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Preface

In my evolving career as young mathematician I have faced many different aspects of
applied mathematics, including applications in electrical engineering, thermomechanics
and abstract theories on evolution equations. Following this pattern, I should now
treat a completely different topic and indeed the present thesis deals with a topic
from an evolving science called biophysics. To be more precise I am dealing with the
topic of modeling the mechanical and electrical activation of the human heart.

With this topic, in my opinion, I have finally touched a group of topics which combines
the most interesting aspects of all previous work and adds the extra ingredient of
human physiology. I hope that I can stick to this topic for a longer time and be able
to contribute to this fascinating field.

I want to thank Prof. Olaf Steinbach for encouraging me to treat this topic. Fur-
thermore I want to thank Prof. Gerhard Holzapfel and Prof. Gernot Plank for their
input where my knowledge of electrobiomechanics was limited. The first chapters
of my thesis would not look the way they do as it were not for those two. I also
want to dearly thank my dear friend and colleague Arno Kimeswenger for the daily
discussions and his input and opinion. I think we both helped each other a lot to
bring our theses to a good end. Yet more I want to thank Dipl.-Ing. Harald Schmidt
for proofreading my thesis.

Last but not least I want to heartily thank my parents for their overall support during
my studies. This work is dedicated to them.
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Notation

Throughout this thesis we will use the following notation:

• Scalar quantities will be denoted by a letter in normal font, e.g.: φ.

• Vector valued quantities will be denoted by a bold letter in normal font, e.g.: u.

• Matrices will be denoted by a normal letter in sans serif font, e.g.: A.

• Tensor valued quantities will be denoted by a bold letter in sans serif font, e.g.:
T.

This notation will apply henceforth until otherwise stated.
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Introduction

The human heart has played an important role for understanding the body since
antiquity. In the fourth century B. C., the Greek philosopher Aristotle identified
the heart as the most important organ of the body, the first to form according to
his observations of chick embryos, see [56]. He characterized it as the seat of many
human abilities, such as intelligence, motion and sensation. Therefore, in Aristotle’s
view, it was a very hot organ and all other vital organs1 in the human body exist
merely to cool the heart.

During the last millennium, the pursuit of knowledge of the human heart has gained
more importance, not only by a desire to understand the mechanical and electrochem-
ical processes, but also by the increasing clinical importance. According to the World
Health Organization (WHO) heart diseases are one of the top ten causes of death in
western society (see [84]). Thus, improving the understanding of the function of the
human heart may lead to new techniques for the diagnosis and treatment of heart
problems.

Over the last decades, the amount of information about the mechanisms of the human
heart has rapidly increased. Now we are in the position to observe cellular and even
sub-cellular processes. Nevertheless there remain several unanswered questions, for
example why does defibrillation really work, and what is happening in the heart at
that time.

The most prominent and standard tool in cardiology is the electrocardiogram, abbr.
ECG. It dates back to Wilhem Einthoven, see [16]. However, in the ECG one deals
with the human heart as a black-box and tries to reconstruct some dipole distribution.
This is known as the inverse problem of electrocardiography, see [36, 76]. This problem
is essentially ill-posed and does not provide satisfying results. Furthermore one has
no possibility to study complex arrhythmias in the human heart, by just using an
ECG. So nowadays we try to model the human heart more detailed with sub-cellular
to macroscopic models as well as their interaction and coupling. This reflects and is
based upon the increasing physiological knowledge about the human heart. These
days it is known that changes in the macroscopic scale of the heart, for example high
blood pressure, acts down to the sub-cellular and the genetic level but also vice versa.
This is a quite new research field know as epigenetics. For more information about
epigenetics one should refer to [54].

The newly developed models give the possibility for in silico simulations and enable
1e.g.: brain and lungs
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Introduction

studies of heart diseases without harming a human patient. However, very few
attention has been payed to a strict mathematical formulation and to a numerical
analysis. In this thesis we shall try to give a brief overview of the existing mathematical
models for describing the coupled effects of electro-chemical and mechanical processes
in the human heart. We will arrive at essentially non-linear coupled systems of partial
differential equations and also ordinary differential equations.

Chapter 1 gives a short overview of the physiological functionality, essentially the
cardiac cycle, as reference for our purposes. In Chapter 2 we will model the electric
activation of the human heart which will lead us to the well-known Bi-Domain model
of L. Tung presented in [79]. In Chapter 3 we will describe the purely mechanic model
of the human heart. For this purposes we shall present a material law developed by
G. Holzapfel in [32]. In Chapter 4 we will try to couple the independent models of
the electric and mechanic activation of the human heart by incorporating the most
recent literature. Finally in Chapter 5 we will account for the analysis and solvability
of each model separately. The analysis of the fully coupled problem is postponed to
further work.

While Chapter 1 describes the human heart as a whole, the subsequent chapters
focus on the ventricles, a distinct part of the human heart playing a key-role in its
functioning: the ventricles are indispensable to life, whereas the atria, which form
the other part of the human heart are not. Furthermore these two parts are, except
for one passage which will also be described in Chapter 1, completely electrically
insulated. Hence, from a physiological insight it is sufficient to focus on the ventricular
electromechanics for which almost all literature is about.

14



1 Physiological Background

This introductory chapter is inspired by and excerpted from [36, 71] and [32].

The most studied organ in human physiology appears to be the heart, although its
function seems quite simple: it pumps blood through our body by contracting and
expanding about 2.5 billion times during a normal lifetime of a human being. As a
fact, heart failure, either electrical or mechanical, is one of the most common causes
of death in the Western world, see [84].

The human heart is a muscular organ, weighing about 250 to 350 grams with a
size comparable to a fist, which, as denoted above, pumps the blood through the
blood vessels, delivering nutrients and removing waste from each organ, by repeated,
rhythmic contractions. This process, where the oxygen rich blood is delivered to
the organs is called the systemic circulation. Furthermore the human heart drives
deoxygenated blood through our lungs for re-oxygenation (the so called pulmonary
circulation). Figure 1.1 shows a schematic view of the heart. The coordination of the

Figure 1.1 – Schematic view of the human heart.1

mechanical activity of the human heart is closely related to the signal transportation
in it. Its mathematical modeling will be the main topic of this thesis. In order
to develop the models we need to understand the basic underlying physiological

1taken from http://en.wikipedia.org/wiki/Right_ventricle
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1 Physiological Background

principles. That is the goal of this chapter. As a start we will establish some basic
mechanic facts about the heart.

1.1 Facts & Figures

The location of the human heart is anterior to the vertebral column, i.e. the spine,
and posterior to the sternum, i.e. the chest. As one can see in Figure 1.1, the human
heart consists of four chambers: the right and left atria, which receive the blood
from the body acting as a large-volume low-pressure reservoir, and the left and right
ventricles, which actually do the predominant pumping of the blood through our
body.

The mantle of the human heart consists of three layers. The outermost is referred to
as epicardium, which mainly consists of collagen fibers and serves as a protective layer.
The middle one is called the myocardium, consisting of muscle cells, called myocytes,
which do the actual contraction of the heart2, and innermost the endocardium, like
the epicardium consisting of mainly collagen which serves as an interface between the
heart wall and the human blood.

The thickness of the epicardium, about 100 µm, and of the endocardium, about
100 µm, is much less than the one of the myocardium. Although it is not uniform
but it is always many magnitudes thicker than the epi and endocardium. Epi- and
endocardium being considered as mere protective respectively interfacing layers it
is justified to restrict our attention and model to the myocardium itself. Following
Holzapfel in [32] we adopt the assumption, that the myocardium can be described
as a continuum composed of laminar sheets3 of parallel myocytes arranged in fibers.
Figure 1.2 shows the basic structure of the left ventricle. It was extracted from
[32]. As one can see the fiber direction of these muscles rotates, in a mathematical
positive sense, throughout the wall thickness from 50° to 70° near the epicardium
to −50° to −70° near the endocardium. The organization of the myocardial layers
is characterized best by a right-handed orthonormal set of basis vectors (f0, s0,n0),
denoted fiber direction, sheet direction and sheet normal direction respectively. This
will be discussed in more detail in Sections 2.4 and 3.4.1. According to [32] we shall
use the local index set {f, s, n} for referring to fiber, sheet and normal direction. The
idea behind this will be explained in Section 2.2.4. Furthermore we will use the pairs
fs, fn and sn when talking about the fiber-sheet, fiber-normal and sheet-normal
planes respectively. For a detailed overview on the structure of the myocardium

2Although it is of great physiological interest we will skip the description on how cells can actually
contract, as this would lead us to far away from the main topic, we will assume that they just do
contract. The interested reader may refer to [36, Chap. 15] or [71, p. 60ff].

3There is an discussion about the justifiability of this assumption, see [22].
4This figure is taken from [32, p. 3448 Fig. 1.].
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1.1 Facts & Figures

Figure 1.2 – Schematic view of the muscle structure in the human heart4.
(a) shows an schematic view of the left ventricle where a small block of myocardial
tissue has been cut out.
(b) shows the structure of the muscle from the endocardium to the epicardium.
(c) shows five special longitudinal-circumferential layers at varying thickness of
the myocardium, from 10 to 90 per cent of the wall thickness.
(d) shows the make-up of myocytes, with embedded collagen fibers and the local
right-handed orthonormal fiber coordinate system with the fiber axis f0, sheet
axis s0 and sheet-normal axis n0.
Finally in (e) one sees a cube of layered tissue with local coordinates (X1, X2, X3)
which is used to develop the mechanical models in [32].

17



1 Physiological Background

refer to [17, 32, 39–41, 70] as a starting point. The detailed pure mechanical model
of the myocardium is presented in Chapter 3.

The mechanic response of the human heart relies on a very complex electro-chemical
signal conduction system which will be discussed in the next section.

1.2 Signal Conduction & Overview of the Cardiac Cycle

For a more detailed description about the signal conduction of the human heart the
reader is referred to [43, 71].

Cardiac tissue is called a functional syncytium of myocytes. This means that cells
are separated morphologically but connected through so-called gap junctions. Gap
junctions enable the cells to exchange different ions and molecules (like e.g. Na+ or
ATP5) with each other. This transfer between cells is one of the reasons why the
heart muscle can contract so fast. For more details on gap junctions refer to [71, p.
16ff].

Myocytes have two very important abilities, namely they are excitable and contractile.
The first means, that they can transport electric potentials and these potentials
cause the cells to actually contract.6 The excitability of the myocytes is fundamental
for understanding the functionality of the human heart and will be addressed in
Section 2.2.4. However, to ensure correctness of the complex process of pumping
blood through our body, there is an intense communication and synchronization
between the cells, which is controlled by the signal conduction system of the heart as
depicted in Figure 1.3. The electrical activity of the human heart starts in a bunch
of cells known as the sinoatrial node, short SA node, which is found just below the
superior vena cava of the right atrium. The cells in the SA node are very special cells,
as they work as autonomous oscillators, meaning that they can alter their electric
potential without effects from outside. This change of electric potential (known as
action potential) is then mitigated through the heart, starting by the atria. The
atria and the ventricles are sperated by a wall which consists of non-excitable cells.
Thus the action potential cannot pass directly this barrier. However there exists
one pathway through this barrier: another bunch of specialized cells, known as the
atrioventricular node, or short AV node, located at the bottom of the atria. An

5ATP stands for adenosine triphosphate and is one of the most important source of energy in the
human body. Therefore one also calls ATP the “currency” in our body, see [38].

6We will not discuss the details of how muscle cells actually contract, as this will lead us to far
away, we will rather assume that they just do contract. For a detailed physiological overview the
interested reader may refer to [71, p. 60ff] and also [20, 26, 33] and for a detailed mathematical
modeling overview one should refer to [36, Chap. 15].

7taken from http://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart
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1.3 Summary

Figure 1.3 – Schematic view of the signal conduction system of the human heart.7

important property of the AV node is, that its conductivity is much smaller than in
usual heart cells, so these action potentials travel quite slow through this cells. This
happens not without ulterior motive. If the signal would pass the AV node as fast as
it travels through other cells, the ventricles would start to contract before the atria
have ejected all of the stored blood into the ventricles. After the signal has passed the
AV node it branches out through a specialized collection of cells known as the bundle
of His, which is composed of Purkinje fibers. This Purkinje fiber network spreads out
in a tree-like way into the left and right bundle branches all over the inside of the
ventricles. The Purkinje fibers are connected to the ventricular muscle cells through
junctions. When an action potential reaches a muscle cell from a Purkinje fiber it
causes it to contract, and so the whole ventricle starts to contract. The end of the
propagation of the action potential lies in the epicardial surface. After the signal has
reached this point, the whole contraction is reversed and starts again from the SA
node. Due to the mentioned insulation of the ventricles and the atria and also due to
the fact that the ventricles are of greater physiological interest, as aforementioned
in the Introduction, the modeling is limited to the ventricular activity of the human
heart.

1.3 Summary

This was a very brief, and by no means complete, overview of the cardiac cycle
in a human heart. It should be evident from the above paragraph, that there is a
multitude of features of the myocardium to study. First of all one needs to know how
the electric potentials of cells can be altered and how the "communication" of cells
works, the latter leading to the so-called ionic currents. Bearing in mind the goal, of
describing the myocardium as a whole (supposed it can be modeled as a continuum),
it is also of great interest how we can describe the propagation of action potentials in
the whole human heart without focusing on the cellular structure. This will lead to

19



1 Physiological Background

the well-known Bi-Domain model. Apart from the electric propagation in the human
heart we also want to take a glance at the mechanic contraction of the heart. As
said before, we will not describe the contractile properties of myocytes here, as this
leads too far away. We will stick to a pure formulation of the mechanical models from
a continuum mechanical point of view. However, the mechanical and the electrical
activities are not self-contained. They depend on each other, thus we need to account
for that too, which will lead to coupled multi-field problems.

20



2 Modeling the Electric Activation of the
Myocardium

In this chapter we will focus on the electric activation of the human heart. As
mentioned in Chapter 1 the electric activation of the human heart is a very complex
procedure and relies on various different aspects. This chapter is by no means complete
and many of the physiological and physical topics will just be touched on. A very
good and detailed physiological overview of the electric activation in the human heart
is found in [71]. We will develop the mathematical modeling in this chapter which
results are largely taken from [36]. To be able to understand the processes of the
electrical activation we need to start at the cellular level. Nevertheless, it occured
many times in history of science that a simple approach used to describe the electrical
activity of the human heart, was very succeccsive. This was the electrocardiogram,
abbrv. ECG, dating back to 1877. This shall serve us as a motivation for the time
being.

2.1 Modelling the Human Heart as a Dipole

This part is derived from [36, Chap. 12]. One of the oldest attempts to model the
myocardial activity dates back to 1877, when the first electrocardiogram was recorded
by Einthoven1. It has been known since than that the action potential — this is the
potential difference across the cardiac cell membrane and it is the actual signal in
the human heart which is transported — of the human heart generates an electrical
potential field that could be measured on the body surface. In a first approach, the
human body was modeled as a volume conductor. This means, when there is a current
source somewhere in the body, currents will spread out throughout the body. With
those currents flowing, one can measure the potential differences between any two
points of the body’s surface, given a voltmeter which is sensitive enough. Potential
differences are observed whenever the current sources are sufficiently strong. There
are three of such occurrences. When the action potential is spreading across the
atria, there is a measurable signal, called the P wave. When the action potential is
propagating through the wall of the ventricles, there is the largest of all deflections,
called the QRS complex. A schematic view of a single ECG recording is depicted in
Figure 2.1. Finally, the recovery of ventricular tissue is seen on the ECG as the T

1For a more detailed view on the historical background refer to [8, 16].
2Taken from http://en.wikipedia.org/wiki/Sinus_rhythm.
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2 Modeling the Electric Activation of the Myocardium
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Figure 2.1 – Schematic view of the sinus rhythm of the heart2.

wave. The recovery of the atria is too weak to be detected on the ECG. Similarly,
SA nodal firing, AV nodal conduction, and Purkinje network propagation are not
detected on the normal body surface ECG because they do not involve sufficient
tissue mass or generate enough extracellular currents. In hospitals, ECG recordings
are made routinely using oscilloscopes. We will not turn our attention to the details
of the ECG. For a more detailed view about the technical belongings refer to [36]. We
will now turn our attention to the mathematical background of the ECG the volume
conductor model.

Governing Equations. In the volume conductor model, we view the human heart as
a three-dimensional conducting medium Ω with a given dipole-like charge ρ3. The
governing equations for a volume conductor are the Maxwell Equations which read,

∂

∂t
B(x, t) + curlE(x, t) = 0, (2.1)

divB(x, t) = 0, (2.2)
∂

∂t
D(x, t)− curlH(x, t) = −j(x, t), (2.3)

divD(x, t) = ρ(x, t), (2.4)

with H(x, t) being the magnetic field, B(x, t) denoting the magnetic flux, D(x, t)
describing the electric displacement, E(x, t) indicating the electric field and j(x, t)
terming a given current density. These equations describe the relation between the
electric and the magnetic fields in conducting media. By taking the divergence of

3This idea goes back to the Einthoven, see [76].
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2.1 Modelling the Human Heart as a Dipole

(2.3) we obtain the continuity equation

∂

∂t
ρ(x, t) + div j(x, t) = 0. (2.5)

For giving a full description of the relation between electric and magnetic fields
in conducting media, one needs to establish constitutive equations, which read for
D(x, t) and B(x, t)

D(x, t) = ε(x)E(x, t), (2.6)
B(x, t) = µ(x)H(x, t), (2.7)

with ε(x) being the electric permittivity, µ(x) being the magnetic permeability.
Furthermore in conducting media Ohm’s law applies, which states that

j(x, t) = M(x)E(x, t), (2.8)

with M(x)4 being the electric conductivity. As one can see, the constitutive quantities
ε,µ,M are assumed to be not time-dependent, which may not be the most general case.
For a detailed description of electromagnetism we refer to [35]. It should be mentioned
that, especially for human tissue, all those quantities are in fact tensor-valued functions
and will be discussed in more detail in Section 2.4.

From biophysics it is known that the electrical activation of the heart is a very fast
process, while the variations in the electric and magnetic fields are rather small, see
[63], thus we can neglect ∂

∂tB in (2.1) and obtain

curlE(x, t) = 0. (2.9)

From that it follows, that there exists a scalar potential u(x) such that

E(x) = − gradu(x).

Hence, equation (2.9) is fulfilled. Inserting this potential into Ohm’s law we obtain

j(x) = −M(x) gradu(x).

In accordance to [36, Section 14] we denote − ∂
∂tρ(x, t) by f , being the lumped sum

of all current sources in the heart Ω. Then, the continuity equation (2.5) becomes

−div (M(x) gradu(x)) = f(x, t). (2.10)

This is a quasi-static Poisson equation. To complete this partial differential equation
we still need to incorporate boundary conditions. A very obvious assumption is, that
there is no current flux outwards of the heart. This means

j · n = 0 on Γ = ∂Ω,
4It is common to use σ for the conductivity, however this special letter is reserved for the Cauchy
stress tensor which will be introduced in Chapter 3.
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2 Modeling the Electric Activation of the Myocardium

where n denotes the outer unit normal vector of Ω. Using this and Ohm’s law (2.8),
we end up with the Neumann boundary condition

(M gradu) · n = 0 on Γ.

We may note a few points at this stage. For the boundary value problem to be
solvable we need to enforce the condition∫

Ω

f dx = 0

as follows easily by applying Gauss’ theorem to the integral of equation (2.10). Next,
from calculus we know, that the scalar potential u is unique up to a constant. Thus
one usually introduces a scaling condition in the form∫

Ω

u(x) dx = 0

to fix the constant term of u, see [75] for details.

2.2 Cardiac Cells, Action Potentials and Ionic Currents

The volume conductor model, although very simple, is still the basis for the electro-
cardiography in modern medicine. However, to get a more profound understanding of
the electric activation of the human heart, and because of the evolving knowledge
about epigenetics, as mentioned in the introduction, we need to take account of
some physiological details. First of all we need to understand how cardiac cells can
transport electric signals.

2.2.1 The Cell Membrane

From an electrical point of view, the most important part of a cell is its membrane.
Therefore we will not discuss details about the structure of a human cell. The
interested reader may refer to [71]. For our end it is sufficient to know, that a
human cell consists of a cell membrane and the interior. The inside of the cell, the
intracellular space is a very complex structure, Both the intracellular and extracellular
space consist of, among many other things, a dilute aqueous solution of dissolved
salts, primarily NaCl and KCl, which dissociate into Na+, K+ and Cl− ions. Outside
the cell in the extracellular space we also find ions in a different concentration. Thus
there is an electric imbalance and so cells possess an electric potential, whose idle
state is referred to as resting potential.
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2.2 Cardiac Cells, Action Potentials and Ionic Currents

The cell membrane acts as a boundary separating the interior of the cell from its
exterior. More important, it is selectively permeable, meaning that it allows some
materials, among also ions, to pass into and out the cell. It is composed of a double
layer, or bi-layer, of phospho-lipid — where lipid is specified by a category of water-
insoluble, energy rich macromolecules, like fats, waxes, and oils — molecules about
7.5 nm thick. Figure 2.2 shows a schematic view of a cell membrane.

Exterior

Interior

Figure 2.2 – Schematic view of the cell membrane5. For the thesis, the most important part
of the cell membrane are the channel proteins which have been marked red.

The cell membrane itself is a very complicated structure and we might dedicate a
whole thesis to this, but we will focus on a specific part of the cell membrane: the
channel proteins, marked red in Figure 2.2. These are protein-lined pores which
actual regulate the passage of ions through the cell membrane, thus maintaining
concentration differences between the interior and the exterior of a cell.

There are two possibilities to transport molecules through the cell membrane. The
first one is the so-called passive transport, by which we mean a passive process which
is solely driven by concentration gradients6 . The second possibility to transport
molecules through the cell membrane is by a so-called active transport. An active
transportation process involves the transportation of ions against their concentration
gradient and thus is an energy consuming action. The whole maintenance of the
concentration differences are set up by the active mechanisms of the cell. Also much
of the metabolism of our body works due to such transports. In literature it is also
quite common to refer to those active processes as pumps.

The most important of those pumps is the Na+–K+ ATPase, see [71], which uses the
energy stored in ATP molecules to pump Na+ out of the cell and K+ in. There are

5Taken from http://en.wikipedia.org/wiki/Cell_membrane.
6The diffusion of water in and outside the cell, the Osmosis, falls in that category but is not of
interest for our models.

25

http://en.wikipedia.org/wiki/Cell_membrane


2 Modeling the Electric Activation of the Myocardium

much more of these pumps, many of them use Calcium Ca2+. However, we will not
discuss either of these processes here in detail as this would go beyond the scope of
this thesis, the interested reader may refer to [71] for the physiological details and
[36] for the modeling details. We will stick to the fact, that the active transport
together with the passive transport are essential for the health of a cell itself and for
the regulation of the concentration differences.

2.2.2 Electric Circuit Model of the Cell Membrane

Since the cell membrane separates charges, it can be viewed as a capacitor, see [35]
for details. The capacitance of any insulator is defined as the ratio of the charge
across the capacitor to the voltage potential necessary to hold that charge, and it is
denoted by

Cm = Q

V
. (2.11)

From standard electrostatics, e.g. Coulomb’s law, see [35], we can derive the fact
that for two parallel conducting plates separated by an insulator of thickness d, the
capacitance is found to be

Cm = kε0
d
,

where k is the dielectric constant for the insulator and ε0 is the permittivity of free
space. The capacitance of the cell membrane is typically 1.0 µF/cm2. Taking that
ε0 = 10−9

36π F/m we calculate the dielectric constant of the cell membrane to be about
8.5.

