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Abstract

Conventional sampling systems are based on the Whittaker-Kotelnikov-Shannon (WKS)
sampling theorem which states signals should be sampled at twice the highest frequency
component. In fact, this is a worst-case assumption. It applies to (bandlimited) white
noise as well as to signals which contain only a small amount of information.

Many signals can be described with considerably less parameters than predicted by the
WKS theorem. This is achieved by describing the data with an appropriate representation
(for example, using a transform like the Fourier transform) in which the signal is sparse.
Sparse signals are characterized by having only a few (but unknown) non-zero components.
This leads to the question if signals can be sampled at a lower rate than predicted by the
WKS theorem. Sampling at a lower rate would support to realize cheaper, smaller and
less energy consuming analog-to-digital conversation.

This thesis compares and analyzes three different novel sub-Nyquist sampling systems:
The random demodulator (RD), some methods using a framework termed finite rate of
innovation (FRI) and the modulated wideband converter (MWC). In particular it is
discussed, if these approaches outperform prevalent sampling strategies in practice.

Keywords: Whittaker-Kotelnikov-Shannon theorem, Analog-to-digital conversation,
sampling, sub-Nyquist sampling, compressive sampling, spectral compressive sampling,
finite rate of innovation, random demodulator, modulated wideband converter
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Kurzfassung

Gewöhnliche Abtastsysteme basieren auf dem Whittaker-Kotelnikov-Shannon (WKS)
Abtasttheorem, welches besagt, dass ein Signal mit mindestens der doppelten im Signal
vorhandenen Frequenz abgetastet werden muss. Dies ist jedoch ein Grenzfall. Denn es gilt
sowohl für (band begrenztes) weißes Rauschen als auch für Signale, die nur eine niedrige
Informationsrate besitzen.

Viele Signale können mit beträchtlich weniger Parametern dargestellt werden als das
Abtasttheorem vorhersagt. Dies ist durch Darstellung in einer optimalen Form (zum
Beispiel durch eine Transformation wie der Fourier Transformation) möglich, in der
das Signal spärlich besetzt (sparse) ist. Spärlich besetzte Signale bestehen lediglich aus
wenigen (jedoch unbekannten) Koeffizienten. Dies führt zur Frage, ob solche Signale
nicht mit einer geringeren Rate, als durch das Abtasttheorem vorhergesagt abgetastet
werden können. Eine niedrigere Abtastrate würde die Realisierung billigerer, kleinerer
und stromsparenderer Analog-zu-Digital Umsetzung ermöglichen.

Diese Diplomarbeit vergleicht drei neuartige Abtastsysteme: Den random demodulator
(RD), einige Methoden, die auf dem finite rate of innovation (FRI) framework basieren,
sowie den modulated wideband converter (MWC) und untersucht diese hinsichtlich ihrer
Praxistauglichkeit.

Stichwörter: Whittaker-Kotelnikov-Shannon Theorem, Analog-zu-digital Umsetzung,
Abtastung, sub-Nyquist Abtastung, compressive sampling, spectral compressive sampling,
finite rate of innovation, random demodulator, modulated wideband converter
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Chapter 1

Introduction

Sampling is the process of converting analog signals to a sequence of digital numbers
which can be processed by a computer. Devices which perform this conversation are called
analog-to-digital converter (ADC). An ADC essentially takes values of a continuous signal
(samples) which are discretized afterwards to finite precision numbers. There is hardly
a modern electronic device without an integrated ADC. ADCs are required whenever
real-world data must be transferred into a computer (for example when recording music,
voice or movies, recording images or in reception of communication signals) and as such,
they are a fundamental part of today’s electronic devices.

The mathematical theory underlying the sampling process is strongly related to
interpolation of functions. The earliest traces lead back to at least 1765 when Joseph-
Louis Lagrange addressed the interpolation of periodic, bandlimited functions. In 1915,
Edmund Taylor Whittaker published his work “On the functions which are represented
by the expansions of the interpolation theory”, which first addressed the interpolation of
arbitrary, bandlimited functions [1]. From a practical point of view, the foundations date
back to 1928 when Harry Nyquist explored how many pulses can be transmitted from
a communication system with bandwidth B [2]. The term Nyquist rate (the minimum
sampling rate) still reminds us of his pioneering work. A unified theorem, which describes
how many samples are sufficient to describe an analog signal x(t) uniquely, was first
established by Wladimir Alexandrowitsch Kotelnikov in 1933 [3] and independently
by Claude Elwood Shannon in 1949 [4]. The theorem, which is known today as the
Whittaker-Kotelnikov-Shannon (WKS) sampling theorem, states the sampling rate must
be at least twice as high as the highest frequency component in x(t) [4]:

Theorem 1. If a (finite-energy) function x(t) contains no frequencies higher than W Hz,
it is completely determined by giving its ordinates at a series of points spaced 1

2W seconds
apart.

