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Image-based Measurement of Relative Motions
between Railway Vehicle Carbodies

Abstract

The test and validation process of connecting components between railway vehicles com-
prises the determination of the performed relative motions between two adjacent car-
bodies during operation. Existing measurement systems have the drawback of being
extensive and time consuming regarding installation, measurement and analysis. This
thesis is concerned with the feasibility study and prototype development of a robust and
cost-efficient image-based measurement system, which is capable of tracking the relative
motions between railway vehicle carbodies.

First, the thesis defines the operational requirements of an image-based measurement
system. Then a suitable marker and an accompanying target design as well as a robust
tracking method are introduced. Further, two appropriate pose estimation algorithms
are determined and chosen for evaluation. Moreover, an adequate measurement setup
relating to the specified carbody motion model is developed and the corresponding pre-
requisites are described. At last, these considerations enable the definition an appropriate
optical imaging system.

The feasibility of the designed image-based measurement system is investigated by exten-
sive experiments conducted on a laboratory scale and using a full-scale test rig. Detailed
evaluation of the uncertainties is carried out which allows to derive important implica-
tions concerning the measurement setup. From the results, it is apparent that the pro-
posed system meets the specified requirements and is capable of measuring the relative
motions within the defined limits, but to a certain extent remains susceptible to inac-
curacies in the measurement setup and changing lighting conditions. Recommendations
for a specific pose estimation method and further enhancements to increase robustness
are given. The suitability of the system is finally verified in the course of a test ride on
board of a high-speed train.

The proposed image-based measurement system contributes a novel, genuine alternative
to conventional methods applied to the particular task of measuring the relative motions
between two railway vehicle carbodies. It perfectly fulfils the technical and economic
requirements.
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Kurzfassung

Zur Auslegung von verbindenden Komponenten zwischen Wagenkästen, werden in der
Entwicklung von Schienenfahrzeugen umfangreiche Tests und Prüfungen durchgeführt.
Im Zuge dieser Tests ist es auch erforderlich die Relativbewegungen zwischen zwei zusam-
menhängenden Wagenkästen zu ermitteln. Aktuell eingesetzte Messverfahren haben den
Nachteil, einerseits sehr zeit- und kostenaufwendig bei Installation und Inbetriebnahme,
sowie andererseits komplex in der Auswertung zu sein. Im Rahmen dieser Arbeit wird
deshalb die Realisierbarkeit eines bildgestützten Systems zur Messung von Relativbe-
wegungen zwischen Wagenkästen überprüft. Eine prototypische Umsetzung soll sowohl
die Eignung als auch die Robustheit und Wirtschaftlichkeit eines solchen Systems veri-
fizieren.

In dieser Arbeit werden zuerst die grundlegenden Anforderungen und Einsatzbedin-
gungen eines bildgestützten Messverfahrens festgelegt. Weiters werden eine geeignete
Messmarke samt einhergehender Anordnung auf einem planaren Zielobjekt und eine
zugehörige Trackingmethode vorgestellt, sowie zwei verschiedene Algorithmen zur Pos-
eschätzung präsentiert. Passend zu dem vorgegebenen Modell der Wagenkastenbewe-
gungen wird ein eigens entwickelter Messaufbau und die dafür notwendigen Vorausset-
zungen beschrieben. Aus diesen Erkenntnissen is abschließend ein adäquates optisches
Aufnahmesystem ableitbar.

Die Realisierung und Umsetzung des entwickelten Systems wird in verschiedenen Exper-
imenten, im Labor und auf einem Prüfstand, untersucht. Die ausführliche Evaluierung
der Messunsicherheiten erlaubt wichtige Rückschlüsse auf den Messaufbau. Aus den Re-
sultaten der Experimente ist schließlich ersichtlich, dass das präsentierte Verfahren in der
Lage ist, die gesuchten Relativbewegungen innerhalb der geforderten Genauigkeiten zu
messen. Bis zu einem gewissen Grad bleibt das Verfahren jedoch anfällig in Bezug auf Un-
genauigkeiten im Messaufbau sowie auf sich ändernde Lichtverhältnisse. Weiters werden
Empfehlungen zur Auswahl eines Algorithmus zur Poseschätzung sowie Verbesserungen
bezüglich der Robustheit erarbeitet. Die prinzipielle Eignung des entworfenen Systems
wird im Rahmen einer Messfahrt an Bord eines Hochgeschwindigkeitszuges nachgewiesen.

Das vorgestellte bildgestützte Verfahren zur Messung von Relativbewegungen zwischen
Wagenkästen stellt eine neuartige Alternative zu den konventionell eingesetzten Metho-
den dar, da es die gestellten Anforderungen hinsichtlich technischer Eignung und
Wirtschaftlichkeit bestens erfüllt.
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1. Introduction

1. Introduction

1.1. Motivation and Problem Statement

The subject of this thesis is settled in the domain of railway systems engineering par-
ticularly in the field of rolling stock and was conducted in close cooperation with the
Siemens AG Austria - Rail Systems Division1. As described in [29] almost every modern
railway train is composed of several railway vehicles (coaches or wagons). These vehicles
are connected by coupling-systems which transmit tensile and compressive forces. Fur-
thermore there are various other elements attached between these vehicles which transfer
energy, information and in the case of the corridor connections, allow the transition of
passengers and goods.

During operation the railway vehicles perform relative translational and rotational mo-
tions so that all connecting elements are subject to high dynamic loads. In order to
guarantee secure and fail-safe operation, these components are designed in a way that
all maximum displacements or loads stay within given limits defined by certain vehicle
specifications.

The design and precise dimensioning of such vehicles and its components is based on
extensive simulation and testing. The underlying models and assumptions, used in the
simulations, are validated by conducting tests and experiments. A part of this valida-
tion process is the measurement of relative motions between carbodies under real-life
conditions. The results of such measurements allow a much more precise estimation
of the motions and therefore a more accurate dimensioning of the connecting compo-
nents between the carbodies. Up to now the measurement of these motions relies on
measurements from conventional displacement-sensor systems (e.g. draw wire sensors)
which have the drawback of being extensive and time consuming regarding installation,
measurement and analysis.

Since the economic constraints of passenger and freight railway services are moving the
industry to facilitate the engineering of more cost-optimised products and methods,
an alternative solution to the established measurement system is required. In his work
von Flottwell [29] attempted to calculate such relative motions by using accelerometer

1http://www.siemens.com/rail-systems/

1
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data from carbodies (see Section 2). Despite various approaches, von Flottwell does not
succeed in his efforts, hence initially proposing the development of a measurement system
based on imagery-data.

The feasibility study and prototype development of such a robust and cost-efficient
image-based measurement system, which is capable of tracking the relative motions
between two adjacent railway vehicle carbodies is the main objective of this work. In
order to achieve this goal, it is necessary to define the operational requirements of an
image-based measurement system as well as to demonstrate and quantify its feasibility
in a real world scenario by means of a prototype implementation.

1.2. Railway Vehicle Carbody Motions

In common railway vehicles, four basic components are necessary for the simulation
of running behaviour and modelling motions between carbodies: Track, wheelsets, bogie
frame and the carbody itself. The assembly of the wheelsets and the bogie frame including
the primary and secondary suspension stages is commonly referred to as the bogie.
Usually two bogies are attached to one carbody. An example is shown in Figure 1.1.

Siemens Velaro D

Figure 1.1.: A section of a side view of a Siemens Velaro D serves as an example to identify
the main components of modern railway vehicles used in simulation: wheelsets and bogie frame
marked with red boxes (referred to as bogie), carbody (blue partitions), rails as parts of the track
(green line)

The causes of carbody motions are described in [45] and [29] as a combination of different
factors: On the one hand, the vehicle follows the elastic movements of the wheelsets and
the suspension as parts of the bogies. These movements are primarily affected by the
railway track geometry (e.g. tangent track, curves, transition curves, track cant). In [45]
this effect is called snaking mode. Due to the rather large curve radii, the occurring
frequencies are specified to be smaller than 2 Hz.

On the other hand, the interaction between the rails and the wheelsets causes an oscil-
lating movement called wheelset hunting [63]. According to [29] this movement stabilises
itself in the character of a damped sinusoidal oscillation with frequencies in the range of
6 to 8 Hz.
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Furthermore, [29] states that the sinusoidal oscillation of the bogie is affected by ir-
regularities of the track. Track irregularities can be classified into five categories: track
gauge, vertical, cross level, lateral and twist irregularities [47]. Additionally, they entail a
considerable wear and therefore a polygonisation (out-of-roundness) of the wheels. The
track irregularities as well as the occuring polygonisation cause distortions in the rolling
motions of the wheels, which induces heavy dynamic loads on the bogie. Before acting
on the carbody these dynamic accelerations are damped by the primary and secondary
suspension units of the bogies. The accelerations transmitted to the carbody are crucial
in terms of riding comfort and are specified to be higher than 10 Hz.

In [29], it is concluded that the relevant frequencies concerning the evaluation of relative
motions between carbodies lie within the range of 0 to 10 Hz. The highest amplitudes
are expected to be in the range from 0 to 2 Hz.

Despite the influences acting on each single vehicle, the relative motions between two
carbodies are closely related to the positioning of the vehicles towards each other. This
positioning is in turn dependent on the present track geometry as well. Figure 1.2 is
adapted from [29] and gives an overview of possible railway vehicle arrangements and
their coinciding relative motions affected by the track geometry.

(a) tangent track

(b) s-curve

(c) transition curve

Figure 1.2.: (a), (b) and (c) show typical railway track configurations. Railway vehicle arrange-
ments and therefore relative motions between carbodies are mostly dependent on track geometry.
Black rectangles symbolise the single railway vehicles whereas the solid blue line denotes the cen-
terline of the railway track. The black dashed line represents the centerline of the vehicles while
the arrows indicate the direction of the relative motions. (adapted from [29])
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As described by Hanneforth and Fischer [35], railway vehicle carbodies perform trans-
lational and rotational oscillations. These are classified into six fundamental oscillations
(for- and aft oscillation, lateral oscillation, bouncing, pitching, rolling, nosing). However,
since the displacement excitations are induced outside the centre of gravity of the car-
bodies, the fundamental oscillations mostly occur as coupled oscillations (e.g. hunting,
swaying, galloping).
A three-dimensional, right-handed Cartesian coordinate system (see Figure 1.3) is used
in order to characterize the dynamic behaviour of carbodies with six degrees of free-
dom (6-DoF). The following list denotes the occurring relative linear and angular
displacements between two carbodies and defines the corresponding coordinate sys-
tem commonly used in railway systems engineering. Furthermore, the maximum relative
displacements as specified in [42] (see Appendix A) are given:

• Translation along longitudinal axis
– x-axis / in driving direction
– relative max. displacement2: +60/-70 mm

• Translation along lateral axis
– y-axis / perpendicular to driving direction
– relative max. displacement: ±900 mm

• Translation along vertical axis
– z-axis / vertical to the driving direction
– relative max. displacement: ±350 mm

• Rotation about longitudinal axis
– roll (φ)
– relative max. displacement: ±5 ◦

• Rotation about lateral axis
– pitch (θ)
– relative max. displacement: ±4 ◦

• Rotation about vertical axis
– yaw (ψ)
– relative max. displacement: ±15 ◦

CBX

Z

Y

(a) (b)

Figure 1.3.: The coordinate system as commonly used in railway systems engineering. (a) in-
dicates the carbody structure as a semi-transparent cuboid with the origin of the coordinate
system for measuring the relative motions located at the carbody ending. The light-grey polygon
indicates the carbody ground floor. (b) close-up view on the defined coordinate system with the
individual rotations denoted explicitly.

2value specifically for Siemens Velaro D (SAP-PLM: A6Z00001260505 002)
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1.3. Requirements, Constraints and Limitations

The following requirements and constraints arising from the problem definition were
defined in [42] (see Appendix A) and are considered throughout this work:

R(a) Accuracy of measurements
The accuracies which the system is required to meet are specified with a maximum
error of ±10 mm and ±0.6 ◦ in the spatial domain by using a minimum sample
frequency of 25 Hz in the time domain.

R(b) The carbody is considered as a rigid body
Regarding the given task a carbody can be considered as a permanently rigid body.
This means that all twisting and bending deformations [64] within the structure
of a carbody itself are assumed to be very small and therefore can be neglected.

R(c) Measurements are performed inside the carbody
Although it is possible to conceive a system installed on the outside, it is required
that the measurements are conducted within the carbody. This is mainly owed to
the fact that most modifications to the exterior of railway vehicles require addi-
tional approval by responsible authorities. However, designing the measurement
system to be installed within the carbodies, has the advantage of better control-
lable environmental conditions (lighting, climate, etc.) as well as the permanent
physical accessibility.

R(d) Measurements are feasible during passenger service
The measurement system has to be designed in a way that the system is operational
regarding on-board passengers (mostly technicians during test rides). This limits
the system to utilize only non-hazardous techniques and for example excludes the
implementation of laser-ranging technology or the application of strong infrared
(IR) radiation.

R(e) Applicable for different types of railway vehicles (portability)
The system should be designed so that it is generically applicable to all different
kinds of railway vehicles with the only precondition being that there exists (at
least partially) unobstructed visibility3 from inside one carbody to the other. This
requirement also implies that the system needs to be portable from one measuring
point to another (intra- and inter-train).

3e.g. in the presence of a gangway connection, the doors stay open during measurement
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R(f) Limitations in resources, operation and evaluation efforts
Considering the already mentioned cost-optimisation, the system is also required
to make subtle use of its resources in terms of equipment and working hours. A
design has to be chosen which facilitates a short installation, set-up and evaluation
time, retaining the specified portability (R(e)) and reducing working hours.

R(g) Real-time capabilities are desirable but not necessary
Basically, it is not required that the system is capable of computing the relative
motions in real-time. With respect to requirement R(f), the applied algorithms
should be as computationally efficient (computation time, memory and persistent
storage) as possible. Finding an optimal balance between speed and accuracy is
required.

6
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1.4. Basic Setup and Measurement

In order to optically measure the relative motions between railway vehicle carbodies, the
following basic measurement setup is proposed:

• The imaging device and the tracked feature points are installed inside (R(c)) two
separate but directly consecutive railway vehicles, in such a way that the imaging
device located in one of the vehicles is able to track existing features within the
other.

• Due to the elongated appearance of railway vehicles and the narrow corridor con-
nections between them, it is furthermore necessary to place the imaging device at
the very end of one vehicle. This enlarges the imaging device’s field of view (FOV)
within the tracked vehicle, therefore maximising the visibility of the feature points.

A schematic illustration is shown in Figure 1.4.

Figure 1.4.: A section of a plan view of a Siemens Velaro D illustrates the proposed basic mea-
surement setup. The imaging device is placed at the very end of one railway vehicle (blue dot)
maximising its field of view (red region) within the other, enabling the system to calculate the
relative motions.

This proposed basic setup ensures that the system is able to calculate the required
relative motions. A thorough model will be introduced in Section 3.4.1.

7
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1.5. Outline of the Thesis

This thesis is organized as follows:

Chapter 2 gives an overview of state of the art techniques for measuring rigid body
motions, as well as discussing the previous work done by von Flottwell in [29]. Since
motion can be described as a change in position and orientation over time, the term
pose estimation is introduced. Furthermore, the advantages of an image-based measure-
ment system are discussed.

Chapter 3 presents all image-processing steps needed in order to measure rigid body mo-
tions from imagery data. First, an in-depth description of the essential marker tracking
process is given and the final choice for a special type of marker as well as a suitable
target design is explained. Second, different types of image-based pose estimation meth-
ods and associated theory are discussed. The two algorithms chosen for evaluation are
reviewed in detail. Finally, a model which relates the pose estimation methods and the
relative motions between railway vehicle carbodies is designed.

Chapter 4 describes a suitable image acquisition system in detail, by first defining the
necessary requirements and then introducing an applicable approach to geometric camera
calibration. Furthermore, the utilised implementation of a suitable camera calibration
procedure is presented accompanied by detailed instructions for camera calibration in
practice.

Chapter 5 presents the different experiments conducted in the laboratory and on the
test rig in order to evaluate the developed measurement system. The obtained results are
discussed, with respect to the achieved measurement uncertainty of the applied methods,
in order to demonstrate the system’s capabilities, as well as its possible limitations.
Furthermore, details about an optimal target design applying a sufficient number of
fiducials are examined. Finally, the results of the test ride on an operational high-speed
train are presented.

Chapter 6 summarises the presented work and emphasizes the findings and their signifi-
cance. Additionally, possible improvements and optimizations of the presented approach
are discussed. Finally, a best practice method containing comprehensive recommenda-
tions for real world operation is derived.

8
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This chapter surveys previous work and presents various related approaches and tech-
niques in the field of (rigid body) pose estimation. The term pose estimation4 is fre-
quently used within the field of computer vision. It is defined as the task to specify
the position and the orientation of an observed object with respect to a given
coordinate system. The process of tracking the pose of a rigid object over time is also
referred to as 3D tracking [53] and can be considered as equivalent to measuring the
motion of an object.

Within the scientific community, the term relating to pose estimation changes with the
scope of application. For example, in the field of mechanics the process of estimating
the position and orientation of an end-effector is called forward kinematics [20], whereas
in the domain of wireless sensor networks it is commonly referred to as localization and
orientation [67].

In general, the various existing approaches for estimating the position and orientation
can be distinguished by the applied underlying sensor technology and the corresponding
field of application. The most basic types are: magnetic systems, mechanical systems,
wireless systems based on radio frequency and optical systems using imagery data. Of
course, hybrid solutions exist as well. An overview and discussion about the particular
benefits and drawbacks of the individual approaches is given below.

Before examining the different approaches according to sensor type, a short review of
the previous work done in [29] is presented, since this present thesis is building on top
of it. In [29], von Flottwell initially defined the problem statement and proposed an
image-based measurement approach which now is the research topic of this thesis.

Pose Estimation from Accelerometer Data

In a first attempt, von Flottwell [29] investigates the possibilities to calculate the relative
motions between two carbodies solely from accelerometer data. In a second attempt also
the angular velocity measured by a gyroscope is taken into consideration. The chosen
approach is obvious from the fact that the accelerometer and gyroscope data from within

4also: 6-DoF pose estimation, 2D-3D pose estimation, camera pose estimation or space resectioning
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the carbodies is readily available since it is recorded in the course of riding comfort
evaluations.

The underlying theoretical model and corresponding algorithm of a gyroscope-free in-
ertial navigation system (INS) are described in [87]. For a feasible configuration of six
accelerometer sensors it is proven that “one can compute the linear and angular mo-
tions”.

Despite the extensive efforts undertaken, in the end the attempts in [29] do not succeed
as a result of several severe problems. The most serious of them being that the double
integration of acceleration data to estimate motion is very inaccurate due to the implicit
integration drift inherent with sensor noise and bias. Other problems are missing ac-
celeration data for specific axes (since the accelerometers were only installed for riding
comfort evaluations) or the unknown cant of the track which affects the measurement
of the angular velocity.

The approach’s virtual lack of success is the reason why the development of an image-
based measurement system is motivated.

Pose Estimation from Electromagnetic systems

In electromagnetic systems, the observed object is tagged by one or more passive anten-
nas. The systems are able to calculate the position and the orientation by analysing the
relative magnetic flux between three orthogonal antennas, on both the transmitter and
each receiver. In general, these systems are suitable for pose estimation or putting it in
the words of [41]:

“Electromagnetic sensing is the position-tracking technology behind [...] the products that
support virtual reality and motion capture for computer animation.”

