
Masterarbeit

PISCAS - A Pisciculture Automation

System Product Line

Christopher Preschern

————————————–

Institut für Technische Informatik

Technische Universität Graz

Vorstand: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Reinhold Weiß

Begutachter und Betreuer: Dipl.-Ing. Dr. techn. Christian Kreiner

Graz, im Mai 2011

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit auf Software Product Line gestützen Methoden
zur Entwicklung von Automatisierungssoftware in der Domäne Fischzucht. Um den Pro-
zess der Softwareentwicklung effizienter zu gestalten und die Softwarequalität zu steigern
wurde ein Codegeneratorsystem erarbeitet. Mit Hilfe dieses Systems ist es möglich, mit ge-
ringem Aufwand qualitativ hochwertige Automatisierungsanlagen zu erstellen. Weitere Ar-
beitsschritte für die Inbetriebnahme der Anlage werden optimiert. Durch eine automatisch
generierte Dokumentation, welche einen Elektoinstallationsplan der Anlage beinhaltet, ist
die Installation der Fischzucht Hardware für eine Drittfirma (Elektroinstallateur) einfacher
durchführbar. Die generierte Software beinhaltet einen ausführlichen Test-Modus. Durch
diesen werden den Elektroinstallateur und Vertreiber der Automatisierungssoftware bei
der Inbetriebnahme und im Langzeitbetrieb unterstützt. Durch die beschriebene effizien-
tere Erstellung eines Fischzuchtautomatisierungsprojekts können sehr viel Arbeitszeit und
Kosten eingespart werden.

In der Arbeit wird die umgesetzte Software Product Line für die Domäne Fischzucht
beschrieben. Ein spezieller Fokus liegt auf Requirements Engineering während der Do-
main Engineering und der Application Engineering Phase. Es wird speziell auf Codegene-
rator Patterns eingegangen. Das Metamodell und die Codegeneratoren für die Fischzucht
Product Line werden beschrieben und der Prozess des Erstellens eines neuen Fischzucht-
Automatisierungssystems wird erklärt. Es wird ein Vergleich von verschiedenen Softwa-
reentwicklungsmethoden anhand von repräsentativen Daten, die während der Installation
von zwei Fischzuchtautomatisierungssystemen gesammelt wurden, gezeigt.

1

Abstract

This thesis describes different methods for the development of domain specific automation
systems for fish farms. To enhance the software development process a software product
line was adopted. Fish farm automation systems can be produced more efficiently by
using a code generating approach. Systems are modeled with a high level domain spe-
cific language, that allows to produce high-quality automation systems in less time. The
installation of fish farm automation systems is significantly simplified. Generated docu-
mentation, including an electrical installation plan, provides a good basis for the hardware
installation of the system. Costs for an electrician who installs the hardware are therefore
reduced due to less work time. The generated software includes an extensive test mode
which allows for easier detection of errors occurring during the installation and operation.
With the proposed software product line costs in the fish farm automation caused by
system installation and maintenance work can be saved.

The thesis describes the developed software product line. Focus is put on requirements
engineering, as it can be used during the domain engineering and application engineering
phase. Code generator patterns which can be used for software product line engineering
are covered in detail. The developed metamodel and the code generators for the fish
farm product line, as well as the process of generating a fish farm automation system
are described. Two fish farm systems were developed with the proposed product line
approach. Different development methods were used, evaluated and compared.

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Credits

This master thesis was carried out at the Institute for Technical Informatics, Graz Uni-
versity of Technology.

At this point I want to thank my friends and my family for enduring me during the
time of my study. I am sure it was not easy all the time - special thanks for that.

Christian Kreiner helped me with my master thesis with many good advices. Without
him it would have been a lot more difficult to achieve the aims of this thesis. I also want
to thank Michael Hofer for the possibility to carry out this thesis for his firm. He helped
me with several organizational issues. For providing me the necessary hardware for my
project I would like to thank the company Bernecker&Rainer and the Graz University of
Technology. Special thanks for a lot of advice and input about real-life projects to EVA
GmbH and Elektro Tisch.

Graz, May 2011 Christopher Preschern

4

Contents

1 Introduction 10
1.1 Motivation and goal . 10
1.2 Outline . 11

2 Related work 12
2.1 Comparison of the different automation systems 12

2.1.1 Types of automation systems . 12
2.1.2 Observed commonalities for automation systems projects 13

2.2 Requirements Engineering . 14
2.2.1 Requirements engineering process . 14

2.3 Software Product Line Engineering . 16
2.3.1 SPL management . 16
2.3.2 Domain engineering . 16
2.3.3 Application engineering . 21
2.3.4 Program generation patterns . 21
2.3.5 Software Product Line development methods 25

2.4 Model driven development . 28
2.4.1 MDD key attributes . 28
2.4.2 Domain specific modeling . 30
2.4.3 DSM patterns . 32
2.4.4 Tools . 33

2.5 The PISCAS approach compared . 34

3 Design and implementation of PISCAS 36
3.1 Domain engineering . 36

3.1.1 4+1 viewpoint model . 36
3.1.2 Business model . 40
3.1.3 Product scope . 42
3.1.4 Requirements . 43
3.1.5 Modeling language . 49
3.1.6 Metamodel concept . 49
3.1.7 Variability . 51
3.1.8 Metamodel . 52
3.1.9 Generators . 52
3.1.10 Use cases . 53

5

3.1.11 PLC software template . 56
3.2 Application engineering . 63

3.2.1 PISCAS system instantiation . 63
3.2.2 Use cases . 64

4 Project evaluation 65
4.1 Project implementation . 65
4.2 Software quality . 67
4.3 Time to market . 68
4.4 Development approach evaluation . 68

4.4.1 The cost model . 69
4.4.2 Cost analysis . 71
4.4.3 Break even point estimation . 71

4.5 Achieved goals . 73

5 Conclusion and future work 74

A Evaluation of metamodeling tools 76

B Questionnaires 80
B.1 Questionnaire for fish farm owners . 80
B.2 Questionnaire for electrician companies . 81

Biblography 83

6

List of Figures

2.1 SPL work process overview[PBL05] . 17
2.2 FORM feature diagram [KCH+90] . 18
2.3 What to build pattern for SPLE [CN01] . 20
2.4 Classification of code generator transformation processes [vL04] 21
2.5 Templates and filtering program generation pattern [Voe03] 22
2.6 Template and metamodel pattern [Voe03] 23
2.7 Frame processing program generation pattern [Voe03] 23
2.8 API-based generation pattern [Voe03] . 24
2.9 Inline code generation pattern [Voe03] . 25
2.10 Code attributes pattern [Voe03] . 25
2.11 Code weaving pattern [Voe03] . 26
2.12 Hierarchical plant structure model [SSV08] 27
2.13 DSM costs vs. general-purpose modeling costs [Siv08] 30
2.14 DSM concept enabling easier product development [Met09] 31

3.1 4+1 viewpoint model [Kru95] . 37
3.2 PISCAS main stakeholders . 38
3.3 4+1 viewpoint model for PISCAS . 40
3.4 PISCAS cost model structure . 42
3.5 PISCAS Product scope . 43
3.6 PISCAS Meta-Model . 52
3.7 Mapping of the PISCAS model to the generated artifacts 53
3.8 Packages of the PISCAS software . 57
3.9 State diagram of the oxygen supervision . 58
3.10 Calculation of the necessary fodder amount 58
3.11 Pseudocode for the scheduling . 60
3.12 State diagram for the power supply . 61
3.13 Config File for the feeder information . 61
3.14 Data structure for the feeding information 62
3.15 State diagram for switches . 62
3.16 Instantiation of a new PISCAS system . 63

4.1 Model of the fish farm in Radenthein . 66
4.2 Fish farm in Feld am See . 67
4.3 Model of the fish farm system Feld am See 67
4.4 Overview part of the documentation of the fish farm system Feld am See . . 68

7

4.5 Hardware part of the documentation of the fish farm system Feld am See . 69
4.6 Visualization of the PLC software for the fish farm system Feld am See . . 69
4.7 Work hours for different development approaches 72

8

List of Tables

2.1 Results of the tool evaluation . 35

3.1 Full list of PISCAS project stakeholders . 39

4.1 Comparison of fish farm systems Radenthein and Feld am See 70
4.2 Summary of work hours for different development approaches for PISCAS

systems . 71
4.3 Overview of the work hours for different development methods 72
4.4 Goal analysis . 73

A.1 Criteria to rate SPL tools . 79

9

Chapter 1

Introduction

Domain specific modeling of programmable logic controllers (PLC) is a recent field of
research. This thesis compares different methods to realize automatic project generation
for systems in the fish farm domain.

1.1 Motivation and goal

Until now the available automation systems in the domain of fish farms do not satisfy the
customer needs. Advanced approaches like models of growth of the fish are not considered
by PLC systems. This increases the service work for the customer, because the fodder
amount has to be adjusted very often. Systems including oxygen supervision and feeding
just exist for open sea piscicultures [PBL05]. Compareable systems for smaller fish farms
are not available and can just be offered custom made. Those systems are therefore very
expensive.

The aim of this master thesis is to provide a system, which generates the entire automa-
tion system project for a graphically modeled pisciculture. The automatic code generation
process leads to higher quality software. This production method is more economical com-
pared to custom made projects as it is described in [Fro03]. The project does not just
include the PLC software. Detailed documentation is also provided. A main goal of the
thesis is to develop a system which minimizes the work for the implementation and in-
stallation. This includes precise documentation of the system developed, especially of the
electrical installation plan. This installation might be done by another company, so it is
crucial that the electrical documentation is well-defined and that the system is easy to
handle for the other company. A key factor for efficient production of PLC systems is pro-
ducing highly reliable and correct code in an effective way. PISCAS goes one step further.
Not just the code generation is optimized. The whole inter-organizational information
flow is also improved by automatically generating all the necessary information for the
installation of the system to the involved companies.

The goal of PISCAS is to present a framework which can generate a whole pisciculture
project with low effort. This enables the vendor of the fish farm system to offer a high
quality PLC system for low charge. Maintenance costs are minimized by providing an easy
approach to change a delivered system. The possibility to maintain the PLC remotely also
reduces maintenance costs.

10

CHAPTER 1. INTRODUCTION 11

1.2 Outline

In the next section, related work is presented. First a comparison of different kinds of
automation systems is shown. Section 2.2 guides through the process of requirements
engineering and shows several methods for the different stages of the process. The main
research part of this master thesis is covered in Section 2.3: software product line en-
gineering. The basic approach with special focus on domain engineering and program
generation patterns is covered. Section 2.4 presents model driven development includ-
ing model driven architecture and domain specific modeling. In Section 2.5 the PISCAS
approach is compared. Section 3 handles the PISCAS product line design and imple-
mentation. The section is divided into domain engineering and application engineering
processes. Detailed information about the process of establishing a product line for the
fish farm automation domain is given. Section 4 covers an evaluation of the different meth-
ods that were used to develop the pisciculture automation systems and gives information
about two real fish farm systems which were automated. Also, a goal analysis is presented.
Section 5 concludes this thesis and presents topics for future work.

In Appendix A information about an evaluation of different metamodeling tools is
shown. Appendix B contains questionnaires for fish farm owners and electric installation
companies. These questionnaires were conducted during the gathering of project require-
ments.

Chapter 2

Related work

The related work section of this thesis presents several well studied topics covered by
literature which relate to PISCAS. Their advantages and disadvantages for the proposed
SPL are discussed. The main topics covered are basic considerations about the type
of automation system, software product line engineering and model driven development.
Also special focus is put on requirements engineering as it is needed during the domain
engineering and application engineering process of the software product line approach.

2.1 Comparison of the different automation systems

In this section the question which kind of automation system is used for PISCAS is dis-
cussed. In the automation sector there are several ways to assemble an automation system.
The most common methods are using a programmable logic controller, using a microcon-
troller, or using an industrial computer. The border between these solutions is continuous.
This means that the following given characteristics for the systems are typical, but not
necessary.

2.1.1 Types of automation systems

Industrial Computers

Industrial computers, also called remote terminal units (RTU), are often used to control
large systems. Such Supervisory Control and Data Acquisition (SCADA) systems often
require many complex calculation. Therefore a RTU is better suited than other systems,
because it provides the most processing power. RTU systems also provide more pro-
gramming flexibility and communication support. RTUs are best suited for large SCADA
systems which need a lot of processing power and a high bandwidth for communication
[Mot07].

Programmable Logic Controllers (PLC)

[Wat01] states that PLCs are cheaper than RTU solutions to a given application which
does not exceed a complexity which can easily be handled by the PLC. PLCs offer a cheap
standardized solution for automation domain problems.

12

CHAPTER 2. RELATED WORK 13

Microcontrollers

The advantage of customized microcontroller systems is that the hardware of the system
is very cheap. Compared to PLC hardware, the microcontroller costs are just a fraction
of the PLC price.

The development of a customized microcontroller system requires a lot of work. Com-
pared to PLCs these systems are not standardized and adjusted to the automation domain.
Microcontroller systems development is rather expensive. These systems can just be ap-
plied to systems with a high quantity.

2.1.2 Observed commonalities for automation systems projects

The following observations were made by interviewing two companies in the automation
system sector (Appendix B.1) and during the development of the first version of PISCAS.

In the automation sector a common situation can often be observed:

• The automation system development and its installation are often carried out by
two different companies or at least by two different departments of a company. This
quite often leads to problems due to lack of communication or non-standardized
communication between those two stakeholders. Increased costs for the installation
of the system are a consequence.

• A company developing automation systems often specializes on a specific kind of
automation system (e.g. automation of gravel pits, automation of fish farms).

• Different products of the same automation system family are often developed by the
same employees. They have a lot of implicit knowledge about the domain and about
the automation system family.

• In many cases an automation system is very domain specific. The domain knowledge
has to be gained from the customer. Getting the necessary knowledge is a difficult
and time consuming task.

• It is very common that automation systems contain software errors and that during
the first few weeks of operation the system has to be updated quite often.

• The software often has to be changed due to new components which are installed.

• To create a software which is quite similar to an existing project usually the clone&own
method is used. This means that the old software is copied and adapted. This leads
to many errors because it happens quite often one forgets to correct some parameters
or to update some settings for the new project.