Figure 1.1 shows the block diagram of a classical, ideal sampling setup. First, the
analog signal x(t) is filtered by an analog anti-aliasing filter to reject unwanted signal
components. In practice, this is a low-pass filter. The next step is the actual sampling
step, whose task is to convert the analog, continuous signal y(t) to a sequence of numbers.
In order to define the input signal x(t) with the samples uniquely, the number of samples

1
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ADC

x(t)

t = nTN

x[n] x̂(t)Anti-aliasing
filter
h(t)

Reconstruction
filter

hr(t) = h∗(−t)

y(t)

DAC (linear reconstruction)

∑
n

δ(t− n)

Q{·}
x̂[n]

Figure 1.1: Classical, ideal sampling setup: The input signal is first filtered with an anti-aliasing
filter h(t) which is a low-pass filter, followed by uniform sampling which generates a
sequence of numbers x̂[n]. A quantizer Q converts the numbers to integer values. The
reconstruction modulates the discrete sequence onto a Dirac stream which is finally
low-pass filtered

per second must obey theorem 1. The number of samples an ADC can acquire per second
is termed sampling rate and is the most important parameter of an ADC. The faster
an ADC samples, the more expensive it is in terms of size, energy consumption and
production costs. Current state-of-the-art ADCs can take samples up to 40 billion times
per second (40 GSamples/s) [5]. Until now, the sequence consists of real numbers. In
order to convert these to finite numbers computers can work with, a quantizer Q converts
them to a sequence of numbers at finite precision. The quantizer is the only part in
classical sampling, where information loss occurs because a real number is mapped to
a finite number of bits per sample, for example 8 bit. The number of bits an ADC can
convert is called resolution and is the second important parameter. Similar as for the
sampling rate, properties such as size and energy consumption are related to the number
of bits directly. In a common setup, the process is finished now and the numbers x[n]
are passed to a computer such as a digital signal processor (DSP) for further digital
processing.

In case the original signal needs to be reconstructed, a digital-to-analog converter (DAC)
is used, which generally is much easier to realize. First, the sequences are modulated by
a stream of Dirac impulses in order to obtain an analog pulse stream. Finally, this signal
is filtered with an analog reconstruction filter hr(t). Generally, the reconstruction filter
hr(t) is the time-reversed, conjugate of the anti-aliasing filter h(t). In case of bandlimited
functions, both filters are ideal low-pass filters and therefore have a sinc function as
an impulse response. Since the sinc function is real and symmetric, the reconstruction
filter hr(t) is essentially the same as the anti-aliasing filter h(t). It is important to note
that the whole reconstruction process is linear : The multiplication with the Dirac comb
is a linear operation, as well as the final filter operation. Assuming no quantization
errors, ideal components and theorem 1, the reconstructed signal x̂(t) is equivalent to
the original signal x(t).

Usually there is desire for fast devices with a very high sampling rate, while simul-
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Chapter 1 Introduction

taneously having a high resolution such as 16 bit or even 24 bit. The WKS sampling
theorem often provides a sufficient, but by no means a required condition1. It is easy to
believe that a signal with a single sinusoid of 1 GHz does not require about two billions
of samples per second to specify it uniquely since the signal can be described only by
the three parameters amplitude, frequency and phase shift. Many scientists say that
Shannon was a pessimist. Indeed, when the signal has a certain structure, the WKS
theorem only provides an upper bound.

Many signals occurring in practice have a kind of structure which supports the signal to
be described with considerably less parameters than with the WKS theorem. In general,
signals can be described in some mathematical representation where the properties are
expressed as coefficients. For example, bandlimited signals can be represented as a linear
combination of trigonometric polynomials using the Fourier transform. An analog signal
which has only a low number K of active coefficients is called sparse analog signal. For
example, a dual-tone multi-frequency signaling (DTMF) signal is highly sparse in Fourier
domain since it has only two active coefficients (frequencies). Other signal priors than
sparsity, such as smoothness priors have been proposed [6].

The aim of this thesis is to analyze and compare three novel methods which enable
sampling of sparse analog signals at a rate considerably lower than predicted by the WKS
theorem. The practical realizability of such systems would enable cheaper and smaller
sampling systems and would even allow to sample signals which can not be sampled
nowadays.

