
Hillebold Christoph, BSc

Compiler-Assisted Integrity
against

Fault Injection Attacks

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Telematics

submitted to
Graz University of Technology

Supervisor: Dipl.-Ing. Dr.techn. Erich Wenger

Assessor: Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute for Applied Information Processing and Communications
Graz University of Technology

Inffeldgasse 16a
8010 Graz, Austria

Graz, December 2014

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master’s thesis dissertation.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das
in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit
identisch.

Graz, am

Datum Unterschrift

iii

Acknowledgements

Firstly, I want to express my deepest gratitude to my supervisor Erich Wenger from the
University of Technology Graz. He was always available for discussions and supported me
with helpful feedback and suggestions.

Secondly, I would like to thank all others of the Institute for Applied Information Pro-
cessing and Communications who supported my work. Especially, I would like to thank
Mario Werner who advised me in questions regarding LLVM and was always available for
discussions.

Thirdly, I would like to thank my girlfriend Raphaela Krottmayer for her understanding
and steady encouragement during the last years.

Finally, I am deeply grateful to my parents Maria and Andreas for supporting me
throughout my studies and for their encouragement.

v

Abstract

Fault injection attacks are physical attacks against electronic devices where physical effects
are used to manipulate data or signals. These attacks can bypass security mechanisms or
unveil secret data which is processed by the device. Hardware- or software-based counter-
measures can mitigate these attacks. While it is hard to modify pre-existing hardware,
software-based countermeasures are more flexible. Software-based countermeasures can be
applied to critical parts of the code which leads to less overhead. Applying software-based
countermeasures manually is error-prone and complex. Hence, it is advantageous to use a
compiler to apply these countermeasures automatically. Source code annotations can be
used to distinguish important and unimportant code to keep the performance penalty to
a minimum.

This work discusses compiler-assisted countermeasures against fault injection attacks. Since
software-based countermeasures cannot prevent fault injection attacks, the aim is to detect
them. Fault injection attacks can be detected by storing data redundantly and processing
the data redundantly. From a theoretical standpoint, the following five different methods
are discussed: checksums, simple duplication, complementary redundancy, masking, and
verification of computations. Simple duplication and complementary redundancy were
also practically realized using the LLVM compiler toolchain. Introducing redundancy to a
compiler is a constant fight as the compiler aims at removing redundant code.

To verify the applied countermeasures, the effectiveness of the applied countermeasures
was analyzed using a simulator of the ARM Cortex-M0+ which was extended to simulate
fault injection attacks. Performing 829896 different bit-flip attacks to the unprotected
test programs results in 64698 successful attacks (7.8 %). Simple duplication reduces
the number of successful attacks to 328 of 1887768 attacks (0.0174 %). Complementary
redundancy reduces the number of possible attacks to 32 of 2285016 attacks (0.0014 %).
These promising results lay the foundation for further research in the field of compiler-
assisted countermeasures against fault injection attacks.

Keywords: Data Integrity, Fault Injection Attacks, Compiler-Based Countermeasure,
LLVM, Physical Attacks

vii

Kurzfassung

Fehlerinjektionsattacken sind physikalische Angriffe auf elektronische Geräte, wobei phy-
sikalische Effekte ausgenutzt werden, um Daten oder Signale zu manipulieren. Diese
Angriffe können Sicherheitsmechanismen umgehen oder geheime Daten, welche am Gerät
gespeichert sind, preisgeben. Hardware- oder softwarebasierte Gegenmaßnahmen können
diese Angriffe abschwächen. Im Gegensatz zu Hardwaremodifikationen gestalten sich
softwarebasierte Gegenmaßnahmen flexibler. Die Anwendung softwarebasierter Gegenmaß-
nahmen auf kritische Teile eines Programms führt zu weniger Overhead. Eine manuelle
Anwendung dieser Gegenmaßnahmen ist fehleranfällig und komplex. Daher ist es von
Vorteil einen Compiler zu verwenden, der diese Gegenmaßnahmen umsetzt. Quelltextan-
notationen werden verwendet, um wichtigen und unwichtigen Quelltext zu annotieren und
den Leistungsabfall zu minimieren.

Diese Arbeit behandelt compilerunterstützte Gegenmaßnahmen gegen Fehlerinjektionsat-
tacken. Da softwarebasierte Gegenmaßnahmen solche Attacken nicht verhindern können,
zielen die Gegenmaßnahmen darauf ab, den Angriff zu erkennen. Fehlerinjektionsattacken
können detektiert werden, indem Daten redundant gespeichert und verarbeitet werden.
Folgende fünf Methoden wurden theoretisch beleuchtet: Prüfsummen, Duplikation, kom-
plementäre Redundanz, Maskierung der Daten und die Überprüfung von Berechnungen.
Duplikation und komplementäre Redundanz wurden im Rahmen der Arbeit mit Hilfe von
LLVM auch praktisch umgesetzt. Mit einem Compiler Redundanz hinzuzufügen bedeutet
einen ständigen Kampf gegen den Compiler, da dieser versucht redundanten Code zu
entfernen.

Um die Effektivität der implementierten Gegenmaßnahmen zu analysieren, wurde ein ARM
Cortex-M0+ Simulator dahingehend erweitert, Fehlerinjektionsattacken zu simulieren. Von
829896 durchgeführten Angriffen wurden beim ungeschützten Programm 64698 Angriffe
erfolgreich durchgeführt (7.8 %). Durch die Anwendung von Duplikation von Daten und
Instruktionen konnte die Anzahl der erfolgreichen Angriffe auf 328 von 1887769 Angriffen
reduziert werden (0.0174 %). Die Anwendung komplementärer Redundanz führte sogar
zu einer Reduktion auf 32 erfolgreiche Angriffe von 2285016 Angriffen (0.0014 %). Diese
vielversprechenden Ergebnisse legen einen Grundstein für weitere Forschungsarbeiten im
Bereich compilerunterstützter Gegenmaßnahmen gegen Fehlerinjektionsattacken.

Schlüsselwörter: Datenintegrität, Fehlerinjektionsattacken, Compilerbasierte Gegen-
maßnahmen, LLVM, Physikalische Attacken

ix

Contents

1. Introduction 1

2. Physical Attacks 5
2.1. Side Channel Attacks . 6

2.1.1. Power Analysis Attacks . 6
2.1.2. Timing Attacks . 8
2.1.3. Countermeasures . 9

2.2. Fault Injection Attacks . 14
2.2.1. Fault Injection Methods - Physics behind the scene 14
2.2.2. Classification of Faults . 17
2.2.3. A Mathematical Model for Fault Types 19
2.2.4. Fault Injection Attacks on a Microprocessor 22
2.2.5. Practical Examples of Fault Injection Attacks 24
2.2.6. Countermeasures . 29
2.2.7. Fault Handling . 34

2.3. Compiler-based Countermeasures . 34

3. Data Integrity 37
3.1. Storage of Redundant Data . 37

3.1.1. Memory Separation to Store Redundant Data 39
3.1.2. Paging for Redundant Data . 40
3.1.3. Data Duplication on a Higher Level 40

3.2. Methods of Redundancy . 41
3.2.1. Checksums for Data Integrity . 42
3.2.2. Simple Duplication . 44
3.2.3. Complementary Redundancy . 45
3.2.4. Masking . 49
3.2.5. Verification of Computations . 55

3.3. Data Integrity Verification . 58
3.3.1. Conditional Branches . 58
3.3.2. Function Calls and Returns . 59
3.3.3. Pointers and Arrays . 60
3.3.4. Protecting every Operation . 60
3.3.5. Summary . 60

3.4. Fault Handling . 61
3.5. Summary . 61

xi

4. Implementation 63
4.1. Platform . 63
4.2. Simulator . 65
4.3. LLVM Compiler Toolchain . 66

4.3.1. LLVM Intermediate Language . 68
4.3.2. Backend of LLVM . 70
4.3.3. Annotations in LLVM . 72

4.4. Realization . 75
4.4.1. Compiler Modifications to Support Annotations 75
4.4.2. Compiler Modifications to Preserve Redundancy 77
4.4.3. Intermediate Pass to Ensure Data Integrity 77
4.4.4. Pitfalls . 85
4.4.5. Software Base Versions . 88
4.4.6. Summary . 88

5. Results 91
5.1. Analysis using the Cortex M0+ Simulator 91
5.2. Test Programs . 92
5.3. Performance Analysis . 93

5.3.1. Code Size Analysis . 93
5.3.2. Execution Time Analysis . 95
5.3.3. Memory Consumption Analysis 96

5.4. Attacks Detection Rates . 97

6. Conclusions 109
6.1. Future Work . 111

A. Proof of Statistical Independence of Boolean Masked Operations 113

B. Test program sources 117

C. Acronyms 123

Bibliography 125

xii

List of Figures

2.1. Measurement setup for physical attacks 7
2.2. Schematic system architecture . 23

3.1. Memory layout . 38
3.2. Random Access Memory (RAM) layout using memory separation for re-

dundant data . 39
3.3. RAM layout using paging for redundant data 40
3.4. RAM layout with duplication per variable 41
3.5. Data flow graph for simple duplication 44
3.6. Comparison tree to secure conditional branches 59

4.1. Registers of the ARM Cortex-M0+ [ARM12a] 64
4.2. LLVM toolchain . 67
4.3. LLVM intermediate code example: strlen 69
4.4. Directed Acyclic Graph (DAG) example: strlen:entry 71

xiii

List of Tables

2.1. Categorization of Fault Injection Attacks 5
2.2. Overview of X-Rays and Radioactivity 17
2.3. Overview of types of faults and their impact on data 20
2.4. Overview of countermeasures against Fault Injection Attacks 30

3.1. Translation of operations on the logical inverse 46
3.2. Truth table to proof logical equivalence of inverse operands 47
3.3. Result testing . 56

5.1. Program memory size evaluation . 94
5.2. Execution time evaluation . 95
5.3. Memory consumption evaluation . 97
5.4. Analysis result attacking the stack pointer 101
5.5. Analysis result without applied countermeasures 102
5.6. Analysis overview without applied countermeasures 103
5.7. Analysis result for complementary redundancy 104
5.8. Analysis overview for complementary redundancy (2) 105
5.9. Analysis result for simple duplication . 106
5.10. Analysis overview for simple duplication (2) 107

6.1. Results summary . 111

A.1. Truth table for a boolean masked and operation 114
A.2. Truth table for a boolean masked or operation 116

xv

Listings

2.1. Unprotected PIN verification example . 26
2.2. Unprotected comparison of strings (strcmp) 27

3.1. Calculating the CAN-CRC-15 in C for a 64-bit value 43

4.1. Annotation example in C with function attributes and parameter attributes 73
4.2. Resulting LLVM IR using function attributes and parameter attributes . . 73
4.3. Annotation example in C with variable attributes 73
4.4. Resulting LLVM IR using variable attributes for the addition in line 4 . . . 74
4.5. Annotating a label in C . 74
4.6. Extension to the table-definition file Attr.td 76
4.7. Intermediate code to calculate the address of a pointer in a two-dimensional

array . 87
4.8. Folded redundant loading of two pointers 87
4.9. Correct redundant loading of two pointers can be achived by deactivating

Common Subexpression Elimination . 87

5.1. Accessing a two-dimensional array in C 98
5.2. Accessing a two-dimensional array in LLVM intermediate code 99
5.3. Accessing a two-dimensional array in assembler code 99
5.4. Before Simple Register Coalescing . 99
5.5. After Simple Register Coalescing . 99
5.6. Correct result which should be performed instead 100
5.7. Analysis of successful attack on register R0 103
5.8. Analysis of successful attack on register R5 107
5.9. Analysis of successful attack on register R5 107

B.1. Fault handling declarations . 118
B.2. String method implementations: strlen, strcmp, strcpy 119
B.3. Test program to verify string operations 120
B.4. Iprint: Recursively converts a number to a string 120
B.5. Iprint test program . 121
B.6. Three functions calling each other . 121
B.7. Implementation of sbrk to enable malloc 121

xvii

1. Introduction

Technology has developed rapidly during the last century. A few decades ago, when the
first computers arose, programs were coded into punched cards byte by byte and every
instruction was carefully selected. In 1952, Grace Hopper invented the first compiler A-0
which made programming more abstract and easier [Bey14]. A compiler is a piece of
software which translates human readable source code to encoded machine instructions.
Compilers improved over the years and led to new programming languages. Nowadays,
software developers write object-oriented source code. Data structures and protocols are
heavily abstracted. Hence, only few software developers need to know what is really going
on in the machine. Programs are written in high-level languages and the compiler performs
various transformations and decides what is executed on the device in the end.

Compilers could further be used to apply security mechanisms to embedded devices since
manual approaches are error-prone and require detailed knowledge of possible attacks and
their corresponding countermeasures. Security is a crucial topic – especially if the attacker
has physical access to the device. Applications where a potential attacker has physical
access to the device are mobile phones, ATM-cards for electronic payment, Subscriber
Identity Module (SIM)-cards, and Conditional Access Modules (CAMs). Each of these
applications stores private or secret data which has to be protected – often even from the
holder of the device. This is especially true for ATM-cards issued by a bank, SIM-cards
issued by a network operator, and CAMs issued by a broadcasting company. The issuers
of these cards aim at preventing illegal copies of the secret data since their cards are
attractive targets for attacks.

Security and Attacks

The security of such systems rely on a shared secret or on cryptographic methods like
encryption, signing and hashing. The design of cryptographic methods is based on mathe-
matical hard problems which are believed to be secure. Even if an attacker cannot break
the cryptography in theory, some physical attacks may exist. The same holds for Personal
Identification Number (PIN)- or password-verification: physical attacks can bypass the
security mechanisms. Physical attacks rely on side channel effects caused by the imple-
mentation of the cryptographic method or inject faults to manipulate the state of the
program.

Side channel effects such as power consumption or time measurements can leak information
about the instructions and the data being processed. Fault Injection Attacks (FIAs) on
the other hand actively target the system using physical effects such as variations in the

1

supply voltage, variations of the external clock, or using lasers. These effects can cause
skipped instructions, incorrectly executed instructions, or modified data.

Countermeasures aim at making attacks harder by applying passive hiding techniques and
to prevent attacks by detecting them. Passive hardware countermeasures are execution
randomization, random dummy cycles, an unstable frequency generator, encryption, or
shields. Active hardware countermeasures include light detection sensors to detect depack-
aging and supply voltage detectors or frequency detectors to actively detect FIAs. Further,
hardware redundancy can be used to detect faults. Most software-based countermeasures
need to apply redundant computations and verifications to detect faults.

Our Contribution

This work focuses on countermeasures against FIAs by ensuring data integrity in software.
Various countermeasures are discussed from a theoretical standpoint:

• Simple duplication aims at storing each variable multiple times and performing
calculations on redundant data.

• Complementary redundancy aims at storing the binary inverse of the original
values while performing complementary instructions solely on inverted data. The
advantage over simple duplication is that different data is processed by different
instructions.

• Execution redundancy aims at performing duplicate calculations which are used
to verify the original computation. In contrast to simple duplication, no data is
stored redundantly.

• Checksums can be used to verify data being stored on an external device. Since
good checksums are nonlinear in binary operations, the redundant data cannot be
transfered over Arithmetic Logic Unit (ALU) instructions without interaction with
the original values.

• Masking is known as a countermeasure against side channel attacks but can as well
be used against fault injection attacks. Two different masks have to be applied to a
single original value such that both masked values can later be used for verification.

Simple duplication and complementary redundancy were further implemented using the
LLVM compiler toolchain. Clang and LLVM are extended to perform the transformations to
arbitrary source code. Several modifications to the clang frontend and the LLVM backend are
necessary but the actual transformations are performed on the LLVM Intermediate Language
(IL). This is an architecture-independent intermediate format, where most transformations
and analysis passes are performed. Additionally, the LLVM IL is independent of the high-
level language which makes LLVM a powerful compiler toolchain. Each countermeasure
poses its own challenges: Especially simple duplication requires countless modifications
to the LLVM backend because compilers were written to optimize the code and remove
redundancy but not to generate secure code.

2

Source code annotations in C are used to select functions to be secured against FIAs.
The function headers are annotated using function attributes. Some external functions
(for example, from a library) require additional annotations for a proper handling. These
functions can be annotated using parameter- and function attributes to tell the compiler if
the function should be called multiple times and if the parameters may contain redundant
data.

For implementation and testing, an ARM Cortex-M0+ processor is used but the discussed
and implemented methods are applicable for other platforms as well. The ARM Cortex-
M0+ is a 32-bit processor and supports 56 instructions – most of the Thumb instruction
set and a subset of the Thumb-2 instruction set. This processor was chosen because it
has a relatively low complexity. Successful results for this model can be applied to other
processors because the investigated countermeasures are highly platform-independent.

Evaluation

For evaluation of the applied countermeasures, it is necessary to simulate fault injection
attacks. VirtualBug is a simulator for the Cortex-M0+ which is extended to perform various
FIAs. Several annotated test programs were implemented which compare intermediate
results against predefined values to detect a successful fault attack. The results are
classified to measure the effectiveness of the applied countermeasures.

Most of the overhead origins from the verification of redundant data which can be omitted
under certain conditions. Critical points, where a verification is inevitable, are analyzed in
this thesis and protected accordingly. Examples for critical points are conditional branches,
function calls, returns, and memory operations.

Although, the vulnerability analysis provides promising results, it was not possible to
prevent all possible fault injection attacks. The rate of successful attacks without any
countermeasures adds up to 14.6 % which can be reduced to 0.0133 % for simple duplication
respectively not a single successful attack for complementary redundancy. For another test,
where not every attack can be mitigated for complementary redundancy, the successful
attack rate decreases from 11.2 % to 0.00452 %. While these numbers are a great success
to detect fault injection attacks, the remaining vulnerabilities are analyzed in detail and
solutions are proposed.

Outline

This work is structured as follows:

Chapter 2 starts with an introduction to physical attacks. Physical attacks are divided in
side channel attacks and fault injection attacks. For each, several attacks are discussed
together with their possible countermeasures. Fault injection attacks are further classified
and modeled mathematically. As related work, several papers based on other compiler-
based countermeasures are discussed. However, none of these countermeasures protect the
programs against fault injection attacks regarding data integrity.

3

Chapter 3 discusses several design decisions which had to be made. Data has to be
stored redundantly which can be done in different ways. Several methods of redundancy
are discussed in detail: checksums, simple duplication, complementary redundancy, and
masking schemes. Critical points, where data verification is inevitable, were discussed.
Examples are conditional branches, function calls, returns, and memory operations.

Chapter 4 discusses further details regarding the implementation. It describes the ARM
Cortex-M0+ platform, the VirtualBug simulator, the LLVM toolchain, the modifications
to the clang frontend and the LLVM backend, and the implemented intermediate passes
Further the pitfalls are discussed which posed new challenges during implementation but
were successfully resolved.

Chapter 5 presents the test programs and evaluates the performance and vulnerabilities
of the different countermeasures in detail. The performance is evaluated in terms of code
size, execution time and memory size. Vulnerabilities were located using a structural test
mechanism which attacks comparison flags in the program status register, several registers
(R0 – R7), the stack pointer, and memory attacks.

Chapter 6 concludes the results of this thesis and gives ideas for further work on this
topic.

4

2. Physical Attacks

In many scenarios, an attacker has physical access to a device which is supposed to be
secure. Secure, in a sense that it either contains a secret value which must not be unveiled
or that it must not perform an action without prior authentication and authorization.
Physical access to the device under attack allows various attacks based on observations
and/or manipulation of the system or its environment. The following categorization is
mainly based on Mangard et al [MOP07].

Physical attacks can be categorized in passive attacks and active attacks.

• In passive attacks, only observations are made and the execution of the device is
not altered.

• In active attacks, an attacker manipulates the hardware of the device, input signals,
or the environment to induce faults.

Another way to categorize physical attacks is in terms of the level of invasiveness.

• Non-invasive attacks do not modify the device permanently and no evidence of
an attack is left behind.

• Semi-invasive attacks may include depackaging the device but the device is not
functionally manipulated.

• Invasive attacks include depackaging of the device and access parts of the device
directly. Electrical wires may be added or destroyed.

Every attack can be categorized in one of each category above. Table 2.1 shows some
examples. Passive attacks are always Side Channel Attacks (SCAs) and active attacks are
Fault Injection Attacks (FIAs). Attacks can be combined to achieve better results.

Table 2.1.: Categorization of fault injection attacks into passive/active attacks and in level of invasiveness

Passive Active

Non-Invasive Power Analysis Attack (PAA), Power Spikes, Temperature,
Timing Attack (TA) Clock Glitches, . . .

Semi-Invasive EM, Optical Inspection, . . . Light, Radiation, . . .
Invasive Probing, . . . Forcing, . . .

5

This chapter gives a short overview on different SCAs as well as an introduction to FIAs.
Further, countermeasures are discussed for both SCAs and FIAs. The last section handles
related work in terms of compiler-assisted countermeasures.

2.1. Side Channel Attacks

Passive attacks are typically Side Channel Attacks (SCAs), where differences in time,
power consumption or electromagnetic radiation are recorded and analyzed (see Table 2.1).
Side channels allow statistical inference with the commands being executed and the data
being processed. If the designer of the system did not consider that an attacker could use
these side channels, it is likely that such an attack is successful and can determine secret
intermediate values depending on secret information like a key. Hence, SCAs can unveil a
secret key even if the protocol is mathematically secure (neither the ciphertext/signature
nor the public key can reveil any information).

Probing is as well considered as a SCA. The device is depackaged and direct wire connec-
tions to the electrical circuit of the chip are established. Probing is a very strong attack
because signals can be read out directly, but it is very expensive because it requires costly
laboratory equipment as well as detailed knowledge of the device under attack.

In this section two classical SCAs are discussed in more detail, namely Power Analysis
Attacks (PAAs) and Timing Attacks (TAs). The same methods can be applied to other
SCAs. In the following subsections, common countermeasures against SCAs are discussed
in general. The sources of the following subsections are mainly extracted from Mangard
et al. [MOP07], a standard literature for PAAs. Detailed information regarding Simple
Power Analysis (SPA), Differential Power Analysis (DPA) and countermeasures can be
found in the book.

2.1.1. Power Analysis Attacks

A processor is a digital circuit which is built out of logic cells. These logic cells have
one or several outputs which depend on the input and possibly on an internal state.
Take Complementary Metal-Oxide-Semiconductor (CMOS)-cells as an example. The
power consumption can be split in static and dynamic power consumption. Static power
consumption, which is the power needed all the time, is very low for CMOS-cells. Although,
when a bit changes, the dynamic power consumption is relatively high and differs depending
on the direction of the bit-flip. Hence, the total power consumption of a cell may be
statistically larger if the internal state changes than when it remains the same.

Power consumption of a device can easily be tracked with a serial resistor in the ground
lane and a digital oscilloscope to monitor the voltage drop at the resistor (see Figure 2.1).

Often, a Hamming-distance (HD) model is used to represent the power consumption. The
HD is defined as the number of bits changed between two values. Therefore, this is a good

6

Device under Attack

Oscilloscope

Figure 2.1.: Measuring the voltage drop over a serial resistor to measure the current and hence the power
consumption of the device under attack

approximation because the power consumption depends linearly on the number of bits
flipped in a CMOS-cell.

2.1.1.1. Simple Power Analysis Attacks

Simple Power Analysis (SPA) aims to detect and identify executed operations and processed
data in the power traces. This can be done if the impact of executed commands for the
specific hardware as well as the processed assembly are known. SPA attacks are well
suited for an attack if only one or few power traces can be recorded. This is necessary
if the attacker cannot analyze the attacked device for a longer time or the device locks
itself after a number of tries. One possible scenario may be a malicious card reader, which
monitors the power consumption, is used while an unsuspecting victim is using it.

A subtype of SPAs are template attacks. Template attacks rely on the fact that the
power consumption depends on the processed data. To generate templates, an attacker
analyzes the behavior of a single instruction or of a sequence of instructions. Since the
power consumption is similar if the HD is the same, it only makes sense to use template
attacks for the Hamming-weight (HW). Template attacks are performed in two phases: a
template building phase and a template matching phase. During the template building
phase, interesting points of a power trace are characterized. Templates are generated
either for the key, for intermediate values or the Hamming weight of processed data. The
template matching phase aims to classify the power traces to the built template. Typically,
more than one power trace is required to perform a template attack.

2.1.1.2. Differential Power Analysis Attacks

In 1998, Kocher et al. [KJJ99] introduced the powerful Differential Power Analysis (DPA).
In contrast to SPA, DPA relies on key hypotheses and aims to match with the power
consumption. If the key hypothesis for a single bit is correct, the correlation will be
significant higher than for a random key hypothesis. As an example for a DPA attack,
an attacker could try to guess the key iteratively (for example, byte by byte). If a key

7

hypothesis was initially wrong, the following bits will have no significant correlation and
the faulty key hypothesis can be found and corrected via backtracking. For this kind of
attack, plenty of power traces for different plain texts are required. Hence, it essential to
have physical access to the device for a longer time to produce the power traces. DPA
attacks may not be applicable for malicious card readers, but be capable of copying an
own or stolen card or device. The advantage of DPA attacks over SPA attacks is that no
detailed knowledge of the device is required.

According to Mangard et al. [MOP07], DPA attacks are typically separated in five steps.
At first, the attacker chooses an intermediate value which depends on the key and on
the plain or cipher text. Secondly, the power traces for different input data (either cipher
or plain texts) are recorded. These power traces have to be aligned correctly. Hence,
the digital oscilloscope has to trigger the start of the execution exactly. If this is not
possible, the signals has to be aligned (moved along the time axis) by maximizing the cross
correlation of all pairs of signals. Thirdly, intermediate hypotheses are predicted for every
possible key. Next, the predicted intermediate values are mapped to power consumption
values in the aligned power traces. The software algorithm, which implementation has to
be known, is simulated for this purpose and a hypothetical power consumption is derived
using the HD or the HW. Lastly, the result of this attack can be improved by comparing
the power traces with the hypothetical power consumption.

2.1.2. Timing Attacks

“Time is money” - this is especially true for hardware. Software developers try to get
the best out of the less adaptable hardware. The goal is too often to “make it as fast
as possible”. The user is inpatient, can not wait and wants results! Hence, code will be
executed only if it is necessary and hardware implementations will only take as long as
necessary. Conditional branches often lead to a different runtime of the code depending on
a condition. Multiplications or exponentiations take different time depending on the values
being processed. Timing attacks are suitable for software or hardware implementations as
both can have different runtime.

In 1996, Kocher [Koc96b] showed practical timing attacks for Diffie-Hellman, Rivest,
Shamir, Adelman (RSA) and Digital Signature Algorithm (DSA). Take an efficient expo-
nentiation algorithm as shown in Listing 2.1 for example. It can exponentiate a number
with a given modulus. For the internal multiplication it uses the Montgomery multiplica-
tion, which takes a different amount of time, depending on the values being processed.
Let N be the number of bits in the exponent. On a closer look, the algorithm performs
between N and 2N multiplications, depending on the exponent. In other words, the HW
of the exponent is proportional to the runtime of the function. In the RSA cryptosystem,
the unknown exponent is typically the private key.

The TA targets the bits of the exponent one by one from the Most Significant Bit (MSB) to
the Least Significant Bit (LSB). Assuming all bits from N-1 to i-1 are known, the attacker
can simulate the intermediate value result. Then, the attacker simulates the Montgomery

8

multiplication to predict the runtime. The runtime of line 5 to line 7 should be nearly 0 if
the ith bit of the exponent is 0. If the runtime of the Montgomery multiplication should be
really slow (for example, determined by a threshold), the overall runtime should be also
really slow. Hence, the attacker can guess bit after bit with a high probability (depending
on the number of measurements).

Algorithm 2.1 Pseudo-Code: Modular left-to-right square-and-multiply exponentiation
with timing attack vulnerability

Input: base,mod, exp = (expN−1, . . . , exp0)2
Output: result = baseexp mod bmod

1: function exp(base, exp, mod)
2: result← 1
3: for i from N − 1 downto 0 do
4: result← montgomery mult(result, result, mod)
5: if expi = 1 then
6: result← montgomery mult(result, base, mod)
7: end if
8: end for
9: return result

10: end function

For a successful timing attack an attacker needs a large number of measurements. The
more measurements, the higher is the probability to estimate the right key guess. A wrong
key guess can typically be detected by monitoring the following bit guesses with their
probabilities. Backtracking techniques can be used to find the wrong key guess and to flip
the bit.

Timing attacks require an accurate measurement of the runtime of a process. Hence, it
is a benefit for the attacker if the device actively responds after the process finished.
Otherwise, if the attacker has physical access to the device, power traces can be used to
determine the duration of the algorithm. The power consumption is much higher during
operations than when the device is in an idle state. It is not necessary to obtain new
power traces for each bit guess. The same power traces can be used. Power traces can be
prerecorded and the attack can be performed later.

2.1.3. Countermeasures

In this section, typical countermeasures against SCAs such as masking and hiding are
discussed. Commonly, masking and hiding are combined such that masking is performed
firstly and hiding is done afterwards.

Masking applies a random mask to the original value to make the masked value statistically
independent from the original value. All computations are performed on masked values
and the mask. Depending on the instructions, either logical or arithmetic masking is
used.

9

Hiding aims to remove the dependency between intermediate values and the side channels
by increasing the Signal to Noise Ratio (SNR). Yet, the same intermediate values as
without this countermeasure are computed. The commands executed and the intermediate
values during the hiding countermeasure stay always the same.

2.1.3.1. Hiding against Power Analysis Attacks

Hiding can be used against PAA by reducing the SNR of the power consumption. This can
be achieved by homogenizing the power consumption of each instruction, such that they
are independent from the values being processed and for all operations being performed.
Although this seems to be an easy task at first sight, it is rather difficult to design such
hardware. Though, it can approximated by careful choice of instructions, which only leak
little information. Changes to the program flow, such as branches or jumps can easily be
detected. Hence, conditional jumps should never depend on secret data. Memory addresses
also leak side channel information to the attacker, for example, when accessing a table or
a precomputed S-Box. They should not depend on secret data either or at least have the
same HW. Another way to reduce the SNR is to increase the noise by either performing
more operations at the same time in parallel or to use noise engines. Filters can be used to
smooth the power consumption by keeping the consumption stable. This can be realized
using a network of large capacitors which are charged and discharged during operations
on the chip.

Dual Rail Logic

Normal cells are also known as Single Rail (SR) cells. Another countermeasure to reduce
the data dependency of instructions is to use Dual Rail (DR) cells. Instead of having two
inputs and one output for a SR cell, a DR cell has four inputs and two outputs. Each
input and output is duplicated and matches the inverse of the original one. This makes
the HW model unsuitable because the total HW for one cell is always the same.

In 2004, Bucci et al. [Buc+04] proposed to use pre-charge circuit against DPA attacks.
A pre-charge circuit randomly initialized all values before the real values are applied.
This makes the HW-model unsuitable because the attacker cannot predict the random
pre-charged values and hence cannot use the HD as a model for the power consumption.
Here, the HD is the number of different bits between the random initialized value and
the value being set. Because random data is randomly initialized, the HD is randomly
distributed.

Randomly initializing variables is not restricted to hardware. A software-based solution is
random pre-charging, where an additional instruction is used to initialize memory cells
with random data. Implemented in a high level language, this may be identified as code
without effect. Hence, the random pre-charging instruction may be removed by most
compilers in order to optimize the assembly in terms of size and runtime.

As a software countermeasure, random dummy operations can be inserted at various
positions, such that the total number of random operations stays the same. Otherwise, an

10

attacker could use the number of random operations executed as an other side channel.
The position of each point in the power trace depends on the number of dummy cycles
inserted before the operation. This position must vary between each execution and must
not be applied statically, for example in the assembly. Random dummy operations make
alignment of single operations necessary, which was done in 2013 by Durvaux et al.
[Dur+13]. Unfortunately, dummy operations can be detected using pattern-recognition
techniques by observing both, timing and power consumption, of the device under attack.
More precisely, they used a Hidden Markov Model (HMM) to learn the different stages of
the Advanced Encryption Standard (AES) algorithm.

