
Daniel Markart

Implementing reliable Android
applications

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Fernitz, October 2014

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Android applications are distinguishable from their traditional Java coun-
terparts by many unique features. The often unpredictable life cycle due
to limited resources of many mobile devices and the dependence on Web
Services are only two examples.

This work will answer the question how to make a standard Android
application more reliable. The big part of a test strategy in the development
phase is not considered in this work though. The key subjects are runtime
fault detection and event handling.

The theoretical part is split into three sections. The first one is a brief
introduction into the Android architecture, the life cycle of applications
and the most important components. The second section is about runtime,
and service monitoring. The last section is about fault life cycle techniques,
redundancy and fault injection. There is also an introduction of some
Android libraries which can help to introduce reliability methodologies into
the application.

The first section of the practical part is the implementation of an Android
(service) monitoring library. It is explained, which Android key components
are used, how they are implemented, and why they were selected in favor
to their alternatives.

The second section of the practical part, is the overview of an implemen-
tation of a client server system. The client is a fully operational Android
application, that uses various instances of the service monitoring library.
The monitors will continuously scan the system and services for break-
downs/faults and activate event handlers when faults are detected. The

iv

monitoring points are carefully selected specific weak points in an Android
environment. The server part is a partly mocked jetty server with a Swing
GUI.

v

Zusammenfassung

Obwohl Android Projekte in der Programmiersprache Java geschrieben sind,
haben sie doch sehr viele Eigenheiten, welche sie von ihren traditionellen
Java Gegenstücken abheben. Zu den Besonderheiten zählen der einzigartige
life cycle der Android Programme, sowie die sehr große Abhängigkeit von
Web Services.

Diese Arbeit befasst sich mit der Frage, wie man zuverlässige Applikationen
für das Android System erstellt. Es geht vor allem um das Erkennen und
Eindämmen von Fehlern während der Laufzeit. Auf den großen Bereich des
Testens von Android Projekten in der Entwicklungsphase wurde dagegen
bewusst nicht eingegangen.

Der erste Abschnitt des theoretischen Teils, ist eine kurze Beschreibung des
Android Betriebssystemes. Danach wird auf runtime monitoring und service
monitoring im Allgemeinen eingegangen. Der dritte Abschnitt befasst sich
mit anderen Methodiken die für die implementation einer zuverlässigen
Android Applikation grundlegend sind. Darunter die Theorie hinter fault
lifecycle techniques, redundancy und fault injection. Des weiteren werden
einige libraries aufgelistet, die den Programmierern helfen, ein zuverlässiges
Programm zu erstellen.

Der praktische Teil gliedert sich ebenfalls in zwei Abschnitte. Der Erste ist
die Implementierung einer (Service) monitoring library. Hier wird darauf
eingegangen wie man eine library erstellt und welche speziellen Android
Komponenten eingesetzt werden.

Der zweite Achnitt beschreibt den Aufbau einer Android Applikation, mit
welcher veranschaulicht wird, wie die service monitoring library verwendet

vi

wird. Es werden verschiedene Monitore implementiert, welche lokale, als
auch Web Services kontinuierlich überprüfen und im Fall eines Problemes
verschiedene Lösungmöglichkeiten bieten. Bei den Problemen, sowie den
Lösungsmöglichkeiten, wird speziell auf Android spezifische Varianten
eingegangen. Des Weiteren wurde ein kleiner Jetty Server implementiert,
der den Kommunikationsgegenpart der Applikation darstellt und eine
Swing GUI besitzt.

vii

Contents

Abstract iv

1 Android 1
1.1 Android architecture . 1

1.1.1 ART . 4

1.2 Application life cycle . 5

1.3 Market share and usage . 7

1.4 Android terminology . 7

2 Runtime Software Monitoring 11
2.1 Fault Detection Monitor . 12

2.1.1 Basic Monitor Layout 12

2.1.2 Monitoring Points . 14

2.1.3 Placement . 14

2.1.4 Platform . 15

2.1.5 Implementation . 15

2.1.6 Example: Monitoring Oriented Programming 15

2.2 Service Monitoring . 17

2.2.1 What to monitor . 18

2.2.2 Actual monitoring . 19

2.2.3 Service Level Agreement 20

2.2.4 Service Monitor Layout 20

2.2.5 Test/Monitor the Monitoring 21

2.3 Monitor Power Consumption 24

2.3.1 Energy Efficient Service Monitoring 24

2.3.2 Outsource Web Service monitoring completely to the
Server with GCM . 25

2.3.3 General Monitor Methodologies for Energy Efficiency 26

viii

Contents

2.4 Common Monitoring Problems 27

3 Methodologies for a reliable system 29
3.1 Fault life cycle techniques . 29

3.1.1 Fault prevention . 29

3.1.2 Fault removal . 30

3.1.3 Fault tolerance . 30

3.1.4 Fault forecasting . 30

3.2 Redundancy . 31

3.2.1 Information Redundancy 31

3.2.2 Hardware Redundancy 31

3.2.3 Software Redundancy 32

3.2.4 Android / Mobile phone specific redundancy 34

3.3 Dependency injection . 35

3.3.1 Dagger . 35

3.3.2 Fault injection . 36

3.4 Library Tape . 39

4 Practical Work on the Effective Control System 41
4.1 Overview . 41

4.2 Reliability in the WKS system 43

4.2.1 What is done . 43

4.2.2 Future . 43

5 Service Monitoring Library 45
5.1 User stories . 46

5.2 Structure . 47

5.2.1 Function observeThis 48

5.2.2 Function handleEvent 48

5.2.3 Function executeMonitoring 50

5.2.4 Function stopMonitoring 50

5.2.5 AlarmManager . 50

5.2.6 ScheduledExecutorService 54

5.3 Miscellaneous . 55

6 Test Environment 56
6.1 Server . 57

ix

Contents

6.2 Client . 59

6.2.1 MTClient UI and capabilities 60

6.2.2 GCM Capability . 63

6.2.3 SMS Capability . 67

6.2.4 Application Shut Down 71

6.2.5 Monitoring . 72

6.3 Monitoring Results . 76

6.3.1 General Results . 76

6.3.2 Monitor Connectivity 77

6.3.3 Monitor Server . 77

6.3.4 Monitor GCM . 78

6.3.5 Reliability . 79

6.3.6 Conclusion . 80

Bibliography 86

x

List of Figures

1.1 Android architecture . 3

1.2 Android build process . 4

2.1 Monitoring Architecture . 13

2.2 Web Service Characteristics . 19

2.3 Service Monitoring Architecture 21

2.4 On/Off Device Service Monitoring difference 25

3.1 Fault classes . 37

4.1 WKS Concept . 42

5.1 Monitor class diagram . 47

5.2 Monitor flow chart . 49

6.1 Client server overview . 57

6.2 Server GUI . 58

6.3 Server class diagram . 59

6.4 Client class diagram . 60

6.5 MTClient UI . 61

6.6 Monitor state handling . 76

xi

1 Android

Android1 is a Linux based operating system, which was originally designed
for mobile devices such as smart phones or tablets. It is developed and
maintained as an open source project by the Open Handset Alliance2, led
by Google. At the beginning, only the company Android Inc, which was
founded in 2003, was working on the project. This company was, however,
already financially backed by Google. In 2005, Google bought Android
Incorporated. In 2007, Google founded the Open Handset Alliance. The An-
droid source code is released under the Apache License3 and accessible for
everyone on GoogleSource4 or GitHub5 [Gandhewar and Sheikh, 2010].

1.1 Android architecture

As seen in Figure 1.1, the Android software stack consists of 5 layers:
applications, application framework, libraries, Android runtime and the
Linux kernel. The applications layer offers frequently used and essential
applications out of the box. The application framework provides important
application programming interfaces (APIs) for the applications layer. The
Library layer contains, a special for embedded Linux based mobile devices,
tuned standard C system library, as well as media, database and security

1http://www.android.com (visited on 12/08/2013)
2http://www.openhandsetalliance.com/ (visited on 12/08/2013)
3https://www.apache.org/licenses/LICENSE-2.0 (visited on 12/08/2013)
4https://android.googlesource.com/ (visited on 04/27/2014)
5https://github.com/android (visited on 04/27/2014)

1

http://www.android.com
http://www.openhandsetalliance.com/
https://www.apache.org/licenses/LICENSE-2.0
https://android.googlesource.com/
https://github.com/android

1 Android

libraries. It also contains the Android runtime [Maia, Nogueira, and Pinho,
2010 and Arzt et al., n.d.].

The bottom layer is the Linux kernel. This is a hardware abstraction layer,
which provides device driver and enables the other layers to interact with the
hardware. The Android version as of December 2013 (Android 4.4 KitKat)
used a modified Linux kernel 3.x. Until version 4.0 Ice Cream Sandwich, the
Linux kernel with the version number 2.6 was used.

Android uses its own Java virtual machine named Dalvik and not the origi-
nal one. Dalvik is a virtual machine especially optimized for the needs of
mobile devices with constrained memory and central processing unit (CPU)
capabilities6. Dalvik just-in-time (JIT) compiles and runs Dalvik executable
(.dex) files, which are wrapped in the Android package (.apk) file. Dalvik
is an infinite register-based machine unlike the stack based original Java
virtual machines. Therefore it requires less computation time, as well as
30% less instructions to finish the same tasks as the original stack based
VM. Every Android application runs in its own instance of the VM and
therefore has its own process. No applications have direct access to one
another [Nimodia and Deshmukh, 2012 and Kumar Maji et al., 2010].

Android applications are written in Java. When the project is compiled, it is
saved as an Android package (.apk) file (see Figure 1.2). Such an .apk file
holds .dex files which are Java .class files converted to Dalvik byte code, as
well as the AndroidManifest.xml, and compiled/uncompiled resources for
the application7.

Every permission that is needed for the application to work properly has
to be declared in the AndroidManifest file. If the application tries to access
an API without declaring the corresponding permission, an exception is
thrown.

6https://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is (vis-
ited on 12/08/2013)

7https://developer.android.com/tools/building/index.html (visited on
12/08/2013)

2

https://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is
https://developer.android.com/tools/building/index.html

1 Android

Home Contacts Phone Browser ...

Applications

Activity
Manager

Window
Manager

Content
Providers

View System
Notification

Manager

Application Framework

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

XMPP Service

Surface
Manager

Media
Framework

SQLite

Libraries

OpenGL|ES FreeType WebKit

SGL SSL libc

Android Runtime

Core Libraries

Dalvik Virtual
Machine

Display
Driver

Camera
Driver

Bluetooth
Driver

Flash Mem.
Driver

Binder (IPC)
Driver

Linux Kernel

USB Driver
Keypad
Driver

Wifi Driver Audio Drivers
Power

Management

Figure 1.1: Android architecture.

3

1 Android

Android
Project

Compilation and
Packaging

Android Package (.apk)

.dex files
resources

.arsc

uncompiled resources

AndroidManifes.xml

Signing
Device or
Emulator

ADB

Figure 1.2: Android build process.

Android’s main aim is to support the instruction set architecture ARM8,
as most mobile devices, such as smartphones and tablets, are ARM based.
Support for the x86 architecture9 is provided by the Android x86 project10.
For example Google-TV11 uses a modified x86 version of Android. It is also
possible to run the emulator native on a x86 based computer.

1.1.1 ART

Android Runtime (ART)12 is a new runtime, expected to replace Dalvik. It
is already included as an experimental preview in Android 4.4 KitKat but
not turned on by default. The Android L preview, which was released at
the Google IO 2014 indicates that ART will replace Dalvik as the default
runtime in this version. Instead of JIT compiling every time an application is

8http://www.arm.com/products/processors/instruction-set-architectures/

index.php (visited on 12/08/2013)
9https://en.wikipedia.org/wiki/X86 (visited on 12/08/2013)

10http://www.computerworld.com/s/article/9222323/Google_s_Android_4.0_

ported_to_x86_processors (visited on 12/08/2013)
11http://www.google.com/tv/ (visited on 12/08/2013)
12https://source.android.com/devices/tech/dalvik/art.html (visited on

12/08/2013)

4

http://www.arm.com/products/processors/instruction-set-architectures/index.php
http://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/X86
http://www.computerworld.com/s/article/9222323/Google_s_Android_4.0_ported_to_x86_processors
http://www.computerworld.com/s/article/9222323/Google_s_Android_4.0_ported_to_x86_processors
http://www.google.com/tv/
https://source.android.com/devices/tech/dalvik/art.html

1 Android

started, like in Dalvik, ART uses ahead-of-time (AOT) compilation when the
application is first installed. This turns them into truly native applications,
which can be executed without JIT compiling. In theory this process will
speed up many application and reduce the overall power consumption. One
drawback is that applications need more space on the internal storage [Hall
and Anderson, 2009].

1.2 Application life cycle

Many Android devices have limited memory capabilities. Therefore, the
Android system manages low memory by terminating unneeded running
applications without consultation of the user. This means that the system is
allowed to kill a running background process at any time.

For every running application, Android creates an Application object. This
is then started in a new process, with a unique ID under a unique user. The
programmer is able to extend this class and declare it in the AndroidMani-
fest, otherwise Android creates the default object [Burnette, 2009].

The Application object is alive as long as any other component of the
application, like an Activity or a Service, runs. Such an object has the
following life cycle methods:

• onCreate() is the first method of the application to start before all other
components
• onLowMemory() is called, when the Android system decides that this

application should be terminated due to low memory
• onTerminate() isn’t called in production and only used for testing
• onConfigurationChanged() is called whenever the configuration changes

(i.e. when switching from portrait to landscape mode)

If Android runs low on memory and needs to terminate some processes, it
does that with respect to the following priority system.

5

1 Android

Process status Description Priority
Foreground A foreground application, is an ap-

plication where an activity is active,
and the user is interacting with this
activity. Also if an onReceive() func-
tion of a broadcast receiver is running,
or when a service runs one of his life
cycle methods.

1

Visible This is, when an activity is active but
the user isn’t interacting with it.

2

Service The application has a running service,
but no current activity.

3

Background Applications are in the background,
when they are still in a least recently
used (LRU) list of the Android system,
although they have no current activity
or a running service.

4

Empty This is an application without any ac-
tive components.

5

Table 1.1: Android life cycle priorities

6

1 Android

1.3 Market share and usage

As of September 2014 it is claimed that the market share of Android for
smartphones has reached 83%13. According to Google, more than 1 billion
devices were already activated running the Android operating system14.

In addition, Android is not only installed on smartphones and tablets. Due
to its open source approach, it is easier to port to new hardware. There
are many more products, which use Android as their operating system.
Google Glass15 is running a slightly modified version of Android 4.0. There
are also notebooks, netbooks, smartbooks, ebook readers, wristwatches,
headphones16, Android operated game consoles, cd and dvd players, satnav
systems, home automation systems, mirrors, cameras, landlines, treadmills
and even refrigerators that run Android as their main operating system.

1.4 Android terminology

The Android operating system defines some unique elements, which are
utilized by nearly all applications [La and Kim, 2009].

Context An Android context is an interface to global information about
an application environment, which is needed to load resources, launch a

13https://www.idc.com/prodserv/smartphone-os-market-share.jsp (visited on
09/28/2014)

14Rossignol, 2013.
15https://www.google.com/glass/start (visited on 12/08/2013)
16http://www.theregister.co.uk/2011/01/12/now_audio_admiral_touch/ (visited

on 12/08/2013)

7

https://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.google.com/glass/start
http://www.theregister.co.uk/2011/01/12/now_audio_admiral_touch/

1 Android

new activity, get a file path, create a view or obtain a system service.