We can think of the cell membrane as an electric circuit, as shown in Figure 2.3.

Figure 2.3 – A very simple circuit model of the cell membrane7. Please note that in this
reference the trans-membrane potential is denoted by V rather than utm.
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2.2 Cardiac Cells, Action Potentials and Ionic Currents

It is assumed that the membrane acts like a capacitor in parallel with a, not necessarily
ohmic, resistor. We know that the current is d

dtQ, thus from (2.11) it follows that the
current flowing over the capacitor is given by Cm d

dtutm, provided that Cm is constant.
Finally we use Kirchoff’s law and obtain

Cm
d
dtutm + Iion = 0. (2.12)

Equation (2.12) is a very fundamental statement and will be often used throughout
this thesis. The function Iion, called the ionic current, describes the current flowing
through the resistor depicted in Figure 2.3. Further, we assume some external current
sources to be applied either on the inside, which we then call si, or on the outside of
a cell which then are named se. So we obtain the following two equations which will
be used in Chapter 5:

Cm
d
dtutm + Iion = se, (2.13)

Cm
d
dtutm + Iion = −si. (2.14)

2.2.3 Functional Dependence of Iion

As written above the differences in ionic concentrations between the inside and
outside of a cell create a potential difference along the cell membrane, called the
trans-membrane potential utm. This trans-membrane potential in particular drives a
current flux between the interior and the exterior of a cell which we denoted above as
ionic current Iion. We will not discuss the physical details of the ionic currents. The
interested reader may refer to [36, Chapt. 2, 3 and 5]. The most important aspect for
modeling is that the ionic current has a functional dependence on the action potential
utm, i.e. Iion = Iion(utm). The difficulties arise, when one tries to figure out how
this dependence may look like. In [36] we find two possibilities how to describe the
functional dependence of the ionic current, a quasi-linear one reading

Iion(utm) =
∑
ions

gions(utm − uions),

where ions stands for a list of ions of interest (like Na+, K+ and so on). The values
gions represent not necessarily constant conductivities. For each ion, uions denotes the
Nernst potential, see [36, Chapt. 3] for details. This model is quite popular, as one
can divide the dependence of the ionic current up to different ionic currents for each
ion and then lump all together to a so-called leakage current. The second possibility
is to use a similar decomposition of the ionic current into a current for each ion using

7Taken from [36, p.87, Figure 2.13].
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the Goldman-Hodgkin-Katz current equation reading

IS = PS
z2F 2

RT
utm

ci − ce exp
(
− zFutm

RT

)
1− exp

(
− zFutm

RT

) ,

where S stands for the type of ion, z is the valence of the ion S, ci and ce are the
respective concentrations in the intra and extra cellular regions, R is the universal gas
constant, T is the absolute temperature, PS is the permeability of the cell membrane
to the specific ion S and F is Faraday’s constant. In the next section we will see how
we can describe the evolution of the ionic current.

2.2.4 Excitability of Myocytes

In Section 2.2.3 we have seen how the trans-membrane potential utm causes ionic
currents Iion to flow through the membrane. Regulation of this membrane potential by
control of the ionic channels is one of the most important cellular functions. Myocytes,
especially, use this membrane potential, as discussed in Chapter 1 as a signal to
control the contraction of the myocardium. Thus, the contraction is dependent on
the generation of electric signals. As aforementioned, heart cells belong to a class of
very special cells: they are excitable. This means, that if we apply a current which is
sufficiently strong, the membrane potential performs a pronounced oscillation before
eventually returning to the resting potential value. Figure 2.4 shows a schematic view
of an action potential typical for ventricular heart cells. We need to mention at this

Figure 2.4 – Typical curve of an ventricular cell action potential8.

8Taken from http://library.thinkquest.org/C003758/Function/The%20Cardiac%20Action%
20Potential.htm.
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2.2 Cardiac Cells, Action Potentials and Ionic Currents

point that the shape of the action potentials differs from cell to cell in the heart. This
means, the models for the SA node will not be adequate for describing the potential
of the AV node and the other cell types in the myocardium respectively.

In Chapter 1 we referred to this change of potential as action potential. The most
obvious advantage of excitability is that an excitable cell either responds in full to
a stimulus or not at all, and thus a stimulus of sufficient amplitude may be reliably
distinguished from background noise. In this way, noise is filtered out, and a signal is
reliably transmitted.

The studies on the generation and propagation of those signals have been made for
nearly a hundred years. Although the generation and propagation of signals have
been extensively studied by physiologists for at least the past hundred years, the
most important landmark in these studies is the work of Alan Hodgkin and Andrew
Huxley, see [30], who developed the first quantitative model for the propagation of an
electrical signal along a squid giant axon. Their model was originally used to explain
the action potential in the long giant axon of a squid nerve cell, but the ideas have
since been extended and applied to a wide variety of excitable cells.

In the spirit of Hodgkin and Huxley many models have been developed. All those
models do share a common structure, see [46]. They are called Hodgkin-Huxley-type
models, since they are all based, mathematically, on the original model from Hodgkin
and Huxley [30]. In [46] we find a very good summary of the various models for ionic
currents. The models are based on viewing the cell membrane as an electrical circuit
and applying Kirchoff’s law to it. This means that the membrane current model
consists of a capacitive current term and a variety of ionic current terms appropriate
for a specific type of cell. The general form of the spatially-independent model with
n ionic currents is

Cm
d
dtutm = −

n∑
i=1

ḡia
p
i b
q
i (utm − Vi) + Iapp(t), (2.15)

d
dtai = a∞i (utm)− ai

τai(utm) , i = 1, 2, . . . , n, (2.16)

d
dtbi = b∞i (utm)− bi

τbi(utm) , i = 1, 2, . . . , n, (2.17)

where Cm is the capacitance of the cell membrane, utm is the trans-membrane
potential, ḡi is the maximal conductance of the channel for ion i, ai and bi are the
gating variables taking values between 0 and 1, Vi is the Nernst potential for the ith
ion, Iappl is the applied stimulus current. The latter may consist of a signal coming
from an adjacent cell or from an external applied current. Further, a∞i and b∞i are
the steady state values of the gating variables at potential utm, τai and τbi are the
relaxation time constants at potential utm and finally p, q denote some arbitrary
real exponents. Many of the excitability models known throughout literature can be
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2 Modeling the Electric Activation of the Myocardium

written in this form. There is a huge collection of those models available for simulation
through the CellML-Project9. Taking note, we write the evolution equation for the
ionic current Iion in the following abstract way as a system of nonlinear ordinary
differential equations:

Iion = g(t, utm,v),
d
dtv = f(t, utm,v), (2.18)

v(t = 0) = v0. (2.19)

With this notation we can cover almost any possible shape of the ionic current
appearing in the literature. We will now turn our attention to the mathematical
modeling of macroscopic signal propagation in the human heart.

2.3 The Bi-Domain Model

We will now turn our focus to the macroscopic propagation of electric signals in the
myocardium. It would be possible to model the whole human heart on a cellular
basis, however, this would be computational very expensive. Furthermore we would
need to develop a very detailed cell model which would have to bee applied to each
cell and then coupled among each other. The latter is for being able to describe the
propagation of signals through the cells. This coupling is complicated by the fact,
that the signal which is transported is in fact the trans-membrane potential utm,
and thus the intra and extra cellular spaces have to be continuously connected and
intertwined, so that we can move continuously between any two points within one
space without traversing through the complementary space. This is only possible in a
three-dimensional domain10. As aforementioned, it is yet not possible to write and
solve equations that account for the cellular structure and the details of the geometry
of the human heart. In a first step, see Section 2.1, we saw that modeling the human
heart in a macroscopic sense as a dipole suffices for some medical application but is
not adequate for a complete description of the electrical activation of the human heart.
A more accurate description will be obtained by the Bi-Domain model developed by
L. Tung, see [79] as well as [29, 43] for details.

For deriving an accurate model for the electric activation of the myocardium we apply
a procedure from continuum mechanics, known as homogenization. With this we

9http://www.cellml.org This is a open-source project, where cell models are described using the
XML Markup Language for a platform independent description of different models. The CellML
model repository is updated regularly with the most recent advances in cell physiology. There
are, of course, models which cannot be covered by this. One of them would be the Aliev-Panfilov
model [3].

10In fact, as we mentioned in the Introduction in Chapter 1 the myocardium is a syncytium, thus we
can assure that traversing the intracellular space in a continuously way is possible.
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can write equations in an averaged, or smoothed, sense which is adequate for the
most computational situations. In continuum mechanics, it is quite common to study
averaged quantities, to avoid modeling the molecular structure of solids and fluids,
see e.g. [18, 34] but also [61] and [36, Chap. 7,12] for mathematical details and a
justification.

In homogeneous idealization, we can look at the myocardium as a two-phase medium.
This means that every point x ∈ Ω is composed of a certain fraction of intracellular
space as well as extracellular space. Apparently, for each point x in space we can
define an electric potential for the intracellular space, ui and for the extracellular
space, ue, respectively. Thus also the trans-membrane potential can be defined in the
whole space as utm = ui − ue. We shall use the subscripts e, i for denoting extra and
intra cellular space from now on until otherwise stated. As in the volume conductor
model in Section 2.1 , we can also assume that the quasi-stationary Maxwell equations
hold, and that way, by using Ohm’s law (2.8) in both domains we obtain

ji = −Mi gradui, (2.20)
je = −Me gradue, (2.21)

where jk and Mk for k ∈ {e, i} are the respective currents and conductivity tensors
in each domain. It should be mentioned that the tensors may also depend on the
deformation of the heart as well as on the change of the ionic current Iion. This will
be discussed in Chapter 4.

We closed Section 2.2.2 with the equations (2.13)–(2.14), describing a very simplified
cable model of the cell membrane. Their, the quantities were only time-dependent.
However, in reality this is not true. Thus, the quantities utm, si, se will depend on
the position x. Nevertheless, we may assume that there exist some kind of density
functions ũtm, s̃e, s̃i such that

• =
∫
A

•̃ dx,

where • may be replaced by any of the above mentioned quantities and the region A
being a small test volume either in Ωe or Ωi. For the time being we shall pick a small
test volume in Ωe. Having that we can now formulate a simple balance principle for
the current in each region reading as

−
∫
∂A

(je,n) dsx = − d
dt

∫
A

χCmũtm(x, t) dx−
∫
A

χĨion dx+
∫
A

s̃e dx . (2.22)

The signs account for the direction of the currents from the extracellular into the
intracellular region. The constant χ represents the area of the cell membrane per
unit volume, and needs to be introduced, because the ionic current Ĩion and also the
trans-membrane current Cm dutm

dt are measured per unit cell membrane. Its value is
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2 Modeling the Electric Activation of the Myocardium

shown in Table 2.1. For the current ji holds an analogous balance principle. We will
now interchange the use of the “∼“ symbol for reasons of readability. Next, we use
Gauss’ theorem on the left side of equation (2.22) and obtain

−
∫
A

div je(x, t) dx = − d
dt

∫
A

χCmutm(x, t) dx−
∫
A

χIion dx+
∫
A

se(x, t) dx .

Next, interchanging integration and derivation with respect to time in the above
equation we obtain

−
∫
A

div je(x, t) dx = −
∫
A

χCm
∂

∂t
utm(x, t) dx−

∫
A

χIion dx+
∫
A

se(x, t) dx .

This needs to hold for every test volume A ⊂ Ωe. Assuming continuous integrands
and using Ohm’s law (2.8) we arrive at the point-wise equation

χCm
∂

∂t
utm + χIion(utm) + div (Me gradue) = −se. (2.23)

Similar we obtain

χCm
∂

∂t
utm + χIion(utm)− div (Mi gradui) = si. (2.24)

when formulating the balance principle in Ωi.

From (2.23)–(2.24) we see, that we have two equations for three variables ui, ue, utm,
thus we may eliminate one of those variables. In the literature it is common to
eliminate the intracellular potential ui. Recalling the definition of utm := ui − ue we
can eliminate the intracellular potential by subtracting (2.24) from (2.23). We obtain
the equations

χCm
∂

∂t
utm + χIion(utm)− div (Mi gradutm)− div (Mi gradue) = si, (2.25)

div (Mi gradutm) + div ((Mi + Me) gradue) = −(si + se). (2.26)

To complete the model we need to impose boundary conditions for ue and utm.
Assuming that the heart is surrounded by a non-conductive medium we can impose
boundary conditions of Neumann type

n · ji = 0,
n · je = 0,

with n being the outer unit normal vector of the boundary Γ := ∂Ω.

Substituting Ohm’s law (2.8) in the definitions of ji and je we finally obtain the
complete model as

χCm
∂

∂t
utm + χIion(utm)− div (Mi gradutm)− div (Mi gradue) = si, (2.27)

div (Mi gradutm) + div ((Mi + Me) gradue) = −(si + se), (2.28)
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in Ω× (0, T ] with the imposed boundary conditions of Neumann type

n · (Mi gradutm + Mi gradue) = 0 on Γ× (0, T ], (2.29)
n · (Me gradue) = 0 on Γ× (0, T ]. (2.30)

This is the bi-domain model as it was introduced by L. Tung in [79]. However, as
aforementioned, this modeling of the human heart is restricted to the ventricles.
Therefore we may not assume homogeneous boundary conditions and should replace
them by the conditions

n · (Mi gradutm + Mi gradue) = gN,i on Γ× (0, T ],
n · (Me gradue) = gN,e on Γ× (0, T ].

Anyway, for the well-posedness of the equations (2.27)–(2.28) we must assume the
solvability condition ∫

Γ

(gN,i + gNe) dsx +
∫
Ω

(si + se) dx = 0, (2.31)

which is obtained easily by integrating (2.28) and using Gauss’ theorem together with
the boundary conditions.

It is noted that Dirichlet boundary conditions can be imposed to avoid solving a
pure Neumann problem11, however we will not discuss this in further details. The
Neumann problem will be addressed in Chapter 5.

The ionic current still needs to be accounted for and we also need to describe the
conductivity tensors Mi and Me. We have seen in Section 2.2.4 that we can write many
of the models for the ionic current as a system of ordinary differential equations

Iion = g(t, utm,v),
d
dtv = f(v, utm, t).

In this system v describes the vector of dependent variables (gating, conductions,
and so on) and f , g denote (non)linear functions, as suggested in [59]. Later on we
will extend the dependence of Iion to the mechanical behavior as well. Next we will
establish some basic facts about the conductivity tensors Mi and Me.

2.4 Accounting for the Fiber Orientation

It is known, that the myocardium is the most important part, when describing the
pumping process of the human heart. For the electrochemical modeling we have
11This has a physiological reason. When measuring the heart activity one usually uses electrodes,

and by them one fixes the value of the potentials at a region.
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derived the Bi-Domain model (2.27)–(2.30). Now we need to establish the conductive
properties of the myocardium. One important fact is, that the conduction in the
human heart is highly anisotropic, and as said above, the quantities Mi and Me are
tensor-valued functions.

This specific anisotropy comes from the structure of the myocardium as discussed in
Chapter 1. There we introduced a local coordinate system spanned by f0, s0 and n0.
From the definition of a tensor, see [55, Chap. 1], we know that the components of a
tensor depend on the chosen basis. However we can write the components of each
conductivity tensor as

M(x) := {mij(x}3i,j=1,

but we need to bear in mind, that the components of the tensor depend on the chosen
basis via

mij = (ei,Mej)

for a given orthonormal basis {ei}. We can do this also for more general non-
orthogonal basis vectors, but this lies beyond the scope of this thesis. The reader is
referred to [31, Section 1.6] for details. In practice it is common not to distinguish
between second-order tensors and their representing matrices and denote them with
the same symbol. We will henceforth use this with a tacit understanding until
otherwise stated.

Since we model the heart as a continuous medium the local coordinate systems will
vary throughout the heart. So in fact there is no preferred right-hand coordinate
system. At each point of the tissue, the first axis is in the direction of the fiber, the
second axis is in the plane of the fiber sheet and perpendicular to the first axis, and
the third axis is perpendicular to the sheet of the fiber. Thus we have f0 = f0(X)
and in analogy for s and n. Furthermore as we look at the myocardium as being
composed of parallel laminar sheets, these functions need to be also continuous. To
account for this varying coordinate system we will introduce a rotation of the fixed
Cartesian axes that will give us a set of axes aligned with the fiber and the fiber sheet
as suggested in [83]. To this end we consider a point X. We can express this point in
terms of the local coordinate system as

X = Xff0 +Xss0 +Xnn0,

where Xf , Xs, Xn are the components of X with respect to the basis f0, s0 and n0.
The orthogonal matrix that rotates axes aligned with the fiber and fiber sheet onto
the original axes can now be defined as

(P)ij := ∂Xi

∂Xj
for i = 1, 2, 3 and j = f, s, n. (2.32)
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We know, from standard linear algebra, that this defines a proper rotation matrix
and thus we know that P−1 = P>. This allows us to interchange between tensors in
the original frame and tensors in the fiber and fiber sheet oriented frame as follows

M∗(x) = P>M(x)P, (2.33)
M(x) = PM∗(x)P>, (2.34)

where the superscript "*" means, that we work in the local basis. Focusing on the local
coordinate system it becomes obvious, that the matrix M associated to conductivity
tensor M has to be diagonal with respect to the local basis {f0, s0,n0} that means

M∗ = mff0 ⊗ f0 +mss0 ⊗ s0 +mnn0 ⊗ n0,

or

M∗ = diag(mf ,ms,mn).

This characterizes the myocardium as an orthotropic material. More details on
orthotropic materials will be discussed in Section 3.4.1. Thus we can interpret the
values mf ,ms,mn as eigenvalues and f0, s0,n0 as eigenvectors of M∗, respectively
M∗. Applying the transformation rules (2.33) to Ohm’s law we can now express the
global conductivity tensors Mi and Me through

Mi := PM∗iP
>

Me := PM∗eP
>.

Summarizing, we have seen that for given local conductivity tensors we can completely
specify the parameters of the bi-domain model. The values are given in Table 2.1.

Parameter Value
Cm 0.01 F/m2

χ 2 · 105 1/m

mi
f 0.3 S/m

mi
s 0.1 S/m

mi
n 0.031525 S/m

me
f 0.2 S/m

me
s 0.165 S/m

me
n 0.13514 S/m

Table 2.1 – Values of the parameters used in the bi-domain model: the conductivity values,
the value for χ and the value for Cm are taken from [37],[28] and [64].
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2.5 The Final Electric Model

In this chapter we have developed the basic models for the electric part of the cardiac
cycle and eventually derived the bi-domain model. Furthermore we described the
conductive properties of the human heart with tensor-valued functions and we took
account of the ionic currents, by modeling it in the most abstract way. Summarizing
the complete electronic model of the human heart in dimensional form reads as find
(utm, ue) ∈ [C2(Ω)]2 ∩ [C1(∂Ω)]2 × (0, T ] and v ∈ [C1((0, T ])]n such that:

χCm
∂utm
∂t

+ χg(utm,v)− div(Mi gradutm)− div (Mi gradue) = si, (2.35)

div(Mi gradutm) + div((Mi + Me) gradue) = −(si + se), (2.36)

in Ω× (0, T ] and

dv
dt = f(t, utm,v) (2.37)

in (0, T ], completed by the boundary and initial conditions

n · (Mi gradutm + Mi gradue) = gN.i on ∂Ω× (0, T ], (2.38)
n · (Me gradue) = gN,e on ∂Ω× (0, T ], (2.39)

utm(x, 0) = u0
tm in Ω, (2.40)

ue(x, 0) = u0
e in Ω, (2.41)

v(0) = v0. (2.42)

The value n stands for the complexity of the model for the ionic current Iion.
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the Human Heart

In this chapter we present the models covering the pure mechanic deformation of the
human heart. In contrast to the modeling of the electric activation of the human heart,
the mechanic models are already established and we can describe the deformation of
the human heart with the standard equations from continuum mechanics.

We presume some basic knowledge about tensor algebra, see for example [55, Chap.
1, 2] and non-linear elasticity, see for example [31, 55]. However, we will recite some
of the basic facts of tensor algebra, as well as the governing equations of continuum
mechanics.

3.1 Essentials from Continuum Mechanics

Before starting with the derivation of the governing equations of non-linear continuum
mechanics we will briefly recite the most important notations and definitions from
solid mechanics. This part is mostly taken from [55].

3.1.1 Bodies, Configurations and Motions

We start with the general definition of a body B and its configuration B.

Definition 3.1. A body B is a set whose elements can be put into a one-to-one corre-
spondence with points of a region B in a three-dimensional Euclidean point space. The
elements of B are called particles, or material points, and B is called a configuration
of B1.

As a body moves the configuration B will change in time.

Definition 3.2. Let t ∈ I ⊂ R+ denote the time. The family {Bt : t ∈ I} of unique
configurations of B at time time t is called the motion of B.

We assume, that as B moves continuously also Bt changes continuously.
1The distinction between body and occupation in space makes sense, see [78] for details.
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Further, it is quite convenient to identify a so-called reference configuration, Br say,
which is an arbitrarily chosen fixed configuration. Then any particle P of B may be
labeled by its position vector X ∈ Br2, relative to a chosen origin O. Let further
x be the position vector of P in the configuration Bt at time t relative to another
chosen origin o. However we will simplify things a bit and chose O = o. Similar to
that we say that B occupies the configuration Bt at time t and call Bt the current
configuration. Since Br and Bt are configurations of B there exists a bijective mapping
χ : Br → Bt such that

x = χ(X, t) for all X ∈ Br, X = χ−1(x, t) for all x ∈ Bt. (3.1)

We see from (3.1), that we can characterize either of the coordinates with its counter-
part. Figure 3.1 shows a schematic summary.

Reference Configuration

Current Configuration

Figure 3.1 – Reference configuration Br and current configuration Bt with the position vectors
X and x of a material point P and the motion χ(X, t). The coordinate system
is spanned by an orthonormal basis {ei}3

i=1
.

For each particle P (with label X) χ describes the motion of P with t as parameter,
and hence also the motion of B. In continuum mechanics it is usual to assume that
χ(X, t) is twice continuously differentiable with respect to position and time.

2The configuration Br needs not be a configuration which is actually occupied by B during the
motion, however in most of the literature it is assumed so.
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3.1.2 Material and Spatial Descriptions

In the development of the basic principles of continuum mechanics a body B is
assigned to various physical properties which are represented by scalar, vector and
tensor fields defined on either Br or Bt3. In case of Br both the position vector X
and the time t serve as independent variables, the fields are said to be defined in
referential, material or Lagrangian description then. Alternatively, in the case of
Bt, x and t serve as independent variables. Here, we refer to the spatial or Eulerian
description. The distinction between these two descriptions is crucial. To make things
more clear: In material description attention is paid to a particle, and we observe
what happens to the particle as it moves. Spatial description puts attention to a
specific point in space, and we study what happens at the point as time changes. For
example, in fluid mechanics it is very common to work in the spatial description in
which all relevant quantities are referred to the position in space and time. It is not
useful to relate them to material points X which are in general not known. In solid
mechanics there is the advantage that one can use both descriptions.