An in depth description of such a system can be found in [70]. Although commercially
available systems such as MotionStar Wireless 2 reach a high degree of accuracy (15 mm
RMSE and 1 ◦ RMSE at 3 m range as specified in [19]), the motion estimation systems,
based on electromagnetism, suffer from great drawbacks. The main disadvantage is that
the measuring accuracy is strongly affected by nearby metallic objects. The limited range
also appears to be a major drawback. Since the main parts of railway vehicles are made
up of steel, these kind of systems do not seem to be applicable for measuring motions
inside railway vehicles.

10
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Pose Estimation from Mechanical systems

In the field of mechanical engineering the classical approach of pose estimation for the
end-effector of a robot is to calculate the so-called forward kinematics from the specified
values of the manipulators. For example the platform with six degrees of freedom (called
Stewart/Gough-Platform) described in [84] was originally designed for flight simulators.
The pose of the platform is controlled by and calculated from the given lengths of all six
legs installed.

Another example is the hydraulic bogie test rig designed in [68]. A specialised six-cylinder
layout is used to apply dynamic loads onto a bogie and thus simulating different rid-
ing conditions. Since a real-world instance of this test rig was used for experimental
evaluations, a thorough description is given in Chapter 5.4.

The error estimations presented in [68] lead to the conclusion that the pose estimation of
such a mechanical system can be calculated very accurately (±3 mm and ±2 ◦). A stan-
dard procedure for measuring the motions between carbodies using a mechanic system
is the installation of a displacement-sensor system consisting of a set of string poten-
tiometers and calculating its forward kinematics. The fundamentals of such a system are
described in [4]. However, the compulsory needs of a power-supply, control-devices for
synchronisation and data recording, as well as the extensive assembly work for sensor
installation and validation have to be taken into consideration.

Pose Estimation from Wireless systems

For the position estimation of a target node within a wireless sensor network, the signal
parameters emitted by the network nodes are evaluated. The most common algorithms
rely on one or more of the following methods: angle-of-arrival (AOA), time-of-arrival
(TOA) and radio-signal-strength (RSS) [31]. Most of the approaches published solely
focus on estimating the exact position of a target node. The question of the orientation
of a node is often neglected. But there are methods as the one described in [67] which
propose an enhanced “localization and orientation scheme”.

Regarding the achieved accuracy (±220 mm and ±8 ◦ with 5 beacons at 0.024 nodes/m2)
by using AOA, the presented wireless system of [67] does not seem to be sufficient
regarding the necessary measuring accuracy (see requirement R(a)).
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Vision Based Pose Estimation

In a survey by Lepetit and Fua [53], the benefits of image-based pose estimation in
contrast to the other technologies mentioned are described as that:

“Vision has the potential to yield non-invasive, accurate and low-cost solutions to this
problem, provided that one is willing to invest the effort required to develop sufficiently
robust algorithms.”

Originating from the field of photogrammetry, numerous approaches, methods and algo-
rithms have been developed over the years. Therefore, pose estimation is arguably among
the most extensively studied topics in computer vision. It is applied in a vast variety
of tasks in different domains like robotics and visual servoing [90, 13], navigation [62],
space flight [49], medical surgery [24] and augmented reality [1].

A closer examination of projects with a comparable type of problem definition, reveals
that image-based systems are able to reach a very high measurement accuracy. The
system described by Kelsey et al. [49] tries to determine the relative pose of spacecraft
during proximity operations. The presented Model-Based Pose Refinement Algorithm
was tested using a stereo camera setup. The achieved accuracy, at a range up to 1.5 m,
was ±4.3 mm and ±0.86 ◦.

Another work, with a related task, is presented by Manz et al. in [57]. It aims to track
the leading vehicle out of a moving vehicle within a convoy and determine its relative 6-
DoF pose. The prior knowledge of the vehicle’s geometric shape and appearance is fused
with a dynamic vehicle model using particle filtering. The presented algorithm reaches
an accuracy of approximately 500 mm RMSE and 1.74 ◦ RMSE deviation from the
ground-truth (up to 35 m distance) measured by RTK-DGPS5. These results are quite
remarkable considering the harsh environmental conditions (complex lighting conditions,
partial occlusions) the algorithm has to deal with.

Commercially available systems like the AICON3d - MoveInspect WheelWatch claim to
reach a measurement accuracy of up to ±0.1 mm and ±0.015 ◦ at 0.5 m distance from
the object [32]. The system measures a car wheel’s 6-DoF movement using a special
carbon fibre wheel adapter as an optical target.

Concerning the present thesis, the major challenges that need to be addressed are the
highly dynamic environment considering the variable lighting conditions and the fast
motions during train ride. Also the limited spatial capacities (inside railway vehicle),
the large displacements and the considerably long distance between the imaging device
and the feature points are difficulties that need to be solved.

5Real time kinematic - Differential GPS
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There exist manifold approaches how pose estimation is realised using image-based mea-
surement. The choice mainly depends on the target application. A short discourse on
the different possibilities and rationales for the final chosen approach is given below:

• Single view vs. stereo view
Basically, as described in [7], the application of a stereo-based approach for pose
estimation can be regarded as “more robust and more accurate” compared to a
monocular-vision system. A major benefit of a stereo vision system is that the
camera and scene geometry can be directly computed from image point correspon-
dences only (see [37] Part II). For single view systems, this is not possible without
additional information.

Although several other pose estimation systems such as the already mentioned
methods [49, 32] utilize a stereo-setup, this kind of approach is according to Lep-
etit and Fua [53] considered “less popular” because it suffers from a number of
drawbacks. First, when applying a stereo-based approach for image-based mea-
surement, an elaborate calibration is required. Second, the time-synchronisation
between the multiple views is compulsory. If unsynchronised, the different views
would not readily represent the same points in space at the same moments of
time. Furthermore, the computational overhead produced by the process of robust
feature matching has to be considered. Altogether, the application of a stereo-rig
would inevitably lead to an increase in installation and evaluation efforts conflicting
with the specified requirements (see R(f), R(e)).

Since state of the art pose estimation methods based on single view geometry
like [54, 52, 48, 76] apparently provide sufficient accuracy with respect to the
given problem statement, the proposed measurement system within this thesis is
restricted to monocular view.
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• Model-based vs. non-model-based
In the context of image-based measurement, it seems much more appropriate to
apply a model-based pose estimation approach, which makes use of a priori infor-
mation like object geometry, shape and texture. Non-model-based approaches such
as optical flow [80] or structure from motion [22], basically do not maintain a geo-
metrical model of the tracked object. A model-based approach is clearly favoured
since within railway vehicles sufficient a priori information is available or can be
explicitly installed prior to the measurements, leading to increased accuracy when
compared to non-model based techniques.

• Markerless vs. marker-based
Model based pose estimation is based on datasets of 2D-3D correspondences. The
feature of an object in 3D is matched to its 2D correspondence in the acquired
image. Since, within markerless pose estimation methods, the correspondence gen-
eration is realised automatically, using feature detectors like DoG/SIFT [56] or
MSER [59], there also occur a certain amount of outliers (i.e. false matches). These
outliers have to be removed from the correspondence datasets (e.g. by applying a
RANSAC-Scheme [28]) because of their huge impact on the quality of measure-
ments.

According to Lepetit and Fua [53] the advantages of pose estimation based on spe-
cial markers (also called fiducials) are that:
“[markers] constitute image features easy to extract, and they provide reliable, easy
to exploit measurements for the pose estimation” and furthermore conclude that:
“practical vision-based 3D tracking systems still rely on fiducials because this re-
mains the only approach that is sufficiently fast, robust, and accurate.”

In order to address the outlier problem and to ensure that the correspondence
generation from image features provides a maximum of measurement accuracy,
it is clearly favoured to utilise a marker-based tracking method using designated
fiducial markers.

Summarizing the above, the decision is derived that a single-view, model-based pose
estimation approach using fiducial markers is the method of choice. In literature,
there exist a variety of approaches, like [2, 48, 43] applying the same pose estimation
scheme.

This results in the overall processing pipeline for pose estimation and system overview
presented below.
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3.1. System Overview

The vision-based system for measuring the relative motions between carbodies is com-
posed of five main components (see Figure 3.1): First, the camera is rigidly attached to
the carbody in the back (CB_01), the fiducial markers are mounted in suitable locations
of the carbody in front (CB_02) and the arrangement of the railway vehicles has to be in
an initial state. The internal parameters of the camera need to be known (calibration).
Second, the train is put into operation and a continuous stream of images is acquired.
Third, the mounted fiducials are tracked throughout the image stream, storing their
corresponding image locations. Fourth, from the generated 2D-3D correspondences the
pose of CB_02 is estimated relative to the camera in CB_01 on a per-frame basis. Fifth,
this finally enables the system to calculate the sought-after relative motions from the
continuous pose estimates.

Figure 3.1.: Illustration of the five-step processing pipeline for measuring the relative motions
between railway vehicle carbodies.

In such a pose estimation scheme, the selection of a type of fiducial marker which meets
the specified requirements as well as the choice for a suitable tracking method are of
utmost importance. The next section presents the different possibilities regarding the
choice of fiducial markers as well as corresponding suitable tracking methods.
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3.2. Marker Tracking

At the beginning of the development of a marker-based tracking system, two important
questions arise: First, a suitable type of a marker that meets the requirements provided
has to be chosen. Second, a robust tracking algorithm precisely adapted to the proposed
type of marker, the environmental conditions, speed and accuracy has to be defined.
The following sections provide an overview of the possibilities and explain the decisions
reached within the process of marker selection and the finding of an appropriate tracking
algorithm. Then a discussion is presented on the influence of perspective distortion on
the measurement accuracy with respect to the chosen fiducial marker. Finally, in-depth
implementation details are given.

3.2.1. Fiducial Markers

In contrast to natural landmarks, the primary purpose of fiducial markers6 is to provide
reliable, robust and accurate retrieval of known real-world positions within 2D image
data. Since the fiducial markers are mounted within their environment in such a way
that their exact 3D positions are known up to a certain accuracy, they provide a set of
2D-3D correspondences defined as {xi ↔ Xi}.

In order to support robust and accurate retrieval from the image data, the chosen type
of marker requires to provide a maximum of tolerance with respect to changing lighting
conditions and partial occlusions. Furthermore, it should be taken into consideration
that the occurring effects of perspective distortion due to the expected translations and
rotations of the carbodies influence the measurement accuracy.

As opposed to many augmented reality (AR) applications, where the detection of mark-
ers in natural environments (e.g. Claus and Fitzgibbon [16], Kato et al. [48]) is a major
issue, it is not taken into consideration for the given problem statement. It is sufficient to
assume that the positions of the markers in the initial image of a sequence are previously
known or labelled manually at the beginning of the measurement.

The feature of incorporating an individual tracking-code or payload (e.g. described
in [48]) into the markers is not required within this work. Although this feature is
important to AR-applications, to make the markers distinguishable, there is no risk of
inter-marker confusion, since the identification of the fiducials is simply achieved through
the a-priori known spatial relationships.

Furthermore, the following discussion mainly focuses on the application of so-called 2D
passive markers which do not actively emit light and are, in general, distinguished by

6also called fiducials or artificial landmarks
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their geometric shape. The advantage of passive markers is that they can be easily manu-
factured using standard consumer printers which is in good accordance with requirements
R(e) and R(f). In contrast, active markers mostly make use of coloured or IR LEDs and
require a much more elaborate manufacturing including electronic circuitry and bat-
teries. In first place, this additional effort does not seem to be necessary. Section 5.7
includes a brief discussion about possible enhancements to the tracking system.

In recent works containing comparative studies [53, 26, 65, 72, 75], a variety of fiducial
markers is presented. Basically, the markers can be classified into two main categories
based on their main geometric appearance: square and circular fiducials. Figure 3.2
presents an overview of popular fiducial markers.

(a) AR Toolkit (b) ARTag (c) Intersense (d) Fourier Tag (e) Rune Tag

Figure 3.2.: Examples of different fiducial markers which primarily differ in their geomet-
ric appearance. Square: (a) AR Toolkit [48], (b) ARTag [26]; Circular: (c) InterSense [60],
(d) Fourier Tag [91]; Special: (e) Rune Tag [8] consists of a circular set of sizeable dots. No-
tice the different approaches of assigning an individual code or payload to each marker. This
common feature is not required within this work.

Since all the fiducial markers introduced in Figure 3.2 are designed as black and white
patterns (including Fourier Tag (3.2d) assuming 1-bit payload encoded as either black
or white), they are represented with a maximum contrast within the image data. This
design contributes to robust segmentation results even under varying lighting conditions.
The use of colour information, as for example proposed by Cho and Neumann in [15], is
disregarded since it would exclude the utilisation of a monochrome imaging device from
the outset.

An advantage of squared fiducials is that one can retrieve four feature points from solely
one single marker, which (as discussed later in Section 3.3.5) is sufficient to compute
the exact pose. The general pose estimation approach for square markers as proposed
by [48, 26], is to first determine the image location of the marker. This is done by
extracting the edge boundaries and exploiting the fact that under perspective projection
a square yields a quadrilateral. Finally, the four vertices or corners are determined from
the intersection of the edges and thereby the pose of the square target can be computed.
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When applying squared fiducials in image-based measurement systems, it is important
to note an effect, denoted by Fiala [27] as so-called vertex jitter, which is described as
“the noise in the marker corner positions”. In his thesis, Brandner [12] explains this
issue by the fact that “some or all of the [corner] detectors introduce a systematic bias
to the estimation result” moreover concluding that “it is not possible to determine the
true corner location [...]”.

Compared to this drawback, various sources recommend the application of cicular fidu-
cials when focusing on the accuracy of measurements. Again, Brandner [12] states that
“circular blob features are widely used in computer vision for applications that require
robust and accurate determination of point positions in 3D space”. In their survey, Lep-
etit and Fua [53] also endorse the application of circular feature points mentioning that
“most of the professional solutions use circular or spherical fiducials [...]”. Furthermore,
for example, Heikkilä [39], Li et al. [55] and Abad et al. [3] propose camera calibration
approaches based on circular fiducials.

Circular fiducials are preferred because their basic features remain invariant in the case
of translations and the roll-rotation. Their centroid can be recovered with sub-pixel ac-
curacy by assuming that the centroid of the projected ellipse coincides with the true
centre of the circular target. This assumption is proven wrong in the case of general
perspective projection. In [12], an in-depth description of this effect is given, basically
stating that “blob features introduce a systematic bias when being mapped under per-
spective distortion”, nevertheless confirming that there exist possibilities to correct this
effect. However, the discussion in Section 3.2.4 reveals that for a small relative target
size and a limited range of rotation angles, this bias becomes negligibly small.

When aiming at the design of a highly accurate pose estimation system, it is clearly
essential to obtain bias free data and best precision from 2D-3D correspondence point
recovery. This is why the utilisation of circular fiducials is clearly favoured over squared
markers. Summarizing the findings from above, it is proposed to apply a 2D, passive,
high-contrast, circular marker for straightforward production and easy handling as
well as enabling a high degree of accuracy.

The 2D circular fiducials presented in Figure 3.2, InterSense and Fourier Tag, inte-
grate coding schemes for unique inter-marker recognition which is not essential for this
work. Therefore it is recommended to employ a circular marker introduced by Gatrell
et al. [30] called Concentric Contrasting Circle (CCC). An example of a CCC is given
in Figure 3.3.
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Figure 3.3.: Example of a Concentric Contrasting Circle (CCC) taken from the original work by
Gatrell et al. [30]. A CCC is formed by a black ring on white background. The ratio of the radii
between the outer and the inner circle is defined with router

rinner
= 2

1

The application of a CCC fiducal marker brings the following advantages:

• Robustness and accuracy
The general appearance of a CCC promises a stable and highly discriminable rep-
resentation of the marker against the background. Furthermore, the application
of two coinciding circular features provides a high degree of accuracy. Moreover,
for CCCs there exist methods to recover the true centroid under general per-
spective distortion. Different suitable methods for centroid retrieval are presented
in [51], [39] and [3].

• Easy production and handling
The CCCs can easily be fabricated in large numbers using standard vector graphic
tools and consumer printers. Varying the size is nearly effortless.

• Robust against partial occlusions
As shown in [50], if necessary the centres of a CCC can be retrieved even under
partial occlusion up to 50%.

• Detection strategies exist
Although not directly demanded, there exist robust detection strategies for CCCs
as demonstrated in [46]. This would facilitate an auto-setup procedure without
manual initialisation of the tracking system.

A drawback in the application of CCCs still remains: One CCC fiducial can only provide
one 2D-3D correspondence. It is essentially necessary to mount multiple markers in the
scene. How this is implemented in the best possible way is discussed in the next section.
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3.2.2. Target Design

Multiple markers are mounted in the scene in order to provide a sufficiently large set
of 2D-3D correspondences. Feasible solutions are presented, for example in the works
by Claus and Fitzgibbon [16] and Hoff et al. [44]. They recommend to arrange multiple
markers on a planar surface to form one target. The method of acquiring multiple 2D-3D
correspondences from one planar target with multiple (square or circular) fiducials, is
also commonly used for camera calibration (see [93, 88, 10]).

This approach has the advantage of greatly simplifying the installation and setup process.
As already discussed for a model-based pose estimation system, it is crucial that the
positions of the fiducials in the world reference are known prior to the measurements.
Instead of mounting single CCC markers in the scene and determining the exact world-
positions one by one, it is far more accurate and much faster to apply several markers
onto one target. Since the alignment of the markers on the target is predefined, only
the position of the multi-fiducial target has to be determined during the installation
process.

Applicable designs of multi-fiducial targets are illustrated in Figure 3.4. The design
consists either of five or seven CCCs arranged in a regular pattern. The 5-CCC target
is similar to the design proposed in [16]. However, instead of using four dots arranged in
a square with a unique code in the centre, it is composed of five CCCs which resembles
the common die face. In addition, the 7-CCC target was designed to make full use of the
amount of space offered by standardised ISO A-series paper size (aspect ratio of 1 :

√
2)

and to provide extra markers at approximately the same inter-marker distance.

(a) 5-CCC (b) 7-CCC

Figure 3.4.: Illustration of two designs of multi-fiducial targets. (a) 5-CCC: uses five CCCs ar-
ranged in an equally distributed pattern (b) 7-CCC: taking advantage of the full amount of space
provided by ISO A-series paper sizes by expanding and adding two extra markers.
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3.2.3. Tracking Method

In general, 2D tracking aims at determining the exact position of a moving object within
continuous image data (video sequences). In their survey, Yilmaz et al. [92] list various
approaches for tracking rigid and non-rigid objects in 2D images. The approaches are
distinguished by the general representation of an object’s position in the image, which for
example relies on: points, primitive geometric shapes, silhouette and contour, templates,
skeletal models or active appearance models.

When searching for most accurate 2D-3D correspondences, one is always interested in a
point representation of the tracked object, in this case the centroid of the CCC fiducial
marker. In the context of camera calibration, Heikkilä [38] proposes two methods for
centroid estimation: ellipse-fitting and centre of gravity (CoG) calculation. He finds that,
generally iterative ellipse-fitting procedures reach a higher degree of accuracy than CoG
estimation. This is truly important in the sense of camera calibration, but the difference
in terms of subpixel accuracy only impacts on the second decimal place [38, p. 101].
This rather small gain in measurement accuracy does not account for the much more
elaborate and computationally intensive ellipse fitting algorithms.

