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Abstract

Integrative analysis methods have become essential tools for the extraction of a small set of

features which is assumed to be the driver of the measured molecular-biological processes.

Objectives: In the presented master’s thesis, three integrative analysis methods based

on different mathematical concepts are compared: sparse Canonical Correlation Analysis

(sCCA), Non-Negative Matrix Factorization (NMF) and Microarray Logic Analyzer (MALA).

They are applied on synthetic data as well as on biological breast cancer data derived on

three different levels: the DNA level, the transcript level, and the protein level.

Methods: The resulting sets of selected features are compared with each other directly as

well as on a more general level, the associated Gene Ontology (GO) terms. Additionally,

the sets of selected features in the biological datasets are compared to genes known to be

involved in cancer development.

Results: The observed overlap on the feature level is modest in both the synthetic and the

biological datasets. Considering the associated GO terms, the overlap increases in at least

one GO category for both datasets. The features selected from the biological dataset by

each of the three methods cover about 10% of the features involved in pathways in cancer

according to the KEGG database.

Conclusion: The results of integrative analysis of biological data can hardly be validated,

however, they can be compared to the results of other integrative analysis methods. The

feature sets resulting from the methods under comparison are not congruent. A better

agreement between the results can be observed on a higher functional level, the GO term

level.
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1. Introduction

1.1. Motivation

The central dogma of molecular biology [1] describes the relationship and the flow of

information between DNA, RNA and proteins and shows that there are multiple interacting

levels of information in the cells of an organism. The status of an organism’s cell on gene or

DNA level is investigated in the field of genomics; investigations on transcript or RNA level

are summarized under the term transcriptomics; examining the amount of proteins, that is

the analysis on protein level is termed proteomics and the examination of all metabolites

present in a cell is referred to as metabolomics. In recent years, due to technological

improvements, large amounts of data have been obtained employing high-throughput

technologies. These methods enable highly parallel measurements on different biological

levels on the same set of samples. The challenge has been shifted from obtaining data

towards extracting useful information from it.

A major goal in bioinformatics is the identification of features associated with complex

diseases such as diabetes mellitus, breast cancer or Alzheimer’s disease which are caused

by multiple genetic, environmental and lifestyle factors [2]. The task of being able to classify

a sample as case or control boils down to the identification of a preferably small number of

genes of an organism’s genome that show strong evidence to be associated with a certain

disease. The selection of candidate features which are subsequently subjected to further

analysis in the wet lab implicates a tremendous reduction of time and money costs

compared to the analysis of the whole feature set. For this purpose data is obtained from

different biological levels to provide a comprehensive view on the system under study and
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1. Introduction

it is intuitive that the amount of gained information is greater resulting from joint analysis

than from the individual analysis of datasets.

1.2. Integrative Analysis

In the past two decades the focus of methods applicable to large biological datasets has

been on analysis of data from one single biological level such as the analysis of all

transcripts or all proteins in a sample at a time. In recent years the integration of two or

more omics-datasets measured on different levels on the same set of samples or measured

at different time points or conditions in two different organisms has become more and more

important. Their simultaneous mutually dependent analysis is summarized under the term

integrative analysis in contrast to the mutually independent analysis of datasets and the

combination of individual results termed meta-analysis.

Considering integrative analysis methods one has to distinguish between those which

reveal specific or common structures within datasets respectively and those which

incorporate a feature selection step and result in a short list of candidate genes to be

subjected to further experimental analysis. The reduction of the feature set size is

accomplished by various approaches and combinations of them. One important

characteristic of large, genome-scale datasets is that the number of features comprised by

the dataset usually far exceeds the number of observations and the number of features is

further increased by the simultaneous analysis of two or more data sets measured on the

same small set of samples. Various approaches have been described in the literature so far

that aim to overcome the issue that an under-determined system of equations due to the

small number of samples does not have a unique solution and that the resulting set of

candidate features contributing to a disease is desired to be rather small. They are based on

widespread well-known mathematical concepts adapted for example by inducing

sparseness or incorporating heuristic or machine learning approaches into the feature

selection step. Some examples of the basic concepts of integrative analysis of datasets are

summarized in the following section.
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1.3. Literature Review

1.3. Literature Review

As a preparatory work for the selection of methods to compare, a literature search on

integrative analysis methods for biological datasets with focus on genomic, transcriptomic

and proteomic data was conducted. The goal was to review the mathematical concepts of

integrative analysis and to provide an overview of methods currently in use. The methods

under review are grouped according to their basic concepts into eigenvalue decomposition

based methods, regression based methods, clustering based methods and machine learning

based methods and are summarized in the following subsections.

1.3.1. Decomposition Based Methods

Several methods described in the literature are based on eigenvalue decomposition but

there are also other factorization approaches.

Canonical Correlation Analysis (CCA), Co-Inertia Analysis (CIA), Pseudoinverse Projection

(PIP) and General Singular Value Decomposition (GSVD) have in common that some

product of the data matrices to be analyzed must be decomposed into its eigenvectors and

eigenvalues. Alter and Golub [3] showed that PIP [4] of an arbitrary number of datasets

represents a linear transformation into a space spanned by a basis set of samples. Each

sample can be approximated by a linear combination of the basis samples. Unknown

regulatory dependencies may manifest as correlations between samples of the datasets and

the basis samples.

Berger et al. [5] presented an iterative algorithm for dimension reduction based on GSVD [6]

and applied it to gene expression and copy number variation data. In an iterative steerable

gene shaving process the genes with the highest variance in the datasets are identified. In

each iteration, a matrix X containing the generalized singular vectors of the dataset pair on

the columns is calculated and the angular distances between the samples of the datasets

and the columns of X are determined. The datasets are projected onto the column of X

corresponding to the largest angular distance and the genes with the least parallel

contribution are shaved off. The steps are repeated until the number of features remaining

3



1. Introduction

in the datasets falls below a desired number. Ponnapalli et al. [7] developed a higher-order

GSVD (HO GSVD), an extended version of conventional GSVD applicable to more than two

datasets. They analyzed the genome-scale expression datasets of three organisms in order to

reveal structural or functional motifs common to all datasets. The data matrices are

decomposed into three factors whereat one of them is identical in all decompositions. The

common factor matrix contains the right basis vectors obtained from an eigensystem

involving the arithmetic mean of the pairwise combination of all data matrices. The

significance of each right basis vector, in other words the amount of information

contributed to each of the datasets is indicated by the higher-order generalized singular value

set associated with each basis vector. Information that is common to all datasets is

represented by basis vectors with equal significance. The right basis vectors corresponding

to the eigenvalues equal to one determine a common subspace of the HO GSVD.

Many integrative approaches employ in some form the CCA introduced by Hotelling [8].

Conventional CCA maximizes the correlation of the projections of two datasets and is not

suitable for integration of more than two datasets. Many groups have made efforts to

extend CCA to the application on more than two datasets. Lê Cao et al. [9] recalled a

regularized variant of CCA described in detail in [10] which used Elastic Net [11]

penalization, a combination of lasso and ridge penalties. To obtain unique canonical factors

in case the number of features in the datasets exceeds the number of samples, additional

information has to be introduced. This could be of the form that the vector containing the

weights of the decomposition is subjected to a penalty. Different penalties have been

employed such as ridge, where the L2-norm of the vector is bound or lasso, that limits the

sum of absolute values of the elements of the vector to a given constant, resulting in a

sparse vector [11].

Witten et al. [12] presented a penalized matrix decomposition (PMA) method which can be

used to obtain sparse principle components as well as sparse canonical vectors when

applied to the product of two matrices. It is basically a regularized singular value

decomposition (SVD) where a given matrix is decomposed into sparse vectors. The vectors

are subjected to either lasso or fused lasso penalties, depending on the appearance of the data.
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The non-zero weights of the sparse vectors are associated to features with large influence on

the correlation. The sparse version of CCA (sCCA) was further extended by Lin et al. [13]

who took into account the structure or group effect within genomic data for example genes

within the same pathway. They developed a method based on the block cyclic coordinate

descent algorithm [14] in order to solve the optimization problem which incorporates

sparse group lasso penalty.

Another dimension reduction method, the co-inertia analysis (CIA) [15] was applied by

Fagan et al. [16] for integrative analysis of two datasets, however the authors pointed out

that the method is suitable for the analysis of any number of datasets. CIA aims at finding

major directions or axes of the datasets having maximum covariance. The axis can be

obtained by various standard multivariate analysis techniques such as principle

components analysis (PCA) or correspondence analysis (CA). The axis pairs with the largest

covariance are supposed to represent common themes within the two datasets. GO

information was used as a supplement to facilitate biological interpretation. Actual feature

selection is not part of the CIA, though the elements of the weight vector of the dimension

reduction procedure can be ordered and the features corresponding to the top weights are

selected [9].

A method for the extraction of relevant biological correlations based on non-negative matrix

factorization (NMF) in the form described by Lee and Seung [17] is presented by Brunet et

al. [18]. They approximate the expression profiles of all genes in a datasets as

decomposition into a small number of metagenes and a weight-matrix. The samples can be

clustered based on the expression patterns of the metagenes. They also propose a criterion

for model selection to determine the number of metagenes used for the decomposition.

Zhang et al. [19] employed NMF for the factorization of more than one dataset at a time into

a matrix containing the shared building blocks and a weight-matrix for each of the datasets.

The factor-matrices are determined in an iterative update process minimizing the

approximation error given a predefined number of building blocks. The method aims at the

identification of multi-dimensional modules which are represented by features of all

datasets that show similar profiles across all or a subset of samples.
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1.3.2. Regression Based Methods

The term regression analysis refers to the process of determining a model describing a

relationship between a given set of data points [20]. A simple example for a regression

model is a line and the fitting process is called linear regression. The correlation between

two sets of OMICS data can be assessed with linear regression analysis as shown in [21].

The global correlation of two genome-scale datasets is usually close to zero, which means

there is hardly any correlation. In advance to the actual analysis the data has to be

transformed since the data usually is not normally distributed, otherwise the significance of

the correlation might not be estimated correctly [21].

Partial least squares regression (PLS) allows to retrieve major driving factors in the datasets

referred to as latent variables by maximizing the covariance between lower dimensional

projections of the datasets. Lê Cao [22] present a sparse version of PLS, an iterative

algorithm which is based on sparse SVD [23] introducing a soft-thresholding penalization

on the PLS loading vectors of each dataset. The method is demonstrated by applying it on

two datasets measured on the same samples. According to the author results obtained with

the presented approach are more promising compared to classical PLS.

1.3.3. Clustering Based Methods

Cluster analysis aims at grouping objects according to some similarity measure [24]. Shen

and colleagues [25] present an integrative clustering approach used for tumor subtype

discovery. The method is applicable to an arbitrary number of datasets of different types

and aims at determining latent variables representing disease driving factors responsible

for disease-subtypes. They use an integrative model named iCluster which was introduced

earlier [26]. In the so called loading matrix the coefficients of features are subjected to some

penalty term and those which do not contribute any information converge to zero. The

original datasets can be approximated using the identified variables which are common to

all data types.

Another method which results in a list of candidate genes is presented by Cao [27] and is
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called sparse representation based clustering (SRC). The feature vectors within the dataset

are assigned to a predefined number of clusters represented by sparse vectors. Membership

of a feature vector to a cluster is determined by the smallest distance to the group vector

employing the angle and the difference in length (L2-norm of the vectors) between the

feature and the group vector. After the clustering of all feature vectors, a significance

measure is used to select candidate features from the groups.

Gusenleitner et al. [28] introduce iterative Binary Bi-clustering of Gene sets (iBBiG) where

they apply bi-clustering to the results of gene set analysis (GSA) of multiple genome-

scale datasets. The method identifies clusters or modules by grouping samples with gene

expression profiles overrepresented in the same gene sets. The gene sets within a cluster

as well as the clusters themselves are ranked according to their homogeneity or their

information score respectively. Applied on breast cancer datasets, the majority of clusters

found could be associated to molecular subtypes. A mentionable advantage of iBBiG is that

the number of clusters is not required to be specified in advance.

1.3.4. Machine Learning Based methods

Machine learning algorithms are used to infer a model from parts of a given dataset

(trainings set) that is capable to predict/describe the pattern of the remaining data (test

set) as well [29]. The Random Forests approach (RF) [30] can be used to classify samples

of a dataset by the aid of classification trees. For appropriate classification of samples the

importance of features of either data type is estimated and can thus be employed for feature

selection. Reif et.al. [31] applied RF to combined genetic and proteomic data and asserted

that the combinatorial approach yields more promising results in selecting relevant features

for complex disease models than the individual analysis of large-scale datasets.

Weitschek et al. [32] presented a tool able to classify microarray experiments (samples). The

method comprises three major steps: discretization, feature selection and formula extraction

resulting in a set of logic formulas connecting features in conjunctive and disjunctive normal

form respectively. Originally developed for microarray data analysis the extension to other

genome-scale datasets is straight forward.

7
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1.4. Objectives

One of the major goals of integrative analysis methods in bioinformatics is the identification

of a small number of genes or other features evident to contribute to the development of

diseases. The presented thesis focuses on methods which actually analyze two or more

data sets at the same time, rather than methods where the result of the analysis of one

dataset serves as additional information to the second dataset. The focus is explicitly not on

the integration of meta-information available for samples. The methods under comparison

already involve a feature selection step and result in a flat list of candidate genes.

For the comparison, three integrative methods have been chosen which are based on

complementary mathematical concepts compared to the methods reviewed in the recent

work of Tomescu et al. [33] who compared co-inertia analysis, general singular value

decomposition and integrative biclustering. The methods were selected due to three criteria:

i) they are based on different mathematical concepts, ii) they are suitable for the extension to

an arbitrary number of genome-scale datasets and iii) access to the software implementation

is provided.

The specific goals of this thesis are:

• comprehensive understanding of the methods under comparison:

– sparse Canonical Correlation Analysis

– Non-Negative Matrix Factorization

– Microarray Logic Analyzer

• set-up of a software environment as an interface to the pre-implemented methods

• extraction of co-expression networks serving as basis for synthetic data

• synthetic data generation with the tool SynTReN

• application of methods on synthetic and biological data

• comparison of flat lists of candidate genes resulting from each method

• analysis of gene ontology terms associated with candidate genes

The set of candidate features resulting from each method might not be very congruent at

the most specific level, the gene level. In order to discover redundancies in the results of the

8
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three methods, the lists of candidates are compared on a more general level, the associated

Gene Ontology (GO) [34] terms. The comparison is expected to allow inferring an answer to

questions like: How big is the overlap of gene lists resulting from each method? How big is

the overlap of GO terms?

