
David Reisenberger

Continuous Integration in an Android
Open Source Project

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, December 2014

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz,

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Catrobat is a visual programming language that allows users to create and
run programs on their smartphone or tablet. The Catrobat team is composed
of a large number of students from Graz University of Technology as well as
contributors from all over the world. The team uses test-driven development
and continuous integration along with other well established practices that
ensure well documented, clean and high quality code.

A large team collaborating on a project brings a number of difficulties when
it comes to ensuring software quality. Many developers work on a common
codebase and the individual changes have to be put together. A constantly
increasing number of team members makes this even more difficult.
Continuous integration aims at resolving the problems of tedious and error
prone code merging steps by integrating as early and often as possible. It is
a process that requires the entire team’s full adherence and painstakingness.
Feedback about integration results and the time it takes to receive it is
crucial for keeping up motivation.

This thesis introduces the basics of continuous integration, the practices
it defines and the tools it requires. The consequences of the increasing
volume of the Catrobat project on the continuous integration process are
described furthermore. Strategies for mitigating these issues and how these
were applied to the Catrobat project are subject to the following sections of

iv

this work. Finally, areas of further improvement are pointed out as future
work.

v

Zusammenfassung

Catrobat ist eine visuelle Programmiersprache, die es Benutzer erlaubt, Pro-
gramme auf ihren Smartphones oder Tablets zu erstellen und auszuführen.
Das Catrobat Team setzt sich sowohl aus zahlreichen Studenten der Tech-
nischen Universität Graz zusammen, als auch aus Mitwirkenden auf der
ganzen Welt. Das Team arbeitet mit Test-Driven Development und Contin-
uous Integration neben anderen weit etablierten Praktiken, um gut doku-
mentierten, sauberen und hochqualitativen Code zu gewährleisten.

Der Aspekt eines sehr großen Entwicklerteams, welches zusammen an
einem Projekt arbeitet, zieht einige Nebeneffekte im Bezug auf das Aufrechter-
halten der Softwarequalität mit sich. Viele Entwickler arbeiten an einer
gemeinsamen Code Basis und die jeweiligen Änderungen müssen immer
wieder zusammengeführt werden. Eine stetig wachsende Anzahl an Team-
mitgliedern erschwert diesen Prozess zusätzlich.
Continuous Integration zielt darauf ab, die Probleme des fehleranfälligen
und mühsamen Zusammenführens von Source Code zu lösen, indem Code
so früh und so oft wie möglich integriert wird. Dieser Prozess erfordert
Befolgung und Sorgfältigkeit des gesamten Teams. Ein fundamentaler As-
pekt für das Aufrechterhalten der Teammotivation ist das Feedback über die
Resultate der Integrationschritte und die Geschwindigkeit, mit der dieses
zur Verfügung gestellt wird.

vi

Diese Arbeit stellt Continuous Integration in seinen Grundlagen vor, die
Praktiken die dadurch definiert werden und die dazu benötigten Werkzeuge.
Die Auswirkungen des wachsenden Umfangs des Catrobat Projektes auf den
bereits vorhandenen Continuous Integration Prozess werden im Weiteren
beschrieben. Strategien zur Minimierung dieser Auswirkungen und wie
diese im Catrobat Projekt angewandt wurden sind Thema der danach fol-
genden Abschnitte. Zuletzt werden Bereiche vorgestellt, die in zukünftiger
Arbeit Verbesserungen erhalten könnten.

vii

Acknowledgements

I would like to thank everybody who supported me while writing this
thesis.

Special thanks to Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany for the op-
portunity and the support throughout my contribution time in the Catrobat
organization and to my employer, the Codefluegel GmbH, for supporting
and encouraging the progress on this thesis.

viii

Contents

Abstract iv

Acknowledgements viii

1 Introduction 1

2 Theoretical background 2

2.1 Continuous integration . 2

2.1.1 Benefits . 3

2.2 Continuous integration tools 6

2.2.1 Build automation . 7

2.2.2 Developer workflow . 7

2.2.3 Source code repository 9

2.3 Test-driven development . 14

2.3.1 Test-code-refactor . 14

2.4 CI anti-patterns . 16

2.4.1 Infrequent check-ins . 16

2.4.2 Broken builds . 16

2.4.3 Minimal feedback vs spam feedback 17

2.4.4 Slow build server . 18

2.4.5 Bloated build . 18

2.5 CI in open source projects . 19

ix

Contents

2.6 Scaling continuous integration 19

2.6.1 Increasing size of code 20

2.6.2 Increasing number of developers 21

2.7 Scaling strategies . 22

2.7.1 Limiting the build time 22

2.7.2 Separate the build process 23

2.7.3 Faster unit tests . 24

2.7.4 Small teams . 24

2.8 Android . 25

2.8.1 The multitude of devices 25

2.8.2 Build process . 26

2.8.3 Application lifecycle . 28

2.8.4 Android application testing 31

3 Practical Part 34

3.1 Catrobat . 34

3.1.1 Development process 34

3.2 Scaling CI in Catrobat . 36

3.2.1 CI server . 37

3.2.2 Build pipeline . 39

3.2.3 Test environment . 41

3.3 The Catrobat CI process . 43

3.3.1 Improvements . 47

4 Future work 51

4.1 Keeping it simple . 51

4.2 Build tools . 52

4.3 Test suite separation . 52

4.4 UI testing . 53

4.5 Reduce test flakiness . 54

4.6 Testing on multiple devices . 54

x

Contents

5 Conclusion 56

Bibliography 58

xi

List of Figures

2.1 CI process . 4

2.2 Feature branching [9] . 13

2.3 Feature branching with CI [9] 13

2.4 TDD vs traditional development cycle [23] 15

2.5 Android fragmentation [19] . 26

2.6 Android build process [11] . 27

2.7 Android activity lifecycle [10] 29

2.8 Android fragment lifecycle [12] 30

3.1 Jenkins master slave setup . 38

3.2 Pull request [17] . 40

3.3 Pocket Code CI build process 42

3.4 Jenkins trend graphs . 47

3.5 Average build time comparison 49

3.6 Average build time of all projects 50

xii

1 Introduction

Continuous integration is a well defined practice that defines several princi-
ples that developers have to adhere to. When introducing CI to a project the
goal should be that the CI process becomes effortless in order to optimally
integrate into the daily routine of every developer.

As the development team of the Catrobat project grew and additional sub
projects were introduced, the existing CI process and environment had to be
adapted in order to keep CI beneficial to the project. The effects the growth
of the project had on the CI process and the strategies used to mitigate the
negative impact on it are subject to this thesis.

1

2 Theoretical background

2.1 Continuous integration

Developing a large scale software project involves multiple developers
working on different components of the project. This is due to the fact that in
most cases the knowledge about different technologies is distributed among
multiple team members. While this is most certainly a good thing seeing
that it leads to distribution of responsibility, it introduces certain difficulties
to the development process. Independently developed components have
to be merged at some point in order to see how (or if) they work together.
The integration process becomes increasingly difficult with the number of
developers that are working on a project. Multiple different environments
and operating systems are used and developers often tend to use outdated
or obsolete parts of the code base. This is why the integration process is very
likely to reveal problems and should therefore happen as often as possible,
or rather continuously.

Continuous integration (CI) is a practice whose aim is to reduce integration
problems and improve software quality. Code should be committed to the
mainline frequently and the process of checking if a merged version is still
building and functional should be automated. Integration has to become a

2

2 Theoretical background

nonevent [6]. The fundamental features needed for CI are listed below. [6]

• A version control repository containing the source code of every team
member

• A build script
• A feedback mechanism such as e-mail, IRC, etc.
• An integration process, which can be carried out manually or auto-

matically by using a CI-server

Figure 2.1 illustrates a typical flow of actions of a CI scenario. Developers
are required to commit their code daily. Before every commit, a developer
executes a so called private build. This build can contain code inspection
tasks as well as test runs among other steps and is meant to ensure that no
broken code is committed to the mainline. A CI server is set up to watch the
repository and automatically triggers a new build if the polling returned
new changes. In case of a broken build the responsible developer has to fix
it immediately.

2.1.1 Benefits

Introducing CI to a project requires additional costs at first. This includes
hardware/software costs for an integration machine as well as the effort
to adapt the development process to meet the requirements of continuous
integration. An incremental approach can help converging to a system that
yields the main benefits of CI, as described by Paul Duvall in [6].

3

2 Theoretical background

Figure 2.1: CI process.

4

2 Theoretical background

Risk mitigation

The risk of introducing defects into the code base can be greatly reduced
since errors are detected early on. It is the developer’s responsibility to fix a
build that was broken by changes he committed.

