
Thomas Kaufmann, BSc.

Analyzing Continuous Integration in an
agile Android Project

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology

Supervisor: Univ.-Prof. Dipl-Ing. Dr. techn. Wolfgang Slany

Graz, 2014

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz,

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

III

Abstract

Many software projects have come into a situation, which is described as
integration hell by several well-known authors: Multiple developers are work-
ing on various components of the software and shortly before a deadline
for the release these modules are merged together to the final software
product. This phase is called software integration and can cause serious
problems and delays – on the one hand there can be conflicts, if the same
part of the code was modified by multiple developers, on the other hand the
functionality can be affected as well, since the tests, which are responsible
to guarantee a certain quality, might have been deactivated short-term.

To avoid these problems more and more teams use a concept called Con-
tinuous Integration. In this process of software development, integrations
happen multiple times a day due to breakdown of needed functionality in
smaller pieces. Furthermore every single integration is tested on a continu-
ous integration server. During this so called build, the final software is built,
all existing automated tests are executed and the source code is checked
for potential bugs and violations against the team’s coding standard. In
the case of build errors, the concerned developers are notified through a
suitable feedback mechanism like e-mail or SMS, so they can start working
on fixing the problems momentarily.

Catroid is an Android application, which provides an opportunity for chil-
dren and teenager to learn the concept of programming in a playful manner
with the language Catrobat and to create small games and multimedia
applications without any previous knowledge. This project is developed by
voluntary software engineers at the University of Technology in Graz since
2010. Continuous Integration was introduced to the engineering process in
2011 and soon become a key practice. However, by and by first problems
arose: the build times increased little by little and soon it took over two

IV

hours for one build to succeed. Thus a major advantage of continuous inte-
gration was not present any more – the instant feedback. Other problems
were related to the slow testing on the Android test device, which was
connected to the continuous integration server.

The goal of this thesis is to find out, if appropriate actions were taken to
bring the whole continuous integration process back to a stable state as well
as discussing possible solutions to increase the support of the development
team. To run multiple builds in parallel, three servers were installed, which
are working according to the master–slave concept. In order to decrease
the time it takes to run a single build, the tests are executed on multiple
Android emulators in parallel. Additionally the author of this thesis was
responsible to integrate several tools for a static code analysis to the build
process to ensure a certain internal software quality.

V

Zusammenfassung

Viele Softwareprojekte kennen eine Situation, die von mehreren namhaften
Autoren als Integrationshölle beschrieben wird: Mehrere Entwickler arbeiten
an verschiedenen Komponenten der Software, und kurz vor dem Ende
der Frist zum Veröffentlichen der Software werden diese Teile zu einem
Endprodukt kombiniert. Diese Phase wird Software Integration genannt, in
welcher es möglicherweise zu erheblichen Problemen und Verspätungen
kommen kann. Einerseits können Konflikte auftreten, wenn gleiche Teile
der Software von mehreren Entwicklern verändert wurden, andererseits
kann auch die Funktionalität beeinträchtigt sein, weil kurzfristig die Tests,
die die Qualität sicherstellen sollten, deaktiviert werden.

Um diese Probleme zu umgehen, verwenden immer mehr Teams ein Kon-
zept namens Continuous Integration. In dieser Methodik der Softwareent-
wicklung werden durch eine Unterteilung der benötigten Funktionalität
in kleinere Stücke, mehrmals am Tag Integrationen durchgeführt. Darüber
hinaus wird jede einzelne Integration auf dem sogenannten Continuous
Integration Server getestet. Im Laufe dieses sogenannten Builds wird das
Endprodukt gebaut, alle vorhandenen Tests werden ausgeführt und der
Quellcode wird auf eventuelle Fehler und Verstöße gegen die teaminternen
Richtlinien überprüft. Sollte es bei einem Build Probleme geben, werden die
betroffenen Entwickler durch geeignete Feedback Mechanismen wie E-Mail
oder SMS informiert, um sofort mit der Behebung der Fehler beginnen zu
können.

Catroid ist eine Android Applikation, die es Kindern und Jugendlichen
ermöglicht, mit Hilfe der Sprache Catrobat spielend Programmieren zu ler-
nen und ohne Vorwissen Spiele und Multimedia Applikationen zu erstellen.
Dieses Projekt wird an der Technischen Universität Graz von einer Vielzahl
an freiwilligen Softwareentwicklern seit 2010 programmiert und betreut.

VI

Continuous Integration wurde 2011 in den Entwicklungsprozess integriert
und wurde schnell eine wichtige Komponente für das Entwicklungsteam.
Doch mit der Zeit ergaben sich erste Probleme: die Build Zeiten verlängerten
sich sukzessive und überstiegen zeitweise die zwei Stunden Marke. Da-
durch war ein großer Vorteil von Continuous Integration, nämlich schnelles
Feedback zu erhalten, nicht mehr gegeben. Andere Probleme betrafen das
zum Teil relativ langsame automatisierte Testen auf dem mit dem Server
verbundenen Android Testgerät.

Ziel dieser Arbeit ist es herauszufinden, ob geeignete Maßnahmen getroffen
wurden, um den ganzen Continuous Integration Prozess stabiler zu machen,
beziehungsweise Möglichkeiten der Verbesserung zu erörtern, die das Team
optimal unterstützen können. Um mehrere Builds gleichzeitig ausführen zu
können, wurden insgesamt drei Server in Betrieb genommen, die nach dem
Master-Slave Prinzip arbeiten. Zum Verringern der Zeit, die ein einzelner
Build braucht, werden die Tests mittlerweile parallel auf mehreren Android
Emulatoren ausgeführt. Darüber hinaus war der Autor dieser Arbeit dafür
verantwortlich, mehrere Tools zur statischen Code Analyse in den Build
Prozess einzubinden, um so die interne Softwarequalität sicherzustellen.

VII

Contents

List of Abbrevations iv

List of Figures v

Listings vii

1 Introduction 1

1.1 Motivation . 2

1.2 Structure of this thesis . 3

2 Related Work 4

2.1 Continuous Integration Definition 4

2.2 Continuous Integration applied 5

2.3 Catroid . 8

2.4 Android . 10

3 Theoretical Background 15

3.1 Components of a Continuous Integration System 15

3.2 Benefits of Continuous Integration 22

3.3 Practices in a Continuous Integration Process 25

3.4 Software Testing in Agile Teams 30

4 Catroid Continuous Integration Process 35

4.1 Initial Analyzation . 35

i

4.2 Add more Servers . 38

4.3 Make the Build faster . 39

4.4 Faster Code Acceptance . 40

4.5 Include Code Analysis Tools in Build Process 41

4.5.1 Lint for Android . 42

4.5.2 Checkstyle . 45

4.5.3 PMD . 46

4.5.4 Findbugs and CPD . 47

4.6 Improve Feedback Mechanism 49

4.7 One Iteration in Catroid’s Development Cycle 50

5 Analyzing Fowler’s Continuous Integration best Practices 52

5.1 Maintain a Single Source Repository 52

5.2 Automate the Build . 53

5.3 Make Your Build Self-Testing 54

5.4 Everyone Commits to the Mainline Every Day 54

5.5 Every Commit Should Build the Mainline on an Integration
Machine . 56

5.6 Keep The Build Fast . 56

5.7 Test in a Clone of the Production Environment 58

5.8 Make it Easy for Anyone to get the latest Executable 58

5.9 Everyone can see what’s happening 59

5.10 Automate Deployment . 59

6 Future work 61

6.1 Categorize Automated Tests . 61

6.2 Make the Build faster . 62

6.3 Faster Development Iterations 63

6.4 Integrate additional test methods 64

7 Conclusion 65

ii

Bibliography 68

iii

List of Abbrevations

AAPT Android Asset Packaging Tool
ADB Android Debug Bridge
AIDL Android Interface Definition Language
app application
CI continuous integration
CPD Copy/Paste Detector
CVS concurrent versions system
FOSS free and open source software
IDE integrated development environment
IRC internet relay chat
OHA Open Handset Alliance
RCS revision control system
RSS really simple syndication
SCM source code manager
SDK software development kit
SMS short message service
SVN subversion
TDD test driven development
UI user interface
VCS version control repository
VM virtual machine
XP extreme programming

iv

List of Figures

2.1 Android Software Stack . 11

2.2 Android Build simplified . 12

2.3 Android Build Process . 14

3.1 Components of a Continuous Integration System 16

3.2 Centralized Version Control Repository 17

3.3 Distributed Version Control Repository 19

3.4 Catrobat Jenkins Overview . 20

3.5 Jenkins Broken Build Period . 27

3.6 A Private Build . 29

3.7 Functional Team vs. Agile Team 30

3.8 Agile Testing Quadrants . 31

3.9 Feedback from Tests . 33

4.1 Development of Catroid Tests 36

4.2 Development of Catroid Code Coverage 36

4.3 Build Result Catroid Master Branch 37

4.4 Android Lint . 41

4.5 Catroid Checkstyle . 44

4.6 Catroid Pmd . 47

4.7 Catroid Pmd CPD . 48

4.8 Catroid Findbugs . 48

5.1 Staged Build . 57

v

7.1 Ambient Orb . 66

vi

Listings

4.1 Catroid lint options . 43

4.2 Catroid lint.xml file . 43

4.3 Catroid checkstyle.xml file . 45

vii

1 Introduction

Nowadays software development is mostly done in teams and is a very com-
plex process. A software project is usually divided in different components,
where multiple developers add, delete and modify code independently of
each other while working on various modules. At the end of an iteration or
just before the end of the project, these software components are merged
and the software is built - this process is called software integration. The
integration process can be very time consuming and according to Duvall
[13, p. xx], this kind of late integration can not only increase costs, but also
causes project delays. Another term which is used to describe this problem
is integration hell [14].

Agile software development resulted from the frequent change in require-
ments during the software engineering process between 1990 and 2000. In
contrast to traditional software development, iterations during the develop-
ment process in agile teams are much shorter. One of the most frequently
applied agile development method is extreme programming (XP), which
includes a key practice named continuous integration (CI) – this is a process,
where developers make small changes, and each of these changes triggers
an immediate integration. With this approach an integration should not
lead to project delays, because it is done several times a day and integration
becomes a non-event [15].

