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Abstract

The QCrypt project aims at providing a future proof cryptographic engine and to consid-
erably improve cryptography on both, the key distribution level and the encryption level.
It combines Quantum Key Distribution (QKD) with classical cryptographic primitives to
provide authenticated encryption (AE). QKD is a secure way to generate and distribute
cryptographic keys based on the fundamental laws of quantum mechanics. In today’s
standard applications data exchange rates continue to increase. The Ethernet standard
IEEE 802.3ba already allows data rates of up to 100Gbit/s. Consequently, a future proof
encryption engine has to support up to 100Gbit/s.

This work is part of the QCrypt project with the goal to extend the currently applied
AE engine. The existing engine is based on the Galois Counter Mode of Operation (GCM)
with AES as the underlying block cipher. Alternatives for both, the block cipher as well
as the mode of operation should be evaluated. Besides exploring more efficient hardware
implementations, this work is also motivated by providing an alternative AE scheme, in
case successful attacks against primitives used in the existing system are developed. The
main design goal is to achieve high throughput on FPGA platforms and to be compatible
and easily interchangeable with the existing AE engine. The Serpent block cipher and the
Offset CodeBook mode of operation figured out to be the best alternatives to the current
system. Therefore, we evaluate the Serpent block cipher and the OCB mode of operation
and provide results of hardware implementations for different mode of operation/block
cipher combinations, namely: GCM-Serpent, OCB-AES and OCB-Serpent. All three
authenticated-encryption engine variants are capable of providing authenticated encryption
at a rate of over 100Gbit/s.

To the best of our knowledge, GCM-Serpent and OCB-Serpent are the first hardware
architectures targeting high-throughput authenticated encryption that are based on a
block-cipher other than AES. Additionally, no design using AES as a block cipher, that is
capable of reaching throughputs of over 100Gbit/s, and that is based on a different mode of
operation than GCM has been published so far. Our fastest design is based on OCB-Serpent
and reaches a throughput of 136Gbit/s at a maximum frequency of 267MHz when using
four cipher cores in parallel. This design outperforms all GCM-AES implementations
available on FPGAs to date. Furthermore, our results show, that OCB is twice as efficient
compared to GCM when taking the throughput/area ratio as an indicator.

Keywords: Cryptography, Authenticated encryption, GCM, OCB, Serpent, AES, FPGA,
Quantum key distribution
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Kurzfassung

Das QCrypt Projekt hat sich das Ziel gesetzt, eine zukunftssichere Kryptografielösung anzu-
bieten und die Kryptografie sowohl hinsichtlich der Verschlüsselung als auch hinsichtlich der
Schlüsselverteilung zu verbessern. Das System kombiniert die Quantenschlüsselverteilung,
welche auf Basis der Gesetzte der Quantenmechanik eine sichere Methode zur Verteilung
kryptografischer Schlüssel bietet, mit klassischen kryptografischen Methoden um gleichzeitig
Authentifizierung und Verschlüsselung von Daten anzubieten. Die heute in Standardan-
wendungen verwendeten Datenraten steigen beständig und der Ethernet Standard IEEE
802.3ba erlaubt bereits Datenraten bis zu 100Gbit/s. Als Folge muss eine zukunftssichere
Lösung zur Authentifizierung und Verschlüsselung Datenraten von 100Gbit/s unterstützen.

Diese Arbeit ist Teil des QCrypt Projekts und untersucht alternative Blockchiffren und
Betriebsmodi zur Authentifizierung und Verschlüsselung zum existierenden AE-System.
Dieses basiert auf dem Galois Counter Mode of Operation (GCM) mit AES als zu Grunde
liegender Blockchiffre. Neben der Erforschung von effizienteren Hardwareimplementierungen,
wird die Arbeit auch von dem Ziel angetrieben, alternative Methoden zur Authentifizierung
und Verschlüsselung anzubieten, falls erfolgreiche Attacken gegen die derzeit verwendeten
Methoden gefunden werden sollten. Das Hauptdesignziel ist es, hohen Datendurchsatz auf
FPGA-Plattformen zu erreichen und gleichzeitig kompatibel und einfach austauschbar zur
existierenden AE-Implementierung zu sein. Im Rahmen dieser Arbeit evaluieren wir die
Blockchiffre Serpent und den Betriebsmodus Offset CodeBook (OCB) und präsentieren die
Ergebnisse von Implementierungen verschiedener Kombinationen von Betriebsmodi und
Blockchiffren. Diese sind: GCM-Serpent, OCB-AES und OCB-Serpent. Alle drei Varianten
erreichen Datenraten von über 100Gbit/s.

Laut aktueller Recherche sind GCM-Serpent und OCB-Serpent die ersten Hardwarear-
chitekturen, welche auf hohen Datendurchsatz abzielen, die nicht auf AES basieren. Zudem
ist bisher kein auf AES-basiertes Design veröffentlicht worden, das einen Durchsatz von
100Gbit/s erreicht und auf einem anderen Betriebsmodus als GCM basiert. Unser schnell-
stes Design basiert auf OCB-Serpent und erreicht einen Datendurchsatz von 136Gbit/s
bei einer maximalen Frequenz von 267MHz. Es übertrifft somit alle bisher auf FPGA
verfügbaren GCM-AES Implementierungen. Außerdem zeigen unsere Ergebnisse, dass der
OCB-Modus doppelt so effizient wie der GCM-Modus ist.

Stichwörter: Kryptografie, Authentifizierung, Verschlüsselung, GCM, OCB, Serpent, AES,
FPGA, Quantenschlüsselaustausch
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Chapter 1
Introduction

Today, the dominating part of communication is transmitted over public channels. The
amount of data transferred as well as the communication speed increases continuously. The
Ethernet standard IEEE 802.3ba already allows data rates of up to 100Gbit/s. However,
all this communication needs to be protected by cryptographic primitives to ensure the
privacy and authenticity of the data transmitted.

The contribution of this work is part of the QCrypt project [85] which aims at providing
a future-proof, secure, high-speed communication platform based on a quantum key-
distribution (QKD) system. The system can be divided into two parts: the quantum
key-distribution system and the fast-encryptor system. The fast-encryptor system is
based on an Altera Stratix IV EP4S100G5 FPGA. It handles the high-speed network
communication and provides authenticated encryption (AE) for the data stream at a
throughput of 100Gbit/s using the user-keys supplied by the QDK-system. This stream
is then transmitted to the communication partner over a public 100Gbit/s channel. The
existing authenticated-encryption engine is based on the Galois Counter Mode of Operation
(GCM) with four parallel AES cores as underlying block cipher and is referred to as
GCM-AES.

The main contribution of this work was to elaborate possible alternatives to the existing
authenticated-encryption engine, that are capable of encrypting at data rates of over
100Gbit/s. On the one hand the idea was to be prepared for unexpected security flaws
in the existing system by providing alternative subcomponents and on the other hand
there was a desire to possibly find a better solution compared to the existing system. In
order to be able to identify promising alternatives we analyzed existing the authenticated-
encryption engine and identified the requirements the authenticated-encryption engine has
to fulfill. Then, we evaluated alternative subcomponents and algorithms in regard to the
previously defined requirements. Finally, the most promising candidates were designed,
implemented in hardware and tested on the target system. We laid a strong emphasis
to ensure easy integration into the existing system, high throughput, an efficient use of
resources, low latency and minimal delays. During the evaluation of alternatives to the
AES block cipher, Serpent emerged as a promising candidate and was then implemented
in hardware. In order to reach the desired throughput of 100Gbit/s, 33 pipeline stages
had to be introduced and four cipher cores had to be used in parallel. The resulting
architecture is able to achieve a throughput of 140Gbit/s at a maximum frequency of
275MHz which is an increase of 8.3% compared to the existing AES architecture. The

1



CHAPTER 1. INTRODUCTION 2

design requires 33,067 arithmetic logic modules (ALMs) and does not use any block RAM
memory (BRAM). Based on the multi-core Serpent design, we developed a mode for AE that
uses GCM with Serpent as the underlying block cipher. This design reached a throughput
of 104Gbit/s at a maximum frequency of 203MHz while consuming 56,474ALMs of a
total of 212,480ALMs available on the target platform. In addition we have chosen the
Offset CodeBook (OCB) mode in its third version as an alternative mode for authenticated
encryption. The OCB-encryption architecture is based on four parallel block cipher cores,
while the OCB-decryption architecture uses four cipher cores in parallel for decryption and
an additional cipher core that is in encryption mode. When using AES as the underlying
block cipher OCB achieves a throughput of 112Gbit/s at a maximum frequency of 220MHz
and only needs 10,060ALMs for encryption and 11,614ALMs for decryption. Compared
to GCM-AES this is an increase of over 7% in throughput. The fastest authenticated-
encryption design is OCB-Serpent, which reaches a throughput of 136Gbit/s at 276MHz
while consuming 29,506ALMs for encryption and 33,891ALMs for decryption. This is an
increase in throughput of 27% compared to GCM-AES. Overall, the throughput/area ratio
of the OCB implementation is more than twice as high as of the existing GCM architecture.

Parts of this thesis have been published in [74] and [111] and in [73] Muehlberghuber
et al. present a follow-up work based on this work. For a full description of the original
assignment of this work please refer to Appendix C.

1.1 Related Work

In the early 1990s it became obvious that the security of the Data Encryption Standard
(DES) [43] was not future proof any more. Therefore, in 1997, the National Institute
of Standards and Technology (NIST) together with the industry and the cryptographic
community started the Advanced Encryption Standard (AES) competition in search for a
new standardized symmetric-key scheme. In 1999, after multiple rounds of public discussion,
five candidates were presented that made it to the final round: MARS [26], Rivest Cipher
6 (RC6) [90], Rijndael [31], Serpent [10] and Twofish [98]. Those five candidates, also
called AES finalists, were then extensively analyzed and explored in regard to their security,
performance in software and performance in hardware. Since Rijndael was announced as
the winner of the AES competition, it is referred to as AES, and most of the high speed
implementations of block ciphers target this algorithm.

In 2011, Ali et al. [6] published an AES design accomplishing a throughput of 36.2Gbit/s
on a Altera Stratix-2 FPGA. In order to improve the throughput they used full loop unrolling
with two pipeline stages per AES round and employed offline key calculation. Furthermore,
they combined the SubBytes, the ShiftRows and the MixColumns operations, which are the
fundamental building blocs of the AES round function, into a single step and precomputed
a look-up table (LUT). This reduces the number of stages in an AES round and minimizes
the critical path. Using the same principle, Cai, Sun, and Liu [28] reached a throughput of
40.96Gbit/s on a Xilinx Spartan-6. They only introduced one pipeline stage per AES round
and could thus reduce the latency to 10 clock cycles. Qiong and Jianwu [86] present an AES
implementation reaching a throughput of 62.8Gbit/s on an Altera Stratix-3 FPGA. Their
design is fully unrolled with three pipeline stages for each round of AES and makes extensive
use of block RAM (BRAM). In 2013, Liu, Xu, and Yuan [65] described an fully unrolled
AES design with two pipeline stages for each round of AES that reaches a throughput of
66.1Gbit/s on a Xilinx Virtex-7 FPGA without using BRAM. A throughput of 70Gbit/s
is reached on a Virtex-5 by Soliman and Abozaid [102] with a fully unrolled design that
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uses two pipeline stages per AES round. Farashahi, Rashidi, and Sayedi [41] reached a
throughput of 86Gbit/s on a Xilinx Virtex-5 by introducing numerous pipeline stages.

Apart from AES, most of the research on high-speed implementations of block ciphers
was done during the discussion phase of the AES competition [3] from 1997 to 2000. Only
few implementations of thoroughly investigated block cipher algorithms have been published.
In 2004, Lázaro et al. [64] present a Serpent design capable of encrypting 42.8Gbit/s on a
Xilinx Virtex-2 XC2V2000 FPGA. Their architecture is fully unrolled with two pipeline
stages for each round of Serpent. In order to increase the throughput, the encryption
pipeline is clocked at double frequency compared to the key scheduler. Sugier [103] describes
an implementation of Serpent that uses full outer-loop pipelining and a key scheduler in
combinational logic which achieves a throughput of 19.7Gbit/s targeting an Xilinx Spartan-
3E FPGA. A design employing pipelining for the cipher rounds of Serpent as well as for
the key scheduler that reaches a throughput of 17.5Gbit/s is presented in the same paper.

In order to use block ciphers to provide authenticated encryption, special modes of
operation have been developed. These include GCM-AES which was standardized by the
NIST [78] and thus is used for many protocols such as TLS [95], SSH [54] and IPSec [25]
Consequently GCM-AES received significant attention from the research community, and
several implementations targeting FPGAs can be found in the literature. However, GCM-
AES is widely seen as an unsatisfactory and brittle standard that comes with some
disadvantages that can compromise security [83]. Thus, in 2014, a new competition
called CAESAR (Competition for Authenticated Encryption: Security, Applicability, and
Robustness) was launched by the international cryptographic research community [27]. Its
main goal is to identify authenticated ciphers that offer advantages over AES-GCM and that
are suitable for widespread adoption. The whole competition is based on a public evaluation.
For the first round of the competition, launched in march 2014, 57 authenticated cipher
candidates were submitted, some of which have already been withdrawn because of security
flaws that could be identified. Some of the submissions like ASCON [35] or MORUS [109],
are fully parallelizable and only use functions that are cheap to implement in hardware
and could prove to be very fast. However, as the competition is in a very early stage it
is not yet foreseeable which submissions will finally be approved and currently only few
hardware implementations of proposals have been published. Among those published, none
is targeting a throughput near 100Gbit/s. So, still most high-throughput implementations
of authenticated encryption schemes are still based on GCM-AES.

In 2009, Zhou et al. [113] presented a single-core GCM-AES design, which targets a
Xilinx Virtex-5 FPGA and achieved a throughput of 41.5Gbit/s based on the 128-bit version
of AES. Henzen and Fichtner [49] showed that it is possible to break the 100Gbit/s barrier
on a Virtex-5. They made use of four fully unrolled AES cores for the encryption part and
used four Karatsuba-Ofman (KO) multipliers in order to realize the authentication part.
Their design reaches a throughput of 119.3Gbit/s. Abdellatif, Chotin-Avot, and Mehrez [2]
describe a GCM-AES design reaching a throughput of 102.4Gbit/s on a Virtex-5 FPGA.
Their implementation is based on four fully unrolled, pipelined AES cores for encryption
and four parallel authentication cores. However, their design uses a fixed secret key which
allows them to precalculate the round keys for AES and the key-constants required for the
authentication part and to synthesize those into their design. This reduces the complexity
for both, the encryption part as well as for the authentication part but requires to reprogram
the FPGA in case a key change is needed. Using the same principle they also report a
single core design capable of 30.9Gbit/s on a Virtex-5 in [1].

When using GCM, the most complex operation during the computation of a message
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digest is actually the multiplication in the binary finite-field GF (2128), which is part of
the universal hashing function called GHASH. Therefore, most of the effort in improving
GCM implementations has been spent on speeding up this calculation. Wang et al. [106]
presented a GHASH architecture based on four GHASH cores that achieved a throughput
of 123.1Gbit/s on a Virtex-5. In [29], Crenne et al. reached 238.1Gbit/s by using 8 parallel
finite-field multipliers, also targeting a Xilinx Virtex-5 FPGA.

To the best of our knowledge, no hardware architecture based on a block cipher other
than AES and targeting a high-throughput AE implementation has been presented so far.
Moreover, no AES design, which makes use of an operation mode different than GCM in
order to achieve throughputs up to 100Gbit/s, has been published to date.

1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 defines the main cryptographic
goals. It also introduces a communication model from a cryptographic point of view and
describes basic attacks that try to break the main cryptographic goals. Chapter 3 introduces
the concepts of symmetric-key cryptography and public-key cryptography. Furthermore,
basic cryptographic primitives used in classical cryptography such as block ciphers, secure
hash functions and message authentication codes are explained. The chapter also includes
an introduction to quantum cryptography and raises the key-distribution problem which is
then elaborated and discussed in Chapter 4. In Chapter 5, two block ciphers relevant for
this thesis, namely the AES cipher and the Serpent cipher are described in detail. Next,
Chapter 6 introduces the concept of authenticated encryption and shows methods to achieve
AE. In addition, the Galois Counter mode of operation (GCM) and the Offset CodeBook
(OCB) mode of operation, which are two special block-cipher modes for AE relevant for
this work are explained in detail. The contribution of this work is based on an existing,
specially designed FPGA-based hardware platform and an existing authenticated encryption
implementation. The whole system was designed to provide a future-proof secure high-speed
communication platform that is based on a quantum key-distribution system. Thus, first,
Chapter 7 gives an introduction to reconfigurable hardware and second, Chapter 8 gives an
overview on the actual system’s hardware platform. Chapter 9 then describes the existing
AE implementation in detail. In order to identify promising alternatives to the existing AE
engine, Chapter 10 first investigates the requirements of the AE engine and then discusses
and analyzes different block ciphers and modes for authenticated encryption in regard to
their suitability for the previously defined requirements. In the end of this chapter, one
alternative block cipher and one alternative AE mode are selected for implementation.
Next, in Chapter 11, the actual implementation of a parallel pipelined Serpent cipher
which achieves an throughput of over 100Gbit/s is presented in detail. The design of the
alternative AE engine which is based on the Offset CodeBook mode is then illustrated in
Chapter 12. Chapter 13 describes how the implemented system was tested an verified and
implementation results and a comparison with related work is given in Chapter 14. Finally,
Chapter 15 summarizes the results and draws conclusions.



Chapter 2
Cryptographic Goals

There has been a dramatic increase of communication systems in the 20th century. Today’s
information society heavily relies on cryptographic systems that protect information and
communication by providing confidentiality, data integrity, entity authentication and data
origin authentication.

This chapter, in Section 2.1 lists and explains the main cryptographic goals. Then
Section 2.2 defines a common model of communication and describes the different aspects
and goals of information security based on this model. Finally, Section 2.3 defines an attack
model and shows how malicious adversaries try to attack the communication between valid
entities.

2.1 The Major Cryptographic Goals

Following [71] the major cryptographic goals, from which all other cryptographic goals
can be derived are defined as follows:

1. Confidentiality or privacy is a method to keep the information secret from all but
those parties authorized to have it.

2. Data integrity is a method providing protection of unauthorized alteration of data.
It allows to detect data manipulation such as deletion, insertion and substitution by
unauthorized parties.

3. Authentication is a method related to identification. It applies to communicating
entities as well as to information. Whenever two start communicating they should
identify each other and the information delivered over the channel should be authenti-
cated with regards to origin, data content, date of origin, etc. This is why the aspect
of authentication in cryptography is often subdivided into two main classes: entity
authentication and data origin authentication. Data integrity implies data origin
authentication, because a modification of the data also means that the origin of data
has changed.

4. Non-repudiation is a method that prevents entities from disavowing previous
commitments or actions.

5
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2.2 Communication Model

In order to show how the cryptographic goals aim to achieve communication security a
communication model needs to be defined. Using a standard model of communication helps
to identify security problems that arise in practice. Section 2.3 will later clarify how this
model can be violated with respect to a particular cryptographic goal.

Following [99] a standard model of communication can be defined as follows:

Message Message

Sender Receiver

Information

Source

Information

destination

Adversary

Figure 2.1: Standard communication model.

The communication model is divided into five main parts:

1. An information source which produces the message to be transmitted.

2. A transmitter or sender which processes the message such that it can be transmitted
over the channel.

3. A communication channel is the medium used to transmit the message from trans-
mitter to receiver. In a general case this channel is insecure and accessible to a third
party, called attacker or adversary which can read, alter, delete and add messages. In
contrast, a channel is said to be secure if only the two communication parties are able
to read, alter, delete or add information transmitted over the channel. One method
to make a channel secure is to make it physically inaccessible. However it is a very
difficult task to achieve this physical security.

4. Receiver(s) which receives the message and which performs the inverse actions done
by the transmitter to reconstruct the message.

5. A destination is the entity the message is addressed to.

All the parties that communicate over different channels together form a communication
network. When the message is received correctly by the receiver as intended by the sender
we speak of a normal communication flow. In reality however, many factors influence the
communication flow and a correct flow is hard to achieve. On the one hand, there are
non-malicious interferences on the channel. These interferences do not occur by intent
and can be caused by technical or accidental problems. On the other hand, malicious
interferences exist that are caused by intentional acts of an adversary.

As previously mentioned physical security is hard to realize. Thus, in order to prevent
malicious attacks cryptography offers a set of primitives and methods to secure the channel.
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2.3 Attack Model

Attacks, as previously mentioned are malicious actions performed by an unauthorized third
party called attacker or adversary which aim to get an advantage out of the information
transmitted over the channel by the legitimate communication partners.

There are three general types of attacks that are threats to the major cryptographic goals
and that violate Shannon’s model of communication [99, 100]. Using these attack schemes
an adversary attempts to violate the goal of channel availability and the cryptographic
goals of confidentiality, data integrity, authentication and non-repudiation.

1. Attack on availability: The adversary actively disturbs the communication channel
and attacks the communication flow intended by the sender. The attack prevents the
messages sent by the sender to be received by the intended receiver.

Message Message

Sender Receiver

Information

Source

Information

destination

Adversary

Figure 2.2: Attack on availability.

2. Attack on confidentiality: The adversary eavesdrops the communication and reads
the messages sent between the communication partners and such violates their privacy.

Message Message

Sender Receiver

Information

Source

Information

destination

Adversary

Figure 2.3: Attack on confidentiality.

3. Attack on authenticity: The adversary alters the normal communication flow. In

Message Message

Sender Receiver

Information

Source

Information

destination

Adversary

Figure 2.4: Attack on authenticity.

an impersonation attack the adversary sends messages to the receiver and pretends
to be a valid and intended sender. If the adversary intercepts a message, modifies its
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content and sends it to the receiver intended by the legitimate sender, she performs
a substitution attack. In an deception attack the adversary can either impersonate
another entity, replay messages intercepted from a valid entity, or actively intervene
in protocol executions by selectively combining multiple parallel protocol executions.
In all three cases the authenticity of the sender is attacked.

Depending on the adversary’s behavior and its role, all types of attacks can be divided into
two groups:

1. Passive attacks: The adversary eavesdrops the communication between the legitimate
communications partners. By doing so the confidentiality of the data is being attacked.

2. Active attacks: The adversary attempts to alter, delete and add data. By actively
changing the normal communication flow the attacker threatens the integrity and/or
the authenticity of the data.

Cryptography tries to treat and prevent these attacks in theory and in practice. However,
multiple methods exist to realize the different cryptographic goals. The following chapter
introduces some of the primitives that cryptography provides.



Chapter 3
Cryptographic Primitives

In order to prevent an adversary from successfully breaking the cryptographic goals crypto-
graphic primitives are put into place. The aim of this chapter is to introduce important
methods and to show how these methods can be used in order to secure a public channel.
All the primitives presented in this chapter are based on the Kerckhoff’s Principle [57]
which states, that the security of a cryptographic system should solely rely on the use of a
secret key but not on the use of secret primitives. Section 3.1 deals with symmetric and
asymmetric encryption that can be used to provide confidentiality of data. Methods to
ensure data origin authentication are treated in Section 3.2 and Section 3.3 explains the
ideas and principles of quantum cryptography.

3.1 Encryption Schemes

A cipher or encryption scheme is a primitive that aims at providing the goal of confidentiality.
In order to do so an encryption scheme enciphers a plaintext P, using a key K, to give
a resulting message C called ciphertext. This transformation is called encryption. The
inverse of this transformation, named decryption, deciphers a ciphertext C using the same
or a different key K̂, resulting in the original plaintext P again.

Encryption schemes have a long history. Already some thousand years ago cryptography
was used to protect information. Over the centuries many different cryptographic methods
have been developed, that now are categorized into classical and modern (or newer) ciphers.
Classical ciphers typically encrypt at the level of letters using substitutions, where a plaintext
letter is substituted with a ciphertext letter, or using transpositions where the plaintext
symbols are reordered following given rules in order to give the ciphertext. However,
modern ciphers usually work on bit level and can be categorized into symmetric ciphers
and asymmetric ciphers.

Symmetric encryption schemes use identical keys for both communicating partners, that
are kept secret and that are used for encryption and decryption. In contrast, in asymmetric
encryption schemes (also known as public-key encryption schemes) each communication
party owns two different keys. One key, called public key, is provided publicly and used
for encryption whereas the second key, which is called private key and which is kept secret
by its owner, is used for decryption. To be secure, the public key strictly needs to be
authenticated.

In the following we formalize the definition of public-key encryption schemes and

9
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symmetric encryption schemes and show the existing variants.

3.1.1 Public-Key Encryption Schemes

Public-key cryptography uses a pair of associated keys {Ke,Kd} instead of a single secret
key. Ke is called the public key and Kd is called the private key. It has to be infeasible to
determine the Kd when knowing Ke. EKe() is the one-way function used for encryption
and DKe() is the corresponding inverse one-way function that can be used for decryption.

When the two communication partners Alice and Bob want to communicate, Bob
creates a key-pair {Ke,Kd} and sends his public key Ke to Alice but keeps his private
key Kd secret. It is important, that the channel used to transmit the public key has to
be authenticated. Alice can then encrypt a message P and send it to Bob using Bob’s
public key Ke and by applying the transformation C = EKe(P ). Bob can then decrypt this
message using his private key by applying P = DKd

(C).
Public-key cryptography is able to fulfill all cryptographic goals defined in Section 2.1.

In order to do so it only requires an authenticated channel. The authenticity of the channel
is important as otherwise an adversary can distribute wrong public keys, for which she
knows the corresponding private keys. In such case, the encrypted message would not be
private anymore.

Public-key cryptography is much more complex than symmetric-key cryptography. Thus,
in general, public-key cryptography is usually used to agree on secret keys that are then
used for symmetric encryption schemes.

3.1.2 Symmetric Encryption Schemes

Following [14] a symmetric encryption scheme can be defined as follows:

Definition 1 (Symmetric Encryption Scheme). A symmetric encryption scheme, SE ,
consists of three algorithms (K,E ,D), as follows:

1. K is a randomized key-generation algorithm that returns a string K. If Keys(SE) is
the set of all strings that have non-zero probability of being output by K, then the
members of this set are called keys. K $←− K denotes the operation of executing K to
get the random key K returned.

2. The encryption algorithm E can be stateful or randomized. E takes a key K ∈
Keys(SE) and a plaintext P ∈ {0, 1}∗ to return some ciphertext C ∈ {0, 1}∗. C $←−
EK(P ) denotes the operation of E on K and P .

3. The decryption algorithm D takes a key K ∈ Keys(SE) and a ciphertext C ∈ {0, 1}∗
to return some string P ∈ {0, 1}∗, such that P $←− DK(C). It is required that
DK(C) returns P for each C $←− EK(P ) for any key K ∈ Keys(SE) and any message
M ∈ {0, 1}∗.

As the definition indicates, the key-generation algorithm K is randomized. It takes
no input but flips coins internally and uses these to select a key K. Usually the key is a
random string of a fixed length that is called the key length of a scheme. Two parties that
want to use a scheme need to generate a key K using K. Once both parties share K, the
sender is able to run the encryption operation E with key K and plaintext P to produce
the ciphertext C which is then transmitted to the receiver.
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The encryption algorithm may either be randomized or stateful. When randomized
the algorithm, each time it is called, flips coins internally and uses those to compute the
output for a given pair K,P . Consequently, performing the operation Ci = EK(P ) twice
may result in different results Ci. A stateful encryption algorithm in contrast, depends on
a state that is initialized in a algorithm-specified an well-defined way. Whenever invoked,
the algorithm computes the ciphertext C based on P,K and the current state. Finally, it
updates and stores the state. There is no need for synchronization (apart from an initial
synchronization) between the receiver and the sender. An encryption scheme that does not
maintain a state is called stateless.