CI also enables measurement of certain attributes like complexity or test
coverage which allows tracking the health of the software over time.

Reduce repetitiveness

Software development includes many repetitive processes like compiling
code, deploying a database, running test cases or deploying the software
itself. These processes require additional time consuming effort and leave
room for error if they are carried out manually. Automating the CI process
can reduce the repetitiveness of these steps. The integration process is
defined to run its steps in a particular order and it always runs the same
way. This enables project members to focus on the actual implementation of
the software.

Constantly deployable

Every change to the project is constantly integrated to the main version.
One of the most important aspects of CI is that errors that occur after the
integration process are fixed immediately. This ensures that the main version
of a software is in a deployable state at any point. The binaries created by
the automated CI server are therefore release-ready at any point in time.

5

2 Theoretical background

Visibility

The ability to measure certain aspects of a project enables everyone to
constantly track the current project state. Every change that is made to the
project influences the measurements. The data is gathered constantly and is
available at any point in time. Trends can be established and decisions can
be supported by the collected data.

Establish confidence

The development team constantly receives feedback on how newly intro-
duced changes influence the existing code base. If code metrics were violated
or a bug was introduced that leads to a failing test case, the responsible
team member is immediately informed. This can lead to a higher confidence
in the product and also reduce the fear of changing code. The trust in the
results of the build can also be raised by the fact that the process is carried
out the same way every time and is executed on a central instance that is
specifically designed for it.

2.2 Continuous integration tools

The following section will go into detail on how continuous integration is
carried out in practice. It is meant to give an overview of the parts of a CI
system and what purpose they serve.

6

2 Theoretical background

2.2.1 Build automation

CI requires changes to be merged into the mainline daily. This implies
that the code is tested frequently (providing that a private build has been
executed before the commit) which further implies a healthy state of the
mainline. This state should however not be ensured by private builds alone.
An integration machine running a CI build server can serve as a repository
monitor. Every change in the master branch should trigger a new build.
Should this build fail, it is the committer’s responsibility to fix it immediately.
This means that a developer’s commit is done as soon as the CI server
reports a successful build. [7]

Although continuous integration can be practiced manually, repetitive and
time consuming tasks that can be automated should be automated. The
decision of what to include in the automation is based on what the balance
between feedback time and the amount of manual effort should be. A full
build may compile, inspect and test the whole project while incremental
builds may exclusively compile the project to provide up to date binaries.
In all cases the system that performs the automated build must be provided
with all necessary resources. This includes build scripts as well as config-
uration files or third party libraries. Including these resources in the VCS
enables a CI build server to stay up to date on configuration or version
changes automatically. [7]

2.2.2 Developer workflow

Continuous integration dictates several steps that every developer has to go
through multiple times every day [6]:

7

2 Theoretical background

• Commit code frequently
• Don’t commit broken code
• Fix broken builds immediately
• Write automated tests
• All tests and inspections must pass
• Run private builds
• Avoid getting broken code

A team can only fully take advantage of the benefits of CI if it follows these
rules.

To frequently (daily) commit code, tasks have to be split up into smaller
ones. In theory, running private builds should automatically result in not
committing broken code, providing that the private build executes the
necessary integration steps and gives suitable feedback. However, broken
builds are bound to occur at some point. Immediately fixing a broken
build helps keeping the error correction effort smaller and is one of the top
priorities when working in a CI environment. A failing test case can be one
of the reasons a build is marked as broken. Therefore a solid test suite is
of utmost importance for detecting broken code. This is why continuous
integration and test-driven development (TDD) are often used in the same
context. Section 2.3 describes the practices of TDD in more detail.

A build is only successful if all test cases pass. Code coverage tools can
help locating weakly tested parts in the software. Code inspection tools
can be added to provide additional criteria for build success. To reduce
the risk of a broken build, developers should run private builds on their
own machines. However, due to environmental differences between these
machines build success on the integration machine can not be ensured. In
general, members of a team working with CI should avoid working with

8

2 Theoretical background

code that has been reported to have broken an integration build. These types
of defects are likely to spread out and therefore hard to get rid of. It must be
safe to assume that the responsible team member is already working on a
fix. A good feedback mechanism for the current build status is therefore an
important part of CI. It ultimately affects the quality of the software. [6]

2.2.3 Source code repository

Software projects contain a large number of files that are often accessed
and changed by multiple developers simultaneously. These files need to be
backed up and tracked in order to keep a history of changes and prevent
loss of data. Using a version control system (VCS) (or source code manager
(SCM), revision control system (RCS), etc.) is without a doubt an essential
part of collaborative software development.

A VCS should maintain all necessary files for compiling, testing and building
a project so that it is almost effortless to start working on the project after
a checkout. [7] This provides a necessary version consistency among all
developers and therefore ensures that the build and testing process is
carried out in the same way by all team members. Many different tools
exist that provide version control. VCSs can be divided into centralized and
distributed ones. 1

Centralized version control system (CVCS) These types of systems (e.g.
Subversion2, CVS3) use a single server to store all data that is under
version control. The clients fetch the most recent version of the data

1Local version control systems are left out here.
2https://subversion.apache.org/
3http://www.nongnu.org/cvs/

9

https://subversion.apache.org/
http://www.nongnu.org/cvs/

2 Theoretical background

from a central instance. This is also the main disadvantage of CVCSs.
If at some point the version control server is offline, no client is able to
commit his local changes to the repository. Failure of the client’s local
system would cause all changes to his version to be lost.
If the version control server dies the complete version history is lost
since it is the only system storing it. [4]

Distributed version control system (DVCS) VCSs like Git4 or Mercurial5

allow clients to fetch the complete history of all version controlled data.
Every repository checkout provides a complete copy of the repository
that it stored on the version control server. In this case if the version
control server dies, any client that previously did a checkout from it
still keeps the whole file history. This automatically provides a backup
mechanism that gets more and more redundant with an increasing
number of clients. [4]

Version control systems can be used with different workflows. Distributed
VCSs provide excellent capabilities for branching and merging.

Feature branches are a widespread concept used in distributed version
control systems. Developers branch away from the mainline every time
they start working on a new feature. As soon as the feature is completed
the branch is merged back to the mainline. Changes that happen in the
mainline will be merged into the individual feature branches throughout the
development of that feature. The point in time this merge happens can be
determined by the feature developer himself although the sooner this merge
is carried out the less tedious it is. One of the main advantages this model
provides is that individual features can easily be excluded from release
by not integrating them into the mainline. However this leads to a longer

4http://git-scm.com/
5http://mercurial.selenic.com/

10

http://git-scm.com/
http://mercurial.selenic.com/

2 Theoretical background

lifetime of the individual branches.

Feature branching is a controversial topic when talking about continuous
integration.

Feature branches vs. continuous integration

”Now there may be valid reasons why you’re doing feature branching [...] but you
can’t say you’re doing continuous integration and be doing feature branching. It’s

just not possible.” [15]

Jez Humble takes a very clear standpoint on feature branching and continu-
ous integration. His statement is supported by Martin Fowlers article about
the topic. [9]

Figure 2.2 illustrates a basic feature branching model. According to Fowler
[9] this breaks the continuous integration concept.

By definition of Fowler continuous integration requires all changes to be
merged into the mainline frequently, usually at least daily. [7] The basic
feature branching model isolates developers from each other. If a large
feature is merged into the mainline, all open feature branches have to
incorporate the changes which can lead to a large amount of conflicts (G1-6
in Figure 2.2). Additionally with this approach the individual features are
never tested together until all of them have been integrated to the mainline.
Feature branches tend to live longer than one day and if the merge into the
mainline happens at the very end of the feature development the integration
is not considered to be continuous.

11

2 Theoretical background

A reworked version of this model is shown in figure 2.3. As soon as a
change has been made in a feature branch it is immediately integrated
into the mainline. This approach mitigates the additional effort that comes
with large merges and provides faster feedback for the developers on how
their feature performs with the others. It is still worth noting that unless
feature branches last less than one day this practice is not considered to be
continuous integration by definition of Martin Fowler. Integrating multiple
times a day means that features have to be split into several small tasks
which encourages planning out the development process very carefully. The
main advantage of feature branches mentioned earlier (keeping features
from release) can still be kept by using feature toggles. [9] These can be
used to hide unfinished parts of a feature from the user.

Distributed version control systems can be used for continuous integration
when using a suitable branching model. There has to be one branch that is
considered to be the mainline where changes in other branches are pushed
to continuously.