Instruction shuffling can also be used as a software countermeasure to hide instructions
from PAA. Independent instructions can be executed in any order without influencing the
outcome of the program. This can be used to randomize the power consumption in the
time dimension. The disadvantage of instruction shuffling is that it can only be used for
certain algorithms where instructions do not depend on each other.

Some of these countermeasures against PAAs aim at randomizing or homogenizing the
power consumption to make the power consumption independent from the processed
data. Others aim at covering the position of executed instructions to make it harder to
target the attack. Most of these countermeasures require an on-board random number
generator.

2.1.3.2. Hiding against Timing Attacks

Kocher [Koc96b], who proposed timing attacks in 1996, introduced hiding as a counter-
measures in the same article. Hiding against timing attacks aim at clearing the influence
of secret data on the runtime. This can be done either by homogenizing the runtime of all
instructions and branches or by producing a random runtime. The runtime of a program
can be homogenized by either performing the same instructions in each branch (on later
unused variables if necessary) or by inserting dummy operations.

This can once more be achieved by inserting dummy operations in all branches which
perform exactly the same operations. The only difference should be that the data is not
processed furthermore if it was performed as a dummy operation. This seems easy at
the first sight, but is impossible in high level languages such as C because of compiler
optimizations which would remove these countermeasure. The software developer has
either to write assembly code directly or to adapt the resulting assembly code accordingly
after compiling a higher level language. Even if this countermeasure is implemented
correctly, RAM cache hits can still be used for TAs because they cannot be removed in
software.

Further data-independent dummy cycles can be used as a software countermeasure or
a jitter signal could be applied to the internal clock as a hardware countermeasure.
Also, clock pulses could be skipped in hardware depending on a random number. Data-
independent dummy cycles do not make the attack more complicated, but make more
samples necessary to average the deviation out, which increases the cost of the attack.

11

Kocher [Koc96b] noted that the number of measurements required relates approximately
to the square of the timing noise.

2.1.3.3. Masking

Masking aims to randomize the power consumption of each intermediate value even if the
processor leaks information on the processed data. This is achieved by applying random
masks to all values, which leads to masked values. The masked values and the masks are
both independent of the original intermediate value.

A random mask m is applied to an intermediate value v and results in the masked value
vm.

vm = v ∗m (2.1)

Depending on the algorithm which should be protected, either boolean or arithmetical
masking can be used. Hence, the operation ∗ can be replaced either by an exclusive-or
⊕, a modular addition + or a modular multiplication ×. The modulus of the arithmetic
operations + and × must be chosen according to the cryptographic algorithm in use.

It must be ensured that a mask is applied to all intermediate values and that the mask is
not removed if two masks collide. In the following example, a and b are both protected by
the same boolean mask m.

am = a⊕m (2.2)

bm = b⊕m (2.3)

cm = am ⊕ bm = (a⊕m)⊕ (b⊕m) = (a⊕ b)⊕ (m⊕m) = a⊕ b = c (2.4)

When the intermediate value a⊕b has to be computed, it is replaced by the same operation
using the masked values. Due to the commutativity of ⊕, the masks cancel out and unveil
the original value c. An additional mask m2 has to be applied to one of the values to
generate a masked result cm2.

cm2 = (am ⊕m2)⊕ bm = (a⊕ b)⊕ (m⊕m⊕m2) = (a⊕ b)⊕m2 = c⊕m2 (2.5)

The same problem occurs when two intermediate values which use the same mask are
executed consecutively. The overall power consumption of both intermediate values cancels
out because the same bits of both values are flipped. Hence, the used masks must
be carefully selected and should not be shared between variables which are processed
consecutively.

An algorithm which only uses boolean operations can be easily masked. However, it is
nontrivial to switch the masking scheme. In 2001, Goubin [Gou01] proposed an efficient
technique to switch from boolean masking to additive masking.

f(xm,m) = (xm ⊕m)−m mod N (2.6)

xm,+ = f(xm,m1 ⊕m)⊕ (f(xm,m1)⊕ xm) (2.7)

12

A technique to switch from additive to boolean masking was proposed in the same
paper but is less efficient as it requires 5dlog2Ne+ 5 operations, where N is the applied
modulus.

In 2003, Coron and Tchulkine [CT03] proposed a technique to switch from additive to
boolean masking. A precomputed table which stores all possible N entries for a single
mask was used. The size of the table can be reduced by using two tables with size 2l and
2k, where l + k = dlog2Ne. This makes the switching between masks less efficient but
requires only 2k + 2l table entries instead of 2k+l = 2k · 2l table entries.

The problem of switching masks applies as well to non-linear functions. In 2013, Bettale
[Bet13] proposed a to generate a masked S-Box for AES. The S-Box of AES, although,
can be computed by calculating x−1 mod N and is hence compatible to multiplicative
masking. If the S-Box cannot be applied arithmetically, it is usually implemented using
lookup tables. A masked lookup table Tm can be generated by applying a mask m to
all keys x of the table and to all values T (v), such that instead of T (v) the following is
computed.

Tm(x⊕m) = T (x)⊕m (2.8)

Having discusses switching between additive and boolean masking, switching from an
additive mask to a multiplicative mask is simply:

xm,× = xm,+ ·m−m ·m mod N (2.9)

This can be derived from the fact that the unmasked values must be the same:

xm,× ·m−1 = xm,+ −m mod N (2.10)

It is not trivial to switch from multiplicative masking to additive masking in general. This
would require to have an inverse mask m−1 mod N . The modulus N and the mask m
has to be selected such that gcd(m,N) = 1 to ensure an inverse exists.

xm,+ = (xm,× +m ·m) ·m−1 mod N (2.11)

One disadvantage of multiplicative masking is that the value 0 cannot be masked.

Masking can be implemented in software, in hardware or on cell level. It is amazingly easy
to manually implement masking in software because it can be done on a very high level
(for example, in C++). Most compilers will not recognize the redundant code as masking
and will not remove the masking due to optimizations.

According to Mangard et al. [MOP07], attacks against masking techniques include second-
order DPA attacks. Therefore, preprocessing is required to combine two points in a
power trace if the intermediate values occur in different clock cycles. If the two masked
intermediate values are computed in the same clock cycle, the preprocessing is applied to
a single point in the power trace. If the power consumption of both variables leak data
directly in one step, no preprocessing is required.

13

Another attack against masking schemes are mask reuse attacks, as described in Mangard
et al. [MOP07]. To improve the performance of a system, a masked lookup-table is used
for multiple executions. Even if masks are only used a few times, the masks are probably
biased. Hence, the same mask should never be reused in different executions. Fixed masks
for precomputed S-Boxes should be avoided as well.

2.2. Fault Injection Attacks

Fault Injection Attacks (FIAs) are active attacks where the device, the environment or
the input signals are manipulated directly. According to Mangard et al. [MOP07], there
are non-invasive, semi-invasive and invasive FIAs. Non-invasive attacks do not leave any
evidence of the attack as the device is not physically modified. Semi-invasive attacks
require some modifications as depackaging the device but no functional elements such as
wires are destroyed permanently. Invasive attacks cut or create new wires and modify the
device permanently.

FIAs aim at manipulating the data or the control-flow by inducing faults during normal
computations. Therefore instructions are performed which the system designer was not
aware of.

This section starts discussing physical aspects of FIAs in section 2.2.1 and a classification
of these attacks in section 2.2.2. After proposing a mathematical model in subsection 2.2.3,
the impact of several practical attacks is shown in section 2.2.5. As a practical attack
example, the Bellcore attack is discussed. A further motivation is given by an attack against
the square and multiply operation of RSA. A last example is a PIN verification which is
attacked to bypass the authorization step. At the end of this chapter, countermeasures in
hardware and in software are discussed in section 2.2.6. The main sources for this section
are Bar-El et al. [Bar+06] and Otto [Ott05] who give a good overview over FIAs.

2.2.1. Fault Injection Methods - Physics behind the scene

In this subsection the physics behind FIAs are discussed. Methods include power spikes,
clock glitches, light attacks, heat and infrared light, external electrical fields, radiation
(α, β, γ), cosmic rays, X-rays and ion beams . The main sources for this subsection are
Bar-El et al. [Bar+06] and Otto [Ott05].

The most effective invasive FIA is probing, where the chip is unpacked and direct electrical
contact is made. This is a very powerful attack because it gives the attacker direct control
over the device. Otherwise, it is very expensive because it requires professional laboratory
equipment as a probing station.

14

2.2.1.1. Variations in Supply Voltage - Power Spikes

Every processor depends on an external power supply. Especially smart cards do not have
a battery on-board and need a reader to receive energy. Naturally, an attacker can replace
the reader by a malicious reader to provide an arbitrary power supply. Every part of the
device under attack has slightly different operation specifications in which the device is
required to work according to the specifications. Outside these ranges parts of the system
do not work properly and faults occur. Power spikes are short deviations out of these
ranges. According to Aumüller et al. [Aum+03], they can be described by nine parameters
including time, voltage and shape of transition. Kömmerling and Kuhn [KK99] stated
that this attack can create memory faults or execution faults where the program flow can
be manipulated by changing conditionals, loop counters or the instruction pointer. Faults
to the system memory can occur because the processor continues its work while the RAM
is not able to modify stored data. When the voltage drops too much it will cause the
processor to reset. If the memory can persist its data with the lower voltage, the processor
will start its new execution with preinitialized values which can be further used for an
attack. According to Otto [Ott05], spike attacks are known to be a standard method for
FIAs.

2.2.1.2. Variations in External Clock - Clock Glitches

Clock glitches are manipulations of the system’s clock signal which is needed for inner
synchronization of the device. They can force the processor to skip an instruction either
completely or partially because the processor starts to execute the next instruction before
the old instruction finished. Practical experiments by Bar-El et al. [Bar+06] showed such
successful attacks with both results. The outcome was that the data values were corrupted
while the processor continued to execute the rest of the program as usual. The device may
result in an undefined state, but the attack can be repeated with a certain probability if
it is timed correctly. According to Otto [Ott05], nowadays, clock glitches are the simplest
and most economical attacks. Referring to Anderson and Kuhn [AK98], they were widely
used to hack pay-TV smartcards.

2.2.1.3. Variations in Temperature and Infrared Light

As mentioned before, each electronic device works correctly only in certain ranges according
to the specification. This appears for the temperature range as well where an upper and
lower bound of each part of the device can be defined. An electronic system consists of
many different electronic modules. Each of these modules could be produced separately,
maybe even by an other manufacturer. This leads to different temperature specifications
for different parts of the device. Increasing the temperature out of the specified operation
range of the device may lead to incomplete writes because the memory unit fails but the
processor keeps working because of different operation ranges.

15

In 2003, Govindavajhala and Appel [GA03] showed practical attacks using high tem-
perature to inject faults to a personal computer with a probability of approximately
70 %. Strong infrared light (for example, 50 W) can be used to heat up a spot on a
small processor. Single bit-flips were induced at temperatures around 80 ◦C and 100 ◦C.
Unfortunately it is not possible to focus infrared light on a very small spot. Therefore
more than one bit is attacked at the same time or the attacker has no direct control over
which or how many bits are flipped. Hence, the operating system sometimes crashed and
even caused permanent failures to the disk until they switched to using an immutable boot
Compact Disk (CD). The sensitivity for faults was increased if additionally variations
in the power supply occurred. It was furthermore proposed to use extensive memory
operations to heat up the memory with load and store operations.

2.2.1.4. Light Attacks or Optical Attacks

Light attacks which are known as optical attacks contain attacks using a laser or white
light. According to Otto [Ott05], these attacks require depackaging the device such that
the silicium layer becomes visible. Electronic circuits are sensitive to light because of
photoelectric effects. Photons induce an electrical current in the circuit to inject a fault
directly. White light is a much cheaper attack, but lasers can be focused on a smaller spot
and transmit more photons.

According to Bar-El et al. [Bar+06], an example for an optical attack is to shoot a laser
beam on a data bus during information transfer. The energy of the laser causes all bits of
the data transfered during the attack to switch to high value (probably one).

Lasers or UV light can as well be used to set or erase individual bits of a Static Random
Access Memory (SRAM) cell. In 2002, Skorobogatov and Anderson [SA03] presented an
interesting attack. A camera flash light together with an aluminum foil and a microscope
were used to target single bits of a SRAM cell. Still, mostly more than one bit was targeted
using a laser for the attack.

2.2.1.5. X-Rays, Radioactivity and Ion-Beams

This paragraph gives a short overview over the different types of radiation and aims to
show the differences in wavelength and energy. According to Unihedron [Uni09], X-rays are
electromagnetic radiation with a wavelength of 100 pm to 10 nm and an energy from 100 eV
to 100 keV. Radioactive sources emit α-particles, β-particles and γ-rays. According to
Canberra Industries [Ind93], α-particles are helium nuclei and have an energy of between
1 MeV and 12 MeV. β-particles are high energy electrons or positrons with a continuous
energy distribution. According to [Nuc14], the upper limit of the energy of β-particles
is given by 4 MeV. Ion-beams refer to a charged particle beam which usually refer to
β-particles. According to Unihedron [Uni09], γ-rays are another form of electromagnetic
radiation with a wavelength of less than 100 pm and an energy of more than 10 keV.
Cosmic rays refer to high-energy γ-rays.

16

Table 2.2.: Overview of X-Rays and Radioactivity

Type Wavelength Energy

α-particles [Ind93] - 1-12 MeV
β-particles [Nuc14] - 0−4 MeV
γ-rays [Uni09] <100 pm >10 keV
X-rays [Uni09] 0.1−10 nm 0.1−10 keV

According to Bar-El et al. [Bar+06] and Skorobogatov and Anderson [SA03], X-rays and
ion-beams can shoot through the packaging and all of these attacks can be used to flip a
bit. Otto [Ott05] although claims that ion-beams require depackaging. He recommends
to use focused ion-beams for induce faults and for destructive faults. According to Otto
[Ott05] α-particles and β-rays cannot penetrate through the relatively thick layer of the
packaging and require depackaging.

2.2.1.6. Eddy Currents

Eddy currents are induced by a changing external magnetic field. The magnetic field can
be generated by an alternating current flowing through an inductor.

Kocar [Koc96a] showed in 1996 that it was possible to increase the threshold voltage of a
transistor such that it would not switch. This attack can be used to keep data unmodified
even if the device tries to change it. In 2002, Quisquater and Samyde [QS02] used a
coil which was located close the surface of the chip to induce an eddy current. In 2003,
Govindavajhala and Appel [GA03] proposed to use eddy currents to heat the chip up. The
temperature properties of the device can be exploited to perform a temperature based
attack.

Otto [Ott05] stated that it is problematic to focus on a specific spot on the device. Hence
it is not possible to attack a single variable or even a single bit. The device can be shielded
from magnetic fields by the metal layer of the packaging or by a Faraday cage which is
fine meshed enough. If the device is shielded, it must be unpacked before mounting this
attack.

2.2.2. Classification of Faults

FIAs are physical attacks which aim at manipulating data or the control-flow of a process
running on a chip. The attack aims to retain secret information through bypassing security
mechanisms or by producing a faulty result which could leak secret data if the fault is
not detected. Some commercial devices use obfuscation to prevent reverse-engineering,
but this does not improve the mathematical security of the system. All cryptographic
algorithms which are widely used are published to gain public trust. An attacker can

17

study the algorithms and may find multiple implementations available. Most hardware can
be purchased and the manufacturer publishes specifications including a circuit diagram,
power and temperature limits. Available instructions are well defined and their reaction to
attacks can be tested repeatedly in practice. If the attacker can reconstruct the executed
instructions, a good fault model can be found.

However, the physical view on attacks is very complex and impractical to decide on an
attack or to implement countermeasures. It is necessary to define a fault model which
defines the configuration and the impact of the fault on a higher level. In 2005, Otto
[Ott05] proposed the following characterization:

1. Fault Location:
Fault location targets define the region of the impact on the device under attack
and could be either a register, a wire, or any other cell. The accuracy of the fault’s
location can be classified into three values, defining the control the attacker has over
the impact:

a) No control means that the attacker cannot specify exactly where the attack
occurs on the chip. For example multiple registers are affected and the fault
cannot be limited by the adversary.

b) Loose control means that an attacker can target a single variable (for example
one register) but not single bits.

c) Full control means that the adversary can focus on a single bit in a single
variable.

2. Timing:
The timing of an attack is given by the location in time and the duration of the
attack. The accuracy of the timing can be defined in three similar classes:

a) No control means that the attacker cannot specify when the attack occurs.
This is typical either given passive countermeasures or slow attacks such as
faults based on temperature variations.

b) Loose control can inject the fault once during a few instructions.

c) Precise control can focus on a single instruction to perform the attack.

3. Number of bits:
The number of affected bits can vary between a single faulty bit, few faulty bits, and
a random number of faulty bits.

4. Fault Type:
The type of a fault defines the mathematical impact of a fault to a bit. Mainly
we can distinct between flipping, setting, erasing a bit, keeping the bit constant
and applying a random value to a bit. This will be discussed in more detail in
section 2.2.3.

18

5. Probability:
The probability of a successful attack, where the above restrictions on the location,
timing and number of bits are met, can be defined as well. Some scenarios may
require a probability distribution for each property or could produce different types
of faults, where one type would be more likely than the other. If the attacker has no
control over timing or the location, a uniform distribution for the probability can be
assumed. Otherwise something like a Gaussian distribution may be the chosen.

6. Duration:
The duration of the impact of the fault can be categorized in three cases:

a) Transient faults aim at manipulating the current value of a bit or register. The
data is restored to the normal state the next time being used. They do not
modify the hardware of the system and therefore the device can recover from
the fault after some time.

b) Permanent faults will modify data not only for a single instruction but as well
for any later instruction. They do not modify the hardware of the system. The
effect of the fault may vanish upon the next reset of the chip.

c) Destructive faults manipulate the hardware such that even after a complete
reset of the chip the fault is not reversed. They typically cause a variable to be
permanently unchanged to a value.

To summarize the fault models one can generally distinguish the models by the granularity
(location, timing, number of bits), the fault type and the impact duration. A probability
distribution can be used to model the probability that each of those parameters can be
kept. The next subsection describes fault types in more detail and provide a mathematical
model for the influence on the processed variables.

2.2.3. A Mathematical Model for Fault Types

Fault types are only a subset of the fault model, but in literature it is often meant to
be the same. In this section, the fault types introduced in section 2.2.2 are discussed in
detail. A common notation is defined to precise the following statements.

Definition 2.1 (Notation of faults). The transition between the original and the attacked
value will be denoted by , such that the original value x with x = {x0, x1, . . . , xn−1}
changes to the attacked value ẋ with ẋ = {ẋ0, ẋ1, . . . , ẋn−1} as in x ẋ or xi ẋi.

Definition 2.2 (Notation of binary operators). The following binary operations are
defined as “bitwise and” ∧, “bitwise or” ∨, “bitwise exclusive-or” ⊕ and “bitwise not” ¬.

Definition 2.3 (Affected bits). A binary mask m = {m0,m1, . . . ,mn−1} defines the
affected bits. If mi = 1, the ith bit is affected and if mi = 0, the ith bit is not affected.

Definition 2.4 (Random numbers). A random number is noted as r = {r0, r1, . . . , rn−1}.

19

Faults can be classified into five different types. The classification is adapted from Otto
[Ott05]. Table 2.3 shows a mathematical overview over the different faults, where the
second column shows the manipulations to a variable x using a mask m. The mask defines,
which bits of the data are affected by the attack. All examples use the binary mask
00001111.

Table 2.3.: Overview of types of faults and their impact on data

Fault Type Impact on xi Using mask m on x Example
xi ẋi x ẋ x ẋ

Bit-set fault ẋi = 1 ẋi = x ∨mset 00110011 00111111
Bit-clear fault ẋi = 0 ẋi = x ∧ ¬mclear 00110011 00110000
Bit-flip fault ẋi = ¬xi ẋi = x⊕m 00110011 00111100
Random fault ẋi = ri ẋi = (x ∧ ¬m) ∨ (r ∧m) 00110011 00110110
Freeze fault ẋi = xi ẋi = (xold ∧m) ∨ (xnew ∧ ¬m) 00110011 00110011

The freeze fault cannot be modeled nicely because it is the only one taking place during
an instruction which writes to x to prevent a successful write. All other fault types do not
have such a restriction. These fault types are discussed in more detail in the following.

2.2.3.1. Bit-Set and Bit-Clear Faults

Bit-set faults and bit-clear faults manipulate bits to become a defined value. It is important
to note that the new values of the bits which were set are known to the attacker. Both
fault types can be formalized by setting the result to one of ẋi = {0, 1} for a number of i.
The mask-formalization would be ẋi = (x ∨mset) ∧ ¬mclear, where the two masks must
not have intersections: mset ∧mclear = ∅.

These attacks are extremely powerful if the adversary has full control over the fault
location and the timing because it allows the attacker to modify data to a specific value.
Oracle attacks can be performed where the adversary learns a secret intermediate value by
observing a faulty result. According to Otto [Ott05], these are the most difficult attacks
and almost impossible to achieve in practice for modern smart cards.

2.2.3.2. Bit-Flip Fault

Bit-flip faults allow an attacker to invert one or several bits at once. The formula for
a bit-flip using a mask is ẋi = x ⊕ m because only bits selected using m are flipped.
Although the values can be manipulated, the attacker has no idea what the actual value
is unless the value is known.

Bit-flip attacks are easy to achieve from the physical viewpoint and are well understood.
After a successful attack, the bit certainly changed and can hence produce a faulty result

20

with a high probability. Bit-flip faults can mitigate several countermeasures if the adversary
has full control over location and timing.

2.2.3.3. Random Faults

Using random faults, a random value is assigned to one or several bits while the other bits
stay the same. Neither the old nor the new value can be predicted by the attacker. Assuming
a randomly distributed variable r, this fault can be modeled using ẋi = (x∧¬m)∨ (r∧m).
The mask is used as a selector for either the original value x or the random value r.

Random faults are more likely to produce because less restrictions for a successful attack
are made. They can be compared with a bit-flip fault, where the success probability is
around 50 %.

Random faults does not necessarily have a probability of 50 %. They can more likely
produce a 1 than a 0, but this has not been taken into account so far because it cannot
be modeled nicely.

2.2.3.4. Freeze Faults or Stuck-At Faults

Freeze faults, which are furthermore known as stuck-at faults, are performed during an
operation when a value should change and the attack forces the value not to change.
Hence, this attack is different from the others because it cannot be performed between
operations. The effect is always permanent (not transient) but may not necessarily be
destructive.

Although an attacker cannot learn anything about the new value unless the old value is
known, it can be used to verify that the variable should have changed if the outcome of
the process is faulty. For example the device produces an error message or gives wrong
processed data.

Physically, permanent freeze faults can be achieved through variations in voltage or
temperature such that the value cannot be changed because the device is used outside its
specifications. Destructive faults where a wire is cut or a cell is destroyed are possible but
are irreversible.

2.2.3.5. Summary

In this section, faults were classified into fault models with different properties. According
to Otto [Ott05], the simplest attacks are random faults and freeze faults followed by the
bit-flip faults. In contrast, it is nearly impossible to perform bit-set or bit-clear faults on
modern smartcards.

The same faults can be injected in various ways.

21

It should be kept in mind what the adversary knows about the data being attacked. After
the bit-set and the bit-clear attack, the adversary knows which values are used after the
attack. Using bit-flip faults, an attacker knows for sure that something changed but does
not know if it flipped from 1 to 0 or from 0 to 1. The freeze fault gives the attacker
no knowledge about the attacked value but if the outcome of the process changes, it is
learned that the value would have changed otherwise. Since the value has changed it can
be derived some information about an other intermediate value upon the change depends.
On random faults the adversary can inject faults which may lead to a faulty result. This
can be exploited to attack some algorithms with special mathematical properties. An
example is the Bellcore attack by Boneh et al. [BDL97] against RSA using the Chinese
Remainder Theorem (CRT) which is described in section 2.2.5.3.

2.2.4. Fault Injection Attacks on a Microprocessor

In this section, the fault models are applied to a microprocessor. A microprocessor is a
programmable device which executes instructions and manipulates data. A microprocessor
consists of a Central Processing Unit (CPU) which is connected to memory and peripherals
over a bus.

There are two complementary architectures, the Von Neumann architecture and the
Harvard architecture. The Von Neumann architecture [Von45] has one bus for both,
instructions and data. According to [Cra80], the Harvard architecture has two separated
bus systems for instructions and data as well as two physically separated memories. The
Harvard architecture can retrieve data and instructions in parallel which can improve
the performance and security. Security is enhanced because code and data are strictly
separated which makes code injection harder. Another property of the Harvard architecture
is the possibility of differently sized instruction words and data words.

The CPU typically consists of four main components: an instruction decoder, a control
logic, several registers and an ALU. Figure 2.2 displays these components for a Von
Neumann architecture.

1. The register-set consists of several registers which can be used for arbitrary
tasks. Some registers are reserved to store data being processed by an instruction.
Other registers hold memory addresses, for example, stack addresses to manage the
memory during a function call. General purpose registers are capable to store data
and addresses. Special purpose registers have a special function. Examples are the
Program Counter (PC) which contains the address of the next instruction or the
Program Status Register (PSR) which contains information about the current state
of the processor.

2. The instruction decoder is responsible to decode the opcode of an instruction.
The opcode is read from an address defined by a special register, namely the PC.

22

ALU

Registers

Control Logic

Decoder

U

B

S

RAM

NVM

I/O

CPU

Figure 2.2.: Schematic Von Neumann architecture

3. Using the decoded opcode, the control logic manages the execution of the in-
struction and delegates tasks to the ALU and to external components over the
bus.

4. The ALU is capable of performing some boolean and arithmetic operations on data
stored in the register-set. It can as well be used for data comparison.

Other components connected to the CPU are the RAM, the Non Volatile Memory (NVM)
and some I/O-interfaces. The RAM and the NVM are sometimes integrated in the
microprocessor.

5. The RAM is a data storage which usually refers to volatile memory. This means
that the memory does not remain stable when the power supply for the memory is
removed.

6. NVM stands for Non Volatile Memory. While most RAMs are volatile, data in
the NVM remains if the power supply is removed. It is typically used to store the
program containing instructions as well as some data.

7. I/O-interfaces are used to communicate with external devices. Some examples are
a keyboard, a terminal, a printer or network drivers.

Using the described architecture of a microprocessor, FIAs can be used to attack various
parts of the microprocessor. In the following, different attacks are specified.

The integrity of data stored in the register-set can be attacked by injecting faults. Some
of the registers store addresses, for example, memory addresses or instruction addresses.
Attacking memory addresses is specially interesting because the adversary can force the
program to use other data for computation. This can unveil secret information as passwords
or keys. Examples for an instruction addresses are the current program counter, a return

23

address or the target address of a branch. Modifications to these addresses can lead to
an unintended program flow. This can as well unveil secret data, for example because
the stack is not prepared for the executed code. Attacks against registers containing data
do not modify the program flow directly. Nevertheless, faulty results can be produced or
conditional branches can be wrongly executed.

Memory devices such as RAM and NVM can be attacked by permanent or transient
faults. Permanent faults modify the stored data such that upon multiple readouts the
same faulty values are retrieved. Transient faults do not modify the stored data. The fault
appears during a single read operation. Memory is used to store instructions as well as
data. Hence, a successful FIA to a memory device results in either attacking data integrity
or the program flow integrity. According to Bar-El et al. [Bar+06], memory devices can be
attacked by exceeding the operation thresholds for temperature. This can prevent write or
read operations from operating correctly. Especially for NVMs, the temperature operation
thresholds for read and write operations differ significantly. Skorobagatov and Anderson
[SA03] described an optical attack where a flashlight, an aluminum foil and a microscope
were used to set or clear a bit of a SRAM cell.

A FIA against the ALU may lead to a faulty result of a performed operation. Since
arithmetic operations are used to calculate relative instruction addresses, this attack can
as well cause unintended changes to the program flow. According to Kömmerling and
Kuhn [KK99], power spikes can be used to produce a faulty result.

Other attacks focus on the control logic or the instruction decoder. This can lead
to wrong instructions being executed. Some attacks can force the processor to omit
one instruction or to perform an instruction multiple times. According to Bar-El et al.
[Bar+06], variations in the external clock as well as variations in supply voltage can be
used to omit an instruction.

Furthermore, the bus can be attacked using FIA. According to Bar-El et al. [Bar+06],
laser beams can be used to manipulate bus transfer. The transfered data is set to high
value. Depending on the transmission method (low-one or high-one), either a bit can be
set to zero or one. Non-destructive attacks to the bus are transient, which means that a
further readout is not affected. A destructive attack would destroy a wire and affect all
further communication.

This section explained the purpose of the modules of a microprocessor. Fault injection
attacks were discussed according to these modules. Summarizing, a microprocessor can be
attacked in various ways. The next section shows some practical attacks.

2.2.5. Practical Examples of Fault Injection Attacks

Practical FIAs can be categorized into oracle attacks, tampering attacks, and algorithm
specific attacks. Oracle attacks exploit the observation that an error occurred after injecting
a fault. Tampering attacks aim at bypassing countermeasures, bypassing or modifying

24

Algorithm 2.2 Pseudo-Code: Modular left-to-right square-and-multiply exponentiation
with countermeasure against Timing Attacks

Input: base,mod, exp = (expN−1, . . . , exp0)2
Output: result = baseexp mod mod

1: function exp(base, exp, mod)
2: result← 1
3: for i from N − 1 downto 0 do
4: result← montgomery mult(result, result, mod)
5: if expi = 1 then
6: result← montgomery mult(result, base, mod)
7: else
8: dummy ← montgomery mult(result, base, mod)
9: end if

10: end for
11: return result
12: end function

instructions or skipping branches. Algorithm specific attacks inject faults to either unveil
the secret key of an algorithm directly or via differential fault analysis.

2.2.5.1. Oracle Attacks

Oracle attacks are a type of FIA where a fault is injected at a single position at a single
time during one execution. Depending on the attacked operations it is necessary to have
loose or full control over the location and full control over the timing of the fault. The
adversary observes if an error occurs and learns something if the fault produces a faulty
output of the system.

As a countermeasure against TA, algorithms perform dummy operations to produce the
same overall runtime. An adversary can attack the dummy operation and perform a bit-flip
attack or a random fault attack. If no fault can be observed, the targeted instruction was
presumably such a dummy instruction. Hence, the attacker can derive the intermediate
value which decides if the attacked instruction should be used or not.

When an attacker can perform a single bit-set or bit-clear attack, an even more powerful
oracle attack can be performed. A single bit of the decision variable can be set to either
zero or one. If the output of the system is faulty, the attacked intermediate value flipped
and originally was 1 respectively 0.

As an example, a safe-error oracle attack can be mounted against an implementation
of a modular exponentiation which is secured against timing attacks and can be found
in Algorithm 2.2. The pseudo-code was adapted from Otto [Ott05]. Assuming that the
compiler did not remove the dummy operations during optimization and assuming no
additional vulnerability in the multiplication part, this algorithm can still be attacked
using an oracle attack. One or more random faults are injected in line 6 or line 8 during the

25

1 unsigned int cnt = 0;

2 char pin [5] = "xxxx";

3 char correctpin [5] = "1234";

4 do {

5 if(cnt++ >= 3) { // (1)

6 writeUart("Entered PIN 3 times wrong - Destroying device ...\n");

7 // destroy device

8 }

9 writeUart("Please enter PIN: ");

10 readLine(pin);

11 } while(strcmp(pin , correctpin) != 0); // (2)

12 // perform bank transaction , etc.