1

1.1 Motivation

Catroid1 is an Android2 application (app) developed by members of the
Catrobat project3 at Graz University of Technology. When development
started in 2010, several agile development practices like test driven devel-
opment (TDD), clean code and pair programming were applied right from
the beginning. CI was introduced in November of 2011 and soon became
a key practice. A CI server was installed, a test device was connected and
every time a developer committed to the main development branch of the
version control repository (VCS), the whole application was built, deployed
on the device and all automated tests were executed. Every developer could
easily check the project’s health status by browsing the CI server’s web
interface. However, as the team as well as the code base have grown, the
process has become less flexible than in the beginning by increased build
time and wasted time due to waiting queues on the integration server.

Enabling more CI techniques for higher code quality, introducing better
feedback mechanisms and showing possibilities to reduce the run time of an
integration build are the main goals of this thesis. The following questions
should be answered:

• What problems emerged during development using continuous inte-
gration?

• What key practices of CI have helped to make the whole development
process more stable?

• What can be done to optimize CI for Catroid?

1https://github.com/Catrobat/Catroid; last visit: 2014-02-28

2http://www.android.com/; last visit: 2014-02-14

3http://developer.catrobat.org/; last visit: 2014-02-28

2

https://github.com/Catrobat/Catroid
http://www.android.com/
http://developer.catrobat.org/

1.2 Structure of this thesis

The chapter on related work (chapter 2) presents an overview of the lit-
erature dealing with Continuous Integration. Several definitions of CI are
discussed as well as the review of different software projects, which apply
CI. Additionally a short introduction into both the Catroid and Android
project can be found in this chapter.

The next chapter (chapter 3) provides a closer look into the theory of CI. It is
shown, which components a typical continuous integration system usually
consists of. Furthermore the benefits of CI are discussed and some of the
best practices for an efficient continuous integration process are presented.
In the latter part of this chapter, a short introduction into software testing in
agile teams is given, because testing is a fundamental part of CI.

chapter 4 describes the evolution of the CI process in the Catroid project.
The whole process has undergone several changes in the last two years,
because the project itself got more and more complex.

The following chapter (chapter 5) explains Martin Fowler’s ten best prac-
tices on CI and how they are applied in Catroid’s continuous integration
process.

The last two chapters include an outlook for future tasks in Catroid’s
continuous integration process and a conclusion. A key concept of CI is
rapid feedback on the project’s state – due to the growing number of tests,
feedback time also increases by and by. Especially in Android teams it is
difficult to have a good mix of fast build times and good test coverage. Some
counter strategies for these problems are presented, but they require either
a general refactoring iteration or a switch to a slightly different integration
process. However, both of these CI adoptions are pretty difficult to achieve
without hindering the current development progress.

3

2 Related Work

In this chapter the most important literature dealing with continuous inte-
gration is presented, starting with a historical overview of CI, giving several
definitions of CI and showing research papers with results of CI in practice.
Furthermore a quick introduction in Catroid and Android is given for a
better understanding of the next chapters.

2.1 Continuous Integration Definition

While the practice of frequent integrations had been applied for several
years before, the term continuous integration was formed in the book Extreme
Programming Explained [2] in 1999. Beck explains CI as a practice, where a
programming pair sits down on a dedicated machine, checks out the latest
version from the team’s source code repository, integrates their own code
and runs all the tests. If the developers can not get 100% of the tests passing,
the changes have to be reverted, they leave the integration machine and
start the development cycle on their own machine again. In case all the
tests passed, they commit the code to the VCS [2]. Over the years most
software development teams using CI modified this workflow and used
a CI server instead of sitting down on a dedicated machine. In the new
version of the book Beck explains this asynchronous style of CI, where a

4

continuous integration system detects any changes pushed to the mainline,
starts an integration build and automatically runs all the tests [3].

Fowler [14] wrote and rewrote [15] an article about CI which is cited by
nearly all articles and journal papers about continuous integration. The
most known explanation of CI was published in the updated version [15]:

“Continuous Integration is a software development practice where
members of a team integrate their work frequently, usually each person
integrates at least daily - leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to detect
integration errors as quickly as possible...”

One important aspect is the number of integrations – developers should be
working on small tasks, which do not take more than a couple of hours to
complete. Only with small tasks it is possible to integrate multiple times
a day. In the updated article Fowler lists ten key practices for CI. It is not
required to adopt each of these techniques in order to perform CI, but
applying them will have an enormous impact for the development team
working with CI.

The most important book about CI is Continuous Integration [13]. Based
on the ideas of Fowler several CI practices regarding the CI process it-
self, continuous testing, feedback mechanisms and code inspections are
presented.

2.2 Continuous Integration applied

There are several papers and articles available that deal with the topic
continuous integration. Some of them show, how CI was introduced in the
development process, while others present results of CI in action.

5

Bowyer and Hughes reflect the use of a CI server in a course for students at
the University of Dundee [5]. Results showed a good participation of the
students, who extended their knowledge about CI, TDD and configuration
management. Hembrink and Stenberg [17] present results of a similar
project – continuous integration was used in a course at the Lund University,
where students developed a given project using extreme programming.
With a limited time span, they had to support the teams with configuration
management, so the students could focus on programming, testing and
using the tools instead of installing and configuration. Most of the teams
had an improved test coverage and low number of failed builds during this
course.

Stolberg [29] describes the introduction of a CI system in a running software
development team. Getting CI to work took a while, but the retrospective
after a few iterations showed major success in the ability to develop and test
simultaneously. Miller [23] shows how a CI server can decrease the time
spent integrating compared to a manual approach. In this paper several
very interesting metrics like broken build reason, length of build breaks
and time it takes to fix a build are discussed. He describes a build break
as one or more following CI build errors in a row, and shows several
possible reasons for broken builds like compilation errors, broken unit tests,
failed static analysis and server related issues. When analyzing a CI system,
looking at the different build failures and broken build periods might be
a good starting point. Miller also mentions that developers might commit
more than one task in a single changeset. According to him, this is not a
good idea, because a broken build could be more difficult to fix due to the
larger changeset. Furthermore a lower frequency of commits increases the
probability of merge conflicts.

At the end of the paper, Miller describes his view of the three best practices
for development teams using continuous integration [23].

6

• A build script should not only mark the build as broken in case of an
error, but also on warnings.

• The person, who broke the build, has to restore it.
• Developers should not leave after the last commit of the day – they

should wait for the result of the CI server, in order to be able to fix a
possible build error immediately.

Lacoste [18] demonstrates the results of a CI server experiment, where the
integrations rapidly increased. It is explained also that offering developers
the possibility to run the whole tests on individual branches on the CI server
was a key success factor of the continuous integration process. A complete
overview of an CI process from choosing a server to build feedback is
given by McGregor [20]. Visible feedback was the key to success to reduce
broken builds, because competitive thinking amongst developers to not
break the build was promoted. Additionally the code quality went up,
because developers added more and more automated test sets.

Abdul and Fhang [1] discuss the impact of CI to a software development
team. Due to the fact, that every single commit triggers a build, a new version
of the product is available almost immediately after a feature has been
integrated. This circumstance is very important for the whole management,
because the managers can easily see the changes. Developers benefit from CI
as they do not have to spend as much time integrating different modules as
within late integration [1]. While most papers about continuous integration
focus on the CI server as well as on the executed tests, Souza Pereira Moreira
et al. [28] highlight the extraction of metrics after source code analyzation
during a CI build. Due to the frequent builds within a CI environment it is
relatively easy to visualize a long term analysis for metrics like number lines
of code, number lines of comment and percentage code coverage of unit tests.

Vodde [30] presents an introduction to a tool, which measures the capability
of continuous integration. This so called CI grid visualizes several metrics

7

like compilation, unit testing, test coverage and feedback time for given
projects using CI. With help of this table it is easy for the person responsible
for CI to detect any bottlenecks within the CI process.

Rogers [25] focuses on the CI environment problems, that occur when a
project is getting larger in both size of the code base and size of the team.
Since CI requires a well sized test suite, the build takes more and more
time. Several counteractions are presented: after agreeing on a maximum
build length, the whole build process should be split into different phases.
Not all the unit tests, acceptance tests and code analyzers should be run in
every single build. All developers require fast feedback for all their changes
on the code base. Due to that, Rogers recommends to split the build and
separate fast unit tests from longer running acceptance tests. While for the
developers unit tests have the highest priority, for the project’s management
less frequent feedback from the acceptance tests is essential. Otherwise the
build time would reach a length, where developers would not be able to
commit as often as needed for a smooth CI iteration. Finally the developers
should try to write faster unit tests instead of long running acceptance tests
when possible. Additionally Rogers [25] illustrates that the frequency of
code generation increases by adding new developers to an existing team.
However, the larger the team, the more developers are dependent on a build
which runs without any errors. If there are any build errors – for whatever
reason – all developers who are not involved in fixing the build, are not
allowed to commit any changes to the VCS and have to wait, until the
person responsible for the broken build has successfully fixed the build.

2.3 Catroid

Catroid is a free and open source software (FOSS), allowing children from
the age of eight years to create games and multimedia animations with

8

the visual programming language Catrobat on both Android smartphones
and tablets. The lego like programming style lets children and teenager
explore paradigms of programming in a playful manner. Catroid is inspired
by Scratch1 , a visual programming environment for computers, but as
explained in [26], there are some major differences. Instead of using a mouse
like on a desktop program like Scratch, on a smartphone the users have to
use their fingers to navigate and interact with an application like Catroid.
This fact is important for developers and designers of the Catroid project,
because it is crucial to provide a simple and easy to use user interface (UI)
even on a limited screensize. Since on mobile devices there are several
sensors available, some of these sensors can be used in Catroid programs as
well. Sensors available on Android phones include [11]:

• Motion sensors like accelerometers and gravity sensors
• Environmental sensors like air temperature and pressure
• Position sensors like magnetometers and orientation sensors

Additionally users can control Parrot’s AR.Drones2 , Lego Mindstorm
robots3 and Albert robots4 via Catroid.

