
Evaluation of Frameworks for Desktop-Like
Web Applications in Pure JavaScript

Master’s Thesis

Graz University of Technology
Institute for Information Systems and Computer Media (IICM)

submitted by

Thomas Billicsich

Advisor: Assoc.Prof. Dipl.-Ing. Dr.techn. Martin Ebner

26 Sep 2012

Abstract
Some recent web applications - also called rich internet applications (RIA)

- try to mirrow the look and feel of the desktop platform and frameworks are
an important part of the development of these desktop-like or single-page web
applications. To find suitable ones is a crucial and demanding task.

This thesis presents a methodology for the selection of software compo-
nents and shows a process that is adjusted to find suitable single-page web ap-
plication frameworks. A central aspect is the evaluation model. An extensive
evaluation model is developed based on the criteria categories: documenta-
tion, community, features, and user interface. It is enriched with enough back-
ground information to facilitate modification for employment of the method
in an individual software project.

To demonstrate a practical application the current market for web appli-
cation frameworks is researched. 41 candidates are found, eight are selected
and an evaluation is performed. Three frameworks can be recommended for
the development of desktop-like web applications.

A validation in the form of an implementation of a prototype web appli-
cation generates feedback for the model and the process and presents possi-
bilities for future improvements of both.

Kurzfassung
Einige aktuelle Web Applications, oder Rich Internet Applications (RIA),

versuchen den Look and Feel von auf dem lokalen Rechner installierten Desktop-
programmen nachzuempfinden. Frameworks sind ein wichtiger Teil um die
Entwicklung von diesen desktop-ähnlichen oder single-page Web Applicati-
ons zu ermöglichen, aber aufgrund des großen Angebotes ist das Finden und
Erkennen von geeigneten Kandidaten eine zentrale Herausforderung.

Diese Masterarbeit stellt eine Methode zur Auswahl von Softwarekompo-
nenten vor und zeigt eine Vorgangsweise, die es ermöglicht, geeignete Fra-
meworks zu finden. Ein wichtiger Teil dieses Prozesses ist das Evaluierungs-
modell. Das hier ausführlich beschriebene Modell beinhaltet folgende Kriteri-
enkategorien: Dokumentation, Community, Features, und User Interface. Die
zahlreichen gezeigten Hintergrundinformationen helfen, dieses Modell und
die Methode an die eigenen Bedürfnisse anzupassen.

Um eine praktische Anwendung zu zeigen, werden aktuelle Frameworks
ausgewählt und evaluiert. Von 41 gefundenen Kandidaten werden acht aus-
gewählt und evaluiert. Aus diesen acht werden drei als geeignet für die Ent-
wicklung von desktop-ähnlichen Web Applications klassifiziert.

Durch eine Validierung in Form einer Prototypenimplementierung wird
das Modell und der Prozess überprüft und aus dem Ergebnis Verbesserungs-
vorschläge entnommen.

Contents

1 Introduction 1

2 Web Applications 3

2.1 What is a Web Application 3

2.2 Properties of Web Applications 4

2.2.1 Advantages . 4

2.2.2 Disadvantages . 5

2.3 Types of Web Applications 6

2.3.1 Dynamically Generated but Static Web Pages 6

2.3.2 Rich Internet Applications with Plug-ins 6

2.3.3 Dynamic Web Applications with JavaScript 7

2.4 Desktop-Like . 7

2.4.1 Email Presentation in a Webmail Client 7

2.4.2 Moving an Email in a Webmail Client 8

2.4.3 Navigating Between Folders 8

2.4.4 Usability considerations 10

3 Frameworks 11

3.1 Definition . 11

3.2 Characteristics of Frameworks 12

3.3 Tasks of a Framework . 14

3.4 Frameworks, Libraries and Toolkits 14

3.4.1 Framework . 14

3.4.2 Library . 14

3.4.3 Toolkit . 15

v

4 State of the Art in Framework Evaluation 17
4.1 The Classification of Evaluation Methods 17
4.2 Evaluation is not Decision 19
4.3 The Decision Process . 19
4.4 Evaluation Model . 22
4.5 Evaluation Methods . 25

4.5.1 Weighted Scoring Method 26
4.5.2 Analytical Hierarchy Process 27
4.5.3 Outranking Method 27
4.5.4 Fuzzy Based Approaches 28

5 The Decision Process 29

6 Stage I: Evaluation Model 31
6.1 Getting Started (sta) . 31
6.2 Documentation (doc) . 33
6.3 Community (com) . 35
6.4 Features (fea) . 37
6.5 User Interface (uif) . 40
6.6 Development Setting (dev) 41

7 Stage II: Candidate List 43

8 Stage III: Requirements 47
8.1 Derivation of Requirements 47
8.2 Requirements Listing . 47

9 Stage IV: Screening 51
9.1 Screening Execution . 51
9.2 Screening Result . 51
9.3 Remarks . 55

10 Stage V: Evaluation 57
10.1 Candidates . 57

10.1.1 Bindows . 57
10.1.2 Cappuccino . 58
10.1.3 DHTMLX Suite . 58
10.1.4 Dojo Toolkit . 59
10.1.5 Ext JS . 59
10.1.6 qooxdoo . 60

10.1.7 SmartClient Ajax Platform 61
10.1.8 SproutCore . 61

10.2 Evaluation Results . 61
10.2.1 sta Getting Started 62
10.2.2 doc Documentation 69
10.2.3 com Community and Presentation 74
10.2.4 fea Features . 80
10.2.5 uif User Interface . 83
10.2.6 dev Development Setting 84

10.3 Results Summary . 87
10.3.1 Recommended: Ext JS, qooxdoo, SproutCore 87
10.3.2 Unsure: Dojo Toolkit, SmartClient, Cappuccino 88
10.3.3 Not Recommended: Bindows, DHTMLX 88

11 Validation 91
11.1 Description of the Validation Process 91
11.2 Prototype Design . 91
11.3 Framework Selection . 92
11.4 Prototype Implementation 93

11.4.1 Getting started . 93
11.4.2 Transforming the getting started app 94
11.4.3 Improving the input possibilities 96
11.4.4 Refinements . 97

11.5 Conclusions . 98

12 Conclusion 101

Bibliography 103

A Framework List 111

B Detailed Evaluation Result 127

List of Figures a

List of Tables c

Acknowledgements e

Statutory Declaration g

Chapter 1

Introduction

The growth of the world wide web and the availability of a web browser on
every device of daily use have increased the importance of being able to “do”
something on the web: writing texts, tracking time and expenses, or managing
contacts and emails. Web applications make all this possible without the need
for specific installations on a desktop computer. In recent years an advanced
form of web applications single-page web applications has emerged. This
class tries to incorporate behaviour that users are familiar with from their
desktop computers and is therefore also called desktop-like.

Frameworks are an essential part of the development process for this type
of applications. Accordingly, a vast amount of them is available and to find
the right candidate for the support of the project at hand has become a difficult
task. This work sheds light on solving the problem of making the choice for
a right candidate – usually there are more than one – with the help of an
evaluation and exemplifies the procedure with a practical example.

The most important aspect of the evaluation is the model the candidates
are rated against. It is strongly dependent on the desired outcome and the base
for a formal and reproducible process. This thesis provides an extensive eval-
uation model to judge JavaScript frameworks by their suitability to support
the development of single-page web applications.

By finding and evaluating currently available frameworks a practical ap-
plication of the model is shown and suitable candidates for single-page web
application development are presented.

Web application and framework are terms that are often and ambiguously
used. Therefore, they are clearly defined in chapters 2 and 3. This definition
serves as the context for the rest of the work.

The choice for an appropriate framework depends on several formal and
informal circumstances as well as technical and non-technical requirements.
Previous literature in the field often ignores already gained insights, which
will be presented here (chapter 4, page 17), it will also be pointed out why it

1

2 1. Introduction

is important to allow the use of literature about the well researched topic of
off-the-shelve-software to guide the process. The findings are then incorpo-
rated into a complete decision process: a stage-based methodology for finding
suitable candidates (chapter 5).

The evaluation model (chapter 6) which will be defined is the base for
finding candidates that may be suitable (chapter 7) and for their assessment
as well (chapter 10). Before the assessment, requirements for suitable candi-
dates are defined (chapter 8) to filter candidates that can be easily identified
as unfitting (chapter 9). With the help of a suitable candidate, the model will
then be validated (chapter 11) and some of its weaknesses and strenghts be
pointed out for future improvement.

Chapter 2

Web Applications

Web applications have been present since the beginning of the world wide
web. In recent years however they have seen a significant increase in interest
fueled by expanding technical possibilities and a stronger standards body. The
so called browser war between Netscape and Microsoft in the late 1990s had
left the internet in a place where even web designers had difficulties to write
web pages that displayed correctly in all relevant browsers [Windrum, 2004].

The main objective of JavaScript running in the browser is the manipul-
tion of the document object model (DOM), which was differing very strongly
between browsers and made implementations working cross-browsers diffi-
cult and error prone. However, in the successive years three facts established,
which are the main reasons for the advanced type of web application that is the
topic of this thesis: (i) competition in the browser field led to a stronger force
towards meeting the existing standards and improving them in collaboration,
(ii) this also stimulated significant performance enhancements of rendering
engine, and (iii) libraries and frameworks that alleviated the difficulties of
working with the DOM were written and improved.

The following paragraphs serve to construct a context for web applications
that share desktop-like qualities to be used for the presentation of the research
in this thesis; the definition is not intented as a general reference.

2.1 What is a Web Application

A web application is an application that runs in a browser. It usually is not
saved locally but accessed over the Internet or an internal network. It can rely
on the standard technologies HTML, CSS, JavaScript, or require the use of
plug-ins like Adobe Flash, Microsoft Silverlight, or Java.

In its technologically simplest form a web applications consists of sim-
ple HTML web pages generated dynamically in response to user requests.
Users deliver information about their intention with information contained in

3

4 2. Web Applications

URL paths, parameters, or cookies, the server generates a response accord-
ingly. Most users would not feel like they are interacting with an application,
but merely like surfing the web. In its technologically most complex form a
web application is rendered as a single page and changes its appearance in
response to external events like a mouse click or internal events like a state
change. It tries to offer the same interaction possibilities and UI gestures as a
native desktop-program.

An example of a simple web application is a search engine like Bing, Ask
or DuckDuckGo1. Simple in this case does not refer to the back-end, which
for search engines is not simple at all, but to the user interface (UI) of the
front end: first a single input field, then - after a page reload - a list of results.
Slightly more complicated are map services like Google Maps or Bing Maps2.
They offer interaction by mouse drag and dynamic loading of new content.
Dynamic loading refers to the retrieval of new content without a page reload.
This is a central property of modern web applications.

The opposite of web applications are native applications. These are appli-
cations that require a specific platform and run time environment. Running
them on other platform is usually not possible. A good example is the browser
itself: although Firefox is available for OS X, Linux and Windows, it is a na-
tive application; every platform has a version specifically compiled for it.

Platform independent applications that run in a platform-near environment
but can also be started on other platforms form some middle-ground between
native and web applications. The most popular choice is Java. Some popular
applications exist, e.g. the two integrated development environments (IDEs)
NetBeans and Eclipse, but otherwise the concept has not gained significant
attraction.

2.2 Properties of Web Applications

It is worthwile to concern oneself with web applications for they have several
advantages compared to native applications. Advantages that bring ease to
developers and users in regard to the topic mentioned below. There are also
drawbacks, so for each project those two sides have to be weighed for a sound
decision of the implementation strategy.

2.2.1 Advantages

platform-independency: web applications run on every platform where a
browser is available, which includes all popular desktop and mobile
platforms.

1bing.com; ask.com; duckduckgo.com
2maps.google.com; bing.com/maps

2.2. Properties of Web Applications 5

Drawbacks: Although the rendering engines and virtual engines are
standardized to a very high degree they still differ in details of their
environment. Especially the differences in the Document Object Model
(DOM) resulting from HTML, CSS and JavaScript processing can be
problematic. Frameworks are a very appropriate method to alleviate
this obstacle.

easy deployment: web applications require no installation, no setup helper,
no uninstallation wizard; updates affect all users immediately, there is
no need for support of legacy versions; once a web application is on-
line it is instantly available to all computers with an internet connection
[Anttonen et al., 2011].

Drawbacks: This is very convenient for developers, it can be problem-
atic for users who rely on a specific feature that is removed in newer
versions.

increased safety: data can easily be held in a central online storage with an
advanced backup system, it can be protected from loss through hard-
ware failures, accidental deletion or theft of personal devices.

Drawbacks: The user has to rely on the developer to protect the safety
and security of his data. It can also be problematic to have the data
stored in the range of another legislative system.

increased security: a professional and experienced team can protect the sys-
tem running the application against malware and security threats more
reliably than average users can protect their system.

Drawbacks: A single security breach affects all users.

collaboration friendly: since the application is already on the internet and
also available for all platforms it is easy to add social or collaboration
aspects [Anttonen et al., 2011].

easy usage metrics: a web application allows the permanent tracking of user
behavior, which gives the developers valuable information about used
or unused features and what paths the users take within the application.
This encourages improvements to usability and efficiency.

Drawbacks: This can yield problems with privacy if the data is not
anonymized appropriately.

2.2.2 Disadvantages

low performance: although virtual machines gained significant increases in
run-time performance in the last years they still can not compete with
natively compiled code.

6 2. Web Applications

But: Most applications an average user runs do not require significant
processing power, computational demand is high only for specific types
of applications (e.g. video editing with live preview) [Anttonen et al.,
2011].

no access to local file system: storage of data on a device is possible but
only in the browser environment, collaboration between native and web
applications can not be handles through the local file system seamlessly
[Taivalsaari et al., 2008].

But: Continues access to the local file system is unnecessary for lots of
applications, uploads and downloads of files and folders are still pos-
sible. In fact modern operating systems start to restrict native applica-
tion’s access to local resources.

limited access to host platform capabilities: on most platforms access
to the peripheral and sensorial equipment (microphone, camera, gyro-
scope, acceleration sensor, location services) is limited.

But: For security and privacy reasons this is an advantage.

2.3 Types of Web Applications

Three types of web applications can be identified, this work is only concerned
with the third one.

2.3.1 Dynamically Generated but Static Web Pages

Historically these have been the first web applications. A very popular method
was the implementation as a CGI script that was invoked upon a page request.
Today the back-end is often comprised of a complex database handling appli-
cation written in a high-level language like Ruby, PHP, C# or Java. The page
is generated on the server and sent to the client, further interaction with the
web application spawns a new request and a full page reload.

2.3.2 Rich Internet Applications with Plug-ins

Although a JavaScript virtual machine was already included in all web browsers
in the late 1990s the language’s capabilities were limited in regard to perfor-
mance and standardization and the differences between browsers very huge.
The demand for web applications led to the rise of plug-in based solutions
via Java applets, Flash and later Silverlight widgets. Java is a kind of open
technology and free development tools are available, Flash and Silverlight
are proprietary technologies of Adobe and Microsoft. These plugins aim to
provide “a more intuitive, responsive, and effective user experience” [Duhl,

2.4. Desktop-Like 7

2003]. Their significance as a method of delivering web applications is de-
clining steadily, as both parent companies admit to HTML5 for future devel-
opment [Winokur; Foley, 2011].

2.3.3 Dynamic Web Applications with JavaScript

The introduction of the XMLHttpRequest Object by Microsoft with IE7 [Mi-
crosoft, 2012] brought a central shift to web applications. It was now possible
to load new content into a web page without a full page refresh. This con-
cept later became famous. Called Ajax it initially stood for asynchronous
JavaScript and XML but now involves the whole concept of asynchronous –
i.e. without a full page refresh – data loading.

The extreme case of this concept with only one full page load, therefore
called single-page, and the rest of the data loading happening chapterially and
on demand, i.e. dynamically, is the main topic of this thesis.

2.4 Desktop-Like

Although it is a very vague and unscientific term desktop-like will serve well
to encapsulate the idea of the type of web applications that are the subject
of this research work. As an example, a webmail client is analyzed and the
different concepts and ideas between static web pages and desktop-like appli-
cations are emphasized. The examples in this case are based on the real-life
clients of the services GMX (static) and Apple iCloud (desktop-like), simpli-
fied for the purpose of demonstration and clarity.

2.4.1 Email Presentation in a Webmail Client

Start and login to the webmail client (figure 2.1) and display of one message’s
content (figure 2.2).

Static: A classic webmail client presents an initial page with login text
fields and after the input of the user credentials loads a page listing the con-
tents of the user’s inbox. In most cases there will be a tree on the left side
showing other folders like �deleted emails� or �drafts�, the address book
and maybe even a calendar; all of these as links, the subjects of the emails are
links too. Every click on a link starts a reload cycle where the user has to wait
for the request to get to the server, for the server to generate a response, for
this response to get back to the client, and for the web browser to rerender the
new site. This involves the - probably cached - reload of included CSS and
JavaScript files and their re-interpretation.

Desktop-Like: A desktop-like webmail client first needs to load and start
up. This may take some seconds, then the login fields are presented and af-

8 2. Web Applications

ter providing the credentials the user sees an interface familiar from desktop
clients: a 3-column layout with an icon bar at the top; leftmost the folder tree,
in the middle column the message listing of the currently selected folder and
rightmost the canvas for content of the currently selected message. Initially
no message is selected and the canvas is empty. Clicking a message starts
a load cycle with the same roundtrip, but the server only has to provide an
object containing the email data, the layout is completely generated on the
client-side. This is quicker since no CSS or JavaScript files have to be loaded
but burdens the client with more computational demand since a layout for the
received data has to be generated.

time

Figure 2.1: Transmitting and rendering a static web page is signifi-
cantly faster than a desktop-like web application startup

2.4.2 Moving an Email in a Webmail Client

An email is to be moved from the inbox to another folder, e.g. important,
archive (figure 2.3).

Static: In a conventional webmail client moving an email usually involves
displaying it, selecting the folder to where it should be moved from a drop-
down menu und then clicking a button to start the process.

Desktop-Like: In a desktop-like client an email is moved by dragging it
from its current position to the desired folder.

2.4.3 Navigating Between Folders

A user starts with the contents of the inbox folder on display, changes to
another folder, e.g. important, and then navigates back to the inbox folder.

2.4. Desktop-Like 9

time

Figure 2.2: Displaying a message is faster when not a whole web page
has to be transmitted and rendered

time

Figure 2.3: Moving in the upper sequence involves loading the mes-
sage, selecting a folder, submitting, and loading the folder
view again. Moving in the lower sequence is just dragging
the message and dropping it on the desired folder.

10 2. Web Applications

InitializationInitializationInitialization Email LookupEmail LookupEmail Lookup
Server Load Client Load Data Transfer Server Load Client Load Data Transfer

Static
Desktop-Like

High Medium High High Medium High
Medium Very High Very High Low High Low
Static needs the server to generate the
whole page with layout, the client
needs to render the whole page.
The desktop-like web application
mainly consits of static files, the layout
is completely generated and rendered
on the client. A small dynamic part of
the data loading consists of database
lookups.

Static needs the server to generate the
whole page with layout, the client
needs to render the whole page.
The desktop-like web application
mainly consits of static files, the layout
is completely generated and rendered
on the client. A small dynamic part of
the data loading consists of database
lookups.

Static transfers the web
page only.
Desktop-like requires the
transfer of the application,
with the framework and
with supplemental assets
like icons.

Static is the same as on initialization.
Whole page has to be generated on
server and rendered on the client.
Desktop-like needs the server to
only look up the data and serve it,
but the client has to generate and
render the layout.

Static is the same as on initialization.
Whole page has to be generated on
server and rendered on the client.
Desktop-like needs the server to
only look up the data and serve it,
but the client has to generate and
render the layout.

Static transfers the
whole page,
desktop-like only one
data object.

Email MoveEmail MoveEmail Move Folder NavigationFolder NavigationFolder Navigation
Server Load Client Load Data Transfer Server Load Client Load Data Transfer

Static
Desktop-Like

High Medium High High Medium High
Low High Low Low High Low
For the static version three pages
(inbox, email, inbox) have to be
generated and rendered.
The desktop-like version only needs to
render the drag&drop and the new
email, the server has to execute the
move command and deliver the next
email.

For the static version three pages
(inbox, email, inbox) have to be
generated and rendered.
The desktop-like version only needs to
render the drag&drop and the new
email, the server has to execute the
move command and deliver the next
email.

Three full web pages for
the static version against
one command to move
the email location and the
contents of the next email
for the desktop-like client.

Again three full page loads for the
static client.
One listing load for the server, three
times view generation and rendering
for the desktop-client.

Again three full page loads for the
static client.
One listing load for the server, three
times view generation and rendering
for the desktop-client.

Three full web pages
against the load of the
listing and a refresh
command.

Table 2.1: Performance comparison of different types of web applica-
tions

Static: Every-time the user changes the folder a new page on the server is
generated, sent to the client, and rendered.

Desktop-Like: In a desktop-like client the contents of a folder are stored
on the client-side, maybe even across sessions. This means that if the folder’s
content are listed for the first time the contents will be loaded and the user
has to wait some time, but upon returning to the inbox the contents are shown
immediately, at the same time a request will be sent to the server to see if the
content has changed, if so the view will be updated accordingly.

2.4.4 Usability considerations

In addition to the differences in performance and amount of transferred data
there is another important aspect: usability. The major usability improve-
ments are:

• reduced idle time for the user while using the application

• more consistency through the elimination of the blanking of the screen
while the page reloads and because the scroll position is not reset

• larger clicking target areas, since instead of a link a larger rectangle is
the click area for changing folders or looking at messages

Chapter 3

Frameworks

Frameworks are an important reuse technique in object-oriented program-
ming. They enable developers to build upon the knowledge, experience, and
effort others have invested when designing and implementing a new applica-
tion.

3.1 Definition

Altough frameworks are such a widely used technique a clear definition of
them does not exist, or maybe it is because they are so ubiquitous that there
exist different ideas about them.

A major source for every framework developer is the book “Building Ap-
plication Frameworks” by Fayad et al. [1999]. In eight parts this book de-
scribes various aspects of frameworks. It is concerned with development,
types, testing, documentation, and maintenance. One of the first mentions of
the concept of a framework goes back to 1988, where Johnson and Foote de-
scribed a method of reusing not only code but design and knowledge [Johnson
and Foote, 1988].

These two sources point out clearly that the reuse of code alone is not
enough. Frameworks are a means of reusing experience and knowledge of
experts that has gone into the solution of a common and complex problem.
The better and more mature the framework, the easier it is for less experi-
enced developers to leverage the invested resources. Knowledge and experi-
ence manifest themselves in the interfaces and the structure of the components
and the way they interact. A framework’s main contribution to the custom ap-
plication is the high-level design it imposes upon it. This is an aspect that
is very important to this work. As can be seen later the architecture that the
framework imposes provides a discriminating factor.

The fact that a high-level design is already pre-defined forces restrictions
on developers, since they are bound to the architecture and the general idea

11

12 3. Frameworks

that the framework developers have chosen to solve the problem. However, a
wise person may see this as a relieve, since the decisions that were made for
and contributed to the maturing of a framework have already been tested in
other applications and proved their suitability.

Quotes

“A framework is a set of classes that embodies an abstract design for solutions
to a family of related problems, and supports reuse at a larger granularity than
classes” [Johnson and Foote, 1988, ch1]

“The design of a program is usually described in terms of the program’s
components and the way they interact.” [Johnson and Foote, 1988, ch4]

“A framework is a set of cooperating classes that make up a reusable de-
sign for a specific class of software.” [Gamma et al., 1994, ch1.6 p26]

“a framework is a reusable design of all or part of a system that is repre-
sented by a set of abstract classes and the way their instances interact.” [Fayad
et al., 1999, ch1]

“a framework is the skeleton of an application that can be customized by
an application developer.” [Fayad et al., 1999, ch1]

d “A framework is a reusable design of a system that describes how the
system is decomposed into a set of interacting objects. Sometimes the system
is an entire application; sometimes it is just a subsystem.” [Fayad et al., 1999,
ch1.1]

“Frameworks also reuse implementation, but that is less important than
reuse of the internal interfaces of a system and the way that its functions are
divided among its components. This high-level design is the main intellectual
content of software, and frameworks are a way to reuse it.” [Fayad et al.,
1999, ch1.1]

“. . . a framework’s main contribution to an application is the architecture
it defines.” [Fayad et al., 1999, ch14 sb4 p345]

“A framework. . . imposes a design on your program, or at least on a certain
problem space your program is trying to address.” [Apple Inc., 2010, p126]

“collections of classes that structure a problem space and present an inte-
grated solution to it” [Apple Inc., 2010, p129.3]

d “a framework maps out and implements an entire program structure —
or model — that your own code must adapt to.” [Apple Inc., 2010, p129.3]

3.2 Characteristics of Frameworks

To understand frameworks it is necessary to look beyond their presentation of
code and documentation at a certain time. They are defined by:

3.2. Characteristics of Frameworks 13

Modularity: The skeleton application as a solution to a problem space is
split up into modules with explicitly defined functionalities. Details of the im-
plementation are hidden behind interfaces, which allows for modification of
the encapsulated code to gain performance improvements or adapt to changes
in the underlying hardware without global impact for example. The pre-
defined division into modules that have a clear and defined relationship to
other components of the application makes it easier to understand and main-
tain the software [Fayad et al., 1999, ch1 Application Frameworks].

Extensibility: Instead of developing an application from scratch software
developers can rely on a proven architecture and extend the provided skele-
ton step by step until the solution is individualized to the desired degree and
fits the requirements for the problem at hand. Furthermore, if there are exten-
sions for specialized behavior available the developer can simply use these in-
stead of a custom implementation [Fayad et al., 1999, ch1 Application Frame-
works].

Control: In a framework application the main loop of events and their pro-
cessing is controlled by the framework and developers are relieved of invent-
ing an own system of control. The framework is responsible for handling ex-
ternal events originated from sources such as network communication or user
interaction and decides which application-specific methods to call [Fayad and
Schmidt, 1997].

Abstraction: The life-cycle of a framework usually starts as a concrete ap-
plication to solve a specific challenge. Through hard work in several iterations
and with domain knowledge gained by experienced developers it is abstracted
to be useful to a family of related problems [Johnson and Foote, 1988; Fayad
and Schmidt, 1997; Brugali et al., 1997].

Age: A framework is characterized by the way that it has been improved
and adapted to extending problem fields. When actively developed its age is
an important factor for stability of APIs, documentation, example code, and
external contributions.

Complexity: Framework design is a very difficult and complex endavour.
The framework architect has to aim towards flexibility and extensibility on
one side [Gamma et al., 1994, ch1.6 p27] and towards a clear structure, ease
of coding and good performance on the other side [Fayad et al., 1999, ch5.2].
Good framework design takes time and several iterations [Wirfs-Brock and
Johnson, 1990].

14 3. Frameworks

Specialization: Frameworks are built as a solution to a family of related
problems. This family is called the application domain and is an essential part
of the framework concept [Korson and McGregor, 1992].

Outsourced Development: Using a framework means handing devel-
opment and maintenance over to a large community or a compnay, it is a kind
of outsourcing of a part of the work [Calefato and Lanubile, 2009, ch5.3].

3.3 Tasks of a Framework

The task of a framework at the application start is getting it up and running.
This involves the creation and setup of the core group of objects at the pro-
gram start. Some of these objects will be part of the framework and be the
same for all applications, others may be partly or completely supplied by
the developer. During runtime the framework is responsible for the handling
of external and internal events, by deciding which internal or user provided
method to invoke [Apple Inc., 2010, Starting Up].