Many problems arise from these observations. Without a systematic approach a lot of
work hours are wasted due to lack of communication. Especially during the installation of
the system many errors could be avoided. As usually products for an automation system
family are developed just by few employees, just those people have the necessary knowledge
to maintain those domain specific automation systems or to develop new systems in the
domain in a reasonable time. This leads to the fact that the possibility of loosing such an
employee is a major threat for a company.

CHAPTER 2. RELATED WORK 14

2.2 Requirements Engineering

For software product lines it can be devastating if later changes of the system or the
domain were not considered as it does not just affect one product, but a whole series of
products. Requirements engineering aims to reduce this risk. A key aspect is to determine
variability features of the software product line very soon. According to [KE02] and
[Mac96] requirements engineering can be divided into five stages:

• Requirements capturing

• Requirements analysis

• Requirements specification

• Requirements verification

• Requirements management

2.2.1 Requirements engineering process

Requirements capturing
Requirements capturing deals with the process to obtain as many requirements in-
formation as possible. According to [CY08] there are two phases of gathering re-
quirements. In the early requirements phase the intentions of the customer and
the purpose of the system are discussed. In the late requirements phase alternative
systems are analyzed. Functional and non-functional requirements are fixed.

Interviews with the customer can be conducted. These interviews can be struc-
tured or unstructured. A unstructured discussion between a requirements engineer
and a customer can lead to new views of the product and to innovative ideas. Struc-
tured interviews often deliver more precise results.

Questionnaires can be handed out to the stakeholders. This provides the oppor-
tunity to get the opinion of many different people. As they might have a different
view of the product, many for software engineers not obvious requirements can be
discovered.

The soft system methodology includes organizational and domain factors to
the requirements capturing process. A textual description of the challenges for the
product is developed. This description combined with the domain knowledge yield
the domain requirements [KE02].

Case studies of competitor products and market analysis gives an impression of
the current state of the art. It shows which features existing products include and
gives an overview of the needed functionalities for a software product in the given
domain.

Designer as apprentice. The software designer can work as an apprentice in the
target domain. This provides a lot of experience and knowledge about the problem
domain. The disadvantage of this method is that it is very time consuming. It should
only be conducted for huge product line projects where design errors are crucial.

CHAPTER 2. RELATED WORK 15

Requirements analysis
The in the previous stage gathered information is structured and analyzed. The
common attributes and the variability of the products of a software product line can
be elaborated in this stage.

Structured system analysis is an function-oriented approach to work out the
variabilities of a product based on the given requirements. Structured System Anal-
ysis does not support component based design.

Object oriented analysis. These techniques use the object-oriented program-
ming concept for modeling requirements. Compared to the structural models they
provide better encapsulation and abstraction of the requirements. Variability can
be modeled by inheritance. According to [Mac96] these approaches are very good in
supporting reuse. Object-oriented requirements analysis approaches are used in the
KobrA (Section 2.3.5) and the Sherlock (Section 2.3.5) model.

Participatory design is a concept where designers and customers work closely
together to analyze the requirements. This method ensures that the customer’s
needs are really all covered.

Quality function deployment translates requirements described by customers
into appropriate technical requirements. The method also handles customer priori-
ties.

Requirements specification
The elaborated requirements are specified and documented. This specification is
worked out for the product family and for every single product. Common and
variable requirements for the different systems have to be documented.

Requirements verification
The verification of the requirements for software product lines does not differ to the
methods used during single system development.

Requirements reviews. As the requirements are not static and might change
during the development of the software product line, they have to be maintained.
The reviews ensure that the requirements are up-to-date and that they really satisfy
the customers needs.

Prototyping can be used to show that the prototype of a software product fulfills
the requirements.

Requirements testing. All requirements are tested against defined test cases.
Each product is tested against each requirement. [PL05] describes requirements
verification in single software systems. This can as well be applied to software
product lines.

Requirements management
Requirements management ensures that all the requirements are up-to-date and
documented. It also handles requirements changes.

Non-functional requirements
To achieve business goals fast non-functional requirements are often not considered.

CHAPTER 2. RELATED WORK 16

If a design error occurs and an implicit non-functional requirement cannot be main-
tained, the cost for fixing this error are often very high as it is discovered late in the
development process. Non-functional goals and functional goals often influence each
other strong. It is useful to set up a table with functional goals as rows and non-
functional goals as columns. In the table the influence between the goals is marked
[Ngu09]. With the help of this table the decision which requirements are fulfilled to
which degree can be made.

2.3 Software Product Line Engineering

Software product line engineering (SPLE) provides the opportunity to produce customized
mass products. Software product lines (SPL) use software engineering methods and tools
for creating similar software systems. SPLs apply techniques for reusing core assets for
customized products in a domain. SPLs are often used in security critical domains where
software development costs for individual products are very high [WHG+09].

There are many reasons for introducing a SPL. SPLE includes up-front investments.
If many software systems are sold, then this investment is feasible, because the production
cost of a system in a SPL is significantly lower compared to an individual developed
system. In a SPL it is easier to maintain high quality [Ham08]. If the tools and the
process for generating the software system are sufficiently tested, the produced products
can be created with no new errors. If errors occur than they can be corrected in one central
component. Individual developed systems would have to be tested more thoroughly as they
might contain more errors than a system which is generated by a tested SPL. The time to
market is also significantly decreased for SPL systems. For customers SPLs provide cheap
software with few errors [PBL05].

Fig. 2.1 gives an overview of the main parts of a SPL. The development process is
divided in the domain engineering and the application engineering part.

2.3.1 SPL management

Compared to management for single products, the management of a software product line
engineering process implies additional complexity. The management of a SPLE project
is positioned closer to a strategic level then to the management of an individual project.
The business goal is to produce high quality end-products and to develop a framework
which enables the production of the products. The aim of the SPLE management is to
develop universal reusable components which can be used to assemble the product in an
effective way.

Usually, a project is a temporary venture with a defined input and output. SPLE differs
from that. It does not have a defined end point. The SPLE last as long as new products
are produced. An additional challenge is that considerations of the project environment
(e.g. technologies, competitors) have to be taken over much longer lifetimes [CJNM05].

2.3.2 Domain engineering

The domain engineering process develops core assets for a domain which can be reused.
Domain engineering is an iterative process and has to be done during the whole lifetime

CHAPTER 2. RELATED WORK 17

Figure 2.1: SPL work process overview[PBL05]

of the SPL. Its main elements are requirements engineering, development of domain ar-
chitecture and components and testing of the domain assets. With the information of the
documented requirements a domain model is built. This model provides an architecture
and other reusable components. To obtain the necessary reusable components, the vari-
ability of the domain has to be analyzed. The domain model should support the most
important variants. During the domain engineering the granularity of the variants has to
be determined and the scope of the product line has to be set. It is very important to
elaborate a precise and complete domain model. If some features are not modeled and
have to be added at a later development phase of the process then the whole domain has
to be re-engineered which is a lot of work [vL04].

Variability management

Variability Management handles differences between the resulting products in a software
product line. During the requirements analysis, commonalities and variabilities were iden-
tified. It is very important for SPLE to elaborate the variabilities of a system very early.
To define the variabilities a lot of communication between the software designer and the
stakeholders during the requirements analysis is important. Commonalities describe fea-
tures of the products which do not differ. Variabilities are the features which differ between
products of the SPL [MP07]. Variation points locate a variability and define possible vari-
ants. [Tri03] distinguishes between several types of variability.

• Variability in function. A software functionality exists for a product, but not for
other products of the product line.

CHAPTER 2. RELATED WORK 18

Figure 2.2: FORM feature diagram [KCH+90]

• Variability in data. Some systems use different data structures in parts of the soft-
ware

• Variability in control flow. Parts of the software behave different for different prod-
ucts.

• Variability in product environment. Systems are used in different environments and
have to act according to the environment.

Modeling variability
Feature Diagrams

’A feature is a sum of requirements that defines a products characteristics and qual-
ities’ [Tri03].

Feature diagram present the possible features for a product in a tree. Variations are
modeled in this hierarchy. Several different notations for feature diagrams are shown
in [Tri03] and [KCH+90]. An example of a feature diagram is used by the FODA
product line architecture design method (Section 2.3.5). The following slightly al-
tered text from [Tri03] describes the syntax of this feature diagram

Feature diagrams are trees capturing the relationships among features.

• The root of the tree represents the concept being described and the remaining
nodes denote features and their sub-features.

• A feature is mandatory unless an empty circle is attached above its name,
indicating an optional feature.

• Alternative features in FODA are considered as specializations of a more general
feature. Indeed, alternative features, which are children of the same parent
feature and connected by an arc, define the alternative feature set from which
almost one feature can be selected.

• More dependencies between features like require or exclude can be expressed
with composition rules to avoid graphical overload.

Fig. 2.2 shows an example of a feature diagram.

CHAPTER 2. RELATED WORK 19

Domain specific language (DSL) Variability can easily be modeled with the
aid of domain specific languages. Further information regarding DSLs is provided
in 2.4.2.

Modeling variability with use cases

Use cases are very effective for single software systems. They are extended in func-
tionality to be usable for SPL. Classical use cases describe what a system should do
in a given situation. This descriptions is in a way that also non-technical people can
contribute to use cases. To utilize use cases for SPL, they have to be extended. An
alternative flow of the use case depending on the specific product is allowed. With
these alternative flows the variability is designed. Various methods for extended use
case text and diagrams exist [Tri03], [BFG+02].

Other approaches

Thomas von der Maen describes a model where variability is present as a combination
of use-cases and feature diagrams [vdML02]. Variability can also be modeled with
UML class diagrams [Cla01] .

Granularity
An essential task in software product line engineering is to specify the granularity
of the variability. Coarse grained software product lines allow to change modules,
while fine grained SPLs facilitate changing several code lines in a module. Fine
grained variability allows to develop system with a lot of little differences, where
coarse grained systems just allow the products to differ in the modules [KAK08].

[Jun08] discusses two types of code generator systems.

Specialized code generator systems allow easy code generation. With the generator
the project can be designed very easily. Domain specific code can be generated and
often needs no reworking. A disadvantage of such a system is that it is hard to reuse
the generator for another software product line.

Multi-purpose code generators enable the generation of source codes for different
systems. Modeling of the domain can be done by a template. Often, variability of
the system is modeled for system production. This means that the engineer of a
specific product needs a lot of knowledge about the code generator. The advantage
of multipurpose systems is that the same generator can be used for several software
product lines.

Design and implementation of variability
All the variation points of the system an their constraints are collected and a
metamodel of the system is developed. This metaemodel describes the possible
systems which can be modeled for the given domain. The information stored in
such a system model is used to create an actual application with the aid of code
generators.

We can distinguish between two basic concepts for expressing variability in software
product lines.

CHAPTER 2. RELATED WORK 20

Figure 2.3: What to build pattern for SPLE [CN01]

The first possibility to generate different products is to design modules and compose
the product of these modules. This approach can be compared to object-oriented
programming. The software is organized in modules (objects) which can be put
together. Variability can be achieved by varying the amount of the objects or by
applying design patterns like a decorator to the modules. Usually, with this compo-
sitional method, just coarse grained variability (Section 2.3.2) is modeled.

The other approach to design variability in SPL is called the annotative approach.
With this approach, source code is programmed in a way that decisions about the
components are made at deploy or compile time. An example for this are #ifdef

statements in C/C++ code. This can be compared to structured programming as
no objects are involved [KAK08].

Scoping

During the domain engineering the scope of the product line has to be set. It defines
the family of products which is covered by the SPL. If the scope is too narrow, then just
very few products can be developed with the aid of the SPL and it is unlikely that many
products will be developed. If, however, the scope is set too wide, then the management
of the SPL gets more difficult and it is probably hard to establish a domain model which
suits all variants. The ’What to build’ pattern (Fig. 2.3) provides a good start for the
scoping process. It explains which components should be included in the domain and gives
reasons for the decision [CN01].

Code generators

A code generator is a tool that translates a product model to another model or to corre-
sponding source code. In software product lines, generators are often parameterized with
templates. These templates hold information about the domain. The tasks of generators

CHAPTER 2. RELATED WORK 21

Figure 2.4: Classification of code generator transformation processes [vL04]

are to check and optimize the input and perhaps add information to the input which is
missing. With the obtained valid input description the output code is generated [Ben03].

There are several different kinds of transformation processes (Fig. 2.4). A generator
can be applied between two models on the same abstraction level (horizontal) or it can
transform models or code on different abstraction levels (vertical). Horizontal generators
change the structure of the model, while vertical generators change the abstraction level.
If those two kinds are combined a so-called oblique model transformation is performed
[vL04].

2.3.3 Application engineering

This procedure handles the actual creation of a product with the help of the framework
developed during the domain engineering process. The products are matched to the cus-
tomer requirements, which can be obtained by a system analysis. With the information of
the requirements a system can be modeled with the aid of the metamodel for the domain.
With the developed code generators the model can then be transformed to a working sys-
tem. Depending on the software product line and the given domain the produced product
might have to be altered. If too many parts of the code have to be changed it might be
considered to change the domain model by doing the domain engineering again. This can
be the case if the domain was not well understood while the engineering phase [Ben03].

2.3.4 Program generation patterns

As in software design also in software product line engineering patterns can be applied.
They provide a solution to standard problems during the development of SPL systems.
The information in the following section is mostly based in [Voe03]. The patterns covered
in this section are patterns which describe the overall type of the code generation process.
More detailed patterns can be found in [VB04].

CHAPTER 2. RELATED WORK 22

Figure 2.5: Templates and filtering program generation pattern [Voe03]

Templates and filtering
Description - Code should be generated from a higher specification out of a
complicated model (e.g. XML-model). The generation of the source code from a
UML software model is an example for that. Most of the information in the UML
model is not needed for the source code generation.

Solution - Most of the higher specification level information is not necessary and
has to be filtered. On the filtered specification templates are applied to generate the
target code. Fig. 2.5 illustrates this pattern.

Discussion - Templates and filtering can be applied if the specification is well
defined and the templates are well structured. The templates are tightly bound to
the specification, which is a disadvantage of this template. However if the product
line is very specific and does not change a lot, template and filtering provides an
easy and fast way to develop a program generation system.

CHAPTER 2. RELATED WORK 23

Figure 2.6: Template and metamodel pattern [Voe03]

Figure 2.7: Frame processing program generation pattern [Voe03]

Templates and metamodel
Description - Architectural components representing the problem domain exist.
These components have a clearly defined mapping to the implementation platform.
Code generation templates should be specified platform independent.