1.1 Motivation

The WKS has been the heart of signal acquisition for over five decades. Until now,
essentially all devices requiring signal acquisition obey this theorem. While there has
been extensive research in the field of sampling over the last decades [7], the heart of
any sampling device is still the WKS theorem. While the original sampling theorem was
motivated from a rather practical point of view (sampling of communication signals with
the use of readily available low-pass filters), following approaches offered a different point
of view on sampling. These approaches for example describe the anti-aliasing filter as
projection operator and introduce alternative basis functions such as splines [7]. Despite
the advances in sampling theory, the requirement on the sampling rate still kept the
same.

Recently, an alternative sampling theory termed compressive sampling (CS) or com-
pressed sensing has been established, which has the potential to outperform the prevalent
WKS theorem. It became widely known when Emmanuel Candès, David Donoho, Justin
Romberg and Terence Tao published some pioneering papers [8, 9, 10]. Important spade-
work was done in 2001 by Scott Chen, Michael Saunders and Donoho [11]. While this

1This is not universally valid. For example, it does not apply to bandlimited white noise
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novel theory was established only recently, the prehistory is much older. In the 1970ies,
seismologists found out that they were able to construct images from reflective layers
within the earth which did not obey the WKS theorem [12]. Moreover, the theory behind
CS is far from new: It is, simply speaking, based on solving a system of underdetermined,
linear equations.

Another related theory appeared even earlier than the celebrated CS around 2001 in the
Ph.D. thesis of Pina Marzillano [13]. This theory termed finite rate of innovation (FRI)
sampling is motivated by the observation that a stream of Diracs, although having
theoretically infinite bandwidth, is characterized by a small set of parameters which can
be estimated from a small set of Fourier coefficients.

The motivation for an alternative sampling system than the WKS theorem is manifold:

Sampling of non-bandlimited signals Using the WKS sampling theorem it is not
possible to sample non-bandlimited signals (signals whose highest frequency component
tends to infinity). However, many of those signals are not bandlimited but have a very
simple structure, such as piecewise polynomials. Sampling such signals using the WKS
theorem distorts the sampled signal.

Sparsity Many signals have a compact mathematical representation although they have
a high bandwidth. Again this is true for piecewise polynomial signals, splines as well as
for example a small set of frequencies distributed across a wide frequency range. Sampling
of such signals using the WKS theorem is a waste of resources.

Avoid sample and discard Consider a digital camera acquiring images at high resolution
of a few megapixels. Such a photograph requires 50 MB and more of memory. However,
usually the image is saved as a JPEG image, resulting in a small sized file of a few
hundred kB, without much information loss. The underlying compression method is
based on representing the image in an appropriate basis, for example the discrete cosine
transform or the wavelet transform, under which the image is sparse. In this sparse
representation, coefficients having a value near zero are discarded. This observation is a
key-concept in CS. Another example appears in the reception of communication signals:
Due to analog modulation, an analog signal is sampled at a rate much higher than the
information rate. Most parts of the sampled data are discarded after the acquisition
process. It is a natural question whether it is really necessary to acquire this huge amount
of data if it is discarded anyway or whether it is possible to acquire data directly in a
compressed way.

The need for better ADCs Using novel sampling methods, it might be possible to
sample signals with a certain structure but with a bandwidth exceeding todays capabilities,
such as extremely high frequency signals. Furthermore, more and more signal processing
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shifts to digital domain. Future trends like software defined ratio or fourth generation
mobile systems accelerate this process and need fast conversion as a gate to the analog
world. The well known Moore’s law predicts doubling of computational throughput about
every two years whereas the performance of ADCs doubles only every 4.7 years [14].
Current ADC architectures are not able to catch up the requirements defined by modern
applications.

Another technology which is in the need of novel sampling methods is ultra-wide
band (UWB). UWB has been proposed as a technology for use in personal area networks
and appeared even in the standard IEEE 802.15.3a. However, after several years of
deadlock, the task group was dissolved and many vendors stopped research and production
of UWB products. High implementation costs and performance problems are some of
the reasons for limited success in consumer products [15].