A framework which provides support for a graphical user interface is re-
sponsible for the construction and management of this interface. Depending
on the type of the framework and its intended use cases its duties may also
include the saving and retrieval of objects from storage [Fayad et al., 1999,
ch8 Harvesting Design].

3.4 Frameworks, Libraries and Toolkits

An important disctinction has to be made between these three types of soft-
ware components. They are very often mixed, intersected or simply neglected
any difference between them.

3.4.1 Framework

In this work the term framework is always used to denote a software as de-
scribed in this chapter.

3.4.2 Library

Libraries are collections of code, they do not impose a design on the appli-
cation. If necessary they get included, methods they provide are called and
return a value or accomplish a specified task.

3.4. Frameworks, Libraries and Toolkits 15

Typical library tasks in the environment of JavaScript are the handling of
animation or the traversal of the DOM tree. Libraries are application indepen-
dent and one can easily be switched one for another, if they provide the same
API. The flow of control never enters the library [Apple Inc., 2010]. Libraries
emphasize code reuse whereas frameworks emphasize design reuse [Gamma
et al., 1994, ch1.6 p27].

3.4.3 Toolkit

This term is not often postulated in literature. Among the important sources
for the topic of frameworks most notably Gamma et al. [1994, ch1.6 p27] and
Johnson and Foote [1988, ch4.2 p13] have two very different understandings
of what a toolkit is meant to be. Gamma et al. [1994] use the term toolkit
instead of library. In this work this practice is not followed, so here toolkit
stands for a set of programs that help the developer designing and implement-
ing an application. Build tools are an example for a toolkite.

16 3. Frameworks

Chapter 4

State of the Art
in Framework Evaluation

Framewoks are available in abundance. While this means that the probability
of the existence of a suitable one is high, the question remains how this suit-
able one can be found. A number of techniques has been developed and this
chapter sheds light on the state of the art of the steps and methodologies that
aid in the process.

4.1 The Classification of Evaluation Methods

Selecting a framework has been an important part of software development
since their introduction and therefore found its way into literature as well. In
the context of the web however, two basic assumptions of many authors lead
them to believe and complain that previous literature is scarce and the research
field is unexplored [Changpil, 2012; Gerdessen, 2007]: (1) web frameworks
are a separate category of framework and not comparable to enterprise or
desktop frameworks, and (2) frameworks themselves are a category standing
on its own within the field of software.

ad (1): Generally it is not stated why this should be the case therefore it is
not appropriate to assume that it is true, when the definition of a framework
(see chapter 3) holds true for web frameworks.

ad (2): A whole category of software development is based on the fact that
pre-produced components are used and integrated into the custom project, the
so called component based software development (CBS). This category is so
common that the complexity of today’s systems can not be handled with-
out ready-made components. Research for this kind of software is available
in abundance, it is called commercial-of-the-shelve software (COTS). COTS
spans a broad field of application - academic, governential, corporate or mili-
tary - and budget, from free to millions of dollars. Brownsword et al. [2000]

17

18 4. State of the Art in Framework Evaluation

and Vigder et al. [1996] define COTS in different terms as a software that is:

• already in existence

• to be provided in many copies to multiple customers with minimal
changes

• already improved upon its first design through a competitive market-
place

• has a vendor being responsible for support and maintenance

• used without source code modification

• without control over specification, schedule, or evolution by a single
customer

• possibly lacking internal documentation and information about its lim-
itations, performance or resource consumption

• usually accompanied by well developed user level documentation, cus-
tomer documentation, and training

By this definition frameworks clearly belong to this category, which is
confirmed by Vigder et al. [1996] and Kizzort [2002]. They go further on to
establish frameworks as a distinct category within COTS, besides traditional
components. Traditional component in this case refers to something like a
word processor or an email client, applications that are incorporated into the
custom software as-is or controlled from the custom code through scripting.
Because of the principle of the inversion-of-control, frameworks are special
in the way that the custom code interacts with them. Figure 4.1 shows the
difference.

Figure 4.1: The conceptual place of custom code and COTS compo-
nents for (a) traditional components and (b) frameworks
[Vigder et al., 1996]

4.2. Evaluation is not Decision 19

Very often frameworks are open-source software, a category that is dif-
ferent from commercial usually closed-source software and allows for more
freedom in usage and adaption of functionality. However, studies showed
that the possibility of source code modification and functionality alteration is
rarely used and that usage of closed-source and open-source software hardly
differs [Li et al., 2009].

4.2 Evaluation is not Decision

It is important to see the evaluation of the software packages as part of the
decision process, often also called selection process, and neither as a means
to itself nor as the whole process. It is a method that helps decision makers
do their task [Oberndorf et al., 1997; Jadhav and Sonar, 2009]. Most decision
processes follow a stage-based methodology and evaluation is only a part of
it.

4.3 The Decision Process

Oberndorf et al. [1997] define the decision process as a methodology that
includes the following tasks:

• determining fitness for use of those aspects of the component that are
desired

• make-buy decisions

• choosing among products

• choosing among vendors

• discovering properties of the system

• validating claims

• making architectural, design, and requirement decisions

Jadhav and Sonar [2009] say that methodologies include the “factors and
issues” relevant for selecting the right solution and they provide a good overview
on commonly used methodologies. Another good overview is provided by
Güngör Şen and Baraçli [2006]. The main stages of some of the methods
these two papers mentioned are depicted in figure 4.2. They all differ in
emphasis on aspects of the process or of an attribute domain but uniformly
comprise evaluation as a separate stage.

20 4. State of the Art in Framework Evaluation

OTSO

search

evaluation

screening

deployment

analysis

assessment

STACE

requirements definition

alternatives
identification

social-technical
criteria definition

evaluation or
assessment

PORE

reqs acquisition,
definition, validation

software package
evaluation

supplier selection

package acceptance

contract production

management
of system

procurement

RCEP

trade study

analysis

hands-on evaluation

recommendation

(a)

OTSO

search

evaluation

screening

deployment

analysis

assessment

STACE

requirements definition

alternatives
identification

social-technical
criteria definition

evaluation or
assessment

PORE

reqs acquisition,
definition, validation

software package
evaluation

supplier selection

package acceptance

contract production

management
of system

procurement

RCEP

trade study

analysis

hands-on evaluation

recommendation

(b)

OTSO

search

evaluation

screening

deployment

analysis

assessment

STACE

requirements definition

alternatives
identification

social-technical
criteria definition

evaluation or
assessment

PORE

reqs acquisition,
definition, validation

software package
evaluation

supplier selection

package acceptance

contract production

management
of system

procurement

RCEP

trade study

analysis

hands-on evaluation

recommendation

(c)

OTSO

search

evaluation

screening

deployment

analysis

assessment

STACE

requirements definition

alternatives
identification

social-technical
criteria definition

evaluation or
assessment

PORE

reqs acquisition,
definition, validation

software package
evaluation

supplier selection

package acceptance

contract production

management
of system

procurement

RCEP

trade study

analysis

hands-on evaluation

recommendation

(d)

Jadhav and Sonar

1. determine need for OTS

3. eliminate most candidates

2. list candidates

4. evaluate remaining

6. negotiate contract

5. pilot testing

7. purchase

FroehlichEta2000ChoosingOOFWs

immediate rejection?

assess level of
uncertainty

clearly suitable?

(e)

Figure 4.2: Various methods for a COTS decision process: (a) So-
cial Technical Approach to COTS Software Evaluation
[Kunda, 2003], (b) Procurement-Oriented Requirements
Engineering [Ncube and Maiden, 1999], (c) Off-The-Shelf
Option [Kontio et al., 1995], (d) Requirements-driven
COTS product evaluation process [Lawlis et al., 2001], (e)
a general process [Jadhav and Sonar, 2009]

4.3. The Decision Process 21

Jadhav and Sonar [2009] propose a process based on seven stages they
derived from 27 papers (figure 4.2 (e)). However, they do not mention a very
important part which is present in most methodologies as a separate step:
“Criteria determination and prioritization” [Güngör Şen and Baraçli, 2006],
the construction of the comparison model.

The foundation of a documented and reproducible decision is a formal
process. Several works point out the importance of this fact and hint at the
suboptimal choice that stem from an informal decision process [Kitchenham
et al., 1997; Calefato and Lanubile, 2009; Comella-Dorda et al., 2002]. They
refrain from banning informal and subjective criteria like vendor reputation
and familiarity, but state that they should only be used as part of a formal
assessment method. Calefato and Lanubile [2009] had a first-hand experience
when they relied mainly on those; they learned that “both attributes can lead to
suboptimal choices, but while framework familiarity can flatten the learning
curve, reputation can be totally misleading.”

As approaches to a general formal process Mohamed et al. [2007] identify
three ideas: (1) progressive filtering, (2) puzzle assembly, and (3) keystone
identification. Progressive filtering employs an iterative approach where with
every step criteria get more discriminating but also more intensive to evalu-
ate, compensatory the number of fitting candidates decreases. Puzzle assem-
bly is intended for the selection of several components for different parts of
the system and targets their interaction. It relies on other sorts of evaluat-
ing relevant candidates for various roles and then tests combinations of these
candidates mainly by developing prototypes with increasing complexity. Key-
stone identification realizes that there are certain non-negotiable requirements
in a project, for example they may stem from a business need, software com-
ponents outside of the project, or management decisions. Identifying these
aspects and applying them to the candidate list can reduce the number of rele-
vant candidates significantly. Although Mohamed et al. [2007] misinterpreted
the idea of keystone identification, which Oberndorf et al. [1997] intended be-
ing a whole component comprising required aspects rather than a single piv-
otal criterion, their approach holds true und is used by others. Oberndorf et
al. [1997] futher suggest that the presented ideas are not meant to be applied
in isolation but as need arises. Within one project several switches from one
evaluation idea to the other seem reasonable.

Two of theses three ideas are also found in the 7-step process developed by
Jadhav and Sonar [2009] depicted in figure 4.2 (e). Step 3 would employ key-
stone evaluation by searching for the most discriminating requirements and
step 4 would then look at the remaining candidates in details by progressively
applying more refined criteria.

However, a uniform agreement can be seen on the fact that for an eval-
uation to be meaningful it has to be embedded in a context. The workshop
conducted by Oberndorf et al. [1997] states that “evaluation for the sake of

22 4. State of the Art in Framework Evaluation

evaluation” is without purpose. Other decision process descriptions explicitly
point out that their process is strongly dependent on the context [Comella-
Dorda et al., 2002; Brownsword et al., 2000].

4.4 Evaluation Model

Literature about evaluation models, also called comparison, selection or deci-
sion models, is diverse. Jadhav and Sonar [2009] find that there is no common
or generic list of important attributes for an evaluation. There is even a lack of
agreement on the topics that have to be covered as well as on their very rough
division into functional and non-functional types [Chung and do Prado Leite,
2009].

a model for comparing
the costs and value
associated with each
alternative, making them
comparable with each
other

0 use of appropriate
decision making methods
to analyze and
summarize evaluation
results

The full OTSO method has
been documented separately
[16] and it is not explained in
detail in this paper. However,
the two specific aspects of the
method -- evaluation criteria
definition and analysis of
evaluation data -- are
explained in more detail as
they were addressed in our
case study. These two aspects
are represented by the two
right-most processes (circles)
in Figure 1.

3.1 Evaluation criteria
definition

The evaluation criteria
definition process essentially
decomposes the requirements
for the COTS into a
hierarchical criteria set. Each

Changes to

/

Organizational
characteristics Project plan Design

specification

---T desian and architecture - - - - T i
reuse strategy, capabilities,

current practices,
schedule existing infrastructure,

constraint management commitment

Constraints

application specific and
functional requirements

Requirement
specification

/
requirements

Operational definitions -
for evaluation attributes,

Qualitative description lemplite selected alternatives
for Detailed ciseria definitions:

baseline and qualitative

Evaluation ii
Figure 2: Evaluation Criteria Definition Process

branch in this hierarchy ends in an evaluation attribute: a
well-defined measurement or a piece of information that
will be determined during evaluation. This hierarchical
decomposition principle is analogous to the GQM method
[3]. The evaluation attributes should have clear
operational definitions so that consistency can be
maintained during evaluation.

The criteria set is specific to each COTS selection case
but most of the criteria can be categorized into four
groups: functional requirements for the COTS; required
quality characteristics, such as reliability, maintainability
and portability [15]; business concerns, such as cost,
reliability of the vendor, and future development
prospects; and relevant software architecture, such as
constraints presented by operating system, division of
functionality in the system or specific communication
mechanisms between modules.

It is possible to identify three different subprocesses in
the definition of evaluation criteria. Figure 2 presents
these processes graphically using the modified dataflow

diagram (DFD) notation. First, when the available
alternatives are searched and surveyed it is necessary to
define the main search criteria and the information that
needs to be collected for each alternative. The search
criteria are typically based on the required main
functionality (e.g., “visualization of earth’s surface” or
“ypertext browser”) and some key constraints (e.g.,
“must run on Unix and MS-Windows” or “cost must be
less than $X”). An effective way to communicate such
requirements is to use an existing product or COTS as a
reference point, i.e., defining the functionality search
criteria as “look for COTS that are similar to our
prototype”.

The search of alternatives should try to cover breath
more than depth. It is enough to define the survey criteria
broadly so that the search is not unnecessarily limited by
too many constraints. The search phase uses the criteria
and determines the “qualifying thresholds”, which are in
deciding which alternatives are selected for closer

204

Figure 4.3: The process of defining criteria for an evaluation [Kontio,
1996]

An evaluation model consists of criteria with associated weights and scales.
Kontio et al. [1996] state that the most important factor is to consider the reuse
situation and to be realistic in setting expectations for criteria. They propose a
categorization of categories into four areas: functional requirements, product
quality characteristics, strategic concerns, and domain and architecture com-
patibility. They present an elaborated hierarchical comparison model, but it

4.4. Evaluation Model 23

can not be used here, because of the differing contexts. In another work Kon-
tio [1996] presents an approach to the derivation of criteria. He proposes a
complex process, that results in a hierarchical criteria set (figure 4.3).

Korson and McGregor [1992] on the other hand present very concrete
criteria without a hierarchy – they are talking about the evaluation of a frame-
work, although they do not make a difference to libraries. Their model has no
context, it is simply a collection of “attributes that an object-oriented library
of reusable components should possess” (figure 4.4).

development efforts, we must be assured that if problems
are encountered late in the development phase, they will
be remedied.

5 Criteria
The criteria are specifications to ensure that libraries being
designed possess the attributes presented in Section 4. We
have partitioned the criteria to aid in understanding their
contribution to the development of the library. The parti-
tions have been listed in a top-down fashion, rather than in
a predetermined order of importance, since individuals
and companies have their own priorities when evaluating
libraries. The criteria are numbered consecutively to facili-
tate referencing in the summary. Table 1 links each criteria
to the attributes that it is intended to support The Table
distinguishes between the criterion explicitly supporting the
attribute and those that only implicitly support its develop-
ment.

5.1 Domain
Every library has a domain of coverage. In some libraries,
this domain is well defined and in others, it is a laundry list

that includes every class as a separate conceptual area. A
clear statement of the domain of the library assists cus.
tomers in deciding whether to purchase or use the libraly.

5.1.1 Criterion No. 1 : completeness; for those con-
cepts it claims to prouide, the library should prooide a
complete general model. The idea of embodying a
concept in an abstract class at the top of a hierarchy of
specialisation of the concept can provide this ‘complete-
ness’. For example, if a library claims to provide ‘pseudo-
random numbers’, it should not simply provide a class that
produces uniformly distributed random numbers. Instead,
it should provide an abstract class that represents the
general concept of a pseudo-random number and fur-
nishes most of the basic functionality, except for the gener-
ator algorithm to produce the number. This class can then
be used as the parent for more specialised classes, which
provide random numbers based on a specific probability
distribution.

Meyer [15] has stated that object-oriented library design
is a quest for abstraction. Finding the ‘right’ abstractions is
non-trivial. This quest persists as a library evolves through
successive versions. The first attempt at identifying a com-

Table 1 Criteria attribute matrix
Criteria;

Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Complete X X I X I
Consistent I l l x x X X I
Easy-to-learn I I I I I I I X X I I X I
Easy-to-use I I I I X I I I I I I X I x
Efficient X
Extendable I X X X
Integrable I X
Intuitive X
Robust I I I I X I
Support x x

X =explicit I = implicit
*Criteria
1 Completeness, for those concepts it claims to provide, the library should provide a complete general model.
2 Abstractions; the library should be designed around a few key abstractions.
3 Standard; the design of the library should model standard knowledge in the domain.
4 Inheritance structure; the library should use inheritance to implement the generalisation/speciallsation relationship.
5 Purity; the library should be designed as networks of classes without free-standing data or procedural items
6 Coupling; the library should be designed with a low level of coupling between classes.
7 Exceptions; the library should provide a consistent and easily understood approach to the handling of errors and other

8 Partial functions; for every partial function, there should be an ‘inspector function’ available to check the preconditions of the

9 Integrity of the abstraction; it should not be possible for a library user to violate the abstraction represented In a library Class.
10 Complete interface; classes in the library should conform to a minimal set of standards that are enforced throughout the library.
11 Efficient; the implementation should be the most efficient available within the stated time and space parameters.
12 Consistency; the definitions and naming of items in the library should be consistent.
13 Generics; the library should provide generic classes where possible.
14 Full Implementation; the user should be aware of the degree of completeness of the implementation of the classes in the library.
15 Organisation; documentation should be organised in the manner that reflects the structure of the library.
16 Overview: document should be provided that presents an overview of the library including both content and structure.
17 Orientation, the library should provide documentation for each level of user.
18 Indexes; documentation for each library should have a minimum of three access methods: alphabetic by class name, hierarchical

19 Formal specification; the documentation should provide formal specifications for each of the components in the library
20 Accessing tools; libraries should be accompanied by tools that assist the user in locating and viewing Classes.
21 Integration tools; libraries should be accompanied by tools that assist the user in adding new classes to the library.
22 Support; commercial libraries should be supported.
23 Upgrades; receiving upgrades for object-oriented libraries will be crucial.

exceptions.

partial function

via the inheritance structure and a keyword facility.

Software Engineering Journal March 1992 a7

-___

Figure 4.4: Criteria listing of Korson and McGregor [1992]

Colombo and Francalanci [2004] developed a hierarchical model for CRMs
that is based on functional and architectural qualities, defined by the ISO 9126
software quality certification guidelines (figure 4.5). They include tables de-
tailing every criterion by explaining the background and providing a scale and
hints for the rating process.

importance attributed to different decision criteria or by
modifying the selected set of criteria [6, 25].

3 Selection model

Typical decision criteria for pre-selection are costs and
quality [20, 26]. In pre-selection, costs are used to fulfil
two complementary objectives:

1. To calculate the quality-to-cost ratio and support
opportunity evaluations

2. To set a maximum budget for implementation and
limit pre-selection to packages satisfying budget
constraints

Both objectives share a common attitude towards
costs as an organizational control variable that com-
plements rather than determines the ranking of pack-
ages. The first objective is achieved if ranking is based
on quality and cost is used as a control variable to
compare packages with similar levels of quality. In
fulfilling the second objective, cost is still used as a
control variable to exclude alternatives exceeding a
predefined budget. The ranking of remaining alterna-
tives can still be based on quality and complemented by
cost evaluations.

A high cost variance can also been observed among
CRM packages, probably related to the size of target
companies (Table 6). From this perspective, larger
companies inevitably involve greater software complex-
ity and consequently incur higher costs. Conversely,
smaller companies may not need the most expensive
packages and, in this respect, cost limits constitute a
legitimate market orientation that precedes the ranking
of alternatives.

The empirical analyses reported in Sect. 4 test the
correlation between cost and quality. This test is needed

to verify that the inclusion of costs among decision
variables does not contribute to ranking and, thus,
empirically support the methodological use of costs as
a control variable.

Figure 2 describes a model for the evaluation of the
quality of CRM packages. The proposed model is novel
in that it includes technical software quality variables.
Previous software selection research bases the operating
measure of quality on the breadth and appropriateness
of a package’s functionalities [10], while technical as-
pects of quality are most often neglected [27]. However,
the generally accepted ISO 9126 software quality certi-
fication guidelines emphasize both functional and tech-
nical quality variables as essential to the effectiveness of
applications [24]. Specifically, ISO guidelines define
technical quality along three dimensions: usability,
maintainability, and portability [28]. The proposed model
for pre-selection includes maintainability and portability
variables, which are collectively labelled as architectural
quality decision variables. Usability is not included since
it constitutes a more subjective decision criterion that
involves a personal assessment of the clarity and lear-
nability of software interaction patterns. This requires
knowledge of the specific organizational context which,
as observed before, is typically gathered during the
subsequent analysis phase for a reduced number of
decision alternatives [23].

Similarly, vendor quality variables are not considered
because of their strong context dependence. For exam-
ple, a vendor may be more willing to support larger
companies and a general quality assessment of their
after-sale assistance could be inaccurate. The expertise
and dependability of vendors is also context dependent,
since it could largely vary with the particular geo-
graphical region and with the capabilities of local
implementation partners. For these reasons, vendor-
related evaluations are traditionally made through
negotiation after an in-depth analysis of pre-selected
packages (Fig. 1).

The next sections discuss the determinants of tech-
nical and functional quality along dimensions of porta-

Fig. 2 Hierarchical decision model including functional and archi-
tectural determinants of quality

188

Figure 4.5: Hierarchical decision model of Colombo and Francalanci
[2004]

In a thesis that is closer to the context of this work Björemo and Trninic
[2010] present a compact evaluation model. Their criteria for comparing
server-side web application frameworks are: documentation and learning,
convention over configuration, integrated development environment, interna-

24 4. State of the Art in Framework Evaluation

tionalization, validation, testing, additional criteria. The model is quite infor-
mal as it does not include scores.

Changpil [2012] compares web frameworks, again server-side, in regard
to costs. His hierarchy includes: systems (installation, tools), design, learn-
ing, and implementation (functional, non-functional) cost, uses a scoring sys-
tem and weights, but does not explain how scores are determined.

Ignacio Fernández-Villamor et al. [2008] also compare server-side web
frameworks. They present clearly described criteria formulated as questions
with a detailing paragraph. The model is hierarchical, the criteria are as-
signed to one of eight categories (see figure 4.6). Weights for the criteria are
presented in the results table. Scoring is not described on a per-criteria base
but altogether. They shortly state “The value of each parameter is obtained by
considering (i) general degree of fulfilment and (ii) degree of integration of
the approach (integrated or through third- party plugins)”.

Figure 1: Comparison model.

3.2.1 Domain Description and Persistence
A domain is a conceptualization of the application’s field of
interest. In software engineering this results in a mapping
between a set of classes and the di↵erent concepts of the
domain, such as, in the case of an e-commerce application,
clients, products or bills. In the Model-View-Controller ar-
chitecture, it is the model what contains the definition of
the domain and the used information. Important aspects in
domain definition are the following:

• Persistence. When providing database persistence of
domain objects, persistence is not an aspect that can
be kept transparent. An abstract repository of domain
objects that acts as a database is required. As a result,
queries for retrieving existing data need to be defined,
along with mechanisms for deleting existing objects.

• Data migrations. In the development of a web applica-
tion, several development iterations produce di↵erent
domain definitions. Keeping data integrity along the
di↵erent versions of the domain definition can be han-
dled with migrations. An example of this could be the
definition of a class field with a particular type that
needs to be changed in a future version of the appli-
cation without damaging previous stored data. In this
case, migrations would help to define how data should
be changed when upgrading to the next version of do-
main definition.

• Constraints. To prevent creation of incorrect domain
objects, a model can provide a way for definining con-
straints. These constraints will be used for data valida-
tion prior to accepting an object as part of the domain.

• Transactions. Some domain changes require complete
execution of di↵erent subchanges to ensure a coher-
ent final state of the domain. This requires mutual
exclusion when accessing data in a context that is sep-
arated from the business logic. In the usual case of
accessing a database, the mutual exclusion when using
this shared resource on performing bulk operations is
achieved with transactions. The integration between

business logic and the use of transactions can be imple-
mented in a web framework with several approaches,
compromising transparency and configurability.

As a result, considering the main comparison aspects that
are related to domain description, a set of parameters have
been defined:

• D.1 – Are data migrations built-in in the development
process? : As said, migrations are an important part
when developing a web application, allowing preserva-
tion of data integrity along di↵erent releases.

• D.2 – Is schema database automatically inferred from
domain definition? : A way of defining a domain is
outlining a set of classes that produces a particular
database schema to provide persistence.

• D.3 – Is domain definition automatically inferred from
schema data? : Another way of defining a domain is
specifying a database schema that produces a partic-
ular class hierarchy and structure.

• D.4 – Does it support validations? : Domain model’s
validations ensure data consistency before storage.

• D.5 – Does it support transactions? : The use of trans-
actions enables a coherent state of the domain data
when performing bulk operations.

3.2.2 Presentation
The presentation layer, i.e. the view part of the Model-
View-Controller design pattern, renders the information of
the model. It is not reponsible for incoming data, only man-
ages the information destined to the user, admitting dif-
ferent representations of the same data. Most framewoks
enable automatic generation of a basic representation of the
model, facilitating the development of the application and
encouraging the user feedback. In some cases, the view man-
agement is implemented by a external technology, avoiding
the use of low-level languages. Finally, internationalization
(I18N) and localization manage the adaptation to di↵erent
cultural environments, enabling the use of several languages
depending on the location.

The following presentation-related parameters have been de-
fined:

• P.1 – Is there a generator of static presentation code
for CRUD operations on models? : CRUD (Create,
Read, Update, Delete) operations on models are typi-
cal actions that does not have to be hand coded when
using generators of static code.

• P.2 – Is there a generator of dynamic presentation code
for CRUD operations on models? : CRUD operations
can also be generated at runtime, avoiding the need of
rerunning code generators on domain changes.

• P.3 – Can presentation layer be defined using an un-
derlying presentation technology? : Using a specific un-
derlying presentation technology lets the developer use
languages that are designed for the specific task of pre-
sentation definition.

Figure 4.6: Criteria categories by Ignacio Fernández-Villamor et al.
[2008]

Laakso and Niemi [2008] compare server-side Java frameworks with Ajax
support. They also use WSM1, but define their criteria via a goal based ap-
proach. They develop questions that can be answered by the goals and base
their criteria on these questions (figure 4.7). Rating is done by evaluating the
documentation available on the project web sites. The scores are taken from
0.5 steps out of the range including −1 and +1. Weights assignment is done
by “project management”.

A different approach is taken by Gizas et al. [2012], who rely on metrics
to compare web frameworks, client-side – they do not differ between frame-

1weighted scoring method, see 4.5.1

4.5. Evaluation Methods 25

Based on how they are measured, the metrics from Table 3 can
be divided to subjective and objective metric categories. The
objective metrics consist of measuring lines of code, number of
files and effort. The rest of the metrics fall into subjective
category and were selected as “decision criteria” for the analytic
study. Weights for the criteria came from the project
management. Table 4 lists the decision criteria and weights given
to each criterion.

4.2 Execution of Analytical Evaluation
The target was to find out how each framework meets the
decision criteria. The decision criteria were: “Product maturity”,
“Activity of the community”, “Open source”, “Backwards
compatibility”, “License type”, “Security”, “Scalability”,
“Available debugging tools”, “AJAX support”, and “Level of
documentation”.

