bilinear pairing e : G1 ×G2 → GT

P An element of G1

P ′ An element of G2

K A symmetric encryption key
pk The public key of an asymmetric encryption scheme
sk The secret key of an asymmetric encryption scheme
{0, 1}∗ The set of all bitstrings of arbitrary length
{0, 1}n The set of all bitstrings of length n
Σ An alphabet
C A commitment
CH A chameleon hash (trapdoor commitment)
⊥ An encoding for the empty string



Appendix B

Implementational Details

B.1 Polynomial Arithmetic

The schemes, this thesis builds up on, rely on polynomial encodings for certain sequences
of messages. Those polynomials are of the form shown in Equation (B.1), with Mi being
an appropriate representation of a message out of a sequence M = (M1, . . . ,Mn). Each
polynomial is in Zp[X] (with p being a prime) and is of the following form:

f(X) =
n∏
i=0

(X −Mi) with f(X) ∈ Zp[X] (B.1)

From an implementation point of view the polynomials can be stored as arrays A =
[A0, . . . , An] of BigIntegers, with Ai representing the coefficient belonging to Xi. However,
to get from Equation (B.1) to the aforementioned way of storing the polynomials, an
expansion by multiplying the mononomials (X −Mi) with each other has to be performed.
Algorithm B.1 gives a detailed overview over the expansion process.

Algorithm B.1 Polynomial Expansion of the equation shown in B.1

Input: Coefficients M = (M1, . . . ,Mn) of (X −Mi), reduction prime p
result[0]←M [0], result[1]← 1, d← 1
for i = 1 to n do

for j = d to 0 do
result[j + 1]← result[j]

end for
result[0]← 0
for j = 0 to d do
result[j]← result[j] + result[j + 1] · (−M [i]) mod p

end for
d = d+ 1

end for
return result

Furthermore a method for dividing polynomials by polynomials of the form (X −M) is
needed. Since, we only deal with divisions without remainder, a quite simple algorithm
can be put to use (see Algorithm B.2).

Finally, the evaluation of polynomials is required. Arising from the fact that this is
done in the obvious way, i.e., by summing up the evaluations for each coefficient which can
be efficiently done using Horner’s method, we do not further discuss the algorithm here.
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Algorithm B.2 Polynomial division without remainder using a divisor of the form (X−M)

Input: Polynomial f(X), coefficient M of (X −M), reduction prime p
for i = deg(f) to 0 do
result[i]← f [i+ 1]
f [i]← f [i+ 1] · (−M) + f [i] mod p

end for
if f [0] 6= 0 then

return ERROR: (X −M) does not perfectly divide f
end if
return result

B.2 Used Object Identifiers

The following listing shows the object identifiers corresponding to the keys to be included
within keystores or X.509 certificates.

1 i a i k OBJECT IDENTIFIER : := { ISO as s i gned (1 ) Organizat ion acknowledged by ISO (3)
US Department o f Defense (6 ) I n t e r n e t (1 ) Pr ivate (4 ) IANA r e g i s t e r e d private

e n t e r p r i s e s (1 ) 2706 }
2 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6
3
4 i a i k−ebdss−pkor ig OBJECT IDENTIFIER : := { i a i k −20 1 }
5 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 1
6 i a i k−ebdss−keygenoutput OBJECT IDENTIFIER : := { i a i k −20 2 }
7 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 2
8 i a i k−whpss−pkdeleg OBJECT IDENTIFIER : := { i a i k −20 3 }
9 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 3

10 i a i k−ebdss−skt tp OBJECT IDENTIFIER : := { i a i k −20 4 }
11 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 4
12 i a i k−ebdss−skproxy OBJECT IDENTIFIER : := { i a i k −20 6 }
13 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 6
14 i a i k−whpss−skt tp OBJECT IDENTIFIER : := { i a i k −20 7 }
15 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 7
16 i a i k−whpss−skproxy OBJECT IDENTIFIER : := { i a i k −20 8 }
17 −− 1 . 3 . 6 . 1 . 4 . 1 . 2 7 0 6 . 2 0 . 8