Some other projects within the Catrobat umbrella project are tight coupled
with Catroid. With Pocket Paint5 , a Catroid user is able to draw and
modify images and users have the possibility to upload, download and
remix Catroid projects on a community website6 . While Catroid7 has
already been published under the name Pocket Code in the Android Playstore,

1http://scratch.mit.edu/; last visit: 2014-02-28

2http://ardrone2.parrot.com/; last visit: 2014-02-28

3http://www.lego.com/en-us/mindstorms/; last visit: 2014-02-28

4http://www.tsmartlearning.com/en/albert?; last visit: 2014-02-28

5https://play.google.com/store/apps/details?id=org.catrobat.paintroid; last visit: 2014-
02-28

6https://pocketcode.org/; last visit: 2014-02-28

7https://play.google.com/store/apps/details?id=org.catrobat.catroid; last visit: 2014-
02-28

9

http://scratch.mit.edu/
http://ardrone2.parrot.com/
http://www.lego.com/en-us/mindstorms/
http://www.lego.com/en-us/mindstorms/
http://www.tsmartlearning.com/en/albert?
https://play.google.com/store/apps/details?id=org.catrobat.paintroid
https://pocketcode.org/
https://play.google.com/store/apps/details?id=org.catrobat.catroid

other team members develop versions for IOS, WindowsPhone, an HTML5

version and a Scratch2Catrobat converter. [27]

2.4 Android

Android is both an operating system for mobile devices and a software
platform, and is developed by the Open Handset Alliance (OHA) under the
responsibility of Google. A huge variety of different devices is supported,
from small smartphones to large tablets. These devices do not only differ in
screensize, but also in the presence of different hardware sensors. Since the
first version of Android (1.0 Base in late 2008) the operating system and user
interface have changed drastically. For Android developers it is essential to
support as many different clients as possible to achieve a high reach. This
goal can be very tricky to reach, because some version steps introduced a
numberless amount of new features.

Internally the Android operating system is based on a Linux kernel, which
is responsible for hardware interaction, memory management and process
management. Although most Android applications are written using the
Java programming language, they are not executed in a traditional Java
virtual machine (VM), but use the Dalvik VM. This virtual machine is op-
timized for mobile devices, and allows to run multiple instances. Every
single Android application runs in its own process within its own Dalvik
instance [21, pp. 14-15]. This feature sandboxes every application and appli-
cation data cannot be altered from other processes and applications.

Figure 2.1 shows an overview of the Android software stack. On top of the
Linux kernel, Android relies on several C/C++ libraries, which provide
database support, support for audio and video data, graphic libraries and
support for web browsers and internet security. The application framework

10

Figure 2.1: Android Software Stack [21, p. 16]

on top of the libraries provides all classes and interfaces needed for Android
development and manages the UI as well as application resources. The
stack’s top tier is the application layer, which includes all applications
running on an Android device [21, p. 15].

The Android Runtime includes the Dalvik virtual machine. In order to run
programs within this VM, common Java .class files have to be transformed
to .dex files with a special tool from the Android software development
kit (SDK) called dx. Furthermore the Android Runtime includes a set of

11

Figure 2.2: Android Build simplified [9]

core Java libraries, which is a subset of the available classes of Java SE. [32,
pp. 8-9].

From the development point of view an Android app consists of a variation
of Activities, Services, Broadcast Receivers and Content Providers. An Ac-
tivity is a single screen, which presents the UI and on which the interaction
with the user is taking place. With Content Providers it is possible to allow
other applications to retrieve, insert, modify and delete internal data of
another application. Services enable users to execute long running tasks
without blocking the user interface. Broadcast Receivers receive system
events like boot complete or battery low, and enable developers to react to
these very specific situations accordingly within an application [8].

The build process has a very high priority within a continuous integration
system. The goal is to have presentable software all the time. The result
of Android development is a single file called Android package or .apk
file. This file can be run on an Android emulator or Android device after
it has been signed. The build process of an Android app is very different
to the one of other software. Figure 2.2 shows a simplified Android build
process. All the tools, which are involved in building an .apk file, are
shown in Figure 2.3. Android Asset Packaging Tool (AAPT) compiles all
the application resources like the manifest file and layout .xml files, and

12

also generates a R.java file to be able to reference the resources from within
the Java code. Android Interface Definition Language (AIDL) compiles
all necessary .aidl interface files. The next step is executed with the Java
compiler. It takes all the .java files, the compiled .aidl interfaces and the
R.java file and compiles them to .class files. The dex tool converts all .class
files as well as all third party libraries to .dex files, which are needed by the
Dalvik VM. The apkbuilder uses all compiled and non-compiled resources
and all .dex files to generate an .apk file. This file is not ready to be loaded
onto the emulator or a physical device yet, because it has to be signed with
the Jarsigner – either with a debug key for development or with a release
key for production in Google’s PlayStore [9].

Fortunately, developers do not have to execute all the steps from above
by hand. On their development machines, they are assisted by integrated
development environment (IDE)s, which simplify the process to only a few
mouse clicks. Furthermore it is possible to use common build tools to build
Android applications. For several years, Ant8 was the standard and it was
possible to build and sign an .apk file with a single command. However,
in 2013, Android introduced Gradle for Android9 to offer all Android
developers more flexibility when building their applications.

8http://ant.apache.org/; last visit: 2014-04-16

9http://www.gradleware.com/android/gradle-the-new-android-build-system/; last
visit: 2014-04-16

13

http://ant.apache.org/
http://www.gradleware.com/android/gradle-the-new-android-build-system/

Figure 2.3: Android Build Process [9]

14

3 Theoretical Background

3.1 Components of a Continuous Integration

System

A development team is not applying continuous integration if the developers
are only using a test server to run automated software tests. CI is more than
this – it is a process with frequent interaction between people, hardware
and software. Figure 3.1 illustrates how these parts of a CI system cooperate
[13, p. 5].

1. developers add, delete or modify files and commit the changes to a
VCS

2. a CI server running on a separate integration build machine is polling
for changes in this repository

3. the last commit is detected, the CI server checks out the latest version
of the source code and starts a build script for the integration

4. the build script is responsible for compiling the source code, executing
all automated tests, running static code analysis tools and deploying
the software

5. after the build has finished, developers are notified about the state of
the integration and the CI server starts polling for changes again

15

Figure 3.1: Components of a CI system [13, p. 5]

Developer

Once a developer has finished all modifications related to the current task
a private build is run manually on the developer’s local machine. During
this build possible changes from other developers in the repository are
integrated, and only if the private build is successful the developer commits
the changes to the VCS. Although many IDEs assist developers running
private builds by providing mechanisms to run tests, check code and commit
changes, it should be possible to run a whole private build with a single
command from the command-line [13, pp. 5-6].

The term developer is not only used for people altering source code, but
also includes software testers, quality managers and administrators. Source
code is not the only category of files residing in a VCS. Testers can add new
tests, quality managers might change rules for source code analyzation and

16

Figure 3.2: Centralized VCS [6]

administrators could change build scripts and update libraries. A CI server
should recognize all of these modifications and start an integration build.

Version Control Repository

One of the requirements for using CI is a VCS [13, pp. 7-8]. Other terms used
for VCS are source code manager (SCM) and revision control system (RCS).
In simple terms, a VCS is a tool that manages changes to source code and
records all changes including a date, person and diff [19, p. 1]. The major
benefits of using a VCS system are the possibility to revert files and whole
projects to previous states, retrieve deleted files and visualize changes [6].
Other advantages of using version control are given by O’Sullivan [24].
Software teams using a VCS are able to track the complete history of the
project by retrieving information for every single change – which developer
changed which files at what time for which reason. Furthermore a RCS

17

helps involved people to solve possible merge conflicts when changes are
made in the same files simultaneously. One major benefit, especially for
software development teams, is the possibility to handle multiple versions
of a software more easily [24]. A short overview of different version control
systems is given by Chacon [6]. A Local Version Control Repository helped
a single person to restore a previous state of files by keeping the changes
in a database. Multiple developers could use revision control by using one
of the Centralized Version Control Systems. All files in a project are stored in
a server, and clients are able to check out the needed files from it, make
modifications and push the changes to the server. These version control
systems like concurrent versions system (CVS) or subversion (SVN) have
one major downside – if the connection to the server is broken for some
reason, it is not possible to push changes. Distributed Version Control Systems
like Git or Mercurial tackle this problem by cloning the full repository
on a checkout – every developer has the complete repository on his own
machine.

Figure 3.2 shows a sample centralized VCS. The whole history of the only
sample file residing in the repository is on the central server, but both
clients can checkout the latest version of this file. In contrast to this scenario,
Figure 3.3 shows a distributed VCS, where each client has the whole history
of the file cloned after a checkout. Due to this fact it is possible to view the
history even without an active connection to the server, or restore all files if
the server repository has been broken for any reason.

Integration Build Machine

An integration build machine is a separate machine hosting the CI server
(see CI Server) [13, p. 12].

18

Figure 3.3: Distributed VCS [6]

CI Server

A CI server is a software tool which checks a VCS (see section 3.1) for
changes and starts a build script for integration when changes are detected.
The server should be configured to check for changes in a VCS at least every
ten minutes [13, pp. 8-9]. Usually a CI server uses a web interface to show
build results and offer the possibility to download latest artifacts. However,
in this thesis the primary focus regarding the CI server is on Jenkins1 , an
open source continuous integration server.

Figure 3.4 shows a Jenkins’ web-interface of a particular job. On the left side
the latest builds including state symbols and starting times are displayed,
while on the right side test and code analysis trends are visualized. Within
Jenkins there exist four different kinds of build results:

1http://jenkins-ci.org/; last visit: 2014-03-03

19

http://jenkins-ci.org/

Figure 3.4: Catrobat Jenkins Server - Job overview

20

• Green build – this state indicates a successful build
• Yellow build – compilation was successful, but at least one test or an

inspection failed
• Red build – if a build’s state is red, most likely a compilation error

occurred or other fatal problems during the test run failed the build
• Grey build – build timed out or was aborted

If the developer team does not use any additional feedback mechanism, the
developers most likely use the web-interface to check the health status of
a certain project. Thus a page like in Figure 3.4 is the first place to go to
search for a specific build.

Build Script

A build script can be a single script, or a set of scripts, and is executed by the
CI server if a change in the repository is detected. This build script usually
checks out the latest changes from the VCS, compiles the code, executes all
the tests, runs code inspections and deploys the software. Build scripts are
very common in software development and are not only used by CI servers.
Usually developers are assisted by IDEs during development on their local
machines by providing their own build scripts for compilation and running
tests. In a CI environment, the build script should be completely decoupled
from any IDE, so it is possible to run the build script without having a
certain IDE installed [13, p. 10].

Feedback Mechanism

Without feedback CI can not work. If an integration build has failed team
members should be informed immediately to fix the problem as soon as
possible [13, p. 10]. There are many possible ways of generating feedback

21

like e-mail notification, sending short message service (SMS), writing really
simple syndication (RSS) feeds or posting results to channels in internet
relay chat (IRC). What channel should be used and which team members
are informed should be adjusted from team to team and is also dependent
on the capability of the CI server.

3.2 Benefits of Continuous Integration

The introduction of a CI system into a stable running development process
can be very time consuming. It has to be of verifiable value to switch to CI.
In his book Continuous Integration mit Hudson Wiest presents several benefits
of CI [31, pp. 23ff].

