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als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
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Abstract

A graph is called edge intersection graph of paths on a grid if there is a grid and there are
paths on this grid, such that the vertices correspond to the paths and two vertices are
adjacent if and only if the corresponding paths share a grid edge. Such a representation is
called EPG representation. A graph is in Bk if and only if there is an EPG representation
where every path has at most k bends. Furthermore a graph is in Bm

k if it is in Bk and
every path is monotonic, that is it is only ascending in both columns and rows.

In the thesis we first present an overview of the existing results on edge intersection
graphs of paths on a grid. Then we show that every outerplanar graph is in Bm

2 . More-
over, we give an exact characterization of the graphs contained in B0, Bm

1 , B1, and
Bm

2 for both maximal outerplanar graphs and cacti. Then we proceed by proving, that
Bm
k $ Bk for k = 2, k = 5, and k > 7, give a condition on when a Km,n is in Bm

k and
prove that B1 ⊆ Bm

3 . In the end we present a mixed integer linear programming (MILP)
formulation of the problem to find the minimum k such that a given graph is in Bm

k and
a MILP formulation of the problem whether a given graph is in Bm

k for a fixed k. The
latter we generalize to a MILP formulation of the problem, whether a given graph is in
Bk for a fixed k.
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Kurzfassung

Ein Graph wird Kanten-Überschneidungsgraph von Pfaden auf einem Gitter (edge in-
tersection graph of paths on a grid, EPG) genannt, wenn es ein Gitter und Pfade im
Gitter gibt, so dass zwei Knoten im Graphen adjazent sind, genau dann, wenn die zu-
gehörigen Pfade im Gitter eine Gitterkante gemeinsam haben. So eine Repräsentation
eines Graphen wird EPG Repräsentation genannt. Ein Graph ist in Bk, wenn es eine
EPG Repräsentation gibt, so dass jeder Pfad maximal k Knicke hat. Außerdem ist ein
Graph in Bm

k , wenn er in Bk ist und zusätzlich jeder Pfad der EPG Repräsentation vom
Startpunkt immer nur nach oben oder nach rechts geht.

In der Masterarbeit präsentieren wir zuerst einen Überblick über die existierenden
Resultate über Kanten-Überschneidungsgraphen von Pfaden auf einem Gitter. Dann
zeigen wir, dass jeder außenplanare Graph in Bm

2 ist. Darüber hinaus geben wir genaue
Kriterien an, wann Kaktusgraphen und außenplanare Triangulierungen in B0, Bm

1 , B1

und Bm
2 sind. Dann beweisen wir, dass Bm

k $ Bk für k = 2, k = 5 und k > 7 gilt.
Zusätzlich geben wir eine Bedingung an, die erfüllt sein muss, wenn Km,n in Bm

k ist,
und beweisen außerdem, dass B1 ⊆ Bm

3 . Am Ende der Masterarbeit geben wir eine
lineare gemischt-ganzzahlige (mixed integer linear programming, MILP) Formulierung
des Problems an, das minimale k zu bestimmen, so dass ein gegebener Graph in Bm

k ist.
Außerdem präsentieren wir eine zweite MILP Formulierung um herauszufinden, ob ein
gegebener Graph für ein fixes k in Bm

k ist. Letztere verallgemeinern wir zu einer MILP
Formulierung um zu bestimmen, ob ein gegebener Graph für ein fixes k in Bk ist.
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1 Introduction

A graph is called edge intersection graph of paths on a grid (EPG) if there is a grid
and there are paths on this grid such that the vertices correspond to the paths and two
vertices are adjacent in the graph if and only if the corresponding paths share a grid
edge. Such a representation of the graph is called an EPG representation.

Closely related to EPGs are edge intersection graphs of paths on a tree (EPT). They
were introduced already in 1985 by Golumbic and Jamison in [15] and [16]. In an EPT,
the paths are not paths on a grid but paths on a tree. A first generalization of EPTs was
made in [18] where k-edge intersection graphs of paths on a tree were studied. Here the
vertices are adjacent if and only if the paths have at least k edges in common. In [17] and
[19] it turned out, that EPTs in trees with degree 4 are of certain interest. Finally, edge
intersection graphs of paths on a grid were introduced in 2009 by Golumbic, Lipshteyn,
and Stern in [20]. They are a generalization of EPTs in trees with degree 4 because in
every grid point there are 4 outgoing grid edges.

In all the above mentioned graph classes, an intersection of two paths means, that they
share an edge. Nevertheless also the case where intersection only means sharing a point
was considered. A graph is called vertex intersection graph of paths on a tree (VPT) if
there is a tree and there are paths on this tree, such that two vertices are adjacent if and
only if the paths intersect in at least one vertex of the tree. Vertex intersection graphs
of paths on a tree are also called path graphs and were studied for example in [13]. Also
VPTs were generalized analogously to EPTs, namely vertex intersection graphs of paths
on a grid were introduced in [1].

There has been done a lot of research on EPG graphs recently [2–4, 8, 10, 20, 21, 25, 26],
especially restricted classes of EPG are considered. A graph is in Bk if there is an EPG
representation of the graph, where every path has at most k bends. Another considered
class is Bm

k . Here all the paths are only allowed to have at most k bends and furthermore
are only allowed to be ascending in both columns and rows, so the paths look like stairs
going upwards from the left to the right. The bend number and the monotonic bend
number are defined as the minimum k and k′, such that a graph is in Bk and Bm

k′

respectively.
Edge intersection graphs of paths on a grid initially were introduced because of two

applications. The first one comes from circuit layout setting. In this setting the wires
correspond to the paths on the grid. In the knock-knee layout model we want to place
the wires on the grid in multiple layers, such that the wires of each layer to not share a
grid edge, but crossing and bending of wires is allowed. In our notation that corresponds
to finding a coloring of the vertices of the graph, such that two adjacent vertices are
not colored with the same color. For more information see [7, 32]. Another application
comes from chip manufacturing. There a transition whole is required, whenever a wire
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1 Introduction

bends. Many transition wholes may enlarge the area and furthermore increase the cost
of the chip, hence we want to minimize the number of bends or equivalently find the
minimum k such that the corresponding graph is in Bk. Further information can be
found in [20].

The rest of the thesis is organized as follows. In Chapter 2 we will introduce all the
definitions needed throughout the whole thesis. Then we will give an overview of the
known results concerning edge intersection graphs of paths on a grid in Chapter 3. That
includes for example structural properties, as well as results on complexity, the hierarchy
of Bk and Bm

k , and upper and lower bounds on the bend number and the monotonic bend
number of some graph classes and with respect to some graph properties respectively.

We will proceed by deriving new results. In Chapter 4 we will show, that the mono-
tonic bend number of outerplanar graphs is 2. This implies that the monotonic bend
number and the bend number coincide for outerplanar graphs. Additional to that we
will consider two subclasses of outerplanar graphs, namely outerplanar triangulations
and cacti, and derive a full characterization of the graphs of these classes which are in
B0, Bm

1 , B1, and Bm
2 . These characterizations are done by stating forbidden induced

subgraphs.
We will close the discussion of the graph Sn by giving the bend number as well as

the monotonic bend number of it in the beginning of Chapter 5. Then we proceed by
showing, that Bm

k $ Bk for k = 2, k = 5, and k > 7, which answers an open question
of [20] for almost all values of k. In order to prove that, we derive an inequality on m,
n, and k which has to be fulfilled if a Km,n is in Bm

k . With this inequality we will also
show, that for even k > 6 there is a graph in Bk which is not in Bm

2k−8 and for odd k > 6
there is a graph in Bk which is not in Bm

2k−9 respectively. Additional to that we will
show, that B1 ⊆ Bm

3 , giving the first result of this kind.
In Chapter 6 we will present a mixed integer linear programming (MILP) formulation

of the problem of finding the bend number of a given graph. It is based on introducing
a binary variable for every path and for every grid edge which determines, whether
a path uses this grid edge or not. Also another MILP formulation is given. With
this formulation we can determine whether a given graph is in Bm

k for a fixed k. The
formulation is based on introducing integer variables which represent the bend points of
the paths. The latter is also generalized to a MILP model which determines, whether
a graph is in Bk for a fixed k in Chapter 7. In the end we present our conclusions and
open questions in Chapter 8.

12



2 Basic Definitions

The purpose of this section is to point out, which terms of graph theory are used in
the thesis and where to find their definitions. Furthermore we define edge intersection
graphs of paths on a grid and related terms.

2.1 Definitions from Graph Theory

Throughout the whole thesis we assume familiarity with terms of graph theory like graph,
directed graph, vertex, edge, adjacent, incident, neighbor, neighborhood, degree, max-
imum degree, connected, bipartite, isolated vertex, clique, maximal clique, maximum
clique, independent set, path, cycle, tree, perfect graph, plane, planar, outerplanar,
inner and outer face, subgraph, and induced subgraph. For mathematically rigorous
definitions of all above mentioned terms see for example Diestel [9].

In the whole thesis we will stick to the notation of [9], except for the notation of the
edges. For a graph G = (V,E) we will denote the elements of E with (u, v) for u, v ∈ V .
Note, that this implies that (u, v) = (v, u) in our notation.

Additionally let us mention, that whenever we refer to an induced subgraph, that
means that we take a subset of the vertices and all the edges inbetween the vertices of
the subset. If take a subset of the vertices and only some of the edges inbetween them,
we will refer to a subgraph. This will make a major difference in the proceeding.

Moreover we will find out, that the following graph plays a major role in investigating
on edge intersection graphs of paths on a grid.

Definition. The graph Km,n = (V,E) is defined in the following way. It has vertex set
V = A ∪ B with A = {a1, . . . , am} and B = {b1, . . . , bn}. Furthermore it has edge set
E = {(ai, bj) | 1 6 i 6 m, 1 6 j 6 n}. The graph Km,n is called complete bipartite graph
on m and n vertices.

2.2 Definitions related to Edge Intersection Graphs of
Paths on a Grid

In this subsection, we give the basic definitions related to edge intersection graphs of
paths on a grid, which are used throughout the thesis.

We start with the definition of a grid and a path.

Definition. The term grid is used to denote a rectangular grid in the plane. A grid
consists of horizontal and vertical grid lines which are also called grid rows and grid

13



2 Basic Definitions

columns, respectively. The crossings of two grid lines are called grid points. The segment
on a grid line between two consecutive grid points is called a grid edge. If a vertical grid
line is called x and a horizontal grid line is called y then we denote by (x, y) the grid
point which is the crossing of the grid line x and the grid line y.

Definition. A path on a grid consists of a start point and an end point, which are both
grid points, and of consecutive grid edges joining the start point with the end point.
Hence a path on a grid goes only along the grid lines. A turn of a path in the grid is
called bend and the grid point, in which the path turns, is called a bend point. The part
of a path between two consecutive bend points is called a segment. Also the part of the
path from the start point to the first bend point and the part of the path from the last
bend point to the end point are called segments.

Now we define the term intersection of paths.

Definition. We say, that two paths on a grid intersect, if they both have at least one
common grid edge. If two paths share a grid point, but no grid edge which is adjacent
to the grid point, we say, that the paths have a crossing in this grid point.

Finally we are able to define edge intersection graphs of paths on a grid according to
the definition of Golumbic, Lipshteyn, and Stern [20].

Definition. Let P be a collection of paths on a grid G. Then the edge intersection graph
EPG(P) is a graph, in which the vertices correspond to the paths in P and there is an
edge between two vertices, if and only if the corresponding paths intersect in the grid G.

An undirected graph G is an edge intersection graph of paths on a grid (EPG), if there
exist a grid G and a collection of paths P such that G = EPG(P). In this case we say
that G is EPG and we call 〈P ,G〉 an EPG representation of G.

Additional to that we want to consider two restrictions to the class of edge intersection
graphs of paths on a grid.

Definition. An EPG representation is called Bk-EPG representation, if every path has
at most k bends. A graph G is called Bk-EPG, if there exists a Bk-EPG representation
of G. We let Bk be the class of all graphs, which are Bk-EPG.

Definition. A path on a grid is called monotonic, if it is ascending in both columns and
rows. An EPG representation is called monotonic, if every path is monotonic. A graph
G is called monotonic EPG, if there exists a monotonic EPG representation of G.

Definition. A monotonic Bk-EPG representation is called Bm
k -EPG representation. A

graph G is called Bm
k -EPG, if there exists a Bm

k -EPG representation of G. We let Bm
k

be the class of all graphs, which are Bm
k -EPG.

The following facts are a direct consequence of the above definitions.

Observation 2.2.1. B0 ⊆ B1 ⊆ B2 ⊆ . . . and Bm
0 ⊆ Bm

1 ⊆ Bm
2 ⊆ . . . hold. Further-

more Bm
k ⊆ Bk holds for every k. Additional to that B0 = Bm

0 and B0 ⊆ Bm
1 .

14



2.2 Definitions related to Edge Intersection Graphs of Paths on a Grid

Moreover we define the bend number according to the definition of Heldt, Knauer,
and Ueckerdt [26] and analogously define the monotonic bend number.

Definition. The bend number of a graph G is the minimum k ∈ N∗ = {0, 1, 2, . . . },
such that G ∈ Bk. The monotonic bend number of a graph G is the minimum k ∈ N∗,
such that G ∈ Bm

k .

Note, that according to these definitions the bend number of a graph G is always less
or equal to the monotonic bend number of G.

15





3 Known Results

The aim of this section is to present an overview of the existing results on edge inter-
section graphs of paths on a grid. We will start by giving the proof, that every graph
is EPG and monotonic EPG in Section 3.1. Then we will give more detailed results on
graphs in B1 and Bm

1 including results on complexity and approximation algorithms for
certain combinatorial optimization problems in Section 3.2. After that, we will present
known upper and lower bounds on the bend number of graphs of certain classes and
graphs with certain properties in Section 3.3 and Section 3.4 respectively. In the end we
will present existing results on the graph Km,n in Section 3.5.

3.1 First Results

The very first result on edge intersection graphs of paths on a grid comes from Golumbic,
Lipshteyn, and Stern [20]. The proved the following result.

Theorem 3.1.1 (Golumbic, Lipshteyn, Stern [20]). Every graph is EPG.

Proof. Let G = (V,E) be a graph with V = {v1, . . . , vn}. We consider the grid G which
has grid rows 1, 2, . . . , n from bottom to top and grid columns 1, 1′, 2, 2′, . . . , n, n′

from left to right. Before we construct the paths, we define the forward neighborhood
N+(vi) = {vj | (vi, vj) ∈ E, i < j}. Now we can define the paths. For every 1 6 i 6 n
the path Pi starts at the grid point (1, i) and goes horizontally to the grid point (i, i).
Then the path Pi goes up vertically in the columns i and i′. It changes the column in
every row j with vj ∈ N+(vi). Let j∗ = max{j | ((vi, vj) ∈ E ∧ i < j)∨ j = i}. Then Pi
changes the column in row j∗ one last time and then ends in either the grid point (i, j∗)
or the grid point (i′, j∗). Let us denote this collection by P = {Pi | 1 6 i 6 n}.

An example of the construction can be seen in Figure 3.1.
What is left to show is, that 〈P ,G〉 is an EPG representation of G. Clearly path Pi

corresponds to vi, so we only have to show, that two paths intersect in G if and only if
the corresponding vertices are adjacent in G.

Assume two vertices vi and vj are adjacent in G with i < j. Then vj ∈ N+(vi) and
hence both the paths Pi and Pj use the grid edge from (i, j) to (i′, j) and the paths
intersect.

Assume two paths Pi and Pj with i < j intersect. An intersection can only be on the
grid line from (i, j) to (i′, j), since every path P` uses only the parts of the grid which
are in grid row ` before column `′ or between the grid columns ` and `′ above the grid
row `. Nevertheless, path Pi uses this grid line only if vj ∈ N+(vi). So vj and vi are
adjacent in G.

17



3 Known Results

v1

v2 v3

v4

v5

(a)

1 1’ 2 2’ 3 3’ 4 4’ 5 5’

P1

P2

P3

P4

P5

(b)

Figure 3.1: (a) A graph G. (b) An EPG representation of G.

This implies that the above construction yields an EPG representation and hence G
is EPG.

This result does not only reveal, that every graph is EPG, but it also points out,
that restricting the number of allowed bends is a natural further question. Actually, the
construction of the proof of Theorem 3.1.1 already gives an upper bound on the number
of bends needed in an EPG representation in terms of the maximum degree of a graph.

Corollary 3.1.2 (Golumbic, Lipshteyn, Stern [20]). Let G be a graph with maximum
degree ∆. Then G ∈ B2∆.

Proof. Every path in the construction of Theorem 3.1.1 bends one time in order to get
into the corresponding column. Then it bends at most two additional times for every
vertex in the forward neighborhood except for the last one, for which it only bends once.
Every vertex has at most ∆ neighbors and hence also at most ∆ vertices in the forward
neighborhood, therefore every path bends at most 1 + 2(∆− 1) + 1 = 2∆ times.

This is the first result giving an upper bound on the bend number in terms of a graph
property. Many more upper bounds of this kind can be found in Section 3.4. There
also the upper bound on the bend number with respect to the maximum degree ∆ is
improved in Corollary 3.4.11.

Another result given in the same paper is, that every graph is monotonic EPG.

Theorem 3.1.3 (Golumbic, Lipshteyn, Stern [20]). Every graph is monotonic EPG.

Proof. Let G = (V,E) be a graph with V = {v1, . . . , vn}. We define the grid G in the
following way. It has grid rows 1, 2, . . . , n from bottom to top. Furthermore it has grid
columns (1, 1), (2, 2), . . . , (n, n) and additional to that a grid column (i, j) for every
(vi, vj) ∈ E with i < j. All these grid columns are ordered lexicographically from left to
right, hence (1, 1) is the grid column farthest to the left and (n, n) is the grid column
farthest to the right. Let N+ be the forward neighborhood as defined in the proof of
Theorem 3.1.1 and let N+(vi) = {vj1 , vj2 , . . . , vjk} with j` 6 j`+1 for all 1 6 ` 6 k − 1.

Then we define a path Pi for every 1 6 i 6 n. For simplicity let j0 = i. The path Pi
starts at grid point ((1, 1), i) and goes horizontally to the grid point ((i, i), i). Then for

18



3.1 First Results

every 0 6 ` 6 k − 1 the path goes from the grid point ((i, j`), j`) vertically to the grid
point ((i, j`), j`+1) and then horizontally to the grid point ((i, j`+1), j`+1).

An example of the construction is depicted in Figure 3.2.

v1

v2 v3

v4

v5

(a)

(1,1) (1,3) (1,5) (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (4,4) (5,5)

P1

P2

P3

P4

P5

(b)

Figure 3.2: (a) A graph G. (b) A monotonic EPG representation of G.

It is easy to see, that every path is monotonic, so in order to show, that the obtained
construction is a monotonic EPG representation, we only have to prove, that two paths
intersect in G if and only if the corresponding vertices are adjacent in G.

Assume two vertices vi and vj with i < j are adjacent. Then vj ∈ N+(vi). If vj is the
first vertex in the forward neighborhood of vi, then let ` = i. If there is a vertex with
a lower index than j in the forward neighborhood of vi, then let ` be the index of the
vertex with the highest index which is lower than j. Then both paths Pi and Pj use the
grid edge from ((i, `), j) to ((i, j), j) and hence intersect.

Assume two paths Pi and Pj with i < j intersect. It follows from the definition of the
construction, that a path P` only uses the grid row ` before the column (`, `) and then
only uses the grid columns (`, k) for some k which are above the grid row `. So Pi and
Pj can only have a grid edge from ((i, `1), j) to ((i, `2), j) for some `1 and `2 in common.
But Pi uses this grid edges only, if j is in the forward neighborhood of i. This implies
that if the paths intersect, vj is adjacent to vi.

A drawback of the monotonic EPG representation is, that it needs a larger grid size.
Namely the representation of Theorem 3.1.1 needs a grid size of n × 2n whereas the
monotonic representation requires a grid size of n × (n + m). Nevertheless also the
construction of the proof of Theorem 3.1.3 gives an upper bound on the monotonic bend
number in terms of the maximum degree.

Corollary 3.1.4 (Golumbic, Lipshteyn, Stern [20]). Let G be a graph with maximum
degree ∆. Then G ∈ Bm

2∆.

Proof. The paths of the construction of Theorem 3.1.3 use two bends for every vertex in
the forward neighborhood. A vertex has at most ∆ vertices in its forward neighborhood,
therefore every path has at most 2∆ bends.

Like the bound on the bend number, the bound on the monotonic bend number with
respect to the maximum degree ∆ is improved in Corollary 3.4.11.
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3.2 Basic Known Results on B1 and Bm
1

3.2.1 Structural Results

In this subsection we want to derive properties of B1-EPG representations which we will
need throughout the thesis. We first consider the following definition.

12 3

4 5

(a)

e
P1

P2

P3

P4

P5

(b)

Figure 3.3: (a) A graph G with the clique {1, 3, 5}. (b) A B1-EPG representation of G
with the edge clique {P1, P3, P5}.
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K1,3

P1 P2

P3P4

(b)

Figure 3.4: (a) A graph G with the clique {1, 2, 3}. (b) A B1-EPG representation of G
with the claw clique {P1, P2, P3}.

Definition. Let 〈P ,G〉 be a B1-EPG representation of G. For every grid edge e, the
collection {P ∈ P | e ∈ P} is called edge clique. For every copy of the claw graph K1,3

in the grid, the collection {P ∈ P|P uses 2 edges of the claw} is called claw clique.

The following observation follows from the definition of the claw clique.

Observation 3.2.1. A claw clique can not be represented in neither B0 nor Bm
1 .

It is easy to see, that the vertices corresponding to the paths of an edge clique form a
clique in G. Also the vertices corresponding to the paths of a claw clique form a clique
in G. The following result reveals, that also the converse is true.

Lemma 3.2.2 (Golumbic, Lipshteyn, Stern [20]). Let G be a graph. Then in every
B1-EPG representation of G, every maximal clique of G corresponds either to an edge
clique or to a claw clique.
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In order to derive the next result, we will need two more definitions.

Definition. Let G = (V,E) be a graph and C a subset of the set of vertices of G. Then
the branch graph B(G/C) = (VB, EB) is defined in the following way. VB contains all
the vertices of G, which are not in C but adjacent to a vertex of C. Let u, v ∈ VB. Then
the edge (u, v) ∈ EB if and only if

• (u, v) 6∈ E,

• there exists a vertex w ∈ C such that (w, u) ∈ E and (w, v) ∈ E,

• there exists a vertex w1 ∈ C such that (w1, u) ∈ E but (w1, v) 6∈ E, and

• there exists a vertex w2 ∈ C such that (w2, v) ∈ E but (w2, u) 6∈ E.

Definition. A graph G = (V,E) is called k-colorable if there exists a coloring of the
vertices, such that every vertex is colored with one of k colors and whenever two vertices
are adjacent, they are colored with different colors. In other words there exists a mapping
f : V → {1, 2, . . . , k} such that (u, v) ∈ E implies f(u) 6= f(v) for every u, v ∈ V .

