
 

 
Master’s Thesis 

 
 
 

The Use of Modern Controller Devices at 
Schools: Game-Based Learning with the 

Leap Motion  
 
 
 

Norbert Spot 
 
 
 
 
 
 
 

Institute for Information Systems and Computer Media (IICM), 
Graz University of Technology 

A-8010 Graz, Austria 
 
 
 
 
 
 
 

Supervisor: Assoc.Prof. Dipl.-Ing. Dr.techn. Martin Ebner 
 

Graz, November 2014 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATUTORY DECLARATION  

I declare that I have authored this thesis independently, that I have not used other than 

the declared sources / resources, and that I have explicitly marked all material which 

has been quoted either literally or by content from the used sources.  

 

 

Graz,          (signature)  

 



 

Acknowledgments  

 

 

I would like to express my gratitude to my supervisor Assoc.Prof. Martin Ebner for 

his support and guidance during the work on this thesis.  

 

I also wish to express my thanks to Silvana Aureli, without her help the small trial at 

the elementary school would not have been possible. 

 

I am also extremely grateful to my parents, who always support and stand behind me.  

 

Suzy, thank you for always pushing me to do better. 

 

 

Norbert Spot, November 2014 

  



 

Abstract 
 

 

 This thesis aims to present the current state of art in the field of gamification 

and game-based learning. A prototype is presented, which tries to show a possible 

way, how new technology devices might improve the learning process. We describe 

the development process of the application and the device for which it has been 

developed. Our device of choice is the Leap Motion Controller, a 3D infrared hand 

and finger-tracking sensor. The tools, which have been used to create the application, 

are detailed as well. Finally, the findings of a small-scale trial at an elementary school 

are discussed. The outcomes of the trial show, that kids really like the prototype and 

they had a lot of fun playing it. 

 

 

Keywords: Natural User Interface, gamification, game-based learning, Leap Motion, 

controller, unity3d, hand tracking, tracking device, infrared camera, 3D camera, 

application 

  



 

Kurzfassung 
 

 

 Diese Arbeit versucht den aktuellen Stand der Forschung im Bereich von 

Gamification und Game-Based Learning zu präsentieren. Mit der Hilfe eines 

Prototyps soll gezeigt werden, wie neue Technologien den Lernprozess optimieren 

könnten. Wir beschreiben den gesamten Entwicklungsprozess, so wie das verwendete 

Gerät. Es handelt sich dabei um ein Leap Motion, welches ein 3D-Infrarot-Sensor 

besitzt für Hand- und Finger-Tracking. Im Rahmen der Arbeit wird ein 3D-Spiel 

entwickelt, welches die mathematischen Grundrechnungsarten üben helfen soll. Der 

Prototyp wird abschließend an einer Volksschule eingesetzt und es zeigt sich, dass die 

Schülerinnen und Schüler viel Freude bei der Verwendung haben. 

 

 

Stichwörter: Natural User Interface, Gamification, Game-Based Learning, Leap 

Motion, Controller, Unity3d, Hand tracking, tracking Gerät, Infrarot Kamera, 3D 

Kamera, 

  



 

Table of Contents 
 

 

 

1 Introduction ........................................................................................ 8 

2 Technology and Schools ................................................................... 10 

3 Gamification and Game Based Learning ....................................... 12 

3.1 Game-Based Learning .................................................................................. 19 

4 Natural User Interface ..................................................................... 23 

4.1 Multi-touch Interface .................................................................................... 25 

4.2 Touch-less Interface ...................................................................................... 26 

5 Innovative Input Devices ................................................................. 27 

5.1 The Leap Motion Controller ........................................................................ 29 
5.1.1 Inside The Leap Motion ..................................................................... 31 
5.1.2 Software Development Kit ................................................................. 33 
5.1.3 The Skeletal Tracking Model ............................................................. 36 
5.1.4 Gestures and Motion ......................................................................... 37 
5.1.5 Precision of the Leap Motion Controller ........................................... 40 
5.1.6 Leap Motion Showcase ...................................................................... 41 

6 Implementation ................................................................................. 52 

6.1 Unity3D .......................................................................................................... 53 
6.1.1 Unity Scripting ................................................................................... 59 
6.1.2 Unity Showcase ................................................................................. 62 

6.2 Leap Motion and Unity ................................................................................. 64 
6.2.1 How to Get Started ............................................................................ 65 

6.3 The Game ....................................................................................................... 68 
6.3.1 The Game Menu ................................................................................ 68 
6.3.2 The Virtual World .............................................................................. 72 
6.3.3 Navigation ......................................................................................... 73 



 

6.3.4 The Balloons ...................................................................................... 74 
6.3.5 Exercises ............................................................................................ 77 

6.4 Field Study ..................................................................................................... 78 

7 Conclusion ......................................................................................... 82 

8 Future Work ..................................................................................... 84 

9 References ......................................................................................... 85 

 

 



 8 

1  Introduction 
 

 

 Computers have evolved rapidly and become part of people’s everyday life. 

They spread into nearly every field of industry and entertainment. People use 

computers almost everywhere, at work, at home, at schools and universities. Usually 

if people talk about using a computer, we imagine someone sitting at a table, typing 

on a keyboard, moving around with the mouse or tapping the touchpad and staring at 

the computers screen. The way we interact with computers has not changed 

significantly since the 1960’s when these peripherals were invented.1 This is slowly 

changing though. Today, there are more and more innovative input devices coming 

out every year. They are different, and they aim to change the way we interact with 

different kinds of computers. These peripheries though, do not intend to replace the 

traditional keyboard-mouse setup. They are an addition, useful in diverse applications. 

Some of them represent a more natural way of human-computer interaction. Utilising 

such devices, developers can create applications, which instead of getting input by a 

keyboard and mouse, can track movement in front of the computer's screen, or sense 

touch. This more natural way of human-computer interaction enables a Natural User 

Interface (NUI). 

 The NUI has already become popular in different kinds of mobile devices like 

smartphones and tablets in the form of multi-touch displays. The NUI is actually one 

of the reasons why these devices became so popular. They are more natural to use. 

One can touch the screen to select items, manipulate images or other multimedia 

content. The real haptic feedback is probably the only thing, which is missing here 

(yet). However, the evolution of sensing technology has increased in the past few 

years. Technological advances in computer vision enabled computers to track the 

movements of the human body. 

 The goal of this thesis is to make use of a device, which enables a NUI, and 

show a way how it could possibly improve, and make the learning process more 
                                                
1 http://en.wikipedia.org/wiki/History_of_the_graphical_user_interface (last visited 2014.8.7) 



 9 

interesting, more fun and more natural. Therefore, a prototype of an application has to 

be developed, which is intuitive enough to be easily used by children in an elementary 

school. But at the same time, it had to be challenging enough to have an effect on their 

learning behaviour. For this purpose, different devices were considered, and the one, 

which has been chosen for this thesis is the Leap Motion Controller, announced in 

2012 and released in July 2013. With the help of its Software Development Kit (SDK) 

and proper software design, it is capable to provide a really natural User Interface 

(UI).  

  



 10 

2  Technology and Schools 
 

 

 Computers and technology are in use in almost every aspect of people’s life 

nowadays. Technology helps people to do their job better, faster and perhaps 

sometimes easier then before. It is reasonably to believe, that technology should help 

to improve teaching and learning in schools too. However, simply providing access to 

teachers and students to technology doesn’t necessarily ensure that it will enhance 

teaching and learning and result in improvements. The rapid growth of technology in 

every field has helped computers to become an everyday tool for teachers and 

children at school. Most of the students have now access to computers and the Internet 

not only at home but also at the school, or even in the classroom. For students without 

home Internet access, many schools allow students to use computers outside of 

regular school hours. According to Noeth & Volkov (2004) however, schools may not 

always use computers in the best way to enhance learning. In their report about the 

effectiveness of technology in schools they mentioned, that technology may help 

organise and provide structure for material to students, that it can help students, 

teachers and parents to interact anytime and anywhere. Students can use computers to 

simulate, visualise, and interact with scientific structures, processes, and models. 

Experts believe that to make technology more widely spread and used at schools in 

different classes, we have to enhance the technology skills of teachers and 

administrators (Noeth & Volkov, 2004). One of the most critical elements of 

technology use, is how well are those who use it prepared and how is their skill level. 

According to Means (2000), teachers should have at least basic technology skills and 

be able to use technology for their personal productivity and to support learning of a 

given subject. Teachers should be able to design and adapt learning activities 

supported by technology. As Noeth & Volkov (2004) state, in the United States, for 

example, many schools have taken first measures to provide guidelines for how to use 

educational technology more effectively, and the majority of these schools have 

developed standards for teachers and administrators that include technology. 

Technology at schools has first been used as an instructional delivery medium, but it 



 11 

has become an integral part of the learning environment as whole. Noeth & Volkov 

(2004) list four distinct purposes how technology is serving at schools: 

• To teach, drill, and practice using increasingly sophisticated digital content. 

• To provide simulations and real world experiences to develop cognitive thinking 

and to extend learning.  

• To provide access to a wealth of information and enhanced communications 

through the Internet and other related information technologies. 

• As a productivity tool employing application software such as spread sheets, 

databases, and word processors to manage information, solve problems, and 

produce sophisticated products. 
 

 Despite schools started to utilise computers heavily, the evidences are mixed 

as to whether overall student performance has increased notably, or the achievement 

gap has visibly narrowed as a result. Research reviews collected by Noeth & Volkov 

(2004) for their report have generally concurred, that the use of computers combined 

with traditional instructions can increase the students learning performance in the 

traditional curriculum and basic skills area. Furthermore, it produces higher academic 

achievement in many subject areas then do traditional instructions alone. The reviews 

reveal, that with the use of computers, students learn more quickly and with greater 

retention, they like learning with computers, and their attitude towards school and 

learning in general is positively affected. Dede (2002) mentioned that the important 

thing about the effectiveness of learning with technology is not how sophisticated the 

technology itself is, but the way its capability motivates its users. 

  



 12 

3  Gamification and Game Based Learning 
 

 

 Over the past few years, the term gamification has gained significant attention 

and has raised a lot of interest in industry, as well as on academic ground. As Huotari 

(2012) points it out, the term ‘Gameification’ was first used in 2008 in a blog post2 by 

Brett Terrill. He described it as ‘taking game mechanics and applying them to other 

web properties to increase engagement.’ The term has finally achieved significant 

attention in the second half of 2010 and it got its current form ‘gamification’. In its 

meaning, it refers to ‘the use of game design elements in a non-game contexts’ 

(Deterding et al., 2011) with the goal of making the given task more engaging, more 

fun and more motivating. The Oxford Dictionary of English (British English) 

describes the term as following: ‘the application of typical elements of game playing 

(e.g. point scoring, competition with others, rules of play) to other areas of activity, 

typically as an online marketing technique to encourage engagement with a product or 

service: gamification is exciting because it promises to make the hard stuff in life fun.’ 

These game elements are typically not the centre of the system, but they tend to 

motivate the user to actually use it. To say it in an easy language, gamification is the 

use of different achievements, badges, stars, points etc. and various leader boards 

where one can compare his or her performance with the others. If we use these 

elements in any context, we gamify.  

 There is a good example to the use of gamification coming up in numerous 

research papers, which describes exactly what the term is about. It is the service called 

Foursquare. Foursquare is a social network, which enables its users to check-in in 

different venues, places, parks, cities or even buildings, literally anywhere where an 

entry has been created for a place, or the user can create a new one based on his or her 

position. The check-in is only allowed though, when the user actually is at the given 

place, which is determined by the smartphones GPS (Global Positioning System) 

data. Being a social network, the user can add friends, and can see where they are, 

                                                
2 http://www.bretterrill.com/2008/06/my-coverage-of-lobby-of-social-gaming.html (last visited 
2014.10.28) 



 13 

where they check-in. The check-ins become status updates, where the user can add a 

short text, add friends he or she is with, and post the status to other social networks 

like Facebook or Twitter. For every check-in, the user earns points. And here comes 

gamification in. There are bonus points if the user checks in at a place where his or 

her friends have never been to yet (never been to as never checked in at). Moreover, 

the user can earn badges for the check-ins. For example he or she earns a badge for 

checking in at 5 different airports. The badge can be then added to the status so that 

others can see it too. There are charts presented to the user after some check-ins, 

which inform about how the users’ check-ins perform comparing to his or her friends. 

This point and badge reward system encourages users to make more and more check-

ins. People want their friends to know what a cool place are they at. It may start a 

competition among some friends, as one wants to do better as the other one, wants to 

check-in on cooler places, earn fancy badges as first amongst friends. This gamified 

system makes an otherwise simple product much more fun to use. It motivates it’s 

users to check-in at that other coffee shop, restaurant, train station and so on, to be 

awarded with a badge or with a higher rank. The motivation to check-in at different 

places leads to visiting and discovering new places by the user. Furthermore, users 

cannot only check-in, but they can leave tips on places for others. If someone has tried 

a new tasty meal at a restaurant for example, he or she can leave a tip, something like 

a small review on that given restaurants page. These reviews are then shown for other 

users and so they can get an idea about the given venue, and maybe also decide 

whether it is worth to go there. These venues can then award their customers who 

check in at the place with e.g. discounts or other awards. This is another gamified 

marketing step, which motivates the user to use the service. The fact, that Foursquare 

uses a localisation system to allow users to check-in means, that it has to know the 

location of places. This led to becoming a large database of different points of 

interest. Places are shown on a map and people can search for any place Foursquare 

knows about. Let’s say users can find the closest Thai restaurant or burger joint or any 

other place in Foursquare’s database. The service has been launched in 2009 and it 

quickly became a popular toy for people to show off where they are, and a tool for 



 14 

people to find interesting places nearby. Up to date, there was over 6 billion check-ins 

made by more than 50 million users around the world.3 Foursquare has used proven 

game mechanics to make their service more engaging. Just like successful commercial 

big name video games, which attract users because they are fun to play and engaging. 

We definitely can not state, that Foursquare has become so popular only thanks to its 

gamified system, at least we have not found any scientific proof of that, but it 

certainly had a huge influence on the services’ popularity. 

 Foursquare has shown, that there might be a place for gamification in a lot of 

different non-game contexts of everyday life. In our work we focus on gamification in 

educational context, where teachers, just like e.g. video games, also try to motivate 

their students to learn more to perform better. As Magerko et al. (2008), point out: 

‘Students who are more motivated are more likely to learn’. This motivation can be 

achieved in different ways, one of which is the use of various learning games in 

classes.  

 It might be the same, or similar in other countries too, but in Slovakia, first 

grade elementary school students do not get marks for their performance. To motivate 

kids to learn, and to get used to another kind of a reward system, they get stamps if 

they perform well. Kids will not get a lower mark if their performance does not meet 

the requirements, they just will not get any stamp, or will get a stamp with a lower 

rank. These stamps are usually two with some not abusing pictures of animals. If a kid 

does not get a stamp for its let’s say homework, it will motivate him or her to perform 

better next time to get a reward in the form of a stamp, which it can then show to the 

parents. This form of motivation appears to work well, and prepares kids for the 

regular reward system of marks. It is not easy though, to keep up with this motivation, 

to hold interest in somewhat higher grades.  