The receiver, upon receiving a ciphertext C computes the original message using
P = DK(C) using the same key used to generate C. The decryption algorithm itself is
never randomized or stateful but deterministic. Depending on the allowed lengths of the
input message P , symmetric encryption schemes are classified as block ciphers or stream
ciphers.

Block Ciphers

Block ciphers can either be symmetric-key or public-key. However, in the following only
symmetric-key block ciphers are treated.

Block ciphers are set of Boolean permutations operating on n-bit vectors [32] Vn of
fixed size, where n denotes the block length of the cipher, such that the cipher maps n input
bits to n output bits under the use of a k-bit cipher key K that takes values out of the
key-space Keys.

Definition 2 (Block Cipher). An n-bit block cipher is a function E : Vn ×Keys(SE)→ Vn,
such that for all keys K ∈ Keys(SE), the encryption function E(P,K) is an invertible
mapping from Vn to Vn written as EK(P ). The decryption function which is denoted as
DK(C) is the inverse mapping of EK(P ) such that P = DK(C).

Block ciphers operate on blocks of length n. In order to process messages exceeding
the length of one block n those messages are processed by modes of operation which are
cryptographic primitives based on block ciphers. Using these modes of operation, block
ciphers can be used to accomplish a wide variety of cryptographic tasks. An introduction
to some concrete modes of operation follows in Chapter 5.

Stream Ciphers

Stream ciphers are another class of symmetric encryption algorithms. While block ciphers
typically operate on larger blocks of multiple bits of data, stream ciphers usually operate on
smaller sets of data. Additionally, stream ciphers use transformations that vary over time.
So, in contrast to block ciphers, the encryption result Ci not only depends on the secret key
K and the plaintext message Pi but also on the current state σi of the encryption engine.
Typically stream ciphers are fast and less complex to realize in hardware. Furthermore,
as they have a limited error propagation they might be advantageous for systems where
transmission errors are likely to occur. However, one thing to mention is, that no stream
cipher that is standardized exists by today. Still, by using special modes of operation block
ciphers can be turned into a stream cipher.

Typically stream ciphers are defined by two functions, f and g such that,
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σi+1 = f(σi, Pi,Ki)

Ci = g(σi, Pi,Ki)

where f is the function to compute the next state σi+1 and g is the actual encryption
function. Pi is the bit (or number of bits) of the plaintext message P currently being
processed and Ki is the corresponding key stream and σi is the present state.

In general, stream ciphers can be divided into two classes: synchronous stream ciphers
and asynchronous stream ciphers.

Synchronous stream ciphers generate the key stream independently of the plaintext P
and the cipher text C. So prior to communication the sender and the receiver have to be
synchronized, to operate under the same key K and the same internal state σi. Synchronous
stream cipher can be characterized by:

σi+1 = f(σi,Ki)

Zi = g(σi,Ki)

Ci = h(Zi, Pi)

where f is the function to compute the next state and g is the function to produce
the keystream and h is the output function that combines the keystream and the input
message.

An asynchronous stream cipher is a stream cipher that generates the keystream as a
function of the key and a fixed number of previous ciphertext bits:

σi+1 = f(Ci−t, Ci−t+1, . . . , Ci−1)

Zi = g(σi,Ki)

Ci = h(Zi, Pi)

where the next state σi+1 is ciphertext dependent and where an initial state σ0 exists.
As the state—and thus the keystream—is only dependent on a few previous ciphertext bits,
the cipher is self-synchronizing even if some ciphertext bits are transmitted erroneous.

3.1.3 Symmetric versus Asymmetric Encryption

When comparing symmetric encryption algorithms and asymmetric encryption algorithms
the following advantages and disadvantages can be found:

• Symmetric encryption schemes typically execute much faster in software as well as in
hardware than asymmetric encryption schemes with a comparable security level.

• Symmetric encryption scheme implementations usually are less resource consuming
in terms of required area, power, energy, memory, etc.

• Symmetric encryption schemes require both parties to share a secret key. Distributing
the secret key over a (secure) channel is known as the Key Distribution Problem
and comes at some cost. To provide a high level of security, this shared secret key
often needs to be changed and kept secure. The procedure of generating, managing,
redistributing, storing and adopting the key in a secure way often is a complicated
task to accomplish.
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Increasing speeds of networks clearly favors fast encryption schemes. Thus, in this work
we rely on symmetric encryption schemes.

3.2 Authentication Schemes

Data integrity is closely related to data origin authentication. In case a message is altered
its integrity has been attacked and consequently the sender is not authenticated any
more. Thus, data integrity and data origin authentication are intrinsically tied together.
Consequently, when one of them is compromised also the other one has to be doubted.
Hence, mechanisms for data authentication have to provide data origin authentication and
data integrity.

An important class of cryptographic primitives used for authenticity is called hash
functions. Hash functions in general can be divided into unkeyed hash functions which are
also called modification detection codes (MDCs) and keyed hash functions also known as
message authentication codes (MACs).

Definition 3 (Hash Function). A hash function h (in its most unrestricted definition) has
to provide to properties:

1. The function h has to provide compression by mapping an input x of arbitrary (finite)
bitlength to an output y = h(x) of fixed bitlength n.

2. Given h and an input x the output y = h(x) has to be easy to compute.

The basic idea of hash functions is that the hash tag serves as a small-sized representative
for the input string and can be used as a unique identifier for that string and can thus
warrant the integrity of the string. However, as a hash function maps messages of arbitrary
finite length of a domain D to an output of n-bit length in range R where |D| > |R|, there
have to exist collisions where two distinct input messages x and x′ map to the same output
y = h(x) = h(x′).

In the remainder of this section we will first describe unkeyed hash functions and then
show how to transform these into keyed hash functions to create concrete authenticity
primitives.

3.2.1 Unkeyed Hash Functions

An unkeyed hash function, also called modification detection code (MDC) takes an input
of arbitrary length and compresses it to a fixed length output called hash value or hash tag.
As per definition, the space of possible outputs y = h(x) is restricted to 2n, where n is the
bitlength of the hash tag, whereas the space of the input x is unlimited (but still finite).
An cryptographic hash function, in addition to the properties given in Definition 3 has to
fulfill the following properties [71]:

1. Preimage resistance: It should be computationally infeasible to find a preimage
x′ hashing to a given prespecified hash value y such that y = h(x′).

2. Second preimage resistance: It should be computationally infeasible to find any
input x′ that hashes to the same output as a given input x. So it should be hard to
find any input x′ 6= x hashing to y = h(x′) = h(x). Another term for second preimage
collision resistance is weak collision resistance.
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3. Collision resistance: It should be computationally infeasible to find any two inputs
x and x′ hashing to the same value y = h(x) = h(x′). Collision resistance is also
called strong collision resistance.

In addition, for cryptographic MDCs the following properties are of interest:

1. Non-correlation: Input bits and output bits should not correlate and it is desirable
to have an avalanche effect where every input bit effects every output bit.

2. Near-collision resistance: It should be hard to find any two input messages x
and x′ such that the output of h(x) and h(x′) differ only in a small number of bits.

3. Partial preimage resistance or Local one-wayness: It should be hard to recover
any substrings or even the entire input message even if parts of the input message
are known.

3.2.2 Keyed Hash Functions

Hash functions that involve the use of a secret key are called keyed hash function or message
authentication codes (MACs). MACs, in contrast to MDCs, can also be used to provide
data origin authentication and data integrity.

Definition 4 (Message Authentication Code (MAC)). A message authentication code is a
class of functions hk that is parametrized by a secret key k and that is characterized by the
following properties [71]:

1. For a function hk and a given input message x and a given key k the output of hk(x)
has to be easy to compute. The resulting output is called MAC-value or MAC.

2. The function hk has to provide compression by mapping an input x of arbitrary
(finite) bitlength to an output hk(x) of fixed bitlength n.

In addition, for a given function h and for all fixed allowable (but unknown to the
adversary) key values k, the following properties have to hold:

3. It has to provide computation resistance by making it infeasible to compute any text-
MAC pairs (x, hk(x)) for any new input xi 6= x (including possibly hk(x) = hk(xi)
for some i), given zero or more text-MAC pairs (xi, hk(xi)).

MACs can be constructed using different approaches. Based on their underlying
compression function they can be classified into the following groups:

• Based on block ciphers: Many MAC algorithms used are based on block ciphers
and often use these in cipher-block-chaining mode (CBC) [76] or electronic codebook
mode (ECB) [76].

• Based on hash functions: These constructions use MDCs (hash functions) in
combination with a secret key that is part of the input. An example for this type of
construction is the HMAC [60, 75] construction with SHA-3 [82] as underlying MDC.

• Customized MACs: Those MAC algorithms are specially designed (“from scratch”)
for the purpose of message authentication. Often these algorithms exploit the proper-
ties of hash function families and are called universal hash based MACs.
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3.3 Quantum Cryptography

Quantum cryptography (QC) is not a classical cryptographic primitive but has been topic
of extensive research in recent years and has clearly evolved to a practical level. The idea
of QC was first proposed by Wiesner [107] (1983) and by Charles H. Bennett and Gilles
Brassard [18] (1984). It is based on the existence of indivisible quanta and entangled
systems and some of the fundamental principles of quantum mechanics [47]:

1. Every measurement perturbs the measured system.

2. According to the Heisenberg uncertainty principle it is impossible to simultaneously
determine the position and the momentum of a particle precisely.

3. It is impossible to determine the polarization of a photon in vertical-horizontal basis
simultaneously to the diagonal basis.

4. It is impossible to draw pictures of individual quantum processes.

5. It is impossible to copy or duplicate an unknown quantum state.

These negative characteristics of quantum mechanics turn out to be useful in QC. As
mentioned, a principle of quantum mechanics is:

Every measurement perturbs the system.1 (3.1)

This fact can be used to detect eavesdropping when used in QC. Imagine, Alice codes
information into single photons she sends to Bob, then Bob can determine eavesdropping
by checking that he receives the photons unperturbed. If an evil attacker Eve wants to
catch information on the photons she has to do measurements and consequently perturbs
the system. To check whether someone listened to their communication all Alice and Bob
have to do is to compare a random subset of the transmitted data using a public channel.
If this subset is equal there was no eavesdropping.

So Alice and Bob can detect eavesdropping but only after having transmitted a message.
This is not practicable when secret information has to be exchanged. Thus, in order to
ensure privacy in advance Alice and Bob only exchange a random secret key over the
quantum channel and use this key to later encrypt the actual secret data typically over
a classical channel. If they realize eavesdropping while exchanging the secret key they
simply discard it and exchange a new one. Consequently they can assure that no secret
information of value is lost.

In order to ensure that Axiom (3.1) applies the data has to be encoded into non-
orthogonal states. In practice individual photons that are either sent over optical fibres or
over free space are used to encode the quanta or qubits (for quantum bits). For example
the horizontal and the vertical polarization of a photon could be used to code the bit values
of bit 0 and bit 1. As a second and diagonal base the ±45◦ linear polarization with +45◦

for bit 1 and −45◦ for bit 0 could be used. Alternatively, the circular polarization basis
could be used as a second base.

Section 3.3.1 will show a practical example that make use of the principles described
above.
1 Except if the quantum state is compatible with the measurement.
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3.3.1 Example of the BB84 Protocol

The BB84 protocol was proposed in 1984 by Bennet and Brassard in [18]. In its original de-
scription the protocol uses photon polarization states to transmit the information. However
any two conjugate pairs of states can be used to implement the protocol. The following
description of BB84 will stick with the original proposal.

Principle

The protocol uses four quantum states that can be represented as up |↑〉, down |↓〉, left
|←〉 and right |→〉 which constitute two bases. The two bases conjugate as all vectors of
one base have equal-length projections in the vectors of the other base, e.g. |〈↑ | ←〉|2 = 1

2 .
By convention the two states |↑〉 and |→〉 represent a binary 0 and the states |↓〉 and |←〉
denote a binary 1. The four spin states can also be represented as polarization states
“horizontal” and “vertical” (belonging to the base +) and “+45◦” and “−45◦” (belonging to
the base ×).

First, Alice sends random individual spins which represent random bits to Bob over a
quantum channel that allows a one-to-one communication between the two parties. Next,
Bob chooses a random base for each incoming qubit and measures its spin according to the
chosen base. So, whenever Alice and Bob chose the same base they get correlated results
but when they pick different bases they get uncorrelated results. Thus, on average Bob
receives a string of bits with an error rate of 25%, called the raw key.

Table 3.1: Example key agreement using the BB84 protocol.

Alice’s random bit 0 1 1 0 1 0 0 1
Alice’s random sending basis + + × + × × × +
Photon polarization Alice sends ↑ → ↘ ↑ ↘ ↗ ↗ →
Bob’s random measuring basis + × × × + × + +
Photon polarization Bob measures ↑ rand ↘ rand rand ↗ rand →
Public discussion of basis OK drop OK drop drop OK drop OK

Shared sifted key 0 1 0 1

In order to perform an error correction Bob announces the base he has chosen for
measuring each corresponding qubit over a public channel. Alice then publicly tells Bob
whether the base he has chosen is compatible with the state she has chosen to encode the
qubit. In case the states is compatible they keep the bit and otherwise they discard it. So,
around 50% of the bit string is discarded which results in a shorter key called sifted key.
Note, that the error correction is performed on a public channel that Eve can listen to. To
prevent Eve from modifying the information transmitted in this process this channel has to
be authentic (but not necessarily confidential).

Attack Scenarios

If Eve intercepts a qubit, Bob will simply inform Alice that he didn’t receive it as expected
and tell her to discard it. Thus, Eve has no information gain and can only lower the
transmission rate. So, for real eavesdropping Eve needs to send a new qubit (that ideally
would be a copy of the intercepted one) to Bob after intercepting the qubit sent by Alice.
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However, it can be proved that perfect copying is impossible in the quantum world [72, 108].
A simple and practical eavesdropping strategy that Eve could use is called intercept-resend.
Eve measures each qubit in one of the two bases, and then transmits another qubit to
Bob that correlates to the state she measured. As Eve does not know the base Alice chose
she will be lucky in about 50% and resend a qubit with the correct base to Bob such that
the legitimate communication partners will not realize her intervention. However, in the
other halve of the tries she will be wrong and use a basis incompatible with Alice’s and
Alice and Bob will notice the intrusion. This clearly emphasizes the importance that Alice
chooses the basis truly random. Using the intercept-resend strategy Eve can get about 50%
information gain, while Alice and Bob will have about 25% errors in their sifted key which
would definitely reveal the presence of Eve. In case Eve only applies the strategy in 10%
of the cases, this will give her an information gain of around 5% while Alice and Bob will
have an error rate of around 2.5% in their sifted key. The next subsection will show how
such attacks can be countered.

Error Correction, Privacy Amplification

The sifted key Alice and Bob have been sharing so far contains errors due to technical
imperfections and eventually due to the intervention of Eve. With today’s technologies
typical error rates lie around a few percent (which is beyond comparison with typical optical
communication with error rates of about 10−9). So in the first step called information
reconciliation, Alice and Bob use classical error correction algorithms in order to get rid of
the errors. Then, to lower Eve’s information on the final key, they use a strategy called
privacy amplification. In practice Alice and Bob often use a cascading protocol and compare
the parity of blocks of the sifted key. In case of an error a binary search is performed
to find and correct the error as proposed in [23]. This process is performed recursively
until all blocks have been compared. Then the key stream is reordered and the procedure
is repeated for several rounds. In the end Alice and Bob have identical keys with high
probability. However, Eve has gained additional information on the key because of the
parity bits exchanged. Privacy amplification is then used to lower Eve’s information on the
key to a arbitrarily low value. This could be done using a hash function that takes a string
of length equal to the key and outputs a final key string of chosen shorter length.

3.3.2 Other Protocols

A variety of protocols for QC using either non-orthogonal or entangled quantum states
have been published. In the following, a small selection of these will be presented. First,
the Two-State Protocol and the Six-State Protocol which are both based on non-orthogonal
quantum states will be described and then the EPR Protocol which uses entangled quantum
states will be introduced. For a more complete overview of protocols please refer to [36, 47].

Two-State Protocol

The two-state or B92 protocol by Bennet [16] only uses two non-orthogonal states. Alice
randomly sends one of the two states and Bob then performs projections onto subspaces
orthogonal to the signal states. In case Bob chooses a base non-orthogonal to the one Alice
used he will obtain a result in 50% of the cases whereas he will obtain an inconclusive
outcome if he chooses a base orthogonal to the one the qubit was encoded with. After
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transmission Bob tells Alice when he detected a bit but he does not announce the base he
used because the base uniquely identifies the bit Alice sent.

However, in practice this system is only secure in lossless systems because while it is true
that two non-orthogonal states cannot be distinguished precisely without perturbation it can
be done at the cost of some losses. Eve could intercept the qubits and perform measurements.
If she obtains an inconclusive result she blocks the qubit while she retransmits a copy in the
correct state to Bob if she detects a state (because she then knows the state with certainty).
To disguise the photons she blocked, Eve could send a pulse of higher intensity, such that
Bob cannot realize a decrease in transmission rate.

One way to counter this attack is to encode the bits into phase differences between
a strong reference pulse and a dim pulse (with less than on photon on average). In this
case Bob can monitor the bright pulses and make sure that Eve does not remove any of
them. Furthermore Eve can not remove one of the dim pulses because the interference of
the strong pulse with vacuum would introduce errors that would be detected.

Six-State Protocol

In the six-state protocol [11, 24] three non-orthogonal bases are used for encoding the qubits
with six states. Accordingly, the probability that Alice and Bob choose the same base is
only 1

3 . However, this disadvantage of compared to the BB84 protocol is outweighed by
the fact that eavesdropping inducts higher error rates. In case Eve tries to perform the
previously mentioned intercept-resend attack and measures every qubit, this results in an
error rate of around 33%, compared to 25% when applied in the BB84 protocol.

EPR Protocol

The original EPR protocol is based on quantum entanglement and Bell’s inequalities and
was originally proposed by Ekert [37]. A simplified version that does not invoke Bell’s
inequalities was presented by Bennett, Brassard and Mermin [17].

The idea of the simplified version is to replace the quantum channel between Alice and
Bob by a channel carrying two entangled qubits from a common source. Both communication
parties Alice and Bob measure the qubits independently using random bases. They then
compare their bases and only keep the bits in case of congruence. In fact this protocol is
very much alike the BB84 protocol. The only difference is that Alice does not send particles
but she measures her particle of the entangled pair within one of the two bases.

3.3.3 Security of Quantum Cryptography

The security of QC is based on basic quantum-mechanic principles. Classical QC protocols
consist of two phases:

1. A physical device generates quantum mechanic signals that are distributed and
measured. They are then transformed into classical data.

2. Alice and Bob use a classical channel to discuss their data and to perform error
correction and privacy amplification.

The unconditional security of those phases can be proved for theoretical systems [68,
69, 101] and even for imperfect devices [48]. However, it should be noted that real world
systems suffer from technical imperfections that allowed practical attacks on real word
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implementation. For a good overview on the security of QC and attacks theoretic as well
as practical attacks that were possible due to imperfect implementations please refer to [89,
97].

3.3.4 Summary and Discussion

As shown, QC does not provide a complete solution for all cryptographic goals but can
only be used in conjunction with classical symmetrical cryptographic primitives. Thus, a
more precise name for QC is quantum key distribution as this is the purpose of QC. In
addition it should be noted once more, that QC requires the two communication partners
to be authenticated. Consequently, Alice and Bob need to share a small secret prior to
communication. QC can then provide them a longer one and parts of his longer key could
then be used as a starting secret for the next session.

For a wider and more complete overview as well as detailed discussions on quantum
cryptography, the security of QC, attacks and technical realizations please refer to [7, 36,
47].

3.4 Conclusion

Cryptographic primitives based on the Kerckhoff’s Principle, rely on the use of secret
keys. In order to provide confidentiality symmetric or asymmetric encryptions can be used.
MACs can be used to provide data origin authentication and data integrity. The problem
of distributing these secret keys required for these primitives among the communication
partners is know as the key-distribution problem. One possible solution to this problem is
the use of public-key cryptography and another solution is based on the use of quantum
cryptography. However, more solutions to this problem exist. Chapter 4 will discuss these
solutions in detail.



Chapter 4
Key-Distribution Problem

The security of modern cryptographic algorithms, based on Kerckhoff’s Principle, does not
rely on the obscurity of an algorithm but only on the use of a secret key. Thus, secure
distribution of secret keys among legitimate users is a central problem in cryptography that
is known as the Key-Distribution Problem or as the Key-Establishment Problem. Basically
there are five cryptographic ways to solve the Key Establishment Problem [7]:

1. Classical Information-theoretic schemes: Cryptosystems are called information-
theoretically secure if they derive their security solely from information theory and
thus do not make any assumptions on the hardness of any mathematical problems.
Consequently, such systems are still secure even if an adversary has unbounded
computing power. A well known example for an information-theoretically secure
scheme is the One-Time Pad (OTP). If two parties are in possession of correlated
strings that feature more correlation than any string that an eavesdropper could
possess, it is possible to establish an information-theoretically secure key over a
classical channel using public discussion, as shown in [66]. In fact, as will be shown
later in this section, the use of a quantum channel allows a practical realization to
provide such correlated strings of information.

2. Classical public-key cryptography: Public-key cryptography or asymmetric en-
cryption is based on the difficulty of mathematical problems for which no polynomial
algorithm exists to solve them. Therefore, by using secret keys that are long enough
the computing resources to find solutions to these problems become infeasible. Public-
key cryptography relies on “provable computational security”. However, it should be
noted, that it is not unconditionally secure as the underlying mathematical problems
are not unsolvable and as the non-polynomial complexity has not been proven yet.

As previously mentioned in Section 3.1, asymmetric encryption schemes include a
public key that is accessible to anyone in order to allow encryption and a private key
that allows the legitimate recipient to decrypt the message. As shown by Diffie and
Hellman in [34], public-key cryptography provides a very practical way to establish a
secret key over a classical public channel using no previously shared secret. However,
in order to provide authenticity of the distributed keys, it is necessary to introduce a
trusted authority. These trusted authorities provide a public-key infrastructure (PKI)
that issues certificates for the users’ public keys. Today, this system is widely used in
the internet in the absence of any other practical solution for key distribution.

20
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As asymmetric encryption schemes are typically much slower than symmetric en-
cryption schemes, usually public-key cryptography is only used to establish a shared
secret key between to two parties that then use symmetric encryption schemes for
data encryption and authentication.

3. Classical computationally secure symmetric-key cryptographic schemes:
Before the invention of public-key cryptography in 1976, symmetric-key encryption
schemes were the only way to encrypt data. In case a secret key has been shared
between two parties by any means it is possible to encrypt a message to provide
a secret key for the key distribution protocol. Hence, key distribution that uses
symmetric-key encryption always relies on a pre-established symmetric secret needed
to allow authentication. In a sense, symmetric-key based key distribution does key
expansion more than key distribution.

In [100] Shannon proved, that there exists no other unconditionally secure encryption
scheme that uses less key material than the One-Time Pad which requires the key
material to be as long as the data to be encrypted. Consequently it is impossible to
build an unconditionally secure key expansion based on classical cryptography. This
follows from the fact that classical messages in contrast to quantum messages can be
copied. Still, it is possible to build key-distribution systems based on symmetric-key
encryption and authentication schemes that are not unconditionally secure. The
Diffie-Hellman Key-Exchange Protocol [34] is an example of a key-distribution based
on symmetric encryption schemes. As previously stated, symmetric encryption is
typically much faster and less computation intensive than asymmetric encryption.

4. Quantum key distribution (QKD):

Quantum Key Distribution (QKD) is based on the laws of quantum mechanics and
takes advantage of the fact that it is impossible to gain information about non-
orthogonal quantum states without disturbing and influencing these states [84]. It
has been proven to be unconditionally secure and can be used to establish a random
key between to parties that is perfectly secret from an information-theoretic point of
view as shown in [19, 66, 89].

A QKD system typically consists of a classical public channel, a secure quantum
channel and an optional service channel as shown in Figure 4.1. First, as outlined in
Section 3.3, one of the two parties involved, e.g. Alice, generates a random stream
of classical data and encodes them into a sequence of quantum states of light which
is then transmitted over the quantum channel. Bob, the second party involved,
measures the quantum states and generates a stream of classical data that correlates
with Alice’s bit stream. The classical public channel, or the service channel which
is public as well, is then used to check the correlation between the two bit streams.
In case the correlation is high enough, this implies that no significant eavesdropping
by an attacker has taken place as eavesdropping would influence and change the
quantum states. Finally, if the correlation was high enough, the step of information
reconciliation where bit errors are removed and the step of privacy amplification where
the knowledge an eavesdropper Eve could have gained on the key is eliminated by
generating a new key out of the correlated data using for example an universal hash
function. Both these steps are again performed over the public channel. Therefore,
the quantum channel is used to agree on a perfectly secure symmetric key that can
later be used to symmetrically encrypt and send the data over the public channel.
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However, as QKD is a symmetric key distribution technique it is necessary to perform
authentication between the two parties involved. Consequently, a small secret key
has to be shared in advance between both parties.

Alice Bob

Secure Channel

Public Channel

Service Channel

KeytransferKeytransfer

Key Manager Key Manager

Authenticated
Encryption

Authenticated
Encryption

Figure 4.1: Overview of a quantum key distribution system.

Due to the fact, that today’s quantum channels are much slower (typically between
1 kbit/s to 1Mbit/s) than classical channels, the quantum channel is only used for
key exchange and agreement and the classical channel is then used to transmit the
actual data using symmetric encryption.

It should be noted that a QKD would also stay secure within the presence of quantum
computers.

5. Trusted couriers: Trusted couriers are the oldest method to distribute secret keys.
Even if it is still in use nowadays in some highly sensitive environments such as
government intelligence or by banks to distribute the credit card PIN number to
customers, it is highly unpractical in large systems and digital networks.



Chapter 5
Block Ciphers Used for the Thesis

In the early 1990s it became obvious that the security of the Data Encryption Standard
(DES) [43] was not future proof any more. Therefore, in 1997, the National Institute
of Standards and Technology (NIST) together with the industry and the cryptographic
community started the search for a new standardized symmetric-key scheme. The goal was
to find an unclassified, publicly disclosed and royalty-free encryption algorithm that should
support a minimum block size of 128 bits and key sizes of 128, 192 and 256 bits. Therefore,
in 1998 the First Advanced Encryption Standard Candidate Conference (AES1) was held
and 15 potential block cipher candidates were presented and discussed. Followed by a
public discussion phase, the Second Advanced Encryption Standard Candidate Conference
(AES2) was held in 1999 and five candidates were presented that made it to the final round:
MARS [26], Rivest Cipher 6 (RC6) [90], Rijndael [31], Serpent [10] and Twofish [98]. Those
five candidates, also called AES finalists, were then extensively analyzed and explored and
publicly commented in regard to their security, performance in software and hardware,
intellectual property and many more properties. At the last conference, the AES3, in 2000
all submitters were given the chance to give their view on comments of their proposal.
Finally, in October 2000, using all the information gained, NIST announced Rijndael as
the winner of the competition [79].

In addition to the block ciphers proposed during the AES Candidate Conference lots
of other block ciphers have been developed. However, most cryptographic research on the
security and the performance has concentrated on the AES finalists. In the following, two
AES finalists are described in more detail as they are of special interest for this thesis. First,
in Section 5.1 the Rijndael (AES) block cipher will be described and second, in Section 5.2
the Serpent block cipher will be explained.