Now we are able to prove another result of [20].

Lemma 3.2.3 (Golumbic, Lipshteyn, Stern [20]). Let G = (V,E) be a graph in B1 and
let 〈P ,G〉 be a B1-EPG representation of G. Let furthermore C be a maximal clique in
G. Then the branch graph B(G/C) is 2-colorable if C corresponds to an edge clique in
〈P ,G〉 and B(G/C) is 3-colorable if C corresponds to a claw clique in 〈P ,G〉.

Proof. We start by proving, that B(G/C) is 3-colorable if C corresponds to a claw clique.
Let q be the grid point in the center of the claw and let q1, q2, and q3 be the other grid
points of the claw, such that the grid edges from q1 to q and from q3 to q are either both
horizontal or both vertical. Let Q = {Pv | v ∈ C}. We partition the grid edges which
are used by the paths of Q into 4 parts. The first part consists of the 3 grid edges which
form the claw. The remaining grid edges are separated into Q1, Q2, and Q3 such that
a grid edge e is contained in Qi if there is a path P ∈ Q that uses e and the grid point
qi is contained in P in the part from e to q.

Then we color the grid edges with 3 colors, such that all the grid edges from Qi are
colored with color i. The coloring of the grid edges is well-defined, since every grid edge
is contained in only one set of Q1, Q2, and Q3.

Afterwards we color the vertices of the branch graph. A vertex of the branch graph
is colored with color i, if it uses a grid edge which is colored with color i.

Let v be a vertex of the branch graph. Then v is colored with a color because v is,
as vertex of the branch graph, adjacent to a vertex w of the maximal clique and hence
the paths Pv and Pw share a grid edge. This grid edge was colored, and hence Pv uses
a colored grid edge.

Assume v is colored with at least 2 colors. Then Pv has to use 2 differently colored
grid edges, one of Qi1 and one of Qi2 for i1 6= i2 and i1, i2 ∈ {1, 2, 3}. All the grid edges
of Q1 and Q2 are either in the grid line from q to q1 and q2 on the side of q1 and q2
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respectively, or on a grid line parallel to the grid edge from q to q3. All the grid edges of
Q3 are in the grid line with the grid edge from q to q3 on the side of q3. That implies,
that it is not possible that a path with only one bend contains a grid edge of Qi1 and
one of Qi2 without using two grid edges of the claw. Nevertheless, the vertex v is not
allowed to use two grid edges of the claw, because otherwise it would be in the clique, a
contradiction to its maximality. Therefore every vertex is colored with at most 1 color
and hence also the coloring of the vertices of the branch graph is well-defined.

What is left to show is, that the coloring is valid, that is two adjacent vertices are
not colored with the same color. Assume there are two vertices x and y, which are
adjacent in the branch graph but colored with the same color. By the definition of the
branch graph, there are vertices v, u, w ∈ C such that (x, u), (y, u), (x, v), (y, w) ∈ E but
(x, y), (x,w), (y, v) 6∈ E. Let Px, Py, Pu, Pv, Pw be the corresponding paths. The vertices
x and y are colored with the same color i and both are adjacent to u, therefore the grid
edges of Px∩Pu and of Py ∩Pu are also colored with i and hence are all contained in Qi.
Furthermore Px and Py do not share a grid edge and hence also Px ∩Pu and Py ∩Pu do
not share a grid edge. Suppose without loss of generality that Px∩Pu is closer to qi than
Py ∩ Pu on the path Pu. The vertex w is contained in the maximal clique and hence Pw
uses two grid edges of the claw. Furthermore w is adjacent to y and therefore the path
Pw has to use the grid edges of Px ∩ Pu in order to share a grid edge with Py and have
only one bend. This is a contradiction because x and w are not adjacent. That means,
that two neighbors in the branch graph have always a different color, hence the coloring
is valid.

The statement for a clique that comes from an edge clique is a special case of the
above proof. We have to define q1 and q2 as the end points of the grid edge from which
the edge clique comes from and omit q3. Then Q3 is the empty set and therefore only 2
colors are necessary.

This result can be used in order to show in a very simple way, that there are graphs
with arbitrary many vertices which are not in B1. Namely we consider the following
graph.

Definition. The graph Ad = (V,E) is defined as follows. It has vertices V = P ∪ Q
with P = {pi,j | 1 6 i < j 6 d} and Q = {qi | 1 6 i 6 d}. Furthermore Ad has the edge
set E = EP ∪E1

Q ∪E2
Q with EP = {(pi,j, pk,`) | 1 6 i < j 6 d, 1 6 k < ` 6 d, pi,j 6= pk,`},

E1
Q = {(pi,j, qi) | 1 6 i < j 6 d}, and E2

Q = {(pi,j, qj) | 1 6 i < j 6 d}.

The graph A4 can be found in Figure 3.5 (a). It was shown in [20] that the graph Ad
is not in B1 for arbitrary large d.

Lemma 3.2.4 (Golumbic, Lipshteyn, Stern [20]). The graph Ad 6∈ B1 for any d > 4.

Proof. Assume Ad has a B1-EPG representation. By the definition of Ad, P forms a
maximal clique in Ad and hence by Lemma 3.2.2 the collection of paths corresponding
to vertices of P corresponds to either an edge clique or a claw clique in the B1-EPG
representation. If we consider the branch graph B(Ad/P ) = (VB, EB), it is easy to see,
that VB = Q and EB = {(qi, qj) | 1 6 i < j 6 d}. Note, that B(Ad/P ) is a clique on d
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Figure 3.5: (a) The graph A4 with P = {p1,2, p1,3, p1,4, p2,3, p2,4, p3,4}. (b) The branch
graph B(A4/P ).

vertices. As soon as d > 4 that means, that it is not possible to color B(Ad/P ) with 3
colors, a contradiction to Lemma 3.2.3, so Ad is not in B1.

Now we want to consider another graph called Sn.

Definition. Let n > 3. Then the n-sun graph Sn = (V,E) is the graph with the vertices
V = {x1, . . . , xn, y1, . . . , yn} and edges E = E1∪E2 with E1 = {(xi, xj) | 1 6 i < j 6 n}
and E2 = {(xi, yi), (xi+1, yi) | 1 6 i < n} ∪ {(x1, yn), (xn, yn)}.

A picture of S3 can be found in Figure 3.6 (a) and Sn is depicted in Figure 5.1 (a).
Golumbic, Lipshteyn, Morgenstern, and Stern showed in [21] that Sn is another example
of a graph with arbitrary many vertices which is not in B1. Additional to that, they
gave a B1-EPG representation of S3 in [20].

Lemma 3.2.5 (Golumbic, Lipshteyn, Stern [20]). The graph S3 is in B1.

Proof. To prove, that S3 is in B1 it is enough to give a B1-EPG representation. Such a
representation can be seen in Figure 3.6 (b).

Lemma 3.2.6 (Golumbic, Lipshteyn, Morgenstern, Stern [21]). For n > 4 the graph Sn
is not in B1.

Now we want to further investigate on S3 because it will turn out, that S3 is a very
important graph in Section 4.2.

Definition. The vertices {x1, x2, x3} of the graph S3 depicted in Figure 3.6 (a) are called
center vertices and the edges between them are called center edges.

We proceed by making an easy but nevertheless very useful observation which was
already mentioned by Biedl and Stern in [4].

Observation 3.2.7 (Biedl, Stern [4]). In every B1-EPG representation of the graph S3

the clique {x1, x2, x3} corresponds to a claw clique.
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Figure 3.6: (a) The graph S3. (b) A B1-EPG representation of the graph S3. (c) The
branch graph of S3 over the maximal clique {x1, x2, x3}.

Proof. Consider the branch graph over the maximal clique {x1, x2, x3}, that is the graph
on the vertices y1, y2, and y3 with edge set {(y1, y2), (y2, y3), (y1, y3)} as depicted in
Figure 3.6 (c). By Lemma 3.2.2 {x1, x2, x3} comes from an edge clique or a claw clique.
If the clique {x1, x2, x3} would come from an edge clique, it follows from Lemma 3.2.3
that the branch graph would be 2-colorable. Nevertheless it takes 3 colors to color the
branch graph, so the clique comes from a claw clique.

Now we are able to prove the following lemma, which is a direct consequence of a
result of Cameron, Chaplick, and Hoàng [8].

Lemma 3.2.8 (Cameron, Chaplick, Hoàng [8]). The graph S3 is not in B0 and not in
Bm

1 .

Proof. Assume S3 has a B0-EPG or a Bm
1 -EPG representation, which are B1-EPG rep-

resentations as well. The clique {x1, x2, x3} comes from a claw clique in this B1-EPG
representation by Observation 3.2.7, and hence it comes from a claw clique also in the
B0-EPG and in the Bm

1 -EPG representation. This is a contradiction, since a claw clique
can not be represented in neither B0 nor Bm

1 by Observation 3.2.1.

This result is also the first step towards determining the relationship between Bk and
Bm
k , which is an open question of [20]. Note, that in the case k = 0 the relationship

Bm
0 = B0 holds by Observation 2.2.1. In [20] it was conjectured, that B1 $ Bm

1 holds.
This conjecture was confirmed in [8] with the following result.

Corollary 3.2.9 (Cameron, Chaplick, Hoàng [8]). It holds that Bm
1 $ B1.

Proof. It is clear, that Bm
1 ⊆ B1. We know that S3 ∈ B1 due to Lemma 3.2.5. Moreover

Lemma 3.2.8 yields, that S3 6∈ Bm
1 .

Eventually we want to present another result on the structure of the graphs in B1

which comes from Asinowski and Ries [2].

Theorem 3.2.10 (Asinowski, Ries [2]). Let G = (V,E) be a graph in B1 with n vertices.

Then G contains either a clique or an independent set of size n
1
3 .
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3.2.2 Results on Complexity and Approximation Algorithms

Throughout the thesis we will assume basic knowledge on complexity theory and ap-
proximation algorithms. Rigorous definitions and introductions into both topics can be
found in Korte and Vygen [31] in Chapter 15 and Chapter 16.

As we will see in Subsection 3.3.2, it follows from a result of Booth and Lueker [6]
that the graphs in B0 can be recognized in O(m + n) time. Nevertheless the problem
becomes much harder, if we want to know, whether a given graph is in Bk for higher
values of k. The first result on the complexity of deciding, whether a given graph is in
Bk for a fixed k, was proved by Heldt, Knauer, and Ueckerdt [26].

Definition. The problem SINGLE-BEND-RECOGNITION is the problem of deciding,
whether a given graph is in B1.

Theorem 3.2.11 (Heldt, Knauer, Ueckerdt [26]). SINGLE-BEND-RECOGNITION is
NP-complete.

Basic Idea of the Proof. It is easy to see, that a B1-EPG representation can be verified
in polynomial time, so it is clear, that SINGLE-BEND-RECOGNITION is in NP. In
order to prove, that the problem is also NP-hard, the authors of [26] used a reduction
from ONE-IN-THREE-3-SAT. For more information about ONE-IN-THREE-3-SAT see
for example Garey and Johnson [11].

In [8] the authors considered the class [x], which is another restriction to B1 and also
to Bm

1 .

Definition. The class [x] is the class of all graphs, which have a B1-EPG representation,
in which every path either has only a horizontal segment, or has only a vertical segment,
or has a horizontal segment and a vertical segment which starts at the lower end point
of the horizontal segment and goes to the right.

The problem [x]-RECOGNITION is the problem of deciding, whether a given graph
is in [x].

In other words [x] does only contain graphs, which have a B1-EPG representation
where every path has the shape of x. The classes [q], [p], [y] are defined analogously.
By rotating the grid it is easy to see, that [x] = [q] = [p] = [y]. Furthermore the classes
[x, y], [y, p], and [p, q, x] are defined analogously. By rotating the grid it is again easy
to see, that [x], [x, y], [y, p], and [p, q, x] are the only strict subclasses of B1 obtained by
allowing only certain directions of bends. In [8] they showed the following.

Theorem 3.2.12 (Cameron, Chaplick, Hoàng [8]). The problems [x]-RECOGNITION,
[x, y]-RECOGNITION and [y, p]-RECOGNITION are all NP-complete.

Basic Idea of the Proof. Again showing, that the problems are in NP is not hard, be-
cause representations can be verified easily. For the proof of NP-hardness the authors
of [8] used a reduction from 3-SAT. For more information about 3-SAT see [11].
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That means, that also deciding, whether a given graph is in Bm
1 is NP-complete since

Bm
1 = [y, p]. It was also conjectured in [8] that [p, q, x]-RECOGNITION is NP-complete

and that deciding, whether a given graph is in Bk for k > 2 is NP-complete.
After knowing, that deciding whether a given graph is in B1 is NP-complete, it is a

natural further question whether problems, which are NP-complete for general graphs,
remain NP-complete for graphs in B1.

The first problem we consider is MINIMUM-COLORING. In this problem we want to
find the minimum k, such that a given graph is k-colorable. This minimum k is called
chromatic number and denoted by χ(G) for a given graph G. It is well known that
MINIMUM-COLORING is NP-complete for general graphs, see for example Karp [29].
In [14] it was shown by Golumbic, that there is a polynomial algorithm for MINIMUM-
COLORING on interval graphs, that is on graphs in B0. Epstein, Golumbic, and Mor-
genstern proved in [10], that that is not the case for graphs in B1.

Theorem 3.2.13 (Epstein, Golumbic, Morgenstern [10]). MINIMUM-COLORING is
NP-complete on graphs in B1, even if a B1-EPG representation is given. Furthermore
MINIMUM-COLORING is NP-complete on graphs in [x], even if a [x]-EPG representa-
tion is given.

Basic Idea of the Proof. It is easy to see that coloring a graph with χ(G) colors is in
NP for all graphs. In order to show NP -hardness in [10] they used a reduction from
coloring circle graphs. For more information on that problem and the proof, that it is
NP-complete see Garey, Johnson, Miller, and Papadimitriou [12].

Now, that we know that coloring a graph in B1 is hard, a natural further question is,
whether there are approximation algorithms that run in polynomial time. In [10] the
following result was proved.

Theorem 3.2.14 (Epstein, Golumbic, Morgenstern [10]). There is an algorithm that
runs in polynomial time and determines a coloring of the vertices of a graph in B1 with
at most 4χ(G) colors. For a graph in [x, y] it needs at most 2χ(G) colors.

This means, that there is a 4-approximation algorithm for the coloring problem for
graphs in B1. This is in fact a big improvement, because for a general graph the best

known approximation ratio is O
(
n log(log(n))2

log(n)3

)
, where n is the number of vertices in the

graph, see Halldórsson [24].
Now we want to investigate on another problem, the MAXIMUM-INDEPENDENT-

SET problem. In this problem we want to find an independent set of maximum cardi-
nality in a given graph G. Let α(G) denote the cardinality of the maximum independent
set. It is well known, that the problem is NP-complete for general graphs, a proof can
be found in [31]. Nevertheless that is not the case for graphs in B0. In [14] is was
proved, that interval graphs are perfect graphs, and hence the graphs in B0 are perfect.
Moreover it was shown by Grötschel, Lovász, and Schrijver [22], that the MAXIMUM-
INDEPENDENT-SET problem can be solved in polynomial time for perfect graphs.
Hence for graphs in B0 the problem MAXIMUM-INDEPENDENT-SET is in P. Never-
theless that is not the case for the graphs in B1.
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Theorem 3.2.15 (Epstein, Golumbic, Morgenstern [10]). The problem MAXIMUM-
INDEPENDENT-SET is NP-complete on graphs in B1. Furthermore it is NP-complete
on graphs in [y, p] and on graphs in [x, y].

Basic Idea of the Proof. It is easy to see that the problem is in NP because an indepen-
dent set can be verified very easily. The NP-hardness result is shown by a reduction
from MAXIMUM-INDEPENDENT-SET on planar graphs with maximum degree 4.
This problem is known to be NP-complete, see [11].

Theorem 3.2.15 also implies, that MAXIMUM-INDEPENDENT-SET is NP-complete
for graphs in Bm

1 .
Again there are some positive approximation results.

Theorem 3.2.16 (Epstein, Golumbic, Morgenstern [10]). There is a polynomial time
algorithm that finds an independent set of size at least 1

4
α(G) for every graph in B1 and

an independent set of size at least 1
2
α(G) for every graph in [x, y].

The last problem we consider is MAXIMUM-CLIQUE. In this problem we want to find
a clique of maximum cardinality in a given graph. Again, the problem is NP-complete
for general graphs [29]. Nevertheless that is not the case for the graphs in B1.

Theorem 3.2.17 (Epstein, Golumbic, Morgenstern [10]). Let G be a graph in B1.
There is an algorithm which determines the maximum clique of G in O(n3) if a B1-EPG
representation is given. Additional to that the maximum clique can be determined in
O(n5), even if no B1-EPG representation is given.

This is an interesting result, considering that the recognition of graphs from B1 is
NP-hard.

3.3 Known Results with Respect to Graph Classes

3.3.1 Overview

At the beginning of this section we want to give a short summary of the known results
with respect to graph classes listed in tabular form. Every graph of the graph class is
contained in the class of the upper bound. Furthermore there is a graph in the graph
class, which is not contained in the class of the lower bound.

Graph Class Upper Bound Lower Bound Reference Section

Interval Graph ⊆ B0 3.3.2
Tree ⊆ B1 ⊆ Bm

1 6⊆ B0 [20] 3.3.3
Outerplanar ⊆ B2 6⊆ B1 [25], [4] 3.3.4
Planar ⊆ B4 6⊆ B2 [25] 3.3.5
Planar & Bipartite ⊆ B2 6⊆ B1 [4] 3.3.5
Planar & Treewidth 6 3 ⊆ B3 6⊆ B2 [25] 3.3.5
Line Graph ⊆ B2 [4] 3.3.6
Line Graph of Bipartite Graph ⊆ B1 ⊆ Bm

1 [26] 3.3.6
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3.3.2 Interval Graphs

The first class we consider is the well-known class of interval graphs. They were first
introduced by Hajós in [23].

Definition. Let S1, . . . , Sn be intervals on the real line. The interval graph G = (V,E)
has vertex set V = {1, . . . , n} and edge set E = {(vi, vj) | Si ∩ Sj 6= ∅}.

It is easy to see, that the graphs in B0 are exactly the interval graphs. In [6] Booth
and Lueker presented an algorithm to determine in O(n + m) time, whether a given
graph G with n vertices and m edges is an interval graph or not. Hence also the graphs
in B0 can be determined in O(n+m) time.

3.3.3 Trees

The first graph class, for which an upper bound on the bend number was newly derived,
was the class of trees. In [20] the following result was given.

Theorem 3.3.1 (Golumbic, Lipshteyn, Stern [20]). Every tree is in Bm
1 .

Proof. Let T = (V,E) be a tree. We choose an arbitrary vertex v0 ∈ V to be the root
and define level i > 1 as the vertices, that have exactly i edges on their unique path to
v0. Furthermore we let v0 be level 0. Then every vertex of level i is adjacent to exactly
one vertex of level i− 1. Let k denote the number of levels.

We give a recursive procedure for embedding the vertices of each level. We define the
path P0 corresponding to vertex v0 as a path that uses the bottom grid line and the grid
line farthest to the right.

Let 1 6 i 6 k. When we have already constructed the paths of all levels from 0 to
i − 1 we construct the paths corresponding to level i in the following way. Let v be a
vertex of level i− 1 and let v1, v2, . . . , v` be the vertices of level i which are adjacent to
v. We denote the rectangular part of the grid from the bottom left to the top right grid
point of the path Pv by G ′ and partition G ′ into ` distinct pieces. If i is odd, every piece
consists of all the grid rows of G ′ and the grid columns of G ′ are split among the pieces
such that there is always one free grid column between two pieces and there is a free
grid column between the column in which Pv is and the piece closest to Pv. If i is even,
every piece consists of all the grid columns of G ′ and the grid rows of G ′ are split among
the pieces such that there is always one free grid row between two pieces and there is a
free grid row between the row in which Pv is and the piece closest to Pv. Then for every
1 6 j 6 ` the path Pj corresponding to vj is constructed in such a way, that it uses the
bottom grid line and the grid line farthest to the right of the j-th piece.

An example of the construction can be seen in Figure 3.7.
We only have to show, that two vertices are adjacent if and only if the corresponding

paths share a grid edge, since it is obvious that every path is monotonic and there is a
vertex for every path.

If two vertices v and u are adjacent, then they are in neighbored levels. Let Pv and Pu
be the paths corresponding to v and u respectively. Assume without loss of generality,
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Figure 3.7: (a) A tree T . (b) A Bm
1 -EPG representation of T .

that v is in level i − 1 and u is in level i. That means, that we have constructed the
path Pu after the path Pv. When we partition the grid from the bottom left to the top
right grid point of Pv into pieces, then, depending on the parity of i, either the grid line
farthest to the right or the bottom grid line is contained in every piece of the partition.
Furthermore the path Pv uses this grid line in every piece. Due to the fact, that also
the newly introduced path Pu uses this grid line, this means that Pv and Pu intersect.

Before we prove the second direction of the equivalence, we observe, that the part of
the grid, that a vertex uses, is always completely contained in the part of the grid that
the vertex, which is one level above it and adjacent to it, uses. Furthermore the parts
of the grid, that two vertices on the same level use, do not share any grid edges or grid
points.

Assume two vertices v and u are not adjacent, u is on level i and v is on level j with
i > j. We distinct two cases.

In the first case v lies on the unique path from u to v0. Let v′ be the vertex which is
directly before v and v′′ be the vertex which is directly before v′ on the unique path from
u to v0. Let Pv′ and Pv′′ be the paths corresponding to them. The vertices u and v are
not adjacent, therefore u 6= v′ holds, but u could probably be equal to v′′. Then in the
construction, depending on the parity of j, either the horizontal or the vertical segment
of Pv is completely not contained in the part of the grid, that Pv′ uses. Furthermore
also the other segment of Pv is completely not contained in the part of the grid that Pv′′
uses. That means, that Pu does not intersect with Pv, since Pu only uses the part of the
grid, that Pv′′ uses.

If v does not lie on the unique path from u to v0, then there is a vertex w, such that
w is on the unique path from u to v0, w is on the unique path from v to v0 and w is on
the level with the highest number of all the vertices which fulfil the first two conditions.
Note, that w = v0 could probably hold. Let ` be the level of w. The choice of w implies,
that there are vertices u′ and v′ on level `+ 1, such that u′ and v′ are adjacent to w and
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u′ and v′ lie on the unique path from u and v to v0 respectively. The observation from
above implies, that the parts of the grid that Pu′ and Pv′ use are completely distinct
and that furthermore Pu uses only the part of the grid that Pu′ uses and Pv uses only
the part of the grid that Pv′ uses. Hence also the parts of the grid that Pu and Pv use
are distinct and therefore they do not intersect also in this case.