Listing 2.1: Unprotected PIN verification example

Montgomery multiplication. Depending on the exponent, one of the two lines is executed.
The position in time of the multiplication does not depend on the current bit of the
exponent. The Montgomery multiplication can take quite long, hence it is easy to meet
this timing constraint. If the attack has any impact on the outcome, for example a wrong
signature, the given bit from the exponent was set. Hence, the private exponent can be
derived from the fact that an error occurred at a given time. The attacks have to be
mounted consecutively to calculate the intermediate values after each newly known bit.
The exact position in time can be calculated by simulating the exponentiation until the
known position to find the position of the next attack.

Another possibility is to perform a bit-set or bit-clear oracle attack on the same
algorithm. If an attacker can set or clear a specific bit in the exponent or the MSB in
one iteration and a fault occurs after performing a single fault, the adversary learns that
the bit flipped and the original bit value of the exponent.

2.2.5.2. Tampering the Control-Flow or Code Change Attacks

The control-flow of a program is defined by instructions performed on specific data in a given
order. It is affected by the decoder, the control logic, the PC and the PSR which depend on
the previous control-flow and processed data. Attacks are typically performed by injecting
faults to the PC, the PSR or condition variables. Software countermeasures implemented
as conditional branches to detect faults can be bypassed or the core functionality can be
manipulated.

To show the possibilities for tampering, a PIN-verification which can be found in Listing 2.1
is used. An important instruction (for example, bank transaction, phone unlock, rocket
launch) is protected by a secret code inserted via keyboard (line 10). After three invalid
tries the device should destroy itself (line 7) to prevent brute-force attacks.

An unprotected string comparison algorithm, which can be found in Listing 2.2, is used
to verify the PIN. The function strcmp accepts two zero-terminated strings and returns
the binary difference of the first byte that differs or zero if both strings are the same.

26

1 char secure strcmp(char *s1 , char *s2) {

2 while(*s1 && *s2 && *s1 == *s2) { // (3)

3 s1++; s2++; // (4)

4 }

5 return *s1 - *s2; // (5)

6 }

Listing 2.2: Unprotected comparison of strings (strcmp)

Analyzing the example given in Listing 2.1 and Listing 2.2 results in many different attack
vectors. An adversary can disable the locking mechanism of the PIN-verification, guess
the key or bypass the PIN-verification at all.

• Disable Locking. One possible attack is to manipulate the cnt-variable to prevent
the device from locking or destroying itself. This can be achieved by manipulating
the result of the addition (1) or making the counter read only using a permanent
fault. Another possibility is to manipulate the comparison >= 3 in (1) by flipping a
bit in the PSR. Lastly, the control logic can be attacked not to perform the jump.

• Guessing the Key. Having more tries, the first byte can be guessed in order to
find the secret PIN. The strcmp function can be forced to terminate after comparing
the first byte by flipping a bit in the PSR during any of the three comparisons in
(3). The number of possible characters is p and the length of the PIN is N . If the
device tells the adversary that the PIN is correct after a maximum of p tries, the
first byte is learned. The same can be done with every single byte consecutively.
The search space is reduced from a brute-force runtime of O(pN) to O(p×N).

• Bypass PIN-verification silently. If the PIN is not interesting for the attacker
or the number of guesses is too high, the condition in the while loop in (2) can be
attacked by flipping a specific bit in the PSR. Consequently, the loop aborts and
the protected operations are performed without authentication. The same effect can
be achieved by attacking the subtraction in (5) of Listing 2.2. After giving a wrong
PIN, a FIA sets the result of the subtraction to zero and every PIN is accepted.

• Attacking the Control-Flow. The most powerful attack applicable is to ma-
nipulate the control-flow. This can be achieved by modifying a bit in the Link
Register (LR) anytime during the strcmp-call which defines the return address or
the PC itself. Possibly, if only some of the lower significant bits can be targeted, a
jump somewhere behind the while-loop is performed upon return. The advantage
of using the LR for the attack is that the stack is cleaned up properly at the end of
the function.

2.2.5.3. An Algorithm Specific Attack against RSA

Algorithm specific attacks focus on mathematical properties or algorithmic details of the
implementation. As an example, the Bellcore attack by Boneh et al. [BDL97] against

27

the RSA algorithm is presented. This chapter is based on the work of Aumüller et al.
[Aum+03].

Rivest, Shamir, Adelman (RSA) [RSA78] is an asymmetric cryptosystem which can
be used for encryption and signing. It requires two large secret primes p and q. Both,
encryption and decryption, are operations modulo N = p · q. The public key is a random
number e such that

1 < e < φ(N) = (p− 1) · (q − 1) ∧ gcd(e, φ(N)) = 1 (2.12)

The private key d can be computed by solving

e · d ≡ 1 mod φ(N). (2.13)

The plaintext m is encrypted with the public key e to receive the ciphertext c and
decrypted using the private key d:

c ≡ me mod N. (2.14)

m ≡ cd ≡ (me)d ≡ me·d mod φ(N) ≡ m1 mod N (2.15)

Furthermore, RSA can be used for singing, where S is the signature of the plaintext m
and d is the private key:

S ≡ md mod N. (2.16)

To summarize the visibility, the public properties are (e,N) and the secret data is
(p, q, φ(N), d). The security of RSA depends on the mathematical hard problem to factor
the value N which is needed to compute φ(N) and further to compute d.

The Chinese Remainder Theorem (CRT)

Calculating md mod N is slow if the algorithm uses the trivial implementation of d times
multiplying m. Hence, the CRT can be used to reduce the size of the modulus which leads
to a speedup because the intermediate variables have only half the size and only half the
operations are required for one exponentiation. Instead of calculating S ≡ md mod N ,
the calculation is splitted into two parts Sp ≡ md mod p−1 mod p and Sq ≡ md mod q−1

mod q. The result can be calculated using using the CRT:

S = Sq + ((Sp − Sq) · (q−1 mod p) mod p) · q mod N (2.17)

The two exponentiations and the solving of the CRT requires only a quarter of the runtime
of the original algorithm. This can be justified by the fact that the bit-length of the
modulus and the exponent is reduced by 50 %.

The Bellcore Attack

The attack consists of injecting any successful fault during the exponentiation of Sp such
that the intermediate result S ′p is faulty. If no countermeasures are implemented to detect

28

the faulty intermediate value, the result is still computed by:

S ′ = Sq + ((S ′p − Sq) · (q−1 mod p) mod p) · q (2.18)

An adversary can subtract a valid signature and an invalid signatures S and S ′ and gain:

S − S ′ = (Sq + ((Sp − Sq) · (q−1 mod p) mod p) · q)
−(Sq + ((S ′p − Sq) · (q−1 mod p) mod p) · q)

= ((Sp − S ′p) · (q−1 mod p) mod p) · q
(2.19)

Because the value S − S ′ 6= 0 is a multiple of q and N = p · q is public, the greatest
common divisor (gcd) can be used to calculate q:

q = gcd(S − S ′, N) (2.20)

Since one part of the private key q was found, the other private variables p = N/q,
φ(N) = (p − 1) · (q − 1) and therefore d can be derived. Hence, the security of a
cryptographic algorithm can be broken if a FIA is not detected. The next section discusses
countermeasures against such attacks.

2.2.6. Countermeasures

Passive countermeasures target to make FIAs harder and active countermeasures aim
at detecting such attacks. Most countermeasures can be implemented in hardware or in
software. The advantage of countermeasures in hardware is that no or less overhead in
computation time is needed. One of the problems is the inflexibility: If the countermeasure
is implemented in hardware, implicitly everything is protected - even parts of the system
that are not necessary to protect. When new attacks emerge, hardware cannot be updated
as easily as software. This section and its subsections are roughly based on Bar-El et al.
[Bar+06].

2.2.6.1. Execution Randomization and Random Dummy Cycles

Both, execution randomization and random dummy cycles, aim at making FIAs harder
which makes them passive countermeasures. Both can be implemented either in software or
in hardware. Operations can be computed more than once, dummy cycles can be included
everywhere and instructions which do not depend on each others can be swapped arbitrarily.
As a result of this countermeasure, an adversary cannot target an instruction precisely
because the location of an instruction in time changes. To bypass this countermeasure,
an adversary tries to find a proper trigger signal for timing. Hence, this cannot be
a countermeasure alone and has to be combined with other countermeasures such as
additional hiding of the power consumption and masking. During the implementation of

29

Table 2.4.: Overview of countermeasures against Fault Injection Attacks

Section Countermeasure Hardware Hardware Software
Passive Active

2.2.6.1 Execution randomization X X
2.2.6.1 Random dummy cycles X X
2.2.6.4 Unstable frequency generator X
2.2.6.4 Bus and memory encryption X
2.2.6.2 Shields X X

2.2.6.3 Light detection sensors X
2.2.6.3 Supply voltage detector X
2.2.6.3 Frequency detector X

2.2.6.5 Simple duplication with comparison X X
2.2.6.6 Complementary redundancy w. comp. X X
2.2.6.7 Execution redundancy X
2.2.6.9 Checksums, Hamming codes X X
2.2.6.8 Masking X
2.2.6.10 Error correction codes X X
2.2.6.11 Ratification counters and baits X

these countermeasures, it is important not to open new side channel attacks as timing
attacks. The insertion of random dummy cycles must not depend on secret data.

2.2.6.2. Passive and Active Shields

Passive shields are metal layers which protect vulnerable parts of the device. They are a
passive countermeasure as they make attacks harder by requiring removal of the metal
layer before mounting the attack. It can further be used as a countermeasure against
SCAs using electromagnetic radiation.

Active shields protect the whole device using a fine meshed metal grid and aim at detecting
if the device was opened. The grid is permanently powered and detects semi-invasive or
invasive faults if a wire of the grid is destroyed.

2.2.6.3. Light, Supply Voltage and Frequency Detectors

Physical detectors are active countermeasures and can only be implemented in hardware.
When a device is unpackaged, light can fall on the surface of the chip. If a laser, infrared or
white light is used to inject a fault, a light sensor detects the attack. The supply voltage of
the device can be monitored to inspect if the device operates within its operation ranges.
If the supply voltage drops or performs quick changes, the whole circuit can be removed

30

from the supply voltage and turned off. The clock frequency can be monitored and the
device can be switched off if the frequency varies to much.

2.2.6.4. Other Passive Countermeasures in Hardware

Other passive countermeasures include bus and memory encryption to complicate the FIA.
Since they cannot detect a faults and accept faulty data, they are passive countermeasures.
Memory encryption must be done in hardware since the instruction decoder has to handle
encryption as well. As a software countermeasure, it would only be possible to secure
data. Encryption and decryption in software must not require many additional hardware
registers nor take much longer than a normal load.

An unstable internal clock generator can be used to perform different operations at
different times in order to make it more difficult to inject a fault at a specific position.
Since this method cannot detect a fault, it is a passive countermeasure. The effect of this
method is similar to section 2.2.6.1 but it can only be implemented in hardware. Another
difference is that the timing of instructions is not limited to discrete timing intervals. An
unstable internal clock generator makes synchronization for the attacker harder.

2.2.6.5. Verification: Simple Duplication with Comparison

Verification of variables can be used as a countermeasure in hardware or in software to de-
tect faults. Simple duplication with comparison calculates every instruction N >= 2 times.
In hardware one can separate between time redundancy and true hardware redundancy.

True hardware redundancy means that each part of the system is duplicated and continu-
ously compared. In other words, the processor may consist of N processors and a monitor.
Consequently, N RAMs are necessary. According to Dutertre et al. [Dut+11], duplication
in hardware is quite effective against laser attacks. However, a successful attack should be
feasible using more than one laser source.

Time redundancy means that the control logic decodes the instructions in such a way
that the redundant computations are performed consecutively. The comparison of the
results may be performed internally. The RAM can be duplicated to ensure data integrity
outside of the processor.

In software, simple duplication can be performed more flexible. Redundant instructions
are performed consecutively and verification steps are possible on-demand. This leads to
more overhead in runtime than using true hardware redundancy, but it leads to a more
flexible countermeasure, where some parts of the system are not necessary to be secure.

31

2.2.6.6. Verification: Complementary Redundancy with Comparison

This countermeasure is very similar to simple duplication in section 2.2.6.5. Instead of
additionally computing the exact same instruction more than once, the logical inverse of
each intermediate value is stored. All operations can be transformed to other operations
whose input and output the logical inverse of intermediate values. This can be done
efficiently for most operations because of the two’s complement. Unfortunately, it is still
possible to attack this method using two bit-flips at the right place and the right time.

The same methods as in section 2.2.6.5 can be applied: It is possible to implement in
hardware in parallel or using time redundancy in hardware and in software. An additional
benefit of this method is that it is implicitly a countermeasure against some SCAs
depending on the HW because the HW of a value plus the HW of its inverse is constant.

In 2010, Guilley et al. [Gui+10] combined this countermeasure with a precharge phase
using the following notation. During the precharge phase, the original and the inverse
value are initialized to the same random value and are in an invalid state. The notation is
that a is represented by a pair of variables (af , at) and is only valid if af ⊗ at = 1. Four
states are defined, where the invalid states are NULL0 = (0, 0) and NULL1 = (1, 1) and the
valid states are VALID0 = (0, 1) and VALID1 = (1, 0). The impact of the countermeasure
on security and availability was analyzed and classified: A problem on security arises,
when the ciphertext is incorrect but no alarm is raised, whereas a problem on availability
arises when the ciphertext is not incorrect but an alarm is raised.

2.2.6.7. Verification: Execution Redundancy

For some algorithms, the result can be verified or the whole algorithm can be performed
twice. The hardware has no knowledge of these properties, hence, this is an active software
countermeasure only.

Take signatures based on RSA as an example. After the signature is created, the signer
can try to verify the signature using the corresponding public key. If the signature is valid,
no significant error occurred and the signature can be further used. Otherwise, a FIA
occurred and has to be handled accordingly.

2.2.6.8. Verification: Masking as Redundancy

Masking techniques as described in section 2.1.3.3 can be used as a countermeasure against
FIAs if the original value is additionally stored. Arithmetic or boolean masking can be
used depending on the subsequent instructions. Even arithmetic masking can be applied
to any arithmetic algorithm and is not restricted to a cryptographic algorithm involving a
modulus. The implicit modulus using limited data types in a N -bit system can be used
for arithmetic masking. Unfortunately, the masked values cannot be unmasked but it is
possible to verify the masked value by applying the mask to the original value to check if
the redundant masked value is the same.

32

Switching between boolean and arithmetic masking however is not possible in general. It
is necessary to calculate the new mask from the original value. This transformation has to
be additionally protected by verifying the original mask after the transformation.

To summarize the masking techniques, it is possible to apply arithmetic and boolean
masks to any variable and perform different instructions on all three values, the original
value, the mask and the masked value. This is one of the core topics of this thesis and is
discussed in detail in section 3.2.4.

2.2.6.9. Checksums, Cyclic Redundancy Checks and Hamming Codes

Hardware implementations of checksums can use additional registers and circuits to process
checksums for every cell. Checksums implemented in software can only be used to detect
faults during the data is stored in the RAM. Hardware implementations could even detect
faults to registers and instructions by applying additional data bits to each memory cell.

Good checksums are nonlinear because injecting two faults could otherwise result in a
valid checksum. However, this is the downside of checksums because a checksum cannot
be used to verify operations of the ALU. Often, Cyclic Redundancy Checks (CRCs) are
used as a checksum. Hamming codes are one example for CRCs. The Hamming code of a
variable depends on the position and number of set bits. Unfortunately, a CRC is only
linear in very limited operations such as exclusive-or operation. The CRC is non-linear
for other operations and has to be calculated from the processed data after nearly each
instruction. This opens a door for the attacker because the value is unprotected for a
short period of time. Although, checksums are still a good solution to detect FIA to data
on the bus or the RAM. Most checksums are vulnerable to multiple bit-flip faults because
depending on the used CRC only a limited number of bit changes can be detected.

2.2.6.10. Error Correction Codes

Error correction codes are checksums which are capable of detecting several faulty bits
and correcting at least one bit. If the number of flipped bits is too large, the correct values
cannot be reconstructed. The same problems mentioned in section 2.2.6.9 apply for error
correction codes. Error correction codes cannot be used to secure the ALU but can be used
to secure the data stored in memory such as the RAM. For hardware implementations it
is possible to secure registers and instructions.

2.2.6.11. Ratification Counters and Baits

Bar-El et al. [Bar+06] discusses a trap for the attacker. Several dummy instructions which
perform a set of instructions to verify correct behavior of the system are used to set up a
honeypot for an attacker. These dummy instructions are called baits. If meanwhile a fault
occurs, a ratification counter increases and upon a certain threshold (typically three) the

33

device locks down. This assumes that some faults are acceptable. Eventually, some faults
are acceptable if natural causes like cosmic rays cause faults.

2.2.7. Fault Handling

After discussing several techniques to detect FIAs it remains unclear how to handle faults.
The device could either try to recompute the faulty parts and continue its work, or
immediately shut the system down and eventually destroy itself permanently.

2.2.7.1. Repairing

For several hardware countermeasures that rely on redundant computation it is possible
to extend the system to multiple instances. Bar-El et al. [Bar+06] focuses on majority
decisions to decide on the correct value. For example, if three out of four modules generate
the same output, it can be assumed that the three equivalent results are correct. These
techniques are called dynamic duplication or hybrid duplication.

Using redundant calculations in software, it is possible to repair the system by recalculating
everything from the last successful verification. Therefore, necessary data must not be
overwritten until the next verification.

Repairing is a good countermeasure to prevent oracle attacks, where the attacker learns
something about the key by observing if a fault occurs. However, if the oracle attack is
combined with a timing attack, the repairing process may take some time and leak the
same information through a side channel.

2.2.7.2. Shutdown of the system

When a fault is detected, the device should remove all sensitive data by overwriting the
data with random information and/or perform an immediate cold boot. This is the only
way to prevent that a faulty value can leave the system. The downside of shutting the
system down is that it is likely to be attacked using an oracle attack, where the fault
detection itself is the attacked property. To reduce the vulnerability of an oracle attack,
the system should destroy the key if a fault attack is detected to prevent multiple attacks.
Hence, a private or symmetric key should never be shared between multiple devices
because an attacker would have more chances to perform the attack on the same key.

2.3. Compiler-based Countermeasures

Several compiler-based and therefore software-based countermeasures to SCAs exist and
are discussed in this section.

34

In 2012, Bayrak et al. [Bay+12] presented compiler-based analysis and masking techniques
against Power Analysis Attacks (PAAs). Their software was evaluated on two blockciphers
namely AES and Clefia. They analyzed real side-channel measurements such as power
traces, but a fall back to static code analysis if no measurements are available. After
analyzing data dependency, random precharging and boolean masking are used as counter-
measures against SCAs. Their countermeasures are applied to the assembly instructions
for various reasons: Firstly, because a strong compiler with all the optimizations can be
used without the problem that the compiler may remove redundant code in order to
minimize performance and code size. When performing the transformation on a higher
level, the compiler would remove random precharging because it has no impact on the
result. Further, the implemented countermeasures do not alter the output of the program.
Last but not least, the used compiler takes an assembly file as an input and can therefore
be used as post-processing for any existing compiler. Static analysis is assumed to be
overly protective and that dynamic analysis result in a better performance in the end. In
2014, the PhD-thesis of Bayrak [Bay14] was published which was devoted to the same
solution.

In 2012, Moss et al. [Mos+12] showed countermeasures based on boolean masking. A
small compiler was used which was based on the CAO type system, which was proposed
by Barbosa et al. [Bar+11] according to Moss et al. [Mos+12]. Hence, it is assumed to be
a scientific compiler which is not used in practice. The CAO type system supports the
declaration of private and public intermediate values and protects the problem according
to the correct labels. It was ensured that no secret value is unveiled by using it for public
information such as usage in store operations, as a map key or revelations caused by
masks canceling out. For lookup tables, a single mask was used for all data and an other
for all the keys of the table.

In 2013, Maggi [Mag13] published compiler-based countermeasures to protect block cipher
implementations against passive SCAs. The LLVM compiler was extended during a pass
on intermediate code, which leads to target independency. Data Flow Analysis (DFA) was
used to identify the dependencies and boolean masking was used to prevent SCAs. It was
evaluated on several algorithms, among others including the popular AES, Serpent-128,
Data Encryption Standard (DES) and Triple DES (3DES). The countermeasure was
applied to the whole program.

In 2003, Akkar et al. published a pre-print [AGL03] of their US Patent [AGL10] which
was registered in 2004 but published in 2010. They proposed a tagged source code (“flags”
and “checkpoints” using #pragma directives) which are performed by a preprocessor to
secure an assembly against fault injection attacks. All flags on the execution path are
processed and verified at certain checkpoints to ensure control-flow integrity.

In 2014, Werner [Wer14] published his master thesis on the topic of compiler-based
countermeasures using signature monitoring to protect control-flow integrity. Here, control-
flow integrity does not aim at preventing faults but at detecting faults which manipulate
the control-flow by attacking the PC, by interleaving instructions, or duplicate execution.
Without structural modifications to the processor, an external monitor calculates an

35

incremental signature based on executed instructions. As a signature function, modular
addition was used. The value of the signature can be verified upon request by writing
to or reading from a special virtual memory address. The LLVM compiler was extended
to precompute all possible signatures occurring at each instruction and to repair the
signatures when two or more branches merge. After a merge, every instruction has a
single valid signature. The verification step can be issued in the high level language using
a function call and was replaced by the necessary instructions by the compiler. Data
integrity was taken for granted such that the control-flow can still be attacked by attacking
the variables or the comparison results used in conditional branches.

Summary

Different compiler-based countermeasures against physical attacks were proposed while
most focus on SCAs. Countermeasures against attacks on the control-flow were published
by Werner [Wer14] but do not ensure data integrity. Hence, this work focuses on ensuring
data integrity while assuming available control-flow integrity.

36

3. Data Integrity

This chapter focuses on software-based techniques to ensure data integrity against Fault
Injection Attacks (FIAs). Since attacks against data integrity cannot be prevented in
software, it is necessary to detect such attacks. Hence, this is an active countermeasure
which has to be handled appropriately.

Data integrity means to ensure the consistency of data against data corruption. Once
a variable is set to a specific value it should not change without purpose. Control-flow
integrity heavily depends on data integrity but aims at verifying the instructions being
processed in a valid order. Upon a conditional branch, control-flow integrity would allow
both branches to be visited. Data integrity ensures that data which branches depend on
and all data emitted from the device are correct.

Data integrity is important to prevent a device from leaking secret information after a
FIA occurred. Otherwise, secret data can be derived from the behavior or from the output
of the system. A secret can, for example, be a secret key, a PIN, or a password. Access
control mechanisms such as PINs or passwords could even be skipped without proper
authorization.

Most programs nowadays are written in a high level language such as C or C++. The
main concern of a compiler is to remove redundancy to reduce code size, memory usage
and runtime. Hence most countermeasures implemented in a high level language will be
removed by the compiler in order to optimize the code even if all optimizations are turned
off. Therefore, those countermeasures have to be applied either by the compiler or after
the compiler. A compiler-based solution is simpler for the programmer than a manual
implementation of data integrity checks.

This chapter is organized as follows. In section 3.1, various methods to store redundant
data are discussed. The section 3.2 looks at different methods of redundancy such as
checksums, simple duplication, complementary redundancy, different masking types and
result testing. Section 3.3 explains data verification and when it is inevitable to verify data
integrity. In section 3.4, different approaches to handle detected faults are discussed.

3.1. Storage of Redundant Data

Security mechanisms which aim at achieving data integrity require to store redundant
information for later verification of the integrity of data. The size of the redundant
information depends on the method to generate redundancy. Some methods require only

37

Stack %esp - 0x20001000

↓
. . .

↑

Heap 0x200002a8 - ?

Data 0x20000000 - 0x200002a8

RAM

-

Program 0x00000120 - 0x000003c8

IVT 0x00000000 - 0x00000120
NVM

Figure 3.1.: Memory layout example for a microprocessor

a few bits but other methods require more memory than the original variable. FIAs can
be targeted on any memory. Hence, every memory should be secured: the RAM, the
register-set and the NVM.

Registers can be seen as a small, limited buffer for data which can be used for computations
in the ALU. A high-level programming language does not see registers. Data is loaded
from RAM or the NVM to a register when needed. Redundant data has to be loaded into
another register.

In NVM, redundant information can be duplicated manually or by the compiler. The
location of redundant data is defined statically upon linking.

The storage problem occurs in the RAM if not too many constraints to the programmer
should be made. One problem are global variables which are often necessary. Even if the
programmer does not use global variables on purpose, the compiler may introduce local
constants as global constants which is typically done for constant strings in C. Another
problem are arrays, pointers, pointers to pointers et cetera. Furthermore, type casts and
arithmetic operations to pointers raise some questions. However, a compiler can help to
solve these problems.

For the following considerations, the memory layout displayed in Figure 3.1 is used. At the
bottom of the memory layout, a reserved segment and the program segment are located.
The data segment starts at a higher address and consists of initialized global variables and
uninitialized global variables. The heap segment provides dynamic memory allocation via
malloc or new in C respectively C++. Memory management in the heap can be done using
a double linked list of chunks of memory. The heap grows from lower memory addresses
to higher memory addresses. On the contrary, the stack is used for local variables and
is required to implement function calls. Two registers are used for stack-management,
namely the Extended Base Pointer (EBP) and the Extended Stack Pointer (ESP). The

38

Stack %esp - 0x20001000

↓
. . .

↑

Heap 0x200007a8 - ?

Data 0x20000500 - 0x200007a8

Redundant
Values #N − 1

. . .

Stack %esp - 0x20000500

↓
. . .

↑

Heap 0x200002a8 - ?

Data 0x20000000 - 0x200002a8

Original Values
#0

Figure 3.2.: RAM layout using memory separation for redundant data

EBP points to the top of the current stack and the ESP points to the lowest stack address
in use. In contrast to the heap, the stack grows from the highest available memory address
to lower memory addresses. In the rest of this section, different approaches to manage the
redundant data in the RAM are discussed.

3.1.1. Memory Separation to Store Redundant Data

Memory separation as shown in Figure 3.2 separates the whole RAM into N parts of
equal size S. Each value in the RAM which is stored on position p has its redundant
values on position p+ S · i for 0 < i < N . Hence, memory positions of redundant data are
always calculable, but one additional computation to calculate the address is necessary.

On the downside, the whole available memory is reduced by a factor of N−1 which is
expensive. If the original application required the whole memory, an N -times larger
memory is required to store redundant data. This memory layout is more suitable for
hardware countermeasures since it has a static overhead. The next section aims at making
redundant storage of data more flexible using software countermeasures.

39

...

Data Block 2 Redundancy #N − 1

. . . Redundancy #i, 0 < i < N − 1

Data Block 2 Original Data #0

Memory block
of size S2 ·N

Data Block 1 Redundancy #N − 1

. . . Redundancy #i, 0 < i < N − 1

Data Block 1 Original Data #0

Memory block
of size S1 ·N

...

Figure 3.3.: RAM layout using paging for redundant data

3.1.2. Paging for Redundant Data

In contrast to the previous section, only redundant data is duplicated using paging. When
redundant memory is requested on the heap or on the stack, the requested memory is
separated into N pages of size Si. The position of redundant data is calculated via p+Si · i
for 0 < i < N where p has to be a valid original data address. Problems occur using
pointers as they can walk over the boundaries of a single block. For example, continuously
incrementing a pointer would lead to a wrong address. One solution would be to forbid
pointer operations or limit them according to the size of one page. Another possibility
is to implement dynamic checks after each pointer operation and skip the rest of the
page upon increment. This results in a large overhead in computation time and is, hence,
impractical as a software countermeasure.

On the other hand, it would be possible to use different page sizes Si or no redundant
pages at all for some parts of the memory which does not require redundant data. However,
the page size is required for address calculations and has to be either stored in the RAM
or assigned constantly in the program. This is especially difficult to achieve for pointer
operations because the accessed data can be split over multiple pages. Summarizing, in
contrast to the previous section, not the whole memory has to be duplicated as it is
possible to duplicate only parts of it.

3.1.3. Data Duplication on a Higher Level

The most flexible method arises from high level languages or at least some intermediate
code. Redundant data is handled differently depending on the location, for example the
stack, the heap, et cetera. The same stack is used to contain both, the original and the
redundant data consecutively. The heap requires additional calls of malloc or new to
reserve memory for the redundant information. As pointer operations are performed, the

40

...

Variable 2 Redundancy #N − 1

. . . Redundancy #i, 1 < i < N − 1

Variable 2 Original Data #0

Variable of
size Y

Variable 1 Redundancy #N − 1

. . . Redundancy #i, 1 < i < N − 1

Variable 1 Original Data #0

Variable of
size X

...

Figure 3.4.: RAM layout with duplication per variable

same pointer operations can be performed on the redundant data. Global variables are
duplicated where needed.

Variables in Figure 3.4 represent single variables, arrays, or a structure. Using a higher
level language, pointer operations can be tracked because pointers can be distinguished
from data. This scheme can be implemented in two different ways:

1. The first possibility is that larger data types are used which include the original
data as well as the redundant data. For example, a 64 bit variable could be used to
store the original 32 bit data in the lower half and the redundant 32 bit data in the
upper half of the variable. This is impractical because the larger data type has to
be separated upon usage.

2. A better method is to use embed the variables in larger data structures which contain
the original data together with the redundant data. For example, two 32 bit variables
are together stored in a struct. The embedding procedure can be neglected if the
data is only used locally or globally. Although, it is necessary if multiple variables
have to be returned by a function.

This is a very flexible method to provide redundant data because not every variable has
to be duplicated and no unnecessary overhead is produced in contrast to the previous
described methods.

3.2. Methods of Redundancy

The last section discussed the possible locations to store redundant data for each variable.
This section explains various methods to generate redundant data. The discussed methods
include checksums, simple duplication, complementary redundancy, masking, and result
testing to detect FIAs. Checksums are generated by a non-linear function and are widely

41

used in communication engineering to detect transmission errors. Simple duplication
means to store the same data multiple times, whereas complementary redundancy stores
the boolean inverse of the original data. Masking is typically used to prevent side channel
attacks but can also used to protect data against fault injection attacks as described in
this section. Result testing aims at verifying operations of the ALU but do not produce
redundant data and is, hence, an incomplete protection.

3.2.1. Checksums for Data Integrity

Given a variable a = {aS−1, . . . , a1, a0} which has to be secured, a checksum of bit-length
k ≤ S should be computed. The checksum is typically a one-way function because it does
not need to be invertible. However, it is not necessary to have the security properties of
a hash function such as pre-image resistance, second pre-image resistance, or collision
resistance. Ideally, the first k bits of an arbitrary hash function can be used to compute
the checksum. Unfortunately, this is not possible without a large overhead in computation
time.

A widely used checksum is the parity bit (k = 1), which is commonly used to detect
transmission errors during communication. The parity bit is 1 if the number of 1 bits is
even (“odd-parity”) or odd (“even-parity”). Otherwise the parity bit is 0. It is possible to
produce multiple parity bits (k > 1) by adding all bits modulo k.

In 1961, Peterson and Brown [PB61] published their work on Cyclic Redundancy Checks
(CRCs). CRCs are a general form of Hamming codes where the redundant data is calculated
performing a modular polynomial division. This can be implemented very efficiently in
hardware but, in contrast, requires many instructions in software. The implementation in
C in Listing 3.1 is based on the Controller Area Network (CAN)-CRC-15 published by
Hartwitch [Har12] and Bosch [Bos12] in 2012. The CAN-CRC-15 can be used to calculate
a 15 bit CRC. Another property of the CAN-CRC-15 is the minimum Hamming distance
of 6 between two valid codes if the maximum input length of 127 bit is not exceeded.
The CRC-polynomial is represented by 0xC599 which equals the binary representation
11000101100110012. Hence, the corresponding polynomial is:

x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1 = (x+ 1)(x7 + x3 + 1)(x7 + x3 + x2 + x+ 1) (3.1)

The variable a is represented by a polynomial aS−1 · xS−1 + . . . a1 · x1 + a0 · x0.