Reduced Risks

Due to frequent and fully automated integrations a software team can avoid
unpleasant surprises at the end of an iteration [31, p. 23]. Fowler describes
integration as a long, unpredictable process – it can take up to several
months to complete, and during the integration process nobody can tell
when it is going to be finished. By turning integration to a non-event due to
frequent integration it is easy to solve integration errors, since the code base
has diverged at most for some hours [15]. In case of a failing integration
build the whole developer team is responsible for correcting the error as
soon as possible.

Duvall describes reduced risks in detail[13, pp. 29f]. In a CI system, integra-
tions, tests and inspections are run multiple times a day – thus there is a
high probability that defects are recognized at an early stage instead at the

22

end of an iteration. With a CI server, integration is done in a clean environ-
ment in a same way again and again. This leads to reduced assumptions
like needed libraries or environment variables for a build.

Better Product Quality

By applying CI there is a high probability that the quality of the software
is higher than the product quality of traditionally developed software.
The main goal is that the end product is containing of as little errors as
possible. With the use of a CI server this goal is achieved by running all
the tests on every single change in the VCS. Errors are also detected much
earlier, because test results are presented after every small change, while in
traditional software development tests are often executed at the end of an
iteration. Furthermore the code coverage is generally higher on a CI server
with automated tests than with a manual approach [31, pp. 24f].

Having presentable Software all the Time

A software team running CI builds always has a running software product.
With every new commit to the mainline the latest source code is compiled,
tests and code inspections are run. The compiled software might not be
perfect as far as functionality is concerned, but for a successful integration
build all tests and code analyzation have to pass. This generated product
can be used by several team members for demonstration purposes [31,
pp. 24f]:

1. testers have access to up-to-date versions
2. clients can see the development progress easily
3. project managers are able to spot problems earlier

23

Better Efficiency

A precondition for continuous integration is an automated build process.
An automated build is always faster than a manual building of a software
product step by step. With an automated build script it does not matter
whether the software is built on the CI server or on a developer machine.
This possibility makes it easier to instruct new team members by showing
them how to run a private build on their own machine with a single
command [31, pp. 26f].

Documented Build Process

In a CI system, all build steps are recorded in the server configuration and
in build scripts. This kind of documentation is executed on every single
integration and can be observed on the web-interface during a build on the
CI server [31, p. 27].

Higher Motivation

More integrations produce more feedback for the developers. Most of
the time, this feedback should be positive, indicating that the changes
pushed to the CI server were integrated successfully and the project’s
health status did not switch from green to red. On the other hand, even
negative feedback, indicating a failing testcase for example, is positive, if
the developer responsible for the failure, is immediately working on fixing
the build. In order to get feedback more frequently, developers tend to split
their tasks into many small tasks over the time, and commit each of these
sub tasks. Therefore it is possible that they get frequent feedback from the
CI server multiple times a day, and their confidence gets boosted, because
they can see the project progress [31, p. 28].

24

Better Information Visibility

Due to the fact, that software is built and tested fully automatically on
every single change, within a CI system, information regarding the software
product is always up to date. Many CI server present several metrics like
code coverage, test results, code inspections and build time in a graphical
manner. Thus it is easy for everyone to check these metrics [31, p. 29]

Supported Process Enhancement

By using CI it is possible to gather important metrics for the development
process [31, p. 29]. Increased build times and hardware bottlenecks like low
storage and missing servers can be easily identified and fixed.

3.3 Practices in a Continuous Integration Process

Duvall describes seven practices of CI which should be applied to benefit
from continuous integration [13, pp. 39-43]. These practices are not con-
nected with CI and can be applied by teams without a CI server as well, but
within a continuous integration process they unlock their potential.

Commit Code Frequently

Only by committing changes frequently it is possible to get feedback from
the CI server as quick as possible with a limited chance of breaking the build.
If the changeset is too big and either the feature branch or the mainline
branch have undergone several changes, there is a high probability that

25

an integration build on the CI server will fail. Duvall shows two possible
strategies for frequent commits:

• Small changes: developers should work on very small tasks and should
only write the tests and necessary source code to fix these tests, and
commit their changes afterwards.

• Commit after each task: it should be possible to finish a task within a
few hours. If this goal cannot be achieved, the bigger task has to be
split into several smaller ones. Developers should aim for a commit
after each of these sub tasks and should not wait until all sub tasks are
finished.

Furthermore it should be avoided, that all developers commit their changes
at the same time. This would lead to many broken builds. If that scenario
happens at the end of the day, it could be troublesome on the next day,
because not only one build error might have to be fixed, but also several
possible errors are existing in the latest build [13, pp. 39f].

Don’t Commit Broken Code

Changes that do not work should not be committed to the VCS. A private
build can prevent broken code getting committed [13, p. 41]. However there
are situations where the integration build on the CI server is failing even
after a successful private build – for example if a developer uses a new
library and does not add it unintentionally to the VCS. This missing library
should lead to a compilation error on the CI server.

Fix Broken Builds Immediately

From time to time a build fails on the integration machine. Duvall gives
several examples for broken builds like compilation errors, failed tests, failed

26

Figure 3.5: Catrobat Jenkins Server - broken build period

inspections or failed deployment. Due to frequent integrations and a short
period between the broken build and the last successful one the error can
be fixed easily. Fixing a broken build has top project priority [13, p. 41]. A
situation like in Figure 3.5 should not happen – the mainline build on the
CI server is broken for over two weeks. In these two weeks nobody was able
to get a successful private build and nobody should have committed to the
mainline except for fixing the build.

27

Write Automated Developer Tests

Nearly all software development teams automate their unit tests. In order
to get the most out of the CI process, they should aim to automate all
other tests as well. A test suite might consist of unit tests, component tests,
system tests and functional tests. Of course it is not a good idea to run
all these tests during every single build. This would lead to a build time
that is unacceptable. There are several tools assisting developers in writing
automated tests. The most important tool in the Java world is jUnit [13,
p. 41].

All Tests and Inspections Must Pass

When applying CI, tests and inspections are as important as compilation. All
tests must pass for a successful build. Just a single failing testcase shows that
there is a problem in code. Automated inspectors can prevent developers
from committing code that does not follow coding and design standards [13,
p. 42].

Run Private Builds

A private build is an integration build executed on a developer’s machine.
After the developer has finished his task and ran all unit tests he executes
a private build on his local machine. The build script for the private build
should get changes from the VCS, compile developer’s changes together
with the newest code base from the repository and runs both unit tests
and inspections. A successful private build will make it less likely that the
build on the CI server will fail [13, p. 42]. Figure 3.6 shows the described
scenario. A commit to the repository is only allowed after a successful

28

Figure 3.6: Running a private build [13, p. 43]

private build, which includes getting the changes from the repository after
local development has been finished.

Avoid Getting Broken Code

If the mainline build on the CI server is broken, developers should not
check out the latest version. Since the team is responsible for fixing the
build somebody has to be working on the problem already. If developers are
working together in a room, a passive feedback mechanism like a traffic light
might be more informative than e-mails, because maybe not all developers
have read the e-mail sent after a broken build [13, p. 43]. If the build failed
due to a compilation error, any developer who checks out the latest version
is not able to compile his changes locally.

29

Figure 3.7: Functional Team vs. Agile Team [7, p. 64]

3.4 Software Testing in Agile Teams

Software testing is different when applied in agile teams compared to
traditional software teams. Within traditional teams, testing is done after
the development – this so called testing phase can be a long time span and
it can be difficult to increase software quality a long time after the actual
code was written. In these long running development cycles, team members
try to make sure, that all needed requirements are present in the release of
the final product. If a requirement is not ready for the release, the release is
usually postponed. However, sometimes the test phase is skipped, because
the time is needed in the development phase and the final product is not tested
sufficiently.

Agile teams use short development cycles. During these short iterations,
the team works closely together with the management and the customers,
and has a good knowledge of the requirements. While traditional testers
(Figure 3.7) usually have to wait for programmers to complete the code
before beginning to write tests, within agile teams, programmers should

30

Figure 3.8: Agile Testing Quadrants [7, p. 98]

not get very far ahead of the testers. The reason for this is, that a story is
not completed (some teams use the term “done”) until there exist tests for
it. Furthermore agile teams may consist of cross-functional team members
with different knowledge backgrounds [7, pp. 9ff] [7, p. 64].

Crispin and Gregory introduce a diagram dividing relevant test types in
four quadrants – on the one hand tests, which support the team, and on
the other hand tests, that test the product in detail. The second axis divides
tests into business-facing and technology-facing tests. Figure 3.8 shows this
diagram, with the left quadrants (Q1, Q2) including tests supporting the
team during development of the product, and the right quadrants (Q3, Q4)
critiquing the product [7, pp. 97f].

31

Quadrant 1

Q1 covers both, unit tests and component tests, which are also main integral
parts of test-driven development [7, p. 99]. Beck explains a general TDD
cycle, which consists of the following three steps: [4, p. 11].

1. First of all, a test has to be written. Executing this test leads to a failure,
because the code has not been implemented yet.

2. Production code is written in order to make the test passing. The code
does not need to be perfect – its only business is a working test.

3. The code is refactored in this step. Duplications are removed and the
code should be made more readable.

Usually, unit tests cover a small subset of the whole system like a class or a
method, and component tests verify the behavior of a set of classes. Both test
categories are usually automated with an automation tool from the xUnit
family. Due to the fact, that these tests are written in the same language as
the production code, the team’s business members might have difficulties
to understand them. If the developer team uses an automated build process
like continuous integration, tests from this quadrant should be executed on
every single code change to provide rapid feedback [7, p. 99].

Quadrant 2

Similar to the tests in Q1, the tests from Q2 also assist the work of the whole
development team. Crispin and Gregory specify these tests as business-
facing tests, customer-facing tests or customer tests. The variety of Q2–tests,
which are shown in Figure 3.8, are deducted from customer examples
and represent features, which are required by the customer. In contrast
to the ones from Q1, the tests from Q2 are written in a programming
language, which is easily understandable by business experts. Furthermore

32

Figure 3.9: Feedback from Different Kind of Tests [16, p. 11]

it is possible, that tests from Q2 are testing similar components as tests in
Q1. In order that these so called higher level tests can provide fast feedback
as well, a majority of them should be automated and run periodically [7,
pp. 99f].