 No matter how popular gamification has become in the past few years, 

according to some research studies, it is not the solution to make activities more 

motivating and engaging. The use of a gamifying concept does not necessarily mean 

success right away. As Rojas et al. (2013) state ‘there are many examples where 

gamification is ineffective and does not lead to an increase in motivation and 

                                                
3 http://foursquare.com/about (last visited 2014.10.9) 



 15 

ultimately productivity/performance.’ This fact was observed by Montola et al. (2009) 

on a photo sharing service. After adding game design elements in the form of 

achievements, most of the users disliked this kind of change to the service and showed 

indifference towards the intervention. According to Montola et al. such bad influence 

on the users’ motivation has been attributed to their past experiences with games in 

addition to the not ideal design of gamification elements. From this fact we can 

conclude, that it is not the gamification’s fault as a principle, but a bad design 

strategy. Mollick et al. (2013) stated that a properly designed gamification strategy 

certainly can add value, and it supports the given activity, which is being gamified. 

When a gamification strategy fails, the credit for it more than likely goes to the poor 

or inadequate design decision. 

 Gamification is something relatively new and it is used in a large number of 

different contexts. When analysing its implementation it is hard to define those 

factors, which make gamification to actually work. It is hard to define those factors as 

well, which need to be adjusted to always get that positive effect of gamification, 

which we wanted. According to Deterding (2011), this is due to the fact, that gamified 

systems are kind of hybrid systems. They are neither a pure functional software for 

example, nor a full-fledged game. Therefore, there are currently no well-established 

principles for designing them. To standardise the development of a gamified system 

Rojas et al. (2013) propose a gamification framework inspired by the framework 

created by the Medical Research Council (2000). The framework of MRC aims to 

improve health by introducing a system for designing and evaluating complex 

interventions. It was developed to help replicate and adapt medical interventions in 

different medical contexts. According to the MRC, their framework ‘should not be 

read as an inflexible to do list'. It should be taken as an advice. Since the creation of 

the framework, it has been used with success in many different health related fields. 

 Rojas et al. (2013) propose two types of gamification interventions. The first 

one is gamification for development and the other one gamification for enhancement. 

Gamification for development refers to the use of gamification while creating a new 

tool or platform to be used for a given purpose. Gamification for enhancement on the 

other hand, refers to the enhancement of an already well-established activity. The aim 

of this type of gamification is to make a normal activity more engaging, more fun and 



 16 

to motivate the person involved performing better and ultimately to the best of his or 

her ability.  

 Rojas et al. took the MRC framework, and adapted it in that way that it suits 

the needs of gamification research. Their final proposed framework consists of four 

stages: 

 Stage A (Theory and Modelling): This stage consists of two phases. In the first 

one the one who uses the framework should decide the type of gamification 

intervention (e.g. gamification for development, gamification for enhancement), so 

the purpose of research should be defined. After the definition of the purpose of the 

work, a literature research is necessary to be able to emphasise why the gamification 

of the given field would be beneficial. According to Rojas et al. (2013) this stage of 

research is often overlooked ‘due to the fact that investigators believe that given the 

novelty of the field, newly designed interventions will not have any reference or 

evidence to be supported by’. Many complex interventions however have not been 

investigated yet, therefore extending the research to other related fields, where similar 

interventions may have been used before, makes sense to prevent the development of 

tools that already exist, or to prevent attempts to enhance activities that are already 

effective enough, so that gamifying them will not bring any benefits. The modelling 

process of this stage combines the given context and the evidences found in the first 

phase to design the best intervention.  

 Stage B (Piloting): This stage can be divided into more steps which begin with 

analysing of the feasibility, acceptability and cost-effectiveness of the proposed 

intervention, and end with a pilot-study which should uncover any methodological 

issues.  

 Stage C (Evaluation): In this stage, the effectiveness of the intervention 

designed in the previous stages is determined. This information is then used to justify 

the real world implementation of the given intervention. Rojas et al. (2013) have 

observed that ‘research within the gamification field often lacks real justification to 

implement the designed intervention or created tool in the real world based on 

objective results’. 

 Stage D (Implementation): Final stage. In this stage, the intervention 

developed in the first three stages is implemented in real world. At this stage however, 



 17 

designers of the gamification intervention should be still careful, as many problems 

may arise when a system from a controlled environment of an evaluation study is 

transferred into the real world. 

 According to Rojas et al. (2013) their proposed framework should be 

considered when designing a new gamification system either to improve or enhance 

an existing activity, or developing a gamified application. They believe in the validity 

of the proposed framework, however it is still difficult to document, evaluate and 

replicate the outcomes of interventions within different contexts, therefore it cannot 

be stated that this approach works as expected in every field.   

 

 Deterding et al. (2011) in the definition of gamification use the term ‘game 

elements’. What is the definition of game elements one cloud ask, or even what the 

definition of a game is. Reeves & Read (2009) identified the ‘Ten Ingredients of Great 

Games’ as following: Self representation with avatars; three-dimensional 

environments; narrative context; feedback; reputations, ranks, and levels; 

marketplaces and economies; competition under rules that are explicit and enforced; 

teams; parallel communication systems that can be easily configured; time pressure. 

All of these elements however, can be found outside of games too. Standing alone, 

none of them would be identified as gameful or game specific. These are not 

requirements though. Games differ vastly. Game elements like avatars for example, 

may be common for action or role-playing games, but not necessarily for other types 

of games.   

 By introducing game elements to an activity or a system in any context, we 

gamify the given context. But as well as there are no methods yet for developing a 

gamified system, there are also no well-established methods for evaluating, testing 

their effectiveness. Hamari et al. (2014) attempted to analyse the effectiveness of 

gamification by going through 24 studies on gamified systems, a majority of which 

were done in an educational context. They found out, that the majority of studies 

reported positive influence of gamification on the given context, and while these 

findings seem to be promising, they are still sceptical and point out, that these results 

solely rely on user evaluation and some studies lack on control groups, meaning 



 18 

actual influence on behaviour has not been examined. Hamari et al. (2014) propose 

that future studies on gamification should be done using more rigorous methods. 

Given that the majority of studies was conducted in an educational context, it remains 

unclear how effective gamification is in other contexts. This fact however has been 

tried to be cleared by Zuckerman et al. (2014), who attempted to evaluate the 

effectiveness of gamification in the context of physical activity. They have developed 

a research prototype called ‘StepByStep’ an accelerometer based application, a step 

counter, which aims to motivate its users to bring more physical activity, more steps 

into their everyday life. They state, that presumably, gamification does make physical 

activity more enjoyable and motivates users to be more active. ‘However, due to 

contradicting findings from prior studies, and lack of systematic research in the field, 

this assumption cannot be supported by the existing literature.’ (Zuckerman et al., 

2014) 

 Barata et al. (2013), in a study, which took five years to accomplish, attempted 

to explore how gamification could be applied to education to improve student 

engagement. In their study they gamified a college course by including experience 

points, levels, badges, challenges and leader boards, typical game elements. The first 

three years of the study the course was non-gamified. The last two years were 

gamified. To find out what an impact gamification had on learning experience, they 

compared data from gamified and non-gamified years using different performance 

measures. In their study, they aimed to answer questions like ‘How did the gamified 

experiment affect the grades?’ or ‘How was student engagement affected by the 

second gamified edition of the course?’ After asking students for feedback, Barata et 

al. found out, that the opinions of students were consistent. They found the gamified 

course more interesting and motivating than other courses, and that it would be a good 

idea to extend the gamified experience to other courses. Barata et al. state, that 

students were mildly feeling they were playing a game. That means there is still room 

for improving the game-like feeling. With the gamified course, students seem to score 

better on grades, and the differences between their grades seem to decrease. Lecture 

attendance seems to be unaffected though. The results also showed, that students 

participated more, and were more active in the forums. They also paid more attention 

to the lectures’ slides, which according to Barata et al. suggests deeper engagement. 



 19 

Their study also suggests, that even distribution of challenges over the term and their 

fair rewarding might significantly improve student participation and performance.  

 Although some studies, due to the lack of real scientific evaluation may be still 

sceptical about the improvements and the influence of gamification on the fields it is 

used in, based on the positive outcomes of numerous research studies, and the success 

of services like Foursquare, we believe that gamification has a great potential and can 

significantly improve the learning experience, as well as it can bring a benefit in other 

fields or contexts too.  

 

 

3.1  Game-Based Learning 
 

 

 When gamification could improve the learning experience introducing game 

elements into the educational process, how is it with introducing games to the learning 

process? There are numerous research studies, which refer to the term game-based 

learning. To understand what this term is about and how could this improve or make 

learning more interesting, we can begin with the definition of the ‘classic game 

model’ by Juul (2015): ‘A game is a rule-based formal system with a variable and 

quantifiable outcome, where different outcomes are assigned different values, the 

player exerts effort in order to influence the outcome, the player feels attached to the 

outcome, and the consequences of the activity are optional and negotiable.’ Previous 

studies have shown, that playing games may support the development of certain 

strategies and skills such as problem-solving, decision-making, understanding 

complex systems, planning or data handling, no matter if they were especially made 

for educational purposes or not. We have to bear in mind though, that there is a 

significant difference between games for entertainment and games for learning. As 

Magerko et al. (2008) point it out, players of entertainment games have the choice to 

play games which suit their taste, while students who use digital games for learning 

typically do not have a large number of games they could choose from. Moreover, 

games made for educational purposes are typically not made by big name game 

design studios, may have lower quality, thus they may not really be engaging. 



 20 

Magerko et al. (2008) contend that the need of different game types of different 

students can be addressed by developing adaptive games, which would adapt to the 

players’ gaming style and learning needs. In their study they present a prototype of 

such a game, which targets the teaching of microbiology. The prototype is called 

‘Super Covert Removal of Unwanted Bacteria’, or S.C.R.U.B. for short, and it ‘is a 

mini-game that is designed to teach principles about ways of preventing the spread of 

microbial pathogens.’ The prototype game teaches concepts like how to most 

effectively remove microbes from our hands, how soap, anti-biotic soap and alcohol-

based hand sanitisers work on microbes or prevention strategies for avoiding 

infections. To better suit the needs of different learner types of students, Magerko et 

al. designed the game the way that players can be assigned a game adaptation in 

multiple ways. The first one offers an initial customisation screen to the players, who 

can then choose their preferred style of interface. Another approach asks the players 

to complete a questionnaire with multiple-choice questions, which according to 

Magerko et al. are designed ‘to help provide evidence of preferred learning and play 

experiences for the individual player’. Once the player completes the questionnaire, 

he or she can begin to play. Magerko et al. state that the ‘preliminary results from 

S.C.R.U.B. show promise, but hardly hearken to a rigorous educational evaluation’. 

They point out that research in games for learning should be treated as rigorously as 

approaches in more traditional education research. Therefore, they plan to do a serious 

study on the pedagogical benefits of their prototype.  

 Numerous studies commonly assume, that computer games are a useful tool 

for education because students find them motivating. Nicola Whitton (2007) questions 

this assumption. In her paper, she describes a study on motivational potential of using 

computer games in education, in this case in higher education. To explore students’ 

motivation for game playing for leisure and study, she carried out a series of in-depth 

interviews. These were followed by a survey examining students’ motivation to play, 

and to learn with games. The results of the study are particularly interesting and they 

reflect the findings of our small-scale evaluation of our prototype described in a later 

chapter. The results show, that it is clearly not the case that all the students find games 

for learning or game-based learning motivational. However, despite this fact, the 

perceptions of game-based learning were positive, even from those who considered 



 21 

themselves non-game players, says Whitton. All the participants reported, that they 

would consider the idea of learning with games if it would be the most effective way 

to learn something. According to Whitton (2007), games have the potential to be 

effective environments for learning, if they are experiential, active, problem-based 

and collaborative. 

 Opinions, whether gamification and game-based learning is motivational 

enough to be scientifically approved, thanks to its positive influence on the learning 

process, differ. Whitton (2007) points out, that ‘simply to rely on the fact that games 

are motivational is not in itself a sufficient rationale for using a game’ for learning. 

The majority of studies however in the end conclude, that gamification, game-based 

learning or learning with games does, or they at least say that it might improve the 

learning process. In the most recent report we found, that Mark Griffiths (2014) 

claims that ‘playing video games is good for your brain’, and he explains how. 

According to him, the purported negative effects of video games like addiction, 

increased aggression or health consequences like obesity get far more coverage then 

their benefits. There is however an increasing number of studies which show that 

games can be integrated into education or which reveal how games can improve 

reaction times, hand-eye coordination skills or even spatial visualisation ability, such 

as mentally rotating and manipulating two and three dimensional objects. Griffiths 

(2014) also refers to a study in the Proceedings of the National Academy of Sciences 

by Bejjanki et al., which shows that the playing of action video games has a positive 

influence on performance in perception, attention, and cognition. In a series of 

experiments on a small number of gamers they report, that gamers of action games 

were better at perceptual tasks such as pattern discrimination than gamers with less 

experience with these kind of games. According to Griffiths (2014) ‘video games can 

be fun and stimulating, which means it’s easier to maintain a pupil’s undivided 

attention for longer’ and that ‘because of the excitement, video games may also be a 

more appealing way of learning than traditional methods for some’. Griffiths (2014) 

also points out, that thanks to video games there is an opportunity to develop 

transferable skills, or practice challenging or extraordinary activities such as flight 

simulators, or simulated operations. Moreover, referring to a study he reveals an 



 22 

interesting fact about children who played video games following chemotherapy. 

They need fewer painkillers than others.  

 Griffiths (2014) states that in addition to their entertainment value, games have 

great educational potential if they are specifically designed to address a specific 

problem or teach a specific skill. On the negative consequences of playing he says that 

these almost always involve excessive game players only, and that there is little 

evidence of negative health effects on people who are moderate game players. 

  



 23 

4  Natural User Interface 
 

 

 Since the first computers, which had a complex interface, and provided only a 

limited way of interaction in the form of some buttons, flashing lights and making 

different noises which all had their purpose, the human-computer interaction evolved 

significantly. The first easier and more comfortable way of human-computer 

interaction was the Command Line Interface (CLI), which enabled users to interact 

with the computer by typing in commands on a keyboard4. This interface is still 

heavily used though. Mainly on servers and on computers with UNIX-like Operating 

Systems (OS). The interaction with computers however, had to become more intuitive 

and easy to allow computers to spread out to the masses. The curious nature of the 

human kind with the help of technological advancement led to the development of the 

Graphical User Interface (GUI)5. The GUI with the help of graphical metaphors 

allowed users the use of complicated applications by exploring what they see on the 

screen. Britannica states6: ‘There was no one inventor of the GUI; it evolved with the 

help of a series of innovators, each improving on a predecessor’s work.’ The first 

commercially successful computer with a GUI was the Macintosh developed by 

Apple. It was introduced in 1984. At that time, some critics say it was more suitable 

for children than for professionals and that the latter would continue to use the old 

CLI. The GUI of the first Mac utilised overlapping windows, rather than tiling the 

screen, and used a desktop metaphor, in which files looked like pieces of paper, and 

file directories looked like file folders. The user could delete files and folders by 

dragging them to a trashcan icon on the screen. 

