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Abstract

In this thesis the arm navigation stack of the ROS framework will be evaluated for their applicability for
different robot arms in particulate popular research robot arms. The arm navigation consists of several al-
gorithms which are performed after each other in a tool chain. Will will shown in the empirical evaluation
that some of the algorithms for specific sub-task such as path planning do not always find a solution to a
given manipulation task. Thus the complete tool chain fails. We identified the major problems which cause
the tool chain to fail. In particular the default inverse kinematics algorithm causes the tool chain often to
fail. To overcome this problem an novel inverse kinematic algorithm based on a global optimization algo-
rithm was developed. The empirical evaluation shows that the developed algorithm significantly improves
the performance of the entire tool chain.

i



ii



Kurz Zusammenfassung

In dieser Arbeit wird der Arm-Navigation-Stack welcher in ROS vorhanden ist anhand von verschieden
Manipulatoren, welche vor allem beliebt im Forschungsbereich sind, evaluiert. Der Arm-Navigation-Stack
besteht aus verschiedenen Algorithmen welche einem nach dem andern aufgerufen werden. Diese Kette an
Algorithmen, welche jeweils eine Teilaufgabe lösen, formen eine Tool-Chain. Mithilfe einer empirischen
Evaluierung wird gezeigt das einzelnen Algorithmen in Kombination mit verschieden Manipulatoren eine
erfolgreiche Ausführung für eine gegebene Manipulationsaufgabe nicht möglich machen. Dadurch ist eine
erfolgreiche Ausführung der Tool-Chain nicht möglich. In dieser Arbeit werden die schwerwiegendsten
Probleme welche ein Scheitern der Tool-Chain auslösen aufgezeigt. Besonders zu beachten ist das der
Algorithmus welcher verwendet wird um die Inverse Kinematik zu berechnen besonders problematisch ist
da dieser nicht für jeden Manipulator eine Lösung findet. Um dieses Problem zu lösen wurde ein Invers
Kinematik Algorithmus entwickelt, welcher einen globalen Optimierungs-Algorithmus verwendet um eine
Lösung zu finden. Mithilfe der empirischen Evaluierung wird gezeigt das dieser Algorithmus eine deutlich
bessere Performance aufweist und somit zu einer besseren Performance der gesamten Tool-Chain beiträgt.
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Chapter 1
Introduction

The introduction presents the main motivation for the need of extending the existing tool chain, which is
used to perform manipulation tasks of the Robot Operating System (ROS) 1 [3]. Then we will state the
problem we focus on within this thesis more formally. Also the challenges and goals which arises from the
problem stated before will be discussed. We also will briefly discuss the contributions of this thesis and
will outline the structure of the thesis at the end of this chapter.

1.1. Motivation

Mobile manipulation is a hot topic in robotic research. The basic task in mobile manipulation is to position
some part of a manipulator on e specified position. To achieve this a simple approach is to use a sense-
plan-act scheme to perform its task, which is in contrast to other used methods, like for example [4]. Even
with this simple approach and all its limitations to the possible task, which could be performed, it is not
always possible to perform the task successfully.
It would be promising if a manipulator could simply place one specified part at a certain desired position.
If this task could be fulfilled with a manipulator it could be used to perform more complex tasks, like for
example to pick up an object which has got a known grasping point with the manipulator. This task can
be processed with few positioning steps. First, the manipulator is positioned to grasp the object with the
gripper opened. Afterwards the gripper is closed and the object is lifted to a certain position. An example
of such a task can be found in [5]. It is obvious that if the positioning of the manipulator can be solved, the
goal to pick up an object can be archived.
So it would be promising if it is possible to perform this task with any manipulator. But at the moment
it is quite an effort to achieve this simple task with any given manipulator using off-the-shelf compound
open source. Some manipulators are supported by ROS. There are some other packages which tackle the
problem for another manipulator and some manipulators are not supported at all.
To provide a general solution which can be used with different manipulator different algorithms are used to
perform this positioning task. Not all of the algorithms currently used finish with a success and thus reduce
the success to perform the positioning task. This problem especially arise at the calculation of the inverse
kinematics.
To check how successful the algorithms are different evaluations have to be performed which cover all
aspects of the positioning task. Unfortunately such a set of evaluations does not exists yet.

1http://www.ros.org/wiki/

1
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1.2. Problem Description

As also discussed in Section 1.1 the problem we are facing is the usage of different manipulators to perform
simple positioning tasks in a general way. So the main goal of this thesis is to make it easier to use a
manipulator for a primitive manipulation task within ROS. The task is to position the end effector, which
is the last link of the manipulator, or another part of the manipulator with a certain position and orientation
within space, or more formally given a manipulator description and a desired pose of one part of the
manipulator, which could be reached, move the manipulator in such a way that this pose is reached without
any collision with the known environment. Another important problem which will be tackled within this
thesis is a method to evaluate the performance to point out weaknesses as well as to open up the opportunity
to show how an improvement impacts the overall performance.

1.3. Challenges and Goals

The main challenges to perform this simple positioning task is to handle all problems in a general way to
use different manipulators. The goal is to use methods, which perform the positioning task in such a way
that they are not specific to a particular manipulator. Another challenge is an evaluation, which considers
a manipulator as well as a possible environment is a challenge. The goal which rises from this challenge
is to evaluate the performance of the used algorithms in a general way. Another important challenge is the
execution time, which is spent to generate a plan, which should be, as a goal, as short as possible. The last
challenge which should be mentioned is that the execution should not damage the manipulator. Out of this
challenge there are two goals to archive. First of all collisions with the environment should be avoided.
The second goal is to consider the limits of the manipulator, which are position, velocity and acceleration
limits of the joints.

1.4. Contributions

This thesis provides two major contributions. First an evaluation which evaluates each part independently,
as well as an overall evaluation which is performed with various combinations of algorithms and manipula-
tors. The second contribution is a general way to calculate the inverse kinematics with a high success rate,
compared to other general methods. This general calculation of the inverse kinematics find a solution, even
in cluttered environments, where other methods do not find a solution. The method is based on a global
optimization technique. The developed algorithm was furthermore published in [6].

1.5. Organisation of the thesis

In Chapter 2 we will give a short introduction to the system we use to perform the task and explain the
principles of manipulators and the different steps of the tool chain in a formal way. Afterwards we will
give an overview of related research (Chapter 3) of the different steps of the tool chain as well as on
solutions which consider the whole task. The next chapter explains how the positioning task was tackled
within the system (Chapter 4). The evaluation of all parts of the tool chain will be discussed afterwards in
Chapters 5. We will conclude the thesis with a briefly conclusion in Chapter 6 and possible future work in
Chapter 7.

2



Chapter 2
Prerequests

Within this chapter we will give an overview of the base system (in Section 2.1) that is used to introduce the
tool chain. After this short overview we will briefly explain how a manipulator is built and the terms which
are used later on (in Section 2.2). We will also describe how a manipulator can formally be described (in
Section 2.3). After this more general descriptions we will briefly explain how the tool chain is constructed
(in Section 2.4) to solve the task and explain the problems, which are solved in each of the steps of the tool
chain in separate sections.

2.1. ROS

In this thesis we will use ROS1 and extend the existing tool chain to execute primitive manipulation tasks
with different manipulators. To understand why it is easy to split up the task in several components we will
briefly explain ROS and point out some other advantages of ROS.
ROS is a software framework for robotics applications. ROS uses so-called nodes2 as building blocks
for a robot software system. These nodes interact transparently with each other. This is done through a
publish-subscriber principle, which is implemented through so called topics3. These topics are used to
publish data and to subscribe data from such a topic (a simple example is shown at Figure 2.1). Thus it is
simple to use different nodes to serve different tasks without side effects to other tasks which may occur
if the system would be build as a monolithic block. ROS also provides a package system4, which makes
it possible to easily share and reuse work. This opens up the possibility to simply reuse the improvements
within different systems. Last but not least a wide range of researchers use the system to implement their
work and make it easily available through the package system.

2.2. Robot Manipulators

Now we briefly explain how a robot manipulator is built up and introduce some terms that will be often
used later on. A more detailed explanation on how to describe a manipulator will be given later on in
Section 2.3.
A robot manipulator consists of two basic building blocks which can be seen in Figure 2.2. The first one
is the link which is a rigid body. In general a link is even element and has got a specified fixed length.

1http://www.ros.org/wiki/
2http://www.ros.org/wiki/ROS/Tutorials/UnderstandingNodes
3http://www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics
4http://www.ros.org/wiki/ROS/Tutorials/NavigatingTheFilesystem

3
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Figure 2.1.: rxGraph (http://www.ros.org/wiki/rxgraph) of three ROS nodes with topics which are
published and subscribed. (The arrow points from the publisher to the subscriber)

The second building block is the joint. The joint connects two links. Through the joint it is possible to
move one link relative to another link. There are many different types of joints: revolute (see Figure 2.3),
prismatic (see Figure 2.4), cylindrical (see Figure 2.5), spherical (see Figure 2.6) and universal joints (see
Figure 2.7). We will focus on revolution joints since they are used very often to build a robot manipulator.
Each of these joints can have a certain joint position, which is expressed with one or more values depending
on the type of the joint. As mentioned above we will focus on the revolution joint which has one value,
the rotation angle around the joint axis measured from an initial pose. Each of the joints may have some
limitation for the range of values.
A simple example of is a part of the human arm. The links are the forearm and the upper arm. The joint is
the elbow, which cannot rotate 360 degrees around its axis and thus have joint limits.
A term which we will use later on is the kinematics chain. It is defined as a set of links and joints which are
connected to each other. The kinematics chain is called closed if it contains a circle (a path from on link to
another is possible if they are connected with a joint) and open if it contains no circle. We will focus only
on open kinematics chains since the manipulator in this theses are all of this type.
To specify a specific constellation of the manipulator the value for each joint is specified. This value
specification of each joint is called a configuration.

Figure 2.2.: Simple manipulator with three links and two revolution joints

4
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Figure 2.3.: Revolution joint (image from [1])

Figure 2.4.: Prismatic joint (image from [1])

Figure 2.5.: Cylindrical joint (image from [1])

Figure 2.6.: Spherical joint (image from [1])

2.3. Manipulator description

Within this section we will explain how to formally describe a manipulator. We will focus only on the
description of a simple manipulator with rigid body elements and an open kinematics chain.
As mentioned in the introduction we consider a manipulator to consist of links and joints. There are
different methods to describe how these links and joints are connected to each other. We will discuss
two popular widely used methods. The first one, which is called Denavit-Hartenberg parameters, is very
common and can be used in general. The second method, which is called URDF (Unified Robot Description

5
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Figure 2.7.: Universal joint (image from [1])

Format) 5 is used to represent a robot (and also a manipulator) within ROS.
Other important facts are the limits for the joints, which must also be considered during the different
planning steps and therefore have to be part of the description. This information can be stored within the
description, which is possible in URDF, or separately, which has to be done if the Denavit-Hartenberg
parameters are used and the parameters are not extended to store the information.

2.3.1. Denavit-Hartenberg parameters

The Denavit-Hartenberg parameters [7] can easily be used to describe manipulators with revolution or
prismatic joints. The manipulators we are focusing on use revolution joints. Thus it is possible to use
these parameter design. To make it more precise the parameters describe how the coordinate frames (the
coordinate system associated with a specified link) are transformed into each other. To use the parameter
there are some conditions that have to be fulfilled.

1. The Z-Axis of the current joint has to be within the rotation axis of the joint, except if the joint is a
prismatic one.

2. The X-Axis of the current joint has to be the cross product of the Z-Axis of the current joint and the
Z-Axis of the previous joint.

3. The Y-Axis of the current joint is chosen in such a way that the three axis build a right hand coordinate
system.

This requirements can be easily fulfilled if the frame coordinate system is placed within the joint corre-
sponding to the frame (the link with the number i corresponds to the joint of the number i, if both of them
are numbered from the same base link).
The parameter itself describes four transformations, which can be performed one after the other to trans-
form one coordinate system (called the previous) into another one (called the current).

1. Translate the frame along the previous Z-Axis to reach the position where the previous Z-Axis in-
tersects the current X-Axis. This parameter is called d and specifies the distance of the joints (see
Figure 2.8).

2. Rotate around the previous Z-Axis to align the previous to the current X-Axis. This parameter is
called θ and specifies the fixed joint rotation from the previous joint to the current joint around the
axis of the previous joint (see Figure 2.9).

3. Translation along the rotated X-Axis until the origin of the current coordinate system is reached.
This parameter is called a and specifies the length of the rotation radius (see Figure 2.10).

4. Rotate around the transformed X-Axis to get the Z-Axis. This parameter is called α and specifies the
twist around the current X-Axis (see Figure 2.11).

5http://www.ros.org/wiki/urdf

6
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It can be seen that a transformation from one frame to another frame can be achieved easily if all the
parameters are given. An example transformation can be seen in Figure 2.12. It is also possible to convert
these transformations into other transformations for example a matrix representation if such a calculation
could be performed faster.
It should also be mentioned that the parameters are not uniquely defined for a manipulator. For example if
the Z-Axis is parallel there can be an infinite number of d values.
An important aspect to mention is that these parameters do not specify any joint limits.

Figure 2.8.: First transformation with the help of Denavit-Hartenberg parameter d. The dashed coordinate
axes are associated with the previous coordinate system

Figure 2.9.: Second transformation with the help of Denavit-Hartenberg parameter θ. The dashed coordi-
nate axes are associated with the previous coordinate system

7
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Figure 2.10.: Third transformation with the help of Denavit-Hartenberg parameter α. The dashed coordi-
nate axes are associated with the previous coordinate system

Figure 2.11.: Fourth transformation with the help of Denavit-Hartenberg parameter a. The dashed coordi-
nate axes are associated with the previous coordinate system

2.3.2. URDF

Even if the Denavit-Hartenberg parameters are very common within the field of robotics we use another
description to specify a manipulator. The description is called URDF 6 (Unified Robot Description Format)
and is coded in a XML format. The URDF contains much more information which can be used within the
field of robotics. We will only focus on the parts we use for solving the subtasks. To describe a manipulator
we use the model description within URDF. The description contains two element types: the link elements
and the joint elements.
The links specify many properties to handle the visualization, collision, and mass distribution. The collision
information is used to check if a posture (specified for the manipulator through its structure and the joint
values) is in collision with itself or the environment 7. The mass distribution can be used to calculate the
forces for the manipulator (e.g. Simulation).
The second element of the URDF model specification is the joint specification. It contains the name of
the links, which are connected through the joint. One is called the parent link, the other one is called the

6http://www.ros.org/wiki/urdf
7For more information how collision information are used and how they are processed within ROS the webpage http://www.ros.
org/wiki/planning_environment is a good starting point

8
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Figure 2.12.: Complete coordinate system transformation with Denavit-Hartenberg parameter. Image taken
from [2]

child link. This terminology comes from the fact that an open kinematics chain can be represented in a
tree structure starting from the base link (the base of the manipulator is fixed) down to the end effector
link. The specification of the joint also contains a limit for the joint, limits for the joint velocities, as well
as limits for the effort (how much effort can the controller command). There is also a parameter which
specifies the correspondence between joint limits and joint velocity as well as joint velocity and joint
effort 8. Another set of parameters contains information about dynamics of the joint. The last important
information which is also contained within the joint specification is the transformation between the two
links which are connected through the joint. The transformation is given through a translation along the
different axes and three rotations which are performed one after the other. The first rotation is a roll around
x followed by a pitch around y and afterwards a yaw around z. Through the translations and rotations a
complete transformation of the frame is possible. Finally the joint contains information about its type.

URDF example

After we explained a URDF in general we will look at an example. We will discuss each of the different
parts of the URDF file, which were discussed above.

• The ”robot” XML-tag specifies the robot, which is described within the URDF file. Moreover the
name within the XML-tag is used to identify the robot, which is used later on to identify the robot.

– The ”link” XML-tag is used to identify a link. The name within the XML-tag is used to identify
the link within the system.

∗ The ”inertial” XML-tag contains the mass of the link as well as the mass position and
orientation, relative to the link origin.

8For more information about correspondence between joint limits and joint velocity as well as joint velocity and joint effort see
http://www.ros.org/wiki/pr2_controller_manager/safety_limits

9
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∗ The ”visual” XML-tag contains the information of the visual representation of the link as
well as the relative position to the link origin. Also the material is specified to show the
visualization as well as the geometry of the visualization. The geometry can either be a
box, cylinder, sphere or a mesh. The mesh can be of arbitrary geometry since it is a simple
mesh representation of the object.

∗ The ”collision” XML-tag specifies the origin as well as the representation of the collision
model. The collision model is represented by a geometry information. This geometry
information can contain the same elements as the geometry information within the visu-
alization. This model is often a simplified version of the Visualization model due to the
expensiveness of the collision checks.

– The ”joint” XML-tag contains the name of the joint, the type as well as the joint specification
below.

∗ The ”parent” XML-tag contains the name of the parent link which is connected to the
joint.

∗ The ”child” XML-tag contains the name of the child link which is connected through this
joint.

∗ The ”origin” XML-tag of the joint specifies the origin of the joint which is relative to the
parent origin. This origin is also the origin of the child link.

∗ The ”axis” XML-tag specifies the axis of the joint. In case of the revolution joint the axis
specifies the rotation axis of the joint.

∗ The ”limit” XML-tag specifies the joint limits of the joint as well as the maximum joint
velocity.

The resulting model is shown in Figure 2.13.