The implementation in Listing 3.1 implements a binary polynomial division. Initially, the
polynomial is shifted to the leftmost position. For each iteration, the next bit (nextbit)
of the previous remainder (value) is selected in line 11. The division is performed if the
selected bit is set (value & nextbit). The remainder of the binary polynomial division
is implemented using an exclusive-or operator in line 12.

CRCs have a linearity property in exclusive-or operations. If two variables are combined
using an exclusive-or operation, it is possible to combine the CRCs of both variables.

42

1 unsigned long calculateCRC(unsigned long value)

2 {

3 // shift = (max. bitlength of value)-(bitlength of polynom)

4 const unsigned int shift = 64 -16;

5 unsigned long polynom = 0xC599ul << shift;

6 unsigned long nextbit = 0x8000ul << shift;

7 unsigned int i;

8

9 for(i=0; i<= shift; ++i)

10 {

11 if(value & nextbit)

12 value ^= polynom;

13 polynom >>= 1;

14 nextbit >>= 1;

15 }

16 return value;

17 }

Listing 3.1: Calculating the CAN-CRC-15 in C for a 64-bit value

Then, the result is still valid. Unfortunately, this operation is not possible for any other
binary or arithmetic operation.

CRC(A⊕B) = CRC(A)⊕ CRC(B) (3.2)

Besides the CAN-CRC-15, many shorter CRCs are available which should be applied for
shorter data types. In general, the processed data should be larger than the polynomial to
ensure at least one reduction. This can be achieved by padding the original data whereby
the linearity in the exclusive-or operation is lost.

The disadvantage of CRC checksums is that they are barely linear in operations and
cannot be kept during instructions in the ALU. Checksums of data can only be verified
before and after an instruction is performed. After the operation, the checksum of the
result has to be computed and stored. Although it is possible to compute CRCs in software,
it is not very efficient. The given example algorithm in Listing 3.1 requires at minimum
288 instructions for the CAN-CRC-15 with a 64-bit value. At minimum, 5 additional
registers are required to calculate the CRC. It is even impossible to secure the RAM if
not enough registers can be provided without swapping modified registers to the RAM.
To speed up the calculation of CRCs and to increase available registers, a new instruction
should be added to the microprocessor which implements a CRC in hardware.

In 2011, Medwed and Mangard [MM11] showed multi-residue codes which use the modulus
m as a checksum. Additions and multiplication can be performed on the processed data
and on the checksums separately. Due to the property A+B = (2 · (A ∧B) + (A⊕B),
it is possible to propagate the checksums during operations in the ALU. However, these
methods require the use of the original values in the term A⊕B:

(A ∧B) mod m = (A mod m) + (B mod m)− ((A⊕B) mod m)/2 (3.3)

43

a

b

c

d

a0

b0

c0

d0

a1

b1

c1

d1

a2

b2

c2

d2

a0

b0

c0

d0

a1

b1

c1

d1

a2

b2

c2

d2

Figure 3.5.: Data flow graph for simple duplication. Left: Normal data path. Center: datapath for simple
duplication. Right: randomized paths.

The division by 2 is a modular division which only equals an ordinary division for even
numbers. The authors used a parity-ALU to implement this countermeasure in hardware.

Summarizing checksums, it makes sense to use checksums to provide data integrity in
the RAM or the NVM. The CRC computation should be supported by hardware using
a special instruction to improve the performance and require less additional registers
for calculation. Operations of the ALU are impossible to protect for binary checksums.
On the other hand, arithmetic checksums can ensure data integrity during the ALU but
require multiple arithmetic operations (addition, modulus, modular division) to protect a
binary operation. Further, access to the original values is required to propagate the parity.
The next section deals with simple duplication, where instead of applying a checksum,
the original data is stored redundantly.

3.2.2. Simple Duplication

Simple duplication means to duplicate a variable to result in N variables of the same type
and size. This comes with a memory overhead which is linear in the number of redundant
variables N . All operations of the normal data path are performed in multiple data paths.
The order of instructions does not matter because the results of different paths do not
depend on each other. The different data paths could be mixed randomly to make it
harder for an attacker to target multiple faults precisely.

Figure 3.5 shows the normal data flow on the left, where c = f(a, b) and d = g(c). Through
simple duplication, the variable a splits into N variables a0, a1, . . . , aN−1. The data flow
graph is duplicated N times accordingly, such that the data is calculated as follows:

ci = f(ai, bi), di = g(ci) (3.4)

Randomization of the data flow is displayed at the right side in Figure 3.5 which results
in a valid constellation. Nevertheless, the redundant variables should all be equivalent as

44

long as no fault occurs. The data is calculated as follows:

c0 = f(a1, b2), d2 = g(c0) (3.5)

c1 = f(a0, b1), d0 = g(c1) (3.6)

c2 = f(a2, b0), d2 = g(c2) (3.7)

The main problem using simple duplication is the compiler because of implicit and
explicit optimizations. Examples for explicit optimizations are inlining functions, removing
redundant instructions and folding constants. Implicit optimizations occur because some
compilers use lookup tables for variables and constants. While most explicit optimizations
can be turned off using special compiler options, implicit optimizations cannot be avoided.
The countermeasure has to be applied either on the assembly or the compiler back-end has
to take care of duplicate elements. Possible solutions for a compiler-based countermeasure
are discussed in detail in section 4.4.2.

Summarizing simple duplication as a software-based countermeasure, it increases the effort
of a successful attack. To hide a FIA, the FIA must be reproduced precisely multiple
times. This increases the complexity of the attack because this can only be achieved
with a smaller probability than a single attack. In contrast to checksums, in general, all
operations of the ALU can be protected. An exception are destructive faults to the ALU,
where a circuit is destroyed such that all further usages of an instruction fail to compute
the correct value in the same way.

3.2.3. Complementary Redundancy

Instead of taking the same value for redundancy, the binary inverted value can be used.
Many operations of the ALU can be secured because of the special properties of the
two’s complement. The two’s complement is a method to represent negative numbers in
computer systems. Positive numbers are represented by their binary form and always
starts with a 0. For example, +97 corresponds to 011000012. Negative numbers always
start with a 1 and are computed by taking the inverse of the absolute value and adding 1
afterwards.

Definition 3.1. The boolean inverse of a number x is denoted by x.

Definition 3.2. The two’s complement is denoted as −x := x+ 1.

Definition 3.3. The two’s complement can be reformulated to x = (−x− 1).

As an example for a negative number, −97 is represented by

97 + 1 = 011000012 + 1 = 100111102 + 1 = 100111112. (3.8)

45

Table 3.1.: Translation of operations on the logical inverse

Operation Normal Operation Inverse Operation

c← f(a, b) c← f(a, b)

Addition c← a+ b c← a+ b+ 1

Subtraction c← a− b c← a− b− 1

Multiplication c← a · b c← (a+ 1) · (b+ 1)

Division c← a÷ b c← (a+ 1)÷ (b+ 1)

Modulo c← a mod b c← ((a+ 1) mod (b+ 1))− 1

Logical and c← a ∧ b c← a ∨ b
Logical or c← a ∨ b c← a ∧ b
Logical exclusive-or c← a⊕ b c← a⊕ b

Equal c← a = b c← a 6= b

Not Equal c← a 6= b c← a = b

Less or Equal c← a ≤ b c← a < b

Greater or Equal c← a ≥ b c← a > b

Less than c← a < b c← a ≤ b

Greater than c← a > b c← a ≥ b

In other words, the signed variable 97 results in −98 upon inverting it and vice versa.
This fact is important to understand the following transformations which can be applied
to the redundant data.

Table 3.1 shows the operations f(a, b) to obtain the inverse of the result f(a, b) using only
the inverse input operands a and b. Note that the result of an inverse operation has to
remain inverted. The translations for the comparison operations may be confusing but
are correct as shown in the rest of this section. The result of a comparison must be the
opposite of the result of the normal comparison operation! This operations apply for all
values of a and b. It does not matter if unsigned or signed variables are used or if the
values are positive or negative. Even arithmetic overflows are computed correctly. In the
following, the claims made in Table 3.1 are proven.

Proof. Given the two’s complement by x = −x− 1, the inverted addition can be proven:

a+ b = a+ b+ 1

−(a+ b)− 1 = −a− 1− b− 1 + 1

−a− b− 1 = −a− b− 1

(3.9)

Both sides of the equation are clearly the same.

Proof. Given the two’s complement by x = −x − 1, the inverted subtraction can be

46

Table 3.2.: Truth table to proof logical equivalence of inverse operands

a b a ∧ b a ∨ b a ∨ b a ∧ b a⊕ b a⊕ b a b

0 0 0 1 0 1 0 1 1 1
0 1 0 1 1 0 1 0 1 0
1 0 0 1 1 0 1 0 0 1
1 1 1 0 1 0 0 1 0 0

proven:
a− b = a− b− 1

−(a− b)− 1 = −a− 1 + b+ 1− 1

−a+ b− 1 = −a+ b− 1

(3.10)

Both sides of the equation are clearly the same.

Proof. Given the two’s complement by x = −x− 1, the inverted multiplication can be
proven:

a · b = (a+ 1) · (b+ 1)

a · b = (−a− 1 + 1) · (−b− 1 + 1)

a · b = (−a) · (−b)
a · b = a · b

(3.11)

Both sides of the equation are clearly the same.

The proof for the division is exactly the same as for the multiplication. The multiplication
operation · can be replaced by the division operation ÷. To proof the equivalence of
operations for modulo, it must be defined that (−a) mod (−b) = −(a mod b).

Proof. Given the two’s complement by x = −x− 1 the inverted modulus can be proven:

a mod b = ((a+ 1) mod (b+ 1))− 1

−(a mod b)− 1 = (−a− 1 + 1) mod (−b− 1 + 1)− 1

−(a mod b)− 1 = (−a) mod (−b)− 1

(3.12)

which is by definition the same.

The inverse operations for the binary operations and ∧, or ∨, and exclusive-or ⊕ are
proven using the truth-table as in Table 3.2. The results of two pairwise operations are
always the opposite. For the and operation ∧ and the or operation ∨ the formulas equal
the De Morgan’s laws.

47

The inverted operations for the comparison operations require further explanation. Al-
though it holds that (a = b)⇒ (a = b), the result of the comparison must be inverted and
therefore be a 6= b. In other words, the a redundant comparison must have the opposite
outcome of the original comparison. As an example, the inverted operation for a < b is
proven. In the following proof, the negation ¬ is used to indicate the logical inverse which
is either true or false.

Proof. Given the two’s complement by x = −x− 1, the transformation of the less-than
operation can be proven:

¬(a < b)⇔ a ≤ b

On the left side, the comparison operation is negated.

On the right side, the two’s complement is used.

a ≥ b⇔ (−a− 1) ≤ (−b− 1)

a ≥ b⇔ (−a) ≤ (−b)
a ≥ b⇔ a ≥ b

(3.13)

The proofs for the other comparison operations are the same.

All proofs assumed signed values, but can be adapted to unsigned values. Negative numbers
are binary ordered where, for example, 100000002 is the smallest possible number and
111111112 is the largest negative number −1. For unsigned numbers the two’s complement
can be replaced by x = N − x − 1 with N = 2n where n is the number of bits. As all
operations are implicitly performed mod N , adding N to a number does not change
anything for the arithmetic proofs. The comparison proof can be adapted in the following
way:

Proof. Given the inverse by x = N − x− 1 with x ≥ 0 ∧ x ≥ 0, the transformatoin of the
less-than operation can be proven:

¬(a < b)⇔ a ≤ b

a ≥ b⇔ (N − a− 1) ≤ (N − b− 1)

a ≥ b⇔ (−a) ≤ (−b)
a ≥ b⇔ a ≥ b

(3.14)

The proofs for the other comparison operations are the same.

To summarize this section, every instruction can be performed solely on the inversed
data and does not require access to the original value. Hence, the order of associated
instructions can be shuffled or parallelized. The computational overhead is slightly higher
than for simple duplication. The benefit of this countermeasure is the resistance against
multiple bit-set or bit-clear attacks. Solely using one of these attacks for all redundant

48

variables, the attack will always be detected. One way to compensate this countermeasure
are multiple freeze-faults or multiple precisely targeted bit-flip faults.

The main benefit of complementary redundancy is that the ALU can be protected
effectively. In Table 3.1 it is shown that different operations are applied to different data.
This makes is harder to inject multiple faults with the same effect to prevent detection of
the attack. Furthermore, the Hamming weight of an intermediate value plus the Hamming
weight of the inverse intermediate value is constant. This can harden the device against
some SCAs.

3.2.4. Masking

Masking is typically known as a countermeasure against Side Channel Attacks, some
examples are [MOP07; Mos+12; Bet13]. This section introduces masking as a countermea-
sure against FIAs. The dependency between power consumption and processed variables
is removed by applying a random mask m to the value v.

vm = v ∗m (3.15)

The operation ∗ is a placeholder for different possible operations. Masking can be im-
plemented either using arithmetic (additive or multiplicative) or boolean (exclusive-or)
masking. Arithmetic masking requires a modulus which is either explicitly given by a
cryptographic algorithm or implicitly by the limited number of bits available for a data
type. When an arithmetic overflow occurs during a computation, the computation is
equal to a modulus of 2n, where n is the number of bits of the data type. While boolean
masking can be applied to any boolean operation, arithmetic masking can be applied
to arithmetic operations. This requires mask conversions if boolean and arithmetic op-
erations are performed in the same data path. Such mask conversions were discussed in
section 2.1.3.3.

Masking techniques can be used in multiple ways to achieve data integrity. If side channel
attacks can be prevented in another way, the unmasked value can be stored as well. Then,
the unmasked value, the mask and the masked value together form a set of redundant
information. To verify the data integrity, one can either unmask the masked values or
mask the unmasked values. For a stronger resistance against FIAs, multiple different
masks can be applied to increase the level of redundancy.

Otherwise, if the device must be hardened against side channel attacks using masking,
multiple masks could be applied to the same unmasked value. The set of redundant
information then consists of multiple masks as well as multiple masked values. To verify
the integrity, both masked values have to be compared. Therefore, the masked values
must be remasked to a common mask.

Masking contains the best parts from simple duplication and complementary redundancy.
Multiple masks can be applied in parallel which leads to more redundancy as in simple

49

duplication. As in complementary redundancy, it is more difficult to perform multiple
successful attacks to the redundant data which cannot be detected.

In the next sections, three different masking schemes are applied to the operations which
can be protected using the corresponding masking schemes. Obviously, boolean masking
schemes can be used to protect boolean operations. Arithmetic masking schemes such as
additive masking and multiplicative masking can be used to protect arithmetic operations.
Further, the arithmetic masking schemes are compared in terms of complexity.

3.2.4.1. Boolean Masking

Boolean masks are applied using the exclusive-or ⊕ operation. An unmasked value v is
masked by applying the mask mv:

vm = v ⊕mv (3.16)

Unmasking the masked value vm using the mask mv is always possible:

v = vm ⊕mv (3.17)

Boolean masks are useful to protect boolean operations such as and , or , exclusive-or , and
negations. Assume two variables x and y with the applied masks mx and my, resulting
in the masked values xm and ym. In the following, a method to securely apply boolean
operations to masked values is presented without unveiling a single intermediate value. The
important part for this work is that masked values can be combined without calculating
the original values. As a bonus, we tried to preserve statistical independence for the result
of each intermediate value.

Securing the and Operation

In this paragraph, two boolean masked values are combined using an and operation. The
formula in (3.20) was designed with the property in mind that the mask must not be
removed during the operation. Furthermore, all processed intermediate values should
be statistically independent of the original values (x, y, z). Therefore, it was necessary
to add an additional mask ma to the formula. The instructions must be executed in
a specific order given in (3.21) because not every order yields statistic independence.
The statistical independence is proven in the Appendix A. Two variables z and ik are
statistically independent if and only if P (z) = P (z|ik). Nevertheless, it is still important
that the masks are not the same (mx 6= my 6= ma) because this would remove the mask.

z = x ∧ y (3.18)

mz = mx ⊕my ⊕ma (3.19)

zm = (xm ∧ ym)⊕ (my ∧ xm)⊕ (mx ∧ ym)⊕ (mx ∧my)⊕ma (3.20)

zm = ((((xm ∧ ym)⊕ (my ∧ xm))⊕ma)⊕ (mx ∧ ym))⊕ (mx ∧my) (3.21)

50

Securing the or Operation

In this paragraph, boolean masked values are combined using an or operation. Again,
the resulting formula (3.24) was designed in such a way that all intermediate values are
statistically independent of x, y and z. A new mask ma must be applied to the data during
the computation to ensure statistical independence. Furthermore, the formula must be
evaluated in a specific order as shown in (3.25). The proof for the statistical independence
can be found in the Appendix A. Once again, it is important that the masks are not the
same mx 6= my 6= ma because this would generate statistical dependence.

z = x ∨ y (3.22)

mz = mx ⊕my ⊕ma (3.23)

zm = (xm ∧ ym)⊕ (my ∧ xm)⊕ (mx ∧ ym)⊕ (mx ∧my)⊕ xm ⊕ ym ⊕ma (3.24)

zm = (((((xm ∧ ym)⊕ xm)⊕ ((my ∧ xm)⊕ ym))⊕ma)⊕ (mx ∧my))⊕ (mx ∧ ym) (3.25)

Securing the exclusive-or Operation

A simpler example is the exclusive-or operation. Trivially, all intermediate values are
statistical independent of x, y, and z. Nevertheless, it is important that the masks are not
the same mx 6= my because this would remove the mask.

z = x⊕ y (3.26)

mz = mx ⊕my (3.27)

zm = xm ⊕ ym (3.28)

Securing the boolean inverse Operation

The boolean inverse is the simplest instruction for masking. In fact, there are two possible
solutions to invert the value:

1. Invert the mask but not the masked value.

2. Invert the masked value but not the mask.

Both solutions are equivalent.
z = x (3.29)

mz = mx (3.30)

zm = xm (3.31)

In this section, the operations and , or , exclusive-or , and the negation were discussed for
boolean masking. The resulting formulas were analyzed to proof statistical independence
between all intermediate values and the unmasked values in the A. In the next section,
additive masking is revisited to analyze how arithmetic operations can be secured.

51

3.2.4.2. Additive Masking

Additive masking is one form of arithmetic masking. A mask mv is applied to the value v
using a modular addition.

vm = v +mv mod N (3.32)

Since every mask mv is invertible for any N , it is possible unmask the masked value vm:

v = vm −mv mod N (3.33)

Additive masks can be used to protect arithmetic operations such as additions, subtractions,
or multiplications. In the following, formulas to perform these operations on masked values
are discussed.

Securing the Addition and Subtraction

Additions and subtractions can be performed very simply because the addition has an
associative and commutative property. All these operations can be performed in one step,
have no intermediate values. The result is clearly masked. Hence, an attacker cannot learn
anything about the unmasked values.

z = x± y mod N (3.34)

mz = mx ±my mod N (3.35)

zm = xm ± ym mod N (3.36)

The protected operations have only a very small overhead compared to other operations
such as a multiplication. The form of the used formulas of the masked addition and
subtraction can be compared to the exclusive-or operation in boolean masking if N = 2.
This comparison can be illustrated by an example:

0 + 0 mod 2 = 0 = 0⊕ 0 (3.37)

0 + 1 mod 2 = 1 = 0⊕ 1 (3.38)

1 + 0 mod 2 = 1 = 1⊕ 0 (3.39)

1 + 1 mod 2 = 0 = 1⊕ 1 (3.40)

Consequential, the protected formulas for additive masking in arithmetic masking have a
similar structure as the exclusive-or operation in boolean masking.

Securing the Multiplication

The secure implementation of multiplications are a bit more complicated. Again, a
similarity between the formulas of the multiplication in additive masking can be seen in

52

comparison with the and operation of the boolean masking if N = 2. This comparison
can be illustrated by an example:

0 · 0 mod 2 = 0 = 0 ∧ 0 (3.41)

0 · 1 mod 2 = 0 = 0 ∧ 1 (3.42)

1 · 0 mod 2 = 0 = 1 ∧ 0 (3.43)

1 · 1 mod 2 = 1 = 1 ∧ 1 (3.44)

Because of this property, a similarity between (3.47) and (3.20) can be seen. Hence, again
a new mask ma is required to ensure statistical independence. The order of executed
instructions is important and shown in (3.48). Further, it is important that all operations
are performed using the modulus.

z = x · y mod N (3.45)

mz = mx +my +ma mod N (3.46)

zm = xm · ym − (xm − 1) ·my − (ym − 1) ·mx +my ·my +ma mod N (3.47)

zm = (((xm · ym − (xm − 1) ·my) +ma)− (ym − 1) ·mx) +my ·my mod N (3.48)

In this section, the arithmetic addition, subtraction, and multiplication operations were
protected using additive masking. Structural similarities between binary masking and
additive masking are shown if a modulus of N = 2 is used. The addition and subtraction
corresponds to the binary exclusive-or while the multiplication corresponds to the binary
and . In the next section, the same arithmetic operations are discussed when being secured
with multiplicative masking.

3.2.4.3. Multiplicative Masking

Multiplicative masking is another form of arithmetic masking. A mask mv 6= 0 is applied
to the value v using a modular multiplication.

vm ≡ v ·mv mod N (3.49)

Depending on the modulus N , not every mask 0 < mv < N is invertible in N such that
mv ·m−1v ≡ 1 mod N . The value m−1v exists for every mask mv if gcd(mv, N) = 1. This is
the case if the mask mv and the modulus N have no common divisors. Having computed
the inverse using the extended euclidean algorithm, unmasking the value vm can then be
performed by the following operation:

v ≡ vm ·m−1v mod N (3.50)

Many non-cryptographic algorithms do not use a prime modulus. The implicit modulus
of all computer systems is N = 2n with typical numbers of n = {8, 16, 32, 64}. As 2n

is certainly not a prime, the inversion of a mask is not possible in general. Although,

53

every odd number 1 < mv < N has the property gcd(mv, N) = 1 which is necessary for
inversion of the mask. If the mask cannot be selected in such a way, it can nevertheless be
used for integrity by applying the mask again to the original value and comparing the
masked values. This is suboptimal, because several values v leads to the same masked
value mv if no unique inverse exists. Hence, it is reasonable to use a prime number as
a modulus if possible. In the following, multiplicative masking is discussed to secure
additions, subtractions, and multiplications.

Securing the Addition and Subtraction

Additions and subtractions can be applied by generating a common mask for both
arguments before the multiplication. The inverse mask of one mask must not be equal
to the other mask (xm · ym 6≡ 1 mod N) because this would unmask the values. All
intermediate values are independent of the unmasked values by definition.

z = x± y mod N (3.51)

mz = mx ·my mod N (3.52)

zm = mx · ym ±my · xm mod N (3.53)

Securing the Multiplication

Multiplications are trivial because of the associative and commutative properties of
the multiplication. The masks should not cancel each other out and, hence, have the
property mx ·my 6≡ 1 mod N . Since all computations are performed in one operation, no
intermediate values exist which could leak side channel information.

z = x · y mod N (3.54)

mz = mx ·my mod N (3.55)

zm = xm · ym mod N (3.56)

The masks mx and my should, furthermore, not be equal. This reduces the number of
possible masks.

In this section, some arithmetic operations were secured using multiplicative masking.
Compared to additive masking, all masked operations require less instructions and can be
performed more efficiently. In the next section, all masking techniques are summarized
and compared with respect to the secured operations.

3.2.4.4. Summary

In the previous sections, several different masking techniques were discussed. Boolean
masking can be used to protect boolean operations such as and , or , exclusive-or , and
negation. On the contrary, arithmetic masking can be used to protect arithmetic operations

54

as additions, subtractions, or multiplications. Boolean masks and additive masks are always
invertible. However, multiplicative masking demand special requirements to the mask to
ensure this property.

To protect arithmetic operations, multiplicative masking is often used which is very
understandable considering the more efficient formulas in comparison to additive masking.
Nevertheless, it depends on the application which masking scheme is used. Especially if
the masking scheme has to be changed and few multiplications are used, additive masking
may be the better choice.

When a masking scheme is implemented to ensure data integrity, the main challenges are
to guarantee that no masks are canceled out and to select good masks. Selecting good
masks is easier for boolean masking and additive masking as random numbers are a good
choice. Multiplicative masking yields an additional requirement that the mask should be
odd which can be enforced by setting the LSB of a random value to one. A multiplicative
mask of the form 2k has the following effect. Unmasked values of the form 0 < t · 2k−l < 2k

share the same masked value with 2k−l with different masks. In other words, only 2l−1

different masked values exist, provided that only odd masks are used. This property
generates a statistical dependence between even unmasked values and their corresponding
masked values. However, this does not affect the detectability of fault injection attacks.
An attack could produce an invalid masked value which could be detected. If such a
fault remains undetected, it causes no problem because multiple masked values represent
the same masked values and, therefore, the outcome of the program is not influenced.
Nevertheless, a prime modulus is strongly recommended because then every masked value
is statistical independent of the unmasked values.

All masking schemes have a relatively large overhead in memory consumption. For one
additional masked value, two additional values have to be stored (the mask and the masked
value). Optimizations can be made by sharing a mask between different variables. This
leads to less memory consumption and may result in a faster implementation. However, it
is increasingly difficult to prevent masks from canceling out if this technique is used.

In the previous few sections, simple duplication, complementary redundancy and three
different masking schemes were discussed to produce redundant data. The next section
analyzes the verification of operations which, in contrast to the previous techniques, does
not require additional memory.

3.2.5. Verification of Computations

Verification of computations is a method to detect a fault which occurred during one
operation or during a set of operations. The result of an algorithm is verified using special
properties of the operations being performed. Although the verification can require some
temporary memory to perform the verification, all consumed memory can be released
after the verification. It can be distinguished between the verification of single operations,
where the operations of the ALU are protected and the verification of algorithms where
special properties of an algorithm are used to verify the outcome of the whole algorithm.

55

3.2.5.1. Verification of Single Operations

Verification of single operations is a technique applied to protect ALU-instructions. Every
instruction is verified directly after the instruction but no redundant data is stored. Hence,
fault injection attacks targeting the ALU can be detected while other faults (targeting
registers, RAM, or NVM) can not be detected. This countermeasure can be seen as time
redundancy.

The ALU is a part of the microprocessor which supports different arithmetic and logical
instructions. Most instructions can be verified by testing if one of the operands can be
computed out of the result and the other operand. Table 3.3 shows an overview over such
operations and the corresponding verification.

Table 3.3.: Verification of ALU instructions

Operation Normal operation Verification Restrictions

Addition z = x+ y x
?
= z − y -

Subtraction z = x− y x
?
= z + y -

Multiplication z = x · y x
?
= z ÷ y no overflow

Division d = x÷ y x
?
= y · d+m -

Modulo m = x mod y x
?
= y · d+m -

and C = A ∧B C
?
= A ∨B -

or C = A ∨B C
?
= A ∧B -

exclusive-or C = A⊕B A
?
= C ⊕B -

Negation C = A A
?
= C -

Verification of Arithmetic instructions. Additions and subtractions can be directly
inverted by using a subtraction respectively an addition. The first restriction is raised by
the multiplication which can not be inverted if an overflow occurs during the multiplication.
The ALU implicitly performs a modulus operation (for example, x ·y mod 232 for a 32 bit-
CPU). Hence, a division can only be used for verification if no overflow occurred during
the multiplication. The division and the modulus instructions can always be verified but
require one additional instruction. For any of the two instructions, both instructions have
to be performed: the division and the modulus. Only then it is possible to recompute the
dividend.

Verification of Boolean instructions. Some boolean operations (and and or) cannot
be inverted while others (exclusive-or , inverse) can. This comes from the fact that one
operand cannot be restored if the result and the other operand are known. For example,
1 ∧ 0 = 0 but also 0 ∧ 0 = 0. It is not possible to generate a function A = f(B,C) such

56

that C = A ∧ B. Hence, a redundant computation is necessary which can be based on
simple duplication or on complementary redundancy. Since it is advantageous to perform
a different operation for verification, the example shows the solution for complementary
redundancy. The two formulas are derived from the De Morgan’s laws. For the other
boolean operations, the first operand can be calculated as shown in Table 3.3.

Summarizing this section, single operations of the ALU can be verified by recomputing
one operand using time redundancy. For some operations such as and and or , this is not
possible because the first operand cannot be inferred from the other variables. Nevertheless,
a redundant computation of the result can be performed using complementary operations.
While in this section only single operations were secured, the next section extends the
principle to whole algorithms with special properties.

3.2.5.2. Verification of Algorithms

Knowing special properties of an algorithm can provide powerful methods for the ver-
ification of data integrity. Sometimes, the result of an algorithm can be verified using
another algorithm that can be faster than the original operation. While many exam-
ples are available, two will be highlighted in this section: digital signatures and sorting
algorithms.

Digital signatures can be used to proof the origin of some data or to sign a contract. They
are based on asymmetric cryptography where two keys are available. A secret private key
can be used to sign some data, while a public key can be used to verify the authenticity
of the signed data. Injecting a fault during the signing process can cause the leakage of
information which can be used to determine the secret key. This attack is called Bellcore-
attack [BDL97] and is described in detail in section 2.2.5.3. As a countermeasure, the
issuer of the signature can verify its own signature using the public key. If the signature
verification fails, an attack can be assumed and the signature must not be revealed to
anybody.

Another example is an algorithm to sort n elements. This example is not cryptographic but
shows the advantages of algorithmic verification. It is well known that sorting algorithms
have a complexity of O(n log n) in computation time. This is not very expensive, but
verification if an array is sorted can be proved in O(n), which is slightly faster.

3.2.5.3. Summary

Single operations and whole algorithms can be verified using detailed knowledge of the
performed instruction(s). These countermeasures against fault injection attacks do not
store redundant data but use additional computation time to perform the verification of
data integrity. Accordingly, data stored in the registers, the RAM, or the NVM is not
protected. Using verification of whole algorithms, faults which occur in memory during
the algorithm can be detected. For algorithms, the verification can be faster than the
original algorithm. Nevertheless, the special properties of algorithms cannot be utilized

57

by a compiler because the compiler is typically not aware of the theory behind those
algorithms.

3.3. Data Integrity Verification

Verifying every operand before each instruction and the result after each instruction is
very expensive in terms of computation time. Hence, in practice it is advantageous to
neglect some verification checks and to decide when it is necessary to verify data integrity.
A fault would propagate through the data path and can be detected at a later point when
a verification is inevitable.

Examples where the verification is necessary are before conditional branches, function
calls, and pointer operations.

• Conditional branches are critical points in the control path of the program. Hence,
comparison trees are proposed to verify the branch more than once.

• Function calls must be extended to accept and return redundant data. In the
proposed solution, insecure function (without data redundancy) can call secure
functions (using data redundancy) and vice-versa. These are further critical points
where the data integrity must be verified upon return.

• Attacks to pointers and arrays can hardly be detected because the size of the
data is often unclear. Hence, the data must be verified every time a pointer or array
is accessed. Further, the indices of arrays must be verified because a manipulation
cannot be detected afterwards.

In the next sections, these critical points are discussed in more detail.

3.3.1. Conditional Branches

Conditional branches are special instructions which decide which instruction should be
executed next. A conditional branch consists of the evaluation of a condition and a branch.
Typically, a comparison operation is used for this decision which sets one of several
comparison flags in the PSR. Examples are the negative condition flag, the zero condition
flag, the carry condition flag and the overflow condition flag. The conditional branch
evaluates these flags and performs a jump when appropriate. This section explains why
conditional branches are critical points and why and how data integrity can be verified.

An attacker could target the comparison instruction, the condition flags or the branch. The
comparison instruction cannot be verified, hence, it must be performed multiple times. If
the fault injection attack targets the compared data or the condition flags, it is considered
as a data integrity violation. On the other hand, an attacker could target the address of
the next instruction which is considered a control-flow integrity violation. Werner [Wer14]

58

showed in 2014 how control-flow integrity can be protected using a compiler and a minor
hardware extension.