In a centralized version control system a broken build can potentially halt
development. If a developer breaks the build he has to fix it immediately.
During this process no one is allowed to check out the mainline or commit
to it. When using a DVCS each developer can pull the mainline into his
branch. The integration build can then be executed on the developer’s
branch. This way a broken build does not affect the mainline. As soon as
the build is successful the changes can be pushed back to the mainline
without any conflicts (providing that no changes have been pushed to it
in the meantime). The choice of which version control system to use to
implement CI very much depends on the experience, expertise and, most of
all, discipline of the development team and the nature of the project. Open
source projects often use DVCSs because they make it easy for external
developers to contribute to the project. Since access to the main repository

12

2 Theoretical background

is often restricted to internal developers systems like GitHub6 allow forking
the original repository to enable others to work on the project. Changes
they made are integrated back to the main repository by using pull requests
that can only be accepted by specifically assigned members of the original
repository.

Figure 2.2: Basic feature branching [9]

Figure 2.3: Feature branching with CI [9]

6https://github.com/

13

https://github.com/

2 Theoretical background

2.3 Test-driven development

Arguably, continuous integration can be practiced entirely without any
testing process. A build may only compile the code and check for cod-
ing standard conformance. But practicing continuous integration without
automated tests will not utilize the available infrastructure to its full poten-
tial. [28] The correct behavior of a software product can hardly be verified
by simply compiling it. An effective test suite is an important aspect for
successfully ensuring software quality.

Test-driven development can help building up a high quality test suite. A
test case is written before the code it should execute even exists. With this
approach developers are forced to write testable code and encouraged to
write this code as simple as possible. Refactoring the code is the third step
of the so called ”heartbeat” of TDD as described by Lasse Koskela [23].

2.3.1 Test-code-refactor

”Only ever write code to fix a failing test case.”[23]

In other words this means that a test case is always written first and the
code that makes it pass is written afterwards. This is contrary to the com-
mon approach that software development starts with a design process and
after a suitable design is established developers would start to implement
it. Test-driven development puts the designing process at the end of the
development cycle as illustrated in figure 2.3. The designing process is called
refactoring since it differs from the traditional designing approach. [23]

14

2 Theoretical background

Figure 2.4: Traditional versus test-driven development cycle [23]

Writing a test case before the actual code exists guides the thought process
into a more usage-oriented one. Developers have to think about how the
code should be used and document this with a test case. In a way the
resulting set of tests can be seen as a documentation of requirements that
have to be fulfilled. The code that is written to fulfill these (i.e. pass the
test cases) is in its first iteration simple and just good enough to turn the
test case from red to green.7 The code may be simple and suboptimal
since it is revisited in the last step of the TDD cycle - the refactoring
process. Refactoring is meant to ensure that the design aspect of software
development is not left behind. The effort of maintaining poorly designed
code makes the importance of this step obvious. Refactoring includes the
production code as well as the corresponding test code.

7Most development environments use red/green to mark fail/success results of a test
run.

15

2 Theoretical background

2.4 CI anti-patterns

Practicing CI for some time can yield the effects of anti-patterns that have
unknowingly been introduced while trying to introduce the practice of CI
itself. Paul Duvall describes a number of these patterns in [5] that are further
discussed below.

2.4.1 Infrequent check-ins

By keeping code out of the repository the integration process is delayed
which increases the difficulty of it. When using CI commits should occur
at least daily to ensure that builds are triggered frequently and feedback
about the integration is received regularly. One of the reasons for code not
being committed to the mainline is that tasks are too big to finish in one day
or less. To keep up the frequency of commits tasks have to be divided into
smaller ones. At every commit of such a small task developers immediately
get feedback of how this change is working with the rest of the code. [5]

2.4.2 Broken builds

Builds should be allowed to break at some point since this is a necessary
notification of a software defect. The longer a build stays broken though, the
harder it is to fix the defect. As mentioned before it should be the responsible
developer’s top priority to fix the issues causing the failure immediately
after receiving feedback about it. Builds that stay broken for a long time
keep developers from checking out functioning code. Carrying out a private

16

2 Theoretical background

build before every commit to the mainline can help preventing broken
builds. A developer would check out the latest version of the mainline and
make his changes locally. After finishing a task (that is small enough to keep
up the integration frequency) he integrates the mainline version again and
runs a local build, which immediately yields feedback about the state of the
software. Only after this private build passed the changes are committed
to the remote repository. This can help reducing the occurrences of broken
builds on the integration server. [5]

2.4.3 Minimal feedback vs spam feedback

Feedback about the build status is one of the most important aspects of CI.
Receiving no feedback at all keeps anyone from knowing when changes
broke the build. On the other hand receiving an e-mail about every build
status at any time may lead to team members ignoring the messages. The
feedback mechanism may vary between different projects. If all developers
share an office visual feedback in the form of large screens displaying the
build status or light bulbs that reflect it may prove as most effective. How-
ever, projects where team members are more distributed (e.g. open source
projects) an e-mail can be more useful. These should however be targeted
at specific team members (project lead, members that recently committed
changes, ...) to reduce the feeling of being spammed with feedback messages.
[5]

17

2 Theoretical background

2.4.4 Slow build server

A state of the art machine used as build server is highly beneficial for
reducing the feedback delay. While the acquirement of it might introduce
additional costs, these are easily compensated by the fact that the increased
speed of the build execution saves the team time and therefore money. The
sooner an integration is reported to be successful, the sooner developers can
begin to start their next tasks. [5]

2.4.5 Bloated build

A common anti-pattern that comes with the ease of automation that build
servers provide is to include as much work as possible into the build. This
results in a substantial increase of the execution time and therefore an
increased delay of feedback. As a first step to mitigate these issues the
execution time of the individual build steps (compilation, test cases, etc.)
could be decreased. Upon reaching the cap of build step optimization, a
large performance increase can be reached by introducing build pipelines.
A commit would trigger a small build that may only compile the code and
execute a fast set of unit tests and that upon success triggers a successive
build that may execute more time consuming tasks. The first build however
would provide fast intermediate feedback about the basic health of the
project. [5]

18

2 Theoretical background

2.5 CI in open source projects

Open source projects are often driven by distributed teams with contributors
around the world. While the core CI process and technology stays the same
for any kind of project, the distributed nature of the development team
introduces certain difficulties. [16]

External developers that contribute to open source projects are often volun-
teers that are not paid for their work. Since these developers basically are
not bound to any rules or time constraints it can be very difficult for the
core team to make certain practices mandatory. Geographical distribution
makes this additionally harder. [14] Open source projects should therefore
find the right mechanisms and tools to enable every contributor to easily
begin practicing continuous integration. Communication platforms such as
IRC or Skype should be available at any time and for everyone. Breaking the
barriers of communication is important to establish trust within the team
and can be achieved by including external developers in meetings using
videoconferencing tools.

Open source projects should not have to adapt the CI process but rather
practice it with increased accurateness for it to yield the benefits it can
provide. [16]

2.6 Scaling continuous integration

The success of continuous integration greatly depends on the discipline
of the team. Therefore the environment that is provided should make the

19

2 Theoretical background

process as easy and effortless as possible to keep up the teams motivation.
With an increasing size of a project the continuous integration process has
to scale appropriately. The following sections will further discuss the main
issues that can be experienced by the scaling process according to [26].

2.6.1 Increasing size of code

When practicing TDD an increasingly large code base implies that more and
more test cases are added to the test suite. This results in longer build times
and slower integration feedback. To avoid continuing to work on a broken
code base developers should wait until the integration build returns its
results. A long waiting period results in an extension of unproductive time.
Developers tend to commit less often to keep these periods at a minimum.
However the less frequently these commits happen the more changes they
include and the larger (and possibly harder) the integration steps become.
Merge conflicts become more likely and fixing broken builds also becomes
increasingly difficult.

The time it takes for one developer to receive feedback on his latest commit
is also the time other developers are kept from integrating their changes
into the mainline. If developers leave work before the integration build is
finished and returned its results, the remaining team members are forced
to fix a possibly broken build since otherwise they can not commit their
changes to the mainline by definition. A workaround for this issue might
be to commit changes at the beginning of the day to leave enough time for
fixing any occurring issues. This however implies that the commit is ready
at that point since otherwise it has to be postponed to the next day. Starting
to work on other issues in the meantime again results in larger changesets
and increasing likeliness of failure.

20

2 Theoretical background

All these aspects cause the development process to drift away from continu-
ous integration. [26]

2.6.2 Increasing number of developers

The speed at which the code size increases is of course tightly coupled with
the number of developers that are working on a project. This aspect has
been mentioned in the previous section. But an increasing number of people
added to the CI process also means that more and more people depend
on green builds. It is very likely that one developer wants to commit his
changes while another one is currently working on a fix for his broken
build. During this time no one can commit to the mainline by CI convention
(that is if they are not working on the fix as well). This situation shows the
importance of this convention since another commit to the mainline would
further increase the difficulty of fixing the defect as well as the time the
build remains in a broken state. However since every team member aims
to finish their work it is likely that their commit will happen irregardless
of the current state of the mainline. This leads to a situation in which no
team member feels responsible for fixing a broken build since it can not be
known for sure whether or not the individual changes would have passed
the build process. The longer the build stays broken the lower the inhibition
threshold for committing changes to the already broken mainline.