5.1 Rijndael (AES)

As previously mentioned, Rijndael was the winner of the AES competition and as a result
it was standardized by NIST in the Federal Information Processing Standard (FIPS)
197 [80] that describes a specific version of Rijndael now commonly known as the Advanced
Encryption Standard (AES) which restricts the block size to 128 bits and the key size
to 128, 192 and 256 bits. Dependent on the used key size the algorithm is referred to as
AES-128, AES-192 or AES-256.

The AES cipher belongs to the symmetric-key encryption schemes and is a block cipher
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that encrypts independent input blocks of 128 bits of data. As the ciphers requires input
blocks of exactly 128-bits size a padding functions fills up input messages to multiples of
128 bits if required. For encryption/decryption longer messages are then split up into blocks
of 128 bits and processed iteratively or in parallel depending on the AES implementation.

The following Sections describe the AES algorithm in detail. First, Section 5.1.1 explains
the data representation used in the AES algorithm. Second, the actual algorithm is described
in Section 5.1.2 which covers the AES Round Transformation and in Section 5.1.3 that
treats the round-key generation of AES. For an in-depth explanation of the cipher please
refer to [32] and [80].

5.1.1 Data Representation

The smallest data entity used in AES is a byte. Each 128-bit input block, consisting out of
bits d0 . . . d127, is split into sixteen bytes b0 . . . b15 where b0 = d0 . . . d7 and where d0 being
the most significant bit and d7 being the least significant bit of b0 as shown in Figure 5.1.
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Figure 5.1: Bit mapping of an input block.

Internally, each input block is mapped to a 4×4 Matrix called State whose elements have
an index sij , where i defines the row and j defines the column of the element. Figure 5.2
shows how the data blocks Ii of an input block are mapped to the state elements Sij and
how these are mapped to the output data blocks Oi. All operations of the AES algorithm
operate on rows, columns or single elements of this state.
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Figure 5.2: Mapping of an input block to the AES state and to an output block.

5.1.2 Round Transformation

The number of rounds Nr and the number of key columns Nk of the AES algorithm are
dependent on the used key size. For a key size of 128 bits Nr = 10 and Nk = 4, for 192
bits Nr = 12 and Nk = 6 and for 256 bits Nr = 14 and Nk = 8. Except for the very last
round that is slightly different, all rounds of AES encryption algorithm are defined the
same using four basic operations: SubBytes, ShiftRows, MixColumns and AddRoundKey.
The AES decryption algorithm requires the inverse operations: InvSubBytes, InvShiftRows
and InvMixColumns while the AddRoundKey stays the same. All these operations will be
described in the following sections.

The initialization of the state matrix for the AES encryption starts by applying the initial
AddRoundKey operation which adds (XORs) the secret user key to the input message. After
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Figure 5.3: Simplified overview of the AES encryption.

this first step the round transformation iteratively executes the SubBytes, the ShiftRows,
the MixColumns and the AddRoundKey operations. For the AddRoundKey operation an
appropriate round key that is derived from the secret user key is required. These round
keys can be computed as described in Section 5.1.3. The last round slightly differs as the
MixColumns operation is omitted in this round. The final state matrix then constitutes the
encrypted message. Figure 5.3 gives a simplified overview of the AES encryption process.

The AES decryption is the inverse operation of the AES encryption. First, the initial
AddRoundKey operation is performed using the last round key instead of the user key.
Second, instead of the operations used for encryption their inverse counterparts InvSubBytes,
InvShiftRows and InvMixColumns have to be used. In addition, the order of the operations
differs as it starts with InvShiftRows, followed by InvSubBytes, AddRoundKey and ends
with InvMixColumns. The AddRoundKey operation stays the same but uses the round keys
in reversed order. Hence, for round i round key number Nr − i is required. Consequently,
the on-the-fly computation of the round keys is slower compared to the AES encryption.
Similar to the AES encryption the InvMixColumns operation is omitted in the last round.
The final state matrix then constitutes the decrypted message.

SubBytes/InvSubBytes

The SubBytes operation is a non-linear transformation that substitutes each byte of the
input state according to a substitution table called S-box that is derived by first taking the
multiplicative inverse of the finite field GF (28) for each byte and then applying an affine
transformation over GF (2) as described in [80].
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Figure 5.4: The SubBytes transformation and its inverse the InvSubBytes transformation.
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In order to perform the InvSubBytes operation first the inverse affine transformation in
GF (2) is applied followed by taking the multiplicative inverse in GF (28) for each input
byte. Both these substitutions can either be realized using a precomputed S-box table or
by an on-the-fly computation. For a more detailed description see [32].

ShiftRows/InvShiftRows

The ShiftRows and the InvShiftRows operations rotate each row of the state by n-bytes,
where n is the index of the row. The only difference is that the rotation for ShiftRows
transformation is a left rotate but a right rotate for the InvShiftRows transformation.
Figure 5.5a and Figure 5.5b show the effects of the ShiftRows and the InvShiftRows
operation on the state matrix.
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(a)
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Rotate by 2

Rotate by 3

(b)

Figure 5.5: The effect of the ShiftRows transformation (a) and its inverse the InvShiftRows
transformation (b) on the state matrix.

MixColumns/InvMixColumns

The MixColumns and the InvMixColumns transformations can be described as matrix
multiplications that operate on columns of the state matrix. A detailed notation of the
matrix multiplication performed in the MixColumns operation is given in Equation 5.1 and
Equation 5.2 describes the equivalent for the InvMixColumns operation.

S′0,c
S′1,c
S′2,c
S′3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



S0,c
S1,c
S2,c
S3,c

 (5.1)


S′0,c
S′1,c
S′2,c
S′3,c

 =


0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e



S0,c
S1,c
S2,c
S3,c

 (5.2)

AddRoundKey

During the AddRoundKey operation each byte of the state matrix is XORed with the
corresponding byte of the round key. As previously stated, the round key can either be
computed on-the-fly or be precomputed and stored in memory. Details on the round-key
generation are given in Section 5.1.3.
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5.1.3 Round-Key Generation

As previously mentioned, for each round of the AES algorithm one 128-bit round key is
required. All these round keys are derived from the secret user key using the KeyExpansion
algorithm as described in Algorithm 5.1.1. Depending on the user key size (Nr + 1) · 4
columns of 4 bytes are generated where the first Nk columns are those provided by the user
key. The SubWord() function as used in Lines 12 and 14 takes a word of four bytes and
applies the SubBytes operation for each byte. The RotWord() function in Line 12 rotates a
word of four bytes to the left by one byte and Rcon is an array holding one constant for
each round.

Algorithm 5.1.1 AES key-expansion algorithm.
Input: User key K of Nk words length.
Output: KeyExpansion(K,Nk)
1: word temp
2: i = 0
3: word roundkeys[4 · (Nr + 1)]
4: while i < Nk do
5: roundkeys[i] = K[i]
6: i = i+ 1
7: end while
8: i = Nk

9: while i < 4 · (Nr + 1) do
10: temp = roundkeys[i− 1]
11: if i mod Nk = 0 then
12: temp = SubWord(RotWord(temp))⊕Rcon[i/Nk]
13: else if Nk > 6 and i mod Nk = 4 then
14: temp = SubWord(temp)
15: end if
16: roundkeys[i] = roundkeys[i−Nk]⊕ temp
17: i = i+ 1
18: end while
19: return roundkeys

Note, that the AES decryption requires the round keys to be applied in reverse order.
This is a drawback because it increases the computation time as all round keys have to be
computed prior to the first round of AES.

For a detailed description of the round-key generation and the calculation of the
constants held by the Rcon array please refer to [80].

5.2 Serpent

Serpent was defined by R. Anderson and E. Biham and L. Knudsen in [10] and was the
runner-up of the AES block cipher competition. Although it has not been chosen by the
NIST during the competition, it was considered to be a close alternative and is still known
to be secure from a cryptography point of view.

Serpent was inspired by the idea of bitslice implementations of block ciphers [21] and
is optimized to allow a maximum degree of parallelism for software implementations by
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exploiting bitslicing techniques. The algorithm represents data as outlined in Section 5.2.1
and exists of two main components: the Round Transformation as described in Section 5.2.2
and the Key Scheduler explained in Section 5.2.3.

5.2.1 Data Representation

The Serpent cipher is a 32-round substitution-permutation network that operates on four
32-bit words which results in a block size of 128 bits. All values used throughout the
operations of the cipher are represented as bitstreams in little-endian. So the first bit of a
word (bit0) is the least significant bit and the last bit of a word (bit31) is the most significant
one. Similarly, the first word (word0) of a block is the least significant word and the last
word (word3) of a block is the most significant one.

5.2.2 The Cipher

The cipher of Serpent is formally defined in two versions: a non-bitsliced version and a
bitsliced version that exploits bitslicing techniques. The structure of both algorithm versions
is very similar. Figure 5.6 gives an overview of the bitsliced version of Serpent. It mainly
consists of 32 rounds that include a key-mixing stage, a substitution stage, and an avalanche
stage (i.e., a stage where a linear transformation takes place). In the last round the linear
transformation is omitted and replaced by an additional key-mixing operation. The non-
bitsliced version in addition includes an input permutation (IP), and a final permutation
(FP) that do not have any cryptographic significance. They are only used to transform the
input block into a form, that allows to exploit bitslicing methods and to finally transform
it back to the conventional form again. The following algorithm description will focus on
the bit-sliced version of Serpent. For details on the non-bitsliced version we refer to [10].
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Figure 5.6: Overview of the bitsliced version of Serpent.

The principal structure is defined by the following equation:

B0 := P

Bi+1 := Ri(Bi)

C := B32

(5.3)
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where

Ri(X) := L(Sj(X ⊕Ki)) i = 0, . . . , 30

Ri(X) := Sj(X ⊕Ki)⊕K32 i = 31
(5.4)

Initial and Final Permutation

The initial permutation and the final permutation do not have any cryptographic significance
and are only used to transform the input block into a form that can exploit bitslicing
methods and back to the conventional form again when using the non-bitsliced version of
Serpent. Parameters for the initial and final permutation are given in Appendix B.1.

Key-Mixing Stage

Each round of Serpent starts with a key-mixing stage, where a 128-bit round-key Ki is
XORed with the input Bi of round Ri.

Substitution Stage

Next follows a substitution stage, which uses S-boxes that perform a 4-bit to 4-bit substitution.
Overall, Serpent defines eight different S-Boxes. For each round Ri with i ∈ {0, . . . , 31}
a single S-box version Sj , where j := i mod 8, that is replicated 32 times is applied.
For example for R0, the first copy of the S-box S0 take the bits 0, 1, 2, 3 of B0 ⊕K0 and
returns the first four bits of an intermediate result. Tables for the S-boxes are given in
Appendix B.1.

Linear Transformation

Finally, during the avalanche stage a linear transformation is used to maximize the number
of bit-changes a single bit-change of the input has. The linear transformation is used to
linearly mix four 32-bit words by:

X0, X1, X2, X3 := Si(Bi ⊕Ki)

X0 := X0 ≪ 13

X2 := X2 ≪ 3

X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 � 3)

X1 := X1 ≪ 1

X3 := X3 ≪ 7

X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 � 7)

X0 := X0 ≪ 5

X2 := X2 ≪ 22

Bi+1 := X0, X1, X2, X3

(5.5)

where � denotes an arithmetic left shift and ≪ denotes a circular left shift.
Note again, that in the last round of the cipher, the linear transformation is omitted

and replaced by another key-mixing operation.
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Decryption

The Serpent decryption differs from the encryption in that the inverse of all functions have
to be used. First, the inverse of the S-Boxes have to be used in reverse order. So for round
Ri with i ∈ {0, . . . , 31} the S-box version S−1j , where j := (32− i+ 7) mod 8 is applied.
Furthermore the inverse linear transformation is used and the round keys are applied in
reverse order. Consequently, encryption and decryption can share only very little resources.

5.2.3 Key Scheduler

The key schedule is relatively complex and takes a user key K and expands it to 33 128-bit
sub-keys denoted by Ki. These sub-keys are required during the round transformations of
the cipher. As 33 round keys are required it is necessary to generate 132 32-bit words for
the sub-keys. In order to do so, K is padded to 256 bits and then divided into eight 32-bit
words denoted as w−8, . . . , w−1 and then expanded to an intermediate key (or pre-key)
w0, . . . , w131 by applying the following rule:

wj := (wj−8 ⊕ wj−5 ⊕ wj−3 ⊕ wj−1 ⊕ φ⊕ j) ≪ 11 (5.6)

where the constant φ is the golden ratio 0x9e3779b9 in hexadecimal. The round keys can
then be computed, by making use of the S-boxes in the following manner:

{k0, k1, k2, k3} := S3(w0, w1, w2, w3)

{k4, k5, k6, k7} := S2(w4, w5, w6, w7)

{k8, k9, k10, k11} := S1(w8, w9, w10, w11)

{k12, k13, k14, k15} := S0(w12, w13, w14, w15)

{k16, k17, k18, k19} := S7(w16, w17, w18, w19)

. . .

{k124, k125, k126, k127} := S4(w124, w125, w126, w127)

{k128, k129, k130, k131} := S3(w128, w129, w130, w131)

(5.7)

The 32-bit values kj are then concatenated to the 128-bit sub-keys Ki where i ∈ {0, . . . , 32}:

Ki := {k4i ‖ k4i+1 ‖ k4i+2 ‖ k4i+3} (5.8)

Figure 5.7 describes the calculation of the pre-keys required for on round key. Please
note, that the calculation of the pre-keys needed for on round key requires eight 32-bit
values from previous rounds to be available.
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Figure 5.7: Overview of the pre-key calculation of Serpent.



Chapter 6
Authenticated Encryption

An authenticated encryption (AE) scheme is a cryptographic primitive based on a shared-key
transform which aims at providing privacy and authenticity of the encapsulated data. A
refined version of AE which allows parts of the data to be authenticated but not encrypted
is called authenticated-encryption with associated-data (AEAD) and was formally defined
in [92]. In fact, AEAD is of special interest in networking applications as there often is
a need to have a header to appear in plain text, but there is a wish to have this header
authenticated. However, the payload needs to be private and authenticated.

Numerous algorithms exist and some, such as the CBC-MAC mode (CCM) [77] and
the Galois Counter Mode of operation (GCM) [78] have also been standardized by NIST.
However, these are widely seen as unsatisfactory standards that come with some disadvan-
tages that can compromise security [83]. Thus, in 2014, a new competition called CAESAR
(Competition for Authenticated Encryption: Security, Applicability, and Robustness) was
launched by the international cryptologic research community [27]. Its main goal is to
identify authenticated ciphers that offer advantages over the Galois Counter Mode of
operation (GCM) and that are suitable for widespread adoption. The whole competition is
based on a public evaluation. For the first round of the competition, launched in March
2014, 57 authenticated cipher candidates were submitted some of which have already been
withdrawn because of security flaws that could be identified. However, as the competition
is in a very early stage it is not yet foreseeable which submissions will finally be approved
and currently only few hardware implementations of proposals have been published.

Different approaches to authenticate and encrypt a message are discussed in Section 6.1.
Section 6.2 gives an overview of properties and features that characterize AE algorithms.
Thereafter, follows the description of some selected algorithms for authenticated encryption.
Section 6.3 treats the Counter with CBC-MAC mode (CCM), Section 6.4 outlines the
Carter–Wegman Counter (CWC) mode [59], Section 6.5 explains the Galois Counter Mode
of operation (GCM) and Section 6.6 deals with the Offset CodeBook mode (OCB).

6.1 Approaches to Achieve Authenticated Encryption

There are two main principles to authenticate and encrypt a message. The first way of
achieving AE is to use a generic composition scheme which works by combining a secure
encryption scheme with a keyed-hash (i.e. MAC) scheme. For example the plaintext could
be encrypted with AES in Cipher Block Chaining (CBC) mode [76] and then HMAC [75]

32
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could be applied on the ciphertext to compute an authentication tag. The second approach
is to use specially designed integrated authenticated-encryption algorithms which typically
are more efficient then generic composition modes.

In theory there are three different combinations of the generic composition schemes for
AE.

• MAC-then-Encrypt: First MAC the message M with key K1 to give a tag
τ = MACK1(M) and then encrypt the pair (M, τ) with key K2 to give the ci-
pher text C = EK2(M, τ). The final message then is the cipher text (C).

• Encrypt-then-MAC: First encrypt the message M with key K1 to give the ci-
pher text C = EK1(M) and then apply the MAC with key K2 such that the tag
τ = MACK2(C). The final message then is the pair (C, τ).

• Encrypt-and-MAC: First encrypt the messageM with key K1 to give C = EK1(M)
and additionally MAC M with key K2 to give the tag τ = MACK2(M). The final
message then is the pair (C, τ).

However, in [13] Bellare showed that the Encrypt-then-MAC scheme used with a
provable-secure encryption scheme and a provable-secure MAC scheme provides the best
security for AE among the three proposed generic combinations. Still, also the MAC-then-
Encrypt and Encrypt-and-MAC schemes can be secure but they often rely on special details
of the underlying encryption and MAC schemes. Thus, among the generic composition
modes the Encrypt-then-MAC scheme is the preferred choice.

There are three main approaches to realize an integrated authenticated-encryption
algorithm. The first method is to use a block cipher in a special mode of operation for
authenticated encryption. NIST has standardized two block cipher modes of operation
for AE, namely, CBC-MAC mode (CCM) [77] and the Galois Counter Mode of operation
(GCM) [78]. Another, widely known AE mode is the Offset CodeBook (OCB) mode [63].
The second method is to use a stream cipher and to divide the keystream into two parts: one
for the encryption and one for the authentication of the message. Grain-128a [4] is a typical
example for this approach. The third strategy is to develop a dedicated authenticated
encryption algorithm. Examples for this approach are Helix [42], Hummingbird-2 [40] and
AEGIS [110].

6.2 Properties and Features of Authenticated Encryption Al-
gorithms

Depending on the designated operational scenarios and chosen design rationales authenticated-
encryption algorithms have different characteristics and features. This section briefly
discusses the most important ones with having high-speed hardware implementations
and networking applications in mind. Using these characteristics can help to identify an
appropriate algorithm for a desired application.

Type of Scheme. On the top level authenticated-encryption algorithms can be catego-
rized according to the different approaches to achieve AE as outlined in Section 6.1: generic
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composition, block-cipher mode of operation, stream-cipher based or dedicated authenticated-
encryption algorithms. In addition, based on the required number of passes over the message
M , the algorithms are classified as so-called single-pass schemes or two-pass schemes. A
single-pass scheme only requires one pass over the message while a two-pass scheme requires
two passes respectively. Other important properties are the supported lengths for message
blocks, keys and authentication-tags and the maximum length of the input message.

Security. Many AE algorithms are backed with security proofs that (theoretically) guar-
antee a specific level of security under specific assumptions and restrictions for an adversary.
Apart from this information-theoretical security attributes some algorithms also include
measures for actual implementations that hamper side channel attacks. In addition, the
algorithms can come with a certain level of misuse resistance as pointed out later in this
section.

Parallelizable. Parallelization is one of the most important concepts to reach high
throughput. It is a form of replication by providing q instances of the same functional unit
for f and letting them process independent inputs in parallel. Here, the throughput as
well as the hardware consumption are roughly multiplied by q. Note, that it is strictly
necessary that the inputs to the functional units are independent from each other to allow
parallelization. For high-speed applications it is necessary, that encryption and decryption
can be parallelized.

Online. An AE algorithm is said to provide online encryption and decryption, if it is
able to output blocks while it is receiving blocks and without prior knowledge of the overall
message length. More precisely, the ith Output block Oi should only depend on the first
i input blocks I1, . . . , Ii and the secret key K. This is a desirable feature, especially in
networking and resource-constraint applications as it reduces memory requirements.

Inverse Free. An authenticated-encryption algorithm is said to be inverse free if encryp-
tion and decryption rely on the same functions f and no inverses f−1 are required. This is
of special interest for hardware implementations that have to deal with limited resources as
the same data path can be used for encryption and decryption.

AEAD. Authenticated-encryption algorithms allowing AEAD is of special interest in
networking applications as there often is a need to have a header to appear in plain text, but
there is a wish to have this header authenticated while the payload needs to be encrypted
and authenticated.

Misuse Resistance. Many AE schemes rely on the use of a user-applied state called
nonce to prevent leaking any information on the plaintext except its length. Often security
proofs assume that these nonces are correctly generated and used and that there is no
nonce-misuse. The security of many AE algorithms rely on the assumption that the nonce
is not reused for the same key, and do not provide authenticity and privacy in case of
misuse [44]. The past has shown, that the use of nonces is frequently implemented faulty [22,
58]. Thus, it is desirable, that an AE algorithm provides a decent level of security even if
nonces are repeated.
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Standard AE security definitions assume that there is no decryption misuse and that
an adversary does not get any information on the output of decrypted ciphertexts that fail
in authenticity verification. However, in practice this is not always easy to ensure. Thus, it
is desirable, that an AE algorithm provides a decent level of security even if decryptions of
ciphertexts that do not pass the authenticity check are leaking.

Message Overhead. The message overhead is determined by length of the authentication
tag T and the extension of the ciphertext. Ideally, the length of the plaintext P is equal to
the length of the resulting ciphertext C.

Additional Features. AE algorithms can come with a variety of additional features.
They can for example support variable authentication tag length, incremental MACs1 or
facilitate the implementation of counter measures against side channel attacks. In addition
they can minimize the cost of key changes or nonce changes.

Apart from the characteristics and features addressed in this section many more exist
that are relevant for special use cases like software implementations or resource-constraint
implementations. Section 10.3 in detail analyzes some authenticated-encryption schemes
based on their characteristics and features towards their feasibility to reach a throughput
of 100Gbit/s.

6.3 CCM

The Counter with CBC-MAC mode (CCM) [53, 77] was designed as non-patented alternative
to OCB and is part of the IEEE 802.11i standard. It uses the “MAC-then-Encrypt”
approach. As outlined in Figure 6.1 the CCM mode combines the CBC-MAC scheme for
data authentication and a variation of the Counter (CTR) mode for data encryption.

EK EK EK

MmM1

MAC

EK

M1 Mm

C1 Cm

EK

incrincr

EK

IV ||CTR1 IV ||CTRm IV ||CTR0

MAC

Cm+1

M2

Figure 6.1: Overview of CCM. Here incr denotes an increment by one modulo 232.

First, the MAC is computed over the entire message using the CBC-MAC. This step is
not parallelizable. Second, the message and the MAC is encrypted using a CTR mode that
takes IV and a counter value as input. For decryption, first the message and the MAC is
decrypted and then the MAC is computed over the resulting plaintext and compared with
the transmitted MAC.

CCM is non-patented, non-parallelizable, provable secure mode with AEAD feature. It
has a comparably low performance in hardware and has received some criticism concerning
efficiency, complexity and security claims [91]. So, overall, as CCM is non-parallelizable it
is not suited for the throughput required in the QCrypt project.
1 An incremental MAC allows to recompute the authentication tag at a cost proportional to the amount of
changed blocks of a message.
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6.4 CWC

The Carter–Wegman Counter (CWC) mode [59] created by Kohno, Viega, and Whiting
combines the CTR mode for data encryption with a Carter-Wegman universal hashing
function over GF (2127 − 1) for a data authentication. It basically uses the “Encrypt-then-
MAC” approach with both steps chosen to be parallelizable. Please refer to Figure 6.2 for
an overview of the CWC encryption.
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Figure 6.2: Overview of CWC. Here incr denotes an increment by one modulo 232 and
toint96 denotes a reduction to 96 bits.

First, the message is encrypted using CTR mode with a nonce IV as the initial counter
value which gives the ciphertext C. Next, the authentication part starts by calculating
the CWC-Hash value for associated data A and C. Then, the intermediate authentication
tag R is calculated by encrypting this hash value. The final authentication tag T is then
generated by XORing R with the padded and encrypted IV .

CWC is non-patented, parallelizable, provable secure. Due to its comparably low
efficiency it has widely been overcome by GCM mode that will be explained in the next
section.

6.5 Galois Counter Mode of Operation

The Galois Counter Mode of operation (GCM) was invented by David A. McGrew and John
Viega and is standardized by NIST [78]. GCM is a block-cipher mode of operation defined
for block ciphers with 64-bit and 128-bit block size. It is based on the CTR mode and a
Carter-Wegman general hash function over GF (2128) called GHASH and allows AEAD. As
it achieves AE by two passes over the message M it is a so-called two-pass scheme.

6.5.1 Authenticated Encryption

The GCM authenticated encryption algorithm as shown in Figure 6.3 expects a secret
key K with appropriate length for the underlying block cipher and an initial vector IV
of arbitrary length between 1 and 264 bits, where a length of 96 bits is recommended for
efficient implementations, as inputs. Note, that the IVs need to be distinct for a fixed
key K. Furthermore, the algorithm requires a plaintext P with a length between 0 and
239 − 256 bits and some additional authenticated data (AAD) denoted as A. The AAD
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is data that should be authenticated but not encrypted and is allowed to be between 0
and 264 bits of length. For an underlying block cipher with 128-bit block size P is split
into blocks of 128 bits such that P = P1, P2, . . . , Pn−1, P

∗
n where the last block P ∗n does not

need to be a full block whose length is denoted by u. Equally, the AAD is split into blocks
such that A = A1, A2, . . . , Am−1, A

∗
m where the length of the last block is denoted by v.
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Figure 6.3: Overview of the GCM authenticated encryption operation. Here incr denotes
an increment by one modulo 232 and multH denotes a multiplication with H in GF (2128).

Formally, the authenticated encryption is defined by the following equations:

H = E(K, 0128)

Y0 =

{
IV ‖0311 if len(IV ) = 96

GHASH(H, {}, IV ) else.

Yi = incr(Yi−1) for i = 1, . . . , n

Ci = Pi ⊕ E(K,Yi) for i = 1, . . . , n− 1

C∗n = P ∗n ⊕MSBu(E(K,Yn))

T = MSBτ (GHASH(H,A,C)⊕ E(K,Y0))

(6.1)

where ⊕ denotes a bitwise-exclusive-or (XOR) operation, ‖ denotes a bitwise-concatenation,
the expression 0l denotes a string of l zero bits and the expression {} represents a bit
string of zero length. The function len() returns the number of bits in its argument, the
function MSBτ (S) returns the first τ most significant bits of the bit string S and the
incr() function increments its argument by one modulo 232. The function GHASH() is a
polynomial universal hash and is described more detailed in Section 6.5.3. As output the
GCM authenticated encryption algorithm delivers a ciphertext C where len(C) = len(P )
which is split into 128-bit blocks such that C = C1, C2, . . . , Cn−1, C

∗
n, where the length

of the last block is denoted by u, and an authentication tag T with a length τ where
0 ≤ τ ≤ 264.

6.5.2 Authenticated Decryption

The structure of the authenticated decryption as illustrated in Figure 6.4 is very similar to
the structure of the authenticated encryption, with the only difference, that the ciphertext
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can directly be applied to the hash step and the decryption step.
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Figure 6.4: Overview of GCM authenticated decryption operation. Here incr denotes an
increment by one modulo 232 and multH denotes a multiplication with H in GF (2128).

The authenticated decryption operation, requires five inputs: the secret key K, an initial
vector IV , a ciphertext C, some additional authenticated data A and an authentication
tag T and is defined as follows:

H = E(K, 0128)

Y0 =

{
IV ‖0311 if len(IV ) = 96

GHASH(H, {}, IV ) else.