Activity Every time the application is visible on the display of the device
an activity needs to be active. The activity shows the user interface (UI),
which enables a person to directly interact with the application. Most of the
time activities show the application in a full screen window to the user. Each
activity and the corresponding base context is unique in the application
instance.

Fragment The fragment is a part of the UI and can only be shown in an
activity. Often the activity holds only one fragment. If that is the case, the
fragment is filling the whole screen. They were originally introduced to help
scale the applications to larger screen sizes, as the activity can show more
than one fragment at a time (e.g. the smartphone version of the application
shows one fragment and the tablet version two).

Service A service has access to the resources of the application, like the
activity or a fragment, but is used to perform a longer-running operation
without interaction with the user, much like a Linux Daemon. It also doesn’t
supply functionality for other applications to use. As long as a service is
running, the application process is alive. To be able to use a service, it must
be registered in the Android manifest.

BroadcastReceiver This is a base class, which enables the application to re-
ceive intents sent by sendBroadcast. It can also catch system based broadcasts,
for example when the device is started or shut-down or when the device
gained access to the internet. A BroadcastReceiver can be registered static or
dynamic. Static receivers can receive an intent even if the application isn’t
running, but dynamic receiver will be unregistered when the application
is closed. Broadcasts sent with sendBroadcast are system wide but can be

8

1 Android

equipped with permissions. It is also possible to send local (application
level) broadcasts with the LocalBroadcastManager17.

Intent Intents are messages used to activate services, activities and broad-
cast receivers. They can be seen as an ’intention’, which holds bundles of
information to perform an action. In the case of broadcast receivers1.4, they
are holding information about something that happened.

ContentProvider A content provider provides access to a structured set of
data. They are the standard connectors between data of two processes.

AndroidManifest An AndroidManifest.xml file is an essential part of every
Android application.

• It provides core information about the application.
• It states the Java package.
• It describes the application, the activities, the services, broadcast re-

ceivers and content providers.
• It declares permissions, which are necessary to use the application

and which permissions are necessary for others to interact with this
application.
• It declares the minimum Android API version. Devices with a lower

level cannot run this application.

Permissions They are one of the most important security features of An-
droid. Android is a privilege-separated operating system. This means that
every application can only use APIs, if the corresponding permissions are
set in the AndroidManifest file. Every application has a distinct system iden-
tity. Therefore, every application is isolated from other applications and the
rest of the system.

17https://developer.android.com/reference/android/support/v4/content/

LocalBroadcastManager.html (visited on 01/04/2014)

9

https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html

1 Android

AlarmManager The Android AlarmManager has access to the alarm ser-
vices. With its help, the application developer is able to schedule the execu-
tion of code in the future. An intent is used to register a new AlarmManager
and when the alarm goes off, this intent is broadcasted by the system. If
the application registers a static receiver for this intent, it is possible for the
AlarmManager to start the application, if not already running, and execute
the code placed in the receiver.

GCM Google Cloud Messaging (GCM) for Android allows a server to send
data to any Android device. The server doesn’t need to hold a port open, or
know the IP address of the device, but the device has to register it’s own
GCM ID at the server. After sending a message via GCM, the Google cloud
services automatically know how to find the device with the corresponding
GCM ID.

10

2 Runtime Software Monitoring

Runtime software monitoring is an approach to analyze the state of a run-
ning system. It is generally used to add a defense layer against catastrophic
failures in programs and to support state information in tests. But it is also
used in other cases such as

• security or safety policy monitoring
• debugging
• testing
• verification
• validation
• profiling
• fault protection
• behavior modification (e.g., recovery)
• performance analysis
• software optimization
• diagnosis

Sometimes, a monitor provides information about the fault to the user and
guides the system to recover from faults or even revert the faulty states.

The execution of a monitor can be either time-driven or event-driven [Albari,
2005]. A time-driven monitor (called sampling) collects information about
the execution synchronous or asynchronous to the normal execution state.
If asynchronous, information is requested by the monitoring system itself.
Such an approach is insufficient for a behavioral analysis, as it only provides
a summary of statistical information of the execution process. An event-
driven monitor (tracing) collects all occurrences of an event regardless of
a time interval. Thus it often creates a larger volume of data, than the

11

2 Runtime Software Monitoring

time-driven approach.

2.1 Fault Detection Monitor

A fault detection monitor can prove, if the behavior of an application com-
plies with a pre defined property. The developer needs to specify formal
requirements of the application from whom the monitors are often synthe-
sized. A fault detection monitor only analyzes one or a few execution traces.
Therefore, it is by far not as ’complete’ as other approaches try to be. It also
works directly with the actual system, circumventing an error prone and
very difficult step of formally modeling the whole system. [Delgado, Gates,
and Roach, 2004 and Wikipedia, 2013].

In contrast, testing, model checking and theorem proving are aimed to
ensure universal correctness of programs. These traditional verification
techniques are much more complex and very difficult, time consuming,
and expensive to implement. Of course, a monitor cannot replace them in
general, but adds an additional reliability layer and could replace some very
difficult to implement parts of a testing system [Wikipedia, 2013].

2.1.1 Basic Monitor Layout

Figure 2.1 shows that a monitor basically consists of 2 parts, the observer
and the analyzer. The observer checks the state of the executing software
either by getting the state automatically when some declared events are
triggered, or by pulling them. The developer has to provide the monitor
with a set of properties. These properties decide which states are correct
and which of them are faulty. Every state is sent from the observer to the
analyzer, which compares them to the pre defined expected values. If an
evaluated state does not meet the properties, the state is automatically sent
to the event handler. The event handler then has the mission to cope with
the faulty state. The result of the positive monitoring is mostly written into

12

2 Runtime Software Monitoring

Observer

Analyzer

Requirements

Event Handler

Executing
Software

Log

Results of
analysis.

Properties

Response

State

Monitor

Process

Artifact

Data

Figure 2.1: Monitoring Architecture.

a log for the developers. There are different possibilities to respond to a
violation:

• Inform the user.
• Halt the system.
• Recover from or revert the faulty state.
• Memory rollback.
• Exception handling.

Event handlers have different response effects. A response effect states how
the normal execution process can be altered by the monitor. Some event
handlers just create a log and have no effect on the behavior of the program.
Other monitors can set a break point and let the user decide how to continue,
these monitors are called ’user controlled monitors’. If the event handler
performs a recovery strategy by itself, it is an automated system.

13

2 Runtime Software Monitoring

It is very common in practice that the monitored system is heavily modified,
to be able to use a monitor effectively. In these cases, the monitor and the
monitoring system are often not as nicely separated as shown in Figure 2.1.
Then they are fused to one interleaving system and the running system deals
with tasks the monitor normally should handle. There are of course different
possibilities to implement a monitor. The main characteristics of every
monitor are, as hinted in Figure 2.1, monitoring points, placement, platform,
and implementation. The next sections will provide a short introduction
into these characteristics [Delgado, Gates, and Roach, 2004].

2.1.2 Monitoring Points

These are the points in the execution program, where events are sent to
the monitor and the monitoring code starts its execution. The actual points
can be classified manually or automatically. In the manual classification,
the developer has to include the code manually at the desired places of
the source code. The automatic classification is performed by tools, which
detect those points by themselves.

2.1.3 Placement

The placement decides from where the monitoring code is executed. It
is either inline or externally performed. Inline placement means that the
monitoring code shares the resources of, and is called by the executing
program. The monitoring code, including observer, analyzer and event
handler are placed directly in the source of the executing program. An
offline placed monitor doesn’t share its resources, as it runs in a distinct
thread or process. It is even possible to place this kind of monitor at a
separate device. If the program doesn’t have to wait for the analyzer to
finish before continuing the main task, it is an offline asynchronous monitor.
If it has to wait, it is an offline synchronous monitor.

14

2 Runtime Software Monitoring

2.1.4 Platform

Monitors can be either implemented in the software as source code or
they can be a piece of hardware. Hardware monitors are for example a
microprocessor with sensors attached to the target system.

2.1.5 Implementation

The implementation characteristic states in which processes the monitor is
running.

• Single Process: The monitor runs in the same process as the target
machine.
• Multiprogramming: The monitor is executed on the same processor

but a different process or thread.
• Multiprocessor: The monitor and the monitored program run on

different processors.

2.1.6 Example: Monitoring Oriented Programming

An example for a generic runtime fault detection monitor framework, is
Monitoring-Oriented Programming (MOP)1. In MOP, the developer specifies
properties which are automatically synthesized into runtime monitors. These
monitors, as well as the dedicated user defined handling code, are merged
with the target application on compile time to check the dynamic behavior
on runtime [Delgado, Gates, and Roach, 2004].

For Java applications, JavaMop was created [F. Chen and Roşu, 2005]. As
JavaMop calls some classes, which are not part of the Android runtime, it is

1http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming

(visited on 01/17/2014)

15

http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming

2 Runtime Software Monitoring

not compatible from the get-go, but [Falcone, Currea, and Jaber, 2013] and
[Falcone and Currea, 2012] demonstrated that it can be modified to work
on Android with little effort.

JavaMop uses the syntax of AspectJ2. The principle of MOP is not necessarily
program verification, but to avoid the verification of an implementation
against its specification by altering the flow at runtime to not let it go wrong
in the first place. JavaMop supports many different logical formalisms, in
which a system behavior can be described:

• ERE (extended regular expressions)
• FSM (finite state machines)
• FTLTL (future time linear temporal logic)
• CFG (context free grammars)
• PTLTL (past time linear temporal logic)
• ptCaRet (past time linear temporal logic with calls and returns)

MOP will then translate this specification into generic monitor code. Java-
Mop then translates it to AspectJ code. The event handling code can then be
written in Java by the user.

For example, Listing 2.1 shows the specification of a SafeLock in JavaMOP.
Here is described that every thread has to release a lock which was acquired.
This specification consists of 5 parts. The header states the modifiers, the
parameters and the boundary, in within this property is monitored (in
this case any method defined in the Main class). The second part is the
declaration of 2 variables: acq count and rel count which are important for this
monitor. The third part is an AspectJ declaration of 2 events: the acquisition
of a lock and the release of a lock (acq and rel).

1 unsynchronized d e c e n t r a l i z e d SafeLock (Lock l ; Thread t)
2 within Main : ∗ {
3 i n t acq count ; r e l count ;
4 event acq a f t e r (Lock l ; Thread t) :
5 c a l l (∗ Lock : acquire ()) && t a r g e t (l) && thread (t)
6 {++ acq count ; }

2https://eclipse.org/aspectj/ (visited on 01/05/2014)

16

https://eclipse.org/aspectj/

2 Runtime Software Monitoring

7 event r e l a f t e r (Lock l ; Thread t) :
8 c a l l (∗ Lock : r e l e a s e ()) && t a r g e t (l) && thread (t)
9 {++ r e l count ; }

10 c fg : S > S acq S r e l j eps i lon
11 @viola t ion {
12 System : out : p r i n t l n (acq count + \ acquires and ”
13 + r e l count + \ r e l e a s e s a t l i n e ” + Loc) ;
14 }
15 }

Listing 2.1: SafeLock in Java MOP.

The fourth part states the used logical formalism. In this case it is cfg (context
free grammars). The last part is the event handler, this block is called if a
violation of the specification was detected on runtime [F. Chen, D. Jin, et al.,
2009].

2.2 Service Monitoring

The scope of the practical part of this work will answer the question how to
implement an Android service monitor. As most Android applications are
highly dependent on online services, monitoring them gives the system a
chance to cope with a defect. To continuously monitor a service and sending
error reports to the persons in charge even if the application isn’t using
the service at the moment, enables administrators to fix the problems as
soon as possible or lets the event handler of the application cope with this
problem.

Service Oriented Architecture3 is a frequently used architectural style, espe-
cially in mobile applications. In such a system, there are many dependencies
between services but every service stands for its own or in the most cases are
even completely uncoupled from the program or the device [Papazoglou,
2003].

3https://en.wikipedia.org/wiki/Service-oriented_architecture (visited on
01/19/2014)

17

https://en.wikipedia.org/wiki/Service-oriented_architecture

2 Runtime Software Monitoring

As different web services often have the same functionality and interface,
they are nowadays prepared to be switched automatically, if one of them
fails. This is achieved with technologies like UDDI [Bellwood et al., 2002] or
WSDL [Christensen et al., 2001]. For other services, this kind of automatic
fail save functionality must be implemented by hand. [Ameller and Franch,
2008]

Often, online services are used to send messages to the application. There-
fore, the application does not try to connect to the service by itself. In these
cases a service monitor is even more important, as the user expects messages
automatically to be sent to the device.

The life cycle of an Android application differs from the ones on a tradi-
tional computer (see Chapter 1.2). If the application is solely waiting for
the user to interact with the user interface and nothing else (no Android
service is running and keeping the application alive), the Android system
will eventually kill the running process automatically if the activity isn’t
active. This happens after around 40 minutes on a Nexus4 with KitKat4 and
no particularly high memory usage. This is due to the fact that Android
applications are often broadcast driven in contrary to applications on a
normal computer, where they will just stay alive, until the user decides to
shut them down.

2.2.1 What to monitor

Figure 2.2 represents a web service quality model based on ISO/IEC 9126

[Standarization, 2001]. This model foremost shows the technical characteris-
tics of a high quality web service.

Not all of these characteristics can be monitored. Many of them can be
evaluated and measured in some way, but reliability, portability, usability
and maintainability can not be monitored because they are software design

4http://www.android.com/kitkat/ (visited on 03/16/2014)

18

http://www.android.com/kitkat/

2 Runtime Software Monitoring

Web Service
Technical Characteristics

(ISO/IEC 9126)

Functionality

Accuracy

Suitability

Interoperability

Security

Auditability

Functionality
compliance

Usability

Accessibility

Configurability

Integration

Management

Usability
compliance

Efficiency

Performance

Resource
utilisation

Time behaviour

Efficiency
compliance

Maintainability

Analysability

Changeability

Testability

Maintainability
compliance

Portability

Adaptability

Installability

Coexistence

Replaceability

Portability
compliance

Figure 2.2: Web Service Quality Characteristics.

characteristics. Therefore, they simply won’t change while the software is in
a running and executing state.

Only a small subset of the remaining stated characteristics is actually mon-
itorable. Especially accuracy, time behavior and availability are the key
characteristics to be monitored in a service monitoring system.

2.2.2 Actual monitoring

There are many pieces of information necessary to reasonably monitor the
accuracy of a service. Many services are complex entities, it is often not
sufficient to just send one simple request to actually prove accuracy. The
developer needs to know the concrete functionality of the service and often
has to implement sophisticated tests to actually confirm if the delivered
data is accurate.

To monitor the characteristic availability, it is sufficient to ping the service or
to send a simple request. By testing and confirming accuracy, the availability
check is already included, as the service must be reachable when trying to

19

2 Runtime Software Monitoring

confirm its accuracy.

The last characteristic to check is time behavior. The most important part
there is the response time. For most services, it is sufficient to count the time
necessary for the service to fulfill one request. In a mobile device environ-
ment, the problem with response time monitoring of server side services, is
the ever changing network speed when the device is not stationary.

All server side monitoring tests depend on the connectivity state of the
mobile device, which can change from one second to another. For many
monitor implementations a generous connection timeout can be set.