1 <? xml v e r s i o n =” 1 . 0 ” ?>
<r o b o t name=” p l a t e w i t h b o x ”>

3 < l i n k name=” t h e p l a t e ”>
< i n e r t i a l>

5 <mass v a l u e =” 1 . 2 ” />
<o r i g i n xyz=” 0 . 2 0 . 2 0 . 0 3 ” rpy =” 0 0 0 ” />

7 < i n e r t i a i x x =” 0 .001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .001 ” i y z =” 0 . 0 ” i z z =” 0 .001 ” />
< / i n e r t i a l>

9

<v i s u a l>
11 <o r i g i n xyz=” 0 0 0 ” rpy =” 0 0 0 ” />

<geomet ry>
13 <box s i z e =” 0 . 4 0 . 3 9 0 . 0 3 ” />

< / geomet ry>
15 <m a t e r i a l name=” w h i t e ”>

<c o l o r rgba =” 1 1 1 1 ” />
17 < / m a t e r i a l>

< / v i s u a l>
19

<c o l l i s i o n>
21 <o r i g i n xyz=” 0 0 0 ” rpy =” 0 0 0 ” />

<geomet ry>
23 <box s i z e =” 0 . 4 0 . 3 9 0 . 0 3 ” />

< / geomet ry>
25 < / c o l l i s i o n>

27 < / l i n k>
<!−− ” j o i n t ” t o back box −−>

29 < j o i n t name=” t h e p l a t e b o x j o i n t ” t y p e =” r e v o l u t e ”>
<p a r e n t l i n k =” t h e p l a t e ” />

31 <c h i l d l i n k =” t h e b o x ” />
<o r i g i n xyz=” 0 . 1 7 0 0 .045 ” rpy =” 0 0 0 ” />

33 <a x i s xyz=” 0 0 1 ” />

10
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< l i m i t e f f o r t =” 1000 .0 ” lower =”−0.5 ” upper =” 0 . 5 ” v e l o c i t y =” 0 . 5 ” />
35 < / j o i n t>

37 < l i n k name=” t h e b o x ”>
<v i s u a l>

39 <o r i g i n xyz=” 0 0 0 ” rpy =” 0 0 0 ” />
<geomet ry>

41 <box s i z e =” 0 . 0 6 0 . 3 8 0 . 1 0 ” />
< / geomet ry>

43 <m a t e r i a l name=” g rey ”>
<c o l o r rgba =” 1 1 1 0 . 5 ” />

45 < / m a t e r i a l>
< / v i s u a l>

47 < / l i n k>
< / r o b o t>

Figure 2.13.: Result of the example URDF viewed in rvize (http://www.ros.org/wiki/rviz).

2.4. Brief explanation of the tool chain

We will now briefly explain how we perform the position task. A very simple approach to fulfill the task of
positioning the end effector of a manipulator, is to split up the problem into subproblems as described later
on in Chapter 4. There are approaches which treat the task as one big problem, one example is [8]. But we
will divide the problem into smaller subproblems. This approach is very useful to focus on some parts of
the problem since some parts of the task depend more on the manipulator specific properties than others.
We split up the problem into four subproblems, which can be seen in Figure 2.14, to solve the task. Within
the next sections we will explain the problem descriptions of the first three steps. The last step of the tool
chain is a simple execution of the generated plan. As we do not focus on control it will not be explained
within this thesis.

2.5. The inverse kinematics problem

The first of four mentioned subproblems is the inverse kinematics problem. To get a better understanding
of the inverse kinematics problem we will first describe the simpler forward kinematics problem. The two
problems are strongly related to each other as it can be easily seen in Figure 2.15. The solution of the
forward kinematics problem is also used to verify the results of the inverse kinematics problem and we will
explain how it is used within the evaluation of the tool chain in Chapter 5. Both problems are mappings
between the control space of the manipulator to the Cartesian space. The different joint span a vector space
which is the so called control space of the manipulator (for more information we revere the reader to [9]).
On the other side the Cartesian space consists of an translation part R3 and an rotational part SO(3). To
specify one constellation in the Cartesian space we use a pose which specify the translation part as well as
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Figure 2.14.: The different steps of the tool chain

the rotational part. Within the Cartesian space it is also important to mention that this coordinates are all
relative to a specified coordinate system. As mention above a coordinate system, which is associated with
a link is a so called frame.

Figure 2.15.: Transformation between the joint and the Cartesian space

2.5.1. Forward kinematics problem

The forward kinematics problem is defined as follows: given the manipulator description and the joint
values, determine the end effector pose (see Figure 2.16). The forward kinematics problem can be solved
very easily through the given transformations of the robot description (it is important to mention that
we only consider open kinematics chains). The joint values are used for determining the transformation
from one frame to another frame. Each of these transformations can be represented through a matrix
multiplication which uses homogeneous coordinates. The result is a number of matrix multiplications to
transform one frame into another. These matrices can be concatenated to specify the full transformation
from the base frame to the end effector. For example if we consider the manipulator in Figure 2.2 we get 5
matrices. The first is a transformation for the first link to the first joint A1 the second is the transformation
which is performed through the first joint B1. Afterwards we transform along the next link with A2, rotate
with the last joint B2 and translate along the last link with A3. The different Ai matrices are all translation
matrices along the links and the Bi are rotational matrices around the joints. The resulting transformationT
from the first link to the last link is given through the equation T = A3 ∗B2 ∗A2 ∗B1 ∗A1.
The forward kinematics always has a unique solution if we consider open kinematics chains. All these
properties make the problem easy and fast to compute. There are also other methods to calculate the
forward kinematics problem, for example in a recursive way [10]. All methods have in common that the
they are very fast in comparison to the inverse problem and there exist methods which solve the forward
kinematics problem in a stable and fast way for any type of manipulator.
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Figure 2.16.: Transformation from the joint into the Cartesian space

2.5.2. Inverse kinematics problem

The inverse kinematics problem is defined as follows: given the manipulator description and a desired pose
of the end effector, determine the joint values which result in a manipulator pose with the end effector
at the desired pose (see Figure 2.17). We will not focus on more complex versions of the problem with
multiple goals of the manipulator as it is proposed in [11]. In contrast to the forward kinematics problem
there is no closed form solution for every manipulator possible. It has been shown that there exist closed
form solutions for manipulators with four [12] and five [13] degrees of freedom. There are also closed form
solutions for some geometries for manipulators with six degrees of freedom ([14] and [15]) as well as for
some geometries with seven degrees of freedom [16]. There are also closed form solutions known if one
of the joint values is known for example [17], [18]. All these methods show the fact that they can solve the
inverse kinematics problem only for a special type of manipulator and are often not as easy to implement
in a generic way as it is possible for the forward kinematics problem. It is possible to derive closed form
solutions for some manipulators by hand but this would contradict our motivation for generic tool chain.

Figure 2.17.: Transformation from the Cartesian into the joint space

2.6. The trajectory path planning problem

After we discussed the inverse kinematics problem we will focus on the next step within the tool chain. The
problem is how to plan a possible path to move the manipulator to its end position. This problem consists of
two parts, namely the trajectory path planning problem and the trajectory path execution planning problem.
We will divide the planning of the trajectory into these two steps as it was proposed in [19] or [20]. Another
possible solution to tackle the trajectory planning would be to solve this problem as a whole. This type
of planning is known as kinodynamic motion planning. This problem can be solved for example with the
help of the proposed algorithms in [21] or [22]. We will discuss the decision why we divide this problem
in such a way in Chapter 4.
From the previous step we have the joint values from the end position. The current position is also known
from the robot. This leads to the problem to find a path from the current joint position to the joint positions
of the end effector without violating the joint limits. It is also important that the environment is checked to
avoid collisions with obstacles in the environment (this also includes the manipulator itself). This problem
is known as the path planning problem. To define the problem to so called configuration space is used.
This configuration space consists of all possible configuration a manipulator can have. Thus this space is
the cross product of all possible joint values (for a more detailed specification see [9]). The problem is
defined as to find the shortest possible path within a configuration space (see Figure 2.18). The path is
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only possible if there are no collisions or other violations of constraints (in the case of a manipulator these
constraints are the joint limits) on the path.

Figure 2.18.: Find a path from start to end position within joint space

This problem is also known as the the general movers problem, which is known to be PSPACE-complete
[23]. This means that in the worst case the best algorithm uses a polynomial amount of space. It is makes
also no difference between a deterministic and a non-deterministic algorithm, both will have at least a poly-
nomial space consumption. It is important to notice that there is no efficient algorithm (i.e. an algorithm
which solves the problem in polynomial time) known for PSPACE-Complete problems. This is also the rea-
son why the problem is split up in two parts. Thus the problem instance become smaller and can be solved
faster. Otherwise the problem state space does not only consists of the joint values. Instead it would also
add an additional dimension which would represent the time of the position. Another impact of the time
complexity of the motion planning problem yields to different algorithms which use randomized methods
to overcome the complexity of this problem. Randomized algorithms are often used to deal with complex
problems, with the known issue that these algorithms possible do not find a solution. Some examples of
such algorithms are [24], [25]. One important aspect of this part of the tool chain is that it does not handle
moving objects in this case. To be more precise we expect that the objects in the environment do not move
during the execution of the movement of the manipulator. This is important because otherwise it would not
be possible to divide the trajectory planing into two parts. There are problems with moving objects which
can be addressed with this division of the trajectory planning (for example see [19]) but in general moving
objects cannot be addressed. One justification why we do not consider the movement of objects is because
many tasks with manipulators take place within environments which satisfy this constraint. For example if
the robot is used within a home environment it can be assumed that the objects themselves will not move
during an action with the manipulator. This assumption seams valid since the most objects cannot move
by themselves. Another example would be an industrial environment with a fixed working space or a box
which moves with the assembly line. The movement of the assembly line and the objects at the line do not
mater since the manipulator also moves in the same way and there is no relative movement. Additionally it
would dramatically increase the execution time of the tool chain, if moving objects would be considered.

2.7. The trajectory path execution planning

The last problem we will consider within this chapter is the trajectory path execution planning. Out of
the previous step we have generated a path within the joint space. This path starts at the current joint
configuration and ends at the joint configuration which was calculated through the inverse kinematics.
Along this path several joint configurations are specified which have some maximal distance to each other.
To specify it more precisely the output of the previous step is a list of joint configurations which have to be
performed one after the other by the manipulator.
The problem we are facing in this section is how to find a path execution which follows the path given
from the previous step as closely as possible and with a minimum amount of time (see Figure 2.19). It
is also possible to reduce other types of costs but we will not consider such optimizations. It is also
important to mention that there are several constraints, which have to be considered during the planning
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phase. One constraint set consists of the joint limits, which also have to be considered at the previous
steps. Other constraints are the velocity, acceleration limits, the maximum torque and the jerk of the joint.
All these limits have to be specified within the robot description for each joint. It is important to note
that this problem has another condition which has to be considered. The time to execute this planning
step and the execution time of the manipulator movement itself should be as short as possible. This also
means that it makes no sense to find a possible optimal solution, which means the solution with the lowest
possible execution time, and discard suboptimal solutions, with a slightly higher execution time, if the
time difference of the calculation, which yields the optimal solution and the calculation, which yields the
suboptimal solution, is bigger than the time difference of the optimal and the suboptimal solution. Another
important aspect we want to point out is that we consider all these different limits to avoid problems,
which occur if the theoretical trajectory cannot be executed correctly via the manipulator. For instance the
trajectory calculated within this step uses a velocity which cannot be achieved, this trajectory would result
in a wrong final joint position. This wrong joint position leads to a wrong position of the manipulator. It is
also important to note that we do not deal with moving objects as we discussed in previous sections. This
would be possible and was already discussed, for example in [19].

Figure 2.19.: Find joint velocities, accelerations, positions and timings to follow the given path
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Chapter 3
Related Research

Within this chapter we will discuss related tools which offers similar functionality as well as tools and
methods which tackle one of the problems introduced in the previous chapter.

3.1. Tool chain to handle a complete positioning task

There are some tools which support the whole task to position a part of the manipulator. We will review
three of them and point out their drawbacks.
First of all it is important to note that ROS supports a tool chain for manipulators 1 (which is also described
in [5]) but as stated above there are problems with the general use of this tool chain. The impact of the
change on the tool chain, which were performed, can be found within the evaluation chapter 5, which also
shows that without these changes the usage of the tool chain is limited.
Another tool chain for manipulation is provided through OpenRave 2 which is a powerful system, which
supports the simple position task as well as more complex tasks. Within OpenRave the task can be specified
and executed on a robot. To execute a task the system uses different components. On component is a a
database, with many information about the robot. This database was generated during a “setup phase”.
Another component, which is used within OpenRave, holds the current sensor data. For motion planing
two components are used. The first one is an inverse kinematics computation which will be discussed
within Section 2.5 in more detail. The second component is a modified RRT (Rapidly-exploring Random
Tree)[26] path planning algorithm which grows two random expanding trees to each other and tries to find
a feasible path. The modified RRT is explained in more detail in [27]. A more detailed description about
multiple similar motion planning algorithms will be given in Section 2.6. OpenRave incorporates also a
possibility to interact with ROS, which will be used within the evaluation and will be discussed in 4.2.2.
Unfortunately, this interaction does not use the current tool chain and so the two systems are not fitting
well together. Another important aspect to mention is that there are some problems with the combination
of OpenRave and some manipulators. We will discuss later on the implementation of the inverse kinematics
in Section 4.2 and the evaluation Chapter 5.
Another system which deals with different manipulators but with focus on an industrial setting, is described
in [28]. The task is specified via the industrial robot language and afterwards interpreted within the system.
The system performs an inverse kinematics as well as an inverse dynamic calculation. Both calculations use
a “setup phase” to produce equations, which are later used during the execution of a task. The calculations
are performed in an analytically way to get solutions, which can be calculated fast during task the execution.
During the execution of the program the systems try to perform non-jerky motions to avoid problems with

1http://www.ros.org/wiki/arm_navigation/Tutorials/tools/Planning%20Description%20Configuration%20Wizard
2 http://openrave.org/
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positioning errors. This system does not handle any type of environment during the motion. This is an
valid assumption within an industrial setting with specified poses, because there are no uncertainties or
changes in the environment and the positions could be calculated in such a way assuming collisions will
not happen. This have the drawback that a general usage is limited and such systems does not perform for
example well in a housekeeping tasks, because the environment changes between different planning steps
within a household environment.

3.2. Solving the inverse kinematics problem

After we discussing the solutions, which tackle the whole task we will focus on solvers, which solves the
inverse kinematics problem. We will present a short overview of the solving methods. There are many
possible solutions but most of them do not offer any kind of easy possibility to use them within a full robot
system. Also it was not possible to evaluate all possible solvers, which would be of interest to benchmark
more inverse kinematics solvers to find the best of them. The solvers which are used to solve the inverse
kinematics problem are discussed later on in Section 4.2 in more detail. The overview we present in this
section will be categorized according to the taxonomy presented in [29]. But we will extend this taxonomy
with a third class of methods to deal with Artificial Intelligence methods.

3.2.1. Analytical methods

The first class of methods comprises the analytic methods. These methods find all possible solutions for a
given problem. The different solutions are introduced through the redundancy of the kinematic chain. This
opens the possibility to use different solutions for the problem to choose the “best” one that fits the problem.
For instance some solutions are not possible due to collisions with the environment. These methods can be
subdivided into two categories: closed form methods and methods based on algebraic elimination.

Closed form solutions

Some closed form solutions are mentioned above in Section 2.5. These methods express the inverse kine-
matics problem as a closed form equations. This method finds a solution very fast without problems within
run time that occur if an optimization method is used. Examples for such methods are [30] and [31].

Algebraic elimination

Algebraic elimination methods express the solution as a solution of a system with multiple polynomial
equations. Examples for such methods are [32], [28] and [33]. Another approach is to express the solution
in a closed form with the help of a system, that depends only on one joint. Such a system can be solved
numerically. Examples for such methods are [17] and [18]. There are also methods which use some
numerical methods to reduce the problem or to solve a part of the problem. Examples for such methods are
[34], [35] and [29].

3.2.2. Numerical methods

The second class of methods uses numerical methods to determine one solution for the problem. These
methods can be subdivided into four categories.
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Newton-Raphson

The Newton-Raphson method uses the inverse of the Jacobian to converge to a optimal solution. The
inverse of the Jacobian matrix represent the velocity matrix of the manipulator. This algorithm yields a
solution of the inverse kinematics problem if a proper starting value is chosen. If the algorithm fails the
procedure has to be restarted with another starting value to yield to a solution. Another problem beside
selection of the starting point is that the inverse of the Jacobian is ill-conditioned near a singularity. At such
a singularity the manipulator ”lose” at least one degree of freedom. Thus the manipulator is additionally
constraint in movements along a subset of all possible directions. This can prevent the algorithm from
converging to a solution. This problem makes the method not suitable for any manipulator with less than
six degrees of freedom. Another problem can occur if the manipulators have more than six degrees of
freedom. This leads to the problem that the Jacobian matrix is not a squared matrix and thus cannot be
inverted easily. There are many variations of this approach to solve these problems for example with the
help of pseudo inverse or transposed Jacobian matrices. Some methods are described in [22], [36], [37],
[38], [39], 3 and [40].

Levenberg-Marquardt, Dampled least square

To overcome the problem of a singularity the Levenberg-Marquardt and the Dampled least square methods
do not use directly the inverse of the Jacobian. Instead, these methods additionally use a term within the
matrix elements to avoid numerically unstable behaviour and make it possible to avoid singularity regions.
The problem with these terms is that if the terms are too large, the algorithm converge slow to a solution.
There are also different methods which use variations of this approach like [41] and [42].

Control theory based

Another method is to state the inverse kinematics problem as a control problem with an error corresponding
to the difference of the current and the desired pose. The resulting formula uses the velocity of a joint with
respect to the Jacobian matrix, end position velocity and the positioning error. This approach is used for
example in [43].

Optimization-based Approach

A very general way to approach the inverse kinematics problem is to define the problem as an optimization
problem, which should minimize the distance between the result of the forward kinematics, using the
joint values from a possible result of the inverse kinematics problem, and the desired pose. The first two
approaches within the numerical methods can also be classified as such a method. There are many different
methods, which can be categorized in, this category e.g. [44], [45], [46], 4. We will discuss this field in
more detail in Section 4.3.

3.2.3. Artifice Intelligence method

The third class of inverse kinematics solvers uses different learning techniques to solve the problem. This
class is divided into two categories, which differ in what is learned and how the inverse kinematics can be
solved with the help of the learned information.

3http://www.orocos.org/kdl
4http://ompl.kavrakilab.org/classompl_1_1geometric_1_1GAIK.html#GAIK
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Resolved Motion Rate Control

Instead of learning the inverse kinematics, which means learning the joint values corresponding to the pose,
the joint velocities are learned. A solution for the problem is easier to handle even if there are different
solutions for the same problem instance, which would cause the learning algorithm to fail. Through inte-
gration over the solution the inverse kinematics can be calculated. This approach is used for example in
[47] and [38].

Inverse kinematics

Another approach is to learn the inverse kinematics itself and to avoid additional steps for solving the
inverse kinematics. This approach is used for example in [48], [49], [50] and [51].

3.3. Solving the trajectory path planning problem

The next problem we want to solve is the trajectory path planning problem. There are several methods to
solve the problem. We will divide this method into five categories and will explain them separately. Please
note that we will focus in particular on the last one because the algorithms used within the tool chain are
algorithms of this type. It would also be possible to use different methods depending on the context to solve
the trajectory path planning problem. For example such an method was proposed in [52] which choose a
solving method depending on the distance from the start to the end pose.