Solution - A clear defined metamodel for modeling the specific software products
should be provided. Out of the model developed by the user and the metamodel,
meta-code is generated. Templates are applied to this code to obtain the target
code. Fig. 2.6 shows the structure of this pattern.

Discussion - This pattern can be applied to product families. The model speci-
fication is completely independent from the templates. As the implementation in-
formation is in the templates, the metamodel can be platform independent and is
therefore easier to maintain.

Frame processing
Description - Individual products of the same family with different features should
be generated. The features can be clearly structured in modules or they can be
interwoven in the specific system.

Solution - Adaptive Templates (so-called frames) are used. A frame is some kind
of function that generates code when it is executed. Each frame has slots where
other frames or code snippets can be placed (Fig. 2.7). With this approach, the
target code can be highly flexible.

CHAPTER 2. RELATED WORK 24

Figure 2.8: API-based generation pattern [Voe03]

Discussion - Frame processing is a well suited approach if a very specific small
family of products which are closely related to each other is developed. For bigger
SPLs this pattern is too sophisticated.

API-based generation
Description - Small pieces of code have to be generated on demand. The vari-
ability of the code is very small. The specification of the code to generate is not
given.

Solution - An API is provided to allow parametrized code generation. This model
does not use any templates. A third party program calls the API to generate specific
code. Fig. 2.8 gives an overview of this pattern.

Discussion - This approach can just be used it the target model is not very
complex. API-based generators often serve as basis for other generator types.

Inline Code Generation
Description - A software should be developed in one source project. The system
has to be executable on many different platforms. For optimized execution on these
platforms the code has to be slightly modified.

Solution - A preprocessor is introduced. At compile time, code is generated ac-
cording to the parameters for the preprocessor. Fig. 2.9 shows the working principle
of this pattern.

Discussion - Generally, this pattern is well known, as it is used in C++ and several
other programming languages. Often, the preprocessor is built into the compiler, so
no extra tools are necessary.

Code Attributes
Description - A specific source code should be generated out of a prototype.
Some pieces of code have to be slightly modified depending on the specific system
to generate. These changes can not be expressed in the programming language.

Solution - Additional information is hidden in the comments in the prototype. A
code generator software parses the comments and generates code according to these
instructions. Fig. 2.10 shows how this principle works.

Discussion - An advantage of this pattern is that code can be annotated with
any kind of information. The disadvantage is that the new defined language for the

CHAPTER 2. RELATED WORK 25

Figure 2.9: Inline code generation pattern [Voe03]

Figure 2.10: Code attributes pattern [Voe03]

information in the comments can get very sophisticated if this pattern is carried to
the extremes. JavaDoc is a well known example for this pattern.

Code weaver
Description - Different source code modules should be joined in a program. These
modules can be isolated or interact with each other.

Solution - The code weaving pattern suggests the construction of a meta-module.
The interaction with this meta-module is specified and the program is then con-
structed with these modules. The real source artifacts keep the constraints of the
meta-modules. The code weaver then assembles the program out of the given com-
ponents (Fig. 2.11).

Discussion - The approach of this pattern is leaned on the concept of aspect
oriented programming and on the model-view-controller pattern. The code weaving
pattern is very complex to implement and just chosen huge product lines.

2.3.5 Software Product Line development methods

In this section several software product line architecture design methods are compared
regarding their context, the view of the user and their structure. the information in this
section is structured according to [Mat04].

MEDEIA MEDEIA [SSV08] is a project of the European Community’s Seventh Frame-
work Program (FP7). The aim is to provide a method for modeling automation product
lines. The developer describes a project at a level of abstraction where he has to state

CHAPTER 2. RELATED WORK 26

Figure 2.11: Code weaving pattern [Voe03]

what he wants and not how he can achieve that. It should be possible to combine different
domain specific systems and approaches. This means that the system is designed to handle
many domain specific views. The system architecture and components should not depend
on the used languages for the system [SSV08].

MEDEIA provides a formal framework for model driven design with an integrated
diagnostic system. The core of the framework are automation components (AC). They
are hard- or software systems with defined interfaces. The AC’s internal behavior and
their hierarchical structure is described. Those components are not associated which the
level of abstraction which is used. An example for a project structured with ACs is shown
in Fig. 2.12.

COPA Component-Oriented Platform Architecting Method for Families of Software In-
tensive Electronic Products (COPA) [OMA+00] has the goal to find the best balance
between component based and architecture centric approaches. COPA also addresses
business and organizational aspects. The aim of COPA is to use all-purpose software
components very efficient.

The COPA methods starts by analyzing the customer needs. Stakeholder expectations
and existing architectures are taken into consideration. The method produces a guideline
for a software product line architecture. COPA also considers software maintenance and
reusability. COPA does not just provide a software architecture, it addresses the whole
software project.

FAST Family-Oriented Abstraction, Specification, and Translation process (FAST) [KE02]
is a method to design software product lines which share common attributes (e.g. com-
mon behavior, common interfaces). The goal of FAST is to make the software production
process more efficient by reducing multiple tasks.

CHAPTER 2. RELATED WORK 27

Figure 2.12: Hierarchical plant structure model [SSV08]

FAST provides a full product line process. The decision whether a domain specific
product line should be build is made by an estimation of the sold products and their
production cost. The software line engineering process is divided into two parts. The first
part is the domain engineering part, which models the product family. Domain engineering
also contains a requirements analysis and reusability assets are are developed. In the
application engineering part the individual products are developed using the reusability
assets.

FAST is well suited to develop applications quickly. FAST models variability of the
system during the requirements engineering. The method uses no tools. It suggests
guidelines to organize the architecture of the software product line.

FORM Feature-Oriented Reuse Method (FORM) [KKL+98] is an extension to the Fea-
ture Oriented Domain Analysis (FODA). FODA concentrates on the development of
reusable assets. FORM extends this model to the software design and implementation
phase.

By feature modeling and a context analysis the variability aspects of the system are
captured. With this information a reference architecture is build.

KobrA Komponentenbasierte Anwendungsentwicklung (KobrA) [Mat04] is German and
stands for ’component-based application development’. With the aid of UML this method
aims for reusability of components and specifications. KobrA clearly states how UML
should be used to achieve this goal. KobrA also defines implementation and testing aspects
of the software product.

QADA Quality-driven Architecture Design and quality Analysis (QADA) [Mat04] is a
quality driven design method. The design of the architecture is checked with a quality
analysis which states whether the architecture is suitable. The methods delivers a design

CHAPTER 2. RELATED WORK 28

and an analysis of the architecture. The analysis checks whether the quality requirements
are met.

PuLSE Product Line Software Engineering (PuLSE) consists of three main elements:
Deployment phase, technical components and support components. The deployment phase
contains three stages. In the initialization stage the domain is defined. The infrastruc-
ture construction stage the product line characteristics are modeled and an architecture
is developed. In the infrastructure usage stage the software product is developed. Tech-
nical components describe domain related technical issues. Support components handle
organizational issues.

KobrA is an object-oriented approach of PuLSE. KobrA focuses more in the design
and implementation of the domain framework [KE02].

Sherlock Sherlock is a method to develop software product lines which focus on market
analysis during the requirements gathering. During the architecture development several
tools are used. The method does not handle the specification of requirements. The
architecture modeling process is separated in five stages where the architecture is defined,
characterized, modeled and developed [KE02].

2.4 Model driven development

System engineers often build models of a software project for better understanding. With
the help of this model the best solution for elaborating the software can be found. A
key idea of MDD is that programs are automatically generated from their models. A
model is a representation of the program at a higher level of abstraction. It is a formal
specification of the function, structure and behavior of the system from a specific point
of view [Tru06]. Details which are not necessary for a certain point of view are hidden.
The model should be intuitive and understandable. The abstraction of the model is not
defined. It can be high level (e.g. UML Diagrams model a software architecture) or low
level (e.g. C++ code models the assembler code) [Sla06]. As it is shown by these two
examples it is also not defined whether a model has a graphical or a textual representation.
Model Driven Development (MDD) approaches software development by iterative building
of increasingly detailed models. Early models emphasize requirements where more detailed
models focus on software design and implementation [Sel03].

An advantage of MDD is that the models express the structure of the system in dif-
ferent levels of abstraction very clearly. Customers benefit from MDD by getting a better
overview of the product structure. They can therefore easier understand the product fea-
tures and intervene early if their requirements are not fully met. Due to the expressiveness
of the models interorganizational workflows are also made easier, as it is possible for other
companies to understand the features of the product at different abstractions [BCC+96].

2.4.1 MDD key attributes

The following attributes are listed according to [Sel03].

CHAPTER 2. RELATED WORK 29

Code efficiency - When developing code with a model the code efficiency it is often a
major concern. Codegeneration has the bad reputation that the software is not efficient.
When the first compilers were build they had the same problem. Today’s compilers can
cope with that problem and produce a code that is sufficiently fast. There are just few
applications where programmers write the source code in assembler because of the bad
performance of a compiler. [Sel03] states that it will be the same with model driven design.
The generation of the code from the models will be optimized and the usage of MDD will
get common.

Model executability - For trend setting MDD approaches it is crucial that the models
can be executed. Without the possibility to execute the model it is hard to debug errors.

Model-level observability - For compilers it is normal that, if an error occours, the
position of the error is shown in the source code. This complex task should also be per-
formed when using MDD. If an error in the source code exists, it should be automatically
traced back to the model and shown to the developer.

Scalability - For huge software projects it must be possible that several people work on
the same model. The tools and models must scale up to such a scenario.

Model driven architecture - Model Driven Architecture (MDA) is a concept which
was introduced by the Object Management Group (OMG). It uses UML to design a
platform independent model of a system. This model is then transformed to several other
models with lower abstraction. MDA promises platform independent high quality software
which is easy to maintain. Production cost should be lowered, testing and simulation is
made easier [Tru06]. According to [NCP09] and [Wim05] MDA consists of the following
phases:

• Defining a computation independent model (CIM). This can be models like a
business model. or a domain model. It states the requirements and the environment
of the system [NK04].

• Development of a platform independent model (PIM) with the aid of UML.
This model represents the overall architecture of the software. Changes in the soft-
ware technology does not influence the PIM.

• Transformation of the PIM to a platform specific model (PSM). Plat-
form specific means that several technologies like interface functionality are defined.
The PSM reflects the detailed design of the product. As the PIM, the PSM can also
be elaborated with the help of UML.

• Transformation of PSM to implementation and runtime models. These
models reflect the specific software for a platform. XML can be used to represent
the model.

Each of the models is designed according to the Meta Object Facility (MOF). The
MOF is a standard for the definition of metamodels. Elaborating MOF conform models

CHAPTER 2. RELATED WORK 30

Figure 2.13: DSM costs vs. general-purpose modeling costs [Siv08]

makes the model transformation process easier [Bru07]. Through this transformations the
development time of a product is decreased and human errors are reduced [Siv08].

2.4.2 Domain specific modeling

Just like MDA, domain specific modeling (DSM) aims at reducing the development costs
and reducing human made errors. A big advantage of MDD is that the code is generated
out of the model. This means that the model always is up to date. Compared to general-
purpose modeling, DSM offers the advantage that models can be constructed, as current
studies state, up to 10 times faster [Siv08]. This is the case because with DSM the gap
between the domain model and the implementation has to be bridged just once. This
work is done by a domain expert. Further modeling of products can be done by less expe-
rienced workers [Met09]. DSM take a lot more of initial work and therefore need upfront
investments. For product lines with a lot of slightly different software products, DSM can
achieve a significant reduction of development costs. Fig. 2.13 shows a comparison of the
costs of domain specific models and general-purpose models.

Fig. 2.14 shows the concept of domain specific modeling. Usually the domain expert
designs a framework which can be used by less experienced users to generate a domain
specific code. It has to be decided whether the generated code is the finished product or
whether is is part of a framework. It is often an advantage to generate code for a framework
in complex projects, because then the code generation gets easier. Such frameworks exist
in the most cases from earlier projects in the given domain.

Domain specific languages

A Domain Specific Language (DSL) is an abstract programming language which is cus-
tomized for the given domain. DSLs can be either textual or graphical. Textual models
are often described by their grammar, while graphical models are developed using a meta-
model. Metamodels are models of models [Siv08]. A DSL is considered as good if it can
express the problems in the domain very precisely in an uncomplicated way. A goal of
DSM using DSL is that the domain expert and not the software engineer develops the
model of the system. This is a big advantage, because the software engineer does often
not have sufficient domain knowledge to elaborate a system-model [Sla06]. According to
[BGK+06] and [Zdu05] a DSL is composed of:

CHAPTER 2. RELATED WORK 31

Figure 2.14: DSM concept enabling easier product development [Met09]

• Abstract Syntax - defines the concepts and relationships in the language. This syntax
is often also called language model. It can be manually designed or derived by a
metamodel like a UML model.

• Concrete Syntax - textual or graphical notation. This notation is then used by the
developers to elaborate the specific software program.

• Semantic Domain - models the domain

• Semantic Mapping - relates the semantic domain to the syntactic concepts

• Syntax Mapping - relation between the abstract and concrete syntax

When using a general purpose language like UML for modeling a domain model, several
problems occur. The language is often not precise enough to model the domain adequate.
They often describe the system in some kind of natural language and not in a formal
syntax. This means that the this language can not be used for automatic code generation.

For some domains it can be an advantage to create a domain specific model. This can
be done by extending the syntax of a general purpose language line UML or by creating
a new language.

Advantages of DSLs are that they model the domain at a very high level of abstraction.
Still these models can be transformed to lower abstraction models or direct to source code.
For domain experts it is a lot easier to understand domain specific models.

Disadvantages of DSLs are that not as many tools for code generation are available as
for a general purpose language like UML. The process of generating the code is also often
more complex.

Developing a DSL

An individual created language has to model the features of the domain precisely. It
should also recognize whether a constructed model is valid or invalid. The interaction

CHAPTER 2. RELATED WORK 32

of the user with the DSL must be specified [Bru07]. [Loh07] describes how to develop a
domain specific language. This process is divided into three phases:

Decision phase The decision whether a DSL should be used is made. As help so called
’Decision Patterns’ can be used. The base of this decision is the business model. It
shows whether the development of a DSL is economic.