This upper bound is tight, because there is a tree which is not in B0. An example of
such a tree is depicted in Figure 4.9 (a), the proof that it is not in B1 can be found in
Lemma 4.3.2.

3.3.4 Outerplanar Graphs

In [4] it was shown, that every outerplanar graph is in B3. Furthermore is was conjec-
tured, that every outerplanar graph is in B2. This conjecture was confirmed of Heldt,
Knauer, and Ueckerdt in [25].

Corollary 3.3.2 (Heldt, Knauer, Ueckerdt [25]). Every outerplanar graph is in B2.

Proof. In Bodlaender [5] the proof, that every outerplanar graph has treewidth at most
2 can be found. Therefore it follows from Theorem 3.4.6 that every outerplanar graph
is in B2.

This result is best possible with respect to the bend number, because there is a graph
which is outerplanar and not in B1. Biedl and Stern gave an example of such a graph
in [4]. See Lemma 4.1.2 for details.

3.3.5 Planar Graphs

In [4] it was shown, that every planar graph is in B5. This result was improved in [25]
in the following way.

Theorem 3.3.3 (Heldt, Knauer, Ueckerdt [25]). Every planar graph is in B4. Moreover,
a B4-EPG representation can be determined in linear time with respect to the number of
vertices of the graph.

Additional to that, assuming further properties on planar graphs reduces the maxi-
mum bend number. The following result was proved in [4].

Theorem 3.3.4 (Biedl, Stern [4]). Every planar and bipartite graph is in B2.

This result can not be further improved, because of the following.

Lemma 3.3.5 (Biedl, Stern [4]). The graph K2,5 is planar, bipartite and not in B1.

Another possibility of reducing the bend number for planar graphs is to require the
treewidth to be less than 4. The definition of treewidth can be found in Subsection 3.4.5.
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Theorem 3.3.6 (Heldt, Knauer, Ueckerdt [25]). Let G be a planar graph with treewidth
less or equal to 3. Then G ∈ B3.

Also this result can not be further improved.

Lemma 3.3.7 (Heldt, Knauer, Ueckerdt [25]). There is a planar graph G with treewidth
at most 3, such that G 6∈ B2.

The last result also gives a lower bound on the bend number needed for planar graphs
in general. Eventually we conclude, that it is known, that every planar graph is in B4

and there is a planar graph which is not in B2. Hence there is still a gap to close.

3.3.6 Line Graphs

We first define line graphs.

Definition. Let G be a graph. G is called line graph, if there exists a graph H such
that every vertex of G corresponds to an edge in H and two vertices are adjacent in G,
if and only if the corresponding edges are incident in H. The graph H is called root
graph.

The investigation on line graphs started in [4].

Theorem 3.3.8 (Biedl, Stern [4]). Every line graph is in B2.

This result was improved for bipartite graphs in [26] by using Theorem 3.4.9.

Theorem 3.3.9 (Heldt, Knauer, Ueckerdt [26]). Let G be a line graph with a bipartite
root graph. Then G ∈ Bm

1 .

3.4 Known Results with Respect to Graph Properties

3.4.1 Overview

In the beginning we present a short overview of known results with respect to graph
properties in tabular form.

Property Upper Bound Lower Reference Sec-
Bound tion

pathwidth 6 k ⊆ B2k−2 [4] 3.4.2
κ-regular orientable ⊆ B2κ+1 [4] 3.4.3
κ-regular orientable & bipartite ⊆ B2κ [4] 3.4.3
degeneracy k ⊆ B2k−1 6⊆ B2k−2 [26] 3.4.4
treewidth 6 k, k > 2 ⊆ B2k−2 6⊆ B2k−3 [26], [25] 3.4.5
global clique covering number k ⊆ Bk−1 ⊆ Bm

k−1 [26] 3.4.6
edge chromatic number χ′ ⊆ Bχ′−1 ⊆ Bm

χ′−1 [26] 3.4.7

maximum degree ∆ ⊆ B∆ ⊆ Bm
∆ 6⊆ Bd∆

2 e−1 [26] 3.4.8

maximum degree ∆ & bipartite ⊆ B∆−1 ⊆ Bm
∆−1 6⊆ Bd∆

2 e−1 [26] 3.4.8

local clique covering number k ⊆ B2k−2 [26] 3.4.9

31



3 Known Results

3.4.2 Pathwidth

We start by defining the pathwidth of a graph.

Definition. A graph has pathwidth k, if there is an ordering of the vertices v1, . . . , vn
such that for any j with 2 6 j 6 n, at most k vertices of v1, . . . , vj−1 have a neighbor
in vj, . . . , vn.

In [4] an upper bound on the required bend number for a graph with pathwidth at
most k was given.

Theorem 3.4.1 (Biedl, Stern [4]). Every graph with pathwidth at most k is in B2k−2.

3.4.3 κ-regular Orientable

In order to give upper bounds in terms of κ-regular orientable graphs, we need the
following definition.

Definition. An edge orientation determines a head and a tail for every edge. So there
are two mappings h, t : E → V such that h(e) ∈ {v, u}, t(e) ∈ {v, u}, and h(e) 6= t(e)
hold for every edge e = (v, u) ∈ E.

The indegree of a vertex v in an edge orientation is defined as the cardinality of the
set {u ∈ V | (v, u) ∈ E, h((v, u)) = v}.

A graph is called κ-regular orientable, if there is an edge orientation, such that every
vertex has at most indegree κ.

Now we are able to present the next result.

Theorem 3.4.2 (Biedl, Stern [4]). Every κ-regular orientable graph G is in B2κ+1. If
G is bipartite, then it is even in B2κ.

3.4.4 Degeneracy

The next graph property we consider is degeneracy. In order to define degeneracy, we
restrict the class of κ-regular orientable graphs.

Definition. An edge orientation is called acyclic, if there is no cycle contained in the
directed graph obtained by the edge orientation.

A graph is called κ-regular acyclic orientable, if there exists an acyclic edge orientation,
such that every vertex has at most indegree κ.

The degeneracy of a graph is the minimum κ, such that the graph is κ-regular acyclic
orientable.

The first upper bound concerning degeneracy was implicitly given in [20]. There the
construction of Theorem 3.1.1 reveals, that every graph with degeneracy k is in B2k.
Then in [4] the bound was improved for k = 2.

Theorem 3.4.3 (Biedl, Stern [4]). Every graph with degeneracy 2 is in B3.
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The authors of [4] suspected, that the bound could be improved to 2k − 1 in general.
This conjecture was finally proved in [26].

Theorem 3.4.4 (Heldt, Knauer, Ueckerdt [26]). Every graph with degeneracy k is in
B2k−1.

They also proved that this bound is tight.

Lemma 3.4.5 (Heldt, Knauer, Ueckerdt [26]). There is a graph G with degeneracy at
most k which is not in B2k−2.

3.4.5 Treewidth

In order to investigate on an upper bound for the bend number with respect to treewidth,
we start by giving the definition of it.

Definition. Let k > 1. A k-tree is a graph, that can be constructed by starting with
a clique consisting of k + 1 vertices. Then iteratively a vertex and the edges from this
vertex to k other vertices that form a clique are added.

A graph has treewidth k if it is the subgraph of a k-tree.

It is easy to see, that connected graphs with treewidth 1 are trees, so by Theorem 3.3.1
we know, that graphs with treewidth at most 1 are in B1. The first result concerning
higher values of treewidth was given in [25].

Theorem 3.4.6 (Heldt, Knauer, Ueckerdt [25]). Every graph with treewidth at most 2
is in B2.

They later generalized their result.

Theorem 3.4.7 (Heldt, Knauer, Ueckerdt [26]). Every graph with treewidth at most k
is in B2k−2.

Additional to that, they showed that this bound is tight.

Theorem 3.4.8 (Heldt, Knauer, Ueckerdt [26]). For every k > 2 there is a graph G
with treewidth at most k which is not in B2k−3.

Proof. We start by considering k > 3. According to Theorem 3.5.12 Kk,n 6∈ B2k−3 for
n = k4 − 2k3 + 5k2 − 4k + 1. Kk,n has treewidth less or equal to k because we can
construct a k-tree by introducing a clique with k+1 vertices. Then we iteratively attach
k4 − 2k3 + 5k2 − 4k + 1 vertices and connect all of them to the same k vertices of the
starting clique. It is easy to see, that Kk,n is a subgraph of this k-tree and hence has
treewidth at most k.

In the case k = 2 by Lemma 3.5.2 we know that K2,5 is not in B1, but the graph has
treewidth at most 2 because of the same construction as in the first case.

The upper bound 1 for k = 1 is tight as well, because there is a tree which is not in
B0 by Lemma 4.3.2.
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3.4.6 Global Clique Covering Number

In the beginning we give the definition of the global clique covering number according
to [26].

Definition. Let C be the class of all cliques and their disjoint unions and let G = (V,E)
be a graph. Let furthermore C1, C2, . . . , Cn ∈ C with Ci = (Vi, Ei) for every 1 6 i 6 n.
Then the collection C1, C2, . . . , Cn is called edge clique cover of size n if there exist
mappings f1, f2, . . . , fn such that

• fi : Vi ∪ Ei → V ∪ E with fi(Ei) ⊆ E and fi(Vi) ⊆ V ,

• an edge e and a vertex v are incident in Ci if and only if the edge fi(e) and the
vertex fi(v) are incident in G,

• for every e ∈ E and for every 1 6 i 6 n there is at most one e′ ∈ Ei with e = fi(e
′),

and

• for every e ∈ E there is a 1 6 i 6 n and there is an e′ ∈ Ei with e = fi(e
′).

The global clique covering number is the minimum n, such that there is an edge clique
cover of size n.

In [26] it turns out, that the following holds.

Theorem 3.4.9 (Heldt, Knauer, Ueckerdt [26]). Every graph with global clique covering
number k is in Bm

k−1.

Proof. Let G = (V,E) be a graph with global clique covering number k and let further-
more C1, C2, . . . , Ck be an edge clique cover of size k and denote the corresponding
mappings by f1, f2, . . . , fk. Whenever for a vertex v there is no vertex vi such that
fi(vi) = v for some 1 6 i 6 k, then we add an additional isolated vertex v∗i to Vi and
define fi(v

∗
i ) = v. In other words we do nothing else than adding cliques of size 1 to the

existing cliques in Ci, such that fi(Vi) = V .

Let the disjoint cliques of Ci be C1
i , C2

i , . . . , Cki
i . Note, that ki 6 n for every 1 6 i 6 k

because the maximum number of cliques contained in Ci is n. This bound is obtained
if there are n isolated vertices in Ci.

For every v ∈ V we define xvi = j where j is such that v ∈ fi(C
j
i ). Note, that

1 6 xvi 6 ki holds.

Then we define the paths corresponding to the vertices as staircases with k−1 bends.
Let v ∈ V and Pv be the path corresponding to v. Then Pv starts in the grid point p0,
has bend points p1, p2, . . . , pk−1 and ends in the grid point pk. For simplicity let k0 = 0,
xv0 = 1, and xvk+1 = 1 for every v. For every 0 6 i 6 k we define the point pi = (pxi , p

y
i )
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with

pxi = xvi+1 +

i
2∑
j=1

(k2j−1 + 1) and pyi = xvi +

i
2∑
j=1

(k2j−2 + 1) if i is even and

pxi = xvi +

i−1
2∑
j=1

(k2j−1 + 1) and pyi = xvi+1 +

i+1
2∑
j=1

(k2j−2 + 1) if i is odd.

It is easy to see, that the above construction yields a path on a grid for every v, because
if we go from an even i to an odd i + 1 the x-coordinate stays the same and if we go
from an odd i to an even i+ 1 the y-coordinate stays the same. Furthermore every path
has only k − 1 bends because it consists of k segments.

What is left to show is, that two vertices v and u are adjacent in G if and only if the
corresponding paths intersect in G. It follows from the construction, that an intersection
of the paths must be located on the segment with the same number for both Pu and Pv.
Moreover the paths Pu and Pv share a grid edge in segment i if and only if the vertices
u and v are in the image of same clique contained in Ci. Hence if u and v are adjacent,
then there are i∗ and j∗ such that u and v are both in the image of Cj∗

i∗ and therefore
intersect. If u and v are not adjacent, then they are never in the same image and hence
their paths do not intersect.

In conclusion the above construction yields a Bm
k−1-EPG representation.

3.4.7 Edge Chromatic Number

For investigating on further graph properties we next consider the edge chromatic num-
ber defined as follows.

Definition. A graph is called k-edge colorable if there exists a coloring of the edges, such
that every edge is colored with one of k colors and two incident edges are not colored
with the same color. In other words there exists a mapping f : E → {1, . . . , k} such
that (u1, v), (u2, v) ∈ E implies that f((u1, v)) 6= f((u2, v)) for all u1, u2, v ∈ V .

The edge chromatic number χ′(G) of a graph G is the minimum value of k, such that
the graph is k-edge colorable.

In [26] it was shown as a direct consequence of Theorem 3.4.9, that every graph with
edge chromatic number χ′ can be represented with at most χ′ − 1 bends.

Corollary 3.4.10 (Heldt, Knauer, Ueckerdt [26]). Let G be a graph with edge chromatic
number χ′. Then G is in Bm

χ′−1.

Proof. By the definition of χ′ there exists a coloring of the edges with χ′ colors, such
that two edges which are incident to the same vertex are not colored with the same
color. It is easy to see, that a coloring of the edges is in fact an edge clique cover of size
χ′, where for every color i the corresponding set Ci consists of a clique with two vertices
for every edge that is colored with color i. Hence the global edge clique cover number is
at most χ′ and hence the graph is in Bm

χ′−1 by Theorem 3.4.9.
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3.4.8 Maximum Degree

The first bound on the bend number with respect to the maximum degree ∆ was derived
in [20] as already mentioned in Corollary 3.1.2. They showed that every graph is in B2∆.
This bound was improved in [4] by using Theorem 3.4.2. It implies that every graph is
in B2d∆+1

2 e+1 and every bipartite graph is in B2d∆
2 e. The currently best known bound

comes from [26] and is a consequence of Corollary 3.4.10.

Corollary 3.4.11 (Heldt, Knauer, Ueckerdt [26]). Let G be a graph with maximum
degree ∆. Then G is in Bm

∆ . If G is bipartite, then G is in Bm
∆−1.

Proof. Let χ′ be the edge chromatic number of G. We know, that every graph is in
Bm
χ′−1 because of Corollary 3.4.10. By Vizing’s theorem [33] either χ′ = ∆ or χ′ = ∆ + 1

holds. Hence every graph is in Bm
∆ . Furthermore for bipartite graphs König [30] showed

that χ′ = ∆ holds and hence bipartite graphs are in Bm
∆−1.

It is not known yet, whether this bound is tight. The best known lower bound men-
tioned in [26] is the following.

Observation 3.4.12 (Heldt, Knauer, Ueckerdt [26]). There is a graph with maximum
degree ∆ which is not in Bd∆

2 e−1.

Proof. The graph Km,m is by Theorem 3.5.7 not in Bdm2 e−1. The statement follows due

to the fact, that ∆ = m holds for Km,m.

3.4.9 Local Clique Covering Number

Another graph parameter considered in [26] is the local clique covering number, which
is closely related to the global clique covering number.

Definition. Let G = (V,E) be a graph, C1, C2, . . . , Cn be an edge clique cover of size
n with corresponding mappings f1, f2, . . . , fn. Furthermore let Ci = (Vi, Ei) for every
1 6 i 6 n. We say that a vertex v ∈ V is contained in the image of fi if there exists an
vi ∈ Vi such that fi(vi) = v. We say that a vertex v ∈ V is contained in k images, if
there exist i1, . . . , ik such that v is contained in the image of fij for every 1 6 j 6 k.

The local clique covering number of a graph is the minimum k, such that there exists
an edge clique cover in which every vertex is contained in at most k images.

In [26] there was given an upper bound on the bend number with respect to the local
clique covering number.

Theorem 3.4.13 (Heldt, Knauer, Ueckerdt [26]). Every graph with local clique covering
number k is in Bm

2k−2.
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3.5 Known Results on Km,n

The probably best studied graph class in terms of the bend number is the complete
bipartite graph on m and n vertices. For instance all the examples for lower bounds on
the required bend number with respect to certain graph properties are proved by using
a Km,n for certain values of m and n.

The first step into the direction of proving, that with increasing m and n also the
bend number of Km,n increases, was done in [20] with the following result.

Lemma 3.5.1 (Golumbic, Lipshteyn, Stern [20]). The graph K3,3 6∈ B1.

Before we give the next result, we mention that it is easy to see, that K1,n is in B0 for
every n > 1, so the characterization of K1,n is done. Asinowski and Suk [3] considered
the graph K2,n in more detail.

Lemma 3.5.2 (Asinowski, Suk [3]). The graph K2,n ∈ B1 if and only if n 6 4.

Additional to that, they gave a bound on the maximum number of bends needed to
represent a Km,n.

Theorem 3.5.3 (Asinowski, Suk [3]). Km,n ∈ Bmax{dm2 e,dn2 e}.

A direct consequence of this is the following.

Corollary 3.5.4 (Asinowski, Suk [3]). The graph Km,m ∈ Bdm2 e.

Another upper bound on the number of bends needed in order to represent Km,n

comes from [4].

m

n

Figure 3.8: A B2m−2-EPG representation of Km,n.
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Lemma 3.5.5 (Biedl, Stern [4]). The graph Km,n ∈ B2m−2.

Proof. This result follows from slightly modifying the construction which is used in the
proof of Theorem 3.1.1. The construction can be seen in Figure 3.8.

As it turned out, this bound is tight for large values of n. Two results were derived
independently. The first result was given in [4] by Biedl and Stern. They showed, that
Km,N is not in B2m−3 for some N ∈ O(m4). The second result comes from Asinowski
and Suk [3]. They also proved that Km,N is not in B2m−3 for some N sufficiently large.
Both results were finally slightly improved by Heldt, Knauer, and Ueckerdt as we will
see in Theorem 3.5.12. In order to prove their result, they first derived two inequalities
that hold, if a Km,n is in Bk for certain values of m, n, and k. The first result gives a
lower bound on k if we know, that Km,n is in Bk for fixed m and n ranging from m

2
to

m− 1.

Lemma 3.5.6 (Heldt, Knauer, Ueckerdt [26]). Let 3 6 m 6 n. Then for every Bk-EPG
representation of Km,n

(k + 1)(m+ n) > mn+
√

2k(m+ n)

holds.

They used Lemma 3.5.6 in order to prove the next result.

Theorem 3.5.7 (Heldt, Knauer, Ueckerdt [26]). Let m > 3. Then Km,m is not in
Bdm2 e−1.

Proof. Assume Km,m is in Bdm2 e−1. By applying Lemma 3.5.6 for n = m and k =
⌈
m
2

⌉
−1

we get that ⌈m
2

⌉
(m+m) > m2 +

√
2
(⌈m

2

⌉
− 1
)

(m+m)

⇔ 2m
⌈m

2

⌉
> m2 + 2

√
m
(⌈m

2

⌉
− 1
)

⇒ 2m

(
m+ 1

2

)
> m2 + 2

√
m

(
m− 2

2

)
⇔ m2 +m > m2 +

√
2
√
m(m− 2)

⇒ m >
√

2(m− 2)

⇔ m 6
2
√

2√
2− 1

≈ 6.83

has to hold, which is a contradiction for m > 3. So our assumption was wrong and hence
Km,m is not in Bdm2 e−1 for m > 3.
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Theorem 3.5.7 enabled Heldt, Knauer, and Ueckerdt to answer the question of [20],
which relationship Bk and Bk+1 have. It is easy to see, that B0 $ B1 with for example
the graph S3. In [20] Golumbic, Lipshteyn, and Stern showed with Lemma 3.5.1 that
B1 $ B2 and asked, whether Bk−1 $ Bk holds in general. The first partial answer to
that question was given in [3] by Asinowski and Suk. They proved Bk−1 $ Bk for every
even k by using their result, that Km,N is not in B2m−3 for some N sufficiently large.
Finally, in [26] the question was fully answered.

Theorem 3.5.8 (Heldt, Knauer, Ueckerdt [26]; Asinowski, Suk [3]). For every k > 1 it
holds that Bk−1 $ Bk.

Proof. For k = 1 we know that the graph S3 is in B1 by Lemma 3.2.5 but not in B0

due to Lemma 3.2.8. For k > 2 we know that K2k,2k ∈ Bk by Corollary 3.5.4 but
K2k,2k 6∈ Bk−1 because of Theorem 3.5.7.

This means, that for every k there is a graph which has bend number exactly k.
Another consequence of Lemma 3.5.6 is the following.

Theorem 3.5.9 (Heldt, Knauer, Ueckerdt [26]). If m is even, then Km, 1
4
m3− 1

2
m2−m+4 is

in Bm−1 but not in Bm−2. If m is odd, then Km, 1
4
m3−m2+ 3

4
m is in Bm−1 but not in Bm−2.

One more result of [26] is as follows. It is used in order to derive another bound on
the bend number which is needed in order to represent Km,n.

Lemma 3.5.10 (Heldt, Knauer, Ueckerdt [26]). Let 3 6 m 6 n. In a Bk-EPG represen-
tation of Km,n let c denote the total number of crossings between the paths corresponding
to the vertices of the component which has m vertices. Then

n(2m− k − 2) 6 2c+ 2(k + 1)m

holds.

Proof. We consider an arbitrary but fixed Bk-EPG representation of Km,n. Let A be
the component of Km,n with m vertices and B be the vertices of the other component.
In order to prove the above inequality, we will assign end points and crossings of the
paths corresponding to A to the paths corresponding to B.

Let b ∈ B and denote the corresponding path with Pb. Let ` be the number of segments
of Pb on which there is no intersection with any path corresponding to a vertex of A.
The vertex b is adjacent to all vertices of A, so it has to intersect all the corresponding
paths. Let the vertices a1, a2, . . . , am′ be such that Pb intersects the corresponding
paths in this order. Note, that m′ > m because Pb could probably intersect a vertex
from A more than once. Let a and a′ be two consecutive vertices in this ordering and
denote the segment of Pa and Pa′ , on which the intersection with Pb is located, with s
and s′ respectively. Now we consider two possible configurations. Note, that there also
could be others than that.

In the first possible configuration, s and s′ intersect Pb on the same segment which
we will denote by t. That means, that there is an end point of both s and s′ completely
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contained in t. We assign this two end points to Pb. The path Pb consists of k + 1
segments, but only k+ 1− ` of them have intersections with paths corresponding to the
vertices of A on them. That implies, that there are at least m−(k+1−`) = m−k+`−1
pairs of s and s′ such that they intersect Pb on the same segment. That means that
the total number of assignments to Pb in this configuration is at least 2(m− k + `− 1)
because for every pair of s and s′ there are two assignments.