3.3.1. Potential Field

The first method uses a potential field, which can be constructed out of multiple potential fields to search
towards the gradient to find the motion form the start- to the goal-configuration. To compute the potential
field the environment is used to avoid collisions with the known environment. Thus the potential field
consists of a field for attraction which points towards to goal and repulsive parts around the obstacles within
the environment. Therefore it could be expensive to calculate such a potential field. Another problem of
this method is that it could end up in a local minima. To escape this local minima random motions are
performed. An example which uses such a method is proposed in [53].

3.3.2. Sequential Framework

Another method tries to use a hierarchical search with backtracking. This hierarchical search starts with
the base joint of the manipulator and continue with the next joint of the manipulator until valid a path is
found. In each hierarchical step step a path is search for the current joint which is selected. The path is
searched in such a way that the path which was found for the joint above in the hierarchy are considered.
If no path can be found the search makes a backtracking step within the hierarchy. One example of such an
algorithm, which uses a potential field to find a path within the search step is described in [54]. There are
different problems with these kind of algorithms. First the algorithms are very slow. The other important
problem is that the algorithm does not always find the shortest path for the whole manipulator. Therefore
we do not use this kind of approach.

3.3.3. Graph-based methods

The next group of method uses a graph to solve the problem. The nodes of the graph correspond to a
joint configuration. The edges are movements of one or more joints to reach the next node. The search
for a feasible path consists of the search for a path in the graph from the start to the end node. To avoid

20



3.3. Solving the trajectory path planning problem

the problem that the graph gets to large to be stored completely it will be calculated lazy to save only the
information necessary to solve the problem. Examples that uses such a methods are [55] and [56]. These
methods are very similar to the sampling based methods and thus we will not concentrate on the graph
search methods. Beside the similarity it is also important to notice that the performance of the graph-based
methods have to be improved to make it possible to compete with the sampling based methods.

3.3.4. Optimization methods

The next category contains methods which use optimization technicians to get a feasible path. At the
beginning the methods use at least one guess of a path within the joint space. This path consists of different
configuration with a specified distance between each other. Afterwards the path is refined until a solution
is found. If more than one path is used all the paths are refined to find a solution. The authors of [57] use a
genetic algorithm to find a solution with a fitness function that indicates if the path is in collision and if the
goal is reached. The approach used in [58] calculates a gradient corresponding to the environment and the
smoothness of the path to refine the guess to find a path. [59] uses a stochastic method to find a possibility
to improve the path and find a solution. All these methods have in common that they are not as fast as
sampling based methods.

3.3.5. Sampling-based methods

The last category, which is also the category we use to find a solution for the trajectory path planning
problem, contains sampling-based methods. These methods sample the configuration space in a certain
manner and afterwards connect them to find a path. As already discussed above these methods are very
similar to the graph based methods because the sampling points and their connections could also be viewed
as a graph. There are many methods which are part of this category. We will briefly point out some works
and later on focus on algorithms which are used (partly) later on within the evaluation. The first example
is RRT which connects the samples to form a tree [26], [60]. A similar approach like RRT is proposed in
[61]. It uses random sub-goals which should be connected with the help of a modified A* algorithm. The
Ariadne’s Clew Algorithm which was proposed in [62] try to avoid places already visited with the help of
landmarks, and try to find a connection from this landmark to the goal place. Other methods use try to place
point near or along the boarder [63],[64], [65], [66]. Or change the search direction through reflection on
the boarder of an object if a collision is detected [67]. Also it is possible to use not every sampled point
instead use only point with special properties. Such an example is the proposed in [68]. The points are
only of interest they act as a guard for a region or connect such guarding points. Another method to use
only a sub-set of the sampled points was proposed in [69]. Which use only points which have at least one
neighbor which is in collision. Another way to reduce the collision is to choose the sampling point in a
cleaver way as it was proposed in [70]. The idea is to use sample points and move them to medial axis
to avoid collisions. The authors in [71] proposed a similar approach which try to use the medial axis in
Cartesian space. Also how fine grade the collision checks are preformed along a direct connection can be
used for improvement. The authors in [72] assign a propability to each edge deepening how fine grade the
check of the edge performed. A path is only found if every connection along the path is completely check
and thus has got a probability of 1. The methods have in common that they find very fast a solution. This
is the reason why we focus only on the methods within this category. We will now have a closer look at
three different methods. Each of them contain interesting parts, which are used within the methods within
the tool chain.

PRM

PRM [24], [73], [74], [75], [76] samples the configuration space in a random way. The different sample
points correspond to a configuration of the manipulator with the corresponding joint values. Each of these
configurations can be checked for a collision with the environment. If a collision occurs the corresponding
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sample point will be removed from the samples. The sampling could be executed every time a new query
appears or only if the environment changes. It is also possible to cache these environments if for example
there are only few different configurations of the environment. This can happen for example within an in-
dustrial environment. After the sampling step is finished different path planning requests can be processed.
To process this request the samples are connected in such a way that a local planner could find a connection
and the connection does not yield to a circle within the resulting graph. Within this graph a shortest path
search is processed. If no path can be found it is possible to re-sample the space or to add sample points to
the current samples.
One big problem of this algorithm is the huge amount of collision checks for the sampling points. The
check becomes more costly if the environment is very cluttered. This results in a very high execution time
of the collision checks and the algorithm itself. On the other hand without enough sampling points it is not
possible to find a path within the graph.
The development leads to a lazy evaluation of the sample points. This lazy evaluation, which was discussed
in [77], [78] and [79], processes the collision check of the different sampling points in a lazy manner. This
means that only sample points, which occur within the shortest path are checked. If the sampling point is
not valid (the configuration is in collision with the environment) it will be removed. All the connections
to these sample points will be removed too and the graph can be rebuilt without these sample points. It
is sufficient to check if sample points, which are in the neighborhood of the removed sampling points are
now close enough to be connected. Afterwards a shortest path search is processed and so on.

EST

Another way to find a path within the configuration space is presented in [25]. The idea is that a path is
only possible if the sample point along the path can “see” the next sample point along the path. Two sample
points see each other if a straight line can be drawn between these two points. This also means that the line
does not intersect with an object. This check is performed on the objects, which have to be transformed to
the configuration space and therefore change their shape dramatically. Such a transformation would also
be complicated to achieved. To check this intersection the line is sampled and each sampled point has to
be checked if it is in collision with the environment.
To find a path the algorithm uses two growing trees. One tree with a root at the start sample point and one
with the root at the end sample point. The start sampling point is the starting configuration and the end
sample point is the goal configuration to reach. Within each iteration of the algorithm the two trees grow
and are checked to see if they are able to “see” each other. The two trees “see” each other if a sample point
of the first tree “sees” a sample point out of the second tree. This can be verified very simply by checking if
two of the possible combinations “see” each other. It would also be possible to cache the results from one to
another iteration of this step. To extend a tree one sample point of the tree is chosen. In the neighborhood
of these sample points new uniform distributed sample points are generated. With a certain probability
these sample points are dropped. If a new sample point is not dropped it is checked if it is a valid sample
point. If the new sample point is not valid it will be dropped. Afterwards the new sample is checked to see
if it “sees” the old sample point of the tree. If the sample points see each other the sample points will be
connected.
One drawback of the algorithm is to check if two sample points ”see” each other. This can be improved if
only sample points are considered which are close to each other before the check if performed.

KPIECE

The last path planning algorithm we want to discuss is the KPIECE algorithm [21]. The idea behind this
algorithm is to avoid sampling regions, which are not of interest. Sample points are not of interest if
they don’t lead to a solution. As discussed above, one drawback of the PRM algorithm is that there is a
huge amount of sample points, which have to be evaluated. The algorithm was improved by checking the
sample points lazy but it does not solve the drawback that the algorithm samples many points within the
configuration space in regions, which are not interesting. EST has got a similar problem. If many iterations
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have to be made within the algorithm both the tree and the number of sample points grow. If the trees does
not grow towards each other many irrelevant sample points are considered. With EST the problem can be
solved by introducing a weight for each node, which changes the probability to be chosen to be the next
node to grow the tree. This forces the trees to grow towards each other.
KPIECE uses another idea to reduce the number of samples. The idea is to use a multi-level grid. Each grid
cell (A), has got one cell which is one level above A (parent cell) and k grid cells one level below A (child
cells). The algorithm samples the configuration space randomly but it prefers cells which have no neighbor
cells. The algorithm also tries to expand the grid if it possible to add a neighbor cell. This enforces the
algorithm to explore as much space as possible. If a cell is selected, the sample point within the cell is
chosen similarly to the method before, with the difference that the child cells are used to find the position
of the sample point. This also forces the algorithm to sample the space uniform. This is necessary to make
it possible that the algorithm is probabilistically complete. The path itself is established through a growing
tree, which connects the sampled nodes and tries to find a path. The main difference to EST is the way the
sample points are generated.

3.4. Solving the path execution planning problem

There are several methods which provide solutions for the path execution planning problem. For example
the method proposed in [28] uses different function (ramps or sin waves) to interpolated between the
different configurations. Other methods use splines to interpolate the points and perform afterwards a
optimization to find a solution. Such methods can be found in [80] and [81]. The Authors in [82] use
polinomials instate of splines to interpolate between the points. Many methods use a projection into a
space which is a plain containing the path in one direction and the velocity along the path in another
direction. There are many proposals to solve the resulting planing problem some examples are shown in
[83], [84], [85], [86].
Each of these methods uses a set of constraints which are specified. The set contains constraints on the
possible values for a joint, the velocity of the joints as well as the maximum and minimum acceleration of
the joint. We will now focus on some of these methods, which contains the more interesting parts. These
parts are later used in the algorithms, used in the tool chain. We only explain the idea behind each of
them and provide not a detailed explanation of the different equations which are used within each of the
algorithms.

3.4.1. Splines and polynomials

One method to find a trajectory execution is to use spline functions as proposed in [80] or [81]. The splines
use the given joint configurations and additionally the start and the end velocity is set to zero. The splines
try to interpolate the given joint configurations. The splines are continuous and differentiable. This is an
important property because if the function would not be differentiable the velocity at this position would
not be continuous and would yield to a violation of the velocity constraints. An important issue is that the
splines need to know the time step between the joint configurations. To calculate this time step in such
a way that the result is nearly time optimal the problem is formulated as an optimization problem. The
optimization problem is to find the time steps of the different joint configurations in such a way that the
overall time is minimal and the splines can be applied without violating any constraints. The methods
differ in the calculation of the splines and in solving the optimization problem. It is also possible to use
the spline interpolation not in correspondence to the joint values themselves but for example to correspond
to joint velocities or accelerations. Another possibility is to use polynomial-functions instead of splines to
interpolate the function. It is important that the resulting trajectory uses a function, which is differentiable
as we stated above. An example which uses a polynomial instead of a spline is given in [82].
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Chapter 3. Related Research

3.4.2. Linear segments with parabolic blend functions

Another method is to use a projected representation of the problem as it was proposed in [87], [87], [88].
The projection of the problem only works if the trajectory path is given in such a way that it can be
differentiated. In general the path which is produced through a trajectory path planing algorithm does
not fulfill the requirement that the path can be differentiated. It only offers joint configurations, which
can be interpolated in a linear way. To overcome this problem it is possible to blend the different line
segments with parabolic functions. This results in a differentiable function, which can be used later for the
projection. Such a method was already proposed in [89]. The projection itself projects the problem on a
different problem representation to find the velocities along the given path. The different limits have to be
transformed into constraints within this projection. To find a solution to this problem it is possible to use
the algorithm proposed in [90] and [91]. The algorithm uses a representation of this problem within a two
dimensional space. The space represents the way and the corresponding velocity. It is important to note
that the velocity corresponds to the joint velocities but is not the same as the joint velocities. Within this
space the task is to move from the start pose (the position at the beginning of the projected path and with a
velocity equal to zero) to the end pose (the position at the end of the projected path and with zero velocity).
It is also necessary to move as fast as possible, which is achieved if the maximum possible velocity is used.
The algorithm itself use a switching points. The switching point is a point, were the maximum velocity of
a joint changes from one joint to another one. It is important to note that the manipulator should move as
fast as possible, which results in the observation that at least one joint should move with maximum velocity
if it is possible. The algorithm works as follows:

1. Integrate with the maximum possible acceleration until a constraint is violated.

2. If the violation of a constraint is caused by a velocity constraint move along the constraint until an
integration is possible or another constraint is hit.

3. If the violation of a constraint is caused by an acceleration constraint calculate the switching point
and integrate backwards with the minimum acceleration until the previously calculated movement
is hit. The path now consists of the path before this intersection point and the path taken from the
backward integration. Continue with the forward integration above.

The Algorithm will try to move along the resulting path using the maximum possible increase in velocity
and the slowest brake action. This results in a path which uses a very high velocity and therefore is very
fast. It is important to note that the integration, which is performed numerically can lead to some problems,
which can be resolved through some additional checks.
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In the previous sections we have defined the problems which have to solved in each part of the tool chain as
well as discussed some methods to solve this problems. Within this chapter we will discuss in more detail
how the ROS Arm Navigation Stack [92] is used implement the tool chain. Moreover we will provide a
full explanation of each step within the tool chain.

4.1. The tool chain

In Section 2.4 we briefly imposed the structure of the tool chain. Each of the steps within the tool chain
and their definitions are given in Chapter 2. We will now have a closer look at the implementation of the
tool chain. The concept of the tool chain is shown in Figure 4.1. Each subproblem receives the input from
the previous subproblem. By solving the subproblem the necessary input for the the next subproblem is
generated. This concatenation is also a reason why it is important that each of these steps is performed fast
as well as with a high success rate in order to prevent the entire tool chain to fail.

1. The first subproblem is the inverse kinematics problem (for the definition see Section 2.5). The
problem is to determine which joint values correspond to the resulting pose of the manipulator. The
result also needs to fulfill the joint limits and must not be in collision with the environment. After
solving this subproblem we get goal values for the joints, which should be reached from the current
joint values to reach the resulting pose. It is important to notice that in general the resulting pose
maybe could not be reachable from the current position. Also it is not always possible to use a
straight movement (within the joint space) of the manipulator to reach the goal. Thus we need the
next step to reach the calculated joint values from the current joint values.

2. The second subproblem is the trajectory path planning (for the definition see Section 2.6). The
problem is to find a possible path within the configuration space from the current joint configuration
to the desired joint configuration, which was calculated in the previous step. The resulting path
is constrained to be minimal. It considers the change of the joint values and also does not violate
the joint limits. The path also have to avoid collisions with the environment. The result of this
subproblem is a list of joint values which should be reached one after the other to reach the final joint
position. We only consider an environment which is stationary during planning and execution time.
It would be possible to avoid some collisions with moving objects after the path was calculated as
it was proposed in [19]. This was also discussed above. But we will not consider this possibility
within this thesis. The result is a movement with the manipulator from the current configuration to
a configuration, which represents the desired pose. The problem we have to deal with next is to get
the joint velocities to pass one joint configuration after the other to get a fast and accurate movement
with the manipulator.
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3. The third subproblem is to follow the path determined in the previous subproblem. This is called
trajectory path execution problem (for the definition see Section 2.7). The problem is to find a
path execution which is as fast as possible for a given path. The different mechanical limits of the
manipulator have to be considered in order to be able to execute the trajectory without problems.
Also all different limits of the joint such that the limits of the joint velocity and acceleration has to be
considered. The result of this subproblem is a list of time slots and the corresponding joint velocities
for all joint. This list could be used to move the manipulator from the current configuration to a final
configuration.

4. The last subproblem is to execute the given trajectory. The problem is not a planning problem. It is
just a transformation of the output from the previous subproblem in order to make an execution pos-
sible. This part strongly depends on the manipulator and its controller. Thus we will not explain how
to solve this problem, because this problem is solved via a driver, which is manipulator dependent
and is usually provided by the manufacturer of the manipulator.

Figure 4.1.: The different steps of the tool chain. The black framed parts represent the input for each of the
steps. The yellow framed parts represent the output for each of the steps. Within the orange
box the values are specified in Cartesian space. Within the purple boxes the values are specified
in joint space. The green box contain values which are specified in a manipulator depending
representation.

It should be noted that the second and the third subproblem can be addressed in an integrated way as a
kinodynamic motion planning problem, which can be solved for example with [21] or [22]. We treat each
of the subproblems separately as it was proposed in [19]. This decomposition has the huge advantage that
the problem becomes easier to handle and the third subproblem can be performed very fast, even for robots
with many degrees of freedom as it was for example proposed in [82].
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4.2. Solving the inverse kinematics problem

We briefly explained which different methods can be used to solve the inverse kinematics problem in
Section 3.2. We will explain the methods which are used within the tool chain in more detail in this
chapter. We use different methods to tackle the problem of the inverse kinematics. The simple reason for
using different methods is that not every manipulator can use every method or the usage of a method results
in drawbacks (for example a long execution time). There are also other tools which use multiple methods
to solve the inverse kinematics problem, as for example [28]. The inverse kinematic solver are tried one
after each other to find a solution, if the previous one does not find a solution.

4.2.1. KDL

KDL 1 is one part of the Open Robot Control Software (OROCOS) project [93]. The OROCOS project
offers system independent libraries to build up robotic systems. KDL is a library that offers data types and
solvers for problems. We focus on two solvers which are used to solve the inverse kinematics problem and
the forward kinematics problem.

Forward kinematics problem To solve the problem it is very suggests itself to use the forward kinematics
chain recursive solver. It is sufficient to apply one transformation after the other along the way from the
base to the end effector of the manipulator. To get the transformations in a correct order and to avoid
problems, which may occur if the manipulator is not only one straight kinematics chain (a robot with
multiple manipulators could yield to such a case) the transformation is build recursively starting from the
end effector. The outline of the algorithm is shown in Listing 4.1

f o r w a r d k i n e m a t i c s C h a i n R e c u r s i v e ( k i n e m a t i c s T r a n s f o r m a t i o n , c u r r e n t L i n k , b a s e L i n k )
2 i f ( c u r r e n t L i n k == b a s e L i n k )

r e t u r n
4 p a r e n t L i n k = c u r r e n t L i n k . g e t P a r e n t ( )

k i n e m a t i c s T r a n s f o r m a t i o n . addToFron t ( T rans fo rma t ionsFromTo ( p a r e n t L i n k , c u r r e n t L i n k ) )
6 r e t u r n f o r w a r d k i n e m a t i c s C h a i n R e c u r s i v e ( k i n e m a t i c s T r a n s f o r m a t i o n , pa renLink , b a s e L i n k )

Listing 4.1: Outline of the KDL forward kinematics chain recursive solver

As stated above, it is possible that the manipulator is represented in a tree structure. This makes clear
that the chain from the end effector to the base is uniquely defined. The complete transformation consists
of sub-transformations. Each sub-transformation is a transformation of adjoining links. Thus the complete
transformation is feasible. At the end of the algorithm a transformation, which starts at the base and ends
at the end effector and is feasible, is produced. This transformation can be used to calculate the forward
kinematics (a more detailed description is given in [94]).