Analysis phase The specific domain on which the DSL should be applied is analyzed.
The needed domain specific technologies and semantics are explored. For this phase
a method like FORM (Section 2.3.5) can be used.

Design and implementation phase A domain specific language can use other software
tools like meta-languages which could generate the DSL. Another approach is to
implement the entire DSL by oneself.

2.4.3 DSM patterns

The following patters are guidelines for building frameworks [RJ96]. These patterns can
also be applied for the design of domain specific languages.

Three examples
Description - It is hard to implement a framework for a domain specific language
without knowing some examples for which the language is used. This pattern gives
a solution for starting to implement such a framework.

Solution - Develop at least three prototypes for your application to get an idea
about the variability of the system.

Discussion - The framework or the DSL will change in time. It is not developed
once and never again altered. The first version does not have to be perfect. It should
just give an idea which features are covered. As the framework will change it is no
problem to focus just on some examples and model their features for the first version
of the DSM-software.

Object granularity
Description - The granularity of the templates which are used for translating
code with the help of a DSL has to be decided. If it is too fine-grained it is difficult
to understand the language. Course-grained elements may not allow the needed
variability.

Solution - Adapt the level of abstraction to the knowledge of the persons modeling
the system. If the person has detailed domain knowledge it is possible to provide a
DSL with many detailed elements. Do not lower abstraction if it is not necessary.

Discussion - To obtain the information about the knowledge of the modeler it is
essential to have a detailed understanding of the specific domain. The aim is to keep
the abstraction as high as possible.

CHAPTER 2. RELATED WORK 33

2.4.4 Tools

Tools for generating a DSL on the basis of the language specification can be used. Those
tools generate programs like compilers, editors with syntax highlighting or code generators.
The advantage of the use of these tools is that common operations for the generation of a
specific DSL do not have to be implemented. The usage of an appropriate tool can reduce
the development costs for a DSL significantly.

MetaEdit+ is a collection of different tools for modeling, documentation and code
generation. For developing a DSL first a metamodel of the domain is created. This
model is build with the Graph-Object-Property-Port-Role-Relationship (GOPPRR) con-
cept. MetaEdit+ generator definition language (MERL) is used to define the code gener-
ation from the graphical domain model [Loh07]. The software includes a debugging tool
and an API to access all of the functions via SOAP. More about MetaEdit+ can be found
in [TK09].

PROGRES (PROgrammed Graph REwriting Systems) is a tool for developing graph-
ical DSL. PROGRES offers a tool for class diagram modeling, graph analysis, interpreter
and compiler and a generator for graphical editors.

For DSL development the domain is modeled as a graph. When the DSL is completely
modeled it can be compiled. With the language a graphical editor is generated. This
editor can be used to model specific systems for the domain with the DSL [Loh07].

Telelogic Tau G2 is a model driven development environment. Normally UML 2.0 is
used to elaborate metamodels. For more specific models the language can be extended
via UML 2.0 profiles (see [OMG04]). For this toolset advanced knowledge of UML 2.0 is
needed. The graphical DSL editors support some nice features like saving and loding a
model. The graphical representation is limited and can not be customized [AFR06].

Rational Software Architect is a tool developed by IBM and is built on top the the
Eclipse platform. It does not support as many UML 2.0 features as Telelogic Tau G2
(Section 2.4.4) and is therefore easier to handle. For DSL development a UML model has
to be designed. Additionally, the generated editor can be customized by providing images
and icons for the editor components [AFR06].

XMF-Mosaic is a Eclipse-based development environment. It supports the use of tex-
tual and graphical models for the generation of a domain specific language. The generated
editor can be customized, but does not include basic functions like saving or loading a
model [AFR06].

Eclipse EMF+GEF is a framework for building tools via code generation. The Graph-
ical Editing Framework (GEF) can easily be combined with EMF metamodels and support
the development of a graphical editor. It takes much effort to get to know EMF and GEF
quite well, but a lot of documentation is available [AFR06].

CHAPTER 2. RELATED WORK 34

DSL tools for Microsoft Visual Studio os a plug-in for Microsoft Visual Studio and
allows the development of domain specific languages. With a graphical user interface the
domain is modeled. Domain constraints have to be stated in an XML syntax. Finally the
relations between the graphical model and the XML model have to be elaborated. These
task can be done with the aid of a wizard. Microsoft provides online documentation for
this tool set [Siv08].

Generic Modeling Environment (GME) is a free open source tool which can be used
to develop domain specific languages. It is based on UML and provides visual modeling of
the domain concepts. The implementation of the DSL can be customized by configuring
the used bitmaps and icons. GME focuses on the construction of a graphical modeling
tool. The model interpretation is not done by GME. This can be achieved by implementing
it via a COM-enabled programming language like C++ or Visual Basic [Siv08].

B&R model embedded in Matlab Simulink. Bernecker&Rainer provides a code
generation tool embedded in the Matlab Simulink framework [Wal10]. This tool allows to
model a system with Matlab Simulink and generate B&R PLC source code directly out
of the model.

2.5 The PISCAS approach compared

For the fish farm automation systems a centralized control system as presented in Section
2.1.1 is sufficient. PISCAS is based an a Bernecker and Rainer PLC system. Bernecker
and Rainer was chosen because it provides a VNC remote visualization of the fish farm.
A PC is therefore not needed at the fish farm. The visualization can be accessed over the
Internet. This means that the system can be checked with a mobile device and service
work for the operator of the fish farm is made easier.

For PISCAS several of the mentioned requirements engineering approaches from Sec-
tion 2.2 were considered. For requirements capturing interviews and questionnaires pro-
vide the advantage, that the customer can directly influence the developed system. Case
studies of competitors provide limited application, because PISCAS is a rather novel ap-
proach for fish farm automation. To verify the requirements continuous reviews with the
customer were conducted. The requirements engineering method could be used for the
domain engineering and for the application engineering of the PISCAS project.

To model a fish farm system a domain specific language (Section 2.4.2) was chosen
which brings the advantage that systems can be modeled on a higher level of abstraction
and tacit domain knowledge is expressed in the DSL. The selected approach adheres to the
principles of MDD and brings the advantages mentioned in Section 2.4 like observability
and scalability of the model. The presented patterns in Section 2.4.3 and 2.3.4 support the
development of the product line. For the code generation the templates and metamodel
pattern promises good results as it allows to implement existing PLC templates in the
code generation process.

For the selection of a suitable tool for DSL development an evaluation framework
proposed by [Lei09] was used. The results as presented in Tab. 2.1 shows that the software

CHAPTER 2. RELATED WORK 35

MetaEdit+ is most suited for the given project. The used metrics are explained in the
Appendix A.

T
o
o
ls

p
u
re
:v
ar
ia
n
ts

G
ea
rs

F
ea
tu
re

M
o
d
el
in
g
P
lu
gi
n

X
F
ea
tu
re

M
et
aE

d
it
+

Criterion Weight Rating Rating Rating Rating Rating

Attributes Management 8 5 7 5 5 2

Feature and Variability Modeling 10 10 9 10 7 7

Feature Metamodel Maturity 5 3 1 8 6 8

Constraint Checking and Propagation 8 10 8 8 8 9

Product Derivation 7 10 9 7 7 9

Domain Engineering Management 7 7 8 5 5 5

Repository 5 6 9 6 6 6

Traceability Management 1 4 4 1 4 5

Impact Analysis 6 4 8 2 2 9

Reporting 10 8 9 2 2 9

Access Mode 5 2 1 2 2 9

Technical Environment 10 8 4 5 5 9

Usability 10 6 8 3 4 7

Automatic Filters 3 5 3 3 3 6

Tool Configuration 10 7 2 3 10 9

Extensibility 10 10 5 6 4 5

Flexibility 10 8 6 6 6 10

AOB 10 9 5 6 7 7

Benchmark 1000 739 619 519 543 747

Table 2.1: Results of the tool evaluation

Chapter 3

Design and implementation of the

PISCAS product line

In this section the fish farm product line is presented. With the theoretical background
from Section 2 domain engineering and application engineering for the SPL have been
conducted. Information about the SPL and PLC architecture is given. The metamodel and
the generated PLC code parts are discussed in more detail. A cost model is proposed and
an evaluation of the costs for fish farm automation systems was conducted. Additionally
information about the installation of PISCAS for two real-life systems is given.

3.1 Domain engineering

3.1.1 4+1 viewpoint model

This section describes the basics about an architecture model which can be applied to the
domain.

Philippe Kruchten’s 4+1 viewpoint model [Kru95] describes the architecture of software-
intensive systems. It provides multiple views of the product for different stakeholders. The
design decisions for a system can be represented with these views. The model contains
redundant information about a system. The architecture is presented in different ways,
so that different stakeholders can easily access the information they are interested in from
one of the views. The model is shown in Fig. 3.1.

Logical architecture - The logical view provides a look at the product from the
customer’s point of view. Most part of it can be described by the domain specific functional
requirements for the system.
Process architecture - The process architecture describes non-functional require-
ments like performance and availability. It also gives an overview of different independent
sets of tasks for a project. These sets are called processes. The interaction between
processes is described.
Development architecture - This architecture describes the system from the point
of view of a developer. In general the software design is presented. Internal requirements
like reuse of commonality and software management are presented in this view.

36

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 37

Figure 3.1: 4+1 viewpoint model [Kru95]

Physical architecture - The physical view describes the mapping of the software on
the hardware. Different hardware configurations are considered. The aim is to minimize
the effort of changing the software according to different hardware.
Scenarios - Scenarios are the ’+1’ in the ’4+1 viewpoint model’. They give no additional
information, but they provide a link between the different views. Scenarios can as an
example be use cases representing the most important requirements.

Proposed approach

The main problems are that it is very likely that an automation system software contains
many errors and that the domain knowledge of the programmers is implicit and not ac-
cessible by others. The lack of communication between the two different companies also
is a problem.

To overcome those problems software product line engineering integrated in the 4+1
viewpoint model is suggested. With the SPLE approach many of the stated problems can
be solved:

• An automation system is modeled with a domain specific language and the software
is then generated from this model using a code generator. If a software error occurs
then the code generator is corrected and the same error should not occur twice.

• Domain knowledge is contained in the metamodel and therefore not just accessible
by the person who developed the software.

• Changes to the system (e.g. new components) can easily be realized as just the
model of the system has to be changed and a new code has to be generated. This is
a lot easier than programming the new modules by hand.

• Together with the software an electrical installation plan can be generated. This
can be a good basis for communication between the automation system providing
company and the electrician.

Project stakeholders

To apply the 4+1 viewpoint model the relevant stakeholder for the project have to be
known. The analysis of the stakeholders has been conducted with the aid of the Volere
Requirements Specification Template [RR]. The overview of the stakeholders shown in

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 38

Figure 3.2: PISCAS main stakeholders

Tab. 3.1 gives a good understanding of the parties involved in the project and of their
contribution. The most important stakeholders for the project and their relationships are
shown in Fig. 3.2.

4+1 viewpoint model applied to PISCAS

With the information about the stakeholders the specific 4+1 viewpoint model for PISCAS
can be elaborated. The logical view represents the view from the customer who is the fish
farm owner for the PISCAS project. It includes the requirements of the customer which
are stated in Section 3.1.4.

The electrician is a stakeholder of the physical view. He is interested in hardware and
the link between software and hardware. This link could be a hardware test provided from
the automation software as it is the case with PISCAS. Therefore the automation system
software is also part of of the physical view. The software design ensures that changes
from the physical view (e.g. different hardware modules) do not cause big changes on
the software side. Also the fish farm owner is stakeholder of the physical view as he
is interested in the feeders and aeration systems which are used for the fish farm. The
generated documentation can give the fish farm owner an overview of the hardware.

The development view is part of the model where the proposed solution can be seen.
This is the part where the software product line engineering takes place. The stakeholder
involved in this view is the company Hofernet which develops the automation system. In
this view included is the metamodel, the code generator and the template of the PISCAS
software. The aims of stakeholders of this view is to develop a high quality system very
efficiently. To achieve these aims a SPLE approach is chosen.

The most interesting architecture is the process view. Here also coordination between
the two participating companies is described. This part should be improved with the
proposed method because of the automatic generation of an electrical installation plan.
With the help of this plan the two involved companies have a defined basis for the rest of
the necessary communication. The test mode of PISCAS also allows better cooperation
between the companies Hofernet and the electrician as hardware errors can be detected

C
H
A
P
T
E
R

3
.

D
E
S
IG

N
A
N
D

IM
P
L
E
M
E
N
T
A
T
IO

N
O
F
P
IS
C
A
S

39

Table 3.1: Full list of PISCAS project stakeholders
Role Name Rationale (why

does he have to
be involved)

Involvement Knowledge Communi-
cation

Deliverables from
the stakeholder

Deliverables for
the stakeholder

Project
sponsor

Michael
Hofer

Project principal,
he pays for the
project

Micheal Hofer pays the TU Graz
for conducting the PISCAS soft-
ware generation project. He is the
most important stakeholder for the
project. He specifies most of the
requirements. He determines the
maximum project cost and decides
about expenses.

He has moderate fish farm do-
main knowledge and very good
project hardware knowledge and
very good knowledge about busi-
ness constraints for the project

direct B&R SPS System
from the com-
pany Bernecker &
Rainer, fish farm
hardware

PISCAS code
generation sys-
tem

Fish farm
owner

Andreas
Hofer

Fish farm owner,
specifies some re-
quirements

A recent fish farm automation sys-
tem (without the PISCAS code gen-
erator) is currently developed for
Andreas Hofer

He has very detailed fish farm do-
main knowledge

via Michael
Hofer

Knowledge, pos-
sible fish farm
structures

PISCAS system

University TU Graz Allows the grad-
uand to work on
the PISCAS code
generator project
as a master thesis

The university provides the grad-
uand necessary tools for developing
the pisciculture automation system
as a master thesis

Software Product Line Engineering
knowledge

direct,
project
advisor:
Christian
Kreiner

wokplace, tools,
for the project
necessary soft-
ware

master thesis,
publishable paper

Financial
Support

FFG The ’Öster-
reichische
Forschungsförderungs-
gesellschaft’
(FFG) granted
Michael Hofer
the ’Innovation-
sscheck’ which
allows him to
make use of
research and con-
sulting services
of an educational
institution.