T ′ = MSBτ (GHASH(H,A,C)⊕ E(K,Y0))

Yi = incr(Yi−1) for i = 1, . . . , n

Pi = Ci ⊕ E(K,Yi) for i = 1, . . . , n

P ∗n = C∗n ⊕MSBu(E(K,Yn))

(6.2)

The tag T ′ which is computed during the decryption process is compared to the tag T
coming with the ciphertext C. If both tags exactly match the authenticated decryption
operation returns the plaintext. Otherwise it returns a the special symbol FALSE.

6.5.3 GHASH

The GHASH function GHASH(H,A,C) = Xm+n+1 belongs to the class of Carter-Wegman
polynomial universal hashes and is defined by Equation 6.3 where C is the ciphertext, A is
the data to be authenticated and u and v represent the missing bits to a full block of 128
bits.

Xi =



0 for i = 0

(Xi−1 ⊕Ai) ·H for i = 1, . . . ,m− 1

(Xm−1 ⊕ (A∗m‖0128−v)) ·H for i = m

(Xm+n−1 ⊕ (C∗m‖0128−u)) ·H for i = m+ n

(Xm+n ⊕ (len(A)‖len(C))) ·H for i = m+ n+ 1

(6.3)
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The multiplication of two elements X and Y in Equation 6.3 denoted as X · Y are
multiplications in GF (2128). Please refer to [70] and [78] for details on the multiplication
in GF (2128) used in GCM.

6.6 Offset CodeBook (OCB)

The offset codebook (OCB) block cipher mode of operation which has been published by
Rogaway et al. [93] in 2001 is a combined AE scheme that is able to achieve AE by just a
single pass over the message M . Thus OCB is a so-called single-pass scheme. It is strongly
related to the Integrity Aware Parallelizable Mode (IAPM) by C. Jutla [55] and already
three different versions have been made public since 2003. Throughout the remainder of
this paper, when speaking of OCB, we solely refer to the third version of it, i.e., OCB3 [63]
that is also defined in RFC 7253 [61] which an informational RFC. In addition OCB was
submitted to the CAESAR challenge [62]. OCB is patented but its patents are freely
licensed over a large space: open-source software, non-military software, and OpenSSL [62].

6.6.1 Authenticated Encryption

To start the authenticated encryption scheme according to OCB, a plaintext message,
denoted by M , gets split into m different blocks, each of length2 n and an optional block
M∗ of length smaller than n as follows:

M =

{
M1, . . . ,Mm, if |M | = k · n and k ∈ N,
M1, . . . ,Mm,M∗, else.

In addition it accepts additional authenticated data, denoted by A, that gets split into
p different blocks, each of length n and an optional block A∗ of length smaller than n as
follows:

A =

{
A1, . . . , Ap, if |A| = k · n and k ∈ N,
A1, . . . , Ap, A∗, else.

As outlined in Figure 6.5, OCB can be divided into two main parts: an authentication
part and an authenticated-encryption part.
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Figure 6.5: Overview of the authenticated encryption of OCB assuming full final blocks.
Here inci(∆) denotes the increment of the ∆-values according to line 3 of Algorithm 6.6.4
and line 5 of Algorithm 6.6.1 respectively.

2 We refer to the length of x in bits using the following notation: |x|
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The authentication part processes the message blocks Ai of the input message, that only
need to be authenticated and compresses them to an intermediate hash value Auth. The
authenticated-encryption part is used for message blocks Mi that need to be authenticated
and encrypted and encrypts these to the ciphertexts Ci. Finally, the resulting authentication
tag T is computed by encrypting the checksum over all message blocks M0, . . . ,Mm is
encrypted, XORed with the intermediate hash value Auth and finally truncated to the
desired bit length τ .

Algorithm 6.6.1 gives an exact description of the authenticated encryption according to
OCB. The characters ‖ , ⊕, and ∧ denote the concatenation-, bitwise-exclusive-or-, and
bitwise-and-operation, respectively. Furthermore, ntz(i) describes the number of trailing
zeroes of i in binary representation. We use ∅ to represent both an empty binary string of
length n (cf. line 3), and an empty set as within line 11. The listings for the procedures
Setup, Init, and HashK used throughout Algorithm 6.6.1 are given in Algorithm 6.6.2,
Algorithm 6.6.3 and in Algorithm 6.6.4 and are described in the following.

Algorithm 6.6.1 OCB authenticated encryption.
Input: Message M of m blocks length, Message block length n, Cipher key K, Nonce N ,

Associated data A of p blocks length, Tag length τ
Output: Ciphertext C, Authentication tag T
1: if |N | ≥ n then return INVALID
2: {M1, . . . ,Mm,M∗} ←M , with |Mi| = n and |M∗| < n
3: Checksum← ∅;C ← ∅
4: L∗, L$, L[0] . . . L[blog2(m)c]← Setup(K,m)
5: ∆← Init(N,n,K)
6: for i = 1 to m do
7: ∆← ∆⊕ L[ntz(i)]
8: C ← C ‖EK(Mi ⊕∆)⊕∆
9: Checksum← Checksum⊕Mi

10: end for
11: if M∗ 6= ∅ then
12: ∆← ∆⊕ L∗
13: Pad← EK(∆)
14: C ← C ‖M∗ ⊕ (Pad ∧ (2|M∗| − 1))
15: Checksum← Checksum⊕M∗10∗, with

M∗10∗ = M∗‖1‖0 . . . 0, such that |M∗10∗| = n
16: end if
17: ∆← ∆⊕ L$

18: Final← EK(Checksum⊕∆)
19: Auth← HashK(A)
20: Tag ← Final ⊕Auth
21: T ← Tag ∧ (2τ − 1)
22: return C ‖T

The OCB algorithm starts with a setup and initialization step (cf. line 4 and 5). The
setup step as given in algorithm 6.6.2 and outlined in Figure 6.6 includes the computation
of the L[..]-values.



CHAPTER 6. AUTHENTICATED ENCRYPTION 41

Algorithm 6.6.2 Table value calculations.
Input: Cipher key K, Number of message blocks m
Output: Setup(K,m)
1: L∗ ← EK(∅)
2: L$ ← double(L∗)
3: L[0]← double(L$)
4: for i = 0 to blog2(m)c do
5: L[i]← double(L[i− 1])
6: end for
7: return L∗, L$, L[0] . . . L[blog2(m)c]

Here the double-procedure is defined according to:

double(X) = (X � 1)⊕ (msb(X) · 0x87) (6.4)

where msb(X) represents the most significant bit of X using binary representation.

0128 EK double L∗ Lndoubledouble L$ double doubleL0

Figure 6.6: OCB calculation of the L[..]-values.

During the initialization step the initial offset ∆ is determined according to Algorithm 6.6.3.
Here, x� i denotes a left shift operation of x by i bits.

Algorithm 6.6.3 Initial offset (∆) calculation.
Input: Nonce N , Message block length n, Cipher key K
Output: Init(N,n,K)
1: Nonce ← 1 ‖N
2: Top← (1122 ‖ 06) ∧Nonce
3: Bottom← Nonce ∧ (26 − 1)
4: Ktop← EK(Top)
5: Stretch← Ktop ‖ (Ktop⊕ (Ktop� 8))
6: ∆← (Stretch� Bottom) ∧ (2n − 1)
7: return ∆

Figure 6.7 outlines the initialization step that calculates the initial ∆-value.
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Figure 6.7: Overview the calculation of the initial ∆ value during the initialization step.
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Thereafter, each message block can be processed independently of each other (line 6 to
16) which allows the parallelization of OCB. Algorithm 6.6.4 describes the calculation of
HashK(A) which gives the intermediate hash Auth. Since the Setup procedure already
gets called during the actual encryption process of OCB (cf. Algorithm 6.6.1, line 4), line 3
in Algorithm 6.6.4 can be omitted as long as the table values L[..] are globally available.
Note, that the Hash-procedure uses a ∆-value different from the Algorithm 6.6.1.

Algorithm 6.6.4 Authentication hash (HashK(A)) calculation.
Input: Associated data A, Associatd data block length q, Cipher key K
Output: HashK(A)
1: {A1, . . . , Ap, A∗} ← A, with |Ai| = q and |A∗| < q
2: Sum← ∅; ∆← ∅
3: L∗, L[0] . . . L[blog2(p)c]← Setup(K, p)
4: for i = 1 to p do
5: ∆← ∆⊕ L[ntz(i)]
6: Sum← Sum⊕ EK(Ai ⊕∆)
7: end for
8: if A∗ 6= ∅ then
9: ∆← ∆⊕ L∗

10: Sum← Sum⊕ EK(A∗10∗ ⊕∆), with
A∗10∗ = A∗‖1‖0 . . . 0, such that |A∗10∗| = q

11: end if
12: return Sum

Finally, the authentication tag T is determined throughout line 17 to 21. Here τ
represents the bit length of the authentication tag T .

When using a counter for the nonce N , the calculation of the initial offset ∆ requires
a block cipher call only every 64th initialization. This is due to the fact that the least
significant six bits of N are set to zero before passing it to the block cipher (cf. line 2
of Algorithm 6.6.3). This fact together with the parallelizable processing of the message
blocks, makes OCB suitable for high-throughput applications.

6.6.2 Authenticated Decryption

The OCB decryption as shown in Figure 6.8, requires encryption and decryption functionality
of the underlying block cipher. During the initialization and setup phase, as well as for
the calculation of the intermediate hash value Auth and the computation of the final
authentication tag T , similar to the OCB authenticated-encryption, cipher encryptions
are needed. However, the encryptions in line 8 of Algorithm 6.6.1 have to be replaced
with cipher decryptions. Appendix B.2 includes the algorithm description for the OCB
authenticated decryption.
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Figure 6.8: Overview of the authenticated decryption of OCB. Here inci(∆) denotes
the increment of the ∆-values according to Line 3 of Algorithm 6.6.4 and Line 5 of
Algorithm 6.6.1 respectively.



Chapter 7
Reconfigurable Hardware

This chapter gives a short introduction on reconfigurable hardware and field-programmable
logic (FPL) devices. Section 7.1 introduces the idea of reconfigurable hardware and
introduces to the different types of FPL devices. A prominent example of FPL device
are field-programmable gate arrays (FPGAs), which this work is based on. Therefore
Section 7.2 gives an overview of the architecture of FPGAs and its sub-components and
explains how these devices can be programmed and configured.

7.1 Introduction to Reconfigurable Hardware

In applications that have specific requirements concerning issues like performance or energy
consumption, general-purpose integrated circuits like microcontrollers or digital signal
processors (DSPs) are often unsuitable and dedicated integrated circuits (ICs) have to be
designed. Application-specific integrated circuits (ASICs) can provide one possible solution
in this case. However, they have a long time-to-market and due to the high nonrecurring
engineering costs ASICs require high volumes to be economic. Furthermore, once the ASIC
is produced the design is fixed and changes to the hardware are not possible. In contrast,
FPL devices which could be viewed as “soft hardware” allow to be reconfigured and offer
fast turnaround times and thus provide an attractive alternative in cases where smaller
volumes are expected, for prototyping, when a short time-to-market is required and when
frequent modifications are likely [56].

Reconfigurable hardware emerged from programmable read-only memory (PROM) and
programmable logic devices (PLDs) and were initially used for glue logic. Today’s FPL
devices are extremely powerful and can mainly be divided into complex programmable
logic devices (CPLDs) and field programmable gate arrays (FPGAs). The main difference
between CPLDs and FPGAs is of architectural nature. CPLDs combine hundreds of
identical subcircuits, each containing a simple layer of programmable logic and layer of
flipflops and local feedback paths, with a programmable interconnect matrix network.
However, for a given task, this form of organization requires artificial partitioning into a
bunch of cooperating subcircuits which does not encourage efficiency. Typically, CPLDs
provide less gates than FPGAs but keep their configuration on power down and ease the
prediction of path delays. As FPGAs usually do not keep their configuration on power
down, CPLDs are often used to load configuration data for FPGAs on startup. For a more
detailed introduction to the history and the details of reconfigurable hardware please refer
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to [67, 112].
As this work was realized using an FPGA the next section will give an introduction to

FPGAs and explain its principle and structure.

7.2 Field-Programmable Gate Arrays (FPGAs)

Although many different FPGA designs and architectures by different vendors exist, they
basically all follow the architecture illustrated in Figure 7.1. The architecture typically
consists of an array of logic blocks, called logic array blocks1, configurable2 input/output
(I/O) cells and a configurable interconnect matrix that is used to route the signals between
the logic blocks and I/O blocks. Furthermore, it contains a clock circuitry that is used
to drive the clocks signals for the flipflops included in the logic blocks. In addition, many
modern FPGAs include special purpose ressources such as DSPs, adders, multipliers,
decoders, memory and even embedded general purpose processors. Note, that the regular
structure of FPGAs is very similar to gate array ASICs.

configurable

I/O cell

logic
array
block

wire

w
ir

e

FPGA

Figure 7.1: General architecture of an FPGA.

7.2.1 Logic Array Blocks (LABs) and Arithmetic Logic Modules (ALMs)

The Logic Array Blocks (LABs) contain an array of smaller logic blocks. Note, that the
naming and exact architecture of the logic blocks varies from vendor to vendor. Altera calls
the logic blocks Arithmetic Logic Module (ALM) while Xilinx calls them Slices. However,
as this work is based on an Altera FPGA, we will stick with the name ALM in the following.
Usually ALMs contain two or four smaller structures that are similar and share some signal.
Typically, these sub-structures feature a n-input look-up table (LUT) or n-LUT, which is a
memory (typically SRAM) that can be used to produce arbitrary n-input Boolean equations.
In addition, they contain a register that can be configured to act as a flipflop or latch
1 Depending on the FPGA vendor the naming and architecture of the array of logic blocks may vary.
Altera calls them Logic Array Blocks (LABs) and Xilinx names them Configurable Logic Blocks (CLBs).

2 The term “programmable” is often used synonymous to the term “configurable”.
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Figure 7.2: Overview of a simplified configurable logic block (a) and the configuration of a
LUT (b).

and multiplexers that are used to route the logic within the ALM and to route incoming
and outgoing signals. Figure 7.2a shows a simplified form of a typical sub-structure of an
ALM which consists of a 3-LUT, that can be built out of eight SRAM cells as illustrated
in Figure 7.2b, a register and a multiplexer that can be used to select the register’s input.
Note, that the output of the LUT does not need to go through the register which allows to
combine multiple ALMs to create complex Boolean functions. This is an advantage over
CPLDs.

ALMs on modern FPGAs, such as the Altera Stratix IV and Altera Stratix V devices
or the Xilinx Virtex 7 device family, are much more sophisticated and may contain up to
8-input look-up tables and adders and offer many configuration possibilities. For example,
the n-input LUTs can also be configured to be used as n×1-bit RAM or n-bit shift registers.
The FPGA vendors provide detailed information on their FPL devices in the datasheets
and a more general and concentrated overview is given in [67, 94, 112]. Note, that due
to different sets of features and configurations for ALMs of different vendors and even for
different device families of the same vendor, it is hard to compare their performance and
resource consumption for given algorithms.

7.2.2 Configurable I/O Blocks

The configurable I/O blocks allow to bring signals onto the device and also to bring them
back off again. They can be configured to be three-state or open collector and also allow
to control the slew rate. Additionally, they can be programmed to work with different
voltage levels in order to be capable to interact with CMOS or TTL devices. Furthermore,
as routing delays are significant in FPGAs, they typically contain a register to be able to
either meet hold times routing an incoming signal through the internal interconnect to a
flip-flop inside one of the devices ALMs or to reduce the delay for outgoing signals to allow
moderate setup times for interfacing devices. This allows the FPGA to run at maximum
Speed.

7.2.3 Programmable Interconnect and Clock Circuitry

The programmable interconnect consists of multiple hierarchies. First, each ALM is directly
connected to its nearest neighbors which allows to realize logic that is too complex for
single ALM without introducing a lot of routing delay. Second, another level of routing
ressources bypasses a number of ALMs before leading into switch matrices which provide
the routing of signals. However, these switches introduce a noticeable delay. The third
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level of interconnect is long lines which can be used to connect ALMs that are distant to
each other but have are critical in matters of delay. Still, FPGAs have a high routing delay
which often can be greater than the logic delay.

The clock circuitry consists of special I/O cells with special clock buffers that are used
to drive the internal clock lines that are optimized for low skew times and fast propagation.

7.2.4 Programming and Configuration of FPGAs

FPGAs are programmed using so called configuration files sometimes also referred to as
bit files that are uploaded onto the FPGA in order to perform the desired function. The
configuration files are obtained using special software provided by the FPGA vendors that
synthesize code written in hardware description languages (HDLs) such as VHDL or Verilog
HDL into a bit file appropriate for the desired device.

There are two competing methods and technologies for programming FPGAs. First,
there is SRAM programming where the bit stream is stored into SRAM and then is used
to realize combinatorial logic as described in Section 7.2.1. In addition, some of the bits
are used to configure the multiplexers that are used to control the special functions and
the routing inside the ALM as well as the routing of the interconnect. The advantage of
this method is, that it allows the reconfiguration of the FPGA and even makes dynamic
reconfiguration possible. But then again, as SRAM is not static the bit stream has to
be uploaded on every startup. Typically the bit files are stored in Electrically Erasable
Programmable ROM (EEPROM) or flash memory and loaded to the FPGA using a CPLD3.
In order to protect the intellectual property from being copied, by intercepting the bit
stream during configuration of the FPGA, modern devices typically feature an encryption
of the bit stream. Therefore, they contain a non-volatile key memory that holds a secret
key. The vendor’s synthesizer software then generates an encrypted bit stream the same
key. Finally, on configuration, the FPGA decrypts the bit stream and configures itself.

The Second method is anti-fuse programming where physical connections between the
traces are established by applying a current. Anti-fuse based FPGAs have the advantage of
being more power efficient and of a better intellectual property security. However, they can
only be programmed once, which makes them much more inflexible.

3 Today, most CPLDs are electrically programmable and erasable and non-volatile.



Chapter 8
Overview of the Hardware Platform

The contribution of this work is based on an existing, specially designed FPGA-based
hardware platform and an existing authenticated encryption implementation that is part of
the QCrypt project [85], which is evaluated by the Swiss National Science Foundation and
financed by the Swiss Confederation via Nano-Tera.ch. The whole system was designed
to provide a future-proof, secure, high-speed communication platform that is based on a
quantum key-distribution system. This section aims at describing the existing hardware
platform and its most important components: the quantum key-distribution system and
the FPGA-based fast-encryptor system. Section 8.1 gives an overview over the overall
architecture of QCrypt and its main components. The quantum key-distribution system
is explained in Section 8.2 and Section 8.3 describes the fast-encryptor system. Finally,
Section 8.4 will introduce the Altera Stratix IV FPGA, implementing the fast-encryption
system.

8.1 System Overview

Within the scope of the QCrypt project, a dedicated hardware platform, based on an
FPGA has been developed to have a real-life test environment. The whole system can be
divided into two parts: the quantum key-distribution (QKD) system and the fast-encryptor
system as shown in Figure 8.1. Both communication partners Alice and Bob own such a
system. In order to provide a secure key distribution, the QKD-system generates truly
random numbers using quantum effects and then performs a quantum key distribution over
a secure dark-fibre channel using the principles described in Section 3.3 and Section 4. The
fast-encryptor system handles the high-speed network communication and generates an
authenticated and encrypted data stream using the user-keys provided by the QKD-system
that is then transmitted to the communication partner over a public 100Gbit/s channel.

A description of the quantum key-distribution system is given in Section 8.2 and details
of the fast-encryptor system follows in Section 8.3.

8.2 The Quantum Key-Distribution System

The quantum key-distribution (QKD) system is responsible for the user-key generation and
distribution and is described in [105]. Both communication partners Alice and Bob own a
quantum key-distribution board. The boards are directly connected over a secure 2.5Gbit/s
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Figure 8.1: Overview of the QCRYPT system.

dark fibre quantum channel and a 2.5Gbit/s classical service channel. The QKD boards
contain an FPGA that is responsible for handling the communication between the QKD
boards during key generation as well as for the fundamental operations in the process of
quantum key-stream generation. Additionally, the FPGA handles the error correction and
privacy amplification that are required in the process of key distillation and uses the service
channel for this task. Furthermore, the FPGA passes the user keys over to the process
manager and also to the fast-encryptor board if required. The QKD board also features a
quantum generation component that is responsible for generating truly random numbers
exploiting an optical quantum process [88] which are then used for the transformation
into a quantum bit stream following the principles described in Section 3.3. In addition,
the board includes a processor manager that handles high-level controls and the user-key
management.

Using this setup, random keys can be generated and securely transmitted at 1Mibit/s.

8.3 The Fast-Encryptor System

The fast-encryptor system takes the user data, encrypts and authenticates this data if
required and transmits it to the communication partner over a public 100Gbit/s optical
channel. Figure 8.2 shows the actual fast-encryptor board which is based on a 24-layer
printed circuit board (PCB). It features ten 10Gbit/s ethernet user interfaces and one optical
100Gbit/s as well as an Altera Stratix IV EP4S100G5 FPGA that provides around 530,000
logic elements (LEs) and 48 full-duplex clock data recovery (CDR)-based transceivers at
up to 11.3Gbit/s. On startup an Altera MAX II CPLD loads the configuration file from a
flash memory and configures the FPGA accordingly.

On the FPGA a high-speed authenticated-encryption system that is capable of providing
a throughput of 100Gbit/s is implemented. It consists of a transceiver that is able to
exchange plaintext user data over a 10 × 10 Gbit/s ethernet interfaces. When acting as
a transmitter, this data is then passed over to the high-speed authenticated-encryption
unit that provides the possibility to either pass the data through as plaintext, to only
encrypt the data or to authenticate and encrypt the data. The implementation of the
high-speed authenticated-encryption unit is the main contribution of this work an will be
treated in detail in the following chapters. The output of the high-speed authenticated-
encryption unit is handed over to the 100Gbit/s client interface and finally transmitted
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Figure 8.2: Encryption board.

to the communication partner over a 100Gbit/s public optical channel. The receiver side
has a similar system, but with the data taking the reverse way. From the 100Gbit/s client
interface it is passed over to the high-speed authenticated-encryption unit where the data
is decrypted and its authenticity is checked if needed. Then it is given to the transceiver
that hands the received plaintext data over to the user.

In addition, the board comes with a sophisticated power supply that supports the
boards power consumption of up to 340W and that provides all the voltage levels needed
by the components.

8.4 The Altera Stratix IV EP4S100G5 FPGA

The Altera Stratix IV EP4S100G5 FPGA belongs to the Altera Stratix IV GT FPGA
family which is a high-end device class that includes high-speed transceiver features. The
EP4S100G5 device has a ball grid array package with 1,932 pins (there of more than 1,100
pins for power and 781 pins for user I/Os) and features 212,480 arithmetic logic modules
(ALMs) and a total of 27,376 kbit of memory. Additionally, it provides 32 transceiver
channels that support data rates up to 11.3Gbit/s and 16 transceiver channels that support
data rates up to 6.5Gbit/s.

The following subsections introduce the basic architecture of the Altera Stratix IV
EP4S100G5 FPGA and point out the most important characteristics of this device. For a
more detailed information the reader is referred to the datasheet [9] provided by Altera.

8.4.1 Logic Array Blocks (LABs) and Adaptive Logic Modules (ALMs)

Logic array blocks (LABs) and adaptive logic modules (ALMs) are the fundamental building
blocks in the Stratixr IV device family that can be configured to implement logic functions,
arithmetic functions and register functions. Each LAB is composed of ten ALMs, various
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carry and shared arithmetic chains, control signals, local interconnect and register chain
connection lines [9]. The local interconnect links the ALMs inside the same LAB. The
direct link interconnect connects to the local interconnect of the neighboring LABs to its
left and to its right. Register chain connections allow to transfer the output of an ALM to
the subsequent register.

In addition, a variation of the Stratix IV LABs called memory LAB (MLAB) exists which
adds look-up table based SRAM capability to the LAB and which supports a maximum of
640 bits of simple dual-port SRAM per MLAB. In the Stratix IV family LABs and MLABs
always exists as pairs.

The adaptive logic module as outlined in Figure 8.3 is the fundamental unit for building
logic in the Stratix IV FPGA. Each ALM contains a number of LUT-based ressources that
can be split between two adaptive LUTs (ALUTs) and two registers. Using up to eight
inputs the two ALUTs can implement various combinations of two logic functions with
the additional option for each ALM to implement any six-input function and even certain
seven-input functions.
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Figure 8.3: High-level block diagram of the Stratix IV ALM.

Additionally, each ALM features two programmable registers and two dedicated full
adders. Using these dedicated ressources and the provided configuration and interconnect
possibilities it is possible to efficiently realize various arithmetic functions and shift registers.

Each ALM can be used in one of the following operating modes that uses the ALM’s
resources differently. The normal mode is suited for general combinatorial and logic
functions and allows different input combinations for the two LUTs reaching from two
4-input functions, to combinations like one 5-input functions and one 3-input function and
even to two 6-input functions in special cases. The extended LUT mode can be used to
implement a special set of 7-input functions. This set requires to include a 2-to-1 multiplexer
that is fed by two five-input functions that have four inputs in common. Such functions
often appear in “if-else” statements in HDL code. The arithmetic mode is perfectly suited
for implementing arithmetic functions such as adders, counters, comparators, accumulators,
and wide parity functions. Each ALM contains two dedicated full adders that can add the
outputs of two 4-input logic functions implemented in the LUTs while also considering the
carry in bit. In the shared arithmetic mode each ALM can realize a 3-input add and in
the LUT-register mode the ALM’s LUTs can be used to add a third register to the two
registers included in the ALM.



Chapter 9
The Existing Authenticated-Encryption
Engine

This chapter describes the existing authenticated-encryption engine which features two
completely independent AE cores. The architecture of the AE cores is based on the AES
block cipher which is used in the Galois Counter Mode of operation and follows the design
described by Henzen and Fichter in [49]. As shown in Figure 9.1, one AE core is dedicated
to encryption and the other core is solely used for decryption. Both AE cores can use
distinct keying material as delivered by the QKD board and are able to work separately
from each other.
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Figure 9.1: Overview of the authenticated-encryption engine.

The GCM system can be divided into two main components. First, the multi-core
AES encryption block which is responsible for encryption and second, the parallel pipelined
GHASH block which provides authentication. The multi-core AES encryption architecture
is described in Section 9.1 and the GHASH design is treated in Section 9.2. Finally, the
overall GCM architecture is outlined in Section 9.3.
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9.1 Multi-Core AES Design

In order to provide a high throughput, pipeline stages are introduced after each round of
AES. The most critical transformation within a round of AES is the SubBytes procedure
which includes the use of 8-bit S-boxes. As these S-boxes are implemented using BRAM
which is configured as registered ROM, this introduces another in-round pipeline stage.
Furthermore, the design includes an input register. This results in 2× 10 + 1 = 21 pipeline
stages for AES with 128-bit keys.

Still, a single AES core is not capable of providing a throughput of 100Gbit/s. Conse-
quently, in order to reach the requested throughput four instances of the AES core are used
in parallel. All the cores share the same key scheduler which results in an architecture for
the multi-core AES module as shown in Figure 9.2. As they share the key scheduler the
AES cores are forced to use the same user key (and thus also the same round keys). The
resulting multi-core design is capable of processing a 512-bit block (4× 128 bit) of plaintext
each cycle without delay after prior initialization. This is possible since the GCM uses the
block cipher in Counter (CTR) mode of operation where the cipher text is generated by
XORing the plaintext with the output of the block cipher as described in Section 6.5.
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Figure 9.2: Overview of the multi-core AES architecture. Connections are 128 bit wide and
i = 0, 1, . . . , dn4 e where n is the number of message blocks.