Since the comparison must not produce a faulty outcome, it is clear that the data could be
verified before the comparison instruction. However, this is not essential when redundant
data is available and the comparison can be performed on each set of redundant variables.
A comparison-tree can be used to perform multiple comparisons and branches as shown in
Figure 3.6. Even if no redundant data is available, conditional branches can be evaluated
multiple times in a comparison tree.

if A==B

if A!=B if A!=B

FAULT if A==B if A==B FAULT

. . . FAULT FAULT . . .

true false

true false true false

true false true false

Figure 3.6.: A comparison tree to secure conditional branches

Although a conditional branch can be protected via a comparison tree of depth d, it is
still clear how to circumvent the countermeasure. An attacker has to precisely target the
attack repeatedly d times to prevent a fault detection.

3.3.2. Function Calls and Returns

Function calls are not necessarily critical points but in general a good choice for inter-
mediate checks. These intermediate checks are inexpensive compared to securing every
instruction of a function.

Function parameters must be verified upon calling an insecure function which does
not take redundant parameters. Additionally, a compiler warning should be issued because
this should only occur in exceptional circumstances. For secured functions the verification
it is not mandatory if the faulty data would propagate and can be detected at a later
point. Return values of functions must be verified upon returning to an insecure
function which does not take redundant return values. For secured functions it is not
mandatory but again a good choice. The verification can be done either directly before

59

the return statement, directly after the function returned, or upon the first usage of the
return value.

3.3.3. Pointers and Arrays

If countermeasures are applied manually, it is always feasible to verify the values of
pointers and arrays in the same manner as normal variables, for example upon function
calls and returns. Nevertheless, this is not possible in general, as pointer operations are
very dynamic and the size of the data may be unknown. Hence, pointer operations cannot
be protected as dynamically and the content must be protected every time they are
used.

If redundant data is stored to a pointer address, the protected value has to be verified
directly after the store operation. Redundant data which is loaded from a pointer
address must be verified directly after the load operation. Another critical point is
the address of the data being written to or read from. When data is stored to a wrong
address, it could remain undetected or produce unexpected behavior. Hence, the indices
must be verified after the address is computed. If the error is induced on the bus, the
error can be detected upon loading by a secured function.

3.3.4. Protecting every Operation

Every operation can be protected either by verifying each parameter of the operation or
by verifying the result after usage of the operation. How often the data integrity is verified
is a trade-off between performance overhead and the need for an early fault detection.

Protecting every operation leads to a large overhead in computation time and code size.
The overhead arises from the additional transformations to compare redundant data and
the conditional branches to a fault handler. On the other hand, faults are detected as
soon as they occur and can be handled appropriately before another computation can
leak side channel information.

3.3.5. Summary

In the previous sections the possible locations of the verification steps were discussed. It
is typically not necessary to verify data integrity after each operation when redundant
data can be processed independently. Using compiler-assisted countermeasures where the
verification step is applied automatically, it is necessary to verify data integrity at least at
certain points:

• Parameters when calling an insecure function

• Return values when returning to an insecure function

60

• Stored and loaded data using pointers or arrays and the used offsets

• Upon conditional branches

3.4. Fault Handling

When a fault is detected, it should be handled accordingly to the risk of a successful
attack. Technically, it is possible to use interrupts, exceptions, or function calls to trigger
the fault handling process in software. As a hardware-based response to a fault, a special
module could listen to a special memory address and power off or destroy the chip when
a fault occurs.

Implementations in software are more flexible and can perform actions such as perma-
nently deleting secret information. For example, keys or identity data can be removed to
circumvent further attacks. Afterwards, a reboot can be triggered to ensure that the fault
does not have any further effect. If the fault is permanent, it does not vanish during the
next execution but the fault handling should detect the fault every time.

Another possibility is to repair the faulty values either using a majority decision of
redundant values or by recomputation of faulty variables. The repair of faulty values can
be ineffective against destructive faults as the program may get stuck in an endless loop
allowing an attacker to gather more and more side channel information on the processed
data. Furthermore, if an attacker can perform a number of attacks, more information can
be collected by observing power consumption or timing conditions of the repair phase.
Oracle attacks are quite powerful and can use the fact if the repair phase was executed or
not (see section 2.2.5.1). Consequently, it is recommended to destroy the chip when the
first fault occurs. Faults can also happen naturally through radiation, adverse temperature
conditions or voltage drops due to a poor supply voltage. Hence, a counter could be used
to prevent unintentional destruction of the device in such cases.

3.5. Summary

This chapter introduced methods to ensure data integrity against FIAs. Data integrity has
to be ensured to prevent leakage of secret data or bypassing of access control mechanisms.
For most software based countermeasures against FIAs, it is necessary to store redundant
data. In section 3.1, three different mechanisms to locate redundant data were discussed.
The most flexible and useful strategy arose from data duplication on a higher level such
as variable duplication on intermediate code (section 3.1.3).

Several methods of redundancy such as simple duplication, complementary redundancy,
boolean masking, additive masking, and arithmetic masking were introduced in section 3.2.
Masking schemes combine the advantages of simple duplication and complementary
redundancy and can be implemented such that they are additionally secure against side

61

channel attacks. Nevertheless, some disadvantages are the larger overhead in memory
consumption and the more complex protection of some instructions. Further, every masking
scheme can only be applied to several instructions. Hence, the masking scheme has to be
changed when boolean algebra is combined with arithmetic operations. For multiplicative
masking it is further a problem to select a good modulus (which should be prime) as
well as a good mask value (if the modulus is not a prime). As an alternative to data
redundancy, result testing was presented to verify operations of the ALU.

A major advantage of a software-based solution is the increased flexibility. Not every
instruction has to be protected against FIAs. It may be sufficient to verify data integrity
upon certain points which were described in section 3.3.

Faults should be handled accordingly as described in section 3.4. In any case, secret data
should be cleared and the system should be reset. It is advantageous to destroy the chip
when the first fault injection attack is detected. Nevertheless, faults can occur naturally
which is why it could be improper to destroy the chip and a counter should be used to
allow some faults.

62

4. Implementation

This work focuses on software-based countermeasures against fault injection attacks.
Countermeasures such as simple duplication, complementary redundancy or masking
schemes were discussed in chapter 3. Most countermeasures cannot be applied in a high-
level language such as C or C++ due to optimizations by the compiler. Hence, the
countermeasures have to be applied either by the compiler or as a post-processing step
to the assembly. Performing these steps manually is very difficult and time-consuming
as it requires detailed knowledge of physical attacks and of the used hardware and must
be performed for every compiled version of the code. A compiler can reduce the effort to
secure a system against FIAs.

To implement some of the countermeasures of chapter 3 we chose the LLVM compiler,
which is described in section 4.3. The countermeasures are applied by the compiler in a
special intermediate language which is independent from the system’s architecture and the
front-end programming language. Nevertheless, some adjustments had to be applied to
the platform-specific parts of the compiler. For the prototypical implementation we chose
the ARM Cortex-M0+ processor, which is described in section 4.1. The main reason for
this decision was that this processor is the smallest available processor. If the implemented
countermeasures are successful, they can be extended to larger processors. Implementation
details as well as problems and their solution are discussed in section 4.4.

4.1. Platform

The ARM Cortex-M0+ processor is a small, highly energy efficient processor which
was first released in 2012. All information regarding the Cortex-M0+ in this document
originates from three documents, namely the

• Cortex-M0+ technical reference manual [ARM12b], the

• Cortex-M0+ generic user guide [ARM12a], and the

• ARMv6-M Architecture Reference Manual [ARM10].

The Cortex-M0+ is a 32-bit processor based on the ARMv6-M architecture which is a
2-stage pipeline Von Neumann architecture [Von45]. It supports most of the 16-bit Thumb
instruction set and some of the 32-bit Thumb-2 instruction set. Instruction sets describe
a set of instruction which can be performed by a microprocessor. 16 bit instruction sets
require only 16 bit in terms of code size, whereas 32 bit instructions have doubled code

63

Figure 4.1.: Registers of the ARM Cortex-M0+ [ARM12a]

length. The only instructions of the 16-bit Thumb instruction set which are not supported
by the Cortex-M0+ are CBZ, CBNZ, and IT. However, the implemented subset of the 32-bit
Thumb-2 instruction set consists of BL, DMB, ISB, MRS, and MSR.

The registers of the Cortex-M0+ are visualized in Figure 4.1:

• The first 13 registers (R0 – R12) are general-purpose registers and can be
freely used. However, only the first 8 registers (R0 – R7) can be used by most
instructions because most instructions use 3-bit indices for registers (the largest
index(7)10 = (111)2). Five so-called “high registers” (R8 – R12) can only be used
for a relatively small subset of the available instructions.

• Two stack pointers are combined in R13, where a bit in the control register decides
if the main stack pointer (MSP) or the process stack pointer (PSP) should be used.

• Subroutine calls store the return address in the link register (R14) which is written
to the PC upon return from the subroutine. To enable further function calls, the
link register has to be pushed to the stack.

• The Program Counter (PC, R15) contains the address of the instruction which
is executed next. It is automatically incremented after every instruction.

• A special register is the Program Status Register (PSR) where, amongst others, the
application PSR is located. The application PSR consists of four flags which are set
by operations in the ALU:

– The Negative condition flag (bit 31) is set to 1 if the result of a signed
instruction is negative.

64

– The Zero condition flag (bit 30) is set to 1 if the result of an instruction is
zero.

– The Carry condition flag (bit 29) is set if an overflow occurs during an
unsigned arithmetic operation.

– The Overflow condition flag (bit 28) is set if an overflow occurs during a
signed arithmetic operation.

These flags are used for conditional branches and are an inviting target for FIAs.
Hence, the condition flags must be evaluated more than once on the same or upon
redundant data.

There are multiple versions with different peripherals of the Cortex-M0+ available. Two
differently optimized base versions exist: one optimized version can perform a multipli-
cation in a single cycle (high performance optimization) while other versions require 32
cycles (low area optimization). We chose the Cortex-M0+ processor for the prototypical
implementation because it is the smallest available ARM microprocessor. If successful
results are obtained for this microprocessor, they can be extended larger processors.

4.2. Simulator

To simulate the behavior of the Cortex-M0+, we used the simulator VirtualBug. The
simulator was developed by Johannes Winter and Daniel Hein and was intended for use
in an university course at the University of Technology Graz. They based the simulator
upon the ARMv6-M Architecture Reference Manual [ARM10] which includes a detailed
description of instructions and their side effects. The simulator is written in C# and is
platform independent but requires the mono runtime environment.

As one part of this work, the simulator was extended to simulate FIAs to analyze the
impact of such attacks. The parameters of the attacks can be defined using command
line arguments. Every attack has a minimum set of properties: a type, a timing, and a
location. The different fault types in the simulator are derived from the classification of
faults in section 2.2.3:

1. IgnoreMask represents freeze faults or stuck-at faults. Bits selected by a mask
remain unmodified during an operation.

2. SetMaskZero represents bit-clear faults. Bits which are selected by a mask are set
to zero.

3. SetMaskOne represents bit-set faults. Bits which are selected by a mask are set to
one.

4. FlipMask represents bit-flip faults. Bits which are selected by a mask are flipped.

65

An attentive reader may notice that random faults seem to be missing in this list of
featured fault types. In fact, random faults can be seen as bit-flip faults with a reduced
success probability. The success probability of any attack can be given by the parameter
prob in percent. The mask which selects the bits for the attacks is given by the parameter
bitmask.

Attacks can be performed upon memory access or when an instruction is executed. The
location of the fault can be targeted at one of the following modules:

1. NVIC: The Nested Vectored Interrupt Controller (NVIC) is the interrupt controller
of the Cortex-M0+ processor.

2. Serial interface: In the simulator, attacks to the serial interface influence the
keyboard input and the console output.

3. Dmem is the data side memory which represents the RAM.

4. Imem is the instruction side memory. Attacking this memory leads to wrong instruc-
tions being executed.

5. Register: All registers can be attacked. The index of the register can be defined by
the reg parameter.

6. PSR: The PSR is a special register which is not included in the 16 registers. It
contains the four comparison flags used for conditional branches.

Fault injection attacks can be injected during a specific PC and/or at a specific number of
cycles. Both can be either targeted precicely (pc and cycles) or be restricted to a certain
range (minpc, maxpc, mincycles, and maxcycles).

An attack is only performed if all these properties are fulfilled. For example, an instruction
which modifies a register at cycle 500 using the program counter 200 is only attacked
if the location of the fault is set to register, the minpc ≤ 200 ≤ maxpc, and
mincycles ≤ 500 ≤ maxcycles.

Since a brute-force attack is one way to test the implemented countermeasures, the
simulator was extended to perform multiple executions with different properties. To attack
every single instruction in a certain range, the arguments -attackfrom: and -attackto:

can be used to specify a range of cycles. The whole program is simulated once for each cycle
in this range and exactly one attack is performed per simulation. Multiple randomized
attacks can be generated using the -nrattacks: property to perform k different attacks.

4.3. LLVM Compiler Toolchain

LLVM [LLV14b] is a set of compiler and toolchain technologies. The project is modular
and highly reusable for different purposes. Some of the most important sub-projects are
the LLVM core and clang, which is a compiler for C, C++ and Objective C++. Most

66

C/C++ LLVM IR DAG Assembly Object ELF

clang opt llc as ld

Annotations

Metadata Flags

Figure 4.2.: The LLVM toolchain

transformations and analysis tools perform their analysis and transformations on the LLVM

Intermediate Representation (IR) (also known as the Intermediate Language (IL)).

For this work, the goal was to produce the binaries for the ARM Cortex-M0+. Therefore,
the toolchain visualized in Figure 4.2 was used. Ellipses represent different code formats
while rectangles represent tools

1. The process starts with a C or a C++ input file.

2. The clang frontend is configured to optimize the source code and to stop at the
intermediate code and store it to a file. The intermediate code can be stored either
as plain text *.ll or as bit-code *.bc.

3. The optimizer OPT loads the intermediate code and performs intermediate passes
before once more emitting intermediate code.

4. LLC is the LLVM static compiler and translates the intermediate code to a DAG and
further to an assembly (*.s).

5. The GNU assembler arm-none-eabi-as loads the assembly and generates an object
file (*.o).

6. Finally, the GNU linker arm-none-eabi-ld combines several object files and pro-
duces an Executable and Linkable Format (ELF) file which can be loaded by the
Cortex-M0+. The ELF file can be further processed by arm-none-eabi-objdump

to produce a human readable version of the file.

The LLVM compiler performs numerous optimizations – some are implemented directly in
the compiler and others are loaded using a pass. A pass is a library based on the LLVM

infrastructure which can analyze or transform the intermediate code. Both, input and
output of such a pass are intermediate code. Passes are very flexible and reusable because
they can be activated and combined arbitrarily and do not require to rebuild the compiler
itself.

67

Several optimizations are performed in various steps: in the frontend, in the back-end,
and on the intermediate code – possibly even multiple times. These optimizations can
automatically inline whole functions, remove dead code, propagate constants, modify
the order of instructions, et cetera. Instructions may be replaced by other instructions
which are more efficient or allow further optimizations. For example, a division by 2 can
be replaced by an arithmetic right-shift. Loops which depend on counters with constant
boundaries may be flattened to remove the computational overhead of the loop.

In 2008, Lattner [Lat08] presented a comparison between GNU Compiler Collection (GCC)
and LLVM which shows that programs compiled with LLVM have a shorter execution time
while requiring less compile time than GCC. Another advantage of clang (and LLVM) are
more expressive error messages compared to GCC. One of the main goals of the LLVM

project is to provide a compiler which can be easily extended. If someone implements
a new front-level language, it is automatically supported by all available platforms. On
the contrary, if someone writes an LLVM backend to support a new hardware architecture,
all existing front-level languages are automatically supported. Another goal was to be
compatible with the GCC compiler. It is possible to compile an object file with GCC and
another one with LLVM where both files can be linked together. Also the parameters of
both compilers are similar and compatible.

The following sections, some details regarding the LLVM toolchain are discussed. In sec-
tion 4.3.1, the LLVM IL is discussed in detail. Further, the transformation of the IR to the
assembly is discussed in section 4.3.2. The lifetime of annotations, metadata, and flags
during the LLVM toolchain are discussed in section 4.3.3.

4.3.1. LLVM Intermediate Language

The LLVM Intermediate Language (IL) is a common language for all supported high-level
languages and all architectures. Hence, most optimizations are performed on this common
Intermediate Representation (IR). The intermediate language is structured in modules,
functions, basic blocks, and instructions and follows a strict hierarchy (from left to right):
A module consists of one or several functions, functions consist of one or several basic
blocks, and basic blocks consist of one or several instructions.

All instructions are represented in a single assignment form which means that every
intermediate variable can only be assigned once. As a consequence, each instruction
produces a new intermediate variable which cannot be overwritten. Hence, a single
variable in the source language (C/C++) is not represented by a single variable in the
LLVM IR.

Basic blocks are always fully executed and cannot contain internal conditional branches
or other terminating instructions (terminating instructions leave the current basic block).
A terminating instruction can only occur as the final instruction of a basic block and
a branch can only invoke another basic block. Hence, two additional basic blocks are
necessary for each conditional branch. A problem is posed by loops where a variable must
be assigned multiple times. To overcome this problem, LLVM introduces phi-nodes.

68

entry:

 %0 = load i8* %str, align 1, !tbaa !1

 %tobool1 = icmp eq i8 %0, 0

 br i1 %tobool1, label %while.end, label %while.body

T F

while.end:

 %len.0.lcssa = phi i32 [0, %entry], [%inc, %while.body]

 ret i32 %len.0.lcssa

while.body:

 %len.03 = phi i32 [%inc, %while.body], [0, %entry]

 %str.addr.02 = phi i8* [%incdec.ptr, %while.body], [%str, %entry]

 %incdec.ptr = getelementptr inbounds i8* %str.addr.02, i32 1

 %inc = add nsw i32 %len.03, 1

 %1 = load i8* %incdec.ptr, align 1, !tbaa !1

 %tobool = icmp eq i8 %1, 0

 br i1 %tobool, label %while.end, label %while.body

T F

Figure 4.3.: LLVM intermediate code example: strlen

The single assignment form yields a problem when different basic blocks merge. To solve
this problem, phi nodes are injected at the beginning of a basic block. These phi-nodes
are assigned to an intermediate variable and define which value should be taken depending
on the preceding basic block. As an example, the intermediate code of the function strlen

is given in Figure 4.3. The example consists of three basic blocks: entry, while.body,
and while.end. The phi-node %len.03 is assigned with inc if the preceding basic block
is the while.body basic block or with 0 if the preceding basic block is entry. Thereby,
the problem that inc cannot be set multiple times is solved.

Each basic block must end with a terminating node. One example is the return

instruction which returns from the function. Other examples are branches (br) which can
be conditional or unconditional. The switch instruction is used if a conditional branch
depends on one variable and has many different successor basic blocks. A last example is
the unreachable instruction which indicates that the end of the basic block can never be
reached.

Load and store instructions are used to read from or to write to memory. They can be
marked as volatile which indicates the optimizer that it is not allowed to modify the order
in relation to other volatile instructions or to remove the instruction. In LLVM only load,
store, and memcopy can be annotated with the volatile attribute. Both operations require
a memory address which is typically generated using the getelementptr instruction.
Getelementptr can be used for multi-dimensional arrays or structures and performs
address calculations based on the data types of the arrays. Alternatively, it is possible to
convert a pointer to int (ptrtoint) or vice versa (inttoptr) but this is discouraged by the
language reference. Elements can be extracted from an array or struct using extractvalue

or inserted using insertvalue. Vectors can be manipulated using insertelement and

69

read by the extractelement instruction.

Memory on the stack is automatically managed and is implicitly allocated for parameters,
the return value, and sometimes for intermediate variables. It can be necessary to swap
out intermediate values due to a too high register pressure (insufficient available registers).
If larger data structures such as arrays are required, the alloca instruction is used to
allocate additional memory on the stack and provides a pointer to that memory. The
allocated memory is automatically released when the function returns.

Global variables in the source language are represented by global variables in the LLVM

IL. Additionally, some constants (for example, arrays, and strings) are stored as constant
global variables. Even a local variable string, which is not constant, is initialized using a
global variable.

The LLVM intermediate language supports many intrinsic functions which are provided by
the compiler. The purpose of intrinsic functions is to be easy extensible without changing
all transformations of LLVM. Examples for intrinsic functions are support for a few
functions in the libc library or often used memory instructions such as memcpy.

The LLVM IL is an intermediate step between the front-level language and the assembly
code. Major advantages are the availability of annotations, the source and platform
independence, and the clear separation of pointer addresses versus data.

4.3.2. Backend of LLVM

Several optimizations are made when the LLVM IR is transformed to an assembly. Some
optimizations are applied multiple times and in different stages of the transformation. After
some optimizations are performed on the LLVM IR, it is transformed to a Directed Acyclic
Graph (DAG). The DAG-representation is similar to the intermediate representation but
neglects all intermediate values. An example is shown in Figure 4.4 which shows the DAG
of the basic block entry of the function strlen. The graph consists of DAG nodes which
consist of an operation code, some input operands and optional flags. The edges of the
graph are represented by the input operands of each node.

When the DAG is created, it is still platform-independent which is called an illegal
DAG because it contains instructions which are not supported by the target platform.
Legalization is performed in multiple steps until the DAG only consists of instructions
and data types which are supported by the target platform. These steps are described in
the following in more detail.

1. At first, the initial DAG is generated by the SelectionDAGBuilder class. It takes
the LLVM IR as an input and produces an illegal DAG. The pass aims at lowering
the code towards the target and replaces some LLVM specific constructs such as
GetElementPtr-instructions with arithmetic operations.

70

dag-combine1 input for s tr len:entry

EntryToken

0x2f40100

ch

Register %vreg4

0x2f94410

i32

0 1

CopyFromReg [ORD=1]

0x2f94a70

i32 ch

Constant<0>

0x2f93ec0

i32

undef

0x2f93730

i32

0 1 2

load<LD1[%str](tbaa=<badref>)> [ORD=2]

0x2f6a550

i8 ch

Constant<0>

0x2f93c80

i8

seteq

0x2f94300

ch

0 1 2

setcc [ORD=3]

0x2f950f0

i1

Constant<0>

0x2f95200

i32

Register %vreg5

0x2f95970

i32

0 1 2

CopyToReg [ORD=3]

0x2f95ee0

ch

BasicBlock<while.end 0x2f6e060>

0x2f95530

ch

0 1 2

brcond [ORD=4]

0x2f93d90

ch

BasicBlock<while.body.preheader 0x2f6dea0>

0x2f699a0

ch

0 1

br [ORD=4]

0x2f8de50

ch

GraphRoot

Figure 4.4.: DAG example: basic block entry of function strlen

2. An often processed pass is the DAGCombine pass which aims to optimize the DAG.
In fact, this pass is processed after each transformation on the DAG. In each
iteration, it receives a representation of the DAG which is closer to the supported
operations. The pass aims at optimizing some inserted instructions which reduces
the complexity of the other passes. This includes inefficiencies as well as redundant
or unused code.

3. The next pass is used for type legalization. Each type which is unsupported by
the platform is replaced by supported types. While LLVM supports types with an
arbitrary (but constant) bit-length, a platform may only support 32-bit types. Hence,
smaller types must be “promoted” to 32-bit types. On the other hand, larger types
such as 64-bit types must be “expanded” into two variables of bit-length 32.

4. The vector legalization pass is similar to the type legalization as it aims to

71

convert unsupported vector types. To achieve this goal, the vectors can be split into
parts or extended to larger vectors by adding further elements. The target specific
implementation of the TargetLowering class defines which types are supported.

5. A further instruction legalization pass aims to remove instructions which are
unsupported by the target architecture. This can become quite complex because
some target architectures do not support every data-type for every instruction.
The problem is solved by either emulating the operation by other operations, by
changing the data type to a supported type or by a manually implemented platform-
specific legalization method. Again, the TargetLowering class defines which types
are supported. This reduces the amount of redundant code in LLVM for different
platforms because the lowering pass can be reused without modifications.

6. During a selection phase, the target-independent instructions are translated to
target-dependent instructions. The scheduler knows several constraints of the target
operations such as commutativity and exploits this knowledge. Target dependent
code can define own optimizations to the DAG. After this phase, the DAG consists
of target-dependent instructions.

7. The last phase schedules the machine code and emits the code using the target-
dependent instructions from the previous phase. The machine code is linearized and
registers are assigned to intermediate variables. Different strategies for the register
allocation are supported. For example, the scheduler can either be used to minimize
the register pressure or to minimize the latency of the performed instructions.

All of these phases had to be extended to enable redundant code execution. The DAG is
a graph where each node is unique which is implemented using a hash-table. The key to
identify a node is represented by the

• instruction code (for example, setcc),

• parameters (which are other nodes), and

• additional flags.

These flags were extended to avoid implicit folding of DAG nodes through the hash-table.
Although this works perfectly, it is necessary that these flags are not removed when an
instruction is replaced by another instruction. This required modifications in all above
steps to propagate the additional flags where necessary.

4.3.3. Annotations in LLVM

The challenge is to separate secure and unsecured zones in the high-level source code. The
secured zones should be protected against FIAs while others should remain unprotected.
Compiler-based solutions require annotations which are processed by the clang frontend
of the LLVM compiler. The different possibilities for C and C++ were elaborated in the
following.

72

In GCC [GCC14a] and clang [LLV14a], attributes can be provided using the follow-
ing syntax: attribute (attribute-list). Single attributes can be applied using the
attribute1 syntax. C++11 [ISO11] introduced generalized attributes with a standard-

ized syntax of the form [[attribute]]. All these attributes can be assigned to functions,
variables, labels, or types.

Function attributes [GCC14b] can be applied to the function declaration. Even if the
functions implementation is not available (for example, when the implementation is in
another module), the attributes can be annotated accordingly. GCC and clang define more
than 40 different function attributes which are supported on all targets. Primary attributes
for this work are inline, noinline, and noreturn. The inline-attribute instructs the
compiler to inline the given function. On the other hand, the noinline-attribute prohibits
the compiler to inline the given function. The noreturn-attributes gives the comiler the
hint that the function will not return if it is called. This allows some optimizations (no
return value, registers need not to be restored) and removes some compiler warnings. In
the following example, an attribute called snp is applied to the parameter of the function
free as well as to the function itself. The meaning of this attribute is discussed later.

1 extern void free(void * __attribute__ ((SNP)) p) __attribute__ ((SNP));

Listing 4.1: Annotation example in C with function attributes and parameter attributes

In the corresponding LLVM IR, function attributes are assigned directly to the Function

object. Parameter attributes are also annotated directly as a property of the Function.
The example code starts with a comment to increase readability. The parameter attributes
are defined inline, whereas the function attributes are referenced (#7) and later declared
at line 4.

1 ; Function Attrs: snp

2 declare void @free(i8* snp) #7

3 ...

4 attributes #7 = { snp ... }

Listing 4.2: Resulting LLVM IR using function attributes and parameter attributes

Variable attributes can be applied to a specific variable, whereas type attributes are
applied to the type of the variable. The following example shows a simple addition, where
the variable y shall be annotated with an arbitrary string.

1 __attribute__ ((annotate("complicated")))

2 int y = a + b;

Listing 4.3: Annotation example in C with variable attributes

Variable attributes have an inconvenient representation in the LLVM IL. The first disadvan-
tage of variable attributes is that auto-variables are allocated on the stack and referenced
using a pointer instead of direct access. The pointer is converted to 8-bit and is annotated
using an intrinsic function llvm.var.annotation which maps the target of the pointer to
the annotation string. The following example in Listing 4.4 shows the corresponding LLVM

IR to the C-Code of Listing 4.3. The whole code exists to annotate line 4 of Listing 4.4.

73

1 %y = alloca i32 , align 4

2 %2 = bitcast i32* %y to i8*

3 call void @llvm.var.annotation(i8* %2, i8* getelementptr inbounds ([12

xi8]* @.str3 , i32 0, i32 0), i8* getelementptr inbounds ([8 x i8]* @

.str2 , i32 0, i32 0), i32 89)

4 %3 = add i32 %a, %b

5 store i32 %3, i32* %y, align 4, !tbaa , !6

6 ...

7 @.str2 = private unnamed_addr constant [8 x i8] c"basic.c\00", section

"llvm.metadata"

8 @.str3 = private unnamed_addr constant [12 x i8] c"complicated \00",

section "llvm.metadata"

Listing 4.4: Resulting LLVM IR using variable attributes for the addition in line 4

Further, label annotations can give the compiler hints regarding the control-path and
which path is more probable to be performed. In the following, an example in C is given
but it seems that the LLVM IL does not support such annotations. Hence, annotations
of instructions which have a void result (for example, branches, or some function calls)
cannot be annotated. The semicolon after the attribute is placed on purpose, since it is
required according to the GCC documentation [GCC14c].

1 __attribute__ ((annotate("complicated")));

2 for(int i=0; i < 100; i++)

3 ...

Listing 4.5: Annotating a label in C

The lifetime of annotations is displayed at the top of Figure 4.2 on page 67. Annotations
are declared in the C/C++ language. They are processed and validated by clang and further
translated into Function attributes and intrinsic function calls (llvm.var.annotation).
The annotations are available during the LLVM IR but are removed when the DAG is
created. Hence, several information cannot be propagated to the backend of the compiler
in this way. In the LLVM IR, additionally metadata can be assigned to instructions.
Nevertheless, the metadata structure is removed when the DAG is created. The DAG
allows and propagates flags which are assigned to instructions based on the assigned
metadata. When the DAG is translated to machine nodes and the assembly is emitted by
llc, all annotations are lost.

One may have heard of directives such as const or volatile. In fact, these are not
annotations but keywords which are uniquely and manually handled in the whole clang-
frontend. In the LLVM IL and in the backend, they are represented by special properties
which are manually propagated. Hence, extending keywords requires deep modifications in
almost every frontend, every backend, and every intermediate pass. It is more suitable to
use annotations and metadata when extending the compiler using additional information.

Another well-known compiler directive is the pragma-directive. Although clang under-
stands pragma-directives, they are not propagated to the LLVM IL. All information of the
pragma-directive has to be translated to some other data structure to make it available in

74

the IL. Otherwise, the modifications have to be performed in the frontend, which reduces
the possibilities of the powerful IL. In both cases, the pragma-directive is inapplicable
when data integrity should be secured.

Analyzing all possibilities to extend the clang-frontend and the LLVM compiler lead to
the following conclusion. It seems most practical to use annotations in the programming
language (C/C++), metadata to assign additional information to each instruction, and
further flags to propagate information through the DAG.

4.4. Realization

The goal of this project was to apply software-based countermeasures against FIAs using
a compiler. We analyzed GCC and LLVM and selected the LLVM compiler because of its
flexible and extensible intermediate language. Furthermore, the LLVM core and extensions
to the frontend, backend and intermediate language are well documented. We chose C as
the programming language for our tests but the software is not restricted to C since the
clang-frontend of LLVM supports multiple programming languages.

This section documents the applied extensions to the compiler with the following subsec-
tions:

• The clang-frontend is extended to support new annotations within the C-code.

• An LLVM intermediate pass is written which applies all transformations to ensure
data integrity.

• The LLVM-backend is extended to translate some metadata to flags and prevent
certain optimizations. Further, the LLVM-backend propagates the flags to new nodes
when a node of the DAG is replaced.

4.4.1. Compiler Modifications to Support Annotations

clang is the frontend of the LLVM compiler-toolchain. It is responsible for parsing a high-
level-language such as C or C++ and emitting a common LLVM Intermediate Language (IL).
We extended clang and LLVM to support some additional annotations.

LLVM heavily depends on TableGen. TableGen is a tool used to automatically generate parts
of the source code of clang and LLVM using table-definition files (*.td). Hence, the first ac-
tion is to append the function attribute AutoIntegrity to the table-definition file Attr.td.
This is the first step to enable attributes of the form attribute ((AutoIntegrity)) in
C. The following definitions show the function attribute AutoIntegrity and the function
and parameter attribute SNP.