2.2.3 Service Level Agreement

This is the part of a service contract where the service is formally defined.
service level agreements (SLAs) provides information about the availability,
serviceability and performance attributes of a service. Sometimes other
information like billing, which are also important for customers are in-
cluded in a SLA. An already existing SLA can be the basis for well defined
requirements in the service monitoring environment. [L.-j. Jin, Machiraju,
and Sahai, 2002]

2.2.4 Service Monitor Layout

The basic layout of a service monitor (see Figure 2.3) is very similar to the
layout of a fault detection monitor described in Chapter 2.1.1. The main
difference is that the executing program not necessarily commands the
monitor and doesn’t give its state to the monitor. Only if the analyzer part of
the monitor evaluated that one service is in a malicious state, an information
exchange with the target program takes place. Then the analyzer sends a
message to the event handler. The event handler, which is already part of
the executing program, decides how to handle the problem. The service

20

2 Runtime Software Monitoring

Observer

Analyzer

Requirements
(derived from

SLAs)

Event Handler

Executing
Software

Log

Results of
analysis.

Properties

Response

Process

Artifact

Data

Monitor Internal Services

External Services

External ServiceExternal ServiceExternal Service

External ServiceExternal ServiceInternal Service

observing

observing

Figure 2.3: Service Monitoring Architecture.

level agreements for each service can be set via the requirements. For web
services a WSLA [Keller and Ludwig, 2003] can be used.

2.2.5 Test/Monitor the Monitoring

In practice, monitoring often doesn’t work as expected in a case of emer-
gency, because it stopped unnoticed long ago. This often happens, when the
monitoring itself is not monitored or tested properly. In daily use, nobody
will notice that the monitoring system experienced an error, or is running in
a faulty state, as the event handler normally only starts his work in the oc-
currence of special cases like a failing web service. Therefore, an application
can work as expected for months or even years despite having a defective
monitoring system and without anyone noticing.

21

2 Runtime Software Monitoring

An important technique to improve the reliability of the monitoring system
is to implement automatic tests. Usually, after every change in the source
code, the programmers should start a test suite, which verifies the function-
ality of the whole program. These tests should check if the event handlers
are working as expected, if the observer behaves like expected and if the
monitors are even starting. If the observer triggers the event handler, can
be confirmed by simulating certain events. The observed services can be
mocked or stubbed in the test suite for the test runs, these mock-ups can sim-
ulate specific events, which are not occurring frequently in the production
environment.

There is a variety of different mock-up possibilities for Android and Java
respectively. Many free libraries are available, which ease the use of mock-
ups. Even more complex structures like an HTTP-server can be mocked
with nearly no effort, when using existing libraries like MockHttpServer5.

Furthermore, there are other mocking frameworks like EasyMock6, which
can make a mock object out of every available object. After the creation of
such a mocking object, the developer can set the return values and mocking
behavior of the object when calling the available functions.

A drawback in only running standard tests of the monitoring system is
that they don’t show the long term reliability of the system. What if the
monitoring system stops working after the 200th instance? Nobody would
notice this failure until an emergency occurs. A remedy for this problematic
case would be to actually monitor the monitoring. If this is implemented
properly it can be seen as an additional reliability layer. Yet, monitoring the
monitoring system could proof to be difficult to implement, because it could
suffer from the same problems as the actual monitoring itself. Therefore,
the implementation of the backup monitoring has to be different than that
of the main system. A compromise would be to implement the monitoring
system in such a way that if it crashed, it can send a report to the server,
but sometimes implementing this in such a way simply isn’t possible. To

5https://github.com/vladimirvivien/workbench/tree/master/

android-tutorials/MockHttpServer (visited on 02/28/2014)
6http://easymock.org/ (visited on 02/28/2014)

22

https://github.com/vladimirvivien/workbench/tree/master/android-tutorials/MockHttpServer
https://github.com/vladimirvivien/workbench/tree/master/android-tutorials/MockHttpServer
http://easymock.org/

2 Runtime Software Monitoring

send reports to the server if it works like expected (heartbeat7) is maybe
not a bad idea to test the reliability of the monitoring system in the beta
phase. It is also easy to implement but adds to the overhead a monitor is
causing anyway. Also, every user would have to be registered, or it wouldn’t
be clear which device is the source of the heartbeat, and it would often be
unclear if the monitoring stopped, because it actually failed or the user just
deactivated the device, or if it went out of reception. A similar solution
available is to implement a second monitor on the same device, which
expects a heartbeat of the first monitor.

A possibility to verify the long term reliability of the monitoring system is to
roll out a modified application just to the developers, the staff and test users.
This modified version would log and maybe send detailed reports about
the monitoring and the system. The biggest drawback in this solution is the
limited variety of hardware and triggered use cases from the developers.
A real user would certainly use the application in another way. Also, it
is a very time consuming and expensive way to confirm reliability of the
system.

Usual unit tests could simulate a test case for long term reliability, but it is
hard to simulate all the different states a mobile device might go through.
The normal usage of an Android mobile phone includes restarts, receiving
calls and running many other applications concurrently. There are for sure
some special events the developers will not think about when implementing
a sophisticated automated test run.

The subjects monitor testing methods and reliability testing is explored in
greater detail in Chapter 3.3.

7http://en.wikipedia.org/w/index.php?title=Heartbeat_(computing)&oldid=

582832665 (visited on 02/26/2014)

23

http://en.wikipedia.org/w/index.php?title=Heartbeat_(computing)&oldid=582832665
http://en.wikipedia.org/w/index.php?title=Heartbeat_(computing)&oldid=582832665

2 Runtime Software Monitoring

2.3 Monitor Power Consumption

State of the art (as of 01/18/2014) mobile devices have powerful processor
units with up to 8 cores, high resolution displays and up to 3 gigabyte of
RAM, which often surpasses desktop computers of the recent past. Still,
they are often extremely slim and petite devices, where a big battery doesn’t
find a place. Therefore, the power needs of current mobile devices outgrow
the moderate developments in the battery sector [Powers, 1995].

It is important that a monitor doesn’t consume too much energy. Otherwise
it will hurt the user experience of the application and the whole device.
Then the developers are tempted to remove the parts of the application that
consume the most power in order to improve the general user experience.

2.3.1 Energy Efficient Service Monitoring

In service monitoring, where the monitors are often responsible to evaluate
the state of a web service, offloading some parts of the monitoring to an
external server could be considered (see Figure 2.4). Instead of sending
many requests to a web service to check the availability and accuracy (on
the left side of the figure), a server could handle that task (right side of the
figure). This approach divides the monitor into a local and a remote part.
The Android application only requests the state of the web service from the
server. This partition of the monitor system won’t work if no data connection
is available, but as it is favorably used for checking web services this doesn’t
matter as no web service would be reachable without a connection to the
internet anyway. Sending large data volumes across the network should be
avoided, as this can negate the energy saving effect of this approach [Kwon
and Tilevich, 2012].

24

2 Runtime Software Monitoring

Observer

AnalyzerResults of
analysis.

Monitor (on Device) Web Services

External Service
1

External Service
2

Multiple checks
for availability and

accuracy

Observer

AnalyzerResults of
analysis.

Process

Artifact

Data

Monitor (on Device) Web Services

External Service
1

External Service
2

Observer

Server

State of Web
Service

Update

rerun

Get state

Multiple checks

Multiple checks
for availability and

accuracy

Multiple checks
for availability and

accuracy

Multiple, energy consuming, direct connections to the web
services.

One connection to a server, handling the observation.

Figure 2.4: On/Off Device Service Monitoring difference.

2.3.2 Outsource Web Service monitoring completely to the
Server with GCM

Another approach to improve the energy efficiency of web service monitor-
ing, is to combine the benefits of an outsourced monitoring by the server
and the capabilities of GCM. Then the Android application doesn’t have
any web service monitors at all. The server will monitor all the web services
of interest like in Chapter 2.3.1. It will only send a message via GCM to the
clients when a problem with a service is discovered. As this solution doesn’t
need the application to take action apart from waiting for a GCM broadcast,
it is the most energy saving approach by far. The GCM part is handled by
the Android device itself and active by default. Many often pre-installed
Google applications like hangouts and G+ need this service to function
properly. The new versions of GCM rely on the Google Play-Services.

The biggest downside of this solution is that there are no monitors for the
server and the GCM service. A monitor for the server on the application
would render the energy saving useless. The server could be monitored by
another device which will inform the administrator, the clients however
won’t be informed.

25

2 Runtime Software Monitoring

If the GCM service goes down, the server must find a way to inform the
application, as the client will not contact the server by itself. An easy way
to inform an Android device apart from GCM is to send a SMS message.
This message could be parsed by the application and it could start to
contact the server by sending HTTP-requests (see Chapter 6.2.3 for further
information).

2.3.3 General Monitor Methodologies for Energy Efficiency

The monitor shouldn’t run in an Android service, which only exists to
keep the application or the monitor alive. The Android system itself should
schedule the monitor executions. For example the Android AlarmManager
is able to take over this work by scheduling events. This service is very
precise and extremely reliable, it can even wake a shut down device up and
perform the specified tasks.

It is possible to deactivate web service monitoring, while no network con-
nection can be established. The Android System sends broadcasts to all
applications by default, when the network status changed. After such a
broadcast, the monitoring can be continued.

If the monitoring system interchanges big data loads with the server, a
possibility to save energy is to wait until the device is in an area with a fast
information transfer rate, as this will also save some energy. The energy
consumption depends greatly on how long the connection to the server is
active. Generally, the shorter the connection to the server stands, the lower
will be the energy consumption, regardless of the used technology (like 2G,
3G, 3.5G, 4G or WIFI). Android has a simple API to find out the connection
type and the current speed of the connection (see Listing 2.2). [Wang and
Manner, 2010]

1 NetworkInfo i n f o = Connect iv i ty . getNetworkInfo (contex t) ;
2 i n t connectionType = i n f o . getType () ; //WIFI or Mobile
3 i n t subtype = i n f o . getSubtype () ; //EDGE, GPRS, HSDPA, UMTS . . .

26

2 Runtime Software Monitoring

Listing 2.2: Connection and connection speed in Android.

On June 24 2014 at the Google IO, Google introduced Project Volta. The
main goal of this project is to boost battery life on Android devices. Volta
touches many parts of the system, one of the main components is the
new JobScheduler API. As access to the network takes a lot of energy, this
API is able to bundle workload heavy tasks from all applications on the
device. These bundled tasks will be executed if certain conditions are met.
Furthermore, it won’t attempt to establish a connection to the network if
no reception is available. The downside is that the developer has no exact
control about when exactly the tasks are executed. Therefore, the JobScheduler
is predestined for application requests which are not high priority.

2.4 Common Monitoring Problems

Volume. Especially for debugging purposes, a monitor often collects mas-
sive amounts of data. This data must be processed, saved and presented.
The processing filters the information and only the data of interest should
be saved. The processing and saving of the data should be implemented in
consideration of an efficient presentation medium. Data is useless if it is not
presented in an efficient and understandable way.

Intrusion. A complex monitoring system often alters the execution envi-
ronment. Then the CPU time and the communication channels are changed.
The programmer must consider these alterations and implement the mon-
itoring system in a way, which doesn’t disturb the main program as the
monitor shouldn’t be noticeable by the user.

Access. The monitor requires access to structures and variables of the
program. This could lead to inconvenient problems.

27

2 Runtime Software Monitoring

• The monitor and the program could be separate programs, then access
restriction must be considered.
• The developer doesn’t want to change the program to the point of

merging the sources of monitor and monitored code into one insepa-
rable blob. It is often a balancing act to keep a clear structure as well
as getting access to important system variables.
• Dependent on the situation and the used architecture, it could also

lead to performance issues.

[Albari, 2005]

28

3 Methodologies for a reliable
system

3.1 Fault life cycle techniques

There are four general fault life cycle techniques, which were proposed to
counter software reliability engineering problems. [Lyu, 2007]

• Fault prevention
• Fault removal
• Fault tolerance
• Fault/failure forecasting

3.1.1 Fault prevention

Fault prevention is, like the name suggests, the avoidance of faults. This
is the initial step against software unreliability. This is also, in some kind
or another, the goal of every software engineering methodology. General
approaches of this technique are:

• Formalization of the software engineering process
• Program verification
• Early user interaction
• Requirement refinement
• Refined and systematic software reuse

29

3 Methodologies for a reliable system

• Enforced programming principles

3.1.2 Fault removal

The next step after fault prevention, is fault removal. The bugs and faults,
which slipped past the fault prevention mechanism and which were al-
ready injected into the software, can be traced and fixed. The two standard
approaches are software testing and software inspection.

3.1.3 Fault tolerance

When the software is released and a fault survived the prevention and the
removal steps, fault tolerance is the last defense before a fault makes the
transition to a program failure (see more about the transition from a fault
to a failure in Chapter 3.3.2). Fault tolerance is the attribute of the system
to cope with, and to survive faults. As well as to keep delivering results
despite of the malicious behavior of some components. These techniques
enable software programs to:

• Hinder software faults from becoming active. For example to pre-
vent illegal operations or the confirmation of valid input and output
conditions.
• Treat failed operations with a reasonable exception handling and

hinder them from leaving a confined boundary.
• Activate rollback mechanisms to recover from erroneous conditions.

3.1.4 Fault forecasting

Fault forecasting is the prediction of likely faults. This makes it easier to
remove them or to diminish their effects on the system. The forecasting

30

3 Methodologies for a reliable system

methods involve:

• To forecast the fault/failure relationship.
• The comprehension of the operational environment.
• Creation of software reliability measurement mechanisms.
• The evaluation of the results of the measurements.

3.2 Redundancy

Redundancy is one of the most important techniques for implementing fault
tolerance, fail safety or a backup system. Redundancy is the duplication of
critical systems and can be applied in many different parts of a project or
infrastructure, such as hardware, software or information.

3.2.1 Information Redundancy

The event handler in Chapter 2 is a good example for this technique. This
approach is also called error detection and correction methodology. In
this case, the runtime monitor (the observer), detects errors and the event
handler corrects them if possible, by using redundancy. An example for this
approach is shown in the implementation of the monitor in Chapter 6.2.3.
There, the data delivery is switched to the SMS service from HTTP if no
internet connection is available.

3.2.2 Hardware Redundancy

There are different approaches for hardware redundancy. One of the most
common is dynamic redundancy (stand-in spares). There, a second, mostly
identical, piece of hardware, which can take over the workload if the first
piece has a failure, is obtained and installed. As this work focuses on

31

3 Methodologies for a reliable system

Android software projects, there isn’t much to achieve on the client side
(the smartphone or other Android device), which is in the hands of the user.
The server side however, can be supplied with various options:

• Server infrastructure
• User data (losing this data could upset many customers)
• Power supply (even with a second server, without power everything

will come to a hold)

It is favorable to not install the backups in the same place as the main
infrastructure. For example, a fire or an earthquake or any other disaster
could also destroy the backup. These days, many companies outsource their
server infrastructure to other companies (like Google or Amazon). Then,
the responsibility of creating a redundant system lies with the company
providing the infrastructure.

Another form is static redundancy (masking). There, the faults are masked
by providing a majority gate, whose output represents the most likely result
by comparing all inputs and selecting those which occurred most often.
An example is the triple modular redundancy (TMR). In the TMR, the
outputs of three logic modules flow into the majority gate. As long as only
one module delivers wrong results, the output of the majority gate will be
correct.