Inverse kinematics problem To solve the inverse kinematics problem we use a inverse kinematics solver
with Newton-Raphson iterations. The algorithm needs two other algorithms to solve problems, which
is used during the iterations at the algorithm. The first algorithm is a forward kinematics solver, as is
described above. The second one is an algorithm to calculate the inverse Jacobian matrix. The algorithm
also needs initial joint values. As discussed above, in Section 2.5 this starting point has an impact on
the convergence of the algorithm. To calculate the inverse of the Jacobian matrix it is possible to use a
functionality implemented in KDL, which calculates the pseudo inverse of the Jacobian with the help of
a singular value decomposition. It is also possible to use a damped least square method to calculate the
inverse of the Jacobian. This has the same advantages to handle singular values but also the drawbacks of a
slower convergence. The outline of the algorithm for calculating the inverse kinematics is shown in Listing
4.2

1http://www.orocos.org/kdl
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i n v e r s e k i n e m a t i c s S o l v e r N e w t o n R a p h s o n ( numberOfTotalRounds , i n i t a l J o i n t V a l u e s ,
e n d P o s i t i o n )

2 c u r r e n t J o i n t V a l u e s = i n i t a l J o i n t V a l u e s
w h i l e ( numberOfRounds < numberOfTota lRounds )

4 c u r r e n t P o s i t i o n = f o r w a r d K i n m a t i c S o l v e r ( c u r r e n t J o i n t V a l u e s )
c u r r e n t V e l o c i t y = c a l c u l a t e V e l o c i t y ( e n d P o s i t i o n , c u r r e n t P o s i t i o n )

6 i f ( c u r r e n t V e l o c i t y < e p s i l o n )
r e t u r n c u r r e n t J o i n t V a l u e s

8 j a c o b i a n I n v e r s e = g e t J a c o b i a n I n v e r s e ( )
i n v e r s e J o i n t V e l o c i t y = c a l c u a t e I n v e r s e J o i n t V e l o c i t y ( j a c o b i a n I n v e r e , c u r r e n t V e l o c i t y )

10 c u r r e n t J o i n t V a l u e s = c u r r e n t J o i n t V a l u e s + i n v e r s e J o i n t V e l o c i t y
c h e c k A n d H a n d l e J o i n t L i m i t s ( c u r r e n t V e l o c i t y )

Listing 4.2: Outline of the KDL inverse kinematics solver with Newton Raphson iteration

We will now go into detail and explain the different steps of the algorithm. The algorithm iterates until
a solution is found or a maximum number of rounds is reached. First, we calculate the forward kinematics
to get the current pose, which is determined by the current joint positions. Then the current velocity is
computed. For this the algorithm calculate the difference of the current and the desired pose. This distance
is afterwards converted into a velocity be amusing that the distance can be traveled in one time step. This
position difference is represented by a six dimension vector (three differences within the coordinates and
three rotations differences). If the current velocity is below a specified limit, a solution is found and the
iterations end. Otherwise the algorithm calculate the inverse of the Jacobian (with the help of the given
function). Then the algorithm calculate the inverse joint velocity by multiplying the current velocity and
the inverse of the Jacobian matrix. Now the current joint values are updated. After checking the limits
the algorithm continue with another iteration. A more detailed description is given for example in [94].
As stated above we do not find a solution if we have a bad initial guess or the inverse Jacobian is not well
defined. This does not happen very often if we use a damped least square method. The impact of the inverse
Jacobian is caused by the update step. Please note that the algorithm is a simple numerical optimization
algorithm with the Newton-Raphson iteration.

4.2.2. OpenRave inverse kinematics

OpenRave 2 is a framework to handle manipulation tasks (e.g. pick and place tasks). We will focus here on
the inverse kinematics module 3. This module provides a generator for inverse kinematics solvers, which
is called Ikfast [33]. The solver also provides a forward kinematics solution. We will describe both in the
following paragraph.

Forward kinematics problem One big difference to the forward kinematics solver of KDL is the time it
takes to get the equation for calculating the forward kinematics. This equation is calculated within KDL at
run time. It uses the current manipulator, the given base and end effector frame to generate the equations.
Ikfast on the other hand uses the robot description and generates a file with the forward kinematics equa-
tion. This step is can be called “setup phase” and is performed for a new manipulator. The advantage is
that after the files are generated the forward kinematics has only to perform the mathematical operations
(trigonometric functions, multiplications and additions) to get a forward kinematics solution. This does
not lead to a big time difference but it shows that the philosophy behind Ikfast and KDL is completely
different.

Inverse kinematics problem The inverse kinematics problem can be solved via a solver, which is gener-
ated using analytic methods. The solver is calculated during the “setup phase” and stored in a file. After the
setup the solver solves the inverse kinematics problem using the equations provided by the “setup phase”.

2http://openrave.org/
3http://openrave.org/docs/latest_stable/openravepy/databases.inversekinematicss/
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This results in a very high performing inverse kinematics solver. Another important aspect is that the solver
has no problem with singularities and can provide multiple possible solutions within one solving call. Un-
fortunately, some solutions cannot be found by the solver (we will have a closer look at the performance
of the solver in Chapter 5). To generate an inverse kinematics solver with Ikfast the solver calculates
constraints out of the kinematics equations. A kinematics equation consists of two kinds of transforma-
tion matrices. The first kind of matrices are static transformation matrices, which are the transformation
along the links. The second kind of matrices are transformation matrices which change with there values
according to the specified joint values. These equations can be rewritten by inversion of matrices. This
yields to several equations, which can be reformulated as polynomial equations with a trigonometric and
a general side condition. The result is a system with 2n unknown variables for a manipulator with n rev-
olution joints. The system is solved using these equations. This is achieved by a search for the simplest
and most unambiguous solution. To get this solution and solve the system it is important to notice that
the system can be solved in different ways. But all these possible solutions have drawbacks, which have
to be considered. All these requirements for a simple solution, which deals with the drawbacks, lead to
a rating for a solution. This rating consists of a so called solution complexity and a numerical complexity
[33]. The solution complexity measures the amount of introduced solutions due to these solving steps (e.g.
an inverse of a sinus function results in two solutions). This measurement is used to avoid solutions, which
introduce solutions that cause a conflict with the kinematics. To use solving steps, which offer different
solutions it is sometimes necessary to get all solutions and thus it will not be avoided due to a bad ranking.
The numerical complexity is used to differentiate between the equations, which have got the same solution
complexity. The measurement consists of two parts. First the measurement penalizes solving steps, which
use a division. This is used because a division by zero leads to a degenerate solution. The second part of
the measurement is the number of operations. This should enforce the usage of solving steps, which are
faster than other solving steps. Using these two measurements a variable is chosen. The solver chooses
an equation using the knowledge of variables, which are already solved. In order to get a solution for the
variable by sorting them. The following order is used to sort the variables:

1. Linear Independent equations. A low degree of the polynomial is preferred

2. Equations of the type a∗ cos(x)+b∗ sin(x) = c

3. Equations of the type (cos(x))2 = a

4. Closed form solutions

The solver chooses the equation which is at the beginning of the order. If the solver finds an equation with
a degenerate case (e.g. divided by zero) the solver creates a new branch for a solution, which penalizes
the equation which causes the degenerate case. If the equation with a degenerate case can be calculated
within the “setup” phase (for example cos(x) = 0) it results in the different branches, which correspond
to the above degenerate case (in the example above x =−π/2,x = π/2). If such a degenerate case cannot
be evaluate at the “setup” phase the equation is penalized more. There are also other tools available. But
unfortunately not integrated in ROS, which also produces analytic solutions with methods like the described
one within this section. For example [28] describe such a method.
To use the solver which is generated from ikFast within the tool chain, a wrapper was created which
transforms the input into the correct input to pass it to the solver and to extract the right information from
the solver. The wrapper also tries to find a solution which is near the desired pose. This increases the
runtime of the wrapper as well as the success rate.

4.3. Stochastic inverse kinematics

With the above mention solver we run into the problem that not always a solution was found. KDL for
example has problems with singularities and therefore can not always find a solution of the inverse kine-
matics problem. With OpenRave we have a very fast and exact inverse kinematics solver. The problem
with this solver is that for some manipulators ikFast is not able to find a solution for reachable poses. For
both solver (KDL and OpenRave) a solution can not be found and thus the complete tool chain fail. We
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will have a closer look at the performance of the different solvers in Chapter 5. To make it possible to
find an inverse kinematics solution for any kind of manipulator independent of the geometry we created
the stochastic inverse kinematics solver. We are also able to deal with any degree of freedom in contrast to
OpenRave which can only deal with with manipulators with up to six degrees of freedom.
This type of solver doesn’t offer an opportunity to solve the forward kinematics problem. But it is impor-
tant that there exists a forward kinematics solver which can be used in the inverse kinematics solver. To
solve the forward kinematics problem the forward kinematic solver from KDL is used. It would also be
possible to use other forward kinematics solvers, like the solver from OpenRave.

Inverse kinematics problem First we motivate the main idea behind the stochastic inverse kinematics.
The idea is rather simple. We treat the problem of the inverse kinematics as a general optimization problem.
This is similar to KDL which uses the Newton-Raphson iteration. But this is a local optimization algorithm
and thus can get stuck in a local minima. The algorithm will minimize the distance from a possible pose
to the desired pose. In case of the inverse kinematics solver the distance along the coordinates in Cartesian
space and the orientation difference have to be minimized. It is important to notice that the distance within
the orientation is determined by using quaternions [95]. An advantage of using quaternions instead of
Euler angles is that the quaternions do not suffer from the so called Gimbal lock (the Gimbal lock causes
the loss of one degree of freedom if for example the pitch and the yaw become aligned). With Equation
4.1 we calculate the position difference. p1 and p2 are both positions in R3. And with Equation 4.2 we
calculate the orientation difference. q1 and q2 are both orientations in SO(3)4. With the help of the forward
kinematic function FK(v j1 , . . . ,v jm) which takes a value for each joint (v ji ) the objective function can be
specified with Equation 4.3. For a more formally definition we refer the reader to [6].

posDiff (p1, p2) = ‖p1− p2‖2 (4.1)

orDiff (q1,q2) = |1− (q1 ·q2)
2| (4.2)

F(v j1 , . . . ,v ji−1) = α∗posDiff (FK(v j1 , . . . ,v ji−1), P)+β∗orDiff (FK(v j1 , . . . ,v ji−1), O) (4.3)

Beside the minimization of the distance the algorithm also have to consider different constraints. The
constraints in the case of the inverse kinematics are the joint limits. It would also be also be possible to
add other constraints in order to avoid particular combinations of joint values or to find the closest feasible
position to the desired pose.
The optimization problem stated above can be solved with many methods. There are different examples
to solve the inverse kinematics with a stochastic optimization algorithm [45]. We will focus on a global
optimization method to avoid the problem of local minima. To find such a global minimum we use the
Differential Evolution algorithm [96]. This optimization technique converges fast to a global optimum.
The idea behind Differential Evolution is to find the optimum via combination of individual solutions,
which is similar to any genetic or evolutionary optimization algorithm.
We will now have a closer look at the proposed algorithm. First we want to explain one important term:
the individual. An individual is one possible solution for the problem which could be combined with
other individuals and/or mutated to find the global minimum. To represent such an individual within the
algorithm it consists of two parts. The first part consists of the values to be used within the forward problem.
In the case of the inverse kinematics the values are the joint values. The second part is the function value
which is calculated using the objective function. In the case of the inverse kinematics calculation the value
of the objective function is the distance to the desired pose. To use multiple possible solutions a population
is used which is a set of individuals.
The algorithm combines individuals from the population to generate better individuals. The outline of the
algorithm is shown in Listing 1

At the beginning the algorithm generates an initial population. There are several methods to generate
such a population. A common method is to uniform distribute of the individuals within the whole space of

4SO(3) is the space of all rotations in a three dimensional world
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Algorithm 1: findMinimum
input : F . . . Objective function,

C . . . set of constraint,
maxIt . . . maximum iterations of the algorithm,
CR . . . cross over ratio,
N . . . size of the population

output: a set of possible solutions CP

1 CP = generateValidPositions(N,C)
2 evaluate(CP,F)
3 i = 0
4 while (i < maxIt)∧¬convergenceCriterialsMet(CP) do
5 donors = mutate(CP)
6 trials = recombine(CP,donors,CR)
7 trials = clamp(trials,C)
8 evaluate(trials,F)
9 CP = select(CP, trials)

10 i = i+1
11 end
12 return CP

possible solutions. Then the value of the objective function is evaluated for each individual. If the maxi-
mum number of iterations (maxIt) is reached or a convergence criteria is met (convergenceCriterialsMet)
the algorithm terminates. or if returns true. This can be achieved if a specified percentage (within this
implementation 10 percent) of individual are very close (have a objective value of less than 10−6 to the
solution (similar to the stopping criteria within KDL). Another possibility is to stop if the population begins
to stagnate. This means for example that the values of the objective function of the best k individuals does
not make any change significantly. Within the loop there are four steps, which are processed one after the
another. First the current population is mutated to get a new population. There are different mutation strate-
gies which can be used to generate a new population. The strategy we use chooses two random individuals
and the best one and combines them. this operation is shown Listing 2. f1 and f2 are weights, which are
parameters of this strategy. The combination of individuals iterate until a new population with the given
size N is created.

Algorithm 2: mutate
input : P . . . Current population,

N . . . size of the population,
f1 . . . first combinatoric weight,
f2 . . . second combinatoric weight

output: a new population donors

1 for i = 1 : N do
2 r1 = drawRandomIndividual(CP)
3 r2 = drawRandomIndividual(CP)
4 best = getBestIndividual(CP)
5 newIndividual = f1∗ (r1− r2)+ f2∗ (best− r1)
6 donors = donors∪newIndividual
7 end
8 return donors

To make a simple example lets assume the population P consists of three individuals in a two dimensional
world. The objective values as well as the position of the individuals can be seen in Table 4.1. We use now
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the algorithm which is shown in 2 to calculate two new individuals (N = 2) with f1 = 0.2 and f2 = 0.8. For
the first new individual the first random individual r1 is individual 1 and the second random individual r2
is individual 2. For the second new individual the first random individual r1 is individual 2 and the second
random individual r2 is individual 1. The resulting individuals which are calculated are shown in Table 4.2.
As it can be seen the distance from the new individuals to the best individual is smaller than the distance
from individual 1 and individual 2.

Individual Objective function position 1 position 2 distance to best individual

1 0.5 1.5 -1.6 2.1932
2 0.3 1.0 2.0 2.0224
3 0.01 0.0 0.0 0.0

Table 4.1.: Example Population

Individual position 1 position 2 distance to best individual

1 -0.96 0.56 1.1114
2 -0.48 -0.88 1.0024

Table 4.2.: Resulting individual

The existence of the possibility to adjust the weight during the algorithm is also noteworthy. But we will
not use these possibility within the implementation.
After a new population is created the current and the new population are recombined. This operation
is depicted in Listing 3. The algorithm iterates over the current population and chose the individual of
the donor population at the same index. These two individuals are combined through of the cross over
operation. The cross over operation first randomly selects on index which will be changed to a new value.
This guaranties that at least one value changes. Afterwards for every joint value a decision is taken to use
the value of the donor or the value of the current individual. If the joint value is at the specified index
the value of the donor is chosen. Otherwise a random value between 0 and 1 is drawn and if this value is
smaller or equal than the cross over ration the value is also taken form the donor. In any other case the
value is taken from the current individual.
Using this algorithm at least one value of an individual changes, which for the inverse kinematics means
at least one joint value changes. The population, which is generated through this procedure is the new
population, which may have better individuals.

For an example we use the current population in Table 4.1, and as a donor population we use Table 4.2.
In our example is k = 2, N = 2 and CR = 0.8. For the first new individual we draw the index 1. Thus
the first joint value of the first new individual we use the first joint value of the first donor individual. For
the second joint value we draw the number 0.5 and thus we use the second joint value of the first donor
individual. For the second new individual we draw the index 1. Thus the first joint value of the second
new individual we use the first joint value of the second donor individual. For the second joint value we
draw the number 0.9 and thus we use the second joint value of the second current individual. The resulting
population can be seen in Table 4.3.

Individual position 1 position 2

1 -0.96 0.56
2 -0.48 1.0024

Table 4.3.: Resulting individual
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4.3. Stochastic inverse kinematics

Algorithm 3: recombine
input : P . . . Current population,

donors . . . donor population,
CR . . . Cross over ratio defining how individuals are combined,
k . . . number of degrees of freedom,
N . . . size of the population

output: a new population trials

1 for i = 1 : N do
2 index = drawUniformFrom([1 . . .k])
3 for j = 1 : k do
4 if ( j = index)∨ (drawUniformFrom([0 . . .1])≤ CR) then
5 individualToCombine = donors[i]
6 else
7 individualToCombine = P[i]
8 end
9 newIndividual[ j] = individualToCombine[ j]

10 end
11 trials = trials∪newIndividual
12 end
13 return trials

To check if new individuals are better than the old one the objective function is evaluated for every
individual within the population. Then, the selection inside the new population and the current population
is processed. There are different ways to perform the selection process. We use a very simple one which
is depicted in Listing 4 The selection operation checks every individual from one population at position

Algorithm 4: select
input : P . . . Current population,

trials . . . trial population,
N . . . size of the population

output: a new population P′

1 for i = 1 : N do
2 if (objective(P[i])< objective(trials[i]) then
3 newIndividual = P[i]
4 else
5 newIndividual = trials[i]
6 end
7 P′ = P′∪newIndividual
8 end
9 return P′

i with the individual from the other population at position i. The individual that has a lower objective
function value is used within the next population.
The optimization algorithm presented in Listing 1 is very simple and can be improved by applying changes
to the different used strategies. For instance using other strategies for mutation, selection, initialization.
However, we will not discuss all these possible improvements since we use this very simple algorithm to
solve the inverse kinematics, because it already shows a high success rate.
There is one last thing which worth mentioning. The optimization algorithm is embodied in algorithm 5.
This is done to deal with found solution which are in collision. If the optimization algorithm find a solution
which is in collision the optimization algorithm will be called again. After some iterations of recalling the
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Chapter 4. Solution concept

optimization algorithm with the initial number of individuals and iterations the number of individuals or
the number of iterations is increased by a certain factor to increase the chance that a solution is found. This
comes with the price that the run time of the algorithm is increased.