Table 4. Decision Criteria

Item Decision criterion Weight Question
(Table 3)

I1 Product maturity 0,15 6.3
I2 Activity of the community 0,1 6.1
I3 Backwards compatibility 0,05 4.1
I4 License type 0,1 5.1
I5 Security 0,1 8.1
I6 AJAX support 0,15 2.2, 9.1
I7 Scalability 0,15 7.1
I8 Level of documentation 0,05 2.1
I9 Available debugging tools 0,1 2.3
I10 Open source 0,05 6.2

Main source for answers was documentation found from each
framework’s main project web page. The aim was to locate the
needed information as quickly as possible. For each decision
criteria a short description was written on how the framework
meets the criterion and corresponding numerical value was
assigned to the criterion.

4.3 Execution of Scenario-based Evaluation
The project architect was asked to identify for what he
considered typical web application development scenarios. The

scenarios were elaborated on with the architect to include rich
user interface elements, such as automatic form input completion
and hierarchical tree composition.
In the first scenario the goal was to implement a registration
wizard. The purpose of this scenario was to find out how easily
different frameworks support implementation of a multi-paged
form where the user can navigate freely between without loss or
corruption of information. In addition, when navigating from a
page it was checked field by field using AJAX that the
information on that page was valid. AJAX was also used in
several different selection components, e.g. date of birth and
tree-like selection of news services.
In the second scenario the goal was to create a mash-up page that
can be read both on a large screen and on a small screen. Thus
requirement for a framework was that at least user’s browser
must be able to be detected and also, if possible, the type of the
terminal used. Using this information, the framework must
produce a page that is in correct size and has correct layout.
The order in which the framework were used in the
implementation of the first scenario was randomized. For the
second scenario, the order was also randomized, except that the
same framework was not to be the first in both scenarios.
Code length and file count metrics were obtained from the
produced applications using cloc (http://cloc.sourceforge.net/) as
the tool. The efforts were obtained by keeping a strict record of
efficient hours used to implement scenario. Pauses, interrupts
etc. not straight related to implementing the scenario were not
included in the effort.
The metrics collected were lines of code, number of files and
effort. As the lines of code cannot be reliably compared between
different languages, the lines of code, and of course the number
of files, were counted separately for each language needed.
The total effort was further subdivided to view coding, controller
coding, model coding, learning and testing efforts.

Table 5. Summary of Comparative Analysis

Spring JavaServer Faces Tapestry Echo2
Item Decision criterion Raw Weighted Raw Weighted Raw Weighted Raw Weighted

I1 Product maturity 1 0,15 1 0,15 1 0,15 0 0

I2 Activity of the community 1 0,1 1 0,1 0,5 0,05 0,5 0,05

I3 Backwards compatibility 1 0,05 1 0,05 -1 -0,05 -0,5 -0,025

I4 License type 1 0,1 1 0,1 1 0,1 1 0,1

I5 Security 0,5 0,05 0,5 0,05 -0,5 -0,05 0,5 0,05

I6 AJAX support 0 0 0 0 0,5 0,075 1 0,15

I7 Scalability 0 0 0 0 0,5 0,075 0 0

I8 Level of documentation 1 0,05 1 0,05 0,5 0,025 0 0

I9 Available debugging tools 0,5 0,05 0 0 1 0,1 -0,5 -0,05

I10 Open source 1 0,05 1 0,05 1 0,05 1 0,05

Total 0,6 0,55 0,525 0,325

Proceedings of MoMM2008 UWA 2008

434

Figure 4.7: Evaluation model of Laakso and Niemi [2008]

works and libraries and included both. They use various tools to generate
numbers about complexity, maintainability, vulnerability, and conformance
from the source code.

Saaty [1990] states that “Perhaps the most creative task in making a deci-
sion is to choose the factors that are important for that decision.”. Not much
literature about the evalution of JavaScript frameworks in general and about
frameworks specialized for desktop-style development can be found, so there
is no comparison model in existence. It has to be constructed. This is an
important contribution of this work.

4.5 Evaluation Methods

Evaluation is an important part of the decision process. In a scientific sense an
evaluation classifies as a multiple-criteria decision-making (MCDM) problem
[Jadhav and Sonar, 2009]. More precisely it is a multiple-attribute decision
making problem (MADM). This branch of MCDM “refers to making pref-
erence decisions (e.g. evaluation, prioritization, selection) over the available
alternatives that are characterized by multiple, usually conflicting, attributes.”
[Yoon and Hwang, 1995]; MADM and MCDM are often used synonymously.
MCDM is a well studied topic of operations research [Triantaphyllou, 2000]
with well developed methods and tools for problem solution. It is also relevant
in Information Retrieval. Its goals are [Jadhav and Sonar, 2009]:

• help decision makers choose the best alternative of those studied

• help sort out alternatives that seem good among the set of alternatives
studied

• help rank the alternatives in decreasing order of performance

This implies that there is a distinction between methods that rank all can-
didates and methods that filter irrelevant candidates. In fact Roy [1996] distin-
guishes four different “problematics”: (1) choosing one alternative, (2) sort-
ing by assignment of alternatives to one category, (3) ranking from best to

26 4. State of the Art in Framework Evaluation

worst, (4) description of alternatives in terms of performance on the criteria.
Deciding for a software framework can be assigned to category 1 or 2.

Among the methods that have been developed in the field of MCDM ac-
cording to Jadhav and Sonar [2009] the most popular for the selection of
COTS components are:

• Weighted Scoring Method (WSM)

• Analytical Hierarchy Process (AHP)

• Fuzzy Based Approach

They also mention a “Feature Analysis” approach, which is quite similar
to the WSM, but they show no application. An additional category of popular
methods constitute the:

• Outranking Methods

4.5.1 Weighted Scoring Method

The weights that are assigned to each criterion multiplied with the criterion
score and added up. For easier application criteria usually are divided into
domains and the weights within each domain are normalized. The weights of
the domains themselves can be normalized too, the complete score can then
be presented as a percentage of accordance.

Strengths: WSM is easy to conduct, and easy to calculate. As such it is a
transparent method.

Weaknesses: The WSM is a compensatory method, which means that
weak scores can be evened out by very good scores. This is a characteris-
tic that is undesireable in software selection, since a weakness in an impor-
tant feature needed for implementation can not be offset by an unrelated fea-
ture with a good performance [Ncube and Dean, 2002; Morisio and Tsoukias,
1997]. In some cases this is a characteristic that is useful, since one feature
can really compensate another, but WSM does not allow for a distinction of
the interdependence of criteria [Kunda, 2003]. The fact that WSM is easy
to use causes a tendency to “involve ad hoc procedures with little theoretical
foundation” [Kunda, 2003]. Another possible weakness is the fact that the
numbers the method produces can be interpreted as true differences instead
of a relative ranking [Alves and Finkelstein, 2002] and that it may be difficult
to assign proper weights for a large number of criteria [Alves and Finkelstein,
2002].

WSM is also called weighted average sum (WAS) [Jadhav and Sonar,
2009] or weighted sum method (WSM) [Morisio and Tsoukias, 1997].

4.5. Evaluation Methods 27

4.5.2 Analytical Hierarchy Process

The criteria are arranged in a hierarchy, the number of layers is arbitrary. To
define the weight of each criterion a pair-wise comparison of the elements
within each layer is conducted. Every criterion is compared to all other cri-
teria on its layer in regard to difference in importance and rated from “’equal
important” to “definitely much more important” by assigning an odd number
from 1 to 9 (equal, moderately more, strongly more, very strongly more, ex-
tremely more); even numbers are used as intermediates. Then each pair of
alternatives is compared in regard to compliance to a criterion. The resulting
matrices are used to compute the weights and their consistency, which is the
confidence that they represent the mental model of the decision maker [Saaty,
1990], and the result. AHP is well suited for group evaluation, which means
that more than one evaluator is participating.

Strengths: AHP produces a layer between rating and results, which can
allow for more neutrality of the evaluation, and uses comparisons instead of
absolute rating, which is easier to handle mentally. It counters one weakness
of WSM, the difficulty of assigning proper weights, by providing a measure-
ment of consistency and a hierarchy for separation.

Weaknesses: The AHP requires a significant amount of contribution from
the evaluator, the number of pair-wise comparisons for one layer with N cri-
teria and M alternatives is:

#criterion:criterion comparisons = N∗(N−1)
2

#alternative:criterion comparisons = M∗(M−1)
2∗N

The calculation of the end result requires computational assistance, prefer-
ably in the form of a specialized software package. Another weakness is the
possible reversal of order if another alternative is introduced [Kunda, 2003].

4.5.3 Outranking Method

The most popular outranking methods ELECTRE and PROMETHEE produce
either a ranking or a sort order [Mousseau and Slowinski, 1998; Bouyssou,
2009; Morisio and Tsoukias, 1997].

Ranking may lead to an incomplete result because it is based on the idea
that “an alternative x [is] at least as good as an alternative y if: (1) a majority
of the attributes supports this assertion and (2) the opposition of the other
attributes is not too strong” [Bouyssou, 2009]. Therefore alternatives may not
be ranked at all (Ros [2011] provides an example).

In an order problem every alternative gets assigned to one category of a
pre-defined set of categories.

Strengths: In addition to the definition of criteria weights, outranking
methods allow for veto and acceptance thresholds. These prevent the com-

28 4. State of the Art in Framework Evaluation

pensatory effect that is present in the WSM.
Weaknesses: As AHP outranking methods depend on matrix calculations

and therefore require the help of a software. The main drawback of the
outranking methods is the precision of the information that is needed from
the decision maker a priori. Mousseau and Slowinski presented a method to
overcome this problem but introduced a new: the need for existing examples
[Mousseau and Slowinski, 1998].

4.5.4 Fuzzy Based Approaches

Computation intensive methods like AHP, ELECTRE or PROMETHEE are
not intended to deal with the “uncertain, imprecise and subjective data” that
human decision makers bring into the process [Deng, 1999]. A way of han-
dling this obstacle is to introduce fuzzy numbers instead of crisp numbers
[Deng, 1999]. Fuzzy based approaches do not define a new method but in-
stead rely on an already developed method with the additional aspect of un-
certainty.

Weaknesses: fuzzy numbers can not be unambiguously mapped to crisp
numbers. The two approaches, defuzzification and the usage of fuzzy prefer-
ence relations [Lee et al., 2004] produce vague results, which in some cases
leads to counter-intuitive ranking and additional inconsistensies with differ-
ent ranking approaches. The computational demand significantly increases
[Deng, 1999].

Chapter 5

The Decision Process

This thesis will now execute a decision process as defined in section 4.3. The
more specific the context the higher the quality of the result, however, the
context as laid out in the chapters Web Applications and Frameworks (2, 3),
although more general than advised, will serve better to build up an evaluation
model that can be altered for a more specific context in practical application.
The generalization makes it possible to use learnings from specialized prac-
tical applications and generate an improved model that can serve again for a
base in other cases. The next stages in the decision process, evaluation and the
validation of the evaluation result through a prototype, are a first scrutinizing
of the model.

The decision process chosen springs from the findings presented in section
4.3. It uses the method of progressive filtering, the stages are:

I Evaluation Model: Create evaluation model

II Candidate List: Accumulate list of possible candidates

III Requirements: Specify criteria that need to be fulfilled

IV Screening: Filter list of candidates by judging fulfilment of requirements

V Evaluation: Evaluate qualifying candidates

VI Validation: Validate result with a prototype implementation

For the ratings in Stage V: Evaluation the Weighted Scoring Method (see
4.5.1) has been chosen. AHP and Outranking methods may provide more
reliable results, but they require advanced software and involve a procedure
with significantly increased resource demands. WSM provides the best trade-
off between effort and quality of result; since the weaknesses are well known,
they can be addressed by the following measures:

29

30 5. The Decision Process

compensation: important criteria are listed separately as requirements and
candidates that do not fulfill them are filtered out before they enter the
evaluation process

tendency to informality: the process is higly formalized and only includes
reproducible steps

interpretation of absolute numbers: the candidates are not presented in a
ranked order but they are assigned to the pre-defined categories: rec-
ommended, unsure, not recommended

improper weights for large number of criteria: the evaluation model is struc-
tured in a two-level hierarchy with independent categories, which in-
clude a limited number of criteria

The weights will be assigned according to the importance that is expressed
by the description in the evaluation model.

Chapter 6

I: Evaluation Model for
Desktop-Style JavaScript
Web Application Frameworks

The evaluation model is the most important part of the decision process. It
is strongly tied to the intended use of the application that is to be developed
with the help of the framework.

A central point of this model is to cover all stages of the development
process. Beginning with the search for a suitable framework, where required
criteria help to filter unsuited ones, continuing with the development and lastly
considering deployment, maintenance, and further improvement. Each stage
brings several requirements and to be truly usable a framework needs to per-
form good in all categories. A technical sound framework may be of little
use if it is difficult to find documentation during development or even see its
suitability upfront.

Another cornerstone is the context. As stated in chapter 4, context is im-
portant because it brings forth specific requirements. These can be formed
into criteria and then be evaluated. Differences in context explain the huge
differences in evaluation models of the visited literature in regard to chosen
categories, criteria and weights. The context applicable to this evaluation
model has been detailed in chapters 2 and 3.

6.1 Getting Started (sta)

Developer in search for a supporting framework should be able to determine
as quickly as possible if a software is appropriate for their project. It is as-
sumed that a developer, when in want to learn about the framework, will at
first visit the project site. This is the place where the supplier is expected to

31

32 6. Stage I: Evaluation Model

present capabilities and application domain, point out limitations, and high-
light best-fit scenarios for orientation.

The information should be easy to follow and concrete; vague copy stat-
ing something in the direction ‘this framework is capable of everything and
a developer’s dream’ does not help to make an informed decision that aids in
a successful project execution. The introduction documents should therefore
cover purpose or domain of the framework, intentions of usage, and limita-
tions placed on applications [Froehlich et al., 2000].

sta.1 Does the project site offer an informative introductive overview?

An introductive overview clarifies if the framework supports the vision
and requirements of the development endeavor by covering topics like:
application domain, framework architecture, outstanding concepts of
the framework, license, required knowledge, comparison to similar or
contrasting frameworks, limits of the framework, developer tools, sup-
porters. The introduction is searched for on the home page of the project
website as text or as a direct link to a short document.

sta.2 How straightforward is the way to get started?

If the introduction has presented the framework as a suitable candidate
the next step is to get started. It should somehow be made clear what a
newcomer is supposed to do. Solutions to this problem include: down-
load link on the project home page, one package download with instal-
lation scripts, explicit getting started section or document, a hello world
tutorial that serves brief and coarse instructions on how to work with the
framework. At this early stage of getting to know the newly software
strong guidance and precise instructions are rated most positively.

sta.3 What is the quality of the getting started tutorial or guide?

The expectation is to have a coherent set of instructions and expla-
nations in either one document or a consecutive series of documents.
These instructions and explanations are the initial guide for: creating
an application skeleton, understanding the file and directory structure
the framework requires, basic handling of development tools, main con-
cepts of the framework architecture (e.g. view/layout management, data
store), class structure, deploying, structure of the documentation.

Every framework is created for a specific path and way of development,
its conventions. If respected by the developer the framework works
well. If not solutions become difficult and the implementation starts
to behave in unexpected ways. The intention of the beginner’s guide
should be to clarify the most basic of these conventions and show where
to find description of the others if needed.

6.2. Documentation (doc) 33

6.2 Documentation (doc)

Refers to the material available to all developers – fresh, intermediate and
expert – helping them get informed about the purpose, the ideas and intentions
upon which the framework is built, its inner workings, functionality, usage,
and configuration. The material is to be provided by the supplier in any form:
web pages, PDFs, books, collections of code, application examples, videos,
etc. Contribution from outside can not be directly rated in a reproducible
form, its influence is included in section 6.3.

Frameworks are meant to reduce development time and effort but using
a framework is not effective if the learning cost is too high. A framework
is defined as a high-level design including the description of its composition,
which makes documentation an integral part of it [Johnson and Foote, 1988;
Fayad et al., 1999] and as Fayad et al. [2000] puts it “the single most distin-
guishing characteristic of a high quality software product.”. Janisch [2008, ch
5.4] emphasizes that a framework without documentation will not be used.

There is a big difference in the needs of documentation for libraries and
complex frameworks as they are the subject of this work. Frameworks have
many dependencies between classes and often the usage of one class requires
a specific configuration of another class. These cases can only be communci-
ated in a structured documentation, where they are findable. A library may be
sufficiently documented with a simple API list, since components can usually
be used independent of one another, this is not the case for frameworks [Fayad
et al., 2000].

Failure to document edge cases or intended usage and not providing stan-
dard implementations for such circumstances leads to confusion of develop-
ers, which often leads to a high number of questions in forums [Hou et al.,
2005]. This type of documentation is usually delivered in the form of guides.
They combine theory – in the form of explanation of main concepts and ideas
of the framework – and practice – in the form of example source code and ref-
erences to more in-depth information or hints to the framework source code.
They can be presented as either separate documents or as chapters of a man-
ual. A framework needs:

• guides for main concepts (e.g. data storage, communication with server),
complex UI widgets and testing. A framework can not be understood
by just looking at its class structure and provided methods, it needs in-
troduction to the reasons for designing the interface as it is, the purpose
of the framework and how to use it, and the developer tools [Fayad et
al., 2000; Atkinson, 1997; Hou et al., 2005; Froehlich et al., 2000].

• a set of example applications showcasing the usage of certain features
and concepts of the framework [Fayad et al., 1999, ch21 Documenting

34 6. Stage I: Evaluation Model

Frameworks] [Fayad et al., 2000]. Example applications are an im-
portant factor particularly at the beginning of the learning process, an
empirical study by Shull et al. [2000] suggests that they are even more
effective than structured documentation.

• an API reference explaining classes and methods [Fayad et al., 2000]:
advices to go and look up the source code, which are given quite often
in open source projects, should be the last resort as it is not what de-
velopers want [Kirk, 2005]. Furthermore it is important to explain the
class hierarchy and the relations between classes that are not bound to-
gether by this hierarchy – e.g. a container class and its iterator [Korson
and McGregor, 1992].

• release notes for new versions informing developers about deprecations
and interface changes: quite often documentation or examples are not
available for most recent versions, therefore the ones for olders have to
be used and this requires information about the changes that happened
between the documented version and the one in use.

doc.1 Coverage of guide topics?

The most important topics include: architecture, view system, complex
widgets, model, data store, communication with server, testing, build
tools.

doc.2 Quality of guides?

The quality of a guide is measured by: appropriateness of length1, nav-
igation and structure, quality of wording, provision of example source
code, references to other parts of the documentation (API reference,
other guides).

doc.3 Quality of the API reference and its viewer?

The API reference is a basic form of documentation. Some frame-
works use it to communicate concepts too, but its main purpose is to
present classes and their members and what both of them are intended
to do. Naming conventions go a long way here by providing informa-
tion through similarity; still, at least a short explaining sentence should
go along every entry.

An important aspect of the API reference is its viewer. A well-arranged
tree view in the sidebar, incremental search, and a content view enriched
with options to hide unneeded class members is the standard.

doc.4 Range of examples.

1some concepts do not require lenghty explanations, some do

6.3. Community (com) 35

Source code examples or templates that serve as a starting point for
the developement with specific application components and show their
usage in connection with other parts of the framework.

doc.5 What is the quality of documentation for new versions?

Does the project site or the repository provide release notes or a changelog
for new versions? Is there a migration guide for incorporating major
changes from a new framework version into a custom application?

doc.6 Overall structure.

Good documentation is structured into logical sections (API, guides,
examples) and has a dedicated overview page.

doc.7 How easy is it to find out the timeliness of the documents?

Unknowingly following guides that are outdated because they have been
written for an older version and the API changed in between is among
the most frustrating experiences a developer encounters. Documents
should state their target version, the date they have been created and
last updated, and be marked deprecated if that is the case.

6.3 Community (com)

To be of relevance for development a framework must be actively supported
and developed [Korson and McGregor, 1992], support can come from a com-
mercial entity or a community. It must also have arrived at a certain stage of
maturity, resulting in a stable API. An important indicator for the maturity of
a framework is its version history, which is usually available in open-source
projects Kizzort [2002], for commercial projects only the project web site or
a third-party information can be consulted. A young project is very likely to
contain bugs and unstable parts in the interface, so a longer version history
indicates a certain degree of maturity [Fayad et al., 1999; Laakso and Niemi,
2008].

Developers contributing to the project in various degrees of intensity form
at the same time part of the framework user base as well as an equivalent to
the supplier in regard to production of documentation, to maintenance, and
to support. Therefore a large and active community is crucial not only to the
success of the framework but also to easing the difficulty in learning and using
it. For commercial frameworks a large community signifies good adoption
rates and provides incentives to invest in the progress of the software.

Forums or mailing lists play a central role in the education of newbies
and intermediates [Hou et al., 2005] and in the communication from frame-
work developers to framework users. It is save to assume that a high number
of active users correlates with a high number of: asked questions, answered

36 6. Stage I: Evaluation Model

questions, blog posts with how-tos or best-practices, bug reports, people able
to fix bugs and contribute patches. Only a large audience makes it lucrative to
write a book, provide courses and professional support [Ignacio Fernández-
Villamor et al., 2008; Laakso and Niemi, 2008]. Although this is such an
important part its measurement is difficult. Therefore the number of results of
searches of popular and academic sources will be taken as a relative popular-
ity indicator.

Adoption is also reflected in applications that have been built with the
help of the framework and the supplier is keen to show as a positive example.
Links to real life applications, that opposed to demos and examples serve a
practical purpose and have actual users, are a good sign.

Another important thing related to the community is the communication
that is directed from the framework developers to it. Two standard instruments
for this cause are a blog and a Twitter account.

com.1 In active development?

The framework must be actively maintained and developed. Signs of
activity are releases, developer blog posts, or status updates, commits
to the repository do not suffice.

com.2 Mature?

How long ago has the framework been officially published? Are there
indications for a stabilization of the API?

com.3 Availability of books?

Books are an advanced form of documentation. They have a longer
life-span than a website and their production is a demanding and serious
endeavour. Amazon2 is the most prominent international book store and
delivers great search results thanks to its full-text search for the majority
of technology books, it has therefore been selected as the source for this
criterion. Dedicated books and short references in otherwise differently
concerned books have to be distinguished and appropriately rated.

com.4 Is it covered in journals or the press?

Academic journals are not a good source for information about JavaScript
frameworks, coverage is very scarce. So it seems more appropriate to
measure popularity and importance to the software developer space by
rating the coverage in pertinent publications of a more popular but still
professional nature. As the major German publishing house for profes-
sional IT journals Heise (see table 7.2) has been selected. Heise allows
for a quality classification by differentiating between news items, a ref-
erence in an article, or a dedicated article.

2amazon.com

6.4. Features (fea) 37

com.5 How popular is it on the Internet?

A very vague criterion but may still be representative when set in rela-
tion to all others. It is represented by the number of hits for a search with
the Google search engine, Hacker News, quora.com, and stackoverflow.

com. The latter two are popular question-and-answer sites, they can be
accessed for free; Stack Overflow is targeted at developers, Quora does
not seem to have a specific target group. Hacker News is described in
table 7.2.

Due to the lack of objective criteria thresholds, scores have to be seen
in relation to all candidates3.

com.6 Forum/mailinglist activity.

How active is the project forum, Google group or mailinglist? More
activity means that probably more questions that might come to a new
developers mind have already been asked and answered or may have
even been solved by fixing the bug or adding a piece of information to
the documentation.

com.7 Activity on Twitter.

How many tweets have been published in a given time frame?

com.8 Activity on Blog.

How many blog posts have been published in a given time frame?

com.9 Links to real life applications on the project site.

Does the web site link to applications that have been developed by
third-parties, are actively used, and accessible, so that they may serve
to demonstrate the framework capabilities?

6.4 Features (fea)

This category collects criteria of different types of importance and impact.
The first two are critically tied to the context described in chapters 3 and 2:
architecture is a central aspect of a framework, its importance can not be un-
derestimated. The MVC architecture [Burbeck, 1992] is a commonly used
architecture for native applications with a graphical user interface it is rea-
sonable to demand the use of the same architecture in the current context;
abstraction from the DOM is a special demand of the browser environment.
The complicated nature of the DOM is the reason frameworks and libraries
have become essential for web applications development, this criterion goes
a step further. DOM abstraction serves to: (i) avoid a mental context switch

3grading keys are provided in a table in section 10

38 6. Stage I: Evaluation Model

between view and controller or model coding (ii) encapsulate code that is di-
rectly related to presentation, i.e. will be translated to DOM elements, within
the class, a core principle of object-oriented programming, and (iii) keep code
that depends on the browser render engine apart from code that depends on
the JavaScript virtual machine.

The next two criteria are not crucial but still very important. They refer to
the model layer of the MVC architecture, with two concepts called data store
and bindings. A data store is an entity that manages the provision of data on
the client-side. Its loads data from the server when needed, caches it on the
client-side, knows of relations between models, is able to generate queries for
the server to efficiently fetch the data currently needed4, upon a client-side
query from e.g. a view, it can decide if it can return the cached data or has to
send a query to the server, of maybe both. To work effectively stores require
bindings. Bindings – another important criterion – are a means to mututally
connect a property of two objects, e.g. an array of model objects5 and the
content property of a list view; removing an object on either end, evokes the
same removal on the other, i.e. if the user removes an object from the list
view it is removed from the model - and in succession from the server - if on
the other hand a new object is added at the server and a query adds it to the
array in the model, the object is also added to the list. In combination stores
and bindings make it possible to e.g. bind a table view to an empty model
array and populate this array dynamically when data from the server arrives;
via the binding the table view gets notified about new data and automatically
displays it.

The rest of the criteria in this section refers to properties that aid in de-
velopment, some significantly, but represent functionality that can be gained
manually with reasonable effort.

fea.1 Has a Model-View-Controller architecture?

Offers explanations about its implementation of the MVC pattern? Has
classes for all modules of the MVC pattern?

fea.2 Layout manager and HTML/CSS/DOM abstraction.

Has a means to completely manage the layout of the application with
JavaScript code or an XML/JSON description file. It offers an abstrac-
tion from the manual coding of HTML and CSS files and generates the
necessary div-tags to position and resize views. It is aware of the cur-
rent size of the viewport and positions the views accordingly. A very
basic setup would be two panes e.g. the left for a tree view, the right
for a content view. The layout manager makes it possible to grab the

4e.g. Person and Order are two model classes, a Person has many Orders. A store would
be able to query for a specific Person with nested Orders instead of sending one query for the
Person and a second one for the corresponding Orders

5this could be the property of a store

6.4. Features (fea) 39

dividing line and resize the two views as one is accustomed to from
a desktop application. A layout manager offers much more flexibility
than a template engine.

fea.3 Data store.

Does the framework provide a data store?

fea.4 Bindings.

Does the framework provide a mechanism that allows the developer to
connect views and model objects, so that views update their representa-
tion automatically if the underlying object’s properties change.

fea.5 Drag & drop.

Does the framework provide support for drag & drop operations accross
widgets and for custom widgets?

fea.6 Internationalization/Localization (i18n/l10n).

Does the framework have a structure and solution to solve the problem
of translating an application to different languages.

fea.7 Theming.

How many themes are delivered with the framework? Is it possible to
change the graphical appearance with the alteration of a central file and
the exchange of graphical files?

fea.8 User input validation.

Does the framework allow the validation of user input in forms or before
it is saved to the model?

fea.9 Context menu.

Is it possible to exchange the standard browser context menu (right click
with mouse) with a custom menu, showing items dependent on the cur-
rent mouse position within the window.

fea.10 Tool tips.

Do action UI elements, e.g. buttons, have an entry for a short help text
that is displayed when the mouser hovers over the element for a certain
time.

fea.11 Keyboard shortcuts.