We hypothesize that the overlap produced by the gene lists resulting from sCCA and the

NMF will be grater than the overlap of either of these lists with the genes in the logic

formulas resulting from MALA. This is expected because sCCA and NMF both are applied

on three datasets of tumor samples and aim to find the similarities, while MALA is applied

on sets of tumor and normal samples and aims to discover the differences between them.
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2. Methods

In this chapter a comprehensive description of the materials, methods and tools used to

accomplish the comparison of three integrative analysis methods is provided. The first part

of the chapter deals with the mathematical concepts of the methods; the second part focuses

on the description of the structure and origin of the datasets the methods were applied

on.

2.1. Sparse Canonical Correlation Analysis

Sparse canonical correlation analysis (sCCA) represents a sparse version of the standard

Canonical Correlation Analysis (CCA) [8] which maximizes the correlation of the

projections of two datasets in a common space of reduced dimension. CCA has been

applied in various contexts to retrieve associations between two datasets by finding

projections of them that retain as much information as possible and at the same time

maximize the linear association between the projections. The determination of vectors

containing the weights for the linear combination of the original variables (canonical

weights) involves finding the eigenvalues and the corresponding eigenvectors of the

product of the covariance matrices of the datasets. There is an exact solution of CCA for two

datasets in case the number of observations (samples) is greater than the number of

variables (features) of either dataset. In case the number of variables exceeds the number of

observations, the vectors containing the canonical weights used in the projection are not

unique.

11
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The sCCA approach employed for the method comparison was presented by Witten et al.

who showed that sCCA can be reformulated as a penalized matrix decomposition (PMD)

problem [12]. Moreover, with PMD a sCCA of multiple datasets can be accomplished [35].

The steps of sCCA via PMD are summarized below.

Datasets are given as matrices with the samples in the rows and the features in the columns.

The columns are standardized to have mean equal to zero and standard deviation (SD)

equal to one. A matrix X can be represented as the product of its eigenvalues dk and left-

and right-eigenvectors uk and vk respectively. This is known as the singular value

decomposition (SVD) of a matrix. The best rank-r approximation X̂ of X in the sense of the

squared Frobenius norm

‖X− X̂‖2
F = ∑

i
∑

j
|xij − x̂ij|2 (2.1)

involves the r largest eigenvalues and their corresponding eigenvectors:

X̂ =
r

∑
k=1

dkukvT
k (2.2)

Correspondingly, the approximation of the product of two matrices X and Y that maximizes

the correlation involves the largest eigenvalues and the corresponding eigenvectors of the

matrix-product (see equation 2.3). It was shown that in the rank-1 approximation the left-

and right-eigenvector corresponding to the largest eigenvalue used in the approximation

are equal to the canonical weight-vectors u and v of the one-dimensional projection of the

two data matrices resulting from conventional CCA [12]. However, these vectors are not

unique if the number of features exceeds the number of samples.

maxu,vcor(Xu, Yv) is equal to

maxu,vuTXTYv subject to uTXTXu ≤ 1, vTYTYv ≤ 1
(2.3)

Introducing Sparseness

Witten et al. subject the vectors u and v in the decomposition of the matrix-product to

constraints (PMD) which results in a unique and sparse solution [12]. Additionally, they

12



2.1. Sparse Canonical Correlation Analysis

substitute XTX and YTY with the identity matrix I. This results in the sCCA criterion for

two datasets X and Y:

maxu,vuTXTYv subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2 (2.4)

with penalty functions Pi and tuning parameters ci chosen appropriately. For the data used

within the presented thesis P is always the L1 penalty also referred to as lasso penalty.

Assuming we have K datasets containing measurements of different sets of features pk on a

shared set of samples n, a generalized form of PMD is applied and can be formulated as

∑
i<j

wT
i XT

i Xjwj subject to wT
k XT

k Xkwk = 1 ∀k and wk ∈ Rpk . (2.5)

The K canonical weight-vectors w are obtained by solving the sparse multiple CCA criterion:

maxw1,...wK ∑
i<j

wT
i XT

i Xjwj subject to ‖wi‖2
2 ≤ 1, Pi(wi) ≤ ci∀i. (2.6)

The canonical weights are determined in an iterative approach where wi is updated in each

iteration until convergence:

wi ← argmaxwi
wT

i XT
i

(
∑
j 6=i

Xjwj

)
subject to ‖wi‖2 ≤ 1, Pi(wi) ≤ ci. (2.7)

The L1-penalty on a real vector w of length p is defined as:

P(w) = ‖w‖1 =
p

∑
i=1
|wi|. (2.8)

and w will be sparse if 1 ≤ c ≤ √p.

The resulting canonical weight-vectors are unique and sparse for appropriate penalty-

functions Pi and tuning parameters ci.

Parameter Selection

In a permutation framework, sets of tuning parameters are tested to assess the significance

of the canonical weight-vectors and to determine the best set of tuning parameters c1...K. For

a given K-dimensional set of tuning parameters the canonical weight-vectors wi and the

corresponding projections are calculated for the original datasets as well as for a number of

13
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datasets with randomly permuted samples. As test statistic the sum of pairwise correlations

between the projections of the datasets is used. The z-score, which is the standardized test

statistic and the p-value are determined. The p-value is given by the fraction of projections

of permuted datasets that results in a larger value of the test-statistic than the projections of

the original datasets. If there is a significant correlation between features across the original

datasets the p-value will be small. The set of tuning parameters corresponding to the

highest z-score and the lowest p-value is selected as set of best penalties on the canonical

weight-vectors. Alternatively, ci can be chosen arbitrarily to achieve a certain amount of

sparsity. Sparse means that many elements in the weight-vectors are equal to zero. The

non-zero weights indicate correlated features across datasets. These features can be

considered as candidates to be associated with certain attributes shared by the samples in

the datasets. The zero-weighted features in the projection of the dataset are thereby

assumed to be not as important as to contribute to the inherent structure of the data set.

The number of permutations is set to 100 (default 25). The number of permutations was

increased, because the SD of the test statistic is estimated from the permutations. The

parameter type, is set to standard because the features in the datasets are not ordered. As a

result, a lasso penalty is applied on the canonical weight-vectors. Other parameter settings

are left to the default values. The sets of tuning parameters tested and the corresponding

statistics for the synthetic datasets are listed in Table 2.1. Additionally, the calculated

correlations and z-scores of the tested sets are visualized in Figure 2.1. Employing the set of

tuning parameters corresponding to the highest z-score and the lowest p-value, which is

highlighted in Table 2.1, the canonical weight-vectors resulting from sCCA comprise 32, 134

and 3 non-zero elements respectively. Since the number of selected features in each datasets

is desired not to notedly exceed 5% of the total number of features in that datasets, the

tuning parameters are decreased to the values in Table 2.2 iteratively.
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Table 2.1.: Sets of tuning parameters for synthetic datasets tested in a permutation framework; c1, c2 and c3

represent the penalties on the canonical weight-vectors for the gene expression, the DNA-methylation

and the protein expression datasets respectively.

index c1 c2 c3 p-value z-score

1 1.97 4.97 1.10 0.15 0.778

2 3.51 8.84 1.47 0.13 0.867

3 5.05 12.70 2.11 0.68 -0.335

4 6.58 16.57 2.75 0.94 -1.348

5 8.12 20.44 3.39 0.91 -1.134

6 9.65 24.30 4.03 0.88 -1.078

7 11.19 28.17 4.67 0.91 -1.043

8 12.73 32.03 5.31 0.92 -0.971

9 14.26 35.90 5.96 0.90 -0.947

10 15.80 39.77 6.60 0.89 -0.949

Figure 2.1.: Statistics of tuning parameter sets tested for synthetic datasets.
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Table 2.2.: Set of tuning parameters for synthetic datasets adjusted in an adaptive process; c1, c2 and c3 represent

the penalties on the canonical weight-vectors for the gene expression, the DNA-methylation and the

protein expression datasets respectively.

c1 c2 c3

2.73 8.18 1.47

For the biological datasets, the calculated correlations and the z-scores of tuning parameter

sets tested in the permutation test are depicted in Figure 2.2. The set of best penalties which

is highlighted in Table 2.3 results in canonical weight-vectors with 8 242, 5 361 and 45

non-zero weights for the biological gene expression, DNA-methylation and protein

expression datasets respectively. The penalties on the canonical weight-vectors are hence

iteratively decreased to the values in Table 2.4 to reduce the number of selected features to

about 5% of the total number of features in the datasets.

Table 2.3.: Sets of tuning parameters for biological datasets tested in a permutation framework; c1, c2 and c3

represent the penalties on the canonical weight-vectors for the gene expression, the DNA-methylation

and the protein expression datasets respectively.

index c1 c2 c3 p-value z-score

1 14.06 11.67 1.10 0.14 0.944

2 25.00 20.75 1.93 0.07 1.421

3 35.93 29.83 2.78 0.02 1.941

4 46.87 38.91 3.62 0.01 2.641

5 57.80 47.99 4.47 0.00 3.099

6 68.74 57.07 5.31 0.00 3.186

7 79.67 66.15 6.16 0.00 3.156

8 90.61 75.23 7.00 0.00 3.114

9 101.55 84.31 7.85 0.00 3.006

10 112.48 93.38 8.69 0.00 2.830
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Figure 2.2.: Statistics of tuning parameter sets tested for biological datasets.

Table 2.4.: Set of tuning parameters for biological datasets adjusted in an adaptive process; c1, c2 and c3

represent the penalties on the canonical weight-vectors for the gene expression, the DNA-methylation

and the protein expression datasets respectively.

c1 c2 c3

25.78 20.61 1.77

Software

Sparse CCA for multiple datasets using PMD and the permutation framework for tuning

parameter selection is available as part of the R-package PMA (Penalized Multivariate

Analysis) [36].

2.2. Non-Negative Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF) techniques have been described in the literature

several times and in various contexts. For example Lee and Seung [17] used NMF to learn

the characteristic parts of faces applying NMF on a data set of facial images. Each face in

the data set can be approximated by the positively weighted sum of the learned
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characteristic parts.

The method employed for the comparison within the scope of this thesis was presented by

Zhang and colleagues [19] and aims to find correlative modules in multiple genome-scale

datasets. These so called multi-dimensional modules (md-modules) are subsets of features

within the analyzed datasets that show similar profiles in all or a subset of samples. The

large datasets are decomposed into building blocks of samples with shared attributes that

may reveal the inherent structure of the data. The method is suitable for the simultaneous

analysis of an arbitrary number of datasets. Here, a description of the algorithm for the

analysis of three datasets is provided.

Given three matrices containing the measurements of a shared set of samples (rows) on a -

in general - different number of features (columns). The columns of the matrices are

standardized to have mean equal to zero and SD equal to one and the elements of the

matrices are scaled so that all matrices have equal Frobenius norm. The method expects

input matrices to contain only non-negative elements, hence, according to Kim and Tidor

[37] the columns of the matrices were doubled. The first column contains all originally

positive elements while the second column contains the absolute value of all originally

negative elements. The remaining elements are set to zero. The concept of NMF is based on

the fact that a non-negative matrix X of dimension M × N can be decomposed in two

non-negative factor matrices W and H, with W(M× K) containing the K basis vectors and

H(K × N) containing the K coefficient vectors comprising the weights of the building

blocks in W. The columns of X are then approximated by the positively weighted linear

combination of the K basis vectors. The weights of the linear combination contained in the

matrix H encode for strong or weak presence of the building blocks in the columns of X

(features). The matrices W and H are chosen so that they minimize the reconstruction error

of the data matrix measured in terms of the squared Frobenius norm:

F(W, H) = ‖X−WH‖2
F. (2.9)

The joint NMF criterion to determine the best factor matrices W and H1, H2 and H3 in

the case of three datasets X1, X2 and X3 measured on the same set of M samples with
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dimensions M× N1, M× N2 and M× N3 respectively, can be formulated as

min
3

∑
I=1
‖XI −WHI‖2

F. (2.10)

The factorization results in the shared matrix W containing the building blocks common

to all datasets and the three different matrices H1, H2, H3 where each row represents a

coefficient vector containing the weights of the building blocks.

The matrices W and H are randomly initialized and to minimize the joint reconstruction

error in equation 2.10 they are iteratively computed using multiplicative update rules. By this

procedure only a local minimum of the objective function is found and thus, the calculation

of the factor matrices has to be repeated starting from different random initializations and

choosing those which result in the smallest reconstruction error.

Discovery of Multi-Dimensional Modules

To determine membership of a feature in a md-module the coefficient matrices H1, H2, H3

can be used. For this purpose the z-score for each element in the rows of H is calculated

as:

zij =
xij − µi

σi
(2.11)

where µi is the median and σi is the median absolute deviation (MAD) of the elements in the

i-th row of H. Similarly, the z-score for the elements in the columns of W can be calculated

using the median and the MAD of the elements in the columns of W. A feature is assigned

to a md-module if the z-score is greater than a given threshold.

Parameter Selection

The number of building blocks, which is at the same time the number of resulting

md-modules is problem-dependent and is usually chosen to be K < min(M, Ni). However,

since the method aims to reduce the complexity of the data, the number of building blocks

K is in general desired to be rather small. Additionally, the choice of the number of building

blocks K is suggested to be based on three empirical factors: the trend of the reconstruction
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error changing with the number of building blocks, the rate of significant vertical

correlations within md-modules and the significance of an enrichment analysis of modules.

Due to reasons of time only the trend of the reconstruction error was used. In the sense of

Kim and Tidor [37], the reconstruction error resulting from NMF is compared with the

reconstruction error resulting from the SVD of random datasets with elements stemming

from the same distribution as the original ones. The reconstruction error of a dataset is

defined as the sum of squared differences between the elements of the original and the

reconstructed dataset. The percentage of reconstruction error is specified as the

reconstruction error related to the sum of squared elements in the original dataset. As

suggested by Kim and Tidor [37], the parameter K is selected as the number of building

blocks where the absolute value of the slope of the reconstruction error of the NMF of the

original dataset turns lower or equal to the slope of the reconstruction error of the SVD of

the random datasets.

The plots of reconstruction errors for each of the synthetic datasets are displayed in

Figure 2.3.