 The computer mouse was also introduced with the GUI, which allowed to 

move a cursor and to point on any item on the screen. Clicking with the mouse on an 

item in this case performs the command execution. This is the way we interact with 

                                                
4 http://en.wikipedia.org/wiki/Command-line_interface (last visited 2014.10.26) 
5 http://en.wikipedia.org/wiki/Graphical_user_interface (last visited 2014.10.26) 
6 http://global.britannica.com/EBchecked/topic/242033/graphical-user-interface-GUI (last visited 
2014.10.26) 



 24 

computers today. However, the development in recent years is directed to a more 

natural way of using computers, which is called Natural User Interface (NUI).  

 With a Natural User Interface often bears in mind the promise of intuitive 

interactions. We have used the term ‘more intuitive’ on purpose because when it 

comes to what it means to be intuitive, the answer is not that straightforward. People 

who have used a not that well designed motion control interface can tell, that simply 

to use the motions of the human body to control an interface doesn’t necessarily 

makes it ‘intuitive’ or ‘natural’. As Plemmons & Mandel (2014) point it out in their 

Introduction to Motion Control, when describing an intuitive experience, one often 

hears that it means that ‘one can just sit down and start using it’ (Plemmons & 

Mandel, 2014). They say that ‘these interfaces are learnable. They have the right 

instructions, tutorials, visual affordances, and feedback to help determine how to use 

it. To be intuitive, an interaction must be learnable.’ (Plemmons & Mandel, 2014) One 

can learn a lot of things though. Even the most complicated things seem learnable to 

some. Intuitive interaction needs to be more than that. They need to be 

understandable. ‘Understandability is critical to an intuitive experience’ (Plemmons & 

Mandel, 2014). Another thing what we could often hear of an intuitive design is that 

it’s ‘mindless’. That means, we don’t really think about what we are doing anymore 

or how we do it. Our actions become a habit over time, part of our routine. Plemmons 

& Mandel (2014) compare this to when people first learn to drive. It takes a lot of 

effort to some at the beginning, but it is learnable and understandable, and it becomes 

a habit. For most daily drivers the act of driving is so intuitive, it almost becomes 

instinctual. Intuitiveness is subjective, though. What is intuitive to one person may be 

foreign to another. So the essential part of designing an intuitive interface is first to 

understand who are we designing for. Beyond intuitiveness, there are a number of 

other factors that have an influence on the application experience. Like ergonomics 

and reliable gesture detection can make the experience either to stand out, or burrow it 

completely. 

 To sum things up, an intuitive interface is: 

   - learnable 

   - understandable 

   - habitual 



 25 

In this thesis we will try to conform to these and we will try to create an intuitive 

natural user interface for our motion-controlled application. 

4.1  Multi-touch Interface 
 

 

 
Image 1 - Multi touch 

 

 The first real application of NUI is represented by the touch interface. This 

interface evolved to a modern multi-touch interface (illustrated on Image 1) used in 

today’s smartphones and tablets. The first device, which introduced a multi-touch 

interface, was the iPhone by Apple released in 2007. ‘The device’s most revolutionary 

element was its touch-sensitive multi-sensor interface. The touch screen allowed users 

to manipulate all programs and telephone functions with their fingertips rather than a 

stylus or physical keys. This interface — perfected, if not invented, by Apple — 

recreated a tactile, physical experience; for example, the user could shrink photos with 

a pinching motion or flip through music albums using a flicking motion.’ 

(Britannica7) These predefined motions are called gestures. Devices equipped with 

multi-touch screens usually support a couple of gestures allowing the user to 

intuitively do a panning, zoom, rotate, drag objects or flip through pages of 

documents by flicking. Such gestures are based on natural finger motions giving an 

increased natural feel to the final interaction. Thus the multi-touch interface represents 

a more intuitive way of human-computer interaction than using the mouse. 

 

 

                                                
7 http://www.britannica.com/EBchecked/topic/1326453/iPhone (last visited 2014.10.22) 



 26 

4.2  Touch-less Interface 
 

 

 
Image 2 - Minority Report 

 

 With the invention of sensors allowing real-time depth sensing a new kind of 

interface design (illustrated on Image 2) — only seen in the sci-fi movies so far, like 

Minority Report8 from 2002 directed by Steven Spielberg — became realisable. This 

additional depth information allowed computer vision researchers to detect what’s 

going on in front of the computer in three-dimensional space (3D). This advantage 

made the creation of algorithms such as Skeletal Tracking, Face Detection or Hand 

Tracking easier, enabling computers to understand body movements and leading to 

the creation of a new way of human-computer interaction called Touch-less Interface. 

The Skeletal Tracking is able to track body motion enabling the body language 

recognition. The Face Tracking extends it by the recognition and identification of 

facial mimics. The Hand Tracking enables finger tracking and hand gesture 

recognition. 

  

                                                
8 http://www.imdb.com/title/tt0181689/ (last visited 2014.10.20) 



 27 

5  Innovative Input Devices 
 

 

 For the purposes of this thesis, we have considered the use of a couple of 

devices. The goal was to create an e-learning application, which gets its input from a 

new, innovative input device. The device should provide an interesting environment, 

unlike the usual keyboard-mouse or joystick/gamepad setup.  

 

 
Image 3 - Makey Makey 

 

The first such device on our list was MaKey MaKey9 seen on Image 3. The 

devices name is a word play from the words ‘make’ and ‘key’. Essentially it’s a 

printed circuit board with a micro controller running Arduino Leonardo firmware. It 

uses the Human Interface Device (HID) protocol to communicate with the computer, 

and it can send key presses, mouse clicks, and mouse movements. For sensing closed 

switches on the digital input pins, it’s engineers use high resistance switching to make 

it so that we can close a switch even through materials like the human skin, leaves, 

and play-doh. That means we can create buttons from play-doh or just even draw a 

                                                
9 http://www.makeymakey.com (last visited 2014.9.28) 



 28 

joystick with a pencil and use our ‘do it yourself’ controllers to play a game. Or we 

can load up a piano software and instead of keyboard keys hook up the MaKey MaKey 

to bananas so that they become the piano keys. More in detail, the developers use a 

pull-up resistor of 22 mega ohms. This technique attracts noise on the input and to 

save money on hardware, which is a key element to make the device as cost efficient 

as possible, they use a moving window averager to lowpass the noise in software 

instead. On the board itself there are six inputs on the front, which can be attached to 

via alligator clips, soldering to the pads, or any other method. There are another 12 

inputs on the back, 6 for keyboard keys, and 6 for mouse motion, which are accessible 

with jumpers via the female headers, paper clips, or by alligator clips creatively 

around the headers. By reprogramming the Arduino environment we can use a 

different set of keys or change the behaviour of the device. 

 

 
Image 4 - Touch Board from Bare Conductive 

 

Another device on the list was the Touch Board10 from Bare Conductive seen on 

Image 4. It’s a similar device to the MaKey MaKey capable of turning almost any 

material or surface into a sensor. It is designed as an easy-to-use platform for a huge 

range of projects, whether it’s painting a light switch on the wall, making a paper 

piano or creating a custom interactive surface. It plays together with Bare 

Conductive’s Electric Paint, which essentially is a non-toxic, air-drying, water-

soluble conductive paint. Works great on many materials including paper, plastic, 

                                                
10 http://www.bareconductive.com/shop/touch-board/ (last visited 2014.9.28) 



 29 

textiles and conventional electronics. With the Electric Paint, we can draw our own 

circuit, our own light switch or keypads and use those as sensors. 

 

 

5.1  The Leap Motion Controller 
 

 

 
Image 5 - Leap Motion 

 

The Leap Motion Controller (seen on Image 5) is a consumer-grade sensor 

developed by Leap Motion, designed to sense natural hand movements. It lets people 

to use the computer in a whole new way. To point, wave, reach, grab. To pick 

something up and move it. However, it doesn’t replace the keyboard, mouse, stylus, 

or trackpad. It works with them, and without special adapters. According to the 

company, with the Leap Motion11 software running, we just need to plug it into the 

USB port of a computer. But to make use of it, we need to use applications 

specifically developed for the device. As of September 2013 there were 95 

applications available through Airspace, the Leap Motion’s application store, which 

has been renamed as Leap Motion App Store12. These apps consist of games, 

educational and scientific apps, as well as apps for music and art.  

 The Leap Motion Controller is capable of sensing almost every little move we 

make with our hands and fingers, or even with tools (pen etc.) in our hand. More 

precisely, it’s 8 cubic feet (cca. 0,23m³) of interactive, three-dimensional space it can 

observe. The device tracks all 10 fingers up to 1/100th of a millimetre and it tracks 

                                                
11 https://www.leapmotion.com/product (last visited 2014.9.14) 
12 https://apps.leapmotion.com (last visited 2014.9.14) 



 30 

movements at a rate of over 200 frames per second. The company states that it's 

dramatically more sensitive than existing motion control technology. It has a super-

wide 150° field of view and a Z-axis for depth. The effective range of the Leap 

Motion Controller extends from approximately 25 to 600 millimetres above the 

device. This range is limited by how the IR light travels through space. Beyond a 

certain distance, it becomes much harder to detect the hand’s position in 3D. The 

intensity of the LEDs is limited by the maximum current provided by the USB 

connection. With the applications written for the controller, we can reach out and grab 

objects. Move them around in 3D. 

 ‘The Leap Motion Controller introduces a new gesture and position tracking 

system with sub-millimetre accuracy. In contrast to standard multi-touch solutions, 

this above-surface sensor is discussed for use in realistic stereo 3D interaction 

systems, especially concerning direct selection of stereoscopically displayed objects.’ 

(Weichert, 2013) The device is intended to be used with a minimal setup. It is 

designed for hand gesture and finger movement detection in interactive software 

applications. The sensor works by projecting infrared (IR) light upwards from the 

device and detecting reflections using monochromatic infrared cameras. 

 

  



 31 

5.1.1 Inside The Leap Motion 
 

 

 
Image 6 - Leap Motion, exploded 

 

 The Leap Motion (exploded illustration seen on Image 6) controller with its 

Application Programming Interface (API) delivers positions of predefined objects like 

fingertips, hands and tools in Cartesian space. The delivered positions are relative to 

the Leap Motion controller’s centre point, which is located at the position of the 

sensor’s infrared emitter in the middle. 

 
Image 7 - Leap Motion, LEDs and Cameras 

As shown on Image 7, the controller has three IR led light sources, or emitters, and 

two IR CCD cameras. Hence, making it a stereo optic system, so the Leap Motion can 

be categorised into optical tracking systems based on Stereo Vision. The LEDs emit 

infrared light with a wavelength of 850 nanometres, which is outside the visible light 

spectrum. Due to Leap Motion’s current patent pending, only insufficient amount of 

information of its software’s geometrical or mathematical frameworks is available. 

What we know though, is that despite popular misconceptions, the Leap Motion 



 32 

Controller doesn’t generate a depth map – instead it applies advanced algorithms to 

the raw sensor data.  

 While the potential of the Leap Motion’s technology is great, there are some 

drawbacks of it. Some reviewers criticised its motion sensitivity and the app control 

with the device. Particularly the lack of predefined gestures, or set meanings for 

different motion controls when using the device. This means, there is no standard way 

of controlling apps. No standardised gestures for given actions. There are different 

gestures used for the same action, such as item selection, in almost every app. The 

developers at Leap Motion are aware of some of the issues with the device, and 

planning solutions which include predefined motions and an improved skeletal 

tracking function of the hand and fingers. Leap Motion also released a set of 

Guidelines for menu design, user orientation, user experience and application asset 

and marketing.  

 One of the strengths of the Leap Motion Controller is how convenient it is to 

develop software for the device. It’s API delivers pre-processed data so developers 

don’t have to deal with raw data processing to locate hands and fingers. They get 

precise coordinates in Cartesian space, direction and normal vectors, hands and 

fingers count and position and more.  

 Due to the fact that the controller typically lies on a table, or one flat surface in 

front of the computer’s screen and tracks the users hands from below, it works good 

only so far the palm is in a horizontal position as seen on Image 8. Obviously, if we 

rotate our palm to vertical position with the fingers above each other as seen on Image 

9, the device can’t ‘see’, thus track those fingers from below. They are hiding each 

Image 8 - Leap Motion, horizontal palm Image 9 - Leap Motion, vertical palm 



 33 

other. The version 2 of Leap Motion SDK tries to fix this, with mixed results yet. 

Using another Leap Motion controller set up in a vertical direction could eliminate 

this fact completely, but the use of multiple controllers is not supported yet. Another 

thing, which could negatively affect the tracking quality, is the light environment of 

the room the device is used in, and smudges on the surface of the controller. Strong 

direct light could decrease the precision of the device or even blinding the device’s 

cameras, entirely disabling it’s tracking ability. The tracking gets jerky close to the 

edges of the tracking area. 

 The current Leap Motion controller is a first generation device and one of the 

first affordable consumer-grade tracking devices of it’s kind. It has its limits, but it 

gives us a nice preview on what could come next in the NUI field. 

 

 

5.1.2 Software Development Kit 
 

 

 The Software Development Kit (SDK) of the Leap Motion currently officially 

supports six programming languages, with many more community-created language 

bindings available. The officially supported languages are: C# and Unity, C++, 

Objective-C, Java, Python and JavaScript. The SDK supports all major Operation 

Systems including Windows 7+, Mac OS X 10.7+ and there is a beta-quality SDK for 

Linux. The Leap Motion SDK includes the entire library, code and header files 

required to develop applications and plugins for the tracking device. ‘The Leap 

Motion library is written in C++. Leap Motion also uses SWIG, an open source tool, 

to generate language bindings for C#, Java, and Python. The SWIG-generated 

bindings translate calls written in the bound programming language to calls into the 

base C++ Leap Motion library. Each SWIG binding uses two additional libraries. For 

JavaScript and web application development, Leap Motion provides a WebSocket 

server and a client-side JavaScript library.’ (http://developer.leapmotion.com) The 

Leap Motion detects and tracks hands and fingers placed within its field of view (seen 

on Image 10).  



 34 

 
Image 10 - Leap Motion, field of view 

 

It captures this data one frame at a time. Applications can use the Leap API to access 

this data. At the most basic level, the Leap Motion API returns the tracking data in the 

form of frames. Each of these frame objects carries a list of tracked items such as 

hands, fingers and tools, as well as objects representing detected gestures and overall 

motion data. In the version 2 of the SDK there is an Image API that allows access to 

the raw infrared image data from the sensor. The hierarchy of tracked entities starts 

with the hand object. The API provides information about the palm position and 

velocity, direction and normal vectors as well as orthonormal basis of a detected hand, 

the arm to which the hand is attached, and lists of the fingers and tools associated with 

the hand. There is an Arm object, which is a bone-like object that provides the length, 

width, and direction vector and wrist and elbow positions of an arm. When the elbow 

is not in view, the Leap Motion controller estimates its position based on past 

observations as well as typical human proportion. With the hand and arm detected, the 

API provides information about each finger on a hand. Vectors of the position of a 

fingertip and its velocity, the general direction in which a finger is pointing to and 

length and width of the fingers are provided by the API. The Bone object provides 

data about each fingers bones length and width and the joint positions. The finger 

characteristics are estimated based on recent observations and the anatomical model 

of the hand, if all or part of a finger is not visible or trackable. Fingers are identified 

by type name, i.e. thumb, index, middle, ring, and pinky. Moreover, the API can 

provide information about a tool held in the hand. A tool is a pencil-like object and it 

is typically longer, thinner and straighter than a finger. Only thin, cylindrical objects 



 35 

are tracked as tools. The Tool object provides the same detailed data for the tool as the 

Finger object for the fingers. 