Can key combinations, like pressing Ctrl together with a letter, be used
to trigger actions?

40 6. Stage I: Evaluation Model

fea.12 Offline mode.

Does the framework support a mode where the application can run from
the browser cache, with local browser storage and without internet con-
nection?

fea.13 Server push.

Does the framework support a mechanismn that allows the server to
push new data into the client-side application during run-time. An ex-
ample would be the update of live results of a sports game?

fea.14 Browser history management.

Can the URL be updated to reflect the state of the application, so that it
can be bookmarked (also called: browser history manipulation or deep
linking).

6.5 User Interface (uif)

User interface refers to the parts of the program that the users see and di-
rectly interact with. A framework has to support the developer in producing
a consistent look & feel, adhering to standards of the web, providing a good
usability for the user, composing an easy adaptable layout, and translating
the interface to different languages. Users would not feel a complicated class
structure or an insufficient documentation, but they instantly experience the
clumsiness of quickly self-implemented views.

Text fields, radio buttons, tree views, tables, these are examples of com-
mon interface elements that users have an expectation of how they can interact
with. The developer must be able to rely on the framework for providing the
correct behavior. This is very specific to the desktop-style context, since web
applications that are spread over several pages have more moderate demands
and can use standard HTML elements. User interface guidelines or references
to guidelines of other platforms or frameworks are a good supplement Janisch
[2008].

This category tests for the degree of support by checking the availabilty
of common widget types.

uif.1 Repository of UI elements (widget library)?

Which of the following widget types are present: label, input field, but-
ton, progress bar, activity indicator, radio button, checkbox, combo box
(drop down menu), number spinner (field restricted to numbers with
up/down buttons), slider, menu, tabs, modal view, alert, split view, tree
view, grid/collection view, charts, calendar, date picker, map view, rich
text editor?

6.6. Development Setting (dev) 41

6.6 Development Setting (dev)

Although a big part of the usability of a framework for a developer is related
to the quality of the documentation, there is a significant amount of other
points that influences the effectiveness and efficiency of using a framework.
These include: development support via tools, independency of systems, and
license issues.

In addition to the standard arguments for the introduction of automated
testing into the development process the special circumstances of the JavaScript
run-time environment make testing and catching errors before execution even
more important because: (i) the whole client-side JS application may stop or
not even begin execution upon an error without any indication of where the
error happened, (ii) client to server logging of errors and exceptions is difficult
and unreliable.

Deploying a JavaScript application can be as simple as copying all imple-
mentation files to a web server. This, however, is inefficient and unfavorable
for desktop-like applications as it further increases the already high initial
loading time unnessecarily: the higher number of source files forces access-
ing browsers to spawn additional requests and may lead them to running into
their upper request limit; comments and white space increase the size of the
data that needs to be transmitted. Reduction is the process that deletes unused
code parts from the source files and merges several files into one; minifica-
tion or obfuscation strips comments and whitespace from the source files and
shortens names of variables or functions for additional data amount savings.
These are standard procedures that a deployment tool should be able to han-
dle. Other points are additional configuration options and the possibility to
build and deploy the reduced and minified application with a single command.

Boundaries of a financial budget are a common problem in software de-
velopment, but especially in the academic context and for small business it
is important to have frameworks available that permit experimentation with
commercially exploitable software without the necessity to pay fees upfront.
Even more welcome is the possibility to benefit from a development for free
and still be able to run a business.

dev.1 Code generation tools?

Is a script or a binary application available that takes an application
name and sets up the required directory structure with appropriate file
and class names? Is a generator provided that takes a name and a type of
class (e.g. model, controller) and creates the standard implementation
files and additional (e.g. helper, testing) files?

dev.1 Built-in testing?

Is there a standard convention and a tool that allows for unit and other
types of testing? Is there a documentation?

42 6. Stage I: Evaluation Model

dev.1 Deployment support?

Support for reduction, minification, copying of build files to a server?

dev.1 Client-server communication protocols?

What data formats are supported for the communication with the server-
side? JSON and XML are the most important standards.

dev.1 Independence of a development platform.

Development is done on desktop operating systems. The most popular
are: OS X, Linux, and Windows.

dev.1 Independence of a server platform.

Is the deployed product tied to a specific server platform or can it be
adapted to communicate with any standard (e.g. REST) compliant ser-
vice?

dev.1 What license models are provided?

Is the deployed application usable in open-source applications? How
much does it cost to use the framework in a commercial application?

Chapter 7

Stage II: Candidate List

Names and web addresses of frameworks were accumulated by conducting a
market research on the Internet. Using only the Internet as a place to search
for the emergence of candidates should not limit the findability of software
that is inherently bound to it.

Over the course of approximately one year – between June 2011 and
June 2012 – the sources listed in table 7.2 were followed. Items related to
web frameworks were investigated and classified. The term web framework
is more often found describing a server-side framework and in recent years
server-side frameworks get improved with an often called “Ajax component”.
Frameworks enhanced in such a way enable developers to write enriched ap-
plications that are less dependent on a full page reload and are able to load
data dynamically. These frameworks are easy to distinguish from frameworks
for desktop-like web applications since they are mostly written in a different
language, functionality accessible via JavaScript is an addition. They have
not been added to the list of relevant frameworks or otherwise recorded.

Other types of frameworks where applications are written in another lan-
guage and then compiled to JavaScript code – the Google Web Toolkit is a
well-known example – are not of interest to this thesis either.

A special type of JavaScript framework that has gained popularity in re-
cent years are micro frameworks. The popular site micro.js currently lists
around 250 of them. They describe micro frameworks as “pocketknives” that
do “one thing and one thing only”. Hence they are highly specialized, small
(below 5kB), and not suitable for desktop-like web applications.

Finally 41 candidates were added to the framework list. Their names, the
URL of their project site, and the version number at the date of examination
are listed in table 7.1.

43

44 7. Stage II: Candidate List

Name URL Version Date
ActiveJS activejs.or n/a 19/06/2012
Agility.js agilityjs.com 0.1.2 19/06/2012
AmplifyJS amplify.js 1.1.0 26/06/2012
AngularJS angularjs.org 1.0.0 19/06/2012
AppJS appjs.org 0.0.11 19/06/2012
Backbone.js backbonejs.org 0.9.2 19/06/2012
batman.js batmanjs.org 0.9.0 19/06/2012
Bindows bindows.net 4.1.1 19/06/2012
Cappuccino cappuccino.org 0.9.5 19/06/2012
Choco github.com/ahe/choc n/a 19/06/2012
CorMVC bennadel.com/projects/

cormvc-jquery-framework.htm

n/a 19/06/2012

DHTMLX dhtmlx.com 3.0 26/06/2012
Dojo Toolkit dojotoolkit.org 1.7 19/06/2012
Eyeballs github.com/paulca/eyeballs.js 0.5.17 19/06/2012
Ember.js emberjs.com 0.9.8.1 19/06/2012
Ext JS sencha.com/products/extj 4.1.0 25/06/2012
Glow bbc.co.uk/glow 1.7.7 19/06/2012
Google Closure
Library

developers.google.com/closure r1376 22/06/2012

JavaScriptMVC javascriptmvc.com 3.2.2 22/06/2012
jQuery jquery.com 1.7.2 22/06/2012
Knockback.js kmalakoff.github.com/knockback 0.15.3 22/06/2012
Knockout.js knockoutjs.com 2.1.0 22/06/2012
Luna (Asana) asana.com/luna n/a 19/06/2012
MooTools mootools.net 1.4.5 22/06/2012
MochiKit mochikit.com 1.4 22/06/2012
Mojito (Yahoo!) developer.yahoo.com/cocktails/

mojito

0.3.27 22/06/2012

Prototype prototypejs.org 1.7 22/06/2012
qooxdoo qooxdoo.org 2.0 25/06/2012
Rialto rialto.improve-technologies.com/ 1.1.5 25/06/2012
Rico openrico.org 2.1 25/06/2012
Sammy.js sammyjs.org 0.7.1 25/06/2012
script.aculo.us script.aculo.us 1.9.0 25/06/2012
SmartClient smartclient.com 8.2 25/06/2012
Spine.js spinejs.com 1.0.8 25/06/2012
SproutCore sproutcore.com 1.8.2 25/06/2012
Spry labs.adobe.com/technologies/spry 1.6.1 25/06/2012
UIZE uize.com n/a 25/06/2012
underscore.js underscorejs.org 1.3.3 25/06/2012
Wakanda wakanda.org 1.0 25/06/2012
YUI! yuilibrary.com 3.5.1 25/06/2012
zepto.js zeptojs.com 1.0rc1 25/06/2012

Table 7.1: The complete list of frameworks, accumulated via market
research.

45

Name Comment Web Address
heise online News

Ars Technica

Stack Overflow

Hacker News

Wikipedia

Google

Amazon
Other

Newsticker of the publishing house of
Germany‘s most important magazines
related to professional IT and computer
technology.

heise.de/newsticker

US American online magazine for
science and computer technology

arstechnica.com

Community question and answer site.
Popular among professional and
amateur software developers of all kinds

stackoverflow.com

Community news site of silicon-valley
based startup funding company for web
technology, startup, funding and
management advice

news.ycombinator.com

de:Freies_Webframework,
en:List_of_JavaScript_libraries,
en:List_of_widget_toolkits,
en:List_of_Ajax_frameworks

wikipedia.org

Searches releated to JavaScript,
frameworks and web application

google.com

Online book store amazon.com
Other sites with listings and occassional
news on web frameworks

bestwebframeworks.com
ajaxian.com

todomvc.com

Table 7.2: Sources that were used to compile the framework list

46 7. Stage II: Candidate List

Chapter 8

Stage III: Requirements

To filter out clearly unsuitable candidates very early in the process some crite-
ria from the evaluation model will be selected and defined as required. Every
candidate in the list will be checked against these requirements and needs to
fulfill them to remain for the next stage of the process.

8.1 Derivation of Requirements

The criteria for this step of the process were selected from the evaluation
model (chapter 6) with the aim to achieve a sub model that is effective at
sorting out unsuitable candidates while at the same time being easy to rate.

The set of criteria defined as requirements has to fulfill the following ob-
jectives:

1. rating must be possible in short time

2. performance judgement must be binary for easy rating

3. the number of candidates must be significantly reduced

Requirements have either been derived from the importance indicated in
the detailed description of the evaluation model, or they have been chosen
with regard to the context of single-page web applications. Iteratively the list
was expanded until the desired reduction was accomplished.

8.2 Requirements Listing

from Evaluation Model

The following criteria have been extracted from the evaluation model descrip-
tions:

47

48 8. Stage III: Requirements

Basic Documentation: the candidate’s project site must point to an API
reference, at least one tutorial, an example application, and a first steps
guide with instructions for the installation.

The documentation section of the evaluation model points out clearly
that documentation is an indispensable part of a framework.

Activity: the candidate must be actively maintained and developed. This
needs signs of activity (releases, developer blog posts, status updates)
within the last year, commits to the repository do not suffice.

Bug fixes and feature additions are a necessity for such a complex soft-
ware as frameworks are.

Maturity: the first public version of the candidate must have been released
more than a year ago (i.e. before July 2011).

An immature framework has an unstable API and is more likely to con-
tain severe bugs.

Framework: the candidate must not be identifiable as not being a frame-
work according to the definitions of chapter 3.

The development of single-page web applications requires the support
of a framework, a library is unsuitable.

Widget Library: the candidate must provide a library of composable views
with complex widgets like a tree view, table view, grid view or similar.

To ensure consistent, quick, and error reduced user interface develop-
ment.

from Context

The following requirements have been chosen from the evaluation model with
regard to the context provided in chapters 2 and 3:

Layout Manager/DOM abstraction: the candidate must provide a layout
manager. It must be possible to build a UI with JavaScript or XML/
JSON without coding it in an HTML file directly using HTML entities
like div.

Direct manipulation of the DOM is complex and performance intensive.
Single-page web applications frameworks offer specialized modules to
handle these tasks.

Model-View-Controller: the candidate must offer a complete stack of classes
for all levels of the MVC.

This is the standard pattern for GUI desktop applications and desktop-
like web applications.

8.2. Requirements Listing 49

Independent of a development platform: development must be possible
on all major desktop platforms (OS X, Linux, Windows).

It is appropriate to be able to develop platform independent applications
on a platform of choice.

Server Agnostic: the candidate must be a client-side framework and must
not rely on a specific server back-end.

Web applications should operate independently of the server-side plat-
form.

50 8. Stage III: Requirements

Chapter 9

Stage IV: Screening

The candidates accumulated in chapter 7 were checked against the require-
ments listed in chapter 8. The screening process is an important stage to effi-
ciently identify candidates that are unsuitable for the development of single-
page web applications and should therefore be excluded from the subsequen-
tial stages of the process.

9.1 Screening Execution

The number of accumulated candidates (41) is high when taken into consid-
eration that the screening process is carried out by a single person. However,
the requirements are specifically selected to be judged easily and quickly.

The analysis is based on information provided by the candidates’ project
websites and – if available – the source code repository. This may mean that a
feature that is technically available in a candidate has been classified as absent,
however this is in line with the explictly declared need for documentation: a
feature that is hard to find lacks proper documentation.

The abbreviated results of the examination are listed in table 9.1, eight
candidates were accepted for the evaluation. The complete table with more
detailed information about each candidate can be found in appendix A.

9.2 Screening Result

The subsequent results summary present only the main reason a candidate was
rejected from further evaluation. It does not mean that all other requirements
have been fulfilled.

51

52 9. Stage IV: Screening

Activity

The following candidates have been classified as no longer actively main-
tained and developed because of missing indication of the contrary on their
project website or repository:

• ActiveJS

• Choco

• CorMVC

• Eyeballs

• Glow

• MochiKit

• Rico

• Spry

Library

The following candidates have been classified as a library, because of their
explicit declaration or because of the description of their purposes and capa-
bilities:

• AmplifyJS

• AngularJS

• jQuery

• Prototype

• script.aculo.us

• underscore.js

• zepto.js

9.2. Screening Result 53

Layout Manager/DOM Abstraction

The following candidates failed to present a method that relieves the devel-
oper from managing the DOM and lack a class or module that allows the
management of the visual interface:

• Agility.js

• Backbone.js

• batman.js

• Ember.js

• Google Closure Library

• JavaScriptMVC

• Knockback.js

• Knockout.js

• MooTools

• Rialto

• Sammy.js

• Spine.js

• UIZE

• Wakanda

• YUI!

Maturity

The following candidates have seen their first commit within the last year and
have therefore been classfied not mature:

• AppJS

• Mojito (Yahoo!)

Other

One candidate was rejected for a reason not listed among the requirements:
Luna is not a public framework. Its description indicates that Asana, the com-
pany behind it, uses it internally for development, but public access is not
granted.

54 9. Stage IV: Screening

Name Accepted Reason
ActiveJS No no longer maintained
Agility.js No layout manager/DOM abstr., widget library
AmplifyJS No library
AngularJS No library
AppJS No immature
Backbone.js No layout manager/DOM abstr., widget library
batman.js No layout manager/DOM abstr., widget library
Bindows Yes
Cappuccino Yes
Choco No no longer maintained
CorMVC No no longer maintained
DHTMLX Yes
Dojo Toolkit Yes
Eyeballs No no longer maintained
Ember.js No layout manager/DOM abstr., widget library
Ext JS Yes
Glow No no longer maintained
Google Closure Library No layout manager/DOM abstr.
JavaScriptMVC No layout manager/DOM abstr., widget library
jQuery No library
Knockback.js No layout manager/DOM abstr., widget library
Knockout.js No layout manager/DOM abstr., widget library
Luna (Asana) No not public
MooTools No layout manager/DOM abstr., widget library
MochiKit No library, no longer maintained
Mojito (Yahoo!) No immature
Prototype No library
qooxdoo Yes
Rialto No layout manager/DOM abstr., MVC
Rico No no longer maintained
Sammy.js No layout manager/DOM abstr., MVC
script.aculo.us No library
SmartClient Yes
Spine.js No layout manager/DOM abstr., widget library
SproutCore Yes
Spry No no longer maintained
UIZE No layout manager/DOM abstr.
underscore.js No library
Wakanda No layout manager/DOM abstr., MVC, OS in-

dependency
YUI! No layout manager/DOM abstr.
zepto.js No library

Table 9.1: The complete list of frameworks with the result of the
screening and reasons for their exclusion from further scru-
tinizing

9.3. Remarks 55

Accepted

The following candidates have been accepted, since they fulfilled all require-
ments:

• Bindows

• Cappuccino

• DHTMLX

• Dojo Toolkit

• Ext JS

• qooxdoo

• SmartClient

• SproutCore

9.3 Remarks

A smooth and efficient execution of the screening was inhibited by a high
variation of quality in project self-descriptions. Few projects present explicit
and concise background information. Architecture, application domain, or UI
capabilities often are not mentioned at all or packed in ambiguous language.
Generally it seems that it is unknown to most developers that libraries and
frameworks are two disctinct concepts.

Another attribute that has unexpectedly proved to be difficult to ascertain
is the activity state of a project. Frequently the project website is filled with
misleading information about a next version, a road map, or announcements
of an imminent release, but results are unseen. A planned retirement has only
happened in one of the eight cases: the maintainers of MochiKit explained
that the project is “feature complete” and no longer in active development.
Some projects that are marked no longer maintained have seen commits to
the repository so it seems that a core group of developers is still present, but
maybe resources are too scarce to sustain proper support and communication.
Deducting from these circumstance it is advisable to look beyond the official
statements to assess the possible future of a project.

56 9. Stage IV: Screening

Chapter 10

Stage V: Evaluation

The screening of stage IV showed that eight candidates qualify for the evalu-
ation (see table 9.1). What follows is an introduction of every candidate, the
evaluation results presented by category, and a final discussion.

10.1 Candidates

10.1.1 Bindows

The Bindows framework is a product of the company MB Technologies based
in Georgia, USA, with a development center in Sweden. The company pro-
vides software solutions for governments, military and large corporations.
MB Technologies calls Bindows the “leading object-oriented platform for de-
veloping AJAX enterprise applications” and claims it is used by a majority
of Fortune 500 companies. The project site stresses that it can replicate a
“Windows Look-and-Feel”1.

Version 1.0 was released on Feb 24, 2004, the current major version is
4 and was released on Feb 13, 2009. The evaluated version is 4.1.2 with an
unknown release date, 4.1 was released on Mar 31, 2010, thus is more than
two years old.

Topic URL
Company mb.bindows.net

Initial Release mb.bindows.net\news\bindows\10\release.html

Version Information bindows.net\bindows\changelog.txt

Table 10.1: Sources for Bindows (last accessed: Aug 29, 2012)

1jugding from the provided screenshots “Windows” refers to Microsoft Windows XP and
Vista

57

58 10. Stage V: Evaluation

10.1.2 Cappuccino

Cappuccino is an open-source community driven framework that is based on
its own language: Objective-J. Objective-J is a strict superset of JavaScript,
modeled after Objective-C. It uses a very similar syntax and the same message
passing model, which itself is heavily inspired by Smalltalk. Transformation
to JavaScript happens at run-time transparantly for developer and user. The
Cappuccino and Objective-J APIs are in large parts a copy of Apple’s Cocoa
framework and its open-source sibling GNUStep2.

The projects have been initiated by three graduates from the University of
Southern California: Ross Boucher, Tom Robinson, and Francisco Tolmasky.
They were open-sourced on September 4, 2008 with version number 0.5. To
showcase its capabilities 280 North, the company founded for the develop-
ment of Cappuccino, released 280 Slides a presentation application similar to
Microsoft’s PowerPoint or Apple’s Keynote, which was critically acclaimed
as being an impressive example of a browser application. After 280 North
was aquired by Motorola in Aug 2012 Cappuccino and Objective-J develop-
ment was continued by the community. 280 Slides was shut down in the end
of 2011. The current and evaluated version of Cappuccino is 0.9.5 released
on Nov 16, 2011; version 0.9 was released on Feb 22, 2011.

Topic URL
Company mb.bindows.net

History arstechnica.com/apple/2008/06/

cocoa-on-the-web280-north-objective-j-and-cappuccino

Initial Release cappuccino.org/discuss/2008/09/04/

announcing-cappuccino

Current Status groups.google.com/d/topic/objectivej/

HLc6mcZbGqQ/discussion

Table 10.2: Sources for Cappuccino (last accessed: Aug 29, 2012)

10.1.3 DHTMLX Suite

DHTMLX is a commercial product of DHTMLX, a company based in Saint
Petersburg, Russia. It has a strong emphasis on widgets while still providing
an MVC architecture. According to the DHTMLX website 30% of the For-
tune 500 companies are among their customers. All DHTMLX components
are available separately, the product comparable to other framework is the
DHTMLX Suite.

DHTMLX claims to have been building the library since 2003, the earliest
information about a release is a blog post from Jul 20, 2005 describing the

2gnustep.org (last accessed: Aug 29, 2012)

10.1. Candidates 59

release of the component dhtmlxTree. DHTMLX then went on to add more
widgets and began releasing it as a suite, presumably in 2007. The current re-
lease is 3.5, but since it was released after the cutoff date the release evaluated
here is 3.0 from Oct 31, 2011.

Topic URL
History dhtmlx.com/docs/services.shtml

Early Release dhtmlx.com/blog/?m=200507

Table 10.3: Sources for DTHMLX (last accessed: Aug 29, 2012)

10.1.4 Dojo Toolkit

The Dojo Toolkit is a highly modular project backed by the Dojo Founda-
tion, a non-profit organization based in California, USA. The Dojo Founda-
tion was formed by Alex Russell, Dylan Schiemann, and David Schontzler
while working at Informatica in 2004 to support the Dojo Toolkit but today
is host to several open-source projects related to web technologies. It is spon-
sored by companies and private persons. Dijit is the widget library of the
Dojo Toolkit and presented as the main factor for application development.

Version 0.1.0 was released on Aug 30, 2005. The current version is 1.8,
which was released on Aug 15, 2012, which is after the cutoff date. The
release evaluated here is 1.7.2 from Feb 16, 2012.

Topic URL
Company dojofoundation.org

History dojotoolkit.org/reference-guide/1.8/quickstart/

introduction/history.html

Table 10.4: Sources for Dojo Toolkit (last accessed: Aug 29, 2012)

10.1.5 Ext JS

Ext JS started life as a full open-source project and is now the product of
Sencha, a company based in California, USA. It was created in 2006 by Jack
Slocum as an extension to YUI3. Slocum’s intention was to extend YUI with
widgets and enhanced animation handling. It quickly became popular and
was renamed to Ext JS, with the release of version 1.1 it had no longer any
dependency on an external library. To be able to generate monetary support
for a business the license model was changed to a dual licensing system with
a GPL license and a commercial license. In June 2010 it was announced that

3Yahoo User Interface library, yuilibrary.com (last accessed: Aug 29, 2012)

60 10. Stage V: Evaluation

Ext JS and the two other JavaScript libraries jQtouch and Raphaël were joined
in one company named Sencha. Currently Slocum is no longer affiliated with
Ext JS or Sencha. Sencha claims that 50% of the Fortune 100 companies “rely
on Sencha technologies”. Ext JS started to support an MVC architecture with
version 4.0.

The current major release of Ext JS is 4, it was released on Apr 26, 2011.
The evaluated version is 4.1.1, 4.1 was released on Apr 20, 2012.

Topic URL
History web.archive.org/web/20061018033829/http:

//www.jackslocum.com/yui/index.php

History yuiblog.com/blog/2006/10/10/

ten-questions-slocum

History web.archive.org/web/20090614072938/http:

//jackslocum.com/blog/2007/08/01/ext11

Company sencha.com/company

Table 10.5: Sources for Ext JS (last accessed: Aug 29, 2012)

10.1.6 qooxdoo

qooxdoo is an open-source framework sponsored by the company 1&1. It has
been initiated by 1&1 in 2004 and was registered as an open-source project at
Sourceforge4 in Jan 2005. qooxdoo is offered in four variants for enhancing
websites, mobile, applications, and server. Currently it offers a dual licensing
model were both licenses permit commercial usage in closed-source projects.
qooxdoo – quite uniquely among open-source projects – has a dedicated core
developer team working full-time under the lead of Andreas Ecker.

The current and evaluated version of qooxdoo is 2.0.1 released on Jul 3,
2012.

Topic URL
History qooxdoo.678.n2.nabble.com/

I-m-a-Ext-LLC-Jack-Slocum-victim-and-I-m-thinking

-about-converting-to-Qooxdoo-td783372.html

History qooxdoo.org/project/developers

Table 10.6: Sources for qooxdoo (last accessed: Aug 29, 2012)

4sourceforge.net (last accessed: Aug 29, 2012)

10.2. Evaluation Results 61

10.1.7 SmartClient Ajax Platform

The SmartClient Ajax Platform (SmartClient) is a product of the privately
held company Isomorphic Software, based in California, USA. Isomorphic
Software sees enterprises “from banking through telecom to defense” as the
target group of its frameworks and services.

According to its own description the SmartClient SDK was released in
2001, more information on the history or development of the project is not
available. It is available as an open-source edition with a commercially usable
license and commercial editions. The current and evaluated version is 8.2,
which was released on Dec 5, 2011.

Topic URL
Company smartclient.com/company

Table 10.7: Sources for SmartClient Ajax Platform (last accessed:
Aug 29, 2012)

10.1.8 SproutCore

SproutCore is a community-backed framework, which was started by Charles
Jolley at the company Sproutit, based in California, USA. Development started
in 2007 with the goal to rewrite the company’s email management applica-
tion so it can be run in a browser. On an architectural level its – like Cap-
puccino – connected to Cocoa but unlike Cappuccino not a copy, instead it
is “built around the Model-View-Controller programming model that Cocoa
uses”. SproutCore was used by Apple in 2008 to build the web application
collection for MobileMe, it included an email client, basic contact manage-
ment and a calendar, these have been updated and are still part of the iCloud
service today.

In 2010 a debate arose about the future of SproutCore 2.0 which would
have brought significant changes to the whole framework; the result was a
split. SproutCore 2.0 was renamed to Ember.js. Development on the legacy
version of the framework continued, coordination of development and com-
munity has shifted from Charles Jolley to Tyler Keating. The most recent and
evaluated version of SproutCore is 1.8.2, released on May 10, 2012.

10.2 Evaluation Results

The scores of the results are presented in percentages, every category was
normalized so that the contained criteria accumulate to 100% and then the
category weight is multiplied. Behind the presented percentages though, is a
system of five grades in with a 25% interval. Only in cases were it seemed

62 10. Stage V: Evaluation

Topic URL
History arstechnica.com/apple/2008/06/

sproutcore-rich-web-apps-in-javascript-no-flash-needed

History web.archive.org/web/20070830190206/http:

//www.sproutcore.com/blog

MobileMe appleinsider.com/articles/08/06/16/apples_open_

secret_sproutcore_isvcocoa_for_the_web.html

Change blog.sproutcore.com/changes-to-sproutcore

Table 10.8: Sources for SproutCore (last accessed: Aug 29, 2012)

highly unappropriate to decide for one grade an intermediate value was given.
The results in full detail can be found in appendix B.

10.2.1 sta Getting Started

As a main source of information the project web site served. Every framework
was downloaded, installed, and tested. The more elaborate getting started
tutorials were not implemented, they were just scrutinized.

Category Weight: 10%

Bindows

The text offered on the Bindows project home page fails to present mean-
ingful information. It emphasises phrases like “better than desktop”, “richest
windowing”, “most powerful”, or “best-in-industry” instead of information
about concepts and technologies. The almost sole concrete information is the
replication of the “Windows look-and-feel”, this communicates a clear target
group.