In the second possible configuration, s and s′ intersect Pb on two consecutive segments
t and t′. If s and s′ cross in the bend point of Pb that both t and t′ use, then we assign this
crossing to Pb. If s and s′ do not cross in this bend point, then one of them has to end
before it reaches that bend point and hence at least one end point of one of the segments
s or s′ is completely contained in one of the segments t or t′. We assign this end point
to Pb. There are k+ 1 segments of Pb and hence Pb has k pairs of consecutive segments.
This second configuration occurs at least k − 2` times, since there are ` segments that
are not used. So there are at least k − 2` assignments to Pb in this configuration.

In total, if we sum up over both considered configurations, we have assigned at least
2(m− k+ `− 1) + k− 2` = 2m− k− 2 crossings and end points to Pb. If we do that for
every vertex in B, that yields at least n(2m−k−2) assignments to paths corresponding
to vertices of B.

Now we consider the vertices of A. It is easy to see, that every crossing of A can only
be assigned twice, because whenever a crossing is assigned to a path Pb, the path Pb
bends at the crossing point and hence uses 2 grid edges attached to the crossing point.
All the paths corresponding to vertices of B are not allowed to share a grid edge and
every grid point does only have 4 attached grid edges, hence there can be at most 2
assignments of one crossing of paths corresponding to vertices of A. Furthermore every
end point of a segment can only be assigned at most twice, since whenever it is assigned,
one of the two attached segments shares a grid edge with another path and no 3 paths
can share a grid edge because the graph is bipartite. Every path has k + 1 segments
and there are m paths corresponding to the vertices of A. That means, that at most
2c+ 2(k + 1)m assignments can be made.

Putting together, that at least n(2m− k− 2) and at most 2c+ 2(k+ 1)m assignments
are made, yields that

n(2m− k − 2) 6 2c+ 2(k + 1)m

holds.

This result and another result, which gives an upper bound on the possible number
of crossings of two paths with at most k bends, imply the next result.

Lemma 3.5.11 (Heldt, Knauer, Ueckerdt [26]). Let 3 6 m 6 n. Then for every Bk-
EPG representation of Km,n

n(2m− k − 2) 6 m(m− 1)

⌈
k + 1

2

⌉⌈
k + 3

2

⌉
+ 2(k + 1)m

holds.
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3.5 Known Results on Km,n

In [26] the authors were finally able to improve the result for which n the graph Km,n

is not in B2m−3. Remember, that Lemma 3.5.5 showed, that Km,n ∈ B2m−2. The next
result gives the currently best known bound on n, such that 2m− 2 bends are required
for representing Km,n.

Theorem 3.5.12 (Heldt, Knauer, Ueckerdt [26]). Let 3 6 m 6 n.
If n > m4 − 2m3 + 5m2 − 4m+ 1 then the graph Km,n 6∈ B2m−3.

Proof. Assume Km,n ∈ B2m−3. Then by Lemma 3.5.11 with k = 2m− 3 we know that

n(2m− (2m− 3)− 2) 6 m(m− 1)

⌈
2m− 2

2

⌉⌈
2m

2

⌉
+ 2((2m− 3) + 1)m

⇔ n 6 m2(m− 1)2 + 2(2m− 2)m

⇔ n 6 m4 − 2m3 + 5m2 − 4m

has to hold. Nevertheless this contradicts for n > m4 − 2m3 + 5m2 − 4m + 1. Hence
Km,n 6∈ B2m−3 for n > m4 − 2m3 + 5m2 − 4m+ 1.

Additional to that, Heldt, Knauer, and Ueckerdt [26] gave a lower bound on n such
that the bend number of Km,n is 2m− 2.

Theorem 3.5.13 (Heldt, Knauer, Ueckerdt [26]). If n 6 m4 − 2m3 + 5
2
m2 − 2m − 4

then the graph Km,n ∈ B2m−3.

Note, that this leaves only a quadratic gap on n for which it is not known, whether
2m− 3 bends are sufficient or 2m− 2 bends are necessary in order to represent Km,n.
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4 Outerplanar Graphs

The purpose of this chapter is to determine the minimum k, such that every outerplanar
graph is in Bm

k . Additional to that we will find out more about the characterization of
special graph subclasses of outerplanar graphs in terms of bend number and monotonic
bend number. We will consider two graph classes, namely outerplanar triangulations
and cacti, in more detail.

4.1 Outerplanar Graphs are in Bm
2

In [4] it was shown, that every outerplanar graph is in B3, but also conjectured, that this
bound is not tight and all outerplanar graphs are in B2. This conjecture was confirmed
by [25]. We will improve the result by showing, that all outerplanar graphs are not only
in B2, but even in Bm

2 .

Theorem 4.1.1. Every outerplanar graph is in Bm
2 .

Proof. The proof is done by construction. Let G be an outerplanar graph. Note, that if
we refer to G, we actually refer to the drawing of G as plane graph where all vertices lie
on the boundary of the outer face. Furthermore, we will present the construction only
for connected outerplanar graphs. If a graph is not connected, the construction can be
applied on every connected component separately.

The construction starts by taking an arbitrary vertex, giving it the number 1, and then
going along the boundary of the outer face and numbering the vertices consecutively.
Let v1, v2, . . . , vn be the vertices of the graph in this order.

The path corresponding to the vertex v1 is constructed as straight horizontal line in
the grid and the vertex v1 is colored green. The rest of the graph is considered as one
part.

Then we do the following, until there are no vertices left. We take the green vertex
with the lowest number vi. Let vi1 , . . . , vi` be the neighbors of vi, such that ij < ij+1 for
all 1 6 j < `. Furthermore, let vi∗ be the green vertex with the second lowest number,
if there exists one.

Then we construct the paths corresponding to vi1 , . . . , vi` in the following way on the
horizontal free line corresponding to vi. We construct the path corresponding to vi1 as
depicted in Figure 4.1 (a). Then we construct the paths corresponding to the vertices
vi2 , . . . , vi`−1

in this order one by one. Let 1 < j < `. If we have already constructed
the path corresponding to vij−1

and the vertices vij−1
and vij are not adjacent, then we

construct the path corresponding to vij as depicted in Figure 4.1 (b). If we have already
constructed the path corresponding to vij−1

and the vertices vij−1
and vij are adjacent,
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4 Outerplanar Graphs

Pvi

Pvi1

(a)

Pvi

Pvij−1

Pvij

(b)

Pvi

Pvij−1

Pvij

(c)

Pvi

Pvi`−1

Pvi`

Pv∗i

(d)

Pvi

Pvi`−1

Pvi`
Pv∗i

(e)

Figure 4.1: Parts of the construction of the proof of Theorem 4.1.1.

then we construct the path corresponding to vij as in Figure 4.1 (c). The construction
of the path corresponding to vi` depends on the vertex vi∗ . If vi` is adjacent to vi∗ , then
we construct the path corresponding to vi` like depicted in Figure 4.1 (d). If vi` is not
adjacent to vi∗ or there exists no vertex vi∗ , then the path is constructed as it is done in
Figure 4.1 (e). In both cases, the dotted line belongs to the path corresponding to vi` if
vi`−1

and vi` are adjacent and the dotted line does not belong to the path corresponding
to vi` if vi`−1

and vi` are not adjacent.
Then we delete all the edges (vi, vij), 1 6 j 6 ` and the vertex vi. Furthermore,

we delete all the edges (vij , vij+1
), 1 6 j < ` and the edge (vi` , v

∗
i ) if they exist. Then

we color the vertices vi1 , . . . , vi` green. In the end, we adjust the parts. We delete
the part between vi and vi∗ and instead introduce new parts between vij and vij+1

for
every 1 6 j < ` and furthermore we introduce a new part between vi` and vi∗ . The
part between two vertices vk1 and vk2 is always the induced subgraph of the vertices
{vi | k1 6 i 6 k2}. Then we start again by taking the next green vertex with the lowest
number.

Now we have to prove, that this construction yields a Bm
2 -EPG representation of the

graph G. It is clear from the construction, that every path has at most 2 bends and is
monotonic, so we only have to show, that the algorithm is well-defined and the resulting
representation is an EPG representation.

We start by showing that the algorithm is well-defined. In the beginning of the
algorithm, a vertex is green. Whenever a green vertex is chosen, all its neighbors which
are still in the graph are colored green. The neighbors which are not in the graph
anymore have been deleted and since we only delete green vertices, they have been
colored green before. Hence whenever a vertex has been colored green, all its neighbors
have been colored green during the algorithm as well. That means that every vertex has
been colored green at some point since the graph is connected. That implies that every
vertex is chosen at some point and that there always is a vertex we can choose until
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4.1 Outerplanar Graphs are in Bm
2

the algorithm stops after finitely many steps. Furthermore, this implies that there is a
path corresponding to every vertex, since we only color a vertex green when the path
corresponding to it has already been constructed.

Before we will show, that it is always possible to embed the paths in the way the
construction does, we consider some invariants throughout the whole algorithm. The
following property holds for all the vertices on the outer face since the graph is outerpla-
nar. If we take two vertices vi and vj with i < j, then all the vertices which are between
them on the outer face can not be adjacent to any vertex which is not between them.
In other words there can not be an edge between two vertices vk and v` with i < k < j
and ` < i or j < `. As a consequence, throughout the whole algorithm there can only
be edges between two vertices which are in the same part and there can never be edges
between two vertices which are not in the same part. Another consequence holding the
whole algorithm is, that if we start with the green vertex with the lowest number and
go along the parts, then the numbers of the green vertices are always increasing.

Now we are able to prove, that the construction can actually be done in the way we
described it. With the invariants it is easy to see, that throughout the whole algorithm,
for two green vertices which have a part between them, the paths corresponding to them
both have a free horizontal line, where the one corresponding to the vertex with the
higher number is located to the top left of the one corresponding to the vertex with the
lower number. So there always is the free line of the vertex vi which is needed in the
constructions of Figure 4.1 (a) - (e) and furthermore the position of vi∗ is always like
needed in Figure 4.1 (d) and (e).

The only thing left to show is, that the corresponding paths of two vertices share a
grid edge if and only if the vertices are adjacent. Nevertheless that is easy to see, because
whenever we perform a step and have chosen a vertex, we construct the paths in such a
way, that the paths of two vertices have a grid edge in common if and only if the edge
between the vertices is deleted in the end of the step.

In order to point out, that the theorem can not be further improved, we consider the
following result. Note, that this result has already been proved by Biedl and Stern in
[4] in a different way.

f d

c ah

g

e

b

i

j

(a)

f d

c ah

(b)

Figure 4.2: (a) The graph H1. (b) The reduced graph of H1.
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4 Outerplanar Graphs

Lemma 4.1.2 (Biedl, Stern). The graph H1 of Figure 4.2 (a) is not in B1.

Proof. We consider the reduced graph of H1 as defined in the beginning of Subsec-
tion 4.2.2. The reduced graph of H1 is depicted in Figure 4.2 (b). Clearly H1 is an
outerplanar triangulation and the reduced graph is the graph M1, which is also defined
in Subsection 4.2.2. So by Theorem 4.2.7 the graph H1 is not in B1.

So eventually we know, that every outerplanar graph is in Bm
2 and furthermore there

is an outerplanar graph which is not in B1, so Theorem 4.1.1 can not be improved.

4.2 Outerplanar Triangulations

In order to understand the definition of outerplanar triangulations better, we also intro-
duce triangulations.

Definition. A graph is called triangulation if it is planar and every face is a triangle.

Definition. A graph is called outerplanar triangulation if it is outerplanar, the boundary
of the outer face is a cycle containing all vertices and every inner face is a triangle.

Note, that an outerplanar triangulation is, except for the graph C3, not a triangulation,
because the outer face is not a triangle. Nevertheless triangulations are planar graphs
with as much edges as possible, that is adding one single arbitrary edge to a triangulation
would destroy planarity. Exactly the analogous is true for outerplanar triangulations,
because adding one single arbitrary edge would yield a graph which is not outerplanar
anymore. Due to this fact, outerplanar triangulations are sometimes also called maximal
outerplanar graphs.

4.2.1 Outerplanar Triangulations in B0

Our first step towards determining the minimum k and k∗ such that G is in Bk and
Bm
k∗ respectively for every outerplanar graph G, is to investigate which outerplanar

triangulations are in B0. This is not too difficult, so we can immediately give our
first result.

Theorem 4.2.1. Let G be an outerplanar triangulation. Then G is in B0 if and only if
G does not have S3 as induced subgraph.

Proof. Let G be an outerplanar triangulation which has a B0-EPG representation. It
follows from Lemma 3.2.8 that G does not contain S3 as induced subgraph.

The proof of the other direction of the equivalence is done by construction. Let G be
an outerplanar triangulation which does not have S3 as induced subgraph. We consider
the graph Ĝ defined as follows. For every inner face of G there is vertex in Ĝ. Two
vertices of Ĝ are adjacent if and only if the corresponding inner faces of G share an edge
in G. Every vertex of Ĝ has degree at most 3 since G is a triangulation. Due to the
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4.2 Outerplanar Triangulations

fact, that S3 is not an induced subgraph of G, every vertex of Ĝ has at most degree 2.
Furthermore, because G is connected, Ĝ is connected too. In conclusion Ĝ is a path.

Let D1, . . . , D` be the consecutive vertices on this path in Ĝ or equivalently the
corresponding triangles in G. The B0-EPG representation is defined as follows. One
horizontal line of the grid and ` + 1 columns of the grid are used, hence the used grid
points are (1, 1), . . . , (`+ 1, 1). From grid point (i, 1) to grid point (i+ 1, 1) we draw a
part of the path Pv for every vertex v which is part of the triangle Di. All the according
paths are connected since every vertex v can only be part of consecutive triangles.

For an example of this construction see Figure 4.3.

Note, that the graph Ĝ of the proof is an induced subgraph of the dual graph of G.
For information about the dual graph see for example [9].

Additional to that, the proof reveals, that it is possible to either give a B0-EPG
representation of an outerplanar triangulation or determine, that such a representation
does not exist in linear time with respect to the number of vertices. Given an outerplanar
triangulation, an outerplanar embedding can be found in linear time, because a graph is
outerplanar if and only if the graph obtained by adding a vertex and an edge from this
vertex to every other vertex is planar. A planar embedding can be found in linear time
for example with an algorithm of Hopcroft and Tarjan [27]. By deleting the additional
vertex of the planar embedding, one gets an outerplanar embedding of the original graph.
Hence an outerplanar embedding can be found in linear time. Furthermore the graph
Ĝ can, as induced subgraph of the dual graph, be determined in linear time in the
outerplanar embedding. Then it is possible to find out in linear time, whether there is
a vertex in Ĝ having degree at least 3, in which case the graph is not in B0. If every
vertex in Ĝ has degree at most 2, a B0-EPG representation can be found in linear time
in the way it is done in the proof of Theorem 4.2.1.

1

2

3

4 5

6 7 8

9

D1 D2 D3

D4 D5 D6

D7

(a)

P1
P2

P3
P4

P5
P6

P7 P8 P9

1

1 2 3 4 5 6 7 8

(b)

Figure 4.3: (a) A graph G with Ĝ. (b) A B0-EPG representation of the graph in (a).

Theorem 4.2.1 can also be reformulated in the following way.

Corollary 4.2.2. Let G be an outerplanar triangulation. Then G is in B0 if and only
if the boundary of every inner face of G contains at least two consecutive vertices of the
outer face.
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4 Outerplanar Graphs

Proof. In order to prove this result, because of Theorem 4.2.1 it is enough to prove that
an outerplanar triangulation does not contain S3 as induced subgraph if and only if the
boundary of every inner face contains at least two consecutive vertices of the outer face.

Equivalently it is enough to prove that an outerplanar triangulation contains S3 as
induced subgraph if and only if there is at least one inner face with a boundary which
does not contain two consecutive vertices of the outer face.

On the one hand, if S3 is contained as induced subgraph, the triangle {x1, x2, x3} of
S3 as in Figure 3.6 (a) is an inner face in which no two consecutive vertices of the outer
face are in, because y1, y2, and y3 are between x1 and x2, x2 and x3, and x1 and x3 on
the outer face respectively.

On the other hand, if there is at least one inner face in which no two consecutive
vertices of the outer face are in, one can easily construct a S3 as induced subgraph by
defining the vertices of that triangle as {x1, x2, x3} and the third vertices of the three
neighbored triangles as {y1, y2, y3}.

4.2.2 Outerplanar Triangulations in B1

Now we know exactly which outerplanar triangulations are in B0, therefore the next aim
is to find out which of them are in Bm

1 . The following result is a direct consequence of
Theorem 4.2.1.

Corollary 4.2.3. Let G be an outerplanar triangulation. Then G is in Bm
1 if and only

if G does not have S3 as induced subgraph.

Proof. On the one hand, since by Lemma 3.2.8 the graph S3 is not in Bm
1 , it is clear,

that a graph containing S3 as induced subgraph is not in Bm
1 .

On the other hand by Theorem 4.2.1 every outerplanar triangulation which does not
have S3 as induced subgraph is in B0 and hence in Bm

1 by Observation 2.2.1.

So, surprisingly, the outerplanar triangulations in Bm
1 are just the same as the ones in

B0. This means that allowing two more shapes of paths does not increase the number
of graphs which can be represented. Nevertheless that is not the case of B1, as we will
see in the proceeding. First we need a definition.

Definition. Let G be an outerplanar triangulation. Then the reduced graph G̃ is defined
in the following way. For every copy of S3 in G, we color the center vertices and the
center edges of S3 green. Then we remove every vertex and every edge which is not
colored from G. The resulting graph is the reduced graph G̃.

Note, that the resulting object is indeed a graph, since whenever an edge is colored
also the end vertices are colored, so it can not happen that an edges is in G̃ but a vertex,
to which the edge is incident to, is not in G̃.

The following result is easy to see.

Lemma 4.2.4. Let G be an outerplanar triangulation and G̃ its reduced graph. Then
every triangle in G̃ corresponds to the center vertices of a copy of S3 in G.
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4.2 Outerplanar Triangulations

Proof. Let {v1, v2, v3} be the vertices of an arbitrary triangle T of G̃. If all the edges of
T were colored at once, the triangle corresponds to the center vertices of a S3 in G by
definition.

If only two edges of T were colored at once, then the last edge of the triangle which
was colored in G has to be the last edge of T , because there can be only one edge incident
to two vertices. So the third edge was colored at the same time as the first two edges
and so the vertices of T correspond to the center vertices of a S3 by definition again.

If all three edges were colored at a different time, then consider the edge (v1, v2). It
was colored, hence there is a vertex v4 6= v3 such that {v1, v2, v4} form the center vertices
of a S3. Analogously to the vertex v4 for the edge (v1, v2) there are vertices v5 and v6

such that {v2, v3, v5} and {v1, v3, v6} are the center vertices of a S3 in G. None of the
vertices v4, v5, and v6 can be adjacent to any of the others since the graph is outerplanar.
Therefore, the induced subgraph of the vertices {vi|1 6 i 6 6} forms a S3 in G and hence
the vertices of T are the center vertices of a S3 in G.

This result is useful in order to prove the following Corollary.

Corollary 4.2.5. Let G be an outerplanar triangulation and G̃ its reduced graph. Then
the paths corresponding to the vertices of any triangle in G̃ form a claw clique in every
B1-EPG representation.

Proof. The vertices of every triangle in G̃ are the center vertices of a S3 in G by
Lemma 4.2.4. Then their corresponding paths have to form a claw clique because of
Observation 3.2.7.

d1

d2

d3 d4

d5

Figure 4.4: The graph M1.

Lemma 4.2.6. Let G be an outerplanar triangulation and G̃ its reduced graph. If the
graph M1 depicted in Figure 4.4 or the graph Mn

1 depicted in Figure 4.5 is an induced
subgraph of G̃ for some n > 0, then G is not in B1.

Proof. Assume that Mn
1 is contained as induced subgraph in G̃ for some n > 0 and there

is a B1-EPG representation of G.
One of the edges (a1, a3) and (a2, a4) is contained in the copy of Mn

1 in G̃, therefore
the vertices {a1, a2, a3, a4} form two triangles. The corresponding paths form a claw
clique for each triangle, due to Corollary 4.2.5. In both of these claw cliques 2 paths are
bended and there cannot be a path which is bended in both claw cliques, so it follows
that all paths corresponding to {a1, a2, a3, a4} are bended in the claw cliques of the two
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a1
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a4 b1
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c4
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c2n−6

c2n−5

c2n−4

c2n−3

c2n−2

c2n−1

n triangles

Figure 4.5: The graph Mn
1 with n > 0 consecutive triangles between the vertices a1 and

b1. Furthermore either the edge (a1, a3) or the edge (a2, a4) is contained and
either the edge (b1, b3) or the edge (b2, b4) is contained. Note that a1 = b1

for n = 0.

triangles. Analogously all the paths corresponding to {b1, b2, b3, b4} are bended in the
two triangles formed by these vertices.

So for n = 0 the vertex a1 = b1 has to be bended in two different claw cliques, a
contradiction. So assume n > 1 from now on.

The first triangle {a1, c1, c2} comes from a claw clique due to Corollary 4.2.5 and a1

is bended in another claw clique, hence it follows that c1 and c2 are bended in the claw
clique corresponding to this triangle.

By induction and setting b1 = c2n we get that in the i-th triangle, the paths corre-
sponding to the vertices c2i−1 and c2i are bended in the claw clique corresponding to the
i-th triangle for 1 6 i 6 n. So c2n = b1 has to be bended in the n-th triangle, as well as
in one of the triangles formed by {b1, b2, b3, b4}. This is a contradiction, hence if Mn

1 is
contained as induced subgraph in G̃ for some n > 0, then G is not in B1.

Assume that M1 is an induced subgraph of G̃ and G is in B1. Then analogously
to {a1, a2, a3, a4} it follows that {d1, d2, d3, d4} are all bended in the claw cliques corre-
sponding to the two triangles formed by the corresponding vertices. But then the paths
corresponding to {d2, d4, d5} have to form a claw clique while two of them already have
to be bended in another claw clique, so they can not be bended in this claw clique, again
a contradiction. Hence M1 can not be contained as induced subgraph of G̃ if G has a
B1-EPG representation.

So now we have a criterion, when an outerplanar triangulation is not in B1. In
fact, this is the only possibility for an outerplanar triangulation not to have a B1-EPG
representation as the following result reveals.

Theorem 4.2.7. Let G be an outerplanar triangulation and G̃ its reduced graph. Then
G is in B1 if and only if neither the graph M1 nor the graph Mn

1 is an induced subgraph
of G̃ for any n > 0.

Proof. As soon as M1 or Mn
1 is an induced subgraph of G̃ the graph G is not in B1 by

Lemma 4.2.6.
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4.2 Outerplanar Triangulations

The proof for the other side of the equivalence is done by construction. Assume G̃
does neither have M1 nor Mn

1 for any n as induced subgraph. We first construct the

graph Ĝ like in the proof of Theorem 4.2.1. Again, because of the fact that G is an
outerplanar triangulation, every vertex in Ĝ has at most degree 3, Ĝ is connected and
does not contain any cycles. In conclusion Ĝ is a tree.