Listing 1: Object Identifiers for the BDSS Keying Material
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Proofs

C.1 Security Analysis of the (E)BDSS Modifications

C.1.1 Aggregating Fixed Elements

In the original construction [39, 40], every fixed element represents a monomial in the
template encoding polynomial and in further consequence in every message encoding
polynomial. The modification proposed here integrates all fixed elements into a single
monomial, which reduces the degree of the respective polynomials. Now, we have to show
that this has no impact on the security of the construction. Our argumentation is as
follows.

Proof. Using one monomial for the fixed elements in the modified version can be seen as
the original construction using only a single fixed element in the template. Therefore, the
construction as such still remains secure. What remains to show, however, is that the
modified encoding does not influence the signature soundness and the unforgeability as
well as immutability, respectively.

The signatures soundness in this context essentially says that given a template signature
σT for some template T , the probability that this signature will verify for any T ′ 6= T is
negligible in the security parameter κ. In order to achieve this (for fixed elements), one
would need to find

H(idT ‖mi1‖i1‖ . . . ‖miu‖iu) = H(idT ′‖m′i′1‖i
′
1‖ . . . ‖m′i′

u′
‖i′u′)

which is clearly intractable if H is collision resistant. The same argumentation holds for
unforgeability and immutability (cases T1, M1 [40]), where here the problem is to find a
second preimage for H(idT ‖mi1‖i1‖ . . . ‖miu‖iu).

C.1.2 Aggregating Blank Elements

In the original construction [40], every blank element represents a monomial in the template
encoding polynomial and, in further consequence, in every message encoding polynomial.
The modification proposed here integrates all blank elements into a single monomial, which
reduces the degree of the respective polynomials. Now, we have to show that this has no
impact on the security of the construction. Our argumentation is as follows.

Proof. Using one monomial for the blank elements in the modified version can be seen as
the original construction using only a single blank element in the template. Therefore,
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the construction as such still remains secure. What remains to show, however, is that the
modified encoding does not influence the unforgeability as well as immutability, respectively.

As in the message signature σM the randomizers R = (rij )
v
j=1 are signed, this means

that
∑v

j=1 aijcpk is fixed. Due to the used chameleon hash being message-binding (as
defined in [40]), meaning that the map m 7→ CHash(cpk,m, r) is injective, the value∑v

j=1mij with mij = H(Mij‖ij) is fixed too. Consequently, one would need to find∑v
j=1H(Mij‖ij) =

∑v
j=1H(M ′ij‖ij) which either requires finding second preimages for all

H(Mij‖ij), or choosing all but one of the addends in the sum and computing a preimage
for the remaining addend. Clearly, both cases are intractable when assuming that H is a
secure hash function.

C.2 Composition of Secure Chameleon Hash and Secure
Hash

The following proof was taken from [40] and is included here for convenience of the reader.

Proof. Let CH = (CKeyGen,CHash,CForge) be a secure chameleon hash scheme and H be
a secure cryptographic hash function, i.e., H is collision-, preimage- and second preimage-
resistant.

At first, we prove the collision resistance of the composition CH(cpk,m, r) = (H ◦
CHash)(cpk,m, r). Suppose that CH is not collision-resistant. Then, either CH is not
collision-resistant, or H is not collision-resistant, i.e., it is possible to find two chameleon
hash values c 6= c′ such that H(c) = H(c′). In both cases, we get a contradiction. Obviously,
in the latter case it must, additionally, be possible to find values (m, r) 6= (m′, r′) such that
c = CHash(cpk,m, r) and c′ = CHash(cpk,m′, r′).

Secondly, if CH is semantically secure, then it follows directly that this is the case for
the CH construction and if CH is also key-exposure free, then this is trivially the case for
CH.
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