According to Crispin and Gregory, tests from Q1 measure the internal qual-
ity, while Q2 tests define external quality [7, p. 99]. Freeman and Pryce use a
diagram (Figure 3.9) to show the differences between various kinds of tests.
On the one hand, external quality shows, how the system fits from a cus-
tomer’s or user’s point of view – for example, if the functionality is correct
or if the system is responsive. On the other hand, internal quality is a metric,
how well the product meets the needs of the developers – for example, if
changes can be applied easily, or if code is easy understandable even for
new developers. End-to-end tests (they would reside in Q2) represent the
external quality and show, if developers understand the needs of customers
and users, but they do not show, if the code is written well. Meanwhile, unit
tests present a good feedback about the code itself regarding the quality,
and prove that subsystems of the product is working well individually, but
these tests can not expose, that the whole system is working correctly [16,

33

p. 11].

Quadrant 3

Tests in Q3 simulate, how real users would use the software product, and for
this reason have to be run manually by human testers. One important part
of these tests is usability testing, where alpha, beta and final releases are
tested with probands of the target audience of the end product [7, pp. 101f].
Due to the manual approach of these tests, they are not important for a
continuous integration process.

Quadrant 4

Crispin and Gregory use the term technology-facing-tests for the tests in Q4,
which are performed by certain tools in order to test performance, robust-
ness and security – only load&performance tests can be fully automated [7,
pp. 102f]. Some CI environments use tests from this quadrant. For example,
performance and stress tests could be executed with a nightly build and
provide long-term metrics for the developers.

34

4 Catroid Continuous Integration

Process

Continuous integration was introduced to Catroid in late 2011. Jenkins was
used as a CI server and was installed on a separate integration machine.
A reference mobile device was connected to the server and every commit
to the mainline triggered an integration build including compilation and
running automated unit tests and functional tests.

4.1 Initial Analyzation

Over a period of 12 months the runtime for a single integration build
on the CI server has increased from about 30 minutes to over two hours.
Since compilation time has not changed significantly this behavior resulted
primarily from adding more and more long running functional tests (see
Figure 4.1 for a long term visualization of all tests).

Right from the beginning, some Catroid tests required a bluetooth server
– thus, developers had difficulties running private builds on their local
machines. Additional problems were the long build time and the UI tests
which only worked relatively stable on the test device connected to the CI
server. Every task, a developer is working on, is done in a separate branch.
To verify that the mainline build would be successful after a merge, the

35

Figure 4.1: Development of Catroid Tests Figure 4.2: Coverage Trend

Catroid team uses a slightly different work flow compared to the traditional
CI process. Instead of running a private build on the developer’s local
machine, Catroid developer work on their tasks locally, commit changes
to so called feature branches, push these branches to the VCS and start a
job manually on the CI server by entering their branch name – this build
is called custom branch test. Rather than building and testing the mainline,
this job compiles and tests the feature branch on the connected device. This
process decreased failed mainline builds significantly, because code was
only merged to the mainline in case of a successful build on the feature
branch. Unfortunately with just one device connected to the server and due
the long build time this practice lead to long building queues and frustrated
developers.

Unfortunately, the builds for the master branch failed from time to time for
several different reasons. The listing below summarizes these errors and the
corresponding build status on the Jenkins server.

• The long runtime of over two hours caused so called OutOfMemory
exceptions on the test device, and the whole testrun was aborted→ red
build

36

Figure 4.3: Build Result Catroid Master Branch

• Android Debug Bridge (ADB), the software used by Android to inter-
act between Android devices and a computer, disconnected during
testrun→ red build

• UI tests were unstable and failed randomly→ yellow build
• Custom branch test was not executed and broken code got committed

to the mainline→ red or yellow build
• Internet connection (Wlan)was lost during testrun→ yellow build
• Screen lock on test device was automatically activated during testrun,

and the build timed out→ gray build

While it is almost impossible to prevent all of these scenarios, the unstable
UI tests can be annoying. After a testrun with one or more failing test
cases, team members have to have a closer look if these failing tests have

37

failed for the first time, or if they used to fail from time to time in the past.
Freeman and Pryce describe these tests as flickering tests, and they should be
refactored in order to pass every single time as soon as possible – otherwise
team members can not rely on the testresults any more and real defects
could be overlooked [16, p. 317].

Figure 4.3 shows the different build results over a given time period on the
left side. It can be observed that the build status changes after almost every
single build – this behavior decreases the advantages of CI, because the
involved team members have to have a closer look on nearly every single
build instead the possibility to work on the next story in case of a green
build.

Within the next sections enhancements are described which made the CI
process more efficient and stable.

4.2 Add more Servers

As a first step, two more physical servers were added to the CI infrastructure.
Jenkins supports the installation of additional machines by using a master-
slave concept. The master server is the one where the CI server instance -
including Jenkins’ web interface – is running. Additionally all build artifacts
like test results and built .apk files are stored on the master server. Most
jobs are swapped to the slave machines to keep the web interface on the
master node more responsive when running multiple jobs simultaneously.
Therefore identical test devices were connected to each of the servers and
from then on it was possible to execute three builds, a mix of custom
branch tests and mainline builds, in parallel. The waiting queue during
main development hours became much shorter and thus the feedback time

38

from the CI server was reduced in case multiple developers started builds
simultaneously.

4.3 Make the Build faster

Developers should get fast feedback from the CI server on the last inte-
gration build in either case – no matter if the build failed or passed. If
the build takes too long, feedback is given at a time where a developer
could be working on another task already. Google provided new Android
emulators with every new Android version they presented. Latest emulators
running on powerful machines respond nearly as fast as physical devices.
This fact enabled developers the possibility to run Catroid’s UI test suite
simultaneously on multiple emulators instead of just on a single physical
device. Due to the breakdown of the test package org.catrobat.catroid.uitest,
which contains all of Catroid’s UI tests, into several sub packages it is easy
to execute package A on emulator A, package B on emulator B, and so on.
After the tests have finished the CI server collects the testresults from all
emulators and physical devices involved and merges them into a single
report. With this change the runtime of an integration build was cut down
from over two hours to under 30 minutes.

Unfortunately it was not possible to run the Emma1 code coverage tool
any more and the Catroid team lost the possibility to observe the coverage
trend (see Figure 4.2 for the coverage trend up to the time when the test
suite was distributed on multiple emulators). Code coverage is a metric in
software testing, presenting the number of lines in a source code, which
were actually tested.

1http://emma.sourceforge.net/; last visit: 2014-09-22

39

http://emma.sourceforge.net/

The split-up of the test cases solved the memory problems during the test
runs, because instead of running over two hours straight, each emulator
only needs about 30 minutes to test. Theoretically, on a very powerful test
machine, a large number of emulators could be started simultaneously.
However, the observations showed that running more than five emulators
on the same machine at the same time does not work well, because the
ADB connection is lost randomly and the testrun is aborted. To increase the
number of emulators on a machine to a maximum, there is the possibility
to set up different virtual machines on a physical one, and just allow two or
three emulators on each VM. Since each instance of the ADB is running in
its own environment, the random crashes should decrease significant. The
downside is the additional overhead of memory and CPU power needed on
the physical server to run all virtual machines, but it should be possible to
run many more than five emulators simultaneously on a suitable machine.

4.4 Faster Code Acceptance

When a Catroid developer wants to commit to the mainline, the changes
have to be reviewed by another team member. To provide faster feedback,
the team makes use of the Github pullrequests. To support the accepting
developer, the team agreed to install a so called pullrequest test: on every new
pullrequest, a rudimentary testrun should be executed, and should print
the results directly to the Github pullrequest. A tool, which allows such
behavior, is Jently2 . If a new pullrequest is created, a testrun including
building the .apk file, running all unit tests and checking the source code
with static analysis tools is executed. After this testrun, the pullrequest is
modified so everybody can see, if the test was successful or there were any
errors. Another useful feature is, that even open pullrequests get tested if

2https://github.com/vaneyckt/Jently; last visit: 2014-05-25

40

https://github.com/vaneyckt/Jently

Figure 4.4: Android Lint [10]

there were new commits. Thus, any reported errors can be easily fixed until
the pullrequest test is successful and the code is ready for review.

4.5 Include Code Analysis Tools in Build Process

Since Android development is done in Java, it is possible to check the
code with all static code analysis tools that support Java. While testing
is a dynamic process and checks the software to test the functionality,
code inspection analyzes the source code with predefined rule sets. A very
important aspect is the fact that by just inspecting the code, high quality
software is not achieved. For an increased code quality, developers have to
look at the reports and fix reported problems [13, pp. 164-165].

41

4.5.1 Lint for Android

The Android platform has its own static code analysis tool, called Lint [10]
- it scans the project’s source files for bugs and both code and layout
optimization Figure 4.4. My task was to integrate lint into the Catroid
project. Since some of the checks do not make sense for our app, we use a
slightly modified configuration file which excludes some checks. The main
goal is to have no lint warnings at all for all important checks.

Lint is running on a regular basis on our CI server, but can be also executed
manually on the developer’s machine. The important aspect is, that every
single warning excluding the ignored ones should be reported, so the
developers can react immediately and fix the potential problems.

When running lint for the first time on Catroid, the tool reported many
warnings and errors. In order to be able to set the warning threshold to zero
on the CI server, the following workflow was used.

• First of all I disabled all checks which reported errors and warnings.
Thus running lint reported 0 problems.

• In the next step, just a single group of additional checks was activated
and lint was executed again

• Now all the warnings and errors for these specific checks were fixed
and the code was committed

• Returning to the second step and activate new checks

The advantage of this approach was that each commit reported no warn-
ings and errors, because the source code was updated as well as the lint
configuration file. Right after the first commit, lint checks were activated on
the CI server. Since it is possible to execute lint with the same configuration
file on the developer machine there were hardly any problems introduced
to the mainline.