The third form is hybrid hardware redundancy. This approach combines
static and dynamic redundancy. It contains a majority voting system at the
core, and if the majority gate finds modules which deliver wrong results, a
spare automatically takes its place. [Su and Ducasse, 1980]

3.2.3 Software Redundancy

In nearly every software project, reliability of software is attained with the
help of software failure avoidance (or intolerance), which is then verified by
tests. This is a well documented, comparatively good working and not too

32

3 Methodologies for a reliable system

expensive method. That said, it is still very hard to attain software failure
avoidance in large or medium sized projects, nearly all of them fail to reach
this goal.

Software redundancy is a different approach. If a function delivers wrong re-
sults due to programming errors, another function will take over to achieve
reliability. In contrast to hardware, where physical failures predominates,
software defects are time-invariant defects. This means that the same func-
tion cannot be used for redundancy because the second function would in
most cases deliver the same wrong results as the first. Multi version pro-
gramming for example, is a way to attain software redundancy. In this work,
Recovery Blocks and N-Version Programming will be briefly introduced. Both
of them are implementations of the multi version programming concept.

N-Version Programming

An approach to achieve software redundancy is N-Version Programming1.
Here, separate team members or teams implement the same part of the
software independently with the same initial specifications. With the goal
in mind that these two parts can be used as redundant functions in the
program. The teams should work independently, although, they should
discuss their individual approaches to a certain degree, otherwise it is
possible that they could use the same algorithms, libraries and languages to
achieve their goals.

When the program is running, a supervisory program called a driver is
needed which checks, like a monitor, the results of each part and activates
the redundant functions if needed. That said, this solution is very hard
to implement as it consumes much time and it is often very difficult or
impossible to verify if functions in the program are delivering wrong results
on runtime. Also, the initial specifications must be well defined, correct,
complete, and unambiguous, or all the implementations of the redundant

1http://en.wikipedia.org/w/index.php?title=N-version_programming&oldid=

538408306 (visited on 02/21/2014)

33

http://en.wikipedia.org/w/index.php?title=N-version_programming&oldid=538408306
http://en.wikipedia.org/w/index.php?title=N-version_programming&oldid=538408306

3 Methodologies for a reliable system

functions will deliver wrong results. Because of these restrains N-Version
Programming is mostly only used in software which controls airplanes,
nuclear power plants or medical devices. [L. Chen and Algirdas Avizienis,
1978]

Recovery Blocks

This technique is similar to N-Version Programming. In this approach, it also
is important to provide 2 or more different approaches of one component of
the software. On execution of the program, checkpoints are created before
the first version starts. If an error is detected, a different version is executed.
The checkpoints are necessary to restore the valid state from, before the
error occurred.

One of the main differences to N-Version Programming is the fault detection
mechanism. The acceptance test, which validates the correctness of the
variants can contain various embedded checks and not only an output-
check to further improve the detection rate. Most of the time, the first
version will deliver the right results. Therefore, the redundant approaches
can be slower and more resource consuming alternatives. Depending on the
available resources, execution of the component version can even be parallel
and not always sequential. [Torres-Pomales et al., 2000]

3.2.4 Android / Mobile phone specific redundancy

Dual SIM On the client side, many mobile phones (especially in China)
are dual sim capable. If the main carrier has no network coverage in an
area, maybe another carrier has coverage. Sometimes due to software or
hardware failures, the network of even major suppliers are unavailable. Of
course dual SIM only has a chance to work, if the two used carriers don’t
share their network.

34

3 Methodologies for a reliable system

3.3 Dependency injection

This is a software design pattern, which eases the interchangeability of
dependencies. The swapping of the dependency, can happen on compile,
as well as on runtime. It is mainly used for changing plugins or for testing
purposes by changing the dependencies to mock objects instead of the
production ones.

As mentioned in Chapter 2.2.5, it is a good idea to test the monitoring
with mock-ups and also to run a debug version for a longer time span.
Dependency injection helps in both variants, as the programmer doesn’t
have to change the code directly, only the provided dependencies have to
be switched from the production to mock objects.

The Android client system in Chapter 6.2 from the practical part of this work
is already using dependency injection. Dagger was chosen as the preferred
injector as it is developed especially for the needs of Android systems.

3.3.1 Dagger

Dagger2 is a dependency injector for Android and Java with particular
attention on speed. It is developed by Square Inc.3, which provides many
open source libraries4 for Android and other platforms.

To inject a field, @Inject from the javax.inject.Inject annotations is used. When
no producer is implemented, Dagger will use a no-parameter constructor to
create the object.

To satisfy dependencies, the @Provides annotation is used. The type of the
dependency is defined by the return type of the @Provides function (see
Listing 3.1 for a standard singleton dependency satisfying function).

2http://square.github.io/dagger/ (visited on 03/04/2014)
3https://squareup.com/ (visited on 03/04/2014)
4http://square.github.io/ (visited on 03/04/2014)

35

http://square.github.io/dagger/
https://squareup.com/
http://square.github.io/

3 Methodologies for a reliable system

1 @Provides @Singleton Foo provideFoo () {
2 re turn new Foo () ;
3 }

Listing 3.1: Provide dependency with Dagger.

Every @Provides method must belong to a module. A module is a class
with a @Module annotation. The classes where the provided dependencies
are used, must be registered in the module, else the object graph won’t
know about them. To use the module and methods, an object graph must
be created. An object graph is formed by the @Inject and @Provides methods.
It accepts one or more modules on creation.

Dagger provides many possibilities with its injection:

• @Singleton at the dependency satisfying function (see Listing 3.1),
causes the function to provide the same instance for all the clients of
the object graph.
• Dagger is able to instantiate objects lazily with a Lazy<T>. Only at

the first call of get(), T will be instantiated.
• If the type alone is not sufficient to identify the dependency, a qualifier

can be created (e.g. a name), which serves as an additional identifier.

3.3.2 Fault injection

The transition from a fault to a failure is well defined in the fault-error-
failure cycle [A. Avizienis et al., 2004]. A fault, possibly leads to an error,
which is defined as an invalid state of the program. An error possibly leads
to further errors in the application. A failure is defined as observable errors
at the system boundary.

Faults can be classified according to their persistence and independence.

36

3 Methodologies for a reliable system

Independent
faults

Related
faults

Distinct
errors

Similar
errors

Separate
failures

Common-mode
failures

Figure 3.1: Fault classes.

Independence of faults. Faults can be either related or independent. Re-
lated faults result from dependencies in the implementation, or from speci-
fication errors. A related fault, often leads to a common mode/cause failure.
An independent fault is a fault, which is not related and often leads to
distinct errors and separate failures. For details, see figure 3.1.

Persistence of faults. Based on the persistence, faults are classified as
solid or soft. Soft faults are temporary faults which only need error process-
ing/recovery. After that, the component can be used again. If a component
is affected by a solid fault, fault treatment is necessary after error processing.
Solid faults are often permanent. [Laprie et al., 1990]

Fault injection is an important part in developing robust software. With
this technique, faults are dynamically injected with the goal that the error
handling code paths of the software can be verified.

Fault injection can happen on compile time or on runtime. Compile time
injection can be further categorized into code insertion, which adds extra
code, and replacement of existing code. Runtime injection uses a trigger to
inject a fault. These triggers are often time based, where after a specified
time, the fault injection is activated automatically, or they could also be
interrupt based. An interrupt based trigger listens for a special event like
a system broadcast. For testcases, there is often no trigger necessary. The

37

3 Methodologies for a reliable system

faulty dependency is injected instead of the production one on each call.

In the scope of the dependability validation process, fault injection can be
used as a tool for fault removal or fault forecasting.

Fault removal. During the software development process, fault injection
can be used as part of the test strategy in test cases.

Fault forecasting. This approach isn’t executed for finding bugs, but for
testing the fault tolerance robustness of the software. With fault forecasting,
the performance (e.g. coverage, latency) of the fault tolerance mechanism
can be estimated. The coverage is the percentage of faults and errors that
can be handled. The latency is the time from injecting the fault, to the
manifestation of the error or the proper fault handling.

There is also a distinction between fault and error injection. In fault injection,
the goal is to ’mutate code’, which could eventually lead to an error. Error
injection on the other hand, which is sometimes referred as data-state muta-
tion [Voas, 1998], changes the state of the program to simulate an already
manifested error or failure.

Fault injection with Dagger

Dagger can be used to inject faults. The sample application of Jake Wharton
called u+20205 shows, how to introduce a special debug mode. In this debug
build of the application, some functionality can be dynamically changed:

• The network endpoint can be switched to debug, which is a simulated
mock server. This mock server delivers around 20 test images. The

5https://github.com/JakeWharton/u2020 (visited on 03/05/2014)

38

https://github.com/JakeWharton/u2020

3 Methodologies for a reliable system

second possibility is the production endpoint, in this case imgur6,
which shows the most viral images of the site.
• With an activated mock endpoint, a delay of loading each picture can

be set to simulate the transport time from the server.
• It is also possible to activate an error rate for the loading of a mock

picture.
• Other debug information like a pixel grid, the animation speed and

picture indicators can be shown.

In the production build of the application, nothing of the debug code will
remain in the .apk file. This is possible because the debug build overrides a
special debug module which is not present in the normal application.

Therefore, dependency injection is also a good solution for the problem of
testing long term reliability for the monitoring system, as stated in Chapter
2.2.5. For example, the injection of the web services can be replaced with a
wrapper providing this service but which is also able to simulate a failure
when needed. The big advantage is that in the normal code nothing has to
be changed, but testing is simplified by just overriding the dependencies for
the test run, this leads to more structured and easier to understand testing
code. [Terasa and Schupp, n.d.]

3.4 Library Tape

Another library of square7 that helps developers to enhance the reliability of
Android and Java applications is Tape8. Tape represents a collection of queue
related classes and basically implements a persistent file backed queue.

The library essentially consists of 3 major classes.

6https://imgur.com/ (visited on 03/05/2014)
7https://squareup.com/ (visited on 04/16/2014)
8https://square.github.io/tape/ (visited on 04/16/2014)

39

https://imgur.com/
https://squareup.com/
https://square.github.io/tape/

3 Methodologies for a reliable system

• QueueFile is a transactional, file-based FIFO with particular focus on
speed. Data is written synchronously to the disk. This means that
the write operation is completed before the operation returns. The
file structure can survive process and system crashes as well as shut
downs.
• ObjectQueue is the ordering of arbitrary objects. This ordering can be

backed by QueueFile (on the filesystem) or in memory only.
• TaskQueue is an object queue which receives and holds the tasks added

by the programmer.

By adding tasks to the queue, Tape is able to save these tasks, as well as the
objects which are contained in the tasks, to the file system. This queue is
then processed, until every task has finished its execution. In the case of a
process or system crash the information necessary to execute the tasks is
saved on the file system and thus the application is able to resume the tasks
in the queue automatically when it is restarted.

Usually the queue starts a distinct service, where a new thread is started,
which allows actions to be completed in the background. When the thread
is finished, the function executeNext() of the queue is called via the callback.
Then the next task is started.

Therefore, Tape is a useful tool to execute very important and essential tasks
which are not allowed to get lost under any circumstances.

40

4 Practical Work on the Effective
Control System

The initial step of the practical part of this work was the implementation of a
Wirksamen Kontroll-System (WKS) (Effective Control System) for occupational
safety on construction sites. This Android application was implemented in
2013 for Norbert Rabl Ziviltechniker GmbH, which is a civil engineering
bureau for fire prevention, occupational health and safety and sustainable
building (Green/Blue Building).

4.1 Overview

Responsible supervisors are bound to control and evaluate the implementa-
tion of occupational safety on many construction sites every day. On those
sites, the supervisors need to fill out a form as well as document the realized
safety measures with photos. The WKS system, instead of using paper,
allows the workers on the site to document the safety measures with a
smartphone. The system allows to send texts, photos and recorded audio.
These documentations are then sent to the supervisor which controls them
remotely. See Figure 4.1 for the initial concept of the WKS system.

41

4 Practical Work on the Effective Control System

Evaluation of the
Construction Site

Verification and
documentation of the

performed security
measures

Start

Server

Storage of evaluation
and documentation on

the database

Safety defect /
discrepancy

Usage of Google
Cloud Messaging to
send the message id

to the supervisor

Yes

Download of the documentation
from the Server

End No

WKS Work

Server

WKS Control

Receipt of an id
over GCM

Reasonable reaction from the
supervisor

End

Google Cloud
Messaging (GCM)

Download of the
necessary security
measures as well

as sending the
evaluation

Transmission of the
documentation to the

server.

Figure 4.1: WKS Concept.

42

4 Practical Work on the Effective Control System

4.2 Reliability in the WKS system

The reliability is a key factor in a system, which documents the occupational
health and safety on construction sites. No data is allowed to be lost ever,
as this data could get a key position in upcoming lawsuits. It is also highly
important that messages are delivered to the recipient as fast as possible, as
otherwise the supervisor cannot attend to his duties.

4.2.1 What is done

Messages are sent and received in a tape queue (see Chapter 3.4). This
means that it is highly unlikely to lose a message. The device will try
to send a message until it is done. Neither closing the application, nor
restarting the device will endanger the data in the queue. There is already
a very powerful DebugServer present in the application, which implements
the Server interface. This is a class, which mocks real Server interaction.
With the help of this DebugServer, it is possible to test the functionality
without accessing a real server, as well as demonstrate the application in
areas without network reception.

4.2.2 Future

As of September 2014 there is no finished Server implementation available.
Therefore, no service monitors are integrated into the Android application.
When a server is available, the application uses GCM and the server for
the communication and transmission of messages. Therefore, in the future,
especially GCM should be monitored as the only essential external service
the application uses. If the service fails, the application needs to switch
to polling messages instead of waiting for GCM broadcasts. Another pos-
sibility is to use SMS notifications. With an SMS receiver, GCM could be
circumvented. Data SMS makes it possible to send SMS messages exclu-

43

4 Practical Work on the Effective Control System

sively to applications, listening to special ports (see Chapter 6.2.3 for more
information).

The DebugServer is integrated into the main source code of the application.
Dagger (see Chapter 3.3.1) is already in use but only to deliver singleton
instances like Gson or observers. It is possible to make a Dagger module,
which isn’t available in the release flavor of the application. Then, the
application can inject different DebugServer implementations, which can
simulate a range of errors and events on runtime. With this, testing different
situations can be done without too much overhead. Dagger also implements
lazy loading of objects when they are needed. As long as Dagger is used, it
is assured to deliver valid instances in contrast to statically stored instances
which can be affected from the Android life cycle (see Chapter 1.2). A
DebugActivity is already introduced in the application which is only present
in the debug build. This is done with the help of gradle build flavors.

The application is only ever tested on Nexus and older Samsung devices. But
the Android ecosystem is fragmented into 5 major versions as well as many
different front ends like Samsung TouchWiz or HTC Sense. Also screen sizes
and form factors are highly diverse on the hundreds of available devices
on the market. Therefore, a test suit should contain at least the devices and
Android versions with the greatest impact on the market share.