In their work about accurate fiducial registration, Bose and Amir [9] denote the CoG
calculation approach as centroid method. They argue that the benefits of the centroid
method are its simple implementation, the subpixel accuracy provided and the fast
execution time. According to van Assen et al. [5], in an input image I, the CoG ĉ over
a search window S is calculated by:

ĉ =


∑

x,y∈S
xI(x, y)∑

x,y∈S
I(x, y) ,

∑
x,y∈S

yI(x, y)∑
x,y∈S

I(x, y)

 (3.1)

with I(x, y) denoting the grey-level at the corresponding image pixel.

This centroid calculation approach is identical to the one described by Cheng [14] in his
well known revision of the mean shift algorithm (using a unit kernel), from which nu-
merous robust real-time tracking algorithms like [17, 11] were derived. For example, the
Continuously Adaptive Mean Shift (CAMSHIFT) procedure introduced by Bradski [11]
was originally designed to track the movements of faces. The implications of these con-
siderations justify the application of the CoG as a robust and accurate estimate for the
centroid of circular fiducials.

The opportunity to apply the proven CoG calculation also reveals another advantage of
a marker based tracking system: In combination with the limited displacements of the
carbody motions (specified in Section 1.2), the marker based approach greatly supports
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the accuracy and robustness as well as accelerates the task of the tracking algorithm.
This is substantiated by the fact that, if mounted in a suitable way, the specifically
chosen markers are not expected to greatly change in size and appearance during the
test ride, which facilitates continuous CoG calculation. Recursive procedures and update
strategies, as proposed by other tracking algorithms (e.g. CAMSHIFT), are assumed to
be unnecessary.

These reduced demands on a suitable tracking solution allow the application of a low-
level but fast and accurate approach. On the basis of the tracking methods described for
the InterSense marker [60] and the CCC fiducial [30], the following tracking method is
proposed:

Given an image sequence {It | t = 0, . . . , N−1}, repeat the following procedure for every
element of the set of fiducial points {Xi | i = 0, . . . ,K−1} in the scene (implementation
details are described in Section 3.2.5):

1. Initialisation
In image I0, assign a rectangular search window S0,i centred at a seed point s0,i,
for fiducial Xi which is extracted from image I0. The only condition being that
the full CCC is located within the search window.

2. Local preprocessing
As a step prior to further processing, remove the noise within the search window
St,i by applying a filter operation. Due to its capabilities to remove certain types
of random noise, a median filter [81, p. 129] is chosen to remove video compression
artefacts.

3. Image binarization
In order to get an elementary representation of the structures, segment the re-
gion of search window St,i into a foreground and a background. Thus an adaptive
threshold Tt,i is chosen to determine if, depending on the greyscale intensity value,
a pixel g(x), x ∈ S belongs to the foreground or to the background, resulting in
a binarised window (St,i ∈ [0, 1]). Further enhancements are achieved by applying
morphological operations.

4. Identify components and determine their CoG
Within the binarised search window identify connected components, in both fore-
and background, by using a four- or eight-connected neighbourhood relation. Then
separately for every connected component Cj determine its CoG (ĉj(x, y) with
x, y ∈ Cj) by applying Equation 3.1.
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5. Determine CCC candidate
Appoint potential CCC candidates by evaluating the following criteria: size, area
ratio and the coincidence of centroids of two contrasting components (i.e. one
black and one white component are located within a predefined distance). If two
connected components fulfil all the mentioned criteria they are appointed as CCC
candidate.

6. Set new seed point and iterate
For image It, the salient centroid ĉt,i equals xt,i, which establishes the sought-after
2D-3D correspondence {xt,i ↔ Xi} between the world and the image point of
the fiducial. Iterate the tracking algorithm by setting the centroid as new origin
st+1,i = xt,i of the search window St+1,i. Repeat steps 2 to 6 until t = N .

For a more detailed description of the single steps of the tracking algorithm see Sec-
tion 3.2.5.

In the best case, the tracking algorithm results in a list L of size (N × K) which, for
every frame in the sequence contains the corresponding image location of the fiducials
{xt,i ↔ Xi}. This list of correspondences provides the fundamental basis for all further
pose estimation calculations. An example of intermediate results during one iteration of
the tracking procedure is illustrated in Figure 3.5.

(a) (b)

(c) (d)

Figure 3.5.: Example of the iterative steps of the tracking algorithm. (a) input search window (b)
binarized search window gained by applying P-tile thresholding and morphological operations
(note the background clutter) (c) different connected components identified by neighbourhood
relations (d) final result of CoG calculation on CCC candidate.

23



Image-based Measurement of Relative Motions
between Railway Vehicle Carbodies

3. Rigid Body Pose Estimation

3.2.4. Influence of Perspective Distortion

As already mentioned, a systematic bias is introduced when estimating the centroid
of a circular fiducial from its (elliptical) perspective projection in a 2D image. In his
thesis, Brandner [12] provides an in-depth investigation of this effect, which he states
depends on the geometric setup of the sensor (i.e. the angle between the principal axis
of the camera and the normal vector of the target plane) and the size of the projected
fiducial in the image. The illustrations and the graph depicted in Figure 3.6 are entirely
adapted from [12]. Figures 3.6a and 3.6b illustrate the deviation when estimating the
CoG of a circular blob under perspective projection. The bias in position between the
estimated and the true centre is clearly visible.

In [12], the bias is normalised by relating it to the target size, in order to investigate
the distortion effect at varying viewing angles (α ∈ [−90 ◦, 90 ◦]) as well as for different
target sizes. This relative bias is defined as Brel = B(c)/Rα=0 with B(c) = c− ĉ being
the deviation between the estimation of the blob centre ĉ and the true centre location
c. The term Rα=0 denotes the radius of the target as seen from position α = 0 when
the sensor of the camera and the target are in parallel. Furthermore, the radius R is
normalised with respect to the image-width. For example a normalised radius R = 0.1
extends to 10% of the image width.

(a)

(b)
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Figure 3.6.: (a) At viewing angle α = 0 the result of the CoG calculation and the intersections of
the enclosing square coincide. (b) Under perspective projection a bias in centroid estimation is
introduced when using CoG calculation. (c) The relative bias is illustrated at different viewing
angles for different normalised sizes of the target blob. It shows that the deviation strongly
increases with size and viewing angle. Illustrations and graph taken from [12].

The relation between the relative bias Brel and the viewing angle α, for different rela-
tive sizes of the target, is depicted in Figure 3.6c. The graph shows that the deviation
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strongly increases with the viewing angle and the target size up to a certain maximum.
It is reasonable to assume that, within the image acquisition system designed for the
measurement of carbody motions (see Chapter 4), the single CCC-fiducials will extend
to no more than 5% (R = 0.05) of the image width or height. In Figure 3.6c the function
of a target with relative size equal to 5% is marked with a red arrow. One can see that
the relative bias for a target of that size is very small. The maximum of |Brel| = 0.025
is reached at an angle of ±45 ◦. This relative bias becomes even smaller when consid-
ering that the maximum relative rotational displacements of a railway vehicle carbody
are specified within ±15 ◦ (see Section 1.2). This assumption holds if the setup between
camera and targets is chosen adequately.

The conclusion of this discussion is that the influence of the bias introduced by CoG
calculation due to perspective distortion can be neglected regarding the specific task
this image-based measurement system is designed for. This decision is based on the
investigations by Brandner [12], which clearly show that for a small relative target size
and the limited range of rotation angles, the bias becomes negligibly small.

3.2.5. Implementation Details

The initialisation of the tracking algorithm (step 1) is accomplished by manually assign-
ing a seed point to each fiducial in the scene. The size of the search window Si depends on
the geometric resolution of the marker in the image and the expected physical motions
(these may differ from test ride to test ride) in combination with the sampling frequency.
As the geometric resolution of all markers within the same multi-fiducial target can be
considered as approximately equal, it is sufficient that for each target a constant window
size is defined. Appropriate side lengths m × n for the search windows are determined
by empirical evaluations. Generally, it is suitable to assume that the side lengths lie in
the range of two to three times the diameter of the fiducial in the image.

The image preprocessing in step 2 is applied in order to normalise the image data for
further processing. The major distortion which needs to be handled, arises from artefacts
introduced by video compression. As stated in [21] conventional lossy video compression
algorithms like the MPEG-4 coding standard introduce so-called blocking and mosquito
artefacts. An example is depicted in Figure 3.7a.

As can be seen from [21] and the example given in Figure 3.7b, a median filter is an
appropriate choice to reduce the influence of compression artefacts. The median filtering
replaces the intensity value of a pixel by the median of its ordered neighbourhood and
is performed by default using a 3× 3 neighbourhood.
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(a) (b)

Figure 3.7.: Reducing artefacts introduced by video compression using a median filter. For better
visibility, histogram equalisation is applied to emphasise the effects. (a) Blocking artefacts are
visible in uniform regions. Strong mosquito artefacts occur at the boundaries of the black circle
(b) Artefacts are removed by applying a median filter operation.

For step 3 of the tracking algorithm, the threshold Tt,i is denoted with index vari-
ables, since the expected variable and non-uniform lighting conditions during a test ride
render the usage of a fixed threshold as obsolete. The value of Tt,i has to be contin-
ually determined. A suitable method for adaptively determining a threshold is called
P-tile thresholding7 [81, p. 179]. It makes use of the prior knowledge about the expected
ratio between foreground and background (i.e. black circle on white background) in the
search windows S. In a normalised histogram, the probability p of a greyscale intensity
g is the number of corresponding pixels ng as a fraction of the total number of pixels in
the search window: p(g) = ng/n.

Based on the cumulative histogram c(g) it is possible to choose a threshold T such that
approximately p percent of the search window area have an intensity value less than T .
Using the definition of the cumulative histogram

c(g) =
g∑
i=0

p(g), (3.2)

the P-tile threshold corresponds to the intensity value g = T with c(T ) ' p/100,
where the cumulative sum of normalised pixel intensities is closest to the demanded
percentile p.

7P-tile as short for percentile.
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In order to obtain a further simplified and less detailed representation of the structure
within the binarised search window, a morphological opening operation is applied. As
stated in [34, p. 662] the opening operation (defined as erosion followed by dilation;
S ◦B = (A	B)⊕B ) smoothes contours and eliminates small islands and sharp peaks.
A disk-like structuring element B is applied to preserve the circular appearance of the
CCC fiducial.

In step 5, from all the connected components found in step 4, the CCC candidate is
determined by evaluating the following sequence of criteria:

1. Centroid location
The coincidence of the centroids from two contrasting connected components is
evaluated first, since it promises to provide the highest entropy. This feature is
common to CCC fiducials but unlikely in other structures in the scene. Since the
CoG calculation results in subpixel accuracy, the choice for maximum distance of
d ≤ 2 with d = ‖ĉj(x, y)− ĉk(x, y)‖ and j 6= k seems appropriate.

2. Size
The relative size of the outer ring of the CCC, compared to the size of search
window, is likely to correspond to the percentage of foreground p as used for the
computation of the adaptive threshold.

3. Area ratio
In accordance with [30], the ratio of the radius of the outer ring to the radius of
the inner ring is defined as 2 × rinner = router. Thus, the ratio between the areas
is tested for: 4×Ainner = Aouter.

When the appropriate CCC candidate is selected, recalculate the CoG based on the
outer ring with the encircled area filled up to remove possible uncertainties arising from
the segmentation process. The result is a robust and accurate estimation of the salient
centroid ĉt,i.

Generally, due to the constrained movements of a single marker regarding its neighbours
on the same target, a reliable strategy for handling occlusions, unexpected fast motions
or a marker sliding outside the field of view can be implemented: Simply reconstruct
the most-likely image position of a lost marker from the knowledge about positions of
other markers on the target. If, within the reconstructed search window, a suitable CCC
candidate can be appointed again, reinitialise the common tracking procedure.
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3.3. Pose Estimation Algorithms

As already mentioned, the term pose estimation relates to specifying the position and
the orientation of an observed object with respect to a given coordinate system. In their
review of different pose estimation methods Haralick et al. [36] state that the foundations
of this problem were first addressed and solved in the field of photogrammetry by Grunert
in 1841. Its introduction into the domain of computer vision dates back to the 1970s and
originates from the task of digital camera calibration [71] as a fundamental requirement
to most image-based measurement systems (see Section 4.2 for an in-depth discussion).

Generally, in the field of computer vision the coined term 2D-3D pose estimation refers
to the procedure where an imaging device is capturing 2D measurement data and the
corresponding world or object model data is given in 3D. Putting it more precisely, 2D-
3D pose estimation is the process of estimating the relative position and orientation of
a 3D object with respect to a reference camera coordinate system. An overview of this
basic problem statement is given in Figure 3.8.

Z

Y

X
C T1{X1, X2, X3, X4}w

T2{X5, X6, X7, X8}w

Y

Z

X

Ow
R, t =?

Figure 3.8.: Basic pose estimation problem statement. Targets T1 and T2 provide a set of 3D
points {X1 . . .X8} in world coordinates. The pose of the camera corresponds to a translational
(t) and rotational (R) transformation which aligns the world and the camera reference frames.
It is estimated from the 2D projections of the 3D points on the image plane. Ow and C denote
the origins of the respective coordinate systems.
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The algorithms developed for 2D-3D pose estimation are generally based on perspec-
tive or projective camera models. The mathematical representations of camera models
provide an essential theoretical background and are therefore presented in the next sec-
tion.

3.3.1. Camera Representation

This section introduces required mathematical representations of camera models accord-
ing to Hartely and Zisserman [37, p. 153]. First the basic pinhole camera as a simplistic
but essential model as well as associated terms and components are defined. Then a
specialisation called general finite projective camera and its accompanying modifications
are presented.

Pinhole Camera Model

The pinhole camera model uses the concept of central projection to transform 3D points
onto a 2D plane. The camera centre (also optical centre) C, is the centre of projection and
is defined as the origin of a Cartesian coordinate system. The image plane is represented
as Z = f , with Z called the principal axis which is orthogonal to the image plane and
intersecting at the origin. The intersection of the principal axis with the image plane is
called principal point. The principal plane is the plane through the camera centre and
parallel to the image plane. The pinhole camera model and its components are illustrated
in Figure 3.9:

The transformation from a 3D point with coordinates X = (X,Y, Z)T onto the 2D image
plane is described by a central projective mapping, where the straight line between X
and the centre of projection (denoted with C in Figure 3.9) meets the image plane
(R3 7→ R2):

(X,Y, Z)T 7→ (fX/Z, fY/Z)T (3.3)

Expressed in terms of matrix multiplication using homogeneous coordinates, this linear
transform is written as: 

X

Y

Z

1

 7→

fX

fY

Z

 =


f 0

f 0
1 0



X

Y

Z

1

 (3.4)
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X
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Z
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camera centre principal point
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image plane

X
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f

Figure 3.9.: Basic pinhole camera model describes the central projection of a world point X onto
the image plane as image point x. The distance from the camera centre to the image plane is
denoted with f the focal length.

The 3×4 homogeneous matrix in this equation is called camera projection matrix further
on denoted with P. For the 4-vector world point X and its 3-vector projection on the
image plane x Equation 3.4 can be compactly written as:

x = PX (3.5)

where P = diag(f, f, 1) [I | 0] with I being the identity matrix. Generally, the origin of
coordinate system of the image plane does not coincide with the principal point. Thus
the following extension called principal point offset is defined:


X

Y

Z

1

 7→

fX + Zpx

fY + Zpy

Z

 =


f px 0

f py 0
1 0



X

Y

Z

1

 (3.6)

where (px, py)T are the coordinates of the principal point expressed in the image coordi-
nate system. In Equation 3.6 the 3× 4 homogeneous matrix is called camera calibration
matrix (further on denoted with K), which allows the expression in a compact form as:

x = K [I | 0]Xc (3.7)

The superscript c in Xc emphasises the fact that the 3D world point X is expressed in
the camera coordinate frame which is congruent with the Cartesian coordinate system
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defined in the beginning. In practice, the 3D world points are expressed in a different
coordinate system, commonly known as world coordinate frame.

As depicted in Figure 3.10 these two coordinate frames are related by a translation t
and a rotation R.

Xc

Yc Zc

C

Xw

x

Xw

Yw

Zw

Ow

[R | t]

Figure 3.10.: A camera coordinate frame and a world coordinate frame are aligned by a transla-
tional and rotational transformation denoted with R, t.

If the camera centre in the world coordinate frame is expressed with Cw and R represents
the orientation of the camera coordinate frame, then the mapping of a point X from the
world to the camera coordinate frame is expressed as:

Xc =
[
R −RCw

0 1

]
X

Y

Z

1

 =
[
R −RCw

0 1

]
X (3.8)

inserting this into Equation 3.7 yields:

x = KR [I | −Cw]X (3.9)

Equation 3.9 represents the general mapping as provided by the basic pinhole camera
model. The parameters within K are called intrinsic camera parameters whereas R and
Cw, which relate the camera position and orientation to a given world coordinate frame,
are termed as extrinsic camera parameters. Finally the camera projection matrix P can
be decomposed as:

P = K [R | t] (3.10)

with t = −RCw, in order to omit the explicit representation of the camera centre. The
matrix [R | t] is often referred to as camera pose or exterior orientation.
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General Projective Camera Model

In order to account for digital camera sensors, the finite projective camera model de-
scribes the image coordinates as number of pixels per unit distance mx and my. In the
(unlikely) case of non-square pixels the focal length is defined separately for horizontal
and vertical pixel dimensions with αx = fmx and αy = fmy. The principal point is
specified respectively as: x0 = pxmx and y0 = pymy. Additionally, a skew parameter
s is introduced considering non-perpendicular horizontal and vertical image axes. The
skew is usually assumed to be 0 for real cameras. With these modifications the following
camera calibration matrix K is considered:

K =


αx s x0

αy y0

1

 (3.11)

A finite projective camera with P = K[R | t] and K of form 3.11, has eleven degrees of
freedom: five for K with (αx, αy, x0, y0,s) and six for the rigid transformations [R | t].

Representing the finite projective camera by an arbitrary 3× 4 homogeneous matrix of
rank 3 (i.e. remove restrictions resulting from the finite projective camera model), yields
the so-called general projective camera with:

x = PX =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



X

Y

Z

1

 (3.12)

This representation is commonly used as a starting point to estimate p11 . . . p34 from
point correspondences (see Section 3.3.3).

At this point, attentive readers may have noticed the relation between railway vehicle car
body motions and image-based pose estimation: Like the rigid transformation [R | t], the
pose between two railway vehicle carbodies is determined by translational and rotational
displacements. Under the assumption that a suitable basic measurement setup is chosen
(see Section 1.4), the rigid transformation [R | t] between the world and the camera
coordinate frame has the essential capabilities to describe the pose between two adjacent
carbodies.

Different approaches on how pose estimation is calculated are presented in the next
section.
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3.3.2. Pose Estimation from Point Correspondences

So far, the measurement system designed in the previous sections enables the pose es-
timation of a rigid railway vehicle carbody from a set of 2D-3D point correspondences.
For the sake of completeness, it should be mentioned that pose estimation can be accom-
plished by using higher order entities as well (e.g. lines). Such methods are reviewed by
Rosenhahn in [74] who at the outset states that, pose estimation is generally calculated
from point correspondences and that “many fundamental and important publications can
be found for this class”.

According to Lepetit et al. [54], under the assumption that the intrinsic camera param-
eters are known, existing methods for pose estimation from point correspondences can
be classified into two types of approaches: iterative and non-iterative ones. On the one
hand, iterative approaches as presented by DeMenthon and Davis [23] or Schweighofer
and Pinz [76] are stated to be accurate, but slow and error-prone in case of poor ini-
tialisation. On the other hand, non-iterative methods are considered much faster at the
cost of a slight reduction in accuracy.