42

Listing 4.1: Catroid lint options

1 l i n t O p t i o n s {
2 l i n t C o n f i g f i l e (’ conf ig/ l i n t . xml ’)
3 ignore ’ ContentDescription ’ , ’ InvalidPackage ’ ,
4 ’ ValidFragment ’ , ’ GradleDependency ’ ,
5 ’ C l i c k a b l e V i e w A c c e s s i b i l i t y ’ , ’ UnusedAttribute ’ ,
6 ’ CommitPrefEdits ’ , ’ OldTargetApi ’
7 t ex tRepor t t rue
8 xmlReport t rue
9 htmlReport f a l s e

10 xmlOutput f i l e (” bui ld/ r e p o r t s / l i n t . xml ”)
11 }

Listing 4.2: Catroid lint.xml file

1 < l i n t >

2 . . .
3 <issue id =” Miss ingTrans la t ion ” s e v e r i t y =” ignore ” >

4 <ignore path=” c a t r o i d /r es/values−ko/ s t r i n g s . xml” />
5 <ignore path=” c a t r o i d /r es/values−pt/ s t r i n g s . xml” />
6 <ignore path=” c a t r o i d /r es/values−ro/ s t r i n g s . xml” />
7 <ignore path=” c a t r o i d /r es/values−ru/ s t r i n g s . xml” />
8 <ignore path=” c a t r o i d /r es/values−nl/ s t r i n g s . xml” />
9 </ issue >

10 . . .
11 </ l i n t >

Listing 4.1 shows the lint options that are used in Catroid’s Gradle build
file. All warnings which should be ignored for the whole source code, are
defined here. Additional ignores for specific locations are set in the lint.xml
file (see Listing 4.2 for an excerpt of the Lint configuration file). These

43

Figure 4.5: Catroid Checkstyle analyzation for pullrequest tests

additional ignores for example exclude the Missing Translation warning for
all languages beside German and English, since in the Catroid project, these
languages are serviced by external members and might not be up to date.
The output of the lint check is a console output and an xml file, that is not
only used by the CI server to publish the results, but also by developers on
their local machine to inspect possible warnings and errors.

44

4.5.2 Checkstyle

Another static code analysis tool I integrated into Catroid’s CI process is
Checkstyle3 . With this popular tool it is possible to test source code to
follow a certain coding style. The integration process was done in a similar
way as with Lint: in the beginning, only a few checks were activated in a
separate configuration file called checkstyle.xml. After running Checkstyle on
Catroid’s source code, all reported warnings were fixed, the changes were
committed to the VCS and the CI server used the configuration file to run
Checkstyle on every single push to the mainline to report any violations
of the coding style. Over the time, more and more checks were enabled
together with the corresponding changes in the source code to fix the
potential warnings.

Listing 4.3: Catroid checkstyle.xml file

1 <module name=”Checker”>
2 <property name=” s e v e r i t y ” value=”warning”/>
3 <module name=”TreeWalker”>
4 . . .
5 <module name=”MemberName”>
6 <property name=”format ” value = ” ˆ (([a−z]{2}) | ([x−z

] [A−Z])) [a−zA−Z0−9]*$”/>
7 <message key=”name . i n v a l i d P a t t e r n ” value=”Member

name not fol lowing naming convention − Name
’ ’{0} ’ ’ must match pat te rn ’ ’{1} ’ ’ . ” />

8 </module>
9 . . .

10 <module name=”ArrayTypeStyle ”/>
11 </module>
12 </module>

3http://checkstyle.sourceforge.net/; last visit: 2014-09-15

45

http://checkstyle.sourceforge.net/

In Listing 4.3 there are two sample checks shown that are activated for
the Catroid project. The MemberName check ensures that class members
follow a certain naming convention. With a regular expression it is easy to
adapt checks to nearly any coding style. The second check ArrayTypeStyle
guarantees, that only Java array style is accepted, while C style arrays throw
a warning.

While in the master build nearly no Checkstyle errors are reported, because
most developers execute the checks on their development machines, the
pullrequest check reported some warnings. If the check was not executed,
the violations of the coding style might have been committed to the mainline,
because it is not guaranteed that the member accepting the code would
have seen the problems. Figure 4.5 shows a long term observation of 500

pullrequest tests and how many violations would have been merged to the
mainline, if someone had accepted the code without looking at the results
and fixing the violations.

4.5.3 PMD

The third tool that I added to Catroid is Pmd4 . While there are some
overlapping checks with Checkstyle, Pmd also checks for example for
unused variables, empty blocks, large classes and code complexity. In the
beginning, also with this tool I chose the approach of activating only a
few checks, fix the potential errors and activate more checks. Initially, the
warning threshold on the CI server was set to match exactly the warnings in
the current build to prevent additional violations in the future. But as soon
as all the warnings were fixed, the threshold was set to zero, and from that
time on, no warnings were reported on the mainline build (see Figure 4.6),

4http://pmd.sourceforge.net/; last visit: 2014-09-16

46

http://pmd.sourceforge.net/

Figure 4.6: Catroid Pmd long term analysis

since the violations are reported on the pullrequest test as well as a last
barrier.

4.5.4 Findbugs and CPD

While Lint, Checkstyle and Pmd fail Catroid’s CI build in case of any errors,
Pmd-Cpd5 and Findbugs6 are executed only as long term analysis.
Copy/Paste Detector (CPD) is an extension for Pmd to detect duplicate
code in a project. Figure 4.7 shows a long term graph of duplicate code
in the Catroid project, dividing the issues found into warnings with high
priority (red), normal priority (yellow) and low priority (blue). It would be
good to set a certain threshold to fail the build in case of too many warnings
here as well, but is very difficult to find the appropriate threshold value.

Findbugs works slightly different than the other tools, because it needs
compiled Java .class files to execute checks for common Java programming

5http://pmd.sourceforge.net/pmd-4.3.0/cpd.html; last visit: 2014-11-01

6http://findbugs.sourceforge.net/; last visit: 2014-09-18

47

http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
http://findbugs.sourceforge.net/

Figure 4.7: Catroid Pmd CPD long term analysis

Figure 4.8: Catroid Findbugs long term analysis

48

errors. Figure 4.8 shows Catroid’s Findbugs long term graph with high (red)
and normal (yellow) priority warnings.

It can be observed easily, that warnings from both of these tools did not
drop significantly over a few hundred builds. To increase Catroid’s internal
software quality even more, CPD and Findbugs should be included in the
strict CI process as well.

4.6 Improve Feedback Mechanism

At the beginning of this thesis, the feedback mechanism was only weakly
defined. While developers were looking at the results of their custom branch
tests frequently, a failing mainline build was not be recognized by developers.
In case of a broken build an e-mail was sent to the Jenkins administrators
and the web interface marked the build as red or yellow depending on the
error. Jenkins comes with a huge amount of plugins which can be easily
installed and integrated in different jobs. When the development team
changed internal communication channels from Skype to IRC, the Jenkins
server was extended with a plugin for IRC notifications. After every master
build a message is posted to the internal IRC channel containing the build
status and a link to build on the CI server.

[05:48:32] <catrobat-jenkins> Project Catroid-Multi-Job

build #403: SUCCESS in 40 min:

https://jenkins.catrob.at/job/Catroid-Multi-Job/403/

This way developers are notified of failing builds immediately.

49

4.7 One Iteration in Catroid’s Development Cycle

In this section a whole iteration from assigning to a ticket up to getting
feedback from the CI server is discussed.

• Developer or pair of developers assigns to an issue on Github or takes
a ticket from the agile board in the team room with the highest priority
available

• Developer has to pull the master branch from the VCS and creates a
local feature branch from the current master

• Development begins – a test is written first and executed→ test fails;
afterwards the corresponding code is implemented to make the new
testcase pass. After the test is passing, some code refactoring can take
place. The next step is to run all unit tests locally. If this test run is
successful, the changes can be committed to the local branch (TDD
cycle ends here)

• The master branch is pulled again; the developer merges the local
feature branch with master branch or rebases the feature branch onto
master→ depending on new commits in the mainline, merge conflicts
have to be resolved within this step. However, the difference should not
be significant due to the short time span between starting development
and pulling again

• The new local branch is pushed to the remote VCS
• Custom branch test is started for the feature branch; during this step a

whole integration build is performed – this includes running all tests
and code analysis

• If the build is successful, a pullrequest is written and the link to the
successful build is provided for the reviewer. In case of any problems
with the custom branch test, development starts again with the TDD
cycle

50

• If the pullrequest is finally merged, the CI server recognizes the
changes in the mainline, triggers a master build and notifies developers
with the IRC bot and updated web interface.

This development cycle has one downside – if every developer is following
this workflow, the second testrun on the CI server is obsolete, because the
same revision is tested twice. In a CI environment with limited resources
such a scenario should be avoided. A possible solution to this problem
would be to check the latest test runs in the beginning of the automatically
triggered master build. If the same revision is found, and the build status is
successful, the build script should only copy the artifacts needed for long
term analysis instead of performing a full build. This way, the build time
for the second run decreases from 40 minutes to about 1 minute.

51

5 Analyzing Fowler’s Continuous

Integration best Practices

Martin Fowler presents ten key practices of CI in his updated article[15].

In this chapter these practices are summarized and compared with Catroid’s
current CI process.

5.1 Maintain a Single Source Repository

As described in 3.1 a version control system for source code management is
needed for CI. Fowler [15] explains that it is essential to put everything in
the VCS that is needed to build a software system. Additionally to source
code at least source code for tests, install scripts, libraries, property files and
IDE configuration files should be located within the repository. It should be
possible to build after a check out on a new machine with just the operation
system, compiler and database system installed.

The Catroid team uses Git as a VCS. Many different types of files are put in
the repository:

• Source code
• Test code
• Third party libraries

52

• Bluetooth server code needed to compile bluetooth server for testing
• IDE configuration files for Android Studio
• Configuration files for static code analysis
• Configuration files for the Git repository
• Gradle build scripts for Android

Due to the difficile building process on Catroid’s Jenkins server with dis-
tributed testing on multiple emulators simultaneously, it is not possible to
run a full build on a local machine after checking out the Catroid repository.
The scripts needed for Jenkins were located in a different repository for a
long time. However, since the migration from Ant to Gradle it is possible to
run unit tests, source tests and code analysis from both the command line
and Android studio with a single command after cloning Catroid, because
the needed files are checked in to the repository right now.

5.2 Automate the Build

In a CI system the whole build from compiling the sources to running tests
should be fully automated. Common automation tools are Ant and Maven
(for Java), MSBuild (for .NET) and Gradle (for Android). Tight coupling
of a build and an IDE should be avoided. While it is okay for developers
to use IDE build tools on their own machines for building and testing, it
is essential that on the CI server it is possible to build the whole project
without using a IDE [15].

As far as Catroid’s build process is concerned, the advises from above are
correct. The build on the CI server is fully automated, while most developers
use IDEs to build and test locally.

53

5.3 Make Your Build Self-Testing

Compilation of source code is not enough to be referred as a build. Auto-
mated developer tests are needed to ensure product quality. An automated
build should fail if just a single test is failing [15].