 The Leap Motion API measures physical quantities with the following units: 

  Distance: millimetres 

  Time:  microseconds (unless otherwise noted) 

  Speed:  millimetres/second 

  Angle:  radians 

 

 The Leap Motion Software runs a service on Windows, or as a daemon on 

Mac OS X and Linux. It connects to the device through the USB bus. Leap-enabled 

applications access the service to get motion-tracking data. The SDK provides two 

varieties of API for getting this data: a native interface, and a WebSocket interface. 

These enable to create applications in several programming languages including 

JavaScript running in an Internet browser. 

 The native application interface allows creating foreground, and background 

Leap-enabled applications. The foreground application receives data from the service 

as long, as it has the Operating System’s focus. When it loses focus, the Leap Motion 

service stops sending data to it. The Leap-enabled background applications can 

request permission to receive data even when in the background. Such applications 

can be used e.g. for mouse control and inputs replacing the touch-panel.  

  



 36 

5.1.3 The Skeletal Tracking Model 
 

 

 
Image 11 - Hand skeleton 

 

 The Leap Motion SDK version 2 introduces a new skeletal tracking model that 

provides additional information about hands and fingers (illustration of a human hand 

skeleton seen on Image 11) and also improves overall tracking data. The Leap 

Motion’s developer website describes it as following: ‘By modelling a human hand, 

the Leap Motion software can better predict the positions of fingers and hands that are 

not clearly in view. Five fingers are always present for a hand and hands can often 

cross over each other and still be tracked. Of course, the controller still needs to be 

able to see a finger or hand in order to accurately report its position. Keep this in mind 

when designing the interactions used by your application. Avoid requiring complex 

hand ‘poses’ or subtle motions, especially those involving non-extended fingers.’ 

(http://developer.leapmotion.com, last visited 2014.11.28) 

 ‘The Leap Motion software uses an internal model of a human hand to provide 

predictive tracking even when parts of a hand are not visible. The hand model always 

provides positions for five fingers, although tracking is optimal when the silhouette of 

a hand and all its fingers are clearly visible. The software uses the visible parts of the 

hand, its internal model, and past observations to calculate the most likely positions of 

the parts that are not currently visible. Note that subtle movements of fingers tucked 



 37 

against the hand or shielded from the Leap Motion sensors are typically not 

detectable.’ (http://developer.leapmotion.com, last visited 2014.11.28) 

The skeletal tracking model aims to fix some of the imperfections of the first software 

version and to provide a more robust tracking solution. 

 The additions in version 2.0 include 

• Reporting of a confidence rating based on the correlation between the 

internal hand model and the observed data 

• Identification of right or left handedness 

• Identification of digits 

• Reporting of the position and orientation of each finger bone 

• Reporting of grip factors indicating whether a user is pinching or grasping 

• Reporting of five fingers for each hand 

• Reporting whether a finger is extended or not 

 

 

Perhaps the most significant change for existing applications is the improved 

persistence of hands and fingers. This should improve the usability of most Leap-

enabled applications. 

 

 

5.1.4 Gestures and Motion 
 

 

 The Leap Motion software recognises certain movement patterns as gestures, 

which are observed for each finger or tool individually. The software reports each 

recognised gesture frame by frame like the finger tracking data. Gestures aren’t 

recognised by default though. Developers have to enable gesture recognition in their 

software for each gesture they intend to use. 

 The following gestures are recognised by the current software version: 

 

 



 38 

- Circle 

 
Image 12 - Circle gesture 

 

 

 

- Swipe 

 
Image 13 - Swipe gesture 

 

- Key Tap 

 
Image 14 - Key tap gesture 

 

 



 39 

 

- Screen Tap 

 
Image 15 - Screen tap gesture 

 

 The Leap Motion software is capable of recognising certain types of motion. 

‘Motions are estimates of the basic types of movements inherent in the change of a 

user’s hands over a period of time.’ (http://developer.leapmotion.com, last visited 

2014.11.28) Motions include scale, rotation, and translation. The motion type 

recognition is described in Table 1. 

 

 
Image 16 - Scale, rotation, translation 

 

They are computed between two frames. Developers can use the reported motion data 

to design interactions between applications. Instead of tracking the change in position 

of individual fingers across several frames, they can use the scale factor computed 

between two frames to let the user to change the size of an object. 

 

 

 

 

 



 40 

Table 1 - Leap Motion - motion type recognition 

Motion Type Frame Hand 

Scale Frame scaling reflects the 
motion of scene objects 
toward or away from each 
other. For example, one hand 
moves closer to the other. 

Hand scaling reflects the 
change in finger spread. 

Rotation Frame rotation reflects 
differential movement of 
objects within the scene. For 
example, one hand up and the 
other down. 

Hand rotation reflects change 
in the orientation of a single 
hand. 

Translation Frame translation reflects the 
average change in position of 
all objects in the scene. For 
example, both hands move to 
the left, up, or forward. 

Hand translation reflects the 
change in position of that 
hand. 

 

 

5.1.5 Precision of the Leap Motion Controller 
 

 

 Since our hand’s and finger’s natural 

movements are really fine, it is important for 

such a device like the Leap Motion controller to 

be capable to track and detect these fine 

movements. The Leap Motion controller was 

designed with precision in mind. According to 

the manufacturer, the controller is able to 

recognise movements with an accuracy of up to 

0,01 mm.  

A research group presented the first study of 

the Leap Motion controller done on an early 

developer device in 2013. Their main focus of attention was on the evaluation of the 

accuracy and repeatability. Considering the fact, that the accuracy attainable by the 

human hand is on average around 0,4 mm, they drafted an experimental setup 

Image 17 - Precision testing 



 41 

accordingly. This consisted of an industrial robot with a reference pen as seen on 

Image 17, which allowed a position accuracy of 0,2 mm. While analysing the 

accuracy of a static setup, there was no observable influence of the radius of the 

reference pen upon the accuracy and the deviation between a desired 3D position and 

the measured positions was less than 0,2 mm. The evaluation of dynamic situations, 

where the tip of the robot was moved to different coordinate positions showed, that 

under real conditions it was not possible to achieve the theoretical accuracy of 0,01 

mm. But the obtained overall average accuracy of 0,7 mm means, that the Leap 

Motion is more accurate than comparable controllers on the market today. 

 

 

5.1.6 Leap Motion Showcase 
 

 

 Since it’s introduction in 2012, the Leap Motion controller has been used in 

various fields for many purposes and enabled developers to create engaging interfaces 

for different environments. Controlling a robotic arm with your hand movements, 

creating a ‘touch-less touch-screen’ or even giving deaf people a voice by translating 

sign language real-time. A particularly interesting field is the use of the controller in 

schools. As Chatzopoulos (2013) points out in his article ‘How to use Leap Motion in 

the classroom’, according to his trials the Leap Motion can make an excellent 

teaching companion. With the use of proper software, the device can elevate almost 

any lesson to a highly enjoyable experience. Furthermore, it appears that the Leap 

Motion controller has a great potential in the field of special education especially with 

autistic and developmentally delayed students and it can help students in the lower 

grades of elementary schools to develop eye-hand coordination skills. The device 

gives a new meaning to one of the most popular trends in education, gamification. 

With the controller in use, learning literally becomes a game. It’s kinaesthetic 

approach turns every activity into an enjoyable, interactive learning experience. 

Whilst according to some, the use of such devices is distracting, it can be observed 

that with the Leap Motion i.e. the students’ interest in the lesson becomes more 

intense and it keeps them engaged and motivated for longer. Moreover, students are 



 42 

more likely to retain what they learn, and they easier apply the new information on 

everyday situations. (Chatzopoulos, 2013) 

 The list of possible use cases doesn’t stop here. Veterinary surgeon Charles 

Kuntz (Kuntz, 2013) used the device in August 2013 to assess a CT scan with the 

medical imaging program called Osirix while scrubbed into surgery, all without the 

need of removing his sterile gloves. This is believed to be the first reported use of the 

controller in this application.  

 
Image 18 - DexType keyboard for Leap Motion 

 With a virtual keyboard like DexType13 we can fully take advantage of the 

touch-less natural interface created by the Leap Motion. We can type with ten or just 

two fingers (one on each hand) literally in the air (as seen on Image 18) on a virtual 

keyboard, the keys are aligned in a line at the bottom of the screen. Being touch-less it 

means no touching of a surface is necessary. There is no need to touch anything with 

i.e. dirty hands in a car service or diagnostic centre or in a sterile environment like an 

operating room where surgical operations are carried out.  

 Another tool, which makes the touch-less use of a computer a reality, is the 

BetterTouchTool14. This utility enables users to control the mouse by pointing with 

their finger to the screen. The mouse moves to that position where the users fingers 

direction vector points to. The tool enables i.e. scrolling on a web page with the hands 

‘in the air’ and using gestures for various features like turning the volume up or down 

by circling with a finger clock- or counter clockwise. Mac OS X uses multi-touch 

                                                
13 http://www.assistivetechnologyblog.com/2013/07/dextype-virtual-keyboard-for-leap.html (last 
visited 2014.10.14) 
14 https://airspace.leapmotion.com/apps/bettertouchtool/osx (last visited 2014.10.14) 



 43 

gestures to scroll and zoom, to swipe between pages or full-screen apps, to show the 

notification centre or the desktop and more. These can be replaced by gestures 

performed with the fingers and hands in the air. From now on, one only needs a swipe 

in the air above the sensor to turn the page of an e-book or to go to the next slide in a 

presentation. The list of possibilities is almost endless. 

 
Image 19 - Oculus Rift DK2 with Leap Motion 

 One of the pioneers in Virtual Reality is the company called Oculus with their 

headset Oculus Rift seen on Image 19 with an attached Leap Motion. The Oculus Rift 

is a virtual reality headset which creates a stereoscopic 3D, approximately 100° field 

of view with excellent depth, scale and parallax. It uses a custom real time tracking 

technology to provide low latency 360° head tracking allowing users to seamlessly 

look around in the virtual world just as they would in real life. To achieve a high 

quality, more natural and comfortable 3D experience it presents unique and parallel 

images for each eye. This is the same way the eyes perceive images in the real world. 

A VR headset provides the image only (newly also sound), it’s a substitute to the 

monitor. That means to control the environment or a player in a game, the use of some 

other input device like mouse, keyboard or gamepad is necessary. The use of the Leap 

Motion controller in a VR experience is particularly interesting. Leap Motion co-



 44 

founder David Holz writes in a blog post15: ‘If virtual reality is to be anything like 

actual reality, we believe that fast, accurate, and robust hand tracking will be 

absolutely essential.’ The drawback of wearing a VR headset is that the user can’t see 

anything from the real world. There are gloves, which provide hand tracking for VR, 

but their use is cumbersome. With the help of the Leap Motion developers can create 

a VR experience in which the player can actually see his hands and use them to 

interact with virtual objects and all this naturally without using some ugly gloves. To 

help developers to explore this paradigm, Leap Motion released a mount for it’s 

controller which can be used to mount the device on the front face of a VR headset, so 

that the tracking follows the users wherever they look at.  

 
Image 20 - Parrot AR Drone 2.0 

 Drones are getting more and more popular amongst hobbyists as well as 

professional photo and videographers. There are hobby drones like the AR Drone 2.0 

(seen on Image 20) from Parrot which provide an API, which can be used by 

developers to control the drone. In a blogpost16 published on Leap Motion’s website, 

Daniel Liebeskind describes how he created a motion-controlled interface to control 

the drone with the Leap Motion. He has used Node.js as server infrastructure for 

directing communication between the drone and the Leap Motion. Node.js is a 

platform built on Google’s open source JavaScript engine called V8, which is written 

in C++ and is used in Google’s browser Google Chrome. It’s been designed to allow 

                                                
15 http://blog.leapmotion.com/leap-motion-sets-a-course-for-vr/ (last visited 2014.10.15) 
16 http://blog.leapmotion.com/the-beginning-of-a-drone-revolution/ (last visited 2014.10.15) 



 45 

building of fast, scalable network applications. It uses an event-driven, non-blocking 

input/output model that makes it lightweight and efficient. To translate hand motion 

and coordinates into control commands for the drone, Liebeskind has used Leap.js, 

which is the Leap Motion JavaScript SDK. He uses Leap Motion’s X, Y and Z axis 

hand position tracking to control the drone’s up/down, forward/backward and 

right/left actions. To take off, land or rotate the drone, he has used gestures. Gestures 

can be used to make the drone flip over, or to make it do other tricks as well. 

Liebeskind published his project on GitHub so everyone can try it and contribute. 

 
Image 21 - Painting Heineken bottles with the Leap Motion 

 The Leap Motion has been used to create a lot of different and interesting 

applications and experiences, even not really tech focused ones. For the fourth annual 

ArtRio Festival in Rio de Janeiro, Heineken, the Dutch brewing company approached 

Eduardo Abdou’s Interactive Lab about building a dynamic experience for the 

festival. The company wanted something involving art and technology. Abdou’s 

choice fell on the Leap Motion, which he has used before, but this was a good 

opportunity to develop something challenging with it. The idea was to make people be 

able to design their own Heineken bottles by waving their hands in the air as seen on 

Image 21. Abdou’s team executed the project in just a month using an Arduino, 

Unity3D, and Leap Motion to control the motors, relays and solenoids. The Leap 

Motion blog claims that the installation was a real success. People created more than 

1200 Heineken bottles with a unique design. Abdou says that he believes that ‘what 



 46 

made this project engaging was precisely the sensitivity and accuracy of the sensor’ 

and that ‘people were impressed that they were able to operate the machine without 

touching any buttons or physical control.’ (Mitchell, 2014) 

 

 
Image 22 - Cyber Science - Motion 

 

The most common use case of the Leap Motion is however, as a substitute of a 

game controller, for playing games. There are already numerous 3D games available 

on Leap Motions’ App Store. There are also some educational apps. We have had a 

look on some of the best-reviewed ones. Among educational applications, Cyber 

Science - Motion (screenshot on Image 22) is one of the most popular ones. In this 3D 

application the user can explore, dissect and assemble a human skull. The makers 

describe their application with the following words: ‘Unparalleled interaction allows 

users to experience the subtle and complex spatial relationships of human anatomy 

first-hand. Watch as game mechanics and rich content combine to provide the 

building blocks necessary for vital scientific understanding.’17 The app provides two 

play modes. The first one, ‘Dissection’ allows players to dissect and reassemble a 

skull at their own pace to explore the skull’s construction. The other one is called 

‘Assembly’, in which players can test their skull re-construction skills against the 

clock in different challenges. 