In the course of this thesis, two non-iterative approaches are examined more closely:
First, the Direct Linear Transformation (DLT) described by Hartley and Zisser-
man [37] as a well established and popular method for pose estimation is elected, intro-
duced and evaluated.
Second, an algorithm called Efficient Perspective-n-Point Camera Pose Estima-
tion (EPnP) presented by Lepetit et al. [54] as a representative of PnP-type methods
(see Section 3.3.4) is chosen and examined the same way.

These two methods are selected because the DLT is considered as a straightforward
and proven method and EPnP is regarded as a state-of-the-art approach. Both methods
promise to be robust and sufficiently fast. Furthermore, extensively tested implementa-
tions are available in MATLAB8 for prototyping as well as in high-level languages such
as C++, regarding a later application in a productive environment.

An introduction to both DLT and EPnP and their algorithmics is given in the next
sections.

8http://www.mathworks.com
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3.3.3. DLT - Direct Linear Transformation

According to [88] the DLT method originates from a work first published as early as in
1971. Based on the set of 2D-3D point correspondences {xi ↔ Xi} for one image, re-
trieved by the tracking algorithm described in Section 3.2.3, the DLT algorithm requires
to find the camera matrix P, as specified in Equation 3.12, such that xi = PXi for all i.
The DLT method applied to pose estimation is described in [37, p. 178] the following
way:

For each correspondence xi ↔ Xi, Equation 3.12 is expressed using the vector cross
product as:

xi = PXi ⇔ xi × PXi = 0 (3.13)

Then the following notation for P is introduced:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 !=


P1T

P2T

P3T


with that, rewriting Equation 3.13 using xi = (xi, yi, wi)T gives:

xi × PXi =


yiP3TXi − wiP2TXi

wiP1TXi − xiP3TXi

xiP2TXi − yiP1TXi

 =


0T −wiXT

i yiXT
i

wiXT
i 0T −xiXT

i

−yiXT
i xiXT

i 0T




P1

P2

P3

 = 0 (3.14)

Since from these three equations only two are linear independent [86], the third row is
omitted and the system results in:

[
0T −wiXT

i yiXT
i

wiXT
i 0T −xiXT

i

]
︸ ︷︷ ︸

Ai


P1

P2

P3

 = 0 (3.15)

where each Ai is a 2 × 12 matrix. For a set of n image to world point correspondences,
2n equations are stacked, which accumulates to a linear equation system Ap = 0 where
A is of size 2n × 12. The camera matrix P is then calculated by solving this set of
equations.

Since the camera matrix P has 11 degrees of freedom, a minimum of 51
2 point correspon-

dences is required to obtain an exact solution for the camera matrix P. In the overde-
termined case with an arbitrary number of correspondences (n ≥ 6), P is estimated by
minimizing the algebraic error of ||Ap|| subject to the constraint ||p|| = 1 using Singular
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Value Decomposition (SVD) [37, p. 585]. The final result is the last column of V in the
SVD: UDVT = A.

From the obtained camera matrix P, the intrinsic camera parameters K and the exterior
orientation [R | t] are computed by decomposing P using RQ-decomposition. For an in-
depth description of SVD and RQ-decomposition see [37, p. 578].

Remarks

In their survey, Lepetit and Fua [53] suggest to separately estimate the intrinsic camera
parameters. They state that, by using a calibrated camera and estimating only the
position and orientation [R | t] it is possible to obtain far more reliable results.

When applying the DLT algorithm, the normalisation of the underlying data is crucial
regarding the achieved measurement accuracy. Putting it in the words of Hartley and
Zisserman [37]: “[Data normalisation] must not be considered optional”. It is recom-
mended that the points xi are normalized by translating them so that their overall RMS
distance from the origin of the coordinate system is

√
2.

A drawback of the DLT algorithm is that, in contrast to other algorithms, it mini-
mizes an algebraic error which, in terms of the estimated geometric relationships, is not
meaningful. But as stated in [37] this drawback can be overcome by an good choice of
normalisation.

The advantages of the DLT algorithm compared to other pose estimation methods are
that it is fairly simple to calculate, that there are no initial parameter approximations
required and since it represents a direct solution, no problems with convergence will
occur.
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3.3.4. EPnP - Efficient Perspective-n-Point Camera Pose Estimation

As its name implies the EPnP algorithm [54] evolves from the methods which solve
Perspective-n-Point (PnP) type of problems. This term was coined by Fischler and
Bolles [28] in 1981. Basically, under the precondition that the intrinsic camera parame-
ters are known, they formulate the PnP-problem as:

“Given the spatial locations of n control points (3D world points), and given the angle
to every pair of control points from an additional point called the Center of Perspective
(C), find the lengths of the line segments joining C to each of the control points.”

The easiest way to describe the PnP-problem is by introducing its most basic case called
P3P. The P3P-problem is applied to the smallest subset of points (n = 3) which results
in a finite number of solutions. All other PnP-problems comprise the P3P-problem as a
special case. Acccording to Quan and Lan [69] the P3P-problem is computed as follows:
Given the intrinsic parameters of a camera and the camera centre C as well as three
2D-3D point correspondences, each pair of correspondences {xi ↔ Xi} and {xj ↔ Xj}
gives a constraint on the unknown distance between camera centre and world points:
ci = ||CXi|| and cj = ||CXj ||. Using this triangular configuration, the following equation
is derived using the law of cosines:

di,j = c2
i + c2

j − 2cicjcos(αi,j) (3.16)

with the angle αi,j spanned by the straight lines CXi and CXj where αi,j can be mea-
sured by a calibrated camera and the distance di,j = ||XiXj || is determined by the known
spatial relationship between the points. For three point correspondences with three un-
known distances, this results in a fourth degree polynomial equation system which has
a maximum of four solutions. To remove this ambiguity, an additional correspondence
is added and the equation system is solved by taking subsets of three of the four points
and calculating the common solution.

As stated in [69] and [54], this approach is common practice in computer vision (e.g. [28,
52]) but results in the drawback that several fourth-degree polynomials need to be solved.
Furthermore, the agreement on a common solution is probably difficult due to noisy data
since no use of redundant information is made. P4P approaches as for example proposed
by Quan and Lan [69], are able to obtain a unique solution. But the computed redundant
polynomial equation systems suffer from an increase in complexity, since the expansion
of the equations produces additional parameters.

In order to address these problems, the central idea of the efficient O(n) implementation
of the EPnP algorithm is to express the coordinates of the given n 3D points as a
weighted sum of four virtual control points. All further calculations are then performed
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only on these control points which for a larger number of n yields a much smaller
number of unknown variables which reduces complexity and therefore accelerates further
computations.

The general parametrisation within the EPnP algorithm looks as follows: In order to
distinguish more clearly, points expressed in the image, camera and world coordinate
system are denoted with a {i, c,w} superscript respectively. First 4 control points Cw

j

with j = 1 . . . 4 are defined. Then each 3D world point Xw
i is expressed by the weighted

sum of the control points. This yields:

Xw
i =

4∑
j=1

θi,jCw
j , with

4∑
j=1

θi,j = 1 (3.17)

The same relation is assigned to the camera coordinate system:

Xc
i =

4∑
j=1

θi,jCc
j (3.18)

Assuming the camera calibration matrix K to be known and xi
i = (xi

i, y
i
i, 1)T with

i = 1 . . . n being the 2D projections of the world points Xc
i as well as expanding

Cc
j = (xc

j , y
c
j , z

c
j )T for each control point, gives:

∀i : wi


xi
i

yi
i

1

 = KXc
i = K

4∑
j=1

θi,jCc
j =


αx 0 x0

αy y0

1

 4∑
j=1

θi,j


xc
j

yc
j

zc
j

 (3.19)

with wi representing scalar projective parameters.

Furthermore, from the last row of Equation 3.19 it can be seen that wi =
∑4
j=1 θi,jz

c
j .

Thus, for each reference point, two linear equations are obtained from substituting this
expression into the remaining other two rows:

4∑
j=1

θi,jαxx
c
j + θi,j(x0 − xi

i)zc
j = 0 (3.20a)

4∑
j=1

θi,jαyy
c
j + θi,j(y0 − yi

i)zc
j = 0 (3.20b)
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When, for all n point correspondences, the obtained Equations 3.20a and 3.20b are
stacked, this results in a linear equation system of the form:

Mx = 0 (3.21)

which is solved to receive the final solution x = (CcT
1 ,CcT

2 ,CCT
3 ,CcT

4 ).

Remarks

As stated by its authors [54], in contrast to the DLT algorithm the normalisation of the
image data is not necessary within the EPnP algorithm, since Equations 3.20a and 3.20b
do not depend on data from the image referential system.

In their work, Lepetit et al. [54] conduct extensive experiments and prove the superiority
of the EPnP algorithm over other state-of-the-art iterative and non-iterative methods.
They show that their approach is only slightly less accurate but much faster (calculations
are performed in constant time O(n)) and robust than the other methods. Moreover,
a Gauss-Newton optimisation procedure is proposed to further increase the accuracy,
while still maintaining the O(n) performance.

The efficient O(n) implementation is indeed a great advantage of the EPnP algorithm
over other methods, but will not play such a significant role, since it is only affected
by a large number of n point correspondences, which is not the case for the present
measurement system designed (see Section 3.3.5).
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3.3.5. Necessary Number of Correspondences

As discussed before, for the general DLT algorithm a number of n = d51/2e = 6 point
correspondences is necessary to determine a unique solution. For a planar target as
proposed in Section 3.2.2, the DLT algorithm is applied to estimate the so-called 2D
homography. Given a number of 2D-2D point correspondences {xi ↔ x′i}, the 2D ho-
mography basically determines the transformation between two planar surfaces (i.e. the
planar target and the image plane). Due to the constrained problem formulation of the
homography estimation, only n ≥ 4 point correspondences are required to determine a
unique solution [37].

According to [54], the EPnP algorithm is applicable for all planar and non-planar con-
figurations with n ≥ 4 point correspondences.

These findings are in very good accordance with the target design proposed in Sec-
tion 3.2.2. Even in the case of a single 5-CCC multi-fiducial target, a solution for the
pose can be estimated from an overdetermined equation system by the DLT and the
EPnP algorithm.

The discussion within this chapter clearly shows that the DLT and the EPnP algorithms
are perfectly suitable for the given task of pose estimation between two carbodies. This is
the reason why both algorithms are tested and evaluated, presenting in-depth details in
the Experimental Evaluation Section 5. The only precondition for the application of the
EPnP algorithm is that it requires the intrinsic camera parameters (K) to be estimated
beforehand.
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3.4. Measuring Relative Motions between Railway Vehicle
Carbodies

The previous chapters introduced all the necessary preconditions, tools and algorithms
which basically enable the estimation of the pose between two railway vehicle carbodies.
This chapter rounds up this process by giving a detailed description of the underlying
carbody motion model as well as an in-depth explanation on the measurement setup and
the vital step of correct initialisation.

3.4.1. Railway Vehicle Carbody Motion Model

In the designed measurement system, the motions between two adjacent railway vehicle
carbodies are derived from the pose (i.e. the translational and rotational displacements)
on a per-frame basis. Since the frames are recorded continually at a predefined rate,
the pose estimates from the whole sequence of images provide a series of motions over
time. This section introduces the underlying carbody motion model and the proposed
measurement setup.

An example of a coupled oscillation between two carbodies is used to define the model
for relative carbody motions. It is presented in Figure 3.11 with detailed close-up views
depicted in Figure 3.12.

CB_01

X

Z
Y

CB_02

DD

X

Z
Y

[R | t]

Figure 3.11.: The model for relative carbody motions comprises two adjacent carbodies (denoted
with CB_01 and CB_02). In principle, the measurement system seeks to estimate the rotation
and translation [R | t] between the two reference frames (red and blue) of the carbodies. In this
illustration CB_02 is rotated and translated compared to CB_01. The driving direction is denoted
with DD.
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The coupled oscillation exemplified in Figure 3.11 is called hunting which is composed
of a translation along the y-axis and a rotation about the z-axis (yaw-angle). From
the origins of the reference frames marked, it is apparent that the relative motions are
measured between two directly adjacent carbody endings.

CB_01

X

Y

CB_02

DD

X

Y
t

ψ

(a)

(b) (c)

Figure 3.12.: The carbody motion model in detail: (a) illustrates a plan view with the yaw-angle ψ
and the translation vector t drawn explicitly. The dashed rectangle denotes a referential (initial)
position. CB_02 is rotated by ψ = 15 ◦ about the z-axis (yaw-rotation) and translated 1⁄6 of the
carbody width into the y-direction. (b) depicts a side view. The angle θ = 0 denotes that no
pitch rotation is observed. (c) shows a view from behind, along the driving direction. Likewise,
no roll angle is observed (φ = 0).

Figure 3.12a shows the hunting movement as a simultaneous lateral and angular dis-
placement. For better visibility, an initial carbody pose is indicated by the dashed black
rectangle. Although zero in this case, from Figures 3.12b and 3.12c the definitions of the
roll (φ) and pitch (θ) angles are visible.
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3.4.2. Measurement Setup and Installation

A setup which directly measures the pose between the two carbodies would imply to
track targets within CB_01 and CB_02 at the same time, which is not suitable as dis-
cussed in Section 1.4. For the designed optical measurement system, it is meaningful to
indirectly measure the displacements of CB_01 and CB_02 by relating the camera refer-
ence frame and the coordinate system of CB_01. The instance that the imaging device
is rigidly attached to CB_01, enables to define this relation by a constant translational
and rotational offset. The approach of estimating the pose between the camera and an
external reference frame is in good accordance with the basic pose estimation problem
statement as illustrated in Figure 3.8.

The proposed measurement setup is presented in Figure 3.13. It illustrates the transfor-
mation of the origin of the coordinate system CB_01 to the camera centre. The orientation
of the coordinate system is considerably changed and it is not necessarily axially sym-
metric aligned with the original reference frame. Furthermore, Figure 3.13 shows that
the pose between CB_01 and CB_02 is estimated between the rigidly attached imaging
device and an arbitrary number of targets (in this case two) installed in CB_02.

CB_01

Z

Y

X
CB_02

DDX

Z
Y

Figure 3.13.: Proposed measurement setup with the two carbodies in an initial pose assumed at
time t = 0. The pose is estimated between the rigidly attached camera in CB_01 and the targets
installed in CB_02. Note that the orientation of the original coordinate system of CB_01 and
the camera are not necessarily axially symmetric aligned. This constant angular misalignment is
compensated by calculation later on.

For the pose estimation, the exact knowledge of the 3D coordinates of the targets,
given in the reference frame of CB_02 is essential. Therefore it is recommended (but
not compulsory) to mount the targets in a way that they are automatically axially
symmetric aligned with the reference frame of CB_02. This can be easily accomplished
by using suitable existing structures and furnishings within the carbody. This approach
facilitates a short installation time since it is only necessary to determine the translational
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displacement of a target to the origin of the carbody reference frame. The elaborate
determination of the angular deviations of each planar target can therefore be avoided.

3.4.3. Initialisation and Relative Pose Estimation

Figure 3.13 also illustrates another important specific aspect: The arrangement of the
railway vehicles is in an initial pose which is essential to all further measurements.
This initial pose in which the carbodies and their respective reference frames are exactly
physically aligned, is a demanded precondition of the measurement system. This require-
ment is necessary because without it, the measurements would suffer from an unknown
bias. From now on, it is considered that the first frame in the sequence of images, I0,
depicts an arrangement in which the concerned carbodies are in an initial pose.

As described in the introduction (see Section 1), the key objective of the designed system
is to measure the relative motions between the carbodies. This means that from the
initial pose only the relative change of displacements between two carbodies is deter-
mined (i.e. only the deviation (∆) between the designated initial pose and further poses
in the sequence of images is calculated).

When applying the proposed measurement setup, the parameters [R | t] retrieved from
the pose estimation algorithms described in Section 3.3, express the rotational and trans-
lational displacements in terms of the camera reference frame. As the camera reference
frame is most likely not axially symmetric aligned, it is necessary to compensate for this
deviation since the sought-after motions need to be expressed in terms of the carbody
reference frame.

As defined before, the first frame in the sequence of images yields the initial pose with
[R | t]I0 = [R0 | t0]. It describes the translational and rotational offset of the camera from
the reference frame in CB_02. This initial pose is used in order to compensate for the
arbitrary displacement of the imaging device and to calculate the relative pose between
[R0 | t0] and the pose in image It with [Rt | tt].

The calculation of the relative poses is accomplished as follows:

∆Rt = R−1
0 Rt = RT

0 Rt (3.22a)

∆tt = R−1
0 (tt − t0) = RT

0 (tt − t0) (3.22b)

with R−1 = RT because R is a rotation matrix. If in Equation 3.22a Rt is corrected by
the initial deviation, all further displacements directly yield relative rotations between
CB_01 and CB_02. In Equation 3.22b, the relative translations ∆tt are calculated by
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first correcting the rotational camera offset and then subtracting the initial translational
displacement t0.

Both equations provide the relative pose of the two carbodies for all images in the
recorded sequence and the defined initial pose. Of course it applies for the initial pose
that ∆[R | t]0 = [I | 0].

To determine the final relative angular values ∆{φ, θ, ψ}t, the rotation matrix ∆Rt is
decomposed, as described in [66, p. 70], by applying an inverse of roll, pitch and yaw
transform by first defining the following notation for ∆Rt:

∆Rt =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.23)

which then is decomposed into the relative angular values using:

∆φt = atan2(r21, r11) (3.24a)

∆θt = atan2(−r31, cos(φ)r11 + sin(φ)r21) (3.24b)

∆ψt = atan2(sin(φ)r13 − cos(φ)r23,−sin(φ)r12 + cos(φ)r22) (3.24c)

This proposed measurement setup and its initialisation offers two important advantages.
First, it is possible to choose an arbitrary position (although of course basic constraints
apply) for the imaging device without knowledge of its exact position and orientation.
These values are determined implicitly from the initial carbody pose. This simplifies the
setup procedure and enables to quickly adapt the system to possibly changing environ-
mental conditions, as well as maintaining the required portability. Second, the multi-
fiducial planar targets need to be mounted in one carbody only, which also facilitates
reduced installation efforts.
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4. Optical Image Acquisition System

Most generally, an optical imaging system for image-based measurement is composed
of a camera (basically consisting of housing, sensor and lens), mounting (e.g. tripod),
internal or external storage device, power supply and devices providing illumination.
This chapter describes the several requirements and constraints which are taken into
account regarding the given specific task and motivates the choice of a suitable imaging
system.

4.1. Requirements

For the prototypical realisation of the whole measurement setup described in this doc-
ument, the requirements differ in a way that there is a significant shift towards higher
portability which in a later stage of development does not apply. This higher portability
regarding the imaging system ensures faster responses of the measurement setup to un-
expected challenges and changes in the environment. Certainly, for an implementation
in a productive environment, a system meeting altered and more mature requirements
needs to be realised.

4.1.1. Camera, Image Sensor and Lens

In order to realise a highly portable imaging system it is considered beneficial that the
camera can operate autonomously and independent of provided infrastructure such as
electric power, external memory or additional control units like a PC or laptop.