Within Catroid tests are not only used to ensure that there are no bugs, but
also act as documentation. To ensure a good code coverage, Catroid uses the
TDD approach. By applying TDD the CI process benefits from the presence
of the always increasing number of tests. Currently two categories of tests
are executed during CI process:

• Unit tests
• Functional tests

Unfortunately it is nearly impossible to make the build self testing on the
developer’s local machine. Without splitting the testsuite to five different
emulators the whole testrun would last for more than 2 hours and 30

minutes. Additionally the functional tests might not work correctly on every
single Android device available. Thus the Catroid team uses a development
process, where only the unit tests and single UI tests are executed on the
developer machines (see 4.7). To be sure, that the new UI tests would pass
on the CI server, developers should aim to setup the exact same emulators,
which are used on the server, and execute the new tests locally.

5.4 Everyone Commits to the Mainline Every Day

Fowler [15] states there is only one prerequisite for committing to the
mainline: a successful build. Developers should aim for multiple commits
to the mainline every day. Only by committing frequently, it is possible to

54

fix problems quickly because the conflicts must have occurred since the
latest commit. In order to achieve this goal it is essential to break down
tasks in smaller chunks which do not take more than a couple of hours to
complete.

This particular practice is not well educated within Catroid development.
Developers are not able to commit multiple times a day to the mainline and
code remains unmerged in feature branches for months. There are several
reasons for this dilemma:

• Developers are mainly students
• Tasks are too large
• Complicated acceptance process
• Long build duration

Most of the developers are students and they do not work eight hours
straight on Catroid tasks every single day. However, even with very short
tasks it is impossible to get the code accepted within a day. A bugfix
including tests is potentially fixed within twenty minutes. After having
pushed the feature branch to the remote repository the developer has to
start a full testrun for this branch. This testrun takes approximately 45

minutes to complete, but the feedback time can be much longer in case
there are several test runs in the waiting queue. When the build is successful
a Github pullrequest is written and a senior developer has to accept the
code. In some cases there are over twenty open pullrequests and due to
the fact, that senior developers are students with limited time also, it can
take up to a week until this bugfix is merged. Meanwhile other tasks with
many changes could be merged to the mainline and could possibly make
the bugfix unmergeable because of compilation errors or failing test cases.
This is one of the key practices that should be improved, but it can only be
done with a complete restructuring of the development process.

55

5.5 Every Commit Should Build the Mainline on

an Integration Machine

The mainline, which is sometimes referred to the HEAD of development,
should always stay in a stable state. Since every single commit to this
mainline should trigger a CI build there are several builds a day. However,
even with developers running private builds before committing, these builds
fail from time to time because of developers forgetting to commit all files or
running no private builds at all. A broken mainline build is not a disaster,
but is has to been fixed right away. Developers should monitor the CI build
after their commit and should fix a potential problem immediately [15]

In Catroid’s development process a CI build is triggered right after a commit
to the master branch. Due to the mandatory execution of a build on the
CI server before committing to the mainline the number of failed builds
caused by developers is very low. Possible situations for failed builds caused
by developers are unintended commits to the master branch and a long
period between successful custom branch test and merge, which could cause
integration problems in case of an updated master branch.

5.6 Keep The Build Fast

Fowler [15] describes the problem that a build has to be fast. Otherwise it
is impossible for the developers to get feedback right on time. They might
work on other tasks in the meantime and in case of a broken build, it could
take more time to fix the build compared to if they got faster feedback [15].
Duvall also advises to use some kind of build pipeline - in his opinion a
build should consist of at least two stages [13, pp. 92,93]:

56

Figure 5.1: Staged Build [13, p. 93]

• lightweight commit build
• heavyweight secondary build

Figure 5.1 demonstrates this advice. Every new commit triggers a build
which compiles the code, runs unit tests, runs code analysis and deploys the
product. If the commit build fails, developers would get feedback within
minutes and could immediately start to fix the broken build. In case of a
successful commit build, a secondary build is started, which executes longer
running functional tests [13].

Within Catroid, this practice is developed worst. The build time is far away
from ten minutes - it was about 30 minutes, when CI was introduced
and increased to over two hours. With parallelization of the testsuite onto
multiple emulators the build time was minimized to about 40 minutes -
however, the developers are annoyed of the waiting time, because many new
builds would be queued up due to the fact that only one job with emulators

57

can run at the same time. Sometimes developers have to wait for over two
hours until their job is starting, and get feedback after three hours.

5.7 Test in a Clone of the Production

Environment

Testing should reveal problems of the system in similar conditions as in
production. Fowler [15] describes a rule that it is very important to test in
an environment, which is as much as possible a clone of the production
environment.

Catroid’s automated tests are executed on both real hardware devices and
Android emulators. However, there is a huge number of Android devices
available and it is impossible to test an application on all of these devices.
While it is not a big deal to test unit tests on different devices, it is very hard
to write automated functional tests running stable on different devices. By
using Jenkins it is possible to create so called matrix-builds which execute
tests in different environments. However, as long as the UI tests do not run
at a stable state on the existing emulators and test devices, it makes no sense
to enlarge the scope of devices to test on.

5.8 Make it Easy for Anyone to get the latest

Executable

According to Fowler [15] it is essential that anyone within a project can get
the latest executable. On Catroid’s CI server Jenkins all executables from
mainline builds are archived and can be downloaded. Additionally the latest

58

successful build artifacts are copied to a fileserver which is linked on the
developer website.

5.9 Everyone can see what’s happening

Every project member should know the health status of the CI build. Within
Catroid, this information gathering is mostly done via the Jenkins’ web
interface. Due to this fact, this practice is working well for custom branch
tests and other jobs, that are triggered manually, because the developer
wants feedback for the build. However, most developers do not recognize,
if the mainline build fails. After a pullrequest was accepted, nobody is
waiting for the integration build, and so it is possible, that a build remains
broken for several days. In order to inform developers of the health status
of the master build, an IRC notification was installed to post the result of
any integration build to the developer’s channel. Additionally, Jently was
installed to check open pullrequests automatically and update the Github
web interface accordingly. Since Catroid’s testsuite takes a long time, only a
small subset of tests and inspections is run, but this build verifies, that the
code from a pullrequest – both, from external developers and internal ones –
can be built, the unit tests are running and the code is following the team’s
coding conventions.

5.10 Automate Deployment

This practice is well developed within Catroid. During a CI build, the
generated .apk files are deployed on both, real devices and emulators. Fur-
thermore, a nightly build version is deployed on a fileserver and everyone
interested in the latest features and bugfixes can download the .apk file and

59

test it on any Android device. If a certain revision is proposed for a Google
Playstore release, on top of the CI build, several steps have to be done by
hand:

• sign .apk file with release key
• upload .apk file to Google Play
• write change log to inform users of the changes
• make new meaningful screenshots and update the Google Play site

While the signing can be possibly performed by the CI server, uploading
the .apk file and writing the change log for the Google Playstore has to be
conducted manually.

60

6 Future work

6.1 Categorize Automated Tests

The tests in the Catroid project are not perfect from several points of view.
First of all, there is no real distinction between different kind of tests. Duvall
explains four different test categories [13, pp. 132f]

• Unit tests, which test the behavior of single classes without relying on
outside dependencies like databases or internet connection

• Component tests, which have more dependencies than unit tests and
thus running a bit slower

• System tests require a fully installed system and test the whole system
with all components

• Functional tests, which test the system from a client point of view -
they are also called UI and acceptance tests

In Catroid, there exist two major test packages: unit tests and UI tests.
However, even the tests in the unit test package are not real unit tests.
Some of the tests need an active internet connection, otherwise they would
fail. Additionally it is not possible to execute the unit tests on an Android
emulator, since some tests require real hardware sensors. These problems
limit the capability of running quick private builds. Thus developers need
to use the CI server to execute all the unit tests, which takes much more
time than running them locally.

61

In the UI test package, there is a conglomeration of component, system and
functional tests. Rogers [25] states that such a scenario has to be avoided,
since the tests became less and less maintainable. For the functional tests,
Catroid’s developers use a tool called Robotium1 , which provides the
functionality to test Android applications like a client would do. Unfortu-
nately, some of these tests are not correctly written in the Catroid project,
because inside of real UI tests, there are checks for several internal states of
the Catroid application. This behavior is the reason, why with only some
changes in the Catroid app, which are not related to the user interface, many
UI tests have to be refactored as well and the time spent on maintaining the
test suite is too large.

In order to be able to run tests at different levels, the Catroid team should
at least split up the test packages into:

1. Java unit tests, which do not require an Android .apk file to be created
2. Android unit tests, which test all the classes that need components of

the Android system
3. System tests, which test the core of the Catroid application
4. UI tests, which test the app only from a client’s perspective and only

need to be changed if the user interface is changing

6.2 Make the Build faster

In order to reduce the runtime of the CI build, there are several options:

• Increasing the number of build servers and try to run the tests on even
more emulators

1http://code.google.com/p/robotium/; last visit: 2014-04-14

62

http://code.google.com/p/robotium/

• Refactoring of the tests by moving test cases from slow UI tests to fast
unit tests as much as possible

• Using Robolectric2 to run Android related tests outside of an Emu-
lator or physical device directly inside the Java VM on the developer
machine

• Setting up the staged build described in 5.6

While the Catroid development team has agreed not using the staged build
approach, because errors could be introduced to the mainline more easily
and they probably would not be fixed in a short enough time span, all other
three options could make the CI build significantly faster.

6.3 Faster Development Iterations

The development cycle for Catroid has become quite complex over the
time. Unfortunately, the time span between starting a story and the final
merge into the mainline is very large, even for very small bugfixes. Another
problem is the complexity of single stories – CI works best, if the stories are
small, and multiple commits are performed every single day. However, in
the Catroid project, some tickets are really large respective the hours it takes
to finish them and it is possible that some stories are open for months. Even
if the developer, who is responsible for this feature branch, is updating the
branch frequently with the mainline, other developers would not recognize
the changes and merge conflicts are inevitable at the time the feature branch
is merged to the master branch.

2http://robolectric.org/; last visit: 2014-04-14

63

http://robolectric.org/

6.4 Integrate additional test methods

As mentioned earlier, Catroid’s test suite mostly consists of unit tests and UI
tests. However, there are other methods, which could ensure the quality of
the app. One possibility is to use a tool called monkey on the CI server. This
is a program which sends random inputs to the Android app and is working
on the emulator as well as on a physical device. Thus the application is
stress tested and potential crashes can be reproduced [12].

Milano describes the so called monkey theorem. This theory defines that a
monkey typing random characters on a keyboard for an infinite amount of
time will type any given text [22, p. 142].