 

                                                
17 https://apps.leapmotion.com/apps/cyber-science-motion/osx (last visited 2014.11.5) 



 47 

 
Image 23 - Cyber Science - Motion: Zoology 

 Another application from the same developers is Cyber Science - Motion: 

Zoology.18 This app (screenshot on Image 23) provides the same features but this time 

on 6 realistic zoology models: 

• Tarantula 

• Rhinoceros Beetle 

• Caterpillar 

• Butterfly 

• Earthworm 

• Starfish 
 

 
Image 24 - Form and Function 3D 

                                                
18 https://apps.leapmotion.com/apps/cyber-science-motion-zoology/osx (last visited 2014.11.5) 



 48 

A similar application is called Form and Function 3D (screenshot on Image 

24) described by the developers as: ‘an educational tool meant to return a sense of 

space to learning comparative anatomy.’19 In this app, players can compare the hearts 

of three different animals: 

• Shark 
• Salamander 
• Cat  

 

 
 In Solar Walk - 3D Solar System model20 (screenshot on Image 25) players can 

navigate through space and time to explore our Solar System, learn about the planets, 

observe them in close-up, learn their trajectories, structure, history of exploration and 

more. 

 

                                                
19 https://apps.leapmotion.com/apps/form-and-function-3d/osx (last visited 2014.11.5) 
20 https://apps.leapmotion.com/apps/solar-walk-3d-solar-system-model/osx (last visited 2014.11.5) 

Image 25 - Solar Walk - 3D Solar System model 



 49 

 
Image 26 - Molecules 

 Molecules 21  (screenshot on Image 26) is another educational app which 

focuses on molecules and their 3D visualisation. It is essentially a file reader, which 

renders the 3D representation of molecules stored in various file formats and allows 

its users to manipulate them with the help of Leap Motion. The Leap Motion enables a 

faster and better manipulation with the three dimensional molecules than a standard 

2D input of a mouse.  

 

 

                                                
21 https://apps.leapmotion.com/apps/molecules/osx (last visited 2014.11.5) 

Image 27 - Sortee 



 50 

 Another quite popular educational app is Sortee22. Sortee (screenshot on Image 

27) is a puzzle game, which tests the users’ perception of everyday objects. Again, 

best described with the developers’ words: ‘All kinds of junk clutters up our lives. In 

Sortee, you sort these ordinary items into categories. Sounds easy, right? Well, what 

colour is an apple: red or green? How many legs does a seahorse have? Is an igloo 

cold, or round, or somebody's home -- or all three? When you start to think about it, 

even the simplest objects are defined by more than meets the eye.’ As objects appear 

on the screen, the player has to flick the object with a swipe of the finger into the right 

bin, and they only have a few seconds to sort it out which bin is the right one. The 

makers of the game say, that only players with the sharpest brains and quickest fingers 

can succeed. 

 

 

 
Image 28 - Duck-n-Kill 

 

Apart from educational games and other kinds of applications and utilities, the 

Leap Motion is also about casual games. Among all the entertainment games there is 

one suitable for older kids only (16+), which nicely integrates the precision of the 

controller as well as its gesture recognition capability. Duck-n-Kill23 (screenshot on 

Image 28) is a shooter game in which players shoot flying ducks with their fingers as 

the weapon. Combine aiming with the finger, shooting with a short fast swipe up, 
                                                
22 https://apps.leapmotion.com/apps/sortee/osx (last visited 2014.11.5) 
23 https://apps.leapmotion.com/apps/duck-n-kill/osx (last visited 2014.11.5) 



 51 

reloading with a circle gesture and a classic duck hunting game steps into a higher 

level of modern entertaining. 

 

 This closes our list of interesting, innovative use cases and games with the 

Leap Motion controller. In this chapter, we wanted to showcase some of the 

interesting ideas and projects people have created with the controller to get a feeling 

of what the device in smart hands is capable of. There are lots of possible uses of the 

controller and with some creativity, one can create really engaging experiences. 

  

  



 52 

6  Implementation 
  

 

 As written in the introduction, the goal of this thesis is to make use of a 

modern, innovative controller and to create an e-learning application suitable for 

children in the elementary school. This application will be a game in our case, which 

should be easy to use, but the gameplay itself should be challenging and informative 

so that it has a didactic effect. That means, children should be able to learn by playing 

the game. Furthermore, the game should look nice and it should be also fun to play so 

that kids should not get bored easily.  

 When designing for a motion controlled experience one of the first things one 

has to think about is in what environment will the application be used. People are 

quite adept at using their hands but the movements and gestures are sometimes subtle, 

sometimes not that precise and we cannot hold our hands perfectly still. And if it 

comes to holding the arms for extended periods of time, we do not really like that. 

Depending on the application we have to consider different ergonomic factors. In our 

case the environment will be a classroom and the kids will use the application while 

standing or sitting at a desk. The interactions will be designed with rest periods so that 

the hands and arms don’t get tired that fast. 

 We have decided to create a game which helps children to practice addition 

and subtraction between 1 and 100, and which makes them more interesting to get to 

know the small multiplication chart and its practice. All this split into more levels 

with variable difficulty. 

 The game is placed into a 3D cartoon-like virtual world. In this world there are 

colourful balloons floating in the air with numbers on them. The player gets a 

mathematical exercise to solve. By solving we mean, the player solves the exercise 

and he has to destroy the balloon, which carries the result of the exercise. So that the 

game is more challenging, the player has to solve the exercises under time pressure. 

Sometimes the player even has to navigate through the world and search for the right 

balloon. These are spread around and and they might be hidden behind trees or 

bushes. If the player pops the right balloon, he/she earns points and can continue to 

the next level. If he/she does not manage to solve the exercise in time or tries to 



 53 

destroy a balloon, which does not carry the result to the exercise, he/she loses one of 

the lives. At the beginning the player owns three hearts - lives. If the player manages 

to go through all the levels, or loses all the lives the game is ended and the score is 

presented.   

 The power of Leap Motion is unleashed when used in a 3D environment. To 

create our 3D world we have used Unity, a 3D game development ecosystem which is 

a powerful rendering engine fully integrated with a complete set of intuitive tools and 

rapid workflows to create interactive 3D and 2D content. 

 The following chapters will describe the tools and techniques we have used to 

create our game prototype. 

 

 

6.1  Unity3D 
 

 
Image 29 - Unity 

 

 Unity is a full-featured 3D and 2D game development environment currently 

available for Windows and Mac OS X. It allows game designers to develop games in 

a highly visual approach. What makes it even more interesting, particularly for game 

developers-beginners, is it’s Asset Store with thousands of ready to use assets and a 

huge knowledge-sharing community. Unity features an advanced game editor with a 

powerful toolset in which developers can create their games. It allows importing all 



 54 

the assets and arranging them, this is where scenes with terrain, lights, audio, 

characters, physics and more are built. Interaction can be added through scripts right 

in the Editor (Image 29). We can attach scripts and properties to game objects just by 

clicking on the game object and assigning the desired property. The effects of these 

properties can be tested and edited simultaneously by play testing and editing the 

game. This encourages the designer to experiment with different game world settings, 

making the development process fun and easier. There are different windows, or 

views in the Editor, which contain the tools and workflows. These views are driven by 

Unity’s own GUI scripting and thus they are fully customisable and can be extended 

with new functionality. One can benefit of Unity’s features when prototyping a 

concept of an application. The relatively easy to use Editor makes it a smooth and fast 

process. We can even hear from some developers that Unity’s is only good for 

prototyping, because it’s that easy to use. They are not taking the software seriously. 

Although it’s a fully capable game engine and editor, some may refer to it as an easy 

to use tool for beginners. This is only emphasised by the fact that there is a free 

version of Unity too, although it’s a rather cut-down edition of the Pro version. Due to 

that the free Unity application is so accessible to anybody, there are far more 

beginners on it than on other platforms, producing lesser quality games or 

applications, overshadowing the AAA titles made with Unity. While it is not ideal for 

the software’s reputation, we would rather take Unity’s user-friendly nature as a plus 

then a contra feature. Professional tools do not always have to be too complex and 

complicated. The software is highly capable and tries to offload a lot of hassle from 

developer’s hands providing advanced physics and interactions so it might not be that 

well optimised for all types of games, but a lot depends on the game itself we want to 

make.   

 Unity’s asset handling has been created with ease of use in mind. It supports a 

wide range of industry tools. It can efficiently import models, textures, audio, scripts, 

sprites and other assets into the project. Moreover, we can simply copy our assets to 

the projects folder and Unity will automatically import those into the project. Apart 

from the GUI scripting, Unity provides an extension API for creating plugins and 

extensions. This API enables us to extend e.g. the import process of all assets, giving 

us full control over how the assets are being imported.  



 55 

 Unity Editor - which we have described previously - is, as its name suggests, 

an editor in which we can build up our whole game world. It provides some 3D 

primitives to work with, but it’s not a 3D modelling application. However, Unity can 

import models, bones and animation from nearly any 3D modelling application like 

Maya, 3ds Max, Cinema 4D, Cheetah3D, Blender and more. If it comes to text and 

fonts, Unity can handle the rendering of Unicode TrueType Fonts perfectly. Speaking 

of rendering, Unity supports the Windows DirectX 11 graphics API that enables us to 

work with more complex shaders and adding more detail to the 3D world’s models 

and environment. Since Unity is a multi-platform solution, it supports OpenGL too. It 

comes with one hundred built-in shaders ranging from the simplest diffuse or glossy 

shaders, to more advanced ones like self illuminated and more. We can still write our 

own shaders though, or even shop in the Asset Store for hundreds of ready to use 

materials and textures. With the direct access to the Graphics and GL classes in Unity, 

we can bypass the rendering pipeline and create our own specific effects. The 

Graphics class is the raw interface to the drawing functions and the GL class is the 

low-level graphics library similar to OpenGL’s immediate mode. Unity also supports 

OpenGL ES, which enables the use of full shaders on mobile devices, with its own 

optimiser for GLSL shaders that yields a 2-3x fill-rate increase. Unity provides 

advanced tools for rendering, lighting, special effects, audio, materials, terrains, 

physics and artificial intelligence. The tools deliver a reliable performance, smooth 

frame rates and great player experience across all the supported platforms. Unity’s 

precomputed Occlusion Calling solution, which was developed together with Umbra 

Software, ensures that only those objects are rendered which the camera can see at the 

moment. This technology works on mobile devices, on the web and consoles with 

minimal processing overhead. Unity can identify what is visible and what is not by 

auto-generating data from the scene’s static geometry in a format, which can be 

accessed during runtime effectively. 

 The Unity Editor provides tools to create and work with terrain models. We 

can simply carve, raise and lower sweeping and mountainous terrains. The grass, trees 

and bushes as well as rocks also make a part of the terrain model. Unity has an 

integrated Terrain Engine, which includes a tree-authoring tool, an ideal option to use 



 56 

to create e.g. jungles. We can add branches and leafs with real-time preview in the 

editor. All these advanced features are packed into Unity Editor. 

 
Image 30 - A virtual world created in Unity 

 If we create our virtual world for example as seen on Image 30 with a diverse 

terrain, forests and bushes and majestic rocks it will still lack something. It will feel 

raw and not real until we add physics. The PR text on Unity’s website24 describes it’s 

physics capabilities as following: ‘Unity contains powerful 3D physics engine 

NVIDIA® PhysX® Physics. Create immersive and visceral scenes with clothes and 

hair that blow in the wind; tires that screech and burn; walls that crumble; glass that 

shatters, and weapons that inflict major damage!’ When designing characters and their 

movements, Unity features a ragdoll wizard that lets us to easily implement a full 

ragdoll from an animated character.  

                                                
24 http://unity3d.com/unity/quality/physics (last visited 2014.11.7) 



 57 

 
Image 31 - Mecanim 

The powerful and flexible animation system called Mecanim seen on Image 31, helps 

to bring human and other characters to life with smooth, natural and fluid motion. 

Mecanim is fully integrated in Unity’s engine. It enables to animate the light intensity, 

to blend shapes, or animate sprites. From inside the animation playback, we can call 

scripts with the help of AnimationEvents, which makes the animation engine even 

more powerful and flexible. To make a gorgeous game with characters, with todays 

processing power of computers and even mobile devices, to just texture the character 

models is not enough anymore. To add more detail and realness we need clothes. 

Unity has two types of cloth materials built in which are fully physically simulated 

and they fully interact with the rest of the environment.  

 
Image 32 - Unity, racing game 

When working on a racing game as the one on Image 32, we need physics and forces 

to apply to the car. The car’s model has a mass, a rigidbody, which can receive forces 

and torque to make the object move realistically without scripting anything. There 

might be different forces applying to the car when accelerating, braking and drifting 

or colliding with something. To simulate the traction model of a real car tire for 

example, Unity has a dedicated Wheel Collider. It has built-in collision detection as 

well as wheel physics and slip-based tire friction model. It can be used for other 



 58 

objects too, but this collider was created specifically with tires in mind. There are 

more types of colliders in Unity and they make an essential part of every project. We 

will give more detail on colliders later.  

 No strategy or RPG works without some level of artificial intelligence. Unity 

features a high-performance path-finding and crowd simulation. With automatic 

navigation mesh generation we can quickly bring the scene to life. Navigation meshes 

are used at runtime for path finding and they describe the boundaries of any navigable 

space in the game. With the support of navigation mesh obstacles, our agents are able 

to react to changing, dynamic environments. 

 That Unity is multi-platform has already been mentioned. We have not meant 

the fact that the Editor is available for more platforms, but that it is possible to build a 

2D or 3D game, a 3D experience, and have it published to all the major global 

platforms. Developers have complete control to create and deploy an application on 

almost any screen. Unity allows publishing on mobile devices, desktops, consoles and 

even the web. Here is a list of supported platforms by Unity the date of this writing 

(October 2014), to show how long the list really is:  

Unity makes sure that our code works seamlessly on all supported platforms. The 

team works close with hardware manufacturers to make sure that games work with a 

solid performance on any of the supported platforms, and that they run on old devices 

as well as on current flagships. With the Unity Remote feature, we can test our game 

live on any target device. It really is a useful feature if we are developing for a mobile 

device or console. The Unity Profiler is a tool, which we can use for optimising our 

game on the given platform. The Profiler pinpoints the parts of the game with the 

• iOS 

• Android 

• Windows Phone 8 

• BlackBerry 10 

• Windows 

• Mac 

• Linux 

• Unity Web Player 

• PlayStation 3 

• PlayStation 4 

• PlayStation Vita 

• Xbox One 

• Xbox 360 

• Wii U 



 59 

highest performance impact to help us optimise our code. We can profile the game 

during development, or when deployed on a target device. The Profiler is however, 

only available in the Pro version of Unity. 