The ’Innovationsscheck’ has to be
redeemed until 27.01.2011. The
master thesis therefor has to be fin-
ished at latest at this date

no necessary knowledge E-Mail ’Innovationsscheck’
for Michael Hofer

confirmation that
Michael Hofer re-
deemed the ’Inno-
vationsscheck’ at
the TU Graz and
that he therefore
got research aid
from the univer-
sity in form of a
master thesis

Automation
System
manufac-
turer

Bernecker
& Rainer

Provides neces-
sary hardware

helps with decisions regarding hard-
ware and software development

very good B&R Automation Stu-
dio knowledge, some code gener-
ation knowledge, very good B&R
hardware knowledge

Code genera-
tion: Philipp
Wallner Au-
tomation
Studio de-
velopment:
B&R office
Graz

B&R SPS System
for Michael Hofer

none

Electrician Elektro
Tisch

Installs the
electrics for An-
dreas Hofer’s fish
farm

Needs information about the au-
tomation system to install the hard-
ware

no necessary knowledge via Michael
Hofer

installed hard-
ware for the fish
farm of Andreas
Hofer

electrical installa-
tion plan for the
fish farm

Project
engineer

Christopher
Preschern

Develops the PIS-
CAS code genera-
tor

The graduand Christopher Presch-
ern works on the PISCAS master
thesis for the TU Graz on behalf of
Michael Hofer. Christopher Presch-
ern is responsible for the research,
design, implementation and testing
of the system.

moderate fish farm domain knowl-
edge, moderate code generation
knowledge, good B&R Automation
studio knowledge, some fish farm
hardware knowledge

direct PISCAS code
generation sys-
tem, master
thesis paper,
publishable paper

B&R SPS Sys-
tem, diploma

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 40

Figure 3.3: 4+1 viewpoint model for PISCAS

easier.
The scenarios are use cases which were worked out of the collected requirements (Sec-

tion 3.2.2). Fig. 3.3 shows how SPLE can be used in combination with the 4+1 viewpoint
model. Even though the specific case for PISCAS is shown, this is a general approach
and can be applied for most automation system projects. This concept allows to produce
automation systems more efficiently if more systems of the same family are developed. A
disadvantage of the approach is that it needs an upfront investment. More details about
the business model can be found in Section 3.1.2.

3.1.2 Business model

The described business model is structured according to [Sta02]. It is the basis for the
business model used for this project.

Value proposition

The in course of this thesis developed system enables the possibility to provide an individ-
ual offer for a pisciculture automation system to a much lower price compared to business
competitors. A comparable framework does not exist at the time. Pisciculture automation
system (PISCAS) is the first PLC system which introduces a fish growth model to this do-
main. This reduces the service workload for the operator of the pisciculture a lot, because
the food amount need not be adjusted so often. Information about the current amount
of fish is also provided due to this growth model. This saves the necessary work to figure
out the fish amount by weighing the fish in a pond. Additionally the whole fish farm is
rationalized by saving resources like current or fodder as these resources are utilized more
effective. Critical states are reported and the operator of the fish farm is alerted. This
can prevent high damage costs. PISCAS provides a cheep way to automate a pisciculture.

Value chain structure

Due to the automatic code generation a project can be constructed and changed with very
low effort. The framework is designed modular. Changes in the domain do not require

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 41

costly changes of the framework.
The design of the software already considers future maintenance aspects. To keep the

maintenance work low it is inevitable to allow changes in existing PISCAS systems. For
changes in a facility the fish farm configuration can be saved and a new PLC system can be
generated. Afterwards the old configuration can be loaded again. Changes in the domain
like new kinds of fodder or new feeding automates have to be configured. This is done by
the vendor by providing these configurations. They can be applied to the PLC system via
remote access.

The maintenance tasks are not linked to high effort of work. This means these tasks
can be accomplished very effective.

To reduce issues regarding inter-organizational communication problems PISCAS gen-
erates detailed documentation for companies involved in the development process of a fish
farm automation system. The installation plan for the electrician is generated. Also the
design of the hardware is held easy to ensure that the installation can be done without
problems.

Revenue generation model

Most of the work time for constructing a new fish farm automation system has already
been spent by developing the code generator system. This means that the development
costs have to be divided among the expected sold products. A detailed cost model of code
generator based products can be found in [BBMY04]. Due to the low work effort to install
a new automation system with PISCAS a margin of profit can be drawn. This means
that just few fish farm automation systems have to be sold to justify the use of a project
generating software. More specific data can be found in the Appendix 4.4. Maintenance
efforts are very low therefore result in increased profits.

Business model innovation

Innovations in business models can lead to a significant competitive advantage [DLRS09].
In this section the innovations in the presented fish farm system are summarized.

In the fish farm domain PISCAS introduces the innovative approach to calculate a
stochastic fish growth model. This model reduces service work amount for the pisciculture
operator.

According to [FVLD03] innovations can be aided by systematic inter-organizational
relations. The electrical installation of the fish farm is done by another firm. To simplify
this process the electrical installation plan for the pisciculture is already provided by
PISCAS. Additionally the hardware is designed in a way that is simple to assemble.
Therefore the inter-organizational workflow is handled in an effective way. For further
information about the advantages of structured inter-organizational workflows see [Sch97].

PISCAS cost model

The proposed business model is applied to the fish farm project. This model consists
of an upfront investment which is needed to develop the code generator for the domain.
Developing new fish farm automation systems just include modeling the fish farm on a high
level of abstraction. This means that the costs for new projects are very low compared to

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 42

Figure 3.4: PISCAS cost model structure

elaboration of an automation systems without the aid of a code generator software. The
general structure of the business model can be seen in Fig. 3.4. The costs are divided in
base costs, which are basically of the development cost of the code generator, and variable
costs. These are the costs which have to be covered for each new automation system.

3.1.3 Product scope

The product scope describes the rough components of a new PISCAS project. The involved
parties and their interaction with parts of the hard- and software are described.

System installation

The vendor of the fish farm automation system is responsible for organizing the system
installation process. He has to gather the requirements for a new project and model the
fish farm with the aid of the code generator tool. The code generator software generates
a full PLC software and a documentation of the project. Hofernet then commissions an
electrician to install the project hardware. The electrician gets a generated documentation
of the project. The orange arrows in Fig. 3.5 represent the interactions between different
parties and components of the project during the system installation.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 43

Figure 3.5: PISCAS Product scope

System operation

During operation of the automated fish farm the company Hofernet maintains the software.
The fish farm owner configures the software and is able to supervise the current state of
the fish farm. Interactions during operation of the automated fish farm are illustrated as
purple arrows in Fig. 3.5.

3.1.4 Requirements

The requirements for the project were gathered using the Volere Requirements Specifica-
tion Template (see [RR]). Additionally to that two questionnaires were conducted. One
concerned necessary features of an automated fish farm. The questionnaire was directed
of fish farm owners. The results can be seen in Appendix B.1.

The other questionnaire concerned inter-organizational processes between automation
system providing companies and electrician companies. Out of this questionnaire several
requirements regarding the automatic generation of a installation plan arose. The results
of the questionnaire can be found in Appendix B.2.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 44

General requirements

GR1 - Reduction of errors in the software

Description and motivation - Code generation systems can provide software which
usually contains fewer bugs than software which is programmed by hand. The use of an
error-free PISCAS is more convenient for the customer. The fish farm operator can easier
trust in the software if it does not fail often.
Fit criterion - Maintenance work due to errors decreases.

GR2 - Reducing the production time

Description and motivation - Developing an automation system takes a lot of time
for the software. With the code generator system this time should be reduced drastically.
The motivation is that the profit of selling an automation system can be significantly
increased because of the few hours of work needed. For the customer the system is still a
lot cheaper than comparable automation systems from other companies.
Fit criterion - Constructing a fish farm automation system with the help of the code
generator decreases the development time significantly.

GR3 - Generating software which does not have to be adapted afterwards

Description and motivation - The aim of an automation system code generator is that
someone without a lot of software knowledge is able to create a project. This means that
the source code should be completely generated and does not have to be altered, which
leads to a shorter production time of the automation system.
Fit criterion - The code can be applied to a PLC system without changing it.

GR4 - Standardized hardware

Description and motivation - Hardware for the automation system should be stan-
dardized as far as possible. If a replacement part is needed in some years it should be no
problem to get it.
Fit criterion - This requirement can be assured, by checking the future availability of
hardware parts of the PLC company.

GR5 - Integrity

Description and motivation - The template of an automation project for the code
generator must be configured in a way that it checks if a modeled system cannot be
generated.
Fit criterion - Before generating a project the model is checked for its integrity.

Functional fish farm requirements

FR1 - Risk reduction by alarm state information

Description and motivation - For a fish farm operator it can be a tremendous incidence
if for example the oxygen value of a pond gets too low. In the worst case all the fish in the

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 45

pond die, which can be a huge financial loss. PISCAS should provide an interface which
allows checking the status of the fish farm online. If a critical state occurs, the operator
is informed via an SMS.
Variability - Systems can be delivered with or without an SMS-Gateway module.
Fit criterion - A reduction in the loss of fish due to system malfunctions.

FR2 - Variability in hardware modules

Description and motivation - The hardware and the software have to be flexible. It
is very unlikely that a fish farm operator will buy new automatic feeders or new oxygen
suppliers for the ponds. These systems are already present at fish farms in most cases.
PISCAS has to be compatible with a variety of oxygen and feeder modules.
Variability - The system has to provide functionality a variety of feeders and oxygen
sources.
Fit criterion - Code generation software does not have to be changed for equipping a
new fish farm using different hardware.

FR3 - Power supply

Description and motivation - Many fish farms possess a power generator. PISCAS
should be able to handle it if a blackout occurs. The generator is often needed to ensure
a sufficiently high oxygen level for the ponds.
Variability - The software has to be able to handle variants of power generators.
Fit criterion - Variants of power generators can be used with PISCAS.

FR4 - Test mode

Description and motivation - PISCAS should provide a test mode. In this mode the
outputs of the PLC can be switched on and off in the software without any interference of
the PISCAS program. This mode is needed to test whether the hardware works correct.
Functionality - Feeders, aerators and peripherals can be switched on and off manually.
Fit criterion - The system can be tested with this special mode.

FR5 - Logging

Description and motivation - Essential data, like data about the oxygen value and the
fish fodder should be logged. This data helps debugging and also can serve as an evidence
for the correct functioning of the system.
Functionality - Files should be stored on the PLC and a backup should exist.
Fit criterion - Data is being logged.

FR6 - Load/save settings for a fish farm system

Description and motivation - The settings stored for a fish farm project (kind of
feeder for a pond, fodder size, ...) can be stored in a file and backed up. If a PISCAS has
to be changed (e.g. new module) this data can be saved, a new system can be generated
and the old data can be restored. This leads to less time needed for maintenance due to
changes for a system.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 46

Functionality - System settings are stored on the PLC. Software updates do not reset
these settings.
Fit criterion - Effort to change a fish farm system is significantly decreased.

FR7 - Internet maintenance

Description and motivation - Maintenance of the system should be able via the In-
ternet. This reduces effort in case of a problem with the automation system.
Fit criterion - The vendor of PISCAS can access all necessary data and programs over
the Internet.

FR8 - Fish growth model

Description and motivation - After configuring the amount of fish in a pond, PISCAS
automatically calculates the current amount of fishes by considering the fed fodder and
the temperature. The system adapts the amount of fodder to the amount of fishes. The
operator of the pisciculture does not have to adjust the fodder amount.
Fit criterion - Corrections of the fodder amount have to be done less often.

FR9 - Oxygen level control

Description and motivation - This feature is very important to the project. The
level of oxygen is essential for the fish in a pond to survive. If the oxygen level sinks,
countermeasures have to be taken. PISCAS should be able to control different kinds of
oxygen supplies.
Fit criterion - Different oxygen systems can be used with PISCAS.

FR10 - Fair feeding

Description and motivation - In many fish farms the automatic feeders are not used
all the time. To reduce the costs of PISCAS the used feeders use just few power supply
units. As the current of the power supply units is limited, the feeders are not allowed to
feed all at once. A fair scheduling for the feedings has to be applied if more than one
feeder wants to feed at a time. Feedings should also be spread across the whole day while
there is light. This scheduling provides well-directed use of fish fodder.
Fit criterion - The scheduling for many feeders works fair and correct.

FR11 - Documentation

Description and motivation - For easier maintenance it is necessary to provide a
consistent documentation for a fish farm project. This documentation is generated with
the PLC source code. The documentation includes the PLC pin-assignment, a project
overview and maintenance relevant data.
Fit criterion - A consistent documentation is provided with each generated product.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 47

FR12 - Measure water level

Description and motivation - The water level of a pond is measured. It is a critical
state if the water level is too low. In that case an alarm message should be send.
Fit criterion - The water level is sensed and an alarm is sent if a critical state occurs.

FR13 - Selectable fish species

Description and motivation - Different fish species need different amount of fodder.
To calculate the right amount the species has to be known.
Fit criterion - The system feeds according to the configuration of the fish species.

Non-functional fish farm requirements

NR1 - User-friendly fish farm modeling interface

Description and motivation - As the software might just be used occasionally it is
important that the user interface for modeling the fish farm is intuitive and easy to handle.
The benefit of this goal is that a new user of the software does not have to be trained a
lot.
Fit criterion - Inexperienced users are able to model a fish farm.

NR2 - Easier operation of the automated fish farm

Description and motivation - The operator of the fish farm should have less work
with handling the fish farm with the automation system. This leads to a high customer
satisfaction.
Fit criterion - Positive feedback of fish farm operators.

NR3 - Low maintenance effort

Description and motivation - The work for changing a fish farm (e.g. adding a
module) should be very low. With low maintenance effort it is easy to get a high profit
for maintenance work.
Fit criterion - Systems can be generated and altered with low effort.

NR4 - Resource efficiency

Description and motivation - Fish fodder and energy should be used more efficient
with PISCAS. This increases the customer satisfaction because his costs for these resources
decrease.
Fit criterion - A comparison of the fish farm energy and fodder cost before and after
the usage of PISCAS shows that the costs are reduced.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 48

NR5 - Scalability

Description and motivation - It should be no problem (e.g. due to processing power)
to scale the system in a given range.
Fit criterion - A system with the maximum number of 255 ponds can be generated and
works.