For convenience, the consistency relation X = x must hold for t = 0. Every point X
and x can be represented by the orthonormal basis vectors {ei}3i=1 reading

X = Xiei, x = xiei, (3.2)

where Xi are the material coordinates and xi are the spatial coordinates. We could
also choose two different bases for the representation, but this shall be omitted here.
The case of general bases is discussed in [31, 55]. In (3.2) Einstein’s sum convention
applies. We will also use it henceforth except where stated otherwise. Furthermore, to
distinct between material and spatial description we shall denote quantities which are
in material description always by capital letters and use small letters for the spatial
description.

3.1.3 Material and Spatial Derivatives

In this section we apply Einstein’s summation convention. it will henceforth apply
until otherwise stated. We will now introduce various differential operators in material
and spatial description.

Definition 3.3 (Material Gradient, Spatial Gradient). The material gradient of a sufficiently

3Examples for such quantities are: density, temperature, shape of surface, velocity, stress, strain.
This distinction between reference and current configuration often leads to delicate modeling
problems, when one tries to combine two models which are defined on different configurations,
like fluid structure interaction see [10].
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3 Modeling the Mechanical Processes of the Human Heart

smooth material field Φ(X, t) is defined by

Grad Φ(X, t) := ∂

∂Xi
Φ(X, t)ei.

The spatial gradient of a sufficiently smooth spatial field φ(x, t) is defined as

gradφ(x, t) := ∂

∂xi
φ(x, t)ei.

In case of a vector-valued function u we define the material or spatial gradient as

gradu(x, t) := ∇x ⊗ u = ∂

∂xq
u⊗ eq = ∂

∂xq
upep ⊗ eq,

GradU(X, t) := ∇X ⊗U = ∂

∂Xq
U ⊗ eq = ∂

∂Xq
Upep ⊗ eq.

In case of a tensor-valued function t we define the material or spatial gradient as

grad t(x, t) := ∇x ⊗ t = ∂

∂xi
t⊗ ei = ∂

∂xi
tpqep ⊗ eq ⊗ ei,

Grad T(X, t) := ∇X ⊗ T = ∂

∂Xi
T⊗ ei = ∂

∂Xi
Tpqep ⊗ eq ⊗ ei.

Definition 3.4 (Material Divergence, Spatial Divergence). The material divergence of a
sufficiently smooth material field Φ(X, t) is defined as

Div Φ(X, t) := ∂

∂Xi
Φi(X, t).

The spatial divergence of a sufficiently smooth spatial field φ(x, t) is defined as

divφ(x, t) := ∂

∂xi
φi(x, t).

In case of tensor-valued functions t,T we define the spatial and material divergence as

div t(x, t) := ∂

∂xp
tpq(x, t)eq,

Div T(X, t) := ∂

∂Xp
Tpq(x, t)eq.

Definition 3.5 (Material Time Derivative of a Material Field). The material time derivative
of a material field Φ(X, t), either scalar or vector-valued, is defined as

Φ̇(X, t) = ∂

∂t
Φ(X, t) :=

(
∂

∂t
Φ(Y , t)

) ∣∣∣∣
Y =X

.
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Definition 3.6 (Velocity, Acceleration). The velocity V of a particle P is defined as

V (X, t) := ∂

∂t
χ(X, t),

meaning the rate of change in Position of P . The acceleration A of P is defined as

A(X, t) := ∂2

∂t2
χ(X, t).

Remark 3.1. Due to the identification of material and spatial coordinates we can define
the velocity and the acceleration in spatial coordinates as

v(x, t) := V (χ−1(x, t), t) = V (X, t),
a(x, t) := A(χ−1(x, t), t) = A(X, t).

When dealing with multi-physics problems we will often need to switch between
the Eulerian and the Lagrangian description of a function. For example: Let φ
be a scalar spatial field, this means φ = φ(x, t). Since x = χ(X, t) we may define
Φ(X, t) := φ(χ(X, t), t) and thus we can switch between the two descriptions, provided
χ is known. When we want to calculate the material time derivative of a spatial field
we need to be cautious. The connection of the two descriptions is given by

Lemma 3.1. Let φ(x, t) be a given sufficiently smooth function in spatial coordiantes
and Φ(X, t) := φ(χ−1(x, t), t). Then it holds:

∂

∂t
Φ(X, t) = d

dtφ(x, t) = ∂

∂t
φ(x, t) + (gradφ(x, t),v(x, t)).

Proof. The proof follows by taking the total derivative d
dt of the equation Φ(X, t) =

φ(χ−1(x, t), t) = φ(x, t).

Remark 3.2. An analogous result holds for vector-valued functions φ(x, t):

∂

∂t
Φ(X, t) = d

dtφ(x, t) = ∂

∂t
φ(x, t) + grad(φ(x, t))v(x, t).

Remark 3.3. With this we can write the acceleration a as

∂2

∂t2
χ(X, t) = a(x, t) = ∂

∂t
v(x, t) + (gradv(x, t))v(x, t).

Remark 3.4. For the sake of brevity we abbreviarte the total derivative with a super-
imposed dot, i.e. u̇.
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3 Modeling the Mechanical Processes of the Human Heart

3.1.4 The Deformation Gradient F

We define the deformation gradient F as

F(X, t) := Gradx(X, t) = Gradχ(X, t).

This special gradient is a Cartesian tensor of order two and can be expressed as

F = ∂

∂XA
xbeb ⊗ eA,

or in component form as

FbA = ∂

∂XA
xb

with xb = χb(X, t). It should be mentioned that the basis vectors for X and x need
not to coincide, we assumed it here just for simplicity. The deformation gradient is
an example of a so-called two-point tensor, which means it involves points from two
different descriptions. In literature it is quite common to express this fact by means
of indices used for the components of the tensor. An uppercase index stands for the
material description and a lowercase one for the spatial description. We also define
the Jacobian J as

J(X, t) := det F(X, t).

From a physical point of view it is reasonable to assume that J 6= 0 which is justified
by the following: Consider the equation F∆X = 0 for a small line element ∆X.
Provided ∆X 6= 0 J = 0 would imply that there is at least one line element whose
length is reduced to zero by the deformation, in other words, annihilated. This is
physically unrealistic and so we can exclude this from our consideration. Having that
we can ensure that F is nonsingular and so there exists the inverse F−1 given by

F−1(x, t) = gradX(x, t),

with the components

(F−1)Ba = ∂XB

∂xa
.

This is a direct consequence of the implicit function theorem (see [82] for details).

Connection between Grad and grad. For our purposes it is useful to have some trans-
formation rules for the gradients with respect to the material and spatial descriptions.
They are summarized in the following lemma.
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3.1 Essentials from Continuum Mechanics

Lemma 3.2. Let φ,u,T respectively be scalar, vector and second-order tensor fields
associated with a moving body B. Then it holds:

Gradφ = F> gradφ,
Gradu = (gradu)F,

Divu = J div(J−1Fu),
Div T = J div(J−1FT).

Proof. See [55].

Deformation of Area and Volume Elements. In continuum mechanics it is very im-
portant to know how to transform domains of integration. Consider the surface
Sr = ∂Br which is deformed into the surface St = ∂Bt. Let dsX and dsx be the
respective surface elements. Then the relation of the two is given by Nanson’s formula
reading

ndsx = JF−>NdsX . (3.3)

A proof of formula (3.3) can be found in [55]. A rather easier result holds for the
transformation of volume elements. If dx and dX describe the respective volume
elements in Bt and Br it holds

dx = J dX .

This is just an application of the transformation theorem for integrals, see [82] for
details. Concerning the Jacobian J it is assumed that J > 0. With this assumption
one can interpret J as a measure for volume change.

Some Important Results from Tensor Algebra. In this paragraph we summarize the
most important facts about the deformation gradient F. These results are taken from
[55].

Theorem 3.3 (The square root theorem). If S is a positive definite, symmetric second-
order tensor then there exists a unique, positive definite, symmetric second order
tensor U such that

U2 = S.

Proof. See [55].
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Theorem 3.4 (The polar decomposition theorem). Let F be a second-order Cartesian ten-
sor such that det F > 0. Then there exist unique, positive definite, symmetric tensors
U and v and a unique proper orthogonal tensor R such that

F = RU = vR.

Proof. See [55].

We shall mention some important tensors which will be used hereafter. We define the
Green strain tensor4 E by

E := 1
2
(

F>F− I
)
.

Similarly, we define tensors C and b by

C := F>F = U2

b := FF> = v2.

We refer to C and b as the right and left Cauchy-Green deformation tensor. The
terms left and right refer to that C works solely on the material description and b
works on the spatial description. These two tensors are by definition symmetric and
positive definite and can be decomposed into

U =
3∑
i=1

λiν
i ⊗ νi,

v =
3∑
i=1

µiv
i ⊗ vi,

where λi, µi are the eigenvalues and νi,vi are the eigenvectors of U and v. Eventually
it is useful to note that we can define the displacement U of a particle by

U(X, t) := x(X, t)−X.

This field relates the position X of a particle P in the undeformed configuration to its
position x in the deformed configuration at time t. The displacement U is a function
of the material coordinates X. We can also define the displacement field in spatial
coordinates as

u(x, t) = x−X(x, t).

Here the position x of a particle P at time t is specified by its position X(x, t) in the
reference configuration Br plus its displacement u(x, t) from that position. Due to the

4The motivation for defining this special tensor is a pure mathematical one. It follows from standard
linear algebra ‖dx‖2 − ‖dX‖2 = (dX, 2EdX). And thus E can be seen as a measure for strain.
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correspondance between the reference and current configuration the two descriptions
U and u are related by

u(x, t) : = U(χ−1(x, t), t).

It shall be noted that U and u need to have the same values. Further, when choosing
the reference configuration Br to coincide with the initial configuration Bt|t=0 we
see that the displacement has to vanish in the reference configuration. This can be
expressed as

U(X, t = 0) = u(x, t = 0) = 0.

This new variable will emerge as the independent one when considering boundary value
problems in non-linear elasticity. Having defined the displacement U we immediatealy
see that

χ(X, t) = x(X, t) = X +U(X, t)

and

F(X, t) = I + GradU(X, t),

where Gradu is the displacement gradient. Similarly we obtain in spatial coordinates
that

gradu(x, t) = I− F−1(x, t).

3.1.5 Analysis of Motion

Recalling the velocity v, we can define the velocity gradient tensor by

L = gradv, (3.4)

which has components Lij = ∂vi
∂xj

with respect to the basis {ei}. Using the identity
Gradu = (gradu)F it follows that

Gradv = LF.

Assuming x = χ(X, t) to be smooth enough we see that further

Gradv = Grad ẋ = d
dt Gradx = Ḟ.

Using this with the identity ∂
∂t det F = det F tr(F−1Ḟ) we obtain the important result

J̇ = J tr L = J div v.

In this thesis we will assume that J̇ = 0, which is the case for an isochoric process,
and this leads to the incompressibility condition

div v = 0. (3.5)
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Integration of tensors There is also an analog to the Gaussian theorem for tensors.
Recall that for a vector-valued function v we have that∫

Bt

div v dx =
∫
∂Bt

(v,n) dsx.

For tensors we need a slight different form of the Gauss’ theorem reading∫
Bt

gradφ dx =
∫
Bt

φn dsx,

which becomes ∫
Bt

∂φ

∂xi
dx =

∫
∂Bt

φni dsx (3.6)

in components. Similar for a tensor T it holds∫
Bt

grad T dx =
∫
∂Bt

T⊗ n dsx. (3.7)

Finally recalling the definition of the divergence of a tensor T we obtain∫
Bt

div T dx =
∫
∂Bt

T>n dsx. (3.8)

3.2 Equilibrium Laws and Equations of Motion

The mechanics of continuous media are described by equations which express the
balance of mass, linear momentum, angular momentum and energy in a moving body.
These balance equations apply to all bodies, solid or fluid, and all of them give rise to
field equations for sufficiently smooth motions. We will give a brief overview of the
balance equations leaving out their derivation. For additional information one should
refer to [31, 55].

3.2.1 Mass Conservation

We shall hereafter define Rt ⊂ Bt and Rr ⊂ Br arbitrary. As Rt moves it always
consists of the same material, so its mass does not change, which means

d
dt

∫
Rt

ρ(x, t) dx = 0.
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3.2 Equilibrium Laws and Equations of Motion

By using Reynold’s transport theorem, see [81, Theorem 11.60], and using the fact
that Rt was arbitrary we obtain the equation of mass conservation

∂

∂t
ρ(x, t) + ρ(x, t) div v = 0. (3.9)

Recall that J̇ = J div v. With that we obtain that
∂

∂t
(ρJ) = 0,

thus ρJ must be constant over time and so we obtain the more compact formulation
ρr
ρ

= J

with ρr being the mass density in the reference configuration. For an incompressible
material this simply becomes ρ = ρr.

3.2.2 Euler’s Laws of Motion

The main two balance equations are given by the balance of linear and angular
momentum m(x, t) :=

∫
Rt
ρv dx and h(x, t) :=

∫
Rt
x× ρv dx respectively and read

as
d
dtm =

∫
Rt

ρb dx+
∫
∂Rt

t(n) dsx, (3.10)

d
dth =

∫
Rt

ρx× b dx+
∫
Rt

x× t(n) dsx. (3.11)

with b being the body’s volume forces, t(n) being the stress vector5 and n being the
outer unit normal.

We have to mention that these equations do depend on the choice of the particular
basis {ei}. They resemble Newton’s laws for particles and rigid bodies. The main
difference in continuum mechanics is that the first equation above does not imply
the second one i.e. the equations are independent. For obtaining a local (point-wise)
description of these equations we need to know about the dependence of t on n. This
is governed by the well known theorem of Cauchy:

5This is called Cauchy’s stress principle and is regarded as an axiom. It gives a mathematical
description of the surface forces of an body. It states

”The action of the material occupying the part of Bt exterior to a closed surface S
on the material occupying the interior part is represented by a vector field, denoted
t(n), defined on S and with physical dimensions of force per unit area.“

See [55] for details.
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Theorem 3.5. Let (t(n), b) be a system of surface and body forces for B during a
motion. The Euler equations of motion (3.10)–(3.11) hold if and only if

1. There exists a second-order Cartesian tensor σ, the Cauchy stress tensor such
that t(n) = σ>n.

2. The stress tensor σ is symmetric, i.e. σ = σ>.

Proof. A proof for this theorem can be found either in [55] or in [31].

With this theorem we can formulate the point-wise equations of motion which are
also called Cauchy’s equation of motion reading

0 = ρ̇+ ρ div v, (3.12)
ρa = ρb+ divσ, (3.13)
σ> = σ. (3.14)

The divergence in (3.13) comes from an application of the divergence theorem (3.8).
These equations are not yet complete, they provide seven equations for thirteen scalar
fields. To close the gap we need to find more equations which will lead to constitutive
equations for σ. However, we will postpone this to Section 3.3.

For a more convenient mathematical analysis we will transform the above equations of
motion to the reference configuration Br. This is achieved by using Nanson’s formula
(3.3). For the stress vector t(n) we get∫

∂Bt

t(n) dsx =
∫
∂Bt

σn dsx =
∫
∂Br

JσF−>N dsX =
∫
∂Br

S>N dsX ,

where we have defined the nominal stress tensor, or engineering stress, by S := JF−1σ.
The tensor S> is referred to as first Piola-Kirchhoff stress tensor. The nominal
stress tensor S measures force per unit reference area while σ measures force per
unit deformed area. Further, S is in general not symmetric but satisfies the relation
FS = S>F> arising from the symmetry of σ. With this we rewrite the equations of
motion (3.13) in terms of S. To do so we look at the integral form of (3.13) reading∫

Rt

ρb dx+
∫
∂Rt

σn dsx =
∫
Rt

ρa dx .

Using Nanson’s formula (3.3) and ρ dx = ρr dX we obtain∫
Rr

ρrB dX +
∫
∂Rr

S>N dsX =
∫
Rr

ρrA dX,
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where B(X, t) := b(χ−1(x, t), t) and eventually taking the divergence theorem for
Cartesian tensors we arrive at the equation of motion in the reference configuration

Div S + ρrB = ρrA. (3.15)

The transformed equations of motion (3.15) is the basis for further analysis.

3.2.3 Boundary and Initial Conditions

We shall make a few notes on boundary and initial conditions for the equations of
motion. In Chapter 4 we will focus mainly on the quasi-equilibrium equations

divσ = 0

or

Div S = 0

rather than the full equations of motion. Therefore we would not need to impose any
kind of initial conditions. However, for the time being we are to discuss the initial
conditions. We also need to formulate appropriate boundary conditions in order to
formulate a boundary-value problem. From a physical point of view it is convenient to
formulate boundary conditions in Eulerian description. Typical boundary conditions
in problems of non-linear elasticity are those in which we specify either χ(x, t) or
u(x, t) for one part of the boundary ΓD ⊂ ∂Bt say, and the stress vector t on the
remainder, ΓN , so that Γ̄D ∪ Γ̄N = ∂Bt. In applied mathematics these boundary
conditions are called Dirichlet and Neumann boundary conditions and read as

χ = X(x, t) + u(x, t) = gD,1(x, t) on ΓD, (3.16)
u = gD,2(x, t) on ΓD, (3.17)

and

t = σn = gN (x, t) on ΓN . (3.18)

From (3.16)–(3.17) we see that we can focus on Dirichlet boundary conditions purely
in u.

However, for the mathematical analysis of the equations of non-linear elasticity it is
more useful to work on the reference configuration. In contrast to linear elasticity,
where we may neglect the difference between the reference configuration and the
deformed configuration, we have to consider these differences in case of non-linear
elasticity. An example shall illustrate the main differences when dealing with non-
linear elasticity. Consider a body Bt where a constant hydrostatic pressure p0 acts
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on the Neumann boundary ΓN , which means σn = −p0n. In non-linear elasticity
we may push-back this boundary condition to the reference configuration. This is
done by Nanson’s formula and thus we obtain for a simple hydrostatic pressure the
non-linear boundary condition S>N = −Jp0F−>N on ΓN,r, where ΓN,r denotes the
Neumann boundary in the reference configuration Br. This means, that for seemingly
simple Neumann boundary conditions we may obtain essential non-linear boundary
conditions in the reference configuration. As for the Dirichlet boundary conditions,
they remain the same as we can write gD(x, t) = gD(χ(X, t), t) =: g̃D(X, t). For
a more detailed discussion on boundary conditions in non-linear elasticity we refer
to [55, Chap. 5]. Summarizing, we obtain the following boundary conditions in the
reference configuration:

U = g̃D(X, t) on ΓD,r, (3.19)
t = S>N = g̃N (F,X, t) on ΓN,r, (3.20)

where we indicate the possible non-linearity in the Neumann boundary condition.
For mathematical reasons we may also rewrite the boundary conditions in a more
abstract way as

γint
0 u = gD on ΓD,
γint

1 u = gN on ΓN ,

with the trace operators γint
{0,1}(·) which will be defined in Chapter 5. When dealing

with time-dependent problems one also needs to impose initial conditions of the
form

U(t = 0,X) = u(t = 0,x) = 0, (3.21)
V (t = 0,X) = V 0(X) = v0(x) = v(t = 0,x). (3.22)

The equations of motion together with the boundary and initial conditions form a
system of highly non-linear second-order partial differential equations to obtain either
U or u. So far our system reads, in spatial coordinates, as

divσ(x, t) + ρ(x, t)b(x, t) = ρ(x, t)a(x, t),
∂

∂t
ρ(x, t) + div v(x, t) = 0,

σ(x, t) = (σ(x, t))>,

in Bt and t > 0 with the boundary and initial conditions

u(x, t) = gD(x, t) on ΓD,
σ(x, t)n = gN (x, t) on ΓN ,
u(x, 0) = 0,
v(x, 0) = v0.
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In material coordinates we have

Div S(X, t) + ρr(X)b(X, t) = ρr(X)A(X, t),
ρr(X) = ρ(χ(X, t), t)J(X, t),

F(X, t)S(X, t) = (F(X, t)S(X, t))>

in Br and t > 0 with the boundary and initial conditions

U(X, t) = g̃D(X, t) on ΓD,r,
S>(X, t)N = g̃N (F,X, t) on ΓN,r,
U(X, 0) = 0,
V (X, 0) = v0.

Taking all the boundary and initial conditions together the system is not complete yet.
This can easily be checked by counting the independent equations, seven equations
for thirteen scalar fields. Therefore we need to find more equations to complete the
system. This can be achieved by constitutive laws.

3.3 Constitutive Equations

This part is taken and adapted from [31] and [55].

We have seen that the equations of motion are not complete. Hence we must establish
additional equations in the form of appropriate constitutive laws which are furnished
to specify the ideal material in question. A constitutive law should approximate the
observable physical behavior of a real material under specific conditions of interest.
Generally speaking, a constitutive law establishes a functional relationship between
the Cauchy stress σ and some quantities like position, deformation, temperature and
so on. Our aim here is to give an overview on the theory for constitutive equations,
however we can not go too much into detail as this is far beyond the scope of this
thesis. For a more detailed overview we refer to [31, 77].

3.3.1 Hyper-elastic Materials

Before starting with the definition of hyper-elastic materials we briefly summarize
the most important facts about elastic materials.

The constitutive relation for an elastic material is written in the form

σ = g(F),
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where g is a symmetric tensor-valued function on the space of deformation gradients.
For simplicity we assume that the material under consideration is homogeneous, i.e.
g does not depend on the position x, an assumption which may be softened. We also
assume that g neither depends on the velocity v nor on higher order derivatives in time
and L. We also assume that g(I) = 0 which means that there is no stress when there
is no deformation. Otherwise we refer to the material as residually stressed, which
will be discussed in more detail afterwards. One of the most important assumptions
on the function g is that it is objective, which means that the material properties
are independent of superimposed rigid-body motions. In terms of tensors this is
summarized in the following definition:

Definition 3.7. Let φ, u, T be scalar, vector and second-order tensor-valued functions
defined on Bt. Let φ′,u′,T′ be the corresponding fields on B′t, where B′t is obtained
from Bt by a rigid body motion x′ = Qx+ c with Q being a proper orthogonal tensor
and c denoting an arbitrary vector in R3. The fields are said to be objective if, for
all such motions,

φ′ = φ,

u′ = Qu,

T′ = QTQ>,

holds.

There are of course examples of functions which are not objective, like the velocity
v. For more details about elastic materials, especially isotropic ones, we refer to
[31, 55]. We now turn our attention to a special class of elastic materials, the so-called
hyper-elastic materials. For this we take a look at the energy balance equation of
continuum mechanics reading

d
dt

∫
Rt

1
2ρ(v,v) dx+

∫
Rt

tr(σD) dx =
∫
Rt

ρ(b,v) dx+
∫
∂Rt

(t,v) dsx

where D := 1
2(L + L>). For a derivation of this energy balance equation see [55]. We

introduce the following physical quantities:

• The kinetic energy

K(Rt) :=
∫
Rt

1
2ρ(v,v) dx .

• The rate of working, or power of the forces acting on Rt,

P (Rt) :=
∫
Rt

ρ(b,v) dx+
∫
∂Rt

(t,v) dsx.
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• The quantity

S(Rt) :=
∫
Rt

tr(σD) dx,

which is a measure for the stored energy or the amount of work dissipated in
the form of heat or a mixture of both.

Now we can rewrite the energy balance equation as

P (Rt) = d
dtK(Rt) + S(Rt).

Next we focus on the term S(Rt). For an elastic material we assume a functional
dependence of σ on the deformation gradient F. By recalling the definition of the
nominal stress tensor S = JF−1σ we obtain

S = JF−1σ = (det F)F−1g(F) =: h(F),

where h is the so-called response function. By looking at the definition of S(Rt) we
get ∫

Rt

tr(σD) dx =
∫
Rr

J tr(σD) dX .