Although developers should never check out broken code, an increasing
lifetime of this state will result in it happening anyway. Therefore the failures
that were introduced in the mainline version spread out to the individual
workspaces of each developer. In the worst case scenario this means that
each of them has to individually fix the same issues which is unnecessarily
redundant.

21

2 Theoretical background

Continuous integration requires team members to run private build before
committing any changes to ensure that no broken code is introduced into
the mainline. Pulling broken code from the mainline implies that the failures
at hand have to be fixed before any changes can be committed. This slows
down the integration process dramatically and discourages developers from
committing frequently which is obviously detrimental to the CI process.
[26]

2.7 Scaling strategies

The aspects described above have been experienced as the main reasons
for a development process to drift away from a continuous integration
approach. As the team grows the CI environment has to grow with it to
ensure that every team member is highly encouraged to practice all the
necessary steps that define CI. This includes fast feedback as well as nearly
effortless automated build support. Experience has shown that increasing
integration effort results in less frequent commits and therefore fewer build
and test runs. Continuous integration is meant to simplify the integration
process by dividing it into smaller incremental steps. The following sections
discuss several strategies for scaling the process as described in [26].

2.7.1 Limiting the build time

The execution time of the integration build is closely related to the frequency
of integration. The longer the build takes, the less frequently developers
will be integrating their changes. To determine a reasonable build time

22

2 Theoretical background

the desired relation between it and the integration frequency has to be
established. If developers have to wait 1 to 10 minutes for the build to finish
they can be expected to integrate every hour. However if the build time
starts to exceed this threshold this expectation becomes unreasonable. The
time it takes for a developer to integrate his code into the mainline should
be relatable to the time it took him to implement it otherwise the process
loses its benefit of becoming a non-event.

Keeping the build time low can be a difficult task to achieve for larger
projects with large test suites so the tolerated balance between build time
and integration frequency is to be determined. [26]

2.7.2 Separate the build process

Sequential builds are poorly scalable with a growing number of steps they
have to execute. The automation aspect of the build process may encourage
to add as much work as possible to it. This results in rapidly increasing
execution times. A more versatile approach is to separate the build into
smaller independent builds that can be executed simultaneously. This helps
reducing the build time as well as prioritizing certain steps in the integration
process. The goal is to fail fast meaning that feedback about code that is not
compiling or a failing test case should be provided as early as possible.

Additionally there should be multiple different builds for different purposes.
These can be established by analyzing the needs of different teams in the
project. Developers are most likely more interested in receiving feedback
about compilation or test results while the latest executables may be more
interesting for the marketing department. Handling different purposes with
different builds can greatly decrease the delay of continuous feedback and

23

2 Theoretical background

ultimately also increase the integration frequency. [26]

2.7.3 Faster unit tests

Effectively working with test-driven development requires a certain amount
of experience. Tests have to be clearly divided into unit and functional tests
to avoid redundancy. Unit tests should in general run very quickly and
avoid leaving the function or object they are supposed to test. A poorly
designed test suite can be the main reason for long build times. To enable
the segmentation of the build process and execute multiple parallel builds
the individual tests have to be independent. As mentioned before, the
refactoring step in the TDD cycle also applies to test cases. CI servers
provide great capabilities for measuring execution times and make it easy
to find slow test cases. These should be continuously refactored towards a
lower execution time. [26]

2.7.4 Small teams

The main disadvantage of large teams when practicing continuous integra-
tion is the number of people that are affected by a broken build. In the real
world breaking a build is inevitable. Therefore it has to be guaranteed that
a broken build does not hold up the development process of the whole
team. By dividing into multiple smaller teams that are assigned to different
fragments of the project a certain amount of independency can be intro-
duced. These teams run individual builds that only test their part of the
code. If a commit to the mainline breaks the build it only affects members
of the team that is assigned to the broken module. However to allow this

24

2 Theoretical background

separation the code has to be properly separated into several modules that
can be implemented and tested independently. [26]

2.8 Android

This section provides an overview over the Android platform and is meant
to give a better understanding of application development for the OS and
the testing process.

2.8.1 The multitude of devices

Android is an open source operating system that is managed by a group of
84 [1] organizations forming the ”Open Handset Alliance”8. The decentral-
ized nature of control entails certain aspects that increase the difficulty of
application development. [30]

Multiple screen sizes Devices running Android come with a large number
of different screen sizes.

Fragmentation Due to the multitude of device manufacturers and their
freedom to choose different versions of Android, applications have to
support multiple versions of the OS.

Difference in hardware It can never be assumed that a specific hardware
feature is supported by the device an application is installed on. (Sen-
sors, GPS, ...)

8http://www.openhandsetalliance.com/

25

http://www.openhandsetalliance.com/

2 Theoretical background

Resource limitations The amount of available resources differ between de-
vices and are in general very limited.

The diversity of Android devices is illustrated by figure 2.5 which shows all
devices that downloaded the OpenSignal application in the months before
July 2013. [19]

Figure 2.5: Android fragmentation [19]

2.8.2 Build process

The first steps of the Android build process illustrated in figure 2.6 resemble
the standard Java build process with the addition of generating a resource
file and Java interfaces from .aidl files. The compiled Java classes are con-
verted to .dex format that is compatible with the Dalvik virtual machine

26

2 Theoretical background

Figure 2.6: Android build process [11]

27

2 Theoretical background

running on Android devices. All compiled and non-compiled resources
are packaged into an .apk file that is used to install an application on an
Android device or emulator. [11]

The Android SDK provides an Ant9 build script that is used to build
an application from the command line which enables automation of the
process. Keeping this build script under version control allows keeping track
of changes that come with SDK version updates or manual modifications to
it (e.g.: additional build targets).

2.8.3 Application lifecycle

An Android application can include multiple so called activities. These
activities hold UI elements such as buttons, list views etc. and handle
user events. Every activity has its own lifecycle as illustrated in figure 2.7.
Resources that have been allocated during the creation of an activity and
are exclusively needed by this activity have to be correctly released when
it is sent to the background. This event can be triggered by either the
user himself or external events such as receiving a phone call or a display
timeout. The introduction of fragments further increases the complexity of
these lifecycle events. Fragments are reusable UI parts that can be used to
assemble multi-pane activities. [12] Figure 2.8 shows a simplified diagram
of the lifecycle of a fragment. Correctly handling each of these lifecycle
events is crucial for correct application behavior. There are a number of
frameworks that provide the capabilities for testing Android activities and
fragments natively, one of them being Robotium. 10

9http://ant.apache.org/
10https://code.google.com/p/robotium/

28

http://ant.apache.org/
https://code.google.com/p/robotium/

2 Theoretical background

Figure 2.7: Activity lifecycle [10]

29

2 Theoretical background

Figure 2.8: Fragment lifecycle [12]

30

2 Theoretical background

2.8.4 Android application testing

Android applications include platform specific code as well as platform-
independent Java code. A test suite for Android can therefore include test
sets that can be executed without installing and running the application
on a device or an emulator providing that non-Android-specific code is
properly encapsulated. Test cases for Android specific code however need to
be executed with the application under test being installed and running on
an emulator or a real device. It is important to consider the pros and cons
of testing in a simulated environment versus testing on actual smartphones
or tablets.

One of the biggest advantages of emulated Android devices over actual
hardware is cost efficiency. Given the before mentioned fragmentation of
the Android ecosystem it is unfeasible to cover as many different devices as
possible by acquiring every one of them. Besides the cost of the machine
a virtual device is running on, Android emulators are free and can be
configured to simulate any version of the mobile operating system. This
configuration process can be automated which makes it easy to add to the
integration routine on a CI build server. The most obvious disadvantage
of emulators over real hardware is that a simulation is never 100% repre-
sentative of the real world. Simulation errors can produce entirely different
results on a virtual device. This can lead to a number of false negative errors
that can not be reproduced on real devices. Due to the open source nature
of the Android operating system, smartphone and tablet manufacturers are
free to customize the experience on their products to a great extent. These
customizations are not reflected in an emulated Android device which can
lead to unexpected behavior when it comes to testing user experience. [29]
Additional limitations of the Android emulator include lack of Bluetooth
support, USB connections or SD card insert/eject events among others. [13]

31

2 Theoretical background

These differences show that none of the two is the best solution for all test-
ing phases. Choosing the right method for the right phase is an important
aspect to consider. [29]

When practicing continuous integration it is required that there exists a
central integration machine where the build process is carried out the
same way on every execution. This way developers can be sure that their
changes did not break the working state of the software. In an Android
project the integration machine should provide a real device in addition to
automatically configured Emulator instances that are used for running the
integration builds. This way it can be guaranteed that all developer share
the same testing environment for their integration steps.