The number of building blocks K used in the NMF of the synthetic datasets was chosen to be

5, which is the average number of building blocks derived from the slope of reconstruction

errors in Figure 2.3. The plots of reconstruction errors for the biological datasets are shown

in Figure 2.4.
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Figure 2.3.: Comparison of reconstruction error of NMF of original datasets and SVD of random datasets for

synthetic data.
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Figure 2.4.: Comparison of reconstruction errors of NMF of original datasets and SVD of random datasets for

biological data.

The average number of building blocks derived from Figure 2.4 is 15, which was used as K

in the NMF of the biological datasets.

For the choice of a suitable threshold T used to a assign the features/samples to a

md-module, the consideration of the fold-change of the enrichment ratio of the gene

module within a md-module and randomly constructed modules for a range of thresholds

is suggested. The enrichment of gene modules is determined as the number of significantly

over-represented (p-value lower than 0.05) GO biological processes associated with the

genes comprised by the modules. The number of genes assigned to a module depends on

the selected threshold. The enrichment ratio of a module is obtained as the enrichment at a
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certain threshold in relation to the maximum enrichment. The enrichment ratio is calculated

for the gene modules derived by NMF as well as for 100 random modules of the same size.

The fold-change of enrichment ratios is obtained as the quotient of enrichment ratios of the

original modules and the averaged enrichment ratios of the random modules. High

functional homogeneity of a module is indicated by a large fold-change of enrichment

ratios.

The choice of parameter T for the NMF of synthetic datasets was based on the analysis of

enrichment ratios of derived md-module for T in the range of 2 to 5. At a threshold of 5 or

higher, hardly any features are assigned to the md-modules. The enrichment ratios and fold

changes of enrichment ratios of gene module 1, as an example for considerable functional

homogeneity and module 5, as an example for poor functional homogeneity are illustrated

in Figures 2.5 and 2.6. The plots of enrichment ratios and corresponding fold changes of all

5 modules are given in appendix B. According to the enrichment ratios of the gene modules

the NMF of synthetic datasets was conducted with parameter T set to 3.
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Figure 2.5.: Enrichment ratios and fold change of enrichment ratios of gene module 1 in synthetic data at

different thresholds.
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Figure 2.6.: Enrichment ratios and fold change of enrichment ratios of gene module 5 in synthetic data at

different thresholds.

The parameter T for the NMF of biological datasets was chosen according to the enrichment

ratios and fold change of enrichment ratios of the derived gene modules at values of T in

the range of 2 to 6. In the work of Zhang et al. [19] the enrichment ratio was assessed for T

in the range of 2 to 7 and the best threshold was derived to be at 5. Due to the large effort of

time required by the enrichment analysis, the upper limit of T was set to 6. The enrichment

ratios and fold changes of enrichment ratios of modules 3, as an example for considerable
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functional homogeneity and 12, as an example for poor functional homogeneity are

illustrated in Figures 2.7 and 2.8. The plots of enrichment ratios and corresponding fold

changes of all 15 modules are given in appendix C.

According to the enrichment ratios of the gene modules the NMF of biological datasets was

conducted with parameter T set to 4.5.
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Figure 2.7.: Enrichment ratios and fold change of enrichment ratios of gene module 3 in biological data at

different thresholds.

Feature Selection

The identified md-modules are analyzed in regard to their functional homogeneity. The

functional homogeneity is assessed by enrichment analysis of GO biological processes. The

features comprised by the md-modules with the best functional homogeneity represent the

set of selected features. As good functional homogeneity is indicated by a high fold-change

of enrichment ratios, module 1 is selected in the synthetic dataset and module 3 is selected

in the biological dataset. The features contained in these modules are considered as the

resulting set of selected features by the NMF in the synthetic and the biological datasets

respectively.
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Figure 2.8.: Enrichment ratios and fold change of enrichment ratios of gene module 12 in biological data at

different thresholds.

Software

The method has been implemented for the application on three datasets as a Matlab R©

(Mathworks Inc., Natick, USA) software package and is available as a supplement of the

work by Zhang et. al [19]. The selection of parameters K and T and the feature selection

are not part of the implementation. These were implemented in R as part of this master’s

thesis.

Parameter Settings

In order to determine a good number of building blocks K, the trend of reconstruction

error of NMF was obtained with the following settings: For each K in the range of 2 ≤ K ≤

min(M, Ni), 10 random initializations of W, H1, H2 and H3 are iteratively updated 100 times

and the lowest reconstruction error among the 10 runs is reported. The actual calculation

of the NMF is conducted with 50 random initializations of the factor matrices and 1000

iterations in each case.
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2.3. Microarray Logic Analyzer (MALA)

The application of a logic data mining approach comprising the steps of MALA was

described among others by Arisi et al. [38]. The MALA software has been developed for the

analysis of large microarray gene expression datasets by Weitschek et al. [32], however it is

suitable for the application on data of any format. To accomplish the integrative analysis of

large-scale datasets with MALA, the features of the different data types are concatenated.

The two major goals of the method are the gene clustering to reduce the number of features

and the classification of samples, that is the differentiation of tissue samples from healthy

and ill patients. MALA is based on a machine learning approach and results in a number of

logic formulas which can be used to classify samples. MALA comprises three major steps: i)

the discretization of features and an optional discrete clustering analysis, ii) the selection of

the most relevant (clusters) of genes (feature selection), and iii) the assembly of the logic

formulas (formula extraction). MALA accepts as input a comma separated value file (csv)

with the expression profiles of the features in the rows and the individual class-labeled

samples in the columns of the dataset. The three analysis steps mentioned above are executed

on a subset of samples (training set) and the performance of the classification model is

assessed on the remaining samples (test set). The output of MALA comprises a number of

files reporting the gene clusters and their sizes in case clustering was done; the classification

model as logic formulas; statistical parameters of the model evaluation. For the method

comparison, the logic formulas are of special interest, since they consist of the desired

candidate features. The steps of the procedure to obtain the logic formulas are summarized

in the current section. They are described in detail in [39] and related publications [40, 41].

Discretization and Clustering

The classification algorithm employed by MALA expects the data to be available in a

binarized form. Thus, as a first step the features of the datasets have to be discretized [39, 42].

The discretization can be accomplished in two ways, by a supervised or an unsupervised

initialization. Owing to the structure of the datasets, the unsupervised discretization is

employed: For each feature, a set of equally sized intervals, symmetric around the mean
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expression level and with size depending on the standard deviation, are defined. The term

unsupervised in this context indicates that the class-labels of the samples do not have any

influence on the choice of the limits of the intervals. For each sample the value of the original

feature is mapped on the intervals. The initial number of intervals has to be specified by

the user. The number of intervals for each original feature can be reduced according to

the following criteria: i) empty intervals are eliminated, ii) two adjacent intervals can be

merged if both contain predominantly samples of the same class, iii) an interval can be joint

with an adjacent interval, if very few samples of any class are mapped to it. The resulting

intervals for each original feature can be represented by a set of binary features. The value

of a binary feature is set to one if the expression level of a sample falls within the limits of

the corresponding interval, or is set to zero otherwise. Features with the same binary map

may be clustered.

Feature Selection

The feature selection (FS) step aims to identify a subset of features suitable to differentiate

between the - in our case - two classes of samples. In the binary domain such a feature set

can be found by solving a combinatorial problem termed as Set Covering Problem [39]. We

consider a dataset of m samples of classes A and B and n features. The binary features can

take on two possible values: {0, 1}. Denoting feature i of a sample h as fih then a feature fi is

able to discriminate (cover) a pair of samples k, h if fik 6= fih. In this case, feature i is added

to the set of selected features. The problem of finding a feature set of minimal size where all

pairs k, h with sample k belonging to class A and h belonging to class B are covered by at

least one feature, can be mathematically formulated as:

min
n

∑
i=1

xi

n

∑
i=1

aijxi ≥ 1

xi ∈ {0, 1}, i = 1 . . . n, j = 1 . . . M,

(2.12)

with xi = 1 if fi is selected and 0 otherwise; M the number of sample pairs k, h; and aij

is equal to one if feature i covers pair j. In order to improve the expected classification
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performance a certain amount of redundancy α can be introduced by selecting more than

one feature to cover each pair of samples. MALA implements a modified version of the

optimization problem in equation 2.12 where the number (β) of features to be selected is

specified in advance and the redundancy α is maximized:

n

∑
i=1

xi ≤ β

max α

n

∑
i=1

aijxi − α ≥ 0

xi ∈ {0, 1} i = 1 . . . n, j = 1 . . . M

(2.13)

MALA is also able to find an approximate solution of the set covering problem. The

corresponding algorithm is based on the probability that a feature is present {1} or absent

{0} in the samples of a class. If a feature is present in a sample and it is more likely that it

is present in the samples of class A then the sample under consideration is classified as

member of class A.

Due to the large number of features in the dataset, it is not possible to find an optimal

solution for equation 2.13. In order to obtain an approximation of the optimal solution a

heuristic approach, the efficient Greedy Randomized Adaptive Search Procedure (GRASP)

[39, 43] is used instead. A GRASP iteration comprises two phases, the construction phase

and a local search phase. In the first phase, a feasible solution is constructed adding one

feature at a time. The features to be added are randomly picked from a restricted candidate

list (RCL). The RCL is obtained by ordering all features according to a greedy function and

considering a best ranked proportion of features. Depending on the portion of features in

the restricted candidate list, the solution renders more greedy (shorter RCL) or more

random (larger RCL). The greedy function takes into account the benefit of adding a feature

to the solution, that is the number of sample pairs to be additionally covered by adding that

feature. The RCL is updated each time a feature has been added. The maximum number of

features to be selected is limited to the parameter β. In the second phase of the GRASP

iteration, the local neighborhood structure is searched for a better solution compared to the

one constructed in phase one and - if a better solution was found - is replaced by the best

solution in the neighborhood. Finally, the best solution across all GRASP iterations is kept
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as the solution to the proposed FS problem. The pseudo-code of GRASP is depicted in

listing 2.1.

Listing 2.1: Pseudo-code of GRASP heuristic from Bertolazzi et al. [39]

1 procedure GRASP( MaxIterat ions )

2 for i = 1 , . . . , MaxI terat ions do

3 Build a greedy randomized s o l u t i o n x ;

4 x ← LocalSearch ( x ) ;

5 i f i = 1 then x∗ ← x ;

6 e lse i f w( x ) < w( x∗ ) then x∗ ← x ;

7 end ;

8 return ( x∗ ) ;

9 end GRASP;

Formula Extraction

In this step, a number of classification rules is inferred from the list of candidate features

resulting from the FS step. The features are assembled in a number of logic formulas in

Disjunctive Normal Form (DNF) of type: if feature x is in the value range R1 AND feature y is

in the value range R2 OR feature z is in the value range R3 then the sample under consideration is

classified as member of class A. To do so, MALA employs the learning system Lsquare described

by Felici and Truemper [41]. The problem of finding the classification rules is formulated

as a minimum cost satisfiability problem (MINSAT). The solution of the MINSAT problem

is described in [44]. The features comprised by a conjunctive clause are of interest because

they may account for the main molecular-biological differences between the classes.
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Software

MALA is available as a software package written in ANSI C. A compiled command line

version was used under Linux and Windows operating systems. The parameter settings of

MALA can be changed by editing a text file (./MALA/parameters.dat).

Parameter Settings

The clustering of features is deactivated. As sampling type, random percentage split is

selected. This means that a specified percentage of samples in the dataset is randomly

selected and assigned to the trainings set. The percentage of samples to be selected for

training is set to 80. The number of subsets (how many times should the dataset be split in

training and test set) is set to the maximum of 100 for the biological dataset and to 10 for

the synthetic dataset respectively. These values have been chosen to obtain a number of

selected features comparable with the other methods. The set of selected features resulting

from MALA is the accumulation of the features selected in each subset. The number of

initial intervals for the feature discretization is left to the default of 7. In order to find not

just an approximate solution of the feature selection problem, the type of the set covering

problem is chosen to be quadratic. The maximum number of features to be chosen during

the feature selection step β is set to the maximum of 50. The number of seconds and the

number of GRASP iterations to be dedicated to the resolution of the feature selection

problem are limited to 960 seconds (maximum value) and to 10 000/1 000 iterations for the

biological/synthetic dataset respectively. The values have been set to the maximum for the

biological datasets because it was expected that with a larger effort dedicated to the feature

selection problem, the performance of the resulting classification model could be improved.

The classification model for the synthetic datasets performed quite satisfyingly even at a

lower effort than the maximum. The proportion of top ranked features to be included in the

RCL is set to the default value of 60%. The costs of the inclusion of literals into the logic

formulas are set to a minimum and the extent of the result in terms of numbers of literals

and clauses comprised by the logic formulas is set to be maximized.
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The performance of the classification model derived by MALA is characterized by the

averaged number of correctly, wrong and not classified elements within training and test

sets. For the synthetic datasets the average performance of the extracted logic formulas of

10 subsets are given in Table 2.5. The performance statistics of the extracted logic formulas

of 100 subsets in the biological datasets are summarized in Table 2.6.

Table 2.5.: Average number of correctly, wrong, and not classified elements in a training and test sets of synthetic

data

Training Test

% correct wrong not correct wrong not

mean 99.17 0.21 0.62 59.58 17.08 23.33

sd 1.02 0.42 0.95 25.76 13.10 13.33

Table 2.6.: Average number of correctly, wrong, and not classified elements in training and test sets of biological

data

Training Test

% correct wrong not correct wrong not

mean 77.46 0.41 22.12 38.59 3.09 58.32

sd 29.22 3.18 29.02 16.56 4.93 17.70

2.4. Comparison of Methods

The software implementations of the three integrative analysis methods are made available

in an environment implemented in R Project for Statistical Computing [45] language. The

resulting sets of features and GO terms and their overlaps are visualized with the R package

VennDiagram [46]. The flat lists of candidate genes resulting from the three integrative

analysis methods are compared to the genes in the Pathways in Cancer pathway from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [47] PATHWAY Database accessible via

the Bioconductor [48, 49] package graphite [50]. Additionally, an over-representation analysis

of annotated GO terms in three different categories is conducted. The over-representation

analysis is accomplished with the Bioconductor packages GOstats [51] and org.Hs.eg.db

[52]. The lists of candidate gene symbols are mapped to Entrez Gene identifiers (Entrez
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IDs). Gene symbols which can not be mapped to an Entrez ID are omitted and duplicated

Entrez IDs are removed. As gene universe, the whole set of Entrez IDs from the genome

wide annotation in the human organism is used. The significance of over-representation is

assessed with a hypergeometric test employing the GO terms associated to the genes in

the universe and the GO terms associated to the candidate genes. The p-value cut-off for

significant over-representation is set to 0.01. For the analysis, GO terms with a minimum

category size of 5 are considered.