If 3 consecutive vertices of Ĝ would all have degree 3, then M1 would be contained as
induced subgraph in G̃, so that is not possible.

Furthermore, if a vertex of Ĝ has degree 2, the corresponding paths can be represented
as paths in B0 as we have already seen in the proof of Theorem 4.2.1, so especially the
vertices of degree 3 in Ĝ are of interest.

Prior to the presentation of the construction we show the following property.

Claim 4.2.8. For every vertex of degree 3 in Ĝ, or equivalently for every triangle in
G̃, or equivalently for every center triangle of a S3 in G, it is possible to determine 2
vertices which are bended in the claw clique corresponding to the triangle according to
Corollary 4.2.5 and are not bended in any other claw clique.

Proof of Claim. We start by calling two triangles of G̃ which have an edge in common
neighbored. Due to the fact, that M1 is not an induced subgraph of G̃, it follows that
a triangle is neighbored to at most one other triangle. Moreover all the vertices of two
neighbored triangles can not be in any other neighbored triangles since M0

1 is not an
induced subgraph of G̃. So if two triangles T1 and T2 are neighbored, we choose the
vertex which is only in T1 and one of the two vertices which are in both triangles to
be bended in the claw clique corresponding to T1. The other vertex which is in both
triangles and the vertex which is only in T2 are supposed to be bended in the claw clique
corresponding to T2. So now we have chosen two vertices which are supposed to be
bended for every triangle which is neighbored to any other in such a way, that every
vertex is chosen at most once.

Now we have to choose two vertices for every triangle which is not neighbored to any
other triangle in G̃. We do that in the following way:

1 As long as there is a triangle which shares a vertex v with a triangle, in which two
vertices have already been chosen, we choose the 2 vertices which are not v for this
triangle.

2 If there is no triangle which has a vertex in common with a triangle where the
vertices are already chosen, but there is still a triangle where no vertices are chosen
yet, we choose two arbitrary vertices of the triangle and proceed with 1.

It can never happen, that a triangle where no vertices are chosen yet shares 2 vertices
with triangles where the vertices have already been chosen, because in this case we either
would have a Mn

1 as induced subgraph of G̃ or a cycle in G̃ which is not a triangle or two
neighbored triangles, but every edge of the cycle is part of a triangle. In this case all the
triangles lie outside the cycle because G is outerplanar and because G is an outerplanar
triangulation, in the interior of this cycle in G there are only triangles. Hence all of
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4 Outerplanar Graphs

these triangles are center triangles of a S3 in G and all of these triangles are in G̃. So
M1 is contained as induced subgraph in G̃.

There are only finitely many triangles and in every step we choose two vertices of
a triangle where we have not chosen the vertices before, therefore in the end we have
chosen two vertices of every triangle of G̃ as desired in such a way, that every vertex is
chosen only once.

Now we are finally able to present the construction. There is at least one vertex of
degree 1, since Ĝ is a tree. Let v̂ be a vertex of degree 1 in Ĝ and let {a, b, c} be
the vertices of the triangle corresponding to v̂. We will start the construction at v̂ by
constructing the paths Pa, Pb, and Pc as parallel paths using one grid line. No cycles
are contained in Ĝ, therefore we can give a construction for every neighbor of v̂ in Ĝ
separately and will go on by always giving the construction for the neighbors of already
constructed vertices which are not constructed yet. In this way we will finally have a
construction for the whole graph. In the construction we will distinct 3 cases.

In all of these cases we have already constructed parts of the paths of a triangle {a, b, c}
and the corresponding vertex v̂ of Ĝ has degree at most 2 and we want to proceed the
construction for the not constructed neighbor û of v̂ in Ĝ. If a neighbor û has degree
1, then all the corresponding paths stop, so all the dotted and dashed lines end. We
distinct the following 3 cases.

f d

c ah

g

e

b

(a)

Pd

Pc

Pa

Pf

Pg

Ph

Pb

Pe

(b)

Figure 4.6: (a) A part of a graph G with Ĝ. (b) The B1-EPG representation of the
graph in (a) where at most one of two dotted edges incident to one vertex

in Ĝ can exist.

Case 1. If û has degree 3 in Ĝ and û has a neighbor ŵ with degree 3, the construction
goes on as depicted in Figure 4.6, where {a, c, d} are the vertices corresponding to û
and a and d are chosen in û and furthermore {c, d, f} are the vertices corresponding to
ŵ and d and f are chosen in ŵ. Note, that in this case all the other neighbors of û
and ŵ have to have at most degree 2 in Ĝ because otherwise M1 would be an induced
subgraph of G̃. Then the construction proceeds for at most 3 vertices in Ĝ, namely the
ones corresponding to the triangles {a, d, e}, {c, f, h}, and {d, f, g} in G.
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4.2 Outerplanar Triangulations

d a

c bf

e

(a)

Pa

PcPd

Pe

Pf

Pb

(b)

Figure 4.7: (a) A part of a graph G with Ĝ. (b) The B1-EPG representation of the
graph in (a) where at most one of two dotted edges incident to one vertex

in Ĝ can exist.

Case 2. If û has degree 3 in Ĝ but all of its neighbors have degree 2 or less, we
have to distinct, which vertices corresponding to û are chosen. If only one vertex which
corresponds to both v̂ and û is chosen and additional to that the vertex which only
corresponds to û and not to v̂ is chosen, then let d and c be the chosen vertices of û.
Then the construction proceeds as in Figure 4.7. If both vertices which correspond to
both v̂ and û are chosen in û, namely c and a, then in the construction of Figure 4.7
we exchange the paths Pa and Pd and additional to that Pb and Pf in order to make
sure, that the chosen vertices of û are bended in the claw clique corresponding to û. The
construction proceeds in the vertices in Ĝ corresponding to the triangles {a, d, e} and
{c, d, f} in G.

d a

c b

(a)

Pa

Pc

Pd Pb

(b)

Figure 4.8: (a) A part of a graph G with Ĝ. (b) The B1-EPG representation of the
graph in (a) where at most one of two dotted edges incident to one vertex

in Ĝ can exist.

Case 3. If û has degree at most 2 in Ĝ and {a, c, d} are the vertices of û, then the
construction goes on as depicted in Figure 4.8. In the end the construction proceeds
with the vertex in Ĝ corresponding to the triangle {a, c, d} in G.

Ĝ is a tree and hence connected, so it is easy to see, that with this construction every
path is constructed. Moreover, for every vertex the corresponding path is only bended
in the claw clique corresponding to the triangle in which it is chosen. Every path has at
most one bend since every vertex is chosen at most once. Hence this construction yields
a B1-EPG representation of G.
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4 Outerplanar Graphs

The proof of Theorem 4.2.7 also gives a linear time algorithm to find a B1-EPG
representation of an outerplanar triangulation if it exists. The graph Ĝ can, as induced
subgraph of the dual graph of G, be determined in linear time with respect to n, if n
denotes the number of vertices of G. Moreover the graph G̃ can be determined in linear
time, since for every vertex of degree 3 in Ĝ there are 3 vertices and 3 edges between
them in G̃. Furthermore, the chosen vertices can be determined in G̃ according to the
proof in linear time. Then the paths can be constructed in the way it is done in the
proof in linear time.

In Theorem 4.1.1 we have seen that all outerplanar graphs are in Bm
2 and hence all

outerplanar triangulations are in Bm
2 . Summarizing we get a full characterization of

which outerplanar triangulations belong to B0, Bm
1 , B1, and Bm

2 .

4.3 Cacti

We now want to derive such a full characterization for another subclass of outerplanar
graphs, namely the cacti. We first need the following definitions.

Definition. The graph Cn is a graph with vertices {v1, . . . , vn} and with the edge set
{(vi, vi+1) | 1 6 i 6 n− 1} ∪ {(vn, v1)}, that is a cycle on n vertices.

Definition. A simple cycle of a graph G is a subgraph Cn for some n where all the
vertices are pairwise disjoint.

Definition. A graph is called cactus if it is connected and any two simple cycles have
at most one vertex in common.

It is easy to see that every cactus is outerplanar. Moreover cacti are in some sense the
opposite to outerplanar triangulations, because in a cactus there are no edges allowed
inside a cycle, whereas in outerplanar triangulations there have to be as many edges as
possible in every cycle.

4.3.1 Cacti in B0

Again, we start by figuring out which cacti are in B0. In order to do so, we need the
following results.

Observation 4.3.1. The cycle Cn is not in B0 for n > 4.

Proof. Let v1, v2, . . . , vn be the consecutive vertices of Cn with n > 4. Assume Cn has
a B0-EPG representation and let Pi be the path corresponding to vi. Both P1 and P3

have to share a grid edge with P2 since v1 and v3 are adjacent to v2. Nevertheless P1

and P3 do not share a grid edge with each other because v1 and v3 are not adjacent. So
P1 is completely on one side of P3 with P2 using all of the grid edges between them.

P1 P2
P3

P4, . . . , Pn
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4.3 Cacti

Furthermore v1 and v3 are not only connected via v2, but also using v4, . . . , vn, so at
least one of the paths P4, . . . , Pn has to have a common grid edge with P2, a contradiction
since all of the corresponding vertices are not adjacent to v2.

a

b c d

e f g

(a)

a b

c

d e

f

(b)

Figure 4.9: (a) The graph M2. (b) The graph M3.

Lemma 4.3.2. The graphs M2 and M3 shown in Figure 4.9 are not in B0.

Proof. Assume M2 has a B0-EPG representation. There is no edge joining any two
vertices in {b, c, d}, therefore their corresponding paths are disjoint lines and hence one
path has to be in the middle of the other two paths. Due to the fact, that b, c, and d are
all adjacent to a, the path corresponding to a has to have a grid edge in common with
all 3 corresponding paths and hence the one path in the middle is completely contained
in the path corresponding to a. That is a contradiction, since all 3 vertices b, c, and d
have a neighbor which is not adjacent to a. Hence M2 is not in B0.

Assume M3 has a B0-EPG representation. The vertices d, e, and f are pairwise
disjoint, so also their corresponding paths are pairwise disjoint. Furthermore a, c, and b
form a clique, so the corresponding paths have to form an edge clique by Lemma 3.2.2,
which can not share a grid edge with any of the paths d, e, and f . Hence on one side
of the edge clique there are at least two paths corresponding to the vertices of d, e, and
f , one being closer to the edge clique than the other. But then the corresponding path
of the vertex of the clique {a, b, c} which is adjacent to the vertex which is further away
contains the path of the vertex which is closer, a contradiction since every vertex of
{a, b, c} is only adjacent to exactly one vertex of {d, e, f}.

Now we can give a characterization of the cacti in B0.

Theorem 4.3.3. Let G be a cactus. Then G is in B0 if and only if G does not have
M2, M3, and Cn, n > 4 as induced subgraph.

Proof. Every graph which has at least one of the above graphs as induced subgraph is not
in B0 since M2, M3, and Cn, n > 4 are not in B0 by Lemma 4.3.2 and Observation 4.3.1.

In order to prove the other direction, assume that G is a cactus, which does not
contain any of the graphs M2, M3, and Cn, n > 4 as induced subgraph. Hence the only
cycles that G probably contains are triangles.
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4 Outerplanar Graphs

If there is a triangle contained in G, let v1, v2, v3 be the vertices of an arbitrary
triangle. At least one vertex among v1, v2, and v3 has degree 2 since M3 is not contained
as induced subgraph. Without loss of generality we can assume, that v3 has degree 2.
If there would be another vertex v4 6= v3 which is adjacent to both v1 and v2, then the
simple cycles {v1, v2, v3} and {v1, v2, v4} would share an edge, which is a contradiction
to G being a cactus. Let G′ be the graph we get by deleting the vertex v3 and the edges
(v1, v3) and (v2, v3) of G. If G′ has a B0-EPG representation, we can insert a new grid
edge such that only the paths corresponding to v1 and v2 use this grid edge, because
the vertices v1 and v2 are adjacent and there is no other vertex being adjacent to both
of them. If we add the path corresponding to v3 as just this grid edge, we obtain a
B0-EPG representation for G. Hence it is enough, to find a B0-EPG representation for
G′. We can delete a vertex of degree 2 of every triangle since the triangle was chosen
arbitrarily, and it is enough to find a B0-EPG representation for the remaining graph.
This graph does not contain any triangles, but is still a cactus and does not contain any
of the graphs M2, M3, and Cn with n > 4.

Hence we can assume, that G does not contain any triangles. G is connected because
it is a cactus and does not contain any Cn, n > 3, hence G is in fact a tree. Let G′′ be
the graph we obtain by deleting all vertices with degree 1 of G. Assume, that there is
a vertex v in G′′ with degree at least 3 in G′′. Let v1, v2, and v3 three of its neighbors
in G′′. They are of degree at least 2 in G since they have not been deleted, and hence
all of them have another neighbor different to v in G. That implies that the graph M2

is contained in G because there are no cycles in G. Nevertheless that is a contradiction.
So in G′′, every vertex has at most degree 2 and furthermore G′′ is connected because
G was connected. So G′′ is in fact a path. Let w1, . . . , wk be the vertices in this order
on the path. Now we can construct the paths corresponding to w1, . . . , wk as depicted
in Figure 4.10.

Pw1 Pw2

Pw3

Pw4 , . . . , Pwk−3

Pwk−2

Pwk−1
Pwk

Figure 4.10: The B0-EPG representation of the path G′′.

After that, we can obtain a B0-EPG representation of G in the following way. Let v
be a vertex in G which is missing in G′′, so it has degree 1 in G. Let w` be its neighbor
in G, which is in G′′ as well. Then we construct the path Pv as a part of the path Pw`

,
where Pw`

does not intersect any other path. This can be done for all the vertices of G
which are not in G′′ and in the end we get a B0-EPG representation of G.

Note, that by following the steps of the proof, one can determine a B0-EPG repre-
sentation for a cactus in B0 with n vertices in O(n log(n)) time. In order to do so, we
assume that the graph has vertices 1, 2, . . . , n and we use a data structure, in which
we can access a vertex in constant time and all the neighbors of a vertex are stored in
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4.3 Cacti

ascending order. Note, that a cactus has only O(n) edges, hence such a data structure
can be build up in O(n log(n)) time.

First of all in every triangle one vertex with degree 2 has to be deleted. This can be
done by going through all the vertices. Whenever a vertex has degree 2, we determine,
whether its two neighbors i and j are adjacent. This can be done in O(log(n)) by
applying logarithmic search on the list of the neighbors of i. If they are adjacent, then
the vertex and the two edges are deleted. Also this can be performed in O(log(n)) time.
So in total we need O(n log(n)) time to delete one vertex with degree 2 of every triangle.

Then all the vertices with degree 1 have to be deleted in the remaining graph. Also
this can be performed in O(n log(n)). In the end, a B0-EPG representation can be
constructed of the resulting graph according to the proof in linear time. Eventually the
paths corresponding to the deleted vertices are added to the B0-EPG representation like
it is done in the proof.

Probably the running time of the algorithm could be improved.

4.3.2 Cacti in B1

Next we want to know which cacti are in Bm
1 . It turns out that the following holds.

Theorem 4.3.4. Every cactus is in Bm
1 .

Proof. In order to prove this result, we present a recursive procedure. We start by
constructing the corresponding path of an arbitrary vertex as straight horizontal path
and mark the whole path and the whole grid. If we have already constructed a path
corresponding to a vertex v and marked a straight part of the path and its surrounding,
we construct the paths of all neighbors of v and all vertices which lie on a cycle with v.
All the corresponding paths are constructed inside the marked part of the path corre-
sponding to v and its surrounding. Furthermore we mark a straight part of every new
constructed path and its surrounding, in which the construction goes on in a recursive
way.

We now focus on the details of the construction. Let v be a vertex of which the
path has already been constructed and a straight part of the path and a part of its
surrounding has already been marked. We want to construct the paths of all vertices
which are adjacent to v or lie on a cycle with v. We can split the neighborhood of v in
such a way, that every part corresponds to one of the following cases since the graph is a
cactus. All the paths corresponding to vertices of one part can be constructed separately
and then the constructions corresponding to different parts can be aligned consecutively
on the marked part of the path corresponding to v. The cases are

(a) ∃u, such that v and u share an edge but are not on a cycle with each other,

(b) ∃u1, u2, such that v, u1, and u2 form a triangle,

(c) ∃u1, u2, u3 such that v, u1, u2, and u3 form a quadrangle, or

(d) ∃u1, u2, . . . , un−1 such that v, u1, u2, . . . , un−1 form a Cn for n > 5.
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4 Outerplanar Graphs

(a)

Pv

Pu

(b)

Pv

Pu1

Pu2

(c)

Pv

Pu1

Pu2

Pu3

(d)

Pv

Pu1

Pu2

Pu3

Pun−2

Pun−1

Figure 4.11: The recursive construction for a Bm
1 -EPG representation of a cactus with

marked parts of the paths and their surroundings.

How the paths corresponding to u in case (a), u1 and u2 in case (b), u1, u2, and u3 in
case (c), and u1, . . . , un−1 in case (d) are constructed, is depicted in Figure 4.11.

Note, that Figure 4.11 presents a construction if the marked part of the path corre-
sponding to the starting vertex v is a horizontal straight line. Nevertheless, in all the
cases there are paths, for which the marked part is a vertical line. If the marked part
of a path is a vertical line, the depicted construction is turned 90◦ counterclockwise and
then flipped vertically.

Every cycle is represented at once in the construction and by contracting all the cycles
in a cactus one gets a tree, so it is easy to see, that the construction is indeed an EPG
representation. This is because there are no intersections and there also should not be
any intersections of paths corresponding to different marked parts of paths.

Due to the fact, that the starting vertex has a path with no bends, all the paths in
the construction in Figure 4.11 are in Bm

1 . Also by turning the paths of Figure 4.11
by 90◦ counterclockwise and then flipping them vertically one gets paths in Bm

1 , so the
construction yields a Bm

1 -EPG representation.

The proof is done by construction, therefore it is easy to see that a B1-EPG represen-
tation for a cactus can be obtained in polynomial time with respect to the number of
vertices of G.

Finally we can say, that in contrast to outerplanar triangulations, where only graphs
which are also in B0 are in Bm

1 , the converse is true for cacti. Namely all cacti are in
Bm

1 . This means that we have different behavior in terms of bend number and monotonic
bend number of outerplanar triangulations and cacti. However, the graph classes itself
have major structural differences, so this behavior is not too surprising.
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5 Monotonic EPG

The purpose of this chapter is to investigate in more detail on the graph classes Bm
k .

First of all we consider the graph Sn and determine the minimum k, such that Sn is
in Bm

k . Then we determine the relationship between B2 and Bm
2 and generalize this

result by investigating on Bm
k -EPG representations of Km,n. In the end we determine

the relationship between B1 and Bm
3 , giving the first result of this kind.

5.1 Characterization of the n-Sun

The graph Sn was one of the first graphs, for which it was shown, that it is not in B1

for arbitrary large n, as long as n > 4. This result comes from Golumbic, Lipshteyn,
and Stern in [21]. Furthermore they proved in [20], that S3 ∈ B1. Additional to that
Cameron, Chaplick, and Hoàng proved in [8] that the graph S3 6∈ Bm

1 . Hence with the
next result, the characterization of Sn is fully determined.

Theorem 5.1.1. The n-sun Sn depicted in Figure 5.1 (a) is in Bm
2 for all n > 3.

Proof. In order to prove, that Sn is in Bm
2 , it is enough to give a Bm

2 -EPG representation,
which can be seen in Figure 5.1 (b).

x1

y1
x2

y2

x3

y3

x4

y4

x5y5

x6

y6

xn−2

xn−1

xnx1

x2

x3

x4

yn−2

yn−1yn
y1

y2

y3

(a)

Px1

Px2

Px3

Px4

Pxn−2

Pxn−1

Pxn

Py1

Py2

Py3

Pyn−2

Pyn−1Pyn

(b)

Figure 5.1: (a) The graph Sn. (b) A Bm
2 -EPG representation of Sn.

Note, that the construction of Theorem 5.1.1 implies, that it is possible to get a
Bm

2 -EPG representation of Sn in linear time with respect to n.
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5 Monotonic EPG

5.2 Relationship between Bm
2 and B2

It is an open question of [20] to determine the relationship between Bm
k and Bk for

k > 1. Obviously Bm
k ⊆ Bk holds for every k. In [20] Golumbic, Lipshteyn, and Stern

conjectured that Bm
1 $ B1. This conjecture was confirmed by Cameron, Chaplick, and

Hoàng in [8] by showing, that the graph S3 is not in Bm
1 . From [20] it is known, that S3

is in B1. The aim of this section is to prove that also Bm
2 $ B2 holds. For this purpose

we will show, that there is a graph which is in B2 but not in Bm
2 .

v

u

a1 a2 a3 a50

b1,1

b50,1

H3

H3

b1,2

b50,2

H3

H3

50

50

(a)

bi,j

bi+1,j

c1

c2

c3 c4

c5

c6

(b)

Figure 5.2: (a) The graph H2. (b) The graph H3 contained in every gray part of H2.

The graph we will consider is the graph H2 from Figure 5.2. Its definition is as follows.

Definition. The graph H2 depicted in Figure 5.2 is constructed in the following way.
The vertices {u, v} and {a1, . . . , a50} form a K2,50. Furthermore, for every 1 6 j < 50
the vertices {aj, aj+1} and {b1,j, . . . , b50,j} form a K2,50. Additional to that for every
1 6 j < 50 and for every 1 6 i < 50 there is the graph H3 of Figure 5.2 (b) placed
between the vertices bi,j and bi+1,j.

The next result follows from a proof in [25]. Heldt, Knauer, and Ueckerdt there used
a similar construction in order to prove, that there is a planar graph with treewidth at
most 3 which is not in B2.

Lemma 5.2.1 (Heldt, Knauer, Ueckerdt). In any B2-EPG representation of the graph
H2 depicted in Figure 5.2 there are i and j such that one end segment of each of the
paths corresponding to bi,j and bi+1,j is completely contained in one segment of the path
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corresponding to aj. Additional to that, the other end segment of each of the paths
corresponding to bi,j and bi+1,j is completely contained in one segment of the path corre-
sponding to aj+1.

With this auxiliary result we are able to prove the following result.

Lemma 5.2.2. The graph H2 is not in Bm
2 .

Proof. Assume that H2 is in Bm
2 . Every Bm

2 -EPG representation is a B2-EPG repre-
sentation as well, therefore Lemma 5.2.1 holds also for any Bm

2 -EPG representation.
Assume without loss of generality, that the center segment of the path corresponding to
bi,j is a horizontal segment, that it is above the center segment of the path corresponding
to bi+1,j and that the segment of the path corresponding to aj is on the right side of the
segment of the path corresponding to aj+1. Then the positioning of the segments of the
paths has to look like in Figure 5.3.