44

5 Service Monitoring Library

The monitoring library with the name ServiceMonitoring is free available
and located on GitHub1. The library is licensed under the Apache License
Version 2.02. The goal of this library is to relieve developers of implementing
distinct monitor handlers for all the services and parts of their software
they want to analyze. Furthermore it doesn’t use any libraries itself and the
minimum SDK version is 3 (Android 1.5 Cupcake), which was released in
2009. Therefore, this library will work with nearly every Android application
and on 99% of all available devices. According to Google, in August 2013,
the market share of devices running a version older than Android 2.2 was
about 1%3.

The ServiceMonitoring library takes care of the implementation details of
some major questions a developer has to ask himself before starting to work
on a monitor. Some of these questions are:

• How does the monitor start when no application process is currently
running?
• How can you be sure to have access to the application process at every

time while running this monitor?
• How does this monitor shut down if I want it to?

All these issues are already solved and implemented in this library. The
developer has to implement and provide the actual monitoring function
(observer, analyzer, as well as the event handler), which is then executed

1https://github.com/markini/smonitoring_lib (visited on 12/28/2013)
2https://www.apache.org/licenses/LICENSE-2.0.html (visited on 12/28/2013)
3https://developer.android.com/about/dashboards/index.html?utm_source=

ausdroid.net (visited on 05/06/2014)

45

https://github.com/markini/smonitoring_lib
https://www.apache.org/licenses/LICENSE-2.0.html
https://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net
https://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net

5 Service Monitoring Library

by the library. The library provides settings for the start intervals, as well
as the type of the monitor, which can be configured before executing. That
said, this library doesn’t monitor anything by itself. It just provides the
framework, which executes the monitoring code.

5.1 User stories

This library was created with a few user stories in mind. It was a key factor
to use real life examples. To find such stories, only Android developer were
asked to participate. Ordinary Java developers, often don’t have experience
with the unique behavior of the life cycles of Android applications.

Generic client server application monitoring for the developer Sometimes,
a monitor can be used to monitor a server or service before the user is
using the application to warn the developer that some client (the Android
application) has some sort of problem with the service. Then the developer
or server administrator can patch the error before the user takes notice.

Often, problems are very difficult to anticipate due to the many different
devices and languages the users are using. Therefore, a monitoring system
executed by each user makes sense.

Tornado warning system This is an application which uses GCM to receive
warnings about tornadoes in the vicinity. This application will occasionally
update its own location but will most of the time be shut down by the
system. It is important that the service monitoring works correctly, even
if the application isn’t running. The monitor has to notify the user if the
internet connection is not working or the server/GCM are not functioning
properly.

46

5 Service Monitoring Library

Monitor {abstract}

- mHandler : ScheduledFuture

+ observeThis(Context context) : boolean
+ handleEvent(Context context) : boolean
+ executeMonitoring(Context context, boolean
startSticky, int intervalInMinutes) : void
+ stopMonitoring(Context context) : void

- startExecutionService(Context context, long interval) :
void
- startAlarmTask(Context context, long interval) : void

+ onReceive(final Context context, Intent intent) : void
+ isRunning() : boolean

MonitorThisService

- onHandleIntent(Intent intent) : void

Figure 5.1: Monitor library class diagram.

Implementation of an Android Watchdog Sometimes, monitors are ap-
plied to check the state of the application. This kind is often referred to,
as a watchdog [Fowler, 2009]. One duty of this monitor is, to reconfirm, if
the application is still on and working. Therefore this watchdog monitor
must be separated from the application to even survive uncatched runtime
exceptions. Then, it is possible for the watchdog to start the application
again or to handle other possible problems.

5.2 Structure

ServiceMonitoring is an Android library project ready to be included in any
other Android project with API Level bigger or equal 3. It consists essentially
of 2 Java files: Monitor.java and MonitorThisService.java (see Figure 5.1).

To use this library, the developer has to create a new class which extends
Monitor. After implementing the abstract functions observeThis and han-
dleEvent, an object of this class can be declared and initialized. To start the
monitoring functionality, the client application needs to call the function

47

5 Service Monitoring Library

executeMonitoring, which is already implemented by the abstract Monitor
class.

In the next sections, the main functions of this library are explained. The
functions observeThis and handleEvent are abstract and have to be imple-
mented by the application developer. All other functions are ready to be
used by the client system by default. Figure 5.2 shows the basic flow of this
monitoring library.

5.2.1 Function observeThis

In this function, the client developer has to implement the actual monitor-
ing. E.g. checking the connectivity of the device, or sending a ping to a
server/service, needed to run this application. It can also monitor internal
states of the application but isn’t exactly suited as a classic fault detection
monitor (it can only be used as a time-driven runtime monitor, see Chapter
2). It must return false if it detects some kind of malicious behavior, or a
failure of the monitored object. If this function returns true, this monitoring
instance stops after finishing this function, but will be repeated after the set
time interval. If it returns false, the function handleEvent is automatically
called.

5.2.2 Function handleEvent

As mentioned before, this function gets called if observeThis identified a
problem. Here, the developer has the opportunity to counter a failing service
or inform the user. For example, if a service had failed, the application could
switch to another one. It is also possible to send a notification to the user
from here, for example via an Android Broadcast.

48

5 Service Monitoring Library

Monitor Library

Start
ScheduledExecu

torService

Start
AlarmManager

Start
Monitoring

Start Sticky
YesNo

- start sticky
- time interval

Perform Monitoring
(function monitorThis)

Error
detected?

Wait for „time
interval“ minutes

No

Perform handle
Problem

Yes

App developer

App

Monitor

Figure 5.2: Monitoring library flow chart.

49

5 Service Monitoring Library

5.2.3 Function executeMonitoring

This function starts the monitoring process and takes 3 parameters: The
first parameter is an Android Context1.4. The second one is a boolean,
which indicates if the monitoring should be executed even if the application
process was shut down, or if it should stop when the application stops.
This boolean flag is called startSticky. The third parameter is the interval in
minutes, in which the monitor will be executed.

5.2.4 Function stopMonitoring

To stop the monitoring process, the developer has the possibility to call
the public function Monitor.stopMonitoring. After calling this function, the
currently running process of the monitor will continue (if observeThis
or handleEvent is executed), until finished but the next instance of the
execution will be aborted. StopMonitoring deletes the scheduled tasks, which
are necessary for the monitoring to start. To restart the process, the developer
has to call the function executeMonitoring again.

5.2.5 AlarmManager

If the developer decides to set the parameter startSticky to true, the function
startAlarmTask (see Listing 5.1) is called, which uses the Android AlarmMan-
ager to handle the continuing execution.

1 /∗∗
2 ∗ S e t s the AlarmManager to s t a r t the monitor
3 ∗ continuously in the given i n t e r v a l .
4 ∗ The monitor i s s t a r t e d a f t e r one second .
5 ∗
6 ∗ @param context the a p p l i c a t i o n contex t
7 ∗ @param i n t e r v a l the i n t e r v a l in which the
8 ∗ monitor executes (in m i l l i s e c o n d s)

50

5 Service Monitoring Library

9 ∗/
10 p r i v a t e void startAlarmTask (Context context , long i n t e r v a l) {
11 I n t e n t i n t e n t = new I n t e n t (context , t h i s . ge tClass ()) ;
12 PendingIntent pendingIntent = PendingIntent . getBroadcast (
13 context , 0 , i n t e n t , PendingIntent .FLAG CANCEL CURRENT) ;
14 AlarmManager alarm = (AlarmManager) contex t . getSystemService (
15 Context . ALARM SERVICE) ;
16 alarm . setRepeat ing (AlarmManager . RTC, System .
17 currentTimeMil l i s () + 1000 , i n t e r v a l , pendingIntent) ;
18 }

Listing 5.1: Set up and start of the AlarmManager.

The AlarmManager provides access to the Android system alarm services.
These services can send a broadcast to the application at any scheduled
time or time interval. The application needs to register a receiver for these
broadcasts. Therefore, the Monitor also extends the class BroadcastReceiver.
Every implementation of the Monitor by the client developer, needs to be
registered in the Android manifest. This only applies if the Monitor is
started with the startSticky flag. The broadcasts sent by the system, wouldn’t
be catched without these receivers. When receiving such a broadcast, the
function onReceive in the Monitor class is automatically called, even if no
application process is active at the moment. The passed context to this
method is an ApplicationContext if the program was already running. If
not, only a ReceiverRestrictedContext is passed, which doesn’t allow certain
operations like bindService or registerReceiver.

The call of onReceive runs in the main thread of the application process4 (if
the application was already running, the main thread is the UI thread). This
leads to some problems. Running this code on the UI thread would influence
the performance of the normal application functionality and users could
notice that the application doesn’t run smoothly without knowing why. It is
even possible that the application isn’t responding, and the Android system
sends the user a notification whether he wants to shut the whole application
down or not. Just creating a new thread like in the ScheduledExecutorService
approach won’t necessarily fix this problem. It is possible for the application

4https://developer.android.com/reference/android/content/

BroadcastReceiver.html (visited on 06/05/2014)

51

https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html

5 Service Monitoring Library

to lose its state as onReceive reaches its end. The thread, which is still
performing the monitoring code, is then considered stateless.

A single thread, which isn’t backed by a working application state, won’t
be able to access static variables or Android resources. Without Android
resources, most of the implementations of observeThis and handleEvent will
probably crash. Another possibility to keep the application process alive,
as well as run the code in onReceive in the background is to use the call
goAsync(), which is available since Android API 11. This method returns a
PendingResult object and the receiver is considered as alive until PendingRe-
sult.finish() is called. [Vogella5]

The solution for this problem in this library however wasn’t the usage
of goAsync(), but to run the code of the observeThis function in a distinct
Android Service, which will keep the application process alive. It has been
decided to use an IntentService, as this service runs in an asynchronous
thread and stops itself when it runs out of work. Normal Android services
are not asynchronous, furthermore they won’t just stop executing when
running out of work. The big drawback in using an IntentService is that
they won’t run concurrent, meaning that the Android system will queue
IntentServices of the same type, processing them one at a time. See Listing
5.2 on how this service is started, this code is executed in the onReceive
function. The service itself will then call the function observeThis.

1 @Override
2 publ ic void onReceive (f i n a l Context context , I n t e n t i n t e n t) {
3 I n t e n t s e r v i c e I n t e n t = new I n t e n t (contex t .
4 getAppl icat ionContext () , MonitorThisService . c l a s s) ;
5 s e r v i c e I n t e n t . putExtra (” monitor ” , t h i s) ;
6 contex t . getAppl icat ionContext () . s t a r t S e r v i c e (s e r v i c e I n t e n t) ;
7 }

Listing 5.2: Broadcast onReceive.

Services can’t be started by the system, without declaring them in the
manifest of the client application. Therefore, every client using this library

5http://www.vogella.com/tutorials/AndroidBroadcastReceiver/article.html

(visited on 03/22/2014)

52

http://www.vogella.com/tutorials/AndroidBroadcastReceiver/article.html

5 Service Monitoring Library

with the startSticky flag, has to register the MonitorThisService IntentService
in the Android manifest.

To pass parameters to the execution function of the service, an Android
intent is used. To pass custom objects, the class needs to implement Parcelable
or Serializable. For this library, it was decided to use Parcelable. Therefore,
the application developer has to implement the static field called CREATOR.
Otherwise, the application will crash on trying to pass the monitor to the
service. In this creator field, a new instance of this monitor has to be returned.
It wasn’t possible to implement this field in the library itself due to the fact
that the monitor is abstract. The service won’t be able to use the private
ScheduledFuture member after the conversion to a Parcel. This however, is of
no concern, as this member is only used to stop a ScheduledExecutionProcess,
which is never called by the Service.

Sadly, the Parcelable approach is one of the most verbose implementations
in Android. However, this approach was chosen, due to the easy imple-
mentation of this particular CREATOR field. Furthermore, Parcelable is 10

times faster than Serializable and uses less resources6. The community is
working on solutions to make Parcelable easier to use. Examples are the
library parceler7 and the library auto-parcel8. With these libraries, it is pos-
sible to make a class parcelable without the implementation of the verbose
functions writeToParcel(), describeContents() and the CREATOR field. They are
however, not suited to be used in a library project, but a good alternative in
a standard Android project.

Another possibility to pass the Monitor object to the service, is to use the
free library GSon9. With this library it is possible to convert the Monitor
object to its JSON representation. Then, only a JSON String is passed via
the intent. This is however much slower than passing Parcelables.

6http://www.developerphil.com/parcelable-vs-serializable/ (visited on
12/28/2013)

7https://github.com/johncarl81/parceler (visited on 06/06/2014)
8https://github.com/frankiesardo/auto-parcel (visited on 06/06/2014)
9https://code.google.com/p/google-gson/ (visited on 06/06/2014)

53

http://www.developerphil.com/parcelable-vs-serializable/
https://github.com/johncarl81/parceler
https://github.com/frankiesardo/auto-parcel
https://code.google.com/p/google-gson/

5 Service Monitoring Library

5.2.6 ScheduledExecutorService

If the developer decides to set the parameter startSticky to false, the function
startExecutionService is called, which starts a ScheduledExecutorService. In this
function, a new thread is created. Without a new thread, the code would
run in the UI thread. The only mission of the runnable of this thread, is
to call the function monitorThis. This function is executed every time the
ScheduledExecutorService starts the monitoring process. A ScheduledFuture
is returned after executing the scheduleAtFixedRate of the ScheduledExecu-
torService, which is saved as a member (mHandler) and is used to stop this
monitor in the stopMonitoring function (see Listing 5.3).

1 ScheduledExecutorService scheduler = Executors .
newScheduledThreadPool (1) ;

2 Thread runner = new Thread (new Runnable () {
3 publ ic void run () {
4 i f (! observeThis (contex t)) {
5 handleEvent (contex t) ;
6 }
7 }
8 }) ;
9 mHandler = scheduler . scheduleAtFixedRate (runner , 1000 , i n t e r v a l ,

MILLISECONDS) ; // s t a r t s in one second

Listing 5.3: Starting ScheduledExecutorService.

The ScheduledExecutorService runs in the application process. If the applica-
tion process is shut down by the Android system, none of the scheduled
tasks will be executed any more. It would have been possible to start a
distinct service which runs the ScheduledExecutorService to keep it alive, but
for the start sticky case this library is using the Android AlarmManager.
Furthermore, it isn’t necessary to register this service in the manifest.

54

5 Service Monitoring Library

5.3 Miscellaneous

To summarize what the developer has to do when using this Monitor
library:

• Create a class extending at.marki.ServiceMonitoring.Monitor.
• Implement the 2 abstract functions observeThis and handleEvent.
• Implement the CREATOR field for the Parcelable functionality.
• In the Android manifest: add the new created class as a receiver and

register the MonitorThisService.

55

6 Test Environment

In this chapter, an Android client - server environment is introduced, which
utilizes the monitoring library (from Chapter 5) to gain an additional layer
of fault tolerance in the case of a failing service.

A big percentage of all Android applications on the market are highly de-
pendent on web services. These services are often outsourced to, or provided
by a third party. The implementation of new functionality, maintenance and
enforcement of reliability falls in the hands of the external parties. With
the monitoring of such a Service, the availability and the accuracy can be
measured on runtime (see Chapter 2.2 for more information).

One of the main goals of this test environment was to utilize as many
Android specific properties as possible, with the goal to differentiate this
application from standard Java programs. An Android application is written
in Java, but has many unique properties (see Chapter 1).

The test environment is a rudimentary client-server system. It consists of
an Android application with the name MTClient and a Jetty server named
MTServer. Figure 6.1 provides a basic overview about this client server
system.