Algorithm 5: NaiveStoachsticInverseKinematicSolver
input : FK . . . forward kinematic function,

TOT . . . time out time,
maxItI . . . increment of maximum iterations,
NI . . . increment of the population size,
τ . . . threshold to start increment,
maxIt . . . maximum iterations of the algorithm,
CR . . . cross over ration,
N . . . size of the population

output: a set of possible solutions CP

1 sC = 0
2 while (currentTime()< TOT) do
3 PS = findMinimum(FK,C1,maxIt,CR,N)
4 foreach S ∈ PS do
5 if (checkConstraint(S,C2)) then
6 return S
7 end
8 end
9 if (sC > τ) then

10 if (sC%2) then
11 maxIt = maxIt ∗maxItI
12 else
13 N = N ∗NI
14 end
15 end
16 sC = sC+1
17 end

4.4. Solving the path planning problem

After we discussed in general different algorithms to solve the path trajectory planning problem in Section
3.3 we want to introduce in more detail the solvers which are used at this step of the tool chain. All of these
methods are part of the Open Motion Planning Library (OMPL) [92]. OMPL 5 is a library, which contains
several sampling-based motion planning algorithms. The library does not contain any method to check for
collisions with the environment itself. Such a check has to be provided by applying a different algorithm.
This is very useful since this makes it possible to use one part of the program to perform collision checks.
This part can be used to perform different collision checks within different algorithms. For example the
collision check can be used within the trajectory planning but also within the inverse kinematics.
We will now explain how the two different methods work. These methods use parts of the previous dis-
cussed algorithms and combine them in different ways. There are a lot more possibilities within the tool
chain. However we will focus on these two methods, which will also be used within the evaluation in
Chapter 5.

5http://ompl.kavrakilab.org/
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4.5. Solving the path execution planning problem

4.4.1. SBL

Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking (SBL) 6 is the
first algorithm, which is used. The algorithm uses two growing trees to discover a path. The strategy for
the trees expand is similar to the EST and uses a grid, similar as to the grid in KPICE, to enforce the
exploration of regions, which are sampled sparsely. This should avoid the problem of samples, which are
less interesting for the solution. Another method to speed up the process is the usage of a lazy evaluation
schema. The combination of these methods may result in a decrease of the amount of sampling points,
which are evaluated and are not used later within the solution.

4.4.2. LBKPIECE

The other algorithm, which is used is LBKPICE 7. The algorithm uses a modified version of the KPICE
algorithm. It uses two growing trees within the grid to explore the space. The algorithm does not use
multiple levels as described in KPICE. This results in an exploration of the trees into regions, which are at
the border of the explored space. Another important aspect of the algorithm is that it evaluates the samples
in a lazy way. This results in a small number of samples, which have to be evaluated. This lead to a fast
algorithm to solve the path planning problem.

4.5. Solving the path execution planning problem

The tool chain uses the so called ROS-Trajectory-Filters to perform the path execution planning. The
filters can be applied one after another. For instance first a filter is used which calculated the timings
without considering all limits. The next step is to apply another filter which considers these limits. But
this would take more time if there would be no pre-processing step. This chain of filters can also be used if
the controller of the manipulator has to use a certain trajectory time interval or other additional constraints,
which have to be applied. For instance this is used within the evaluations with the Katana manipulator.
The reason is that the maximum number of trajectory points which can be processed through the driver is
limited to 16. Thus the number trajectory points have to be reduced in advance.

4.5.1. Splines

One of the trajectory planners uses cubic splines to generate the trajectory. The velocities between the way
points is generated by constraining a continuity of the joint acceleration. The start- and end-velocity is set
to zero. Then the spline is calculated by a linear system of equations. For each of the trajectory points a
time stamp must be assigned. To calculated this time stamps the algorithm chooses the time stamps as fast
as possible after each other. If some joint limit (the velocity or acceleration) is violated between two time
stamps the interval is stretched.

4.5.2. Linear segments with parabolic blend functions

It is also possible to use the algorithm discussed in [90] and [91], which was already explained within
Section 2.7. This is done through the provided open source implementation of the algorithm, which is
available through the web page http://www.golems.org/node/1570.

6http://ompl.kavrakilab.org/classompl_1_1geometric_1_1SBL.html#afba6f0f7e5db8e5537c56b00c54ba778
7http://ompl.kavrakilab.org/classompl_1_1geometric_1_1LBKPIECE1.html#gLBKPIECE1

35

http://www.golems.org/node/1570
http://ompl.kavrakilab.org/classompl_1_1geometric_1_1SBL.html#afba6f0f7e5db8e5537c56b00c54ba778
http://ompl.kavrakilab.org/classompl_1_1geometric_1_1LBKPIECE1.html#gLBKPIECE1


36



Chapter 5
Empirical evaluation

This chapter we will discuss the empirical evaluation for all described algorithms within the tool chain.
There are different methods to evaluate the performance of the algorithms. The evaluations are performed
in the following order

1. Evaluation of the performance of the different inverse kinematics algorithms within an empty space.

2. Evaluation of the performance of the different inverse kinematics algorithms within cluttered space.

3. Evaluation of the performance of the different trajectory planning algorithms within an empty space.

4. Evaluation of the performance of the different trajectory planning algorithms within a cluttered space.

5. Evaluation of the different trajectory path execution planning algorithms

6. Evaluation of the overall performance of the tool chain within an empty simulated environment.

7. Evaluation of the overall performance of the tool chain within a cluttered simulated environment.

8. Evaluation of the overall perform of the tool chain with real hardware.

We will describe the evaluation schema, the corresponding results and also give a brief discussion of the
results for each evaluation in the corresponding sections. All of the evaluations beside the last one use 4
different manipulators which are popular in research areas and can are listed below

1. Neuronics Katana 300 6m180

2. Neuronics Katana 400 6m180

3. Kuka Youbot

4. Schunk Powerball

The different manipulators are visualized in Appendix A and the workspaces of the manipulators are visu-
alized in the Appendix B.
The evaluations were performed on on a Intel Core i7 Q 820, 1.73 GHZ with 8 GB of RAM. The operating
system was a Ubuntu 12.04 32-bit. The ROS version was Fuerte.

5.1. Evaluation of the different inverse kinematics algorithms

Within the previous Chapter 4.2 we propose three different methods to compute the inverse kinematics of
a manipulator. To use this algorithm within a realistic scenario it is important to know about the different
advantages and disadvantages of the algorithms.

37



Chapter 5. Empirical evaluation

5.1.1. Evaluation setting

The setting for evaluating these algorithms is very simple and focuses on two major criteria to select an
appropriate algorithm. First of all the joint space is sampled in a random manner to find a feasible joint
configuration. A feasible joint configuration is only possible if the joint limits are not violated and the
robot is not in self-collision when using the joint values. The samples are checked to satisfy these condi-
tion. After a joint configuration is generated, the corresponding position of the end effector is calculated.
This is done with the forward kinematic solver of KDL. The resulting position is feasible and thus should
yield to a valid inverse kinematics solution. In this setting we do not consider any collision. Thus the
collision check will always return that nothing is in collision. After the position is calculated, the inverse
kinematics algorithm tries to find an acceptable solution. The time, to find such a solution, is measured.
Also the positioning and the orientation error is calculated after the inverse kinematics algorithm finds a
result. Moreover it is reported if the algorithm finds a solution at all.

5.1.2. Criteria of the evaluation

To perform the evaluation each algorithm is used with each of the manipulators. A result is accepted
if the position difference of the each coordinate is lower or equal than 10 cm and the orientation error
corresponding to the different axis are lower or equal to 180 degrees. This limits are very tolerant and used
to make it easy for the algorithms to find a solution. This is done because the algorithm of OpenRave is
wrapped in such a way that it tries to find a solution near the desired position if in another way a solution
would not be found. The position error was calculated Equation 5.1

δp = (xtarget − xsolution)
2 +(ytarget − ysolution)

2 +(ztarget − zsolution)
2 (5.1)

Each of the differences is measured in meter. The orientation error was calculated with the help of the
normalized quaternions through equation 5.2

δo = abs(1−dotProduct(osolution,otarget)
2) (5.2)

The orientation error is 1 if the two quaternions a rotated around 180 degrees and 0 if they have the same
orientation.
450 sample poses were tested with each combination to produce a good coverage of the euclidean space.
The inverse kinematics algorithm is called 10 times for each pose. The result for each call for the same
pose is stored in one block. The recalling is used to avoid problems caused by a random initializations,
as it is used in the stochastic inverse kinematics and within KDL. To calculate how successful a algorithm
performs its calculate we calculate the success rate through equation 5.3. Where Ns is the number of
successful found solutions and Nt is the number of tests.

Success rate =
Ns

Nt
(5.3)

The success is also calculated according to one block. This is done through the block success rate which is
calculated through equation 5.4. Where Nb

s is the number of successful found solutions within this block
and Nb

t is the number of tests within this block. Thus the block success rate specifies if the how often the
algorithm find a solution for a particular pose. Within the evaluation we will use the mean of this block
success rates.

Success rate =
Nb

s

Nb
t

(5.4)
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5.1. Evaluation of the different inverse kinematics algorithms

5.1.3. Result of the evaluation

Success rates:

In the following Table 5.1 the success rates as well as the block success rates of the different manipulators
are shown. The blocks contains 10 retries. In case of KDL the block succcess rate changes with the block
size. This change can be seen in Figure 5.1.

Manipulator Inverse kinematics algorithm Success rate Blocks success rate

Katana 300 6m180 KDL 0.8524 0.9889
Katana 300 6m180 OpenRave 0.9031 0.9061
Katana 300 6m180 Stochastic 1 1

Katana 400 6m180 KDL 0.8700 0.9844
Katana 400 6m180 OpenRave 0.9259 0.9286
Katana 400 6m180 Stochastic 1 1

Youbot KDL 0.7942 0.9978
Youbot OpenRave 0.5263 1
Youbot Stochastic 1 1

Powerball KDL 0.4922 0.9399
Powerball OpenRave 0.0756 0.0769
Powerball Stochastic 1 1

Table 5.1.: Success rate of the different inverse kinematics algorithms for different manipulators in empty
space.

39



Chapter 5. Empirical evaluation

Figure 5.1.: Block success rate in respect to the block size for different manipulators using KDL.

Runtime:

The runtime of the different algorithms in combination with the different manipulators is depicted in Table
5.2 are given in seconds. The setup time of open rave does not influence the run time because it is not
included in the tests.

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 0.0018 2.0283*10−004

Katana 300 6m180 OpenRave 0.2879 0.15
Katana 300 6m180 Stochastic 0.1604 0.16

Katana 400 6m180 KDL 0.0019 2.1902*10−004

Katana 400 6m180 OpenRave 0.3052 0.1520
Katana 400 6m180 Stochastic 0.5070 0.5460

Youbot KDL 0.0078 6.8048*10−004

Youbot OpenRave 2.2727*10−005 1.5885**10
−5

Youbot Stochastic 0.2411 0.2850

Powerball KDL 0.0094 0.0110
Powerball OpenRave 2.2854*10−005 2.3426*10−005

Powerball Stochastic 0.1719 0.1810

Table 5.2.: Timing of the different inverse kinematics algorithms for the different manipulators in empty
space.
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Position error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 1.0888*10−011 9.2871*10−014

Katana 300 6m180 OpenRave 0.0014*10−004 9.0000*10−024

Katana 300 6m180 Stochastic 1.3859*10−004 1.0150*10−015

Katana 400 6m180 KDL 9.1352*10−012 1.0702*10−013

Katana 400 6m180 OpenRave 0.0013*10−004 9.0000*10−024

Katana 400 6m180 Stochastic 1.7991*10−004 1.4941*10−016

Youbot KDL 1.0376*10−011 4.3324*10−013

Youbot OpenRave 0.0150 0.0150
Youbot Stochastic 0.0037 2.9205*10−015

Powerball KDL 6.7007*10−013 1.7646*10−017

Powerball OpenRave 0.0115 0.0109
Powerball Stochastic 9.6515*10−004 7.1922*10−014

Table 5.3.: Position error of the different inverse kinematics algorithms for the different manipulators in
empty space.

Orientation error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 2.3711*10−013 2.1684*10−019

Katana 300 6m180 OpenRave 0.5542 0.5417
Katana 300 6m180 Stochastic 0.0044 6.4587*10−014

Katana 400 6m180 KDL 1.1685*10−013 2.1684*10−019

Katana 400 6m180 OpenRave 0.553 0.5702
Katana 400 6m180 Stochastic 0.0059 9.2925*10−015

Youbot KDL 2.4471*10−013 2.1684*10−019

Youbot OpenRave 0.5293 0.5293
Youbot Stochastic 0.1195 1.7690*10−013

Powerball KDL 1.9218*10−012 3.2032*10−015

Powerball OpenRave 0.6770 0.9312
Powerball Stochastic 0.0518 7.4739*10−012

Table 5.4.: Orientation error of the different inverse kinematics algorithms for the different manipulators in
empty space.

5.1.4. Discussion of the evaluation results

The above results provided a sound evaluation of the performance of the different approaches. The first
result from this evaluation is that the stochastic inverse kinematics is significantly slower than the other
algorithms. But always find a solution and show a small error. This observation shows that the proposed
algorithm performs very well. It is to mention (as it was also discussed above) that the implementation is
very simple and a faster implementation can make a run time decrease possible.
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One interesting fact is that there is a problem with the resulting orientation of the solution if OpenRave is
used. It seems that there is a problem with the used bridge between OpenRave and ROS. Such an error can
occur through the implementation of the bridge which calls the analytic solver. If the analytic solver does
not find any solution, the bridge tries to find a solution near the original solution. This is done through a
slightly modification of the desired pose. This yields a better success rate but dramatically increases the
orientation error.
Another very interesting result of the evaluation is that KDL is very precise and fast. This can be used to
increase the success rate if the inverse kinematics algorithm is called multiple times if there is no solution
found in the first try. This property comes from the fact that KDL uses a random initial guess and tries
to find a solution with this guess. As discussed above in Section 4.2, a bad initial guess result in a failure
of the algorithm. To overcome the problem of such a wrong initial guess a retry can be performed and
can lead to better results. As the block success rate shows, this methodology is useful to overcome such
a problem. Figure 5.1 show the number of retries and the corresponding success rate. The success rate
increases with the number of retries, but the steepness depends on the manipulator and especially on the
degree of freedom of the manipulator.
All these results yield to an simple conclusion. It can be a good idea to use multiple inverse kinematics
solver to deal with the problem of a low success rate. For example KDL can be called multiple times
because it is very fast. But if it does not find a solution the stochastic inverse kinematics can be used to
get a result. This would lead to a fast inverse kinematics algorithm on average with a high success rate.
Using such a cascading of solvers is a interesting topic for future projects. Also a caching strategy for the
solutions can be of interest since a possible solution of the problem does not depend on the environment.

5.2. Evaluation of the different inverse kinematicss algorithms within
a cluttered space

To evaluate the performance also in a cluttered space the inverse kinematics methods 4.2 are tested within
a cluttered environment.

5.2.1. Evaluation setting

The setting to evaluate this algorithm is very simple and focuses on two major criteria to select an ap-
propriate algorithm. First of all the joint space is sampled in a random manner to find a feasible joint
configuration. A feasible joint configuration is only possible if the joint limits are not violated. After a
feasible joint configuration is generated the corresponding position of the end effector is calculated. This
yields to a position which is feasible and thus should result in a valid inverse kinematics solution. The set-
ting utilize an artificial cluttered space. This is accomplished via a simple check if the solution is near the
joint solution which was generated and used to generate the target pose. Thus the environment is a nearly
fully cluttered environment. After the target pose is calculated the inverse kinematics algorithm aims to
find an acceptable solution and the time to find such a solution is measured. Also the positioning error and
the orientation error are calculated after the inverse kinematics algorithm finds a solution.

5.2.2. Criteria of the evaluation

Each algorithm was used with each manipulator to perform the evaluation. 450 poses were generated for
each combination of manipulator and algorithm. The inverse kinematics algorithm is called 4 times for
each pose. This is used to avoid problems through a random initializations, as it is used in the stochastic
inverse kinematics and KDL. A result is accepted if the position difference of each coordinate is lower than
10 cm and the orientation error is corresponding to the different axis are lower than 180 Degrees. This
limits are very tolerant and used to make it easy for the algorithms to find a solution. The position and
orientation error were calculated through the same Equations (5.1, 5.2), which were also used for previous
experiment.
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5.2.3. Result of the evaluation

Success rates:

The success rate is calculated through Equation 5.3. The blocks success rate is calculated through Equation
5.4. In the following Table 5.5 shows the success rates as well as the block success rates of the different
manipulators. The change of the block success rates are shown in Figures 5.2, 5.3.

Manipulator Inverse kinematics algorithm Success rate Blocks success rate

Katana 300 6m180 KDL 0.6202 0.9688
Katana 300 6m180 OpenRave 0.5122 0.5140
Katana 300 6m180 Stochastic 0.8571 1

Katana 400 6m180 KDL 0.6222 0.9822
Katana 400 6m180 OpenRave 0.5341 0.5344
Katana 400 6m180 Stochastic 0.7692 1

Youbot KDL 0.5440 0.9800
Youbot OpenRave 0 0
Youbot Stochastic 0.9029 1

Powerball KDL 0.0284 0.1559
Powerball OpenRave 0 0
Powerball Stochastic 0.2667 1

Table 5.5.: Success rate of the different inverse kinematics algorithms for different manipulators in cluttered
space.
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Figure 5.2.: Block success rate in respect to the block size for different manipulators using KDL.

Figure 5.3.: Block success rate in respect to the block size the powerball and the stochstic inverse kinematic.
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Runtime:

As above the runtime is given in seconds and the setup time of OpenRave is not counted.