The monkey is already running on Catroid’s CI server, but is not yet in-
tegrated into the continuous integration process. It is executed as nightly
build, because adding it to the master build would extend the build time
even more. During these nightly builds, the monkey is running 10 000

random events four times in a row, and possible crashes are reported to
the CI server’s web interface. However, as already mentioned earlier, just
reporting the errors is not enough – developers have to look at the results
and investigate the potential problems in the software. This is currently
not done, but in the future, the monkey should be executed on different
Android devices and emulators, and the results should be discussed in the
weekly development meeting.

64

7 Conclusion

What problems emerged during development using continuous integration?

Over the time, between introducing continuous integration in Catroid’s
development process and some iterations later, the main problem was the
long build time of a CI build. Android projects might have a difficult time
to get to the proposed ten minute build, because the compilation takes some
time, it is hard to write pure unit tests and additionally the functional tests
are slow on both the emulator and any physical device. By running a sub
set of all the tests on multiple emulators simultaneously, the team was able
to reduce the runtime, but without any maintenance, the build time kept
increasing by and by again.

Furthermore the acceptance for continuous integration amongst the team
members is not high enough. Not all developers recognize the benefits of the
CI server, but instead complain about the additional overhead of running
the builds on their branches on the server and having to fix all the warnings
and errors reported.

What key practices of CI have helped to make the whole development process more
stable?

A key practice in Catroid’s CI process, which is also described by Lacoste
[18], is the use of the custom branch tests. Without the possibility to execute
full test runs on specific branches, the development team would have a hard

65

Figure 7.1: Ambient Orb

time to fix all the failing tests that would arise when building the mainline
without testing the feature branch before.

As far as code quality is concerned Catroid’s CI server now runs multiple
tools on every build:

• Lint for Android to detect any possible bugs in layouts and Android
related source code

• Checkstyle to force developers to adopt to naming conventions
• Pmd to find developer mistakes
• Findbugs as long term analysis tool to detect bad Java development

Furthermore every single pullrequest on Github is analyzed automatically
including compilation, unit tests and source code analysis. This way a senior
member, who is responsible to merge this new feature or bugfix to the
mainline, receives quick feedback on possible integration errors.

What can be done to optimize CI for Catroid?

Generally the Catroid development team adopts to many continuous in-
tegration practices described by Duvall and Fowler. The most important
optimization for Catroid’s CI process is to reduce the runtime significantly

66

and to prevent the tests from failing randomly. Only with fast and stable
feedback from the CI server, developers can get the most out of continuous
integration – otherwise too much time is spent on investigating the problems
with the latest builds.

Another possible optimization is the enhancement of the CI server’s feed-
back. Currently developers have to check the IRC channel or the Jenkins’
web interface to get any feedback from the CI server. For all co-located team
members it could be a good idea to setup an extreme feedback device like
an Ambient Orb1 (see Figure 7.1), notifying all developers in the team
room of the latest build status by changing the light accordingly. That way
a broken build would be recognized much quicker and the time it takes to
fix this build might go down. Additionally, as described by McGregor [20],
longer unstable states of the mainline could decrease, because developers
might start to work on the problem more quickly if a red light is indicating
an error instead of an IRC message.

Furthermore it should be a goal to reintegrate EMMA code coverage once
again. Only with a good code coverage tool it is possible to observe potential
missing tests, which could have an impact on the software quality.

1http://ambientdevices.myshopify.com/products/energy-orb; last visit: 2014-11-29

67

http://ambientdevices.myshopify.com/products/energy-orb

Bibliography

[1] F. A. Abdul and M. C. S. Fhang. “Implementing Continuous Integra-
tion Towards Rapid Application Development.” In: 2012 International
Conference on Innovation Management and Technology Research (ICIMTR).
Malacca, Malaysia: IEEE, May 2012, pp. 118–123. doi: 10.1109/ICIMTR.
2012.6236372.

[2] K. Beck. Extreme Programming Explained. Embrace Change. 1st ed. Addi-
son Wesley, 1999. isbn: 0201616416.

[3] K. Beck. Extreme Programming Explained. Embrace Change. 2nd ed. Ad-
dison Wesley, Pearson Education, 2004. isbn: 9870321278654.

[4] K. Beck. Test-Driven Development. By Example. Addison Wesley, Pearson
Education, 2003. isbn: 9780321146533.

[5] J. Bowyer and J. Hughes. “Assessing Undergraduate Experience of
Continuous Integration and Test-driven Development.” In: Proceedings
of the 28th International Conference on Software Engineering (ICSE ’06).
Shanghai, China: ACM, May 2006, pp. 691–694. doi: 10.1145/1134285.
1134393.

[6] S. Chacon. Pro Git. Apress, 2009. isbn: 9781430218333.

[7] L. Crispin and J. Gregory. Agile Testing. A Practical Guide for Testers
and Agile Teams. Addison Wesley, Pearson Education, 2009. isbn:
9780321534460.

68

http://dx.doi.org/10.1109/ICIMTR.2012.6236372
http://dx.doi.org/10.1109/ICIMTR.2012.6236372
http://dx.doi.org/10.1145/1134285.1134393
http://dx.doi.org/10.1145/1134285.1134393

[8] Developer-Android. App Fundamentals. url: http :

//developer.android.com/guide/components/fundamentals.html

(visited on 03/18/2014).

[9] Developer-Android. Building Android Applications. url:
http : / / developer . android . com / tools / building / index . html

(visited on 03/18/2014).

[10] Developer-Android. Improving your code with Lint. url: http : / /

developer.android.com/tools/debugging/improving-w-lint.html

(visited on 08/13/2014).

[11] Developer-Android. Sensors Overview. url: http : / / developer .

android . com / guide / topics / sensors / sensors _ overview . html

(visited on 03/18/2014).

[12] Developer-Android. UI/Application Exerciser Monkey. url: http://
developer . android . com / tools / help / monkey . html (visited on
09/25/2014).

[13] P. M. Duvall. Continuous Integration. Improving Software Quality and
Reducing Risks. Addison Wesley, Pearson Education, 2007. isbn:
9870321336385.

[14] M. Fowler. Continuous Integration. 2000. url: http://martinfowler.
com/articles/originalContinuousIntegration.html (visited on
02/24/2014).

[15] M. Fowler. Continuous Integration. 2006. url: http :

//www.martinfowler.com/articles/continuousIntegration.html

(visited on 02/24/2014).

[16] S. Freeman and N. Pryce. Growing Object-Oriented Software, Guided by
Tests. Addison Wesley, Pearson Education, 2010. isbn: 9780321503626.

69

http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/tools/building/index.html
http://developer.android.com/tools/debugging/improving-w-lint.html
http://developer.android.com/tools/debugging/improving-w-lint.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://martinfowler.com/articles/originalContinuousIntegration.html
http://martinfowler.com/articles/originalContinuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

[17] J. Hembrink and P.-G. Stenberg. “Continuous Integration with Jenk-
ins.” In: Faculty of Engineering, Lund University (LTH), Sweden, Mar.
2013.

[18] F. J. Lacoste. “Killing the Gatekeeper: Introducing a Continuous Inte-
gration System.” In: Agile Conference (AGILE ’09). Chicago, USA: IEEE
Computer Society, Aug. 2009, pp. 387–392. doi: 10.1109/AGILE.2009.
35.

[19] J. Loeliger. Version Control with Git. Powerful Techniques for Central-
ized and Distributed Project Management. O’Reilly Media, 2009. isbn:
9780596520120.

[20] G. McGregor. “A 30 Minute Project Makeover Using Continuous
Integration.” In: Verilab, Inc. – Austin, Texas, USA, 2012–02.

[21] R. Meier. Professional Android 4 Application Development. John Wiley &
Sons, 2012. isbn: 9781118102275.

[22] D. T. Milano. Android Application Testing Guide. Packt Publishing, 2011.
isbn: 9781849513500.

[23] A. Miller. “A Hundred Days of Continuous Integration.” In: Agile
2008 Conference (AGILE ’08). Toronto, Canada: IEEE Computer Society,
Aug. 2008, pp. 289–293. doi: 10.1109/Agile.2008.8.

[24] B. O’Sullivan. Mercurial. The Definite Guide. O’Reilly Media, 2009. isbn:
9780596800673.

[25] R. O. Rogers. “Scaling Continuous Integration.” In: Extreme Program-
ming and Agile Processes in Software Engineering, Proceedings 5th Inter-
national Conference (XP 2004), LNCS 3092. Garmisch-Partenkirchen,
Germany: Springer Verlag Berlin-Heidelberg, June 2004, pp. 68–76.
isbn: 9783540221371.

70

http://dx.doi.org/10.1109/AGILE.2009.35
http://dx.doi.org/10.1109/AGILE.2009.35
http://dx.doi.org/10.1109/Agile.2008.8

[26] W. Slany. “A Mobile Visual Programming System for Android Smart-
phones and Tablets.” In: Proceedings of the 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). Innsbruck,
Austria: IEEE, Sept. 30–Oct. 4, 2012, pp. 265–266. doi: 10.1109/VLHCC.
2012.6344546.

[27] W. Slany. “Catroid: A Mobile Visual Programming System for Chil-
dren.” In: Proceedings of the 11th International Conference on Interaction
Design and Children (IDC ’12). Bremen, Germany: ACM, June 2012,
pp. 300–303. doi: 10.1145/2307096.2307151.

[28] G. de Souza Pereira Moreira et al. “Software Product Measurement
and Analysis in a Continuous Integration Environment.” In: 2010 Sev-
enth International Conference on Information Technology: New Generations
(ITNG). Las Vegas, Nevada, USA: IEEE, Apr. 2010, pp. 1177–1182. doi:
10.1109/ITNG.2010.85.

[29] S. Stolberg. “Enabling Agile Testing Through Continuous Integration.”
In: Agile Conference (AGILE ’09). Chicago, USA: IEEE Computer Society,
Aug. 2009, pp. 369–374. doi: 10.1109/AGILE.2009.16.

[30] B. Vodde. “Measuring Continuous Integration Capability.” In:
CrossTalk: The Journal of Defense Software Engineering. Volume 21,
Number 5. Hill AFB, Utah, USA: USAF Software Technology Support
Center (STSC), May 2008, pp. 22–25.

[31] S. Wiest. Continuous Integration mit Hudson. dpunkt.verlag, 2011. isbn:
9783898646901.

[32] M. Zechner. Beginning Android Games. Apress, 2011. isbn:
9781430230427.

71

http://dx.doi.org/10.1109/VLHCC.2012.6344546
http://dx.doi.org/10.1109/VLHCC.2012.6344546
http://dx.doi.org/10.1145/2307096.2307151
http://dx.doi.org/10.1109/ITNG.2010.85
http://dx.doi.org/10.1109/AGILE.2009.16