The Android side of the environment was implemented wit a practical
orientation in mind. Therefore, it is functionality-wise very similar to a ’real’
application, countlessly found in the Play Store1. It is able to communicate
with different services, which are externally provided, as well as the Jetty
server described in Chapter 6.1. It notifies the user about changes like most

1https://play.google.com/store/apps (visited on 04/08/2014)

56

https://play.google.com/store/apps

6 Test Environment

Android
Device

Server Database

Test Environment

Send message to
google gcm Server

GCM finds device and
sends message

HTTP/Get: Device asks Server
if new data is available

Monitors

Network

Check connectivity
Check Server

Servlets for
Monitors

Check GCM

Figure 6.1: Test environment client server overview.

other Android applications, and can incorporate new user content. As this
work focuses on Android reliability, the server side of this environment has
a lot less functionality, and some parts of it are only mocked.

6.1 Server

The server is a Java application with a Jetty2 server and a Swing graphical
user interface (GUI). The messages have to be entered by hand into an input
field. There are 2 distinct buttons (see Figure 6.2).

By clicking the button Set Message, the message is fetched from the input
field. The server initializes a new message object and creates an UUID to

2https://www.eclipse.org/jetty/ (visited on 05/28/2014)

57

https://www.eclipse.org/jetty/

6 Test Environment

Figure 6.2: Server GUI.

identify this message. The Send Message button forwards the currently set
message to the registered clients via GCM.

The server is also capable of receiving HTTP requests from the client applica-
tion. Via HTTP it also can transmit messages to update the client. Although
its main purpose is to use GCM to send new messages to the receiving
application. To find the client application over GCM, the server needs to
know the GCM ID of the Android device, where the client is installed on.
The server has the ability to receive and store the GCM IDs of the clients. It
is possible to register more than one device on the server and also to send
a GCM message automatically to any number of clients/devices. The GUI
shows the already sent messages on the right and also if a client requested
a message over HTTP on the left (see Figure 6.2).

The server also has to implement servlets to receive requests from the
Android applications monitors. These servlets will assert the state of the
server and GCM. The implemented servlets are:

• ServletServerStatus: This servlet returns the HttpServletResponse SC OK
indicating that the server is reachable. Read more about this servlet in
the monitor chapter 6.2.5.
• ServletCheckGCM: On doGet, this servlet sends a GCM message to the

requesting MTClient application. Read more about this servlet in the
monitor chapter 6.2.2
• ServletRegisterGCMId: The client can register its GCM ID by sending

an HTTP request containing its ID to this servlet.

58

6 Test Environment

Main

+ main() : void

Server

+ startServer() : void

ServletGetMessage

doGet(HttpServletRequest request,
HttpServletResponse response) : void

ServletRegisterGcmId

doGet(HttpServletRequest request,
HttpServletResponse response) : void

ServletCheckGcm

doGet(HttpServletRequest request,
HttpServletResponse response) : void

GcmSend

+ sendMessage(Message messageObject,
List<String> devices) : boolean

Gui

- textViewMessage : JLabel

+ startGui() : void

+ pingDevice() : boolean

+ clickSendMessage() : void
+ clickSetMessage() : void
+ getMessage() : String

- listMessages : JList
- listLog : JList
- editTextGcmMessage : JTextField

- buttonSetMessage : JButton
- buttonSendGcmMessage : JButton

Figure 6.3: Server class diagram.

See Figure 6.3 for the class diagram of the server.

6.2 Client

The mission of the client, is to inform the user that a new message or a
warning arrived. The user also has the possibility to instantly view the
message. If the client’s main activity isn’t active, a notification is displayed
to indicate a new arrival. If the main activity/fragment is currently shown,
the message is just displayed in the ListView of the main fragment. But the
main purpose of the implementation of this small messaging application,
is to show the feasibility of implementing service monitors, as well as
redundancy approaches on an Android device. See Figure 6.4 for the class
diagram of the client. The next Chapters will explain the GUI as well as the
monitoring capabilities of the application.

59

6 Test Environment

ClientApplication

+ connectivityMonitor : Monitor

+ startMonitoring() : void
FragmentMain

GCMIntentService

onMessage(Context context, Intent
messageIntent) : void

MainActivity

- MessageReceiver : BroadcastReceiver

StaticReceiverMessages

+ onReceive(Context context, Intent
intent) : void

MonitorServerPing

MonitorConnectivity

+ observeThis(Context context) : boolean

MonitorGCMCheck

+ serverMonitor : Monitor
+ gcmMonitor : Monitor

+ onOptionsItemSelected(MenuItem
item) : boolean

+ handleEvent(Context context) : boolean

+ observeThis(Context context) : boolean
+ handleEvent(Context context) : boolean

+ observeThis(Context context) : boolean
+ handleEvent(Context context) : boolean

Registered in
AndroidManifest.xml

Figure 6.4: Client class diagram.

6.2.1 MTClient UI and capabilities

The client is an Android application with a very simple UI. The main
fragment consists essentially only of the ListView, which shows the incoming
messages. Of course this application utilizes a native Android ActionBar,
which is part of the activity.

There are no buttons in the fragment. The whole, by the user controllable
functionality, is handled by the ActionBar (see Figure 6.5 for all action items
in the ActionBar).

Get Message The Get Message action item establishes an HTTP connection
to the server and pulls the currently set message from the server, if not al-
ready on the device. Normally this would not be necessary as GCM delivers
every new message automatically to the application, but this functionality is
sometimes very handy in a test environment and can also be used to update
the state of the application faster after booting the device. The application
also switches to this approach of message acquisition if the GCM service

60

6 Test Environment

Get Message

Register GCM

Figure 6.5: MTClient UI with ActionBar items.

61

6 Test Environment

encounters a failure (see Chapter 6.2.2).

Register GCM This functionality sends the GCM ID of the device via
HTTP-GET to the server.

Preferences The second fragment of this application is the preferences
fragment. As of now, only the server IP can be changed in this fragment.

Clear On clicking this action item, all messages are deleted from the
ListView adapter and the SQLite database.

Start Monitoring All 3 monitors are started (Connectivity Monitor 6.2.5,
Server Monitor 6.2.5 and GCM Monitor 6.2.5).

Stop Monitoring All 3 monitors are stopped. A currently running monitor
will not be cancelled but they will not start anew, until Start Monitoring is
called again.

Create Mock Messages On clicking this action item, the application gen-
erates pre-defined messages for testing purposes.

Show log Each monitor saves its execution results to a SQLite database.
On pressing the Show log button, a new dialog view is opened and the logs
are shown in an Android ListView. The results can of course be extracted as
a .sql file for comparing purposes. To realize this functionality, a new object
Log was created, which holds an unique id, the time (as a Long number) and
the actual message. A new log entry is created and automatically saved to
the database on every execution of a monitor. On every failed monitoring

62

6 Test Environment

attempt, all available data which could lead to the reason is saved in the
logging message. Also, every successful monitoring attempt is logged as
this is an important indicator for the reliability of the monitoring system
(see Chapter 6.3.5). For LogCat logging, the free library Timber3 is used.
Therefore there are no confusions in the source code, whether LogCat or
SQLite monitor logging is intended by the developer.

To log every step of all monitors will slightly influence the performance
and the battery. Therefore extensive logging could be a special feature in a
specialized version and not activated by default in the productive system.
To make the switch between a specialized version with a complex logging
system, which is only used by a handful of test users, and the productive
version easier, dependency injection (see Chapter 3.3) could be used. Then
the productive version would not suffer from the performance loss and
energy usage of the extensive logging system.

6.2.2 GCM Capability

As already stated, it is mandatory for the client to receive messages even
if the application process isn’t running. To receive Google Cloud Messaging
messages, a GCMBaseIntentService named GCMIntentService is implemented.
This service is also registered in the Android Manifest (see Listing 6.1). It
behaves a lot like a static BroadcastReceiver (see Chapter 1.4). The action
states, what this receiver does, in this case it will receive GCM messages.
To be able to receive those messages, the c2dm permission SEND is needed.
Otherwise the messages would be ignored by this receiver. There is no
explicit connection between the implementation of the GCMIntentService
and the static receiver. The system will find it automatically because of the
stated category, in this case the ’at.marki.Client.receiver’ package.

1 <!−− GCM START −−>
2 <r e c e i v e r
3 android : name=”com . google . android . gcm . GCMBroadcastReceiver”
4 android : permission=”com . google . android . c2dm . permission .SEND”>

3https://github.com/JakeWharton/timber (visited on 04/02/2014)

63

https://github.com/JakeWharton/timber

6 Test Environment

5 <i n t e n t−f i l t e r >
6 <a c t i o n android : name=”com . google . android . c2dm . i n t e n t .

RECEIVE”/>
7 <category android : name=” at . marki . C l i e n t . r e c e i v e r ”/>
8 </i n t e n t−f i l t e r >
9 </r e c e i v e r>

10 <!−− GCM END −−>

Listing 6.1: GCM BroadcastReceiver.

When receiving a new GCM message from the Server, the function onMessage
of the class GCMIntentService is automatically invoked. This function is
responsible to parse the incoming GCM message and to store it on the
SQLite database. Furthermore it will inform the user about the new message
(more in Chapter 6.2.2). The receiver is registered in the manifest, therefore
it is a static receiver. A static receiver is triggered even if the application isn’t
running at the moment. A dynamic receiver, which is mostly instantiated
in the activity or the application class would not survive the closure of the
application process.

GCM Registration

To be able to receive GCM messages, the application has to register the
device at the Google GCM server (Listing 6.2). This has to be done at least
once for the device. Best practice, is to check if the device is registered at
every start of the application. This approach was deprecated by Google while
writing this application. Now GCM is part of the Google Play Services4.

1 void manageGCM () {
2 GCMRegistrar . checkDevice (t h i s) ;
3 GCMRegistrar . checkManifest (t h i s) ;
4 f i n a l S t r i n g regId = GCMRegistrar . g e t R e g i s t r a t i o n I d (t h i s) ;
5 i f (regId . equals (””) | | ! GCMRegistrar . i s R e g i s t e r e d (t h i s)) {
6 GCMRegistrar . r e g i s t e r (t h i s , GCMIntentService . SENDER ID) ;
7 Timber . d (” rece ived ID : ” + GCMRegistrar . g e t R e g i s t r a t i o n I d (

t h i s)) ;

4https://developer.android.com/google/gcm/index.html (visited on 12/30/2013)

64

https://developer.android.com/google/gcm/index.html

6 Test Environment

8 } e l s e {
9 GCMRegistrar . setRegis teredOnServer (t h i s , t rue) ;

10 }
11 }

Listing 6.2: Manage GCM.

Download Messages via HTTP-GET Problems

The application is also able to download messages via HTTP. An error,
which appears in many applications is to lose the application state, while
downloading very big chunks of data over a slow connection. Most down-
loading tasks on an Android system are executed in an AsyncTask or just
a new thread. In most cases, this is a sufficient approach but it can lead to
unforeseen results. As stated before, this application stores its messages in
an SQLite database. If the user decides to close the application, while the
saving operation is still executed, it is possible to save a corrupt message to
the database. Therefore this application uses a Service which starts the Asyn-
Task. This service will not be shut down by the system until the AsyncTask
has finished its execution, or the system is on critical low memory. Another
approach would be to use the library tape from square - coupled with a
Service and a Task (see Chapter 3.4).

To send requests, the library HTTP-request5 is used. This is a convenience
library for using a HttpURLConnection. Listing 6.3 shows how HTTP-request
contacts the server and asks for the currently set message. The server returns
a JSONOBject which contains the message string, as well as the id.

1 HttpRequest request = HttpRequest . get (u r l) . connectTimeout (3 0 0 0 0) .
readTimeout (3 0 0 0 0) ;

2 i f (request . ok ()) {
3 JSONObject j s o n O b j e c t = new JSONObject (request . body ()) ;
4 S t r i n g messageString = j s o n O b j e c t . g e t S t r i n g (”message”) ;
5 S t r i n g messageId = j s o n O b j e c t . g e t S t r i n g (”messageId”) ;

5https://github.com/kevinsawicki/http-request (visited on 12/30/2013)

65

https://github.com/kevinsawicki/http-request

6 Test Environment

6 Message message = new Message (messageId , messageString , System
. currentTimeMil l i s ()) ;

7 Data . addMessage (context , message) ; //saves message on the
database

8 }

Listing 6.3: HTTP Request.

Handle GCM Receive

As the invocation of onMessage is called regardless of the state of the applica-
tion, it is important to handle the different possible states. If the application
was already running and the activity is active, the adapter of the main frag-
ment has to be updated. Then the user instantly sees the new message. If the
activity wasn’t active (active means visible on the screen) at the moment, the
user must be informed with an Android notification. This notification shows
the application name, informs the user that a new message has arrived and
opens the activity when the user clicks on it. The notification also makes a
sound, if the current sound profile allows it.

To achieve this behavior, the GCMIntentService function onMessage sends
a custom ordered broadcast to the application. Furthermore there are 2

BroadcastReceiver implemented, which can receive this broadcast. One of
them is static and has to be registered in the AndroidManifest (Listing 6.4).
The other one is dynamic and is registered in the overwritten onResume
function (Listing 6.4) and unregistered in the overwritten onPause function of
the main activity. The intent filter (the action element in the static receiver),
declares the broadcasts the receivers will be able to catch.

It is important to assign a higher priority to the the dynamic receiver. In this
case it received a priority of 30. The static receiver a lower priority of 20. If
the activity is shown and the receiver receives a broadcast, it can update the
main fragment and abort the broadcast. Then the static receiver will not be
informed. If the main activity isn’t shown, only the static receiver receives
the broadcast and starts the Android notification to inform the user about
the new message.

66

6 Test Environment

1 <r e c e i v e r
2 android : name=” at . marki . C l i e n t . r e c e i v e r . S ta t i cRece iverMessages ”
3 android : enabled=” true ”
4 android : exported=” f a l s e ”
5 <i n t e n t− f i l t e r android : p r i o r i t y =”20”>
6 <a c t i o n android : name=” i n t e n t . f i l t e r . marki . message . r e c e i v e r

”/>
7 </i n t e n t−f i l t e r >
8 </r e c e i v e r>

Listing 6.4: Registration of static BroadcastReceiver in the manifest.

1 // f i l t e r f o r normal messages (gcm r e c e i v e r)
2 I n t e n t F i l t e r f i l t e r M e s s a g e = new I n t e n t F i l t e r (g e t S t r i n g (R . s t r i n g .

i n t e n t f i l t e r m e s s a g e r e c e i v e)) ;
3 f i l t e r M e s s a g e . s e t P r i o r i t y (3 0) ;
4 t h i s . r e g i s t e r R e c e i v e r (messageReceiver , f i l t e r M e s s a g e) ;

Listing 6.5: Registration of dynamic BroadcastReceiver in the main activity.

6.2.3 SMS Capability

Besides getting messages via Google Cloud Messaging and HTTP, the client
application is able to receive messages via SMS. Of course this is only
possible for devices with a SIM card and a working contract with a mobile
network provider.

Sending SMS messages

To enable this approach, the client has to transmit its phone number to the
server. It is impossible to do this via the HTTP GCM registration as the
phone number is not physically stored on all SIM cards or broadcasted
via the network. Even if the phone is able to read the number with the
permission READ PHONE STATE it is possible to get the number of a
previously installed SIM card or null.