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 0.0020 2.6442*10−004

Katana 300 6m180 OpenRave 0.0586 0.0030
Katana 300 6m180 Stochastic 48.2635 34.3455

Katana 400 6m180 KDL 0.0024 2.6134*10−004

Katana 400 6m180 OpenRave 0.0497 0.0030
Katana 400 6m180 Stochastic 3.4607 0.3225

Youbot KDL 0.0078 1.0000*10−003

Youbot OpenRave - -
Youbot Stochastic 7.3312 4.9986

Powerball KDL 0.0081 1.0000*10−003

Powerball OpenRave - -
Powerball Stochastic 67.5945 62.7940

Table 5.6.: Timing of the different inverse kinematics algorithms for different manipulators in cluttered
space.

Position error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 1.1336*10−011 1.5391*10−013

Katana 300 6m180 OpenRave 1.6066*10−024 1.0967*10−024

Katana 300 6m180 Stochastic 2.4369*10−011 7.3884*10−013

Katana 400 6m180 KDL 1.2019*10−011 2.1663*10−013

Katana 400 6m180 OpenRave 1.3564*10−022 9.6112*10−025

Katana 400 6m180 Stochastic 9.6527*10−010 1.9142*10−015

Youbot KDL 9.5320*10−012 8.2403*10−014

Youbot OpenRave - -
Youbot Stochastic 3.4437*10−016 2.1637*10−018

Powerball KDL 1.4572*10−012 4.8351*10−017

Powerball OpenRave - -
Powerball Stochastic 2.5434*10−004 2.6815*10−005

Table 5.7.: Position error of the different inverse kinematics algorithms for different manipulators in clut-
tered space.
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Orientation error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 2.7615*10−013 2.1684*10−019

Katana 300 6m180 OpenRave 6.3327*10−005 2.1684*10−019

Katana 300 6m180 Stochastic 1.2336*10−009 8.0723*10−011

Katana 400 6m180 KDL 2.3913*10−013 2.1684*10−019

Katana 400 6m180 OpenRave 2.3261*10−004 2.1684*10−019

Katana 400 6m180 Stochastic 2.2628*10−007 8.6620*10−014

Youbot KDL 1.4155*10−013 2.1684*10−019

Youbot OpenRave - -
Youbot Stochastic 2.0891*10−014 1.5477*10−016

Powerball KDL 1.5968*10−012 4.2065*10−014

Powerball OpenRave - -
Powerball Stochastic 0.0040 0.0011

Table 5.8.: Orientation error of the different inverse kinematics algorithms for different manipulators in
cluttered space.

5.2.4. Discussion of the evaluation results

The results provide an evaluation of the performance of the different approaches. It can be easily seen that
KDL is fast and has a small error, which is the same result as within the previous evaluation. If the same
pose is retried multiple times the success rate increases as it can be seen in Figure 5.2. A difference is
how fast the success rate increases. This is much slower compared to the empty environment. It is also
important that in general the success rate is lower than in an empty environment.
Another result of the evaluation is that the stochastic inverse kinematics is significantly slower than KDL.
But very often finds a solution and also shows a smaller error.
The last result from this evaluation is that if a rerun is used to increases the success rate, the success rate
of the stochastic inverse kinematics increases faster than the success rate of KDL (as it could be seen in
Figure 5.2 and5.3). Another difference in is that the stochastic inverse kinematics solver in contrast to KDL
reaches a success rate of 1.
As discussed above a combination of the algorithm would further increase the performance. By combining
the high success rate of the stochastic inverse kinematics and the fast solutions of KDL.

5.3. Evaluation of the different trajectory path planning algorithms
within empty space

In this section we evaluate the performance of the two previous mentioned trajectory planning algorithms
(see Section 4.4). The evaluation uses an empty space and thus results in the best possible performance
concerning time and success rate. So the result of this evaluation is the upper bound for performance of the
algorithm.

5.3.1. Evaluation setting

To evaluate the algorithms we sample a random joint configuration. This configuration is checked if it
does not result in a self collision. This check is performed to remove a pose which would result in a self
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collision of the manipulator. Then the algorithm is called and the time, position error and orientation error
is recorded. To avoid any problems, the manipulator is initialized for every experiment in a position with
each joint value at the half of its valid range.
This evaluation is performed for each of the manipulators combined with each of the algorithms. 300 poses
are tested with each combination. Each position is 10 times retried to yield a result. To perform the evalu-
ation the only the path planning algorithm is called.
It is very important to notice that each sampled position is feasible and a valid path can be found by apply-
ing the different algorithms. To make this more precise the following condition is stated.

Conditions for the feasibility of the path

Each joint can move continuously from one joint position to another one. Thus a joint can move from
one position to another one, if there is no collision with the environment along the path of this movement.
Another important fact is that each manipulator, we use within the evaluation, can reach a pose that the
manipulator is in a straight way and the tip link is pointing into the sky. To describe the possibility that
every path is feasible we will use the above information as well as general considerations of the path
planning, which we will be explained briefly in the next paragraph.

General properties of path planning There are several simple considerations which can be stated inde-
pendent of the manipulator.

1. If a manipulator can reach the configuration B (specifying each joint value) from a configuration A.
The manipulator can also reach the configuration A from the configuration B. The path from B to A
is simple the path from A to B in a reverse order. Thus a path from one configuration to another one
is commutative in respect to its feasibility.

2. If a manipulator can reach the configuration B from a configuration A and it is possible to reach C
from B, the manipulator can move from A to C by simply using the path from A to B and afterwards
the path from B to C. Thus a path from one configuration to another one is transitive.

3. If a manipulator can reach a set of configurations M from a defined configuration I, the following
holds: starting from any A ∈ M it is possible to reach any B ∈ M. To find a path from A to B, first
reverse the path from A to I, which is possible due to the fist general property, and afterwards follow
the path from I to B. Such a combination is possible due to the transitivity of a path.

Path conditions met by the Katana 300/400 6m180 and the Youbot The construction of the manip-
ulators is used to construct a procedure to reach any configuration which is not in self collision. The
manipulators can be seen in the Appendix in Figures A.1, A.2 and A.4. The first joint is at the bottom of
the manipulator and the last joint is at the wrist of the manipulator. The joints are enumerated sequential
from the bottom to the wrist. Every possible movement starts in the same starting configuration. This
starting configuration is such that the manipulator is straight pointing upright along the z axis.
Through its construction it is easy to see that the first and the last joint can be rotated to their final position
from the starting configuration. The ration along these two joints only cause a rotation around the Z axis.
After the rotation around these two joints, the manipulator will end up in a configuration, which is similar
to the starting configuration with a straight manipulator pointing upright along the z axis. This makes is
possible to consider the change of the other joints only in a 2D way because all of these joints are orthogo-
nal to the first and the last one and parallel to each other. This leads to a simple approach to reach the end
position.
The first movement is performed at the second joint. The only possible collision is a collision between the
base link and the first link. Since the resulting configuration would have the same constellation of the two
links such a collision is not possible and the movement can be performed.
The next step is to move the fourth joint. The only possible collision, which can occur is between the last
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two links and would also be a constellation which would be the same as within the final configuration.
Such a collision could not occur due to the fact that the final configuration is not in collision. Thus this
movement is possible.
The last step is to move the last missing joint. This is possible since there are only few possible pairs which
can collide. The links at the moving joint cannot result in a collision with the same argument as above.
The tip link and the link between the second and the last missing joint can result in a collision. This is only
possible if the tip link looks into the direction of this link in the resulting configuration. Such a collision
is not possible since this would also result in a collision within the final configuration. The same argu-
ment can also be used to explain a possible collision between the tip and the base link. Thus the resulting
movement is possible and every configuration which is not in a collision with the manipulator itself can
reach any other configuration which is not in collision with the manipulator itself. This follows from the
third general consideration above in this section. Thus the conditions for a feasible path is meet for every
possible configuration of the three manipulators if it is not in self collision.

Path considerations of the Powerball The construction of the manipulator is used to construct a proce-
dure to reach any configuration which is not in self collision. The manipulator can be seen in the Appendix
in Figure A.6. The first joint is at the bottom of the manipulator and the last joint is at the wrist of the
manipulator. The joints are enumerated sequential from the bottom to the wrist. Every possible movement
starts in the same starting configuration. This starting configuration is such that the manipulator is straight
pointing upright along the z axis.
Through the construction of the manipulator we can use a similar strategy to move the manipulator, as for
the other manipulators. Each joint which uses the Z-axis within the starting configuration can perform a
rotation until the final position is reached. This will result in a configuration, which is similar to the starting
configuration.
The next step is to rotate the first orthogonal joint. This can be easily be processed since it can only results
in a collision between the first and the base link. This is not possible due to the fact that the constellation
of this movement is also the same as the constellation within the resulting configuration, and the resulting
configuration there are no collisions allowed.
The next step is to move the last of the orthogonal joints. This can only result in a collision of the tip link
with the second link. This is not possible due to the same argument as already mentioned above.
The last step is to move the last joint which is not in its resulting configuration. The collision which can
be generated through this movement is only the collisions which is within the resulting pose and thus the
movement is possible without any collisions.Thus the resulting movement is possible and every configu-
ration which is not in a collision with the manipulator itself can reach any other configuration which is
not in collision with the manipulator itself. This follows from the third general consideration above in this
section. Thus the conditions for a feasible path is meet for every possible configuration of the powerball if
it is not in self collision.

5.3.2. Result of the evaluation

Success rates:

The success rate is calculated using Equation 5.3. The blocks success rate is calculated using Equation 5.4.
The success rate is except for the powerball 1 as it can be seen in Table 5.9.
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Manipulator Path planning Success rate Blocks success rate

Katana 300 6m180 LBKPIECE 1 1
Katana 300 6m180 SBLK 1 1

Katana 400 6m180 LBKPIECE 1 1
Katana 400 6m180 SBLK 1 1

Youbot LBKPIECE 1 1
Youbot SBLK 1 1

Powerball LBKPIECE 0.5455 0.60
Powerball SBLK 0.5455 0.60

Table 5.9.: Success rate of the different trajectory path planning algorithms for different manipulators in
empty space.

Run time:

The run time of the different manipulators in combination with the different algorithms is deiced in Table
5.10. The algorithms perform very fast for all the manipulators. But as it can be seen the run time of the
Powerball is always the highest in comparison to the other manipulators.

Manipulator Path planning Mean Median

Katana 300 6m180 LBKPIECE 0.0279 0.0260
Katana 300 6m180 SBLK 0.0187 0.0180

Katana 400 6m180 LBKPIECE 0.0277 0.0260
Katana 400 6m180 SBLK 0.0195 0.0180

Youbot LBKPIECE 0.0371 0.0280
Youbot SBLK 0.0222 0.0200

Powerball LBKPIECE 0.1077 0.0930
Powerball SBLK 0.0920 0.0795

Table 5.10.: Run time of the different trajectory path planning algorithms for different manipulators in
empty space.
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Position error:

Manipulator Path planning Mean Median

Katana 300 6m180 LBKPIECE 0 0
Katana 300 6m180 SBLK 0 0

Katana 400 6m180 LBKPIECE 0 0
Katana 400 6m180 SBLK 0 0

Youbot LBKPIECE 0 0
Youbot SBLK 0 0

Powerball LBKPIECE 0 0
Powerball SBLK 0 0

Table 5.11.: Position error of the different trajectory path planning algorithms for different manipulators in
empty space.

Orientation error:

Manipulator Path planning Mean Median

Katana 300 6m180 LBKPIECE 1.6263*10−019 2.1684*10−019

Katana 300 6m180 SBLK 1.6082*10−019 2.1684*10−019

Katana 400 6m180 LBKPIECE 1.6552*10−019 2.1684*10−019

Katana 400 6m180 SBLK 1.6480*10−019 2.1684*10−019

Youbot LBKPIECE 1.3733*10−019 2.1684*10−019

Youbot SBLK 1.6191*10−019 2.1684*10−019

Powerball LBKPIECE 2.1684*10−019 2.1684*10−019

Powerball SBLK 1.2649*10−019 5.4210*10−020

Table 5.12.: Orientation error of the different trajectory path planning algorithms for different manipulators
in empty space.

5.3.3. Discussion of the evaluation results

It can be easily seen that the resulting success rates, position and orientation errors similar for both algo-
rithms. It is important to notice that the algorithms do not produce any position error. This is important
because the position error of the pipeline is not influenced by this step. The orientation error is minimal
thus there is no influence within the pipeline occurring from this step.
It is important to notice that SBLK performs faster than the LBKPICE algorithm. The final thing which
should be noticed is that both algorithm does not always find a solution if they are combined with the
Powerball manipulator. This is a problem of the geometries of the manipulator as well as some modeling
issues for the different joints. Some of the joints are model with a range of more then 360◦which may cause
a problem to the solving algorithms.
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5.4. Evaluation of the different trajectory path planning algorithms
within cluttered space

We evaluated the performance of the two previous mentioned trajectory planning algorithms. The evalua-
tion uses a cluttered space and thus results in a worse performance than the previous one concerning time
and success rate.

5.4.1. Evaluation setting

To evaluate the algorithms we sample a random path within the joint space. To make the path feasible the
joint configurations are sampled in such a way that each sample is within the valid range of the previous and
the next sampling sample. The valid range of a sample is the range of possible deviation of the path at this
sample. Each generated sample is checked if it does not result in a self collision. This results in a possible
path for the manipulator. To enforce the manipulator to use this path the collision check is performed in
such a way that only joint configurations along the path and some deviation for each joint value does not
lead to a collision. If possible joint configuration is not in the valid range of previous sample configuration
it is treated as collision. After the path is calculated the algorithm is called and the run time, position and
orientation error are recorded. The manipulators initial pose, for each of the tests, is with each joint value
at the half of the valid range.
This evaluation is performed with each manipulator in combination with each of the algorithms and 60
generated positions. Each position was retried 5 times. The possible deviation is 10◦. The path consists of
5 steps including initial and end joint configuration.

5.4.2. Result of the evaluation

Success rates:

The success rate is calculated using Equation 5.3. The blocks success rate is calculated using Equation 5.4.
In the following Table 5.13 the success rates as well as the block success rates of the different manipulators
can be seen. The block success rate changes only in cause of the powerball. This change of the block
success rates in comparison to the increase of the block size can be seen Figure 5.4.

Manipulator Path planning Success rate Blocks success rate

Katana 300 6m180 LBKPIECE 1 1
Katana 300 6m180 SBLK 1 1

Katana 400 6m180 LBKPIECE 1 1
Katana 400 6m180 SBLK 1 1

Youbot LBKPIECE 1 1
Youbot SBLK 1 1

Powerball LBKPIECE 0.0364 0.2000
Powerball SBLK 0.1667 0.6364

Table 5.13.: Success rate of the different trajectory path planning algorithms for different manipulators in
cluttered space.
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Figure 5.4.: Change of the block success rate for the Powerball in combination with both algorithms in the
cluttered environment.

Run time:

The run time of the algorithms in combination with the different manipulators is depicted in Table 5.14.

Manipulator Path planning Mean Median

Katana 300 6m180 LBKPIECE 6.4531 5.3710
Katana 300 6m180 SBLK 1.3067 0.9350

Katana 400 6m180 LBKPIECE 6.9122 5.1845
Katana 400 6m180 SBLK 1.3032 0.8330

Youbot LBKPIECE 7.2912 5.8185
Youbot SBLK 1.4953 1.1450

Powerball LBKPIECE 69.4045 69.4045
Powerball SBLK 87.2449 81.7380

Table 5.14.: Run time of the different trajectory path planning algorithms for different manipulators in
cluttered space.

Position error:

The position error of the algorithms in combination with the different manipulators is depicted in Table
5.15.
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Manipulator Path planning Mean Median

Katana 300 6m180 LBKPIECE 0 0
Katana 300 6m180 SBLK 0 0

Katana 400 6m180 LBKPIECE 0 0
Katana 400 6m180 SBLK 0 0

Youbot LBKPIECE 0 0
Youbot SBLK 0 0

Powerball LBKPIECE 0 0
Powerball SBLK 0 0

Table 5.15.: Position error of the different trajectory path planning algorithms for different manipulators in
cluttered space.

Orientation error:

The orientation error of the algorithms in combination with the different manipulators is depicted in Table
5.16.

Manipulator Path planning Mean Median

Katana 300 6m180 LBKPIECE 1.3010*10−019 1.6263*10−019

Katana 300 6m180 SBLK 1.6624*10−019 2.1684*10−019

Katana 400 6m180 LBKPIECE 1.5179*10−019 2.1684*10−019

Katana 400 6m180 SBLK 1.0481*10−019 0

Youbot LBKPIECE 1.4998*10−019 2.1684*10−019

Youbot SBLK 1.7528*10−019 2.1684*10−019

Powerball LBKPIECE 2.7105*10−019 2.7105*10−019

Powerball SBLK 1.9516*10−019 2.1684*10−019

Table 5.16.: Orientation error of the different trajectory path planning algorithms for different manipulators
in cluttered space.

5.4.3. Discussion of the evaluation results

Both algorithms do not produce any significant position or orientation error. This is important because the
position error of the pipeline is not influenced by this step. The algorithms perform for the Katana 300/400
6m180 and the Youbot with a similar success rate. The only difference between the algorithms with these
manipulators is that SBLK performs faster. The combination of the algorithms and the Powerball manip-
ulator results in a completely different behaviour. In the case of the Powerball manipulator LBKPIECE is
faster than SBLK but often does not find a solution. Also a rerun of the algorithms does not always yield
to a valid result. But it should be mentioned that a rerun could increase the success rate significantly, as it
can be seen in Figure 5.4. This can result in a very problematic situation within a cluttered environment,
because it is not possible to find a path even though a path would be possible. The time to find such a path
is very high and could result in an abort of the overall process. This can lead to situations where no solution
can be found, even though there exists a possibility to move the manipulator to the desired pose.
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5.5. Evaluation of the different trajectory path execution planning
algorithms

We evaluated the performance of the two trajectory execution planning algorithms presented in Section
4.5. We do not need to consider any type of collision since it is not possible to handle a collision caused
by a change of the timings within this step of the tool chain. Neither positioning error nor orientation error
is not measured due to the fact that the resulting error of the step can only be evaluated if the trajectory is
executed at the manipulator in a real or simulated environment.

5.5.1. Evaluation setting

To evaluate the algorithms we sample a random path within the joint space. Each step is checked whether
it does not result in a self-collision. After the path is calculated the algorithm is called and the run time is
recorded. This evaluation is performed with each of the manipulators combined with each of the algorithms.
Each combination have to solve 60 generated paths. Each position was repeated 5 times. The possible
deviation is 10 ◦. The path consists of 10 steps including initial and end joint configuration.