2.5. Data Sets

2.5.1. Synthetic Data

The synthetic data generation was accomplished with the tool SynTReN [53] which was

designed for the simulation of large gene expression datasets based on transcriptional

regulatory networks. The topology of a network is characterized by its structure, that is the

nodes included in the network and the connecting edges between the nodes representing

the mode of interaction. SynTReN derives a model for a network topology based on a list

of pair-wise interacting nodes and by quantitative modeling of interactions between the

nodes. Based on the network model the data simulation with SynTReN results in synthetic

microarray datasets.

The structure of the basis networks for the simulation is inferred from the biological datasets.

The network extraction process is described in the following. One network is derived based

on the gene expression in tumor samples, the gene expression in normal samples, the DNA-

methylation in tumor samples, the DNA-methylation in normal samples and the protein

expression in tumor samples respectively. There is no protein expression data available

for normal tissue samples in the biological datasets. The five resulting networks serve as

basis for the generation of the synthetic microarray datasets referred to as gene expression,

DNA-methylation and protein expression datasets. Since the biological datasets comprise 52

samples the number of samples to produce in the data simulation process is limited to 60.
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2. Methods

The number of features in each dataset corresponds to the number of nodes provided in the

basis network.

Preliminaries for Data Simulation: Gene Regulatory Network Inference

The structure of the networks to serve as basis for the synthetic data generation with

SynTReN is inferred from the biological datasets described in subsection 2.5.2. The five

datasets obtained after preprocessing represent expression profiles of features. They are

used to identify features with similar expression profiles under certain conditions. These

co-expressed features are supposed to be connected or to be co-regulated in the underlying

transcriptional regulatory network. To identify co-expressed genes in each of the five subsets,

the pair-wise correlation between the expression profiles of features was calculated in terms

of Spearman’s correlation coefficient and the significance of the correlation was assessed by

the application of a correlation test. A multiple testing correction of p-values was conducted

according to the method by Benjamini & Hochberg [54] which is available as part of the

build-in R-function cor.test(). From each of the five subsets a co-expression network was

derived for different cut-off values of the Spearman’s correlation coefficient in the range of

0.5 to 0.9 in steps of 0.1. An overview of the resulting network sizes is provided in Tables 2.7,

2.8 and 2.9. Results of the analysis of centrality measures of the inferred networks are given

in appendix A. Due to limited computational memory resources and the large number of

edges, the cut-off for the Spearman’s correlation coefficient was set to 0.9 for all networks

except the network derived from the protein expression dataset, where the cut-off was

set to 0.5. Based on these networks, 5 datasets are simulated comprising 60 samples and

390/2 748 features in the datasets based on the co-expression networks derived from the

gene expression datasets of tumor/normal tissue; 2 471/2 809 features in the datasets based

on the co-expression network derived from the DNA-methylation datasets of tumor/normal

tissue; and 68 features in the dataset based on the co-expression network derived from the

protein expression dataset of tumor tissue.
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2.5. Data Sets

Table 2.7.: Size of co-expression networks inferred from gene expression data based on Spearman’s correlation

coefficient.

tumor normal

cut-off vertices edges vertices edges

0.5 14 352 1 259 030 17 019 13 609 703

0.6 10 395 320 218 16 166 9 082 193

0.7 5 749 81 168 13 762 2 867 084

0.8 2 042 16 611 9 469 455 458

0.9 390 1 171 2 748 15 894

Table 2.8.: Size of co-expression networks inferred from DNA-methylation data based on Spearman’s correlation

coefficient.

tumor normal

cut-off vertices edges vertices edges

0.5 9 671 2 343 699 12 996 5 949 001

0.6 7 005 627 017 11 539 2 341 900

0.7 4 852 71 545 8 701 542 535

0.8 3 052 4 418 5 163 71 746

0.9 2 471 1 594 2 809 3 004
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2. Methods

Table 2.9.: Size of co-expression network inferred from protein expression data based on Spearman’s correlation

coefficient.

tumor

cut-off vertices edges

0.5 68 166

0.6 45 52

0.7 23 17

0.8 13 8

0.9 9 6
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2.5. Data Sets

SynTReN - Microarray Simulation Tool

The major steps in the simulation process are depicted in Figure 2.9.

Figure 2.9.: SynTReN data generation process. Figure adapted from Van den Bulcke et al. [53].
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The network structure must be provided as a sif -file [55] with the pairs of nodes interacting

in the network contained in the lines. All nodes specified in the sif -file should be included

in the simulated network (parameters createGeneNetwork and selectSubnetwork). The

interaction on transcriptional regulatory level between the nodes in each pair is modeled by

the assignment of a transition function to the corresponding edge. The transition function

defines the dependency of the mRNA level of a gene from the mRNA level of its input

nodes. It can optionally be superposed by biological noise (parameter bioNoise), that

mimics the stochastic variations in gene expression. The regulatory interaction type between

the nodes can directly be specified in the sif -file (parameter useEdgeTypesFromSIF) or

can be chosen randomly as either activating or inhibiting with weighted probabilities

(parameter percentActivators). A value of 50% activating interactions is chosen according to

the findings for human gene networks in [56]. Two additional user-definable parameters

(interactionCategory and higherOrderProbability) describe the complexity of interactions

of nodes in the network. They define the steepness of interactions and the probability to

chose a complex interaction to be assigned to an edge respectively. In order to generate

different samples, an arbitrary expression level is assigned to nodes defined as externals

(parameters fixedExternals and externalInputValues). If the parameter nrExternals is set to -1,

all top nodes (nodes which lack of input nodes) are assumed to be externals. None of them

will show correlated behavior (parameter nrCorrelatedExternals). Since they are randomly

sampled from a uniform distribution, there is no noise added to the input signals (parameter

inputNoise). Given a certain constellation of values for the externals, subsequently the

mRNA expression level for each gene in the network is derived. Finally, the experimental

noise in the microarray data is simulated by adding a user-defined amount of noise from a

lognormal distribution. The parameters used for the synthetic data generation are listed in

Table 2.10. As emphasized by the authors, SynTReN outperforms other network simulators

regarding the similarity with real biological networks, which is measured in terms of

statistical properties and the computational performance, which is a linear function of the

number of nodes in the network. SynTReN was implemented in Java and it is available for

download. It is embedded in the R environment for the method comparison with a wrapper

implemented by de Matos Simoes [57].
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2.5. Data Sets

Table 2.10.: User-definable parameters and their values used for the synthetic data generation.

parameter value

createGeneNetwork true
selectSubnetwork false
fixedExternals false
useEdgeTypesFromSIF false
percentActivators 0.5
interactionCategory SIGMOIDAL
higherOrderProbability 0.3
nrExternals -1
nrCorrelatedExternals 0

externalInputValues RANDOMIZED
bioNoise 0.05

inputNoise 0.00

expNoise 0.01

nrExperiments 60

nrSamplesPerExp 1

2.5.2. Biological Data

The biological datasets employed for the analysis were downloaded from The Cancer

Genome Atlas (TCGA) using an open source software for retrieving and processing TCGA

data [58] which makes use of the R package httr [59]. The data sets comprise gene expression

data for 20 531 genes measured on 1 160 samples; DNA-methylation data from 29 988 loci

measured in 1 204 samples and protein expression data from 152 proteins measured in 410

samples. The samples originate from patients suffering from breast invasive carcionoma

and were obtained either from tissue of the primary tumor or from adjacent normal tissue.

A negligible small number of samples originate from other tissue types such as metastatic

tissue or from cell line control. These samples are not considered in the analysis. The features

in the datasets are associated with a gene symbol by default, which serves as common

reference for the features between the datasets.

The data provided at TCGA was obtained by analysis of tumor and normal tissue on three

different biological levels. The gene expression dataset reflects the signal due to the mRNA

level in the tissue under study. The DNA-methylation dataset represents the percentage

of reads where the cytosine base at a position on the DNA is methylated. A methylated

position on the DNA may influence the expression level of nearby genes [60] and can
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hence be flagged with a gene symbol. Since the addition of a methyl group is supposed

to down-regulate the expression of the associated gene, the values in the dataset have

been transformed in such a way that x′ = 1− x. With this transformation it is guaranteed

that hight values in all datasets have a similar molecular-biological meaning. The protein

expression dataset contains the normalized protein expression level of each gene per sample.

The datasets are subjected to comprehensive preprocessing including the following steps:

i) remove features not associated to a gene symbol; ii) split the datasets into tumor and

normal samples; iii) remove incomplete cases, that is remove features containing NAs and

those containing only zero-values; iv) replace sets of features associated with the same gene

symbol within a dataset by one single merged feature representing the mean of all redundant

features with non-zero variances. The preprocessing results in five subsets which are i) gene

expression in tumor samples; ii) gene expression in normal samples; iii) DNA-methylation in

tumor samples; iv) DNA-methylation in normal samples and v) protein expression in tumor

samples. There is no protein expression data available for normal tissue samples. In the next

step, the subsets were reduced to contain only samples (patients) where data is available

in all five subsets. This results in five subsets comprising 52 samples and 19 769/19 716

features in the gene expression dataset of tumor/normal tissue; 13 627/14 300 features

in the DNA-methylation dataset of tumor/normal tissue; and 118 features in the protein

expression dataset of tumor tissue.
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3. Results

The results of the application of three integrative analysis methods on synthetic and

biological datasets are presented in this chapter. The results are divided in two categories:

results on synthetic data and results on biological data. On the most specific level, the gene

level, each method yields a list of candidate genes. For the biological data, the candidate

genes selected by the methods are compared to a set of genes known to be involved in the

Pathways in cancer pathway from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

PATHWAY Database [47]. For each category, over-represented GO terms in three GO

categories: biological process (BP), molecular function (MF) and cellular component (CC)

associated with the selected candidate genes are identified. The resulting sets of genes and

GO terms are compared to each other and their overlaps are illustrated as Venn diagrams.

3.1. Synthetic Data

3.1.1. Sparse Canonical Correlation Analysis

The sCCA results in canonical weight-vectors with 20, 119 and 3 non-zero weights for the

gene expression (GE), the DNA-methylation (MET) and the protein expression (PE) datasets

respectively. The number of non-zero elements in the canonical weight-vectors corresponds

to the number of selected features in the associated dataset. The total number of candidate

features selected by sCCA is the unified sum (the merged set) of the selected features in

each dataset and is 142. The number of over-represented GO terms in each category which

are associated with the selected genes from each data set as well as with the merged set of

selected genes are listed in Table 3.1.
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3. Results

Table 3.1.: Number of over-represented GO terms (p-value < 0.01) in each category derived from genes selected

by sCCA.

GO category merged GE MET PE

BP 79 103 34 103

MF 23 4 23 16

CC 6 8 11 5

As an example, GO BP terms with category size between 5 and 100 are listed in Table 3.2,

GO MF terms with category size between 5 and 1 000 are shown in Table 3.3 and GO

CC terms with category size between 5 and 1 000 are presented in Table 3.4. These terms

represent the most specific terms derived from the sCCA results.

Table 3.2.: GO BP (p-value < 0.01) associated with genes selected by sCCA of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0002863 9 positive regulation of inflammatory response to antigenic stimulus
GO:0010388 9 cullin deneddylation
GO:0070208 11 protein heterotrimerization
GO:0000338 12 protein deneddylation
GO:0002922 13 positive regulation of humoral immune response
GO:0051383 14 kinetochore organization
GO:0033151 15 V(D)J recombination
GO:0031579 16 membrane raft organization
GO:0006907 17 pinocytosis
GO:1902187 17 negative regulation of viral release from host cell
GO:0032878 19 regulation of establishment or maintenance of cell polarity
GO:0002861 20 regulation of inflammatory response to antigenic stimulus
GO:0007289 20 spermatid nucleus differentiation
GO:0042119 22 neutrophil activation
GO:1901890 22 positive regulation of cell junction assembly
GO:0014009 23 glial cell proliferation
GO:0043267 23 negative regulation of potassium ion transport
GO:2000403 23 positive regulation of lymphocyte migration
GO:0007339 37 binding of sperm to zona pellucida
GO:0043551 37 regulation of phosphatidylinositol 3-kinase activity
GO:1903727 38 positive regulation of phospholipid metabolic process
GO:0043550 44 regulation of lipid kinase activity
GO:0030433 47 ER-associated ubiquitin-dependent protein catabolic process
GO:0042116 47 macrophage activation
GO:0045428 48 regulation of nitric oxide biosynthetic process
GO:0035036 49 sperm-egg recognition
GO:1903725 55 regulation of phospholipid metabolic process
GO:1903426 55 regulation of reactive oxygen species biosynthetic process
GO:0006809 59 nitric oxide biosynthetic process
GO:0009988 61 cell-cell recognition
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Table 3.3.: GO MF (p-value < 0.01) associated with genes selected by sCCA of category size between 5 and 1 000

GO Slim Term Size GO Slim Term Description

GO:0031683 21 G-protein beta/gamma-subunit complex binding
GO:0004386 145 helicase activity
GO:0003924 246 GTPase activity
GO:0017111 753 nucleoside-triphosphatase activity
GO:0016462 792 pyrophosphatase activity
GO:0016818 794 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
GO:0016817 795 hydrolase activity, acting on acid anhydrides

Table 3.4.: GO CC (p-value < 0.01) associated with genes selected by sCCA of category size between 5 and 1 000

GO Slim Term Size GO Slim Term Description

GO:0042599 12 lamellar body
GO:0002080 21 acrosomal membrane

3.1.2. Non-Negative Matrix Factorization

The number of selected genes is 17 in the gene expression (GE) and 120 in the DNA-

methylation (MET) dataset. The selected md-module comprises no features in the protein

expression dataset. In total the NMF results in a merged set of 137 candidate genes. The

number of over-represented GO terms in each category associated with the genes selected

by NMF are listed in Table 3.5.

Table 3.5.: Number of over-represented GO terms (p-value < 0.01) in each category derived from genes selected

by NMF.