 Since Unity introduced its iPhone deployment in 2008, it has become the 

world’s favourite mobile game engine providing easy development and high-end 

graphics without overloading the mobile device’s GPUs. There are numerous chart-

topping games in the mobile app stores like Apple’s App Store or Google’s Play 

Store, and since Unity introduced its Windows Phone and BlackBerry support there is 

a huge number of games made with Unity being ported to these platforms. Unity is 

not only popular on mobile devices or desktops, there are numerous titles made and 

published for their Web Player too. The Unity Web Player makes it possible to play 

games, or other applications made with Unity, in a regular web browser. Since its 

launch in 2005 the Unity Web Player has been installed on hundreds of millions of 

machines worldwide.25  

 

 

6.1.1 Unity Scripting 
 

 

 The essential part of every game or other application is scripting. Yes, our 

entire game world can be built in Unity Editor. It will look good, and we can hit play 

and test whether it runs and works as expected. But without scripting nothing will 

happen, obviously. Scripting is that part of the development where life is given to 

characters, where interaction and controls are added. The scripts run our application 

under the hood. In Unity, the behaviour of GameObjects is controlled by the 

components attached to them, but to implement our own gameplay features scripts can 

be written for different events, which control what should happen when e.g. our 

character enters some area, where a collider as a trigger was set. Almost everyone has 

ever played a computer game, we all know that if a checkpoint is reached, our 

progress is saved at that point, if our car leaves the track, it slows down, if a target is 
                                                
25 http://unity3d.com/unity/multiplatform/web (last visited 2014.11.28) 



 60 

hit something happens again. All this and many more is done by scripting. Such 

scripts might be lightweight, with only a few lines of code controlling some basic 

behaviour or respond to user input, or they can contain extended functions with 

advanced algorithms controlling physics, or some other complicated parts of the 

game. We can write our scripts in one of the supported languages, and Unity will 

make sure, that they run as they should on all of the supported platforms. Unity as the 

date of this writing supports three programming languages natively: 

 C# - an industry standard language similar to C++ or Java 

 UnityScript - basically JavaScript, it’s a language specifically designed for 

use with Unity 

 Boo - a .NET language which syntax is similar to Python 

To help with scripting, Unity features fully integrated scripting and debugging with 

the Integrated Development Environment (IDE) called MonoDevelop (Mono). Mono 

is a cross platform open source implementation of Microsoft’s .NET framework, and 

one of the worlds leading programming environment. By default, Unity will open 

scripts in Mono’s editor MonoDevelop, but any other editor can be used, this can be 

set up in the External Tools panel in Unity’s preferences. When a script file is created, 

one can start writing functions for rotating, scaling and moving objects, which usually 

take just a single line of code, as well as for duplicating, changing or removing 

properties. Everything can be referenced directly, by name or hierarchy, tags, 

proximity, or even touch.  

 Every basic script file in C# in Unity looks something like this in Listing 1: 

using UnityEngine; 
using System.Collections; 
 
public class NewBehaviourScript : MonoBehaviour { 
 
 // Use this for initialization 
 void Start () { 
  
 } 
  
 // Update is called once per frame 
 void Update () { 
  
 } 
} 
 

Listing 1 - Unity, basic script 



 61 

Every script, which is a Component of a GameObject, has to be a subclass of the 

built-in class called MonoBehaviour to make a connection with the internal workings 

of Unity. To enable the script component to be attached to a GameObject the name of 

the class and the file name must be the same. The first two functions defined in the 

class are important. The Update function is called every frame and this is the place to 

add code for e.g. movement, triggering actions, responding to user input, or anything 

that needs to be handled over time during gameplay. Before any game action starts, 

it’s often handy to be able to setup our variables, get or find objects or read 

preferences first. The Start function is called before gameplay, before the first Update 

gets called, and it’s the ideal place to do any initialisation. 

 It was not the first time above, that we have mentioned a GameObject or a 

Component. According to the Unity Documentation: ‘GameObjects are the 

fundamental objects in Unity that represent characters, props and scenery. They do 

not accomplish much in themselves but they act as containers for Components, which 

implement the real functionality. For example, a Light object is created by attaching a 

Light component to a GameObject.’ (http://docs.unity3d.com/, last visited 

2014.11.16) In fact every object in our application is a GameObject. But without any 

touch, these are only like empty containers. With the right properties a character can 

be made of these empty boxes, or a physics-driven car, an environment or even a 

firework. Depending on what kind of an object we want or need to create, different 

combinations of components can be added. One of the most important components is 

the Transform component. GameObjects always have a Transform component 

attached, which is unremovable and defines the object’s scale, rotation and position in 

3D space. The other components that give the object it’s functionality can be added 

from a script or in the Editor. There are also many pre-built GameObjects ready to use 

like primitive shapes, Cameras, lights and more.  

 A script gets called, or is activated only after it has been attached to a 

GameObject. This can be accomplished by dragging the script to the desired 

GameObject in the Editor. Once the script is attached, it appears between the 

GameObject’s components and it will start working if we run our game or application. 

Unity however, creates a more sophisticated connection between scripts and 

GameObjects than only attaching and listing them. After selecting a given 



 62 

GameObject, editable fields and values of components can be seen in the Inspector. 

Unity enables us to add such an editable property to a script component by simply 

creating a public variable in our script. This public variable appears automatically as 

an editable property of the script in the Inspector. Moreover, Unity will let us to 

change the value of such a variable while our game is running. This is especially 

useful while debugging, as we can see the effects of the changes real time. 

 

 

6.1.2 Unity Showcase 
 

 

 
Image 33 - Bad Piggies 

 With all the capabilities described in the previous section, we can imagine that 

Unity will not brake us in the development. There are numerous really high quality 

game titles that have been developed in Unity. One of the world’s most successful 

games for mobile devices, and actually one of the first big hits is Rovio’s26 ‘launch a 

birdie, hit a piggie’ game Angry Birds. There have already been a few sequels of the 

original title and they have been ported to numerous platforms. One of the recent 

sequels comes with a little different point of view. There are no slingshots anymore 

and the birds were also left out of the game. The game is called Bad Piggies and like 

in Angry Birds, one of the key elements of the game is physics. The player needs to 

                                                
26 http://www.rovio.com (last visited 2014.11.28) 



 63 

set some pigs in motion by building different things like cars or flying vehicles with 

balloons or rockets as seen on Image 33. The developers at Rovio turned to Unity to 

prototyping the game and it did fit so well, that they went to production as well. The 

game was a success, and also thanks to Unity it was made available for iOS, Android, 

Mac, Windows and BlackBerry.  

 Another remarkable game, which was 

developed in Unity, is a mind-boggling puzzle game 

Monument Valley. The description from the makers on 

the Store describes it as ‘a surreal exploration through 

fantastical architecture and impossible geometry’27. In 

the game we guide our character through mysterious 

monuments like the one seen on Image 34, uncovering 

hidden paths and unfolding optical illusions. It plays 

with our imagination, helps to improve geometric 

vision, explains perspective and presents optical 

illusions. The game is touch based, and although we 

play it flat in 2D, the game is almost entirely 3D. 

Monument Valley is an Apple Design Awards28 winner 

game available for iOS and Android. Apple Design 

Awards is given to developers, who combined design 

and technology in creative, compelling, and powerful 

ways.  

 Puzzles are great for improving our mental 

skills. They can help to head-count faster or to improve 

our memory skills. One of such puzzles is another 

Apple Design Awards winner game called Threes29 seen 

on Image 35. The idea of the game is to collect points 

by moving the cardboard with our finger and merging 

pairs of cards. We start with a ‘1’ and ‘2’ by merging them we get a ‘3’ and from now 

                                                
27 https://itunes.apple.com/us/app/monument-valley/id728293409 (last visited 2014.11.13) 
28 https://developer.apple.com/design/awards/ (last visited 2014.11.13) 
29 http://asherv.com/threes/ (last visited 2014.11.13) 

Image 34 - Monument Valley 

Image 35 - Threes 



 64 

on we only can merge with the number’s matching double. The makers say that 

Threes is a tiny puzzle, which will ‘grow your mind beyond imagination’. In other 

words, playing it might be good for our brain. This has not been scientifically tested 

yet, though. Threes has also been developed with Unity and is also available on 

multiple platforms.  
 These games show the power of Unity and what can be done with it. Not only 

in 3D, but in 2D too.  

 

 

6.2  Leap Motion and Unity 
 

 

 Unity for any of the supported platforms is available to download on their 

website30. There is a 30-day trial of the Pro version available, and you can use Unity’s 

standard free version after the trial period. The Leap Motion SDK is available on Leap 

Motion’s developer website31. There is a download for each of the supported 

platforms, and the package includes all the library, code and header files required to 

develop Leap-enabled applications and plug-ins. The C# class definitions to use with 

Unity 3D are provided as a .NET 3.5 library. The library is called 

LeapCSharp.NET3.5.dll the date of this writing. The library loads libCSharp.dylib on 

Mac, LeapCSharp.dll on Windows, or libLeapCSharp.so on Linux. These 

intermediate libraries then load libLeap.dylib, Leap.dll, or libLeap.so depending on 

platform. In the free version of Unity, we will need to copy these three files into our 

projects folder.  

 The application for this thesis has been developed on a Mac with Unity for 

Mac and the Leap Motion SDK for Mac. Therefore, all the following writing will 

describe the project setup along with a small tutorial for the Mac running OS X. 

However, the process on other platforms is very similar and the source-code of the 

application itself written in C# is the same on each platform. The Leap Motion SDK 

                                                
30 http://unity3d.com/unity/download (last visited 2014.11.13) 
31 https://developer.leapmotion.com (last visited 2014.11.13) 



 65 

provides a Unity plugin to use with the Pro version of Unity, but we will explain the 

steps which should be taken to get the SDK work with the free version of Unity.  

 As Unity supports C# and the Leap Motion SDK for Unity works with C# 

only, we choose this language for our application. Although it’s mainly a Windows 

specific language, it was a good opportunity to learn it.  

 

 

6.2.1 How to Get Started 
 

 

 In this small tutorial we will explain the steps needed to get the Leap Motion 

SDK work with Unity’s free version. To get started, run Unity and create a new clean 

project. 

1. Navigate to the project’s root folder in Finder 

2. Open the LeapSDK folder in the package downloaded from the Leap Motion 

website, and navigate to the lib folder, we need to copy two files from here to 

our project’s root folder 

3. Copy the following two libraries to the project’s root folder: 

• libLeapCSharp.dylib 

• libLeap.dylib 
4. Open the project’s Assets folder and copy the following file to the root of the 

Assets folder: 

• LeapCSharp.NET.3.5.dll 

Now, there should be all set to use the Leap Motion SDK in the application. To try 

this out, go to the project in Unity. We are going to add an empty GameObject with a 

script component, and within this script we will use the Leap SDK to write out the 

number of hands visible by the sensor.  

1. With the empty project open in Unity, add an empty GameObject to the scene. 

Click on GameObject in the menubar, and click Create Empty. Unity will add 

an empty GameObject into the middle of the scene and it will be preselected. 



 66 

2. Now click to the Add Component button 

3. In the drop-down go to New Script, name the script Sample and choose 

CSharp as language 

4. Double click the script’s name in the Inspector. It will open in MonoDevelop. 

5. Copy and Paste the following code from Listing 2, the explanation is below 

 

To use the Leap Motion API, we need to use the Leap namespace. As we have said 

before, the Start function is a good place for initialization so we create our controller 

object here, and we write a line to the debug log that will make us sure, that our script 

is up and running. The Debug.Log is Unity’s equivalent to the default 

Console.WriteLine call, if we want to log something in Unity we always use this 

method. The Controller class is the main interface to the Leap Motion and to get 

frames of tracking data and configuration information this object is accessed. In the 

Update function, which is called once every frame, we poll the controller for it’s 

frame, which holds the tracking data for the current frame. The Frame object stores a 

history of the last 60 frames. These can be accessed by calling the frame object with a 

using UnityEngine; 
using System.Collections; 
using Leap; 
 
public class Sample : MonoBehaviour { 
 Controller controller; 
  
 void Start () 
 { 
  controller = new Controller(); 
  Debug.Log("I am alive!"); 
 } 
  
 void Update () 
 { 
  Frame frame = controller.Frame(); 
 
  string handsCountStr = string.Format("Number if hands I see right now: {0}", 
frame.Hands.Count); 
 
  Debug.Log(handsCountStr); 
 } 
} 

Listing 2 - Unity with Leap Motion, basic script 



 67 

positive integer (1-60). To get the count of hands visible to the controller in the 

current frame the frame’s tracking data are used. We create a string called 

handsCountStr, which informs about this in the log. Now if we save our script, and go 

back to Unity from MonoDevelop we can hit play to compile and run our mini test 

application. If everything went well, the application will run, there will be an empty 

blue screen and in the Editor’s status bar (bottom left) we will see our message 

‘Number of hands I see right now: 0’. If hands are placed over the sensor now, the 

message will change accordingly. There was no visible object added to the scene yet. 

To see a virtual representation of the player’s hand, a HandController object can be 

added to the scene. Leap Motion provides this object and the easiest way to add it to 

our scene is to download and import it from the Unity Asset Store. To open the Asset 

Store go to Window -> Asset Store or hit Cmd+9 on a Mac. The HandController is in 

a package called Leap Motion V2 Skeletal Assets. Search for the package with the help 

of the search field, which, the date of this writing is on the top right side of the page. 

Click download and import the assets after the download has finished. A new folder 

called LeapMotion will appear in the project’s Assets folder. Navigate to the folder in 

the project view and find the Prefabs folder. You will find the HandController in that 

folder. Drag and drop the prefab to the scene, place it somewhere in front of the 

camera and make sure that it ‘looks’ straight up. If you select the HandController 

object, you will see it has a couple of public properties. You can choose from multiple 

types of virtual hand representations to assign to the controller. More robot like and 

human hands are available in the HandModelsNonHuman and HandModelsHuman 

folders. The human hands look too realistic and they might be inappropriate for some 

uses. We suggest the use of robot hands. Now with the added controller to the scene, 

click play. Placing our hands over the Leap a virtual hand should appear on the screen 

copying the movements of our hand. The virtual hand at this point looks too shady. 

We have not added any lights to our scene yet. To add some light go to GameObject -

> Create other -> Direction light and place the light somewhere above the middle of 

the scene. Set its rotation and intensity as needed. Now if we run the application again 

and place our hand above the sensor, a virtual hand will appear, which is now nicely 

lit up. 

 



 68 

 This tutorial described the steps needed to get the Leap Motion Controller to 

work with the free version of Unity, and showed how to script objects, these steps are 

essential for every Unity application which uses the Leap Motion Controller. The 

script should be considered as a ‘Hello World’ kind of basic application. We have 

shown how to create an empty GameObject and how to add a component to it. In our 

case this component was a script. We have shown how to create a script, how to 

connect and poll tracking data from the Leap Motion Controller and how to log data 

for debugging purposes. Basically, this is how we started our development process. 

 

 

6.3  The Game 
 

 

6.3.1 The Game Menu 
 

 

 When a game is started, usually the first thing what is presented to the user is a 

splash or load screen followed by the game menu. Many times, the game menu means 

the first interaction users will have with the game. If the user’s experience with the 

menu selection and interaction is frustrating or confusing, he or she might give up on 

the game even before actually playing it. The game menu is just as important as any 

other part of the game or application, therefore a good menu design is really 

necessary, especially when the game is played with some special controller, like in 

our case the Leap Motion. When using controllers to interact with a game or 

application, it is appropriate to use the controller’s capabilities only, avoiding the 

necessity of using the computer’s keyboard or mouse is, in our opinion, 

recommended. This makes the whole design even more challenging. To avoid the use 

of a keyboard or mouse, the various parts of the game, like the menu itself, have to be 

designed with the controller in mind, meaning we have to know what exactly it is 

capable of. While some best practices from regular computer games can be applied on 

games created for the Leap Motion without any issue, it has to be noted that what 



 69 

works best in regular computer games might not fit ideally into a Leap Motion 

experience. After reading the Leap Motion Menu Design Guidelines we have 

designed our menu with the so-called ‘poke’ or touch gesture. This means that the 

user points with his or her finger to the screen and a filled-in circle appears which 

indicates the cursor. The user moves the cursor by moving the pointing finger and 

changing its pointing direction. To select, or click a button the user has to make a 

poke/touch gesture in the air meaning quickly move the finger towards the screen and 

then back. While this really works great in theory, in our internal trials it failed to 

deliver the desired experience. Due to the lack of tactile feedback it is hard to guess 

by the user when the click happens, if it actually does happen at all. Moreover the 

gesture itself has an impact on the cursor’s position, making the selection even more 

challenging.  