9.2 The Parallel Pipelined GHASH Design

In order to be able to work with the multi-core AES, the authentication core is based on four
parallel pipelined binary-field multipliers. As the GHASH is the most complex component
of the entire GCM architecture it requires some optimization. To allow the parallelization
of the multiplication operation described in Algorithm (6.3) an approach as outlined
in [96] is used. The goal is to divide the sequential multiplications and addition steps of
Algorithm (6.3) into parallel multiplications that produce the same output. Following [96]
and by defining a parallelization degree q, the calculation of the last output block Xm+n+1
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in Algorithm (6.3) can be rewritten as a sum of q sub-terms Qi:

Xm+n+1 = Qq ⊕Qq−1 ⊕ · · · ⊕Q1 (9.1)
where

Qq = (((I1H
q ⊕ Iq+1)H

q ⊕ I2q+1)H
q ⊕ . . . )Hq

Qq−1 = (((I2H
q ⊕ Iq+2)H

q ⊕ I2q+2)H
q ⊕ . . . )Hq−1

...
Q1 = (((IqH

q ⊕ I2q)Hq ⊕ I3q)Hq ⊕ . . . )H

(9.2)

and
I1, I2, . . . , Im+n+1 = (A1, . . . , A

∗
m‖0128−v, C1, . . . , C

∗
n‖0128−u, len(A)‖len(C)) (9.3)

In casem+n+1 is not a multiple of q, the last q multiplications are shifted appropriately.
The important observation of Equation (9.1) is the fact, that the different Qi can be
calculated separately and XORed at the very end of the GHASH operation.

Still, because of the high-speed requirement additional pipeline stages had to be intro-
duced in every multiplier which results in a design that uses the 2-step Karatsuba-Ofman
algorithm (KOA) and a 4-stage pipeline architecture similar to [113]. The KOA aims at
reducing the complexity of a multiplication while simultaneously enabling the introduction
of pipelining. The single step KOA splits two m-bit operands A and B into four m

2 -bit
terms Al, Ah, Bl and Bh (split phase). The multiplication works as follows:

Rl = AlBl

Rhl = (Ah +Al)(Bh +Bl)

Rh = AhBh

R = Rhx
m + x

m
2 (Rh +Rhl +Rl) +Rl

(9.4)

where x is the base of the used number representation. The final result R is calculated
by aligning the intermediate results Rh, Rhl and Rl (alignment phase). If this approach
is applied recursively twice, it is referred to as 2-step KOA. Using the 2-step KOA each
128-bit multiplier is reduced to nine 32-bit multipliers which decreases the complexity of the
computation. In addition four pipeline stages were inserted to each 2-step Karatsuba-Ofman
multiplier which results in an architecture as shown in Figure 9.3.

As four parallelization degrees and four pipeline stages are used the parallelization
degree q has to be set to 16 which means that input blocks Ii are processed into 16 separate
registers Qi with 1 ≤ i ≤ 16. Figure 9.4 gives a block diagram of the final GHASH module.
The multiplexers select the first operand for the multiplication while the second operand Hk

with 1 ≤ k ≤ 16 comes from pre-calculated values that are stored in a dedicated memory
bank called Hk-memory. The authentication tag T is then calculated by XORing all 16
values of Q1, . . . , Q16.
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9.3 GCM Design

The overall GCM architecture is based on a combination of the multi-core AES as described
in Section 9.1 and the parallel pipelined GHASH as outlined in Section 9.2. The powers
of H are computed whenever the secret key changes. After the calculation of the initial
H-value according to Algorithm (6.1), which is performed by encrypting the zero message
0128, 17 cycles are required to calculate all 16 powers of H and to store it in the dedicated
Hk-memory. After this step the AES-GCM core is ready to authenticate and encrypt
messages with the new key.

In Algorithm (9.1), the calculation of the accumulators Qi involves a multiplication
with different powers of H. Thus, the GCM controller needs a priori knowledge of the
overall message length. While most of the input blocks are multiplied with H16, the last
15 blocks involve multiplications with lower powers of H. Table 9.1 shows the input pairs
of the four parallel multipliers for an input of 288 bytes of ciphertext with 48 bytes of
additional authenticated data. Note, that for this example the number of 128-bit input
blocks is m+ n+ 1 = 3 + 18 + 1 = 22 is not a multiple of the chosen parallelization degree
q = 16.

Table 9.1: Input pairs of the four parallel multipliers for an input of 288 bytes
of ciphertext with 48 bytes of additional authenticated data.

Clk I4j+1 Hk I4j+2 Hk I4j+3 Hk I4j+4 Hk

1 A1 H16 A2 H16 A3 H16 C1 H16

2 C2 H16 C3 H16 C4 H16 C5 H15

3 C6 H14 C7 H13 C8 H12 C9 H11

4 C10 H10 C11 H9 C12 H8 C13 H7

5 C14 H6 C15 H5 C16 H4 C17 H3

6 C18 H2 lena H

a len = len(A)‖len(C)

To be able to use the correct values of Hk the controller needs to know at the second
clock cycle, that C5 has to be multiplied with H15 and that it needs to scale the powers of
Hk correspondingly for the next four clock cycles. The problem of knowing this in advance
is solved by inserting a 4-stage 512-bit buffer at the input of the AES-GCM core, which
results in an overall architecture as presented in Figure 9.5. This buffer is used as a shift

AES-GCM
Input

Controller

n<8 n<12 n<16 else

Input valid

last blocks
config

(P4i′+1, P4i′+2, P4i′+3, P4i′+4)

Multi-AES GHASH

4

4 4 x 128

4 x 128

4

2

Figure 9.5: Overview of the AES-GCM input-buffer architecture. Solid connections are 512
bit wide, dotted connections are 4 bit wide and i′ = 0, 1, . . . , dn4 e.



CHAPTER 9. THE EXISTING AUTHENTICATED-ENCRYPTION ENGINE 57

register and allows the controller to detect the length and the configuration of an input
message in advance. The multiplexer, following the input buffer is used to select the correct
input in case of short messages where m+ n+ 1 < 16. So, by the cost of introducing four
512-bit registers and a 512-bit 4:1 multiplexer, the GCM core is able to process messages
without prior information of the overall message length.

GCM has the advantage, that encryption and decryption work the same way. On the
one hand, the underlying block cipher does not need to implement decryption functionality
and on the other hand, the same architecture can be used for encryption and decryption.
There are only two minor changes necessary. First, the ciphertext can be directly applied
to the GHASH core as the GHASH expects either encrypted or authentication-only inputs.
Second, the decryption architecture has to check the validity of the resulting authentication
tag by comparing it with the original tag. In fact, the existing implementation is capable
of encryption and decryption, although this is not required by the overall authenticated
encryption engine.



Chapter 10
Analysis of Alternatives to the Existing
System

One of the main goals of this work is to find and implement alternatives to the block
cipher and the authenticated encryption engine of the existing system in order to provide
quick fixes in case of a vulnerability of one of the used components. In the best case these
alternatives should even improve the possible throughput or the required FPGA resources
(or preferably both) compared to the existing system.

In order to find appropriate candidates, first, in Section 10.1 an analysis of the character-
istics and conditions these candidates need to fulfill to meet the requirements is performed.
Then, in Section 10.2 possible candidates as alternative block ciphers are inspected in
regard of their suitability with the previously defined characteristics and requirements. The
same approach is then exercised in Section 10.3 to find and analyze possible alternatives
for the authenticated-encryption engine.

10.1 Analysis of Requirements

This section defines the requirements and characteristics of the high-speed authenticated
encryption system. Furthermore, it elaborates how the system’s characteristics influence
the choice of properties that are desired for possible alternatives to the existing system.

The following requirements can be identified, which will be discussed in the following:

• 100Gbit/s authenticated encryption with associated data

• Compatible to existing authenticated-encryption engine

• Different modes of transmitting a frame: leave it unchanged, authenticate and encrypt
the whole frame, authenticate and encrypt the payload, only encrypt the payload or
only authenticate the payload

• Low latency

• Low setup time after key change

• Short delay between ciphertext and authentication tag

• Low transmission overhead caused by AE

58
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• (Preferably low hardware consumption)

As previously stated, the main objective is to provide authenticated encryption at
a speed of 100Gbit/s as supported by IEEE 802.3ba ethernet standard [52]. Basically,
there are two main principles to realize a high throughput: pipelining in combination
with loop unrolling and parallelization. The concept of pipelining aims at increasing the
throughput by cutting the combinational logic function f into p separate stages of reduced
and approximately uniform computational delays by inserting registers in between. This
effectively reduces the longest path delay tlp to tlp(p) ≈ tf

p + treg, where tf is the delay of
the combinational function and treg is the register delay, and thus allows higher operating
frequencies [56]. At the same time it also increases the latency by the number of pipeline
stage p and requires p additional register banks. In order to fully benefit from pipelining it
is necessary to unroll functions f that use feedback loops as the round functions of block
ciphers typically do. Again, this increases the hardware consumption by f · r where r is the
number of loops being unrolled. The concept of parallelization is a form of replication by
simply providing q instances of the same functional units for f and letting them process
independent inputs. The throughput as well as the hardware consumption is roughly
multiplied by q. Note, that it is strictly necessary that the inputs to the functional units
are independent from each other to allow parallelization.

The theoretical maximum throughput of a system applying pipelining techniques is
only achieved if the pipeline is completely filled. Only then a valid output is produced
every cycle. Still, every input applied to the input of f has a latency of p cycles to appear
at the output. Thus, it is advantageous to have a minimal number of pipeline stages p
and to avoid pipeline stalls. Two important cases that can cause pipeline stalls in most
AE schemes are changes of the secret key K and changes of the initial vector IV as they
usually include an initialization phase. Thus, the number of pipeline stalls caused by these
two operations should be as small as possible.

As elucidated in Chapter 9, the existing authenticated encryption engine is based on
four AES-128 cores used in parallel. Consequently, the network interface is designed to
deliver 4 · 128 = 512 bits per cycle to the AE engine. Thus, in order to be compatible to the
existing system and to allow an easy exchange of the AE engine, alternatives should accept
512 bits per cycle as well. Furthermore, the existing AE engine uses 128-bit secret keys
received from the QKD system. This fact has to be considered by alternative candidates.

In addition, different modes of encrypting and transmitting ethernet frames are desired.
First, it should be possible to leave an ethernet frame unchanged which can easily be done by
simply bypassing the authenticated encryption engine. The second option is to authenticate
and encrypt a whole ethernet frame and to encapsulate it into a new frame. This principle
is shown in Figure 10.1a. Here the entire ethernet frame is provided as plaintext for the
AE engine. The initial Vector IV , the encrypted frame i.e. the resulting ciphertext C and
the authentication tag T are encapsulated by the internal start of frame (SOF) and the
internal end of frame (EOF). The resulting frame is then transmitted to the communication
partner. Note, that this mode is only applicable in point-to-point network configurations as
the encryption of the header hides the address information needed for routing. It provides
a high level of privacy for frames since in addition to the payload also the source and
destination addresses are hidden. Still, it has a comparably high transmission overhead of
gs + ge where gs includes the internal SOF and the IV and ge includes T and the internal
SOF.

A third option, as shown in Figure 10.1b, is to authenticate and encrypt only the
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Figure 10.1: Different modes of encrypting an ethernet frame.

payload of a frame and to authenticate its header. This method applies the AEAD scheme.
The new frame is composed of the SOF, the original header, the encrypted payload, the
calculated authentication tag T , a cyclic redundancy checksum (CRC) which should be
recalculated for the new frame and the EOF. The transmission overhead is made up of
the initial vector IV and the authentication tag T . As the header is sent in plaintext, this
method is also suitable for multi-point networks. It is also possible to only authenticate
header and payload as outlined in Figure 10.1c. However, this option does not provide any
privacy for the transmitted data and is not major importance. Again, the transmission
overhead is made up of the IV and T . Finally, one option is to only encrypt the payload of
the frame. In consequence, this method does not provide authenticity for the frame. As no
IV and authentication tag are required there is no transmission overhead compared to a
standard ethernet frame.

As visible in Figure 10.1, some transmission modes require the cipher text C as well
as the authentication tag T to compose the ethernet frame that is then transmitted over
the public channel. If the generation of T is delayed for n cycles after the appearance
of the last block of the cipher text C, C has to be preserved for n cycles. This requires
n · (len(frame)− len(T )) bits of additional memory, where len() returns the number of bits
of its argument. Consequently, it is essential to have a short delay between ciphertext and
authentication tag.

A low hardware consumption is not the most important requirement as long as the
required resources do not exceed the resources left on the target FPGA. The, network
interface components and controllers require about 120 kALMs which is about 56% of the
resources available on the Altera Stratix IV EP4S100G5 FPGA. So, about 90 kALMs are
available for the AE-engine. Still, a low hardware consumption is desirable as it leaves
room for future feature extensions and as a lower resource consumption typically allows
higher frequencies due to a lower routing overhead.

In Section 10.2 and Section 10.3 block ciphers and authenticated encryption systems
are surveyed in respect to the requirements discussed in this section.
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10.2 Alternative Block Cipher

The existing authenticated-encryption engine is based on AES-GCM which is a block-cipher
mode of operation. Therefore, in order to provide an alternative in case the security of
AES should be compromised or to possibly find an alternative that is better suited for the
system than AES, we investigate into alternative block ciphers. This section surveys how
the previously described requirements relate to general properties of block ciphers and will
then analyze and compare promising block ciphers.

As mentioned in Chapter 9, the existing system uses four AES cores in a parallel. So,
to facilitate the exchange of the encryption unit of the existing GCM implementation an
alternative authenticated-encryption unit should be able to reach the desired throughput
of 100Gbit/s using four instances of the cipher core. This results in a target throughput
of 25Gbit/s for a single block cipher core. The maximum throughput of a block cipher
is mainly determined by the operations it uses and how efficient they can be realized in
hardware. Functions like shifts or rotations come for free and basic logic functions such as
XOR, AND, OR, NAND or NOR can efficiently be implemented in hardware. Mathematical
operations such as additions or multiplications are typically more expensive. Another
important point is the number of round functions of the block cipher, or more precisely
the number of pipeline stages required to accomplish the frequency needed to reach the
desired throughput of 100Gbit/s. As pointed out, the number of pipeline stages directly
relates to the number of cycles of latency. A low latency is desirable because it moderates
the negative effect of pipeline stalls. Consequently, the fewer pipeline stages necessary, the
better. It is also desirable that key changes imply a minimal number of pipeline stalls.
Many block ciphers require the round-keys to be applied in reverse order. Consequently,
the encryption can only start when the last round key has been computed by the round-key
generator. So if the calculation of the round keys needs n clock cycles this causes n pipeline
stalls.

As stated in Chapter 9 the authenticated-encryption engine employs two separate AE
cores. One core is exclusively dedicated to encryption and the other one exclusively performs
the decryption. Thus, in case the AE algorithm requires the block cipher in encryption and
decryption configuration, both configurations should be able to reach the target throughput.
Even if it is not of major interest whether the encryption and the decryption of a block
cipher are able to share functionality and hardware it is desirable as this could be beneficial
in some cases.

In the following, we analyze the characteristics and the suitability for a throughput of
100Gbit/s for two block ciphers. First we treat the currently used AES cipher and then
investigate into Serpent cipher. Finally, we will compare both ciphers to each other and
select an alternative block cipher based on the observations and findings of this comparison.

10.2.1 AES

The AES block cipher as described in Section 5.1 has 10 rounds if used with a key size of
128 bits. Each (but the very last, which is slightly different) round includes the SubBytes,
the ShiftRows, the MixColumns and the AddRoundKey operations.

The SubBytes operation is based on S-Boxes that perform an 8-bit to 8-bit mapping.
There are three methods to realize the SubBytes operation: algorithmic, using LUTs or
using RAM. The algorithmic approach directly implements the multiplicative inverse and
the affine transform in combinational logic. However, then a number of pipeline stages
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has to be introduced to allow the required operating frequencies. This would increase the
latency to an unacceptable level. Implementing the S-Boxes in LUTs requires 4 ALMs and
two levels of cascaded multiplexers (MUX) on the target platform, as each ALM can be
configured as a 6-to-1 LUT [65]. This creates three logic levels which eventually require the
insertion of a pipeline stage which would still be acceptable. Using RAM to implement the
S-Boxes is the most common approach. Altera Stratix IV FPGAs provide to either use
BRAM or to configure MLABs as ROM. Both cases provide the possibility to introduce
pipeline stages for free if required. The ShiftRows operation is for free as it only requires
rewiring. For the encryption the MixColumns operation can be implemented with relatively
few resources as it only includes multiplications in GF (28) with the constant values 0x01,
0x02, and 0x03. These can be performed using shifts and XORs in hardware. However,
the InvMixColums operation required for the decryption includes multiplications in GF (28)
with the constants 0x09, 0x0b, 0x0e and 0x0d. These are more complex to implement and
tend to form a longer critical path. Hence, the maximum frequency for decryption may
slightly be lower than for encryption. The AddRoundKey operation is cheap in hardware and
only requires to XOR two 128-bit values. While in theory AES encryption and decryption
can share some of their resources, resource sharing is not especially practical for high speed
implementations, as it requires the introduction of additional multiplexers which would
increase the critical path and thus lower the maximum operating frequency.

Each round of AES requires one round key of 128-bit. The round-key generation is
relatively cheap and has a short critical path, as it only requires fixed rotates, XORs and
four 8-bit to 8-bit S-Boxes. As it can roughly reach the same frequency as the encryption
operation, this allows to compute the round keys on-the-fly without lowering the overall
maximum frequency.

Existing high-speed AES implementations on FPGAs [6, 28, 49] suggest, that two
pipeline stages per round are necessary to reach the desired throughput of 25Gbit/s for
one cipher core. Including an input buffer this results in a total of 21 pipeline stages
and consequently a latency of 21 clock cycles. The existing AES architecture, combining
one round-key generation unit and four cipher cores, requires around 6,916ALMs and
314M9KBRAM blocks for encryption and 6,964ALMs and 314M9KBRAM blocks for
decryption. It reaches a throughput of 124Gbit/s at a maximum frequency of 252MHz.
The latency is 21 clock cycles and 20 cycles are required to compute all round keys.

10.2.2 Serpent

The Serpent block cipher as outlined in Section 5.2 has 32 rounds, requires the computation
of 33 round keys and has a high security level. Each round (but the very last, which is
slightly different), is composed out of the key-mixing stage, the substitution stage and the
avalanche stage.

The key-mixing stage is cheap in hardware as it only requires to XOR two 128-bit values.
The substitution stage uses eight different S-boxes that perform a 4-bit to 4-bit substitution.
These 4-bit to 4-bit substitutions fit very well to the structure of the Alter Stratix IV ALMs
as these can be configured to provide two 4-to-1 LUTs. So, one S-box can be implemented
using only 2 ALMs, which results in 2 × 32 = 64 ALMs required for the S-Boxes of one
round of Serpent and 64× 32 = 2,048 ALMs for all 32 rounds. The avalance stage or linear
transformation only uses fixed shifts and rotations, which are free in hardware, and two
levels of XORs. Thus, the critical path is only increased by the delay of two XORs. Serpent
encryption and decryption can only share few resources. As resource sharing requires the
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introduction of additional multiplexers which would increase the critical path and thus
lower the maximum operating frequency while only providing marginally lower resource
consumption it is impracticable for high-speed implementations.

The key-scheduler that computes the 33 round keys is relatively complex. On the one
hand it requires all eight different S-Boxes, which requires 64× 8 = 512 ALMs and on the
other hand eight levels of XORs per round key which in fact constitutes the critical path of
the Serpent ciphers.

Existing implementations [33, 38, 39, 64, 103] of the Serpent block cipher indicate that
Serpent is well suited for high speed implementations and can reach a throughput of up to
40Gbit/s. Using one pipeline stage should be sufficient to reach the target throughput of
25Gbit/s for one cipher core. Due to that fact that Serpent uses 32 rounds this results in a
latency of 33 clock cycles if an additional input buffer is used. As it employs functions that
are cheap in hardware, the maximum frequency should be relatively high. However, the
big number of rounds and pipeline stages, as well as the complex key scheduler result in a
fairly high resource consumption.

10.2.3 Comparison and Choice of an Alternative Blockcipher

Table 10.1 compares the characteristics of the AES cipher with those of two candidates
for the alternative block cipher. Namely, these candidates are Serpent and Twofish [98].
All three ciphers were finalists in the AES-competition and during the competition process
various comparisons of the AES-candidates targeting their hardware performance were
published [33, 39, 45]. Still most of the papers try to reach good Throughput/Area results
and do not really target high-speed implementations. Thus, the values for maximum
throughput, maximum frequency, hardware consumption and required pipeline stages had
to be estimated for Serpent and Twofish. The values of AES correspond to the AES
implementation used in the existing AE engine as described in Section 9.1. Due to advances
in FPGA technology, performance enhancements can be expected compared to the papers
previously mentioned. Both alternative candidates—Serpent and Twofish—should be able to
reach a throughput of 100Gbit/s using four cipher cores in parallel. A detailed description
of the Twofish cipher is out of scope of this theses. We refer the reader to [98] for an
algorithm description.

We compare Serpent and Twofish with AES as this cipher is used in the existing
implementation. Both, Serpent and Twofish support the required block- and key-length
of 128 bits and based on published implementations and own research they should be
capable to reach the desired throughput. However when opting for maximum throughput
Serpent appears to be the most promising candidate with a potential throughput of up to
around 37Gbit/s as it only uses simple operations such as fixed shifts, fixed rotations and
XORs which allow a short critical path. Then again, Serpent, consumes most resources
in terms of used ALMs when implementing the S-Boxes as LUTs. However, it does not
require the use of any BRAM. Twofish in contrast should consume about as many resources
as the existing AES implementation does with a higher need of BRAM. Serpents uses a
conservative security approach and has a high security margin and consequently has a high
number of rounds. The high number of rounds in combination with the need to apply
pipelining results in a latency of 33 clock cycles. This is around 50% higher compared to
AES. Twofish seem to require an even higher number of pipeline stages of at least 33 stages
but most probably 65 stages to reach the target throughput. The latter would result in
an unacceptable latency. Compared to AES, Serpent has a relatively complex round-key
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Table 10.1: Overview of block ciphers.

Feature AES Serpenta Twofishb

Block size 128/192/256 128 128
Key size 128/192/256 up to 256 128/192/256
Enc/Dec sharing good limited full
Approx. fmax [MHz] 252 290 270
Approx. throughput [Gbit/s] 28.16 37.12 34.56
Approx. area [ALMs]c 7000 26000 7000
Approx. M9KBRAM blocksc 314 0 520
Rounds 10 32 16
Pipeline stagesc 21 33 32+
Logical functions used xor xor xor

GF (28)mult GF (28)mult
addmod(232)

a Values approximated from the results in [33, 38, 39, 64, 103].
b Values approximated from the results in [33, 39, 45].
c For target platform Altera Stratix IV to reach throughput of min. 100Gbit/s per cipher core.

generation. However, as only one key-generation unit is required for four parallel cipher
cores, and the key generation should be able to keep up with the maximum frequency
reached by the ciphers cores, this is not a major issue.

Taking all pros and cons into account we chose to implement Serpent as an
alternative to AES. It is well-analyzed, offers a high security margin and is able
to achieve a throughput that even surpasses the throughput of AES. Still, it has the
drawback of a higher latency and it consumes more resources compared to AES. In
addition, resource sharing between encryption and decryption is not practicable, which
can be an issue in certain constellations.

10.3 Alternatives Modes for Authenticated Encryption

This section first elaborates different methods to achieve authenticated encryption and how
they comply with the requirements outlined in Section 10.1. After identifying promising
methods, concrete algorithms and their attributes are discussed in detail and compared to
each other with respect to the requirements. As stated in Chapter 6 there are two basic
approaches to achieve AE: the generic composition scheme and integrated authenticated-
encryption algorithms.

Among the generic composition scheme the preferred method is the Encrypt-then-MAC
approach which involves an encryption step and a MAC-computation step. As discussed in
Section 3.2.2 MACs can be constructed using three different approaches: based on block
ciphers, based on hash functions and by defining customized MACs which are often based
on universal hash functions. To use a block-cipher-based approach is not practicable. In
order to reach the required throughput, it would be necessary to use a block cipher as fast
as the one used for the encryption. This would effectively more than double the resource
consumption and also imply a delay between the generation of the authentication tag T and
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the appearance of the last block of the cipher text C that is at least as big as the latency
caused by the used block cipher. As previously stated such a big delay is not acceptable
as it would drastically increase the memory required for caching. Note, that the generic
Encrypt-and-MAC approach could be a solution to the problem of delayed tag calculation
for the encryption operation. In the decryption operation, first the ciphertext is decrypted
and then the tag is calculated over the plaintext. This again introduces an unwanted
delay. Also, while the Encrypt-and-MAC can be secure, it is not generally guaranteed to
be secure even if the used encryption and MAC are secure and the components have to
be carefully chosen and analyzed [13]. Thus, because of the tag delay for decryption and
the security issues we decided not to follow this approach. Using MACs constructed from
hash functions suffer from similar disadvantages regarding delayed tag calculation. While
state of the art hash functions like Keccak [20, 82] which is the winner of the NIST SHA-3
competition [81] and other SHA-3 competition finalists can reach noticeable throughput [5,
46, 50, 51] the throughput is mainly based on wide input blocks of over 512 bits length
and fairly high operating frequencies. This is problematic, as the encryption unit is only
capable of delivering 512 bits per clock cycle. In addition, the hash functions are usually
based on a fairly high number of rounds. As loop unrolling has to be applied to be able to
process an input block every clock cycle, this would also result in a high number of pipeline
stages that are required to allow the operating frequencies needed to achieve a throughput
of 100Gbit/s. Again, this would result in an unacceptable delay for the authentication tag.
Most customized MACs are based on universal hash functions and work by first compressing
the message to be authenticated using the universal hash function and then encrypting
the compressed image using a pseudorandom function [8]. In most cases a block cipher is
used as a pseudorandom function. Once more, this results in a delayed authentication tag
computation which is not practicable. So overall, mainly due to the delayed tag calculation
caused by the use of the MAC the generic composition scheme is not suitable as a possible
replacement for the existing AE engine.

Another method to realize AE are integrated authenticated-encryption algorithms. The
CAESAR challenge yielded many new and promising authenticated-encryption schemes
that appear to be auspicious for high-speed implementations. Some of the submissions
like ASCON [35] or MORUS [109], are fully parallelizable and only use functions that
are cheap to implement in hardware and could prove to be very fast. However, when
considering that this work is part of a commercial product, and that the challenge is in an
early phase and eventual security flaws in the cipher may not yet be found, we opted for
well studied algorithms. These include Counter with CBC-MAC (CCM) [53, 77], EAX [12,
15], Carter-Wegman Counter (CWC) [59] and the Offset CodeBook (OCB) mode [61, 62,
63]. The main objective is to be able to perform AEAD with a throughput of 100Gbit/s.
As already stated, it is necessary that the alternative AE mode can be parallelized in order
to be able to reach the target throughput. So, as the CCM mode and the EAX mode are
not parallelizable they are not suited to achieve the desired throughput and are thus not
included in the following analysis. An alternative mode for AE should have a minimal
delay of the tag calculation due to the reasons discussed earlier. In addition, a high key
agility is desired. Typically, a key change requires the AE algorithm to be reinitialized.
This often includes the calculation of variables that require calls to the block cipher which
causes consecutive pipeline stalls. Consequently, the number of pipeline stalls caused by
a key change should be as low as possible. The very same is true for new massage. The
initialization phase required to be able to authenticate and encrypt a new message should
need as few clock cycles as possible. It is also important, that the AE algorithm is online
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as the network interface is not able to tell the overall message length in advance.