Another important question which arises, is the choice for an appropriate digital image
sensor with a suitable technical specification. As defined in Section 1.3, the carbody
motions are required to be sampled at a minimum sample frequency of 25 Hz = 25 frames
per second (fps). Thus, the utilised image sensor has to provide at least 25 fps (R(a)).
In combination with a sensor capable of sensing images in a progressive scan mode (i.e.
acquiring a full frame at a time), these requirements suffice to avoid motion-induced blur
in the recorded images.
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Additionally, a high sensitivity of the image sensor is considered important, since it
allows the recording of regularly illuminated images and at the same time using a small
aperture setting. The small aperture setting in turn increases the depth of field, which
is the ability to keep objects in focus at various distances. Of course, a high quality,
wide-aperture lens and a good illumination contribute to this effect.

Furthermore, an increase in the accuracy of measurements is expected as the geometrical
resolution of the recorded images increases. Therefore, a high spatial resolution of the
sensor is considered beneficial. The required spatial resolution of the image sensor is
determined by the knowledge about the field of view (FOV), the working distance (i.e.
distance between camera and target) and the size of the smallest feature which needs to
be detected by the system.

The working distance is assumed up to a maximum of w = 10000 mm (half the length
of a carbody). The FOV is approximated by using the maximum angular displacement
of the carbodies into yaw direction with: 2 × max(∆ψ) = 2 × 15 ◦ = 30 ◦. Using the
working distance and the common aspect ratio of 3 : 2 this approximately yields a FOV
of size 5400× 3600 mm2. Which, with the ignored lateral displacements and a necessary
tolerance is rounded up to FOV = 7000× 4600 mm2.

From the target design introduced in Section 3.2.2, it is clear that the smallest feature
which needs to be detected is represented by the inner circle of the CCC. It has, if
printed on ISO-A3 sized paper, a diameter of about dw = 30 mm. According to [53],
for accurate centre of gravity (COG) calculation the minimum size of a target is in the
range of di = d4−5e = 5 pixel. Using these considerations, the required sensor resolution
(SR) in both dimensions can be derived as follows:

SR = di ×
(FOV
dw

)
= 5×

({7000, 4600}
30

)
= {1166, 766} ' 1200× 800 pixel2 (4.1)

This estimation indicates that the image recording needs to be done at least equivalent
to the standardised HD720 format [25] with a spatial resolution of 1280× 720 pixel2.

From a specific sensor model and its format (SF), it is possible to calculate a suitable focal
length in order to select an appropriate optical lens for the camera system. Assuming an
APS-C9 sized sensor with (SF = 23.5×15.6 mm2) the necessary focal length is calculated
as follows:

9http://www.dpreview.com/learn/?/key=sensor%20sizes
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f = SF× w
FOV = {23.5, 15.6} × 10000

{7000, 4600} ' 33 mm (4.2)

Since the FOV and the image sensor share the same aspect ratio, f is approximately the
same in both dimensions.

As a result of the discussion above it was decided to utilise a high-end digital consumer
camera for image acquisition during various experiments and test rides (see Chapter 5).
In particular a SONY NEX-5N10 was chosen, as it fulfils all of the mentioned require-
ments.

The NEX-5N is a mirrorless interchangeable lens camera with an APS-C sized sensor and
capable of recording in HD1080p/50. This means it has the capability of capturing frames
with 1920 × 1080 pixel2 at 50 fps using progressive scan. The image data is processed
using the Advanced Video Coding High Definition (AVCHD) [82] standard. The supplied
zoom lens is the SEL1855 with f = 18 − 55 mm. Because of the NEX-5N’s small body
and integrated battery and memory card, it is able to operate entirely autonomous.

A disadvantage of NEX-5N is that, according to the manual [83] only sequences up to
maximum of 29 minutes can be recorded because of automatic termination to prevent
overheating of the sensor. For the prototypical realisation of this measurement setup
this issue is ignored, since experiments and test rides are expected to last shorter than
that. Furthermore, it is considered a drawback that the NEX-5N compresses the imagery
data according to the AVCHD standard. This introduces artificial compression artefacts
which make special pre-processing necessary as discussed in Section 3.2.5.

In a productive environment it is certainly preferable to employ an industrial (i.e. more
professional, higher quality and better ruggedised) imaging device. A probably good
choice is the DMK 23G445 from The Imaging Source11. It provides suitable technical
specifications (monochrome images with 1280 × 960 pixel2 at 30 fps using progressive
scan) and records raw imagery data but in contrast is dependent on external power
supply and storage.

In the case of the DMK 23G445, which implements the GigE Vision interface stan-
dard [6], the power supply and connection to an external storage and control unit is
achieved by using a standard Ethernet cable (up to 100 m).

10http://www.sony.co.uk/hub/nex-compact-system-camera/range/nex-5n
11http://www.theimagingsource.com/en_US/products/cameras/gige-cmos-ccd-mono/dmk23g445
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The so-called Power over Ethernet (PoE) technology provides both power supply and
data connection using a single cable. It therefore allows manageable and low cost integra-
tion into a productive environment. Figure 4.1 shows both camera systems introduced.

(a) (b)

Figure 4.1.: (a) SONY NEX-5N with the SEL1855 zoom-lens. (b) The Imaging Source -
DMK 23G445 with unknown lens. The depicted sizes are not proportional.

4.1.2. Illumination

Suitable illumination is the one of the most important aspects in a machine vision
system. Usually railway vehicles, in particular passenger coaches, are equipped with
artificial ambient lighting inside the carbodies. Thus during a test ride, even at night
basic visibility of the mounted targets is guaranteed.

In the paper of Heikkilä [39] about camera calibration, one can see from the discussion
on systematic errors that, even small changes in illumination may severely affect perfor-
mance of vision algorithms. So an essential intent of artificial illumination is to keep the
ambient lighting conditions as constant as possible and to reduce effects on the targets
like shadows and glares. As stated in [61] common types of light sources include LEDs
or halogen dampers.

For the first prototypical evaluation it is not considered necessary to install additional
illumination devices during test rides, because the existing lighting within the carbodies
is regarded as sufficient. This decision is also founded on the fact that even in a productive
measurement system, it does not seem applicable to install artificial light sources due to
the expected large working distances of up to 10 m and the associated extra efforts and
costs.
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In the case that proper illumination cannot be sufficiently achieved by the existing
lighting, it is recommended to employ active targets rather than extra light sources.
A prototype of a low-cost and minimal effort active CCC target with integrated green
LED powered by a 9-volt battery is pictured in Figure 4.2a. The corresponding circuit
diagram is shown in Figure 4.2b.

(a) (b)

Figure 4.2.: (a) Active Target: CCC on A4-sized paper with green LED manufactured as proof
of concept. Consists of: plate, printed CCC target, green LED, resistor, battery and cabling.
Estimated costs of parts: ≤ 4 Euro. (b) Circuit diagram of the active target. R1 = 600Ω, U1 = 9V ,
D1 = NICHIA NSPG520AS12.

From the discussions on the requirements of the optical imaging system, it is con-
cluded that for a first evaluation the application of a consumer camera (specifically
SONY NEX 5N) is highly recommended. This is primarily due to its capabilities of
operating autonomously. An other finding is that in a first step artificial lighting is
not considered necessary. For the operation of the measurement system in a productive
environment, it is further recommended to apply an industrial imaging device and (if
necessary) to make use of active targets.

12http://www.alldatasheet.com/datasheet-pdf/pdf/240293/NICHIA/NSPG520AS.html
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4.2. Geometric Camera Calibration

The main objective of geometric camera calibration is to determine the intrinsic camera
parameters (i.e. parameters of the camera calibration matrix K : αx, αy, x0, y0, s). Some-
times it is additionally referred to as estimating the position and orientation of a camera
with respect to a world coordinate frame (extrinsic parameters [R | t]). The whole pro-
cess of camera calibration is therefore closely related to pose estimation.

The reason why this topic is discussed at this place is that the finite projective camera
model presented in Section 3.3.1 is not necessarily sufficient, in the way that it does not
account for possible distortions of the camera lenses. Thus, geometric camera calibration
is also about modelling lens distortions.

Furthermore, as described in Section 3.3.2, camera calibration is conceived as a separate
step before the actual pose estimation measurements and is therefore regarded as an
integral part of the image acquisition system.

4.2.1. Camera Calibration Methods

Several approaches to geometric camera calibration are presented in literature. According
to Zhang [93] calibration methods can be classified into two main categories: object based
calibration and self calibration. In object based calibration, the known geometry of 2D
or 3D rigid objects is used to estimate the camera parameters. Whereas within the
self calibration approach the constraints to estimate the parameters are gained by just
moving the camera through a static scene.

Following the same arguments concerning markerless vs. marker-based pose estimation
(see introduction to Chapter 3) as well as according to [93], from self calibration methods
it is not possible to “always obtain reliable results”. Therefore, regarding this image-based
measurement system an object based calibration approach is clearly preferred.

In their survey, Remondino and Fraser [71] present a good comparison on recent object
based calibration methods. They state that frequently applied methods are those of
Tsai [88], Heikkilä and Silvén [40] and Zhang [93]. Common to all three methods is that
they rely on the basic pinhole camera model and include concepts for modelling lens
distortions.

Basically all calibration methods comprise the following four steps: acquisition of im-
ages by moving a calibration target (e.g. chequerboard pattern) in front of the camera,
detection and localisation of features in the images, identification of features from the
known calibration pattern and computation of camera parameters by using the estab-
lished feature correspondences (adopted from [46]).
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From a practical point of view, the key difference between the individual approaches
to camera calibration is that there exist proposals relying on 3D calibration structures
(e.g. [33, 12] and [37, p. 289]) and methods which make use of simple planar targets (e.g.
[88, 93]). The latter, are generally considered “more flexible” [53] and “popular for their
practical convenience” [46]. The method of Heikkilä and Silvén [40] is able to handle
both 2D and 3D calibration targets.

Based on the implications of this discussion, a suitable implementation of a geometric
camera calibration procedure is presented in the next section.

4.2.2. Camera Calibration Implementation

A suitable, constantly maintained and over the years extensively tested implementation
for camera calibration is provided by Bouguet [10] called Camera Calibration Toolbox. It
is available in MATLAB13 and as C++ implementation as part of the OpenCV library14.
The MATLAB version of the toolbox provides an easy-to-use graphical user interface
for more practical convenience and comes with an in-depth documentation.

The actual calibration procedure realised in the toolbox is based on the methods pro-
posed by Zhang [93] (initialisation phase, parameter estimation) and Heikkilä and Sil-
vén [40] (intrinsic camera model with enhanced lens distortion model).

The implemented method of Zhang [93], first recovers the intrinsic camera parameters by
homography estimation using a closed-form solution. Then it minimises the reprojection
error by using a Maximum Likelihood estimation based on the Levenberg-Marquardt
algorithm [58] to refine all retrieved camera parameters.

The Camera Calibration Toolbox applies this scheme of error minimisation to estimate
all parameters which are involved in the process of camera calibration (i.e. intrinsic
parameters, lens distortion parameters and extrinsic parameters).

4.2.3. Modelling Lens Distortion

As already mentioned the introduced finite projective camera model is not considered
sufficient when high accuracy is required. It has to be extended by additional terms in
order to model possible lens distortions. According to Weng et al. [89] such distortions
occur due to imperfect lens shape and improper lens and camera assembly (e.g. lens
surfaces not strictly collinear).

13http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
14http://docs.opencv.org/2.4.3/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
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The specific distortions considered by the model of Heikkilä and Silvén [40] are: radial
distortion, decentering distortion and thin prism distortion. All three types are expressed
by certain radial and tangential components in the model. Figure 4.3 illustrates selected
effects of different types of distortions.

(a) (b) (c) (d)

Figure 4.3.: Examples of different effects of lens distortions: (a) no distortion; (b) negative ra-
dial distortion (barrel effect); (c) positive radial distortion (pincushion effect); (d) thin prism
distortion caused by slight tilt of lens elements or image sensor.

For this model, a 3D point in the camera reference frame Xc = (X,Y, Z)T is projected
onto the image plane by applying the central projective mapping of the pinhole model
(Equation 3.3). This yields a normalised but distorted point coordinate xd (as described
in [10]):

xd =
(
xd

yd

)
=
(
fX/Z

fY/Z

)
(4.3)

with defining r = ||xd|| =
√
x2
d + y2

d, the undistorted point coordinate xu is expressed
as:

xu =
(
xu

yu

)
= (1 + k1r

2 + k2r
4 + k3r

6)xd + t (4.4)

where k1 . . . k3 model the radial distortion and t being tangential distortion vector
with:

t =
(

2p1xdyd + p2(r2 + 2xd2)
p1(r2 + 2yd2) + 2p2xdyd

)
(4.5)

The undistorted point coordinate xu and the final pixel coordinates xp = (xp, yp, 1)T

are then related by applying the following transformation

xp =


xp

yp

1

 = K


xn

yn

1

 (4.6)

with K being the finite projective camera matrix of form 3.11. From these equations one
can see that the initial set of intrinsic camera parameters αx, αy, x0, y0, s is extended by
the five distortion coefficients k1, k2, k3, p1, p2.
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4.2.4. Camera Calibration in Practice

The following instructions should offer comprehensive guidance for camera calibration
in practice.

1. Preliminaries
Calibrate camera on-site, before test ride to ensure similar lighting conditions as
during measurement. Use large enough, torsion-free calibration target. Example of
a chequerboard pattern is given in Figure 4.4.

2. Focus
Set focus of lens so that the depth of field best matches the working distance
between camera and multi-fiducial targets.

3. Image acquisition
Move calibration target in front of camera and acquire images from different view-
ing angles and positions of the calibration target. Select 10-15 format-filling images
which do not exhibit motion blur.

4. Calibration procedure
Use the Camera Calibration Toolbox to automatically label corners of the che-
querboard pattern and start calibration routine. It returns the described extended
intrinsic camera parameters as well as an uncertainty estimation.

5. Reprojection error
The toolbox automatically calculates the uncertainties for the results of the cal-
ibration. Although Heikkilä [39] proclaims an achievable accuracy of 0.02 pixel,
compared to the evaluations in [85] an error of ≤ 0.5 pixel is considered sufficient.

6. Reduced distortion model
According to Bouguet [10], it is justifiable (due to high quality of modern lenses)
to apply a reduced distortion model by not considering the 6th order radial coef-
ficient and the complete tangential distortion component (i.e. {k3, p1, p2} = 0). If
applicable, adjust the toolbox respectively.
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Figure 4.4.: Example of a planar calibration target using a chequerboard pattern. It is designed
to be used with ISO A-series paper sizes. The letters are used for identifying always the same
designated origin even under rotation.
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5. Experimental Evaluation

This chapter presents the extensive experiments and evaluations conducted in order to
test, evaluate and verify the feasibility of the designed measurement system for optically
tracking relative motions between railway vehicle carbodies.

5.1. Methodology

The evaluation is divided into three main parts, as the experiments are realised using
three distinct measurement setups, each employing a different target object tracked. The
first series of experiments is conducted at a laboratory scale in order to evaluate the basic
functionality of the measurement system. For the second set of experiments, the 6-DOF
motions of the carbodies are simulated using a full-sized hydraulic bogie test rig. The
third experiment is conducted in a real world environment, on board a running high
speed train.

For all the experiments the image acquisition system as described in Section 4.1.1 is
used to record imagery data. The SONY NEX-5N is mounted on a suitable tripod and
calibrated according to the guidance in Section 4.2.4. During the experiments, single
images or video streams are used to record the motions of the target object.

After image acquisition the data is processed according to the steps described in Sec-
tion 3. First the markers on all present multi-fiducial targets are tracked by the described
tracking algorithm. After extracting the subpixel-accurate image location of each fidu-
cial, the pose of the carbody is estimated from the given 2D-3D correspondences. This is
accomplished by applying the DLT and/or EPnP algorithms as presented in Section 3.3.
Then the sought-after relative pose is calculated by differencing the pose from image I0

(initial position) and the one in the current image. This process is repeated for every
acquired image.

The prototypical realisation of this processing toolchain is implemented in MATLAB.
In contrast to the specified requirement R(g), it is not capable of computing the relative
motions in real-time since image acquisition and further computations are processed
sequentially. In a productive system a change towards parallel processing is considered
necessary.
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5.2. Implementations of Pose Estimation Algorithms

The specific implementations for the pose estimation algorithms are taken from:

• DLT
A MATLAB implementation of the DLT algorithm is part of the Camera Cali-
bration Toolbox (see Section 4.2.2). The function for computing the pose of the
camera is realised in the file: compute_extrinsic.m.

Download:
http://vision.caltech.edu/bouguetj/calib_doc/download/toolbox_calib.zip

Remark:
This implementation of the DLT algorithm comes with an additional
iterative refinement process based on the Levenberg-Marquardt algorithm (see
compute_extrinsic_refine.m). This refinement is applied to all pose estimation
calculations.

• EPnP
This MATLAB implementation is directly taken from the homepage of its creator.
The function which estimates the pose is implemented in the file efficient_pnp.m

and including the Gauss-Newton optimisation in efficient_pnp_gauss.m respec-
tively.

Download:
http://cvlab.epfl.ch/software/EPnP/EPnP_matlab.zip

Remark:
In accordance with the usage described in [54], the standard EPnP procedure is
applied in the case of coplanar fiducials (i.e. all lie in one plane), whereas in the
non-coplanar case the EPnP with Gauss-Newton optimisation is utilised.
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5.3. Experiments in Laboratory

The experiments carried-out in the laboratory serve as a proof of concept to demonstrate
basic functionality and feasibility of the proposed measurement system. Therefore these
experiments were conducted on a small-scale basis, with constrained motions performed
by the target object while acquiring single images instead of whole image streams. The
employed basic measurement setup is described in the next section.

5.3.1. Measurement Setup

The measurement setup for the series of experiments conducted in the laboratory, here-
inafter referred to as Experiment 1, consists of a solid rail-mounted base frame for one
multi-fiducial target, with the rails permitting uniform linear displacements over a length
of up to 860 mm. Furthermore the frame can pivot about the vertical axis (yaw-rotation
(ψ)) from 0 ◦ to 360 ◦.

For each experiment the camera is operated in single-image mode. In order to simulate
continuous linear movements, a sequence of images is captured recording the target in
sequential equidistantly spaced positions. By defining the target in frame I0 to be in the
initial pose (see Section 3.4.3), the final relative pose estimations are calculated with
respect to this position. Figure 5.1 pictures the measurement setup with the rail system
holding the manually moveable base frame.

Precise reference data of the uniform linear displacements is recorded using a laser
rangefinder (Bosch GLM 150). The uncertainty of the reference data is roughly estimated
by accumulating the uncertainty specified by the manufacturer of the laser rangefinder
(±1 mm under typical conditions [73]) and an assumed misalignment of ±1 ◦ between
the measured and the actual direction of displacement (yielding ∼860.13 mm instead of
860 mm). This amounts to an upper bound of uncertainty of ≤ 1.2 mm.

This measurement setup facilitates the following experiments which are described in the
subsequent sections:

• Experiment 1a: simulation of translational movement along x-axis
• Experiment 1b: simulation of translational movement along y-axis
• Experiment 1c: simulation of rotation about z-axis (yaw-rotation)
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Figure 5.1.: Measurement setup used to conduct the series of experiments in laboratory (re-
ferred to as Experiment 1). Setup consists of solid rail system and transverse mounted, manually
moveable base frame holding rotatable multi-fiducial 7-CCC target.
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5.3.2. Experiment 1a

For this experiment, the 7-CCC target, the rail-system and the camera were arranged in a
row, enabling the simulation of a uniform target motion along the x-axis (see Figure 5.2)
of the carbody motion model presented in Section 3.4.1.