GO category merged GE MET

BP 141 312 37

MF 15 20 14

CC 9 32 5

As an example, GO BP terms with category size between 5 and 100 are listed in Table 3.6,

GO MF terms with category size between 5 and 1 000 are shown in Table 3.7 and GO

CC terms with category size between 5 and 1 000 are presented in Table 3.8. These terms

represent the most specific terms derived from the NMF results.
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Table 3.6.: GO BP (p-value < 0.01) associated with genes selected by NMF of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0002291 5 T cell activation via T cell receptor contact with antigen bound to MHC molecule on

antigen presenting cell
GO:0002767 5 immune response-inhibiting cell surface receptor signaling pathway
GO:0002309 6 T cell proliferation involved in immune response
GO:0002765 6 immune response-inhibiting signal transduction
GO:0030300 7 regulation of intestinal cholesterol absorption
GO:2001198 7 regulation of dendritic cell differentiation
GO:0060457 8 negative regulation of digestive system process
GO:2001030 8 negative regulation of cellular glucuronidation
GO:0052697 9 xenobiotic glucuronidation
GO:2001029 9 regulation of cellular glucuronidation
GO:0070493 10 thrombin receptor signaling pathway
GO:0001820 11 serotonin secretion
GO:0002664 11 regulation of T cell tolerance induction
GO:1903010 11 regulation of bone development
GO:0002517 12 T cell tolerance induction
GO:0032372 12 negative regulation of sterol transport
GO:0032375 12 negative regulation of cholesterol transport
GO:0002643 13 regulation of tolerance induction
GO:0030299 13 intestinal cholesterol absorption
GO:0045086 13 positive regulation of interleukin-2 biosynthetic process
GO:0030852 15 regulation of granulocyte differentiation
GO:0043931 15 ossification involved in bone maturation
GO:0001711 16 endodermal cell fate commitment
GO:0006837 16 serotonin transport
GO:0060236 17 regulation of mitotic spindle organization
GO:0070977 17 bone maturation
GO:0006882 18 cellular zinc ion homeostasis
GO:0044241 18 lipid digestion
GO:0002507 19 tolerance induction
GO:0045076 19 regulation of interleukin-2 biosynthetic process
GO:0055069 20 zinc ion homeostasis
GO:0009813 21 flavonoid biosynthetic process
GO:0052696 21 flavonoid glucuronidation
GO:0045671 21 negative regulation of osteoclast differentiation
GO:0048799 21 organ maturation
GO:0090224 21 regulation of spindle organization
GO:0042094 22 interleukin-2 biosynthetic process
GO:0043586 22 tongue development
GO:0045922 24 negative regulation of fatty acid metabolic process
GO:0050892 24 intestinal absorption
GO:0052695 25 cellular glucuronidation
GO:0006063 26 uronic acid metabolic process
GO:0019585 26 glucuronate metabolic process
GO:0009812 27 flavonoid metabolic process
GO:0097028 39 dendritic cell differentiation
GO:0002762 40 negative regulation of myeloid leukocyte differentiation
GO:0010677 42 negative regulation of cellular carbohydrate metabolic process
GO:2000107 43 negative regulation of leukocyte apoptotic process
GO:0045912 49 negative regulation of carbohydrate metabolic process
GO:0045670 57 regulation of osteoclast differentiation

44



3.1. Synthetic Data

GO Slim Term Size GO Slim Term Description

GO:0007052 61 mitotic spindle organization
GO:0046634 62 regulation of alpha-beta T cell activation
GO:0045582 64 positive regulation of T cell differentiation
GO:0042440 66 pigment metabolic process
GO:0007588 70 excretion
GO:0031295 75 T cell costimulation
GO:0031294 76 lymphocyte costimulation
GO:0045638 83 negative regulation of myeloid cell differentiation
GO:0042102 85 positive regulation of T cell proliferation
GO:0019886 93 antigen processing and presentation of exogenous peptide antigen via MHC class II
GO:0002495 97 antigen processing and presentation of peptide antigen via MHC class II
GO:0002504 98 antigen processing and presentation of peptide or polysaccharide antigen via MHC

class II

Table 3.7.: GO MF (p-value < 0.01) associated with genes selected by NMF of category size between 5 and 1 000

GO Slim Term Size GO Slim Term Description

GO:0032393 9 MHC class I receptor activity
GO:0008157 12 protein phosphatase 1 binding
GO:0042288 13 MHC class I protein binding
GO:0017127 18 cholesterol transporter activity
GO:0000993 19 RNA polymerase II core binding
GO:0015248 19 sterol transporter activity
GO:0001098 22 basal transcription machinery binding
GO:0001099 22 basal RNA polymerase II transcription machinery binding
GO:0043175 22 RNA polymerase core enzyme binding
GO:0042287 24 MHC protein binding
GO:0015020 34 glucuronosyltransferase activity
GO:0003823 107 antigen binding
GO:0016758 196 transferase activity, transferring hexosyl groups
GO:0003924 246 GTPase activity
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Table 3.8.: GO CC (p-value < 0.01) associated with genes selected by NMF of category size between 5 and 1 000

GO Slim Term Size GO Slim Term Description

GO:0043190 8 ATP-binding cassette (ABC) transporter complex
GO:0042613 16 MHC class II protein complex
GO:0042611 27 MHC protein complex
GO:0008023 42 transcription elongation factor complex
GO:0012507 42 ER to Golgi transport vesicle membrane
GO:0030134 52 ER to Golgi transport vesicle
GO:0030133 171 transport vesicle
GO:0009986 688 cell surface

3.1.3. Microarray Logic Analyzer

The logic formulas resulting from MALA comprise 13 genes from gene expression (GE) and

189 genes from the DNA-methylation (MET) dataset respectively. Due to the lack of protein

expression data from normal tissue, the protein expression dataset was not analyzed with

MALA. In total the merged selected feature set comprises 201 gene symbols. The numbers

of over-represented GO terms associated with genes in each dataset selected by MALA are

summarized in Table 3.9.

Table 3.9.: Number of over-represented GO terms (p-value < 0.01) in each category derived from genes selected

by MALA.

GO category merged GE MET

BP 24 48 19

MF 4 18 4

CC 21 12 16

As an example, GO BP terms with category size between 5 and 100 are listed in Table 3.10,

GO MF terms with category size between 5 and 1 000 are shown in Table 3.11 and GO

CC terms with category size between 5 and 1 000 are presented in Table 3.12. These terms

represent the most specific terms derived from the MALA results.
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Table 3.10.: GO BP (p-value < 0.01) associated with genes selected by MALA of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0031573 11 intra-S DNA damage checkpoint
GO:0009219 15 pyrimidine deoxyribonucleotide metabolic process
GO:1902230 27 negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage
GO:0006298 30 mismatch repair
GO:1902229 34 regulation of intrinsic apoptotic signaling pathway in response to DNA damage
GO:0030490 36 maturation of SSU-rRNA
GO:0031572 37 G2 DNA damage checkpoint
GO:0034080 42 CENP-A containing nucleosome assembly
GO:0061641 42 CENP-A containing chromatin organization
GO:0031055 44 chromatin remodeling at centromere
GO:2001021 44 negative regulation of response to DNA damage stimulus
GO:0042274 47 ribosomal small subunit biogenesis

Table 3.11.: GO MF (p-value < 0.01) associated with genes selected by MALA of category size between 5 and

1 000

GO Slim Term Size GO Slim Term Description

GO:0016627 55 oxidoreductase activity, acting on the CH-CH group of donors
GO:0003697 78 single-stranded DNA binding

Table 3.12.: GO CC (p-value < 0.01) associated with genes selected by MALA of category size between 5 and

1 000

GO Slim Term Size GO Slim Term Description

GO:0032300 11 mismatch repair complex
GO:0030686 24 90S preribosome
GO:0005771 31 multivesicular body
GO:0032040 31 small-subunit processome
GO:0030684 44 preribosome
GO:0044452 55 nucleolar part
GO:0000776 116 kinetochore
GO:0000775 167 chromosome, centromeric region
GO:0000793 186 condensed chromosome
GO:0098687 226 chromosomal region
GO:0005774 290 vacuolar membrane
GO:0005694 785 chromosome
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3.1.4. Comparison of Methods

The sets of genes selected by the three integrative analysis methods and the sets of over-

represented GO terms are compared for all merged data types in Figure 3.1. The genes

selected by two of three methods are listed in Table 3.13. There are no genes in the synthetic

datasets which were selected by all methods. The overlap of GO terms associated with the

genes selected by each method are presented in Tables 3.14, 3.15 and 3.16.

Figure 3.1.: Venn diagrams of gene sets merged from all data types and over-represented GO terms associated

with gene sets.

The sets of selected genes from each data type and sets of over-represented GO terms of
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Table 3.13.: Genes selected by two of three methods

Symbol Gene name sCCA NMF MALA

DERL2 derlin 2 X X
MIS12 MIS12 kinetochore complex component X X
MSTO1 misato 1, mitochondrial distribution and morphology regulator X X
SBDS Shwachman-Bodian-Diamond syndrome X X
TYW1 tRNA-yW synthesizing protein 1 homolog (S. cerevisiae) X X
UGT1A6 UDP glucuronosyltransferase 1 family, polypeptide A6 X X
ZSCAN29 zinc finger and SCAN domain containing 29 X X
GALK2 galactokinase 2 X X
LXN latexin X X
LYPD4 LY6/PLAUR domain containing 4 X X
MBD4 methyl-CpG binding domain protein 4 X X
MRPS18C mitochondrial ribosomal protein S18C X X
RBMXL3 RNA binding motif protein, X-linked-like 3 X X
TPT1 tumor protein, translationally-controlled 1 X X
TXNDC9 thioredoxin domain containing 9 X X
ABCG8 ATP-binding cassette, sub-family G (WHITE), member 8 X X
CNTD1 cyclin N-terminal domain containing 1 X X
DNAJC25-GNG10 DNAJC25-GNG10 readthrough X X
LRRC57 leucine rich repeat containing 57 X X
TRIM23 tripartite motif containing 23 X X
UBFD1 ubiquitin family domain containing 1 X X
USMG5 up-regulated during skeletal muscle growth 5 homolog (mouse) X X

categories BP, MF and CC associated with the selected genes are displayed in Figures 3.2,

3.3 and 3.4.
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Figure 3.2.: Venn diagrams of gene sets and over-represented GO terms extracted from the gene expression

dataset.
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Table 3.14.: Overlap of GO BP

GO Slim Term ID GO Slim Term Description sCCA NMF MALA

GO:0001775 cell activation X X
GO:0002376 immune system process X X
GO:0002682 regulation of immune system process X X
GO:0002684 positive regulation of immune system process X X
GO:0007159 leukocyte cell-cell adhesion X X
GO:0009605 response to external stimulus X X
GO:0042110 T cell activation X X
GO:0048534 hematopoietic or lymphoid organ development X X
GO:0070486 leukocyte aggregation X X
GO:0070489 T cell aggregation X X
GO:0071593 lymphocyte aggregation X X
GO:0000278 mitotic cell cycle X X
GO:0006974 cellular response to DNA damage stimulus X X
GO:0007049 cell cycle X X

Table 3.15.: Overlap of GO MF

GO Slim Term ID GO Slim Term Description sCCA NMF MALA

GO:0003723 RNA binding X X X
GO:0003924 GTPase activity X X

Table 3.16.: Overlap of GO CC

GO Slim Term ID GO Slim Term Description sCCA NMF MALA

GO:0044422 organelle part X X X
GO:0044446 intracellular organelle part X X

51



3. Results

Figure 3.3.: Venn diagrams of gene sets and over-represented GO terms extracted from the DNA-methylation

dataset.
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3.1. Synthetic Data

Figure 3.4.: Venn diagrams of gene sets and over-represented GO terms extracted from the protein expression

dataset.
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3.2. Biological Data

3.2.1. Sparse Canonical Correlation Analysis

The number of selected features (non-zero elements in the canonical weight-vectors) are

1 014 for the gene expression (GE), 690 for the DNA-methylation (MET) and 7 for the protein

expression (PE) dataset respectively.

Table 3.17.: Genes selected by sCCA known to be involved in cancer pathways.

Symbol Gene name

BCR breakpoint cluster region
CDKN2A cyclin-dependent kinase inhibitor 2A
DAPK2 death-associated protein kinase 2

E2F3 E2F transcription factor 3

FZD7 frizzled class receptor 7

LAMA1 laminin, alpha 1

LAMB1 laminin, beta 1

PLCG1 phospholipase C, gamma 1

PTCH1 patched 1

RALGDS ral guanine nucleotide dissociation stimulator
SKP2 S-phase kinase-associated protein 2, E3 ubiquitin protein ligase
SMO smoothened, frizzled class receptor
SOS2 son of sevenless homolog 2 (Drosophila)
TCF7L1 transcription factor 7-like 1 (T-cell specific, HMG-box)
TCF7L2 transcription factor 7-like 2 (T-cell specific, HMG-box)
WNT8B wingless-type MMTV integration site family, member 8B
EPAS1 endothelial PAS domain protein 1

RHOA ras homolog family member A
CSF1R colony stimulating factor 1 receptor
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)
FZD1 frizzled class receptor 1

IKBKB inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta
MYC v-myc avian myelocytomatosis viral oncogene homolog
CCDC6 coiled-coil domain containing 6

FGFR2 fibroblast growth factor receptor 2

FOXO1 forkhead box O1

MAX MYC associated factor X
AKT1 v-akt murine thymoma viral oncogene homolog 1

DVL2 dishevelled segment polarity protein 2

MAP2K2 mitogen-activated protein kinase kinase 2

PIK3R2 phosphoinositide-3-kinase, regulatory subunit 2 (beta)
PDGFB platelet-derived growth factor beta polypeptide
AR androgen receptor
BRAF B-Raf proto-oncogene, serine/threonine kinase
CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa
CCND1 cyclin D1

CCNE1 cyclin E1
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The merged and unified set of selected features comprises 1 663 genes. The intersection of

the merged gene set with known cancer genes from the KEGG database results in 37 genes.

They are listed in Table 3.17. The number of over-represented GO terms in each category

associated with the selected genes in each dataset and to the merged set of all selected genes

are listed in Table 3.18.

Table 3.18.: Number of over-represented GO terms (p-value < 0.01) in each category derived from genes selected

by sCCA.

GO category merged GE MET PE

BP 205 121 242 459

MF 38 35 28 40

CC 32 5 46 23

As an example, GO BP terms with category size between 5 and 10 are listed in Table 3.19, GO

MF terms with category size between 5 and 100 are shown in Table 3.20 and GO CC terms

with category size between 5 and 100 are presented in Table 3.21. These terms represent the

most specific terms derived from the sCCA results.