NR6 - User interface usability

Description and motivation - The visualization of the fish farm should provide a good
overview of the current fish farm state. Configurations should be intuitive. A new user
should be able to operate the system.
Fit criterion - Several untrained users can use PISCAS without any problems.

NR7 - User interface appearance

Description and motivation - The appearance of the visualization might have to be
changed according to the customer (e.g. corporate design has to be used).
Fit criterion - The colors and the design can be easily configured.

NR8 - Reliability and availability

Description and motivation - It is essential that the product does not fail undetected.
If the system discovers a state which it cannot handle, then an alarm (SMS) has to be
sent.
Fit criterion - The system does never fail without sending an alarm.

NR9 - Robustness and fault tolerance

Description and motivation - If the system discovers an error, it should issue a warning
and continue its work. If as an example a oxygen sensor fails, then the pond has to be
provided with oxygen (to prevent a too low oxygen level) and an SMS is sent to the fish
farm operator.
Fit criterion - Fault states like broken hardware (sensors, power generator) are suc-
cessfully tested.

NR10 - Capacity, storage

Description and motivation - Data about the system are logged. This data is stored
on the PLC. The PLC must provide enough storage for this data. If the storage is full the
PLC should overwrite the old data by itself. No extra maintenance should be needed for
that.
Fit criterion - Data is logged and no maintenance has to be done for ensuring enough
storage.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 49

NR11 - Software access

Description and motivation - The fish farm operator should be able to access the fish
farm overview via the Internet. He can see the state of the pisciculture and adjust several
settings. The vendor of PISCAS can access additional configuration settings.
Fit criterion - PISCAS provides two login modes. A user can access normal functions
and an administrator can access everything.

NR12 - Easier cooperation with other firms for installing PISCAS

Description and motivation - It is often a problem that due to a lack of communication
between different firms, which are working on the same project, misunderstandings occur.
This can lead to problems for installing PISCAS as the hardware might be installed by
an electrician and not by the company providing the automation system. To bridge this
gap, PISCAS provides automated generation of electrical installation plans.
Fit criterion - The cooperation with an electrics firm is eased, which can be measured
by comparing the problems because of inter-organizational misunderstandings with and
without the code generation system.

3.1.5 Modeling language

Choosing language for modeling the metamodel for the software product line is an im-
portant task. Basically it can be differentiated between standardized modeling languages
(e.g. UML) and domain specific languages.

UML brings the advantage that it is well known and many tools for this language
exist. A disadvantage is that the metamodel of the product line might be unnecessarily
complicated if it is modeled with a language that is too general. [CRR09] states that
general models are harder to maintain than domain specific models.

Domain specific language tool support is not as good as it is for UML. Models with
a domain specific language can be elaborated a lot faster than with UML, because UML
is very generals and often does just support the features of the domain. Domain specific
models can also be understood easier and need not be provided by experts [Jun08].

The decision for the kind of modeling language is often linked with the level of granu-
larity (Section 2.3.2) the software product line should have.

MDA will not be used, because this standard involves the use of UML. For PISCAS
a domain specific language is used, because it can model the domain more specific in
an easy way [CRR09]. The tool used for creating a DSL is MetaEdit+ from MetaCase.
This software satisfies all needs for creating a fish farm metamodel and performed best
in an evaluation of different metamodeling softwares. The evaluation can be found in
Appendix A.

3.1.6 Metamodel concept

The metamodel allows to model several different fish farm automation systems.
The metamodel allows to model the logical software constraints and the physical con-

straints (which are needed for generating a installation plan) in one graph. The objects of
the system are dragged into the model and connected as their physical connection will be.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 50

The alignment of the objects to each other represent their position in the real fish farm.
Out of the information of this graph the PLC software and a documentation including an
overview of the pin assignment of the system are generated.

The decision that the physical pin assignment has to be made manually was made
because this makes modeling existing systems easier. If an existing automation system
is changed, then the existing parameters (like the pin assignment) have to be taken info
consideration for the model. This is the reason why the pin assignment has to be explicitly
modeled.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 51

3.1.7 Variability

Ponds

• Amount - The number of ponds for each PISCAS project can be
variable. It can be adjusted by the amount of pond objects in the
fish farm model.

• Type of oxygen supply - The type of oxygen supply can be modi-
fied. Each pond provides an option where the supply type can be
defined. A pond can also be connected to an external module. This
provides the possibility that more ponds share an oxygen supply.

• Type of Feeder - The feeder type can be defined for each pond.

• Feeding Power Supply - This option allocates the ponds to their
power supply for feeding. This information is needed to provide
the scheduling of the feedings.

Power
generator

• Type - The standby set type can be defined in the model. The
type changes the start behavior of the device.

PLC I/O
modules

• Type - States which kind of I/O module is used. The I/O modules
are connected to other objects in the model (e.g. ponds). This
connection defines the hardware connection between the modules
and the fish farm devices. The reason why this mapping is modeled
manually is that that makes maintenance work easier if an existing
system has to be changed. Automatic mapping of the I/O modules
would not be able to cope with that.

Switches

• Type - The type of switch defines it’s behavior. Push buttons,
normal switches or time triggered switches can be used.

• Output - An output is a representative for a universal device. The
combination of switches and outputs lets the modeler develop in-
dividual part of the system which low dependence on the fish farm
domain.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 52

Figure 3.6: PISCAS Meta-Model

3.1.8 Metamodel

The presented metamodel is a result of the gathered requirements for the fish farm domain.
With this metamodel it is possible to model all of the during the design process given fish
farm systems. These include three different real life fish farms.

An overview of the metamodel elements and their relations can be seen in Fig. 3.6.
The number of the given elements can be variable and the connections are optional. With
this metamodel it is possible to model a whole fish farm system.

The used B&R I/O modules are modeled explicitly. The reason for not generating this
mapping automatically is that it should easily be possible to extend an existing fish farm
automation system. This is just possible if one can configure the mapping. Otherwise
existing fish farm systems could not be modeled with the code generator tool, because
their real I/O mapping would not accord to the mapping generated by the tool. Another
reason for explicitly modeling the hardware is that different kinds of I/O modules can be
used.

3.1.9 Generators

Fig. 3.7 presents an example for a simple modeled fish farm system. The mapping of the
model components to the specific parts of the PLC code and the documentation is shown.
The connections in the model between objects like ponds and feeders contain information
which is used to configure the cyclic PLC programs. More specifically, these connections
establish internal mappings between PLC software parts. This connection information in
the model is also used to establish the connections between the objects in the automatically
generated visualization and in the documentation. The information in the model about
the hardware mapping is needed to map the corresponding variables of the PLC program
to the inputs and outputs of the PLC.

Consistency check

A model is restricted to severals constraints. The output of a feeder for example cannot
be connected to an input module. To assure that such constraints are maintained, a

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 53

Figure 3.7: Mapping of the PISCAS model to the generated artifacts

consistency check of the model is performed before the code is generated.

Documentation

From the model for the PLC software also the documentation for the project is generated.
The documentation consists of a graphical overview of the system and detailed information
about the pin assignment. The information for generating the pin connection part of
the documentation is stored in the direct connections between the PLC modules and a
corresponding object in the model. To generate the overview the information about the
positions and connections of the ponds in the model are used. of The documentation makes
the hardware installation of the system a lot easier. The generated files are Scalable Vector
Graphic (SVG) files and Rich Text Format (RTF) files.

PLC software

The code for the PLC including the visualization of the PLC software is generated out of
a template as suggested by the template&metamodel code generation pattern presented
in Section 2.3.4. This template has been developed with the aim to provide a source code
which can easily be used with a code generator. This means that the variability of the
domain can easily be configured with the PLC software. The code generator copies the
PLC project and configures the software according to the given model. For generating
the internal connections between the cyclic PLC programs, the information of the con-
nections between the objects like ponds in the model is needed. To map the variables
of the PLC software to physical inputs and outputs the model connections between PLC
modules and objects line ponds are used. For the PLC programs files programmed in the
language structure text and variable definition files for B&R PLCs are generated. For the
visualization XML files for B&R PLCs are generated. XML files containing configuration
information of the PLC, like the IP address, are generated as well.

3.1.10 Use cases

This section contains use cases worked out from the requirements gathered in Section 3.1.4.
The use cases describe scenarios valid for all fish farm systems and provide a basis for the

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 54

development of the generic PLC template which is described in the next section.

Name Feeding

Description The pond has to be fed according to the scheduler.

Scenario
A configured pond does all the feeding automatically. The scheduler of
PISCAS calculates the optimal feeding times and conducts the feeding.

Sequence

Name Configuration

Description The fish farm operator configures specific data for the fish farm.

Scenario

To configure the fish farm system the operator has to log in to the
VNC webinterface. With this interface several configuration can be
made. The feeding and oxygen supervision of a pond can be acti-
vated/deactivated. The amount of fish in a pond can be changed to
alter the fodder amount for the pond. The type of fodder which is used
can also be configured.

Sequence

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 55

Name Information

Description
The fish farm operator wants to get information about the current fish
farm status.

Scenario
The operator connects to the webinterface and gets information about
the fish farm.

Sequence

Name Alarm

Description An alarm at the pisciculture system occurs.

Scenario
PISCAS sends an SMS via the SMS Gateway to the fish farm operator.
The operator checks the status of the pisciculture system online and
checks the fish farm if necessary.

Sequence

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 56

Name Low Oxygen level

Description The oxygen level of a pond is low.

Scenario
PISCAS senses the oxygen level and activates the aerator if the level is
too low.

Sequence

Name Blackout

Description The power supply fails.

Scenario
If a blackout occurs the power generator is activated if power is needed
(feeders or aerators have to be operated).

Sequence

3.1.11 PLC software template

The PLC software was designed in a way that it was easy to generate different code
depending on the variability of the model. This means that the software is split up in
independent modules. Their behavior or amount can be changed very easily by adjusting
some parameters which is done by the code generator.

The main part of the PLC software is the part for feeding and controlling the oxygen
level of a pond. The feedings are scheduled in a way that all the feedings of one day

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 57

are spread across the whole day. The number of simultaneous feedings is constrained
by the maximum current the power supply for the feeders can provide. For the oxygen
supervision a output pin is controlled depending on the current oxygen value of a pond.

If the system reaches a critical state (e.g. low oxygen level in a pond) an SMS is sent
to the fish farm operator. The PLC communicates via TCP with an SMS gateway. It is
also possible to request a specific status from the PLC by sending it an SMS.

Important events are logged on the PLC. These log-files can be accessed over the
Internet with an FTP-client.

Information about the used feeders like their flowrate are read from a configuration
file. This file can be updated via FTP.

The software provides a visualization which allows to adjust fish farm settings and
to get information about the current status. The visualization can be accessed with a
VNC-Viewer.

If a blackout occurs the system checks whether power is needed (e.g. for feedings) and
starts a power generator if it is necessary.

For testing the hardware of the system a test mode is available. This mode also allows
to adjust settings like passwords or the maximum current for the feeding modules.

Overview

This section gives an overview of the PISCAS software design. The PLC software is divided
in independent packets which can be configured by elaborating a model for a given fish
farm. Fig. 3.8 gives an overview of the packages.

Figure 3.8: Packages of the PISCAS software

Package pond

Oxygen supervision - For each pond the oxygen level has to be supervised and an
aerator has to be switched on if the oxygen level is too low. A state diagram of the
according software is shown in Fig. 3.9.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 58

Figure 3.9: State diagram of the oxygen supervision

Feeder - Each feeder can be configured. It calculated the necessary amount of fodder
according to this configuration as it is shown in Fig. 3.10.

Figure 3.10: Calculation of the necessary fodder amount

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 59

Scheduler - Pseudocode for the feeding schedule is shown in Fig. 3.11. The scheduler
is the most sophisticated PLC software part of the project. It assures that the feedings for
each pond are spread across the whole day and that every pond feeds the needed fodder
amount.

The flow rate of the feeder for each pond is determined. According to the information
in a lookup table the needed fodder as percentage of the current fish weight is obtained.
The lookup table depends of the fish species, the used fodder and the water temperature.
Out of this data the amount of fodder per day fore each pond can be calculated. With the
information of the fed fodder the fish weight of the pond can be updated and therefore
data about the current fish weight in a pond is available.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 60

Figure 3.11: Pseudocode for the scheduling

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 61

Package power supply

In case of a blackout the system is backed up by a power generator. A state diagram
of this device is shown in Fig. 3.12. The power generator is just switched on of a long
blackout occurs and if power is needed at the time (due to feedings or low oxygen level
for a pond).

Figure 3.12: State diagram for the power supply

Package feeder information

This package reads the information for the feeders (e.g. flow rate) from a CSV file. Such a
CSV file can be produced which an Excel sheet structured like the one shown in Fig. 3.13.
The data is used as a lookup table to calculate the needed feeding times according to the
used feeder and fodder. This calculation is done by the scheduler.

Figure 3.13: Config File for the feeder information

The values of this config file are stored in a specific feeder information data structure
as it is shown in Fig. 3.14.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 62

Figure 3.14: Data structure for the feeding information

Miscellaneous

This package contains little helper programs and the program for controlling switches and
outputs. The state diagram for a switch is shown in Fig. 3.15. As it is possible to combine
switches and outputs in the fish farm model, this section allows to model basic domain
independent features.

Figure 3.15: State diagram for switches

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 63

Figure 3.16: Instantiation of a new PISCAS system

3.2 Application engineering

This section describes what has to be done to create a fish farm automation system with
the SPL which was set up. Guided by requirements engineering from Section 2.2, the
following use cases for fish farm projects were set up. These use cases cover processes that
have to be done during application engineering. The following section gives an overview
how a new PISCAS system is created.

3.2.1 PISCAS system instantiation

To generate a new PISCAS application the system has to be modeled with the graphical
MetaEdit+ edior. This model is constrained by the designed metamdel for the fish farm
domain. The code generators generate the PLC software and the documentation using
the information in the model and a domain specific template. This template is the generic
PLC software presented in Section 3.1.11 which includes functionality to cover the domain
requirements. The process of instantiating a new system is shown in Fig. 3.16.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF PISCAS 64

3.2.2 Use cases

Name Install a new system

Description A new fish farm automation system is requested

Scenario

A fish farm owner wants PISCAS as fish farm automation system. The
company providing PISCAS gathers information about the fish farm and
models the system. The source code and the documentation is generated
out of this model. The electrician installs the hardware of the system
with the aid of the generated plans.