The path to getting started with development is not straightforward. The
Downloads & Purchase section of the menu contains a link to a document
which requires personal data input. After submitting, a link is sent via email,
then the actual download process can start.

The zipped package contains release notes, some samples, a directory
filled with all HTML files of the API named with the containing class, and
the framework. The getting started document points to the getting started
section on the website.

The getting started section on the Bindows project site is similar to the
documentation site of other frameworks. The main pointer goes to the manual
titled Bindows - User’s Manual. Other than that a very basic Hello World tuto-
rial can be found in the tutorial section of the Developer Resources. Bindows
offers no dedicated getting started document, the first sections of the manual

10.2. Evaluation Results 63

seem to be intended for this purpose. They cover installation, architecture,
directory structure, and layout. The document has been last updated in 2005.

Score: 38%

Cappuccino

The Cappuccino project home page presents an unmistakable statement about
the objectives of the project: “desktop-caliber applications that run in a web
browser”. The introductive overview is found under the link Read all about
Cappucino and Objective-J and clearly expresses the framework’s goal of
helping to develop desktop-like applications, the license, the source of the
APIs, the complete abstraction from the DOM, HTML and CSS, and shortly
explains differences to other popular JavaScript frameworks like Prototype
and jQuery.

A direct link to the download of the most recent version is placed on the
home page, a dedicated getting started lead is missing. However, the down-
loaded package contains a readme with a short explanation pointing to the
Downloading & Running the Sample Application tutorial on the website, and
showing the installation of the tools. The basic getting started tutorial shows
how to modify a Hello World app.

The more enhanced getting started tutorial is an incomplete series of doc-
uments titled Building the Scrapbook App. Two parts are available, there are
hints to more, but they do not exist yet. The series provides detailed instruc-
tion on the building of the layout and the setup of drag & drop, and with
completion of the second document a working image editor has been imple-
mented, but it misses out on links to in-depth information, comments about
the framework architecture, or a troubleshooting section.

Score: 63%

DHTMLX

The introductive overview is found on the home page of the DHTMLX suite.
It presents a widget list, learning resources, and the basic idea of the widget,
the data store and the server communications concept. The download can be
initiated directly from this page. A getting started guide is available under
the name DHTMLX. Start Building Web Applications Today. It is not directly
accessible from the front page and has to be found in the documentation sec-
tion. It covers the creation of a simple contact management application, but is
superficial and hard to follow. An obstacle to comprehension is the wording;
the guide was not written by a native speaker, probably by a Russian person5.

5the author has spent a year in Prague and feels confident to recognize the English of a
Slavic speaker (e.g. articles for nouns are frequently missing, since Slavic languages do not
have articles), furthermore the DHTMLX office is located in Saint Petersburg

64 10. Stage V: Evaluation

In addition the guide is concentrating on the creation of the layout, requires
the usage of the PHP version of the dhtmlxConnector for the server connec-
tion - tutorials of other frameworks use fixtures - and fails to describe patterns
or ideas behind the framework and link to more in-depth information.

Score: 35%

Dojo Toolkit

The introductive overview is found on the project home page and shortly men-
tions the MVC architecture, bindings and forms. A large part of the site is
dedicated to the detailed presentation of the data grid, the rich text editor, and
the calendar widget.

Not only is a dedicated getting started link missing but also a comprehen-
sive document. A section titled Getting started is available on the documen-
tation page but it is aimed at designers wanting to enhance their website, not
at application developers.

Dijit is the part of the library that is promoted as being important for appli-
cation development but the document Beyond Dojo’s Core: Dijit and DojoX
is not more than an explanation of what the Dojo Toolkit is capable of and
fails to present how this can be achieved or where that information can be
found.

Another document Application Controller makes quite a clear statement:
“Dojo does not express an opinion on how you should assemble applications
out of the components it provides. It has all the nuts, bolts and moving parts,
but no blueprints.”6.

Score: 18%

Ext JS

The introduction is found on the project home page and offers a short overview
of the follwing features: UI widgets, documentation, development tools, charts,
framework component model, browser compatibilty.

A dedicated getting started link or button is missing, tutorials for begin-
ners have to be looked for in the Documentation or Learn section. Download-
ing the GPL version is straightforward, the commercial evaluation version
requires an email address.

A first steps guide Getting Started with Ext JS 4.0 is available as well as a
three-part tutorial Architecting Your App in Ext JS 4. The tutorial provides a
basic understanding not only of the inner workings of the framework and the

6dojotoolkit.org/documentation/tutorials/1.7/recipes/app controller, retrieved: Aug 13
2012

10.2. Evaluation Results 65

directory structure of an application but also of the design of an implementa-
tion for a web application. It provides a real life example of a user interface
(a Pandora7 app) and walks through ideas of how this UI can be implemented.
The tutorial also touches on model, fixtures, and data store concepts. The
third part of the tutorial concludes with an outlook on the next parts, which
are missing. Customizing components or deploying is not covered here, but
mentioned in the getting started document.

Score: 83%

qooxdoo

The project home pages offers a clear overview of the four types of frame-
works and libraries, describing the target group and most important features.
The rest of the page presents the project backer, license, the general idea, and
the toolchain, enriched with links to more in-depth information. Clicking on
Desktop offers a short source code example, links to demos, getting started,
documentation and a direct download of the framework package.

The getting started link takes the aspiring developer to an extensive tu-
torial that guides the creation of a twitter client. The instructions cover all
of the basic knowledge that is needed for development, show best practices,
mockups, screenshots, code listings, and links to in-depth information. Af-
ter the tutorial the developer seems to have a solid understanding of the main
patterns and concepts behind the framework and should be able to start devel-
oping small web applications.

Score: 90%

SmartClient

The project home page offers an introductive text covering coding, testing,
data management, mobile applications, server integration, and UI widgets,
but in a superficial and unspecific way. It neither names any components
nor does it include links to more in-depth information. There are however
links to a demo page, which showcases various aspects of the widgets, to the
download section, which requires a registration, and to the quick start guide.

The quick start guide is an up-to-date PDF document, which states right at
the beginning the version for which it is intended (v8.2 November 2011). It
presents an overview of: architecture, installation, requirements, deployment,
layout system, data binding, and server communication. The quick start guide
is not a tutorial, it is divided into chapters that cover a single aspect separated
from others, it has the character of a manual.

Score: 62%

7pandora.com (last accessed: Aug 29, 2012)

66 10. Stage V: Evaluation

SproutCore

The SproutCore project home page offers a very short introductive overview;
the six mentioned points, HTML5, native experience, MVC architecture, scal-
ability, performance, theming are accompanied by one sentence.

However, SproutCore and its tool chain are easy to install with the pro-
vided package or with an already set up Ruby system. The getting started
section offers a good tutorial divided intro three parts which guides through
the development of the first application, a Todo-App. The tutorial covers the
whole process from generating an application to deploying it, describes basic
ideas of the development with the framework, points to important documen-
tation sources for in-depth information. It explicitly mentions best practices
for developing with SproutCore, the directory and file structure of the frame-
work, and main concepts behind the framework. It is up to date, since having
been rewritten for the newest SproutCore release in March 2012. This can
be conveniently derived from its revision history, which can be found on the
bottom of the pages.

Score: 82%

Conclusion

The main goal of a framework’s getting started material should be to inform
a developer so that a decision can be made if the framework is worth a more
detailed investigation. This goal is met by quite well by qooxdoo, Ext JS,
and SproutCore, closely followed by SmartClient and Cappuccino. Bindows,
DHTMLX, and Dojo lack the necessary focus and structure. DHTMLX and
Bindows seem very concentrated on their widget system leaving out the im-
portant rest.

10.2. Evaluation Results 67

(a) Bindows (b) Ext JS

(c) Cappuccino (d) DHTMLX

Figure 10.1: The top 1500px of the project home pages at a width of 1203px

68 10. Stage V: Evaluation

(a) Dojo Toolkit (b) SmartClient

(c) qooxdoo (d) SproutCore

Figure 10.2: The top 1500px of the project home pages at a width of 1203px

10.2. Evaluation Results 69

10.2.2 doc Documentation

The documentation was rated by exploring the material on the websites only.
It was tried to find as much documentation as possible, often with the help of
the Google search engine, if something could not be assessed as up-to-date,
or seemed particulary old it was not taken into account.

Category Weight: 25%

Bindows

The Bindows documentation consists of the manual, the API, and a tutorials
page.

The manual is a PDF document that has been created in 2004 and last up-
dated in 2005, some parts are still marked “TBD”8. Coverage is acceptable, the
topics are: framework architecture, directory structure, drag & drop, charting,
internationalization, and tree view. The quality is good, the text includes ideas
of the framework, pitfalls, and example source code. Outstanding is the fact
that the PDF is not searchable. It seems as if the copy text has been obfus-
cated in the background, only source code can be searched for and copied.
This, combined with the fact that neither the table of contents nor the index
has in-document links, presents a huge obstacle for efficient usage of the doc-
ument.

More information is not available, tutorials are present but they are very
short and consist mostly of example source code. The Bindows online API
reference consists of the two index pages, with alphabetical and hierarchical
sorting, and the corresponding class description pages. The offline version
is not found in the documentation but in the example folder, it has a sidebar
with those two indexes as tabs, no search box, the content view shows basic
information about the class: a short paragraph of description and a list of
properties and methods.

Source code examples are not available. Information about the new major
version (4) and an upgrade process is only a marketing page describing new
features, but release notes are publicized.

Bindows is very special in regard to the last updated date shown in the
footer of all pages of the website. The one of the front page for instance was
changed to a more recent date several times during the course of the creation
of this work, the page content however stayed the same. It may be the last
updated date for the whole website, but significant changes like new blog
posts or new menu entries have not been noticed. If last updated refers to
small changes like error corrections it is misleading to display a new date
on every page, if no changes have been made and just the date was changed
this is deceptive. Which of these two it is can not be decided without in-depth

8probably: to be delivered

70 10. Stage V: Evaluation

investigation, which will not be conducted here, nevertheless this is influences
the rating because it is unprofessional.

Score: 37%

Cappuccino

The documentation of Cappuccino is limited. Guides are only provided for
layout management, drag & drop, adding undo, and debugging. No descrip-
tions for general architecture, storage, testing. Because of the close relation to
Cocoa, which has an enormous amount of documentation and books, some of
this could be alleviated by references to parts of this documentation but this
opportunity is not used.

The API reference is provided in a standard viewer, some different sortings
for the classes and its members are available, so is an incremental search field
on the top right. A lot of classes and methods are scarcely commented.

The immature state of the documentation reflects the framework version
number below 1.0. Due to the absence of a major revision change an update
document is not necessary, description of new versions are thorough but only
findable through a general search engine9. Information about the timeliness
of the content is only available for the API referece, the website or any of the
tutorials are completely unmarked.

Score: 37%

DHTMLX

All documentation that DHTMLX offers is presented on the Documentation
page.

Documentation is available for every complex widget, for the server-side
part of the framework, storage, and some basics. The quality of the docu-
mentation is inferior. The general idea behind the framework is not explained
at all, the sections specific to widgets link to documents that link to further
documents and then provide no indication where to continue. It is difficult
to assess the coverage and quality of the coverage. Generally the documents
are very short and contain mainly source code, quite similar to the tutorials
of Bindows. The widget descriptions cover a lot of ground but are difficult to
navigate.

A complete API reference is not available, only separated according to
type of widget. Guides for upgraders are available for some parts of the frame-
works, comprehensive release notes are not provided. Information about the
timeliness of the content is not provided.

Score: 28%
9tested with Google

10.2. Evaluation Results 71

Dojo Toolkit

The Dojo Toolkit documentation includes the reference guide - a kind of man-
ual - the API reference, and a long list of tutorials.

The table of contents of the reference guide is divided into six sections:
quickstart, dojo, dijit, dojox, utilities, and miscellaneous. These six sections
have no further subsections and contain approximately 1000 entries on one
HTML page. This qualifies as a listing but not as a guide. The reference
guide has a second view for its content, the startpage. It links to overviews
for dojo, dijit, dojox, util, release, and developer notes. These overviews offer
a second layer of headers with occasional short explaining paragraphs, but
they too have the character of a listing. Opening a link from an overview
presents a content page with links to previous and next topics that are com-
pletely different from the ones presented in the overview listing. The content
pages are of varying type and quality, some are short guides, some are like an
API reference, some contain code examples. It seems that a lot of ground is
covered but it is difficult to find what one is looking for.

The tutorials page is quite similar, in that it shows a large amount of tuto-
rials, but has almost no content structure. Most of the tutorials seem to be tar-
geted at web designers who want to enhance a website with some JavaScript.
Documentation targeted at application developers can not be distinguished.

The API reference itself has a left sidebar with a tree view but lacks a
search field. It features some icons that show whether elements in the tree
are objects, classes, or functions, in the method list of the content view every
entry is accompanied by a function icon, and a property has an icon describ-
ing its type instead of a proper type declaration. The explaining purpose of
the icons would be better served with a consistant naming convention (e.g.
_BidiSupport, _Calendar, and _Contained are a function, an object, and a
class repectively).

Examples can not be found. Extensive and commented release notes for
every major version are provided, information about last updates to the docu-
mentation not.

The Dojo Toolkit documentation has to be classified as unstructured and
inhomogenious.

Score: 29%

Ext JS

The Ext JS documentation is divided into a Learn and a Documentation sec-
tion. The latter is an application of a typical API reference viewer style, but
the sidebar offers tabs for the API, guides, videos, and the extensive exam-
ple suite. This makes the page the dedicated place for nearly all available
documentation, since the Learn page lists some of the guides and only some

72 10. Stage V: Evaluation

additional FAQs. It also includes an incremental search box that is placed at
the top right and searches through the content of all tabs.

The guides cover all major topics: upgrading, class system, MVC archi-
tecture, layout management, storage, drag & drop, testing, and some compo-
nents. The quality is good, they contain useful copy text, source code exam-
ples and links to the API.

The API is represented by a tree in the sidebar that can be sorted by pack-
age or by inheritance. The content view shows an overview bar at the top
with the number of configs, properties, methods, events, and CSS mixins of
the displayed class. Hovering over an entry reveals the complete list, a click
scrolls the page to the desired position. The bar has a text field that allows in-
cremental filtering of all class members and a drop down menu that allows to
select the display of public, protected, private, inherited, accessor, deprecated,
and removed class members. This viewer provides the most straightforward
and useful experience of all candidates.

Moreover, the documentation includes an extensive collection of exam-
ples with their source code showcasing basic and advanced capabilities of the
framework, mostly related to widgets. Included as well is a detailed update
guide to from version 3 to version 4 and extensive release notes, the guides
contain not only the latest improvement date but also the name of the author.

Score: 84%

qooxdoo

The qooxdoo documentation page provides four fields with the follwing head-
ers: In a Nutshell, Manual, API, and More.

The manual provides a overview page with clearly separated entries for
the different editions of the framework. The coverage is very good; the topics
are: detailed introduction to the framework, class system, data binding, wid-
gets, layout management, theming, client-server communication, debugging,
performance, testing, developer tools. The topics are split up into separate
pages but a navigation system which allows the continuous consumation of
the content is present. The quality of the manual is good, it contains useful
copy text, example source, links to other parts of the manual und the API.

The API reference viewer features a left-hand sidebar with a tree view
and a content view. Within the tree icons help distinguish between pack-
ages, classes, static classes, and mixins. The viewer also provides incremental
search with optional filters for types of searched components (package, class,
property, etc.). It provides the possibility to change the visibility of regular,
inherited, protected, private and internal properties and methods, quite similar
to the reference viewer of Ext JS, although with a little bit less functionality.

Examples with source code are provided in the demos section, some of
them are summarized in a separate list and enriched with a short explanation

10.2. Evaluation Results 73

and links to releated documentation. The demo browser features an exten-
sive collection of use cases with commented source code. qooxdoo provides
a detailed overview of changes for every new version and a short but straight-
forward migration section for major revision upgrades. The project site shows
last update time and person for every page, but not for the manual.

Score: 84%

SmartClient

The SmartClient documentation consists of the PDF quick start guide, the
reference viewer, and the example set. The quick start guide includes the top-
ics: overview (architecture, capabilitites), installation, coding, layout man-
agement, data bindings, client-server communication. It is - according to the
declaration on the front page - up-to-date and features good copy, code exam-
ples, links to APIs, and in-document references, but they are too short.

The reference viewer has a left-hand sidebar with a tree view and a non-
incremental search box. The viewer is a SmartClient application that does
not use the native scrolling behaviour of the web browser for overflowing div

tags, but a self implemented version. This leads to problems with performance
and scrolling sensitivity. It contains additional guides and the API reference.
The guides cover: architecture, debugging, internationalization, are short but
informative, similar to the quick start manual.

The API viewer itself is slightly more complicated than in other frame-
works: the content view has two tabs Overview and Instance APIs which re-
quires an extra mouse movement and mouse click to get to the information
about class members. The tree is sorted according to concepts (e.g. Grids,
System, Drawing). An alphabetical or hierarchical sorting is not possible.

The example suite is extensive, covers a lot of UI aspects and provides
source code for all simple examples. Release notes are provided for every
major version, the quickstart guide shows it last improvement date, but infor-
mation about editor or creation date of the guides is not provided.

Score: 56%

SproutCore

The SproutCore documentation consists of an index page for the guides and
the API reference viewer.

The guides cover: class system, bindings, view system, store, theming,
testing, build tools. The quality is very good, they are extensive, refer to the
same app, include notes and pitfalls, the copy is helpful, the example code also
includes the name of the file it should go into, and a changelog is included at
the bottom of the page, so the up-to-dateness can be easily ascertained.

74 10. Stage V: Evaluation

The API viewer is basic. The left-hand sidebar has an incremental search
field, but only a flat alphabetical listing of all classes. The content view is a
standard page, additional comments on classes are present.

The page also features a showcase section where all widgets are presented
and the relevant source code can be seen. In addition to the changelog for the
guides, the repository contains a detailed changelog for all releases.

Score: 73%

Conclusion

Theoretical background and reality correlate quite well in the area of docu-
mentation. The standard repertoire of documentation comprises: a dedicated
page, an API reference, and guides for central framework concepts with ex-
planatory text including code listings and links to more information.

The usual way of presenting an API reference is a dedicated viewer with
a side bar on the left containing the class tree as well as a search-as-you-type
field and a main content field showing details about the currently selected
class or method. Bindows is the only framework that does not provide an on-
line API viewer just an offline version, DHTMLX does not provide a coherent
API reference at all. qooxdoo and Ext JS on the other hand offer an advanced
viewer that allows the alteration of visibility of various class member types.

The presentation form of guides is more differentiated: Bindows, and
qooxdoo provide a manual; Ext JS, Cappuccino, and SproutCore collect links
to guides on a list; SmartClient has both; Dojo and DHTMLX have no dedi-
cated place. The quality of the guides themselves is equally diverse. Sprout-
Core can serve as a role model in this regard, the guides are well written, easy
to follow, enriched with small notes and caveats, and they all refer to the same
application, which helps in organizing the mental model.

Extensive example suites are uncommon, despite their significant contri-
bution to a beginner’s learning experience. Only Ext JS, SmartClient, and
qooxdoo offer a relevant collection for quick reference. This may be an area
that is underestimated in its significance.

10.2.3 com Community and Presentation

The criteria evaluated in this category are very time dependent so to ensure
comparability, care is taken that every criterion is evaluated for all frame-
works at once. All results were retrieved around July 27, 2012. Most of the
results will not be reproducible though, since they are dependent on complex
algorithms and crawling bots, and rely on changing data sets.

The scores for searches on Amazon are defined as follows: no results
(0%), mentioned in a single book (25%), mentioned in several books (50%),
availability of dedicated books (100%). Matches on Heise are classified in a

10.2. Evaluation Results 75

similar manner: no results (0%), mentioned in a news items or articles (25%),
dedicated articles are available (100%).

The forum activity is judged by looking at the frequency of postings within
the last week and month, the scores are: several posts per day (100%), several
posts per week (75%), several posts per month (50%), not much more than
one post per month (25%).

Where search terms are likely or noticeable triggering lots of false pos-
itives, care is taken that these are filtered out e.g. with the addition of the
boolean search term AND(jsORjavascriptORlibraryORframework) or, if
the number of results is very low, by manual selection. Terms affected by
their meaning in common language are: cappuccino10 and dojo11. For other
reasons problematic terms were again Dojo, the name of the foundation be-
hind the Dojo Toolkit and home to other projects; Ext JS, which is often
written ExtJS and since June 2010 closely associated with its then formed
parent company Sencha; and SmartClient, which is a technology term in use
for products by Microsoft and other companies.

On Stack Overflow the feature to tag every post is used consistently by
the community, so this mechanism was employed. Therefore the number of
hits does not represent matching results but posts marked with the tag corre-
sponding to the framework.

The number of blog posts is measured in number of blog posts between
Jul 01, 2011 and Jul 26, 2012, so is the number of tweets.

Activity and maturity are a requirement for every candidate that is still
under investigation they are not further rated.

Category Weight: 25%

Bindows

Bindows has a very small community. A search on Amazon reveals only
one book where Bindows is mentioned, on Stack Overflow Bindows does not
even have a tag of its own; Heise shows no match. This is also reflected on
the forum, which is not well frequented. Communication from the supplier
towards the community is lacking as well.

Real life apps are presented in the Screenshots section of the Bindows
website. It contains some screenshots of Bindows applications acommpanied
by a company logo. Explanations are missing here but some are given on
another page Case Studies, the information there however is limited to mar-
keting language. The applications mentioned on the Screenshots page can not
be accessed and it is unclear if they are still in existence.

Score: 11%
10a type of coffee drink
11a Japanese term related to martial arts

76 10. Stage V: Evaluation

Hacker News Stack Overflow Quora Google Blog Posts Tweets
1 0 0 118k 4 n/a

Table 10.9: Search hits and posts for Bindows

Cappuccino

The Cappuccino web framework is quite popular, still, it has no dedicated
books, but is only mentioned in some books12. It has good scores at Hacker
News, where it has the second most mentions. The communication from de-
velopers towards the community is limited. Tweets are quite frequent but not
a lot of entries to the blog have been posted.

Cappuccino uses a Google group for discussion. The activity there is
average.

The website features a list of real life applications on the Demos page.
Among them Mockingbird is a capable application for creating user interface
mockups, another example is a commercial time tracking tool. These appli-
cations give a real sense of the capabilities of the framework.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
718 117 1250 5.800k 7 45

Table 10.10: Search hits and posts for Cappuccino

Score: 48%

DHTMLX

DHTMLX is not very popular either. It is mentioned in one book on Ama-
zon and few hits on Hacker News or other sources, but it has tag of its own
on Stack Overflow. The communication from the DHTMLX company to its
community is good, the team posted frequently to twitter and to the blog.

DHTMLX does not show real life examples, it hosts a long list of cus-
tomers without testimonials or explanation of how or why they are using the
product. It is not possible to validate the list.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
5 56 67 873k 19 50

Table 10.11: Search hits and posts for DHTMLX

Score: 39%

12search terms: “cappuccino javascript”, “cappuccino web framework”

10.2. Evaluation Results 77

Dojo Toolkit

The Dojo Toolkit has an impressive community, but it is diverse. Due to its
nature as a highly modular project not only application programmers but a lot
of web designer are interested in Dojo.

An objective search on Amazon is quite difficult, searching for “Dojo”
brings up many books about martial arts, so the term “Dojo Toolkit” was
used. This leads to close to 100 results, including dedicated books.

In all other areas of the Internet criteria and also in regard to forum activity
Dojo is leading the field. The team behind Dojo is actively communicating
the progress to the community, Twitter is the main channel, but also blog posts
have been frequent.

The Dojo project site does not provide any information about real life
applications apart from an uncommented list of nine companies titled creating
apps with Dojo.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
844 3396 2730 48.700k 21 287

Table 10.12: Search hits and posts for Dojo Toolkit

Score: 85%

Ext JS

The popularity of Ext JS is comparable to Dojo’s. Dedicated books are avail-
able, some directly targeted at web application development with version 4;
on Heise only some news articles can be found. Ext JS has a massively used
Twitter stream, but this account is a Sencha account and hence used for com-
munication for all of its products, it has therefore not been rated. The blog is
similarly mixed, but it was possible to filter the posts unrelated to Ext JS. The
web site has its own forum which is frequently used.

Links to real life applications are not provided but the site offers a spotlight
section in its blog. In there, companies that use Ext JS explain why and for
what application they are or were using it. It provides tips for new developers
and in the comments section questions can be asked and are answered by the
developers in the spotlight. This helps to get a sense for the area of application
of the framework.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
90 6073 2000 33.500k 28 n/a

Table 10.13: Search hits and posts for Ext JS

Score: 74%

78 10. Stage V: Evaluation

qooxdoo

Amazon reveals that qooxdoo is mentioned in some books about JavaScript
and it has a dedicated book in existence. It is also regularly mentioned on
Heise and articles cover different aspects of the framework. Its popularity on
other platforms is average, but activity on the mailinglist is very good. The
developer team is outstanding in its communication towards the community.
The blog features a weekly update and regular explanative posts, this consis-
tency is unique among all candidates. Twitter has been used quite frequently
too.

qooxdoo offers quite a long list of real life applications in the section
Community/Real-life Examples. Nevertheless, out of the ten top-listed appli-
cations only one is accessible, the others link to pages in Ukrainian or French
or do not exist any longer, or maybe both13. The accessible application loads
and is functional, it features data display in a tree and a table view.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
53 146 55 357k 83 51

Table 10.14: Search hits and posts for qooxdoo

Score: 67%

SmartClient

SmartClient seems not to be mentioned in any book. The search for “Smart-
Client” yields some results, but they are connected to the Microsoft software
component. The popularity in general is quite low, no mentions on Heise,
few on other platforms. The site’s own forum is very well frequented, lots of
traffic stems from the team itself who is quite quick on answering questions
from its customers. Communication from the company towards its customers
on public channels is below average, a twitter account can not be found.

Isomorphic Software has collected information about real life usage of its
products on the Our Customers page, which is quite superficial. The long list
of corporation names is similar to the DHTMLX listing, the spotlight section
below gives some more details, names of the companies and the products
using the framework are listed with a short summary or a customer quote,
still not very concrete information.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
7 80 36 137k 15 n/a

Table 10.15: Search hits and posts for SmartClient

Score: 23%
13The author does not speak any of those languages, so determination is not possible

10.2. Evaluation Results 79

SproutCore

Searching for SproutCore reveals some books but searching inside them does
not yield any matches, only one is clearly speaking of the framework. There
are only some mentions on Heise, but SproutCore is very popular according
to the other sources; activity on the Google group is average. The commu-
nication from the core team towards the community is good too, especially
tweets are very frequent.

SproutCore has a small selection of working real life examples right on
the front page. It is not commented, some take the user to the apps right
away, some require a login, some are not reproducibly made with SproutCore.
From the presented applications GestiXi, a kind of online shop management
software in French, Hubbub, a social neighbourhood lending service, and In-
sightify, a survey creation tool, show the flexibility and capabilities of the
framework with trees, charts, table views, menus, maps, and custom UI wid-
gets.

Hacker News Stack Overflow Quora Google Blog Posts Tweets
667 195 195 513k 33 156

Table 10.16: Search hits and posts for SproutCore

Score: 55%

Conclusion

Despite the objectivity problems the criteria seem to give a good sense of the
community behind a project. The impression is that the commercial frame-
works Bindows, DHTMLX, and SmartClient have not managed to build up
a significant community, despite their age, that the relatively young projects
Cappuccino and SproutCore have already aroused a lot of interest, and that
especially Dojo is extremely popular; Ext JS and qooxdoo are closing up.