The linear movement was performed over a range of 800 mm in steps of 10 mm. To
ensure a better verification, two images were acquired per step yielding a total of 160
measurement points. The reference data for the movement was measured along the x-axis
only. All translations and rotations along other DoF are expected to be zero.

Although the measurement setup was adjusted very carefully, the presence of a small
rotational misalignment between the axis of the rail system and the coordinate system of
the initial pose is inevitable. This effect introduces a certain bias to the calculated trans-
lational displacements. As this misalignment is of constant nature, it is computationally
compensated for in an extra post-processing step (using a constant angle-factor).

The measurement setup is subject to the following parameters:

• Distance to target: 4500 mm (at I0)
• Image size: 4912× 3264 pixel2

• Focal length (f): 55 mm
• Aperture value: f/22
• Exposure time: 1/50 sec

(a) I0 (b) I159

Figure 5.2.: (a) and (b) show frames recorded at beginning (I0) and end (I159) of linear target
displacement along x-axis performed in Experiment 1a. The tracking results are superimposed
with green crosses.
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Figure 5.3.: Relative translations performed by target object in Experiment 1a represented by the
individual axes {∆X,∆Y,∆Z}. The deviations of displacements in other than the main direction
{∆Y,∆Z} are very low (note the different scale). The ∆X-signal is staircase-shaped because of
two images recorded per target position.
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Figure 5.4.: Relative rotations performed by target object in Experiment 1a represented by the
individual angles of rotations {∆φ, ∆θ, ∆ψ}. The high variance of the {∆θ,∆ψ} angles is most
probably due to minor input changes and numerical issues in pose estimation methods as well
as inaccuracies in the measurement setup (rail system, poor initialisation).

Figures 5.3 and 5.4 show the relative translational and rotational displacements of the
linear target movement, subdivided into the six individual DoF (i.e. {∆X,∆Y,∆Z} and
{∆φ,∆θ,∆ψ}). Each diagram shows the values of the DLT and EPnP pose estimation
algorithms and the provided reference data (REF). The main direction of displacement
of the target is into axial x-direction, with no other major translation or rotation mea-
sured. 60
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From Figure 5.3 it can be seen that the measurements of the translations are very accu-
rate. Only small deviations to the reference data are perceivable (e.g. MAXDLT(∆X)=
1.5 mm, see Table 5.1). The staircase-shape visible in the signal of the x-translation
(∆X) is due to the two images recorded per target position.

The first notable characteristic about the measured rotations presented in Figure 5.4 is
that the roll angle (θφ) can be determined most accurately. The perceivable variance in
the signals of ∆θ and ∆ψ is influenced by three major factors:
First, it is evident that for both pose estimation algorithms, the slightest change in the
subpixel image location of one or more fiducials primarily affects the calculation of ∆θ
and ∆ψ angles. In contrast, the image positions of all fiducials need to be affected in or-
der to induce deviations of the ∆φ angle. From the differences in measurements between
two consecutive frames in which the target remained fixed (no staircase-effect visible),
it can be concluded that the DLT and EPnP algorithms are susceptible to minor input
changes. These input changes result from different initialisations of the CoG method
during the tracking procedure (see Section 3.2.3).
Second, the particular configuration, with only one target and the small distances be-
tween the fiducials in the image, amplifies the mentioned effect. In this case the pose
estimation methods are influenced by numerical issues, where even very small changes
to the image locations result in large deviations.
Third, the frames where both DLT and EPnP show the same magnitude of deviation,
apparently indicate the presence of a certain amount of play (flexibility) between rails
and sliding base frame. Thus, the deviations at least partially arise from inaccuracies
introduced by the rail system.

The small but constant offset of both DLT and EPnP in the measurements of ∆θ, is
considered as a consequence of a poor initialisation, where the value calculated from the
pose in the first frame (I0) is not representative for all subsequent ones.

For a better comparison, Figure 5.5 shows the deviation of the ∆X signal of DLT and
EPnP to the reference data. Compared to the results of ∆Y and ∆Z, ∆X exhibits the
largest deviation, but is still within the limits defined in requirement R(a). It is important
to observe that the deviation over the whole range does not increase with the distance
of the target from the camera.
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Figure 5.5.: Deviations of the ∆X signal for both DLT and EPnP from the reference data. Note
that the deviation does not increase with the distance of the target from the camera.
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5.3.3. Experiment 1b

For this experiment the target, the rail system and the camera were arranged in a way to
simulate a uniform relative translation of the carbody into the y-direction of the defined
coordinate system. This time, the translation was performed back and forth over the
range of 860 mm in steps of 20 mm.

As in Experiment 1a, two images were acquired per position yielding 176 measurement
points. The reference data for the displacement was measured along the y-axis only,
with the same estimation of uncertainty as valid for Experiment 1a. All translations and
rotations along other DoF are expected to be zero. Furthermore, the initial rotational
misalignments of the measurement setup (rail-system vs. initial pose) were corrected by a
constant angle-factor after completing the measurement in an additional post-processing
step.

Figure 5.6 illustrates the configuration of the setup: the camera was installed alongside
the rail system with the projection of the target being located in the image centre in I0

and at the image border in I88.

The measurement setup is subject to the following parameters:

• Distance to target: 3600 mm (at I0)
• Image size: 2448× 1624 pixel2

• Focal length (f): 35 mm
• Aperture value: f/22
• Exposure time: 1/40 sec

(a) I0 (b) I88

Figure 5.6.: (a) and (b) show frames recorded at beginning (I0) and maximum (I88) of linear
target displacement along y-axis. Although using less distance between camera and target, com-
pared to Experiment 1a, the appearance of the target is smaller due to the shorter focal length
applied. The tracking results are superimposed as green crosses.
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Figure 5.7.: Relative translations performed by target object in Experiment 1b represented by the
individual axes {∆X,∆Y,∆Z}. The ∆Y-signal is staircase-shaped because of two images recorded
per target position. Outliers from frame 118 onwards are result of battery change (greyed out).
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Figure 5.8.: Relative rotations performed by target object in Experiment 1b represented by the
individual angles of rotations {∆φ, ∆θ, ∆ψ}. Outliers from frame 118 onwards are result of
battery change (greyed out).
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As expected, from Figure 5.7 it is apparent that the target’s main direction of displace-
ment is performed along axial y-direction. Figures 5.7 and 5.8 show larger deviations of
the measurements from the reference data compared to Experiment 1a. An obvious rea-
son for this effect lies in the reduced resolution of the images and the smaller appearance
of the target in the image data due to the shorter focal length applied.

The considerable outliers in the measurements at and after frame 118, visible in the
signals of ∆X, ∆Z and ∆ψ, are result of a battery change which was necessary during
the experiment. Although not unmounted from the tripod, it recognizably changed the
orientation of the camera.

Furthermore, in this experiment the pose calculations of the EPnP algorithm generally
exhibit larger deviations compared to the results of the DLT algorithm
(e.g. STD(∆θ)DLT = 0.15 ◦, STD(∆θ)EPnP = 0.26 ◦; see Table 5.2). A reason for this
effect is that for a planar target, as in the present case, the EPnP algorithm without the
Gauss-Newton optimisation is applied (conforms with usage described in [54]; application
of optimisation procedure leads to severe outliers in resulting pose estimates).

For a better comparison Figure 5.9 shows the deviation of the ∆Y measurements of both
pose estimation algorithms to the reference data.
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Figure 5.9.: Deviations of the ∆Y signal for both DLT and EPnP from the reference data. The
slightly increasing deviation most likely caused by not properly aligned device for measuring the
reference data.

Although the signals {∆X,∆Y,∆Z} exhibit larger deviations, these are still within the
limits defined in requirement R(a). The deviations of ∆θ and ∆ψ are outside the required
tolerance. Both effects are best explained with uncertainties in the pose estimation pro-
cedures and inaccuracies in the rail system as part of the measurement setup. The given
data does not provide evidence for any significant systematic bias in neither the camera
calibration procedure, the measurement setup nor the pose estimation algorithms. Even
the slight increase in deviations of the reference data in ∆Y (see Figure 5.9) is most
probably caused by a small misalignment of the laser rangefinder while measuring the
reference data.
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5.3.4. Experiment 1c

For this experiment the same arrangement in the measurement setup as in Experi-
ment 1b was chosen. This time the behaviour of the measurement system while applying
rotations to the tracked object is investigated. For this experiment the target was piv-
oted around its z-axis (yaw-rotation (∆ψ)) from its initial position at 0 ◦ up to ±25 ◦

in steps of 5 ◦. The trajectory with a total of 42 measurement points performed is:
0 ◦, 25 ◦, 0 ◦, −25 ◦, 0 ◦.

Since, for this case the laser rangefinder was not considered to provide suitable reference
data, the values were read manually after rotating the target to the given measurement
points. Thus, it is important to understand that, in this experiment the reference
data can only be used as an indicator for possible deviations. The maximum
uncertainty for the manually obtained reference data is estimated with ±2 ◦.

In contrast to the other two experiments, the origin of the target object’s coordinate
system is adjusted to be located at the centre of rotation of the base frame.

The measurement setup is subject to the following parameters (same as in
Experiment 1b):

• Distance to target: 3600 mm (at I0)
• Image size: 2448× 1624 pixel2

• Focal length (f): 35 mm
• Aperture value: f/22
• Exposure time: 1/40 sec

(a) I0 (b) I11

Figure 5.10.: (a) and (b) show frames recorded at 0 ◦ (I0) and at maximum rotation of 25 ◦ (I11)
of target rotation about the z-axis. The tracking results are superimposed as green crosses.
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Figure 5.11.: Relative translations performed by target object in Experiment 1c represented by
the individual axes {∆X,∆Y,∆Z}. The high deviation in the ∆X-signal are most likely due to
a misalignment of the target axis and the axis of rotation of the base frame. Note the divergent
solutions of DLT and EPnP in ∆X.
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Figure 5.12.: Relative rotations performed by target object in Experiment 1c represented by the
individual angles of rotations {∆φ, ∆θ, ∆ψ}. Note the divergent solutions of DLT and EPnP in
∆θ.
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Figures 5.11 and 5.12 exhibit significant deviations of the measurements in Experi-
ment 1c. To a great extent, these differences arise from a misalignment of the target
coordinate system and the axis of rotation of the base frame holding the target. It shows
that even the smallest misalignment in the setup can lead to considerable deviations
under rotations up to ±25 ◦.

In the measurements of ∆X and ∆θ the pose estimates of DLT and EPnP result in
divergent solutions. This may be explained by pose ambiguities in critical configura-
tions introduced when employing a planar target. This influence on measurements is
investigated in detail by Schweighofer and Pinz [76].

For a better comparison Figure 5.13 shows the deviation of the ∆ψ measurements of
both pose estimation algorithms to the reference data.
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Figure 5.13.: Deviations of the ∆ψ signal for both DLT and EPnP from the reference data. Note
that the corresponding reference data is determined manually.

The lack of reliable reference data and the obvious misalignment of the target object
coordinate system with the base frame’s centre of rotation do not allow for any causal
interpretation of the measurements. The deviations from the reference data visible in all
figures of Experiment 1c (Figures 5.11, 5.12, 5.13) only serve as a coarse indicator for
the actual deviations.

Nevertheless, one can observe that the resulting measurements are by no means at ran-
dom, but clearly show the expected main rotation about the z-axis of the target. Further-
more, it is visible, that the deviation is not necessarily increasing with growing rotational
displacement, as the deviation around −25 ◦ (frame 30) of the DLT algorithm is very
small.

Moreover, Experiment 1c reveals the important fact that, for an identical input of a
degenerate configuration the two employed pose estimation algorithms show distinct
results.
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5.3.5. Uncertainty Analysis

The evaluation of the measurement uncertainty of the experiments in the laboratory is
conducted by using the common measures of the maximum error (MAX), the root-mean-
square error (RMSE), the arithmetic mean (MEAN) and its corresponding standard
deviation (STD). The uncertainties of DLT and EPnP are presented in Tables 5.1, 5.2
and 5.3 for each experiment and each DoF respectively. Red values in the MAX column
indicate values of signals which exceed the limits defined in requirement R(a). Reasons
for these exceedances and the corresponding uncertainties of the reference data are given
in the respective discussions above.

In general, it can be concluded that the estimation of uncertainties for Ex-
periment 1 confirms the basic feasibility and a sufficient accuracy of proposed
measurement system.

EX 1a MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT 1.5 / 0.6 / 0.3 0.8 / 0.2 / 0.1 0.7 / 0.0 / 0.0 0.4 / 0.2 / 0.1
EPnP 1.5 / 0.6 / 0.3 0.7 / 0.2 / 0.1 0.6 / 0.0 / 0.0 0.3 / 0.2 / 0.1

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT 0.01 / 0.59 / 0.57 0.01 / 0.20 / 0.19 0.00 / -0.16 / -0.02 0.00 / 0.12 / 0.19
EPnP 0.01 / 0.68 / 0.33 0.01 / 0.28 / 0.14 0.00 / -0.25 / 0.11 0.00 / 0.13 / 0.09

Table 5.1.: Uncertainty of measurements for Experiment 1a.

EX 1b MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT 4.1 / 4.9 / 0.7 1.4 / 2.2 / 0.3 0.2 / -1.7 / -0.1 1.4 / 1.4 / 0.3
EPnP 5.9 / 2.9 / 0.7 2.0 / 1.2 / 0.3 0.4 / -0.9 / -0.1 1.9 / 0.9 / 0.3

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT 0.09 / 0.34 / 1.04 0.07 / 0.19 / 0.30 0.06 / -0.11 / -0.16 0.03 / 0.15 / 0.25
EPnP 0.15 / 0.83 / 1.59 0.08 / 0.36 / 0.44 0.07 / 0.26 / 0.01 0.04 / 0.26 / 0.45

Table 5.2.: Uncertainty of measurements for Experiment 1b.

EX 1c MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT 7.3 / 2.8 / 1.4 3.7 / 1.4 / 0.8 -2.7 / 1.2 / 0.7 2.7 / 0.8 / 0.4
EPnP 9.9 / 2.4 / 1.2 3.8 / 1.0 / 0.6 0.6 / 0.3 / 0.0 3.8 / 1.0 / 0.6

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT 0.44 / 1.21 / 2.31 0.22 / 0.78 / 1.19 0.03 / -0.66 / -0.92 0.22 / 0.42 / 0.76
EPnP 0.42 / 1.28 / 1.59 0.17 / 0.63 / 0.76 0.05 / -0.04 / -0.08 0.16 / 0.64 / 0.77

Table 5.3.: Uncertainty of measurements for Experiment 1c. Shown greyed out because the data
is not statistically meaningful due to lack of reliable reference data.
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5.4. Experiments on Test Rig

A series of experiments (hereinafter referred to as Experiment 2) were performed on a
hydraulic bogie test rig (Stewart/Gough-Platform), to test and simulate the proposed
measurement system in a real-world application. During regular operation, this test rig is
used to conduct endurance and life-cycle tests. With the platform and its specialised six-
cylinder layout (see Figure 5.14), it applies dynamic loads onto the bogie, thus simulating
different riding conditions. For this specific task the platform is able to perform the 6-DoF
motions of a carbody and therefore acts as a perfect target object for the proposed
measurement system. Furthermore, reliable and accurate reference data about pose of
the platform can be retrieved.

In this section presenting Experiment 2, first the applied basic measurement setup is
introduced (see Section 5.4.1) and important details about the available reference data
and synchronisation are given (see Section 5.4.2). Then the results of the conducted three
test runs with different settings and parameters, are presented (see Sections 5.4.3, 5.4.4
and 5.4.5). Thereafter, from the gained data of the experiments, extensive evaluations
are made in order to make reliable predictions about the influence of the applied number
of fiducials and targets on the measurement uncertainty of the system (see Sections 5.4.6
and 5.4.7).

The following list presents an overview of the conducted experiments and evaluations:

• Experiment 2a: Test run using multiple targets.
• Experiment 2b: Same as Experiment 2a but with different displacements.
• Experiment 2c: Test run with one planar target with larger appearance.
• Evaluation 2a: Uncertainty of DLT and EPnP, subject to increasing number

of fiducials.
• Evaluation 2b: Demonstrates change in uncertainties when applying non-

coplanar input data.
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5.4.1. Measurement Setup

For Experiment 2 the measurement setup consists of the mentioned hydraulic bogie test
rig with various multi-fiducial targets attached to its movable platform and the image
acquisition system introduced in Section 4. Figure 5.14a shows a CAD model of the whole
bogie test rig. Figure 5.14b illustrates the movable platform and the defined reference
frames between which the simulated relative carbody motions are measured.

(a)

Z

Y

X

X

Z

Y

(b)

Figure 5.14.: (a) CAD Model of the bogie test rig. Consists of a structure carrying the platform
(red) and the attached six cylinders (red/orange). By continuously changing the positions of the
cylinders the platform performs different 6-DoF motions. Image adapted from [68]. (b) illustration
of the basic measurement setup. Camera facing towards platform with a mutli-fiducial target
attached to front. The origin of the reference frame is defined to be at the platform’s centre of
the bottom surface.

The camera was placed on the ground in about 5 m distance to the platform. For each
experiment the motions of the platform are recorded by the camera in a continuous
video stream in the AVCHD standard using the HD1080p/50 format (i.e. full frames
with 1920× 1080 pixel2 at 50 fps).

For Experiments 2a and 2b multiple ISO A3 sized 7-CCC targets (three coplanar targets
in the front, one spatially displaced at the bottom back) were attached to the platform.
For Experiment 2c one large target (ISO A1 sized) was attached to the front in order to
evaluate the system using larger fiducials.

As proposed in Section 4.2 the camera calibration was done on-site. For setting up the
calibration target as well as mounting the multi-fiducial targets so-called KAPA boards15

were used.
15http://www.kapaplatten.de/produkte/kapa_mount.html
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KAPA boards are special lightweight, aluminium-reinforced boards with a rigid foam
core (see [18]). The sandwich construction makes them particularly high-strength and
torsionally resistant but still enables easy processing (e.g. cutting to size). These KAPA
boards are perfectly suitable for mounting the multi-fiducal targets as well as holding
the calibration target.

Figure 5.15 shows the measurement setup with the image acquisition system, the mounted
multi-fiducial targets and the calibration target used.

Figure 5.15.: Basic measurement setup used in Experiment 2: the movable platform with three
targets mounted in front and one in the back (red box), the calibration target (green box) and
the tripod mounted camera in the foreground (blue box). All targets are applied to KAPA boards
for torsion-free mounting. Note that all experiments were conducted with the test rig unloaded
(i.e. no bogie present).

5.4.2. Reference Data and Synchronisation

The reference data for the current pose of the platform is retrieved from the control
system of the test rig. It calculates the pose directly from the positioning of the cylin-
ders measured by additional displacement-sensors attached to each hydraulic cylinder.
According to [68] the maximum error (MAX) of pose calculations of the test rig lies in
the range of ±3 mm and ±2 ◦.

The data of the test rig is sampled at a frequency of 50 Hz. This sampling rate is very
convenient regarding the task of synchronisation because the chosen video recoding mode
samples images at 50 fps likewise.
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The inherent drift of the internal clocks of the two measurement systems is disregarded,
because the clocks are considered to be sufficiently accurate and the test runs are ex-
pected to last shorter than 20 minutes. Thus only the beginning of the reference data
and the image data has to be aligned.

Precise initial time alignment of the reference data and measurements is a very crucial
part of the evaluation since it strongly impacts the uncertainty of measurement.