10.3.1 GCM

Galois Counter Mode of Operation as outlined in Section 6.5 can be divided into two parts:
the Encryption part and the Authentication part. It provides AEAD and incremental MAC
and is provable secure.

The encryption part uses the underlying block cipher in CTR mode. This has two ad-
vantages for hardware implementations: first, it is parallelizable, and second the underlying
block cipher is only required to provide encryption capability. The authentication part is
the critical part of GCM. It makes use of a universal hash function called GHASH which
uses multiplications in GF (2128). As described in Section 9.2 these multiplications can be
parallelized and pipelined which results in a delayed tag calculation of 4 clock cycles.

The initialization after a key change requires one block cipher call and additional
17 cycles to precalculate the powers of H required for the parallel GHASH design (see
Section 9.2 and Section 9.3 for details). However, as the encryption part of GCM can
continue to encrypt during calculation of the powers of H, the GCM core is ready to
authenticate and encrypt as soon as all H values are computed and stored. In addition
each message requires the use of a new IV, which has to be padded an encrypted. This
requires one block cipher call but only causes a latency of one cycle but no pipeline stalls
as messages can be applied right after the IV. In addition four input buffers had to be
introduced, causing another four cycles of latency.

GCM allows different authentication tag lengths and only expands the input message
to a multiple of the block size.

The existing GCM implementation excluding the block-cipher cores requires around
17,000ALMs and reaches a throughput of 105Gbit/s at a maximum frequency of 206MHz.
For the entire engine, including two GCM cores, one for encryption and one for decryption
this results in a resource consumption of about 2× 17,000 = 34,000 ALMs.

10.3.2 OCB

The Offset CodeBook mode as described in Section 6.6 is a single-pass scheme that provides
AEAD. It uses computations that can efficiently be implemented in hardware. Encryption
and decryption have slightly different properties in OCB. In both cases the initialization
phase after a user key change requires one block cipher call. The pipeline is stalled until
the resulting ciphertext is computed. Each input message requires the use of a new IV. If
this IV is a counter, every 64th message requires an additional block cipher call that causes
pipeline stalls. In addition, to complete the computation of the authentication tag another
block-cipher call is needed. For encryption this block-cipher call does not introduce any
pipeline stalls. However, for decryption this final block-cipher call can only be performed
after the very last plaintext has been computed. This introduces l pipeline stalls, where
l is the latency of the underlying block cipher and causes a delay of the authentication
tag calculation of l cycles. In addition, OCB decryption needs encryption and decryption
functionality for at least one underlying block cipher core. This, increases the overall
resource requirements and favors block ciphers that can share resources for encryption and
decryption.

OCB does not provide incremental MAC and does not provide misuse resistance. It
strictly requires the use of a new IV for every message!
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While, to the best of our knowledge, no high-speed implementations of AES have been
published, an analysis of OCB shows, that it should be able to reach the target throughput of
100Gbit/s and that OCB could even be faster than the existing GCM implementation while
requiring less resources. However, OCB requires encryption and decryption functionality of
the underlying block cipher and has an increased latency every 64th message. Furthermore,
the OCB decryption has a delay of the authentication tag calculation that requires to
introduce caching memory. Please note, that OCB is patented. However, its patents
are freely licensed over a large space: open-source software, non-military software, and
OpenSSL [62].

10.3.3 Comparison and Choice of an Alternative Mode for Authenti-
cated Encryption

Table 10.2 compares the features and performance of various modes for authenticated
encryption such as: OCB, GCM, CWC.

The OCB mode of operation as described in Section 6.6 in general is able to meet the
throughput requirements of the QCrypt project. However, its characteristics favor some
block ciphers with certain attributes over others. The goal of this Section is to discuss the
advantages and disadvantages that arise from the use of OCB with the block-ciphers AES,
Serpent and Twofish.

Table 10.2: Overview of modes of operation.

Feature OCB GCM CWC

Patented yesa no no
Parallellizable yes (E+A) yes (E+A) yes (E+A)
Provable secure yes yes yes
Cipher text expansion τ τ τ
Online yes yes yes
Incremental MAC no yes no
Error pass no no no
Only encrypt engine no yes yes
Associated data auth yes yes yes
Authenticator length 0 . . . n 0 . . . n 0 . . . n
Error propagation no no no
Cipher invocations (init) 1 1b 2

Cipher invocations (crypt) d|M |/ne+
1.016c d|M |/ne+ 1 d|M |/ne+ 2

Nonce length [bit] 96 (1 . . . 2128) 96 (1 . . . 264) 88

a The patents are freely licensed over a large space: open-source software, non-military software, and
OpenSSL.

b Cipher invocations needed if a 96-bit nonce is used.
c Cipher invocations needed if a counter is used a a nonce.

The main reason that OCB favors some block ciphers is the fact that it needs an
encryption and a decryption operation in the OCB-decryption routine. A detailed analysis
shows that the OCB-decryption most of the time needs the block-cipher decryption routine.
There is only three cases where the encryption is needed. One time after a key change in
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the initialization phase to compute EK(0128) and one time for every new message in order
to compute the initial value of ∆. Another encryption is needed every new message in the
finalization step to compute the tag τ as described in Algorithm 6.6.1. In addition, the
encryption engine is needed for authenticated-only data.

So it requires that the block cipher implements both the encryption and the decryption.
Thus, block ciphers that allow sharing of hardware resources for encryption and decryption
as AES and Twofish are favored when using OCB. Another idea is to instantiate multiple
encryption as well as decryption engines of the block cipher. This could help to avoid
pipeline stalls as instant switches between encryption and decryption may not be possible.
Hence, block ciphers that consume comparable little area are favored. Again this is true for
the AES cipher.

Taking all pros and cons into account we chose to implement OCB as an alter-
native to GCM. It, is well-analyzed and allows to achieve a throughput that even
surpasses the throughput of GCM. While being well-suited for high-speed hardware
implementations it has the disadvantage of requiring encryption and decryption func-
tionality of the underlying block cipher which favors certain block ciphers. Furthermore,
for decryption, the delay of the authentication tag calculation is higher compared to
GCM. Also note, that OCB is patented. However, its patents are freely licensed over a
large space: open-source software, non-military software, and OpenSSL.



Chapter 11
Serpent - Implementation of an
Alternative Block Cipher

The aim of this section is to describe the practical implementation of the Serpent block
cipher and to point out the design decisions made in order to suit the target system. In
order to reach encryption throughputs exceeding 100Gbit/s on today’s commercial FPGA
devices it is necessary to make use of multiple cipher instances. Additionally, pipelining has
to be introduced to speed up the single instances. First, in Section 11.1 the structure of a
single Serpent instance is described and then in Section 11.2 the overall implementation
that consists of multiple Serpent instances and that is capable of encrypting at a throughput
of over 100Gbit/s is explained.

11.1 Single-Core Design

As the Serpent block-cipher consists out of 32 very similar rounds a natural approach to
increase speed as well as throughput is to introduce 32 pipeline-stages—one after each
round. Additionally, if required by the overall architecture, an additional input-register
can be added. Due to the fact, that Serpent operates with 128-bit values this results in
an overall register requirement of 32 × 128 = 4,096 bits if no input register is used and
33× 128 = 4,224 bits if an input register is used just for the pipeline stages.

11.1.1 The Substitution Stage

As stated in Section 5.2.2 the substitution stage of Serpent makes use of S-boxes that
perform a four-bit to four-bit mapping. On an FPGA there are basically two common
ways to realize S-boxes. First, one could use the FPGAs internal RAM to implement the
substitution or second, one could realize the substitution in pure combinatorial logic.

However, for the used device four-to-four bit substitutions are very inefficient when
implemented in RAM. The Altera Stratix IV FPGA provides block RAM (BRAM) which
as the name indicates can only be instantiated in blocks of relatively big size of either 9 kbit
or 144 kbit. Additionally, as mentioned in Section 8.4, the FPGA contains 640-bit memory
logic array blocks (MLABs) that can be configured as a simple 64×10-bit dual-port memory.
The use of BRAM to implement the S-boxes is absolutely inefficient as only two 4-input
S-Boxes can be realized in one 9 kbit or 144 kbit BRAM block even if it is used in dual-port
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mode. Even when MLABs are used and configured as simple dual-port mode RAM only
two 4-bit S-boxes can be implemented in one block which still results in a relatively bad
degree of utilization. When taking into account that each round of Serpent—and thus each
pipeline stage—requires 32 copies of the same S-box, one round requires 16 MLAB blocks
of memory. As our Serpent implementation requires all 32 rounds to be accessible at the
same time due to the insertion of the pipeline stages this results in an overall consumption
of 512 = 16 × 32 MLABs without the S-Boxes needed for the key scheduler. This is an
unacceptable overhead as this number of MLABs could hold 327,680 bits of data while in
theory only 4× 32× 32 = 4,096 bits are required to implement all S-Boxes needed in one
instance Serpent.

On the contrary, the realization in combinatorial logic is highly efficient as the 4-bit
S-boxes perfectly suit the structure of the Altera Stratix IV ALMs. Each ALM allows to
realize two 4-input logic functions. So, one S-box can be realized using two ALMs and
accordingly the 32 S-boxes required in one round of Serpent can be accomplished in 64
ALMs which equals 6.4 LABs. For the pipelined design this results in 64 × 32 = 2,048
ALMs that are needed for the implementation of the S-boxes which is a nice improvement
compared to the block RAM based method and to a design based on MLAB memory,
respectively. Consequently, we decided to realize the S-boxes as combinatorial functions.

11.1.2 The Linear Transformation

The linear transformation and its inverse used by Serpent is relatively cheap in hardware as
it only uses fixed shifts, fixed circular shifts and XOR-operations, as shown in Figure 11.1.
Fixed shifts and circular shifts are at no charge in hardware as they can be done using
rewiring. As the linear transformation operates on 32-bit values and a maximum of two
three-to-one XORs operate in series it has only little impact on the critical path and is very
resource-friendly.

We made a modification to the original algorithm as described in Equations (5.3)
and (5.4) by changing their general structure to the following form that makes the overall
structure even more effective and that was also proposed in [64]:

B̂0 := IP (P )⊕ K̂0

B̂i+1 := Ri(B̂i)

C := FP (B̂32)

(11.1)

where

Ri(X) = L(Ŝj(X))⊕ K̂i+1 i = 0, . . . , 30

Ri(X) = Ŝj(X)⊕ K̂32 i = 31
(11.2)

This small modification transforms the 3-input linear transformation into a 4-input linear
transformation while producing the same overall result. The 4-input linear transformation
can be implemented much more efficiently in the Altera Stratix IV ALMs as they provide
the possibility to implement two arbitrary 4-input logical functions. Thus, as each linear
transformation contains four 32-bit four-to-one XORs it can be realized in 32×4

2 = 64 ALMs
which results in 1,984 ALMs for the pipelined version of Serpent.



CHAPTER 11. SERPENT IMPLEMENTATION 71

X0i X1i X2i X3i

X0i+1
X1i+1

X2i+1
X3i+1

≪ 13 ≪ 3

≪ 3

≪ 22

≪ 5

≪ 7≪ 1

≪ 7

(a)

X0i X1i X2i X3i

X0i+1
X1i+1

X2i+1
X3i+1

≫ 13 ≫ 3

≪ 3

≫ 22≫ 5

≫ 7≫ 1

≪ 7

(b)

Figure 11.1: Overview of the linear transformation (a) and the inverse linear transforma-
tion (b) of Serpent.

11.1.3 The Key Scheduler

The most critical part of Serpent is its relatively complex key scheduler. One approach to
compute the round keys is to compute them all in a single cycle. However, as shown in
Figure 11.2 the calculation of the pre-keys which are necessary to compute a single round key
involves a maximum of eight 128-bit 2-input XOR operations. So, when all 33 round keys
are computed in a single cycle, this would form a path requiring 33× 8 = 264 consecutive
XORs and an additional run through an S-box. This would reduce the maximum clock
frequency to a level unacceptable for a high-speed implementation.

One idea, to overcome this problem is to completely separate the key scheduler from the
rest of the cipher and to use a dedicated, slower clock domain for the round-key calculation.
Still, we decided not to follow this approach, as it brings various disadvantages but only
few advantages. First asynchronous design is much more error prone than synchronous
design and second, asynchronous design would make it necessary to introduce handshaking
protocols between the different clock domains. This would introduce another level of
complexity.

A nicer approach is to calculate one round-key per cycle on-the-fly. In any way, as
pipeline stages were introduced, after a key change only one new round-key is needed per
cycle. However, there is some aspect of Serpent that has to be considered when choosing this
approach, as in the very last round of Serpent two round-keys are required during one cycle.
To deal with this problem we decided to delay all the computed round-keys Ki but the very
last round-key K32 by one cycle. Consequently, after the activation of a new user-key there
is a delay of one cycle until new data can be encrypted using the actual key. In exchange
for this one cycle delay, in the last round R31 both round-keys K31 and K32 are available.
Please note, that when stating that the round-keys are calculated on-the-fly this is only
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Figure 11.2: Overview of the critical path of the calculation of the pre-key values
w4i, . . . , w4i+3 of Serpent.

true for the very first cipher call after a key-change. In order to preserve the round-keys for
following encryptions (or decryptions) they are stored in registers. This approach has the
advantage of increased speed by reducing the critical path, as the round-key calculation
gets separated from the actual cipher round. Furthermore, the additional cycle of delay
that has to be introduced because of the calculation of round key K32 is eliminated for all
cipher calls except the very first after a key-change. Still, in order to separate the round-key
calculation from the cipher round and to preserve the round keys for future calculations it
is necessary to introduce 33 128-bit registers.

As described in Equations (5.7) and (5.8) the calculation of a round key Ki includes the
calculation of four 32-bit pre-keys w4i, w4i+1, w4i+2, w4i+3 which run through a substitution
stage consisting of S-boxes. The calculation of the pre-key words w4i, . . . , w4i+3, as shown
in Equation (5.6) in turn requires the values of the pre-keys w4i−8, . . . , w4i−1 to be available.
Hence the design as described in Figure 11.3 includes two 128-bit registers that preserve
the values of w4i−8, . . . , w4i−1, the logic to calculate the pre-keys w4i, w4i+1, w4i+2, w4i+3,
an S-Box block and 33 128-bit registers to store the round keys K̂i where i = 0, . . . , 32.

In case the 128-bit user key K has to be changed it is first padded to 256 bits by applying
{1 ‖ 0127 ‖K} and by setting the signal LoadUserKeyxSI it is then loaded into the pre-key
registers at the next clock cycle. Then the values of the pre-keys w4i, w4i+1, w4i+2, w4i+3

are calculated and passed over to eight S-box blocks for the S-boxes Si where i = 0, . . . , 7
where each of the S-box blocks contains 32 identical 4-bit input S-box copies. As described
in Equation (5.7) the pre-keys required for round-key K̂i have to be substituted using S-box
S(i+3 mod 8). Thus, a 128-bit 8:1multiplexer selects the correct S-box block output and
passes it over to the round-key registers. The correct round-key register is enabled using a
33-bit shift register that shifts the enable signal for the registers at each clock cycle.

In order to prepare for the calculation of the next round key the newly calculated values
of w4i, w4i+1, w4i+2, w4i+3 are used as input for the pre-key register that holds the values
of w4i−1, w4i−2, w4i−3, w4i−4 and the current values of this registers are used as input for
the pre-key register that holds the values of w4i−5, w4i−6, w4i−7, w4i−8. This key-scheduler
design offers the possibility to change the user key on the fly without loosing a single clock
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Figure 11.3: Overview of the key-scheduler design. (See Figure B.1 in Appendix B.1 for a
more detailed figure.)

cycle. In order to do so, the secret user key has to be loaded three cycles before the first
message should be encrypted using the new key. These three cycles result from one cycle
required to load the user key to the w-registers, one cycle because of the delay register and
an additional cycle to store the round key in the corresponding round-key register.

The critical path of the key scheduler includes the calculation of the pre-keys which
requires eight consecutive XORs, a pass through the S-Boxes and finally a 8:1multiplexer
and thus also represents the critical path oft the whole Serpent design. Please see Figure B.1
in Appendix B.1 for a detailed overview of the key scheduler that allows to identify the
critical path.

11.2 Multi-Core Design

As a single Serpent core is not sufficient to achieve a throughput of 100Gbit/s multiple
Serpent instances have to be used in parallel to accomplish that goal. Simulations of the
single-core design suggested that three Serpent cores used in parallel could narrowly be
enough to give the desired throughput. However, when considering that the maximum
frequency is likely to be lower, when including the Serpent cores in the full QCrypt design
compared to the single-core design we decided to use four serpent cores in parallel. As by
design all four encryption cores use the same user key, only one key scheduler is required to
generate the round keys. This results in a multi-core design as shown in Figure 11.4.

The four Serpent cores are used in parallel and use the same round keys that are
provided by the common key scheduler. In order to reduce the overall power consumption
the design provides enable signals for the pipeline stages of the cipher cores. These enable
signals are generated using an external 1-bit signal that indicates that a valid plaintext
block has to be processed. However, all four Serpent cores receive the same enable signals
as we expect the outer logic to either deliver blocks of 512 bit or to discard invalid output
blocks. Further, by shifting the enable signal through a 32-bit shift register it always
coincides with the pipeline stage that has to be activated. In addition, the output of this
shift register can be used as an outgoing signal indicating whether the output of the cipher
cores is a valid cipher text or not.
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11.3 Summary

The Serpent block cipher was chosen and implemented as a promising alternative to the
AES block cipher that is used in the existing AE engine. In order to achieve the required
throughput of 100Gbit/s the Serpent module uses four Serpent cipher cores in parallel that
share one common key-scheduler. In addition, 32 pipeline stages were introduced to the
single cipher cores. The key-scheduler architecture allows to compute the round-keys on
the fly and features the pre-loading of a secret user key, in order to reduce the delay caused
by key changes. Section 13 describes how the actual implementation was simulated and
tested and Section 14.1 will give results on the throughput, maximum clock frequency and
area requirements achieved for both, the single-core Serpent implementation as well as for
the multi-core Serpent implementation.



Chapter 12
OCB - An Alternative for Authenticated
Encryption

This section aims at describing the practical implementation of the Offset CodeBook mode
of operation which we chose as an alternative to the existing authenticated-encryption
engine, that is based on GCM. In addition, this section tries to point out the design decisions
made in order to suit the target system. In order to reach encryption throughputs exceeding
100Gbit/s on the target device it is necessary to make use of multiple cipher instances.

For the OCB architecture, we assume the following prerequisites:

• The size of the message block counter i is restricted to 7 bits, as a full Ethernet
frame in IEEE 802.3ba has a maximum size of 1522 bytes. So 27 message blocks are
sufficient to hold an entire ethernet frame.

• As the network interface ensures solely full message blocks, we do not handle short
final message blocks separately.

• We assume that the handling of delayed authentication-tag calculations is handled by
higher level units.

As OCB encryption and decryption differ in large parts, first, in Section 12.1 we
describe the architecture of the OCB encryption core and second, in Section 12.2 we
depict the architecture of the OCB decryption. Later, in Section 12.3 we describe the
actual implementation of OCB with AES as the underlying block cipher. We refer to this
composition as OCB-AES. Finally, we give an overview of the implementation of OCB with
Serpent as the underlying block cipher, which we refer to as OCB-Serpent.

12.1 Encyption

Similar to the existing encryption engine as outlined in Chapter 9, multiple cipher cores have
to be used in parallel to achieve extremely high throughputs of over 100Gbit/s. Similar to
GCM, OCB also allows two successive message blocks to be processed independently of
each other. In order to be conform with the existing AE engine and to ease replacement, we
took advantage of this fact and decided to use four block-cipher cores that share a common
key-generation unit. The following description of the OCB encryption, will treat the cipher
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cores as black boxes. Details, on the actual implementations with concrete ciphers are then
given in Section 12.3 that describes the OCB-AES implementation and in Section 12.4 that
introduces the OCB-Serpent implementation. Figure 12.1 illustrates the OCB architecture
for authenticated encryption based on four block-cipher cores.
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Figure 12.1: Simplified OCB-Encryption architecture.

OCB can, in general, be subdivided into three stages: Initialization, encryption/authentication,
and finalization.

During the initialization phase, two potential pipeline stalls may occur if not handled
properly. First, after each key change a cipher call EK(∅) is required in order to be able to
compute the table values L[..] (cf. Algorithm 6.6.1). As, indicated in Figure 12.1, the control
unit can apply the empty string ∅ to one cipher core using a multiplexer. Second, each
new message needs a fresh nonce N , and thus a new offset value ∆. So, the initialization
phase after a key-change causes a delay of l + 1 clock cycles where l is the latency of the
underlying block cipher.

The limitation of message lengths to a maximum of 27 blocks, facilitates the precompu-
tation of the L[..]-values, as it limits the maximum number of trailing zeroes of the block
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counter i to six. Thus, only L$, L∗, and L0 . . . L6 have to be precomputed, as shown in
Figure 12.2. The, double() operation (cf. Equation (6.4)) only depends on operations that
are cheap to implement in hardware, i.e., fixed shift- and conditional exclusive-or-operations
with the constant 0x87. In fact, when the result of EK(∅) is available, all nine table values
can be computed and stored in registers in a single clock cycle. So overall nine 128-bit
register are needed to hold all L[..]-values.

0128 EK double L∗ Lndoubledouble L$ double doubleL0

Figure 12.2: Calculation of the L[..]-values.

Since the calculation of the initial offset also requires a cipher call, this may result
in another pipeline stall. As described in Algorithm 6.6.3, a nonce-dependent call to the
encryption of the block cipher is required. The result of this operation, further-on called
Ktop, then has to be shifted by a 6-bit nonce-dependent value Bottom. First, to be able
to perform this shift-operation, Bottom has to be buffered until the result of EK(Top) is
available. Second, the 6-bit variable shift is done using a 192-bit by 6-bit barrel shifter.
Although, using a counter for the nonce N could avoid the resource-expensive barrel shifter,
we decided to keep it in order to stay independent of the actual structure of the chosen
nonce. Note, that the use of a counter for the nonce is highly recommended.
It allows to minimize the block cipher calls, to compute the initial delta values, to only
one block cipher call every 64th message. This comes from the fact that Ktop = EK(top)
stays unchanged for 64 messages, when using a counter because top = (1122 ‖ 06) ∧ N .
However, as bottom is the last six bits of a counter that increases by one per message, the
nonce-dependent shift in Line 6 of Algorithm 6.6.3, is a fixed left-shift by one. In order
to reduce the number of pipeline stalls to a minimum, we allow to precompute one initial
offset value and to pass it over to the delta calculation when needed. By doing so, only one
clock cycle is wasted. However, the logic when to start the precomputation is expected to
be handled by the higher-level units.

When processing a block in authenticated-encryption mode, the message Mi is XORed
with the current offset ∆i, encrypted and finally XORed with ∆i again. As pipeline stages
were introduced into the block cipher, the ∆-values either have to be stored or recalculated.
We chose the approach to recalculate the offset-values as it makes the implementation
less dependent on the underlying block cipher and the number of pipeline stages it uses.
Furthermore, the multi-core design is able to process four message blocks in parallel,
consequently the offset-calculation units need to be capable of providing four offset values
per cycle. In fact, the calculation of the four offset values is relatively cheap, as ntz(i) is
fixed for all i 6= 4 ∗ n+ 3, as shown in Figure 12.3. Thus only one ntz(i)-calculation unit
is needed to be able to compute the ∆4∗i+3-values. All other ∆-values can be computed
using XORs with fixed positions of L[..]. So, the computation of the ∆-values requires only
four 128-bit XORs and has a critical path that is formed by four consecutive XORs.

When processing authenticated-only blocks, the message is XORed with the current offset
∆j and XOR-ed with the intermediate authentication tag auth. Note, in Algorithm 6.6.4,
that processing AAD blocks requires the, ∆-values to be computed slightly different
compared to authenticated and encrypted blocks. Thus, the first offset-calculation unit
that is followed by the encryption cores, additionally needs to be able to provide offset
values for authenticated-only message blocks. A multiplexer is then used to select between
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Figure 12.3: OCB calculation of the ∆-values for authenticated and encrypted message
blocks.

the ∆-values for blocks in authenticated-encryption mode and AAD blocks.
In order to be able to compute the final authentication tag, the plaintext of all messages

that are authenticated and encrypted are XORed in order to compute a checksum. The
checksum is then XORed with ∆$, encrypted and the result of the encryption is then XORed
with the intermediate authentication tag auth. EK(checksum) can be computed right after
the very last input message. So, for OCB encryption the delay of the authentication tag T
is only one clock cycle.

12.2 Decryption

Authenticated decryption according to OCB is very similar to the encryption process.
Exchanging the encryption operation EK of the underlying cipher by the decryption
operationDK in line 8 and 13 of Algorithm 6.6.1, turns OCB into decryption mode. However,
the encryption operations during the initialization phase, described in Algorithm 6.6.2 and
Algorithm 6.6.3, as well as for the computation for the final authentication-tag calculation,
remain. The requirement of block-cipher encryption and decryption is a drawback for
hardware implementations. In order to be able to process authentication-only blocks with
a throughput of 100Gbit/s it would be necessary to provide four encryption cores. If the
underlying block cipher is not able to share resources between encryption and decryption
this would result in a large resource consumption overhead. However, pure authentication
is not of primary importance as the system is used to authenticate and encrypt ethernet
frames. Typically, as pointed out in Section 10.1, either the whole frame is encrypted and
authenticated and embedded in a new frame, or only the header has to be authenticated
only and the payload is authenticated and encrypted. The header of an IEEE 802.3
Ethernet frame is 14 bytes wide and thus fits into a single 128-bit block, which can then
be authenticated. Thus, we decided to use four block-cipher decryption cores and one
encryption core that is required during the initialization, for authentication-only message
blocks and for the finalization. Still, all cipher cores share a common key-generation unit.
This results in an architecture as shown in Figure 12.4.

A minor drawback of authenticated decryption according to OCB is the fact that
a delay, depending on the number of pipeline stages p between the calculation of the
plaintext and the calculation of the authentication tag, exists. This delay is caused, since
the calculation of the authentication tag requires the encryption of the Checksum of the
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Figure 12.4: Simplified OCB-Decryption architecture.

plaintext. However, the EK(checksum) can only be computed after all message blocks
that are authenticated and encrypted have been decrypted and XOR-ed to give the overall
Checksum. If not treated specially, this would lead to l pipeline stalls, where l is the latency
of the underlying block cipher. Thus, in order to reduce the number of pipeline stalls, we
allow to start the decryption of a new message Mi+1 before the authentication tag Ti of
message Mi has been calculated. As soon as the checksum is ready, the authentication tag
is computed. Still, in order to be able to verify the authentication tag of a message, the
entire plaintext message has to be buffered which results in additional memory requirements
of 1522 bytes for one message as IEEE 302.3 ethernet frames allow a maximum size of 1522
bytes including payload and header. As it is allowed to start the decryption of Mi+1 before
the authentication tag Ti has been calculated, it is necessary to also store the plaintext
blocks ofMi+1 until the new message tag Ti+1 has been computed. The number of messages
allowed to be applied before Ti is computed, and consequently also the number of plaintext
messages that need to be stored depends on the latency of the underlying block cipher and
is treated in the sections that treat the implementation of OCB with the block cipher AES
and the block cipher Serpent.

12.3 OCB-AES

This section describes the implementation of OCB with AES as the underlying block cipher
that we refer to as OCB-AES. The overall structure, of OCB-AES remains as outlined
in Figures 12.1 and 12.4. However, due to the characteristics of the high-speed AES
implementation as described in Section 9.1 some parts of OCB have been optimized, in
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order to reduce latency and pipeline stalls.
The existing AES implementation has a latency of 21 clock cycles. So, the initialization

phase after a key change needs 21 cycles for the calculation of E(∅) plus one cycle to
compute the initial ∆-value. Another cycle is needed to perform the precalculation of the
values of ∆1,∆2 and ∆3 that are required as four cipher cores are used in parallel. So, after
23 clock cycles OCB-AES is ready to authenticate and encrypt messages.