Some books that come up on Amazon are simple collections of Wikipedia
articles, available as a print on demand, these are misleading and are sorted
out. In general books are uncommon for the investigated kind of web appli-
cation frameworks, maybe the criterion should be rethought. Heise does not
seem very concerned with this type of software too, this can be another point
of improvement for the model. Another metric that could be useful is the num-
ber of followers on Twitter. As side note to Quora, which could not be asked
directly but is queried via the google search term addition site:quora.com.

The source for the number of twitter posts is the service at tweetstats.
com. It offers a graphical overview for the number of tweets for every month
the account has been active. These numbers are added up. If a Twitter account
is not findable, this criterion is not rated.

80 10. Stage V: Evaluation

Real life applications proved hard to assess. Many projects link to applica-
tions that could not be accessed directly. In the best case they required a free
registration, this is done for a maximum of two applications; in other cases
the web page is in a language other than English or German, and screen-
shots were not provided or inconclusive, so it is not possible to determine
if the related company is really using the framework. Often a developer is
cited confirming a positive experience with the framework, but this may re-
fer to a pilot project or a prototype that has never been published. Therefore
only usable and accessible applications were rated positively; outdated links
and unaccessabile applications lead to a slightly negative score, as a sign of
sloppy maintenance on the side of the project site responsibles. Short cus-
tomer quotes were ignored, due to not being reproducible, extensive customer
spotlights with reproducible real life background were conceded a positive
influence.

10.2.4 fea Features

JavaScript provides a very flexible environment, so it is quite likely to be able
to find an expert who – provided with an advanced knowledge of working with
the framework – knows how a feature can be included. However, this thesis
is mainly concerned with the experience a beginner is offered. Therefore the
assessment concentrates on the availability of documentation for a feature, it
needs to be either explained in a guide or the API reference, or at the minimum
in a blog post on the project site or from a person that is a contributor to the
project. The quality of a feature can not be evaluated one the surface, this can
only be accomplished by implementing a custom application.

Providing a layout manager and abstraction from HTML, CSS and the
DOM is a requirement for all the candidates that remained in the evaluation
process to the current stage, it is not rated again.

Category Weight: 20%

Bindows

Bindows does not seem to have a data store. Some model classes are described
in the manual, but they are tied to widget types, a general description is not
available. The assumption is supported by the confirmed lack of bindings, in
an official blog post they are announced for version 4.514.

Drag & drop as well as internationalization (i18n) are described in the
manual; description of keyboard shortcuts, theming, and the configuration of
the context menu can be found in how-tos or blog posts, tool tips in the API
reference. Form validation is only provided on a very basic level, the API

14MB Technologies : Bindows 4.5 beta; mb.bindows.net/news/Bindows45beta.html; re-
trieved 2012-09-01

10.2. Evaluation Results 81

reference of some widgets mentions a property that can be assigned a regular
expression validator. Support for an offline mode, server push, and browser
history management is unclear.

Score: 50%

Cappuccino

Support for a data store in Cappuccino could not be confirmed. As of 0.9
Cappuccino supports bindings, this is stated in a blog post. Detailed doc-
umentation is not provided. Drag & drop received a thorough guide in the
getting started document, theming and tool tips are mentioned in a blog post,
support for all other features is unclear.

Score: 33%

DHTMLX

DHTMLX features a data store, however the documentation is very short and
only explains basic usage, background information is not available. The same
is true for bindings: standard use cases are covered, but information on con-
cepts or technical details are left out.

In DHTMLX most features that can be deployed per widget are provided,
others that need application wide support are not. Input validation is found
in forms, for offline usage a proxy class is provided and server push is sup-
ported as well. Drag & drop and i18n however are only provided within a
widget, there is no documentation for an application wide handling. Theming
is limited, three themes are built-in and their color can be changed. Support
for tool tips, keyboard shortcuts and browser history management is unclear.
The context menu is available as a separate widget.

Score: 45%

Dojo Toolkit

The Dojo Toolkit has a data store, its documentation however is spread over
several documents - two of them can be found on the tutorials page Dojo
Object Store, Data Modeling for MVC Applications others in the reference
guide or the API reference - they also mention bindings and validation. Drag
& drop is extensively described in a blog post of the contributing company
Sitepen. I18n, theming, and tool tips are a part of the reference guide. Dojo
is delivered with four built-in themes. Support for context menus, keyboard
shortcuts, and server push is unclear. Documentation for offline capability
is present but marked outdated, browser history management was added in
1.815.

15released after the cutoff date

82 10. Stage V: Evaluation

Score: 60%

Ext JS

Ext JS has a data store since version 3.0, it is explained in a separate guide,
so are drag & drop, theming, and keyboard shortcuts, validation is a part
of the model description. Bindings, the context menu, and browser history
management have a short API reference, tool tips a detailed one. Solutions for
offline application handling are described in a video. Support for server push
is unclear.

Score: 78%

qooxdoo

Guides for bindings and the data store are placed in the documentation for the
Core framework, offline storage is described in there as well. Further guides
are available for drag & drop, i18n, theming - the framework has four built-
in themes - input validation, and keyboard shortcuts. Tool tips and browser
history management are documented in the API, the guide for the history func-
tionality is marked outdated. Support for server push is unclear.

Score: 90%

SmartClient

The data store in SmartClient is implemented in DataSources, they are ex-
plained in the quick start guide together with bindings. Other guides are avail-
able for i18n and theming. The API reference is the place for short informa-
tion about context menus, the offline mode, and history management. Barely
adequate information is provided for drag & drop, where only source code
examples can be found, and for validation, which is occassionaly mentioned
in the quick start guide and the API reference. Server push is mentioned but it
only works with Java servers. Support for tool tips is unclear.

Score: 76%

SproutCore

SproutCore has an advanced data store and it is documented in detail in the
guide Records, together with bindings. Drag & drop, input validation, key-
board shortcuts, and browser history management have a detailed API refer-
ence with explaining text. History is handled by SC.routes its reference is
a little bit less detailed. Theming is discussed in a dedicated guide, i18n in a
blog post titled Localization on the SproutCore blog, tool tips have a blog post
as well. Support for context menus, offline usage, and server push is unclear,

10.2. Evaluation Results 83

general articles can be found that confirm an offline mode but documentation
is missing.

Score: 78%

Conclusion

Despite the clear-cut nature of the criteria it was quite difficult to ascertain
the features’ availability. The structured documentation of many frameworks
is missing key information and therefore various other places of the project
website have to be consulted. Key functionality is not available in all frame-
works.

10.2.5 uif User Interface

The rating in this category is concerned with elements that are an integral
part of the framework. Plug-ins and other user contribution are not taken into
account.

Category Weight: 10%

Bindows

Bindows presents all of its widgets in a showcase app. The provides coverage
is very good, all essential elements are present, a speciality of Bindows is a
highly promoted gauges library. Missing widgets are the map view and the
rich text editor.

Score: 80%

Cappuccino

The Cappuccino project site neither lists all widgets nor does it provide a
showcase application. Judging from an examination of the real life apps and
the API reference the list of unavailable elements includes: rich text editor,
charts, calendars, and maps.

Score: 60%

DHTMLX

As DHTMLX started out as a widget library its coverage of widget types is
very good, still a map view is missing.

Score: 90%

84 10. Stage V: Evaluation

Dojo Toolkit

The widget collection of the Dojo Toolkit is extensive, everything is covered
except for a map view.

Score: 90%

Ext JS

The Ext JS widget collection is complete. For almost all widgets source code
examples can be found in the examples collection.

Score: 90%

qooxdoo

The demo page has a link to a widget browser, that showcases the qooxdoo
widget collection. Not available are charts and maps.

Score: 80%

SmartClient Ajax Platform

The feature explorer on the SmartClient project site is extensive and provides
examples for all widget types, except for a map view.

Score: 90%

SproutCore

The link to the widget showcase is very prominently placed in the top bar of
the project site. Widget types that are missing: text editor, chart, date picker,
and maps.

Score: 60%

Conclusion

The user interface category does not show a lot of diversification between
candidates. Coverage of the standard widgets is given for all frameworks.

Although some of the more advanced widget types are not provided by a
framework directly, a blog or forum entry discussing their disposal with the
help of an external library can easily be found. To account for this the weights
do no grant them a significant influence on the total result.

10.2.6 dev Development Setting

Category Weight: 10%

10.2. Evaluation Results 85

Bindows

Support for deployment or code generation is not mentioned at all. Built-
in support for testing is unclear. One document describes testing with an
external tool, but this document has been last updated in 2004. Bindows can
communicate with a server via XML or JSON. Of all evaluated frameworks
Bindows is the only one with no open-source license. It is stated that free
licenses are available under the requirement to get in contact with the sales
team.

Score: 14%

Cappuccino

Cappuccino’s support for code generation or testing is unclear. Deployment
tools are provided in the form of scripts to be run with the Rhino engine, they
offer command line help and an online documentation in a blog post on the
Cappuccino blog.

It is unclear what protocols are supported. The license is LGPL, which
allows free commercial development.

Score: 45%

DHTMLX

It is unclear if DHTMLX provides any development tools, nothing is men-
tioned on the site. The server communication protocols include CSV in addi-
tion to the standards JSON and XML. DHTMLX is offered with a free license
and commercial licenses. The commercial licenses have “some additional fea-
tures”, which remain unspecified, the free license is the GPLv2 which requires
developed applications to be open-source.

Score: 28%

Dojo Toolkit

The Dojo Toolkit is fairly good equipped with developer support. A separate
guide and suite of JavaScript scripts for testing and the build system, not for
code generation; they run on Node.js or Rhino.

Communication with the server is supported via JSON and XML and the
Dojo Toolkit can also be used in commercial closed-source projects.

Score: 89%

86 10. Stage V: Evaluation

Ext JS

Ext JS provides no code generation, but testing is discussed in a dedicated
guide. For deployment Sencha offers the JSBuilder a build tool written in
Java, server communication is supported for JSON and XML.

Ext JS started out as a free commercially usable library but this is no more,
open source applications under GPLv3 are still supported and encouraged, but
for commercial usage a license needs to be purchased.

Score: 76%

qooxdoo

The qooxdoo SDK is a collection of Python scripts. They support application
creation, developments builds – in case new files have been created – testing,
and deployment.

Communication is supported via JSON and a JSON-RPC protocol that re-
quires a specific backend preparation, which is described for popular back-
ends like Rails, Java, Perl, Python, and PHP. qooxdoo allows free commercial
development by selecting one of two licenses: LGPL or Eclipse Public Li-
cense.

Score: 89%

SmartClient

No support for code generation, the documentation is specific about testing
and deployment though: a short notice recommends an external testing tool,
deployment should be done by manually copying the development folder to
the production server. These advices do not qualify as developer tools.

Server and client can communicate via XML or JSON. The SmartClient
is licensed commercially or under LGPL, but the quick start guide concludes
with an encouragement to purchase a license; open source development does
not seem to be welcome.

Score: 34%

SproutCore

SproutCore is the only framework that provides a scaffold16 generator. It also
has support for testing and deployment. Server communciation is restricted
to JSON. SproutCore is free for commercial use.

Score: 93%
16Scaffolding refers to the creation of implementation and test files for a class and filling

them with generic code. It is very prominent in Ruby on Rails.

10.3. Results Summary 87

Conclusion

The importance of support for proper developer tools seems to be quite low
for many framework suppliers. Altough all frameworks offer some kind of
free version, the only commercial candidate that really seems to embrace its
open source option is Ext JS. The companies behind Bindows, DHTMLX, and
SmartClient promote the free variant as possibility to evaluate, but it does not
seems as if they were really keen on seeing a lot of applications implemented
that way.

10.3 Results Summary

Following the idea of the decision process as explained in 4.3, the evaluation
is a part of the decision process and delivers a suggestion. Therefore the
result is not presented as a ranking with crisp numbers, but as a classification
of the candidates into the three categories: recommended, unsure, and not
recommended. The total scores can be obtained from table 10.17, all ratings
are detailed in appendix B.

Classification Candidate Score
+ qooxdoo 82%
+ Ext JS 80%
+ SproutCore 71%
o Dojo Toolkit 60%
o SmartClient 53%
o Cappuccino 45%
- DHTMLX 41%
- Bindows 35%

Table 10.17: Total scores and classification of evaluation candidates

10.3.1 Recommended: Ext JS, qooxdoo, SproutCore

Although qooxdoo received the most points, Ext JS feels slightly more pro-
fessional and mature, probably thanks to the effort of its vibrant community.
Still, both seem to be equally well suited for the development of single-page
web applications. qooxdoo’s strength lies in its coherent architecture, the
straightforward getting started experience, and the open and dedicated devel-
opment team; Ext JS offers an impressive documentation viewer, an extensive
example suite, and it has a company in its background that relies on the func-
tionality of the framework and therefore secures future investments.

SproutCore with its explicit domain of single-page applications can be
recommended as a good choice too. Although it lacks some advanced UI

88 10. Stage V: Evaluation

widgets and features, it seems to be built on a solid foundation and the fact
that a major company like Apple relies on it for their consumer web applica-
tions is reassuring. Despite its young age it has a strong community, and the
documentation is well maintained and focused on the desktop-like aspect.

Common to all three candidates is the embrace of innovation and the feel-
ing that they are not trying to copy the desktop-experience but adapt it to the
web.

10.3.2 Unsure: Dojo Toolkit, SmartClient, Cappuccino

The Dojo Toolkit has an incredibly large community and is mentioned arti-
cles, books, and all over the Internet. The functionality it provides is impres-
sive as well, but it is by its nature more a library than a framework. The high
modularization may provide benefits for computational resource demand and
loading time, but it makes it difficult to present a consistent structure. This
has repercussions in the software architecture and in the documentation. For
single-page web applications the Dojo Toolkit might not be the best choice.

Almost in contrast the SmartClient Ajax Platform offers solid and struc-
tured functionality and documentation, but lacks a significant community. It
seems to be mainly targeted at projects that are willing to use the SmartClient
Server, documentation for other back-ends is scarce, teams in large corpora-
tions who have the duty of implementing a platform-independent version of
a native software, as screenshots and documentation suggest. Innovative or
customized user interface concepts or catering to the open-source software
community does not seem to be in the interest of Isomorphic Software.

Despite its relatively low score Cappuccino is not seen as a framework
that should be not recommended. Although the evaluation results list sev-
eral features and UI widgets as not available, most of them are present in the
framework, this is proved by the real life applications. However, Cappuccino
has to mature and strongly improve its documentation. It is founded on the
proven architecture of the Cocoa framework, but it is not certain that this ar-
chitecture is also a good choice for web applications. In addition, towards
the end of the evaluation it has been discovered that the Wiki of the Github
repository hosts a huge amount of information. An earlier discovery would
not have altered the result, since it is clearly stated that the project site is seen
as the central hub, and links from the project site to the Wiki do not exist
in this case, nonetheless it shows that Cappuccino has a potential underneath
that may lead to strong improvements in the near future.

10.3.3 Not Recommended: Bindows, DHTMLX

In regard to architecture and structure of documentation DHTMLX is quite
similar to the Dojo Toolkit. However, it has no community to compensate for

10.3. Results Summary 89

this predicament. Its character of a widget library and the lack of an overall
cohesion of the components make it inappropriate for the development of
single-page web applications.

Bindows may be technologically advanced as touted on the project site or
not, the presentation by MB Technologies and the information that Bindows is
surrounded with severly lacks quality, shown by the confusing getting started
experience, lack of proper documentation, and the non-existing community.
The fact that Bindows is proud of its replication of the look and feel of an
outdated operating system speaks for itself in regard to attitude towards inno-
vation and progress. Bindows can not be recommended for single-page web
application development.

90 10. Stage V: Evaluation

Chapter 11

Validation

11.1 Description of the Validation Process

To validate evaluation model with criteria and weights that led to the results
reported in chapter 10, a small web application with the character of a proto-
type has been implemented.

The implementation process itself can serve as a validation because it
touches several categories of the model: getting started for the obvious rea-
son of starting development, look-ups in the documentation to get an under-
standing of the needed facts, searches for answers in the community to get
information not present in the documentation, and development setting for
the implementation process itself. For the prototype itself the feature and user
interface category were most important, although not all criteria were covered.

11.2 Prototype Design

As an example application that serves at least some useful purpose while still
being quite minimal in regard to its feature set and implementation cost a
program to compare ratios was conceived.

It shows a list with named ratios (e.g. the golden ratio or the ratio of a
modern TV screen) in a sidebar on the left and the visualization in the form of
colored, semi-opaque rectangles on the right side. The tool does not compare
sizes, only ratios, this means that the ratios 1:2 and 2:4 are represented by
rectangles of the same size.

Additional features are: expanding the list with new ratios through an en-
try form, changing the visibility of ratios in the list, zooming of the rectangle
view. A UI mockup is shown in figure 11.1. The distinction between the wid-
gets can easily be seen; the main parts of the interface are: the list, the form,
and a custom visualization widget.

91

92 11. Validation

Figure 11.1: Mockup of the arrangement of the user interface ele-
ments for the ratios application

Deducting from the visual components the architecture is quite simple: in
addition to the widgets a model is needed, the visual representations are then
connected to the model via bindings, the form does not need a binding. The
controllers responsible for hooking up models and views are not represented
in the architecture (figure 11.2).

Figure 11.2: Coarse grained architecture for the ratios application

Within the model a single class is needed Ratio a list of its members is
shown in table 11.1.

11.3 Framework Selection

The described design is based on the MVC pattern and it should be possible
to implement it in any of the frameworks. If this were a real life situation in
the current stage the best performing candidates would be selected and their

11.4. Prototype Implementation 93

Table 11.1: Ratios has a single model class

aptitude tested by prototyping or pilot testing 4.3. As described in chapter 5,
this work, however, needs only one selected candidate to validate the model.
From the recommended frameworks qooxdoo is selected. Generally being
equal to Ext JS, its more permissive license scheme seem more attractive.

11.4 Prototype Implementation

11.4.1 Getting started

To get started with the development process the easiest way was chosen:
clicking getting started on the project web site. This presents the extensive
getting started tutorial and a link to the hello world tutorial which presents a
quick overview for all necessary steps ranging from app creation to deploy-
ment. It is very informative and helps to get a sense for the whole process.
Explanation of the development tools, logging and debugging, helps to get a
sense for the workflow for finding errors later on in the implementation pro-
cess.

The app created in the hello world tutorial is just a template app and can
also serve for the start of the getting started tutorial. The mockup of the
app to be created in the tutorial (figure 11.3) shares important aspects with
the mockup of the prototype app: it too contains a list, an input area and an
add button. So it was decided to name the app “ratios” and not “twitter” as
suggested, because it could be expected that the getting started app could be
iteratively transformed into the prototype.

The first objectives were adding a window, assigning a layout to it, and fill-
ing it with widgets. These instructions were consequently accompanied with
links that referenced detailed information in the API or the manual. When
following the links and skimming over the provided information, a solid un-
derstanding of the layout system and the basic properties of the used widgets
can already be built up at this early stage. In addition, while accessing the
documentation regularly a new developer automatically gets a feeling for the
documentation structure and where to find which information.

The tutorial continued by adding behaviour to the UI. The event system is

94 11. Validation

Figure 11.3: The mockup of the qooxdoo getting started example
shares some properties with the mockup of the prototype
(Source: qooxdoo website, getting started tutorial)

explained and this new knowledge directly brought to use by implementing
the toggling of the enabled state of the button “post” depending on content in
the text area.

In its third part the tutorial adds communication with the Twitter service.
Again the developer is guided with links to more information about proper-
ties of objects, the binding system, and models in qooxdoo. Lastly the class
responsible for communication and the list are connected via bindings.

After two and a half hours of learning time, significant knowledge has
been built up and the application already communicates with a third-party
service (see figure 11.4).

Conclusion: the experience shows that the getting started experience
has not been underestimated in the evaluation model, it may be even ranked
higher. The constant linking to more in-depth information leads to a good un-
derstanding not only of the linked information itself, but also of the structure
of the documentation, which is the most important factor.

11.4.2 Transforming the getting started app

There is no interest in posting something to Twitter with the prototype – which
would concede the next part of the tutorial – so it is decided to start moving
the implementation in the direction of the ratios design.

At this stage first problems arise, because the model was not as good doc-
umented as initially thought. In fact the whole data store concept is not as
evolved as it seemed during the evaluation: the central point is that qooxdoo
does not explicitly require the creation of model classes. Instead they are cre-
ated during run-time from a prototype object. This might be comfortable but
it is very different from concepts in other frameworks where every complex

11.4. Prototype Implementation 95

Figure 11.4: The getting started application after two and a half hours.

class needs explicit definition. Altough this does not present a current prob-
lem, it may lead to complications later on, when some advanced functionality
of a model class is desired. To continue the store was rewritten as a service
that transforms a prototype object into a model class that is then presented in
the list. The sole member of the model class at this time is name.

With the help of the event system and the knowledge gained about layouts
the UI is transformed to be able to alter the list by adding and removing names.

The next step was to add the visualization window and connect it to the
model. The experience here is in line with the experience above, as prob-
lems with the binding system came up. Although there are suggestions in the
documentation on how to find errors if bindings do not work as they should,
it seems as if such a basic setup as the current (array is an object property
binded to an external array, the object is listening to changes in this array)
should have a guidance of some kind.

As mentioned in the evaluation model description bindings are a central
concept of the MVC architecture for web applications and so they should be
documented in more detail. Some examples that use bindings can be found
in the example collection but they are not labeled specifically as binding ex-
amples but serve as examples for other concepts or widgets. Searching on the
forum did not yield any results either.

The problem has been solved by listening for changes to the object prop-
erty itself and then setting up the listenting for changes within the property.

96 11. Validation

The state of the application at the end of this stage is depicted in figures
11.5 and 11.6.

Figure 11.5: The application can alter the list and bindings with the
vizualization widget work

Conclusion: As the application and implementation aspects move away
from the getting started tutorial the first problems occur due to missing doc-
umentation. It seems that the assessment of it should be refined, the lack of
results for this question in the community may signify that this category was
also rated incorrectly. Another possibility, due to the simple nature of the
problem, is that is simply stemmed from a personal misunderstanding.

On the other hand, the creation of the customized widget was easy and
smooth, because of the documentation provided and because of good example
cases. For these criteria the evaluation model seems adequate.

11.4.3 Improving the input possibilities

To add usable functionality to the application the next step was exchange the
text area for some form fields. In qooxdoo’s example collection several ex-
amples for the usage of forms are available so the implementation is straight-
forward. Validation is very easy to add, with the help of the documentation
and the example code (figure 11.7).

However, at this stage the aforementioned problem with models comes
up. In “ratios” the model generates a class from a prototype and the form

11.4. Prototype Implementation 97

Figure 11.6: The application can alter the list and bindings with the
visualization widget work

generates another class from the form fields. The interesting detail here is that
these two classes only differ by capitalization of its members, otherwise they
are identical, but the model class from the form can not be given an attribute
where it supports the “bubbling up” of change events, a property necessary for
bindings to work. The documentation is very limited in this case. A thorough
explanation of models or an example that shows how to best handle a case
where a customized model class is needed, are missing.

Conclusion: The evaluation model should be revised so that documenta-
tion of core functionality is inspected more deeply.

11.4.4 Refinements

The last stage of the implementation process brought mixed results as well.
The goal is to refine the display of ratio names in the list, so that the width
and the height visible, to change the two window appearance to a “normal”
appearance by putting both parts on the main background, and to provide a
zoom function.

Zooming was done with the event system and easy and straightforward.
So was the change of the UI with the help of examples and the understanding
of the layout gained in the getting started tutorial.

The problems were again connected with bindings, in this case the addi-

98 11. Validation

Figure 11.7: Form validation works very well, translating the form
model to the model used in the rest of the application
proved difficult

tional involvement of a controller complicated the situation. Complex widgets
like a list often have a delegate that is responsible for their management, qoox-
doo offers such delegates in the form of controllers. However, this concept is
not explained in detail in the documentation. The list controller offers an op-
tion to change a value coming from the model before it is displayed. This
is done with a custom converter. For using this converter the API lists some
parameters that the converter is provided when called, and says that a con-
troller is required for a certain parameter to be provided. Since the concept of
controller is not completely clear, this problem could not be solved in a clean
way. The finished prototype is shown in figure 11.8.

11.5 Conclusions

It is appropriate and convenient to learn solutions for problems that are closely
connected with widgets (arrangement, configuration, special behavior and the
like) from small code examples. However, central concepts like data store,
model, bindings, controllers, etc. need explicit guides. The evaluation model
does not differ between those two categories and delivers misleading results
in this regard, the emphasis on examples should be increased.

It was also only learned while implementing that the model of qooxdoo

11.5. Conclusions 99

Figure 11.8: The finished prototype

is limited and does not know about relations or is not able to post to a server.
This is an essential concept and the evaluation model should put more empha-
sis on this kind of functionality.

It is also advisable to limit the number of candidates for the evaluation
phase. It seems doubtful to increase resources by adding personal to the eval-
uation as this impedes the comparability of results. When the same person
sees all candidates the results should be more constant.

Very positively noted are the build tools, during development they helped
in finding syntax errors and the deployment option is very important for good
performance. This could also be more emphasised in the evaluation model.

Superficial features like tool tips play only a minor role and if a solid
understanding of the framework is achieved they can be easily implemented
by oneself. Then again the probability is high, that someone in the community
already did that. This is some part of the evaluation model that could be de-
emphasized.

100 11. Validation

Chapter 12

Conclusion

This thesis presented a methodology to find suitable candidate frameworks
for the implementation of desktop-like web applications. The developed de-
cision process (chapter 5) includes the creation of an extensive evaluation
model (chapter 6), a market research, and an evaluation with progressive fil-
tering. The evaluation model can be used and improved in future evalua-
tions, the market research provides an overview on the current web appli-
cation framework landscape, and the evaluation yields recommendations for
suitable frameworks.

41 frameworks could be found (chapter 7). After a screening stage (chap-
ter 9) 8 of them have been scrutinized in detail (chapter 10), and three were
classified as recommended for desktop-like/single-page web application de-
velopment. These three are: qooxdoo, Ext JS, and SproutCore.

The concluding validation (chapter 11) showed that the quality of the re-
sult is satisfying. However, suggestions for improvement do exist. The eval-
uation model is in large parts adequate for its purpose, but model and process
are not a good fit, for the amount of criteria is extensive and the filtering stage
left too many candidates in the process.

The proposed solution is to split the evaluation stage. The process would
then include two stages between the screening and the evaluation. These in-
termediate stages should be used to further reduce the number of candidates
by finding suitable criteria and applying them to the candidate set.

Suitable criteria should be derived from the project that has to be imple-
mented with the help of the framework. For communication intensive applica-
tions it would be recommended to rate the data store and binding system, for
applications with an innovative user interface support for drag & drop or the
flexibility of the widget system might be more important. Focus on a specific
sub-set of criteria in this stage should allow an in-depth judgement without
exceeding personal resources.

A reduction of the number of candidates for the evaluation stage would

101

102 12. Conclusion

allow a more precise assessment of two important criteria: the coverage of
guide topics and the quality of guides (doc.1 and doc.2). The results of the
validation recommend an improvement in this area.

Another category with weaknesses is community, here yielding sources
for books and articles have to be found (com.3 and com.4).

All other categories seem well balanced. However, the model gener-
ally emphasizes information surrounding the framework code (documenta-
tion, communication, presentation) and is less focused on its inner workings.
Altough this focus is supported by literature it may still be worthwhile to look
at metrics like performance for further improvement.