75

1 def AutoIntegrity : InheritableAttr {

2 let Spellings = [GNU <"AutoIntegrity">,

3 Keyword <"AutoIntegrity" >];

4 let Subjects = SubjectList <[Function]>;

5 let Documentation = [Undocumented];

6 let ASTNode = 1;

7 }

8 def SupportsNonceParam : InheritableAttr {

9 let Spellings = [GNU <"SNP">,

10 Keyword <"SNP" >];

11 let Subjects = SubjectList <[Function , ParmVar]>;

12 let Documentation = [Undocumented];

13 let Args = [VariadicUnsignedArgument <"Args" >];

14 let ASTNode = 1;

15 }

Listing 4.6: Extension to the table-definition file Attr.td

TableGen automatically generates most of the code required to parse these attributes.
In the following, we further explain processing on the example of the AutoIntegrity

attribute. TableGen uses the file table-defitionion file Attr.td to generate the source code
file Attrs.inc which contains the class AutoIntegrityAttr. Finally, a keyword has to
be added to TokenKinds.def.

The basic definition of the attributes in LLVM happens in the file Attributes.h, where
the entry AutoIntegrity has to be added to the enum AttrKind. This definition can be
globally accessed using llvm::Attribute::AutoIntegrity. Another important definition
is the entry kw integrity of the enum lltok::Kind in the file LLToken.h. The definition
of ATTR KIND INTEGRITY is added to LLVMBitCodes.h.

Based on these definitions, it is necessary to generate, validate and transform those types
in the following files:

• clang

– tools/clang/lib/Sema/SemaDeclAttr.cpp

– tools/clang/lib/CodeGen/CodeGenModule.cpp

– tools/clang/lib/CodeGen/CGCall.cpp

• LLVM

– lib/AsmParser/LLParser.cpp

– lib/AsmParser/LLLexer.cpp

– lib/Bitcode/Reader/BitcodeReader.cpp

– lib/Bitcode/Writer/BitcodeWriter.cpp

– lib/IR/Attributes.cpp

76

– lib/IR/Verifier.cpp

4.4.2. Compiler Modifications to Preserve Redundancy

Most transformations to ensure data integrity are performed on the intermediate repre-
sentation of LLVM. Unfortunately, LLVM performs massive optimizations implicitly and
explicitly in the backend during the transformation to the machine code. Implicit opti-
mizations are performed by the DAG generation because the key of each node consists of
the instruction code, its parameters, and some attributes. Hence, we annotated redun-
dant instructions in the intermediate code using metadata. However, these metadata are
dropped when the DAG is created. Therefore, a redundancy flag was created which is
part of the key of the DAG nodes to prevent implicit optimizations.

LLVM uses the DAG representation for many explicit optimizations. These optimizations
were modified to inherit the redundancy flag from a processed node to another node.
This included extensions of every constructor and adaption of each DAG node generation.
The flag is further processed and even available in MachineInstructions until they are
emitted.

4.4.3. Intermediate Pass to Ensure Data Integrity

The LLVM compiler is heavily based on the LLVM Intermediate Representation (IR). The
LLVM IR is a common code representation for various high-level languages and hardware
architectures. Because of this common representation, it is advantageous to provide
any extension to the LLVM compiler in an intermediate pass. Intermediate passes can
be activated and configured (using command line parameters) when the compiler tool-
chain is performed. Therefore, intermediate passes are more flexible than static compiler
modifications.

The goal of this work was to research compiler-based countermeasures against fault
injection attacks. We implemented four passes for different countermeasures to ensure
data integrity:

1. Simple duplication: All data is stored and processed redundantly as explained in
section 2.2.6.5 and in section 3.2.2. The pass is called integrity-simple.

2. Complementary redundancy: Instead of storing the same value twice, the binary
inverse and the original value are stored redundantly. Both values are processed
independently and compared to perform data integrity verification. This method is de-
scribed in section 2.2.6.6 and in section 3.2.3. The pass is called integrity-inverse.

3. Verification of Single Operations: Using this pass, no redundant data is gener-
ated but every single instruction is verified directly after it happens as described in
section 3.2.5.1. The pass is called integrity-testing.

77

4. Securing critical points: This countermeasure secures only critical points such
as conditional branches. To ensure data integrity of the comparison result, the
conditional branch spans a comparison tree as described in section 3.3.1. The pass
is called integrity-cmp.

In the intermediate representation, every intermediate value is represented in a single-
assignment form. It follows that every variable is assigned only once and cannot be
modified afterwards. Introducing redundancy, every intermediate value has corresponding
redundant intermediate values. All these values are tracked by a map of the following
structure. The original value is used as the key of the map. When the value is reused later
on, the redundant values can be looked up. The value of the map is a vector (it is possible
to have more than one redundant value N ≥ 2) where each entry of the vector consists of
several values:

• the method used for integrity,

• the original value,

• the redundant (or masked) value, and

• an optional mask.

This allows further extensions, for example, multiple masking schemes or mixing of
methods to achieve data integrity.

The general pass structure is displayed in Algorithm 4.1. In our implementation, the
general pass-structure and some commonly used functions are implemented in an abstract
class while most called methods are implemented in derived classes. Global variables are
duplicated, functions are rebuild to have additional parameters and every instruction is
separately visited. Duplication depends on the chosen method of redundancy and could
imply the inverse of the original value or a mask and a masked value.

Global Variables. The first challenge is to duplicate global variables (line 1 to line 5).
These are not necessarily global variables in the sense of a high-level language such as
C or C++. Constants and initial values of arrays and strings are also represented as
global variables. All global values used in a secure function (which has the AutoIntegrity
annotation) should be duplicated. This yields the following problem: Although the LLVM

IR is based on a single assignment form, it is possible to write multiple times to the same
pointer address. If a global variable is modified in a secure function, also the redundant
variables are modified accordingly. On the contrary, if a insecure function modifies the
original data it will not apply the corresponding changes to the redundant data. It
must be enforced that these global variables are only used by secure functions. In our
implementation, the compiler yields a warning if a global variable is used in secure and in
insecure functions.

78

Algorithm 4.1 Pseudo-code: simplified pass structure to ensure data integrity

1: for each globalvar in module do
2: if globalvar is only used in functions with the AutoIntegrity attribute then
3: DuplicateGlobals(globalvar)
4: end if
5: end for
6: replacementlist← {}
7: for each function in module do
8: if function has the AutoIntegrity attribute then
9: copy ←ExtendFunctionAttributes(function)

10: if copy was generated then
11: Delete the function body
12: Insert function and copy into replacementlist
13: end if
14: end if
15: end for
16: for each function, copy in replacementlist do
17: ReplaceAllUsesOfFunction(function, copy)
18: end for
19: for each function in module do
20: if function has the AutoIntegrity attribute then
21: for each basicblock in function do
22: for each instruction in basicblock do
23: if instruction is a BinaryOperator then
24: VisitBinary(instruction)
25: else if instruction is a . . . then
26: Visit. . . (instruction)
27: . . .
28: end if
29: if Should and can verify then
30: Verify(instruction)
31: end if
32: end for
33: end for
34: end if
35: end for
36: Repair instructions which were not handled correctly.
37: Repair PHI-nodes which were not handled correctly.
38: Verify variables which were not possible to verify directly.

Function Headers. Next, the function headers have to be extended to accept redundant
data as parameters and to return redundant data (line 6 to line 15). This seems to be
a simple task but is impossible to achieve directly. Instead, a new function has to be
generated and the content of the old function has to be merged with the new function.

79

Additional parameters are added consecutively as additional parameters. The original
return values together with their redundant counterpart are embedded into a struct.
Further, the content of the function has to be copied while the used original parameters
have to be replaced by the parameters of the new function. Finally, most of the function
attributes and parameter attributes are copied to the new function. However, some
attributes cannot be copied because they do not support a struct as a return type (for
example, the zext-Attribute). Merging can be performed by the CloneFunctionInto

method of LLVM. This method requires a map which translates the original parameters of
the new function to the original parameters of the old function.

Function Calls. At this point, all original functions coexist with their duplicated versions
because the function calls cannot be replaced in the same run as the functions are created.
Hence, the substitution is performed afterwards in an extra step (line 15 to line 18). Every
usage of a function is located and replaced by a call using redundant data. It is possible
that no redundant data exist because the data comes from an insecure function. Then,
the redundant data is generated out of the original values before the call. After the call,
the original and the redundant data is extracted from the returned struct and verified.

Instructions. When every function has redundant parameters and redundant return
values, the instructions of the function can be processed (line 19 to line 35). Each function
consists of one or several basic blocks. These basic blocks consist of several instructions,
where the last instruction must be a terminating instruction (for example, a branch, a
conditional branch, a return instruction, or an unreachable instruction). The handling of
all instructions strongly depends on the applied method to ensure data integrity. Hence,
abstract methods are called which are implemented by the derived classes to perform the
necessary modifications.

Repairing Postponed Tasks. In the last step, some instructions, which were not handled
correctly have to be “repaired”. These are instructions which depend on another value
which was not processed at the time the instruction is processed. Nevertheless, these
incomplete instructions are created with wrong parameters to enable further processing. In
this last step, these wrong parameters are replaced by their correct representation. At this
point, all dependent instructions must exist because every instruction has its redundant
instructions. Further, the processing of some phi -nodes may be postponed due to adverse
execution order of basic blocks. Sometimes it is infeasible to handle a verification because
some iterators would be destroyed. Hence, verifications can be postponed to this point
and the verifications are inserted subsequently in this final step.

The pseudo-code in Algorithm 4.1 shows the general pass structure. The implementation
depends on the chosen method to achieve data integrity. In the scope of this work, we
implemented the methods simple duplication, complementary redundancy, verification of
single operations, and securing critical points which are described in the following.

80

4.4.3.1. Simple Duplication Pass

Simple duplication aims at achieving data integrity by duplicating all intermediate values
and instructions where necessary. As mentioned in the previous section, each function is
adapted to accept additional parameters and return a struct of redundant parameters.
For each instruction, the intermediate pass aims at duplicating the current instruction
which accepts redundant data. If the redundant data is not available, it is possible to use
the original data twice.

Instructions. Most instructions can be duplicated by cloning the original instruction
and replacing its parameters by the redundant values. Redundancy metadata is appended
to each cloned instruction which is assigned an ascending integer number. This number
is parsed by the LLVM backend and converted to a flag which is part of the key in
the corresponding DAG node. Hence, implicit optimizations are prevented and explicit
optimizations can be deactivated for these nodes.

Conditional Branches. The most critical instructions are conditional branches because
the further processing depends on it and a fault can possibly remain undetected otherwise.
Hence, it is necessary to duplicate the conditional branches in a so-called comparison-tree
as shown in Figure 3.6 (page 59). The same applies to switch-instructions which allow
multiple conditional branches in one instruction.

PHI Nodes. The single-assignment-form of LLVM requires the use of so-called phi -nodes.
These are LLVM instructions which return a different value depending on the preceding
basic block. All phi nodes must be stated at the beginning of a basic block. Sometimes it is
necessary that a basic block is split, for example, when conditional branches are secured
or when the data integrity of an intermediate value is verified. Typically, the remaining
instructions are moved from the second half of the basic block into a new basic block. If
the basic block following to the original basic block contains phi nodes, it is necessary to
adapt these nodes.

While simple duplication is relatively easy to implement on the intermediate pass level, it
requires countless modifications to the LLVM backend as described in section 4.4.2. Our
implementation is capable of working with arbitrary redundancy levels, where more than
two redundant variables can preserve data integrity.

4.4.3.2. Complementary Redundancy Pass

Complementary redundancy is another method to preserve data integrity. Instead of
storing the same data multiple times, the boolean inverse of the original value is applied.
This allows different data to be stored and yet allows propagation of the redundant data
over arithmetic and logical operations. Arithmetic operations can be protected because of
the two’s complement. The theory behind these transformations is shown in section 3.2.3.

81

Generating Complementary Values. The first difference to simple duplication is that
the redundant values are not the same values and have to be calculated. The method
to calculate the boolean inverse depends on the processed value. A constant value can
represent a set of different types which are inverted differently:

1. A constant int of arbitrary bitlength can be inverted at compile time. The internal
APInt value is modified using an exclusive-or with an all-ones value.

2. A constant data array can represent a const char* in C. The array can contain
constant integer values of arbitrary bitlength which have to be inverted individually
and inserted in a new constant data array.

3. A constant array is similar, but can contain constant elements of arbitrary type (for
example, a constant data array).

4. Constant expressions are, for example, used to get the pointer of a constant value.
Hence, not-inverted pointers to inverted values have to be generated.

5. Global variables are also represented by constants and are initialized from a constant.

There are many further possible types which were not necessary to consider – probably
because of limited capabilities of the used front-level language or restricted test programs.

Variable values have to be inverted at runtime. However, the LLVM intermediate language
does not provide an instruction to invert data. It can be implemented by performing an
exclusive-or operation with an all-ones value.

Complementary Instructions. Most instructions on integer values are secured using
the explained transformations of Table 3.1 on page 46. Some operations, such as floating
point operations were not secured. Comparisons are performed redundantly by their
corresponding inverse transformation.

Shift instructions. Up until now, shift operations were not mentioned in the given
transformations. Three different types of shifts exist (verilog notation): shift left �, logical
shift right �, and arithmetic shift right ≫. These shift operations are defined as follows:

• Shift left a � b: shifts all bits by b to the left. The rightmost bits are filled with
zeros. It is not distinguished between logical and arithmetic left shifts as both are in
fact logical shifts.

• Logical shift right a� b: shifts all bits by b to the right. The leftmost bits are filled
with zeros.

• Arithmetic shift right a ≫ b: shifts all bits by b to the right. The leftmost bit
(mostly the MSB or the sign-bit) is copied to all missing positions of the new value.

82

The only shift, which works out of the box for complementary values is the arithmetic shift
right ≫. Both, the shift left � and the logical shift right � fill empty positions with
zeros. However, for the complementary variable, it is necessary to fill the empty positions
with ones. These bits have to be set after the shift operation by applying a mask using an
or operation (which one does not matter). In the following equations, xbit represents the
bitlength of the variable x. The number −1 is binary represented by a value consisting of
all ones (for example, −1 = (11111111)2 for an 8 bit variable).

x� y = (x� y) ∨ (−1� (xbit − y)) (4.1)

x� y = (x� y) ∨ (−1� (xbit − y)) (4.2)

Type Casts. Cast operations yield a similar problem for complementary redundancy.
Especially when zero-extend-instruction is used to enlarge the bitlength of a variable.
The optimal solution would be to perform a one-extend-instruction, which is, however,
not available. Our solution is to perform a zero-extend-instruction on the complementary
data x. Afterwards, a special mask is applied to set the missing first bits using an or
operation. In the following equation, the value dbit represents the difference between the
original bitlength and the new bitlength.

zext(x) = zext(x) ∨ (−1� dbit) (4.3)

Dependencies on Original Values. Most operations can be performed solely on original
data or solely on redundant data. However, some operations require the original data to
be processed, for example,

1. pointer offsets (indices of arrays),

2. number of bits to be shifted, and

3. number of bytes to be reserved for malloc.

Pointer calculations and shift operations are distinct operations in the LLVM IR.
Hence, the exceptional handling of those operations can be performed straightforward.
Other operations, such as system libraries (for example, malloc), LLVM intrinsics, and
user defined functions require a more flexible solution. An additional annotation (SNP =
supports nonsense parameter) was introduced to label such functions and their parameters.
Arbitrary functions can be either called once or duplicate times. The parameters of the
function can be annotated such that some of the parameters are passed redundantly and
some are not. One example of a function which should only be called once is printf

because duplicate output to the console improves neither usability nor security. A function
which should be called multiple times but with original parameters is malloc, as the only
parameter gives the number of bytes to be reserved. In contrast, the function free requires
two calls – once with the original parameter, and once with the redundant parameter – as
the memory should actually be released. A function, where both are mixed is realloc.
One parameter gives the redundant address of the previous allocated space, the other

83

parameter gives the new size of memory to be allocated. Nevertheless, realloc requires
to be called multiple times.

Summary. Summarizing complementary redundancy, it is more complicated to im-
plement than simple duplication as an LLVM intermediate pass. Although, it does not
depend on the modifications in the backend such as simple duplication because implicit
optimizations do not occur and explicit optimizations do not detect the redundant code.

4.4.3.3. Other Passes

The intermediate pass Verification of Single Operations was implemented which is
applied to binary operations only. Operations such as additions are verified by testing
the original calculation by subtraction. Unsurprisingly, this countermeasure is not a great
success because it does not preserve redundancy of stored data and does not protect
conditional branches. Nevertheless, the tests can be used to compare the number of
successful attacks for a given test.

Conditional branches are critical points because they are evaluated only once. A FIA
to a comparison flag of the processor can lead to a faulty decision of the conditional
branch. Hence, the branches should be duplicated in a comparison tree as shown in
Figure 3.6 on page 59 using the same data. This is done by the Securing Critical
Points Pass without using redundant data. This pass was originally a part of simple
duplication but was extracted because simple duplication can use redundant data for
multiple comparisons. Further, this pass can be used as a pre- or post-processing step to
increase the complexity of a successful fault injection attack. The countermeasure alone
not an useful countermeasure against FIAs because no redundant data is stored and data
integrity cannot be verified.

4.4.3.4. Verification and Fault Handling

The verification algorithm depends on the chosen method of redundancy. In case of
simple duplication, two or more redundant values are compared against each other. For
complementary redundancy, the redundant value is inverted and the result is compared to
the original value. The other passes implicitly detect faults by various comparisons.

When one of the verification steps fail, a conditional branch jumps to an fault handling
basic block. This basic block calls the function FaultDetectedHandler() which has to
be implemented by the programmer in C/C++. The handler should perform data- and
platform-specific operations. An example for a data-specific operation is to overwrite
secret data with random information. Platform-specific operations could force a reset of
the chip or destroy it permanently if feasible and affordable.

For testing, we used a software-based implementation of the Cortex-M0+ which is written
in C#. The simulator was extended to “destroy” the device when data is written to a

84

specific address over the bus. For detailed evaluation, we additionally wrote a status code
to a specific address to allow further analysis of the applied countermeasures. The status
code unveils if the attack was successful, if it was detected, or if the attack failed.

4.4.4. Pitfalls

This section discusses some of the pitfalls which occurred during the implementation.

Order of Instructions in the LLVM IR. The order of instructions is not necessarily
chronological despite of the single assignment form of the LLVM intermediate language.
Hence, some instructions (especially phi -nodes) cannot be processed at the time of visiting
the instruction. There are two possibilities: either to propagate all changes to all future
usages or to store a list with instructions which were not processed successfully. This can
happen if an instruction uses an intermediate value which is defined at a later point. In
this scenario, the latter is the best solution because it follows a non-recursive approach
which is simpler and more efficient. It terminates successfully after one repair cycle because
every instruction is duplicated at the time of repairing.

Loading Redundant Constants for Complementary Redundancy. Redundant con-
stants pose a problem in the LLVM backend. Most optimizations were removed but
constants can be loaded in various ways. They can either be produced by a native in-
struction of the given architecture, loaded or calculated using immediate values, or loaded
from a predefined memory address. Especially calculated immediate values circumvent the
complementary duplication countermeasure because a negative constant (−17) is likely to
be generated by inverting (16). It follows that both, the original value and the redundant
value, are derived from the same value (16). As a solution, we modified the DAG to DAG
instruction selection of the ARM backend to prevent this calculation for the inverse. The
values are instead loaded directly from the binary using a predefined address.

Loading Redundant Constants for Simple Duplication. Unfortunately simple du-
plication is even more complicated in terms of constants. All constants c in a certain
range 7 < c < 256 are loaded only once using a MOV instruction. Larger values (c ≥ 256)
are no problem because they are loaded from the binary. Smaller values (c ≤ 7) are never
loaded because they can be used immediately by most instructions. Hence, a redundancy
flag was added in the DAG representation but this is not sufficient. The estimation is that
the whole LLVM backend has to be rewritten to close this minor leak against FIAs. This
only affects simple duplication and not any other method because only simple duplication
uses exactly the same values for redundancy.

85

Vanishing Metadata. Metadata is used to generate additional flags in the LLVM backend
for nodes which must not be folded. If, for example, two compare instructions have the
same parameters, they will end up in the same node in the DAG. This is an implicit
optimization which cannot be deactivated. Hence, additional flags were introduced which
are part of the key in the DAG and are derived from metadata. Therefore, metadata must
be preserved until the DAG generation. Several optimization passes are performed after
the implemented intermediate pass. Some of these passes replace instructions but do not
inherit the attached metadata. One possible solution is to remove all optimization steps
which are evitable for an embedded device. Some of these passes can be disabled without
major disadvantages while others must remain activated and require further adaption.
However, it is not possible to run an intermediate pass after those passes without major
modifications.

Inheriting the Redundancy Flags. In order to preserve redundancy, we modified ap-
proximately 2000 lines of code (in total) in several files where each file contain up to
9000 lines. This worked well in most cases but some redundancy values still vanished for
some reason – a single mistake in one of the thousands of lines or a missing modification
could be the cause. Hence, a simpler solution was focused: when a node is optimized the
redundancy value of the old node is stored statically. Every time, when a node is created
and a constructing method is used which does not allow a redundancy value, the statically
assigned value is used instead. This solution would have been simpler if it were focused
from the start because some of the implemented LLVM code may be unnecessary.

Loop Strength Reduction Pass. Loop strength reduction is a pass in the backend of
LLVM which aims at optimizing the loop induction variable and other related variables.
While the intermediate code performs verification checks on the used variables in a basic
block, the resulting assembly may invalidate these checks. Many loops which depend on a
counter variable are initialized at the start of the loop. In the LLVM-IR the initialization
is implemented in so-called PHI-nodes which select a value depending on the previously
executed basic block. The Cortex-M0+ does not support such operations, therefore, the
basic block has to be separated. In the case of for-loops, the initial value is typically a
constant. This constant is further folded with any operation (in this case: exclusive-or)
which depends on another constant (0xFFFF). The intermediate code for verification looks
like cmp(A, xor(A,−1)) where A = 0 and A = −1. The pass aims to optimize the code
and replaces the comparison by cmp(A,A). The exclusive-or operation in the intermediate
code is removed as so-called “dead code” because it is never used. Nevertheless, the
comparison instruction (cmp) and the following conditional branch (bne = branch not
equal) are not removed although they are pointless. In order to solve this problem, one can
either modify the loop strength reduction pass or deactivate it completely. We removed the
pass completely by adding the argument -disable-lsr to llc. This lead to no additional
overhead and even resulted in better results for some test programs. Additionally the
number of successful attacks was decreased enormously.

86

Common Subexpression Elimination Pass. Common subexpression elimination is an-
other pass in the backend of LLVM which aims at removing redundant computations. It was
deactivated using the -disable-machine-cse option of llc. The pass detects instruc-
tions which perform the same operation on the same values. Unfortunately, the attached
redundancy flags are already removed from the instructions when this pass is performed.
This was especially problematic for GetElementPtr instructions on multi-dimensional
arrays. The same problem occurs when the size of the elements in the array is not exactly
one byte. In these cases, it is necessary to compute the address using an addition and a
multiplication or a shift operation. The following intermediate code shows an example
for two two-dimensional arrays (@ver.orig and @ver.red) which are accessed at given
indices (%i.orig and %i.red).

1 %a1 = getelementptr inbounds [6 x [5 x i8]]* @ver.orig , i32 0, i32 %i.

orig , i32 0

2 %a2 = getelementptr inbounds [6 x [5 x i8]]* @ver.red , i32 0, i32 %i.

red , i32 0, ...

Listing 4.7: Intermediate code to calculate the address of a pointer in a two-dimensional array

Using the Common Subexpression Elimination pass, the compiler folds the constant value
#5 for both multiplications as follows. The register R0 is only set once to #5 which is
used in two multiplications (line 2 and line 5). Attacking the register before the first
multiplication leads to a wrong offset which may contain a correct combination of original
and redundant data. The goal was to calculate two absolute addresses (line 4 and line 7)
which have a base pointer loaded into R1 (line 3 and line 6).

1 14a: 2005 movs r0 , #5

2 14c: 4370 muls r3 , r0 , r6

3 14e: 4929 ldr r1 , [pc , #164] ; (1f4 <secure_main2 +0xd4 >)

4 150: 180a adds r2 , r1 , r3

5 154: 4360 muls r0 , r4

6 156: 4928 ldr r1 , [pc , #160] ; (1f8 <secure_main2 +0xd8 >)

7 158: 180b adds r3 , r1 , r0

Listing 4.8: Folded redundant loading of two pointers

The following code shows the resulting assembly if the pass is deactivated. The register
R0 is initialized two times (line 1 and line 5) and a single attack can be detected.

1 14a: 2005 movs r0 , #5

2 14c: 4370 muls r0 , r6

3 14e: 4929 ldr r1 , [pc , #164] ; (1f4 <secure_main2 +0xd4 >)

4 150: 180a adds r2 , r1 , r0

5 152: 2005 movs r0 , #5

6 154: 4360 muls r0 , r4

7 156: 4928 ldr r1 , [pc , #160] ; (1f8 <secure_main2 +0xd8 >)

8 158: 180b adds r3 , r1 , r0

Listing 4.9: Correct redundant loading of two pointers can be achived by deactivating Common
Subexpression Elimination

87

4.4.5. Software Base Versions

For reproducibility of this work, the base versions of clang and LLVM are given. This work
is based on version 3.5.0 of clang:

• Git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@204807
91177308-0d34-0410-b5e6-96231b3b80d8

• Commit 0180d7c145e3f0317f68f3b137c73f3a78d2dd17

• Date 2014-03-26 14:09:48 +0000

The LLVM version is 3.5.0:

• Git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204802
91177308-0d34-0410-b5e6-96231b3b80d8

• Commit c4b058f9e7145765783fb741ea280acc4fea1f94

• Date 2014-03-26 12:52:28 +0000

Further, we used GNU Tools for ARM Embedded Processors 2.23.2.20131129 for as-
sembling, linking, and debugging output (arm-none-eabi-*).

4.4.6. Summary

We implemented several methods to ensure data integrity against FIAs. Implementing the
main part of the transformation on the LLVM intermediate code yields several advantages.
The pass is capable of using annotations of the frontend and are platform and language
independent. Furthermore, the LLVM intermediate language is closer to the backend than
front-level code. Hence, some of the optimizations can be performed before the integrity
pass is applied and optimizations does not have to be removed completely. In contrast to
an implementation in the backend, we are able to distinguish between pointer operations
and know some high level information which is not available later on.

Two new annotations were added to the clang frontend:

• the function attribute AutoIntegrity to annotate secure functions and

• the parameter attribute SNP to annotate parameters of insecure function which can
be given redundantly. If this parameter is used as a function attribute or at least
one parameter attribute, it is called multiple times.

The LLVM backend was extended by an additional flag which is generated out of metadata
to prevent redundant instructions from being removed. Several intermediate passes were
developed which perform either the simple duplication, the complementary redundancy,
or the verification of single operations countermeasure. Branches are critical points and
have to be protected particularly. This is done implicitly by the first two passes or can
be done explicitly by the pass securing critical points. To propagate the redundant data,

88

all annotated functions were extended to receive redundant parameters and to return a
struct of redundant data.

Simple duplication and complementary redundancy are two countermeasures which are
comparable in terms of effort. The former is easier to implement in the intermediate
pass but requires the whole set of modifications to the LLVM backend. The ladder takes
more effort on the intermediate pass but most modifications to the LLVM backend are
in exchange unnecessary. Adding the increased security of complementary redundancy
(different data is processed by different instructions), it is probably the better choice when
comparing the two security measures.

89

5. Results

The LLVM compiler toolchain was extended to apply countermeasures against FIAs to
achieve data integrity. The applied transformations were evaluated using a simulator which
was extended to simulate faults. Thereby, it was possible to measure the effectiveness
of the implemented countermeasures in terms of detection rate, code size, memory, and
runtime. The following sections describe the performed fault injection attacks to locate
successful single-fault locations.

5.1. Analysis using the Cortex M0+ Simulator

A simulator for the Cortex M0+ microprocessor was used which was extended to apply
fault injection attacks to various positions during execution. The result of each execution
is monitored and classified into five different states:

• Terminated as expected: No attack was performed or the attack had no effect
on the expected outcome of the program.

• Attack detected: The attack was performed and detected.

• Attack successful: The attack was performed, had an effect on the expected
outcome of the program, but was not detected.

• Did not terminate: The attack was performed, not detected, and the program
did not terminate.

• CPU Exception: The simulator had a problem during execution (for example,
invalid instruction, invalid address, or wrong address alignment).

The detection rate is determined by applying a series of attacks to the protected imple-
mentation. Since not the whole code is protected, attacks are not expected to be detected
in insecure parts of the program. An attack range is defined with respect to the number of
cycles where the attack can be performed. Additionally, the PC is restricted to a specific
range which includes all secured functions. The runtime of the test programs is measured
and (with a small buffer) defined as the maximum number of cycles to be performed
before a timeout appears. Bit-flip attacks were performed to a specific position with a
predefined bitmask. Every single of the following locations is attacked for every cycle in
the given range:

• Condition flags (carry, negative, overflow, zero) in the PSR

91

• Instruction side memory interface (Imem, Program Code)

• Data side memory interface (Dmem, RAM)

• Registers (0-7) with bitmask 0x1

• Registers (0-7) with bitmask 0x8

Every test program is compiled with and without applied countermeasures. Hence, the
overhead in terms of code size (section 5.3.1), memory consumption (section 5.3.3), and
runtime (section 5.3.2) was analyzed as well.

5.2. Test Programs

Each test program is designed to cope with at least one specific topic. However, it is
inevitable that a test program tests more than one feature.

1. The first test program aims to verify two string operations: strcmp and strlen (see
Listing B.2 on page 119). Multiple comparisons are performed where the outcome
is predefined. When the outcome of any comparison differs, the attack is classified
as successful. The test program can be found in Listing B.3 on page 120. This test
program tests simple and two-dimensional arrays, loops, load and store operations,
and conditional branches.

2. The next program tests the recursively defined iprint function which converts an
int to a string (char*). The function can be found in Listing B.4 on page 120.
The numbers {−23,−5, 0, 7, 17, 32} are converted and later on compared to their
corresponding and predefined string representation using strcmp. If any comparison
fails, the outcome is interpreted as a successful attack. The test program can
be found in Listing B.5 on page 121. This test program tests binary operations
as incrementation, division, multiplication, loops, conditional branches, and two-
dimensional arrays.

3. The third test analyzes binary operations such as {+,−, ·,⊕,∨,∧,�,�} and
all comparisons >,≥, <,≤,=, 6=. Implicitly, it also tests loops as multiple values
are tested for these operations. It can be tested for signed and for unsigned data
types. However, a successful attack cannot be detected: The purpose of this test is
to prove that all transformations are valid such that no fault is detected when no
attack is performed. Further, the test shows that many faults can be detected when
an attack is performed.

4. Another test is using three recursive functions which call each other and perform
arbitrary arithmetic operations (see Listing B.6 on page 121). This should verify
that the implementation has no dead-lock which could happen in a recursive im-
plementation of the intermediate pass. The function f1(10,100) is called and the
result is predefined (2061052417) and verified at the end of the program. This test

92

program tests additions, moduli, multiplications, conditional branches, recursive
functions and divisions.

5. The PIN-check performs a realistic scenario which was already described in List-
ing 2.1 on page 26. A PIN can be entered three times. User input is simulated
by a special function which tries to enter ten different PINs. The attacker guesses
correct PIN at the fourth try and for guess two and three, the first two numbers
are correct. A successful attack happened, if the program is able to bypass the
PIN verification. This test program tests two-dimensional arrays, load and store
operations, conditional branches, incrementation, and loops.