Paj Paj+1

Pbi+1,j

Pbi,j

Figure 5.3: A part of the hypothetical Bm
2 -EPG representation of H2.

All of the vertices c1, c2, c3, c4, c5, and c6 of the graph H3 between bi,j and bi+1,j

are adjacent to both bi,j and bi+1,j, but neither to aj nor to aj+1, therefore all of the
corresponding paths have to share a grid edge with both center segments of the paths
corresponding to bi,j and bi+1,j. So all the paths corresponding to c1, . . . , c6 have a
horizontal part in common with the center segment of bi+1,j, go up vertically and then
share a horizontal part with the center segment of bi,j.

The vertices c1, c3, and c5 form an independent set, therefore all their corresponding
paths and hence their vertical segments have to be disjoint, so they are in a unique order
from left to right. We will refer to the leftmost, middle and rightmost vertical segment
of those 3 segments as L, M , and R respectively.

Now we take a closer look at the paths corresponding to c4 and c6. The corresponding
paths of c4 and c6 have to intersect all the corresponding paths of c1, c3, and c5 since
both vertices are adjacent to c1, c3, and c5.

If the vertical segment of the path corresponding to c4 would be between, or directly
on one of the segments L and M , then the third segment of the path corresponding
to c4 would have to use the entire third segment of the path corresponding to M in
order to be able to share a grid edge with the path corresponding to R. But then the
path corresponding to c6 would not be allowed to use the third segment of the path
corresponding to M because c6 is not adjacent to c4. So c6 would have to use the first
segment of the path corresponding to M and hence also have to use the first segment of
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5 Monotonic EPG

the path corresponding to L. Nevertheless this first segment of the path corresponding
to L is already occupied by the path corresponding to c4, a contradiction.

Analogously the path corresponding to c6 is not between or directly on the segments
L and M . Just in the same way it can also be shown, that the paths corresponding to
c4 and c6 are also not between or on the segments M and R. So both vertical segments
corresponding to c4 and c6 either have to be on the left side of L or on the right side
of R. If both of them would be on the same side, then both of the corresponding paths
would only be able to use the same segments (first or last) of the paths corresponding
to L, M , and R, a contradiction.

So one of the vertical segments of the paths corresponding to c4 and c6 is on the left
side of L and uses all the third segments of the paths corresponding to L, M , and R
and the other vertical segment is on the right side of R and uses all the first segments
of the paths corresponding to L, M , and R. For an illustration of this configuration see
Figure 5.4.

Paj Paj+1

Pbi+1,j

Pbi,j

L M RPc4/6
Pc6/4

Figure 5.4: The only possible placement of paths corresponding to c1, c3, c5, c4, and c6

in the hypothetical Bm
2 -EPG representation of H2.

But no matter, how the order of c1, c3, and c5 is within L, M , and R, it is not
possible to place the path corresponding to c2 in such a way, that is does not intersect
the paths corresponding to c4 and c6 but does intersect the paths corresponding to c1 and
c5, because no two parts of L, M , and R can be connected by using a monotonic path
which does not intersect the paths corresponding to c4 and c6. So the path corresponding
to c2 can not be positioned and hence we have a contradiction.

After knowing, that there is a graph which is not in Bm
2 we can formulate the next

result.

Lemma 5.2.3. It holds that Bm
2 $ B2.

Proof. The fact that Bm
2 ⊆ B2 follows by definition. In order to see, that strict inclu-

sion holds, we consider the graph H2 depicted in Figure 5.2. We have already seen in
Lemma 5.2.2 that the graph H2 is not in Bm

2 . So it is enough to show, that H2 is in B2.
In order to prove that, it is sufficient to give a B2-EPG representation of H2. Such a
representation can be seen in Figure 5.5.

So in the end we proved that Bm
k $ Bk does not only hold for k = 1, but also for

k = 2.
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Pu

Pv

Pa1 Pa2 Pa3 Pa4 Pa50

Pb1,1 Pb2,1
Pb3,1 Pb4,1

Pb50,1

Pb1,3 Pb2,3
Pb3,3 Pb4,3

Pb50,3

Pb1,2 Pb2,2
Pb3,2 Pb4,2
Pb50,2

(a)

Pbi+1,j

Pbi,j

Pc2

Pc1 Pc3

Pc5

Pc4
Pc6

(b)

Figure 5.5: (a) A B2-EPG representation of the graph H2 of Figure 5.2, where in every
gray part there is the B2-EPG representation depicted in (b).

5.3 Relationship between Bm
k and Bk for k > 3

In order to investigate the relationship between Bm
k and Bk for bigger k, we first derive

a Lower-Bound-Lemma for Bm
k -EPG representations similarly like it is done in [26] for

Bk-EPG representations. We start with the following result.

Lemma 5.3.1. Consider two paths P1, P2 in a Bm
k -EPG representation. If one path

starts horizontally and the other one starts vertically, the paths can cross in at most k+1
points. If either both paths start horizontally or both paths start vertically, the paths can
cross in at most k points.

Proof. Consider an arbitrary but fixed segment of P1. It is easy to see, that there can
be at most one crossing with the monotonic path P2 on this segment. Hence there are
at most k + 1 crossings in any case because P1 has at most k + 1 segments.

Assume, that there are k+ 1 crossings between P1 and P2. Without loss of generality
let P1 start horizontally. There is exactly one crossing in every segment of P1 since at
most one crossing can be in every segment of P1. The same is true for P2. Furthermore,
a crossing can only occur between two segments, if one segment is horizontal and the
other is vertical. Hence the segment of P2 which intersects the first segment of P1 has to
be vertical. Furthermore this segment is the first of P2 because the path is monotonic.
So P2 starts vertically.
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5 Monotonic EPG

This implies, that if two paths start in the same direction, there can be at most k
crossings between them.

Now we are able to prove the following result.

Lemma 5.3.2. Let 3 6 m 6 n. In every Bm
k -EPG representation of Km,n

n(2m− k − 2) 6 k(m− 1)m+
1

2
m2 + 2(k + 1)m

holds.

Proof. Let c denote the number of crossings of the paths corresponding to the vertices
of the component with m vertices. Every Bm

k -EPG representation is a Bk-EPG repre-
sentation too, therefore it follows from Lemma 3.5.10 that

n(2m− k − 2) 6 2c+ 2(k + 1)m (5.1)

holds for every Bm
k -EPG representation of Km,n. Now we want to find an upper bound

on c. Let ` be the number of paths among the paths corresponding to the vertices of
the component with m vertices, which start horizontally. It follows that m − ` paths
start vertically since there are m paths in total. The number of total crossings between
the paths can be calculated as the sum of all crossings between any two paths. If two
paths both start in the same direction, there can be at most k crossings by Lemma 5.3.1.
There are

(
`
2

)
+
(
m−`

2

)
possibilities of choosing two paths that start in the same direction.

If the paths start in different directions, by Lemma 5.3.1 there can be at most k + 1
crossings. There are exactly `(m − `) pairs of paths which start in different directions.
In total there can be at most

k

((
`

2

)
+

(
m− `

2

))
+ (k + 1)`(m− `)

= k

((
`

2

)
+ `(m− `) +

(
m− `

2

))
+ `(m− `)

= k

(
m

2

)
+ `(m− `)

crossings. Furthermore `(m− `) 6
(
m
2

)2
for all 0 6 ` 6 m. So

c 6 k

(
m

2

)
+
(m

2

)2

=
1

2

(
k(m− 1)m+

1

2
m2

)
holds. In the end it follows from (5.1) that

n(2m− k − 2) 6 k(m− 1)m+
1

2
m2 + 2(k + 1)m

holds.

64



5.3 Relationship between Bm
k and Bk for k > 3

With this result we will first of all consider the relationship between Bm
5 and B5.

Lemma 5.3.3. It holds that Bm
5 $ B5.

Proof. It is obvious that Bm
5 ⊆ B5, so it is enough to show that Bm

5 6= B5.
For m = 4 Theorem 3.5.13 yields that K4,156 ∈ B5. Assume, that K4,156 ∈ Bm

5 . Then
by Lemma 5.3.2 it holds that

156(2 · 4− 5− 2) 6 5 · 3 · 4 +
1

2
42 + 2 · 6 · 4

⇔ 156 6 116,

which is a contradiction. So K4,156 6∈ Bm
5 but K4,156 ∈ B5, hence Bm

5 6= B5.

Additional to that, we can determine the relationship between Bm
k and Bk for k > 7.

Lemma 5.3.4. It holds that Bm
k $ Bk for k > 7.

Proof. We start by proving the statement for odd k. By Theorem 3.5.9 it follows that
Kk+1, 1

4
(k+1)3− 1

2
(k+1)2−(k+1)+4 = Kk+1, 1

4
k3+ 1

4
k2− 5

4
k+ 11

4
∈ Bk. Assume that the graph is in

Bm
k , hence by Lemma 5.3.2 with m = k + 1 and n = 1

4
k3 + 1

4
k2 − 5

4
k + 11

4
it follows that(

1

4
k3 +

1

4
k2 − 5

4
k +

11

4

)
(2(k + 1)− k − 2) 6 k2(k + 1) +

1

2
(k + 1)2 + 2(k + 1)2

⇔ k

(
1

4
k3 +

1

4
k2 − 5

4
k +

11

4

)
6 k3 +

7

2
k2 + 5k +

5

2

⇔ k4 − 3k3 − 19k2 − 9k − 10 6 0,

which is a contradiction for k > 7. Hence for odd k > 7 there is a graph in Bk which is
not in Bm

k and therefore Bm
k $ Bk for odd k > 7.

Now we consider the case for even k. In this case Theorem 3.5.9 yields that the graph
Kk+1, 1

4
(k+1)3−(k+1)2+ 3

4
(k+1) = Kk+1, 1

4
k3− 1

4
k2− 1

2
k ∈ Bk. Assume again that the graph is in

Bm
k , hence by Lemma 5.3.2 with m = k + 1 and n = 1

4
k3 − 1

4
k2 − 1

2
k it follows that(

1

4
k3 − 1

4
k2 − 1

2
k

)
(2(k + 1)− k − 2) 6 k2(k + 1) +

1

2
(k + 1)2 + 2(k + 1)2

⇔ k

(
1

4
k3 − 1

4
k2 − 1

2
k

)
6 k3 +

7

2
k2 + 5k +

5

2

⇔ k4 − 5k3 − 16k2 − 20k − 10 6 0,

which contradicts for k > 8. Hence for even k > 8 there is a graph in Bk which is not
in Bm

k and therefore Bm
k $ Bk for even k > 8.

Finally we can sum up the previous results and combine them in the following.

Theorem 5.3.5. It holds that Bm
k $ Bk for k = 2, k = 5, and k > 7.
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5 Monotonic EPG

Proof. This is a direct consequence of Lemma 5.2.3, Lemma 5.3.3 and Lemma 5.3.4.

That means, that the question concerning the relationship between Bm
k and Bk raised

in [20] is answered for almost all k. The relationship for the cases k = 3, k = 4, and
k = 6 remains an open question. Nevertheless we have the following conjecture.

Conjecture 5.3.6. Bm
k $ Bk holds also for k = 3, k = 4, and k = 6.

5.4 Relationship between Bk and Bm
` for ` > k

After finding out, that Bm
k $ Bk holds for almost all k a natural further question is,

what the relationship between Bk and Bm
k+1 is. Neither Bk ⊆ Bm

k+1 nor Bm
k+1 ⊆ Bk is

known. The following result partially answers this question and also points out, that
another question is of interest.

Theorem 5.4.1. Let k > 6. If k is odd, then there is a graph which is in Bk but not in
Bm

2k−8. If k is even, there is a graph which is in Bk but not in Bm
2k−9.

Proof. At first we will consider the case if k is odd. In this case because of Theorem 3.5.9
we know that Kk+1, 1

4
(k+1)3− 1

2
(k+1)2−(k+1)+4 = Kk+1, 1

4
k3+ 1

4
k2− 5

4
k+ 11

4
∈ Bk. Assume that this

graph is also in Bm
2k−8. Then it follows from Lemma 5.3.2 that(

1

4
k3 +

1

4
k2 − 5

4
k +

11

4

)
(2(k + 1)− 2k + 8− 2) 6 (2k − 8)(k + 1)k +

1

2
(k + 1)2

+ 2(2k − 7)(k + 1)

⇔ 8

(
1

4
k3 +

1

4
k2 − 5

4
k +

11

4

)
6 2k3 − 3

2
k2 − 17k − 27

2

⇔ 0 6 −7

2
k2 − 7k − 71

2

has to hold. Nevertheless this is an obvious contradiction for k > 0. So the graph is not
in Bm

2m−8. Hence for odd k > 6, there is a graph in Bk which is not in Bm
2k−8.

It remains to consider the case that k is even. By Theorem 3.5.9 we know that in this
case Kk+1, 1

4
(k+1)3−(k+1)2+ 3

4
(k+1) = Kk+1, 1

4
k3− 1

4
k2− 1

2
k ∈ Bk. If we assume, that the graph is

also in Bm
2m−9, due to Lemma 5.3.2(

1

4
k3 − 1

4
k2 − 1

2
k

)
(2(k + 1)− 2k + 9− 2) 6 (2k − 9)(k + 1)k +

1

2
(k + 1)2

+ 2(2k − 8)(k + 1)

⇔ 9

(
1

4
k3 − 1

4
k2 − 1

2
k

)
6 2k3 − 5

2
k2 − 20k − 31

2

⇔ 0 6 −1

4
k3 − 1

4
k2 − 31

2
k − 31

2

has to hold. But this is again an obvious contradiction for k > 0, so for even k > 6 there
is a graph which is in Bk but not in Bm

2k−9.
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5.5 Relationship between B1 and Bm
3

Theorem 5.4.1 shows, what the relationship between the classes Bk and Bm
k+1 is not,

namely Bk 6⊆ Bm
k+1. In fact, it even reveals that Bk 6⊆ Bm

2k−8 for odd k and that
Bk 6⊆ Bm

2k−9 for even k. This fact points out, that restricting the direction of bends
really is a big limitation. Nevertheless it is still unknown, whether there is a graph
which is in Bm

k+1 but is not in Bk. Another question of interest raised by Theorem 5.4.1
can be found in the next section.

5.5 Relationship between B1 and Bm
3

In the previous sections we have seen, that Bm
k $ Bk for all k > 1 is already known

except for k = 3, k = 4, and k = 6. In other words allowing the same number of
bends but restricting the possible directions of the bends does decrease the number of
representable graphs. A natural question that arises is the reverse, hence to find out how
much more bends are needed if we want to represent a graph with fewer possibilities of
directions of the bends. Equivalently we want to find the minimum ` such that Bk ⊆ Bm

` .
In Theorem 5.4.1 we have already seen that ` > 2k − 9 for k > 6. We now want to
investigate the relationship for small values of k. It follows from Observation 2.2.1, that
B0 = Bm

0 , so for k = 0 the question can be answered easily. We go a step further and
give an upper bound on the minimum ` for k = 1.

Theorem 5.5.1. It holds that B1 ⊆ Bm
3 .

Proof. We have to prove, that every graph in B1 is also in Bm
3 . Let G be a graph

in B1. We consider a B1-EPG representation of G and transform it into a Bm
3 -EPG

representation in the following way. Let R1 be an arbitrary B1-EPG representation of
G. We place another copy of the same B1-EPG representation to the top right of R1

and call this second copy R2.

c a

b de

f

g

(a)

PaPb

Pd

Pc

Pf

Pg

Pe

(b)

Figure 5.6: (a) A graph G. (b) A B1-EPG representation of the graph G.

An example how to modify the B1-EPG representation in Figure 5.6 (b) of the graph
G in Figure 5.6 (a) is depicted in Figure 5.7.

Let v be a vertex and Pv the path corresponding to it in the B1-EPG representation.
If Pv has a horizontal segment, we split the vertical grid line of R1, in which the right
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5 Monotonic EPG

PaPb

Pd

Pc

Pf

Pg

Pe

PaPb

Pd

Pc

Pf

Pg

Pe

Figure 5.7: The grid with components R1 and R2.

end point of the horizontal segment of Pv is, into two grid lines. For this purpose, we
introduce a new vertical grid line L

|
v immediately left to it and then we modify the path

Pv such that it does not use the original vertical grid line, but uses the vertical grid line
L
|
v instead. All the other paths remain in the original vertical grid line. If Pv has a

vertical segment, then in R2 we introduce a new horizontal grid line L−v directly beneath
the grid line in which the lower end point of the vertical segment of Pv is. Additional
to that we modify the path Pv such that it uses L−v instead of the original grid line, all
the other paths are not modified.

An example of the modified grid and paths of the graph in Figure 5.6 (a) can be seen
in Figure 5.8.

Now we define the Bm
3 -EPG representation of G with a path Qv for every vertex v

in the following way. If the path Pv is only a horizontal segment, we define Qv as the
horizontal segment of Pv in R1. If the path Pv is only a vertical segment, we define Qv as
the vertical segment of Pv in R2. If the path Pv has a horizontal and a vertical segment,
then the path Qv uses the horizontal segment of Pv in R1. Then the path Qv uses the
vertical grid line L

|
v until it intersects the grid line L−v and proceeds in this horizontal

grid line until it reaches the vertical grid line of Pv in R2. Finally it uses this grid line
and ends in the upper end point of the vertical segment of Pv in R2.

An example of the Bm
3 -EPG representation of the graph in Figure 5.6 (a) is depicted

in Figure 5.9.

It is easy to see, that every path is monotonic and bends at most 3 times. What is
left to show is, that two paths Qv1 and Qv2 intersect if and only if the vertices v1 and v2

are adjacent in G. For that it is enough to show that two paths Qv1 and Qv2 intersect,
if and only if the paths Pv1 and Pv2 intersect in the original B1-EPG representation.

Assume Qv1 and Qv2 intersect. There are no intersections of the paths in any new
introduced grid lines because we introduced different grid lines for Qv1 and Qv2 . Addi-
tional to that, for every v the first segment of Qv is contained entirely in R1, the last
segment of Qv is contained entirely in R2 and R1 and R2 are separated. So the intersec-
tion of Qv1 and Qv2 is either for both paths located at the first or for both paths located
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Pf
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|
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L−c

L−b

L−a

L−e

Figure 5.8: The grid with newly introduced grid lines and modified paths.

at the last segment. Assume without loss of generality that the intersection is located at
the first segment of both paths. It follows that also Pv1 and Pv2 intersect since the first
segments of Qv1 and Qv2 are completely contained in the original horizontal segments of
Pv1 and Pv2 respectively.

What is left to show is the other direction of the equivalence, that is that if Pv1 and
Pv2 intersect, also Qv1 and Qv2 intersect. It follows from the definition of the modified
paths, that if two original paths Pv1 and Pv2 intersect horizontally in R1 or vertically in
R2, also the modified paths Pv1 and Pv2 intersect horizontally in R1 or vertically in R2

respectively. But then by the definition of the path Qv, for every v the first segment of
Qv contains the whole horizontal part of the modified path Pv in R1 and the last segment
of Qv contains the whole vertical part of the modified path Pv in R2. Hence if the paths
Pv1 and Pv2 intersect horizontally, the paths Qv1 and Qv2 intersect horizontally on the
first segment of each path. If the paths Pv1 and Pv2 share a vertical grid edge, the paths
Qv1 and Qv2 intersect vertically on the last segment of each path.

Due to the fact, that the proof is done by construction, an immediate consequence
of Theorem 5.5.1 is, that with a given B1-EPG representation of a graph, a Bm

3 -EPG
representation can be obtained in linear time with respect to the number of vertices of
the graph.
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Figure 5.9: The obtained Bm
3 -EPG representation of the graph of Figure 5.6 (a).

It is still an open question, whether this result is tight, so whether ` = 3 is really the
minimum ` such that B1 ⊆ Bm

` or even B1 ⊆ Bm
2 holds.

5.6 Further Investigation on Km,n ∈ Bm
k

In [26] there has been done many work on determining upper and lower bounds on
k such that Km,n is in and is not in Bk respectively. One result there was, that for
n > m4− 2m3 + 5m2− 4m+ 1 the graph Km,n 6∈ B2m−3 but Km,n ∈ B2m−2. The aim of
this section is to deduce a similar result for the monotonic case.

We first generalize a result of [4]. There it was shown by slightly modifying a con-
struction of [20], that Km,n ∈ B2m−2 for all n. By again modifying the construction of
[4], we can give the same result for the monotonic case.

Theorem 5.6.1. It holds that Km,n ∈ Bm
2m−2.

Proof. In order to prove this, it is enough to give a Bm
2m−2-EPG representation, which

can be found in Figure 5.10. If we denote the vertices of Km,n which are in the com-
ponent of size m with A = {a1, . . . , am} and the vertices of the other component with
B = {b1, . . . , bn}, then the paths corresponding to vertices of A have only a horizontal
segment. The paths corresponding to vertices of B are staircases with 2m−2 bends.
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k

m

n

Figure 5.10: A Bm
2m−2-EPG representation for Km,n.

This means, that the upper bound on bends needed for an EPG representation of
Km,n with m 6 n is the same, no matter whether only monotonic bends are allowed
or all kind of bends are allowed. This fact is even more surprising, if we take into
account Theorem 5.4.1, which tells us, that the gap between the number of minimum
bends needed in a monotonic EPG representation and the number of minimum bends
needed in an EPG representation can be arbitrary large. However, it turns out, that
in the monotonic case the maximum number of bends is needed earlier than in the
non monotonic case. That is, Km,n 6∈ B2m−3 for n > N1 for some N1 ∈ O(m4), but
Km,n 6∈ Bm

2m−3 for n > N2 already for some N2 ∈ O(m3). This is a consequence of the
following result.

Theorem 5.6.2. Let 3 6 m. If n > 2m3 − 1
2
m2 −m+ 1 then the graph Km,n 6∈ Bm

2m−3.

Proof. Assume that Km,n ∈ Bm
2m−3. Then by applying Lemma 5.3.2 for k = 2m− 3 we

get that

n(2m− (2m− 3)− 2) 6 (2m− 3)(m− 1)m+
1

2
m2 + 2(2m− 2)m

⇔ n 6 2m3 − 1

2
m2 −m

has to hold. This is a contradiction for n > 2m3 − 1
2
m2 −m+ 1.
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6 Monotonic MILP Formulation

In combinatorial optimization it is very common to formulate a problem as mixed integer
linear program (MILP). The aim of this chapter is to provide a MILP formulation of
the problem, whether a given graph G is in Bm

k or not. We will derive two distinct
formulations with different advantages. One version will be based on the grid edges, the
other version will be based on the grid points.

6.1 Grid Edge Based Monotonic MILP Formulation

At first we will present a MILP called (EBm
k ) which determines the minimum k, such

that a given graph G is in Bm
k . The basic idea is to introduce a binary variable for each

grid edge and for each path so as to determine whether the path uses this grid edge or
not.