It would also be interesting to see the effects of different evaluation meth-
ods on the resulting numbers and classification. Outranking methods and
AHP are valid alternatives to the Weighted Scoring Method used here. If they
yield clearly differing results this might also help in improving the model.

Bibliography

Alves, Carina and Anthony Finkelstein [2002]. Challenges in COTS decision-
making: a goal-driven requirements engineering perspective. In Proceed-
ings of the 14th international conference on Software engineering and
knowledge engineering, pages 789–794. SEKE ’02, ACM, New York,
NY, USA. ISBN 1-58113-556-4. doi:10.1145/568760.568894. http:

//doi.acm.org/10.1145/568760.568894. (Cited on page 26.)

Anttonen, Matti, Arto Salminen, Tommi Mikkonen, and Antero Taivalsaari
[2011]. Transforming the web into a real application platform: new tech-
nologies, emerging trends and missing pieces. In Proceedings of the 2011
ACM Symposium on Applied Computing, pages 800–807. SAC ’11, ACM,
New York, NY, USA. ISBN 978-1-4503-0113-8. doi:10.1145/1982185.
1982357. http://doi.acm.org/10.1145/1982185.1982357. (Cited on
pages 5 and 6.)

Apple Inc. [2010]. Cocoa Fundamentals Guide. Apple Inc. (Cited on
pages 12, 14 and 15.)

Atkinson, Steven [1997]. Cognitive deficiencies in software library design.
In Software Engineering Conference, 1997. Asia Pacific ... and Interna-
tional Computer Science Conference 1997. APSEC ’97 and ICSC ’97. Pro-
ceedings, pages 354 –363. doi:10.1109/APSEC.1997.640192. (Cited on
page 33.)

Björemo, Martin and Predrag Trninic [2010]. Evaluation of web application
frameworks. Master’s Thesis, Chalmers University of Technology. (Cited
on page 23.)

Bouyssou, Denis [2009]. Outranking Methods. In Floudas, Christodou-
los A. and Panos M. Pardalos (Editors), Encyclopedia of Optimiza-
tion, pages 2887–2893. Springer US. ISBN 978-0-387-74759-0. http:

//dx.doi.org/10.1007/978-0-387-74759-0_495. 10.1007/978-0-387-
74759-0 495. (Cited on page 27.)

Brownsword, L., T. Oberndorf, and C.A. Sledge [2000]. Developing new
processes for COTS-based systems. Software, IEEE, 17(4), pages 48–55.
(Cited on pages 17 and 22.)

103

http://www.amazon.com/exec/obidos/ASIN/1-58113-556-4/keithandrewshcic
http://dx.doi.org/10.1145/568760.568894
http://doi.acm.org/10.1145/568760.568894
http://doi.acm.org/10.1145/568760.568894
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-0113-8/keithandrewshcic
http://dx.doi.org/10.1145/1982185.1982357
http://dx.doi.org/10.1145/1982185.1982357
http://doi.acm.org/10.1145/1982185.1982357
http://dx.doi.org/10.1109/APSEC.1997.640192
http://www.amazon.com/exec/obidos/ASIN/978-0-387-74759-0/keithandrewshcic
http://dx.doi.org/10.1007/978-0-387-74759-0_495
http://dx.doi.org/10.1007/978-0-387-74759-0_495

104 Bibliography

Brugali, Davide, Giuseppe Menga, and Amund Aarsten [1997]. The Frame-
work Life Span. Commun. ACM, 40(10), pages 65–68. ISSN 0001-
0782. doi:10.1145/262793.262806. http://doi.acm.org/10.1145/

262793.262806. (Cited on page 13.)

Burbeck, Steve [1992]. Applications Programming in Smalltalk-80: How to
use Model-View-Controller (MVC). Technical Report. (Cited on page 37.)

Calefato, Fabio and Filippo Lanubile [2009]. Using frameworks to develop
a distributed conferencing system: an experience report. Softw: Pract.
Exper., 39(15), pages 1293–1311. doi:10.1002/spe.937. http://dx.doi.
org/10.1002/spe.937. (Cited on pages 14 and 21.)

Changpil, Lee [2012]. An Evaluation Model for Application Development
Frameworks for Web Applications. Master’s Thesis, Graduate School of
The Ohio State University. (Cited on pages 17 and 24.)

Chung, Lawrence and Julio do Prado Leite [2009]. On Non-Functional
Requirements in Software Engineering. In Borgida, Alexander, Vinay
Chaudhri, Paolo Giorgini, and Eric Yu (Editors), Conceptual Modeling:
Foundations and Applications, Lecture Notes in Computer Science, vol-
ume 5600, pages 363–379. Springer Berlin / Heidelberg. ISBN 978-3-
642-02462-7. http://dx.doi.org/10.1007/978-3-642-02463-4_19.
10.1007/978-3-642-02463-4 19. (Cited on page 22.)

Colombo, Enzo and Chiara Francalanci [2004]. Selecting CRM packages
based on architectural, functional, and cost requirements: Empirical
validation of a hierarchical ranking model. Requirements Engineering,
9, pages 186–203. ISSN 0947-3602. http://dx.doi.org/10.1007/

s00766-003-0184-y. 10.1007/s00766-003-0184-y. (Cited on pages 23
and a.)

Comella-Dorda, S., J.C. Dean, E. Morris, and P. Oberndorf [2002]. A Process
for COTS Software Product Evaluation. In COTS-based software systems:
First International Conference, ICCBSS 2002, Orlando, FL, USA, Febru-
ary 4-6, 2002: proceedings, volume 2255, page 86. Springer-Verlag New
York Inc. (Cited on pages 21 and 22.)

Deng, Hepu [1999]. Multicriteria analysis with fuzzy pairwise comparison.
In Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE ’99. 1999
IEEE International, volume 2, pages 726 –731 vol.2. ISSN 1098-7584.
doi:10.1109/FUZZY.1999.793038. (Cited on page 28.)

Duhl, Joshua [2003]. White paper: Rich internet applications. Technical
Report, IDC. (Cited on page 6.)

http://worldcatlibraries.org/wcpa/issn/0001-0782
http://worldcatlibraries.org/wcpa/issn/0001-0782
http://dx.doi.org/10.1145/262793.262806
http://doi.acm.org/10.1145/262793.262806
http://doi.acm.org/10.1145/262793.262806
http://dx.doi.org/10.1002/spe.937
http://dx.doi.org/10.1002/spe.937
http://dx.doi.org/10.1002/spe.937
http://www.amazon.com/exec/obidos/ASIN/978-3-642-02462-7/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/978-3-642-02462-7/keithandrewshcic
http://dx.doi.org/10.1007/978-3-642-02463-4_19
http://worldcatlibraries.org/wcpa/issn/0947-3602
http://dx.doi.org/10.1007/s00766-003-0184-y
http://dx.doi.org/10.1007/s00766-003-0184-y
http://worldcatlibraries.org/wcpa/issn/1098-7584
http://dx.doi.org/10.1109/FUZZY.1999.793038

Bibliography 105

Fayad, Mohamed and Douglas C. Schmidt [1997]. Object-oriented appli-
cation frameworks. Commun. ACM, 40(10), pages 32–38. ISSN 0001-
0782. doi:10.1145/262793.262798. http://dx.doi.org/10.1145/

262793.262798. (Cited on page 13.)

Fayad, Mohamed E., David S. Hamu, and Davide Brugali [2000]. Enter-
prise frameworks characteristics, criteria, and challenges. Commun. ACM,
43(10), pages 39–46. ISSN 0001-0782. doi:10.1145/352183.352200.
http://doi.acm.org/10.1145/352183.352200. (Cited on pages 33
and 34.)

Fayad, Mohamed E., Douglas C. Schmidt, and Ralph E. Johnson
[1999]. Building Application Frameworks: Object-Oriented Founda-
tions of Framework Design. 1 Edition. John Wiley & Sons. ISBN
0471248754. http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0471248754. (Cited on pages 11, 12, 13,
14, 33 and 35.)

Foley, Mary-Jo [2011]. Microsoft: Our strategy with Sil-
verlight has shifted. http://www.zdnet.com/blog/microsoft/

microsoft-our-strategy-with-silverlight-has-shifted/7834.
(Cited on page 7.)

Froehlich, Garry, Amr Kamel, and Paul Sorenson [2000]. Exploring O-O
framework usage (poster session). In Proceedings of the 22nd international
conference on Software engineering, pages 783–. ICSE ’00, ACM, New
York, NY, USA. ISBN 1-58113-206-9. doi:10.1145/337180.337639. http:
//doi.acm.org/10.1145/337180.337639. (Cited on pages 32 and 33.)

Gamma, Erich, Richard Helm, Ralph E. Johnson, and John Vlissides
[1994]. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional. (Cited on pages 12, 13 and 15.)

Gerdessen, Anton [2007]. Framework comparison method. Master’s Thesis,
University of Amsterdam. (Cited on page 17.)

Gizas, Andreas, Sotiris Christodoulou, and Theodore Papatheodorou [2012].
Comparative evaluation of javascript frameworks. In Proceedings of the
21st international conference companion on World Wide Web, pages 513–
514. WWW ’12 Companion, ACM, New York, NY, USA. ISBN 978-1-
4503-1230-1. doi:10.1145/2187980.2188103. http://doi.acm.org/10.
1145/2187980.2188103. (Cited on page 24.)

Güngör Şen, Ceyda and Hayri Baraçli [2006]. A Brief Literature Review of
Enterprise Software Evaluation and Selection Methodologies: A Compari-
son in the Context of Decision-Making Methods. In 5th International Sym-
posium on Intelligent Manufacturing Systems, pages pp.874–883. (Cited
on pages 19 and 21.)

http://worldcatlibraries.org/wcpa/issn/0001-0782
http://worldcatlibraries.org/wcpa/issn/0001-0782
http://dx.doi.org/10.1145/262793.262798
http://dx.doi.org/10.1145/262793.262798
http://dx.doi.org/10.1145/262793.262798
http://worldcatlibraries.org/wcpa/issn/0001-0782
http://dx.doi.org/10.1145/352183.352200
http://doi.acm.org/10.1145/352183.352200
http://www.amazon.com/exec/obidos/ASIN/0471248754/keithandrewshcic
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471248754
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471248754
http://www.zdnet.com/blog/microsoft/microsoft-our-strategy-with-silverlight-has-shifted/7834
http://www.zdnet.com/blog/microsoft/microsoft-our-strategy-with-silverlight-has-shifted/7834
http://www.amazon.com/exec/obidos/ASIN/1-58113-206-9/keithandrewshcic
http://dx.doi.org/10.1145/337180.337639
http://doi.acm.org/10.1145/337180.337639
http://doi.acm.org/10.1145/337180.337639
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-1230-1/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-1230-1/keithandrewshcic
http://dx.doi.org/10.1145/2187980.2188103
http://doi.acm.org/10.1145/2187980.2188103
http://doi.acm.org/10.1145/2187980.2188103

106 Bibliography

Hou, Daqing, K. Wong, and H.J. Hoover [2005]. What can programmer ques-
tions tell us about frameworks? In Program Comprehension, 2005. IWPC
2005. Proceedings. 13th International Workshop on, pages 87 – 96. ISSN
1092-8138. doi:10.1109/WPC.2005.47. (Cited on pages 33 and 35.)

Ignacio Fernández-Villamor, José, Laura Dı́az-Casillas, and Carlos Á. Igle-
sias [2008]. A comparison model for agile web frameworks. In Pro-
ceedings of the 2008 Euro American Conference on Telematics and In-
formation Systems, pages 14:1–14:8. EATIS ’08, ACM, New York, NY,
USA. ISBN 978-1-59593-988-3. doi:10.1145/1621087.1621101. http:

//doi.acm.org/10.1145/1621087.1621101. (Cited on pages 24, 36
and a.)

Jadhav, Anil S. and Rajendra M. Sonar [2009]. Evaluating and se-
lecting software packages: A review. Information and Software
Technology, 51(3), pages 555 – 563. ISSN 0950-5849. doi:10.
1016/j.infsof.2008.09.003. http://www.sciencedirect.com/science/

article/pii/S0950584908001262. (Cited on pages 19, 20, 21, 22, 25
and 26.)

Janisch, Gerhard [2008]. Analyse von Rich Internet Application Frameworks
am Beispiel einer Thesaurusverwaltung. Master’s Thesis, FH Hagenberg.
(Cited on pages 33 and 40.)

Johnson, Ralph E. and Brian Foote [1988]. Designing Reusable
Classes. Journal of Object-Oriented Programming, 1(2), pages 22–
35. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

101.8594. (Cited on pages 11, 12, 13, 15 and 33.)

Kirk, Douglas Samuel [2005]. Understanding Object-Oriented Frameworks.
PhD Thesis, University of Strathclyde, Glasgow. (Cited on page 34.)

Kitchenham, B., S. Linkman, and D. Law [1997]. DESMET: a methodol-
ogy for evaluating software engineering methods and tools. Computing &
Control Engineering Journal, 8(3), pages 120–126. (Cited on page 21.)

Kizzort, B. [2002]. Selection of components for OTS component-based sys-
tems. In Aerospace Conference Proceedings, 2002. IEEE, volume 6, pages
6–2651 – 6–2659 vol.6. doi:10.1109/AERO.2002.1036106. (Cited on
pages 18 and 35.)

Kontio, J. [1996]. A case study in applying a systematic method for COTS
selection. In Software Engineering, 1996., Proceedings of the 18th Inter-
national Conference on, pages 201 –209. doi:10.1109/ICSE.1996.493416.
(Cited on pages 22, 23 and a.)

http://worldcatlibraries.org/wcpa/issn/1092-8138
http://dx.doi.org/10.1109/WPC.2005.47
http://www.amazon.com/exec/obidos/ASIN/978-1-59593-988-3/keithandrewshcic
http://dx.doi.org/10.1145/1621087.1621101
http://doi.acm.org/10.1145/1621087.1621101
http://doi.acm.org/10.1145/1621087.1621101
http://worldcatlibraries.org/wcpa/issn/0950-5849
http://dx.doi.org/10.1016/j.infsof.2008.09.003
http://dx.doi.org/10.1016/j.infsof.2008.09.003
http://www.sciencedirect.com/science/article/pii/S0950584908001262
http://www.sciencedirect.com/science/article/pii/S0950584908001262
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.8594
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.8594
http://dx.doi.org/10.1109/AERO.2002.1036106
http://dx.doi.org/10.1109/ICSE.1996.493416

Bibliography 107

Kontio, Jyrki, Gianluigi Caldiera, and Victor R. Basili [1996]. Defining
factors, goals and criteria for reusable component evaluation. In Pro-
ceedings of the 1996 conference of the Centre for Advanced Studies on
Collaborative research, pages 21–. CASCON ’96, IBM Press. http:

//dl.acm.org/citation.cfm?id=782052.782073. (Cited on page 22.)

Kontio, Jyrki, Show-Fune Chen, Kevin Limperos, Roseanne Tesoriero, Gi-
anluigi Caldiera, and Mike Deutsch [1995]. A COTS Selection Method
and Experiences of Its Use. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=?doi=10.1.1.20.7769. (Cited on page 20.)

Korson, T. and J.D. McGregor [1992]. Technical criteria for the specification
and evaluation of object-oriented libraries. Software Engineering Journal,
7(2), pages 85 –94. ISSN 0268-6961. (Cited on pages 14, 23, 34, 35 and a.)

Kunda, Douglas [2003]. STACE: Social Technical Approach to COTS Soft-
ware Evaluation, chapter 5, pages 64–84. Lecture Notes in Computer
Science, Springer, Berlin. http://www.springerlink.com/content/

6kyyjwew7hbadrwe. (Cited on pages 20, 26 and 27.)

Laakso, Tuukka and Joni Niemi [2008]. An evaluation of AJAX-enabled
java-based web application frameworks. In Proceedings of the 6th Inter-
national Conference on Advances in Mobile Computing and Multimedia,
pages 431–437. MoMM ’08, ACM, New York, NY, USA. ISBN 978-1-
60558-269-6. doi:10.1145/1497185.1497278. http://doi.acm.org/10.
1145/1497185.1497278. (Cited on pages 24, 25, 35, 36 and a.)

Lawlis, Patricia K., Kathryn E. Mark, Deborah A. Thomas, and Terry Cour-
theyn [2001]. A Formal Process for Evaluating COTS Software Products.
Computer, 34, pages 58–63. ISSN 0018-9162. doi:10.1109/2.920613.
http://dl.acm.org/citation.cfm?id=619063.621716. (Cited on
page 20.)

Lee, Hsuan-Shih, Pei-Di Shen, and Wen-Li Chih [2004]. A fuzzy multiple cri-
teria decision making model for software selection. In Fuzzy Systems, 2004.
Proceedings. 2004 IEEE International Conference on, volume 3, pages
1709 – 1713 vol.3. ISSN 1098-7584. doi:10.1109/FUZZY.2004.1375439.
(Cited on page 28.)

Li, Jingyue, R. Conradi, C. Bunse, M. Torchiano, O. Slyngstad, and M. Mori-
sio [2009]. Development with Off-the-Shelf Components: 10 Facts. Soft-
ware, IEEE, 26(2), pages 80 –87. ISSN 0740-7459. doi:10.1109/MS.2009.
33. (Cited on page 19.)

Microsoft [2012]. About Native XMLHTTP. http://msdn.microsoft.com/
en-US/en-us/library/ms537505.aspx. (Cited on page 7.)

http://dl.acm.org/citation.cfm?id=782052.782073
http://dl.acm.org/citation.cfm?id=782052.782073
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.20.7769
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.20.7769
http://worldcatlibraries.org/wcpa/issn/0268-6961
http://www.springerlink.com/content/6kyyjwew7hbadrwe
http://www.springerlink.com/content/6kyyjwew7hbadrwe
http://www.amazon.com/exec/obidos/ASIN/978-1-60558-269-6/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/978-1-60558-269-6/keithandrewshcic
http://dx.doi.org/10.1145/1497185.1497278
http://doi.acm.org/10.1145/1497185.1497278
http://doi.acm.org/10.1145/1497185.1497278
http://worldcatlibraries.org/wcpa/issn/0018-9162
http://dx.doi.org/10.1109/2.920613
http://dl.acm.org/citation.cfm?id=619063.621716
http://worldcatlibraries.org/wcpa/issn/1098-7584
http://dx.doi.org/10.1109/FUZZY.2004.1375439
http://worldcatlibraries.org/wcpa/issn/0740-7459
http://dx.doi.org/10.1109/MS.2009.33
http://dx.doi.org/10.1109/MS.2009.33
http://msdn.microsoft.com/en-US/en-us/library/ms537505.aspx
http://msdn.microsoft.com/en-US/en-us/library/ms537505.aspx

108 Bibliography

Mohamed, Abdallah, Guenther Ruhe, and Armin Eberlein [2007]. COTS
Selection: Past, Present, and Future. In Engineering of Computer-Based
Systems, 2007. ECBS ’07. 14th Annual IEEE International Conference and
Workshops on the, pages 103 –114. doi:10.1109/ECBS.2007.28. (Cited on
page 21.)

Morisio, M. and A. Tsoukias [1997]. IusWare: a methodology for the eval-
uation and selection of software products. Software Engineering. IEE
Proceedings- [see also Software, IEE Proceedings], 144(3), pages 162 –
174. ISSN 1364-5080. doi:10.1049/ip-sen:19971350. (Cited on pages 26
and 27.)

Mousseau, V. and R. Slowinski [1998]. Inferring an ELECTRE TRI
Model from Assignment Examples. Journal of Global Optimization, 12,
pages 157–174. ISSN 0925-5001. http://dx.doi.org/10.1023/A:

1008210427517. 10.1023/A:1008210427517. (Cited on pages 27 and 28.)

Ncube, C. and N.A.M. Maiden [1999]. PORE: Procurement-Oriented
Requirements Engineering Method for the Component-Based Systems
Engineering Development Paradigm. In International Workshop on
Component-Based Software Engineering, page 1. (Cited on page 20.)

Ncube, Cornelius and John Dean [2002]. The Limitations of Current
Decision-Making Techniques in the Procurement of COTS Software Com-
ponents. In Dean, John and Andrée Gravel (Editors), COTS-Based Software
Systems, Lecture Notes in Computer Science, volume 2255, pages 176–187.
Springer Berlin / Heidelberg. ISBN 978-3-540-43100-8. http://dx.doi.
org/10.1007/3-540-45588-4_17. 10.1007/3-540-45588-4 17. (Cited on
page 26.)

Oberndorf, Patricia, Lisa Brownsword, Ed Morris, and Carol Sledge [1997].
Workshop on COTS-Based Systems. Technical Report, Defense Techni-
cal Information Center OAI-PMH Repository (United States). (Cited on
pages 19 and 21.)

Ros, Jordi Canals [2011]. Introduction to Decision Deck-Diviz: Examples and
User Guide. The Decision Deck Project. http://www.decision-deck.

org/diviz/tutorials.html. (Cited on page 27.)

Roy, Bernard [1996]. Multicriteria Methodology for Decision Aiding, Non-
convex Optimization and its Applications. Kluwer Academic Publishers,
Dordrecht. (Cited on page 25.)

Saaty, Thomas L. [1990]. How to make a decision: The ana-
lytic hierarchy process. European Journal of Operational Research,
48(1), pages 9 – 26. ISSN 0377-2217. doi:10.1016/0377-2217(90)
90057-I. http://www.sciencedirect.com/science/article/pii/

http://dx.doi.org/10.1109/ECBS.2007.28
http://worldcatlibraries.org/wcpa/issn/1364-5080
http://dx.doi.org/10.1049/ip-sen:19971350
http://worldcatlibraries.org/wcpa/issn/0925-5001
http://dx.doi.org/10.1023/A:1008210427517
http://dx.doi.org/10.1023/A:1008210427517
http://www.amazon.com/exec/obidos/ASIN/978-3-540-43100-8/keithandrewshcic
http://dx.doi.org/10.1007/3-540-45588-4_17
http://dx.doi.org/10.1007/3-540-45588-4_17
http://www.decision-deck.org/diviz/tutorials.html
http://www.decision-deck.org/diviz/tutorials.html
http://worldcatlibraries.org/wcpa/issn/0377-2217
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://www.sciencedirect.com/science/article/pii/037722179090057I
http://www.sciencedirect.com/science/article/pii/037722179090057I

Bibliography 109

037722179090057I. ¡ce:title¿Desicion making by the analytic hierarchy
process: Theory and applications¡/ce:title¿. (Cited on pages 25 and 27.)

Shull, Forrest, Filippo Lanubile, and Victor R. Basili [2000]. Investigat-
ing Reading Techniques for Object-Oriented Framework Learning. IEEE
Trans. Softw. Eng., 26(11), pages 1101–1118. ISSN 0098-5589. doi:10.
1109/32.881720. http://dx.doi.org/10.1109/32.881720. (Cited on
page 34.)

Taivalsaari, A., T. Mikkonen, D. Ingalls, and K. Palacz [2008]. Web Browser
as an Application Platform. In Software Engineering and Advanced Ap-
plications, 2008. SEAA ’08. 34th Euromicro Conference, pages 293 –302.
ISSN 1089-6503. doi:10.1109/SEAA.2008.17. (Cited on page 6.)

Triantaphyllou, Evangelos [2000]. Multi-Criteria Decision Making Methods:
A Comparative Study. Springer. (Cited on page 25.)

Vigder, Mark, W. M. Gentleman, and John Dean [1996]. COTS Software
Integration: State of the Art. Technical Report. (Cited on page 18.)

Windrum, Paul [2004]. Leveraging technological externalities in complex
technologies: Microsoft’s exploitation of standards in the browser wars.
Research Policy, 33(3), pages 385 – 394. ISSN 0048-7333. doi:10.
1016/j.respol.2003.09.002. http://www.sciencedirect.com/science/

article/pii/S0048733303001434. (Cited on page 3.)

Winokur, Danny []. Flash to Focus on PC Browsing and Mobile Apps; Adobe
to More Aggressively Contribute to HTML5. http://blogs.adobe.com/

conversations/2011/11/flash-focus.html. (Cited on page 7.)

Wirfs-Brock, Rebecca J. and Ralph E. Johnson [1990]. Surveying current
research in object-oriented design. Commun. ACM, 33(9), pages 104–124.
ISSN 0001-0782. doi:10.1145/83880.84526. http://doi.acm.org/10.

1145/83880.84526. (Cited on page 13.)

Yoon, K. Paul and Ching-Lai Hwang [1995]. Multiple Attribute Decision
Making. SAGE Publications. (Cited on page 25.)

http://www.sciencedirect.com/science/article/pii/037722179090057I
http://www.sciencedirect.com/science/article/pii/037722179090057I
http://worldcatlibraries.org/wcpa/issn/0098-5589
http://dx.doi.org/10.1109/32.881720
http://dx.doi.org/10.1109/32.881720
http://dx.doi.org/10.1109/32.881720
http://worldcatlibraries.org/wcpa/issn/1089-6503
http://dx.doi.org/10.1109/SEAA.2008.17
http://worldcatlibraries.org/wcpa/issn/0048-7333
http://dx.doi.org/10.1016/j.respol.2003.09.002
http://dx.doi.org/10.1016/j.respol.2003.09.002
http://www.sciencedirect.com/science/article/pii/S0048733303001434
http://www.sciencedirect.com/science/article/pii/S0048733303001434
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://worldcatlibraries.org/wcpa/issn/0001-0782
http://dx.doi.org/10.1145/83880.84526
http://doi.acm.org/10.1145/83880.84526
http://doi.acm.org/10.1145/83880.84526

110 Bibliography

Appendix A

Framework List

The following pages list all candidates found during the market research de-
scribed in chapter 7 (page 43).

111

112 A. Framework List

ActiveJS Agility.js AmplifyJS
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

activejs.or agilityjs.com amplify.js

n/a 0.1.2 1.1.0
26/10/2010 17/12/2011 08/11/2011
19/06/2012 19/06/2012 26/06/2012

ActiveJS is a JavaScript application
framework that provides local and
REST based data modeling and
pure DOM view construction with
back button and history support.

• No external dependencies

• Does not modify built in objects

• Exports only 5 globals

• Framework agnostic, designed to
be used with Prototype, jQuery,
etc

Agility.js is an MVC library for
Javascript that lets you write
maintainable and reusable browser
code without the verbose or
infrastructural overhead found in
other MVC libraries. The goal is to
enable developers to write web
apps at least as quickly as with
jQuery, while simplifying long-term
maintainability through MVC
objects.

AmplifyJS is a set of components
designed to solve common web
application problems with a
simplistic API. Amplify's goal is to
simplify all forms of data handling
by providing a unified API for
various data sources. Amplify's
store component handles
persistent client-side storage,
using standards like localStorage
and sessionStorage, but falling
back on non-standard
implementations for older
browsers.

jQuery

abandoned no no framework

yes

113

AngularJS AppJS Backbone.js
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

angularjs.org appjs.org backbonejs.org

1.0.0 0.0.11 0.9.2
13/06/2012 15/06/2012 21/03/2012
19/06/2012 19/06/2012 19/06/2012

HTML is great for declaring static
documents, but it falters when we
try to use it for declaring dynamic
views in web-applications.
AngularJS lets you extend HTML
vocabulary for your application.
The resulting environment is
extraordinarily expressive,
readable, and quick to develop.