The integrand on the right hand side can be interpreted as working-rate of the stresses
per unit reference volume or more simple the stress power density. With that we
establish the following relation by using the definitions of σ,S,L

J tr(σD) = J tr(σL) = tr(FSL) = tr(SLF) = tr(SḞ) = tr(h(F)Ḟ).

With this result we can give a definition for a hyper-elastic material:

Definition 3.8. A material is said to be a hyper-elastic or Green elastic material if
there exists a function W (F), called the strain energy function, such that

Ẇ (F) = tr(h(F)Ḟ).

In literature one also finds the notation Helmholtz free energy, although this particular
name is most used in case the function W depends on more than just the deformation
F, e.g. temperature, electric field and so on. With that we can rewrite the term
S(Rt)

S(Rt) =
∫
Rt

tr(σL) dx =
∫
Rr

∂

∂t
W (F) dX = d

dt

∫
Rr

W (F) dX,
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with the term
∫
Rr
W (F) dX being the elastic strain energy in the region Rr. Taking

a closer look at the strain energy function we see that

∂

∂t
W (F) = ∂W

∂Fij

∂Fij
∂t

= tr(∂W
∂F

Ḟ).

Here we need to interpret the term ∂W
∂F . It is a second-order tensor with components

defined by the convention (see [55])(
∂W

∂F

)
ij

:= ∂W

∂Fji
. (3.23)

Due to Ḟ = LF we obtain

∂W

∂t
= tr

(
∂W

∂F
LF
)

= tr
(

F
∂W

∂F
L
)
.

On the other hand, we know that

∂W

∂t
= J tr (σL)

and by comparison we arrive at the fundamental relation

σ = J−1F
∂W

∂F
=: g(F)

or in more simpler form, taking the definition of the nominal stress S, we obtain the
relation

S = ∂W

∂F
=: h(F).

We will stick to the formulation in the reference configuration, i.e. we will work in
terms of h(F).

Assumptions on the response function h(F ). We have seen that S = J−1F−1g(F) =
h(F). We now require the response function h(F) to be objective. By a simple
calculation it can be shown that the relation

h(QF) = h(F)Q> (3.24)

needs to hold for arbitrary proper rotations Q. This poses a restriction on the shape of
the strain energy function. Let us recall the polar decomposition theorem (Theorem
3.4) which gives a partition of F into R and U. Since (3.24) needs to hold for arbitrary
rotations we may choose Q = R>. Thus we obtain

h(F)R = h(R>F) = h(R>RU) = h(U),
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3.3 Constitutive Equations

which means, that for h to be objective it is necessary that it depends on F through
U. In literature this is usually accomplished by choosing h to depend either on
C or E, because C = U2 and E = 1

2(U2 − I). Furthermore, we adopt some basic
assumptions from non-linear elasticity. To specify the behavior of W (F) for small and
large deformations we require that:

• W (F)→∞ as ‖F‖ → ∞. This means, that the energy increases as we increase
the deformation. This property is also called coercivity.

• det F→ 0 implies that W (F)→∞. This means, it requires "infinite" energy to
compress the body B to a point.

• W (F) =∞ if det F < 0.

In the next paragraph we will restrict deformations to the special class of isochoric
ones.

Incompressibility. Let us focus on incompressible materials which means det F =
J = 1 or div v = 0. In this case we need to adapt the formulation of the strain energy
function by introducing the Lagrangian multiplier p to enforce incompressibility (We
skip the derivation. The reader may refer to [55] for details.). For an incompress-
ible material the relation between the stress tensor and the strain energy function
becomes

σ = F
∂W

∂F
− pI.

In the spatial coordinates we can link the incompressibility condition with the
displacement u. We know that for an incompressible material

div v(x, t) = 0

needs to hold. Assuming that v is smooth enough we can rewrite the equation as

div v(x, t) = div u̇(x, t) = d
dt divu(x, t) = 0.

This together with the inital condition u(x, 0) = 0 leads to

divu(x, t) = 0. (3.25)

For the material description we obtain for the nominal stress

S = ∂W

∂F
− pF−1.

55



3 Modeling the Mechanical Processes of the Human Heart

The incompressibility condition in this case reads as

det F = 1.

Furthermore we assume that the strain energy function W (F) vanishes in the absence
of deformations, this means W (I) = 0. So far we have assumed that the strain energy
function W (F) vanishes for F = I. However, this does not exclude the possibility of
an in situ stress. This will be briefly discussed in the next section.

3.3.2 Residual Stress

We have assumed that the reference configuration Br is stress free. However, for the
application of non-linear elasticity to model biological tissue there are many situations
in which a stress free reference configuration does not exist and there are so-called
residual stresses not associated with a deformation and not given by a constitutive
law6. For biological tissues, those stresses are generated by growth, remodeling or
adoption, see [68] for details. We do not intend to discuss residual stress in detail
nor will we include it in our models, we just want to emphasize that in most of
the literature it is forgotten to mention residual stresses and their importance in
bio-mechanics.

We assume that the strain energy functionW (F) vanishes in the reference configuration.
However, we have not specified the behavior of the derivative ∂W

∂F yet. Recalling the
definition of the nominal stress S we define the residual stress as

S(r) := ∂W

∂F

∣∣∣∣
F=I
. (3.26)

In the literature we can also find the notation τ for the residual stress. Furthermore as
the residual stress is defined in the reference configuration we need not to distinguish
between nominal stress and Cauchy stress as they coincide. It is assumed in [55] that
the residual stress must satisfy the equilibrium equation

Div S(r) = 0 in Br. (3.27)

If the boundary ∂Br is traction free (unloaded) then, additionally, the residual stress
must satisfy the boundary condition

S(r)>N = S(r)N = 0 on ∂Br. (3.28)
6The term residual stress is not clearly specified. There are different notions which do all slightly
differ in their definition. The oldest definition dates back to Biot in 1965 and he called it initial
stress. Another definition goes back to Hoger in 1985. He actually called it residual stress.
However, we will go with the definition by Ogden. To illustrate the principle of residual stress we
refer to an experiment, which is often cited by Prof. Ogden in his lectures. When one takes a
small tube of arterial tissue and cuts it open one would usually expect that nothing will happen.
However, the arterial tissue opens up with a great velocity and stretches itself. This is due to the
residual stress which is released when cutting the tissue.
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3.4 Constitutive Model for the Myocardium

Now we want to establish some basic facts about the residual stress. For that we use
the identity

Div(S(r) ⊗X) = (Div S(r))⊗X + S(r). (3.29)

By using this identity together with Gauss’ theorem and (3.27), (3.28) we obtain∫
Br

S(r) dX = 0.

Its immediate consequence is that the residual stress must not be uniform. In other
words, if, in a residually stressed configuration, the boundary ∂Br is load free, then
the residual stress distribution is necessarily inhomogeneous and is therefore geometry
dependent. A further consequence is that the material response of a residually stressed
body relative to the residually stressed configuration, and hence the constitutive law,
is geometry dependent and inhomogeneous. For a more detailed treatment of residual
stresses in the context of modeling the myocardium refer to [2],[58] ,[24] and [14].

3.4 Constitutive Model for the Myocardium

After having established the basic facts on non-linear elasticity, we continue to specify
the constitutive model for the myocardium. We focus on a specific model, introduced
by Holzapfel in [32]. Of course, there are many other models around and in [32] one
finds a good summary of those. However, before introducing the Holzapfel model
we need to state a restriction on the model. To the best of our knowledge there is
no model of the passive myocardium which accounts for the whole structure of the
myocardium. All models concentrate on the ventricular activity. Thus, the Holzapfel
model may only validated for the ventricles of the human heart. For a detailed
overview of the experiments leading to the subsequent model we refer to [32] and the
bibliography there. At this point we will specify the reference configuration occupied
by the myocardium as Ωr ⊂ R3 and the deformed configuration with Ωt ⊂ R3.

3.4.1 Orthotropic Materials

The Holzapfel model is a constitutive model for a special kind of anisotropic materials,
so-called orthotropic materials. For explaining the idea of an orthotropic material
we recall the definition of the local coordinate system {f0, s0,n0} as introduced in
Chapter 1. This coordinate system represents a natural orthonormal coordinate
system spanned by the fibers in Ωr

7. To be more precise, as discussed in Section 2.4,
7In fact, the fibers need not be exactly orthogonal but for simplicity we assume it here.
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3 Modeling the Mechanical Processes of the Human Heart

this coordinate system is in fact X-dependent as can easily be seen in the Figure 1.2.
An orthotropic material is defined as a material which exhibits two or three axis of
symmetry, which means that the material properties change along these directions. If
there is just one axis of symmetry the material is referred to as being transversely
isotropic, see [31] for details. Examples for orthotropic materials are wood, fiber
reinforced polymers and in particular the myocardium. Orthotropic materials allow
the strain energy function to obtain a very special form, similar to the one of an
isotropic material. For an isotropic material the most general form of the strain
energy function is described by the Rivlin-Eriksen representation theorem, see [31, 55].
It states that the strain energy function, say Ψ, can be written as

Ψ(C) = Ψ(I1(C), I2(C), I3(C))

with

I1(C) := tr C,

I2(C) := 1
2
(
I2

1 − tr(C2)
)
,

I3(C) := det C.

The quantities I1, I2, I3 are called the isotropic invariants. The Rivlin-Eriksen theorem
is a very general statement as it does not need any phenomenological assumptions
and is not based on experimental data. For a general introduction into invariant
based constitutive models we refer to [74]. The general idea for handling anisotropic
materials is to split up the strain energy function W into an isotropic part Wiso and
an anisotropic part Waniso, this means

W (F) = Wiso(C) +Waniso(C),

where we explicitly require the dependence of W on F through C = F>F to automat-
ically have an objective strain energy function as mentioned in Section 3.3.1. For
a transversely isotropic material we know from [31, 55] that we can introduce new
invariants I4, I5. Suppose we have a transversely isotropic material with the preferred
direction v. Then we may introduce the new invariants

I4(C) := (v,Cv), (3.30)

I5(C) :=
(
v,C2v

)
.

These invariants account for the direction v. Similar, if we have two preferred
directions, say v,w, we may add the invariants

I6(C) := (w,Cw),

I7(C) :=
(
w,C2w

)
,
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3.4 Constitutive Model for the Myocardium

as well as a coupling invariant

I8(C) := (v,Cw) = (w,Cv).

We need to mention that the invariant I8 is not an invariant at all because it changes
the sign when the direction of either v or w is reversed. To overcome this one may
change the dependence of I8 to I2

8 as suggested in [32]. In case of orthotropic materials,
which means that v and w are orthogonal, it has been shown in [45] that the invariant
I8 can be expressed in terms of the other invariants by

I2
8 = I2 + I4I6 + I5 + I7 − I1(I4 + I6).

For the shape of the strain energy function it is quite common to use an exponential
ansatz in an additive way. This has two major reasons. First, exponentials auto-
matically fulfil the mathematical assumptions needed for guaranteeing existence of
solutions, like poly-convexity. This will be briefly addressed in Chapter 5. Secondly,
the idea of using exponentials dates back to phenomenological studies of Fung, see
[19]. Therefore one also refers to those models as Fung-type models.

3.4.2 The Holzapfel Model

Bearing in mind the local coordinate system as depicted in Figure 1.2 and the
definition of the invariant I4 as given in equation (3.30), we now consider the invariant
I4 associated with each of the directions defined by the local coordinate system
{f0, s0,n0}. The notation

I4f := (f0,Cf0) = ‖Ff0‖, (3.31)
I4s := (s0,Cs0) = ‖Fs0‖, (3.32)
I4n := (n0,Cn0) = ‖Fn0‖ (3.33)

shall be used here. From the assumption that the basis {f0, s0,n0} is orthonormal,
we conclude that∑

i∈{f,s,n}
I4i = C : (f0 ⊗ f0 + s0 ⊗ s0 + n0 ⊗ n0) = C : I = I1.

Thus, only three of the invariants I1, I4f , I4s, I4n are independent and we can eliminate
one. In [32], the invariant I4n is chosen to be eliminated. We might also introduce
the invariants associated with C2 as indicated above, however, following [32, 45], we
cancel these invariants and just introduce the orthotropic invariants

I8,fs = I8,sf := (f0,Cs0),
I8,fn = I8,nf := (f0,Cn0),
I8,sn = I8,ns := (s0,Cn0).
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3 Modeling the Mechanical Processes of the Human Heart

The symmetry of the above defined invariants follows from the symmetry of C. Again,
following [32], it can be shown from experimental results that one may omit the
dependence on the invariants I2, I8sn and I8fn. Furthermore, we assume the material
to be incompressible, thus the dependence on I3 cancels out too. Therefore we now
assume that the strain energy function is of the form

W (C) = Wiso(I1(C)) +Waniso(I4f (C), I4s(C), I8,fs(C)).

From this we determine the abstract structure of the Cauchy stress σ and the nominal
stress S. Before doing so we need to have some information about the derivatives with
respect to F. By using the chain rule and bearing in mind that we need to account
for the incompressibility we obtain

S = W1
∂

∂F
I1 − pF−1 +W4f

∂

∂F
I4f +W4s

∂

∂F
I4s +W8fs

∂

∂F
I8fs,

with the notation Wα = ∂
∂Iα

W , the partial derivative with respect to the invariant Iα.
At this point we carry out the differentiations ∂

∂FIα. However, the exact differentiation
is not of interest for this thesis and we just state the results. The proofs may be
found in [31, 55]. It holds

∂

∂F
I1(C) = 2F>,

∂

∂F
I4κ(C) = 2κ0 ⊗ κ0, κ ∈ {f, s},

∂

∂F
I8fs(C) = f0 ⊗ s0 + s0 ⊗ f0.

It follows that

S = 2W1F> − pF−1 + 2W4ff0 ⊗ f0 + 2W4ss0 ⊗ s0 +W8fs (f0 ⊗ s0 + s0 ⊗ f0) .

For the Cauchy stress we multiply from left with F and use the fact that F(a⊗ b) =
Fa⊗ Fb, see [31, p. 267]. Then we obtain for the Cauchy stress

σ = 2W1b− pI + 2W4ff ⊗ f + 2W4ss⊗ s+W8fs (f ⊗ s+ s⊗ f) ,

with f = Ff0, s = Fs0. As indicated in Section 3.4.1, the invariant I8fs changes its
sign if either one of the vectors f0, s0 is reversed by the deformation tensor F. To
overcome this inconvenience, we change the dependence from I8 to I2

8 . Further, we
need some restrictions on the strain energy function W . To this end we consider the
reference configuration where F = I. When assuming no residual stresses to be present
we obtain

0 = 2(W1 − p0)I + 2W4ff0 ⊗ f0 + 2W4ss0 ⊗ s0 +W8fs (f0 ⊗ s0 + s0 ⊗ f0) ,
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3.4 Constitutive Model for the Myocardium

where p0 is the value of the hydrostatic pressure in the reference configuration. This
requires

W1 − p0 = 0,
W4f = W4s = W8fs = 0

in the reference configuration. These results together with the information taken from
[19] motivates the introduction of the following exponential ansatz for W :

W (C) := a

2b exp (b(I1(C)− 3)) +
∑
i=f,s

ai
2bi

(
exp

(
bi(I4i(C)− 1)2

)
− 1

)
+ afs

2bfs

(
exp

(
bfsI8fs(C)2

)
− 1

)
. (3.34)

The values for the parameters a, af , as, afs, b, bf , bs, bfs are found in Table 3.1.

Parameter Value
a 0.059 kPa
af 18.472 kPa
as 2.481 kPa
afs 0.216 kPa
b 8.023
bf 16.026
bs 11.120
bfs 11.436

Table 3.1 – Values of the parameters a, af , as, afs, b, bf , bs, bfs as used for the Holzapfel model.
The values are taken from [32].

It remains to give the representation for the nominal stress S and the Cauchy stress
σ. Bearing in mind that the dependence of the invariant I8fs has been changed to
I2

8fs and carrying out the differentiation we obtain for the nominal stress

S = a exp(b(I1 − 3))F> − pF−1 + 2af (I4f − 1) exp(bf (I4f − 1)2)f0 ⊗ f0

+ 2as(I4s − 1) exp(bs(I4s − 1)2)s0 ⊗ s0 (3.35)
+ afsI8fs exp(bfsI2

8fs)(f0 ⊗ s0 + s0 ⊗ f0)

and similar, as indicated above, for the Cauchy stress

σ = a exp(b(I1 − 3))b− pI + 2af (I4f − 1) exp(bf (I4f − 1)2)f ⊗ f
+ 2as(I4s − 1) exp(bs(I4s − 1)2)s⊗ s (3.36)
+ afsI8fs exp(bfsI2

8fs)(f ⊗ s+ s⊗ f).
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3 Modeling the Mechanical Processes of the Human Heart

3.5 Summary

Summarizing we have arrived giving a full description of the activities of the passive
myocardium. The governing equations are set by Euler’s equations of motion with
suitable boundary and initial conditions and read, in material coordinates: Find
(U(X, t), p(X, t)) such that

Div S(U)−Div(pF−>) + ρrb = ρr
∂2

∂t2
U in Ωr × (0, T ), (3.37)

det F = 1 in Ωr × (0, T ), (3.38)
U = g̃D(X, t) on ΓD,r × (0, T ), (3.39)

S>N = g̃N (X, t) on ΓN,r × (0, T ), (3.40)
U(X, 0) = 0 in Ωr, (3.41)
V (X, 0) = V 0 in Ωr, (3.42)

for a given time interval (0, T ). Similarly we can state the equations in Eulerian
coordinates reading: Find u(x, t), p(x, t) such that

divσ(u)− grad p+ ρb = ρ
d2

dt2u in Ωt × (0, T ),

divu = 0 in Ωt × (0, T ),
u = gD(x, t) on ΓD × (0, T ),
σn = gN (x, t) on ΓN × (0, T ),

u(x, 0) = 0 in Ωt

∣∣
t=0 = Ωr,

v(x, 0) = v0 in Ωt

∣∣
t=0 = Ωr

holds, where we need to enforce incompressibility by setting J = det F = 1 or
divu = 0 as shown in (3.25), and furthermore, the shape of the nominal stress tensor
is characterized by the Holzapfel model (3.35).
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4 Coupling of the Electro–Chemical and
Mechanical Models

In this chapter we will merge the presented models for the electric and mechanic
response of the human heart. This leads us to a coupled multi-physics problem.
There are different approaches to couple the electric and mechanic response in the
human heart, hence we try to give a summary on the models known in literature, see
[23, 52, 59, 83] and the bibliography found in these articles for more details.

4.1 Coupling of the Bi-Domain Model with the Deformation

We start with deriving the coupled bi-domain equations. To this end, recall the
respective equations in (2.35)–(2.37). As a matter of fact, we have a moving body in
the coupled setting. Thus we first need to specify the material and spatial description
of these equations. We consider the time derivative ∂

∂tutm as material time derivative.
Let us turn our attention to the divergence terms. We will demonstrate the results for
one specific integral so the other terms can be treated in analogy. The divergence in
the bi-domain model is to be understood in spatial description, thus we may integrate
it over the current configuration Ωt. Doing so we obtain∫

Ωt

div(Mi gradutm) dx .

By applying Gauss’ theorem we conclude∫
Ωt

div(Mi gradutm) dx =
∫
∂Ωt

(Mi gradutm,n) dsx.

The integral on the right hand side can now be transformed into the reference
configuration by using Nanson’s formula (3.3), hence we arrive at∫

∂Ωt

(Mi gradutm,n) dsx =
∫
∂Ωr

(
Mi gradutm, JF−>N

)
dsX .

Next, by using the transformation rules from Lemma 3.2 we get∫
∂Ωr

(
Mi gradutm, JF−>N

)
dsX =

∫
∂Ωr

(
MiF−>Gradutm, JF−>N

)
dsX ,
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which can be rewritten as∫
∂Ωr

J
(

F−1MiF−>Gradutm,N
)
dsX . (4.1)

In literature, see [49, 59], the term F−1MiF−> is replaced by MiC−1 or just replaced
by Mi. This may not be justified mathematically unless one assumes that n is an
eigenvector of M{i,e}. However, there is a quite vivid way to argue this procedure,
following [71]. Let us assume a regular heart activity, without any fluttering. Then
we can argue as follows: A myocyte will contract after the action potential has
passed. From the shape of the action potential of ventricular cells we know that the
gradients of utm and ue are very steep in the moment of activating the cell, but nearly
vanishing afterwards, when the cell contracts. Thus, the mechanic reaction of the cell
does not change much during the development of the transmembrane or extracellular
potential. However, with the period of the action potential being smaller than the
time the heart cell needs to contract and relax, the deformation does affect the electric
signal processing, as it has been shown numerically in [59]. Summarizing we can say
that, physiologically speaking, we need to consider time delays in the coupling of
the mechanical and electrical behavior. At this point we will not go into details any
further, and leave this point open. We now go back to (4.1). Due to the lack of a
mathematical proof we may not use the formulations found in literature but better
stick to the original term F−1MiF−>. Following [31, p.82ff], we define this operation as
pull-pack operation, denoted by χ−1

∗ (Mi). This special operation transforms quantities
defined in the current configuration to the reference configuration. Thus we obtain∫

∂Ωr

J
(
χ−1
∗ (Mi) Gradutm,N

)
dsX =

∫
Ωr

Div(Jχ−1
∗ (Mi) Gradutm) dX .

The procedure shown above can be carried out for all divergence terms occurring
in the bi-domain model. Assuming continuous integrands we arrive at the strong
formulation of the coupled bi-domain model which reads:

χCm
∂

∂t
utm + χIion − J−1 Div(Jχ−1

∗ (Mi) Gradutm)

− J−1 Div(Jχ−1
∗ (Mi) Gradue) = Si,

J−1 Div(Jχ−1
∗ (Mi) Gradutm) + J−1 Div(Jχ−1

∗ (Mi + Me) Gradue) = −(Si + Se),

in Ωr × (0, T ] where Sk := sk(χ(X, t), t) and k = i, e. To complete the set of
equations we need to transform the boundary conditions into material coordinates.
That means, (

Jχ−1
∗ (Me) Gradue,N

)
= GN,e,(

J(χ−1
∗ (Mi) Gradutm + χ−1

∗ (Mi) Gradue),N
)

= GN,i,
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where GN,e, GN,i are appropriate functions in the reference configuration, defined as
GN,k := gN,k(χ(X, t), t) and k = i, e with the Neumann data from (2.38)–(2.39). In
combination with the incompressibility assumption J = 1 we get the final coupled
model

χCm
∂

∂t
utm + χIion −Div(χ−1

∗ (Mi) Gradutm)−Div(χ−1
∗ (Mi) Gradue) = Si, (4.2)

Div(χ−1
∗ (Mi) Gradutm) + Div(χ−1

∗ (Mi + Me) Gradue) = −(Si + Se), (4.3)

in Ωr × (0, T ] and the boundary conditions(
χ−1
∗ (Me) Gradue,N

)
= GN,e on ∂Ωr × (0, T ], (4.4)(

χ−1
∗ (Mi) Gradutm + χ−1

∗ (Mi) Gradue,N
)

= GN,i on ∂Ωr × (0, T ]. (4.5)

Finally, we need to impose a solvability condition reading as∫
Ωr

(Si + Se) dX +
∫
∂Ωr

(GN,e +GN,i) dsX = 0. (4.6)

There is another coupling procedure, involving the deformation, in the model of ionic
currents. However, we postpone this discussion for after describing the coupling with
the mechanic field.