Sequence

Name New system components

Description New system modules have to be installed

Scenario

The system is expanded due to a request of the fish farm owner. The
configuration data for the current PISCAS project is stored and backed
up. A new PISCAS project with the additional modules is generated
and the settings from the old project are loaded.

Sequence

Chapter 4

Project evaluation

4.1 Project implementation

This section describes the process of installing PISCAS at two different fish farms. The
systems are located at Radenthein/Austria and Feld am See/Austria.

PISCAS Prototype

A software template for a fish farm automation system was developed. The software
included basic features like oxygen supervision, feeding, emergency power supply and an
alarm system to satisfy the functional requirements FR1, FR3, FR8, FR9 and FR10 from
3.1.4. The prototype was developed in a way that is should be easy to adapt the software
for other fish farms with different amount of ponds and slightly different functionalities.

Clone&own Radenthein

The prototype was used and changed to the fish farm system in Radenthein. The clone&own
method was used to achieve that. Adapting the prototype to be used in Radenthein took
much more time than expected. A detailed listing of the spent work time can be found in
section 4.4. Many errors occurred during the first operation of the system and problems
with the electrical installation turned up because of a lack of communication between the
company Hofernet and the electrician who installed the hardware. The requirements GR1,
GR2, GR3 from Section 3.1.4 were clearly missed.

PISCAS Software Product Line

To reduce the amount of work it takes to adapt a prototype to a specific fish farm system
a software product line was developed. Fish farms can be modeled with a graphical editor
and the source code for the automation system is generated out of this model. Additionally
an installation plan for the electrician is provided by the code generator. The amount of
work time for the installation of a system using SPLE is also expected to be less compared
to the previous approach.

The SPL enables full code generation. 100% of the PLC software is generated and the
code does not have to be altered. With the PLC code a visualization including a seperate
visualization for test purposes is fully generated. This test visualization is and the fully

65

CHAPTER 4. PROJECT EVALUATION 66

generated documentation of the PISCAS system bring advantage for installing PISCAS
as the correctness of the hardware installation and its functionality can easliy be checked.
The prodcut line was designed to meet the requirements presented in Section 3.1.4.

PISCAS Radenthein

The current software in Radenthein is generated out of a PISCAS model shown in Fig. 4.1.
The software works well so far, no major problems occurred and all the requirements from
Section 3.1.4 are met.

Figure 4.1: Model of the fish farm in Radenthein

PISCAS Feld am See

The fish farm in Feld am See (Fig. 4.2) has been automated using PISCAS. Modeling the
fish farm with the graphical editor worked very well and did not require many changes in
the software product line. The model is shown in Fig. 4.3. The automation system for this
fish farm was taken into operation without big problems. The installation was conducted
a lot faster than the first operation of the system in Radenthein. Detailed results can be
found in Section 4.4. The requirements from Section 3.1.4 are fully met. The generated
documentation is shown in Fig. 4.4 and Fig. 4.5. The visualization software is shown in
Fig. 4.6.

Comparison of the two fish farm automation systems

This section shows an overview of the two fish farm systems. In Tab. 4.1 several metrics
are considered to compare the size of the two systems.

CHAPTER 4. PROJECT EVALUATION 67

Figure 4.2: Fish farm in Feld am See

Figure 4.3: Model of the fish farm system Feld am See

4.2 Software quality

Due to the SPL approach an improvement in software quality is expected. This should
be the case because the code generator is reviewed each time an error for a PLC software
occurs. In practice it is often the case that several errors occur when existing software
is adapted for a similar project. This method is called clone&own. Such errors do not
emerge if a code generator tool is used.

As higher software quality is expected, also lower maintenance times and costs are
expected. The PLC software was designed to be easily maintainable and to keep mainte-

CHAPTER 4. PROJECT EVALUATION 68

Figure 4.4: Overview part of the documentation of the fish farm system Feld am See

nance costs low. Section 4.4 shows that the expected maintenance time of the SPL system
are lower than the times for a standard PLC software system.

4.3 Time to market

The production time for a fish farm automation system is decreased significantly. The
data in Section 4.4 shows that developing a PLC project with respect to SPLE allows to
produce these systems a lot faster if enough systems of the same family are installed.

4.4 Development approach evaluation

The data for the evaluation was acquired during the development the two fish farm systems
in Radenthein and Feld am See. The systems are comparable in size and were partly
developed with different methods as stated in 4.1. Therefore the clone%own and the SPL
approach can be evaluated.

CHAPTER 4. PROJECT EVALUATION 69

Figure 4.5: Hardware part of the documentation of the fish farm system Feld am See

Figure 4.6: Visualization of the PLC software for the fish farm system Feld am See

4.4.1 The cost model

The cost model is based on the model proposed in [CMC05] and adapted to the needs of
automation systems. Three scenarios are important for our estimation:

CHAPTER 4. PROJECT EVALUATION 70

Radenthein Feld

PLC software LOC 4711 4394
Number of documentation pages 18 19
Number of ponds 25 9
Number of peripheral components (e.g. lights) 6 9

Table 4.1: Comparison of fish farm systems Radenthein and Feld am See

1. Building n products with individual project development

n∑

i=1

Cunique(pi) + Cprod(pi) + Cinstall(pi) + Cmaint(pi)

2. Building n products with clone&own

Ccab() +
n∑

i=1

Cunique(pi) + Cprod(pi) + Cinstall(pi) + Cmaint(pi)

3. Building a SPL with n products

CostDE = Corg() + Ccab()

CostAE = (Cunique(pi) + Creuse(pi) + Cinstall(pi) + Cmaint(pi))

CostsSPL = CostDE +
n∑

i=1

CostAE(i)

For our project we can assume the following:

• Corg = Code generator development

• Ccab = DSL and PLC template development

• Cunique = Requirements analysis

• Creuse = Creation of a product specific model

• Cprod = Manual development (without PL)
This includes PLC Project SW development, SW changes and electrical installation
changes.

Additional to these costs, we introduce two more types of costs which are relevant
for automation system development:

• Cinstall = Electrical and on-site installation

• Cmaint = Maintenance

CHAPTER 4. PROJECT EVALUATION 71

Work hours

Tasks
Ind. Projects Clone&Own SPL
base variable base variable base variable

Domain engineering
(DSL dev.)

22.5

PLC project SW dev. 196

PLC template develop-
ment

180 196

Code generator dev. 100

Requirements analysis 20 20 20

Product specific model 2

Software adaptations 16

Electrical installation 40 40 40

Electrical installation
changes

5 5

On-site installation 40 40 18

Maintenance 8.5 8.5 2

Sum 0 309.5 180 129.5 331.5 87

Table 4.2: Summary of work hours for different development approaches for PISCAS
systems

4.4.2 Cost analysis

For the three different development methods data has been gathered during the develop-
ment of PISCAS. Basically the costs can be divided into base costs and variable costs.
The base costs accrue just for the first system developed in the domain. Further systems
only cause variable costs. Table 4.2 shows the costs for the different methods, based on
the cost model illustrated in Fig. 3.4.

In the following discussion the work hours for several systems of the same product fam-
ily are examined. The costs are calculated according to the formulas given in Section 4.4.1.
The costs for the different development approaches are shown in Fig. 4.7. Table 4.3 shows
detailed data about the costs for different development methods subject to the number of
elaborated automation system projects.

4.4.3 Break even point estimation

Using the cost values in Table 4.3, a break even point for the different approaches can
be identified. We are interested in the break even point of the SPL approach and the
clone&own method. It can be calculated by setting the Clone&Own costs CC&O equal to
the SPL costs CSPL. The break even point is then given as

n =
CClone&Own−base − CSPL−base

CSPL−variable − CClone&Own−variable

= 3.14

CHAPTER 4. PROJECT EVALUATION 72

Figure 4.7: Work hours for different development approaches

#Pr.
Ind. Projects Clone&Own SPL

base var. sum base var. sum base var. sum

0 0 0 0 0 0 0 331.5 0 331.5

1 0 309.5 309.5 0 309.5 309.5 331.5 87 418.5

2 0 619 619 309.5 138 447.5 331.5 174 505.5

3 0 928.5 928.5 309.5 276 585.5 331.5 261 592.5

4 0 1238 1238 309.5 414 723.5 331.5 348 679.5

5 0 1547.5 1547.5 309.5 552 861.5 331.5 435 766.5

Table 4.3: Overview of the work hours for different development methods

CHAPTER 4. PROJECT EVALUATION 73

This result is better than expected. The reason is, that the variable amount of work hours
for AS usually are very high. A lot of variable costs during the on-site and electrical
installation can be saved with the SPL approach.

4.5 Achieved goals

To test whether the goals of the project are achieved, all the requirements were tested.
The weight and the rating which states how good this goal is fulfilled were discussed with
the software vendor of the automation system and a fish farm owner who uses the system.
As it can be seen, all of the important goal are fulfilled to a satisfying degree.

PISCAS

GR1 - Reduction of PLC software errors 8

GR2 - Reducing time-to-market 10

GR3 - Generate software which does not have to be adapted 3

GR4 - Standardized hardware 10

GR5 - Model integrity checks 10

FR1 - SMS for alarm states 10

FR2 - Variability in hardware modules 8

FR3 - Power supply 10

FR4 - Test mode 10

FR5 - Logging 10

FR6 - Backup settings functionality 10

FR7 - Internet maintenance 10

FR8 - Fish growth model 7

FR9 - Oxygen level control 10

FR10 - Fair feeding (scheduling) 10

FR11 - Documentation 10

FR12 - Measure Water Level 10

FR13 - Selectable fish species 0

NR1 - User-friendly modeling interface 4

NR2 - Easier operation of the fish farm 10

NR3 - Lower maintenance effort 10

NR4 - Resource efficiency 10

NR5 - Scalability 10

NR6 - User interface usability 8

NR7 - User interface appearances 0

NR8 - Reliability and availability 10

NR9 - Robustness and fault tolerance 6

NR10 - Capacity, storage 10

NR11 - Software access 10

NR12 - Easier cooperation with other firms 7

Benchmark 84%

Table 4.4: Goal analysis

Chapter 5

Conclusion and future work

This master thesis described the basics for software product line engineering. A specific
SPLE project for the fish farm domain was conducted and presented. The goals of the
master thesis were analyzed and compared to the requirements of the project.

Constructing the code generator took less time than expected. The work for refactoring
the template, creating a metamodel and developing the code generators was less than the
work for the development of the first prototype of the system. Also the results of this work
regarding saving costs and time for fish farm automation systems constructed with the aid
of the code generator were better than expected. The evaluation showed that the break
even point when using the SPL approach instead of the well known clone&own method
is 3.14 (Section 4.4). These results are a lot better than results of similar projects like
[Has09]. The low break even point can be explained because of the few additional effort
that has to be put in if a code generator is constructed and because of the huge savings
of variable costs for the SPL approach. These savings follow from the installation of the
automation system. The time for error tracing during this phase is reduced a lot and
therefore many hours of work can be saved.

The main aims of this project were decreasing the costs for the development of fish
farm projects and reducing the maintenance time. The set goals for this project were
satisfactory met.

For future work the following aspects would be of interest:

Maintaining the code generator It is planned that the code generator tool will be
used in future for several other fish farm systems. It is not expected that the gen-
erator can handle all of the system, but it should not be a lot of work to change
the tool according to new requirements. Maintaining the code generator and adding
new features and correcting errors of the PISCAS template are expected to be the
biggest part of future work.

Wireless nodes The local activities for a pond like supervising the oxygen level are
critical. This could be achieved by a local device for each pond. The data for con-
figuration and the data for the visualization could be sent via a wireless link to a
central station and perhaps could be integrated to an existing PLC project. Advan-
tages would be that no cables have to be installed between the PLC and each pond.
A disadvantage is that this solution includes additional individual hardware. This

74

CHAPTER 5. CONCLUSION AND FUTURE WORK 75

hardware would be more error-prone because it is not as well tested as standardized
industrial hardware.

Generating further fish farm projects At the time fish farm projects have been
generated for the systems in Feld am See and Radenthein. The data gathered for the
system in Radenthein is not very representative as the code generator was developed
with respect to this specific fish farm systems. It is clear that it was possible to model
all the features of this system. The system in Feld am See could easily be modeled
with the code generator with few additional pieces of software. Data collected during
the development of this system is representative, but as the size of the fish farm in
Feld am See is not exactly the same as the size of the fish farm in Radenthein, it
would be of interest to install more fish farms to get better and more detailed results
regarding the development costs.

Developing a PLC software generator for another domain It would be inter-
esting to get data about the development time for a similar project if the developer
already has the needed knowledge to create code generators. These times could be
compared to the current data shown in Section 4.4

Porting the system to be usable with other PLCs The project is designed to work
with Bernecker&Rainer PLCs. Data about the needed time to change the PISCAS
template and the code generator so that it can be used with another PLC would be
of interest. Theoretically the template does not need a lot of changes as the source-
code is written in structured text which is not vendor-specific. The code generator
would have to be changes as it generates some B&R specific files concerning the
hardware mapping of the PLC.

Appendix A

Evaluation of metamodeling tools

The criteria were taken from existing papers [DSF07, DRGN07, LCP+00, Lei09, Has09].

Nr. Critertion Definition

Product Line Engineering criteria

1 Attribute management
• Differentiate between SPL requirements
and product requirements

• Manage requirements attributes (identi-
fier, description, justification, cost,...)

• Ability to capture future requirements

• Ability to capture new requirements dur-
ing derivation

• Autobuild with given specifications (min-
ing)

2 Feature and variability mod-
eling

• Help to model FODA-like concepts (fea-
ture decomposition, feature type, cardi-
nalities, dependency links,...)