Build Desktop Applications for
Linux, Windows and Mac using
HTML, CSS and Javascript

Backbone.js gives structure to web
applications by providing models
with key-value binding and custom
events, collections with a rich API
of enumerable functions, views
with declarative event handling,
and connects it all to your existing
API over a RESTful JSON interface.

underscore.js, json2.js, jQuery/
Zepto

no framework no no

yes

web applications

different approach: enhancing
HTML, no framework

says: „Attention: AppJS is under
heavy development. API changes a
lot until we bump version to
v0.1.0“. Too young for serious
development, but very promising

114 A. Framework List

batman.js Bindows Cappuccino
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

batmanjs.org bindows.net cappuccino.org

0.9.0 4.1.1 0.9.5
02/04/2012 16/05/2012 16/11/2011
19/06/2012 19/06/2012 19/06/2012

Batman.js is a framework for
building rich web applications with
CoffeeScript or JavaScript. App
code is concise and declarative,
thanks to a powerful system of
view bindings and observable
properties. The API is designed
with developer and designer
happiness as its first priority.

Bindows is a Software
Development Kit (SDK) for writing
robust and secure Rich Internet
Applications. The Bindows platform
provides rich functionality for thin
Web clients. Bindows applications
require no end-user downloads -
true zero-footprint (no Java, Flash,
plug-ins or ActiveX are used).

Cappuccino is an open source
framework that makes it easy to
build desktop-caliber applications
that run in a web browser.

node.js

no yes yes

yes yes yes

rich web applications rich internet applications desktop-caliber web applications

115

Choco CorMVC DHTMLX
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

github.com/ahe/choc bennadel.com/projects
/cormvc-jquery-framework.htm

dhtmlx.com

n/a n/a 3.0
07/09/2010 21/12/2009 31/10/2011
19/06/2012 19/06/2012 26/06/2012

A delicious Javascript web
framework made in Belgium!
Choco brings the MVC to the client
side! You like Javascript and you
want to develop rich internet
applications? You also know that
HTML & CSS are powerful?
Cappuccino & Sproutcore don’t feel
like web development anymore?
Thanks to Choco, you’ll be able to
easily develop maintainable web
applications. A Choco app consists
of only one HTML page, all the
interactions are managed by
Javascript. Your UI only uses HTML
and CSS!

CorMVC is a jQuery-powered
Model-View-Controller (MVC)
framework that can aide in the
development of single-page, web-
based applications. CorMVC stands
for client-only-required model-
view-controller and is designed to
be lowest possible entry point to
learning about single-page
application architecture. It does
not presuppose any server-side
technologies, or a web server of
any kind, and requires no more
than a web browser to get up and
running.

dhtmlxSuite is a rich JavaScript
library that delivers a complete set
of UI components

abandoned abandoned yes

yes

professional web apps

• specialized for .NET, PHP and
Java back-ends

116 A. Framework List

Dojo Toolkit Eyeballs Ember.js
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

dojotoolkit.org github.com/paulca/eyeballs.js emberjs.com

1.7 0.5.17 0.9.8.1
16/02/2012 23/06/2011 22/05/2012
19/06/2012 19/06/2012 19/06/2012

Dojo saves you time and scales
with your development process,
using web standards as its
platform. It’s the toolkit
experienced developers turn to for
building high quality desktop and
mobile web applications.
From simple websites to large
packaged enterprise applications
whether desktop or mobile, Dojo
will meet your needs.

eyeballs.js is a slim javascript
library designed to sit on top of a
javascript framework, such as
jQuery or Prototype.

a framework for creating ambitious
web applications

node.js/Rhino

yes abandoned no

yes yes

simple website to large enterprise appsimple website to large enterprise app ambitious web applications

was SproutCore 2.0

117

Ext JS Glow Google Closure Library
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

sencha.com/products/extj bbc.co.uk
/glow

developers.google.com/closure

4.1.0 1.7.7 r1376
20/04/2012 07/07/2011 10/11/2011
25/06/2012 19/06/2012 22/06/2012

Ext JS 4 is the next major
advancement in our JavaScript
framework. Featuring expanded
functionality, plugin-free charting,
and a new MVC architecture it's the
best Ext JS web application
development platform yet. Develop
incredible web apps for every
browser.

Glow is a JavaScript library which
gives you...
• Simplified DOM manipulation,
event handling, animations, etc
• A versatile set of user interface
widgets
• Clear and comprehensive
documentation
• BBC Browser Support Standards
compliance

The Closure tools help developers
to build rich web applications with
web development tools that are
both powerful and efficient.

yes abandoned no

yes yes

cross-platform applications

commercial last Github commit on 30/06/2011
(on forks just one commit
'removed white space' on Oct)

118 A. Framework List

JavaScriptMVC jQuery Knockback.js
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

javascriptmvc.com jquery.com kmalakoff.github.com
/knockback

3.2.2 1.7.2 0.15.3
25/01/2012 21/03/2012 02/06/2012
22/06/2012 22/06/2012 22/06/2012

JavaScriptMVC is an open-source
framework containing the best
ideas in jQuery development.

It guides you to successfully
completed projects by promoting
best practices, maintainability, and
convention over configuration.

jQuery is a fast and concise
JavaScript Library that simplifies
HTML document traversing, event
handling, animating, and Ajax
interactions for rapid web
development. jQuery is designed to
change the way that you write
JavaScript.

brings Knockout.js magic to
Backbone.js

jQueryMX, StealJS, FuncUnit, DocumentJSjQueryMX, StealJS, FuncUnit, DocumentJS knockout.js, backbone.js, underscore.js

no no framework no

yes yes

rich web applications web applications

probably most popular JS library,
offers UI widgets, but not under a
single hood

no HTML/CSS abstraction, initial
commit: 01/11/2011

119

Knockout.js Luna (Asana) MooTools
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

knockoutjs.com asana.com/luna mootools.net

2.1.0 n/a 1.4.5
07/05/2012 26/02/2012
22/06/2012 19/06/2012 22/06/2012

Simplify dynamic JavaScript UIs by
applying the Model-View-View
Model (MVVM) pattern

When writing a complex, highly-
reponsive web application, there
are all kinds of really difficult
programming tasks that you end
up doing over and over again for
every feature you want to write.
[...] So we built Luna, an in-house
end-to-end framework that
automates the busy work of writing
rich web applications to an
unprecedented degree.

MooTools is a compact, modular,
Object-Oriented JavaScript
framework designed for the
intermediate to advanced
JavaScript developer. It allows you
to write powerful, flexible, and
cross-browser code with its
elegant, well documented, and
coherent API.

knockout.js, backbone.js, underscore.js

no no no

yes n/a yes

dynamic JavaScript UIs web applications

proprietary and in-house only, no
further information available

120 A. Framework List

MochiKit Mojito (Yahoo!) Prototype
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

mochikit.com developer.yahoo.com
/cocktails/mojito

prototypejs.org

1.4 0.3.27 1.7
27/11/2008 15/06/2012 16/11/2010
22/06/2012 22/06/2012 22/06/2012

MochiKit is a highly documented
and well tested, suite of JavaScript
libraries that will help you get shit
done, fast. We took all the good
ideas we could find from our
Python, Objective-C, etc.
experience and adapted it to the
crazy world of JavaScript.

Mojito is a sweet (and minty!) MVC
application framework built on YUI
3 that enables agile development
of Web applications. Mojito allows
developers to write client and
server components in the same
language (JavaScript), using the
same framework. Because Mojito
applications are written in
JavaScript, they can run on the
client (in the browser) and on the
server (with Node.js). In addition,
Mojito has built-in support for
internationalization, testing, and
building documentation.

Prototype is a JavaScript
Framework that aims to ease
development of dynamic web
applications.

YUI 3, node.js

no framework no no framework

yes

MCV web applications

titles itself 'feature complete' Not mature enough, initial commit
on 30/03/2012

121

qooxdoo Rialto Rico
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

qooxdoo.org rialto.improve-technologies.com/ openrico.org

2.0 1.1.5 2.1
21/06/2012 10/04/2012 03/05/2009
25/06/2012 25/06/2012 25/06/2012

Create desktop oriented
applications. Features a rich and
extendable set of widgets. No
HTML/CSS knowledge required.
• Features
• Windows, Tabs, …
• Forms, Lists, Trees, …
• Toolbars, Menus, …
• Layouting
• Theming

Rialto (R ich I nternet A pplication
T oolkit) is ajax based cross
browser javascript widgets library.
Because it is technology agnostic it
can be encapsulated in JSP,
JSF, .Net, Python or PHP graphic
components. The purpose of Rialto
is to ease the access to rich
internet application development to
corporate developers. Ideally a
Rialto developer have neither need
to write or understand DHTML,
Ajax or DOM code.

node.js/Rhino

yes no abandoned

yes yes

single page applications corporate web applications

Does not provide model or
controller classes.

122 A. Framework List

Sammy.js script.aculo.us smartclient
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

sammyjs.org script.aculo.us smartclient.com

0.7.1 1.9.0 8.2
21/01/2012 23/12/2010 05/12/2011
25/06/2012 25/06/2012 25/06/2012

a small framework with class script.aculo.us provides you with
easy-to-use, cross-browser user
interface JavaScript libraries to
make
your web sites and web
applications fly.

SmartClient provides an open
DHTML/Ajax client engine, rich
user interface components, and
metadata-driven client-server
databinding systems, for rich GUI,
zero-install web applications.

jQuery Java

no no framework yes

yes yes

JavaScript applications business web applications

from the documentation: 'It does
this without the overhead of a
large base framework or a single
method or system for building
models or views. If you want
something more fully featured I
highly suggest checking out
SproutCore or Cappucino.'

commercial

123

Spine.js SproutCore Spry
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

spinejs.com sproutcore.com labs.adobe.com/technologies/spry

1.0.8 1.8.2 1.6.1
06/06/2012 10/05/2012 25/02/2008
25/06/2012 25/06/2012 25/06/2012

Spine is a lightweight framework
for building JavaScript web
applications. Spine gives you an
MVC structure and then gets out of
your way, allowing you to
concentrate on the fun stuff,
building awesome web
applications.

SproutCore is an open-source
framework for building blazingly
fast, innovative user experiences
on the web.

Spry is a JavaScript-based
framework that enables the rapid
development of Ajax-powered web
pages. Not a JavaScript guru? No
problem. Spry was designed to feel
like an extension of HTML and CSS,
so anyone with basic web-
production skills can create next-
generation web experiences by
adding the power of Ajax to their
pages.

node.js Ruby

no yes abandoned

yes yes

JavaScript MVC applications fully functioning applications

124 A. Framework List

UIZE underscore.js Wakanda
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

uize.com underscorejs.org wakanda.org

n/a 1.3.3 1.0
n/a (but regular commits to github) 10/04/2012 15/03/2012

25/06/2012 25/06/2012 25/06/2012
develop dazzling web sites with
rich client side interactivity

Underscore is a utility-belt library
for JavaScript that provides a lot of
the functional programming
support that you would expect in
Prototype.js (or Ruby), but without
extending any of the built-in
JavaScript objects. It's the tie to go
along with jQuery's tux, and
Backbone.js's suspenders.

One open and complete solution
for all your Web and mobile
business apps.

no no framework no

yes yes

dazzling web sites business apps

• development on Linux is not
possible, wakanda studio is
available only for Mac and
Windows.
• it is not server agnostic since it
depends on the wakanda server as
back-end

125

YUI! zepto.js
URL

Version Number
Version Date
Examination Date
short description

dependency

accepted

is framework

application domain
OS independent
server agnostic
MVC
HTML/CSS abstraction
Layout Manager
Widget Library

basic documentation
API reference
tutorials
example applications
first steps
installation instructions

Comment

yuilibrary.com zeptojs.com

3.5.1 1.0rc1
04/05/2012 09/04/2012
25/06/2012 25/06/2012

YUI is a library of JavaScript
utilities and controls for building
richly interactive web applications
using techniques such as DOM
Scripting, DHTML, and Ajax.

Zepto is a minimalist JavaScript
library for modern browsers with a
largely jQuery-compatible API. If
you use jQuery, you already know
how to use Zepto.

yes no framework

yes

single-page JavaScript applications

YUI offers an extensive array of
functionality including a widget
library and a component named
App Framework that is
specifically targeted at web
applications. After some in-depth
research the conclusion is that
version 2 of the framework had a
layout manager, by transitioning to
version 3 it was eliminated though.
It may be introduced again, the
App Framework is in beta status,
but the description text of the app
framework states that "If you've
used DocumentCloud's excellent
Backbone.js framework, many of
the classes and APIs provided by
App Framework components will
look familiar to you". Backbone.js
has already been classified as
unsuitable.

126 A. Framework List

Appendix B

Detailed Evaluation Result

Criterion Weight Bindows Cappuccino DHTMLX Dojo Toolkit
URL

Version Number
Version Date
Twitter name
Blog URL
Repository
Examination Date
forum URL

short description

Getting started 10 %
overview 20 %
straightforward start 30 %
get started document 50 %
Documentation 25 %
guides: coverage 20 %
guides: quality 20 %
API ref 20 %
examples 15 %
new version doc 5 %
up-to-dateness transp 5 %
overall structure 15 %
Community 25 %
books 25 %
refs on heise.de 5 %
refs on Hacker News 5 %
refs on Quora 5 %
Google hits 5 %
tagged on StackOverflow 10 %
forum/mailinglist activity 20 %
tweets in last year 10 %
blog posts in last year 10 %
real life apps on web site 5 %
Features 20 %
data store 15 %
data bindings 15 %
drag & drop 10 %
i18n/l10n 10 %
theming 10 %
form validation 10 %
context menu 5 %
tool tips 5 %
keyboard shortcuts 5 %
offline mode 5 %
server push 5 %
history management 5 %
User Interface 10 %
standard widgets 60 %
rich text 10 %
charts 10 %
date picker 10 %
map 10 %
Development Setting 10 %
code generation 10 %
testing 30 %
deployment 20 %
server communication 15 %
license 25 %

bindows.net cappuccino.org dhtmlx.com/docs/products
/dhtmlxSuite/index.shtml

dojotoolkit.org
/features/desktop

04.01.0001 0.9.5 3.0 1.7
16.05.2012 16.11.2011 31.10.2011 16.02.2012

n/a cappuccino dhtmlx dojo
blog.bindows.net cappuccino.org/discuss dhtmlx.com/blog dojotoolkit.org/blog

self-hosted Github self-hosted Github
Jul/Aug 2012 Jul/Aug 2012 Jul/Aug 2012 Jul/Aug 2012

forum.bindows.net groups.google.com
/forum/?fromgroups#

!forum/objectivej

forum.dhtmlx.com
/viewforum.php?f=2

dojotoolkit.org/community

Bindows is a Software
Development Kit (SDK) for
writing robust and secure Rich
Internet Applications. The
Bindows platform provides rich
functionality for thin Web
clients. Bindows applications
require no end-user downloads
- true zero-footprint (no Java,
Flash, plug-ins or ActiveX are
used).

Cappuccino is an open source
framework that makes it easy
to build desktop-caliber
applications that run in a web
browser.

dhtmlxSuite is a rich JavaScript
library that delivers a complete
set of UI components

Dojo saves you time and scales
with your development
process, using web standards
as its platform. It’s the toolkit
experienced developers turn to
for building high quality
desktop and mobile web
applications.
From simple websites to large
packaged enterprise
applications whether desktop
or mobile, Dojo will meet your
needs.

38 % 63 % 35 % 18 %
25 % 75 % 75 % 25 %
25 % 75 % 50 % 25 %
50 % 50 % 10 % 10 %
37 % 37 % 28 % 29 %
50 % 25 % 75 % 50 %
50 % 50 % 25 % 25 %
25 % 50 % 10 % 25 %
10 % 10 % 10 % 10 %
50 % 50 % 50 % 75 %
10 % 10 % 10 % 50 %
50 % 50 % 10 % 10 %
11 % 48 % 39 % 85 %
25 % 50 % 25 % 100 %
0 % 0 % 0 % 100 %

10 % 100 % 25 % 100 %
0 % 75 % 10 % 100 %

10 % 75 % 50 % 100 %
0 % 25 % 10 % 75 %
5 % 50 % 100 % 100 %
n/a 50 % 50 % 100 %

10 % 10 % 25 % 25 %
10 % 90 % 0 % 0 %
50 % 33 % 45 % 60 %
0 % 0 % 50 % 50 %

10 % 50 % 50 % 50 %
100 % 100 % 10 % 100 %
100 % 0 % 10 % 100 %
100 % 100 % 25 % 100 %
50 % 0 % 100 % 100 %

100 % 0 % 100 % 0 %
75 % 100 % 0 % 100 %

100 % 0 % 0 % 0 %
0 % 0 % 100 % 0 %
0 % 0 % 100 % 0 %
0 % 0 % 0 % 0 %

80 % 60 % 90 % 90 %
100 % 100 % 100 % 100 %

0 % 0 % 100 % 100 %
100 % 0 % 100 % 100 %
100 % 0 % 100 % 100 %

0 % 0 % 0 % 0 %
14 % 45 % 28 % 89 %
0 % 0 % 0 % 0 %
0 % 0 % 0 % 100 %
0 % 100 % 0 % 100 %

90 % 0 % 100 % 90 %
0 % 100 % 50 % 100 %

Total Weighted Score 35,11 % 44,50 % 40,90 % 60,16 %

127

128 B. Detailed Evaluation Result

Criterion Weight Ext JS qooxdoo SmartClient Ajax Platform SproutCore
URL

Version Number
Version Date
Twitter name
Blog URL
Repository
Examination Date
forum URL

short description

Getting started 10 %
overview 20 %
straightforward start 30 %
get started document 50 %
Documentation 25 %
guides: coverage 20 %
guides: quality 20 %
API ref 20 %
examples 15 %
new version doc 5 %
up-to-dateness transp 5 %
overall structure 15 %
Community 25 %
books 25 %
refs on heise.de 5 %
refs on Hacker News 5 %
refs on Quora 5 %
Google hits 5 %
tagged on StackOverflow 10 %
forum/mailinglist activity 20 %
tweets in last year 10 %
blog posts in last year 10 %
real life apps on web site 5 %
Features 20 %
data store 15 %
data bindings 15 %
drag & drop 10 %
i18n/l10n 10 %
theming 10 %
form validation 10 %
context menu 5 %
tool tips 5 %
keyboard shortcuts 5 %
offline mode 5 %
server push 5 %
history management 5 %
User Interface 10 %
standard widgets 60 %
rich text 10 %
charts 10 %
date picker 10 %
map 10 %
Development Setting 10 %
code generation 10 %
testing 30 %
deployment 20 %
server communication 15 %
license 25 %

sencha.com/products/extj qooxdoo.org smartclient.com
/product/smartclient.jsp

sproutcore.com

4.1.0 2.0.1 8.2 01.08.0002
20.04.2012 03.07.2012 05.12.2011 10.05.2012

Sencha qooxdoo n/a SproutCore
sencha.com/blog/category/extjs news.qooxdoo.org blog.smartclient.com blog.sproutcore.com

self-hosted sourceforge self-hosted Github
Jul/Aug 2012 Jul/Aug 2012 Jul/Aug 2012 Jul/Aug 2012

sencha.com/forum
/forumdisplay.php

?6-Ext-Open-Discussion

qooxdoo.org/forum forums.smartclient.com
/forumdisplay.php?f=13

groups.google.com
/forum/?fromgroups#

!forum/sproutcore
Ext JS 4 is the next major
advancement in our JavaScript
framework. Featuring
expanded functionality, plugin-
free charting, and a new MVC
architecture it's the best Ext JS
web application development
platform yet. Develop
incredible web apps for every
browser.

Create desktop oriented
applications. Features a rich
and extendable set of widgets.
No HTML/CSS knowledge
required.
• Features
• Windows, Tabs, …
• Forms, Lists, Trees, …
• Toolbars, Menus, …
• Layouting
• Theming

SmartClient provides an open
DHTML/Ajax client engine, rich
user interface components, and
metadata-driven client-server
databinding systems, for rich
GUI, zero-install web
applications.

SproutCore is an open-source
framework for building
blazingly fast, innovative user
experiences on the web.

83 % 90 % 62 % 82 %
75 % 90 % 35 % 50 %
75 % 90 % 75 % 90 %
90 % 90 % 65 % 90 %
84 % 84 % 56 % 73 %
90 % 90 % 75 % 75 %
75 % 75 % 50 % 90 %
90 % 90 % 25 % 50 %
90 % 90 % 90 % 75 %
90 % 90 % 50 % 50 %
25 % 75 % 50 % 90 %
90 % 75 % 50 % 75 %
74 % 67 % 23 % 55 %

100 % 100 % 0 % 75 %
25 % 100 % 0 % 25 %
50 % 25 % 10 % 100 %
90 % 10 % 10 % 75 %
90 % 25 % 10 % 25 %

100 % 25 % 10 % 25 %
50 % 75 % 75 % 25 %

n/a 50 % n/a 75 %
50 % 100 % 25 % 50 %
75 % 25 % 10 % 90 %
78 % 90 % 76 % 78 %

100 % 100 % 100 % 100 %
50 % 100 % 100 % 100 %

100 % 100 % 75 % 90 %
100 % 100 % 100 % 90 %
100 % 100 % 100 % 100 %
50 % 100 % 50 % 90 %
50 % 100 % 50 % 0 %

100 % 50 % 0 % 75 %
100 % 100 % 100 % 75 %
100 % 100 % 50 % 0 %

0 % 0 % 25 % 0 %
50 % 50 % 50 % 75 %
90 % 80 % 90 % 60 %

100 % 100 % 100 % 100 %
100 % 100 % 100 % 0 %
100 % 0 % 100 % 0 %
100 % 100 % 100 % 0 %

0 % 0 % 0 % 0 %
76 % 89 % 34 % 93 %
0 % 50 % 0 % 100 %

100 % 100 % 0 % 100 %
100 % 100 % 0 % 100 %
90 % 60 % 90 % 50 %
50 % 100 % 80 % 100 %

Total Weighted Score 79,76 % 81,59 % 53,49 % 70,85 %

List of Figures

2.1 Starting up an Email Client 8
2.2 Displaying an Email Message 9
2.3 Moving an Email Message 9

4.1 Code concept comparison between traditional COTS and frame-
works . 18

4.2 Decision Processes . 20
4.3 Criteria Definition Process of [Kontio, 1996] 22
4.4 Criteria listing of Korson and McGregor [1992] 23
4.5 Hierarchical decision model of Colombo and Francalanci [2004] 23
4.6 Criteria categories by Ignacio Fernández-Villamor et al. [2008] 24
4.7 Evaluation model of Laakso and Niemi [2008] 25

10.1 Project Home Pages I . 67
10.2 Project Home Pages II . 68

11.1 Mockup of the arrangement of the user interface elements for
the ratios application . 92

11.2 Coarse grained architecture for the ratios application 92
11.3 The mockup of the qooxdoo getting started example shares

some properties with the mockup of the prototype (Source:
qooxdoo website, getting started tutorial) 94

11.4 The getting started application after two and a half hours. . . . 95
11.5 The application can alter the list and bindings with the vizual-

ization widget work . 96
11.6 The application can alter the list and bindings with the visu-

alization widget work . 97
11.7 Form validation works very well, translating the form model

to the model used in the rest of the application proved difficult 98
11.8 The finished prototype . 99

a

b

List of Tables

2.1 Performance Comparison of Web App Types 10

7.1 Framework List of Stage II 44
7.2 Sources for the Framework List 45

9.1 Results of the Screening . 54

10.1 Sources for Bindows (last accessed: Aug 29, 2012) 57
10.2 Sources for Cappuccino (last accessed: Aug 29, 2012) 58
10.3 Sources for DTHMLX (last accessed: Aug 29, 2012) 59
10.4 Sources for Dojo Toolkit (last accessed: Aug 29, 2012) 59
10.5 Sources for Ext JS (last accessed: Aug 29, 2012) 60
10.6 Sources for qooxdoo (last accessed: Aug 29, 2012) 60
10.7 Sources for SmartClient Ajax Platform (last accessed: Aug

29, 2012) . 61
10.8 Sources for SproutCore (last accessed: Aug 29, 2012) 62
10.9 Search hits and posts for Bindows 76
10.10Search hits and posts for Cappuccino 76
10.11Search hits and posts for DHTMLX 76
10.12Search hits and posts for Dojo Toolkit 77
10.13Search hits and posts for Ext JS 77
10.14Search hits and posts for qooxdoo 78
10.15Search hits and posts for SmartClient 78
10.16Search hits and posts for SproutCore 79
10.17Total scores and classification of evaluation candidates 87

11.1 Ratios has a single model class 93

c

d

Acknowledgements

e

f

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources / resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the used
sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die
den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe.

Place/Ort Date/Datum Signature/Unterschrift

g

	1 Introduction
	2 Web Applications
	2.1 What is a Web Application
	2.2 Properties of Web Applications
	2.2.1 Advantages
	2.2.2 Disadvantages

	2.3 Types of Web Applications
	2.3.1 Dynamically Generated but Static Web Pages
	2.3.2 Rich Internet Applications with Plug-ins
	2.3.3 Dynamic Web Applications with JavaScript

	2.4 Desktop-Like
	2.4.1 Email Presentation in a Webmail Client
	2.4.2 Moving an Email in a Webmail Client
	2.4.3 Navigating Between Folders
	2.4.4 Usability considerations

	3 Frameworks
	3.1 Definition
	3.2 Characteristics of Frameworks
	3.3 Tasks of a Framework
	3.4 Frameworks, Libraries and Toolkits
	3.4.1 Framework
	3.4.2 Library
	3.4.3 Toolkit

	4 State of the Art in Framework Evaluation
	4.1 The Classification of Evaluation Methods
	4.2 Evaluation is not Decision
	4.3 The Decision Process
	4.4 Evaluation Model
	4.5 Evaluation Methods
	4.5.1 Weighted Scoring Method
	4.5.2 Analytical Hierarchy Process
	4.5.3 Outranking Method
	4.5.4 Fuzzy Based Approaches

	5 The Decision Process
	6 Stage I: Evaluation Model
	6.1 Getting Started (sta)
	6.2 Documentation (doc)
	6.3 Community (com)
	6.4 Features (fea)
	6.5 User Interface (uif)
	6.6 Development Setting (dev)

	7 Stage II: Candidate List
	8 Stage III: Requirements
	8.1 Derivation of Requirements
	8.2 Requirements Listing

	9 Stage IV: Screening
	9.1 Screening Execution
	9.2 Screening Result
	9.3 Remarks

	10 Stage V: Evaluation
	10.1 Candidates
	10.1.1 Bindows
	10.1.2 Cappuccino
	10.1.3 DHTMLX Suite
	10.1.4 Dojo Toolkit
	10.1.5 Ext JS
	10.1.6 qooxdoo
	10.1.7 SmartClient Ajax Platform
	10.1.8 SproutCore

	10.2 Evaluation Results
	10.2.1 sta Getting Started
	10.2.2 doc Documentation
	10.2.3 com Community and Presentation
	10.2.4 fea Features
	10.2.5 uif User Interface
	10.2.6 dev Development Setting

	10.3 Results Summary
	10.3.1 Recommended: Ext JS, qooxdoo, SproutCore
	10.3.2 Unsure: Dojo Toolkit, SmartClient, Cappuccino
	10.3.3 Not Recommended: Bindows, DHTMLX

	11 Validation
	11.1 Description of the Validation Process
	11.2 Prototype Design
	11.3 Framework Selection
	11.4 Prototype Implementation
	11.4.1 Getting started
	11.4.2 Transforming the getting started app
	11.4.3 Improving the input possibilities
	11.4.4 Refinements

	11.5 Conclusions

	12 Conclusion
	Bibliography
	A Framework List
	B Detailed Evaluation Result
	List of Figures
	List of Tables
	Acknowledgements
	Statutory Declaration