The time alignment is based on a simple image subtraction followed by a summation
of absolute grey level differences (sum of absolute differences (SAD), see Equation 5.1).
It is used to calculate a basic metric between the first (F0) and the subsequent frames
(Ft with t = 0 . . . 1200 (1200 estimated)) in the recorded sequence.

SAD =
∑
x,y∈F

|F0(x, y)− Ft(x, y)| (5.1)

The specific frame at which the sum of differences first exhibits the most significant
change (the metric gets larger) is determined to be the start of the test run (i.e. where
the platform first moves) and defined to be I0 in the tracking process. It is marked with
a blue square in Figure 5.16.
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Figure 5.16.: Shows the result of the image differencing algorithm for Experiement 2a. The start
of the test run is easily identified at frame 1092 (blue square).

The high values and the regular pattern visible in the SAD signal arise from the data
compression in the images. The local maxima and minima are most probably due to
small adjustments by the test rig’s control system before the start of the actual test
run.

Because all the experiments on the test rig were conducted unloaded (i.e. no bogie
present), for security reasons the simulated motions were carried out very slow. There-
fore, it is not reasonable to evaluate the acquired data at its maximum sampling fre-
quency of 50 Hz. In order to simulate a train ride at normal speed, it is decided to
evaluate the acquired measurement data at only 1Hz (1fps). This also has the
advantage of greatly reducing the amount of data and processing time during various
experiments and evaluations.
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5.4.3. Experiment 2a

For this experiment, in total four ISO A3 7-CCC targets were attached to the platform
(three coplanar in the front and one at the bottom back). The whole test run lasted
about 17 minutes (exact: 986 sec = 986 measurement points) in which the platform
simulated motions into all 6-DoF (illustrated in Figures 5.17 and 5.22). At the begin-
ning of the sequence each DoF was tested separately, describing the trajectory by the
following sequence: ∆Z,∆X,∆Y,∆φ,∆ψ,∆θ (I0 – I711). Afterwards a coupled oscillation
(i.e. combined DoF ∆Y + ∆φ) called swaying was tested (I712 – I986). All available
28 = 7× 4 fiducials are used to estimate the pose in this experiment.

The maximum displacements carried out by the platform in Experiment 2a are:
∆X: ±100 mm, ∆Y: ±120 mm, ∆Z: −200/+150 mm
∆φ: ±5 ◦, ∆θ: ±5 ◦, ∆ψ: ±6 ◦

Although the test rig was not able to simulate the maximum range of expected motions
as specified in Section 1.2, it is still legitimate to evaluate the basic feasibility of the
proposed measurement system.

The specific measurement setup is subject to the following parameters:

• Distance to platform origin: 4601 mm (at I0)
• Image size: 1920× 1080 pixel2

• Focal length (f): 18 mm
• Aperture value: f/22
• Exposure time: 1/50 sec

(a) I0 (b) I563

Figure 5.17.: (a) shows frame recorded at beginning (I0) and (b) during maximum angular yaw
(∆ψ) displacement (I563) performed in Experiment 2a. The tracking results are superimposed
with green crosses.
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As in Experiment 1, the performed relative motions are illustrated by their single DoF
trajectories (REF) and the calculated pose from DLT and EPnP in Figures 5.18 and 5.20.
For a better comparison, the figures with the occurring deviations of the both pose
estimation algorithms are depicted directly beneath the corresponding displacements
(see Figures 5.19 and 5.21).
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Figure 5.18.: Relative translations performed by platform in Experiment 2a represented by the
individual axes {∆X,∆Y,∆Z}.
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Figure 5.19.: Deviations of the {∆X,∆Y,∆Z} signals for both DLT and EPnP from the refer-
ence data. Step response like deviations result from erroneous synchronisation. Linear deviations
indicate misalignment of the reference frames or imprecise camera calibration.
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Figure 5.20.: Relative rotations performed by platform in Experiment 2a represented by the
individual angles of rotations {∆φ, ∆θ, ∆ψ}.
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Figure 5.21.: Deviations of the {∆φ, ∆θ, ∆ψ} signals for both DLT and EPnP from the refer-
ence data. Step response like deviations result from erroneous synchronisation. Linear deviations
indicate misalignment of the reference frames or imprecise camera calibration.

From Figures 5.18 and 5.20 the performed trajectories of the relative motions are clearly
observable. As only the blue line from EPnP is visible in the figures (it is plotted last), it
is evident that the obtained deviations of both DLT and EPnP are generally very small
compared to the performed linear and angular displacements.
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The achieved results are only true when all available 28 fiducials are applied in the pose
estimation process. Evaluation 2a (Section 5.4.6) examines the system’s behaviour using
different numbers of fiducials and evaluates the performance of DLT and EPnP under
these conditions.

The deviations visible in Figures 5.19 and 5.21 show that these are not normally dis-
tributed but rather exhibits a systematic bias. The step response like deviations (e.g. in
intervals ∆Z dev (I0 – I112), ∆φ dev (I360 – I470)), suggest some kind of constant offset
and therefore strongly indicate that these deviations are due to inaccurate synchroni-
sation. Whereas, in the same interval of the sequence, the linear deviations depicted in
{∆X dev, ∆Y dev, ∆θ dev, ∆ψ dev} are likely to arise from a small misalignment of the
coordinate systems because of either inaccuracies in mounting of the targets or a poorly
determined initial pose. Another reason for these deviations in measurements can be an
insufficiently accurate camera calibration. This is not very likely because the deviations
concerned are of linear order.

At this place, problems with the pose estimation algorithms itself may be
excluded insofar as the results of DLT and EPnP only differ to a small extent
(e.g. max(∆XDLT −∆XEPnP) ≤ 1.2 mm).

The slowly but constantly increasing deviation of both DLT and EPnP in the ∆Z dev
signal is explained by the fact that, in contrast to the image acquisition system, the base
of the test rig is mounted on air bearings to avoid external influence on the measurements.
Obviously these air bearings change their state in the course of the test run. This type
of relative motion is not covered by the reference data.

Table 5.4 presents the uncertainty of the results achieved in Experiment 2a. The maxi-
mum deviations for all DoF are very well within the defined limits of R(a).

EX 2a MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT 2.0 / 1.8 / 2.2 0.7 / 0.8 / 1.4 -0.5 / -0.6 / -1.3 0.4 / 0.5 / 0.6
EPnP 1.7 / 1.8 / 2.2 0.5 / 0.8 / 1.4 -0.3 / -0.5 / -1.2 0.4 / 0.5 / 0.6

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT 0.09 / 0.14 / 0.18 0.02 / 0.02 / 0.04 0.00 / 0.01 / -0.01 0.02 / 0.02 / 0.04
EPnP 0.09 / 0.14 / 0.19 0.02 / 0.02 / 0.04 -0.01 / 0.00 / -0.01 0.02 / 0.02 / 0.04

Table 5.4.: Uncertainty of measurements for Experiment 2a.
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5.4.4. Experiment 2b

The measurement setup for Experiment 2b was identical to the one of Experiment 2a, ex-
cept for the different maximum displacements carried out by the platform. The recorded
test run lasted about 1015 sec yielding 1015 measurement points. Again, all available
28 = 7× 4 fiducials are used to estimate the pose in this experiment.

The maximum displacements (different from Experiment 2a) carried out by the platform
in Experiment 2b are:
∆X: ±70 mm, ∆Y: ±150 mm, ∆Z: ±150 mm
∆φ: ±3 ◦, ∆θ: ±3 ◦, ∆ψ: ±5 ◦

The measurement setup is subject to the following parameters (same as in
Experiment 2a):

• Distance to platform origin: 4601 mm (at I0)
• Image size: 1920× 1080 pixel2

• Focal length (f): 18 mm
• Aperture value: f/22
• Exposure time: 1/50 sec

(a) I30 (b) I85

Figure 5.22.: (a) and (b) show frames recorded at the corresponding maximum displacements
during z-translation (I30 and I85) performed in Experiment 2b. The tracking results are super-
imposed with green crosses.

Because in Experiment 2b the platform performed the same trajectory as in Experiment
2a, only the figures illustrating the deviations from the reference data are presented. See
Figures 5.23 and 5.24 on the next page.
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Figure 5.23.: Deviations of the {∆X,∆Y,∆Z} signals for both DLT and EPnP from the reference
data in Experiment 2b.
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Figure 5.24.: Deviations of the {∆φ, ∆θ, ∆ψ} signals for both DLT and EPnP from the reference
data in Experiment 2b.
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From the deviations depicted in Figures 5.23 and 5.24, it is obvious the calculation of
the synchronisation for Experiment 2b was more precise since the step response like
deviations are smaller. The rest of the depicted deviations is very similar to the results
achieved in Experiment 2a. This strongly indicates the exact repeatability of results
gained from different measurements. Table 5.5 presents the evaluation of uncertainty of
measurement for Experiment 2b.

EX 2b MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT 1.6 / 2.0 / 2.1 0.5 / 0.7 / 1.2 -0.4 / -0.6 / -1.0 0.3 / 0.5 / 0.6
EPnP 1.4 / 2.1 / 2.1 0.6 / 0.8 / 1.1 -0.4 / -0.6 / -1.0 0.4 / 0.5 / 0.6

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT 0.05 / 0.11 / 0.14 0.01 / 0.02 / 0.03 0.00 / 0.00 / 0.01 0.01 / 0.02 / 0.03
EPnP 0.05 / 0.11 / 0.14 0.01 / 0.02 / 0.03 -0.01 / 0.00 / 0.01 0.01 / 0.02 / 0.03

Table 5.5.: Uncertainty of measurements for Experiment 2b.
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5.4.5. Experiment 2c

The measurement setup for Experiment 2c differs from the previous experiments by the
application of only one but therefore larger ISO A1-sized 7-CCC target and the change
towards a bigger focal length in order to further increase the appearance of the fiducials.
The recorded test run yields 965 measurement points with the platform performing the
identical trajectory as for Experiment 2b.

The measurement setup is subject to the following parameters:

• Distance to platform origin: 5665 mm (at I0)
• Image size: 1920× 1080 pixel2

• Focal length (f): 55 mm
• Aperture value: f/5.6
• Exposure time: 1/50 sec

(a) I0 (b) I870

Figure 5.25.: (a) and (b) show frames recorded at the beginning of the sequence (I0) and during
the simulated coupled-oscillation (swaying) at I870. The tracking results are superimposed with
green crosses.

Because in Experiment 2c the platform performed the same trajectory as in Experiment
2b, only the figures illustrating the deviations from the reference data are presented. See
Figures 5.26 and 5.27 on the next page.
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Figure 5.26.: Deviations of the {∆X,∆Y,∆Z} signals for both DLT and EPnP from the reference
data in Experiment 2c.
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Figure 5.27.: Deviations of the {∆φ, ∆θ, ∆ψ} signals for both DLT and EPnP from the reference
data in Experiment 2c.
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As shown in Figures 5.26 and 5.27, it is reasonable that the pose calculations are subject
to larger deviations and higher variance when using only seven compared to the 28
fiducials in the previous experiments.

Remarkable is the fact that for only seven CCC fiducials the EPnP algorithm exhibits
much larger deviations than DLT. An explanation for this effect is the application of
the EPnP without the iterative refinement step (planar target; discussed in Experi-
ment 1b (Section 5.3.3)).

Furthermore it is apparent that the largest systematic deviations in the interval I480 – I590

(during yaw-rotation) are visible for both algorithms which even return distinct results.
Probable reasons for that may be an inaccurate calibration, problems during the tracking
process due to changing lighting conditions or the occurrence of a critical configuration
(for the latter see discussion in Experiment 1c (Section 5.3.4)).

Table 5.6 compares the uncertainty of the DLT pose estimation results of Experiment 2c
(ISO A1 sized) with the ones of Experiment 2b (when using the centred ISO A3 target to
calculate the pose). It shows that the application of larger fiducials does not significantly
contribute to a smaller measurement uncertainty.

EX2b / EX2c MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT(EX 2b) 5.1 / 6.0 / 6.6 1.4 / 1.6 / 2.2 -0.1 / -0.7 / -0.9 1.4 / 1.4 / 2.0
DLT(EX 2c) 6.6 / 5.6 / 7.1 1.7 / 1.4 / 1.7 -1.1 / -0.2 / 1.0 1.2 / 1.4 / 1.4

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT(EX 2b) 0.11 / 0.38 / 0.32 0.03 / 0.10 / 0.08 -0.02 / -0.01 / 0.01 0.03 / 0.10 / 0.08
DLT(EX 2c) 0.09 / 0.40 / 0.22 0.02 / 0.11 / 0.07 -0.01 / -0.08 / 0.01 0.02 / 0.07 / 0.06

Table 5.6.: Comparison of uncertainties for Experiment 2b with Experiment 2c. Although fidu-
cials have much larger appearance, the results of Experiment 2c do not show any significant
improvement in measurement accuracy. The results of the EPnP algorithm are omitted.

From the results in Table 5.6, it is concluded that it is not the size but that rather the
amount of applied fiducials greatly impacts the measurement accuracy. This is in good
accordance with [53] which states that “larger targets give similar, but not better results”.
Thus, the question arises about a suitable number of fiducials with which the measure-
ment system meets the required accuracy. This important property of the measurement
setup is investigated in the next section (Evaluation 2a).
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5.4.6. Evaluation 2a

From the discussion in Section 3.3.5 and with the results of Experiments 2a and 2b it is
shown that a suitable number of fiducials applied in measurements lies in the range of
four and the maximum of 28 divided into four 7-CCC targets.

The purpose of this evaluation is to examine the system’s accuracy with different numbers
of fiducials applied to estimate the pose using the DLT and the EPnP algorithm. For
this purpose, a numbering scheme (depicted in Figure 5.28) is related to the targets
and fiducials mounted on the platform. Each fiducial receives an unique identifier which
corresponds to the particular number in the increasing order it is used for the pose
calculations. The number of an individual fiducial (FK) can be calculated by:

FK = (7× (TN − 1)) + OM (5.2)

with TN being the target number and OM the order of the fiducials on the target.

Figure 5.28.: Numbering scheme used in evaluation. Target numbers (TN ) are depicted in blue.
Black digits (OM ) superimposed on target 1 exemplify the order of fiducials per target. The red
rectangle indicates that target 4 is displaced into the back of the platform.

For this evaluation, the measurement setup, parameters and data of
Experiment 2a is used. The pose is estimated the same way by both DLT and EPnP
but this time the number of fiducials is continuously increased (following the proposed
numbering scheme) while monitoring the development of the MAX and RMSE devia-
tions.

As the expectation is that the rotational deviations show a similar behaviour, only the
results for the translational deviations are illustrated in Figure 5.29.
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Figure 5.29.: MAX and RMSE deviations of the {∆X,∆Y,∆Z} signals for both DLT and EPnP
from the reference data when applying an increasing number of fiducials. Intervals with fiducials
belonging to one target are denoted explicitly. EPnP deviations are generally higher but with
slightly better results when using fiducials on all four targets.

Figure 5.29 depicts the development of the MAX and RMSE translational deviations for
DLT and EPnP algorithms while applying an increasing number (4–28) of fiducials. The
target numbers (TN ) are displayed within the corresponding intervals.

Generally it is visible that, the results of the EPnP algorithm exhibit a higher uncer-
tainty until using 22 fiducials on all four targets, from which onwards the deviations
approximately coincide with the ones of the DLT algorithm. For the DLT it shows that
when using 2 targets with 11 coplanar points (F11) the deviation drops below the re-
quired 10 mm maximum deviation (R(a), denoted with a thin black line). The EPnP
algorithm fulfils the requirement when using 3 coplanar targets and 18 fiducials.

Furthermore the results show that the uncertainty of both DLT and EPnP still decreases
after adding the first fiducial from the spatially displaced target (T4). This fact is magni-
fied by the two zoom-boxes in Figure 5.29. Obviously, the inclusion of information from
non-coplanar points reduces the measurement uncertainty. This effect is investigated in
the next section (Evaluation 2b).
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5.4.7. Evaluation 2b

The goal of this evaluation is to provide information about the importance of the applica-
tion of non-coplanar points for this specific pose estimation task. Therefore the evaluation
is conducted using the same preconditions as in Evaluation 2a. Except the numbering
scheme is adapted by changing the order of targets evaluated from
T1, T2, T3, T4 → T1,T4, T3, T2.

The results of this evaluation when the spatially displaced target T4 is applied earlier in
the sequence of evaluation are illsutrated in Figure 5.30.
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Figure 5.30.: MAX and RMSE deviations of the {∆X,∆Y,∆Z} signals for both DLT and EPnP
from the reference data when applying an increasing number of fiducials. Interval of T2 is ex-
changed with T4 to show behaviour when applying non-coplanar points.

From Figure 5.30 it is visible that the accuracy is dramatically increased when applying
information from non-coplanar instead of coplanar points (as depicted in Figure 5.29).
With the exception of the ∆XEPnP signal, all deviations drop to a more or less constant
value. When adding further information of T3 at F15 only slight improvements in accuracy
are measurable (see the zoom-boxes in Figure 5.30).

These findings indicate that it is important to integrate depth information from non-
coplanar points into the measurement setup. In order to reach a reasonable measurement
accuracy it proves sufficient to apply three 5-CCC targets (introduced in Figure 3.4a),
with at least one which is spatially displaced.
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These findings are confirmed by the results of the uncertainty evaluation of the DLT
algorithm listed in Table 5.7. It provides the evidence that the pose calculations from
three 5-CCC targets (simulated using {T1, T2, T4} \ {O6, O7}) with 15 fiducials can be
done at virtually the same accuracy as with four 7-CCC targets using 28 fiducials.

EX2a MAX RMSE MEAN STD
(mm) ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z ∆X / ∆Y / ∆Z
DLT(4×7-CCC) 2.0 / 1.8 / 2.2 0.7 / 0.8 / 1.4 -0.5 / -0.6 / -1.3 0.4 / 0.5 / 0.6
DLT(3×5-CCC) 1.9 / 1.8 / 2.4 0.7 / 0.7 / 1.4 -0.5 / -0.5 / -1.3 0.4 / 0.5 / 0.6

(◦) ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ ∆φ / ∆θ / ∆ψ
DLT(4×7-CCC) 0.09 / 0.14 / 0.18 0.02 / 0.02 / 0.04 0.00 / 0.01 / -0.01 0.02 / 0.02 / 0.04
DLT(3×5-CCC) 0.09 / 0.14 / 0.19 0.03 / 0.02 / 0.04 -0.01 / 0.00 / -0.01 0.02 / 0.02 / 0.04

Table 5.7.: Comparison of uncertainty of DLT using 4×7-CCC and 3×5-CCC. It shows that the
pose calculations can be done at virtually the same accuracy. The results of the EPnP algorithm
are omitted.

The presentation of the results of the EPnP algorithm is omitted in Table 5.7, since the
results of Evaluation 2a and 2b clearly show a superior performance of the DLT algorithm
when applying fewer (≤ F15) fiducials for pose calculation. Therefore, depending on the
situation in a real world environment, it is proposed to apply DLT or EPnP according
to the number of fiducials present in the measurement setup.

It is concluded that the results presented in Experiment 2 prove the basic feasibility of
the proposed image based measurement system. Furthermore, it is shown that a mea-
surement setup using three 5-CCC targets and 3D input data is sufficient in terms of
measurement uncertainty, overachieving the defined requirements. Moreover, the evalu-
ations in Experiment 2 show that it is seems reasonable to apply either DLT or EPnP
for pose estimation depending on the number of fiducials present in the scene.
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5.5. Evaluation of a Test Ride on a High-Speed Train
(Velaro D)

In order to verify and test the feasibility of the proposed image-based measurement
system, a test ride was conducted on board the latest high speed train manufactured
by Siemens for Deutsche Bahn AG: Siemens Velaro D (see Figure 1.1 and the technical
data sheet [79]).