As described in the previous section, it is possible to start the decryption of a message
Mi+1 before the authentication tag Ti for message Mi has been calculated. As four cipher
cores with a block size of 128 bits are used in parallel, 512 bits or 64 bytes can be processed
per pipeline stage and clock cycle, respectively. So when all pipeline stages are filled,
64× 21 = 1,344 bytes are processed in the pipeline. As the majority of ethernet frames is
expected to be of the maximum ethernet frame size of 1,522 bytes, we decided to allow the
message Mi+1 to be applied before Ti is computed. This way it is possible to effectively
reduce the number of pipeline stalls to zero if full-length frames are processed (except
for every 64th message which requires the recomputation of the initial ∆-value). Still, for
shorter messages pipeline stalls may occur. Allowing one message to be applied, requires to
store the last ∆-value and the intermediate authentication tag Auth for message Mi. In
addition it is necessary to provide memory for two entire frames of 1,522 bytes size. On
the one hand, Mi has to be stored until the tag Ti has been computed and verified, and
on the other hand, the blocks of plaintext that are computed until the final Checksum of
message Mi is ready have to be preserved. The necessary memory can be realized using
two BRAM M144K blocks1 of a total of 64 M144K blocks available on the Altera Stratix
IV EP4S100G5 FPGA.

Apart from the mentioned adaptions, only the control logic has to be adapted to fit the
latency of the AES cores and the number of cycles required for the setup of the ciphers
key-generation unit.

12.4 OCB-Serpent

This section outlines the implementation of OCB with Serpent as the underlying block
cipher that we refer to as OCB-Serpent. Again, the overall structure of OCB-Serpent
remains as shown in Figures 12.1 and 12.4.

Basically, the same adaptions and optimizations as for OCB-AES have also been
realized for OCB-Serpent. However, due to the larger latency of 33 cycles of the Serpent
implementation described in Chapter 11, compared to the AES implementation, these have
to be tuned at some points. As, Serpent has a latency of 33 cycles the number of cycles
required for the initialization phase after a key change is 33 + 1 + 1 = 35 clock cycles. This
is 43% higher compared to the initialization delay of OCB-AES. In addition, the measures
that allow to start the decryption of a message Mi+1 before the authentication tag Ti for
message Mi has been calculated have to be adjusted. When all 33 pipeline stages of Serpent
are filled, 64×33 = 2012 bytes are processed in the pipeline. This is more than the maximal
length of an ethernet frame. So, in order to reduce the number of pipeline stalls to zero
(except for every 64th message) it has to be allowed to start the decryption of two new
messages Mi+1 and Mi+2 before the computation of the authentication tag Ti is started.
1 M144K blocks are embedded memory blocks on Stratix IV FPGAs that provide 144 kbit of memory,
which can be configured as single-port RAM, dual-port RAM, shift registers or ROM with variable word
lengths. See [9] for more information.
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As a consequence, two ∆-values and two intermediate authentication tags Auth have to be
stored. Furthermore, it is necessary to be able to store three ethernet frames of 1522 bytes
size. This requires 3 M144K blocks of 64 M144K block available on the target FPGA.

Again, apart from the mentioned adaptions, only the control logic has to be adapted to
fit the latency of the Serpent cores and the number of cycles required for the setup of the
cipher’s key-generation unit.



Chapter 13
Simulation and Verification

Today’s hardware systems implemented on FPGAs, such as the one described in this thesis,
are very complex and consist of many modules interacting with each other. For such
systems it is a difficult task to ensure the correct behavior for all possible input sequences
and operating conditions.

In order to guarantee correct functionality, all submodules, modules and finally the
entire system have to be simulated and verified. For the simulation a dedicated software is
used that models the design at different levels of abstraction, starting from the behavioral
descriptions of the system and ending with a model derived after RTL synthesis and
place-and-route. Dedicated hardware modules that allow to apply bits at defined positions
inside the core and to read out the values of any internal register inside the core were added
on the FPGA for verification and debugging purposes.

Within this thesis, simulation and verification was performed at the following levels of
abstraction:

1. Behavioral Model

2. After place-and-route

3. Bit-file on FPGA

For levels 1 and 2 file based simulation as described in Section 13.1 was used for the
verification of the submodules and the whole cores. Finally, the bit files of the different block-
cipher cores and the different authenticated-encryption mode and block-cipher combinations
were verified using the FPGA testbench model explained in Section 13.2.

13.1 File-based Simulation

For each of the cores developed within the scope of this theses i.e. the Serpent core, the
GCM-AES core, the GCM-Serpent core, the OCB-AES core and the OCB-Serpent core a
golden model that generates the appropriate stimuli and response vectors for the cores as
well as their submodules was implemented. For Serpent we developed a bit-accurate model
of the architecture in C++ that allows co-simulation of the VHDL model. The golden
model performs a self-test using test vectors provided in the AES competition submission
package provided in [104]. In order to create test vectors for the authenticated encryption
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engines we implemented golden models using the Crypto++ R© Library version 5.6.2 [30].
As this library does not feature the OCB mode, we extended the library with an OCB
implementation. Again, all golden models perform a self-test using the test vectors provided
in the algorithm specifications1 A testbench, as described in Figure 13.1, which is entirely
implemented in VHDL, then reads out the appropriate vectors created by the golden models
and applies them to the device under test (DUT) after a specified input delay. An advantage
of implementing the testbench in pure VHDL compared to other testbench approaches (e.g.
using Tcl2) is that it is known to be much faster when simulating thousands of test runs.

Golden Model

Stimuli File Expected Response File

DUT
Stimuli

Application

Logfile

VHDL TestbenchClk Generation

Modelsim

Response

Verification

Figure 13.1: Block diagram of the file based simulation and verification.

For smaller, less complex modules the golden model generates cycle accurate stimuli
and expected response files that also include intermediate values. The testbench reads
and applies the provided stimuli and compares the output of the DUT with the expected
responses every clock cycle. The result of the comparison as well as some debugging
information is then written to a log file.

For complex modules and more sophisticated tests that aim to cover as many of the
internal states of the DUT as possible this approach is not practicable. If stimuli and
expected responses would be provided for every clock cycle, the test files would become too
large and contain a lot of unnecessary data. Thus, for complex modules, the testbench is
designed to react on signals provided by the DUT. Stimuli are only applied to the DUT
when it signals to be ready and expected responses are checked whenever the DUT indicates
a valid output. Again, debugging information is written to a log file. In order to provide a
good test coverage the golden model allows to generate stimuli and expected response pairs
for test cases defined in the descriptions of the implemented algorithms (whenever such
pairs are provided), for predefined debugging-friendly input and for random input stimuli.

To ensure the correct functionality after RTL synthesis and place-and-route the model
provided by the FPGA-vendors synthesis software performing these steps was again included
in a testbench implemented in VHDL and checked against the stimuli and expected-response
pairs provided by the golden model.
1 Functional correctness of the golden models of GCM and OCB was verified with AES as the underlying
block cipher, as both algorithm specifications only provide test vectors for this cipher.

2 Tcl is a scripting language and many digital logic simulator vendors use it to interface with the HDL
implementations.
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13.2 FPGA Testbench Design

After successful simulation, two different testbench versions that are suited to run on the
actual QCrypt fast-encryptor FPGA board were implemented for each of the main cores,
namely the GCM-AES, the GCM-Serpent, the OCB-AES and the OCB-Serpent. The first
version tests the authenticated-encryption engines as standalone modules while the second
version checks the AE engines in combination with the network interface.

The first testbench version, as shown in Figure 13.2, uses a small set of stimuli vectors
as well as the corresponding set of expected responses that are loaded into block RAMs on
the FPGA. A simulation control unit takes these vectors, applies them to the DUT and
compares the responses created by the core with the provided expected responses. In order
to give some status information on the current test run error codes are provided through
the encryptor board’s LEDs. In addition, to ease debugging and to be able to inspect buses
and on chip data, logic analyzers generated by SignalTap R© II Logic Analyzer were used.
The SignalTap R© II Logic Analyzer is a tool provided by Altera that allows to capture and
debug the values of internal signals via JTAG3, without using extra I/O pins, while the
design is able to run at full speed on the FPGA device. In order to be able to capture
a signal on the FPGA it has to be selected before place-and-route. The logic to debug a
signal is then automatically included into the design.

DUT

Simulation

Control

Signal Tap II

Logic Analyzer

=
Block RAMs

Stimuli Storage

Bock RAMs

Response Storage

Debug

LEDs

Figure 13.2: Block diagram of the standalone AE-engine FPGA testbench design.

Furthermore, in order to perform a run-time test under realistic conditions and to
verify the interaction of the AE-engine with the networking components a test system, as
shown in Figure 13.3 was developed and executed on the encryptor board. It uses the
existing network interface with the sender part directly connected to the receiver part and
includes one AE engine configured as encryption unit for the sender part and one AE
engine configured as decryption unit for the receiver part. The simulation control generates
test data using a 128-bit counter which is then applied to the AE engine and encrypted
and/or authenticated using pseudo random control sequences. The output of the AE engine
is then passed over to the sender’s network interface and transmitted to the receiver’s
network interface which hands it over to the senders decryption unit. After decrypting
3 Joint Test Action Group (JTAG) a commonly used name for the IEEE 1149.1 Standard Test Access Port
and Boundary-Scan Architecture. It is commonly used for IC debug ports.
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Figure 13.3: Block diagram of the FPGA run-time testbench design and its interaction
with the networking components.

the incoming message the resulting plaintext is compared to the message created expected
response generator and the resulting massage tag is compared to the sender’s message tag.
The outcome of this comparisons is then encoded and visualized using debug LEDs on the
encryptor board. Again, we used the SignalTap R© II Logic Analyzer for debugging and for
inspecting internal signals on the FPGA.



Chapter 14
Results

Throughout this chapter, we present the implementation results of the designs, which
figured out to be valid alternatives to the existing authenticated-encryption engine which is
based on GCM-AES. The results are given in terms of throughput, resource consumption
and efficiency on the Altera Stratix IV EP4S100G5 FPGA. First, Section 14.1, presents
the results for the standalone Serpent block cipher, which was chosen as an alternative
to the AES cipher used in the existing AE implementation. Second, in Section 14.2, we
give the results for different authenticated encryption architectures we implemented. We
present the results for GCM-AES, which represents the existing authenticated-encryption
engine, in order to be able to compare it with the novel AE implementations. The actual
implementation of GCM-AES is described in detail in Section 9. Next, we describe the
results for GCM-Serpent which uses Serpent as an underlying block cipher. Furthermore,
we give the results for OCB, which was chosen and implemented as an alternative mode
for authenticated encryption as outlined in Chapter 12. These results include two versions
of OCB that differ in the underlying block cipher. The first version is OCB-AES, which
uses AES as the underlying block cipher, and which is described in detail in Section 12.3.
The second version is OCB-Serpent, whose architecture is outlined in Section 12.4 and
which applies Serpent as the underlying block cipher. All results presented in this chapter
were achieved using the Altera Quartus II version 11.0 with speed-optimized settings for
synthesis targeting the Altera Stratix IV EP4S100G5 FPGA. Functional correctness was
verified using Modelsim 6.6e simulator.

14.1 Block Ciphers

This section presents the results for the existing AES cipher and the novel implementation
of the Serpent cipher targeting the Altera Stratix IV EP4S100G5 FPGA. Both ciphers
are analyzed and compared in terms of throughput, resource consumption, latency and
the number of cycles that are required for initialization after a key change. However,
the discussion of the results puts a strong focus on the Serpent cipher as it is one of the
contributions of this work. Subsection 14.1.1 gives results for single-core implementations
and treats the standalone cipher cores as well as the key generation modules. The achieved
results for the multi-core architectures, which are required to achieve the target throughput
of 100Gbit/s are given in Subsection 14.1.2.
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14.1.1 Single Core

Table 14.1 lists the results for single core implementations of the AES cipher and the
Serpent cipher. All values presented are valid for plain instances of the components listed.
There is no additional interfaces, buffers or glue logic included. The results include separate
values for the standalone ciphers without key generation and standalone key schedulers, as
the multi-core design that is required by the authenticated-encryption engines is composed
out of a variable number of cipher cores that all share one common key scheduler.

Table 14.1: Results for single cores of AES and Serpent based on the Altera Stratix IV
(EP4S100G5F45) platform.

AES Serpent

key scheduler cipher key scheduler cipher

Number of ALMs 1,303 1,505 4,690 6,947
M9K BRAM Blocks 2 80 0 0

Overall Overall

Number of ALMs 2,608 10,837
M9K BRAM Blocks 82 0
Max. Frequency [MHz] 252 284
Max. Throughput [Gbit/s] 32.3 36.3
Latency [cycles] 21 33
Key Generation Enc/Dec [cycles] 2/20a 0/32ab

a Encryption keys can be computed on-the-fly. One round key is updated per cycle. For decryption
the last round key generated is required in the first round.

b If the secret key is applied one cycle in advance as supported by the Serpent architecture.

As expected, the standalone Serpent cipher core, without key scheduler, consumes a
higher number of ALMs compared to AES. A standalone Serpent core consumes 6,947
ALMs while the AES standalone core requires only 1,505 ALMs. This is due to two main
reasons. First, while Serpent’s round function is relatively simple, Serpent has a higher
number of rounds and consequently a higher number of round functions and pipeline stages
have to be instantiated. As the Serpent design contains 33 pipeline stages, these require
33× 128 bits = 4,224 bits of registers, which can be provided by 2,112 ALMs. The, linear
transformation contains four 32-bit four-to-one XORs and can be realized in 32×4

2 = 64
ALMs which results in 1,984 ALMs for the pipelined version of Serpent. Second, the
Serpent implementation uses a LUT-based approach to realize the S-Boxes, while AES
utilizes BRAM for the S-Boxes. As discussed in Section 11.1.1, 2,048ALMs are required
to implement the S-Boxes for all 32 rounds of the Serpent cipher. Note, that the stated
number of ALMs required for the building blocks of Serpent cannot simply be summed up
to get the overall resource consumption. Each Stratix IV ALM provides multiple resources
such as two LUTs, two Registers, two adders and some multiplexers that can be shared
among the building blocks. Thus, the effective number of ALMs required is lower than
the simple sum of ALMs required for the subcomponents. As such, the values given in
Table 14.1 can be seen as upper bounds.

The Serpent key scheduler is comparably complex and requires 4,690ALMs which is a
significantly higher resource requirement compared to the AES key generation which needs
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1,303ALMs. First, the key scheduler of Serpent requires eight different sets of S-Boxes even
if only one round key is computed per cycle. This consumes 512ALMs as the S-Boxes are
implemented using LUTs. In addition, to select the correct S-Box output, a 128-bit 8:1-
multiplexer is necessary. Second, two 128-bit registers that hold the intermediate w-values,
one 128-bit register used to delay the round keys by one cycle, and 33 128-bit registers that
store the round keys are needed in the design. This results in 36× 128 bits = 4,608 bits of
registers required overall. Furthermore, the key scheduler requires 20 32-bit 2:1 XORs with
a maximum logic depth of 8 consecutive XORs.

Due to its complexity, the key scheduler also forms the critical path of the entire Serpent
architecture. The critical path is formed by eight levels of XORs, a pass through the S-Box,
an 8:1 multiplexer1 and a register (see Figure B.1 in Appendix B.1 for a detailed overview
of the key scheduler). This results in a maximum frequency of 284MHz for the overall
Serpent core, including the cipher and the key scheduler. This maximum frequency leads to
a maximum throughput of 36Gbit/s which is an increase of 12.7% over the existing AES
design which reaches 32Gbit/s at a maximum frequency of 252MHz.

As the Serpent architecture applies one pipeline stage for every round of Serpent and
adds an additional input register, this gives a latency of 33 clock cycles. Due to the lower
number of rounds, the AES design comes with a latency of only 21 cycles. Consequently,
pipeline stalls have a bigger impact with Serpent than with AES. This is especially true if
the result of the encryption EK(Ii) of input Ii is needed to be able to compute EK(Ii+1)
as occurring at some points in the OCB algorithm. In this case, for Serpent, the pipeline is
stalled for 33 cycles while EK(Ii) is computed and then 33 cycles are needed until EK(Ii+1)
is computed. So the overall delay to compute EK(Ii+1) would be 66 cycles after applying
Ii for Serpent while it would only be 42 cycles for AES. When taking the higher maximum
frequency of Serpent into account this gives a delay of 232 ns for Serpent and a delay of
167 ns for AES to compute EK(Ii+1) if the input Ii+1 is dependent on EK(Ii).

In order to minimize the cost of key changes, the designs of AES and Serpent allow
to compute the round keys on-the-fly. So each clock cycle, the keys for one more round
are updated, while the rest of the old round keys is preserved for pending calculations
in the pipeline. For encryption it is thus possible to perform a key change with loosing
a minimal number of clock cycles. After applying a new key to the AES key generation
module it is necessary to wait for two more cycles until new messages can be applied. The
Serpent architecture even allows key changes without loosing any clock cycle if the new
key is applied three cycles before the first message has to be encrypted using this new key.
Still, AES and Serpent both require that the round keys are applied in reverse order for
decryption. However, as the computation of the last round key is dependent on all previous
round keys, these have to be computed beforehand. This means, that 20 cycles are required
for AES and 32 cycles are needed for Serpent until the first message can be decrypted using
the new key.

14.1.2 Multi Core

As a single cipher core is not sufficient to reach the target throughput of 100Gbit/s, multiple
instances have to be used in parallel. By design all cipher cores use the same user key and
so only one key scheduler is required to generate the round keys. This section presents the
results for the multi-core designs that are used by the authenticated encryption engine.
1 An 8:1 multiplexer has to be assembled from multiple multiplexers which increases the logic depth.
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Table 14.2 lists the results for the multi-core encryption and decryption architectures for
AES and Serpent. All values are valid for the standalone modules without any additional
input or output buffers, interfaces or glue-logic. The multi-core design for encryption uses
four cipher blocks in parallel that share a common key scheduler. As required by the
OCB-decryption architecture which is described in Section 12.2, the multi-core decryption
architecture includes four decryption cores and one encryption core that all share a common
key scheduler.

Table 14.2: Multi-core encryption and decryption results for AES and Serpent
based on the Altera Stratix IV (EP4S100G5F45) platform.

Cipher Mode Cipher
Cores

Area fmax Throughput

[ALMs] [M9K Bl.] [MHz] [Gbit/s]

AES multi E 4 6,916 322 252 129
Serpent multi E 4 25,825 0 275 140
AES multi D 5 8,793 402 247 126
Serpent multi D 5 31,478 0 273 140

The results for the multi-core architectures confirm the findings of the single-core
variants. The multi-core Serpent encryption design requires 25,825ALMs which is a
significantly higher resource consumption compared to the multi-core AES design which
requires 6,916ALMs. However, it has to be considered that the AES architecture requires
322 M9K BRAM blocks of 1,280 M9K blocks available on the target FPGA, while Serpent
does not use any BRAM at all. As the network interface of the fast-encryptor system
heavily relies on the use of BRAM, routing overhead increases for AES. However, as the
Altera Stratix IV (EP4S100G5F45) FPGA features 212,480ALMs, the multi-core Serpent
encryption architecture consumes only around 15% of the ALMs available. So, the resource
consumption of Serpent is at an acceptable level.

The decryption architectures, that are needed for OCB decryption use a common key
scheduler and four decryption cores in parallel and also include one cipher core for encryption.
Consequently, the decryption designs consume more resources compared to the encryption
designs. The multi-core AES decryption architecture consumes 8,793ALMs and 402 M9K
BRAM blocks while the multi-core Serpent decryption design requires 31,478ALMs and no
BRAM.

Still, the maximum frequency of the multi-core variants of AES and Serpent is lower
compared to the single-core variants due to the increased routing overhead. Overall, this
results in a maximum frequency of 252MHz for the multi-core AES encryption module which
translates to a throughput of 129Gbit/s. The multi-core AES decryption module is slower
because the InvMixColumns operation is more complex than the MixColumns operation.
In addition, the increased routing overhead due to the additional AES core also decreases
the maximum frequency. AES-decryption reaches a maximum frequency of 247MHz which
gives a throughput of 126Gbit/s. The multi-core Serpent encryption module reaches a
throughput of 140Gbit/s at a maximum frequency of 275MHz. This is an increase of 8.3%
compared to AES. A throughput of 140Gbit/s at a maximum frequency of 247MHz can
be achieved for the multi-core Serpent decryption design. Because Serpent’s encryption
and decryption operations are of similar complexity, also the multi-core encryption and
decryption reach a relatively similar maximum frequency. In fact, the decryption is only
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slower because of the increased routing overhead due to higher resource consumption
compared to the multi-core Serpent encryption.

All four multi-core architectures are able to achieve the target throughput of 100Gbit/s
using four cipher cores in parallel for encryption and a total of five for decryption as it is
required by the OCB architecture. The Serpent shows a higher throughput compared to
AES, but also requires significantly more ALMs. In fact, Serpent encryption could reach the
target throughput with only three cipher cores in parallel when used as a standalone design.
However, when included in the overall fast-encryptor system this may not be true, as large
parts of the resources available are then consumed and the increased routing overhead
lowers the maximum frequency. In addition, the chosen architecture complies with the
existing AES architecture. This is necessary, as the network interface is designed to deliver
four 128-bit strings of data in parallel. Changing this to only three message blocks would
require extensive changes in the architecture of the network interface.

14.2 Modes for Authenticated Encryption

This section gives the results for the authenticated-encryption architectures additionally
implemented. These are GCM-Serpent, OCB-AES, and OCB-Serpent. We compare the
results with the existing authenticated-encryption engine, which is based on GCM-AES.
Furthermore, we closely analyze the throughput of the different AE implementations that
can be achieved under real life conditions on the target system. In addition, we present a
comparison with related work.

Table 14.3 presents the results for all authenticated-encryption architectures that were
implemented. In addition, the first two lines contain results for the standalone multi-core
architectures of AES and Serpent for comparison and in order to elucidate the overhead
caused by the authenticated encryption. All throughputs given in the table are valid under
the assumption that the pipeline is completely filled at every cycle.

Table 14.3: Encryption-only and authenticated-encryption results based on the Altera
Stratix IV (EP4S100G5F45) platform.

AE Mode Mode Cipher
Cores

Area fmax Throughput

[ALMs] [M9K Bl.] [M144K Bl.] [MHz] [Gbit/s] [%]

AES only E 4 6,916 322 0 252 124 118
Serpent only E 4 25,825 0 0 275 140 133

GCM-AES E/D 4 24,313 322 0 206 105 100
GCM-Serpent E/D 4 56,474 0 0 203 104 99
OCB-AES E 4 10,060 322 0 220 112 107
OCB-AES D 5 11,614 402 2 219 112 107
OCB-Serpent E 4 29,506 0 0 267 136 127
OCB-Serpent D 5 33,891 0 3 265 136 127

The existing GCM-AES architecture is the basis for the performance comparison. As
GCM encryption and decryption have the exactly same structure, results for both modes are
equal. GCM-AES consumes 24,313ALMs and 322 M9K BRAM blocks for encryption and
decryption respectively. It achieves a throughput of 105Gbit/s at a maximum frequency of
206MHz. This is significantly lower than the standalone AES which reaches a throughput of
118Gbit/s. The decrease in throughput and maximum frequency is caused by the GHASH
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core, which is the most complex part of GCM and which forms the critical path for the
entire GCM architecture. This also affects the GCM-Serpent architecture. While the
standalone multi-core Serpent design reaches a maximum throughput of 140Gbit/s the
GCM-Serpent design only reaches a throughput of 104Gbit/s at a maximum frequency
of 203MHz while consuming 56,474ALMs. So the throughput of GCM-Serpent is even
lower than the throughput of GCM-AES. This can be explained by the higher resource
consumption of GCM-Serpent. In consequence, the routing overhead is increased and the
maximum frequency of the GHASH core is decreased. For the OCB architectures, results
for encryption and decryption have to be treated separately as their design differs. OCB
encryption uses four cipher cores in parallel. For the OCB-AES architecture this results
in resource consumption of 10,060ALMs and a throughput of 112Gbit/s at a maximum
frequency of 220MHz. Compared to GCM-AES this is an increase in throughput of
7% while only 41% of the resources are needed. With a throughput of 136Gbit/s at
a frequency of 267MHz, which represents and increase of 27% compared to GCM-AES,
OCB-Serpent reaches the highest throughput of all AE engines realized. In addition the
design requires 29,506ALMs which is only an increase of 21% compared to GCM-AES.
As described in Section 12.2 the OCB-decryption architecture uses four cipher cores in
parallel for decryption and an additional cipher core that is in encryption mode and that is
required during the initialization and the finalization phase. Again, all cipher cores share a
common key scheduler. Using this design the OCB-AES decryption needs 11,614ALMs
and 2 M144K BRAM blocks and reaches a maximum frequency of 219MHz which results in
a throughput of 112Gbit/s. The OCB-Serpent decryption uses 33,891ALMs and 3 M144K
BRAM blocks and reaches a throughput of 136Gbit/s at a maximum frequency of 265MHz.
So, while OCB decryption achieves throughputs that correspond closely to those of the
OCB encryption, the resource consumption increases due to the additional cipher core.

As illustrated in Figure 14.1 OCB exceeds GCM in terms of throughput. Both, OCB-
AES and OCB-Serpent are significantly faster than GCM. OCB authenticated encryption
has a relatively low overhead compared to the standalone cipher architectures.
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Figure 14.1: Results for the implemented combinations of authentication-encryption modes
and block ciphers. The results of the standalone block-cipher cores are included for
comparison. Figure 14.1a shows the achieved throughput and Figure 14.1b displays the
number of used ALMs. Note, that the graphic does not incorporate used BRAM blocks.
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In terms of throughput OCB-AES has an overhead of 10% compared to the standalone AES
and OCB-Serpent has an overhead of only 2.2% compared to the standalone multi-core
Serpent design. OCB also is superior in terms of resource consumption. OCB-AES only
needs 41% of the ALMs required by GCM-AES and OCB-Serpent consumes only 52%
of the ALMs needed by GCM-Serpent. Note, that the area comparison between the AE
architectures based on AES and those based on Serpent is not entirely fair, as AES uses
M9K BRAM blocks, while Serpent actually does not. However, to the best of our knowledge
there exists no formula to convert BRAM to an equivalent in ALMs. If the S-Boxes for AES
were implemented using a LUT-based approach, the difference in consumption of ALMs
would be far smaller.

The advantage of OCB over GCM becomes even more obvious when comparing the
throughput/area ratio which is a good indicator for overall efficiency. Figure 14.2a shows the
throughput/area ratio for GCM, OCB encryption and OCB-Decryption. GCM encryption
and decryption are not listed separately, as they are equal in terms of throughput and area
requirements.
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Figure 14.2: Throughput/Area ratio results for the implemented authenticated encryption
engines. Figure 14.2a shows the ratio for single AE architectures and Figure 14.2b displays
the results for the AE engines as required by the fast-encryptor system which includes one
AE engine for decryption and one for encryption.