Definition. Let G = (V,E) be a graph with vertex set V = {1, . . . , n} and let G be a
grid with mx vertical and my horizontal lines. Let

Mx := {1, . . . ,mx},
M0

x := {0, 1, . . . ,mx},
M+

x := {1, . . . ,mx,mx + 1},
My := {1, . . . ,my},
M0

y := {0, 1, . . . ,my}, and

M+
y := {1, . . . ,my,my + 1}.

The meaning of the variables is the following. The variable uvx,y = 1 if the path
corresponding to vertex v uses the edge of the grid which goes up at the grid point
(x, y), uvx,y = 0 otherwise. In the same way rvx,y = 1 if the path corresponding to vertex
v uses the edge of the grid which goes to the right at the grid point (x, y), rvx,y = 0
otherwise. The variable uv,wx,y = 1 if both the paths corresponding to v and w use the
edge of the grid which goes up at the grid point (x, y), uv,wx,y = 0 otherwise. So uv,wx,y = 1 if
and only if the paths corresponding to v and u intersect at the edge that goes up at the
grid point (x, y). Analogously rv,wx,y = 1 if both the paths corresponding to v and w use
the edge of the grid which goes to the right at the grid point (x, y), rv,wx,y = 0 otherwise.
We set svx,y = 1 if the path corresponding to vertex v starts at the grid point (x, y) and
svx,y = 0 otherwise. Furthermore we let evx,y = 1 if the path corresponding to vertex v
ends at the grid point (x, y) and evx,y = 0 otherwise. In the end, we set bvx,y = 1 if the
path corresponding to v bends at the grid point (x, y) and bvx,y = 0 otherwise.
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6 Monotonic MILP Formulation

The grid edge based monotonic MILP (EBm
k ) is defined in the following way.

(EBm
k ) min k

s.t. uvx,y + uwx,y 6 1 ∀v, w ∈ V , v < w, (v, w) /∈ E, ∀x ∈Mx, ∀y ∈M0
y (6.1)

rvx,y + rwx,y 6 1 ∀v, w ∈ V , v < w, (v, w) /∈ E, ∀x ∈M0
x , ∀y ∈My (6.2)

uvx,y + uwx,y > 2uv,wx,y ∀(v, w) ∈ E, ∀x ∈Mx, ∀y ∈M0
y (6.3)

rvx,y + rwx,y > 2rv,wx,y ∀(v, w) ∈ E, ∀x ∈M0
x , ∀y ∈My (6.4)∑

y∈M0
y

x∈Mx

uv,wx,y +
∑
y∈My

x∈M0
x

rv,wx,y > 1 ∀(v, w) ∈ E (6.5)

rvx−1,y + uvx,y 6 1 + bvx,y ∀v ∈ V , ∀x ∈Mx, ∀y ∈My (6.6)

rvx,y + uvx,y−1 6 1 + bvx,y ∀v ∈ V , ∀x ∈Mx, ∀y ∈My (6.7)∑
y∈My

x∈Mx

bvx,y 6 k ∀v ∈ V (6.8)

rvx−1,y + uvx,y−1 + svx,y = rvx,y + uvx,y + evx,y ∀v ∈ V , ∀x ∈Mx, ∀y ∈My (6.9)

sv0,y = rv0,y ∀v ∈ V , ∀y ∈My (6.10)

rvmx,y = evmx+1,y ∀v ∈ V , ∀y ∈My (6.11)

svx,0 = uvx,0 ∀v ∈ V , ∀x ∈Mx (6.12)

uvx,my
= evx,my+1 ∀v ∈ V , ∀x ∈Mx (6.13)∑

y∈M+
y

x∈M+
x

evx,y 6 1 ∀v ∈ V (6.14)

∑
y∈M0

y

x∈M0
x

svx,y > 1 ∀v ∈ V (6.15)

uvx,y ∈ {0, 1} ∀v ∈ V , ∀x ∈Mx, ∀y ∈M0
y (6.16)

rvx,y ∈ {0, 1} ∀v ∈ V , ∀x ∈M0
x , ∀y ∈My (6.17)

uv,wx,y ∈ {0, 1} ∀(v, w) ∈ E, ∀x ∈Mx, ∀y ∈M0
y (6.18)

rv,wx,y ∈ {0, 1} ∀(v, w) ∈ E, ∀x ∈M0
x , ∀y ∈My (6.19)

svx,y ∈ {0, 1} ∀v ∈ V , ∀x ∈M0
x , ∀y ∈M0

y (6.20)

evx,y ∈ {0, 1} ∀v ∈ V , ∀x ∈M+
x , ∀y ∈M+

y (6.21)

bvx,y ∈ {0, 1} ∀v ∈ V , ∀x ∈Mx, ∀y ∈My (6.22)

k ∈ N∗ = {0, 1, 2, . . . } (6.23)

Note, that if m is the number of edges of the graph G, then the MILP (EBm
k ) has

n(4mxmy+3mx+3my+3)+m(2mxmy+mx+my+1) binary variables, 1 integer variable

and there are
(
n2

2
+m

)
(2mxmy + mx + my + 1) + m + n(2mxmy + 3

2
mx + 3

2
my + 5

2
)

constraints.
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6.1 Grid Edge Based Monotonic MILP Formulation

Theorem 6.1.1. For a fixed k, every feasible solution of (EBm
k ) corresponds to a Bm

k -
EPG representation of G on the grid G and vice versa.

Proof. Throughout the whole proof, we let k be fixed.
We start by showing, that every Bm

k -EPG representation on the grid G corresponds
to a feasible solution. In order to do so, we assign the values of the decision variables as
it is described above.

Now we will show, that this assignment yields a feasible solution of (EBm
k ). We have

assigned only binary values to all variables, so (6.16) - (6.22) hold. If two vertices v and
w are not adjacent, their corresponding paths do not share a grid edge, so every grid
edge can be used by at most one of the paths, hence (6.1) and (6.2) are fulfilled. If the
vertices v and w are adjacent, then it follows from the definition of our assignment, that
(6.3) and (6.4) hold. Furthermore for vertices which are adjacent there has to be an
intersection of the paths anywhere in the grid, and hence there has to be a grid edge,
which both paths use, so (6.5) is true. If we consider (6.6), then it is easy to see, that
this inequality is always fulfilled, if at most one variable on the left hand side is 1. If
both variables are 1, then the path bends at this point and hence also bvx,y = 1 and the
inequality is fulfilled. The same holds for (6.7). Additional to that it is easy to see, that
(6.8) holds because every path has at most k bends. If we consider (6.9), it is easy to
see, that the equation is true if the path corresponding to vertex v does not use the grid
point (x, y), because then all the variables are 0. If the path uses the grid point (x, y),
then the path has to come to the grid point (either it starts there, or it uses the edge
from the left or it uses the edge from below) and has to leave the grid point (either it
ends there or it uses the grid edge to the right or it uses the grid edge up). In all of
these cases exactly one of the variables on both the left and the right hand side is 1 and
the equality is true and hence (6.9) is always fulfilled. Equation (6.10) - (6.13) are just
special cases of (6.9) at the border of the grid. (6.14) is true since every path ends only
in one grid point and (6.15) is true because every path starts in only one grid point.
Hence all constraints are fulfilled.

What is left so show is, that every feasible solution corresponds to a Bm
k -EPG repre-

sentation. In order to do so, we consider a feasible solution and construct a Bm
k -EPG

representation. We construct it in the following way. We first define a pseudo path for
every vertex v, then we will show, that every pseudo path is actually a path. A grid
edge going up at grid point (x, y) is part of the pseudo path corresponding to vertex v
if and only if uvx,y = 1. In the same way the grid edge going to the right at grid point
(x, y) belongs to the pseudo path corresponding to vertex v if and only if rvx,y = 1.

Now we will show, that every pseudo path is a monotonic path. In order to do so, we
start by making a claim. Beforehand let us mention, that it is easy to see, that equation
(6.10) - (6.13) are just special cases of (6.9). So if we refer to (6.9) in the proceeding,
we refer either to exactly this equation or to the special cases if we consider a grid point
at the border of the grid.

Claim 6.1.2. Whenever a grid edge is contained in a pseudo path, there is a connected
monotonic path from the left or upper end of the grid edge to a grid point (x∗, y∗) with
evx∗,y∗ = 1.
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Proof of Claim. If we consider (6.9) for the grid point of the right or upper end of the
grid edge, the left hand side is at least 1. Hence also the right hand side has to be at
least 1. That means that either we are in a point (x, y) in with evx,y = 1 or the pseudo
path proceeds up or to the right. Both possibilities lead to a monotonic proceeding of
the path. If the path proceeds, we can iteratively apply (6.9) for the grid point in which
the right or upper end point of the new grid edge is. The path we get by applying this
iteratively is monotonic and the grid size is restricted, hence we come to a grid point
(x∗, y∗) with evx∗,y∗ = 1 if we reach the border of the grid at the latest.

With this claim we are able to prove the following fact.

Claim 6.1.3. For every two grid edges contained in the pseudo path, one of them has
to lie on a monotonic path from the upper or right end point of the other one to a grid
point (x∗, y∗) with evx∗,y∗ = 1.

Proof of Claim. Assume that there are two grid edges e1 and e2 contained in the pseudo
path, such that neither of them lies on a monotonic path from the right or upper end
point of the other grid edge to a grid point (x∗, y∗) with evx∗,y∗ = 1. In other words we
assume that there is a monotonic path from e1, e2 to grid points (x∗1, y

∗
1), (x∗2, y

∗
2) with

evx∗1,y∗1 = evx∗2,y∗2 = 1 respectively. Furthermore neither e1 is contained in the path from e2

to (x∗2, y
∗
2), nor e2 is contained in the path from e1 to (x∗1, y

∗
1). Inequality (6.14) implies

that (x∗1, y
∗
1) = (x∗2, y

∗
2). We distinct two cases.

If both the grid edges from below and from the left to the grid point (x∗1, y
∗
1) are

contained in the pseudo path, then the left hand side of equation (6.9) is at least 2,
hence also the right hand side has to be at least 2. We already know that evx∗1,y∗1 = 1,

but at least one of the grid edges going up or to the right at grid point (x∗1, y
∗
1) has to

be contained in the pseudo path as well. But then we can apply Claim 6.1.2 and know,
that from the endpoint of that grid edge there has to be a monotonic path to another
point (x∗3, y

∗
3) with evx∗3,y∗3 = 1, which is again a contradiction to (6.9).

In the second case, only one grid edge of the grid edges from below and from left to
the grid point (x∗1, y

∗
1) is contained in the pseudo path and hence both monotonic paths

use the same grid edge to reach the grid point (x∗1, y
∗
1). In this case we go back in the

monotonic paths until we reach the first grid point, for which both the grid edges from
below and left are contained in the pseudo path. Let this grid point be (x∗4, y

∗
4). The left

hand side of (6.9) for this grid point is at least 2, hence also the right hand side of the
equation has to be at least 2. We already know, that evx∗1,y∗1 = 1, therefore it follows from

(6.14) that evx∗4,y∗4 = 0 and hence both the edges from (x∗4, y
∗
4) to the right and to the top

are used in the pseudo path. Only one of them is contained in the monotonic paths,
hence from the upper or right end point of the other grid edge e5 Claim 6.1.2 can be
applied again. That means that also from that end point of the grid edge there has to
be a monotonic path to a grid point (x∗5, y

∗
5) with evx∗5,y∗5 = 1. Again, (6.14) implies that

(x∗5, y
∗
5) = (x∗1, y

∗
1). For the same reason as in the last case, it is not possible, that the

monotonic path from e5 to (x∗1, y
∗
1) and the monotonic paths from e1 and e2 over (x∗4, y

∗
4)

to (x∗1, y
∗
1) use different grid edges in order to reach the grid point (x∗1, y

∗
1). But since

the beginning at grid point (x∗4, y
∗
4) is different but the ending at grid point (x∗1, y

∗
1) is
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the same, there has to be a grind point on the monotonic path from (x∗4, y
∗
4) to (x∗1, y

∗
1)

in which the path from e1 and the path from e5 enter differently but leave in the same
way. Hence there has to be a point (x∗6, y

∗
6) between (x∗4, y

∗
4) and (x∗1, y

∗
1) such that both

the edges from below and from left are contained in the pseudo path. But this is a
contradiction to the definition of (x∗4, y

∗
4), so our assumption was wrong. Hence there

can not be two grid edges contained in the pseudo path, such that neither of them lies
on a monotonic path from the right or upper end point of the other grid edge to a grid
point (x∗, y∗) with evx∗,y∗ = 1.

Hence by Claim 6.1.3 every pseudo path is a monotonic path.

What is still left to show is, that every path has at most k bends and that two paths
intersect if and only if the corresponding vertices are adjacent in G. We start by showing,
that every path has at most k bends. Every path is monotonic, so we know, that there
can only be two different types of bends at a grid point (x, y). The first possibility is,
that the path uses the edge coming from the left hand side at the grid point and then
the grid edge going up at the grid point. In this case rvx−1,y = uvx,y = 1 and hence because
(6.6) is fulfilled, also bvx,y = 1. The second possibility is, that the path uses the grid edge
going down at the grid point and then proceeds in the grid edge going to the right. For
this case uvx,y−1 = rvx,y = 1 holds and by (6.7) bvx,y = 1 again. Hence whenever a path
bends at a grid point (x, y), the variable bvx,y = 1. Eventually it follows from (6.8), that
every path has at most k bends.

In the end we will prove, that two paths intersect if and only if the corresponding
vertices share an edge in G. If the vertices are not adjacent in G, then if follows from
(6.1) and (6.2) that at every grid edge there can be at most one path. Hence whenever
two vertices are not adjacent, their corresponding paths do not share a grid edge. If two
vertices v and w are adjacent, then it follows from (6.5) that there are x∗ and y∗ such
that uv,xx∗,y∗ = 1 or rv,xx∗,y∗ = 1. In the first case, it follows from (6.3) that both paths use
the grid edge going up at the grid point (x∗, y∗) and hence the paths intersect there. In
the second case, because of (6.4) the paths intersect on the grid edge going to the right
at grid point (x∗, y∗). Hence in any case the paths intersect.

Note, that in the MILP (EBm
k ) the constraints (6.9) - (6.15) are actually the con-

straints of a multicommodity flow problem. Every vertex of G corresponds to one com-
modity and the network can be obtained by introducing a vertex for every grid point
and additional to that a source and a sink. The directed edges of the network are on
the one hand the left-to-right and bottom-to-top directed grid edges respectively and
on the other hand an edge from the source to every grid point and one edge from every
grid point to the sink. The capacities are all 1. In this formulation, a feasible solution
for the mulitcommodity flow problem corresponds to a monotonic path in the grid. For
more information on the mulitcommodity flow problem see for example Hu [28].

A direct consequence of Theorem 6.1.1 is the next result.

Corollary 6.1.4. For every graph G the MILP (EBm
k ) determines the minimum k, such

that G is in Bm
k .
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The obvious advantage of (EBm
k ) is, that k is part of the optimization process, hence

one does not have to determine beforehand, for which k he wants to know, whether a
given graph is in Bm

k .
Nevertheless, a disadvantage of (EBm

k ) is, that the number of variables and constraints
strongly depends on the grid size and there is no bound known on the grid size for a
Bm
k -EPG representation for every k. Such upper bounds are only known for some values

of k. Namely Corollary 3.1.4 implies, that for every graph with n vertices, m edges and
maximum degree ∆, there is a Bm

k -EPG representation on a grid of size n× (n+m) for
k > 2∆.

6.2 Grid Point Based Monotonic MILP Formulation

The second MILP we present is called (PBm
k ). The basic idea is to introduce integer

variables representing the x- and y-coordinate of the bend points for every path. Fur-
thermore for every path one auxiliary segment is introduced, such that it is known,
which segments of the paths are horizontal and which are vertical. This turns out to be
very useful in determining whether two paths intersect or not.

Definition. Let G = (V,E) be a graph with V = {1, . . . , n} and let G be a rectangular
grid from the bottom left grid point (1, 1) to the top right grid point (mx,my). Let
L := {0, 1, . . . , k + 1} and L+ := {0, 1, . . . , k + 2}.

The meaning of the variables is the following. If the first segment of the path cor-
responding to v is horizontal, we let hv = 1, if it is vertical we let hv = 0. Then we
assign consecutive numbers to consecutive segments for every path. If the path starts
horizontally, we assign 0 to the first segment, if the path starts vertically, we assign 1 to
the first segment and assign 0 to the segment which is just the grid point where segment
1 starts. Every assigned number is at most k + 1 since every path has at most k + 1
segments. If a path does not reach k + 1 in the numbering, that is it uses less than
k + 1 segments or starts horizontally, then we let the remaining segments all be just
the grid point in which the last segment ends. Then we let (x`v, y

`
v) be the coordinates

of the grid point, at which segment ` of the path corresponding to v starts for every
0 6 ` 6 k + 1. Furthermore, we let (xk+2

v , yk+2
v ) be the grid point, in which segment

k + 1 ends. Note, that if in the path corresponding to v segment ` is just a grid point,
then (x`v, y

`
v) = (x`+1

v , y`+1
v ). For every v, w ∈ V with v < w and for every `, j ∈ L with

` ≡ j mod 2 we let iv,`,w,j = 1 if segment ` of the path corresponding to v intersects
segment j of the path corresponding to w and iv,`,w,j = 0 otherwise. Furthermore, for
every v, w ∈ V and for every `, j ∈ L, where either v 6= w or v = w and j = ` + 1, we
let gxv,`,w,j = 1 if x`v > xjw and gxv,`,w,j = 0 otherwise. In the same way, we set gyv,`,w,j = 1

if y`v > yjw and gyv,`,w,j = 0 otherwise.
The grid point based monotonic MILP (PBm

k ) is defined in the following way.

(PBm
k ) s.t. x`v 6 x`+1

v ∀v ∈ V , ∀` ∈ L (6.24)

y`v 6 y`+1
v ∀v ∈ V , ∀` ∈ L (6.25)
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x`v = x`+1
v ∀v ∈ V , ∀` ∈ L, ` ≡ 1 mod 2 (6.26)

y`v = y`+1
v ∀v ∈ V , ∀` ∈ L, ` ≡ 0 mod 2 (6.27)

xk+2
v − xk+1

v 6 mx(1− hv) ∀v ∈ V (6.28)

yk+2
v − yk+1

v 6 my(1− hv) ∀v ∈ V (6.29)

x1
v − x0

v 6 mxhv ∀v ∈ V (6.30)

x`v − xjw > mx(g
x
v,`,w,j − 1) ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `+ 1) (6.31)

x`v − xjw 6 mxg
x
v,`,w,j − 1 ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `+ 1) (6.32)

y`v − yjw > my(g
y
v,`,w,j − 1) ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `+ 1) (6.33)

y`v − yjw 6 myg
y
v,`,w,j − 1 ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `+ 1) (6.34)

5(1− iv,`,w,j) > gxv,`,v,`+1 + gxw,j,w,j+1 + (2− gyv,`,w,j − g
y
w,j,v,`)+

gxw,j,v,`+1 + gxv,`,w,j+1 ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (6.35)

1− iv,`,w,j 6 gxv,`,v,`+1 + gxw,j,w,j+1 + (2− gyv,`,w,j − g
y
w,j,v,`)+

gxw,j,v,`+1 + gxv,`,w,j+1 ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (6.36)

5(1− iv,`,w,j) > gyv,`,v,`+1 + gyw,j,w,j+1 + (2− gxv,`,w,j − gxw,j,v,`)+
gyw,j,v,`+1 + gyv,`,w,j+1 ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (6.37)

1− iv,`,w,j 6 gyv,`,v,`+1 + gyw,j,w,j+1 + (2− gxv,`,w,j − gxw,j,v,`)+
gyw,j,v,`+1 + gyv,`,w,j+1 ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (6.38)

1 6
∑
`,j∈L

`≡j mod 2

iv,`,w,j ∀(v, w) ∈ E (6.39)

0 >
∑
`,j∈L

`≡j mod 2

iv,`,w,j ∀v, w ∈ V , v < w, (v, w) /∈ E (6.40)

x`v ∈ {1, . . . ,mx} ∀v ∈ V , ∀` ∈ L+ (6.41)

y`v ∈ {1, . . . ,my} ∀v ∈ V , ∀` ∈ L+ (6.42)

hv ∈ {0, 1} ∀v ∈ V (6.43)

iv,`,w,j ∈ {0, 1} ∀v, w ∈ V , v < w, ∀`, j ∈ L, ` ≡ j mod 2 (6.44)
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gxv,`,w,j ∈ {0, 1} ∀v, w ∈ V , ∀`, j ∈ L+, v 6= w ∨ (v = w ∧ j = `+ 1) (6.45)

gyv,`,w,j ∈ {0, 1} ∀v, w ∈ V , ∀`, j ∈ L+, v 6= w ∨ (v = w ∧ j = `+ 1) (6.46)

In this MILP we have 2n(k + 3) integer variables and additional to that there are

(n2 − n)
(

1
2

⌈
(k+2)2

2

⌉
+ 2(k + 3)2

)
+ n(2k + 5) binary variables. Furthermore the MILP

consists of (n2 − n)
(

4(k + 3)2 +
⌈

(k+2)2

2

⌉
+ 1

2

)
+ n(7k + 17) constraints.

Theorem 6.2.1. Every feasible solution of (PBm
k ) corresponds to a Bm

k -EPG represen-
tation of G on the grid G and vice versa.

Proof. At first we will show, that every Bm
k -EPG representation corresponds to a feasible

solution of (PBm
k ). In order to do so, for a Bm

k -EPG representation we consider the above
described assignment and show, that this assignment is a feasible solution for (PBm

k )
indeed.