• Support different abstraction levels

• Support global constraints

3 Feature Metamodel maturity
• Allow to define a PL metamodel

• The tool should be unambiguous

• Support product line evolution

76

APPENDIX A. EVALUATION OF METAMODELING TOOLS 77

Nr. Critertion Definition

4 Constraint checking and prop-
agation

• Support validation checking for the PL
model and metamodel

• Check consistency of product model and
PL model

• Check consistency of model and artefact
base

• Support constraint propagation

• Compare artefacts to a ’standard’

• Rule-checking

5 Product derivation
• Help to derive specific products with guid-
ance and visualization

6 Domain engineering manage-
ment

• Support the creation of domain artefacts

• Support the management of domain arte-
facts

• Map domain artefacts to corresponding
features

• Search functions, to find a suitable arte-
facts

7 Repository
• Version-management of artefacts, docu-
ments or possibility to integrate such a
tool

• Re-create any version of a product

• Compare different versions of a product

Management criteria

8 Traceability management
• Support requirements traceability with ex-
ternal documents

• Support traceability management of inter-
requirements links

• Support metamodel traceability

• Traceability between and within assets
(linkage ...)

APPENDIX A. EVALUATION OF METAMODELING TOOLS 78

Nr. Critertion Definition

9 Impact analysis
• Perform impact analysis when changing
requirements or models

• Perform impact analysis when changing
interlink requirements

10 Reporting
• Ability to generate reports

Technical criteria

11 Access mode
• Allow multi-user access

• Allow access with profiles (define the
metamodel / use it)

12 Technical environment
• Support synchronization

• Interoperability: support import and ex-
port from other tools (APIs, neutral for-
mat files, etc.)

13 Usability
• Intuitive usage

• Stability and efficient support

• Offer high accessibility of functions, zoom,
views, ...

• Ability to handle great amount of artefacts

14 Automatic filters
• Automatic filters on requirements presen-
tations and report generation

15 Tool configuration
• The tool should be configurable for specific
user needs

• Adaption to current organisation

16 Extensibility
• Should be extensible to integrate existing
platforms into the PL

17 Flexibility
• Changes should be possible on each stage
of development (also in derived products).

APPENDIX A. EVALUATION OF METAMODELING TOOLS 79

Nr. Critertion Definition

18 AOB
• Tool costs and training costs /amortisa-
tion time

• Light charge of installation, maintenance
and migration cost

• Flexible licensing service

Table A.1: Criteria to rate SPL tools

Appendix B

Questionnaires

B.1 Questionnaire for fish farm owners

The following questionnaire was given to the fish farm owner Andreas Hofer who owns the
company Kärnten Fisch. The prototype of PISCAS was developed for him and several
other systems for his fish farms will be developed. Answers are marked with blue color.
The questionnaire was conducted before PISCAS was installed.

How reliable do current fish farm automation systems (feeding automates,
oxygen supervision) work?

very reliable
reliable
little reliable

• unreliable

How efficient do current fish farm automation systems work (fish food
efficiency, low-energy use)?

very efficient
efficient
little efficient

• not efficient

Are fish farm systems often changed or extended (e.g. new feeding
automates)?

very often
• often

seldom
very seldom

How good is the support of fish farm automation system vendors?
very good

80

APPENDIX B. QUESTIONNAIRES 81

good
poor

• very poor

How important are the following functionalities?

oxygen
supervision

water level
supervision

efficient
feeding

emergency
power unit

very important x x x x

important

little important

unimportant

How important are the following criteria for an automation system?

cheap
system
costs

cheap
mainte-
nance costs

quick in-
stallation

quick
correction
of errors

very important x x x x

important

little important

unimportant

B.2 Questionnaire for electrician companies

The following questionnaire was given to two companies working in the automation and
electrical installation sector. EVA GmbH is a firm which focuses on industrial automation
systems. The company installs the hardware and programs the software for those systems.
Elektro Tisch focuses on the electrical installation of systems.

The answers of the companies are marked with colored bullets or colored text. Green
color represents the answers of the firm EVA GmbH, orange bullets represent the answers
of the company Elektro Tisch.

How often do problems arise due to lack of communication with the
customer?

very often
• • often

seldom
very seldom

APPENDIX B. QUESTIONNAIRES 82

Is the communication between the customer and the company
standardized?

Yes
• • No

The customer provides rudimentary installation plans
very often

• often
seldom

• very seldom

A rudimentary installation plan provided by the customer is
• very desirable

• desirable
little desirable
undesired

An detailed installation plan provided by the customer is
very desirable
desirable

• little desirable
• undesired

Following methods are used to obtain the requirements of the customer
and to get the necessary information for the electrical installations

Regular meetings with the customer
Regular meetings with the customer
List of components which have to be installed provided by the customer

The possibility to test a hardware installation with the automation
system software is
• • very desirable

desirable
little desirable
undesired

Bibliography

[AFR06] Daniel Amyot, Hanna Farah, and Jean-François Roy. Evaluation of develop-
ment tools for domain-specific modeling languages. In SAM, pages 183–197,
2006.

[BBMY04] Barry Boehm, A. Winsor Brown, Ray Madachy, and Ye Yang. A software
product line life cycle cost estimation model. Empirical Software Engineering,
International Symposium on, 0:156–164, 2004.

[BCC+96] L. Baker, P. Clemente, B. Cohen, L. Permenter, B. Purves, and P. Salmon.
Foundational concepts for model driven system design. INCOSE Model Driven
System Design Interest Group, 1996.

[Ben03] Michael Benz. Einführung in die generative Programmierung (GP), 2003.

[BFG+02] A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Use case de-
scription of requirements for product lines. In Proceedings of the International
Workshop on Requirements Engineering for Product Lines 2002 - REPL 02.
Technical Report: ALR2002-033, AVAYA, pages 12–18, 2002.

[BGK+06] Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai, Janos
Sztipanovits, and Sandeep Neema. Developing applications using model-
driven design environments. Computer, 39:33–40, 2006.

[Bru07] Nicolas Brugger. Vergleich von Modellierungssprachen für MDA, 2007.

[CJNM05] Paul C. Clements, Lawrence G. Jones, Linda M. Northrop, and John D. Mc-
Gregor. Project management in a software product line organization. IEEE
Softw., 22(5):54–62, 2005.

[Cla01] M. Clauss. Modeling variability with UML. In GCSE 2001 Young, 2001.

[CMC05] Paul C. Clements, John D. McGregor, and Sholom G. Cohen. The structured
intuitive model for product line economics (SIMPLE). Technical report, Soft-
ware Engineering Institute at Carnegie Mellon University, February 2005.

[CN01] Paul C. Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, August 2001.

[CRR09] Lan Cao, Balasubramaniam Ramesh, and Matti Rossi. Are domain-specific
models easier to maintain than UML models? IEEE Softw., 26(4):19–21,
2009.

83

BIBLIOGRAPHY 84

[CY08] Jordi Cabot and Eric Yu. Improving requirements specifications in model-
driven development processes, 2008.

[DLRS09] Mike Deimler, Zhenya Lindgardt, Martin Reeves, and George Stalk. Business
model innovation: When the game gets tough, change the game. Technical
report, The Boston Consulting Group, 2009.

[DRGN07] Deepak Dhungana, Rick Rabiser, Paul Grünbacher, and Thomas Neumayer.
Integrated tool support for software product line engineering. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on Au-
tomated software engineering, pages 533–534, New York, NY, USA, 2007.
ACM.

[DSF07] O. Djebbi, C. Salinesi, and G. Fanmuy. Industry survey of product lines
management tools: Requirements, qualities and open issues. Requirements
Engineering Conference, 2007. RE ’07. 15th IEEE International, pages 301–
306, Oct. 2007.

[Fro03] Geoff Frost. Automatic code generation for safety critical systems. Tarragon
Embedded Technology, 2003.

[FVLD03] Dries Faems, Bart Van Looy, and Koenraad Debackere. The role of inter-
organizational collaboration within innovation strategies: Towards a portfo-
lio approach. Open access publications from katholieke universiteit leuven,
Katholieke Universiteit Leuven, 2003.

[Ham08] James L. Hammond. Improving productivity and quality with domain-specific
modeling. Embedded Systems Design Europe, pages 20–23, 2008.

[Has09] Andreas Haselsberger. Design and implementation of a domain specific archi-
tecture for programmable logic controllers. Master’s thesis, Graz University
of Technology, 2009.

[Jun08] Martin Jung. Codegeneratoren: Domänenspezifische Automatisierung in der
Praxis industrieller Softwareentwicklung. Develop Group, 2008.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in soft-
ware product lines. In ICSE ’08: Proceedings of the 30th international con-
ference on Software engineering, pages 311–320, New York, NY, USA, 2008.
ACM.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute, November 1990.

[KE02] Chethana Kuloor and Armin Eberlein. Aspect-oriented requirements engi-
neering for software product lines. In 10th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems, page 98, 2002.

BIBLIOGRAPHY 85

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun Kim,
and Euiseob Shin. FORM: A feature-oriented reuse method with domain-
specific reference architectures. Annals of Software Engineering, 5:143–168,
1998.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software,
12:42–50, 1995.

[LCP+00] Bass L., Clements, P., Donohoe, P., McGregor, J., and Northrop. Fourth
product line practice workshop report. Technical Report CMU/SEI-2000-
TR-002 (ESC-TR-2000-002), Software Engineering Institute. Carnegie Mellon
University, 2000.

[Lei09] Andrea Leitner. A software product line for a business process oriented IT
landscape. Master’s thesis, Graz University of Technology, 2009.

[Loh07] Christoph Lohe. Entwicklung von domänenspezifischen Model-
lierungssprachen, 2007.

[Mac96] L. A. Macaulay. Requirements Engineering. Springer-Verlag, 1996.

[Mat04] Mari Matinlassi. Comparison of software product line architecture design
methods: COPA, FAST, FORM, KobrA and QADA. In ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, pages 127–136,
Washington, DC, USA, 2004. IEEE Computer Society.

[Met09] Metacase. Domain-Specific Modeling whith MetaEdit+: 10 times faster than
UML. White Paper, 2009.

[Mot07] Motorola. SCADA systems. White Paper, 2007.

[MP07] Andreas Metzger and Klaus Pohl. Variability management in software product
line engineering. In ICSE Companion, pages 186–187, 2007.

[NCP09] Oksana Nikiforova, Antons Cernickins, and Natalja Pavlova. Discussing the
difference between model driven architecture and model driven development in
the context of supporting tools. Software Engineering Advances, International
Conference on, 0:446–451, 2009.

[Ngu09] Quyen L. Nguyen. Non-functional requirements analysis modeling for software
product lines. In MISE ’09: Proceedings of the 2009 ICSE Workshop on
Modeling in Software Engineering, pages 56–61, Washington, DC, USA, 2009.
IEEE Computer Society.

[NK04] Oksana Nikiforova and Marite Kirikova. Two-hemisphere model driven ap-
proach: Engineering based software development. In CAiSE, pages 219–233,
2004.

[OMA+00] Henk Obbink, Jürgen Müller, Pierre America, Rob van Ommering, Gerrit
Muller, William Van Der Sterren, and Jan Gerben Wijnstra. A component-
oriented platform architecting method for families of software-intensive elec-
tronic products, 2000.

BIBLIOGRAPHY 86

[OMG04] OMG. Unified modeling language (UML) 2.0, 2004.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[PL05] Prasanna Padmanabhan and Robyn R. Lutz. Tool-supported verification of
product line requirements. Automated Software Engg., 12(4):447–465, 2005.

[RJ96] Don Roberts and Ralph Johnson. Evolve frameworks into domain-specific
languages. In Proc. 3rd Intl Conf., 1996.

[RR] James Robertson and Suzanne Robertson. Volere requirements specification
template, http://www.volere.co.uk/ (21.06.2010).

[Sch97] Christian Schwarz. Zwischenbetriebliches Workflowmanagement im World
Wide Web. Technical report, Europa-Universität Viadrina, 1997.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE Softw.,
20(5):19–25, 2003.

[Siv08] Sanna Sivonen. Domain-specific modelling language and code generator for
developing repository-based Eclipse plug-ins. VTT publication 680, 2008.

[Sla06] Stefan Slapeta. Ein Vergleich zwischen Visual Studio 2005 und Eclipse Graph-
ical Modeling Framework zur Unterstützung von modellgetriebener Softwa-
reentwicklung. Master’s thesis, TU Wien, 2006.

[SSV08] Thomas Strasser, Christoph Sünder, and Antonio Valentini. Model-driven
embedded systems design environment for the industrial automation sector.
IEEE international conference on industrial informatics 2008, 2008.

[Sta02] Patrick Stahler. Geschäftsmodelle in der digitalen Ökonomie. Josef Eul Verlag,
2002.

[TK09] Juha-Pekka Tolvanen and Steven Kelly. Metaedit+: defining and using in-
tegrated domain-specific modeling languages. In OOPSLA ’09: Proceeding
of the 24th ACM SIGPLAN conference companion on Object oriented pro-
gramming systems languages and applications, pages 819–820, New York, NY,
USA, 2009. ACM.

[Tri03] Heymans Trigaux. Modeling variability requirements in software product lines:
A comparative survey. Technical report, Institut d’Informatique FUNDP,
2003.

[Tru06] Frank Truyen. The fast guide to model driven architecture. White Paper,
2006.

[VB04] Markus Voelter and Jorn Bettin. Patterns for model-driven software-
development, 2004.

BIBLIOGRAPHY 87

[vdML02] T. von der Maen and H. Lichter. Modeling variability by UML use case
diagrams. In Proceedings of the International Workshop on Requirements En-
gineering for Product Lines 2002, 2002.

[vL04] Tammo van Lessen. Generatives programmieren, 2004.

[Voe03] Markus Voelter. A catalog of patterns for program generation. Technical
report, EuroPloP2003, Eighth European Conference on Pattern Languages of
Programs, 2003.

[Wal10] Philipp Wallner. Moderne Methoden schaffen strategische Vorteile,
http://www.polyscope.ch/dlcenter/ps/2010 1/ps1 2 s24 26.pdf (21.06.2010),
2010.

[Wat01] Bob Waterbury. DCS, PLC, PC, or PAS? ICONICS Control Magazine, July
2001.

[WHG+09] Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha S. Gokhale,
and Douglas C. Schmidt. Improving domain-specific language reuse with soft-
ware product line techniques. IEEE Softw., 26(4):47–53, 2009.

[Wim05] Manuel Wimmer. Model Driven Architecture in der Praxis - Evaluierung
aktueller Entwicklungswerkzeuge und Fallstudie. Master’s thesis, TU Wien,
2005.

[Zdu05] U. Zdun. Concepts for model-driven design and evolution of domain-specific
languages. In Proceedings of the International Workshop on Software Factories
at OOPSLA 2005, San Diego, CA, USA, January 2005.