67

6 Test Environment

Therefore, the registration of the phone number has to be done by sending
a SMS to the server. The client handles this in the function registerWithSms
(see Listing 6.6). The Android telephony.SmsManager enables the application
to send a SMS to a specified receiver, which is in our case the phone number
of the Server, which is stored in the global strings resources. For this code
to work, the permission SEND SMS has to be set in the Android manifest.
For practical reasons, the message of this SMS also contains the GCM ID.
The server has to parse this ID, as well as the phone number of the sender.
After that, all information needed to send SMS and GCM messages to the
MTClient application are gathered.

The PendingIntent sendingPendingIntent and deliveringPendingIntent are coped
with 2 broadcast receivers set in the functions registerSentReceiver and reg-
isterDeliveringReceiver. Those 2 receivers are registered in the MainActivity
and get unregistered on leaving the activity, which happens when the user
closes the application. The sentReceiver gets informed by the System if:

• SMS sending was successful.
• A generic failure happened.
• Device was unable to send SMS due to no service availability.
• No pdu was provided.
• Failed because the radio was explicitly turned off.

The deliveringReceiver gets informed by the System if the delivery was
successful or if the operation was cancelled.

1 p r i v a t e void registerWithSms () {
2 PendingIntent sendingPendingIntent = r e g i s t e r S e n t R e c e i v e r () ;
3 PendingIntent de l iver ingPendingIntent =

r e g i s t e r D e l i v e r i n g R e c e i v e r () ;
4

5 GCMRegistrar . setRegis teredOnServer (g e t A c t i v i t y () , t rue) ;
6 S t r i n g gcmId = GCMRegistrar . g e t R e g i s t r a t i o n I d (g e t A c t i v i t y ()) ;
7

8 SmsManager sms = SmsManager . ge tDefaul t () ;
9 sms . sendTextMessage (g e t S t r i n g (R . s t r i n g . server sms number) ,

null , ”MTClient GCM: ” + gcmId , sendingPendingIntent ,
de l iver ingPendingIntent) ;

10 }

68

6 Test Environment

Listing 6.6: Register with SMS function.

Receiving SMS messages

If the registration of the phone number on the Server was successful, the
application is able to receive SMS messages. For this, a BroadcastReceiver
is necessary. This receiver called SmsReceiver must be registered in the
Android manifest (see Listing 6.7). Receiving SMS also needs the permission
RECEIVE SMS.

1 <r e c e i v e r
2 android : name=” . r e c e i v e r . SmsReceiver ”
3 android : permission=” android . permission .BROADCAST SMS”>
4 <i n t e n t− f i l t e r android : p r i o r i t y =” 2147483647 ”>
5 <a c t i o n android : name=” android . provider . Telephony .

SMS RECEIVED”/>
6 </i n t e n t−f i l t e r >
7 </r e c e i v e r>

Listing 6.7: Registration of SMS BroadcastReceiver in the manifest.

As the BroadcastReceiver receives all incoming SMS, regardless of primary
destination, it is important for the Server to tag the message with an iden-
tifier. It was decided to insert the tag ’at.marki’ in the body of the SMS
message. The BroadcastReceiver has the mission to parse all incoming mes-
sages and look for this tag. If this tag is not part of the body of the SMS, it
has to ignore it and let the broadcast continue. These messages will then be
received by the (other) SMS applications installed on the device.

Intercepting SMS

It is important to intercept all incoming SMS messages, which are destined
for this client. That means that SMS messages tagged with ’at.marki’ will not

69

6 Test Environment

be shown in other SMS applications on the device. For this to work, some
preconditions must be set.

As Listing 6.7 shows, the priority of the SMS receiver is 2147483647, which is
the value of maximum Integer. No other application on the device can have
a higher priority. The standard Android SMS application on devices with
stock Android has the priority 0. After receiving a message and confirming
that it is a message sent from the test environment server, the broadcast can
be aborted with the call BroadcastReceiver.abortBroadcast. A problem arises, if
there is another custom SMS application, with the same maximum priority
installed on the device. Then it is uncertain which application receives
the broadcast first. If the other application receives it first and aborts the
broadcast, the MTClient has no chance to receive and parse this message.

In Android KitKat however (which was introduced after the implementation
of the code above), the SMS API changed. There, the concept of a default
SMS application was introduced:

• Only one application can be set as the default application and the user
has to set this in a dialog.
• Only the default application can write to the SMS Provider.
• The default application receives every SMS. Only the default applica-

tion is able to abort SMS broadcast.

Therefore the only possibility to intercept standard SMS messages on KitKat
is to ask the user if he wants to set the MTClient as the default SMS appli-
cation. The MTClient is not predestined to be a SMS application, it would
however, send all untagged messages to the real SMS applications on the
device. This would mean that the MTClient just forwards the majority of the
messages.

Intercepting Data SMS

Another possibility to circumvent the security feature which came with the
default SMS application on KitKat, is to use data SMS. Data SMS are a special-

70

6 Test Environment

ized form of messages which contain a data body instead of a text message.
These messages aren’t catched by the default SMS application. Data SMS are
sent to a specific port. To receive such messages, the developer has to add the
action <action android:name=”android.intent.action.DATA SMS RECEIVED”
/> with an arbitrary port <data android:port=”1234” /> to the static SMS
receiver in the AndroidManifest.

Data SMS messages are only catched by the BroadcastReceiver listening to
this specific port. A problem could occur, if another application is listening
to this port for data SMS messages. Then, it isn’t certain which application
receives the message first and if the second application receives it at all.

To send such a message, the telephone number and the port (in this case
’1234’) have to be passed as parameter to the SMSManager sendDataMessage
function. Furthermore, the data itself is passed as a byte array, instead of a
String like in the sendMessage function.

6.2.4 Application Shut Down

As described, the receiving of a new message must work even if the appli-
cation is terminated by the Android system or by the user itself. When the
user leaves the application via the back button, the application process is
shut down by the System after approximately 30 to 60 minutes (on a Nexus
4 with KitKat). The user can also close it instantly via the ’running services’
screen.

A third possibility to close the application is to use the force close button
in the Android settings. This way of closing the application is special in
a very negative way. After force closing an application, all static receivers
are unregistered from the Android system. Receiving a GCM message or
any other static event implemented in the manifest file of this application
won’t be triggered anymore, until the application is manually started by the
user.

71

6 Test Environment

6.2.5 Monitoring

There are multiple monitors in use for this application. Of course the already
introduced Monitor library is utilized. As this application needs to receive
messages even if currently not active, all monitors need to start even if the
application is no longer running, so the monitors need to be started with
the parameter startSticky set to true.

Monitor Internet

The first monitor checks, if the device is in some way connected to the
internet. If no internet connection is available, there are not many options
for the application to fulfill its tasks. For this functionality the observeThis
function of the MonitorConnectivity monitor class, checks if connectivity is
available with the provided APIs of the Android system (see Listing 6.8).

1 ConnectivityManager cm = (ConnectivityManager) contex t .
getSystemService (Context . CONNECTIVITY SERVICE) ;

2 NetworkInfo n e t I n f o = cm . getActiveNetworkInfo () ;
3 re turn n e t I n f o != n u l l && n e t I n f o . isConnectedOrConnecting () ;

Listing 6.8: Call of ConnectivityManager.

If no connectivity is available, the handleEvent function will halt all further
monitoring events, until the next time the connectivity monitor is called as
no other monitor will succeed without connectivity.

Internet Monitoring Tweak To tweak the internet monitoring ability, a
special broadcast receiver for connectivity could be implemented in the
Android manifest (see Listing 6.9).

1 <a c t i o n android : name=” android . net . conn .CONNECTIVITY CHANGE”/>

Listing 6.9: Connectivity static receiver.

72

6 Test Environment

The Android ConnectivityManager of the system will call the onReceive func-
tion of this receiver every time the connectivity status changes. If no internet
connection could be established, it is favorable to suspend all scheduled
service monitoring tasks to save battery life. After receiving the next con-
nectivity change broadcast by the system, the monitoring, as well as the
application functionality can be resumed. This little tweak would not im-
prove the monitoring itself but help making the application more energy
efficient.

Switch to SMS It was planned and already implemented that if no internet
connection is possible, but the device still has access to the GSM network, to
switch the functionality of receiving messages to the Short Message Service
(see Chapter 6.2.3). However, this was abandoned due to the changes of the
SMS API in KitKat.

Monitor Server

The second monitor verifies, if a connection to the server is possible. This
is implemented with a simple HTTP request in the observeThis method of
the overwritten monitor class. This check confirms, if the HTTP requests
returns the state OK. In a productive implementation, a complete check of
the server capabilities could be implemented, which is here not necessary,
as a great part of the server is only mocked. A way to implement a better
solution, would be to let the server test itself every 30 minutes and return
the result of the last check in this HTTP request.

If the check is successful, the next monitor is started. If it isn’t successful,
it is indicated that the server is experiencing issues of some sort. In the
handleEvent method, the application automatically sends a SMS and a mail
to the server administrator. In a real world application with thousands of
installed applications this wouldn’t be the best solution, but it is an ok fault
handling for this test environment.

73

6 Test Environment

Monitor GCM

The implementation of this monitor is a little bit tricky, due to the issue
that IP-ranges of android.googleapis.com are not published by Google. It is
possible to use nslookup6 on android.googleapis.com to learn the IP address,
but this approach provides mostly unusable results. As directly pinging the
GCM servers isn’t of much use, the application implements a more complex
but in the end more useful approach of a GCM monitor.

The idea is to send a request to the server via HTTP-GET, which forces it to
send a GCM message to the client application. This pre-defined message is
catched in the GCMIntentService and a receivedPing flag is set. After a waiting
period of approximately 10 seconds the monitor checks if the receivedPing
flag is set and returns the result. If the flag wasn’t set, the monitor waits
for another 30 to 120 seconds. If it still didn’t receive the GCM message the
method handleEvent of the monitor is called.

If GCM isn’t working properly but the MTServer is, the application needs to
switch to HTTP-GET polling. The interval is set to every 5 minutes. If on
the next monitor run the application detects that GCM is working again, the
HTTP polling will be deactivated (see Chapter 6.2.2 for further information
regarding HTTP-GET).

Run-order and event handler

If the internet monitoring fails, it isn’t necessary to run the server and GCM
monitoring. Therefore the monitors are chained to each other and won’t run
synchronously. The first monitor to run is the internet monitor. The second
one the server monitor, and the last one the GCM monitor.

The MTClient application has another event handler (EventHandler.class) in
addition to the handleEvent function which is implemented in each monitor.
This is necessary because one monitor has not enough information about

6https://en.wikipedia.org/wiki/Nslookup (visited on 12/31/2013)

74

https://en.wikipedia.org/wiki/Nslookup

6 Test Environment

the current state of the services to decide the further actions on his own. The
event handler collects all available information of the monitors and enables
one of the following states:

• Default (GCM)
• HTTP
• SMS

The states are set and re calculated in the synchronized function calcu-
lateApplicationEvent after every execution of the functions handleEvent and
observeThis of every running monitor. The flags which are set by the monitors
to true or false are:

• Connection
• Server
• GCM

These values, as well as the application states, are stored in the Android
SharedPreferences, on the internal storage of the system. They cannot be
directly stored in the event handler, as the stack is too volatile in an applica-
tion which can be shut down by the system at any time. The state handler
is called when a monitor has finished its job and already set the value to
the flag mentioned above. This process is displayed in Figure 6.6.

To activate the state GCM or SMS, no further actions are necessary because
the server sends a message to the device and the GCM and SMS broadcasts
are automatically catched by the application, whether the client is running
or shut down. To activate the state HTTP-polling however, the client has to
set a scheduler similar to the monitoring schedulers to start the message
download (see Chapter 6.2.2).

To decide the time interval for the execution of each monitor is a rather
complex task. Choosing a real short interval would result in polling the
server and keeping the application alive indefinitely. This would result in
a high energy consumption and render the use of energy saving GCM
useless.

75

6 Test Environment

Shared
Preferences

GCM State

Server State

Connectivity

Application State

Monitors

EventHandler

Update state of monitor flags

Update Application State,
receive monitor flags

Monitor
Flags

Start EventHandler

Figure 6.6: Monitor state handling.

It is possible that the same message arrives more than once because of the
complex monitor and redundancy architecture of this test client. Therefore
every message on the server is constructed with a random UUID7. Even if
the same message arrives multiple times it will only be displayed once.

As compatibility with older Android devices is of no concern, the minimum
API level of the client application is 18.

6.3 Monitoring Results

6.3.1 General Results

Most of the time, the 3 distinct monitors behaved like expected. The Android
AlarmManager started the monitors even if the application process was long
closed by the system. The scheduled events in the AlarmManager are not
even interrupted by shutting the device down and restarting it. Of course
the monitor won’t wake the device up when shut down. Only a few distinct
applications like the alarm clock are expected to work even if the device is

7https://en.wikipedia.org/wiki/Uuid (visited on 12/31/2013)

76

https://en.wikipedia.org/wiki/Uuid

6 Test Environment

shut down. Therefore this was a design decision that the monitors won’t be
triggered in a sleeping state. However, the monitor library could be refitted
if necessary when using the sticky mode to wake the phone up to start the
monitoring.

6.3.2 Monitor Connectivity

To determine the connectivity with the ConnectivityManager of the Android
API is simple, precise, fast and worked without any issues. The Connectiv-
ityManager knows, if the phone has access to the internet via the mobile
network, WIFI or Bluetooth.

6.3.3 Monitor Server

Even with a slow internet connection, an HTTP request to the server with a
very small payload is generally processed very fast. The only duty of the
server is to set the response to ’OK’ to let the client know that he is still
accessible. This doesn’t however show if the server is in a malicious state.

Ideally, also the server has a running monitor which detects problems in
the server environment. For example, if the database server is offline, the
implemented HTTP request would still succeed. A real message call however
would fail. A monitor, implemented by the server should continuously assert
the database and set the state somewhere reachable for the check servlet.
If the server is in a malicious state, it will set the response for the client
to ’Not OK’ or a more specific flag. If the server already knows that he is
defect, the client doesn’t have anything to do but try again later or switch
to a backup server.

77

6 Test Environment

6.3.4 Monitor GCM

As already explained, the IP-ranges of android.googleapis.com are not pub-
lished by Google, but the service is usually accessible on port 5228. It is very
hard to determine if GCM is working without actually sending a message.
Therefore the approach was to send a message from the server to the client
via GCM. Most of the time this worked without any issues. The messages
arrive in about 2 to 20 seconds and the state of the client can be set to
’OK’.

Sometimes however, especially when using the WIFI connection on a router,
there might occur problems with GCM. After approximately 5 minutes after
receiving the last GCM message, new messages are not received instanta-
neously. Only after about 15 minutes, all missing messages in between this
time frame are received at once. This is not the fault of GCM, rather it is an
over-zealous router in between the client and the internet.

On the Android side, there is no indication that the connection failed. There-
fore, it is assumed that neither Android nor the Google servers terminated
the GCM connection. After 15 minutes after receiving the last successful
message however, Android sends out a cooee8 packet to tell Google to keep
this connection alive. This call will not go through to the Google servers and
after a number of several retries a new connection to GCM will be set up.
This new connection will lead to receiving all the missing messages of the
last minutes. Therefore, there is a 10 minute window, where the application
can’t receive messages.