4.2 Coupling the Equations of Motion

In this part of the thesis we describe how the electric activation of the human heart
influences its mechanical behavior. The incorporation of the human heart’s electric
activation is done by adjusting the strain energy function in a suitable way. In the
literature, see [48, 53, 72], we find two ways of doing this, known as the active strain
formulation and the active stress formulation. The latter appearing to be a special
case of the first one, as we will see.

4.2.1 The Active Stress and the Active Strain Formulation

As discussed in Chapter 1, myocytes have the ability to contract and relax at rather
high frequencies following the beat of the human heart. The contraction and relaxation
of smooth muscles influence the distribution of stress and strain in the vascular wall,
see [20, 26, 33] for details. In Chapter 3 we introduced the constitutive model by
Holzapfel. However, this model is a pure passive one. That means, it covers just the
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4 Coupling of the Electro–Chemical and Mechanical Models

passive mechanic response of the human heart due to its stretching, but does not
account for induced changes in the electrical behavior and vice versa. This second
response is referred to as active response because the muscle fibers do actively respond
to changes in the electric behavior.

The excitation-contraction coupling, short ECC, in cardiac muscular fibers is a
complex mechanism involving many variables such as the trans-membrane potential,
ionic conductance, intracellular calcium concentration, membrane strain and stress,
and changes in the rest length of muscle fibers due to the interaction of actin and
myosin. The specification of a realistic comprehensive model able to account for
the principal mechanisms involved in ECC, yet simple enough to be practical, is an
arduous task. However, this lies far beyond the scope of this thesis and we may refer
to [71] for details. Thus we need to combine the macroscopic constitutive passive
mechanical models with the microscopic active ones. The aforementioned microscopic
models are referenced in [11, 50, 57, 60].

To cut things short, the key concept found in literature is the following: at the
macroscopic level, the presence of muscle fibers enters the model as tension generated
by the fibers themselves, which is then called the active stress. In addition, this tension
has a preferred direction, which is defined by the orientation of the fiber. In case that
excitable soft tissues, or the ventricular myocardium, are considered as a whole, the
overall tension state is described by adding up the passive and the active stress. This
essentially means that we can split up the strain energy function used in the equations
of motion into an active and an passive part, i.e. W (C) = Wpass(C)+Wact(C,w), with
w being a vector of other physiologically relevant dependent variables to be defined
later on. This formulation is broadly accepted and widely used in [23, 52, 59, 83].

Contrasting to that, there is the idea of the active strain formulation introduced in
[48] where one rather uses a multiplicative decomposition of the deformation gradient
F into a visible elastic part Fe and an active part Fa. The active part is then again
assumed to be of the form Fa = γff0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0, where γf , γs, γn
are scalar fields which account for the electro-physiology and therefore we need to
state evolution equations for each of those fields similar to the models for the ionic
current Iion as described in Section 2.2.4.

In [48] it is further shown that the active stress formulation is a special case of
the active strain formulation, when assuming small deformations of the myocytes.
Therefore, we keep with the majority of authors and use henceforth the active stress
formulation. For a deeper discussion the reader may again refer to [48].

According to results shown in [83], the term ρẍ in the equations of motion is of
practically negligible order, so we use the so-called quasi-static equations of motion
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which read as

Div
(

TF>
)

= 0 in Ωr

where we have rewritten the equation using the so-called second Piola-Kirchhoff
stress tensor T defined by T := Jχ−1

∗ (σ), see [55] for more details. This formulation
responds to the convenient notation used in literature about the electromechanical
coupling. One should, however, bear in mind, that the tensor T does not admit a
physical interpretation, see [55]. In this setting we can write the stress-strain relation,
see [31], as

T = 2∂W (C)
∂C

− pC−1

with the term pC−1 to enforce incompressibility. Unlike in Chapter 3 we do not
specify a shape of the strain energy function to be able to cover the more general case
of other strain energy functions than the Holzapfel model. Following [83] we adjust
the strain tensor by

(T∗)MN = 2∂W (C∗)
∂C∗MN

− pC∗−1
MN + TaδMfδNfC

∗−1
MN ,

where we have used the "*"-notation introduced in Section 2.2.4 to express the tensors
with respect to the basis {f0, s0,n0}. The term Ta is a scalar function which generates
the active tension and will be discussed in more detail later. The term δMfδNf is
added to enforce the active tension to work only in the direction of the muscle fibers.
This has turned out to be a quite useful assumption, see [66, 73, 80] for details. The
question remains of how to model the active tension term Ta. From physiology it is
known, that the active tension depends on the stretch in the direction of the fiber
λf which is defined by λf :=

√
C∗ff . Furthermore, the active tension highly depends

on the inner calcium concentration, [Ca2+]i, in the muscle cells. The authors of [59]
propose the following abstract structure to model the active tension Ta:

dw
dt = g

(
w, λf , λ̇f , [Ca2+]i

)
,

Ta = h(w),

with g, h being some given non-linear functions. We will not focus on specific models in
this thesis, however, we cite two possibilities to model the active tension. The first one
can be found in [49] and an updated version in [23]. There, a purely phenomenological
model is used to describe the evolution of the active tension. The second one is a high
level physiological model developed in [51] and used for example in [59]. The second
approach couples the models for the Ionic current Iion with the deformation model by
introducing a new set of dependent variables collected in the vector a which stands
for various length-dependent biochemical quantities. Thus we obtain the following
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new abstract model for the ionic current Iion:

Iion = g(t, utm,v,a),
dv
dt = f(v, utm,a, t).

We will use this formulation because it covers even the most general case. For a
collection of various models for the generation of active tension one can look up in
the CellML repository mentioned in Section 2.2.4.

4.3 Summary of the Fully Coupled Electromechanical Model

In this chapter we have merged the two different models for the electrical activation
and the mechanical reaction of the human heart. As a result we obtain a fully coupled
system of partial differential equations under the incompressibility assumption which
reads as: Find (utm, ue,U ,v,w, p) such that

χCm
∂

∂t
utm + χIion−Div(χ−1

∗ (Mi) Gradutm)−Div(χ−1
∗ (Mi) Gradue) = −Si, (4.7)

Div(χ−1
∗ (Mi) Gradutm) + Div(χ−1

∗ (Mi + Me) Gradue) = −(Si + Se), (4.8)

Div
(

TF>
)
−Div(pF−>) = 0, (4.9)

det F = 1, (4.10)

in Ωr × (0, T ], with boundary conditions

(
χ−1
∗ (Me) Gradue,N

)
= GN,e on ∂Ωr × (0, T ], (4.11)(

χ−1
∗ (Mi) Gradutm + χ−1

∗ (Mi) Gradue,N
)

= GN.i on ∂Ωr × (0, T ], (4.12)

U = gD on ΓD,r × (0, T ], (4.13)
FTN = gN on ΓN,r × (0, T ], (4.14)

utm(X, 0) = utm,0(X), (4.15)
ue(X, 0) = ue,0(X), (4.16)
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completed by the constitutive equations reading as

(T∗)MN = 2∂W (C∗)
∂C∗MN

− pC∗−1
MN + TaδMfδNfC

∗−1
MN , (4.17)

Iion = g(t, utm,v,a), (4.18)
Ta = h(w), (4.19)

d
dtw = g

(
w, λf , λ̇f , [Ca2+]i

)
, (4.20)

d
dtv = f(v, utm,a, t), (4.21)

v(t = 0) = v0, (4.22)
w(t = 0) = w0, (4.23)

and the values for Mi,Me, χ, Cm to be found in Table 2.1.
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In this final chapter we will discuss the possibilities of a mathematical analysis, in
terms of weak solutions. As mentioned in the introduction, we will focus on the
analysis of the uncoupled problems and discuss their solvability. It is assumed that the
reader is familiar with functional analysis and some basic concepts of measure theory.
For more details on functional analysis one should refer to [21, 75, 82, 85–90].

5.1 Notation and Definitions

Before starting with the mathematical analysis we need to introduce the standard
notations.

Elliptic, Compact and Self-Adjoint Operators

Definition 5.1 (Duality Pairing). Let X be a Banach space and denote by X∗ its dual.
Let further l ∈ X∗. We define the duality pairing of l with x ∈ X as

〈l, x〉X∗×X := l(x).

Remark 5.1. To avoid confusion we will use 〈·, ·〉X∗×X for the duality pairing and
〈·, ·〉H for the inner product provided H is a Hilbert space.
Theorem 5.1 (Riesz Representation Theorem). Let H be a Hilbert space. A linear func-
tional f on H belongs to H∗ if and only if there exists a x ∈ H such that for every
y ∈ H we have

f(y) = 〈y, x〉H∗×H,

and in this case ‖f‖H∗ = ‖x‖H. Moreover, x is uniquely determined by f ∈ H∗.

Proof. See [1, Theorem 1.12].

Remark 5.2. The previous theorem guarantees the existence of the Riesz-isomorphism
J : H∗ → H such that

〈J f, v〉H = 〈f, v〉H∗×H for all v ∈ H,
‖J f‖H = ‖f‖H∗ ,

meaning that we can always identify elements in H∗ with elements in H.
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Definition 5.2 (Elliptic Operator). A linear operator A mapping from a Hilbert space H
into its dual H∗ is called H-elliptic, if there exists a positive constant cA1 such that

<〈Av, v〉H∗×H ≥ c
A
1 ‖v‖

2
H

holds for all v ∈ H.
Definition 5.3 (Adjoint, Self-adjointness). Let A : X → Y be a bounded linear operator
between Hilbert spaces. Then the operator A∗ : Y ∗ → X∗ defined by

〈x,A∗y〉X×X∗ = 〈Ax, y〉Y×Y ∗ , for all x ∈ X, y ∈ Y ∗

is called the adjoint of A. If X = Y and A = A∗ then A is called self-adjoint.
Theorem 5.2 (Lemma of Lax-Milgram). Let H be a Hilbert space, and A : H → H∗ be a
linear, bounded H-elliptic operator. Then the equation

Au = f

has a unique solution for any f ∈ H∗ and it holds that

‖u‖H ≤
1
cA1
‖f‖H∗

Proof. See for example [75].

Lemma 5.3. Let A : H → H∗ be a bounded, self-adjoint H-elliptic operator. Then the
inverse of A, A−1 is elliptic.

Proof. See for example [75].

Definition 5.4 (Compact Operator). Let X and Y be two Banach spaces. A linear
operator K : X → Y is called compact if the image of a bounded set B ⊂ X is
relatively compact. A set is called relatively compact, if its closure is compact.
Remark 5.3. Since we are working in at least Banach spaces we can characterize
relatively compact sets equivalently by all those sets which possess a converging
subsequence.

Banach Space Valued Lp Functions

Proceeding we will introduce the conecept of Banach space valued Lp-functions. It
is assumed that the reader is familiar with the concept of Lp(Ω)-spaces in general.
For details one may refer to [69] The following definition is based on [85, Definition
24.1]:
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Theorem 5.4. Let X be a Banach space and (0, T ) ⊂ R+ an open measurable interval
with T > 0. Let further 1 ≤ p <∞. Define

‖v‖Lp((0,T );X ) :=

 T∫
0

‖v(·, t)‖pX dt


1
p

.

Then the space

Lp((0, T );X ) :=
{
v : (0, T )→ X

∣∣ ‖v‖Lp((0,T );X ) <∞
}

defines a Banach space with the norm ‖·‖Lp((0,T );X ). Furthermore, in the case of
p =∞ we can introduce the norm

‖v‖L∞((0,T );X ) := ess sup
t∈(0,T )

‖v‖X .

Then the above statement remains valid even for p =∞.

Proof. See for example [21, Chapter IV, Theorem 1.11 and Theorem 1.12].

For simplicity we abbreviate Lp ((0, T );X ) by Lp (0, T ;X ). For the further analysis
we also need to know something about the dual spaces of these special Lp-spaces.
This is covered by:

Theorem 5.5. Let the assumptions of Definition 5.4 hold and assume further that the
Banach space X is reflexive and separable, and that 1 < p <∞. Then it holds

(Lp(0, T ;X ))∗ = Lq(0, T ;X ∗)

with 1
p + 1

q = 1.

Proof. See [21, Chapter IV, Theorem 1.14].

A very classic concept in connection with these Lp-spaces is the Gelfand triple or
evolution triple.
Definition 5.5. Let X be a separable and reflexive Banach space and H a separable
Hilbert space. Further, let X be densly embedded in H. Then we call the triple

X ⊂ H ∼= H∗ ⊂ X ∗

a Gelfand triple or evolution triple.
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In the analysis of the bi-domain equations we will also need to consider a more
generalized version of the Gelfand triple. There we will consider frameworks of the
form

X ⊂ Lp(Ω) ⊂ H ∼= H∗ ⊂ Lp
∗(Ω) ⊂ X ∗.

Additionally we will need to use function spaces in the form

L2(0, T ;X ) ∩ Lp((0, T )× Ω).

Therefore we will also need the following:

Theorem 5.6. Let X and Y be Banach spaces which are continuously embedded into a
locally convex space V . Then the following statements hold:

• The space (X ∩ Y, ‖.‖X∩Y ) where ‖v‖X∩Y := ‖v‖X + ‖v‖Y is a Banach space.

• The space (X + Y, ‖.‖X+Y ) where

‖v‖X+Y := inf
x∈X,y∈Y
x+y=v

max(‖x‖X , ‖y‖Y )

is a Banach space. The direct sum of two spaces X and Y is defined by

X + Y := {x+ y : x ∈ X y ∈ Y }.

• Provided X ∩ Y is densely embedded in either X or Y with respect to the norm
‖.‖X∩Y . Then, (X ∩ Y )∗ = X∗ + Y ∗ and (X + Y )∗ = X∗ ∩ Y ∗.

Proof. See [21, Chapter I, Theorem 5.13].

Sobolev spaces

Having defined the Lp(0, T ;X ) spaces we are getting closer to the framework which
will actually be used for the analysis, the Sobolev spaces. To this end we need the
concept of a weak derivative.

Definition 5.6. Let Ω ⊆ R3 and let m ∈ N Then we define the following spaces:

• Cm(Ω) shall be the space of m-times continuously differentiable functions map-
ping from Ω to either R or C.

• The space of arbitrary continuously differentiable functions

C∞(Ω) :=
⋂
m∈N
Cm(Ω).
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• The space of arbitrary continuously differentiable functions with compact support,

C∞0 (Ω) := {f ∈ C∞0 (Ω) | {x ∈ Ω : f(x) 6= 0} ⊂ Ω is compact}.

Definition 5.7. Let Ω ⊂ R3. Then we define the space L1
loc(Ω) of locally integrable

functions by

L1
loc(Ω) :=

⋂
K⊂Ω,

K compact

L1(K).

Definition 5.8 (Weak Derivative). A function u ∈ L1
loc(Ω) has a weak partial derivative

of order s, when there exists a function h ∈ L1
loc(Ω) such that∫

Ω

hφ dx = (−1)|s|
∫
Ω

uDsφ dx for all φ ∈ C∞0 (Ω),

where s = (s1, s2, . . . , sn) is a multi-index and Ds := ∂|s|

∂x
s1
1 x

s2
2 ···x

sn
n
. The function h is

usually identified with Dsu, when s is a multi-index.
Definition 5.9 (Sobolev Norm, Sobolev Space). Let Ω ⊆ Rd and let k ∈ N0. Then for
1 ≤ p <∞ we define the Sobolev norm ‖·‖Wk,p(Ω) via

‖u‖Wk,p(Ω) :=

 ∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

,

and for the case of p =∞ we define

‖u‖Wk,∞(Ω) := max
|α|≤k

‖u‖L∞(Ω).

The Sobolev space W k,p(Ω) is defined by

W k,p(Ω) := C∞(Ω)‖·‖Wk,p(Ω) .

In [1, Theorem 3.3] it is shown, that the spaceW k,p(Ω) is a Banach space. Furthermore,
it is known, see [1, Theorem 3.17], that we can also write the space W k,p(Ω) as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ k} .

Definition 5.10 (Sobolev Spaces with Fractional Order). Let s ∈ R+ with s = k+κ, k ∈ N0
and κ ∈ (0, 1). Then we define the Sobolev-Slobodeckii norm

‖u‖W s,p(Ω) :=
(
‖u‖p

Wk,p(Ω) + |u|p
Wk,p(Ω)

) 1
p ,
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with the semi-norm

|u|p
Wk,p(Ω) :=

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|d+pκ dxdy.

The corresponding Sobolev space is then defined as

W s,p(Ω) := C∞(Ω)‖·‖Ws,p(Ω) .

Definition 5.11 (Dual Space of W s,p(Ω)). Let s < 0 ∈ R and 1 < p < ∞. Then we
define the space W s,p(Ω) via

W̃ s,p(Ω) := (W−s,q(Ω))∗

with 1/p + 1/q = 1 and the norm

‖u‖
W̃ s,p(Ω) := sup

v∈W−s,q(Ω)
v 6=0

∣∣∣〈u, v〉
W̃ s,p(Ω)×W−s,q(Ω)

∣∣∣
‖v‖W−s,q(Ω)

.

It is also possible to introduce Sobolev spaces with the help of the Fourier transform,
see [44, 75] for details. The spaces introduced this way are then called Hs(Ω). These
Sobolev spaces turn out to be Hilbert spaces and for Lipschitz domains Ω and s > 0
it holds that

Hs(Ω) = W s,2(Ω)

Remark 5.4. We will also use the following notation for the dual spaces:

H̃s(Ω) := (H−s(Ω))∗ for s < 0.

Remark 5.5. For the sake of brevity we will hereafter mostly use the notation 〈·, ·〉Ω
or 〈·, ·〉∂Ω for denoting the duality pairings in the respective Sobolev spaces in Ω or on
∂Ω.
Definition 5.12 (Trace Operator). The trace of a vector valued function u is defined by

γint
0 u := lim

x̃3Ω→x∈∂Ω
u(x̃).

For the later analysis of the system of non-linear elasticity we will use the fact that the
trace operator γint

0 (·) considered as an operator between W s,p(Ω) and W s−1/p,p(∂Ω)
is continuous and bounded provided Ω is a Lipschitz domain and s ∈ [1

p , 1], see [47,
Theorem 3.9] for details.

76



5.2 Analysis of the Stationary Equations

5.2 Analysis of the Stationary Equations

We will now turn our attention to the analysis of the decoupled bi-domain equations
(2.35)–(2.42). The following part is mainly taken from [9]. As starting point we will
reformulate the equations in the following way:

∂utm
∂t

+ g(utm,v)− div(Mi gradutm)− div(Mi gradue) = si (5.1)

−div(Mi gradutm)− div((Mi + Me) gradue) = si + se, (5.2)
∂v

∂t
+ f(utm,v) = 0 (5.3)

in Ω × (0, T ), where we have denoted the area occupied by the heart with Ω. We
carefully mention that we have

dv
dt = f(utm(x, t),v) = f(x, t).

Therefore v will also depend on the position x. Therefore we already replaced the
ordinary differential by a partial differential in (5.3). For completeness we give again
the boundary and initial conditions:

n · (Mi gradutm + Mi gradue) = gN.i on ∂Ω× (0, T ], (5.4)
n · (Me gradue) = gN,e on ∂Ω× (0, T ], (5.5)

utm(x, 0) = u0
tm in Ω, (5.6)

ue(x, 0) = u0
e in Ω, (5.7)

v(x, 0) = v0 in Ω. (5.8)

Eventually, we need to enforce the solvability condition:∫
Ω

(si + se) dx+
∫
∂Ω

(gN,i + gN,e) dsx = 0.

Due to the pure Neumann boundary conditions on ue we know that ue will be only
uniquely defined up to an constant.

5.2.1 The Bi-domain Operator ABD

Before discussing existence and uniqueness of the full bi-domain equations we will
analyze a related subproblem. To this end we will, as discussed in [9], consider the
subproblem emerging by ignoring the nonlinearities and the time derivatives in the
bi-domain equations. This leads to the new classical subproblem

−div(Mi gradutm)− div(Mi gradue) = si, (5.9)
−div(Mi gradutm)− div((Mi + Me) gradue) = si + se, (5.10)
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which is completed by the boundary conditions

n · (Mi gradutm + Mi gradue) = gN.i, (5.11)
n · (Me gradue) = gN,e. (5.12)

At this point we assume knowledge about the analysis of partial differential equations
in their weak form. For more details we shall refer to [75]. We multiply the equations
(5.9)–(5.10) with suitable test functions φ1, φ2, integrating over Ω, using integration
by parts and applying the boundary conditions. This leads to the variational problem:
find (utm, ue) ∈ V × V such that

ai(utm, φ1) + ai(ue, φ1) = 〈si, φ1〉Ω +
〈
gN,i, γ

int
0 φ1

〉
∂Ω
, (5.13)

ai(utm, φ2) + ai+e(ue, φ2) = 〈si + se, φ2〉Ω +
〈
gN,i + gN,e, γ

int
0 φ2

〉
∂Ω
, (5.14)

where

ai(u, v) :=
∫
Ω

(Mi gradu) · grad v dx,

ai+e(u, v) :=
∫
Ω

((Mi + Me) gradu) · grad v dx .

and 〈·, ·〉{Ω,∂Ω} denotes the duality pairing.

In this variational formulation V denotes a suitable Hilbert space. In our analysis we
choose the Sobolev space H1(Ω) as Hilbert space V . This problem can now be treated
as a standard Neumann problem in H1(Ω) . It is a well-known fact, that the pure
Neumann-Problem is not uniquely solvable, as one can add a constant to a solution of
the above equation and this would still be a solution. This corresponds to the latter
operator formulation of this problem, where the operators have non-trivial kernels.
Furthermore, we need to impose a solvability condition, which follows immediately
when putting φ1 = φ2 = 1. Then we see that we need to guarantee that

〈si, 1〉Ω + 〈gN,i, 1〉∂Ω = 0, (5.15)
〈si + se, 1〉Ω + 〈gN,i + gN,e, 1〉∂Ω = 0. (5.16)

To circumvent the non-uniqueness of the Neumann-Problem we will work on a factor
space of H1(Ω) defined by H1

∗ (Ω) := {v ∈ H1(Ω) :
∫

Ω v dx = 0}. Doing so, we fix the
constant part of the solutions. In this setting it would be necessary to search both
utm and ue in the factor space H1

∗ (Ω). However, as we will see later it will not be
necessary to restrict utm to H1(Ω). For our purposes as for the numerical treatment of
the bi-domain equations, it is quite useful to incorporate this side constraint explicitly
in the variational formulation to avoid worrying about constructing the right finite
element ansatz spaces for H1

∗ (Ω). The incorporation of the side constraint can now

78



5.2 Analysis of the Stationary Equations

be accomplished by introducing Lagrange parameters λ, µ. This yields the variational
problem: Find (utm, ue, µ) ∈ [H1(Ω)]2 × R such that

ai(utm, φ1) + ai(ue, φ1) = 〈si, φ1〉Ω +
〈
gN,i, γ

int
0 φ1

〉
∂Ω
, (5.17)

ai(utm, φ2) + ai+e(ue, φ2) +µ
∫
Ω

φ2 dx = 〈si + se, φ2〉Ω +
〈
gN,i + gN,e, γ

int
0 φ2

〉
∂Ω
,

(5.18)∫
Ω

ue dx = 0. (5.19)

The special choice φ1 = φ2 = 1 and the solvability conditions (5.15)–(5.16) lead to

µ = 0.