Table 3.19.: GO BP (p-value < 0.01) associated with genes selected by sCCA of category size between 5 and 10

GO Slim Term Size GO Slim Term Description

GO:0006824 5 cobalt ion transport
GO:0010757 5 negative regulation of plasminogen activation
GO:0060916 5 mesenchymal cell proliferation involved in lung development
GO:0071281 6 cellular response to iron ion
GO:0003149 6 membranous septum morphogenesis
GO:0009744 6 response to sucrose
GO:0034285 6 response to disaccharide
GO:0070141 6 response to UV-A
GO:0097210 6 response to gonadotropin-releasing hormone
GO:0097211 6 cellular response to gonadotropin-releasing hormone
GO:0036297 8 interstrand cross-link repair
GO:0048318 8 axial mesoderm development
GO:0002676 9 regulation of chronic inflammatory response
GO:0031507 9 heterochromatin assembly
GO:0010755 10 regulation of plasminogen activation
GO:0032988 10 ribonucleoprotein complex disassembly
GO:0051918 10 negative regulation of fibrinolysis
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Table 3.20.: GO MF (p-value < 0.01) associated with genes selected by sCCA of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0004630 6 phospholipase D activity
GO:0005247 10 voltage-gated chloride channel activity
GO:0005542 10 folic acid binding
GO:0008409 11 5’-3’ exonuclease activity
GO:0015168 11 glycerol transmembrane transporter activity
GO:0015250 11 water channel activity
GO:0015254 11 glycerol channel activity
GO:0008199 12 ferric iron binding
GO:0016538 20 cyclin-dependent protein serine/threonine kinase regulator activity
GO:0030507 25 spectrin binding
GO:0004004 37 ATP-dependent RNA helicase activity
GO:0008186 38 RNA-dependent ATPase activity
GO:0005089 77 Rho guanyl-nucleotide exchange factor activity

Table 3.21.: GO CC (p-value < 0.01) associated with genes selected by sCCA of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0042382 6 paraspeckles
GO:0005861 8 troponin complex
GO:0070688 8 MLL5-L complex
GO:0019908 9 nuclear cyclin-dependent protein kinase holoenzyme complex
GO:0032300 11 mismatch repair complex
GO:0097381 15 photoreceptor disc membrane
GO:0000307 20 cyclin-dependent protein kinase holoenzyme complex
GO:0005865 22 striated muscle thin filament
GO:0036379 25 myofilament
GO:0000791 29 euchromatin
GO:0009925 29 basal plasma membrane
GO:0045178 42 basal part of cell
GO:0001750 59 photoreceptor outer segment
GO:0000792 73 heterochromatin
GO:1902911 86 protein kinase complex
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3.2.2. Non-Negative Matrix Factorization

The selected feature sets in the gene expression (GE), the DNA-methylation (MET) and

the protein expression (PE) dataset comprise 664, 478 and 5 genes respectively. The total

number of genes selected by NMF is the unified sum of the three sets (merged) and is 1 127.

The 25 genes selected by NMF which are involved in pathways in cancer are displayed in

Table 3.22.

Table 3.22.: Genes selected by NMF which are known to be involved in cancer pathways.

Symbol Gene name

CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1)
FGF19 fibroblast growth factor 19

FIGF c-fos induced growth factor (vascular endothelial growth factor D)
HHIP hedgehog interacting protein
IGF1 insulin-like growth factor 1 (somatomedin C)
ITGA2B integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41)
MAP2K2 mitogen-activated protein kinase kinase 2

PPARG peroxisome proliferator-activated receptor gamma
RELA v-rel avian reticuloendotheliosis viral oncogene homolog A
RUNX1T1 runt-related transcription factor 1; translocated to, 1 (cyclin D-related)
RXRB retinoid X receptor, beta
CYCS cytochrome c, somatic
WNT5B wingless-type MMTV integration site family, member 5B
BCL2 B-cell CLL/lymphoma 2

RXRG retinoid X receptor, gamma
FGF2 fibroblast growth factor 2 (basic)
PDGFA platelet-derived growth factor alpha polypeptide
RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
SHH sonic hedgehog
PTCH1 patched 1

RET ret proto-oncogene
FADD Fas (TNFRSF6)-associated via death domain
WNT11 wingless-type MMTV integration site family, member 11

TCEB2 transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B)
CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa
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The number of over-represented GO terms in each category associated with the selected

genes in each dataset and to the merged set of selected genes are listed in Table 3.23.

Table 3.23.: Number of over-represented GO terms (p-value < 0.01) in each category derived from genes selected

by NMF.

GO category merged GE MET PE

BP 723 416 300 261

MF 56 45 27 22

CC 31 22 46 26

As an example, GO BP terms with category size between 5 and 10 are listed in Table 3.24, GO

MF terms with category size between 5 and 100 are shown in Table 3.25 and GO CC terms

with category size between 5 and 100 are presented in Table 3.26. These terms represent the

most specific terms derived from the NMF results.
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Table 3.24.: GO BP (p-value < 0.01) associated with genes selected by NMF of category size between 5 and 10

GO Slim Term Size GO Slim Term Description

GO:0072300 5 positive regulation of metanephric glomerulus development
GO:0010193 5 response to ozone
GO:0060331 5 negative regulation of response to interferon-gamma
GO:0060336 5 negative regulation of interferon-gamma-mediated signaling pathway
GO:0061526 5 acetylcholine secretion
GO:1903431 5 positive regulation of cell maturation
GO:0051552 6 flavone metabolic process
GO:0072298 6 regulation of metanephric glomerulus development
GO:0010887 6 negative regulation of cholesterol storage
GO:0015870 6 acetylcholine transport
GO:0060024 6 rhythmic synaptic transmission
GO:0060509 6 Type I pneumocyte differentiation
GO:0071763 6 nuclear membrane organization
GO:1902285 6 semaphorin-plexin signaling pathway involved in neuron projection guidance
GO:0014041 7 regulation of neuron maturation
GO:0008300 7 isoprenoid catabolic process
GO:0036295 7 cellular response to increased oxygen levels
GO:0045084 7 positive regulation of interleukin-12 biosynthetic process
GO:0071455 7 cellular response to hyperoxia
GO:1901374 7 acetate ester transport
GO:2001030 8 negative regulation of cellular glucuronidation
GO:0030638 8 polyketide metabolic process
GO:0044597 8 daunorubicin metabolic process
GO:0044598 8 doxorubicin metabolic process
GO:0048548 8 regulation of pinocytosis
GO:0090193 8 positive regulation of glomerulus development
GO:0035630 8 bone mineralization involved in bone maturation
GO:0060426 8 lung vasculature development
GO:0090037 8 positive regulation of protein kinase C signaling
GO:2000316 8 regulation of T-helper 17 type immune response
GO:0052697 9 xenobiotic glucuronidation
GO:2001029 9 regulation of cellular glucuronidation
GO:0021612 9 facial nerve structural organization
GO:0030647 9 aminoglycoside antibiotic metabolic process
GO:0021561 10 facial nerve development
GO:0021610 10 facial nerve morphogenesis
GO:0090520 10 sphingolipid mediated signaling pathway
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Table 3.25.: GO MF (p-value < 0.01) associated with genes selected by NMF of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0004024 5 alcohol dehydrogenase activity, zinc-dependent
GO:0004957 5 prostaglandin E receptor activity
GO:0005381 5 iron ion transmembrane transporter activity
GO:0008131 6 primary amine oxidase activity
GO:0005021 7 vascular endothelial growth factor-activated receptor activity
GO:0001758 7 retinal dehydrogenase activity
GO:0004032 7 alditol:NADP+ 1-oxidoreductase activity
GO:0004022 8 alcohol dehydrogenase (NAD) activity
GO:0005113 8 patched binding
GO:0004955 9 prostaglandin receptor activity
GO:0004954 10 prostanoid receptor activity
GO:0005451 10 monovalent cation:proton antiporter activity
GO:0008106 12 alcohol dehydrogenase (NADP+) activity
GO:0004953 14 icosanoid receptor activity
GO:0004806 15 triglyceride lipase activity
GO:0004033 20 aldo-keto reductase (NADP) activity
GO:0005504 24 fatty acid binding
GO:0005501 31 retinoid binding
GO:0019840 33 isoprenoid binding
GO:0015020 34 glucuronosyltransferase activity
GO:0017046 35 peptide hormone binding
GO:0016709 38 oxidoreductase activity, acting on paired donors, with incorporation or reduction of

molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen
GO:0004879 49 ligand-activated sequence-specific DNA binding RNA polymerase II transcription

factor activity
GO:0098531 49 direct ligand regulated sequence-specific DNA binding transcription factor activity
GO:0033293 51 monocarboxylic acid binding
GO:0016655 53 oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor
GO:0003707 55 steroid hormone receptor activity
GO:0004714 64 transmembrane receptor protein tyrosine kinase activity
GO:0042562 65 hormone binding
GO:0005254 71 chloride channel activity
GO:0019199 80 transmembrane receptor protein kinase activity
GO:0005496 85 steroid binding
GO:0004497 94 monooxygenase activity
GO:0016651 95 oxidoreductase activity, acting on NAD(P)H

Table 3.26.: GO CC (p-value < 0.01) associated with genes selected by NMF of category size between 5 and 100

GO Slim Term Size GO Slim Term Description

GO:0097208 7 alveolar lamellar body
GO:0005771 31 multivesicular body
GO:0022627 40 cytosolic small ribosomal subunit
GO:0005891 41 voltage-gated calcium channel complex
GO:0022625 52 cytosolic large ribosomal subunit
GO:0005811 54 lipid particle
GO:0034704 63 calcium channel complex
GO:0015935 64 small ribosomal subunit
GO:0030667 74 secretory granule membrane
GO:0022626 100 cytosolic ribosome
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3.2.3. Microarray Logic Analyzer

The classification model consisting of logic formulas derived by MALA comprises 329

features from the gene expression (GE) dataset and 950 features from the DNA-methylation

(MET) dataset. Due to the lack of protein expression data from normal tissue, the protein

expression dataset was not analyzed with MALA. In total MALA results in a merged set of

1 266 gene symbols selected from the datasets. The 30 genes selected by MALA which are

part of the Pathways in cancer pathway from the KEGG database are given in Table 3.27.

Table 3.27.: Genes selected by MALA known to be part of pathways in cancer.

Symbol Gene name

EGFR epidermal growth factor receptor
FGF2 fibroblast growth factor 2 (basic)
FGF10 fibroblast growth factor 10

WNT11 wingless-type MMTV integration site family, member 11

PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)
SMAD3 SMAD family member 3

WNT7B wingless-type MMTV integration site family, member 7B
FZD1 frizzled class receptor 1

TRAF2 TNF receptor-associated factor 2

ZBTB16 zinc finger and BTB domain containing 16

EGLN3 egl-9 family hypoxia-inducible factor 3

LEF1 lymphoid enhancer-binding factor 1

NRAS neuroblastoma RAS viral (v-ras) oncogene homolog
RHOA ras homolog family member A
TRAF5 TNF receptor-associated factor 5

GLI1 GLI family zinc finger 1

CBL Cbl proto-oncogene, E3 ubiquitin protein ligase
TRAF3 TNF receptor-associated factor 3

CCDC6 coiled-coil domain containing 6

RXRG retinoid X receptor, gamma
PDGFA platelet-derived growth factor alpha polypeptide
FOXO1 forkhead box O1

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
MAX MYC associated factor X
BAX BCL2-associated X protein
FOS FBJ murine osteosarcoma viral oncogene homolog
PTCH1 patched 1

IGF1R insulin-like growth factor 1 receptor
RALA v-ral simian leukemia viral oncogene homolog A (ras related)
HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)
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The number of over-represented GO terms in each category associated with the selected

genes in each dataset as well as with the merged set of selected genes are listed in

Table 3.28.

Table 3.28.: Number of over-represented GO terms (p-value < 0.01) in each category derived from genes selected

by MALA.

GO category merged GE MET

BP 223 151 260

MF 42 53 35

CC 79 35 97

As an example, GO BP terms with category size between 5 and 10 are listed in Table 3.29, GO

MF terms with category size between 5 and 100 are shown in Table 3.30 and GO CC terms

with category size between 5 and 100 are presented in Table 3.31. These terms represent the

most specific terms derived from the MALA results.

Table 3.29.: GO BP (p-value < 0.01) associated with genes selected by MALA of category size between 5 and 10

GO Slim Term Size GO Slim Term Description

GO:0008627 5 intrinsic apoptotic signaling pathway in response to osmotic stress
GO:0019896 5 axon transport of mitochondrion
GO:0046069 6 cGMP catabolic process
GO:0060534 6 trachea cartilage development
GO:0071321 6 cellular response to cGMP
GO:1902262 6 apoptotic process involved in patterning of blood vessels
GO:1902913 6 positive regulation of neuroepithelial cell differentiation
GO:0006930 7 substrate-dependent cell migration, cell extension
GO:0015810 7 aspartate transport
GO:0045634 7 regulation of melanocyte differentiation
GO:0051657 7 maintenance of organelle location
GO:0070305 7 response to cGMP
GO:0015740 8 C4-dicarboxylate transport
GO:0047484 8 regulation of response to osmotic stress
GO:0006621 9 protein retention in ER lumen
GO:0046886 9 positive regulation of hormone biosynthetic process
GO:0048340 9 paraxial mesoderm morphogenesis
GO:0035437 10 maintenance of protein localization in endoplasmic reticulum
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Table 3.30.: GO MF (p-value < 0.01) associated with genes selected by MALA of category size between 5 and

100

GO Slim Term Size GO Slim Term Description

GO:0045545 5 syndecan binding
GO:0015556 6 C4-dicarboxylate transmembrane transporter activity
GO:0045295 12 gamma-catenin binding
GO:0031996 14 thioesterase binding
GO:0043274 16 phospholipase binding
GO:0005234 18 extracellular-glutamate-gated ion channel activity
GO:0008301 18 DNA binding, bending
GO:0004970 19 ionotropic glutamate receptor activity
GO:0030552 24 cAMP binding
GO:0008066 27 glutamate receptor activity
GO:0043548 27 phosphatidylinositol 3-kinase binding
GO:0046915 28 transition metal ion transmembrane transporter activity
GO:0030551 37 cyclic nucleotide binding
GO:0030295 51 protein kinase activator activity
GO:0019209 57 kinase activator activity
GO:0004702 83 receptor signaling protein serine/threonine kinase activity
GO:0015294 88 solute:cation symporter activity

Table 3.31.: GO CC (p-value < 0.01) associated with genes selected by MALA of category size between 5 and

100

GO Slim Term Size GO Slim Term Description

GO:0071204 6 histone pre-mRNA 3’end processing complex
GO:0071541 7 eukaryotic translation initiation factor 3 complex, eIF3m
GO:0031616 10 spindle pole centrosome
GO:0000780 16 condensed nuclear chromosome, centromeric region
GO:0043596 34 nuclear replication fork
GO:0097542 43 ciliary tip
GO:0032154 45 cleavage furrow
GO:0097610 45 cell surface furrow
GO:0032153 48 cell division site
GO:0032155 48 cell division site part
GO:0005876 50 spindle microtubule
GO:0005657 59 replication fork

3.2.4. Comparison of Methods

The comparison of gene sets resulting from each method and of associated over-represented

GO terms is visualized in Figure 3.5.
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Figure 3.5.: Venn diagrams of gene sets merged from all data types and over-represented GO terms associated

with gene sets.
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Five genes were selected by all methods; they are presented in Table 3.32. An overview

of numbers of genes selected by each method known to be involved in cancer pathways

is given in Table 3.33. Genes involved in the Pahtways in cancer pathway from the KEGG

database that were selected by at least two methods are shown in Table 3.34. The overlap of

GO terms of category biological process are listed in Table 3.35. The overlap of GO terms in

categories molecular function and cellular component associated with the genes selected by

at least two of three methods are listed in Tables 3.36 and 3.37.