The before mentioned application lifecycle in Android encourages the use
of UI tests to accurately verify the application’s behavior. Due to the latency
of UI testing frameworks and the device UI itself the execution time of these
tests is significantly higher than regular unit tests. Including UI tests in
the integration test suite will increase the execution time of the build and
therefore delay feedback. It is important to consider how to integrate these
tests in the automation process.

The challenges of mobile application testing in general are not limited to the
choice of the testing environment. Multiple sources [22] [27] [21] describe
different areas that are characteristic to mobile application development and
that pose new challenges to the development and testing process, some of
which are mentioned below.

Connectivity Mobile devices are logged in to the mobile network at all
times. The speed and reliability of this connection varies depending
on network provider or location. Network access may also be limited

32

2 Theoretical background

when accessing public Wi-Fi networks. Testing an application in dif-
ferent connectivity scenarios is therefore important to mitigate errors
in these situations. [22]

User interface As mentioned before the aspect ratio and physical size of
mobile devices varies between manufacturers and models. This leads
to user interfaces appearing differently on different devices. Covering
as many of them as possible when testing an application is therefore
recommended. [27]

Resource constraints While the overall performance of mobile devices is
rapidly increasing the gap between mobile and desktop hardware is
still a large one. Resource usage has to be taken into account to avoid
performance issues. [22]

Context awareness Sensors (motion, noise, light etc.) and different types of
connections (Bluetooth, Wi-Fi, 3G etc.) provide a large amount of data
that is commonly used by mobile applications. Different devices may
have differently calibrated sensors and connectivity characteristics
vary constantly. It is a challenging task to test whether an application
performs correctly under different circumstances. [22]

Security The challenge of protecting privacy and ensuring security is tightly
coupled with before mentioned aspects. The variation of security
levels throughout different Wi-Fi networks is an important aspect to
consider. Considering the availability of a large amount of contextual
and personal information on a mobile device, security issues pose a
substantial threat to privacy. [22]

33

3 Practical Part

3.1 Catrobat

Catrobat is a visual programming language for smartphones, tablets and
mobile browsers. The Catrobat umbrella project houses several projects
including the Android distribution of the IDE for the creation of Catrobat
programs called Pocket Code, an Android image editor named Pocket Paint,
the community website and distributions of the individual applications for
different platforms among others. It is a student-driven open source project
with a large amount of contributors that practices test-driven development
and continuous integration.

3.1.1 Development process

While the core team resides at Graz University of Technology, the Catrobat
project has contributors around the world. This aspect introduces certain
difficulties when it comes to practicing continuous integration.

34

3 Practical Part

Catrobat uses GitHub1 for version control. To a certain amount the access to
the version control system has to be restricted. Public write access would
make it impossible to control what is introduced to the project. Therefore
only the core team is capable of committing changes to the mainline of the
project. To enable non-core members to contribute to the project, Catrobat
uses pull requests. This system has been widely adopted by many different
open source projects. Developers issue such a request to notify core members
that they want their changes to be accepted. Upon accepting a pull request
all changes it contains are merged into the mainline. This however is only
possible if the merge can be carried out automatically. Therefore all conflicts
have to be resolved by integrating the mainline into the developers branch
prior to issuing the request.

The GitHub pull request system makes the changes a pull request would
introduce very transparent and easy to review. This is why the core team
has adopted this practice as well. In the Pocket Code project integration
into the mainline is done exclusively via pull requests. Although the pull
requests are reviewed carefully there can be no guarantee that the changes
that it introduces will not break the functionality of the mainline version.
To verify the success of the integration process a build pipeline has been
instituted that will trigger on every pull request. The environment that has
been established to enable this process will be discussed in the following
sections.

1https://github.com

35

https://github.com

3 Practical Part

3.2 Scaling CI in Catrobat

The strategies described in section 2.7 for scaling continuous integration all
revolve around one main goal - reducing the time it takes to get feedback
about the result of the integration process. Fast feedback is the most im-
portant aspect for keeping up the motivation and therefore the integration
frequency of all team members. The first instance of the continuous integra-
tion environment in Catrobat was set up to deal with few jobs and relatively
short execution times. The CI build server was (and is still) running Jenkins2.
The machine running the instance of Jenkins had one single executor for
build jobs. This was due to the fact that the server was running Android
build jobs exclusively. As mentioned before, Android test cases have to be
executed on an emulator or a real device. Exclusively testing the Android
applications on emulated devices was not an option since OpenGL3 support
is required which the Android emulator lacked at the time. A real device
was therefore attached to the CI build server via USB. If one job started,
the CI servers executor was reserved for it and all subsequent jobs had to
wait in a job queue. Multiple executors would have caused the queued jobs
to start while the Android device was still in use by another job. The first
job would fail because the second would have started executing tests on it
thereby interfering with the first testing process.

The job queue caused feedback times to rise constantly. At the same time the
number of test cases increased rapidly which caused the job execution time
itself to increase. When practicing continuous integration slow builds and
late feedback are detrimental to the development process and ultimately to
the quality of the software.

2http://jenkins-ci.org/
3https://www.opengl.org/

36

http://jenkins-ci.org/
https://www.opengl.org/

3 Practical Part

As mentioned before, the CI environment of a project has to scale with
the number of team members and the increasing size of the code base.
Since all of Catrobat’s projects are open source and have a large amount of
contributors that is constantly increasing, the existing environment had to
be adapted to provide sufficient capabilities for practicing CI. The following
sections describe the tools and practices that were used to ensure these
capabilities and at the same time provide an environment that scales with
the future growth of the Catrobat project.

3.2.1 CI server

In its basic setup the build server includes a single machine running the
main Jenkins instance, the master node. Several build jobs can be configured
through the web interface this node provides and the individual workspaces
of these jobs are maintained by the Jenkins master. All build results such as
test results, log files or executable binaries are managed by this node.

The master node can manage several additional slave nodes that are used to
execute build jobs. These nodes can be instantiated on the same machine as
the master itself or on a remote machine that can be accessed via SSH4. A
slave node is represented by a running instance of Jenkins’ slave.jar file.

It has been mentioned before that different tasks should be handled by
different builds. These builds most likely require different resources that
have to be managed properly. One of the main advantages of the master-
slave system that Jenkins provides is that resources that are needed for
building and testing a project can be distributed and exclusively reserved
for specific builds. This is done by labeling the individual slave nodes

4http://en.wikipedia.org/wiki/Secure_Shell

37

http://en.wikipedia.org/wiki/Secure_Shell

3 Practical Part

according to their capabilities. Figure 3.1 illustrates an example of a master
slave setup with server 1 and 2 being two separate physical machines.

Figure 3.1: An example for a master slave setup

The master node may have an Android device attached to it and may
therefore receive the label ”Android device”. All jobs that execute tasks
that require a device are assigned to execute exclusively on nodes that are
labeled accordingly. Jobs that don’t need any specific resources for execution
are assigned to run on any other node but the ones labeled with ”Android
device”. These jobs would otherwise occupy resources they don’t need and
block the ones that do from execution which again can greatly increase
feedback delay.

In addition to labels every node can have multiple executors that can each
run a single build job. This enables one node to execute multiple jobs in

38

3 Practical Part

parallel. For this to be possible the individual jobs have to be independent
from each other, meaning that the tasks they execute have to be clearly
separated. A test suite that can be split into several smaller sets is therefore
an important prerequisite.

The individual nodes that the Jenkins master manages should share a basic
configuration including the set of installed packages and dependencies. As
these are most certainly subject to change as new versions are provided, it is
important to keep all nodes up to date. Build jobs are configured once and if
not assigned to a specific label they can be executed on any node. Therefore
it has to be guaranteed that the required basic environment is provided on
all nodes. To handle this problem a set of scripts can be provided that can
be executed by any build job before the actual work is done. Keeping this
set under version control ensures that it is up to date on every node and
using Jenkins’ per-node environment variables can guarantee that all scripts
can be executed on all nodes.

This setup now provides a platform where the individual sub teams of the
Catrobat project do not block each other from receiving fast feedback about
their integration process. Projects now have exclusive nodes that execute
their CI builds which minimizes the time to wait in queue.