Thus we can reformulate (5.19) and obtain an equivalent formulation for determining
(utm, ue, µ) ∈ [H1(Ω)]2 × R

ai(utm, φ1) + ai(ue, φ1) = 〈si, φ1〉Ω +
〈
gN,i, γ

int
0 φ1

〉
∂Ω
, (5.20)

ai(utm, φ2) + ai+e(ue, φ2) +µ
∫
Ω

φ2 dx = 〈si + se, φ2〉Ω +
〈
gN,i + gN,e, γ

int
0 φ2

〉
∂Ω
,

(5.21)∫
Ω

ue dx−µ = 0, (5.22)

and thus we end up with

µ =
∫
Ω

ue dx .

Finally we end up with the stabilized subproblem of finding (utm, ue) ∈ [H1(Ω)]2 such
that

ai(utm, φ1) + ai(ue, φ1) = 〈si, φ1〉Ω +
〈
gN,i, γ

int
0 φ1

〉
∂Ω
,

(5.23)

ai(utm, φ2) + ai+e(ue, φ2) +
∫
Ω

ue dx
∫
Ω

φ2 dx = (5.24)

〈si + se, φ2〉Ω +
〈
gN,i + gN,e, γ

int
0 φ2

〉
∂Ω
.

Following [75] we can now reformulate this variational formulation as an equivalent
operator equation.
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To this end we define the operators Ãi+e, Ãi, Ai for (u, v) ∈ H1(Ω)×H1(Ω) via
〈
Ãi+eu, v

〉
Ω

:= ai+e(u, v) +
∫
Ω

u dx
∫
Ω

v dx, (5.25)

〈Aiu, v〉Ω := ai(u, v).

From this definition we can immediately see the mapping properties of the operators:

Ãi+e : H1(Ω)→ H̃−1(Ω),
Ai : H1(Ω)→ H̃−1(Ω).

Thus we can now state the equivalent operator equation in H̃−1(Ω) reading as

Aiutm +Aiue = F1,

Aiutm + Ãi+eue = F2,

where F1, F2 stand for the right hand sides in the variational formulation (5.23) in
the sense that for φ, ψ ∈ H1(Ω) it holds that

〈F1, φ〉Ω := 〈si, φ〉Ω +
〈
gN,i, γ

int
0 φ

〉
∂Ω
,

〈F2, ψ〉Ω := 〈si + se, ψ〉Ω +
〈
gN,i + gN,e, γ

int
0 ψ

〉
∂Ω
.

We will try to eliminate the variable ue and thus end up with a single equation, the
so-called Schur complement system. However, before we can do this we must prove
that the stabilized operator Ãi+e is invertible. This is stated by the following:

Lemma 5.7. Assume that the coefficient tensors M{i,e} have L∞(Ω) components and
satisfy the condition

m |ξ|2 ≤
(

M{i,e}(x)ξ, ξ
)
≤M |ξ|2 , for all ξ ∈ R3 and almost every x ∈ Ω

independent of the chosen basis for M{i,e}. Then the operator Ãi+e is bounded and
H1(Ω)-elliptic.

Proof. We will first show the boundedness of the bilinear-form. Using the assumptions
on M{i,e} and the Cauchy-Schwarz inequality, see [82, Theorem I.1.10], in (5.25) we
obtain

ai+e(u, v) +
∫
Ω

udx
∫
Ω

v dx ≤ 2M‖gradu‖L2(Ω)‖grad v‖L2(Ω) + |Ω|2 ‖u‖L2(Ω)‖v‖L2(Ω)

≤ max{2M, |Ω|2}‖u‖H1(Ω)‖v‖H1(Ω).
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In the next step we will show the ellipticity. To this end we set u = v in (5.25). Thus
we obtain

〈
Ãi+ev, v

〉
Ω

= ai+e(v, v) +

∫
Ω

v dx

2

.

Using the assumptions on M{i,e} once again we obtain

ai+e(v, v) +

∫
Ω

v dx

2

≥ 2m‖grad v‖2L2(Ω) +

∫
Ω

v dx

2

≥ min{2m, 1}

‖grad v‖2L2(Ω) +

∫
Ω

v dx

2
 .

With Sobolev’s norm equivalence theorem, see [75, Theorem 2.6], we know that the
terms in parentheses form an equivalent norm in H1(Ω). Thus we finally obtain

ai+e(v, v) +

∫
Ω

v dx

2

≥ c̃i+e‖v‖2H1(Ω),

where the constant c̃i+e > 0 depends only on the eigenvalues of M{i,e} and the constant
from the norm equivalence in Sobolev’s norm equivalence theorem.

With this result we can now apply the Lemma of Lax-Milgram (Lemma 5.2), and
conclude that the operator Ãi+e possesses a bounded inverse, say Ã−1

i+e and by using
the self-adjointness of this operator we can also conclude with Lemma 5.3 that the
inverse is elliptic too.

These results can now be used to obtain a Schur complement system. Eliminating ue
in (5.24) we obtain

ue = Ã−1
i+e (F2 −Aiutm) .

This can now be inserted into equation (5.23). Then we arrive at

Aiutm +AiÃ
−1
i+e (F2 −Aiutm) = F1,(

Ai −AiÃ−1
i+eAi

)
utm = F1 −AiÃ−1

i+eF2.

We define the bi-domain operator ABD := (Ai − AiÃ−1
i+eAi) and the modified right

hand side f̃ := F1 − AiÃ−1
i+eF2. Now we have to investigate the properties of ABD.

This is answered by:
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Theorem 5.8. Let the assumptions of Lemma 5.7 be fulfilled. Then the bi-domain
operator ABD is bounded and it holds:

〈ABDv, v〉Ω + ‖v‖2L2(Ω) ≥ cBD‖v‖2H1(Ω). (5.26)

Proof. The boundedness of the operator ABD is obvious, since it is composed of
bounded operators. It remains to show that ABD fulfills (5.26). Recall the full system

Aiutm +Aiue = F1,

Aiutm + Ãi+eue = F2.

This can be rewritten as (
Ai Ai
Ai Ãi+e

)(
utm
ue

)
=
(
F1
F2

)
.

We now introduce the operator A via

A :=
(
Ai Ai
Ai Ãi+e

)
+
(
M 0
0 0

)

where the operator M : H1(Ω)→ H̃−1(Ω) is defined as

〈Mu, v〉Ω :=
∫
Ω

uv dx for all u, v ∈ H1(Ω).

The newly introduced operator A maps from H1(Ω)×H1(Ω) to H̃−1(Ω)× H̃−1(Ω).
We introduce the related norm

‖(u1, u2)‖H1(Ω)×H1(Ω) :=
√
‖u1‖2H1(Ω) + ‖u2‖2H1(Ω)

on the product space H1(Ω)×H1(Ω). Assume that A is H1(Ω)×H1(Ω)-elliptic, this
means

〈Av,v〉H1(Ω)×H1(Ω) ≥ c
A
1 ‖v‖

2
H1(Ω)×H1(Ω) for all v ∈ H1(Ω)×H1(Ω). (5.27)

Additionally we know that Ãi+e is invertible thus we may choose v2 := −Ã−1
i+eAiv1.

Using this in the ellipticity condition (5.27) we obtain〈
(Ãi −AiÃ−1

i+eAi)v1, v1
〉

+ ‖v1‖2L2(Ω)

≥ cA1
(
‖v1‖2H1(Ω) +

∥∥∥−Ã−1
i+eAiv1

∥∥∥2

H1(Ω)

)
≥ cA1 ‖v1‖2H1(Ω).

Hence, for concluding the proof we need to show that A is elliptic. This is equivalent
to show that

ai(u1, v1) + 〈u1, v1〉Ω + ai(u2, v1) + ai(u1, v2) + ai+e(u2, v2) + 〈u2, 1〉Ω〈v2, 1〉Ω
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is elliptic. The last equation can be rewritten as

ai(u1 + u2, v1 + v2) + ae(u2, v2) + 〈u1, v1〉Ω + 〈u2, 1〉Ω〈v2, 1〉Ω.

Setting v1 = u1 and v2 = u2 we obtain

ai(u1 + u2, u1 + u2) + ae(u2, u2) + ‖u1‖2L2(Ω) + |〈u2, 1〉Ω|
2 .

At this point we use Lemma 5.7 and the definitions of ai and ae. This results in

ai(u1 + u2, u1 + u2) + ae(u2, u2) + ‖u1‖2L2(Ω) + |〈u2, 1〉Ω|
2

≥ m
(
|u1 + u2|2H1(Ω) + |u2|2H1(Ω)

)
︸ ︷︷ ︸

=:(I)

+‖u1‖2L2(Ω) + |〈u2, 1〉Ω|
2 , (5.28)

where we introduced the H1(Ω)-semi-norm:

|·|H1(Ω) := ‖grad(·)‖L2(Ω).

Next we rewrite (I) as

(I) = 1
2(I) + 1

2(I) ≥ 1
2(I) + 1

2 |u2|2H1(Ω) .

Finally we use the fact that

1
2‖u1‖2 ≤ (I)

and conclude that

(I) = |u1 + u2|2H1(Ω) + |u2|2H1(Ω) ≥
1
4 |u1|2H1(Ω) + 1

2 |u2|2H1(Ω)

≥ 1
4
(
|u1|2H1(Ω) + |u2|2H1(Ω)

)
Going back to (5.28) we get

m
(
|u1 + u2|2H1(Ω) + |u2|2H1(Ω)

)
+ ‖u1‖2L2(Ω) + |〈u2, 1〉Ω|

2

≥ min
{
m

4 , 1
}(
|u1|2H1(Ω) + |u2|2H1(Ω) + ‖u1‖2L2(Ω) + |〈u2, 1〉Ω|

2
)

︸ ︷︷ ︸
=:(II)

.

With Sobolev’s norm equivalence theorem we get that (II) defines an equivalent norm
in H1(Ω)×H1(Ω). Therefore we finally get that the operator A is H1(Ω)×H1(Ω)-
elliptic.
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Remark 5.6. In Theorem 5.8 we have shown that the operator ABD is coercive when
considered as operator from H1(Ω)→ H̃−1(Ω). On the other hand it can be shown
that the operator ABD : H1

∗ (Ω)→ H̃−1(Ω) is elliptic and thus invertible. This follows
from the fact, that the H1(Ω) semi-norm coincides with the full H1(Ω)-norm in that
case, see [75] for details.

For the analysis hereinafter we need to know more about this operator ABD. The
next result is a classic result from spectral theory of compact operators. For more
information about spectral theory one should refer to [4, 25, 27, 65, 82].

Theorem 5.9. Let the assumptions of Lemma 5.7 be fulfilled. Then, their exists an
increasing sequence of non-zero eigenvalues {λn}n∈N tending to infinity and a family
of eigenfunctions {zn}n∈N ⊂ H1(Ω), forming an orthonormal basis of L2(Ω) such that
the operator ABD can be decomposed as

ABDu =
∞∑
n=0

λn〈u, zn〉L2(Ω)zn, for all u ∈ H1(Ω).

Furthermore the functions {λ−1/2
n zn}n∈N form an orthonormal basis of H1(Ω) with

respect to the induced bilinear-form

aBD(·, ·) := 〈ABD·, ·〉Ω.

The same decomposition holds for aBD(·, ·), this means for u and v ∈ H1(Ω) is holds:

aBD(u, v) =
∞∑
n=0

λn〈u, zn〉L2(Ω)〈v, zn〉L2(Ω).

Proof. See [65, Théorème 6.2-1] and [65, Remarque 6.2-2].

5.3 Analysis of the Bi-Domain Equations

We have analyzed the linear subproblem of the bi-domain equations in the last
chapter. This will now be useful when discussing the analysis of the full bi-domain
equations. But first of all we need to specify some assumptions to be able to handle
the nonlinearities in the full bi-domain equations as suggested in [9]:

(H1) The Sobolev embedding, see [1, Theorem 4.12], H1(Ω) ⊂ Lp(Ω) holds. This is
valid for p ∈ [2, 6] and Ω ⊂ R3.

(H2) The functions g,f are affine with respect to v:

g(utm,v) = g1(utm) + (g2(utm),v), f(utm,v) = f1(utm) + f2v,
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where g1 : R → R, g2 : R → Rn, f1 : R → Rn are continuous functions and
f2 ∈ R.

(H3) There exist constants ci ≥ 0, i = 1, . . . , 6 such that for any u ∈ R there holds

|g1(u)| ≤ c1 + c2 |u|p−1 , (5.29)

|g2(u)| ≤ c3 + c4 |u|
p/2−1 , (5.30)

|f1(u)| ≤ c5 + c6 |u|
p/2 . (5.31)

(H4) There exist constants a > 0, λ > 0 and b, c ≥ 0 such that for any (u,v) ∈ Rn+1:

λug(u,v) + (v,f(u,v)) ≥ a |u|p − b
(
λ |u|2 + |v|2

)
− c. (5.32)

For the further analysis we also need the following:

Lemma 5.10. Under the assumptions (H2) and (H3), the mappings (u,v) ∈ Lp(Ω)×
[L2(Ω)]n 7→ g(u,v) ∈ Lp′ and (u,v) ∈ Lp(Ω) × [L2(Ω)]n 7→ f(u,v) ∈ [L2(Ω)]n are
well-defined. Specifically for any (u,v) ∈ Lp(Ω)× [L2(Ω)]n we have

‖g(u,v)‖Lp′ (Ω) ≤ A1 |Ω|
1/p′ +A2‖u‖

p/p′

Lp(Ω) +A3‖v‖
2/p′

[L2(Ω)]n ,

‖f(u,v)‖[L2(Ω)]n ≤ B1 |Ω|
1/2 +B2‖u‖

p/2
Lp(Ω) +B3‖v‖[L2(Ω]n ,

where Ai ≥ 0, i = 1, 2, 3 and Bi ≥ 0, i = 1, 2, 3 are some constants that depend only
on the constants ci in the assumption (H3) and p.

Proof. See [9, Lemma 25].

Weak Formulation of the Bi-Domain Equations. Having analyzed the elliptic sub-
problem (5.9)–(5.10), we can now start to derive a full variational formulation of the
bi-domain equations. We will start with the abstract definition, taken and adapted
from [9, Definition 26], of a weak solution and motivate it afterwards.

Definition 5.13 (Weak Solution of the Bi-domain Equations). Consider τ > 0, a Gelfand
triple V ⊂ H ⊂ V ∗ and two functions u : t ∈ [0, τ) 7→ u(t) ∈ H,v : t 7→ v(t) ∈ Hn.
Given (u0,v0) ∈ Hn+1 we say that (u,v) is a weak solution of the bi-domain equations
if and only if, for any T ∈ (0, τ)

1. u : [0, T ]→ H and v : [0, T ]→ H are continuous and u(0) = u0 and v(0) = v0
in the sense of H and Hn respectively.
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2. (u,v) ∈ (W,Π) where

W :=
{
u ∈ Lp(QT ) ∩ L2(0, T ;V )

∣∣∣∣∂u∂t ∈ Lp′(Ω) + L2(0, T ;V ∗)
}
,

Π :=
{
v ∈ L2(0, T ;Hn)

∣∣∣∣∂v∂t ∈ L2(0, T ;Hn)
}
.

3. (u,v) satisfy in (C∞0 (0, T ))∗〈
∂u

∂t
, w

〉
Ω

+aBD(u(t), v) +〈g(u(t),v(t)), w〉Ω =
〈
f̃(t), w

〉
Ω
, (5.33)〈

∂v

∂t
, ζ

〉
Ω

+ 〈f(u(t),v(t)), ζ〉Ω = 0 (5.34)

for all (w, ζ) ∈ (V ∩ Lp(Ω), Hn).
Remark 5.7. The spaces V and H will in our case be chosen as H1(Ω) and L2(Ω).
Remark 5.8. In fact, we may even define the weak solution of the bi-domain equations
for more general functions which only possess distributional derivatives with respect to
time, see [25] for details. However, it can be shown that by choosing suitable spaces
for u that the distributional derivative coincides with a weak derivative as in the
definition above, see [9, Remark 27].

At this point we shall give a brief motivation for the abstract Definition 5.13. Consider
the full bi-domain equations (5.1)–(5.3). Then we multiply them with test functions
(φ, ψ, ζ) in suitable spaces and integrate over Ω use integration by parts and include
the boundary conditions. Thus we arrive at∫

Ω

∂utm
∂t

φ dx+
∫
Ω

Mi gradutm gradφ dx+
∫
Ω

Mi gradue gradφ dx

+
∫
Ω

g(utm,v)φ dx =
∫
Ω

siφ dx+
∫
∂Ω

gN,iφ dsx, (5.35)

∫
Ω

Mi gradutm gradψ dx+
∫
Ω

(Mi + Me) gradue gradψ dx =

∫
Ω

(si + se)ψ dx+
∫
∂Ω

(gN,i + gN,e)ψ dsx, (5.36)

∫
Ω

(
∂v

∂t
, ζ

)
dx+

∫
Ω

(f(utm,v), ζ) dx = 0.

As for the stationary problem (5.9)–(5.10), we may stabilize the operator equation
corresponding to equation (5.36) with∫

Ω

ue dx
∫
Ω

ψ dx,
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and thus arrive at the operator ABD with the corresponding bilinear form aBD(u, v)
which has been analyzed in Theorem 5.8. This now reads as∫

Ω

∂utm
∂t

φ dx+
∫
Ω

g(utm,v)φ dx+aBD(utm, φ) =
〈
f̃ , φ

〉
Ω
,

∫
Ω

(
∂v

∂t
, ζ

)
dx+

∫
Ω

(f(utm,v), ζ) dx = 0

Due to the Riesz representation theorem (Theorem 5.1) we can interpret the scalar
product as a duality pairing arriving at the weak form of the bi-domain equations.

Before proving existence and uniqueness for solutions of this variational formulation
we may mention that their are also existence and uniqueness theorems for classical or
strong solutions available. One may refer to [9, Section 4], their one may also find a
statement about the equivalence of strong and weak solutions under the assumption
that the boundary ∂Ω is smooth enough.

For brevity we introduce the notations

X := Lp(QT ) ∩ L2(0, T ;H1(Ω)),
X∗ := Lp

′(QT ) + L2(0, T ; H̃−1(Ω)),
Y := Lp(Ω),
Y ∗ := Lp

′(Ω),
V := H1(Ω),
V ∗ := H̃−1(Ω),
H := L2(Ω),
HQT := L2(QT ),
Hn := [H]n,
Hn
T := [L2(Ω)]n × L2((0, T )),

u := utm.

5.3.1 Existence and Uniqueness of the Weak Bi-Domain Equations

In the following we will prove existence and uniqueness for solutions of the weak
bi-domain equations under minimal regularity assumptions. The proof will be given
in three parts:

1. We will construct a unique approximate solution using the Galerkin-Faedo

87



5 Analysis

technique1.

2. We will show that the constructed approximate solutions are bounded and
possess therefore weakly convergent subsequences.

3. We will show that those subsequences converge almost everywhere to a unique
weak solution.

Construction of the approximate solution. In Theorem 5.9 we have shown that there
exists an orthonormal basis {zn}n∈N of the space H spanned by the eigenvectors of
the operator ABD. For m ≥ 1 arbitrary but fixed let us denote

Vm = span{z1, z2, . . . , zm} ⊂ V ⊂ H.

With this finite dimensional subspace we now construct approximate solutions by

um(t) :=
m∑
i=0

uim(t)zi,

vm(t) :=
m∑
i=0
vim(t)zi.

The new unknowns are now the (m + 1)(n + 2) time-dependent coefficients2 uim
i = 0, . . . ,m and vjim where i = 0, . . . ,m, j = 0, . . . , n. Now we plug the approximate
solutions into the variational formulation of the bi-domain equations. Thus we
obtain 〈

∂um
∂t

, φ

〉
Ω

+ 〈g(um,vm), φ〉Ω + aBD(um, φ) =
〈
f̃ , φ

〉
Ω
,〈

∂vm
∂t

, ζ

〉
Ω

+ 〈f(um,vm), ζ〉Ω = 0

for all φ ∈ Vm.

Using the definitions of um,vm leads to
m∑
i=0

duim
dt 〈zi, φ〉H +〈g(um,vm), φ〉Ω +

m∑
i=0

uimaBD(zi, φ) =
〈
f̃ , φ

〉
Ω
,

m∑
i=0

〈dvim
dt , ziζ

〉
Hn

+ 〈f(um,vm), ζ〉Ω = 0.

1Techniques for solving abstract operator-valued differential equations of the form u̇ + A(u) = f ,
with an arbitrary operator A are called Galerkin-Faedo techniques.

2This amount renders as follows: We have m + 1 unknown coefficients uim(t). Further, we have
m + 1 vector valued coefficients vim(t), each of those having n + 1 components. Therefore we
have m + 1 + (n + 1)(m + 1) = (n + 2)(m + 1) unknowns.
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This has to be fulfilled for all (φ, ζ) ∈ Vm × [Vm]n especially for φ = zj and ζ = zjej .
Using this, aBD(um, zj) = λj〈um, zj〉L2(Ω) and the orthonormality of the zn we can
rewrite the above as a system of ordinary linear differential equations in t reading
as

dujm(t)
dt + 〈g(um,vm), zj〉Ω + λjujm(t) =

〈
f̃ , zj

〉
Ω
, (5.37)

dvjm(t)
dt + 〈f(um,vm), zj〉 = 0 (5.38)

for j = 0, . . . ,m, or equivalently stated in a vector-valued form as
dum
dt + d1(um) + D2um = F , (5.39)

dvjm(t)
dt + 〈f(um,vm), zj〉Ω = 0 for j = 1, . . . ,m, (5.40)

where

um := (u1m, u2m, . . . , umm)>,
d1(um) := (〈g(um,vm), z1〉, 〈g(um,vm), z2〉, . . . , 〈g(um,vm), zm〉)>,

D2 := diag(λ1, λ2, . . . , λm),

(F )i :=
〈
f̃ , zi

〉
Ω
.

This also means that we have a Galerkin isomorphism between um and um.

We also need to formulate initial values in t = 0 for um and vm, let us call them
um0,vm0. When we assume that the initial conditions u0(x) and v0(x) are in H and
Hn respectively we may choose the initial values um0,vm0 to be the H-Projection
and the Hn-Projection of u0(x) and v0(x) on Vm, which means that∥∥∥um0 − u0

tm

∥∥∥
H
→ 0, ‖vm0 − v0‖Hn → 0 as m→∞. (5.41)

Equations (5.37)–(5.38) make sense because um(t) ∈ V ⊂ Y,vm(t) ∈ Hn for each
t and so that by Lemma 5.10 g(um,vm) ∈ Y ∗ and f(um,vm) ∈ Hn for each t and
zi ∈ V ⊂ Y . We also know, by hypothesis (H2), that the right hand side of the
system of ordinary differential equations is continuous. Therefore we may use the
Theorem of Cauchy-Peano, see [13, Chapter 1, Theorem 1.2], and deduce that their
exists a solution (um,vim) ∈ [C1([0, tm))](n+2)(m+1) of the initial value problem for
all t ∈ [0, tm). These coefficients determine the solutions (um,vm), which will be
investigated hereafter.

Boundedness of the Approximate Solutions. The parameter tm stands for the max-
imal rectangle in which the solution may be defined. The following lemma states that
the case of a blow-up, that means that the solutions become unbounded for t > tm,
can be excluded, which means that tm =∞.
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Lemma 5.11. The unique solution (um,vm) of (5.37)–(5.38) is defined for every t ∈
[0,∞], i.e.: tm =∞ and it holds for any T > 0 that

λ‖um(t)‖2H + ‖vm(t)‖2Hn ≤ C1 for all t ∈ [0, T ],

where C1 is a constant and λ is defined in (H4).