It isn’t completely clear why this is happening, but a theory is that the
router deletes the mapping of the Google side port to port 5228 after around
5 minutes of inactivity. Therefore, there is no route from the Google server
to the client. The cooee packet implies a keep alive strategy from Google
especially for cases like this one.

This is a major problem not only for the application functionality itself but

8https://en.wikipedia.org/wiki/Cooee (visited on 12/29/2013)

78

https://en.wikipedia.org/wiki/Cooee

6 Test Environment

also for the monitor. The monitor will warn that GCM is no longer running,
which is essentially correct.

Other Android applications which are using GCM (like Google Hangouts),
will most likely send out a ping from the GCM server every 2 or 3 minutes.
Another possibility would be to forcefully reset the Android connection to
GCM after 5 minutes of inactivity, when connected via WIFI. These solutions
however, will lead to a higher battery drainage.

There are further issues with the GCM service, a few of them aren’t docu-
mented by Google.

The device needs to be re-registered if the version of the application changes
(this is now documented). It also needs to be re-registered if the Android
version has been updated.

The GCM registration also often fails with an IOExeption containing the
flag SERVICE NOT AVAILABLE. As it is not exactly determinable why
this happens. The best countermeasure is to keep trying to register the
application with an exponential backoff.

On some devices, the GCM registration ID is created but it will fail with an
Exception regardless. If this happens, the ID can be catched in the GCM-
BroadcastReceiver, if the BroadcastReceiver in the AndroidManifest contains the
action <action android:name=”com.google.android.c2dm.intent.REGISTRATION”
/>.

6.3.5 Reliability

As stated in the Chapters 2.2.5 and 3.3 there are multiple possibilities to
verify the long time reliability of a monitoring system. One of the most
important factors was, to test it over a longer time period on an actually
used device. Such a device must comply with a set of defined conditions:

79

6 Test Environment

• The device must be used every day or nearly every day (a weekend
without usage is also a good test case).
• Many different applications should be used.
• The user makes phone calls.
• The device should sometimes be turned off or switched to airplane

mode.

Therefore a modified client application was handed over to a few users.
This application saves a log about the monitors and the corresponding event
handling. The log describes if and when a monitor was started, if and when
an event handler was started and if and when the device was shut down.
To log the start and the shutdown of a device, the BroadcastReceiver In-
tent.ACTION BOOT COMPLETED and Intent.ACTION SHUTDOWN must
be implemented and registered in the AndroidManifest. The logs showed
that a monitor, which is coupled with the Android AlarmManager is very
hard to kill. It successfully survived long time usage with many device shut
downs / restarts.

As the AlarmManager isn’t part of the application, it can survive uncatched
runtime exceptions of said application. Therefore, it is possible to implement
a watchdog (see user stories in Chapter 5.1), based on an AlarmManager
action. This watchdog however, will lag after the exception, as it will only
check the system based on the pre configures time frame.

6.3.6 Conclusion

The testing phase revealed that services, which are not under control and
maintenance of the Android application developer, can be relatively reliable
monitored. Though, the developers have to consider multiple little issues
which are often unique in a smart phone environment. If a failure in the
behavior of a service is found, there are different approaches the application
can take. The simplest approach, is to select a backup service. Furthermore,
most devices offer a big selection of hardware components which enables the
developer to choose between multiple options to respond to the failure.

80

6 Test Environment

During the test phase of the service monitoring, it came to light that the
Android systems already sends information about the the most important
local (on device) occurrences via public broadcasts (See Chapter 1.4). There-
fore, targeting ’on device services’ with the monitor library is often not
necessary. If a system broadcast exists, a BroadcastReceiver can be registered.
Google is constantly improving the monitoring system of the Android sys-
tem. More broadcasts for different events are getting implemented as the
system matures. The documentation however for this part is still lacking.

Most of the problems which were encountered by the monitoring, where
found on the GCM part (see Chapter 6.3.4). The monitoring of the GCM
service was also the initial catalyst for the implementation of a library, as
this service seemed to be unreliable at times. It came to light however that
most of the problems with GCM weren’t actually due to service failures, but
rather to problems with some WIFI routers and GCM registration failures. It
doesn’t help that most of these failures are undocumented on the Android
development site. The log of the monitor helped to identify the reasons why
no connection to GCM was possible, but such logs should exist in every
Android application in the testing phase. Key parameter in the log files were
the connection type, the Android version and the device manufacturer.

81

Appendix

82

83

Acronyms

AOT ahead-of-time. 5

API application programming interface. 1, 2, 9, 26, 27, 47, 52, 70, 72, 76, 77

ART Android Runtime. 4, 5

CPU central processing unit. 2, 27

GCM Google Cloud Messaging. 10, 25, 26, 43, 46, 58, 60, 62–64, 67, 68, 71,
74, 75, 78, 79

GUI graphical user interface. 57–59

JIT just-in-time. 2, 4, 5

MOP Monitoring-Oriented Programming. 15, 16

SLA service level agreement. 20

TMR triple modular redundancy. 32

UDDI Universal Description, Discovery and Integration. 18

UI user interface. 8, 51, 54, 60

VM virtual machine. 2

WKS Wirksamen Kontroll-System. 41

WSDL Web Services Description Language. 18

84

Listings

2.1 SafeLock in Java MOP. 16

2.2 Connection and connection speed in Android. 26

3.1 Provide dependency with Dagger. 36

5.1 Set up and start of the AlarmManager. 50

5.2 Broadcast onReceive. 52

5.3 Starting ScheduledExecutorService. 54

6.1 GCM BroadcastReceiver. 63

6.2 Manage GCM. 64

6.3 HTTP Request. 65

6.4 Registration of static BroadcastReceiver in the manifest. . . . 67

6.5 Registration of dynamic BroadcastReceiver in the main activity. 67

6.6 Register with SMS function. 68

6.7 Registration of SMS BroadcastReceiver in the manifest. 69

6.8 Call of ConnectivityManager. 72

6.9 Connectivity static receiver. 72

85

Bibliography

Albari, Mohamed Ziad (2005). “A taxonomy of runtime software Moni-
toring systems.” In: url: http://www.informatik.uni-kiel.de/~wg/
Lehre/Seminar-SS05/Mohamed_Ziad_Albari/vortrag.pdf (visited on
12/08/2013) (cit. on pp. 11, 28).

Ameller, David and Xavier Franch (2008). “Service level agreement monitor
(SALMon).” In: Composition-Based Software Systems, 2008. ICCBSS 2008.
Seventh International Conference on. IEEE, pp. 224–227 (cit. on p. 18).

Arzt, Steven et al. (n.d.). “How useful are existing monitoring languages for
securing Android apps?” In: (cit. on p. 2).

Avizienis, A. et al. (Jan. 2004). “Basic concepts and taxonomy of dependable
and secure computing.” In: Dependable and Secure Computing, IEEE Trans-
actions on 1.1, pp. 11–33. issn: 1545-5971. doi: 10.1109/TDSC.2004.2
(cit. on p. 36).

Bellwood, Tom et al. (2002). The Universal Description, Discovery and Integra-
tion (UDDI) specification (cit. on p. 18).

Burnette, Ed (2009). Hello, Android: introducing Google’s mobile development
platform. Pragmatic Bookshelf (cit. on p. 5).

Chen, Feng, Dongyun Jin, et al. (2009). “Monitoring oriented programming-
a project overview.” In: Proceedings of the Fourth International Conference
on Intelligent Computing and Information Systems (ICICIS 2009), pp. 72–77

(cit. on p. 17).
Chen, Feng and Grigore Roşu (2005). “Java-MOP: A monitoring oriented

programming environment for Java.” In: Tools and Algorithms for the
Construction and Analysis of Systems. Springer, pp. 546–550 (cit. on p. 15).

Chen, Liming and Algirdas Avizienis (1978). “N-version programming: A
fault-tolerance approach to reliability of software operation.” In: Proc.
8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8), pp. 3–9 (cit. on
p. 34).

86

http://www.informatik.uni-kiel.de/~wg/Lehre/Seminar-SS05/Mohamed_Ziad_Albari/vortrag.pdf
http://www.informatik.uni-kiel.de/~wg/Lehre/Seminar-SS05/Mohamed_Ziad_Albari/vortrag.pdf
http://dx.doi.org/10.1109/TDSC.2004.2

Bibliography

Christensen, Erik et al. (2001). Web services description language (WSDL) 1.1
(cit. on p. 18).

Delgado, N., A.Q. Gates, and S. Roach (2004). “A taxonomy and catalog of
runtime software-fault monitoring tools.” In: Software Engineering, IEEE
Transactions on 30.12, pp. 859–872. issn: 0098-5589. doi: 10.1109/TSE.
2004.91 (cit. on pp. 12, 14, 15).

Falcone, Yliès and Sebastian Currea (2012). “Weave droid: aspect-oriented
programming on Android devices: fully embedded or in the cloud.” In:
Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. ACM, pp. 350–353 (cit. on p. 16).

Falcone, Yliès, Sebastian Currea, and Mohamad Jaber (2013). “Runtime
Verification and Enforcement for Android Applications with RV-Droid.”
In: Runtime Verification. Springer, pp. 88–95 (cit. on p. 16).

Fowler, Kim (2009). Mission-critical and safety-critical systems handbook: Design
and development for embedded applications. Newnes (cit. on p. 47).

Gandhewar, Nisarg and Rahila Sheikh (2010). “Google Android: An emerg-
ing software platform for mobile devices.” In: International Journal on
Computer Science and Engineering 1.1, pp. 12–17 (cit. on p. 1).

Hall, Sharon P and Eric Anderson (2009). “Operating systems for mobile
computing.” In: Journal of Computing Sciences in Colleges 25.2, pp. 64–71

(cit. on p. 5).
Jin, Li-jie, Vijay Machiraju, and Akhil Sahai (2002). “Analysis on service

level agreement of web services.” In: HP June (cit. on p. 20).
Keller, Alexander and Heiko Ludwig (2003). “The WSLA framework: Spec-

ifying and monitoring service level agreements for web services.” In:
Journal of Network and Systems Management 11.1, pp. 57–81 (cit. on p. 21).

Kumar Maji, A. et al. (2010). “Characterizing Failures in Mobile OSes: A Case
Study with Android and Symbian.” In: Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, pp. 249–258. doi:
10.1109/ISSRE.2010.45 (cit. on p. 2).

Kwon, Young-Woo and E. Tilevich (2012). “Energy-Efficient and Fault-
Tolerant Distributed Mobile Execution.” In: Distributed Computing Sys-
tems (ICDCS), 2012 IEEE 32nd International Conference on, pp. 586–595.
doi: 10.1109/ICDCS.2012.75 (cit. on p. 24).

La, Hyun Jung and Soo Dong Kim (2009). “A service-based approach to
developing Android Mobile Internet Device (MID) applications.” In:
Service-Oriented Computing and Applications (SOCA), 2009 IEEE Interna-

87

http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.1109/ISSRE.2010.45
http://dx.doi.org/10.1109/ICDCS.2012.75

Bibliography

tional Conference on, pp. 1–7. doi: 10.1109/SOCA.2009.5410278 (cit. on
p. 7).

Laprie, J.-C. et al. (July 1990). “Definition and analysis of hardware- and
software-fault-tolerant architectures.” In: Computer 23.7, pp. 39–51. issn:
0018-9162. doi: 10.1109/2.56851 (cit. on p. 37).

Lyu, Michael R. (2007). “Software Reliability Engineering: A Roadmap.”
In: 2007 Future of Software Engineering. FOSE ’07. Washington, DC, USA:
IEEE Computer Society, pp. 153–170. isbn: 0-7695-2829-5. doi: 10.1109/
FOSE.2007.24. url: http://dx.doi.org/10.1109/FOSE.2007.24 (cit. on
p. 29).

Maia, C., L. Nogueira, and L. M. Pinho (2010). “Evaluating android os for
embedded real-time systems. In Proceedings of the 6th International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications.” In: (cit. on p. 2).

Nimodia, C. and Deshmukh (2012). “Android Operating System.” In: Soft-
ware Engineering, ISSN, pp. 2229–4007 (cit. on p. 2).

Papazoglou, M.P. (2003). “Service-oriented computing: concepts, characteris-
tics and directions.” In: Web Information Systems Engineering, 2003. WISE
2003. Proceedings of the Fourth International Conference on, pp. 3–12. doi:
10.1109/WISE.2003.1254461 (cit. on p. 17).

Powers, R.A. (1995). “Batteries for low power electronics.” In: Proceedings
of the IEEE 83.4, pp. 687–693. issn: 0018-9219. doi: 10.1109/5.371974
(cit. on p. 24).

Rossignol, Joe (2013). Android Activations surpass one billion. url: http://
www.businessinsider.com/chart-of-the-day-android-activations-

hit-1-billion-2013-9 (visited on 12/23/2013) (cit. on p. 7).
Standarization, International Organization for (2001). Standard 9126: Software

Engineering – Product Quality, part 1 (cit. on p. 18).
Su, S.Y.H. and Edgar Ducasse (Mar. 1980). “A Hardware Redundancy Re-

configuration Scheme for Tolerating Multiple Module Failures.” In:
Computers, IEEE Transactions on C-29.3, pp. 254–258. issn: 0018-9340. doi:
10.1109/TC.1980.1675557 (cit. on p. 32).

Terasa, Clemens and Sibylle Schupp (n.d.). “Annotation-guided soft-error
injection.” In: Proc. 2nd GI Workshop on Software-Based Methods for Robust
Embedded Systems (SOBRES’13), ser. LNI, to appear (cit. on p. 39).

Torres-Pomales, Wilfredo et al. (2000). “Software fault tolerance: A tutorial.”
In: NASA Technical Report, NASA-2000-tm210616 (cit. on p. 34).

88

http://dx.doi.org/10.1109/SOCA.2009.5410278
http://dx.doi.org/10.1109/2.56851
http://dx.doi.org/10.1109/FOSE.2007.24
http://dx.doi.org/10.1109/FOSE.2007.24
http://dx.doi.org/10.1109/FOSE.2007.24
http://dx.doi.org/10.1109/WISE.2003.1254461
http://dx.doi.org/10.1109/5.371974
http://www.businessinsider.com/chart-of-the-day-android-activations-hit-1-billion-2013-9
http://www.businessinsider.com/chart-of-the-day-android-activations-hit-1-billion-2013-9
http://www.businessinsider.com/chart-of-the-day-android-activations-hit-1-billion-2013-9
http://dx.doi.org/10.1109/TC.1980.1675557

Bibliography

Voas, J.M. (June 1998). “Certifying off-the-shelf software components.” In:
Computer 31.6, pp. 53–59. issn: 0018-9162. doi: 10.1109/2.683008 (cit. on
p. 38).

Wang, Le and J. Manner (Dec. 2010). “Energy Consumption Analysis of
WLAN, 2G and 3G interfaces.” In: Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), pp. 300–307. doi: 10.1109/
GreenCom-CPSCom.2010.81 (cit. on p. 26).

Wikipedia (2013). Runtime verification — Wikipedia, The Free Encyclopedia.
url: http : / / en . wikipedia . org / w / index . php ? title = Runtime _

verification&oldid=549424499 (visited on 12/08/2013) (cit. on p. 12).

89

http://dx.doi.org/10.1109/2.683008
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.81
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.81
http://en.wikipedia.org/w/index.php?title=Runtime_verification&oldid=549424499
http://en.wikipedia.org/w/index.php?title=Runtime_verification&oldid=549424499