3.2.2 Build pipeline

The integration cycle in the Catrobat project begins with issuing a pull
request. This automatically triggers a build job on the Jenkins CI server
that executes a set of fast unit tests and code inspections. The result of this
build is directly connected to the state of the pull request, meaning that a
failure will automatically mark the request accordingly. This prevents core

39

3 Practical Part

members from accepting requests that in fact would break the state of the
mainline. While developers are still required to execute private builds prior
to committing their changes, this step provides additional verification before
failures are introduced. Not only does it verify the basic functionality of the
software, it is also a helpful tool to check if developers adhere to the basic
concepts of continuous integration. Figure 3.2 shows a pull request that
has been marked by a successful build. This figure also includes Catrobats
version of the Integrate button (”Merge pull request”) that Paul Duvall
mentions in [6]. The Jenkins CI server is set up to watch the mainline of

Figure 3.2: A pull request marked by a successful build [17]

the version control system for any changes. This means that upon accepting
a pull request by clicking the button illustrated in Figure 3.2 the server
automatically triggers a build job that executes an integration build. In
Pocket Codes case this job includes code inspections, fast JUnit tests and a
large set of functional Android UI tests. Since this job represented the largest
overhead in Catrobats CI process the optimization of it was considered to
yield the largest improvement in terms of feedback delay. By separating the
existing sequential build into multiple stages the overall execution time was
significantly decreased. The initial stage provides fast feedback by executing
fast Unit tests while functional UI tests are pushed further back in the
pipeline. While this improves the performance of the feedback process it
also represents first steps towards a deployment pipeline as described by
Martin Fowler in [8] and in more detail by Jez Humble in [16].

40

3 Practical Part

The first stage of the build pipeline should include a large enough test
set to accurately verify that the integration was successful. If later stages
that execute functional and regression tests point out further bugs in the
software this information can be used to further extend the Unit tests in the
first stage of the build. Nevertheless all stages have to be treated with equal
care meaning that a build should be fixed immediately regardless of the
stage that caused it to fail.

Figure 3.3 illustrates the build process of Pocket Code after the acceptance
of a pull request. The separation of the build process into multiple stages
required the adaption of the test environment which will be described in
the following section.

3.2.3 Test environment

Pocket Code provides functionality that requires additional hardware such
as robots that can be controlled via Bluetooth or Arduino5 circuit boards.
This functionality is also tested with real hardware. Since the Android emu-
lator does not support Bluetooth connections these tests have to be executed
on actual Android devices. To be able to fully take advantage of the parallel
execution capabilities of the Jenkins master-slave system the test suite for
Pocket Code had to be separated into multiple smaller ones that can be
executed simultaneously. This was achieved by distributing the application
binary to multiple emulators and hardware devices that each execute a
predetermined test set. The individual sets are independent and tests that
require a hardware device for successful execution are marked using Java
annotations6. These annotated test cases are automatically selected and

5http://www.arduino.cc/
6http://docs.oracle.com/javase/tutorial/java/annotations/

41

http://www.arduino.cc/
http://docs.oracle.com/javase/tutorial/java/annotations/

3 Practical Part

Figure 3.3: The Pocket Code CI build process

42

3 Practical Part

executed on a hardware device that is attached to the build server. Android
emulators are automatically set up and configured by the Jenkins build
server to ensure that the test environment stays the same for every build.
Since Pocket Code requires OpenGL for full functionality the emulators
are hardware accelerated and support GPU emulation to provide best per-
formance. To eliminate any performance issues during the execution of
several Android emulator instances in parallel, a high performance machine
is important. A slow build server provides a large overhead and is in fact
one of the first issues a CI team should address.

3.3 The Catrobat CI process

The improvements that have been made to the CI environment as well as
to the workflow itself have yielded a much more responsive and beneficial
process that will be described in detail in this section.

All projects that have been added to the build automation process are
periodically tested once changes are introduced into their mainline. This
happens multiple times during the day. The prerequisite for any member
that wants to introduce new code into the main version of their project is to
issue a pull request on GitHub.

During the implementation of any new code developers trigger build jobs
on the Jenkins build server on the branch they are working in. These jobs
execute the entire test set of the individual project and report the result
back to the developer by sending messages to the projects IRC channel.
As soon as the developed changes are believed to be ready to be merged
into the mainline a pull request will be issued by the developer. To make

43

3 Practical Part

it easy for core members to review the request, developers include a link
to the latest successful build on their branch in the description of the pull
request. GitHub provides an easy to use and intuitive UI for pull requests
that shows all the differences between the mainline version and the version
that is introduced to it via the pull request. Notifications are sent out as
soon as a new pull request has been created.

A core team member reviews the changes and marks possible areas of im-
provement. GitHub allows commenting on the individual lines of changed
code which makes it very easy for core members to point out these areas.

Creating a new pull request automatically merges the target branch with
the changes it contains. This version is temporarily accessible via a new
Git reference until the pull request is accepted. This way merge conflicts
are pointed out at the time the pull request is created since GitHub will
automatically mark the pull request as ”Unmergeable pull request”. In
this case the conflicts have to be resolved before any further progress. To
ensure that the introduced changes work with the latest mainline version,
the creation of a new pull request automatically triggers a build job that
executes a fast set of unit tests and code inspections. The automatically
triggered test job checks out the before mentioned temporary version that
GitHub creates and runs its assigned build steps and test sets against
it. The result of this job determines the state of the pull request. If the
job fails, core members can immediately see that the changes should not
be merged. Should there be any problems with the introduced code, the
responsible developer has to fix the detected problems and commit the
changes again. A commit to the same branch the pull request was issued
from will automatically update the pull request and therefore automatically
trigger the Jenkins build job. As soon as the pull request is marked as
being ready to merge a core team member accepts it, thereby automatically
merging the changes to the mainline.

44

3 Practical Part

Since the Jenkins build server is constantly watching the mainline for any
changes, the acceptance of a pull request triggers another build job that
executes a large test set including unit test as well as functional UI tests. In
Pocket Code’s case this job is set up as a build pipeline that is composed of
multiple build jobs that carry out different parts of the process. The base
job is constantly checking for updates on the source code repository and
starts its routine as soon as changes are pushed to the master branch. This
job sets up the environment that all consecutive jobs work on by executing
the following steps:

• Check out the latest version of the master branch
• Check out the latest version of the build scripts and utility scripts

– These are located in a separate repository.

• Compile the project under test and all test projects
• Build the Android application files for all the projects

– A separate executable for the project under test and every test
project is built in this step.

The build and utility scripts include additional steps for preparing the
test environment including starting a self implemented Bluetooth server or
configuring several Android virtual devices and the corresponding Android
debugging bridge connections.

If one of the above mentioned steps should fail, the execution of any further
steps is canceled and the build is considered to have failed. All issues that
may have occurred during these steps have to be fixed and committed to
the respective repositories in order to restart the build pipeline. If all steps
completed successfully, the base job will trigger the first sub job which
executes the following steps:

45

3 Practical Part

• Run a set of unit tests

– This is a self implemented set of tests that checks whether the
source code complies with the project specific coding guidelines.

• Run static code inspections using Android lint7

• Run coding standard checks using Checkstyle8

• Check source code for bugs using PMD9

– PMD analyzes source code and can point out potential program-
ming errors.

• Check for bugs using FindBugs10

– FindBugs works on bytecode and is therefore complementary to
PMD.

These steps are also mandatory. Therefore the build will be marked as
having failed if any of the above mentioned steps should fail.
If all steps succeeded to this point, the base job triggers the execution of
the Android instrumentation test sets. In order to complete this step as fast
as possible several sub jobs are triggered simultaneously. These sub jobs
are distributed among multiple Jenkins slave nodes and are set up to test a
specific part of the test sets. All test cases that require a real Android device
are marked using Java annotations so they can be filtered and executed on
a suitable slave node.

The results of all above mentioned steps are archived. The base job fetches
all archived data from the jobs it triggered and publishes the results of all
tests and code inspections on the web dashboard on the Jenkins build server.
Additionally the overall build result is published via email and IRC. The

7http://developer.android.com/tools/help/lint.html/
8http://checkstyle.sourceforge.net/
9http://pmd.sourceforge.net/

10http://findbugs.sourceforge.net/

46

http://developer.android.com/tools/help/lint.html/
http://checkstyle.sourceforge.net/
http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/

3 Practical Part

result history of unit tests and code inspections of each project is published
in form of trend graphs as shown in figure 3.4. These graphs provide a quick
and illustrative insight on the current health of the individual projects.

Figure 3.4: Trend graphs created by the Jenkins build server

3.3.1 Improvements

The introduction of the Jenkins master slave system has brought the capa-
bility of parallelization. This allows multiple different projects to execute
their build jobs at the same time resulting in less time that is lost waiting
idly in the execution queue.