It follows from our assignment, that the variables are in the right scope, so (6.41)
- (6.46) are fulfilled. Every path is only ascending in both columns and rows because
we have a monotonic EPG representation, so (6.24) and (6.25) hold. Furthermore our
numbering was chosen in such a way, that every horizontal segment has an even number,
every vertical segment has an odd number and the number of every segment is also the
number of the grid point in which the segment starts. So if ` is even, the segment is
horizontal and hence remains in the same row of the grid. That means that y`v = y`+1

v for
every even `. Analogously x`v = x`+1

v for every odd `, so (6.26) and (6.27) are fulfilled.
For (6.28) and (6.29) it is easy to see, that they do not impose a restriction if hv = 0. If
hv = 1, the path starts horizontally and hence uses the first segment and does not use
the last segment. That means that segment k+ 1 is only a point and hence xk+1

v = xk+2
v

and yk+1
v = yk+2

v hold, implying that both inequalities hold in any case. Also (6.30)
does not restrict any variables, if hv = 1. If hv = 0, then the path starts vertically
and hence segment 0 is a grid point, so x0

v = x1
v holds and the inequality is true. If

x`v > xjw, then gxv,`,w,j = 1 by our assignment and both (6.31) and (6.32) hold. Also if

x`v < xjw, then gxv,`,w,j = 0 by our assignment and because of the integrality of both x`v
and xjw, even x`v − xjw 6 −1 holds, which implies that both inequalities are fulfilled in
this case as well. That (6.33) and (6.34) hold, follows analogously. In order to consider
(6.35) and (6.36), we first determine, when two horizontal segments of different paths
do not intersect each other. Consider the segment ` of the path corresponding to v and
segment j of the path corresponding to w, with v 6= w. If both segments are horizontal,
then ` ≡ j ≡ 0 mod 2 holds. The segments do not intersect if one of them consists
of only a grid point (gxv,`,v,`+1 = 1 or gxw,j,w,j+1 = 1), or if they do not lie on the same
grid row (2− gyv,`,w,j − g

y
w,j,v,` = 1), or if the start point of one segment lies on the right

side of the end point of the other segment (gxv,`,w,j+1 = 1 or gxw,j,v,`+1 = 1). In the case,
that they do not intersect, iv,`,w,j = 0 and (6.35) is not a restriction. Furthermore at
least one of the above conditions is fulfilled and hence the right side of (6.36) is at least
1. The constraint is fulfilled since the left side in this case is 1 too. In the case, that
they intersect, iv,`,w,j = 1 and furthermore none of the above conditions is true, so all
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of the mentioned terms are 0. Hence both constraints hold in this case as well. In the
same way, both (6.37) and (6.38) are true. It is easy to see, that (6.39) holds since in
every Bm

k -EPG representation for every edge (v, w) there has to be an intersection of the
corresponding paths and two segments can only intersect, if both of them are horizontal
or vertical. Furthermore in every Bm

k -EPG representation the corresponding paths of
two vertices v and w which are not adjacent are not allowed to intersect. So the sum on
the right hand side of (6.40) is 0 and hence this inequality holds. Now we have shown,
that every constraint of the MILP is fulfilled, and therefore we have proved, that every
Bm
k -EPG representation of G on G corresponds to a feasible solution.

What is left to show is, that every feasible solution of (PBm
k ) corresponds to a Bm

k -
EPG representation of G on G. Consider a feasible solution. We let segment ` of
the path corresponding to vertex v go from the grid point (x`v, y

`
v) to the grid point

(x`+1
v , y`+1

v ). This way we get a connected path. It goes along the grid lines because for
every segment either the x-coordinate or the y-coordinate stays the same due to (6.26)
and (6.27). Furthermore the path is monotonic, because of (6.24) and (6.25). Ever path
has at most k+2 segments since we have k+3 points. But in every feasible solution hv is
either 0 or 1. If it is 0, it follows from (6.24) and (6.30) that x0

v = x1
v. Moreover y0

v = y1
v

holds because of (6.27). So the segment between (x0
v, y

0
v) and (x1

v, y
1
v) is only a point.

Hence for hv = 0, the path corresponding to v has at most k + 1 segments. If hv = 1,
then it follows from (6.28), (6.24), (6.29) and (6.25) that (xk+1

v , yk+1
v ) = (xk+2

v , yk+2
v ) and

hence the last segment is only a point. So also in the case of hv = 1 the path consists
of at most k + 1 segments. This makes sure, that in any case every path has at most k
bends.

It remains to show, that the paths corresponding to two vertices intersect in the grid
if and only if the vertices are adjacent in G. In order to prove that, we first will show,
that gxv,`,w,j = 1 if and only if x`v > xjw. It follows from (6.31) that if gxv,`,w,j = 1 it

holds that x`v > xjw. If gxv,`,w,j = 0, it follows from (6.32) that x`v 6 xjw − 1. That

implies that x`v < xjw. In the same way it can be shown that gyv,`,w,j = 1 if and only

if y`v > yjw by using (6.33) and (6.34). Next we will show that iv,`,w,j = 1 if and only
if gxv,`,v,`+1 = 0 and gxw,j,w,j+1 = 0 and (2 − gyv,`,w,j − gyw,j,v,`) = 0 and gxw,j,v,`+1 = 0
and gxv,`,w,j+1 = 0. The one side of the equivalence follows from (6.36), the other from

(6.35). Applying the observation, that gxv,`,w,j = 1 if and only if x`v > xjw yields the

following equivalence. It holds that iv,`,w,j = 1 if and only if x`v < x`+1
v and xjw < xj+1

w

and y`v = yjw and x`v < xj+1
w and xwj < x`+1

v . Putting all these conditions together we
get that iv,`,w,j = 1 if and only if the horizontal segment ` of the path corresponding
to v intersects the horizontal segment j of the path corresponding to w. By using the
equivalent constraints for vertical segments, we obtain that iv,`,w,j = 1 if and only if the
vertical segment ` of the path corresponding to v intersects the vertical segment j of the
path corresponding to w. In the end it follows from (6.39) that the paths corresponding
to vertices which are adjacent intersect each other. Furthermore it follows from (6.40)
that there is no intersection between two vertical or between two horizontal segments of
paths, where there is no edge between the corresponding vertices. It follows that there
is no intersection at all since paths can only intersect each other if both segments are
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horizontal or both segments are vertical.

The advantage of (PBm
k ) over (EBm

k ) is, that the number of variables and constraints
is not influenced by the grid size, hence solving an instance on a bigger grid does not
make the MILP larger. Another advantage is, that (PBm

k ) can also be generalized for
the non monotonic case, like it is done in Chapter 7. A drawback of (PBm

k ) is, that
k is a crucial part in the modelling, hence with solving one MILP one can only decide
whether a given graph G is in Bm

k or not for one single k. Nevertheless it is possible to
determine the minimum k such that G is in Bm

k by solving at most dlog2(∆)e instances
of (PBm

k ) for different values of k. In order to do so, one has to perform a binary search
on the values {0, 1, . . . ,∆− 1} in order to find a k∗ such that G ∈ Bk∗ but G 6∈ Bk∗−1.
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In this chapter we want to present a MILP formulation of the problem, whether a given
graph G is in Bk for a fixed value of k.

7.1 Grid Point Based Formulation

The formulation we consider is a generalization of (PBm
k ) in Section 6.2. The basic idea

is still to introduce integer variables which represent the x- and y- coordinates of the
bend points of the paths corresponding to the vertices. However, it is more challenging
than in the monotonic case to find out, if two paths intersect or not. This is because we
can not assume anymore, that a bend point with a lower number of a path is to the left
of a bend point with higher number of that path. We first define the MILP (PBk).

Definition. Let G = (V,E) be a graph with vertex set V = {1, . . . , n} and let G be
a grid from the bottom left grid point (1, 1) to the top right grid point (mx,my). Let
L := {0, 1, . . . , k + 1} and furthermore L+ := {0, 1, . . . , k + 2}.

The meaning of the variables is, analogous to the meaning of the variables of the MILP
(PBm

k ), the following. If the first segment of the path corresponding to v is horizontal,
we let hv = 1, if it is vertical we let hv = 0. Then we assign consecutive numbers to
consecutive segments for every path. If the path starts horizontally, we assign 0 to the
first segment, if the path starts vertically, we assign 1 to the first segment and assign
0 to the segment which is just the grid point where segment 1 starts. Every assigned
number is at most k + 1 since every path has at most k + 1 segments. If a path does
not reach k + 1 in the numbering, that is it uses less than k + 1 segments or starts
horizontally, then we let the remaining segments all be just the grid point in which the
last segment ends. Then we let (x`v, y

`
v) be the coordinates of the grid point, at which

segment ` of the path corresponding to v starts for every 0 6 ` 6 k + 1. Furthermore,
we let (xk+2

v , yk+2
v ) be the grid point, in which segment k + 1 ends. Note, that if in the

path corresponding to v segment ` is just a grid point, then (x`v, y
`
v) = (x`+1

v , y`+1
v ). For

every v, w ∈ V with v < w and for every `, j ∈ L with ` ≡ j mod 2 we let iv,`,w,j = 1 if
segment ` of the path corresponding to v intersects segment j of the path corresponding
to w and iv,`,w,j = 0 otherwise. Furthermore, for every v, w ∈ V and for every `, j ∈ L,
where either v 6= w or v = w and j = `± 1, we let gxv,`,w,j = 1 if x`v > xjw and gxv,`,w,j = 0

otherwise. In the same way, we set gyv,`,w,j = 1 if y`v > yjw and gyv,`,w,j = 0 otherwise.
The grid point based MILP (PBk) is defined in the following way.

(PBk) s.t. x`v = x`+1
v ∀v ∈ V , ∀` ∈ L, ` ≡ 1 mod 2 (7.1)
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y`v = y`+1
v ∀v ∈ V , ∀` ∈ L, ` ≡ 0 mod 2 (7.2)

xk+2
v − xk+1

v 6 mx(1− hv) ∀v ∈ V (7.3)

xk+1
v − xk+2

v 6 mx(1− hv) ∀v ∈ V (7.4)

yk+2
v − yk+1

v 6 my(1− hv) ∀v ∈ V (7.5)

yk+1
v − yk+2

v 6 my(1− hv) ∀v ∈ V (7.6)

x1
v − x0

v 6 mxhv ∀v ∈ V (7.7)

x0
v − x1

v 6 mxhv ∀v ∈ V (7.8)

x`v − xjw > mx(g
x
v,`,w,j − 1) ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `± 1) (7.9)

x`v − xjw 6 mxg
x
v,`,w,j − 1 ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `± 1) (7.10)

y`v − yjw > my(g
y
v,`,w,j − 1) ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `± 1) (7.11)

y`v − yjw 6 myg
y
v,`,w,j − 1 ∀v, w ∈ V , ∀`, j ∈ L+,

v 6= w ∨ (v = w ∧ j = `± 1) (7.12)

3(1− iv,`,w,j) > (gxv,`,v,`+1 + gxv,`+1,v,` − 1) + (gxw,j,w,j+1 + gxw,j+1,w,j − 1)+

(2− gyv,`,w,j − g
y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.13)

4− iv,`,w,j > gxv,`,w,j + gxv,`,w,j+1 + gxv,`+1,w,j + gxv,`+1,w,j+1

∀v, w ∈ V , ∀`, j ∈ L, v < w, ` ≡ j ≡ 0 mod 2 (7.14)

4− iv,`,w,j > gxw,j,v,` + gxw,j,v,`+1 + gxw,j+1,v,` + gxw,j+1,v,`+1

∀v, w ∈ V , ∀`, j ∈ L, v < w, ` ≡ j ≡ 0 mod 2 (7.15)

2 + iv,`,w,j > gxv,`,w,j + (1− gxv,`,w,j+1) + (1− gxv,`,v,`+1)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.16)

2 + iv,`,w,j > gxw,j,v,` + (1− gxw,j,v,`+1) + (1− gxw,j,w,j+1)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.17)

2 + iv,`,w,j > gxv,`+1,w,j + (1− gxv,`+1,w,j+1) + (1− gxv,`+1,v,`)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.18)

2 + iv,`,w,j > gxw,j,v,`+1 + (1− gxw,j,v,`) + (1− gxw,j,w,j+1)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.19)
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2 + iv,`,w,j > gxv,`,w,j+1 + (1− gxv,`,w,j) + (1− gxv,`,v,`+1)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.20)

2 + iv,`,w,j > gxw,j+1,v,` + (1− gxw,j+1,v,`+1) + (1− gxw,j+1,w,j)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.21)

2 + iv,`,w,j > gxv,`+1,w,j+1 + (1− gxv,`+1,w,j) + (1− gxv,`+1,v,`)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.22)

2 + iv,`,w,j > gxw,j+1,v,`+1 + (1− gxw,j+1,v,`) + (1− gxw,j+1,w,j)−
(2− gyv,`,w,j − g

y
w,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 0 mod 2 (7.23)

3(1− iv,`,w,j) > (gyv,`,v,`+1 + gyv,`+1,v,` − 1) + (gyw,j,w,j+1 + gyw,j+1,w,j − 1)+

(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.24)

4− iv,`,w,j > gyv,`,w,j + gyv,`,w,j+1 + gyv,`+1,w,j + gyv,`+1,w,j+1

∀v, w ∈ V , ∀`, j ∈ L, v < w, ` ≡ j ≡ 1 mod 2 (7.25)

4− iv,`,w,j > gyw,j,v,` + gyw,j,v,`+1 + gyw,j+1,v,` + gyw,j+1,v,`+1

∀v, w ∈ V , ∀`, j ∈ L, v < w, ` ≡ j ≡ 1 mod 2 (7.26)

2 + iv,`,w,j > gyv,`,w,j + (1− gyv,`,w,j+1) + (1− gyv,`,v,`+1)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.27)

2 + iv,`,w,j > gyw,j,v,` + (1− gyw,j,v,`+1) + (1− gyw,j,w,j+1)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.28)

2 + iv,`,w,j > gyv,`+1,w,j + (1− gyv,`+1,w,j+1) + (1− gyv,`+1,v,`)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.29)

2 + iv,`,w,j > gyw,j,v,`+1 + (1− gyw,j,v,`) + (1− gyw,j,w,j+1)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.30)

2 + iv,`,w,j > gyv,`,w,j+1 + (1− gyv,`,w,j) + (1− gyv,`,v,`+1)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.31)
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2 + iv,`,w,j > gyw,j+1,v,` + (1− gyw,j+1,v,`+1) + (1− gyw,j+1,w,j)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.32)

2 + iv,`,w,j > gyv,`+1,w,j+1 + (1− gyv,`+1,w,j) + (1− gyv,`+1,v,`)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.33)

2 + iv,`,w,j > gyw,j+1,v,`+1 + (1− gyw,j+1,v,`) + (1− gyw,j+1,w,j)−
(2− gxv,`,w,j − gxw,j,v,`) ∀v, w ∈ V , ∀`, j ∈ L,

v < w, ` ≡ j ≡ 1 mod 2 (7.34)

1 6
∑
`,j∈L

`≡j mod 2

iv,`,w,j ∀(v, w) ∈ E (7.35)

0 >
∑
`,j∈L

`≡j mod 2

iv,`,w,j ∀v, w ∈ V , v < w, (v, w) /∈ E (7.36)

x`v ∈ {1, . . . ,mx} ∀v ∈ V , ∀` ∈ L+ (7.37)

y`v ∈ {1, . . . ,my} ∀v ∈ V , ∀` ∈ L+ (7.38)

hv ∈ {0, 1} ∀v ∈ V (7.39)

iv,`,w,j ∈ {0, 1} ∀v, w ∈ V , v < w, ∀`, j ∈ L, ` ≡ j mod 2 (7.40)

gxv,`,w,j ∈ {0, 1} ∀v, w ∈ V , ∀`, j ∈ L+, v 6= w ∨ (v = w ∧ j = `± 1) (7.41)

gyv,`,w,j ∈ {0, 1} ∀v, w ∈ V , ∀`, j ∈ L+, v 6= w ∨ (v = w ∧ j = `± 1) (7.42)

Note, that the MILP (PBk) has 2n(k + 3) integer variables and additional to that

(n2 − n)
(

1
2

⌈
(k+2)2

2

⌉
+ 2(k + 3)2

)
+ n(4k + 9) binary variables. Moreover, in total there

are (n2 − n)
(

4(k + 3)2 + 11
⌈

(k+2)2

2

⌉
+ 1

2

)
+ n(9k + 24) constraints.

It turns out, that the following holds for (PBk).

Theorem 7.1.1. Every feasible solution of (PBk) corresponds to a Bk-EPG represen-
tation of G on the grid G and vice versa.

Proof. The proof is very similar to the one of Theorem 6.2.1, especially the assignment
of the variables is done in just the same way in both directions.

We start by showing, that every Bk-EPG representation of G corresponds to a feasible
solution of (PBk). The assignment of numbers to the segments and bend points of the
paths, and also the assignment of the variables is done like in the MILP (PBm

k ). So
analogously to the proof of Theorem 6.2.1 it follows that the constraints (7.1) - (7.12)
and (7.35) - (7.42) are fulfilled. What is left to show is, that the constraints (7.13) -
(7.34) are true.

It is easy to see, that the right hand side of (7.13) does not impose a restriction if
iv,`,w,j = 0, because all 3 parenthesized expressions on the right hand side can be at most
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1. In the case that iv,`,w,j = 1 there is an intersection between segment ` of the path
corresponding to v and segment j of the path corresponding to w. Hence neither of the
both segments can be only a point, nor can the grid rows, in which the segments are,
be different. That means that all 3 parenthesized expressions are 0 and (7.13) is true.
Also (7.14) and (7.15) fulfilled, if iv,`,w,j = 0. If segment ` of the path corresponding to v
and segment j of the path corresponding to w intersect, it is not possible, that all 2 end
points of one of the segments lie to the right of all 2 end points of the other segment.
Hence both right hand sides of (7.14) and (7.15) are at most 3 if iv,`,w,j = 1 and hence the
two constrains are fulfilled also in this case. If we consider (7.16) - (7.23) it is obvious,
that the inequalities are always fulfilled if the right hand sides are at most 2. If a right
hand side is 3, then all 3 terms in the first line have to be 1 and (2−gyv,`,w,j−g

y
w,j,v,`) = 0.

The latter implies that y`v = yjw, hence segment ` of the path corresponding to v and
segment j of the path corresponding to w are in the same grid row. If we take for
example (7.16), that also implies that x`v > xjw, x`v < xj+1

w , and x`v < x`+1
v . In other

words xjw 6 x`v < xj+1
w and x`v < x`+1

v , hence the two corresponding segments intersect,
because both segments use the grid edge to the right at x`v. So also iv,`,w,j = 1 and the
inequality (7.16) holds. That the constraints (7.17) - (7.23) are fulfilled, can be shown in
just the same way. Also that the inequalities (7.24) - (7.34) hold is shown analogously.

Now we have seen, that every Bk-EPG representation corresponds to a feasible solution
of (PBk). What remains to show is, that every feasible solution corresponds to a Bk-
EPG representation. In order to prove this, we use the same construction of the paths
as in the proof of Theorem 6.2.1. Hence it follows in the same way, that every vertex is
represented as a path in the grid G with at most k bends from constraints (7.1) - (7.8)
and (7.37) - (7.42). Furthermore we know from (7.9) - (7.12) that gxv,`,w,j = 1 if and only

if x`v > xjw, and gyv,`,w,j = 1 if and only if y`v > yjw. What is left to show is, that two paths
intersect if and only if the corresponding vertices are adjacent in G.

Assume two vertices v and w are adjacent in G. Then it follows from (7.35) that there
are `∗ and j∗ such that iv,`∗,w,j∗ = 1. If both j∗ ≡ `∗ ≡ 0 mod 2 then it follows from
(7.13) that gxv,`∗,v,`∗+1+gxv,`∗+1,v,`∗−1 = 0 and hence segment `∗ of the path corresponding
to v is not only a point. Furthermore it follows that gxw,j∗,w,j∗+1 + gxw,j∗+1,w,j∗ − 1 = 0
so also segment j∗ of the path corresponding to w is not only a segment. Moreover
2− gyv,`∗,w,j∗ − g

y
w,j∗,v,`∗ = 0 has to hold, hence y`

∗
v = yj

∗
w . So the two segments are in the

same grid row. Moreover it follows from (7.14) and (7.15) that neither both end points
of segment `∗ of the path corresponding to v lie on the right side of both end points of
segment j∗ of the path corresponding to w nor vice versa. But that means, that the
both segments intersect. Hence also the paths intersect. The same follows from (7.24) -
(7.26) in the case j∗ ≡ `∗ ≡ 1 mod 2.

It remains to prove, that the corresponding paths do not intersect if two vertices v
and w are not adjacent in G. If the vertices do not share an edge in G, then it follows
from (7.36) that iv,`,w,j = 0 holds for every ` and j. Then for horizontal segments (7.16)
implies that 2−gyv,`,w,j−g

y
w,j,v,` = 1, hence the two corresponding segments are not on the

same gird row and hence do not intersect, or gxv,`,w,j = 0 or gxv,`,w,j+1 = 1 or gxv,`,v,`+1 = 1.

The latter are equivalent to x`v < xjw or x`v > xj+1
w or x`v > x`+1

v . This means, that it
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can not happen, that xjw 6 x`v < xj+1
w and x`v < x`+1

v hold. This implies, that is can not
happen that xjw < xj+1

w and xjv < xj+1
v and both paths share the grid edge going to the

right from xjv. In the same way (7.17) - (7.23) imply the same statement for different
configurations of the segments. Taking all the implications together, this implies that
two horizontal segments can not intersect. Analogously, (7.27) - (7.34) make sure, that
two vertical segments of the corresponding paths do not intersect. This implies, that
the paths do not intersect, because intersections can only occur on two segments, if both
are directed in the same way.

So we are able to solve a MILP in order to find out, whether a given graph G is in
Bk or not. If we want to determine the bend number of G, we can do that like the
determination of the monotonic bend number is done at the end of Section 6.2. So we
have to perform a binary search on {0, 1, 2, . . . ,∆− 1} in order to find the minimum k,
such that G is in Bk but not in Bk−1. This can be done by solving at most dlog2(∆)e
instances of (PBk) for different values of k.
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8 Conclusions and Open Problems

In this thesis we gave an overview of the existing results on edge intersection graphs of
paths on a grid. Furthermore we proved, that all outerplanar graphs are in Bm

2 and that
there is an outerplanar graph which is not in Bm

1 . Due to the fact, that it is known, that
all outerplanar graphs are in B2 and there is an outerplanar graph which is not in B1, this
means, that the bend number and the monotonic bend number of outerplanar graphs
coincide. It would be of interest to know, whether this is also true for planar graphs.
The first step into this direction would be to give an upper bound on the monotonic
bend number of planar graphs, because such a bound is not known yet.

Furthermore we gave an exact characterization which outerplanar triangulations and
cacti are in B0, Bm

1 , B1 and Bm
2 . It would be interesting to get such characterizations

for more subclasses of outerplanar graphs or even for all outerplanar graphs.
Then we derived an inequality that has to hold whenever a Km,n is in Bm

k . This
inequality imposes a strong restriction only for high values of k, that is close to 2m− 2.
It would be of interest to also derive another inequality for low values of k like it is done
in [26] for Bk.

We used the inequality to prove, that Bm
k $ Bk for k = 2, k = 5, and k > 7, which

answers an open question of [20] for almost all k. Of course it is a pressing question to
prove the statement also for the remaining cases k = 3, k = 4, and k = 6.

Another question of interest which is not answered yet is, whether Bm
k $ Bm

k+1. We
conjecture, that that is the case.

Additional to that we showed, that for every k > 6 there is a graph in Bk which is
not in Bm

2k−9. A natural question that arises is, whether also the converse is true, hence
whether there is a graph in Bm

2k−9 that is not in Bk.
We showed, that B1 ⊆ Bm

3 . It would be of interest to answer a more general question.
If b(G) and bm(G) denote the bend number and the monotonic bend number of a graph
respectively, is there a function f such that b(G) 6 f(bm(G)) for every graph G?

Finally we formulated the problem of whether a given graph is in Bk and Bm
k for a

fixed k as MILP. Here it would, especially in the case of Bk, be of interest whether there
is a formulation with fewer variables and constraints.
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