 The developers at Leap Motion have released the source codes of a couple of 

menu design prototypes one of which they call marching menu seen on Image 36. In 

this design the menu is a two dimensional menu where the buttons are rectangle 

shaped and the menu is hierarchical. Hovering the upper level buttons the lower level 

ones will be displayed. The selectable buttons are indicated by a green rectangle. 

Swiping this rectangle out of the button performs the selection.  

 

 
Image 36 - Marching menu 

 

While this design carries some great innovative ideas, its implementation was not that 

trivial, and we were searching for some more classical menu design that is still 



 70 

intuitive and similar to those found in regular computer games. After some 

exploration on this topic on the internet searching for ideas how the menu, which does 

fit the Leap Motion nicely, may be done right, we have found a blog post by Pierre 

Semaan who described the same issues as we have had with the initial game menu 

design, and he had a really great suggestion for the menu item selection which he 

named ‘hover clicks’. The player still moves the cursor by pointing on the screen 

above the sensor, but the item selection, hovering over a button for a given time does 

the clicks. This could be indicated in various ways, from slowly filling out the button 

with another colour to showing a counter or a hourglass next to the cursor. In our 

internal trials this technique had a great success and we found that it provided the best 

experience, the interaction is a bit slowed down due to the waiting times on the clicks 

though. The game menu of our prototype is full three-dimensional. The buttons are 

rectangle shaped boxes ‘floating’ in the clouds. The pointer is a green circle. When 

hovering over a box, over a button, it slides slightly closer to the camera, indicating 

that we are hovering over it and the program knows. The click is then triggered if we 

hover over a given button for one second. Being a three dimensional scene the 

trickiest part of programming was to detect whether we are hovering over a button. 

 

 
Image 37 - Game menu scene 

 

The scene is set up as seen on Image 37. The camera in this scene is static. We had to 

detect whether the cursor is hovering over a button as seen from the camera. Thus, if 



 71 

the cursor looks to ‘cover’ a button from the camera’s perspective. The detection of 

this was achieved by the help of Raycasts. 

 
Image 38 - Raycast 

We basically send out an invisible ray from the camera in the direction, which goes 

through the centre of the cursor, and we check if the ray hit something (see Image 38). 

If the ray hits a button, meaning that the cursor seems to hover over that button as 

seen from the camera’s perspective, we trigger a counter. If that counter runs out, it 

triggers the click with the given button. If the cursor moves out of the position being 

over the button, the counter is reseted. This technique can be seen in more detail in the 

attached code below in Listing 3: 

if (pointable.IsValid) { 
    finger.SetActive(true); 
 
    finger.transform.localPosition = new Vector3(newVector.x, newVector.y-4, 
finger.transform.localPosition.z); 
 
    Vector3 v3 = new Vector3(); 
    v3 = Camera.main.WorldToScreenPoint(finger.transform.localPosition); 
 
    Ray ray = Camera.main.ScreenPointToRay(v3); 
    RaycastHit hit; 
 
    if (Physics.Raycast(ray, out hit, 100)) { 
        myGmObj = hit.transform.gameObject; 
        menuCounterWithGameObject(myGmObj.name); 
        Vector3 v = new Vector3(myGmObj.transform.position.x, myGmObj.transform.position.y, 2f); 
        myGmObj.transform.position = v; 
    } else { 
        menuCounterWithGameObject(""); 
        menuTimer = 0f; 
        Vector3 v = new Vector3(myGmObj.transform.position.x, myGmObj.transform.position.y, 3f); 
        myGmObj.transform.position = v; 
    } 
 
} else { 
    finger.SetActive(false); 
} 

Listing 3 - Unity, raycasting 



 72 

We have put this code into the Update function. It begins with a check if our 

‘pointable’ is valid. The ‘pointable’ is the frontmost finger of the hand, thus if the 

sensor tracks a hand and it detects a frontmost finger, we can poll the data from the 

sensor to move our cursor. If the ‘pointable’ is valid, we activate the finger object 

which is our cursor, meaning the cursor becomes visible and we change its position on 

the screen according to where the vector of the frontmost finger points to. In the next 

step we create a vector, which stores the converted vector of the cursor from world 

space into screen space. The ray object returns a ray going out from the camera 

through the cursor, we cast our ray with a length of 100 units and as there are no other 

objects in our scene except the buttons, we call the function which starts the counter 

with the button the ray hit. We also slide the button the ray has hit, slightly towards 

the camera. If the ray does not hit any object we make sure the buttons return to their 

original position and we reset the counter. If our ‘pointable’ is invalid, thus the sensor 

does not track any hands or fingers at the moment, we hide the cursor.  

 This approach worked really well in our internal trials and we were satisfied 

with the experience it provided. 

 

 

6.3.2 The Virtual World 
 

 

 After selecting the New Game button, the game itself gets started and another 

scene is presented with the first level. The game menu has its own scene, its own file 

in Unity. There is then, only one scene for all the levels, which are dynamically 

generated inside that scene. The first level is more like a tutorial with only one 

balloon in it as the result to a single exercise. As already described before, the player 

has to navigate through the virtual world searching for the balloon, which carries the 

result to the presented exercise. The game world was created with a terrain object, 

which is a Unity object, basically a plane, but it allows forming a terrain by adding 

hills and valleys. The terrain is coloured to look like if it was grass. For our prototype 

we have used a free Unity asset called Fantasy Skybox Free found on the Asset Store. 

This asset contains a terrain, some cartoon-like trees, bushes, rocks and a skybox. The 



 73 

skybox is basically the world’s sky or the background. In this asset pack it has a 

cartoon-like cloudy sky look. The world is not infinite. The terrain is however, large 

enough to serve our prototype well. Our game world looks like seen on Image 39. 

 

 
Image 39 - Game world 

 

The terrain object, due to its persistence on the screen during the whole game, is 

the main game object, which has a script component, the main game controller script. 

This controls almost the whole gameplay. 

 

 

6.3.3 Navigation 
 

 

We have tried multiple techniques for navigation in the virtual world. The idea 

was to use our hands to navigate, to move around in the world. The moving should be 

as intuitive, as easy as possible. The first technique we have tried was to move around 

by dragging the terrain with the virtual hand and sliding, moving it around, resulting 

in the move of the camera above the terrain. This required at least three fingers 

touching the ground, the terrain to be able to drag it around. This method, while 

appeared to work well at first, turned out to be confusing and did not work that good 

in our internal trials. The next technique we have implemented is based on a kind of a 

virtual joystick. The player closes his/her palm slightly like he/she would grab 

something, and then moves his/her hand around above the sensor. The camera on the 



 74 

screen starts to slide into that direction in which the hand moves. The speed depends 

on that how far the hand is off the centre of the sensor in either direction. There is a 

speed limit though☺. So if the palm is flat, the camera will not move. If the grab 

strength is bigger than 0.45 units, the ‘virtual joystick’ gets activated. The code 

snippet in Listing 4 does the translation of the camera’s position in 3D space if the 

grab strength is bigger than 0.45 units. While our world is, the terrain is not infinite. 

We have created a virtual border to not let the camera slide too far, so that it stays 

over the ground. We were satisfied by the experience provided by this type of 

navigation. 

 

 

6.3.4 The Balloons 
 

 

 Balloons are an essential element of our prototype. The objective was to be 

able to pop balloons, which do have numbers on them. Balloons in real life are often 

sphere or kind of elliptic sphere shaped, and they are usually filled with helium, which 

void Translate(Frame frame) { 
    Vector3 avgVelocity = Camera.main.transform.position; 
    avgVelocity = 50 * handSpeed.ToUnityScaled (); 
    avgVelocity = new Vector3 (avgVelocity.x, 0, avgVelocity.z); 
    Camera.main.rigidbody.velocity = avgVelocity; 
 
    if (Camera.main.transform.position.x <= -30.0f) 
        Camera.main.transform.position = new Vector3(-30.0f, Camera.main.transform.position.y, 
Camera.main.transform.position.z); 
 
    if (Camera.main.transform.position.x >= 30.0f) 
        Camera.main.transform.position = new Vector3(30.0f, Camera.main.transform.position.y, 
Camera.main.transform.position.z); 
 
    if (Camera.main.transform.position.z <= -30.0f) 
        Camera.main.transform.position = new Vector3(Camera.main.transform.position.x, 
Camera.main.transform.position.y, -30.0f); 
 
    if (Camera.main.transform.position.z >= 30.0f) 
        Camera.main.transform.position = new Vector3(Camera.main.transform.position.x, 
Camera.main.transform.position.y, 30.0f); 
} 

Listing 4 - Unity, camera translation 



 75 

is lighter than air, so the balloons float in the air. They are usually fitted with a line so 

they do not float away. We have replicated this behaviour in Unity with spheres as 

balloons, springs and a line renderer as an analogy to a line, which holds the balloon, 

and instead of helium we have applied a force to the balloon, which works against the 

virtual gravity in our game world. 

 

 
Image 40 - Balloons 

 

For the balloons (seen on Image 40) we have created a prefab, a predefined 

object that consists of a set of different objects. We have tagged this prefab as balloon 

to be able to recognise it. As mentioned above, the balloons in our prototype are 

basically spheres. The sphere is locked to a given point by an invisible spring, which 

is a standard Unity component. This spring provides a rubber band like behaviour. 

The strength of it is customisable, as well as it can be set up to break after it was 

stretched by a given value. While this spring component is invisible, we have used a 

LineRenderer component, which is drawn on the invisible string’s position, to indicate 

that the balloon is strapped to the ground. The floating effect is achieved by applying 

a simple physics force with a direction vector pointing upwards. This is done easily by 

a single line of code as seen in Listing 5, called this time in the FixedUpdate function 

instead of Update:  

void FixedUpdate() { 
    rigidbody.AddForce(Vector3.up * 20); 
} 

Listing 5 - Unity, FixedUpdate function 



 76 

When dealing with a Rigidbody which is a component, which makes the object to 

respond to Unity’s physics forces the FixedUpdate should be used which is called 

every fixed frame-rate frame instead of every frame as Update. For example, if we 

have to apply a force to a rigidbody, we have to do this in the FixedUpdate function. 

 

 Every balloon, which is created from our prefab, gets its random colour 

assigned from a range of plastic light colours. It gets its name, which equals to the 

number on the balloon itself, thus the name of the balloon is the result to a given 

exercise. This is one of the best ways to identify the balloons. In our first prototype 

we use the numbers in the range 1-100 for exercises from the small multiplication 

chart. The numbers on the balloons are pre-rendered images which we have created in 

Photoshop with its batch image processing feature, so that we did not have to create 

all the hundred images manually. These images look like the Image 41 and they are 

mapped to the balloon’s sphere to create the desired look.  

 To indicate a failed attempt to pop the right balloon, the right result for an 

exercise, the balloon gets coloured in bright red. When the player pops the right 

balloon it disappears with a visual effect, which looks like a shock wave as seen on 

the Image 42. 

Image 41 - Balloon texture 

Image 42 - Shockwave 



 77 

6.3.5 Exercises 
 

 

 The exercises presented to the player had to be selected randomly so that they 

are interesting. The exercise generation in the same time should not had to be too 

expensive. In the game logic, each number from 2-10 corresponds to a level. While it 

does not make too much sense to practice multiplication by one, we have created a 

tutorial kind of a first level instead. In this level, there is a single exercise so that the 

player can make him/her-self familiar with the interaction. In each other level, there 

are five exercises generated randomly. We have chosen such a technique for 

generating random exercises, that is far less expensive than picking a random number 

and then checking all the already selected numbers if its there or not. First, we have 

created an array of all the numbers, which can be used (1-10). Then we used the C# 

Random.Range() function to generate a random number from the range of 1 to the 

count of the array which contains all usable numbers. We pick the number from the 

array at the position the randomiser generated and put it to a second array, which will 

contain the list of numbers, we will use. The number, which was picked, is than 

removed from the initial array making its count lower. This ensures that the given 

number will only appear once. This is repeated until the number of exercises is 

reached. As a result we get an array of randomly picked numbers from a given range, 

and we can be sure that it contains each number only once. The exercises are then 

built with these numbers and the second number in the multiplication is the level 

number. The results are pre-computed and put into a results array. The code snippet in 

Listing 6 does this computation: 

ArrayList allNum = new ArrayList(); 
 
    shuffledNums.Clear (); 
    results.Clear (); 
   
    a = level; 
   
    for (int i = 0; i < 10; i++) { 
        int thisID = i+1; 
        allNum.Add(thisID); 
    } 
   
    for (int i = 0; i < numberOfExercises; i++) { 
        int myRand = Random.Range (1, allNum.Count); 
        shuffledNums.Add (allNum[myRand]); 
        results.Add(a * (int)shuffledNums[shuffledNums.Count-1]); 
        allNum.RemoveAt(myRand); 
    } 

Listing 6 - Unity, exercise generation 



 78 

 As we wanted to make the levels more interesting and challenging, we have 

put more balloons into each level, as the number of exercises. These additional 

balloons, their numbers had to be generated in a similar way as described above. The 

range of initial numbers was 1-100 and we have removed the numbers already 

contained in our results array before generating the others. There are five exercises in 

each level, and 10 balloons in the lower levels then 15 and 20 in upper levels.  

 

 The elements described in this chapter are the key parts of our prototype. We 

have pointed out the most interesting things and described some parts of the 

development process so that the reader can understand, and with the provided tutorial 

also to try out what is it like to develop a learning app for the Leap Motion. 

 

 

6.4  Field Study 
 

 

 
Image 43 - Children playing with the Leap Motion 

 

 To test out our prototype for game based learning with the Leap Motion in a 

real world scenario, it was given to 12 third grade children in an elementary school. 

The kids played with the application one-by-one. Image 43 illustrates two children 

playing the game. We were curious how the Leap Motion and the application will 



 79 

perform in a school class environment, as well as what the kids’ feedback will be. The 

prototype was built for them after all.  

 We have had a few performance issues during the test. The application 

sometimes behaved glitchy, unplayable and the sensor did not work well. This might 

have been due to the strong lights in the classroom, or the fact that the application was 

each time run in unity, and was not exported as a standalone app, or because the SDK 

is still in beta, thus some performance issues may occur. In the majority of cases 

however, it did work really well. The sensor had no problem with the tracking of 

small hands of the kids.  

 Before the kids have started to play, we gave instructions and showed them 

how to play. This is due to that our prototype does not include any graphics yet, which 

would show how to play. All the kids reported, that they have never seen anything 

like this before. A short introduction was therefore necessary. After they have seen the 

game in action they were eagerly waiting for their turn.  