5.5.2. Result of the evaluation

Success rates:

The success rate is calculated using Equation 5.3. The blocks success rate is calculated using Equation 5.4.
The success rate as well as the block success rate is depicted in Table 5.17

Manipulator Path execution planning Success rate Blocks success rate

Katana 300 6m180 Cubic spline 0.9133 1
Katana 300 6m180 Parabolic blend 1 1

Katana 400 6m180 Cubic spline 0.9167 1
Katana 400 6m180 Parabolic blend 1 1

Youbot Cubic spline 0.9500 1
Youbot Parabolic blend 1 1

Powerball Cubic spline 0.9833 1
Powerball Parabolic blend 1 1

Table 5.17.: Success rate of the different trajectory path execution planning algorithms for different
manipulators.

Run time:

The run time of the different algorithms in combination with the different manipulators is depicted in Table
5.18.
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Manipulator Path execution planning Mean Median

Katana 300 6m180 Cubic spline 2.0107 2.0100
Katana 300 6m180 Parabolic blend 0.8118 0.8105

Katana 400 6m180 Cubic spline 2.0098 2.0100
Katana 400 6m180 Parabolic blend 0.8479 0.8165

Youbot Cubic spline 2.0076 2.0070
Youbot Parabolic blend 0.6635 0.6695

Powerball Cubic spline 2.0183 2.0150
Powerball Parabolic blend 1.6451 1.6170

Table 5.18.: Run time of the different trajectory path execution planning algorithms for different
manipulators.

5.5.3. Discussion of the evaluation results

There are two facts which are important to point out within this evaluation. The first one is that the cubic
spline interpolation take about 2 seconds. This is the default maximum planning time within the ROS arm
navigation stack. Thus the algorithm use the complete allowed planning time to find a optimal solution.
The second observation is that the parabolic blend method performs faster and always finds a result so it
can be easily seen that this method should be the preferred.

5.6. Overall evaluation within the simulation

The experiments within this section evaluates the performance of the complete tool chain within an sim-
ulated environment. The used simulation environment is Gazebo1 [97]. There are some issues that cause
unpredictable crashes and thus reduces in some cases the number of tries and retries but it reflects an overall
performance of the tool chain. This crashes were caused of unstable software as well as race condition in
the starting procedure of the software.

5.6.1. Evaluation setting

To perform the evaluation the joint space is sampled in a random way. The resulting pose of the tool center
point is calculated and afterwards checked if it is in self collision. There is also a check performed if the
position is above the base plate to overcome problems with collision of the manipulator and the base plate.
After a feasible pose is sampled the tool chain tries to move the manipulator tool center point to the given
pose. The tool center points of the manipulator can be seen in the Appendix A. The start- and the end-time,
the position and the orientation error are recorded. To retrieve the exact pose Gazebo is used as ground
truth. But due to some problems with the simulation the position and orientation, at the Katana 300/400
6m180 and the Youbot is measured at the right gripper link. This does not lead to an additional error since
the transformation between tool center point and right gripper link is fix during the execution. The gripper
links are never moved to open or close the gripper within the evaluation. It is also important to mention
that the position of the right gripper link does not change with different possible joint configurations, which
leads to the same pose of the tool center point link. The tool chain consists of one of the inverse kinematics
solvers discussed above in Section 4.2 and both path planning algorithms. The path planning algorithms
are invoked one after each other if the first does not find to a solution. This should not happen often since
there are no objects in the evaluation which can cause any collision. This also leads to the lower bound

1http://gazebosim.org/

55

http://gazebosim.org/


Chapter 5. Empirical evaluation

regarding time and upper bound regarding success of the tool chain. The test is performed for 60 poses and
5 retries of each pose. The time limit to perform the evaluation is 50 minutes. As stated above it was not
possible to perform all the target poses with all retries. Thus the actual sum of all poses (also every retry of
the pose is counted separately) is listed below.

5.6.2. Result of the evaluation

Success rates:

The success rate is calculated using Equation 5.5. Where N is the number of tests and Ns is the number
of found solutions. A solution is accepted if the position error which is calculated using Equation 5.1 less
then 0.03.

success rate =
Ns

N
(5.5)

The blocks success rate is calculated using Equation 5.6. Where Nb is the number of tests in a block and
Nb

s is the number of found solutions, within a block. A solution is accepted if the position error which is
calculated using Equation 5.1 less then 0.03.

block success rate =
Nb

s

Nb (5.6)

In Table 5.19 the success rates as well as the block success rates of the different manipulators can be seen.
The change of the block success rates is depicted in Figures 5.5 and 5.6. Please note that the tests never
reach the desired 60 test due to unexpected crashes.

Manipulator Inverse kinematics algorithm #tests Success rate Blocks success rate

Katana 300 6m180 KDL 52 0.9615 1
Katana 300 6m180 Stochastic 52 1 1

Katana 400 6m180 KDL 52 0.7692 1
Katana 400 6m180 Stochastic 52 1 1

Youbot KDL 51 0.4118 0.5833
Youbot Stochastic 50 0.6400 0.7500

Powerball KDL 52 0.1346 0.1667
Powerball Stochastic 55 0.6909 0.9231

Table 5.19.: Success rate of the different algorithm combinations for different manipulators in a empty
simulated environment.
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Figure 5.5.: Change of the block success rate of the different manipulators in combination with KDL in a
empty simulated environment.
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Figure 5.6.: Change of the block success rate of the Powerball in combination with the stochastic inverse
kinematics in a empty simulated environment.

Run time:

Table 5.20 depicts the time between the start of the tool chain and a termination message is generated from
the tool chain. The runtime values are given in seconds.

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 5.4905 5.5575
Katana 300 6m180 Stochastic 6.8093 6.4475

Katana 400 6m180 KDL 5.3388 5.4395
Katana 400 6m180 Stochastic 5.6652 5.5535

Youbot KDL 6.0441 5.7400
Youbot Stochastic 14.6961 16.8155

Powerball KDL 6.5317 6.1960
Powerball Stochastic 110.0090 43.0765

Table 5.20.: Run time of the different algorithm combinations for different manipulators in a empty simu-
lated environment. The run time represents the time between the start of the tool chain and a
termination message is generated from the tool chain. The run time is given in seconds.
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Planning timing:

Table 5.21 shows the time between the start of the tool chain and the tool chain starts to move the manipu-
lator. The runtime values are given in seconds.

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 2.0626 2.0600
Katana 300 6m180 Stochastic 3.4840 2.5470

Katana 400 6m180 KDL 2.0503 2.0440
Katana 400 6m180 Stochastic 2.5237 2.5085

Youbot KDL 1.8684 2.0580
Youbot Stochastic 14.6961 16.8155

Powerball KDL 2.2681 2.2430
Powerball Stochastic 86.6452 37.1335

Table 5.21.: Planning time of the different algorithm combinations for different manipulators in a empty
simulated environment. The planning time reports the time between the start of the tool chain
and the tool chain starts to move the manipulator. The planning time is given in seconds.

Position error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 0.0142 1.4793*10−004

Katana 300 6m180 Stochastic 1.4535*10−004 7.4825*10−005

Katana 400 6m180 KDL 0.0529 6.5204*10−005

Katana 400 6m180 Stochastic 8.1876*10−005 2.7908*10−005

Youbot KDL 0.0438 0.0372
Youbot Stochastic 0.0290 0.0178

Powerball KDL 0.5262 0.3685
Powerball Stochastic 0.1727 4.8127*10−005

Table 5.22.: Position error of the different algorithm combinations for different manipulators in a empty
simulated environment.
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Orientation error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 0.0285 3.5654*10−004

Katana 300 6m180 Stochastic 7.2692*10−004 5.6348*10−004

Katana 400 6m180 KDL 0.1671 5.5497*10−004

Katana 400 6m180 Stochastic 3.8096*10−004 2.0234*10−004

Youbot KDL 0.1294 0.0851
Youbot Stochastic 0.0599 0.0568

Powerball KDL 0.6410 0.8612
Powerball Stochastic 0.5723 0.6971

Table 5.23.: Orientation error of the different algorithm combinations for different manipulators in a empty
simulated environment.

5.6.3. Discussion of the evaluation results

We will only briefly discuss the results and the problems which arise during the simulation. It is important
to notice that the result corresponds to the results of the inverse kinematics evaluation. This can be easily
seen since the KDL algorithm performs faster but does not always find a solution.
The success rate can also be increased by a rerun of the algorithms as it can be seen in Figures 5.5 and
5.6. This behaviour was previously discussed within the different steps of the tool chain. It is important to
notice that if one part of the tool chain is improved the complete tool chain is improved. This can be seen
in any case if the inverse kinematic algorithm is changed from KDL to the stochastic inverse kinematic
solver.
The position error and the orientation error, excepting the Powerball, are very low if a solution is found.
This corresponds to the results of the different parts of the tool chain. It is also important to notice that the
planning time is about 2 seconds for a manipulator if KDL is used. It is also important to notice that the
problem occurring from the combination of the path planning algorithms and the Powerball also results in
a poor performance. Although a rerun of the tool chain overcomes some problems with missing solutions
it does not always yield a total success. This can be easily seen in the cases where the Youbot or the
Powerball was used.

5.7. Overall evaluation within the simulation and cluttered
environment

In this section we will evaluate the performance of the complete tool chain within an simulated environ-
ment. For the simulation we use Gazebo. There are some issues that cause unpredictable crashes and
thus reduces in some cases the number of tries and retries but it reflects an overall performance of the tool
chain. This crashes were caused of unstable software as well as race condition in the starting procedure of
the software.

5.7.1. Evaluation setting

To perform the evaluation a path within the joint space is sampled in a random way. Each of the samples is
checked if it is not in a self-collision. There is also a check performed if the sample leads to a pose which
is above the base plate to overcome problems with collision of the manipulator and the base plate. After a
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feasible path is sampled the tool chain tries to move to the tool center point to the desired pose. To make the
environment cluttered a similar procedure is used as it was used in the evaluation of the cluttered trajectory
path planning algorithms. The environment checks are performed in such a way that ever configuration
which is not near a sample point is in collision. Thus the only possible way to move the manipulator is to
move it along the sample path.
The start- and the end-time, the position and the orientation error are recorded. To retrieve the exact pose
Gazebo is used as ground truth. But due to some problems with the simulation the position and orientation,
at the Katana 300/400 6m180 and the Youbot is measured at the right gripper link. This does not lead to
an additional error since the transformation between tool center point and right gripper link is fix during
the execution. The gripper links are never moved to open or close the gripper within the evaluation. It is
also important to mention that the position of the right gripper link does not change with different possible
joint configurations, which leads to the same pose of the tool center point link. The tool chain consists of
one of the inverse kinematics solvers discussed above in section 4.2. If the Powerball is used only one of
the above described path planning algorithms is used instate of both path planning algorithms. The path
planning algorithms are performed one after each other, except the Powerball is used, if the first does not
find to a solution. This can happen from time to time since there are many virtual objects within the space,
which can cause a collisions. We assume that a fully populated space is most difficult. Thus it leads to the
upper bound regarding time and lower bound regarding success of the tool chain. The test is performed
for 14 poses and 5 retries of each of the poses. The time limit to perform the evaluation for one algorithm
combination is 50 minutes. This is used due evaluation needs. Please note that there is no answer from the
tool chain if the task can not be performed. Thus the tool chain have to run for ever to check if it finds a
solution. As stated above it was not possible to perform all poses with all retries and thus the sum of all
poses (also every retry of the pose is counted separately) is listed below.

5.7.2. Result of the evaluation

Success rates:

The success rate is calculated using Equation 5.5. The blocks success rate is calculated using Equation 5.6.
In Table 5.24 the success rates as well as the block success rates of the different manipulators is shown. In
Figure 5.7 the block success rates and the effect of the changing the block sizes is depicted.

Manipulator Inverse kinematics algorithm #tests Success rate Blocks success rate

Katana 300 6m180 KDL 23 0.7826 1
Katana 300 6m180 Stochastic 23 0.8696 1

Katana 400 6m180 KDL 30 0.7000 1
Katana 400 6m180 Stochastic 30 0.6333 1

Youbot KDL 26 0.0385 0.0667
Youbot Stochastic 25 - -

Powerball KDL, SBLK 29 0.2414 0.3333
Powerball KDL, LBKIEPCE 29 0.2069 0.2222
Powerball Stochastic, SBLK 29 0.5172 0.5556
Powerball Stochastic, LBKIEPCE 28 0.1786 0.2222

Table 5.24.: Success rates of the different algorithm combinations for different manipulators in a cluttered
simulated environment.
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Figure 5.7.: Change of the block success rate of the Powerball in combination with all algorithms in an
cluttered simulated environment.

Run time:

Table 5.25 depicts the time between the start of the tool chain and a termination message is generated from
the tool chain. The run time is given in seconds.

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 4.4314 4.3725
Katana 300 6m180 Stochastic 5.0913 4.9345

Katana 400 6m180 KDL 4.2750 4.1480
Katana 400 6m180 Stochastic 5.8749 5.5960

Youbot KDL - -
Youbot Stochastic - -

Powerball KDL, SBLK 232.4213 268.2130
Powerball KDL, LBKIEPCE 299.3030 360.1450
Powerball Stochastic, SBLK 247.8285 278.4060
Powerball Stochastic, LBKIEPCE 353.2520 360.0710

Table 5.25.: Run time of the different algorithm combinations for different manipulators in a cluttered
simulated environment. The run time describes the time between the start of the tool chain and
a termination message is generated from the tool chain. The run time is given in seconds.
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Planning timing:

Table 5.26 shows the time between the start of the tool chain and the tool chain starts to move the manipu-
lator. The run time is given in seconds.

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 3.0652 2.8060
Katana 300 6m180 Stochastic 3.6473 3.5560

Katana 400 6m180 KDL 2.8730 2.8460
Katana 400 6m180 Stochastic 4.3847 4.2090

Youbot KDL - -
Youbot Stochastic - -

Powerball KDL, SBLK 29.5923 0
Powerball KDL, LBKIEPCE 0 0
Powerball Stochastic, SBLK 78.3379 0
Powerball Stochastic, LBKIEPCE 64.9650 0

Table 5.26.: Planning time of the different algorithm combinations for different manipulators in a cluttered
simulated environment. The planning time describes the time between the start of the tool
chain and the tool chain starts to move the manipulator. The planning time values is given in
seconds.

Position error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 1.5788*10−004 4.9606*10−005

Katana 300 6m180 Stochastic 1.4240*10−004 3.3651*10−005

Katana 400 6m180 KDL 0.0015 7.7399*10−005

Katana 400 6m180 Stochastic 0.0018 6.3648*10−005

Youbot KDL 0.0791 0.0781
Youbot Stochastic 0 0

Powerball KDL, SBLK 0.0089 0.0050
Powerball KDL, LBKIEPCE 0.0057 0.0019
Powerball Stochastic, SBLK 0.0062 8.9964*10−006

Powerball Stochastic, LBKIEPCE 0.0095 0.0033

Table 5.27.: Position error of the different algorithm combinations for different manipulators in a cluttered
simulated environment.
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Orientation error:

Manipulator Inverse kinematics algorithm Mean Median

Katana 300 6m180 KDL 1.9892*10−004 7.3769*10−005

Katana 300 6m180 Stochastic 2.3998*10−004 9.9312*10−005

Katana 400 6m180 KDL 0.0025 1.1933*10−004

Katana 400 6m180 Stochastic 0.0035 9.9897*10−005

Youbot KDL 0.1096 0.1076
Youbot Stochastic - -

Powerball KDL, SBLK 0.0121 0.0050
Powerball KDL, LBKIEPCE 0.0129 0.0105
Powerball Stochastic, SBLK 0.0182 5.2870*10−004

Powerball Stochastic, LBKIEPCE 0.0210 0.0199

Table 5.28.: Orientation error of the different algorithm combinations for different manipulators in a clut-
tered simulated environment.

5.7.3. Conclusion of the evaluation

We will now briefly discuss the results and in particular some unpredictable crashes of the simulation. It is
important to notice that the results of the cluttered evaluations before are reflected within this conclusion.
This can easily be seen by the performance of the LBKIEPCE and the SBLK algorithms. In combination
with the Powerball manipulator the SLBK algorithm performs better and the LBKIEPCE is faster. Also
the increase of the success rate of algorithms can be seen in Figure 5.7 which is similar to the effect of the
trajectory path planning algorithms in a cluttered environment for the Powerball manipulator.
It is also important to notice that the stochastic inverse kinematics performs better in many cases but
sometimes also it performs worse. A good example is the Youbot manipulator where the stochastic inverse
kinematics does not lead to a solution but the KDL found a solution for some of the target poses. This is a
result of the problems which came up with a cluttered environment and the stochastic inverse kinematics.
The time to find a solution in such a cluttered environment is to high in order to find a solution before a
time out for this part of the tool chain occurs.
Another important observation is that the position and orientation error is as good as within the previous
evaluation without any obstacles. On the other hand the time increases significantly and thus results in a
problem if an environment is cluttered like the environment used here.

5.8. Overall evaluation using real hardware

We evaluated the performance of the complete tool chain using real hardware in a slightly cluttered envi-
ronment. The evaluation is performed with the Katana 400 6m180 and the Youbot. There are some issues
that cause unpredictable crashes. This crashes were caused of unstable software as well as race condition in
the starting procedure of the software. To overcome this problem each part of the evaluation was performed
up to four times if a crash happened. There are also some problems with the base driver which is for us
the last step in the tool chain. Although it was not considered within this thesis. It have some influence
on the performance of the tool chain. The problems as well as the influences will be discussed within the
discussion of this evaluation.
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5.8. Overall evaluation using real hardware

5.8.1. Evaluation setting

To perform the evaluation a simple experimental setting was created. This setting can be seen in Figure
5.8. The task is to move small balls from one place to another. To accomplish this task the manipulator
is moved to a specified position with an open gripper. After this the manipulator is moved to the ball and
the gripper is closed. The next step is to lift the ball. The last step is to move the ball to the new place
and to open the gripper. This experiment does not use any kind of perception to avoid problems regarding
detection error or problems with the visibility of any objects. The environment is cluttered in such a way
that it is not simply possible to use a simple path between two ball positions. The walls in the environment
which can be seen in Figure 5.8 create this cluttered environment. In case of the Youbot it is especially hard
due to the fact that many positions are at the boarder of the workspace of the manipulator. The balls have a
diameter of 4 cm and the holes to place a ball have a diameter of 3.5 cm. This results in a quite challenging
task, which needs a high precision of the tool chain to check the performance. During the execution of
each of the sub tasks like moving to the ball the success is checked. The run time is not recorded since
there are some problems with unexpected software crashes, as mention above. Which prevents a sound
and easy determination of the run time. Therefore it would be hard to decide when a task starts and when
the task ends. The evaluation uses KDL as well as the stochastic inverse kinematics. To perform the path
planning both algorithms are used. SBLK was the first one which can be used within the chain of planning
algorithms. Both of the presented trajectory execution planning algorithms where used to check how they
perform on real hardware with the driver of the hardware.