6. An AES implementation is used as another realistic example. While cryptographic
implementations should be protected by a dedicated chip, we wanted to secure
such an algorithm anyway as a proof-of-concept. The program encrypts a plaintext,
decrypts it and compares the result to the original value. An attack is classified as
successful if the comparison at the end fails or if any of the cryptographic methods
return an error status. The AES implementation is optimized for embedded systems
and is based on a fast AES implementation rijndael-alg-fst.c by Rijmen et al.
[RBP00]. This program mainly tests boolean operations and arrays.

7. The latest test examines dynamic memory allocation by malloc and free. It
implicitly verifies loops and string operations like strcpy and strcmp. Malloc is
implemented in the GNU Tools for ARM Embedded Processors (version 4.8, Q4 2013).
However, we annotated the parameters such that malloc and free are called multiple
times for redundant data. We only had to implement the sbrk(int) function which
tracks the location of the heap and is shown in Listing B.7 on page 121. An attack
is successful if the outcome of the comparison is not as predicted.

5.3. Performance Analysis

We analyzed the four implemented passes (simple duplication, complementary redundancy,
securing branches, and result testing) and compared their implementation against their
corresponding unprotected version. The analysis was done for seven different test programs
which were described in section 5.2. We measured the binary size in bytes, the execution
time in cycles and the maximum memory consumption (stack) in bytes.

5.3.1. Code Size Analysis

The size of the program memory is especially important on embedded devices. The total
size was measured using arm-none-eabi-size. The result of this analysis is given in
Table 5.1. It can be seen that the relative overhead in code size strongly depends on
the test program. While qualitative costs can be defined for specific instructions for a
countermeasure, the code size benchmark strongly depends on the structure of the test
program.

93

Table 5.1.: Comparison of program memory size in bytes of different test programs under different
data integrity methods

Test program Original Simple Complementary Securing Result
duplication redundancy branches testing

Strings 1692 2772 3240 1844 1716
Iprint 988 1604 1620 1128 1044
Binary 900 1492 1584 932 1100
Three functions 952 1316 1360 1068 1028
PIN-check 1044 1508 1760 1172 1088
AES 15420 36852 42440 16352 17412
Malloc 5028 5484 5720 5140 5060

Strings 163 % 191 % 108 % 101 %
Iprint 162 % 163 % 114 % 105 %
Binary 165 % 176 % 103 % 122 %
Three functions 138 % 142 % 112 % 107 %
PIN-check 144 % 168 % 112 % 104 %
AES 238 % 275 % 106 % 112 %
Malloc 109 % 113 % 102 % 100 %

Qualitative Code Size Overhead by Verifications. Verifications for simple duplication
and complementary redundancy are very expensive in terms of code size. A verification
using complementary redundancy requires at least three instructions (logical inverting,
comparing the redundant values, and one conditional branch). For simple redundancy, the
inversion is not necessary and requires only two additional instructions. Verification is an
overhead which can occur more than once for a single variable. In our setting, verifications
are performed before and after a function, upon load and store instructions, and when an
index is used to access an array.

Qualitative Code Size Overhead of Instructions. Binary operations have an overhead
of 100 % for simple redundancy while the overhead for complementary redundancy varies
between 100 % (and , or) and 400 % (multiplication, division, modulus). Secured com-
parisons require at least two (!) additional comparisons, two (!) additional branches,
and one call to a fault handler which makes five additional instructions. Two additional
comparisons and branches are necessary because for any outcome of the original branch,
an according verification branch has to be inserted. Hence, comparisons and conditional
branches have the same qualitative overhead of 100 % for both mechanisms.

Benchmark. While the qualitative overhead is relatively high for simple duplication and
complementary redundancy, it can be seen in Table 5.1 that the relative overhead strongly
depends on the type of the test program. For realistic scenarios, the overhead can be

94

Table 5.2.: Comparison of execution time in cycles of different test programs under different data
integrity methods

Test program Original Simple Complementary Securing Result
duplication redundancy branches testing

Strings 6269 16996 18175 8294 6798
Iprint 2105 3669 3766 2353 2208
Binary 4212 8240 8811 4267 6070
Three functions 2686 4481 5484 3147 3045
PIN-check 4173 4927 5278 4374 4283
AES 14607 41031 54459 16108 19290
Malloc 148699 378395 398854 166175 161303

Strings 271 % 289 % 132 % 108 %
Iprint 174 % 178 % 111 % 104 %
Binary 195 % 209 % 101 % 144 %
Three functions 166 % 204 % 117 % 113 %
PIN-check 118 % 126 % 104 % 102 %
AES 280 % 372 % 110 % 132 %
Malloc 254 % 268 % 111 % 108 %

quite small because not the whole code has to be secured. Take the test programs strings,
iprint, malloc, or PIN-check as an example where the overhead is between 9 % and 91 %.
Some examples such as AES are not suitable for these countermeasures because it is
computationally very complex and nearly every instruction has to be secured and many
intermediate variables have to be verified. The algorithm consists of many function calls,
array operations, and conditional branches which leads to a massive overhead created
by the data integrity checks. All in all, the overhead depends on the amount of secured
code in the test program and how many verification steps are required to detect a fault
injection attack.

5.3.2. Execution Time Analysis

The execution time of the program was measured in a single simulation of the test program
without attacking it. Measuring the simulation time in milliseconds is not a good measure
for execution time since it may vary for different hardware on the simulation host system.
A better approach is to monitor the simulated cycles which are recorded by the simulator.
Table 5.2 compares the different runtime for different test programs and different data
integrity methods. The measured time represents the number of cycles from the start of
the test program until it halts.

95

Qualitative Execution Time Overhead. In this measurement setup, no attacks are
performed. Therefore, the fault handling is never called and does not affect the runtime as
much as in terms of code size. Each secured branch follows one of the possible outcomes of
the original branch, therefore, only two of three comparisons are executed (two additional
operations: one comparison and one conditional branch). The overhead of redundant
operations is similar to the code size because every instruction is executed.

Benchmark. The overhead of the test programs is mostly around 100 % or lower. Excep-
tions are the test programs strings, malloc, and AES. These tests heavily depend on array
operations where most instructions are critical points and have to be secured. Consequently,
the computational overhead is very high for these test programs using simple duplication
or complementary redundancy. Another outlier is the countermeasure where branches are
secured : the testprogram string heavily depends on comparison instructions and has a
significantly higher overhead than the other test programs. Finally, the test programs
binary and AES perform many binary operations which results in a high overhead for
the result testing countermeasure. It can be followed that most overhead is devoted to
verification.

5.3.3. Memory Consumption Analysis

Memory consumption is a critical characteristic for embedded systems because the volatile
memory is typically very limited. This mostly origins from economic considerations as well
as from space requirements. For the analysis shown in Table 5.3, the measured memory
consumption represents the maximum size of the stack.

Qualitative Overhead. It can be expected that the memory consumption increases up
to 100 % for both, simple duplication and complementary redundancy. This is not the case
because not every variable is secured. Some variables are not used in secured functions
and others are not redundantly stored (for example, the stack pointer, or the link register).
Hence, the memory consumption should increase less than 100 %.

Benchmark. Most test programs require less overhead than assumed because not every
variable is secured. The only exception is the three functions test program which contains
recursion and, hence, uses the stack for the function calls. Registers which are overwritten
by the function are stored on the stack directly after a function is called. If more temporary
registers are required, more registers have to be stored. The other two countermeasures
(result testing and securing branches) should not require any additional stack. Nevertheless,
some optimizations may not be possible through the inserted validations which increases
the stack upon function calls. On the other hand, several optimization passes were
deactivated to which lead to a reduced stack size. The optimizations would trade stack
size in for a better execution time performance.

96

Table 5.3.: Comparison of memory consumption in bytes (maximum stack size) of different test
programs under different data integrity methods

Test program Original Simple Complementary Securing Result
duplication redundancy branches testing

Strings 288 560 560 296 288
Iprint 80 120 120 80 80
Binary 56 80 84 48 56
Three functions 936 2152 2152 936 936
PIN-check 56 96 88 64 64
AES 736 1448 1448 752 736
Malloc 120 128 136 112 112

Strings 194 % 194 % 102 % 100 %
Iprint 150 % 150 % 100 % 100 %
Binary 142 % 150 % 85 % 100 %
Three functions 229 % 229 % 100 % 100 %
PIN-check 171 % 157 % 114 % 114 %
AES 196 % 196 % 102 % 100 %
Malloc 106 % 113 % 93 % 93 %

5.4. Attacks Detection Rates

Seven test programs were compiled using four different countermeasures against FIAs.
Each program was attacked using single fault injection attacks and the attacks were
classified into five different states. Hence, the result of the analysis is four-dimensional
and cannot be fully displayed in this work:

• 6 test programs (section 5.2)

• 4 countermeasures (section 4.4.3)

• 5 resulting states (section 5.1)

• 24 different attacks (section 5.1)

To give insight in the whole data, several views are extracted in this section. In the
following, additional information regarding the performed tests is given and the results
are discussed.

Aligned addresses. Aligned addresses are used for data types which consist of multiple
bytes. These addresses must be a multiple of the data size. Consequently, a four-byte
variable has to be stored on an address whose two least significant bits have to be zero.
Registers are used to compute relative addresses, for example, during an indexed access
to an array. When these addresses are not aligned in the memory, the simulator throws

97

an exception and refuses to continue the simulation. Half of the register attacks flip the
LSB (0x1) of the registers. Hence the address becomes an odd number which is clearly
not aligned for larger data types. To generate valid memory addresses, another attack
simulation was performed which attacks the fourth significant bit (bitmask 0x8). The
results show that less CPU exceptions are raised and the faults are detected.

DMEM attacks. DMEM operations actively communicate with the RAM and affect
loading and storing registers (pop and push). For these attacks, the data being loaded
or written is attacked and not the address. Attacks to the address are simulated by
attacking the register which is used to calculate the corresponding address. Push and pop

operations can affect multiple registers at once (for example, POP {R4,R5,R7,PC}). Our
attack simulator is not aware of that and attacks every single register including the PC.
However, these are multiple attacks in reality and is out of scope of our attack model.
Further, the simulator could raise an UndefinedInstruction exception because the PC
is affected and points to an invalid address. Another possibility is that the PC points to
an address which is not set and in the simulator by default initialized with zero. Then the
instruction would be interpreted as a No Operation (NOP) instruction which is repeated
endlessly. Even if an attacker manages to successfully modify the PC, it is not in the
scope of this work which are countermeasures against data integrity. Instead it affects the
control-flow integrity.

Optimization level. The lower the optimization level, the less optimizations are per-
formed. In the analyzed tests, the optimization level was set to -O2. We experimented
with other optimization levels and concluded that -O1 gives no significant difference in
the amount of removed redundancy. The optimization level -O0 performs no unnecessary
explicit optimization. This leads to an enormous overhead of additional 100 % in clock
cycles and 300 % in stack size compared to the optimization level -O2. Hence, this is not
a practical solution for an embedded device.

Addressing Multidimensional Arrays. An attack which can still be performed success-
fully for inverse redundancy are multidimensional arrays with a constant predefined
size:

1 char strings [][5] = {"abcd","efgh" ,...};

2 ...

3 char *s = strings[i]

Listing 5.1: Accessing a two-dimensional array in C

The according intermediate code of the above example may look like the following code.
Line 1 defines a two-dimensional array containing six strings of constant size five. The
first two strings are \abcd" and \efgh". Line 3 calculates the address of the string at
position %i.010.

98

1 @strings = global [6 x [5 x i8]] [[5 x i8] c"abcd \00", [5 x i8] c"efgh

\00" ,...], align 1

2 ...

3 %s = getelementptr inbounds [6 x [5 x i8]]* @strings , i32 0, i32 %i

.010, i32 0

Listing 5.2: Accessing a two-dimensional array in LLVM intermediate code

When such an array is accessed, the address offset of each entry in the array is calculated
using a multiplication. Unfortunately, both arrays, the original and the redundant array
have the same offset for any given value. Hence, the offset is only calculated once (line 1)
for both values and an error is not detected if the index is attacked. Since the multiplication
is not accessible in the LLVM intermediate code, it is not possible to force a verification.

1 14a: 2005 movs r0 , #5

2 14c: 4601 mov r1 , r0

3 14e: 4371 muls r1 , r6

4 150: 4a22 ldr r2 , [pc , #136] ; (1dc <secure_main2 +0xbc >)

5 152: 1852 adds r2 , r2 , r1

6 154: 4360 muls r0 , r4

7 156: 4922 ldr r1 , [pc , #136] ; (1e0 <secure_main2 +0xc0 >)

8 158: 180b adds r3 , r1 , r0

Listing 5.3: Accessing a two-dimensional array in assembler code

In the first two lines, the registers R0 and R1 are initialized with 5. Line 3 and line 6
multiply the value with a redundant index which should be accessed. The base pointer of
the original and the redundant array is loaded in line 4 and line 7. At last, the base pointer
is added to the result of the multiplication in line 5 respectively line 8. All computations
are performed redundantly but the constant value 5 is only initialized once. If register R0
is attacked in line 1, the fault cannot be detected. The effect is further described in the
next paragraph.

Simple Register Coalescing. Simple Register Coalescing is a pass performed on virtual
registers in the backend of LLVM. This pass is problematic for simple duplication when
two redundant values are initialized with the same value. The following example shows
the code before and after transformation:

1 208B %vreg16 <def >, %CPSR <def ,dead > = tMOVi8 0, ...

2 ...

3 272B %vreg18 <def > = COPY %vreg16; ...

4 288B %vreg19 <def > = COPY %vreg16; ...

Listing 5.4: Before Simple Register Coalescing

1 208B %vreg18 <def >, %CPSR <def ,dead > = tMOVi8 0, ...

2 ...

3 288B %vreg19 <def > = COPY %vreg18; ...

Listing 5.5: After Simple Register Coalescing

99

It can be seen that the pass performs an optimization by moving the value directly to
one virtual target register. The other one, however, is now copied from the first value.
This behavior is undesirable because if the first value is attacked, the redundant values
are attacked the same way and the attack cannot be detected. Nevertheless, this is an
implementation flaw of this LLVM pass: A better implementation would detect that the
virtual register was initialized by a constant value and would produce two independent
move operations. This results in no overhead if the move operation can be performed in
one cycle by an immediate value.

1 272B %vreg18 <def >, %CPSR <def ,dead > = tMOVi8 0, ...

2 288B %vreg19 <def >, %CPSR <def ,dead > = tMOVi8 0, ...

Listing 5.6: Correct result which should be performed instead

This pass raises no problem for other countermeasures which do not produce the same
values as redundant data (for example, complementary redundancy or masking schemes).

Attacks to the Program Counter (PC). Using bit-flip attacks (0x8) to various registers
can lead to an attack affecting the PC. The attacked registers could be used to calculate
the address of a value where some data should be stored. Take the iprint test program
as an example where a number is transformed to a string. The resulting string must be
zero-terminated which means that after the last character of the number a \0 is written.
If the last hexadecimal digit of the address is larger than 0x8, a bit-flip using the bitmask
0x8 is equal to a subtraction by 8. It is possible that the attacked position on the stack
is used to store the return address (link register) to return to the calling function. The
return address consists of 32 bits whereas the iprint test program writes 8 bits per store
instruction. Hence, the PC can be partly modified depending on the processed data
by the iprint function. This attack cannot be prevented but can be detected by other
countermeasures which preserve control-flow integrity. Such attacks can lead to a jump
to an address beyond the program where the simulator reads all binary zero values as a
default value. Hence, the program would not terminate since the instruction code 0x0000

stands for MOVS R0, R0 which is one method to implement a NOP-instruction.

Attacks to the Stack Pointer. An attacked stack pointer has no immediate effect.
Hence, the attack surface (in terms of timing constraints) is very large. The effect occurs
when data is read from the stack (for example, stack variables, or pop operations) or
written to it. A function may store some registers and the link register to the stack at the
start of the function. At the end of the function, the registers are restored and the saved
link register is directly loaded to the PC. If the stack pointer was modified during the
function, an incorrect PC is loaded which affects the program flow. The value being set is
probably another register value which could be a value or a pointer. If the pointer contains
an address which is on the heap, it is likely that the processor aims at interpreting the
data as instructions. As the heap ends, the rest is initialized as 0 by the simulator which
is interpreted as a no-operation instruction. Hence, the processor ends up performing
no-operation instructions and is terminated by the predefined timeout. In our tests, the

100

Table 5.4.: Number of successful attacks attacking the stack pointer. Numbers in brackets represent the
not terminated executions.

Fault location Strings Iprint Binary 3F PIN AES

Normal Execution 1915 24 (368) 0 0 0 673 (7)
Simple Duplication 0 (13068) 0 (441) 0 (767) 0 (1925) 0 26
Complementary Red. 0 0 (2) 0 (465) 0 (2012) 0 27

stack pointer was attacked using a single bit-flip attack using the bitmask 0x8. This leads
to a stack pointer which is SP attacked = SPoriginal ± 8. Table 5.4 shows that attacks to
the stack pointer enable successful fault injection attacks for the unprotected program.
The protected programs have a strongly reduced number of successful attacks as more
attacks are detected. It can be seen that more tests do not terminate due to the described
effects.

Attacks to Registers Which Contain the Stack Pointer. Sometimes the compiler
chooses to make a copy of the stack pointer for further relative address calculations. The
relative address can be used for multiple load or store instructions and hence overwrite
redundant data with valid entries. In certain cases, it is not possible to detect such attacks
as described later.

The following six tables show the results of the performed tests. For the three tables
5.5,5.7, and 5.9, the successful attacks are displayed for each test program and for each
attack location. An optional number in brackets shows the number of attacks where
the program did not terminate. The other three tables 5.6,5.8, and 5.10 summarize the
analysis results over all performed attacks and show the results for different test programs
and the classified simulation results.

Attacking Without Countermeasures. It can be followed from Table 5.5 that many
fault injection attacks are successful for unprotected programs. For example, if an adversary
attacks register R2 at a random point of time, the attack is successful in 2289 of 6223
cases (36.8 %). Table 5.6 shows the sums over all different attacks. While not a single
attack is detected (there are no countermeasures) up to 14 % of the attacks are successful.
In sum of all tests, 829896 instructions were attacked where 64698 were successful (7.8 %).
The test using three functions does not terminate upon an attack with a probability of
8.3 %. As discussed in section 5.2, the binary test cannot classify successful attacks and
has therefore no meaningful values in this table. Attacks against the stack pointer were
not included in Table 5.6 because it is more significant to discuss the results separately.
The next paragraphs discuss the same evaluation using countermeasures.

Analysis of Complementary Redundancy. Table 5.8 shows that nearly all faults are
successfully detected. In terms of numbers, 79.9–95.1 % of the attacks had no impact

101

Table 5.5.: Number of successful attacks by test program and attack settings using no countermeasure.
Numbers in brackets represent the not terminated executions.

Fault location Strings Iprint Binary 3F PIN AES

Carry Condition Flag 0 10 0 0 1 3
Negative Condition Flag 0 24 (3) 0 0 1 5
Overflow Condition Flag 0 22 (3) 0 0 1 5
Zero Condition Flag 552 (2) 32 1 14 (179) 17 75 (9)

Register 0 (0x1) 1081 222 0 0 (1346) 2 1513 (11)
Register 1 (0x1) 2289 202 0 0 (1310) 2 2456 (12)
Register 2 (0x1) 1345 (12) 206 0 0 (172) 1 1717 (31)
Register 3 (0x1) 776 129 0 0 (1) 0 1555 (44)
Register 4 (0x1) 2211 335 0 0 (2) 12 2441 (1)
Register 5 (0x1) 1410 228 0 0 445 1534
Register 6 (0x1) 563 455 0 0 0 510
Register 7 (0x1) 0 0 0 0 0 783 (100)

Register 0 (0x8) 1196 369 0 0 (1043) 0 3190 (200)
Register 1 (0x8) 2173 233 0 0 (1310) 0 3681 (110)
Register 2 (0x8) 1363 (12) 317 0 0 (106) 0 3159 (23)
Register 3 (0x8) 772 177 0 0 0 3467 (23)
Register 4 (0x8) 2207 327 0 (1) 0 (2) 12 4183 (2)
Register 5 (0x8) 1410 228 0 0 8 3922 (5)
Register 6 (0x8) 563 8 (2) 0 0 0 4214 (228)
Register 7 (0x8) 0 0 0 0 0 1935
Stackpointer 1915 24 (368) 0 0 0 673 (7)

DMEM read (0x1) 0 25 0 0 1 141
DMEM write (0x1) 0 22 0 0 1 122
IMEM read (0x1) 0 10 0 0 1 75 (1)
IMEM write (0x1) 0 0 0 0 0 0

Targeted instructions 6223 2054 4164 2638 4125 15375

102

Table 5.6.: Classified attacks by test programs summed-up over different attacks using no countermeasure.
The Stack pointer is not included in the attacks.

Test program Terminated Attack Attack Did not CPU
as expected detected successful terminate Exception

Strings 129409 0 19911 26 6
Iprint 45501 0 3581 8 206
Binary 99889 0 1 1 45
3F 57775 0 14 5471 52
PIN 97991 0 505 0 504
AES 312489 0 40686 800 15025

Strings 86.6 % 0 % 13.3 % 0.0174 % 0.00402 %
Iprint 92.3 % 0 % 7.26 % 0.0162 % 0.418 %
Binary 100.0 % 0 % 0.001 % 0.001 % 0.045 %
3F 91.3 % 0 % 0.0221 % 8.64 % 0.0821 %
PIN 99.0 % 0 % 0.51 % 0 % 0.509 %
AES 84.7 % 0 % 11.0 % 0.217 % 4.07 %

on the program. Up to 20.1 % of the attacked tests were detected and up to 1.36 % of
the tests produced an exception. Exceptions can be thrown if an invalid instruction is
executed or if a memory address is not properly aligned. Only 32 attacks of AES are
successful which corresponds to 0.00245 %. In sum of all tests, 2285016 instructions were
attacked where only 32 were successful (0.0014 %).

It can be seen in Table 5.7 that the complementary redundancy countermeasure has some
possible attacks on AES for the registers R0, R1, R6, and the stackpointer. Additionally,
in several cases, the iprint test program does not terminate. Several of these attacks were
analyzed with the following results:

• The attacks on registers R0 and R6 of the AES test program can be attributed to
fault attacks on the stack pointer. The register is initialized with the stack pointer
and further used for two store operations with a different offset.

1 MOV r0 , sp

2 STR r6 , [r0 , #4]

3 STR r5 , [r0 , #0]

Listing 5.7: Analysis of successful attack on register R0

This attack can only be successful if the alignment of the address is a multiple of 4.
Hence, the attack is fails for a bitflip with 0x1 but succeeds for a bitflip with 0x8.

• The same attack can be performed when multiple parameters are given to another
function. If the parameters cannot be transfered using registers, they are stored
to the stack. Hence, the stack pointer is again temporarily stored in a register
(here register R2). When this register is attacked, the parameters are not stored on

103

Table 5.7.: Number of successful attacks using complementary redundancy as a countermeasure
against FIAs. Numbers in brackets represent the not terminated executions.

Fault location Strings Iprint Binary 3F PIN AES

Carry Condition Flag 0 0 0 0 0 0
Negative Condition Flag 0 0 0 0 0 0
Overflow Condition Flag 0 0 0 0 0 0
Zero Condition Flag 0 0 0 0 0 0

Register 0 (0x1) 0 0 0 0 0 0
Register 1 (0x1) 0 0 0 0 0 0
Register 2 (0x1) 0 0 0 0 0 0
Register 3 (0x1) 0 0 0 0 0 0
Register 4 (0x1) 0 0 0 0 0 0
Register 5 (0x1) 0 0 0 0 0 0
Register 6 (0x1) 0 0 0 0 0 0
Register 7 (0x1) 0 0 0 0 0 0

Register 0 (0x8) 0 0 (33) 0 0 0 2
Register 1 (0x8) 0 0 0 0 0 28
Register 2 (0x8) 0 0 (246) 0 0 0 0
Register 3 (0x8) 0 0 0 0 0 0
Register 4 (0x8) 0 0 0 0 0 0
Register 5 (0x8) 0 0 0 0 0 0
Register 6 (0x8) 0 0 0 0 0 2
Register 7 (0x8) 0 0 0 0 0 0
Stackpointer 0 0 (2) 0 (465) 0 (2012) 0 27

DMEM read (0x1) 0 0 0 0 0 0
DMEM write (0x1) 0 0 0 0 0 0
IMEM read (0x1) 0 0 0 0 0 0
IMEM write (0x1) 0 0 0 0 0 0

Targeted instructions 18115 3446 8753 5418 5074 54403

104

Table 5.8.: Classified attacks by test programs summed-up over different attacks using complementary
redundancy. The Stack pointer is not included in the attacks.

Test program Terminated Attack Attack Did not CPU
as expected detected successful terminate Exception

Strings 329301 87338 0 0 6
Iprint 68969 9919 0 279 91
Binary 177850 23444 0 0 25
3F 99292 25293 0 0 29
PIN 110723 5961 0 0 18
AES 995593 237875 32 0 17769

Strings 79.9 % 20.1 % 0 % 0 % 0.00138 %
Iprint 87.6 % 12.0 % 0 % 0.337 % 0.11 %
Binary 88.8 % 11.2 % 0 % 0 % 0.0119 %
3F 80.5 % 19.5 % 0 % 0 % 0.0223 %
PIN 95.1 % 4.9 % 0 % 0 % 0.0148 %
AES 80.4 % 18.2 % 0.00245 % 0 % 1.36 %

the correct position. A modified address can possibly lead to an overwritten other
parameter which can be valid since the redundant parameter is also stored to the
wrong position.

• Another problem is posed by inlining of the intrinic function memcpy. A base address
is calculated in register R2. Load and store operations are performed relatively to
this address. If this address is manipulated, the values are not initialized correctly.
For small arrays, the original and the redundant array can be inlined using the same
base address which leads to an indetectable fault.

• Not terminating attacks against iprint : the recursive implementation of the iprint
function leads to a large stack where in one step, the link register is overwritten
and the PC is set to an invalid address. After the return, only NOP instructions
are executed and the program does not terminate. This is not a problem of data
integrity and can be handled by securing the program flow integrity.

Summarizing complementary redundancy, successful attacks can be attributed to using
the same base address for memory operations for the original and the complementary data.
This is prevented if the data access is performed dynamically but cannot be guaranteed
if the compiler inlines the intrinsic function memcpy or uses the stack for function
parameters.

Analysis of Simple Duplication. Table 5.10 shows approximately as good results as
complementary redundancy while the number of successful attacks is slightly higher. The
attack detection rates are similar up to 21.8 %. In total, 328 of 1887768 instructions

105

Table 5.9.: Number of successful attacks by test program and attack settings using simple duplication as
a countermeasure against FIAs. Numbers in brackets represent the not terminated executions.

Fault location Strings Iprint Binary 3F PIN AES

Carry Condition Flag 0 0 0 0 0 0
Negative Condition Flag 0 0 0 0 0 0
Overflow Condition Flag 0 0 0 0 0 0
Zero Condition Flag 0 0 0 0 0 0

Register 0 (0x1) 3 9 0 0 (2) 0 50
Register 1 (0x1) 12 0 0 0 0 2
Register 2 (0x1) 0 0 0 0 (2) 0 6
Register 3 (0x1) 0 0 0 0 0 9
Register 4 (0x1) 12 0 0 0 (54) 0 50
Register 5 (0x1) 0 2 0 0 (78) 0 4
Register 6 (0x1) 0 0 0 0 0 0
Register 7 (0x1) 0 0 0 0 0 0

Register 0 (0x8) 3 9 0 0 0 37
Register 1 (0x8) 12 0 (63) 0 0 0 22
Register 2 (0x8) 0 0 0 0 (2) 0 6
Register 3 (0x8) 0 0 (242) 0 0 0 8
Register 4 (0x8) 12 0 0 0 (44) 0 48
Register 5 (0x8) 0 6 (4) 0 0 (34) 0 0
Register 6 (0x8) 0 0 0 0 0 2
Register 7 (0x8) 0 0 0 0 0 0
Stackpointer 0 (13068) 0 (441) 0 (767) 0 (1925) 0 26

DMEM read (0x1) 0 0 0 0 0 1
DMEM write (0x1) 0 0 0 0 0 2
IMEM read (0x1) 0 1 0 0 0 0
IMEM write (0x1) 0 0 0 0 0 0

Targeted instructions 16942 3429 8184 4413 4722 40967

106

Table 5.10.: Classified attacks by test programs summed-up over different attacks using simple duplication.
The Stack pointer is not included in the attacks.

Test program Terminated Attack Attack Did not CPU
as expected detected successful terminate Exception

Strings 300961 88649 54 0 2
Iprint 68982 9463 27 309 86
Binary 164762 23446 0 0 24
3F 81783 19469 0 216 31
PIN 104901 3690 0 0 15
AES 747373 175523 247 0 19098

Strings 78.2 % 21.8 % 0.0133 % 0 % 0.000492 %
Iprint 88.0 % 11.5 % 0.0328 % 0.375 % 0.105 %
Binary 88.1 % 11.9 % 0 % 0 % 0.0122 %
3F 81.4 % 18.4 % 0 % 0.204 % 0.0293 %
PIN 96.7 % 3.26 % 0 % 0 % 0.0132 %
AES 80.2 % 17.9 % 0.0251 % 0 % 1.94 %

resulted in a successful fault injection attack (0.0174 %). However, the number is still very
low – especially compared to the unprotected version where 7.8 % of the total attacks
were successful.

It can be seen in Table 5.9 that the simple duplication countermeasure has the same prob-
lems with addressing arrays as complementary redundancy. An additional problem is posed
by the Simple Register Coalescing pass which performs disadvantageous transformations
as described above.

• As an example, the test program iprint can be successfully attacked using the
register R5 at a single position in the program (during two cycles). If register R5 is
attacked, also the redundant register R1 adopts the same value.

1 MOV r5 , #10

2 MOV r1 , r5

Listing 5.8: Analysis of successful attack on register R5

• The same problem is posed by attacking register R0 if the same constant value
should be stored multiple times. However, this only holds for intermediate values
which are implicitly stored on the stack and not for “real” store operations (which
are store operations on the IL).

1 MOV r0 , #0

2 STR r0 , [sp , #16]

3 STR r0 , [sp , #12]

Listing 5.9: Analysis of successful attack on register R5

107

• Another example is the test program using three functions. Register R2 can be
manipulated by attacking the initialization of a constant value as seen in Listing 5.8.
This attack increases the overall runtime of the program which leads to a timeout

Summarizing it can be said that the Simple Register Coalescing pass folds the declaration
of constants. This is another reason why complementary redundancy is easier to secure in
the compiler backend.

Analysis of Secured Branches. This countermeasure was never intended to work well
on its own because of its lack of redundant data. Although, it was expected that at least
the condition flags are sufficiently protected which is not the case. Unfortunately, the
comparison instructions are merged by some optimization in the backend because they
operate on the same instance of intermediate value. The other countermeasures such
as complementary redundancy and simple duplication operate on different intermediate
values which makes it easier to keep the comparison instructions.

Nevertheless, this test proves that fault injection attacks are possible for most attacked
programs. As already discussed, the binary test program was not intended to show
successful attacks but to show detected attacks and prove correct transformations of the
instructions (no errors during normal execution).

Analysis of Verification of Single Instructions. This countermeasure was also not
intended to work well because of its lack of redundant data. The results can be used
to show that fault injection attacks are possible in practice using single fault injection
attacks.

108

6. Conclusions

The goal of this work was to research and implement compiler-based countermeasures
against fault injection attacks to ensure data integrity. After considering multiple possible
options it is shown that the LLVM intermediate representation is the best choice for this task
because it can access annotations and perform standardized and flexible transformations.
Several data redundancy mechanisms were theoretically analyzed and some of them were
implemented. Additionally, a Cortex-M0+ simulator was extended to apply fault injection
attacks and showed a structural test mechanism to locate vulnerabilities.