 The kids really liked the interaction with the game menu. Some said they felt 

like magicians while starting the game. After the game has started we have realised 

that the choice of the robotic hand was good, as it did not scare the kids. The majority 

of children quickly got it how to move in the world with the ‘virtual joystick’ and they 

were searching for the balloon with the right number on it. The most interesting part 

of the trial however, was to observe how different kids played the game. Although our 

test group was small, after the trial we have categorised the kids based on their 

performance in the game. There were basically four groups. The first group of well 

performing kids at the class, which were also good in solving exercises in the game as 

well as having good hand-eye coordination skills and they had no problems with 

moving around in the virtual world, finding balloons and popping them. They really 

wanted to play the game again. In another group, there were children, who were still 

good in solving exercises, but they had issues with coordination and finding the right 

balloons. Some of them had so much trouble playing the game that their experience 

was so frustrating they not really wanted to play the game again. For those kids from 

this group, who while found the game a bit hard to play, but had fun playing it, 

practicing similar games as we have seen, might have a positive influence on the 

hand-eye coordination skills. They performed a bit better as they played the game the 



 80 

second time. Those students, who were somewhat slower in solving exercises, made 

the third group but they had great coordination skills and had no problems with game 

interaction. The play for them was fun, and they wanted to play the game over and 

over again to be able to gain a better score. This game element was the biggest 

motivation. After each play, the kids were talking to each other and showing off their 

score. Those gaining higher were satisfied, while those who have earned a lower score 

wanted to try it again to make it better. This form of virtual reward seems to work 

really well. It is motivational enough to make kids want to play a math game. In the 

last group there were the kids who performed not that well. They had issues with 

solving exercises. For them, solving math exercises and searching for balloons was 

not that fun. They quickly realised that the sensor can track two or more hands too, 

and that it is fun to play with the balloons with the virtual hands, or how cool it is 

when the virtual hands do the same as their own hands, when they clap and so on. 

They got bored really quickly. 

 The trial showed that the majority of kids loved the game. We asked them 

whether they want to play it again, and the response was positive. Almost all of them 

wanted to play the game again. They asked what is the name of the game, how and 

where can they play it. The sensor, how small it is and what it is capable of, amazed 

them. The kids enjoyed playing the game and they quickly forgot about math and all 

they wanted to do was to find the right balloon, what obviously was possible only 

after solving the given exercise, and they wanted to perform better to earn a higher 

score. This means they were practicing math while playing a game, and not thinking 

about school or exercises. We asked them how the game compares to the games they 

play day by day on their iPads. The answer was common: the iPad is nothing special 

anymore, and ‘this is much-much better’ or ‘the best game I have ever played in my 

life’. Yes, kids tend to overrate things and change their minds quickly over time. But 

they grew up in a World where there were smartphones and tablets everywhere, so 

they got used to it. They use iPads at the school where they have a couple of different 

apps for learning. They said that it is not a big deal to use a touch-screen ‘there you 

have to tap and touch it all the time, here you only swipe with your hands in the air 

and you play the game’.  

  



 81 

  

After the students played the game, they were given 5 statements, which they 

had to evaluate with the help of smiles as marks as seen on Image 44. These 

statements were the following: 

- I would like to play the game again. 

- It was easy to pop the balloons. 

- It was easy to find the balloons. 

- I think the exercises were easy. 

- I think the game was easy to play. 

 

The majority of students gave the best mark for all the statements. While this 

is good for the first three statements, it may indicate that the exercises were too easy 

and they might have been more challenging. Those kids however, which had 

problems with the navigation and the gameplay, gave the lowest mark for all the 

statements. This clearly shows, that for them it was not really fun to play the game as 

it was frustrating to not be able to find and pop the balloons. 

These findings clearly show, that such games might not be ideal for all types 

of students, particularly students with a need of special education or those, whose 

hand-eye coordination skill is not that well may have problems playing such games. 

The majority of children however tend to get used to things quickly. They can 

successfully use the widespread technology in their learning process, and our 

prototype has shown that bringing in fresh air, something new to them can boost their 

motivation.  

  

Image 44 - Smileys as marks 



 82 

7  Conclusion 
 

 

 The goal of this thesis was to make use of a new controller device and to 

develop a prototype of a learning application for it, which would mean a possible way 

to improve the game based learning process at elementary schools. We made a 

research on the topics ‘Game Based Learning’ and ‘Gamification’, we showed what is 

current state of the literature, what researchers say on this topic, what they criticise or 

what they think the positives are. We presented the most important information about 

the Leap Motion in detail, described how it works, how precise its tracking is and 

what can be done with it with some tinkering. In the Implementation chapter, we 

presented a tutorial how to begin with the development of an application for the Leap 

Motion in Unity under OS X. There is a subchapter which showcases the state of the 

art of the applications made with Unity. Unity itself, as well as its features is also 

described. Finally, we presented how the prototype was built and what were the 

problems we had during the development process and how we solved them. 

 In the development process we got familiar with the Leap Motion SDK and 

Unity, as well as with the C# programming language. We have only had little 

experience with C# before, this project was a good opportunity to learn C# and to 

learn making games in Unity. Unity turned out to be a really capable system to build 

3D games fast and easily and its learning process was also straightforward.  

 In our practical tests we went to an elementary school and let some third grade 

students to try out our game prototype. After the trial we found, that game based 

learning might not be for everyone. Especially students needing special education had 

trouble succeeding in the game. For other students however, such games utilising 

innovative devices, which create a Natural User Interface, apart from the fact that 

students practice the school subject, might help to improve their hand-eye 

coordination skills. For well performing students with great coordination skills such 

games might mean a fun way to practice the school subject.  

 

 



 83 

 To declare, that game based learning with innovative input devices such as the 

Leap Motion can significantly improve the learning process of some school subjects - 

if the applications are done right - would need a longer and scientific trial. However, 

as we have seen in the classroom, such games can be motivational, engaging and fun 

to play enough to make students forget about the subject while still practicing it. 

 

  



 84 

8  Future Work 
 

 

 While the prototype fulfilled its purpose, we would like to present some ideas 

how it could be made even more interesting and more fun to play. As we have not 

added any sound effects to the game, this would be an essential part of a possible 

future work. To add sounds in the game menu as well as into the game. For example 

environment sounds or music, or sound effects when popping the balloons would 

make a great addition.  

 In addition to sounds it would be nice to add more trees, bushes and rocks to 

the scene so that its more interesting, or to even generate these dynamically in each 

level. Every level would then look different. There is then room to add more levels, or 

more game modes, not only multiplication, but also addition, subtraction and division. 

 To make the gameplay itself more interesting, we could add different physics 

forces like wind. The balloons might float in the wind and the player would need to 

catch and pop them. 

As the Leap Motion is able to track two, or even more hands at the same time, 

a multiplayer mode would also be a good addition, which would make the gameplay 

even more fun. There is room to make the prototype become a good game. 

 Regarding the trials, to find out how the game improves the learning process, a 

larger scale scientific study could be done. 

 

  



 85 

9  References 
 
 
Altman P. (2013) Using MS Kinect Device for Natural User Interface, Pilsen, Czech 
Republic 
 
Barata G., Gama S., Fonseca M. J., Goncalves D. (2013) Improving Student Creativity 
with Gamification and Virtual Worlds, Stratford, Ontario, Canada 
 
Barata G., Gama S., Jorge J., Goncalves D. (2013) Improving Participation and 
Learning with Gamification, Stratford, Ontario, Canada 
 
Borges S., Reis H. M., Durelli V., Isotani S. (2014) A Systematic Mapping on 
Gamification Applied to Education, Gyeongju, South Korea 
 
Chatzopoulos N. (2013) How To Use Leap Motion (Crazy Future Technology) In The 
Classroom http://www.edudemic.com/leap-motion-in-the-classroom/ (last visited 
2014.7.13) 
 
Coelho J. C., Verbeek F. J. (2014) Pointing Task Evaluation of Leap Motion 
Controller in 3D Virtual Environment, The Hague, The Netherlands 
 
Colgan A. (2014) Giving Deaf People a Voice: MotionSavvy’s Real-Time Sign 
Language Translation http://blog.leapmotion.com/giving-deaf-people-a-voice-
motionsavvys-real-time-sign-language-translation/ (last visited 2014.9.6) 
 
Colgan A. (2014) How Does the Leap Motion Controller Work? 
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-
controller-work/ (last visited 2014.8.12) 
 
Dede, C. (2002) Vignettes about the future of learning technologies. In Visions 2020: 
Transforming education and training through advanced technologies. Washington, 
DC 
 
Deterding S., Dixon D., Khaled R., Nacke L. (2011) From Game Design Elements to 
Gamefulness: Defining "Gamification", Tampere, Finland 
 
Deterding S., Sicart M., Nacke L., O'Hara K., Dixon D. (2011) Gamification - Using 
Game-Design Elements in Non-Gaming Contexts 
 



 86 

Griffiths, M. (2014) Playing video games is good for your brain – here’s how 
http://theconversation.com/playing-video-games-is-good-for-your-brain-heres-how-
34034 (last visited 2014.11.15) 
 
Gupta A. (2014) Digital Assistance Beyond the Touchscreen 
http://blog.leapmotion.com/digital-assistance-beyond-the-touchscreen/ (last visited 
2014.9.6) 
 
Gupta A. (2014) Wearing Your Robot: A New Level of Robotic Arm Control 
http://blog.leapmotion.com/wearing-your-robot-a-new-level-of-robotic-arm-control/ 
(last visited 2014.9.6) 
 
Han J., Gold N. (2014) Lessons Learned in Exploring the Leap Motion Sensor for 
Gesture-based Instrument Design, Goldsmiths, University of London, UK 
 
Holz D. (2014) Leap Motion Sets a Course for VR http://blog.leapmotion.com/leap-
motion-sets-a-course-for-vr/ (last visited 2014.9.1) 
 
Huotari K., Hamari J. (2012) Defining Gamification - A Service Marketing 
Perspective, Tampere, Finland 
 
Kuntz Ch. (2013) Controlling Osirix with the Leap Motion While Scrubbed into 
Surgery https://www.facebook.com/photo.php?v=10152121411384392 (last visited 
2014.8.15) 
 
Liebeskind D. (2014) The Beginning of a Drone Revolution 
http://blog.leapmotion.com/the-beginning-of-a-drone-revolution/ (last visited 
2014.9.1) 
 
Magerko B., Heeter C., Medler B., Fitzgerald J. (2008) Intelligent Adaptation of 
Digital Game-Based Learning, Toronto, Ontario, Canada 
 
Means, B. (2000) Accountability in preparing teachers to use technology. In Council 
of Chief State School Officers, 2000 State Educational Technology Conference 
Papers. Washington, DC 
 
Metz R. (2013) Leap Motion’s Struggles Reveal Problems with 3-D Interfaces 
http://www.technologyreview.com/news/518721/leap-motions-struggles-reveal-
problems-with-3-d-interfaces/ (last visited 2014.8.21) 
 



 87 

Mitchell K. (2014) Your Beer Deserves a Better Paint Job 
http://blog.leapmotion.com/your-heineken-beer-deserves-a-better-paint-job/ (last 
visited 2014.10.3) 
 
Plemmons D., Holz D. (2014) Creating Next-Gen 3D Interactive Apps with Motion 
Control and Unity3D, Vancouver, British Columbia, Canada 
 
Plemmons D., Mandel P. Introduction to Motion Control 
https://developer.leapmotion.com/articles/intro-to-motion-control (last visited 
2014.8.21) 
 
Potter L. E., Araullo J., Carter L. (2013) The Leap Motion controller: A view on sign 
language, Adelaide, Australia 
 
Qiu S., Rego K., Zhang L., Zhong F., Zhong M. (2014) MotionInput: Gestural Text 
Entry in the Air 
 
Rao V. (2014) DexType: Virtual Keyboard For Leap Motion Controller 
http://www.assistivetechnologyblog.com/2013/07/dextype-virtual-keyboard-for-
leap.html (last visited 2014.8.15) 
 
Richard J. Noeth, Boris B. Volkov (2004) Evaluating the Effectiveness of Technology 
in Our Schools 
 
Rojas D., Kapralos B., Dubrowski A. (2013) The Missing Piece in the Gamification 
Puzzle, Stratford, Ontario, Canada 
 
Vikram S., Li L., Russel S. (2013) Handwriting and Gestures in the Air, Recognizing 
on the Fly, Paris, France 
 
Watson D., Hancock M., Mandryk R. L. (2013) Gamifying Behaviour that Leads to 
Learning, Stratford, Ontario, Canada 
 
Weichert F., Bachmann D., Rudak B., Fisseler D. (2013) Analysis of the Accuracy 
and Robustness of the Leap Motion Controller, Department of Computer Science VII, 
Technical University Dortmund, Dortmund, Germany 
 
Whitton, N. (2007) Motivation and computer game based learning. In ICT: Providing 
choices for learners and learning. Proceedings ascilite Singapore 2007. 
http://www.ascilite.org.au/conferences/singapore07/procs/whitton.pdf 
 



 88 

Zuckerman O., Gal-Oz A. (2014) Deconstructing gamification: evaluating the 
effectiveness of continuous measurement, virtual rewards, and social comparison for 
promoting physical activity, Herzliya, Israel 
 
  



 89 

Table of Figures 
 
 
 
 
Image 1 - Multi touch ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
Image 2 - Minority Report .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
Image 3 - Makey Makey ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
Image 4 - Touch Board from Bare Conductive ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Image 5 - Leap Motion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
Image 6 - Leap Motion, exploded ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
Image 7 - Leap Motion, LEDs and Cameras ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
Image 10 - Leap Motion, field of view .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 
Image 11 - Hand skeleton ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 
Image 12 - Circle gesture ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 
Image 13 - Swipe gesture ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 
Image 14 - Key tap gesture ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 
Image 15 - Screen tap gesture ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
Image 16 - Scale, rotation, translation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
Image 18 - DexType keyboard for Leap Motion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
Image 19 - Oculus Rift DK2 with Leap Motion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
Image 20 - Parrot AR Drone 2.0 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 
Image 21 - Painting Heineken bottles with the Leap Motion ... . . . . . . . . . . . . . . . . .  45 
Image 22 - Cyber Science - Motion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 
Image 23 - Cyber Science - Motion: Zoology ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
Image 24 - Form and Function 3D .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
Image 26 - Molecules ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
Image 28 - Duck-n-Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
Image 29 - Unity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
Image 30 - A virtual world created in Unity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 
Image 31 - Mecanim .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
Image 32 - Unity, racing game .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
Image 33 - Bad Piggies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 
Image 36 - Marching menu .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 
Image 37 - Game menu scene ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
Image 38 - Raycast .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
Image 39 - Game world ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 
Image 40 - Balloons ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Image 43 - Children playing with the Leap Motion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 
Image 44 - Smileys as marks.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 
 
 
  



 90 

Table of Listings 
 
 
 
 
Listing 1 - Unity, basic script .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
Listing 2 - Unity with Leap Motion, basic script .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
Listing 3 - Unity, raycasting ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
Listing 4 - Unity, camera translation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 
Listing 5 - Unity, FixedUpdate function ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Listing 6 - Unity, exercise generation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
  



 91 

Table of Tables 
 
 
 
 
Table 1 - Leap Motion - motion type recognition ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 
 