Table 3.32.: Genes selected by all methods.

Symbol Gene name

GLIPR2 GLI pathogenesis-related 2

PTCH1 patched 1

TCEAL2 transcription elongation factor A (SII)-like 2

TTYH1 tweety family member 1

C7orf25 chromosome 7 open reading frame 25

Table 3.33.: Total number of genes involved in Pahtways in cancer and number of genes retrieved by each method.

total sCCA NMF MALA

310 37 25 30

Table 3.34.: Genes involved in cancer pathways selected by at least two methods.

Symbol Gene name sCCA NMF MALA

PTCH1 patched 1 X X X
MAP2K2 mitogen-activated protein kinase kinase 2 X X
CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa X X
RHOA ras homolog family member A X X
FZD1 frizzled class receptor 1 X X
CCDC6 coiled-coil domain containing 6 X X
FOXO1 forkhead box O1 X X
MAX MYC associated factor X X X
RXRG retinoid X receptor, gamma X X
FGF2 fibroblast growth factor 2 (basic) X X
PDGFA platelet-derived growth factor alpha polypeptide X X
WNT11 wingless-type MMTV integration site family, member 11 X X
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Table 3.35.: Overlap of GO BP

GO Slim Term ID GO Slim Term Description

GO:0007167 enzyme linked receptor protein signaling pathway
GO:0007275 multicellular organismal development
GO:0007399 nervous system development
GO:0007417 central nervous system development
GO:0007420 brain development
GO:0009653 anatomical structure morphogenesis
GO:0022008 neurogenesis
GO:0030154 cell differentiation
GO:0030182 neuron differentiation
GO:0035239 tube morphogenesis
GO:0048468 cell development
GO:0048546 digestive tract morphogenesis
GO:0048699 generation of neurons
GO:0048729 tissue morphogenesis
GO:0048731 system development
GO:0048856 anatomical structure development

Table 3.36.: Overlap of GO MF

GO Slim Term ID GO Slim Term Description sCCA NMF MALA

GO:0000975 regulatory region DNA binding X X
GO:0000981 sequence-specific DNA binding RNA polymerase II

transcription factor activity

X X

GO:0001012 RNA polymerase II regulatory region DNA binding X X
GO:0001067 regulatory region nucleic acid binding X X
GO:0001071 nucleic acid binding transcription factor activity X X
GO:0003700 sequence-specific DNA binding transcription factor activity X X
GO:0044212 transcription regulatory region DNA binding X X
GO:0004672 protein kinase activity X X
GO:0004674 protein serine/threonine kinase activity X X
GO:0005488 binding X X
GO:0005515 protein binding X X
GO:0016773 phosphotransferase activity, alcohol group as acceptor X X
GO:0005102 receptor binding X X
GO:0015267 channel activity X X
GO:0022803 passive transmembrane transporter activity X X
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Table 3.37.: Overlap of GO CC

GO Slim Term ID GO Slim Term Description sCCA NMF MALA

GO:0005622 intracellular X X
GO:0031974 membrane-enclosed lumen X X
GO:0031981 nuclear lumen X X
GO:0032991 macromolecular complex X X
GO:0043229 intracellular organelle X X
GO:0043231 intracellular membrane-bounded organelle X X
GO:0043233 organelle lumen X X
GO:0044424 intracellular part X X
GO:0044428 nuclear part X X
GO:0070013 intracellular organelle lumen X X
GO:0072372 primary cilium X X
GO:1902494 catalytic complex X X
GO:1990234 transferase complex X X
GO:0005576 extracellular region X X
GO:0031982 vesicle X X
GO:0031988 membrane-bounded vesicle X X
GO:0043005 neuron projection X X
GO:0043235 receptor complex X X
GO:0044421 extracellular region part X X
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The sets of selected genes from each data type and sets of over-represented GO terms of

categories BP, MF and CC associated with the selected genes are displayed in Figures 3.6,

3.7 and 3.8.

Figure 3.6.: Venn diagrams of gene sets and over-represented GO terms extracted from the gene expression

dataset.
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Figure 3.7.: Venn diagrams of gene sets and over-represented GO terms extracted from the DNA-methylation

dataset.
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Figure 3.8.: Venn diagrams of gene sets and over-represented GO terms extracted from the protein expression

dataset.
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4. Discussion

The aim of the presented master’s thesis was to compare three integrative analysis methods.

These were applied on synthetic and biological datasets and their results were assessed on

gene level and on the level of associated GO terms. The biological datasets comprise

measurements from three different biological levels: the transcript level, represented by the

gene expression dataset, the gene level, represented by the DNA-methylation dataset and

the protein level represented by the protein expression dataset. The samples were obtained

from patients suffering from breast invasive carcinoma and originate from solid tumor and

adjacent normal tissue. The synthetic data comprises gene expression datasets from

simulated microarray experiments based on co-expression networks derived from the

biological datasets.

Integrative analysis methods have become more and more important recently and are used

to derive information from large datasets obtained with high-throughput technologies on

different biological levels for the same samples/conditions. They aim to identify a subset of

candidate genes to account for the development of complex diseases which should thus be

subjected to further analysis. The relevance and accuracy of integrative analysis methods

can hardly be assessed because most of the mechanisms underlaying the development of

complex diseases are currently unknown and the functional annotation of genes in the

laboratory is time and costs demanding. A promising strategy to validate the results of

integrative analysis is, hence, to compare them with already validated genes or with the

results of other methods. Here the results of the three methods are compared with each

other and to already validated genes involved in the KEGG cancer pathway. The KEGG

PATHWAY database provides manually annotated pathway maps in a variety of biological
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domains such as Human Diseases. The maps describe and visualize networks of molecular

interactions and reactions. The map of Pathways in Cancer from the KEGG PATHWAY

database is shown in Figure 4.1.
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4. Discussion

4.1. Mathematical Concept of Investigated Methods

The three integrative analysis methods compared in this master’s thesis are based on

different mathematical concepts. This fact was one of the motivating aspects for the

selection of the methods. The sCCA aims to find sparse canonical weight-vectors that result

in the one-dimensional projections of three or more datasets with the highest pair-wise

correlation. The non-zero elements in the canonical weight-vectors are of interest due to

their association with correlated features accounting for the inherent structure of the

datasets.

The goal of NMF is to identify a number of building blocks which are common to all (three

or more) datasets and can be used for the reconstruction of the original datasets as their

positively weighted sum. The factorization is subjected to the constraint that the joint

reconstruction error is minimized. Features and samples in the datasets that are associated

with high weights are grouped and form md-modules. The sCCA and the NMF have in

common that the datasets are decomposed and similarities in terms of correlation (sCCA)

or significant contribution (NMF) are considered to select features that account for the

inherent structure of datasets. Both methods integrate datasets originating from three

different biological levels (gene expression, DNA-methylation and protein expression

datasets) sampled under the same condition (tumor tissue) and aim to find commonalities

within datasets. The columns of the datasets (containing the features) are standardized

before the application of either method.

In contrast to that, MALA is based on a machine learning approach. It operates on datasets

obtained from the same patient under different conditions (tumor and normal tissue) and

aims to find the differences in the two classes. Due to the lack of protein expression data

originating from normal tissue, only the gene expression and the DNA-methylation

datasets could be subjected to the analysis with MALA. MALA derives a classification

model based on a training set of samples which is validated on the remaining samples (test

set). The main functionality of MALA is the solution of a feature selection problem with a

GRASP algorithm. The features selected in this procedure are assembled to a classification
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model, a set of logic formulas. Since each feature in the datasets is assessed for classification

capacity individually, a transformation of values is not necessary.

4.1.1. Advantages and Drawbacks of the Three Integrative Analysis Methods

An advantage of sCCA is that it is available as an R-package and the analysis of datasets is

straightforward and intuitive. A drawback of the method, considering the purpose of

feature selection, is that the number of non-zero weights in the canonical weight-vectors

must be rather large to achieve significantly correlated projections. At the expense of

correlation, the number of non-zero elements and thus the number of selected features is

reduced to a more convenient number by decreasing the penalty terms on the canonical

weight-vectors.

The NMF, as emphasized by Kim and Tidor [37], not only detects correlations across the

whole set of features or samples but is also able to unravel local similarities limited to a

subset of features or samples in the datasets. An elementary shortcoming of the NMF is

that the number of building blocks, which is equal to the rank of the approximation, and

the threshold for the assignment of a feature to a md-module must be specified in advance

by the user. This is a complex and time consuming task and the method would benefit from

an automatic selection of parameters.

MALA provides a comprehensive set of parameters adjustable for the analysis. A clustering

step is implemented in the method, however, this could not be used because the inference

of the classification model failed when clustering was activated. A similar problem

occurred, when the sampling type was set to cross validation. The program terminated

incorrectly with a segmentation fault. Thus, the alternative sampling type, random percentage

split was chosen. For each subset the feature selection problem is solved and the

classification model is derived. Each classification model represented by the logic formulas

comprising the selected features is validated on the samples in the test set. The maximum

number of features to be selected - regardless of the number of features comprised by the
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datasets - is 60. As a consequence, the average performance of the classification models

derived for the relatively small synthetic datasets is quite satisfying. The performance of the

classification models derived form the substantially larger biological dataset, however, was

not as good. In order to compensate this effect, the number of subsets was set to 10 for the

synthetic datasets and to 100 for the biological datasets and the features in the merged

formulas derived from all subsets are considered as the selected feature set. This results in a

selected features set of size comparable to those resulting from the other methods. An

advantage of MALA is that the complex features selection problem, which grows

quadratically with the number of features in the dataset, is solved using a heuristic

approach with a remarkably small effort of time. On the other hand, this approach has the

disadvantage of only being able to find local solutions.

4.2. Comparison on the Feature and GO Term Levels

4.2.1. Resulting Sets of Genes and GO Terms

In this section, influencing factors on the size of the resulting sets of features and GO terms

are discussed.

Generally speaking, the resulting sets of candidate genes and associated GO terms

respectively are rather big and the actual size of the gene sets was limited to a maximum of

5% of the features in each dataset for the sCCA and the NMF. The maximum number of

features selected in one run by MALA is 60. This is the maximum number of features

employed in the classification model derived from one training set. In order to compensate

for this difference, the features of 100 runs of MALA were accumulated to achieve a

comparable number of selected features by MALA. The feature sets resulting from the two

conceptually more similar methods, sCCA and NMF, tend to be larger than the feature set

resulting from the third method, MALA. A possible reason for that may be that the sCCA

and the NMF are based on a top-down approach, while MALA pursues a bottom-up

strategy. The sCCA and the NMF start from the whole feature set and seek to reduce the
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number of features by the introduction of certain criteria. In contrast, MALA subsequently

adds one feature at a time during an iterative search procedure.

The difference in size between the analyzed datasets represents an additional reason for the

different sizes of the resulted features sets. The synthetically generated datasets comprise

considerably fewer features than the biological datasets. The synthetic datasets based on the

co-expression network derived from the gene expression datasets of tumor/normal tissue

comprise 390/2 748 nodes, the network derived from the DNA-methylation datasets of

tumor/normal tissue comprise 2 471/2 809 and the network derived from protein

expression dataset in tumor tissue consists of 68 nodes respectively. Similar differences in

dataset size are observed in the biological datasets. These comprise 19 769/19 716 features

in the gene expression dataset of tumor/normal tissue; 13 627/14 300 features in

DNA-methylation dataset of tumor/normal tissue; and 118 features in the protein

expression dataset of tumor tissue.

The number of resulting GO terms was reduced by limiting the category size. The

over-represented GO terms in three categories BP, MF and CC comprise general terms

which are associated with a large number of genes, as well as very specific terms. This is

indicated by the category size of the GO terms. The lower limit of the category size of a GO

term considered in the analysis was set to 5 in order to exclude the terms which are

associated with very few genes. This was done because GO terms of small category size are

prone to random enrichment. GO terms with large category sizes represent general

biological processes which are not suitable for the characterization of the obtained results.

4.2.2. Overlap in Synthetic Datasets

In this section, the overlap on feature level and GO term level of results in synthetic

datasets is discussed. For the synthetic data, an overview of the resulting overlaps in terms

of percentage of the total number of selected feature and associated GO terms respectively,

derived from the Venn diagrams in section 3.1.4 is given in Table 4.1. It can be observed that
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there are no features which are selected by all methods. The pair-wise overlap exclusively

results from the features selected in the DNA-methylation dataset. There is no overlap of

features selected by the methods originating from the gene expression or the protein

expression dataset. This might be associated with the fact that the DNA-methylation dataset

represents the largest synthetic dataset.

On the GO term level, several GO terms in category BP were found by two of three

methods. The results of sCCA and NMF on the gene expression datasets produce a

considerable overlap of 11% (46 terms) in category BP. The results of sCCA and MALA on

the DNA-methylation dataset produce a remarkable overlap of 29% (7 terms) in the

category CC. For the GO terms associated with the merged gene set, an overlap of 1 GO

term (representing 3% in either case) in categories MF and CC respectively, is also observed.