47

3 Practical Part

The Pocket Code integration build job had an overall execution time of
over 2 hours since every step was executed sequentially. The results of all
test runs and source code inspections where only available after the job
had finished. The separation of the build process into multiple jobs and
the parallel execution has brought down the overall execution time to 40

minutes. Intermediate results about code inspections and fast unit tests
are available after 10 minutes. Figure 3.5 illustrates the difference in the
average build time of the former Pocket Code build job and the pipelined
build job that has been introduced. The green bar marks the phase in which
the switch between the two jobs was executed. Areas without any data
points represent the periods in which the jobs were disabled and not yet
active respectively. Spikes in the graphs are the result of configuration errors,
network issues or other system failures.

The reduced execution time of the pipelined integration build job has an
immediate impact on all other projects that use the Jenkins build server for
their automated builds. Figure 3.6 shows the trend of the average build time
measured across all build jobs of all these projects. Again, the green bar
indicates the phase where the refactored build process has been introduced.
A significant drop of the overall build time has been achieved.

48

3 Practical Part

Figure 3.5: The average build time of the existing Pocket Code build job compared to the
current pipelined build job

49

3 Practical Part

Figure 3.6: The average build time measured across all build jobs of all projects

50

4 Future work

Future efforts on further improving and optimizing the continuous integra-
tion process of the Catrobat project should be directed both at the process
itself as well as the tools that are used. The following sections describe
possible areas for improvement.

4.1 Keeping it simple

Continuous integration can not be done without a team that is willing to
adopt the practices that define it. The project is guided by a very dynamic
team meaning that developers come and go at all times. The process should
therefore be kept as easy to adopt as possible to provide the least overhead
possible. The trade-off between extending and overcomplicating the process
is an important aspect to consider.

51

4 Future work

4.2 Build tools

Pocket Code started off using Ant to build the project. At the time this
was the standard build process for Android projects. The build scripts
used by Ant are written in XML which can lead to unnecessary large
and complicated files that are hard to maintain by developers with little
experience in working with Ant. The majority of the team members is
working with IDEs like Eclipse that mask the build process well enough
for the user to be able to build a project without having to know about the
details of the build process.

With the growing popularity of the Android Studio IDE a build tool called
Gradle is getting increased attention. Gradle aims at combining ”the power
and flexibility of Ant with the dependency management and conventions of
Maven into a more effective way to build” [18].

Gradle build files are written using a Groovy based domain specific lan-
guage (DSL). [18] A domain specific language makes it much easier for
developers to write and maintain the build scripts.

4.3 Test suite separation

As mentioned before, the parallelization of build jobs requires the indi-
vidual jobs to be independent. The Pocket Code integration build process
distributes the entire set of UI tests on several Android devices simulta-
neously by splitting it into smaller sets. This separation is done via Java
packages. While this already provides a major reduction of the test execution

52

4 Future work

time the distribution should be carried out more dynamically. Since the
parallel build process can only be as fast as its slowest sub job, a package
containing a large number of slow test cases would slow down the pro-
cess. The execution time of the individual test sets should approximately
be the same. Based on the previous execution times of the individual test
cases these sets can be assembled by the build server at compile time. The
maximum execution time of each set should be around 10 minutes.

4.4 UI testing

The Pocket Code project uses a large amount of UI tests during the integra-
tion process. These tests are written using the Robotium test automation
framework. While this test suite provides good feedback about the func-
tionality of the application as well as documentation of the code, it slows
down the integration process significantly. In addition to the extension of
the execution time of the automated process the test suite also requires a
large amount of manual maintenance effort in case the application UI is
changed. Moving UI elements to different views or changing the type of
navigation elements requires a large number of test cases to be adapted to
these changes.

Using UI crawling/ripping techniques as described in [2] and [3] could
minimize the manual effort for UI testing the application while maintaining
a structured approach. The major advantage of this approach over Monkey
testing is that by exploring the UI the crawling algorithm generates a
representation of it in form of a tree that can be used to automatically
generate test cases. This would greatly reduce the maintenance overhead of
the UI test suite and further automate the process.

53

4 Future work

4.5 Reduce test flakiness

Tests that randomly fail keep developers from searching for the reason of
failure after some time. A failing build should never leave a team member
thinking ”It’s OK, it will pass next time.”

When using Robotium the result of an Android UI test is often influenced
by timing issues. If a button has not yet finished drawing itself onto the
screen the test will fail when it tries to perform a click on it. Robotium uses
methods like sleep(time) or waitForActivity() as a workaround for these issues.
However the time to wait for the UI to be ready very much depends on
the performance of the device the test is running on. A device independent
optimal value for time is therefore almost impossible to find. Additionally
using sleep(time) can greatly extend the execution time of the test suite and
therefore delay the feedback process.

Espresso 1 is a UI testing framework that provides an easy to use API on top
of the standard Android instrumentation framework. Espresso eliminates
sleeps by synchronizing background and UI threads and its introduction
could reduce the execution time of the UI test sets. [31]

4.6 Testing on multiple devices

The functionality of Android applications can greatly differ between indi-
vidual smartphone manufacturers and Android OS versions. Therefore it is
important to test the application on multiple different device setups.

1https://code.google.com/p/android-test-kit/wiki/Espresso

54

https://code.google.com/p/android-test-kit/wiki/Espresso

4 Future work

Spoon 2 is a tool developed by Square Inc. 3 that can be used to automatically
distribute Android tests among multiple devices simultaneously. [20] It
generates a clear and easy to read HTML report that can include screenshots
of the application during the test execution. Spoon makes it easy to quickly
find device specific errors. However, in order to cover a large variety of
different devices, each device has to be acquired and maintained locally.

Cloud based services like Testdroid4 offer the possibility to access a wide
variety of devices via the web. Not only does this approach solve the prob-
lem of acquiring hundreds of real mobile devices, it also enables developers
to test from anywhere in the world without having to set up the necessary
build environment.

2http://square.github.io/spoon/
3https://squareup.com/
4http://testdroid.com/

55

http://square.github.io/spoon/
https://squareup.com/
http://testdroid.com/

5 Conclusion

The growing complexity of the individual projects of Catrobat and the
growing scale of the organization required a refactoring of the existing
quality assurance process. The context of mobile application development
presents many challenges to the theoretical concepts of software testing
and continuous integration. Traditionally proposed test ratios that recom-
mend keeping UI tests at a minimum due to their increased execution time
and maintenance difficulty need to be reconsidered in order to accurately
test mobile applications. This experience is shared with other projects as
described in [24].

The automation of the testing process is key to effectively and constantly
assure the quality of the software in its current state. Including all system
and regression tests in this automated process is a very important aspect
for maintaining a stable, well tested and release ready version of the project.
[25] Using continuous integration, this automated process is carried out
frequently and with every change that is made to the existing version. At
the same time it is important to plan how to facilitate these automations
in order to get the most benefit out of it. With the goal to make it possible
to include all projects of Catrobat in the automated continuous integration
process while keeping it fast without having to cut back on testing efforts
came the realization that the existing integration workflow and the CI
build environment had to be refactored. The work that has been done has

56

5 Conclusion

drastically reduced feedback delays for all projects that have already been
included in the CI workflow. At the same time it has been ensured that
the addition of further projects would not negatively impact this existing
workflow.

As mentioned in [24], there are still limitations to what can be fully au-
tomated. Usability tests and localization testing should still be executed
manually to a certain amount.

Catrobat’s continuous integration process is still iteratively evolving into
a core aspect of all its projects. It has become a critical part in ensuring
the software quality. The work that has been done in providing a scalable
environment enables future extensions to the process. The main goal of
any future approach in extending the process should be to keep it as
accessible and easy to adopt as possible. Since this process is driven by the
whole development team, one of the main aspects for practicing continuous
integration successfully is motivation. Developers must be able to see and
experience the benefits of the process in order to be willing to carry out
the required steps that define it. A scalable test environment that allows all
projects to be included in the CI process was a large step towards further
making CI a core part of Catrobat.

57

Bibliography

[1] Open Handset Alliance. FAQ. url: http://www.openhandsetalliance.
com/oha_faq.html (visited on 11/17/2014) (cit. on p. 25).

[2] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana.
“A GUI Crawling-Based Technique for Android Mobile Application
Testing.” In: ICST Workshops. IEEE Computer Society, 2011, pp. 252–
261. url: http://dblp.uni-trier.de/db/conf/icst/icstw2011.
html#AmalfitanoFT11 (cit. on p. 53).