Figure 5.8.: Evaluation setup to perform pick and place tasks with the Katana 400 6m180 and the Youbot

5.8.2. Result of the evaluation

Katana 400 6m180

In Table 5.29 the success rate of the pick and place task using the Katana 400 6m180 is depicted. The
success rate is calculated using Equation 5.3.

Inverse kinematics algorithm Trajectory execution planning Success rate Pick ball Place ball
KDL Cubic spline 0.60 0.30 0.50
KDL Parabolic blend 0.47 0.00 0.50
Stochastic Cubic spline 0.94 0.92 0.83
Stochastic Parabolic blend 0.58 0.00 0.83

Table 5.29.: Result of the pick and place task using the Katana 400 6m180 manipulator.
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Youbot

In Table 5.30 the success rate of the pick and place task using the Youbot is depicted. The success rate is
calculated using Equation 5.3.

Inverse kinematics algorithm Trajectory execution planning Success rate Pick ball Place ball
KDL Cubic spline 0.75 0.66 0.83
KDL Parabolic blend 0.71 0.58 0.83
Stochastic Cubic spline 0.75 (0.81) 0.58 (0.66) 0.83
Stochastic Parabolic blend 0.54 (0.60) 0.50 0.25

Table 5.30.: Result of the pick and place task using the Youbot manipulator. The percentages within the
brackets are calculated with movements which were not finished successfully due to a crash in
the diver software.

5.8.3. Discussion of the evaluation results

Before we start with the conclusion of this evaluation we will briefly discuss some observed issues during
the evaluation. Which had an impact on the outcome of the evaluation. First of all, it is important to mention
that there were some unexpected software crashes, which cause the task to fail and result in a restart of the
task. The second important thing to mention is that the driver to move the real manipulator has some issues.
Which have a huge impact on the evaluation. The driver which is used for the Youbot has some problems
to finish a given trajectory. This can cause the manipulator to stop at a wrong position. This problem can
be overcome due to a recall of the tool chain to perform a sub task (e.g. to move again to the position of
the ball). But this can lead to a bad situation since in the case of a position with multiple possible solutions
of the inverse kinematics the manipulator can try to move to the first solution and afterwards move to the
next solution but does not finish one of them correctly. This is also the reason why there is sometimes
movements of the manipulator, which does not lead to a success. Nor the movement was sometimes not
as accurate as expected from the tool chain, which can be seen in more detail in Appendix C. The driver
which is used for the Katana 400 6m180 has the problem that often causes a crash of the manipulator and
the environment. The driver itself reduces a given trajectory to a trajectory with a maximum of 16 different
joint configurations but does not check if this reduction results in a collision-free path. To avoid the crashes
and thus damage on the hardware the movement used intermediate positions, which are above the hole.
This intermediate points are part of the control flow to pick up and place a ball. The intermediate points
reduce the success rate. This results from the fact that the tool chain could not find a solution to some of
the additional points, which could be seen in more detail within Appendix C.
Beside the problems with the driver, the evaluation shows some interesting results, which we will discuss
now in detail. First of all the parabolic blend function performance is worse in respect to the cubic spline
planning. The evaluation also shows that the stochastic inverse kinematics algorithm finds more solution
than KDL, if it is not used with the parabolic blend functions. But it is worth to mention that KDL performs
better in the case of a fault in the driver software. This results in the fact that the stochastic inverse
kinematics algorithm finds different solutions to the same pose and thus can result in a movement without
success, if the driver software crashes from time to time. This problem can be overcome with the help of a
caching strategy within the inverse kinematics algorithm.
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Chapter 6
Conclusion

Within this thesis the ROS1 tool chain to handle manipulation taks with different manipulators was inves-
tigate. The tool chain is based on arm navigation stack and extended with a new inverse kinematic solver.
The focus was to point out problems and to improve the tool chain to successfully finish simple positioning
tasks with a given manipulator. The only necessary information to work with this tool chain is a robot
description and a driver to communicate with the hardware itself. Each of the needed different sub-tasks
was discussed and also the methods used within the tool chain were explained in detail. The evaluation in
Chapter 5 shows that the tool chain can be used quite good to perform a precise positioning of a part of
the manipulator with a high success rate. The evaluations were performed with different popular research
and teaching manipulators. Also a simple pick and place task was performed with different manipulators,
which shows that the tool chain can finish this tasks with success even if the environment is cluttered.
It turns out that the used version of the arm navigation stack is not stable enough to be used out of the
box. The new version of the arm navigation stack MoveIt may change this in future [92]. The evaluation
shows that not all manipulator work with the default algorithms. Especially the inverse kinematic algorithm
(KDL) which is used as default causes major problems. The low success to find a solution causes the com-
plete tool chain to fail. Thus it is not possible to successfully perform a pick and place task. To overcome
this the limitations of inverse kinematics solvers such as KDL with different manipulators we developed a
new algorithm for the inverse kinematic, which is called stochastic inverse kinematic solver. This solver is
based a global optimization algorithm and shows in the experiments in a simulated environment as well as
using real hardware that the algorithm increases the success rate of the tool chain.
Additionally through the evaluation it turned out that the used driver for the manipulators has some lim-
itations which cause problems. For example the driver for the Katana 400 6m180 can only deal with 16
trajectory points. Thus it is not always possible to move the manipulator as planed from the algorithms.
This can cause the tool chain to fail.

1http://www.ros.org/wiki/
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Chapter 7
Future Work

As already briefly discussed a combination of the different inverse kinematics methods can be useful to
achieve a better performance of the tool chain concerning run time and success rate. Another topic, has
to be addressed, is the caching of the different solutions of the inverse kinematics due to the fact that a
solution is independent of the environment.
A topic of interest would also be path planning algorithms, which provides a better scaling with the number
of objects. This would have a strong impact to the performance of the whole tool chain within cluttered
environments.
Faster as well as a more stable implementations of different trajectory execution planning algorithms can
also be seen as a future direction to improve the tool chain. Due to the fact that the tool chain is based on
the assumption that the environment does not change during the execution a local planning method, which
can deal with small changes of the environment, or some changes due to the execution on the real robot
would be an interesting topic within a future work.
Another interesting topic would be the usage of multiple results of the inverse kinematics of a single pose
to use this information to get a shorter as well as faster trajectory.
Although all parts of the tool chain have been intensively empirical evaluated there are more open issues
like to evaluate the influence of parameters (e.g. population size of for the stochastic inverse kinematic
solver). Additionally it would be necessary to prove if the assumption that the hardest task for the tool
chain is a completely cluttered environment is valid.
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Appendix A
The manipulators

This Appendix contains a description of the different manipulators. The base as well as the tip link are
marked with there coordinate systems. The colour of the coordinate system is red for the X-axis, green for
the Y-axis and blue for the Z-axis. The coordinate systems are right hand coordinate systems.

A.1. Katana 300 6m180

Within Figure A.1 the Katana 300 6m180 with the base as well as the tip link marked with there coordinate
systems is depicted.

Figure A.1.: The Katana 300 6m180 viewed in rvize (http://www.ros.org/wiki/rviz).

A.2. Katana 400 6m180

Within Figure A.2 the Katana 400 6m180 with the base as well as the tip link marked with there coordinate
systems is depicted. Figure A.5 shows the real Katana 400 6m180 manipulator.
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Appendix A. The manipulators

Figure A.2.: The Katana 400 6m180 viewed in rvize (http://www.ros.org/wiki/rviz).

Figure A.3.: The Neuronics Katana 400 6m180 manipulator. The im-
age is taken from http://www.openpr.de/news/229910/
Quantensprung-Roboter-funktioniert-ohne-Computeranschluss.html.

A.3. Youbot

Within Figure A.4 the youbot with the base as well as the tip link marked with there coordinate systems is
depicted. Figure A.5 shows the real youbot manipulator.
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A.4. Powerball

Figure A.4.: The Youbot viewed in rvize (http://www.ros.org/wiki/rviz).

Figure A.5.: The Kuka YouBot manipulator. The image is taken from
http://www.youbot-store.com/youbot-store/youbots/products/
kuka-youbot-5-degree-of-freedom-arm-with-2-finger-gripper.

A.4. Powerball

Within Figure A.6 the powerball with the base as well as the tip link marked with there coordinate systems
is depicted. Figure A.7 shows the real powerball manipulator.
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Appendix A. The manipulators

Figure A.6.: The Powerball viewed in rvize (http://www.ros.org/wiki/rviz).

Figure A.7.: The Schunk Powerball manipulator. The image is taken from http://mobile.
schunk-microsite.com/?id=9.
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Appendix B
Workspace of the manipulators

This Appendix contains the different workspaces of the manipulators which are used during the evaluation.
Each of the workspaces will be presented in projection on the X-Y, X-Z, Y-Z plane. To generate this
workspaces plots the joint space was sample uniform in each axis. The pose of each sample was calculated
with the help of the forward kinematic solver of KDL. This pose was afterwards projected on each of the
plains.

B.1. Katana 300 6m180

The workspace of the Katana 300 6m180 projected on the X-Y plane is depicted in Figure B.1, projected
on the X-Z plane is shown in Figure B.2 and projected on the Y-Z plane is depicted in Figure B.3.

Figure B.1.: Workspace of the Katana 300 6m180 projected on the X-Y plane.
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Figure B.2.: Workspace of the Katana 300 6m180 projected on the X-Z plane.

Figure B.3.: Workspace of the Katana 300 6m180 projected on the Y-Z plane.

B.2. Katana 400 6m180

The workspace of the Katana 400 6m180 projected on the X-Y plane is depicted in Figure B.4, projected
on the X-Z plane is shown in Figure B.5 and projected on the Y-Z plane is depicted in Figure B.6.
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B.3. Youbot

Figure B.4.: Workspace of the Katana 400 6m180 projected on the X-Y plane.

Figure B.5.: Workspace of the Katana 400 6m180 projected on the X-Z plane.

B.3. Youbot

The workspace of the Youbot projected on the X-Y plane is depicted in Figure B.7, projected on the X-Z
plane is shown in Figure B.8 and projected on the Y-Z plane is depicted in Figure B.9.
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Figure B.6.: Workspace of the Katana 400 6m180 projected on the Y-Z plane.

Figure B.7.: Workspace of the Youbot projected on the X-Y plane.

B.4. Powerball

The workspace of the Powerball projected on the X-Y plane is depicted in Figure B.10, projected on the
X-Z plane is shown in Figure B.11 and projected on the Y-Z plane is depicted in Figure B.12.
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B.4. Powerball

Figure B.8.: Workspace of the Youbot projected on the X-Z plane.

Figure B.9.: Workspace of the Youbot projected on the Y-Z plane.
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Figure B.10.: Workspace of the Powerball projected on the X-Y plane.

Figure B.11.: Workspace of the Powerball projected on the X-Z plane.
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B.4. Powerball

Figure B.12.: Workspace of the Powerball projected on the Y-Z plane.
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Appendix C
Evaluation result on real hardware raw
data

C.1. Katana 400 6m180

To pick a ball the gripper of the manipulator is opened and the tool center point is placed 10 cm above the
hole (p1). Then it is moved to a pre-grasp position which is 3 cm above the hole (p2). The next step is to
move the manipulator to the ball and close the gripper (p3). After this step the tool center point is placed
in a lift position which is 3 cm above the hole (p4) to test if the ball is really picked. The last step to pick a
ball is to move the tool center point 10 cm above the hole (p5).
To place the ball the tool center point is placed 10 cm above the hole (p6). Afterwards it is placed 1 cm
above the hole (p7) and the gripper is opened. The last step to place a ball is to move the tool center point
10 cm above the hole (p8).

C.1.1. KDL and cubic spline

Pick ball Place ball
Position p1 p2 p3 p4 p5 Position p6 p7 p8
0 X X X - - 15 X X X
2 X X X X X 18 - X -
13 X X X X X 1 X X X
4 X X X X X 14 X X X
17 X X X X X 3 X X X
6 - X X X - 16 X X X
19 - X X X - 5 X X X
8 - X X X - 23 - - -
22 - - - - - 7 - X -
10 - X X X - 20 - X -
21 - - - - - 9 - X -
12 - - - - - 11 - X -

Table C.1.: Success of different movements within the evaluation result on real hardware and the use of the
Katana 400 6m180 and KDL and cubic spline. A cross means that the Katana 400 6m180 was
able to move to the specified pose.
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Appendix C. Evaluation result on real hardware raw data

C.1.2. KDL and parabolic blend

Pick ball Place ball
Position p1 p2 p3 p4 p5 Position p6 p7 p8
0 X X - - - 15 X X X
2 X X - - - 18 - X -
13 X X - - - 1 X X X
4 X X - - - 14 X X X
17 X X - - - 3 X X X
6 X X - - - 16 X X X
19 - X X X - 5 X X X
8 - X X X - 23 - - -
22 - - - - - 7 - X -
10 - X X X - 20 - X -
21 - - - - - 9 - X -
12 - - - - - 11 - X -

Table C.2.: Success of different movements within the evaluation result on real hardware and the use of the
Katana 400 6m180 and KDL and parabolic blend. A cross means that the Katana 400 6m180
was able to move to the specified pose.

C.1.3. Stochastic inverse kinematic and cubic spline

Pick ball Place ball
Position p1 p2 p3 p4 p5 Position p6 p7 p8
0 X X X X X 15 X X X
2 X X X X X 18 X X X
13 X X X X X 1 X X X
4 X X X X X 14 X X X
17 X X X X X 3 X X X
6 X X X X X 16 X X X
19 X X X X X 5 X X X
8 X X X X X 23 - X -
22 - X X X - 7 X X X
10 X X X X X 20 X X -
21 X X X X X 9 X X X
12 X X X X X 11 - X -

Table C.3.: Success of different movements within the evaluation result on real hardware and the use of the
Katana 400 6m180 and stochastic inverse kinematic and Cubic Spline. A cross means that the
Katana 400 6m180 was able to move to the specified pose.
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C.2. Youbot

C.1.4. Stochastic inverse kinematic and parabolic blend

Pick ball Place ball
Position p1 p2 p3 p4 p5 Position p6 p7 p8
0 X X - - - 15 X X X
2 X X - - - 18 X X X
13 X X - - - 1 X X X
4 X X - - - 14 X X X
17 X X - - - 3 X X X
6 X X - - - 16 X X X
19 X X - - - 5 X X X
8 X X - - - 23 - X -
22 - X X - - 7 X X X
10 X X - - - 20 X X X
21 X X - - - 9 X X X
12 X X - - - 11 - X -

Table C.4.: Success of different movements within the evaluation result on real hardware and the use of the
Katana 400 6m180 and stochastic inverse kinematic and parabolic blend. A cross means that
the Katana 400 6m180 was able to move to the specified pose.

C.2. Youbot

To pick a ball the gripper of the manipulator is opened and the tool center point is placed in a pre-grasp
position 3 cm above the hole (p1). The next step is to move the manipulator to the ball and to close the
gripper (p2). After this step the tool center point is placed in a lift position which is 3 cm above the hole
(p3) to test if the ball is really picked.
To place the ball the tool center point is placed 1 cm above the hole (p4) and the gripper is opened.
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Appendix C. Evaluation result on real hardware raw data

C.2.1. KDL and cubic spline

Pick ball Place ball
Position p1 p2 p3 Position p4
0 X X X 15 X
2 X X X 18 X
13 X X X 1 X
4 X X X 14 X
17 X X X 3 X
6 X X X 16 X
19 X X X 5 X
8 X X X 23 -
22 - - - 7 X
10 X X X 20 -
21 - - - 9 X
12 - - - 11 X

Table C.5.: Success of different movements within the evaluation result on real hardware and the use of
the Youbot and KDL and cubic spline. A cross means that the Youbot was able to move to the
specified pose.

C.2.2. KDL and parabolic blend

Pick ball Place ball
Position p1 p2 p3 Position p4
0 X X X 15 X
2 X X X 18 X
13 X X X 1 X
4 X - X 14 X
17 X X X 3 X
6 X X X 16 X
19 X X X 5 X
8 X - - 23 -
22 - - - 7 X
10 X X X 20 -
21 - - - 9 X
12 - - - 11 X

Table C.6.: Success of different movements within the evaluation result on real hardware and the use of the
Youbot and KDL and parabolic blend. A cross means that the Youbot was able to move to the
specified pose.
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C.2. Youbot

C.2.3. Stochastic inverse kinematic and cubic spline

Pick ball Place ball
Position p1 p2 p3 Position p4
0 X X X 15 X
2 X X X 18 X
13 X X X 1 X
4 X X X 14 X
17 X X X 3 X
6 X X X 16 X
19 X - X 5 X
8 X X X 23 -
22 - - - 7 X
10 X X X 20 -
21 -* -* -* 9 X
12 - - - 11 X

Table C.7.: Success of different movements within the evaluation result on real hardware and the use of the
Youbot and Stochastic inverse kinematic and cubic spline. A cross means that the Youbot was
able to move to the specified pose. -* means that the manipulator start moving but does not
finish the sub task.

C.2.4. Stochastic inverse kinematic and parabolic blend

Pick ball Place ball Comment
Position p1 p2 p3 Position p4
0 X X X 15 -
2 X X X 18 X
13 -* - - 1 - Unknown software failure
4 X X X 14 -
17 X X X 3 -
6 X X X 16 -
19 X - X 5 X
8 X X X 23 -
22 - - - 7 X
10 X X X 20 -
21 -* - - 9 - Unknown software failure
12 - - - 11 -

Table C.8.: Success of different movements within the evaluation result on real hardware and the use of the
Youbot and Stochastic inverse kinematic and parabolic blend. A cross means that the Youbot
was able to move to the specified pose. -* means that the manipulator start moving but does not
finish the sub task.
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