Again, it should be noted, that the results between the AES and Serpent architectures cannot
be directly compared due to the use of BRAM in AES. It is more meaningful to compare
the architectures that are based on the same underlying block cipher. GCM-AES achieves
a throughput/area ratio of 4.38Mbit/ALM while OCB-AES reaches 11.40Mbit/ALM for
encryption and 9.87Mbit/ALM for decryption. Consequently, OCB, when used with AES
is more than twice as efficient as GCM when taking the throughput/area ration as indicator.
GCM-Serpent has a ratio of 1.90Mbit/ALM while OCB-Serpent achieves 4.72Mbit/ALM
for encryption and 4.08Mbit/ALM for decryption. Again, this is twice as efficient as
GCM. Keep in mind, that GCM-AES uses 322 M9K BRAM blocks and that OCB-AES
decryption uses 402 M9K BRAM blocks and 2 M144K BRAM blocks while OCB-Serpent
decryption requires 3 M144K BRAM blocks. However, the consumption of BRAM blocks is
not incorporated in the throughput/area ratio results. Similar results can be observed when
looking at the area throughput ratio for the AE engine as required by the fast-encryptor
system which includes one AE engine for decryption and one for encryption.
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The throughput values given so far are theoretic values that assume, that the pipeline
is filled all the time. However, in reality this is not the case. As previously mentioned,
key changes as well as IV changes can cause pipeline stalls and additional delays. Also,
the calculation of the authentication tag is delay in practice. Table 14.4 lists the latency
and the different delays that can occur in different authenticated-encryption architectures
presented in this work.

Table 14.4: Latency and delays due to key changes and IV changes for the different
AE architectures.

AE Mode Mode Latency Delay Key Delay IV Delay Tag
Change Change Calculation

[cycles] [cycles] [cycles] [cycles]

GCM-AES E/D 4 38 0a 4
GCM-Serpent E/D 4 50 0a 4
OCB-AES E 21 23 0 1
OCB-AES D 21 23 0 22
OCB-Serpent E 33 35 0 1
OCB-Serpent D 33 35 0 33

a If an IV of 96 bits is used and the IV is a counter.

For a real life application we assume, that the two communication partners transmit
a high amount of data at the highest transmission rate possible. Frames are typically of
full size, and key changes are not very frequent. As there are only two partners, a slow
key-change rate is realistic. So, when assuming a scenario where a key change happens
every 10000th ethernet frame the negative effect of the delay caused by a key change nearly
vanishes. Still, IV changes are required for every new frame in GCM and OCB. In GCM,
when using a 96-bit IV that is a counter, an IV change does not cause any additional
delay. As our OCB design, as described in Chapter 12 includes measures to effectively
reduce the effect of IV changes, we were able to reduce the delay caused by IV changes
to zero. However, it is necessary that the user applies new IV s in advance. In GCM, the
authentication tag is ready four cycles after the last ciphertext. This is barely acceptable.
While the OCB encryption has only a tag delay of one cycle, OCB decryption has a delay of
22 cycles for AES and 33 cycles for Serpent respectively. As these delays are unacceptably
high, the OCB designs feature BRAM blocks that buffer entire ethernet frames until the
tag is readily computed. This way, the delayed tag calculation only affects the very first
frame being sent after a key change.

14.3 Comparison with Related Work

This section compares the achieved results with related work that also targets high-
throughput implementations of block ciphers and authenticated encryption modes. There-
fore no publications that focus on low resource consumption are included. In addition
we only list publications that provide practical implementations in regard to our target
application. This means, that we exclude implementations that rely on precomputed LUTs
based on fixed keys and require reprogramming of the FPGA in order to change the secret
key. Also note, that we only compare the achieved maximum frequency and throughput.
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This has two reasons: first, it is hard to compare the resource consumption on different
hardware platforms as the complexity of their CLBs varies and second, this work mainly
focused on throughput and not on resource consumption. However, also the achieved
throughputs cannot easily be compared due to the different target platforms. The main
goal of this section is to give an estimation on how the results achieved in this work perform
in comparison with other state-of-the-art implementations. Table 14.5 gives the comparison
of encryption-only and authenticated encryption results of the architectures developed in
this work with related work.

Table 14.5: Comparison of encryption-only and authenticated encryption results with
related work.

Source AE Mode Device Cipher
Cores

fmax Throughput
[MHz] [Gbit/s]

This work AES only Altera EP4S100G5 1 252 32.3
This work Serpent only Altera EP4S100G5 1 284 36.3
Sugier [103] Serpent only Xilinx XC3S1600E-5 1 137 17.5
Lazaro et al. [64] Serpent only Xilinx X2C2000-6 1 333 42.8

This work GCM-Serpent Altera EP4S100G5 4 203 104
This work OCB-AES Altera EP4S100G5 4 220 112
This work OCB-Serpent Altera EP4S100G5 4 267 136
Zhou et al. [113] GCM-AES Xilinx V5LX85ff668-2 1 340 40.2
Abdellatif et al. [2] GCM-AES Xilinx XC5VLX220 4 200 102.4

Table 14.5 does not contain related work for high-speed AES implementations as the
AES cipher was not a main contribution of this work. In 2004 Lázaro et al. [64] presented a
Serpent design capable of encrypting 42.8Gbit/s on an Xilinx Virtex-2 XC2V2000 FPGA.
Their architecture is fully unrolled with two pipeline stages for each round of Serpent. In
order to increase the throughput the encryption pipeline is clocked at double frequency
compared to the key scheduler. While this design uses two pipeline stages per round, and
thus is able to outperform the Serpent architecture presented in this work in terms of
throughput, this also doubles the latency. Even if this may not be a big disadvantage in
general, it is a problem when using the cipher in either GCM or OCB mode, as the delays
caused by key changes and IV changes as well as for the tag calculation would double.
Sugier [103] describes an implementation of Serpent that uses full outer-loop pipelining and
a key scheduler in combinational logic which achieves a throughput of 19.7Gbit/s targeting
a Xilinx Spartan-3E FPGA. A design employing pipelining for the cipher rounds of Serpent
as well as for the key scheduler that reaches a throughput of 17.5Gbit/s is presented in the
same paper. Our implementation outperforms this by a factor of two. However, to be fair,
the target devices cannot really be compared as the Xilinx Spartan 3 is a low-cost device
while the Altera Stratix IV is in the high-end range.

In 2009, Zhou et al. [113] presented a single-core GCM-AES design, which targets a
Xilinx Virtex-5 FPGA and achieves a throughput of 41.5Gbit/s based on the 128-bit version
of AES. They use the same pipelined Karatsuba-Ofman multiplier design as applied in this
work. In terms of single core performance, they outperform our design when simply dividing
the throughput of the parallel GCM design by four. It should however be noted, that the
complexity as well as the resource consumption increase when using parallel designs for
the encryption and the GHASH. In consequence this also lowers the maximum frequency
and the throughput. Abdellatif, Chotin-Avot, and Mehrez [2] describe a GCM-AES design
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reaching a throughput of 102.4Gbit/s on a Virtex-5 FPGA. Their implementation is based
four fully unrolled, pipelined AES cores for encryption and four parallel GHASH cores.
However, their design uses a fixed secret key which allows them to precalculate the round
keys for AES and the H-values for GHASH and to synthesize those into their design. This
reduces the complexity for both, the encryption part as well as for the authentication
part but requires to reprogram the FPGA in case a key change is needed. Still, our work
reaches and a similar throughput for GCM-AES. OCB-Serpent even gives an improvement
in throughput of 33%.

To the best of our knowledge there are no hardware architectures targeting high-
throughput authenticated encryption that are based on a block-cipher other than AES.
Additionally, no design using AES as a block cipher, that is capable of encrypting at
throughputs of over 100Gbit/s, and that is based on a different mode of operation than
GCM has been published so far.



Chapter 15
Conclusion

The contribution of this work is part of the QCrypt project which aims at providing a future-
proof secure high-speed communication platform that is based on a quantum key-distribution
(QKD) system. The system can be divided into two parts: the quantum key-distribution
system and the fast-encryptor system. The fast-encryptor system is based on an Altera
Stratix IV EP4S100G5 FPGA and handles the high-speed network communication and
generates an authenticated and encrypted data stream using the user-keys provided by
the QKD-system. This stream is then transmitted to the communication partner over a
public 100Gbit/s channel. The existing authenticated-encryption engine is based on the
Galois Counter Mode of Operation (GCM) with four parallel AES cores as underlying block
cipher.

The main goal of this work was to elaborate possible alternatives to the existing
authenticated-encryption engine that are capable of encrypting data at rates of over
100Gbit/s. On the one hand the idea was to be prepared for unexpected security flaws in
the existing system by providing alternative subcomponents and on the other hand there
was a desire to possibly find a better solution compared to the existing system. In order to
do so, we first introduced the theory necessary to understand this thesis and we described
the algorithms involved within this thesis. Next, in order to be able to identify promising
alternatives we first presented the existing authenticated-encryption engine and analyzed
the specifications of the system and requirements the authenticated-encryption engine has
to fulfill. Then, we evaluated alternative subcomponents and algorithms in regard to the
previously defined requirements. Finally, the most promising candidates were designed,
implemented in hardware and tested on the target system. We laid a strong emphasis on
ensuring easy integration into the existing system, an efficient use of resources, low latency
and minimal delays.

During evaluation of alternatives to the AES block cipher, Serpent emerged as a
promising candidate and was consequently implemented in hardware. In order to reach the
desired throughput of 100Gbit/s, 33 pipeline stages had to be introduced and four cipher
cores had to be used in parallel. The resulting architecture is able to achieve a throughput
of 140Gbit/s at a maximum frequency of 275MHz which is an increase of 8.3% compared
to the existing AES architecture. The design requires 33,067ALMs and does not use any
BRAM on the target platform. Based on the multi-core Serpent design, we developed a
mode for authenticated encryption that uses GCM with Serpent as the underlying block
cipher. This design was able to reach a throughput of 104Gbit/s at a maximum frequency of
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203MHz while consuming 56,474ALMs of 212,480ALMs available on the target platform.
In addition the Offset CodeBook (OCB) mode in its third version was chosen as an
alternative mode for authenticated encryption. The OCB-encryption architecture is based
on four parallel block cipher cores, while the OCB-decryption architecture uses four cipher
cores in parallel for decryption and an additional cipher core that is in encryption mode.
When using AES as the underlying block cipher OCB achieves a throughput of 112Gbit/s
at a maximum frequency of 220MHz and only needs 10,060ALMs for encryption and
11,614ALMs for decryption. Compared to GCM-AES this is an increase of over 7% in
throughput. The fastest authenticated-encryption design is OCB-Serpent, which reaches
a throughput of 136Gbit/s at 267MHz while consuming 29,506ALMs for encryption and
33,891ALMs for decryption. This is an increase in throughput of 27% compared to GCM-
AES. When looking at the throughput/area ratio OCB is more than twice as efficient as
GCM.

To summarize, this work produced a multi-core Serpent architecture based on four
parallel cipher cores capable of encrypting at a throughput of 140Gbit/s. In addition,
we implemented three authenticated-encryption engine variants that are all capable of
providing authenticated encryption at a rate of over 100Gbit/s: GCM-Serpent, OCB-AES
and OCB-Serpent. To the best of our knowledge, GCM-Serpent and OCB-Serpent are the
first hardware architectures targeting high-throughput authenticated encryption that are
based on a block-cipher other than AES. Additionally, no design using AES as a block
cipher, that is capable of reaching throughputs of over 100Gbit/s, and that is based on
a different mode of operation than GCM has been published so far. Our fastest design
is based on OCB-Serpent and reaches a throughput of 136Gbit/s which outperforms all
GCM-AES implementations available on FPGAs to date. Furthermore, we could show,
that OCB is twice as efficient compared to GCM when taking the throughput/area ratio as
an indicator.

15.1 Future Work

This section gives some possible tasks that could improve some aspects of the existing
architectures.

Implement AES S-Boxes in LUTs It could be beneficial to implement the AES S-
Boxes using a LUT-based approach. Modern high-end FPGAs like the Altera Stratix IV
EP4S100G5 allow to implement the 8-bit S-Boxes of AES relatively efficiently. Results
in [65, 87] suggest, that this approach could result in an increased throughput for AES and
consequently also an increased throughput for OCB-AES.

AES with Shared Encryption and Decryption Data Path An AES with shared
data path for encryption and decryption would be beneficial for OCB. Using four cipher
cores that are capable of encrypting and decrypting would improve the flexibility of the
system. It would allow to authenticate data at the decryption side at the same speed as on
the encryption side. In addition, this would allow the network interface to apply messages
to the authenticated-encryption engine exactly in the order it arrive as authenticated only
data can be processed as fast as authenticated and encrypted data. As AES can efficiently
share resources between encryption and decryption and the additional encryption core
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included in the current architecture could be omitted, the resource consumption should not
increase drastically.

Evaluate CEASAR Challenge Submissions The CAESAR challenge [27] generated a
variety of new authenticated-encryption algorithms. These submissions should be evaluated
towards their suitability for high-throughput implementations. Still, as the challenge is in
an early stage, the security of some schemes is still unclear. Thus, the employment of the
novel proposals in commercial products such as the QCrypt should be chosen with great
care.

15.2 Outlook

In 2013 the CAESAR challenge [27] was launched, with the goal to identify authenticated
ciphers that offer advantages over GCM-AES and that are suitable for widespread adoption.
The whole competition is based on a public evaluation and discussion. For the first round of
the competition, launched in March 2014, 57 authenticated cipher candidates were submitted.
The candidates are now under public review and their security is deeply analyzed. At
the time of writing this thesis eight submissions have been withdrawn because of security
flaws that could be identified. In addition to the security research, the suitability of the
algorithms implementations on different platforms is evaluated. Software implementations
of the AE algorithms are compared on different target processors and evaluated regarding
throughput, energy efficiency, and memory requirements. As requirements vary for different
target applications, the evaluations are performed for a wide range of platforms. Some, that
target embedded systems or low-energy environments, focus on the resource requirements
and the energy efficiency, while others that target more capable processors mainly opt for
high throughput. The very same is true for hardware implementations targeting FPGAs or
ASICs. One the one hand the submissions are implemented and evaluated with low resource
consumption and high energy efficiency in mind, and on the other hand high throughput is
the main objective. Typically, most evaluations compare the throughput/area ratio of the
implemented candidates as it is a good tool to measure the overall efficiency of an algorithm.
Based on the observation and findings made in the first round, in January 2015, submission
will be announced that make it through to the second round of the CAESAR challenge.
These submissions will again be analyzed and evaluated in order to select candidates that
make it to the third round, which starts in December 2015. The process of evaluation
is then repeated once more until in December 2016 the submissions that make it to the
final round of the CAESAR challenge will be announced. One, or multiple of these final
candidates will then, in December 2017, be announced as winners of the competition.

Still, at the time of writing this work, the CAESAR challenge is in an very early stage.
It can not yet be estimated which candidates will make the run. It will be interesting to
see which algorithms prove to be highly secure and particularly well suited for hardware
implementations, especially targeting high throughput.



Appendix A
Definitions

A.1 Abbreviations

AE Authenticated Encryption
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
ALM Arithmetic Logic Module
ALUT Adaptive Look-Up Table
ASIC Application-Specific Integrated Circuit
BRAM Block Random Accessible Memory
CPLD Complex Programmable Logic Device
CRC Cyclic Redundancy Checksum
DES Data Encryption Standard
DUT Device Under Test
ECB Electronic Codebook Mode
EEPROM Electrically Erasable Programmable ROM
EOF End Of Frame
FIPS Federal Information Processing Standard
FPGA Field Programmable Array
GCM Galois Counter Mode of Operation
HDL Hardware Description Language
I/O Input/Output
IV Initial Vector
KOA Karatsuba-Ofman Algorithm
LE Logic Element
LUT Look-Up Table
MAC Message Authentication Code
MDC Modification Detection Code
MoO Mode of Operation
MSB Most Significant Bit
MUX Multiplexer
NIST National Institute of Standardization and Technology
ntz Number of Trailing Zeros
OCB Offset Codebook Mode of Operation
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OTP One-Time Pad
PCB Printed Circuit Board
PKI Public-Key Infrastructure
PLL Phase-Locked Loop
PLD Programmable Logic Device
PROM Programmable Read-Only Memory
QC Quantum Cryptography
QKD Quantum Key Distribution
ROM Read-Only Memory
SRAM Static Random-Access Memory
SOF Start Of Frame

A.2 Used Symbols

‖ Concatenation
⊕ Bitwise-exclusive-or
∧ Bitwise-and-operation
� Left shift
≪ Circular left shift
≫ Circular right shift
∅ Empty set or empty string
|x| Length of string x in bits
msb(x) Returns the most significant bit of x using binary representation
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Supplementary Material

B.1 Serpent

S-Boxes and Inverse S-Boxes

The S-Boxes S0 through S7 used for encryption in Serpent are defined as follows:

S0 : 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12
S1 : 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4
S2 : 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2
S3 : 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14
S4 : 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S5 : 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S6 : 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S7 : 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

The inverse S-Boxes InvS0 through InvS7 used for decryption in Serpent are defined as
follows:

InvS0 : 13 3 11 0 10 6 5 12 1 14 4 7 15 9 8 2
InvS1 : 5 8 2 14 15 6 12 3 11 4 7 9 1 13 10 0
InvS2 : 12 9 15 4 11 14 1 2 0 3 6 13 5 8 10 7
InvS3 : 0 9 10 7 11 14 6 13 3 5 12 2 4 8 15 1
InvS4 : 5 0 8 3 10 9 7 14 2 12 11 6 4 15 13 1
InvS5 : 8 15 2 9 4 1 13 14 11 6 5 3 7 12 10 0
InvS6 : 15 10 1 13 5 3 6 0 4 9 14 7 2 12 8 11
InvS7 : 3 0 6 13 9 14 15 8 5 12 11 7 10 1 4 2

Initial Permutation and Final Permutation

The Initial and Final permutations are each represented by an array containing the integers
in 0 . . . 127 without repetitions. Having a value v (say, 32) at position p (say, 1) means that
the output bit at position p(1) comes from the input bit at position v(32).
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Initial Permutation

0 32 64 96 1 33 65 97 2 34 66 98 3 35 67 99
4 36 68 100 5 37 69 101 6 38 70 102 7 39 71 103
8 40 72 104 9 41 73 105 10 42 74 106 11 43 75 107

12 44 76 108 13 45 77 109 14 46 78 110 15 47 79 111
16 48 80 112 17 49 81 113 18 50 82 114 19 51 83 115
20 52 84 116 21 53 85 117 22 54 86 118 23 55 87 119
24 56 88 120 25 57 89 121 26 58 90 122 27 59 91 123
28 60 92 124 29 61 93 125 30 62 94 126 31 63 95 127

Final Permutation

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

67 71 75 79 83 87 91 95 99 103 107 111 115 119 123 127
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Serpent Key Scheduler Architecture

w4·i−8

w4·i−7

w4·i−6

w4·i−5

w4·i−4

w4·i−3

w4·i−2

w4·i−1

w4·i

w4·i+1

w4·i+2

w4·i+3

φ

i|00
i|01
i|10
i|11

S00

S031 S031

S70

8:1 Mux

LoadUserKeyxSI

w−8

w−7

w−6

w−5

w−4

w−3

w−2

w−1

(i+ 3)mod 8

R
eg

K
0

R
eg

K
3
2

enable Reg Ki

S-box
block

33-bit
Shift Reg

K0 K32

Round Key
Registers

R
eg

K
3
1

K31

Figure B.1: Overview of the key-scheduler design of Serpent.
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B.2 OCB

Algorithm B.2.1 gives an exact description of the authenticated decryption according to
OCB. The characters ‖ , ⊕, and ∧ denote the concatenation-, bitwise-exclusive-or-, and
bitwise-and-operation, respectively. Furthermore, ntz(i) describes the number of trailing
zeroes of i in binary representation. We use ∅ to represent both an empty binary string of
length n (cf. line 3), and an empty set as within line 11. The listings for the procedures Setup,
Init, and HashK used throughout Algorithm B.2.1 are equal to the OCB authenticated
encryption and are given in Algorithm 6.6.2, Algorithm 6.6.3 and in Algorithm 6.6.4.

Algorithm B.2.1 OCB authenticated decryption.
Input: Ciphertext C of m blocks length, Message block length n, Cipher key K, Nonce

N , Associated data A of p blocks length, Tag length τ , Authentication tag T
Output: Plaintext M , Authentication tag valid ∈ {V ALID, INV ALID}
1: if |N | ≥ n then return INVALID
2: {C1, . . . , Cm, C∗} ← C, with |Ci| = n and |C∗| < n
3: Checksum← ∅;M ← ∅
4: L∗, L$, L[0] . . . L[blog2(m)c]← Setup(K,m)
5: ∆← Init(N,n,K)
6: for i = 1 to m do
7: ∆← ∆⊕ L[ntz(i)]
8: M ←M ‖DK(Ci ⊕∆)⊕∆
9: Checksum← Checksum⊕Mi

10: end for
11: if M∗ 6= ∅ then
12: ∆← ∆⊕ L∗
13: Pad← EK(∆)
14: M ←M ‖C∗ ⊕ (Pad ∧ (2|C∗| − 1))
15: Checksum← Checksum⊕M∗10∗, with

M∗10∗ = M∗‖1‖0 . . . 0, such that |M∗10∗| = n
16: end if
17: ∆← ∆⊕ L$

18: Final← EK(Checksum⊕∆)
19: Auth← HashK(A)
20: Tag ← Final ⊕Auth
21: T ′ ← Tag ∧ (2τ − 1)
22: if T == T ′ then
23: return V ALID
24: return M
25: else
26: return INV ALID
27: end if



Appendix C
Original Assignment

The original assignment of this thesis is appended in the next five pages. It comprises an
introduction to the QCrypt project and its goals and points out the need for a 100Gbit/s
authenticated-encryption engine. Next follows a general description of the project which
involves two main tasks. First, possible alternatives to the existing AE engine have to be
evaluated and second, one the hardware design of one promising alternative AE engine
has to be implemented on an Stratix IV FPGA and an evaluation of its performance
has to be carried out. The implementation has to be compatible to the existing system.
Next follows a list of goals and milestones, to reach these goals are set that have to be
fulfilled in sequential order. First, algorithms suited for the requirements of the system
have to be found and evaluated. Second, the chosen algorithms have to be implemented
and finally the have to be evaluated. At the end, a set of requirements to realize the project
is given. This set includes the preparation of a project plan, weekly meetings, a report
and a presentation which both present the results of the work and a listing of deliverables
required to successfully finish the work.
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1 Introduction

The QCrypt Project aims to considerably improve cryptography on both the key distribution
level and the encryption level. Quantum Key Distribution is a secure way to generate keys,
which is based on the fundamental laws of quantum mechanics. However, existing systems are
too slow. The new QKD system will be capable of producing keys at 1Mb/s rate, which means
it will allow 1MHz OTP encryption for high-level applications. In standard applications the
data exchange rates continue to increase.

Today’s commercial encryptors are already approaching 10Gb/s. Consequently a future proof
encryption engine for up to 100 Gb/s will be developed and this high-speed encryption will
be combined with high rate QKD, to allow for changing the keys rapidly, thus considerably
improving the security and simplifying the key management. [2]

The encryption engine will be capable of encrypting at 100 Gb/s as well as authenticating the
message at said speed. Different modes of encryption and authentication are supported. The
whole Ethernet packet can be encrypted and encapsulated within another Ethernet packet, only
payload can be encrypted, or the whole frame can be transferred in plain text, and all modes
can either be authenticated or not.

2 Project Description

At the moment, the encryption is done by a 4 parallel AES cores in counter mode. The authen-
tication is realized through a GHASH core. The goal of this project is the development of a
high-speed cryptographic encryption module, compatible with the current QCrypt-environment.
This includes

• Evaluation of different authenticated encryption modes of operation

– GCM

– OCB

– CWC (Carter Wegman with Counter)

– EAX

– CBC-MAC (CCM)

– ...

• Evaluation and comparison of different block-cipher candidates

– Serpent

– Twofish

– AES

– ...

• Evaluation of different (universal) hash functions (and SHA-3 candidates)

– GHASH

– Gröstl

2
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– Keccak
– ...

• Hardware Design and evaluation of performance

– Encryption/decryption operation
⇤ Pipelined data path
⇤ Parallel GF(2^m) binary multiplier for GHASH

– Message authentication

2.1 Interface

The data interface of the encryption / authentication module should be compatible with the
currently used interfaces. Currently, a 2 x 512 bit wide interface is used at either end, 512 bit
for the plain data, 512 bit for the cipher text.

The Key and some settings are stored in registers which are accessed through a USB connec-
tion. Further control signals can be used if needed.

2.2 Hardware Platform

The hardware platform is based on a newly developed PCB, currently under testing, hosting a
Stratix IV GT (EP4S100G5) [3] FPGA with 32 10 Gb/s serial transceiver, 531’200 equivalent
Logic Elements (LE) and about 18’000 Kibits of embedded memory. Further a Max II CPLD
(EPM2210) is used for FPGA configuration and hardware monitoring.

The communication can be realized by up to 8 SFP+ and 2 XFP modules for the plain text
side and either a CXP or a CFP module at the cipher text side. CXP is a cheap variant for 100
Gb/s communication realized in so called active cables with 20 parallel fibers and the optical
modules located in the plug whereas CFP is a communication of 100 Gb/s over one single fiber.

3 Goals

This project will not be considered a success unless a working demonstration can be presented
at the end of the project. This system should:

• be capable of encrypting and authenticating data streams at a minimal rate of 100 Gb/s

• be optimized for low area consumption

• have a validated data path.

4 Milestones

The following is a list of expected milestones in the project.

• System specification
The first task is to determine the specifications of the system. This includes usable logic,
throughput, latency and controlling.

3
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• Algorithm evaluation
For the system, suited algorithms have to be found. These algorithms need to be analyzed,
simulated, and compared. Especially the throughput and complexity need to be compared
thoroughly.

• Implementation
The chosen algorithms will then be implemented and optimized for the target FPGA.
Pipelining and Retiming will be needed to reach the goals of throughput.

• Functional test
Two different functional test should be done. One is a standalone test of the crypto system.
Here, no interaction with the networking components will be necessary. The results of the
operation need to be validated by a golden model. The second test consists of a run time
test with actual interaction with the Ethernet circuitry.

5 Project Realization

5.1 Project Plan

Within the first month of the project you will be asked to prepare a project plan. This plan
should identify the tasks to be performed during the project and set deadlines for those tasks.
The prepared plan will be a topic of discussion of the first week’s meeting between the students
and the advisors. Note that the project plan should be updated constantly depending on the
project’s status.

5.2 Meetings

Weekly meetings will be held between the student and the assistants at a time to be determined.
These meetings will be used to evaluate the status and progress of the project. In addition to
these regular meetings, additional meetings can be organized to address urgent issues as well.

5.3 Reports

Documentation is an important and often overlooked aspect of engineering. One short inter-
mediate report and one final report (the Master Thesis) are to be completed within this study.
Note that the intermediate report should be designed to be part of the final report.

The common language of engineering is de facto English. Therefore, the intermediate and
final report of the work are preferred to be written in English. Any form of word processing
software is allowed for writing the reports, nevertheless the use of LATEX with Tgif (for block
diagrams) is strongly encouraged by the IIS staff.

First Intermediate Report This report should be written in such a way to become the first
part of your final report. It should contain general information about the topic, a description
of the problem, explanations of related terminology, and descriptions of similar approaches in
literature (with corresponding references to books, papers etc.).

4
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Final Report The final report has to be presented at the end of the Master Thesis and a
digital copy needs to be handed out and remains property of the IIS. This report is only accepted
when the keys for the ETZ building have been properly returned. Note that this task description
is part of your thesis and has to be attached to your final report.

5.4 Presentation

There will be a presentation (20 min presentation and 5 min Q&A) at the end of this project
to present your results to a wider audience. The exact date will be determined towards the end
of the work.
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