The test ride was performed on a branch line serving as a curved test track which is
situated at the Test and Validation centre, Wegberg - Wildenrath [78]. This curved test
track consists of several successive reverse curves with a given radius of curvature of 150
m. It was traversed by the Siemens Velaro D at a constant but low speed (≤ 10 km/h)
while measuring the occurring relative motions between two selected carbodies (pictured
in Figure 5.31).

(a) (b)

Figure 5.31.: (a) shows an outside view of the two selected carbodies of the Siemens Velaro D
which are linked by a flexible corridor connection. (b) pictures the carbodies during relative
displacement into y-direction.
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5.5.1. Measurement Setup

The basic measurement setup for the test ride complies with the one proposed in Sec-
tion 3.4 and illustrated in Figure 3.13. The camera was mounted on a heavy-weight
tripod and the targets were attached by using regular adhesive tape. The pose is esti-
mated over time between the rigidly attached camera in CB_01 and the targets installed
in CB_02. This enables the system to measure the sought after relative motions.

Altogether, four traversals of the train through the curved test track were conducted.
From the corresponding four acquired sequences only the first is chosen for evaluation.
This specific test ride lasts about 4545 sec. In order to simulate a train ride at higher
speed and to reduce the computational efforts, it is decided to evaluate the acquired
imagery data at only 1Hz (1fps). Thus, this yields a total of 4545 measurement
points.

The measurement setup is subject to the following parameters:

• Distance to origin of carbody (CB_02): 1652 mm (at I0)
• Image size: 1920× 1080 pixel2

• Focal length (f): 18 mm
• Aperture value: f/11
• Exposure time: 1/50 sec

(a) I0 (b) I3810

Figure 5.32.: (a) and (b) show frames with the carbodies in initial pose (I0) and at maximum
displacement into y-direction at I3810 (compare to Figure 5.31b). Note the partial occlusion of
T2 by the gaiter of corridor connection. The tracking results are superimposed as green crosses.

As proposed by the results of Evaluation 2b (Section 5.4.7) three multi-fiducial targets
(one 5-CCC (T1) and two 7-CCC (T2 left and T3 right)) were installed (see Figure 5.32).
All of them being installed in a non-coplanar way. Since, due to partial occlusions, the
outmost fiducials on T2 and T3 with numbers F6, F8, F14, F16 are not considered, a total
of 15 fiducials is used in the pose estimation process.
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5.5.2. Measurement Results

The results of the measurements from the test ride are presented in Figures 5.33 and
5.34. Unfortunately no reference data is available for the test ride. Therefore only
the results of the DLT pose estimation is given.
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Figure 5.33.: Relative translations of the carbodies measured during the test ride represented by
their individual axes {∆X,∆Y,∆Z}. The jerk at the end of the test ride is magnified.
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Figure 5.34.: Relative rotations of the carbodies measured during the test ride represented by
their individual axes {∆φ, ∆θ, ∆ψ}.

89



Image-based Measurement of Relative Motions
between Railway Vehicle Carbodies

5. Experimental Evaluation

Even without suitable reference data, the following statements about the measurements
are possible:

• First, as expected on the plain test track, more or less no lateral or angular dis-
placements into ∆Z, ∆φ, and ∆θ directions are observed.

• Second, the main displacements measured are into ∆Y and ∆ψ direction, which
relates to a hunting oscillation (see Figure 3.12). This motion is characteristic for
the traversal of reverse curves. The braking process at the end of the sequence
(I3100 – I4400) is visible in ∆X signal, indicating that both carbodies approach
each other.

• Third, the end of the test ride is clearly visible by the measured jerk of the carbodies
as the result of the small sudden change in acceleration when the train finally comes
to a halt. It marks the actual end of the test ride. This event is magnified by the
zoom-box of the ∆Y signal in Figure 5.33.

All these considerations basically indicate the plausibility of the measurements. It can be
considered that the uncertainties of the obtained results are in the same order of magni-
tude than for the experiments on the test rig in Evaluation 2b (Table 5.7). Furthermore,
the results of the test ride and the prototypical realisation prove the technical feasibil-
ity and suitability of the proposed image-based measurement system for measuring the
relative motions between railway vehicle carbodies.
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5.6. Computation Time

For the evaluation of the average processing time of one frame, the actual time needed for
image acquisition and storage is omitted. As the MATLAB prototype implementation
is divided into separate, sequentially processed tracking and pose estimation parts, the
evaluation of performance is given correspondingly.

For this evaluation the same data as used for Evaluation 2b (see Section 5.4.7) is applied
and executed on a standard 1.85 GHz Dual Core laptop. The results are presented in
Table 5.8.

Computation Time EV2a TRACKING POSE ESTIMATION
DLT(3×5-CCC)

0.125 s (∼ 8 fps) 0.0062 s (∼ 161 fps)
EPnP(3×5-CCC) 0.0049 s (∼ 204 fps)

Table 5.8.: Average processing time for one frame by the prototype implementation, given for
the tracking and the pose estimation parts separately.

It shows that, the tracking procedure is by far the most computationally complex part
in the system as it has to process the image data (size: 1920 × 1080 pixel2). Once
the tracking is complete the pose calculations can be done very fast, as expected with
slight advantages for the EPnP algorithm. Altogether, the prototype implementation is
not capable of processing the data in real time but enables the possibility to partially
analyse the measurements on-site, for example in the course of a test ride.
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5.7. Best Practice Approach

This section provides a summary of the knowledge and experience gained throughout
the experiments and the accomplished test ride. The findings are presented in the course
of a best practice approach.

1. Preparations prior to measurement

• Print 5-CCC targets on 100 g heavy, white paper and stick to suitably-sized
KAPA boards (see Section 5.4.1) trying to achieve an as level and smooth
surface as possible.

• Prepare a planar, chequerboard pattern, camera calibration target (see Fig-
ure 4.4).

• For installation of targets bring tape, water level, laser range finder or other
suitable devices.

• Use heavy-weight tripod to mount camera to definitely avoid vibrations of
imaging device.

2. Installation and Setup

• Perform camera calibration on-site using Camera Calibration Toolbox using
instructions given in Section 4.2.4.

• Comply basic measurement setup described in Section 1.4 and illustrated in
Figures 1.4 and 3.13.

• Use suitable existing structures (which are inherently aligned with the car-
body coordinate system) to mount the targets. Where possible, choose loca-
tions for targets where they are not exposed to sudden changes in lighting
conditions or direct sunlight (e.g. as pictured in Figure 5.32 directly after the
corridor connection or beneath the ceiling).

• Determine precise location (and orientation) of 5-CCC targets within carbody
reference frame.

• Check and verify installation of targets using brought devices. The measure-
ment accuracy highly depends on a precise installation.

3. Configure camera and lens

• Configure camera and lens according to environmental conditions. Adjust
focal length and aperture value (and other necessary parameters) to lighting
conditions and given working distance. A small aperture setting increases the
depth of field. A detailed description of parameters is given in Section 4.1.1.
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4. Measurement

• Assure that the respective carbodies are in the initial pose (described in Sec-
tion 3.4.3) when the measurement starts. Mark beginning and end of test ride
with clear signal in image data (useful for later processing). During measure-
ment verify the vibration-free installation of camera and targets.

5. Evaluation

• Use the prototype implementation to evaluate measurement data. Transfer
parameters gained from camera calibration to evaluation framework. For de-
tailed instructions see the supplied manual.
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6. Conclusion

This thesis addresses the task of conducting a feasibility study and the accompanying
prototypic development of a robust and cost-efficient image-based measurement system,
which is capable of tracking the relative motions between railway vehicle carbodies.

The discussion about a robust, fast and accurate tracking system resulted in a clear
decision in favour of a 2D, passive, high-contrast, circular marker called Concentric Con-
trasting Circle (CCC) [30] (see Figure 3.3) as well as a corresponding tracking method
based on a centre of gravity (CoG) [5] calculation. Furthermore, it is shown that for this
particular type of application the influence of perspective distortion on the accuracy of
CoG calculation can be neglected.

The choice for the two presented and evaluated pose estimation algorithms
DLT [37, p. 178] and EPnP [54] was primarily founded on the fact that both are con-
sidered either as straightforward and “Gold Standard” [37] (DLT) or state-of-the-art
(EPnP) approaches. Another important reason for this decision was the availability of
extensively tested implementations. This feature is regarded especially important for the
later application in a productive environment.

The proposed basic measurement setup fully complies with the introduced railway vehicle
carbody motion model. Together with the presented compulsory initialisation (initial
pose) it facilitates fast installation, configuration and operation of the measurement
system.

In case of the optical imaging system it was found beneficial to utilise a SONY NEX 5N
because of its capabilities of operating entirely autonomous. Concerning the operation
of the measurement system in a productive environment, the recommendations range
from the application of an industrial imaging device to the utilisation of active targets.
Furthermore, with the Camera Calibration Toolbox [10] a feasible and proven method
for doing geometric camera calibration was introduced.

The results of the extensive experiments (laboratory (5.3), test rig (5.4), train (5.5)) and
accompanying evaluations generally prove the feasibility and suitability of the designed
image-based measurement system. It is shown that three multi-fiducial 5-CCC targets
are sufficient to guarantee that the measurement uncertainty stays within the required
limits. Furthermore, the evaluations demonstrate the positive impact of non-coplanar
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targets on the uncertainty in pose estimation. The results also indicate that when a
smaller number of fiducials is applied (≤ 15) the DLT algorithm is, compared to the
EPnP, the more appropriate method of choice for pose estimation.

The proposed image-based measurement system contributes a genuine alternative, con-
sidering the introductory mentioned drawbacks of conventional methods applied to the
particular task of measuring the relative motions between two railway vehicle carbodies.
The conventional methods, relying on draw wire sensors, suffer from the drawback of
being extensive and time consuming regarding installation, measurement and analysis.
Whereas, the efforts for installation and configuration of the proposed system appear
limited. In fact, the only time consuming parts are the calibration of the camera and
the precise mounting and alignment of the targets. Furthermore, the proposed system
basically allows the measurement independent of any external power supply, network
or storage device. Moreover, it certainly reduces evaluation efforts, as the analysis of
measurements is possible on-site, in the course of the test ride.

Regarding the computer vision aspects, the major challenges such as the variable lighting
conditions and fast motions (motion blur) during train ride, are addressed mainly by the
choice of the fiducial and the tracking method. The selected high-contrast CCC fiducial
printed on several planar targets in combination with the specifically developed tracking
method applying an adaptive threshold enables robust and accurate tracking.

Based on the presented results the following drawbacks, possible enhancements and
further research are identified:

• Inaccuracies in measurement setup
The results from Experiment 1 show that the measurement system is in fact very
susceptible to inaccuracies in the measurement setup. Especially small deviations
from the expected rotational alignment of a target gives rise to a systematic bias. In
experiments on the test rig the rectangular shape of the platform greatly supported
the installation and alignment of the targets. This is not always the case in a real
world environment. In Section 3.4.2 it was recommended to use existing structures
and furnishings within the carbody. This approach was applied during the test
ride, but is only advisable if it is certain that these structures are axially aligned
with the reference frame of the carbody. It has to be investigated how a precise
installation of the targets can be guaranteed.
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• Camera calibration from circular fiducials
Although for the pose estimation measurements the circular CCC fiducial with a
corresponding target design is proposed, in context of the Camera Calibration Tool-
box a squared chequerboard pattern is used for camera calibration. It is suggested
to investigate a planar target design which is suitable for both pose estimation and
camera calibration.

• Increased robustness and speed of tracking method
The accuracy of the system strongly depends on accurate marker tracking results.
Although, with the choice for the passive CCC marker and the target design the
system is applicable in a regular environment, it is still sensitive to sudden changes
in lighting conditions (e.g. the train entering a tunnel). The application of retro-
reflective materials or even active markers (see Figure 4.2) has a high potential to
considerably increase robustness and speed up the tracking procedure.
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1 Projektvorschlag

1.1 Motivation / Ist Zustand

Wie in [1] beschrieben, führen die einzelnen Einheiten von Schienenfahrzeugen
(SFZ) im Betrieb zueinander translatorische und rotatorische Bewegungen aus.
Zwei solche Einheiten sind mit verschiedensten Verbindungen gekoppelt. Diese
dienen zur Übertragung von statischen und dynamischen Zug- und Stoßkräften
sowie von Information und Energie und ermöglichen den Übergang von Perso-
nen und Gütern. Die Grenzen der Relativbewegungen zwischen den einzelnen
Einheiten sind durch Faktoren wie Gleisgeometrie, Federwege und Toleranzen
festgelegt.

Laut [1] werden zur Zeit die Verbindungselemente gekuppelter SFZ “anhand
berechneter Maximalauslenkungen, Versuchen und Erfahrungswerten so dimen-
sioniert, dass für die Grenzstellungen die Dauerfestigkeit garantiert ist”. Der
Lebensdauerauslegung der Verbindungen liegt ebenfalls eine ausschließlich em-
pirische Abschätzung der Häufigkeitsverteilung von Bewegungsklassen von SFZ
zugrunde.

Um künftig einerseits eine den realen Gegebenheiten entsprechende, exaktere
Bauteilauslegung (Dimensionierung, Beweglichkeit, Bauraum) zu ermöglichen
und um andererseits die Kosten zu reduzieren, soll die statistische Verteilung
des Auftretens von Relativbewegungen, eingeteilt in verschiedene Bewegungs-
klassen im Echtbetrieb, zwischen den einzelnen Einheiten von SFZ gemessen
und untersucht werden.

1.2 Problemstellung

Da die in [1] ausgewerteten Beschleunigungsdaten keine definitiven Rückschlüsse
auf die auftretenden Relativbewegungen zwischen zwei Einheiten von SFZ (spe-
ziell Wagenkästen) zulassen, sollen diese Bewegungen nun mittels eines bildge-
benden Verfahrens erfasst und ausgewertet werden.

Dazu sollen mittels eines im Innenraum der Wagenkästen angebrachten opti-
schen Aufnahmesystems diese Relativbewegungen (Rotationen und Translatio-
nen, 5 bis 6 Freiheitsgrade) aufgezeichnet und nachverfolgt werden und somit
die prinzipielle Machbarkeit eines solchen Verfahrens demonstriert werden.

3

Image-based Measurement of Relative Motions
between Railway Vehicle Carbodies

A. Project Proposal (in German)

iii



Folgende Randbedingungen sind vorgegeben:

• Die Messungen sollen innerhalb der Wagenkästen stattfinden und während
des normalen (Fahrgast)betriebs möglich sein.

• Es ist nicht erforderlich die Auswertung der Messungen in Echtzeit zu
berechnen. Das heißt dass die Pose-Schätzung und das Tracking nach der
Aufzeichnung berechnet werden um damit die Genauigkeit wesentlich zu
erhöhen.

• Die maximal auftretenden Versätze werden wie folgt angenommen:

– Querversatz ± 900 mm (z.B. S-Bogen mit Radius 150 m)

– Höhenversatz ± 350 mm (z.B. Einfahrt in Kuppe mit Radius 500 m)

– Wankwinkel ± 5,0◦ (z.B. Einfahrt in Bogen mit Überhöhung 165 mm)

– Nickwinkel ± 4,0◦ (z.B. Einfahrt in Kuppe mit Radius 500 m)

– Knickwinkel ± 15◦ (z.B. konstanter Bogen mit Radius 150 m)

• Versätze in x-Richtung (“Zucken, Bocken“) können vernachlässigt werden.

• Die angepeilten Genauigkeiten der Auflösung für Messungen im Ortsbe-
reich werden mit ±1 cm sowie mit ± 0,6◦ und für Messungen im Zeitbe-
reich von 0.04s (entspricht 25 fps) festgelegt.

1.3 Vorgehensweise

Folgende Vorgehensweise zur Umsetzung für die oben beschriebene Aufgaben-
stellung wird vorgeschlagen:

1. Literaturrecherche und Vergleich artverwandter Arbeiten.

2. Festlegen von weiteren Randbedingungen für die Messmethode.

3. Auswahl eines oder mehrerer geeigneten Verfahren zur Pose-Schätzung
sowie Vorschläge möglicher Realisierungsvarianten.

4. Implementierung eines Prototyps in einer geeigneten Programmiersprache.

5. Fehlerabschätzung sowie Vorschläge zur Erhöhung der Genauigkeit.

6. Experimentelle Validierung an Echtsystem.

7. Dokumentation in Form der eingereichten Diplomarbeit.

Ein geeigneter Typ von Zug bzw. Wagenkasten muss noch ausgwäehlt werden
und wird von Siemens zur experimentellen Validierung bereitgestellt. Die Mit-
tel zur etwaigen notwendigen Montage von zur Aufnahme benötigter Hardware
übernimmt Siemens.
Deutsch wird als Projektsprache festgelegt; die Diplomarbeit wird jedoch in
englischer Sprache verfasst. Der Diplomand bietet jedoch an, bei Bedarf eine
ausführliche Übersetzung in Form eines technischen Berichts in Deutsch nach-
zureichen.
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1.4 Zeitplan / Meilensteine

Folgender Zeitplan mit festgelegten Meilensteinen wird vereinbart:

Meilenstein 1: Anfang Dezember 2011
Die Literaturrecherche ist abgeschlossen. Konkrete Vorschläge möglicher
Realisierungsvarianten sowie Erörterung von Vor- und Nachteilen und zu-
gehörige Demonstrationen liegen vor.

Meilenstein 2: Mitte Februar 2012
Aufnahmen für Experimentelle Validierung sowie Entwicklung und Imple-
mentation eines funktionstüchtigen Prototypen für das Tracking und die
Pose-Schätzung.

Meilenstein 3: Ende März 2012
Auswertung der Aufnahmen mithilfe des Prototyps und einhergehende
Fehlerabschätzung ist abgeschlossen. Die Dokumentation liegt anhand der
Masterarbeit vor.

1.5 Aufgaben / Funktionen / Verantwortungen

• Theoretische und praktische Ausarbeitung: Robert Hödl mit Betreuung
durch Prof. Pinz, Dr. Thurner und Dr. Moser.

• Konzeptionelle Abstimmung sowie Vorbereitung und Bereitstellung des
Testobjekts zur experimentellen Validierung von Seiten Siemens: Andre
Durst und Martin Grosse-Allermann.

• Abnahme des Prototyps und der zugehörigen Dokumentation von Seiten
Siemens: Andre Durst, Martin Grosse-Allermann.

1.6 Ressourcen

• Ausstattung, Arbeitseinrichtung: Siemens, TU-Graz

• Evtl. Kosten für spezielle Hardware (z.B.: Kamera): Siemens

• Fahrtkosten (Reisespesen): Siemens
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1.7 Kontakte

• Robert Hödl:
robert.hoedl@student.tugraz.at, robert.a.hoedl@siemens.com,
+43 (650) 5553777

• Axel Pinz:
axel.pinz@tugraz.at, +43 (316) 873-5021

• Thomas Thurner:
thomas.thurner@tugraz.at, +43 (316) 873-1380

• Christian Moser:
christian.moser@siemens.com, +43 (664) 88554536

• Andre Durst:
andre.durst@siemens.com, +49 (2151) 450-1539

• Martin Grosse-Allermann
martin.grosse-allermann@siemens.com, +49 (2151) 450-7601
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