[3] Domenico Amalfitano et al. “A toolset for GUI testing of Android
applications.” In: ICSM. IEEE Computer Society, 2012, pp. 650–653.
isbn: 978-1-4673-2313-0. url: http://dblp.uni-trier.de/db/conf/
icsm/icsm2012.html#AmalfitanoFTCI12 (cit. on p. 53).

[4] Scott Chacon. Pro Git. 1st. Berkely, CA, USA: Apress, 2009. isbn:
1430218339, 9781430218333 (cit. on p. 10).

[5] Paul Duvall. Automation for the people: Continuous Integration anti-
patterns. 2007. url: http://www.ibm.com/developerworks/java/
library/j-ap11297/index.html (cit. on pp. 16–18).

[6] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous
Integration: Improving Software Quality and Reducing Risk (The Addison-
Wesley Signature Series). Addison-Wesley Professional, 2007. isbn:
0321336380 (cit. on pp. 3, 7, 9, 40).

58

http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_faq.html
http://dblp.uni-trier.de/db/conf/icst/icstw2011.html#AmalfitanoFT11
http://dblp.uni-trier.de/db/conf/icst/icstw2011.html#AmalfitanoFT11
http://dblp.uni-trier.de/db/conf/icsm/icsm2012.html#AmalfitanoFTCI12
http://dblp.uni-trier.de/db/conf/icsm/icsm2012.html#AmalfitanoFTCI12
http://www.ibm.com/developerworks/java/library/j-ap11297/index.html
http://www.ibm.com/developerworks/java/library/j-ap11297/index.html

Bibliography

[7] Martin Fowler. Continuous Integration. 2006. url: http://martinfowler.
com/articles/continuousIntegration.html (cit. on pp. 7, 9, 11).

[8] Martin Fowler. DeploymentPipeline. 2013. url: http://martinfowler.
com/bliki/DeploymentPipeline.html (cit. on p. 40).

[9] Martin Fowler. FeatureBranch. 2009. url: http://martinfowler.com/
bliki/FeatureBranch.html (cit. on pp. 11–13).

[10] Google. Activity. url: http://developer.android.com/reference/
android/app/Activity.html (visited on 04/14/2014) (cit. on p. 29).

[11] Google. Building and Running. url: http://developer.android.com/
tools/building/index.html (visited on 04/14/2014) (cit. on pp. 27,
28).

[12] Google. Creating a Fragment. url: http://developer.android.com/
guide/components/fragments.html (visited on 10/28/2014) (cit. on
pp. 28, 30).

[13] Google. Using the Emulator. url: http://developer.android.com/
tools/devices/emulator.html#limitations (visited on 11/13/2014)
(cit. on p. 31).

[14] Jesper Holck and Niels Jørgensen. “Continuous Integration and Qual-
ity Assurance: a case study of two open source projects.” In: Aus-
tralasian J. of Inf. Systems 11.1 (2003). url: http://dblp.uni-trier.
de/db/journals/ajis/ajis11.html#HolckJ03 (cit. on p. 19).

[15] Jez Humble. Continuous Delivery with Jez Humble. 2012. url: http:
//www.youtube.com/watch?v=IBghnXBz3_w&feature=youtu.be&t=

11m42s (visited on 11/27/2014) (cit. on p. 11).

[16] Jez Humble and David Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. 1st. Addison-
Wesley Professional, 2010. isbn: 0321601912, 9780321601919 (cit. on
pp. 19, 40).

59

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/DeploymentPipeline.html
http://martinfowler.com/bliki/DeploymentPipeline.html
http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureBranch.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/tools/building/index.html
http://developer.android.com/tools/building/index.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/tools/devices/emulator.html#limitations
http://developer.android.com/tools/devices/emulator.html#limitations
http://dblp.uni-trier.de/db/journals/ajis/ajis11.html#HolckJ03
http://dblp.uni-trier.de/db/journals/ajis/ajis11.html#HolckJ03
http://www.youtube.com/watch?v=IBghnXBz3_w&feature=youtu.be&t=11m42s
http://www.youtube.com/watch?v=IBghnXBz3_w&feature=youtu.be&t=11m42s
http://www.youtube.com/watch?v=IBghnXBz3_w&feature=youtu.be&t=11m42s

Bibliography

[17] GitHub Inc. refactor versionName. url: https://github.com/Catrobat/
Catroid/pull/1023 (visited on 08/04/2014) (cit. on p. 40).

[18] Gradleware Inc. What is Gradle? url: http://www.gradle.org/ (vis-
ited on 04/14/2014) (cit. on p. 52).

[19] OpenSignal Inc. Android Fragmentation Visualized. 2013. url: http://
opensignal.com/reports/fragmentation-2013/ (visited on 04/14/2014)
(cit. on p. 26).

[20] Square Inc. Spoon. url: http://square.github.io/spoon/ (visited
on 04/28/2014) (cit. on p. 55).

[21] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. “Real
Challenges in Mobile App Development.” In: ESEM. IEEE, 2013,
pp. 15–24. isbn: 978-0-7695-5056-5. url: http://dblp.uni-trier.
de/db/conf/esem/esem2013.html#JoorabchiMK13 (cit. on p. 32).

[22] B. Kirubakaran and V. Karthikeyani. “Mobile application testing -
Challenges and solution approach through automation.” In: Pattern
Recognition, Informatics and Mobile Engineering (PRIME), 2013 Interna-
tional Conference on. Feb. 2013, pp. 79–84. doi: 10.1109/ICPRIME.2013.
6496451 (cit. on pp. 32, 33).

[23] Lasse Koskela. Test Driven: Practical Tdd and Acceptance Tdd for Java
Developers. Greenwich, CT, USA: Manning Publications Co., 2007. isbn:
9781932394856 (cit. on pp. 14, 15).

[24] Felix Krueger. “Field Report: Test Automation and Quality Assurance
in the Context of Multi-Platform Mobile Development.” In: Testing
Experience 27 (2014), pp. 27–29 (cit. on pp. 56, 57).

[25] Prasad Ramanujam, Alisha Bakhthawar, and Mathangi Pollur Nott.
“Demystifying DevOps Through a Tester’s Perspective.” In: Testing
Experience 27 (2014), pp. 50–52 (cit. on p. 56).

60

https://github.com/Catrobat/Catroid/pull/1023
https://github.com/Catrobat/Catroid/pull/1023
http://www.gradle.org/
http://opensignal.com/reports/fragmentation-2013/
http://opensignal.com/reports/fragmentation-2013/
http://square.github.io/spoon/
http://dblp.uni-trier.de/db/conf/esem/esem2013.html#JoorabchiMK13
http://dblp.uni-trier.de/db/conf/esem/esem2013.html#JoorabchiMK13
http://dx.doi.org/10.1109/ICPRIME.2013.6496451
http://dx.doi.org/10.1109/ICPRIME.2013.6496451

Bibliography

[26] R. Owen Rogers. “Scaling Continuous Integration.” In: XP. Ed. by
Jutta Eckstein and Hubert Baumeister. Vol. 3092. Lecture Notes in
Computer Science. Springer, 2004, pp. 68–76. isbn: 3-540-22137-9. url:
http://dblp.uni-trier.de/db/conf/xpu/xp2004.html#Rogers04

(cit. on pp. 20–25).

[27] Tina Schweighofer and Marjan Heričko. “Mobile Device and Tech-
nology Characteristics’ Impact on Mobile Application Testing.” In:
SQAMIA 2013 Software Quality Analysis, Monitoring, Improvement, and
Applications. Sept. 2013, pp. 103–108 (cit. on pp. 32, 33).

[28] John Ferguson Smart. Jenkins - The Definitive Guide: Continuos Integra-
tion for the Masses: also Covers Hudson. O’Reilly, 2011, pp. I–XXII, 1–380.
isbn: 978-1-449-30535-2 (cit. on p. 14).

[29] Venkatesh Sriramulu et al. “Mobile Test Automation: Preparing the
Right Mixture of Virtuality and Reality.” In: Testing Experience 27

(2014), pp. 46–49 (cit. on pp. 31, 32).

[30] Mike Wolfson and Donn Felker. Android Developer Tools Essentials:
Android Studio to Zipalign. O’Reilly Media, Inc., 2013. isbn: 1449328210,
9781449328214 (cit. on p. 25).

[31] Valera Zakharov. android-test-kit. url: https://code.google.com/p/
android-test-kit/wiki/Espresso (visited on 04/28/2014) (cit. on
p. 54).

61

http://dblp.uni-trier.de/db/conf/xpu/xp2004.html#Rogers04
https://code.google.com/p/android-test-kit/wiki/Espresso
https://code.google.com/p/android-test-kit/wiki/Espresso