In summary, in the synthetic datasets there are no genes that were selected by all methods.

However, considering the GO terms associated with the selected features, an overlap can be

observed in at least one GO category in all datasets except the protein expression dataset.

4.2.3. Overlap in Biological Datasets

In this section, the overlap on feature level and GO term level of results in biological

datasets is discussed. The resulting overlaps between the three methods on the feature and

GO term level derived from the Venn diagrams in section 3.2.4 is shown in Table 4.2. A

small number of 5 genes representing 0.1% in the merged set of features is selected by all

three methods. Considering the three different biological levels separately, there are no

features which were selected by all three methods. This means that features selected by a

method on one biological level was selected on another biological level by other methods.

This emphasizes the relevance of integrative analysis methods.

In general, an overlap of all GO categories can be observed for the merged set of features. A

high overlap of the results of sCCA and NMF is especially observed for the protein

expression dataset. The highest overlap of the results of sCCA and MALA can be observed
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4.2. Comparison on the Feature and GO Term Levels

for the DNA-methylation dataset in categories MF and CC.

Similar to the results on the synthetic datasets, the overlap is increased on the more general

level of associated over-represented GO terms. There is an overlap of associated GO terms

of at least one category on each biological level, as well as for the merged set of selected

features. Specifically, there is an overlap in category BP of 7 (1%) and 10 (1%) GO terms on

gene expression and DNA-methylation level respectively and an overlap of 16 GO terms

(2%) associated with the merged feature set. The GO terms associated with the features

selected in the DNA-methylation datasets even show an overlap of 1 term in the MF

category. An overview of the resulting overlaps in terms of percentage of the total number

of selected feature and associated GO terms respectively is given in Table 4.2.
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4.3. Biological Annotation of Results

The genes and GO terms derived from the synthetic datasets are not analyzed regarding

their biological annotation or their overlap with genes known to be involved in Pathways in

Cancer because the regulatory dependencies in the biological datasets could not be

reproduced in the synthetic datasets. Instead, the regulatory interactions between the nodes

in the co-expression networks, which serve as basis for the synthetic datasets, were set

randomly.

The number of genes selected in the biological datasets which are known to be involved in

Pathways in Cancer, is notably quite the same for each method (37, 25 and 30 of 310 genes in

the Pathways in Cancer pathway). These gene sets represent 10% of the genes in Pathways in

Cancer and thus, it is not likely that they were selected by coincidence. One may draw the

conclusion that the methods are equally suitable to retrieve genes involved in cancer

development.

Genes originating from the biological datasets which were selected by all methods are

shown in Table 3.32. Genes which were selected by at least two of three methods and which

are, additionally, involved in the Pathways in Cancer pathways from the KEGG database are

listed in Table 3.34. They are analyzed in regard to their biological meaning and importance.

Among the genes selected by all three methods, the tweety family member 1 (TTYH1) gene

was recently shown to be related to pediatric brain tumors [61]. Alterations of the patched 1

(PTCH1) gene such as aberrant frequency of methylation were associated with the

development of cervical carcinoma [62]. Transcription elongation factor A (SII)-like 2 (TCEAL2),

chromosome 7 open reading frame 25 (C7orf25) and GLI pathogenesis-related 2 (GLIPR2) could

not be directly associated with cancerogenesis. However, the name of TCEAL2 suggests a

general influence in transcription regulation.

Among the genes involved in Pathways in Cancer which were selected by at least two

methods the Mitogen-activated protein kinase kinase 2 (MAP2K2) for example may play a role

in cell proliferation [63]. Disorders of the expression of platelet-derived growth factor alpha
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4. Discussion

polypeptide (PDGFA) are associated with neoplasia and, hence, with tumorigenic processes,

since it is involved in the regulation of cell proliferation [64]. Another example, the MYC

associated factor X (MAX) can bind to Myc which is known to be an oncoprotein due to its

involvement in cell proliferation, differentiation and apoptosis, according to the gene

summary page in Entrez Gene [65]. Another prominent example, which is described in

Entrez Gene, is the ras homolog family member A (RHOA) which takes influence on tumor cell

proliferation and metastasis. Two widely-known representatives involved in the

development of breast invasive carcinoma are BRCA1 and BRCA2, also known as breast

cancer 1, early onset and breast cancer 2, early onset. Mutations of these genes are known to

increase the probability of genetically caused breast cancer. However, the role of these genes

is due to mutations which were not part of this analysis. This could be the reason why these

two genes have not been selected by any of the three methods.

4.4. Conclusion

The three integrative analysis methods compared in this master’s thesis yield rather

comprehensive lists of selected features which produce a modest overlap on the gene level.

Not even the results of sCCA and NMF, which are based on more similar mathematical

concepts, produce a considerable overlap. Significantly over-represented GO terms derived

from the selected genes are more congruent. About 10% of the features known to be

involved in Pathways in Cancer from the KEGG database are retrieved by each method,

however, only one of them is selected by all methods.

4.5. Outlook

In order to evaluate and validate the results of the three integrative analysis methods, the

role of the genes selected by each method in the development of complex diseases must be
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4.5. Outlook

revealed. A comprehensive review of the biological annotation of the selected genes would

shed light on the biological homogeneity of the selected feature sets. Moreover, the selected

feature sets could be compared to the results of further integrative analysis methods.

Additionally, a ranking of the selected features would be of interest.
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[9] Lê Cao KA, Martin PG, Robert-Granié C and Besse P: Sparse canonical methods for biological data

integration: application to a cross-platform study. BMC Bioinformatics 2009. 10(34).

[10] Waaijenborg S, Verselewel de Witt Hamer PC and Zwinderman AH: Quantifying the association between

gene expressions and dna-markers by penalized canonical correlation analysis. Statistical Applications

in Genetics and Molecular Biology 2008. 7(1):Article 3.

[11] Zou H and Hastie T: Regularization and variable selection via the elastic net. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 2005. 67(2):301–320.

85



Bibliography

[12] Witten DM, Tibshirani R and Hastie T: A penalized matrix decomposition, with applications to sparse

principal components and canonical correlation analysis. Biostatistics 2009. 10(3):515–34.

[13] Lin D, Zhang J, Li J, Calhoun VD, Deng HW and Wang YP: Group sparse canonical correlation analysis

for genomic data integration. BMC Bioinformatics 2013. 14(1):article 245.

[14] Simon N, Friedman J, Hastie T and Tibshirani R: A sparse-group lasso. Journal of Computational and

Graphical Statistics 2013. 22(2):231–245.
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Appendix A. Centrality Measures of Co-Expression Networks

A.1. Degree

Figure A.1.: Degree of co-expression networks derived from biological datasets at cut-off values for

Spearman’s correlation coefficient of 0.9 or 0.5 respectively.
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A.2. Betweenness

A.2. Betweenness

Figure A.2.: Betweenness of co-expression networks derived from biological datasets at cut-off values for

Spearman’s correlation coefficient of 0.9 or 0.5 respectively.
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Figure B.1.: Enrichment ratios and fold-change of enrichment ratios of modules 1 to 3
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Figure C.1.: Enrichment ratios and fold-change of enrichment ratios of modules 1 to 3
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Figure C.3.: Enrichment ratios and fold-change of enrichment ratios of modules 7 to 9
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Figure C.4.: Enrichment ratios and fold-change of enrichment ratios of modules 10 to 12
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Figure C.5.: Enrichment ratios and fold-change of enrichment ratios of modules 13 to 15

104



List of Figures

2.1. Statistics of tuning parameter sets for synthetic data . . . . . . . . . . . . 15

2.2. Statistics of tuning parameter sets for biological data . . . . . . . . . . . 17

2.3. Reconstruction errors of NMF vs. SVD of synthetic data . . . . . . . . . 21

2.4. Reconstruction errors of NMF vs. SVD in biological data . . . . . . . . . 22

2.5. Enrichment of module 1 in synthetic data . . . . . . . . . . . . . . . . . . 24

2.6. Enrichment of module 5 in synthetic data . . . . . . . . . . . . . . . . . . 24

2.7. Enrichment of module 3 in biological data . . . . . . . . . . . . . . . . . 25

2.8. Enrichment of module 12 in biological data . . . . . . . . . . . . . . . . . 26

2.9. Syntren data generation process. . . . . . . . . . . . . . . . . . . . . . . . 37

3.1. Venn diagrams of all synthetic datasets . . . . . . . . . . . . . . . . . . . 48

3.2. Venn diagrams of synthetic gene expression dataset . . . . . . . . . . . . 50

3.3. Venn diagrams of synthetic DNA-methylation dataset . . . . . . . . . . 52

3.4. Venn diagrams of synthetic protein expression dataset . . . . . . . . . . 53

3.5. Venn diagrams of all biologic datasets . . . . . . . . . . . . . . . . . . . . 64

3.6. Venn diagrams of biologic gene expression dataset . . . . . . . . . . . . 68

3.7. Venn diagrams of biologic DNA-methylation dataset . . . . . . . . . . . 69

3.8. Venn diagrams of biologic protein expression dataset . . . . . . . . . . . 70

4.1. KEGG Pathways in Cancer map . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1. Degree of co-expression networks . . . . . . . . . . . . . . . . . . . . . . 92

A.2. Betweenness of co-expression networks . . . . . . . . . . . . . . . . . . . 93

B.1. Enrichment of modules in synthetic datasets . . . . . . . . . . . . . . . . 96

B.2. Enrichment ratios and fold-change of enrichment ratios of modules 4

and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

105



List of Figures

C.1. Enrichment of modules in biological datasets . . . . . . . . . . . . . . . . 100

C.2. Enrichment ratios and fold-change of enrichment ratios of modules 4 to

6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.3. Enrichment ratios and fold-change of enrichment ratios of modules 7 to

9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.4. Enrichment ratios and fold-change of enrichment ratios of modules 10

to 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.5. Enrichment ratios and fold-change of enrichment ratios of modules 13

to 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

106



List of Tables

2.1. sCCA tuning parameters tested for synthetic data . . . . . . . . . . . . . 15

2.2. Adjusted sCCA tuning parameters for synthetic data . . . . . . . . . . . 16

2.3. sCCA tuning parameters tested for biological data . . . . . . . . . . . . 16

2.4. Adjusted sCCA tuning parameters for biological data . . . . . . . . . . . 17

2.5. Performance of MALA on synthetic datasets . . . . . . . . . . . . . . . . 32

2.6. Performance of MALA on biological datasets . . . . . . . . . . . . . . . . 32

2.7. Co-expression network size derived from gene expression data. . . . . . 35

2.8. Co-expression network size derived from DNA-methylation data. . . . 35

2.9. Co-expression network size derived from protein expression data. . . . 36

2.10. SynTReN parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. GO terms of synthetic data by sCCA . . . . . . . . . . . . . . . . . . . . . 42

3.2. GO BP of synthetic data by sCCA . . . . . . . . . . . . . . . . . . . . . . 42

3.3. GO MF of synthetic data by sCCA . . . . . . . . . . . . . . . . . . . . . . 43

3.4. GO CC of synthetic data by sCCA . . . . . . . . . . . . . . . . . . . . . . 43

3.5. GO terms of synthetic data by NMF . . . . . . . . . . . . . . . . . . . . . 43

3.6. GO BP of synthetic data by NMF . . . . . . . . . . . . . . . . . . . . . . . 44

3.7. GO MF of synthetic data by NMF . . . . . . . . . . . . . . . . . . . . . . 45

3.8. GO CC of synthetic data by NMF . . . . . . . . . . . . . . . . . . . . . . 46

3.9. GO terms of synthetic data by MALA . . . . . . . . . . . . . . . . . . . . 46

3.10. GO BP of synthetic data by MALA . . . . . . . . . . . . . . . . . . . . . . 47

3.11. GO MF of synthetic data by MALA . . . . . . . . . . . . . . . . . . . . . 47

3.12. GO CC of synthetic data by MALA . . . . . . . . . . . . . . . . . . . . . 47

3.13. Overlap of synthetic data on gene level . . . . . . . . . . . . . . . . . . . 49

3.14. Overlap of GO BP in synthetic data . . . . . . . . . . . . . . . . . . . . . 51

3.15. Overlap of GO MF in synthetic data . . . . . . . . . . . . . . . . . . . . . 51

107



List of Tables

3.16. Overlap of GO CC in synthetic data . . . . . . . . . . . . . . . . . . . . . 51

3.17. Cancer genes selected by sCCA . . . . . . . . . . . . . . . . . . . . . . . . 54

3.18. GO terms of biological data by sCCA . . . . . . . . . . . . . . . . . . . . 55

3.19. GO BP of biological data by sCCA . . . . . . . . . . . . . . . . . . . . . . 55

3.20. GO MF of biological data by sCCA . . . . . . . . . . . . . . . . . . . . . . 56

3.21. GO CC of biological data by sCCA . . . . . . . . . . . . . . . . . . . . . . 56

3.22. Cancer genes selected by NMF . . . . . . . . . . . . . . . . . . . . . . . . 57

3.23. GO terms of biological data by NMF . . . . . . . . . . . . . . . . . . . . . 58

3.24. GO BP of biological data by NMF . . . . . . . . . . . . . . . . . . . . . . 59

3.25. GO MF of biological data by NMF . . . . . . . . . . . . . . . . . . . . . . 60

3.26. GO CC of biological data by NMF . . . . . . . . . . . . . . . . . . . . . . 60

3.27. Cancer genes selected by MALA . . . . . . . . . . . . . . . . . . . . . . . 61

3.28. GO terms of biological data by MALA . . . . . . . . . . . . . . . . . . . . 62

3.29. GO BP of biological data by MALA . . . . . . . . . . . . . . . . . . . . . 62

3.30. GO MF of biological data by MALA . . . . . . . . . . . . . . . . . . . . . 63

3.31. GO CC of biological data by MALA . . . . . . . . . . . . . . . . . . . . . 63

3.32. Overlap on gene level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.33. Number of cancer genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.34. Overlap of cancer genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.35. Overlap of GO BP in biologic data . . . . . . . . . . . . . . . . . . . . . . 66

3.36. Overlap of GO MF in biologic data . . . . . . . . . . . . . . . . . . . . . . 66

3.37. Overlap of GO CC in biologic data . . . . . . . . . . . . . . . . . . . . . . 67

4.1. Overview of overlaps in synthetic data . . . . . . . . . . . . . . . . . . . 80

4.2. Overview of overlaps in biological data . . . . . . . . . . . . . . . . . . . 80

108