Before proving Lemma 5.11 we need to formulate the well-known Gronwall Lemma
in its differential form:

Theorem 5.12 (Gronwall’s Lemma, Differential Form). If u(t) ∈ C1([a, b]) fulfills

u̇(t) ≤ α(t) + β(t)u(t) for all t ∈ [a, b]

for some given functions α, β, then it follows that

u(t) ≤ u(a)e
∫ t
s=a β(s) ds +

t∫
s=a

α(s)e
∫ t
s
β(τ)dτ ds .

Proof. Define

v(t) := e−
∫ t
s=a β(s) ds.

The function v satisfies the differential equation

v̇ = −β(t)v(t), v(a) = 1

Now we take a closer look at the derivative of uv:

d
dt(uv) = u̇v + uv̇ = u̇v − uvβ ≤ βuv − βuv + vα = αv.

Here it does not matter, whether we write t or s as the dependent variable. So we
may switch from t to s and integrate both sides from [a, t], where t ∈ (a, b) and obtain

u(t)v(t)− u(a) ≤
t∫

s=a

α(s)v(s) ds,

u(t)v(t) ≤ u(a) +
t∫

s=a

α(s)v(s) ds .

Hence we conclude the proof by multiplying with 1
v = e

∫ t
s=a β(s) ds.

Now we are able to prove Lemma 5.11.
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Proof of Lemma 5.11. We take the inner product with λuim(t) and vim in (5.39)–
(5.40). Thus we obtain

λ

(dum
dt ,um

)
+ λ(d1(um),um) + (D2um,um) = λ(F ,um),(dvim(t)

dt ,vim(t)
)

+ 〈f(um,vm), zivim〉 = 0.

Here we can see that (dum
dt ,um

)
= 1

2
d
dt |um(t)|2

and (dvm(t)
dt ,vm(t)

)
= 1

2
d
dt |vm(t)|2 .

Using Parseval’s identity, see for example [82, Theorem V.4.9], we conclude that

|um(t)|2 = ‖um(t)‖2H .

The same is also valid for the term |vim(t)|2. Next, the term (D2um,um) can be
written as aBD(um, um), due to

aBD(um, um) = aBD

 m∑
i=1

uim(t)zi,
m∑
j=1

ujm(t)zj

 =
m∑

i,j=1
uim(t)ujm(t)aBD(zi, zj)

=
m∑

i,j=1
uim(t)ujm(t)λi 〈zi, zj〉︸ ︷︷ ︸

=δij

=
m∑
i=0

λiu
2
im(t) = (D2um,um).

Next we use the Galerkin isomorphism for the non-linear terms and arrive at

λ

2
d
dt‖um(t)‖2H + λaBD(um(t), um(t)) + 〈g(um,vm), λum〉Ω = λ

〈
f̃ , um

〉
Ω
,

1
2
d
dt‖vm(t)‖Hn + 〈f(um,vm),vm〉Ω = 0.

Now we sum up all the equations and obtain

1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
+ λaBD(um(t), um(t))

+ 〈g(um(t),vm(t)), λum(t)〉Ω + 〈f(um(t),vm(t)),vm(t)〉Ω = λ
〈
f̃ , um(t)

〉
Ω
. (5.42)

This auxiliary result will be helpful in a few moments. Consider

1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
+ cBDλ‖um(t)‖2V + a‖um(t)‖pY .
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Now we may use for any t ∈ [0, tm) the estimate (5.26), hence

1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
+ cBDλ‖um(t)‖V + a‖um(t)‖pY

≤ 1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
+ λaBD(um(t), um(t)) + λ‖um(t)‖2H + a‖um(t)‖pY .

Now we may rewrite hypothesis (H4) as

a |u|p ≤ λug(u,v) + (f(u,v),v) + λb |u|2 + b |v|2 + c,

from which we conclude that

a‖u‖pY ≤ λ〈g(u,v), u〉Ω + 〈f(u,v),v〉Ω + λb‖u‖2H + b‖v‖Hn + c |Ω| .

Using this result together with (5.42) we obtain

1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
≤ λ

〈
f̃ , um(t)

〉
Ω
− cBDλ‖um(t)‖2V + ‖um(t)‖2H − a‖um(t)‖pY

+ λb‖um(t)‖2H + b‖vm‖Hn + c |Ω| , (5.43)

and hence

1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
≤ λ

∥∥∥f̃(t)
∥∥∥
V ∗
‖um(t)‖V + c |Ω|+ 2b

(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
.

The first terms on the right hand side are bounded by hypothesis. Thus,

d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
≤ 2c̃+ 4b

(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
.

Now we are able to use Gronwall’s lemma (Theorem 5.12 which gives us

λ‖um(t)‖2H + ‖vm(t)‖2Hn ≤ C̃
(
λ‖um0‖2H + ‖vm0‖2Hn

)
.

By assumption, the initial values um0,vm0 are both in H. Thus we have proved the
second statement of the lemma. This statement now holds for all t ∈ [0, tm). For
proving that tm =∞ we may use a corollary to be found in [6, Chapter 2, Corollary
7] and the corresponding remarks, which tells us that we can extend the solutions
um(t) and vm(t) to infinity when the right hand sides of the differential equations
can be bounded by its arguments, in that case um,vm. This can easily be deduced
from the results stated above.
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The Lemma 5.11 tells us, that we can find for each T ∈ [0,∞) a constant C1 such
that the statement is valid, and so we can conclude the following:

Corollary 5.1. There holds

‖um(t)‖L∞(0,T ;L2(Ω)) <∞,

‖vm(t)‖L∞(0,T ;Hn) <∞,

for each T ∈ [0,∞) and therefore also

‖vm(t)‖L2(QT ) <∞.

Now we will use this result to state the first important theorem:

Theorem 5.13. For any T ∈ (0,∞) it holds:

‖um‖X ≤ C2 <∞,

where the norm ‖·‖X is defined as in Theorem 5.6.

Proof. We start from rewriting the inequality (5.43) as

cBDλ‖um(t)‖2V + a‖um(t)‖pY ≤ λ
〈
f̃ , um

〉
Ω

+ 2b
(
λ‖um(t)‖2H + ‖vm‖Hn

)
+ c |Ω| − 1

2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
.

Now we use Lemma 5.11 and obtain

cBDλ‖um(t)‖2V + a‖um(t)‖pY ≤ λ
〈
f̃ , um

〉
Ω

+ 2bC1

+c |Ω| − 1
2
d
dt
(
λ‖um(t)‖2H + ‖vm(t)‖2Hn

)
.

The duality pairing appearing on the right hand side of the inequality may also be
bounded by〈

f̃(t), um(t)
〉

Ω
≤
∥∥∥f̃(t)

∥∥∥
V ∗
‖um(t)‖V ≤

1
2

∥∥∥f̃(t)
∥∥∥2

V ∗
+ 1

2‖um(t)‖2V .

Next we integrate on both sides from [0, T ). Thus we obtain(
cBDλ−

1
2

)
‖um‖2L2(0,T ;H1(Ω)) + a‖um‖pLp(QT )

≤ λ
∥∥∥f̃∥∥∥

L2(0,T ;H̃−1(Ω))
+ 2bC1T + cT |Ω|

−
(
λ‖um(T )‖2H + ‖vm(T )‖2Hn − λ‖um0‖2H − ‖vm0‖2Hn

)
≤ λ

∥∥∥f̃∥∥∥
L2(0,T ;H̃−1(Ω))

+ 2bC1T + cT |Ω|+ λ‖um0‖2H + ‖vm0‖2Hn︸ ︷︷ ︸
=:CT

.
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Define C̃ := min{cBDλ − 1
2 , a} > 0 by hypothesis (H4). Then we end up with the

result

‖um‖X ≤ C2 <∞ for any T ∈ (0,∞),

with

C2 := max
{(

CT

C̃

)1/2

,

(
CT

C̃

)1/p
}
.

We will also need the boundedness of the derivatives ∂um
∂t ,

∂vm
∂t defined by

u̇m = ∂um
∂t

=
m∑
i=0

u̇im(t)zi,

v̇m = ∂vm
∂t

=
m∑
i=0
v̇im(t)zi,

which is given by the following result:

Theorem 5.14. For any T ∈ (0,∞) it holds that

‖u̇m‖X∗ ≤ C3 <∞,
‖v̇m‖[L2(QT )]n ≤ C4 <∞.

Proof. We start with the bound on u̇m. Following [9] we introduce the operator
Pm : V ∗ → Vm ⊂ V ⊂ V ∗ by

Pmf :=
m∑
i=0
〈f, zi〉Ωzi, for f ∈ V ∗.

It can be shown that this operator defines a projection, i.e. P 2
m = Pm. Consider an

element f ∈ V . Since, zi ∈ V for all 0 ≤ i ≤ m and V ⊂ H we can interpret f and
zi as functions in H. Therefore we may interpret the duality pairing 〈·, ·〉Ω as inner
product in H. This means

Pmf :=
m∑
i=0
〈f, zi〉Hzi, for f ∈ V.

To circumvent ambiguities we will denote the projection Pmf for f ∈ V with P Vmf .
For f ∈ H the projection P Vmf is the orthogonal projection from H to Vm, i.e.〈

P Vmu, v
〉
H

= 〈u, v〉H for u, v ∈ H.
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Further we obtain with the Cauchy-Schwarz inequality that∥∥∥P Vmu∥∥∥
H
≤ ‖u‖H for u ∈ H.

Then by applying [4, Lemma 7.5] we conclude that P Vm is self-adjoint. Using again,
that we can switch between the H-inner product and the duality pairing in V we
conclude that (

P Vm

)∗
= Pm.

Next by using [82, Satz III.4.2], we obtain that∥∥∥P Vm∥∥∥
V→V

= ‖Pm‖V ∗→V ∗ (5.44)

where the operator norm ‖·‖V→V is defined as

‖Pm‖X→X := sup
f∈X
‖f‖X 6=0

‖Pmf‖X
‖f‖X

.

We will use this result later. From the Riesz representation theorem (Theorem 5.1)
we know that for any t ∈ (0, T ) there holds

〈u̇m(t), v〉Ω = (J u̇m(t), v)V .

Strictly we would have to define ˜̇um := J u̇m(t), however, it is quite common in
literature to override this and use again u̇m(t). Therefore we may rewrite the
equations (5.33) as

〈u̇m(t), v〉Ω = −
〈
ABDum(t) + g(um(t),vm(t))− f̃ , v

〉
Ω
,

We can regard g(um(t),vm(t)) as element of Lp′(Ω) ⊂ V ∗ by Lemma 5.10. Using now
the above defined projection operator Pm this is equivalent to

u̇m = −Pm
(
ABDum(t) + g(um(t),vm(t))− f̃

)
in V ∗. Therefore,

‖u̇m‖V ∗ ≤
∥∥∥Pm (ABDum(t) + g(um(t),vm(t)) + f̃

)∥∥∥
V ∗

≤ ‖Pm‖V ∗→V ∗
∥∥∥ABDum(t) + g(um(t),vm(t)) + f̃

∥∥∥
V ∗
.

To conclude the proof we therefore have to bound the operator norm of Pm, the other
norms can be bounded by previous estimates. With the result from (5.44) we see that
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it suffices to bound P Vm . To this end we consider the bilinear form aBD(·, ·) induced
by the bi-domain operator ABD for an u ∈ V :

aBD(P Vmu, P Vmu) =
∞∑
i=0

λi
(
P Vmu, zi

)
H

(
P Vmu, zi

)
H

=
m∑
i=0

λi(u, zi)H(u, zi)H

≤
∞∑
i=0

λi |(u, zi)H |
2 = aBD(u, u).

Therefore we obtain

cBD
∥∥∥P Vmu∥∥∥2

V
≤ aBD(P Vmu, P Vmu) +

∥∥∥P Vmu∥∥∥2

H
≤ aBD(u, u) + ‖u‖2H ≤ (M + 1)‖u‖2V

and from that we conclude that

‖Pm‖V ∗→V ∗ =
∥∥∥P Vm∥∥∥

V→V
≤ M + 1

cBD
.

Application of Lemma 5.10 and the other boundedness results yields the result

‖u̇m‖2V ∗ ≤ c <∞, (5.45)

which especially means that u̇m ∈ V ∗. With the definition of the space

X∗ = Lp
′(QT ) + L2(0, T ;V ∗)

we first see that the estimate

‖u̇m‖L2(0,T ;V ∗) ≤ c2 <∞

follows immediately from (5.45). From the definition for the space

X∗ = Lp
′(QT ) + L2(0, T ; H̃−1(Ω))

we see that we can write u̇m = 0 + u̇m and obtain an element in X∗. Therefore we
also conclude that

‖u̇m‖X∗ ≤ C2 <∞

The proof for v̇m goes in an analogous way, by rewriting the second equation in (5.33)
as

v̇m = −Pmf(um,vm)

where Pm : Hn → Hn is defined by

(Pmf)i :=
m∑
j=0
〈fi, zj〉Hzj .
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Gathering all the last results we have shown the following four statements:

‖um‖X ≤ C1 <∞,
‖u̇m‖X∗ ≤ C2 <∞,
‖vm‖[L2(QT )]n ≤ C3 <∞,

‖v̇m‖[L2(QT )]n ≤ C4 <∞,

meaning that the constructed approximate solutions are bounded.

Convergence Towards a Solution of the Bi-Domain Equations. From these results
we may now apply the theorem of Eberlein-Šmulian, see [27, Chapter V, Theorem
4], and conclude that their exist weakly converging subsequences, still denoted by
um, u̇m,vm, v̇m such that

um ⇀ u in X,
u̇m ⇀ u∗ in X∗,
vm ⇀ v in L2(QT ),
v̇m ⇀ v∗ in L2(QT ),

where ”⇀“ indicates weak convergence. However, we can conclude even more. We
can immediately see that X∗ ⊆ Lp′(0, T ; H̃−1(Ω)), since p′ ≤ 2 and Lp′(Ω) ⊂ V ∗, and
that X ⊆ L2(0, T ;H1(Ω)). Hence we may formally define the space

W̃ :=
{
u : u ∈ L2(0, T ;H1(Ω)), u̇ ∈ Lp′(0, T ; H̃−1(Ω))

}
⊃W.

Obviously it holds that um ∈ W̃ . The space W̃ fits the compactness theorem of Lions,
to be found in [42, Chapter 5, Theorem 5.1], and we conclude that the embedding

W̃ ↪→ L2(0, T ;H) = L2(QT )

is compact. Therefore we can use a well-known result, see for example [27, Chapter
5, Theorem 6], that the subsequence um converges strongly in L2(QT ), denoted by
um → u in L2(QT ). Next we will show, that the subsequences defined above converge
to a solution of the bi-domain equations. Therefore we will check if each term of
the weak bi-domain equations is fulfilled by the weak limits of the sequences. It
was already shown in (5.41) that the initial values um0,vm0 converge to the initial
values u0,v0. Hence we will start with the weak derivatives. We know for a fixed
ψ ∈ C∞0 (0, T ) and φ ∈ L2(Ω) that

T∫
0

∫
Ω

u̇mφψ dx dt = −
T∫

0

∫
Ω

umφψ̇ dx dt .
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The last term converges to

T∫
0

∫
Ω

uφψ̇ dxdt

in the sense of L2(QT ) due to∣∣∣∣∣∣
T∫

0

∫
Ω

(u− um)φψ̇ dx dt

∣∣∣∣∣∣ ≤ T |Ω| ‖u− um‖L2(QT )‖φ‖L2(Ω)

∥∥∥ψ̇∥∥∥
L∞(0,T )

and the term on the right hand side goes to zero because of the strong convergence of
um. Thus we conclude that

lim
m→∞

T∫
0

∫
Ω

u̇mφψ dx dt = −
T∫

0

∫
Ω

uφψ̇ dxdt .

The term
∫ T

0
∫
Ω ·φψ dx dt can be interpreted as an element of X∗ and therefore we

use the uniqueness of weak limits and obtain that

lim
m→∞

T∫
0

∫
Ω

u̇mφψ dxdt =
T∫

0

∫
Ω

u∗φψ dx dt .

Putting together these results, we observe that the weak derivative of u coincides with
u∗. In an analogous way we see that the weak derivative of v coincides with v∗. The
next term on our list is the bilinear form aBD(um, φ). We know, that the bilinear form
is induced by the bounded linear operator ABD and is therefore continuous. From a
classical theorem of measure theory we know that if a sequence converges in a Lp norm
for 1 ≤ p ≤ ∞ than it possesses a subsequence which converges point-wise almost
everywhere, i.e.: un(x) − u(x) → 0 almost everywhere. Thus for any ψ ∈ C∞0 (0, T )
we have ∣∣∣∣∣∣

T∫
0

aBD(u, φ)ψ dt−
T∫

0

aBD(u, φ)ψ dt

∣∣∣∣∣∣ ≤
T∫

0

|aBD(u− um, φ)| |ψ| dt

and hence

lim
m→∞

T∫
0

|aBD(u− um, φ)| |ψ| dt =
T∫

0

∣∣∣∣∣∣∣∣∣aBD( lim
m→∞

(u− um)︸ ︷︷ ︸
(I)

, φ)

∣∣∣∣∣∣∣∣∣ |ψ| dt .

We may interchange the limit and the integral due to the monotone convergence
theorem, see [69] for details. The term (I) is zero almost everywhere, therefore the
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bilinear form is zero almost everywhere and therefore the outer integral is zero almost
everywhere and hence

T∫
0

aBD(u, φ)ψ dt = lim
m→∞

T∫
0

aBD(um, φ)ψ dt .

The last terms remaining are the non-linear terms. We will start with the function
g(u,v). By hypothesis (H2) we can write g as

g(um,vm) = g1(um) + (g2(um),vm) = g1(um) + (g2(um)−g2(u),vm)+(g2(u),vm).

Again we note that um → u point-wise almost everywhere in QT and so also g1(um)
converges to g1(u) almost everywhere in QT due to the continuity of g1. Furthermore,
g1(um) is uniformly bounded in Lp

′ for a fixed T . This follows from Lemma 5.10
by integrating the bound in Lp

′(Ω) with respect to the time t. Therefore we can
apply a lemma, to be found in [42, Chapter 1, Lemma 1.3] and conclude that g1(um)
converges weakly to g(um) in the sense of Lp′(QT ) which means that for any ψ in
C∞0 (0, T ) we have that

T∫
0

〈g1(um), φ〉Hψ dt→
T∫

0

〈g1(u), φ〉Hψ dt .

The same argument holds for f1(um).

We have that
T∫

0

∫
Ω

(g2(u),vm)φψ dxdt =
T∫

0

∫
Ω

(φψg2(u),vm) dxdt .

Hence, by hypothesis (H3) we can interpret φψg2(u) as an element in HQT and
therefore we can conclude by the weak convergence of vm that

lim
m→∞

T∫
0

∫
Ω

(g2(u),vm)φψ dxdt =
T∫

0

∫
Ω

(g2(u),v)φψ dx dt .

The remaining term is (g2(um)− g2(u),vm). We take a look at the integral

T∫
0

∫
Ω

(g2(um)− g2(u),vm)φψ dxdt ≤ ‖|g2(um)− g2(u)|φψ‖H‖vm‖HQT .

Taking a closer look at the norm of the difference we may rewrite

‖|g2(um)− g2(u)|φψ‖2H =
〈
|g2(um)− g2(u)|2, φψ

〉
H
.
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This inner product may now also be interpreted as a duality pairing between Lβ(QT )
and Lp/2(QT ), because φψ ∈ Lp(QT ) by hypothesis and so (φψ)2 ∈ Lp/2(Ω). The
term β is chosen such that 1

β + 2
p = 1. Then we may use Lemma 5.10 and conclude

that |g2(um)− g2(u)|2 is an element of Lβ(QT ). We also know that g2(um)→ g2(u)
point-wise almost everywhere, due to the continuity of g2. Therefore we can use [42,
Lemma 1.3] and conclude that〈

|g2(um)− g2(u)|2, φψ
〉

Ω
→ 0

and therefore also the norm goes to zero.

Summary. Gathering all the results from above we have now shown that the limits
of the weakly converging subsequences um, u̇m,vm, v̇m fulfill
T∫

0

〈
∂u

∂t
, φ

〉
H
ψ dt +

T∫
0

aBD(u(t), φ)ψ dt +
T∫

0

〈g(u(t),v(t)), φ〉Hψ dt =
T∫

0

〈
f̃(t), φ

〉
H
ψ dt

T∫
0

〈
∂v

∂t
, ζ

〉
Hn
θ dt +

T∫
0

〈f(u(t),v(t)), ζ〉Hnθ dt = 0

for all (φ, ζ) ∈ (V ∩ Lp(Ω))× [L2(Ω)]n and (ψ, θ) ∈ [C∞0 ((0, T ))]2. This means, that
we have found a solution to the variational formulation of the bi-domain equations.

Uniqueness of weak solutions. As a last point we will investigate briefly under which
assumptions we can guarantee uniqueness of the weak solutions of the bi-domain
equations. This is covered by the following result:

Theorem 5.15. Let the non-linear functions g,f be continuously differentiable. The
solutions to the weak bi-domain equations are unique if the symmetric gradient

1
2
(
gradz F (z) + (gradz F (z))>

)
is positive semi-definite, where

z := (u,v)>,
F (z) := (g(u,v),f(u,v))>.

Proof. We take two solutions (u1,v1), (u2,v2) of the bi-domain equations . Then the
differences (u1 − u2,v1 − v2) solve in C∞0 (0, T )〈
∂(u1 − u2)

∂t
, w

〉
Ω

+aBD(u1(t)− u2(t), w) +〈g(u1(t),v1(t))− g(u2(t),v2(t)), w〉Ω = 0〈
∂(v1 − v2)

∂t
, ζ

〉
Ω

+〈f(u1(t),v1(t))− f(u2(t),v2(t), ζ〉Ω = 0
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for all (φ, ζ) ∈ (V ∩Lp(Ω)×Hn). Especially for φ = u1 − u2 and ζ = v1 − v2 and by
using this and the Riesz representation theorem (Theorem 5.1) gives

1
2
d
dt‖u1 − u2‖2H + aBD(u1 − u2, u1 − u2) + 〈g(u1,v1)− g(u2, v2), u1 − u2〉H = 0,

1
2
d
dt‖v1 − v2‖2Hn + 〈f(u1,v1)− f(u2, v2), u1 − u2〉Hn = 0.

Summing up the two equations yields

1
2
d
dt
(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
+ aBD(u1 − u2, u1 − u2)

+ 〈g(u1,v1)− g(u2, v2), u1 − u2〉H
+ 〈f(u1,v1)− f(u2, v2), u1 − u2〉Hn = 0. (5.46)

Using the function F (z) := (g(z),f(z))> where z := (u,v)> we can now define

Φ(z1, z2) := 〈F (z1)− F (z2), z1 − z2〉Hn+1 .