Software-based countermeasures aim at detecting fault injection attacks as soon as possible.
To capitalize the increased flexibility in contrast to hardware based countermeasures, it is
possible to secure only relevant parts of the program. Hence, the available resources can
be used more efficiently without applying special modifications to the hardware. Using
compiler-assisted countermeasures, the source code has to be annotated to instruct the
compiler which parts of the code should be secured.

To further reduce the overhead of the applied countermeasures, it is not necessary to
verify each instruction. Critical points in the intermediate code were identified where
it is inevitable to verify data integrity. Examples for critical points are load and store
operations, conditional branches, and interactions with insecure functions.

Five different countermeasures against fault injection attacks to ensure data integrity
were discussed: checksums, simple duplication, complementary redundancy, masking, and
result testing. The flaw of checksums is that good checksums are nonlinear in binary
operations and cannot be transfered between intermediate values without interaction
with the original values. Simple duplication and complementary redundancy are feasible
countermeasures and were both implemented and compared in terms of performance and
security implications. Since introducing redundancy is always a fight against compiler
optimizations, complementary redundancy was simpler to implement as the potential
compiler optimizations are more complex than for simple duplication. While masking
schemes are typically used against side channel attacks, it was shown that multiple masked
values in parallel are theoretically suitable to preserve data integrity.

We chose the ARM Cortex-M0+ as the target architecture, a widely-used microprocessor
which is not specialized at performing cryptographic tasks. Nevertheless, critical operations
can be performed on this microprocessor while cryptographic operations are performed on
a dedicated chip. Since the microprocessor would evaluate the result of the cryptographic
operation and communicates with other chips it is still necessary to secure the processor
against fault injection attacks.

109

Performance Evaluation. To evaluate the results of our applied countermeasure we
used VirtualBug, a simulator which was provided by the IAIK1. The simulator is written
in C# and was extended to simulate fault injection attacks and evaluate the results.
The performance of several test programs was evaluated by comparing the unprotected
programs with the protected programs. The overhead strongly varies depending on the test
implementation. Most overhead is produced by the verification of intermediate values.

• Hence, the more intermediate values have to be verified, the larger is the code
overhead. The code overhead also depends on the ratio of secured code. For realistic
non-cryptographic tests an overhead of approximately 100 % in code size can be
assumed for both, simple duplication and complementary redundancy.

• The computational overhead varies between 16 % and 245 % and depends even
stronger on the algorithm. Data integrity is especially expensive for array operations
(for example, string functions, or cryptographic algorithms). In cases where many
arrays are accessed, the computational overhead is higher

• The maximum stack size should in theory increase by approximately 100 % but has
lower values when not every temporary intermediate value has to be secured. On the
other hand, the maximum stack size can be larger than 100 % if the implementation
is heavily based on recursion where most of the memory consumption comes from
storing temporary variables to the stack.

Vulnerability Analysis. It was shown that our fault injection simulator was capable
of finding usable vulnerabilities in the given test programs. Most of the single-fault
attacks can be mitigated using the complementary redundancy or the simple duplication
countermeasure. Table 6.1 shows the test results summed up over all tests and attacks. The
attack success rate of originally 7.8000 % was reduced to 0.0174 % respectively 0.0014 %.
The remaining vulnerabilities were discussed in the results which can be contributed by
adverse transformations, such as constant folding or using a common base pointer for the
original and the redundant data.

Experience. Summarizing the experience during development, redundant data processing
is always a struggle with the compiler. Compilers were designed to increase performance, use
less code and less memory but were not optimized for security. Data integrity mechanisms
aim at using redundant intermediate variables which should not be removed by implicit or
explicit optimizations. Hence, these explicit optimizations need to be detected and disabled
or adapted in the compiler. To prevent implicit optimizations by the DAG, redundant
instructions were annotated with a redundancy flag which was propagated to further
intermediate values.

1Institute for Applied Information Processing and Communications, Graz - University of Technology,
Inffeldgasse 16a, 8010 Graz, Austria

110

Table 6.1.: Results summed up over all tests and attacks

Countermeasures Terminated Attack Attack Did not CPU
as expected detected successful terminate Exception

Normal 743054 0 64698 6306 15838
Simple Duplication 1547419 320240 328 525 19256
Compl. Redundancy 1876937 389830 32 279 17938

Normal 89.5 % 0.0 % 7.8000 % 0.7600 % 1.91 %
Simple Duplication 82.0 % 17.0 % 0.0174 % 0.0278 % 1.02 %
Compl. Redundancy 82.1 % 17.1 % 0.0014 % 0.0122 % 0.79 %

6.1. Future Work

The implemented intermediate passes are modular and can be easily reused for other
front-level languages or other system architectures.

Masking for Data Integrity. While masking is typically a countermeasure against side
channel attacks, it can also be used to ensure data integrity. It is possible to apply multiple
different masks to one intermediate value in parallel. This countermeasure was described
in theory in this work and it was shown that redundancy can be transfered between
intermediate values without unmasking. Hence, this could be a good countermeasure
against both, active and passive physical attacks.

Transformations on a lower level. It could be advantageous to perform the transfor-
mations on a lower level. However, on a lower level one may loose the annotations from
the C-code which are still available in the frontend. It could be easier to preserve these
annotations than to perform the transformations in an early stage. As a disadvantage, the
transformations are then platform dependent and are harder to transfer to other platforms.
If possible, the transformations should be performed before the register allocation. Further
it may be unclear which registers store pointers and which registers store data.

Combine Data Integrity and Control-Flow Integrity. One future task is to combine
this work with the work of Werner [Wer14]. Control-flow integrity itself is questionable
without data integrity because conditional branches always depend on data. On the other
hand, data integrity alone cannot prevent fault injection attacks if not every instruction
is performed or if unintended instructions are performed.

We showed how data integrity can be assured by a widely used compiler and what
complications can occur by fighting against optimizations. All intermediate passes are
completely independent from the used architecture and can, therefore, be reused for any

111

other architecture. This work gives theoretical and practical foundations to ensure data
integrity using the LLVM compiler toolchain.

112

Appendix A.

Proof of Statistical Independence of
Boolean Masked Operations

This chapter proves the statistical independence of boolean masked operations. Statistical
independence is given if for two random variables the following condition holds:

P (A|B) = P (A) (A.1)

As stated in section 3.2.4.1, the and operation can be performed on masked data:

zm = (xm ∧ ym)⊕ (my ∧ xm)⊕ (mx ∧ ym)⊕ (mx ∧my)⊕ma (A.2)

In this analysis, the intermediate values are computed in the following order:

i1 = xm ∧ ym
i2 = my ∧ xm
i3 = mx ∧ ym
i4 = mx ∧my

i5 = i1 ⊕ i2
i6 = i5 ⊕ma

i7 = i6 ⊕ i3
zm = i7 ⊕ i4

(A.3)

Table A.1 shows the truth table for every intermediate result. The probability for the
unmasked result is given by P (z) = 0.25. It can be shown that the probability of z
given any intermediate value equals P (z|ik) = 0.25. Hence, every intermediate value is
statistical independent of the unmasked result. The same verification was performed
to show independence of x and y. The probability for the unmasked input values are
P (x) = P (y) = 0.5 which coincides with the probability of the conditionals P (x|ik) =
P (y|ik) = 0.5. The analysis of the statistical independence as well as computational
correctness was proven using a Matlab-script.

113

Table A.1.: Truth table for a boolean masked and operation which is used to proof statistical independence
of intermediate values

x y mx my ma mz xm ym i1 i2 i3 i4 i5 i6 i7 zm

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1
0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1
0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1
0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1
1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1
1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0
1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1
1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0
0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1
0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1
0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0
0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0
0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1
1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1
1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0
1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1
1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0

114

The same analysis was performed for the masked or operation.

zm = (xm ∧ ym)⊕ (my ∧ xm)⊕ (mx ∧ ym)⊕ (mx ∧my)⊕ xm ⊕ ym ⊕ma (A.4)

The intermediate values were once more computed in a specific order. Another order may
result in statistical dependence.

i1 = xm ∧ ym
i2 = my ∧ xm
i3 = mx ∧ ym
i4 = mx ∧my

i5 = i1 ⊕ xm
i6 = i3 ⊕ ym
i7 = i5 ⊕ i6
i8 = i7 ⊕ma

i9 = i8 ⊕ i4
zm = i9 ⊕ i2

(A.5)

Table A.2 shows the truth table for every intermediate result. The probability for the
unmasked result is given by P (z) = 0.75. It can be shown that the probability of z
given any intermediate value equals P (z|ik) = 0.75. Hence, every intermediate value is
statistical independent of the unmasked result. The same verification was performed to
show independence from x and y. The probability for the unmasked input values are
P (x) = P (y) = 0.5 which coincides with the probability of the conditionals P (x|ik) =
P (y|ik) = 0.5. The analysis of the statistical independence as well as computational
correctness was proven using a Matlab-script.

115

Table A.2.: Truth table for a boolean masked or operation which is used to proof statistical independence
of intermediate values

x y mx my ma mz xm ym i1 i2 i3 i4 i5 i6 i7 i8 i9 zm

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1
1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1
1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0
1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1
0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1
0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0
1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0
1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0
1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1
1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0

116

Appendix B.

Test program sources

This chapter shows some implementation details of the performed test programs. The
tests are described and referenced in section 5.2.

Listing B.1 shows the basic definitions used in the other tests. Makros secure, insecure
and SUPPORTSREDUNDANCY are defined which define the required attributes. The ad-
dresses ATTACK DEBUG and KILLADDRESS are used to communicate with the simulator. Any
data written to the KILLADDRESS leads to an aborted program execution. Writes to the
ATTACK DEBUG address define the result of the program (for example, no attack performed,
or attack successful). These writes are performed by the functions no error occured()

respectively attack successful().

117

1 #define secure __attribute__ ((noinline)) __attribute__ ((AutoIntegrity))

2 #define insecure __attribute__ ((noinline))

3 #define SUPPORTSREDUNDANCY __attribute__ ((SNP))

4

5 #define ATTACK_DEBUG 0xE000ED90

6 #define KILLADDRESS 0xE000EDA0

7

8 void insecure FaultDetectedHandler (){

9 unsigned int *buf = (unsigned int *) ATTACK_DEBUG;

10 *buf = 3;

11 buf = (unsigned int *) KILLADDRESS;

12 *buf = 3;

13 while (1); // or raise exception

14 }

15

16 void inline no_error_occured () {

17 unsigned int *buf = (unsigned int *) ATTACK_DEBUG;

18 *buf = 1;

19 }

20

21 void inline attack_successfull () {

22 unsigned int *buf = (unsigned int *) ATTACK_DEBUG;

23 *buf = 2;

24 }

25

26 #define ATTACK_SUCCESSFUL(a) { \

27 attack_successfull (); \

28 writeUart(a);\

29 return 0; \

30 }

31

32 #define ATTACK_FAILED(a) { \

33 no_error_occured (); \

34 writeUart(a);\

35 return 0; \

36 }

Listing B.1: Fault handling declarations

118

1 int secure strlen(char *str) {

2 int len = 0;

3 while (*str++)

4 len++;

5 return len;

6 }

7

8 char secure strcmp(char *s1 , char *s2) {

9 while(*s1 && *s2 && *s1 == *s2) {

10 s1++;

11 s2++;

12 }

13 return *s1 - *s2;

14 }

15

16 void secure strcpy(char *source , char *dest)

17 {

18 do {

19 *dest = *source;

20 dest ++;

21 source ++;

22 } while (* source != ’\0’);

23 *dest = ’\0’;

24 }

Listing B.2: String method implementations: strlen, strcmp, strcpy

119

1 int secure main() {

2 char test [2][100] = {"Hello World! Lorem ipsum dolor sit amet",

3 "Hello World! This text is differentamet"};

4 char shorttext [] = "short text";

5 char longtext [] = "long text long text long text long text";

6 char *str1 = "Hello World! Lorem ipsum dolor sit amet";

7 char str2[] = "Hello World! This text is differentamet";

8 char str3 [100] = "***";

9 char str4 [100];

10 strcpy(str1 , str3);

11 strcpy(str2 , str4);

12 if(strcmp(str1 , str3) != 0 || strcmp(str2 , str4) != 0)

13 ATTACK_SUCCESSFUL("Strings after strcpy differ !\n")

14 if(strlen(str3) != strlen(str1) || strlen(str2) != strlen(str4))

15 ATTACK_SUCCESSFUL("Strlen after strcpy differ !\n")

16 if(strcmp(str1 , str2) == 0)

17 ATTACK_SUCCESSFUL("Strcpy should not succeed !\n")

18 if(strcmp(str3 , str4) == 0)

19 ATTACK_SUCCESSFUL("Strcpy should not succeed !\n")

20 if(strcmp(test[0], test [1]) == 0)

21 ATTACK_SUCCESSFUL("Strcpy on array should not succeed !\n")

22 if(strcmp(shorttext , longtext) == 0)

23 ATTACK_SUCCESSFUL("Different length arrays should not be equal !\n")

24 ATTACK_FAILED("ATTACK FAILED !!! (or not performed)\n")

25 }

Listing B.3: Test program to verify string operations

1 void secure iprint(int n, char *buf) {

2 if(n < 0) {

3 *buf = ’-’;

4 buf++;

5 n = -n;

6 }

7

8 if(n > 9) {

9 int a = n / 10;

10 n -= 10 * a;

11 buf = iprint(a, buf);

12 }

13 *buf = ’0’+n;

14 buf++;

15 *buf = 0;

16 }

Listing B.4: Iprint: Recursively converts a number to a string

120

1 int quest[] = {-23, -5, 0, 7, 17, 32};

2 char ver [][5] = {" -23", "-5", "0", "7", "17", "32"};

3 int secure main() {

4 for(int i=0; i<6; i++) {

5 char buf [5];

6 iprint(quest[i], buf);

7 if(strcmp(buf , ver[i]) != 0)

8 ATTACK_SUCCESSFUL("Strcmp failed .\n")

9 }

10 ATTACK_FAILED("Reached end of program .\n")

11 }

Listing B.5: Iprint test program

1 int secure f1(int a, int b) {

2 b--;

3 if(b == 0) return a;

4 if(a%4 == 1) return f2(a+5, b);

5 else return f3(a*3, b);

6 }

7

8 int secure f2(int a, int b) {

9 b--;

10 if(b == 0) return a;

11 if(a%2 == 0) return f3(a+3, b);

12 else return f1(a*4, b);

13 }

14

15 int secure f3(int a, int b) {

16 b--;

17 if(b == 0) return a;

18 if(a%4 == 0) return f1(a+7, b);

19 else return f2(a*9, b);

20 }

Listing B.6: Three functions calling each other

1 long _sbrk(int incr) {

2 static unsigned char *heap = (unsigned char *)&__HEAP_START;

3 unsigned char *old_heap = heap;

4 heap += incr;

5 return (long) old_heap;

6 }

Listing B.7: Implementation of sbrk to enable malloc

121

Appendix C.

Acronyms

AES Advanced Encryption Standard . 11
ALU Arithmetic Logic Unit . 2
CAN Controller Area Network . 42
CAM Conditional Access Module . 1
CD Compact Disk . 16
CPU Central Processing Unit . 22
CMOS Complementary Metal-Oxide-Semiconductor . 6
CRT Chinese Remainder Theorem . 22
CRC Cyclic Redundancy Check . 33
DAG Directed Acyclic Graph. .xiii
DES Data Encryption Standard . 35
DFA Data Flow Analysis . 35
3DES Triple DES . 35
DSA Digital Signature Algorithm . 8
DR Dual Rail . 10
DPA Differential Power Analysis . 6
EM Electromagnetic
ELF Executable and Linkable Format . 67
FIA Fault Injection Attack . 1
GCC GNU Compiler Collection . 68
gcd greatest common divisor .29
HMM Hidden Markov Model . 11
HD Hamming-distance. .6
HW Hamming-weight . 7
IR Intermediate Representation . 67
IL Intermediate Language . 2
IVT Interrupt Vector Table
LSB Least Significant Bit . 8
MSB Most Significant Bit . 8
NOP No Operation . 98
NVM Non Volatile Memory. .23
NVIC Nested Vectored Interrupt Controller . 66
PAA Power Analysis Attack . 5

123

PIN Personal Identification Number . 1
RAM Random Access Memory . xiii
RSA Rivest, Shamir, Adelman . 8
SCA Side Channel Attack. .5
SR Single Rail . 10
SRAM Static Random Access Memory. .16
SNR Signal to Noise Ratio . 10
SIM Subscriber Identity Module . 1
SPA Simple Power Analysis . 6
TA Timing Attack . 5
PSR Program Status Register . 22
PC Program Counter. .22
LR Link Register .27
ESP Extended Stack Pointer . 38
EBP Extended Base Pointer . 38

124

Bibliography

[AGL03] Mehdi-Laurent Akkar, Louis Goubin, and Olivier Ly. “Automatic Integration
of Countermeasures Against Fault Injection Attacks.” In: (2003). url: http:
//www.labri.fr/perso/ly/publications/cfed.pdf (cit. on p. 35).

[AGL10] Mehdi-Laurent Akkar, Louis Goubin, and Olivier Thanh-Khiet Ly. “Method
to Secure an Electronic Assembly Executing any Algorithm Against Attacks
by Error Introduction.” 7774653 B2. 2010. url: http://www.google.com/
patents/US7774653 (cit. on p. 35).

[AK98] Ross Anderson and Markus Kuhn. “Low Cost Attacks on Tamper Resistant
Devices.” English. In: Security Protocols. Ed. by Bruce Christianson, Bruno
Crispo, Mark Lomas, and Michael Roe. Vol. 1361. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1998, pp. 125–136. isbn: 978-3-540-64040-
0. doi: 10.1007/BFb0028165 (cit. on p. 15).

[ARM10] ARM. ARMv6-M Architecture Reference Manual. ARM. 2010 (cit. on pp. 63,
65).

[ARM12a] ARM. Cortex-M0+ Devices Generic User Guide. ARM. Apr. 2012 (cit. on
pp. 63, 64).

[ARM12b] ARM. Cortex-M0+ Technical Reference Manual. r0p0. ARM. Apr. 2012 (cit.
on p. 63).

[Aum+03] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-
Pierre Seifert. “Fault Attacks on RSA with CRT: Concrete Results and Prac-
tical Countermeasures.” In: Cryptographic Hardware and Embedded Systems-
CHES 2002. Springer, 2003, pp. 260–275. doi: 10.1007/3-540-36400-5_20
(cit. on pp. 15, 28).

[Bar+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. “The Sorcerer’s Apprentice Guide to Fault Attacks.” In: Proceedings
of the IEEE 94.2 (2006), pp. 370–382. doi: 10.1109/JPROC.2005.862424
(cit. on pp. 14–17, 24, 29, 33, 34).

[Bar+11] Manuel Barbosa, Andrew Moss, Dan Page, Nuno Rodrigues, and Paulo
Silva. “A Domain-Specific Type System for Cryptographic Components.” In:
Fundamentals of Software Engeneering (FSEN) - (2011), (cit. on p. 35).

[Bay+12] Ali Galib Bayrak, Francesco Regazzoni, David Novo, Philip Brisk, François-
Xavier Standaert, and Paolo Ienne. “Automatic Application of Power Analysis
Countermeasures.” In: Transactions on Computers (2012), pp. 1–14. doi:
10.1109/TC.2013.219 (cit. on p. 35).

125

http://www.labri.fr/perso/ly/publications/cfed.pdf
http://www.labri.fr/perso/ly/publications/cfed.pdf
http://www.google.com/patents/US7774653
http://www.google.com/patents/US7774653
http://dx.doi.org/10.1007/BFb0028165
http://dx.doi.org/10.1007/3-540-36400-5_20
http://dx.doi.org/10.1109/JPROC.2005.862424
http://dx.doi.org/10.1109/TC.2013.219

[Bay14] Ali Galip Bayrak. “Automated Side-Channel Vulnerability Discovery and
Hardening: No-Cost Security Expertise for All.” PhD thesis. École Polytech-
nique Fédérale de Lausanne, 2014 (cit. on p. 35).

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance
of Checking Cryptographic Protocols for Faults.” English. In: Advances in
Cryptology — EUROCRYPT ’97. Ed. by Walter Fumy. Vol. 1233. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1997, pp. 37–51.
isbn: 978-3-540-62975-7. doi: 10.1007/3-540-69053-0_4. url: http:
//dx.doi.org/10.1007/3-540-69053-0_4 (cit. on pp. 22, 27, 57).

[Bet13] Luk Bettale. “Secure Multiple SBoxes Implementation with Arithmetically
Masked Input.” In: Smart Card Research and Advanced Applications. Springer,
2013, pp. 91–105. doi: 10.1007/978-3-642-37288-9_7 (cit. on pp. 13, 49).

[Bey14] Kurt Beyer. The Myth of Grace: A BIT of Grace Hopper and the Invention
of the Information Age. MIT Press, 2014 (cit. on p. 1).

[Bos12] Bosch. CAN with Flexible Data-Rate. Specification. 2012. url: http://www.
bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.

pdf (cit. on p. 42).

[Buc+04] Marco Bucci, Michele Guglielmo, Raimondo Luzzi, and Alessandro Trifiletti.
“A Power Consumption Randomization Countermeasure for DPA-Resistant
Cryptographic Processors.” In: Integrated Circuit and System Design. Power
and Timing Modeling, Optimization and Simulation. Springer, 2004, pp. 481–
490. doi: 10.1007/978-3-540-30205-6_50 (cit. on p. 10).

[Cra80] Harvey G. Cragon. “The Elements of Single-Chip Microcomputer Architec-
ture.” In: Computer 13.10 (1980), pp. 27–41 (cit. on p. 22).

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. “A New Algorithm for Switching
from Arithmetic to Boolean Masking.” In: Cryptographic Hardware and
Embedded Systems-CHES 2003. Springer, 2003, pp. 89–97. doi: 10.1007/978-
3-540-45238-6_8 (cit. on p. 13).

[Dur+13] François Durvaux, Mathieu Renauld, François-Xavier Standaert, Loic van
Oldeneel tot Oldenzeel, and Nicolas Veyrat-Charvillon. “Efficient Removal
of Random Delays from Embedded Software Implementations using Hid-
den Markov Models.” In: Smart Card Research and Advanced Applications.
Springer, 2013, pp. 123–140. doi: 10.1007/978-3-642-37288-9_9 (cit. on
p. 11).

[Dut+11] Jean-Max Dutertre, Jacques J.A. Fournier, Amir-Pasha Mirbaha, David
Naccache, Jean-Baptiste Rigaud, Bruno Robisson, and Assia Tria. “Review of
Fault Injection Mechanisms and Consequences on Countermeasures Design.”
In: Design & Technology of Integrated Systems in Nanoscale Era (DTIS),
2011 6th International Conference on. IEEE. 2011, pp. 1–6. doi: 10.1109/
DTIS.2011.5941421 (cit. on p. 31).

126

http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/978-3-642-37288-9_7
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.pdf
http://dx.doi.org/10.1007/978-3-540-30205-6_50
http://dx.doi.org/10.1007/978-3-540-45238-6_8
http://dx.doi.org/10.1007/978-3-540-45238-6_8
http://dx.doi.org/10.1007/978-3-642-37288-9_9
http://dx.doi.org/10.1109/DTIS.2011.5941421
http://dx.doi.org/10.1109/DTIS.2011.5941421

[GA03] Sudhakar Govindavajhala and Andrew W. Appel. “Using Memory Errors to
Attack a Virtual Machine.” In: Symposium on Security and Privacy, 2003.
Proceedings. May 2003, pp. 154–165. doi: 10.1109/SECPRI.2003.1199334
(cit. on pp. 16, 17).

[GCC14a] GCC. Attribute Syntax. Accessed: 2014-11-18. 2014. url: https://gcc.gnu.
org/onlinedocs/gcc/Attribute-Syntax.html (cit. on p. 73).

[GCC14b] GCC. Declaring Attributes of Functions. Accessed: 2014-11-18. 2014. url:
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

(cit. on p. 73).

[GCC14c] GCC. Label Attribute. Accessed: 2014-11-18. 2014. url: https://gcc.gnu.
org/onlinedocs/gcc/Label-Attributes.html (cit. on p. 74).

[Gou01] Louis Goubin. “A Sound Method for Switching Between Boolean and Arith-
metic Masking.” In: Cryptographic Hardware and Embedded Systems—CHES
2001. Springer. 2001, pp. 3–15. doi: 10.1007/3-540-44709-1_2 (cit. on
p. 12).

[Gui+10] Sylvain Guilley, Laurent Sauvage, J-L Danger, and Nidhal Selmane. “Fault
Injection Resilience.” In: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2010 Workshop on. IEEE. 2010, pp. 51–65. doi: 10.1109/FDTC.
2010.15 (cit. on p. 32).

[Har12] Florian Hartwich. “CAN with Flexible Data-Rate.” In: 13th International
CAN Conference (iCC2012), Hambach, Germany. 2012 (cit. on p. 42).

[Ind93] Canberra Industries. Alpha Pips Detection – Properties and Applications.
Appendix 1. Accessed: 2014-09-02. May 1993. url: http://www.qsl.net/
k/k0ff/7Manuals/Alpha%20Spec/SilDet.pdf (cit. on pp. 16, 17).

[ISO11] ISO/IEC. C++ International Standard ISO/IEC 14882:2011. C++ Standards
Committee et al., 2011 (cit. on p. 73).

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analy-
sis.” In: Advances in Cryptology—CRYPTO’99. Springer. 1999, pp. 388–397.
doi: 10.1007/3-540-48405-1_25 (cit. on p. 7).

[KK99] Oliver Kömmerling and Markus G Kuhn. “Design Principles for Tamper-
Resistant Smartcard Processors.” In: USENIX workshop on Smartcard Tech-
nology. Vol. 12. 1999, pp. 9–20. url: http://static.usenix.org/events/
smartcard99/full_papers/kommerling/kommerling.pdf (cit. on pp. 15,
24).

[Koc96a] Osman Kocar. “Hardwaresicherheit von Mikrochips in Chipkarten.” In: Daten-
schutz und Datensicherheit 20.7 (1996), pp. 421–424 (cit. on p. 17).

[Koc96b] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems.” In: Advances in Cryptology—CRYPTO’96.
Springer. 1996, pp. 104–113. doi: 10.1007/3-540-68697-5_9 (cit. on pp. 8,
11, 12).

127

http://dx.doi.org/10.1109/SECPRI.2003.1199334
https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Label-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Label-Attributes.html
http://dx.doi.org/10.1007/3-540-44709-1_2
http://dx.doi.org/10.1109/FDTC.2010.15
http://dx.doi.org/10.1109/FDTC.2010.15
http://www.qsl.net/k/k0ff/7Manuals/Alpha%20Spec/SilDet.pdf
http://www.qsl.net/k/k0ff/7Manuals/Alpha%20Spec/SilDet.pdf
http://dx.doi.org/10.1007/3-540-48405-1_25
http://static.usenix.org/events/smartcard99/full_papers/kommerling/kommerling.pdf
http://static.usenix.org/events/smartcard99/full_papers/kommerling/kommerling.pdf
http://dx.doi.org/10.1007/3-540-68697-5_9

[Lat08] C. Lattner. Introduction to the LLVM Compiler System. Presentation. ACAT’08
Erice, Sicily. Apr. 2008 (cit. on p. 68).

[LLV14a] LLVM. Source Annotations. Accessed: 2014-11-18. 2014. url: http://clang-
analyzer.llvm.org/annotations.html (cit. on p. 73).

[LLV14b] LLVM. The LLVM Compiler Infrastructure. Accessed: 2014-11-17. Nov. 2014.
url: http://llvm.org/ (cit. on p. 66).

[Mag13] Massimo Maggi. “Automated Side Channel Vulnerability Detection and
Countermeasure Application via Compiler Based Techniques.” MA thesis.
Politecnico di Milano, 2013. doi: 10589/85045 (cit. on p. 35).

[MM11] Marcel Medwed and Stefan Mangard. “Arithmetic logic units with high error
detection rates to counteract fault attacks.” In: Design, Automation Test
in Europe Conference Exhibition (DATE), 2011. Mar. 2011, pp. 1–6. doi:
10.1109/DATE.2011.5763261 (cit. on p. 43).

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Vol. 1. Springer, 2007, p. 337.
isbn: 978-0-387-30857-9 (cit. on pp. 5, 6, 8, 13, 14, 49).

[Mos+12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. “Compiler
Assisted Masking.” In: Cryptographic Hardware and Embedded Systems–CHES
2012. Springer, 2012, pp. 58–75. doi: 10.1007/978-3-642-33027-8_4 (cit.
on pp. 35, 49).

[Nuc14] Nucleonica.net. Beta decay. Accessed: 2014-08-20. 2014. url: http://www.
nucleonica.net/wiki/index.php?title=Beta_decay (cit. on pp. 16, 17).

[Ott05] Martin Otto. “Fault Attacks and Countermeasures.” PhD thesis. University
of Paderborn, 2005 (cit. on pp. 14–18, 20, 21, 25).

[PB61] William Wesley Peterson and Daniel T. Brown. “Cyclic Codes for Error
Detection.” In: Proceedings of the IRE 49.1 (1961), pp. 228–235 (cit. on
p. 42).

[QS02] Jean-Jacques Quisquater and David Samyde. “Eddy Current for Magnetic
Analysis with Active Sensor.” In: Proceedings of Esmart. Vol. 2002. 2002
(cit. on p. 17).

[RBP00] Vincent Rijmen, Antoon Bosselaers, and Barreto Paolo. Optimised ANSI C
code for the Rijndael cipher (now AES). Dec. 2000. url: https://code.
google.com/p/aes-rb/source/browse/rijndael-alg-fst.c (cit. on
p. 93).

[RSA78] Ronald Linn Rivest, Adi Shamir, and Leonard Max Adleman. “A Method for
Obtaining Digital Signatures and Public-key Cryptosystems.” In: Commun.
ACM 21.2 (Feb. 1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.
359342 (cit. on p. 28).

128

http://clang-analyzer.llvm.org/annotations.html
http://clang-analyzer.llvm.org/annotations.html
http://llvm.org/
http://dx.doi.org/10589/85045
http://dx.doi.org/10.1109/DATE.2011.5763261
http://dx.doi.org/10.1007/978-3-642-33027-8_4
http://www.nucleonica.net/wiki/index.php?title=Beta_decay
http://www.nucleonica.net/wiki/index.php?title=Beta_decay
https://code.google.com/p/aes-rb/source/browse/rijndael-alg-fst.c
https://code.google.com/p/aes-rb/source/browse/rijndael-alg-fst.c
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342

[SA03] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction
Attacks.” English. In: Cryptographic Hardware and Embedded Systems - CHES
2002. Ed. by BurtonS. Kaliski, çetinK. Koç, and Christof Paar. Vol. 2523.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 2–
12. isbn: 978-3-540-00409-7. doi: 10.1007/3-540-36400-5_2 (cit. on pp. 16,
17, 24).

[Uni09] Unihedron. The Electromagnetic Radiation Spectrum. Presentation. Accessed:
2014-09-02. Feb. 2009. url: http://unihedron.com/projects/spectrum/
downloads/spectrum_20090210.pdf (cit. on pp. 16, 17).

[Von45] John Von Neumann. First Draft of a Report on the EDVAC. Draft 1. Univer-
sity of Pennsylvania, June 1945 (cit. on pp. 22, 63).

[Wer14] Mario Werner. “Control-Flow Integrity: Compiler Assisted Signature Moni-
toring.” MA thesis. Graz University of Technology, May 2014 (cit. on pp. 35,
36, 58, 111).

129

http://dx.doi.org/10.1007/3-540-36400-5_2
http://unihedron.com/projects/spectrum/downloads/spectrum_20090210.pdf
http://unihedron.com/projects/spectrum/downloads/spectrum_20090210.pdf