By assumption the function F is continuously differentiable with respect to z, so we
can make a Taylor expansion, hence

F (z1)− F (z2) = gradz F (z)
∣∣
z=ξ · (z1 − z2),

with ξ = θz1 + (1 − θ)z2 and θ ∈ (0, 1). At this point we cannot say much about
the eigenvalues of the gradient, but we know that the eigenvalues of the symmetric
gradient

1
2
(
gradz F (z) + (gradz F (z))>

)
have to be real-valued. Denote the eigenvalues by λ1(z) ≤ λ2(z) ≤ · · · ≤ λn+1(z). By
assumption those eigenvalues have to be greater or equal to zero due to the positive
semi-definiteness of the symmetric gradient. Using this we can estimate

Φ(z1, z2) =
〈

gradz F (z)
∣∣
z=ξ(z1 − z2), z1 − z2

〉
Hn+1

≥ λ1‖z1 − z2‖2Hn+1 = λ1
(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn+1

)
. (5.47)

Going back to equation (5.46) we see that

1
2
d
dt
(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
= −aBD(u1 − u2, u1 − u2)

− 〈g(u1,v1)− g(u2, v2), u1 − u2〉H
− 〈f(u1,v1)− f(u2, v2), u1 − u2〉Hn ,
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which may be rewritten as

1
2
d
dt
(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
= −aBD(u1 − u2, u1 − u2) − Φ(z1, z2)

Next we see that

−aBD(u1 − u2, u1 − u2) ≤ −cBD‖u1 − u2‖2V + ‖u1 − u2‖2H ≤ ‖u1 − u2‖2H .

Together with the estimate (5.47) we obtain

1
2
d
dt
(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
≤ ‖u1 − u2‖2H

− λ1
(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
≤ (1− λ1)

(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
.

Here we can apply Gronwall’s lemma (Lemma 5.12) and conclude that(
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
≤ C̃

(
‖u1(0)− u2(0)‖2H + ‖v1(0)− v2(0)‖2Hn

)
,

hence (
‖u1 − u2‖2H + ‖v1 − v2‖2Hn

)
= 0,

which proves the uniqueness.

5.4 Analysis of the Non-Linear Elasticity Models

We will now turn our attention to the decoupled models of non-linear incompressible
quasi-static elasticity with the special constitutive model by Holzapfel as discussed in
Section 3.4.2. The governing equations in material coordinates are to find (U , p̃) in
suitable spaces such that

Div S = 0 in Ω, (5.48)
det F = 1 in Ω, (5.49)
γint

0 U = gD on ΓD, (5.50)
S>N = gN on ΓN , (5.51)

S = ∂W (F)
∂F

− p̃F−1 (5.52)

holds. The special form of ∂W (F)
∂F is given by the Holzapfel model and reads as

∂W (F)
∂F

= a exp(b(I1 − 3))F> + exp(bf (I4f − 1)2)f0 ⊗ f0

+ 2as(I4s − 1) exp(bs(I4s − 1)2)s0 ⊗ s0

+ afsI8fs exp(bfsI2
8fs)(f0 ⊗ s0 + s0 ⊗ f0),
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which was introduced and discussed in Section 3.4.2. For the mathematical analysis
we will stay with the Lagrangian form of the equilibrium equations. In the analysis
of non-linear elasticity it is usual to treat an equivalent minimization problem instead
of analyzing the partial differential equations. But before doing this we need to
introduce some basic tools from variational calculus.

5.4.1 Tools from Variational Calculus

For proving the existence of solutions to the problem of non-linear elasticity we need
some well-known tools from variational calculus.

Definition 5.14. Let X be a Banach space. A functional I : X → R ∪ {∞} is called
sequentially weakly lower semi-continuous if for any sequence {un}n∈N ⊂ X which
converges weakly to a limit u ∈ X it holds that

I(u) ≤ lim inf
n→∞

I(un).

Definition 5.15. Let X be a Banach space. A functional I : X → R ∪ {∞} is called
coercive if for any sequence {un}n∈N ⊂ X with ‖un‖X →∞ it holds that I(un)→∞.

With these two important definitions we can state a rather abstract existence theorem
from variational calculus:

Theorem 5.16 (Tonelli’s Theorem). Let X be a reflexive Banach space and let there be
given a coercive and sequentially weakly lower semi-continuous functional I : X →
R ∪ {∞}. Then the minimization problem of finding u ∈ X such that

I(u) = inf
v∈X

I(v)

admits at least one solution.

Proof. We choose an infimizing sequence {un}n∈N which means that

lim
n→∞

un = inf
v∈X

I(v).

Due to the coercivity of I the sequence un has to be bounded, otherwise we could
choose a subsequence un′ with ‖un′‖X →∞ and with the coercivity of I we would
conclude that limn′→∞ I(un′) =∞ which is a contradiction. Therefore the sequence
un is a bounded sequence in X. With the reflexivity of X and the theorem of Eberlein-
Šmulian we conclude that we can extract a subsequence unk in M with unk ⇀ u.
Now we know that I is sequentially weakly lower semi-continuous and hence

I(u) ≤ lim inf
k→∞

I(unk) = lim
k→∞

I(unk) = inf
v∈X

I(v) ≤ I(u),

therefore I(u) = infv∈X I(v).
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This rather straight-forward result is the key ingredient for proofing existence of
solutions to the problem of non-linear elasticity, by reformulating the non-linear
partial differential equations as an equivalent minimization problem. It remains to
show that the occurring functional fulfills the assumptions of Tonelli’s theorem and
we are pretty much done. For the concrete application to non-linear elasticity we
need to introduce some new concepts of convexity.

Definition 5.16. Let u : R3 → R be a function. We say that u is convex if for all
θ ∈ [0, 1] and for all λ, µ ∈ R3 it holds that

u(θλ+ (1− θ)µ) ≤ θu(λ) + (1− θ)u(µ).

Definition 5.17 (Polyconvexity). A function F : R3×3 → R ∪ {∞} is called polyconvex
if there exists a convex function P : R3×3 ×R3×3 ×R which for any A ∈ R3×3 has the
form

P (A) = P (A,AdjA,det A),

and it holds that

F (A) = P (A).

Here the adjugate of A is defined as AdjA := det(A)A−1, provided A is invertible.
Remark 5.9. The definition of polyconvexity as given above is not unique, i.e. there
are many possibilities of choosing the function P , see [15, p. 157–158] for details.

The two convexity properties are connected through the following theorem:

Theorem 5.17. If F : R3×3 → R ∪ {∞}. Suppose F is convex. Then F is also
polyconvex.

Proof. See [15, Theorem 5.3].

Next we are going to introduce some notations for differentiating matrix or tensor-
valued functions similar to the definitions already made in Chapter 3.

Definition 5.18. Let A,B ∈ R3×3. A scalar product on R3×3 is defined by

(A,B)F := A : B = tr(B>A)

which induces the Frobenius norm

‖A‖F :=
√

(A,A)F .

Definition 5.19. Let Ω ⊂ R3 be a bounded domain. Let f : Ωr × R3 × R3×3 → R be a
function. We then define:
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• ∂xf(x,u,A) := grad f(x,u,A) = ( ∂f∂xi )1≤i≤3 ∈ R3.

• ∂uf(x,u,A) := ( ∂f∂ui )1≤i≤3 ∈ R3.

• ∂Af(x,u,A) := ( ∂f
∂Aij

)1≤i≤3
1≤j≤3

∈ R3×3.

• Duf(x,u,A)[v] := (∂uf,v).

• DAf(x,u,A)[B] := 〈∂Af,B〉.

• D2
Af(x,u,A)[B,C] :=

∑3
i,j,k,l=1

∂2f
∂Aij∂Akl

BijCkl.

Remark 5.10. The two definitions above can also be applied to second–order tensors F.

The next lemma is going to turn out very useful for our purposes.

Lemma 5.18. Let K be a convex subset of R3×3 and let F : K → R be two times
continuously differentiable. Then the following statements are equivalent:

1. F is convex.

2. D2
AF (A)[H,H] ≥ 0 for all A ∈ K and for all H ∈ Lin(K), where Lin(K) is the

linear hull of K.

Proof. See [67].

Summarizing all the lemmatas and theorems above we can state the very useful
connection between polyconvexity and sequential weak lower semi-continuity.

Theorem 5.19. Let Ω ⊂ R3 be a bounded Lipschitz-domain. Let there be given a
polyconvex continuous coercive function f : R3×3 → [0,∞]. Then the functional

I : W 1,p(Ω)→ [0,∞]

u 7→
∫
Ω

f(F) dX

is sequentially weakly lower semi-continuous provided p > 3.

Proof. See [15, Theorem 3.20 and Theorem 8.16].

105



5 Analysis

5.4.2 The Equivalent Minimization Problem

As discussed above we will focus on a minimization problem which will turn out to
be equivalent to finding solutions for the governing equations of non-linear elasticity.
Therefore we will briefly discuss some physical aspects of non-linear elasticity. The
most deep result in classical mechanics is the Hamiltonian principle or principle of
least action. It states that the dynamics of a physical system is determined by a
variational problem for a functional based on a single function, the Lagrangian, which
contains all physical information concerning the system and the forces acting on it.
We will not go into the details of classical mechanics as this is beyond the scope of
this thesis. For details one may start with [5].

What we will actually use is the fact that we can equivalently minimize a functional
instead of solving a system of non-linear partial differential equations. However, for
convenience we will show how one can derive the system of incompressible non-linear
elasticity from a Lagrangian.

Theorem 5.20. Let Ω ⊂ R3 be an bounded Lipschitz domain and let ∂Ω = Γ̄D ∪ Γ̄N .
Further assume a given strain energy function W (F) corresponding to a hyper-elastic
material law and p > 3. Then any solution to the minimization problem to find
U ∈M such that

u = inf
y∈M

I(y), (5.53)

M :=
{
y ∈ [W 1,p(Ω)]3

∣∣ γint
0 y = gD on ΓD and det F = 1

}
, (5.54)

I(x) :=
∫
Ω

W (F) dX −
∫

ΓN

(gN ,x) dsX (5.55)

solves the weak system of partial differential equations of non-linear incompressible
elasticity, i.e.(U , p̃) ∈ [W 1,p

gD
(Ω)]3 × Lp/d(Ω) solves∫

Ω

∂W (F)
∂F

: Grady dX +
∫
Ω

(p̃F−>) : Grady dX =
∫

ΓN

〈
gN , γ

int
0 (v)

〉
dsX , (5.56)

∫
Ω

det Fµ dX =
∫
Ω

µ dX, (5.57)

for all y ∈ [W−1,q(Ω)]d and µ ∈ L
p
p−d (Ω), where we have

[W 1,p
gD

(Ω)]d :=
{
y ∈ [W 1,p(Ω)]d

∣∣∣∣ γint
0 y = gD on ΓD

}
.

Proof. We consider the stationary points of the first variation of the functional I(x).
However we need to incorporate the incompressibility constraint. Therefore we
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introduce a Lagrange-functional F (U , λ) defined by

F (U , λ) := I(U) + λ(det F− 1).

Now we calculate the stationary points of the first variation of this Lagrangian, thus
we obtain

∇s,tF (U + sy, λ+ tµ)
∣∣
s,t=0 = 0,

for arbitrary y ∈ [W 1,p
gD

(Ω)]3 and µ ∈ Lp/3(Ω) where ∇s,t = (∂s, ∂t)>. Applying the
chain rule this yields

∂sF (U + sy, λ+ tµ)
∣∣
s,t=0 =∫

Ω

∂W

∂F
: Grady dX −

∫
ΓN

〈gN ,y〉 dsX +
∫
Ω

(λ det(F)F−>) : Grady dX,

∂tF (U + sy, λ+ tµ)
∣∣
s,t=0 =

∫
Ω

(det F− 1)µ dX,

where we used that ∂det F
∂F = det(F)F−> see for example [31, Chapter 1]. Now we

introduce a new variable p̃ := λ det F and set both equations to zero, arriving at the
desired result.

Remark 5.11. It is also possible to include the essential Dirichlet boundary conditions
with the help of a Lagrangian. For more details the reader may refer to [75].
Remark 5.12. The procedure used in the proof is applicable to many physical phenom-
enas. The Hamiltonian principle can be reformulated in a way, that the stationary
points of the functional solves the weak Euler-Lagrange equations, see [12, 15] for
details
Remark 5.13. One can even show that the minimization problem is equivalent to
solving the weak Euler-Lagrange equations. See [12, 15] for details.

We have seen that it suffices to look for solutions of the minimization problem (5.53)–
(5.55). The existence of minimizers can be guaranteed with a result from John Ball
first published in [7], but it may also be found in [12, 15]. We state the result in a
way that fits our purposes better.

Theorem 5.21. Let Ω ⊂ R3 be a bounded Lipschitz domain, p > 3, gN ∈ L1(ΓN )
and gD ∈W 1−1/p,p(ΓD). Further, let W : R3×3 → [0,∞] be polyconvex and coercive.
Finally let the set M be defined as

M :=
{
y ∈ [W 1,p(Ωr)]3

∣∣ γint
0 y = gD on ΓD

}
and there exists an element y0 ∈M such that∫

Ω

W (Grady0) dX <∞.
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Then there exists at least one element U ∈M which minimizes I(y):

I(U) ≤ I(y) for all y ∈M,

I(y) :=
∫
Ω

W (F) dX −
∫

ΓN

(gN ,y) dsX .

Proof. See [12, Theorem 7.7-1].

We can not apply this theorem directly as we have an incompressible material.
Therefore we need to have a set M̃ defined as

M̃ :=
{
y ∈ [W 1,p(Ωr)]3

∣∣ γint
0 y = gD on ΓD and det F = 1

}
.

To bypass this we will define the following new strain energy function

W̃ (F) :=

W (F) if det F = 1,
∞ else.

(5.58)

Then minimizing W̃ (F) over the same set as in Theorem 5.21 is equivalent to minimize
W (F) over the set M̃ . Thus we have to show that W̃ fulfills the assumptions of
Theorem 5.21. The first one is covered by the following result:

Lemma 5.22. Let W : K ⊂ R3×3 → [0,∞], K convex, be a convex function. Then the
function W̃ as defined in (5.58) is polyconvex.

Proof. We have to show that there exists a convex function W such that

W(F,AdjF,det F) = W̃ (F).

Therefore we define

W(F,det F) = W̃ (F, det F).

Then we see immediately that the function W is convex with respect to the new
variables F and det F as

W(λ1F + (1− λ1)G, λ2 det F + (1− λ2) det G)

=

W (λ1F + (1− λ1)G) λ2 det F + (1− λ2) det G = 1,
∞ else.

Next we use the convexity of W and we can conclude the statement.

108



5.4 Analysis of the Non-Linear Elasticity Models

Due to Lemma 5.22, it remains to show that the given strain energy function is convex.
Therefore we will investigate the structure of the Holzapfel model.

Theorem 5.23. The function W (F) = W (C) : K ⊂ R3×3 → [0,∞], K convex, as
defined by the Holzapfel model (3.34) is convex.

Before proving this lemma we need the following technical result:

Lemma 5.24. It holds:

∂

∂C
tr C = I,

∂

∂C
(v,Cv) = v ⊗ v,

∂

∂C
(v,Cw) = 1

2 (v ⊗w +w ⊗ v) .

Proof. We start with the first one:
(
∂

∂C
tr C

)
ij

= ∂

∂Cji
tr C = ∂

∂Cji

d∑
i=1

Cii = δij .

For the second statement we obtain:(
∂

∂C
(v,Cv)

)
ij

= ∂

∂Cji

3∑
t,s=1

Ctsvsvt = δjsδitvsvt = vivj = (v ⊗ v)ij .

Finally, for the last statement we can write(
∂

∂C
(v,Cw)

)
ij

= ∂

∂Cji

3∑
s,t=1

Cstvswt = ∂

∂Cji

3∑
s,t=1

Cst
1
2 (vswt + vtws)

= δjsδit
1
2 (vswt + vtws) =

(1
2 (v ⊗w +w ⊗ v)

)
ij
.

With these auxiliary results we are now able to prove Theorem 5.23.

Proof of Theorem 5.23. We first state again the definition of W (C) from (3.34):

W (C) := a

2b exp (b(I1(C)− 3)) +
∑
i=f,s

ai
2bi

(
exp

(
bi(I4i(C)− 1)2

)
− 1

)
+ afs

2bfs

(
exp

(
bfsI8fs(C)2

)
− 1

)
.

109



5 Analysis

For showing convexity we need to check the equivalent characterization of convexity
as given in Lemma 5.18. Therefore we need to check whether

D2
CW (C)[D,D] ≥ 0

holds for arbitrary second-order tensors C ∈ K and D ∈ LinK. To this end we rewrite
the strain energy function in four terms:

I(C) := a

2b exp (b(I1(C)− 3)) ,

II(C) := af
2bf

(
exp

(
bf (I4f (C)− 1)2

)
− 1

)
,

III(C) := as
2bs

(
exp

(
bs(I4s(C)− 1)2

)
− 1

)
,

IV(C) := afs
2bfs

(
exp

(
bfsI8fs(C)2

)
− 1

)
.

Therefore, using Lemma 5.24 we obtain

D2
CI(C)[D,D] = ab exp (b(I1(C)− 3))

3∑
i,j,k,l=1

δijδklDijDkl

= ab exp (b(I1(C)− 3)) (tr D)2,

and hence we need that ab ≥ 0. Proceeding in the same way we can build

D2
CII(C)[D,D] =

af exp
(
bf (I4f (C)− 1)2

) (
2bf (I4f − 1)2 + 1

) 3∑
i,j,k,l=1

(f0)i(f0)j(f0)k(f0)lDijDkl

= af exp
(
bf (I4f (C)− 1)2

) (
2bf (I4f − 1)2 + 1

)
|(Df0,f0)|2 .

This results in claiming that

af ≥ 0 and bf ≥ −
1

2(I4f (C)− 1)2 .

The same results hold for the summand III(C). To finish up we finally look at the
summand IV . For the derivative we obtain in a similar way as for the summand
II(C)

D2
CIV (C)[D,D] = afs exp

(
bfI

2
8fs

) (
2bfsI2

8fs + 1
)
|(Df0, s0)|2 ,

yielding

afs ≥ 0 and bfs ≥ −
1

2I8fs(C)2 .

By choosing all the constants appropriately we see that the sum of all the second-order
derivatives is always greater or equal than zero and thus we can apply Lemma 5.18
and conclude that W (C) is convex.
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Having shown Theorem 5.23 we can now finally prove the existence theorem for
the problem of incompressible non-linear elasticity, which is just an application of
Theorem 5.21.

Theorem 5.25. Let Ω ⊂ R3 be a bounded Lipschitz domain and p > 3. Furthermore,
let the assumptions of Theorem 5.21 be fulfilled. Then the weak system of partial
differential equations of non-linear incompressible elasticity (5.56)–(5.57) has at least
one solution (U , p̃) ∈ [W 1,p(Ω)]3 × Lp/3(Ω).

Proof. The proof follows by applying Theorem 5.21 to the polyconvex strain energy
function W̃ .
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Summary & Outlook

This thesis can be categorized in two classes namely:

• The modelling of the coupled electro–mechanical activation of the human heart:

– general physiological details about the human heart.

– the modelling of the electrical activation of the human heart.

– the modelling of the mechanical activation of the human heart.

– some aspects about the coupling of the two different models.

• The mathematical analysis of the decoupled models:

– existence and uniqueness of solutions to the governing equations in the
electrical model.

– existence of solutions to the governing equations of the mechanical model.

In Chapter 1 we discussed the main physiological properties of the human heart.
This involved basic facts about the structure and its shape but also a rather vivid
description of the cardiac cycle. This chapter was mainly a motivation for the following
chapters.

In Chapter 2 we went into the details of the electrical activation of the human heart.
Firstly, we presented the historic dipole model, going back to Einthoven, for the human
heart. Therefore we introduced the Maxwell equations and made some simplifications
and arrived at a standard Poisson equation for finding the dipole distribution of the
human heart. This model, however, did not suffice for developing more sophisticated
and physiological more relevant models. As mentioned in the introduction, the future
of cardiomechanics is to be found in multi-scale and multi-physics problems. Therefore
we started from scratch and introduced the well-known bi-domain model of Tung,
which is motivated by a homogenization procedure of myocardial tissue. This model
is more accurate to describe the electrical activation of the human heart, with the
drawback of resulting in a coupled system of essentially non-linear partial and ordinary
differential equations.
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In Chapter 3 we discussed the mechanical activation of the human heart. There we
started with introducing the common notations from tensor algebra and non-linear
continuum mechanics. The governing equations in non-linear continuum mechanics,
which are fairly standard, though essential non-linear in type, and well-known, were
also introduced. We focused on incompressible material behavior, which lead to
major simplifications in the models. The interesting aspects in this chapter were
about choosing a material model for describing the passive mechanical behavior of
myocardial tissue. To this end we considered the incompressible Holzapfel model [32]
and discussed it in a quite detailed way.

In Chapter 4 we then started to consider the coupling of the two distinct models
discussed in the preceding chapters. The coupling of the two models was done by
a volume coupling. We first started to couple the bi-domain equations with the
mechanic feedback of the myocardial tissue. This was achieved by transforming the
equations from Eulerian to Lagrangian coordinates. Furthermore we had to include
the mechanic feedback in the system of ordinary differential equations which arose in
the derivation of the bi-domain equations. On the other hand we coupled the system
of non-linear elasticity by introducing a new material model which depends on the
electrical changes. We presented two possibilities to do this, the active strain and
active stress formulation and focused on the active stress formulation.

In Chapter 5 we presented the analysis for both decoupled models. For the electrical
model we first considered a time-independent elliptic sub-system. This was done
in an abstract operator setting. In this setting we were able to eliminate one of
the occurring variables, via a Schur complement. This leads to the definition of
the bi-domain operator ABD. We then studied the properties of this operator and
derived a spectral decomposition of it. The eigenvectors of the bi-domain operator
ABD turned out to be very useful in the construction of a unique weak solution to
the full bi-domain equations. This was achieved with a Faedo-Galerkin technique,
inspired by [9].

For the analysis of the system of non–linear elasticity we draw on tools from variational
calculus. The main statement was that solving the partial differential equations is
equivalent to finding minimizers of a particular functional. We first introduced the
most important tools and theorems from variational calculus. The most essential
property in this context was the concept of sequential weak lower semi-continuity.
With this we could show that we can find minimizers to a given integral functional
provided this functional has this special property. In the special case of non-linear
elasticity this result was achieved by John Ball [7]. We also introduced the concept
of polyconvex functions which is the right classification of physical strain energy
functions in classical continuum mechanics. In the rest of the chapter we showed that
polyconvex strain energy functions lead to sequentially weak lower semi-continuous
functionals and showed that the specific strain energy function introduced by Holzapfel
[32] has the property of polyconvexity. With this we were able to show that the system
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of incompressible non-linear elasticity, modeling the passive mechanical behavior of
the human heart, admits at least one solution.

For the future there is a broad range of perspectives to be attacked. It would be
interesting to incorporate electrochemical models which take account of sub-cellular
activities. This builds a bridge to biophysics. In the mechanic modeling one could
think about the incorporation of residual stresses in biological tissue. Furthermore,
in the coupling of the two distinct models we did not focus on the active strain
formulation. This may also be an interesting aspect.

From a mathematical point of view, we still lack of a sound numerical analysis for
the coupled equations. From the perspective of numerics it is very interesting how to
actually solve such multi-scale multi-physics problems in an efficient way using the
finite element method. For the pure electric activation of the human heart there can
already be found software, like CARP [62], which are able to solve large problems.
More specifically, it would be interesting to use domain decomposition methods, like
the Finite Element Tearing and Interconnecting Method (FETI), and combine existing
codes for solving the pure mechanic and the pure electric problem in view of a real
clinical application.
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