Sampling rate vs. resolution As discussed, the sampling rate and the resolution are
the most important parameters of an ADC. Unfortunately, novel applications need fast
conversation and good resolution at the same time. A widely used figure of merit is the
product of these two numbers, defined as [16]:

P := 2B · fs (1.1)

with B being the number of bits and fs the sampling rate. Unfortunately, it is not
possible to increase both parameters at the same time without limit (an ultimate limit
was estimated using Heisenberg’s uncertainty principle in [17]). In 1999, Walden predicted
the very pessimistic trend that P stays nearly constant. Fortunately, this prediction
turned out to be wrong as can be seen in figure 1.2(a), where P shows an exponential
trend since 1994 (see the center fit curve in the zoomed version) [16].

Nevertheless, fast ADCs still have a low resolution and this trend is even continuing.
Figure 1.2(b) shows the resolution versus the sampling rate for over 1000 ADCs over the
past 20 years [16]. The green line shows the trend from Walden in 1999. The orange line
shows the actual trend which indicates a degradation of P in the high rate regime. A
possible solution to overcome the problem of limited resolution is the reduction of the
sampling rate (by assuming a sparse analog input signal) which provides higher resolution,
especially in high-rate ADCs. Further digital reconstruction recovers the original signal.

Trading analog vs. digital Since Moore’s law is faster than ADC improvement, one
option to overcome the ADC bottleneck is to trade analog processing with digital
processing. Such examples are ADCs with digital assisted circuits [18]. Sparse signals
can help in this process because they support to incorporate prior knowledge: An ADC
could sample at a low rate but high resolution and use computational power in digital
domain to reconstruct the signal.
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(a)

(b)

Figure 1.2: Sampling rate vs. resolution (a) historical trend of P . Although predicted to be
constant by Walden, it exhibits an exponential behavior [16] (b) Although P exhibits
an exponential decay, there is an increase of resolution in the low-rate regime and a
decrease in the high-rate regime [16]
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Another important property is power dissipation. This property is especially important
for mobile applications which are the leading devices requiring fast ADCs. In the last
years, the majority of the designs focused on an optimization of power dissipation, rather
than maximizing the bandwidth [18].

While the focus on power efficiency has led to an average power reduction in ADCs
every two years, this reduction is still small compared to the reduction in digital logic:
While the power dissipation in logic circuits improves 300 times in ten years, it improves
in ADCs only 32 times within the same period. For example, one conversation with an
signal-to-noise-and-distortion radio (SNDR) of 90 dB can toggle over two million logic
gates [18]. An interesting question is if current state-of-the-art sampling algorithms for
sparse analog signals can profit from this gap in digital computation power.

1.2 Outline

This thesis is organized as follows: The next chapter provides a small introduction about
the theoretical foundations. In particular, the two most important frameworks used in
this thesis, the CS and FRI frameworks are introduced.

Chapter 3 describes the sampling setup of the sub-Nyquist sampling systems. The
possible input signals and the three basic building blocks (the preprocessing, low-rate
sampling and non-linear reconstruction) are introduced. Furthermore, the nomenclature
is established.

Chapter 4 covers the first sub-Nyquist sampling system, the random demodulator (RD),
which directly applies principles from CS field. The device samples signals being sparse
in frequency domain, that is, signals consisting only of a few frequency components.

Chapter 5 addresses a series of concepts which make use of the FRI framework. These
devices sample streams of Diracs. In the basic case, these signals are periodic, but with
advanced sampling methods involving compactly supported kernels, it is possible to
sample aperiodic streams of Diracs.

Chapter 6 covers the modulated wideband converter (MWC). The MWC is a sub-
Nyquist sampling system which is much based on the classical sampling theory while
using key-ideas from the CS framework. The device samples multiband signals, that is,
signals consisting a series of concurrently narrow-band transmissions.

Chapter 7 provides an overview on the main aspects of all discussed systems and
discusses the advantages and disadvantages.

Finally, conclusions are given in chapter 8.
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Chapter 2

Theoretical background

The reconstruction formula in the WKS sampling theorem is given by [4]:

x(t) =
∞∑

n=−∞
cn sinc(t− nTN ) (2.1)

where the coefficients cn correspond to the samples x[n] and TN is the sampling period
(the inverse of the sampling rate fs). While (2.1) is widely interpreted as interpolation
formula [19], its meaning is wide-ranging: It can be interpreted as a subspace where
all bandlimited functions live in and which can be uniquely described by the discrete
sequence cn. In the concrete case, the subspace is spanned by shifted versions of a single
generator, the sinc function. Such a subspace is called a linear, shift invariant subspace.

This concept can be generalized to arbitrary generators ψn(t). A vector space called
V, which is spanned by the generators ψn(t) can be defined as:

V :=

{
x(t) =

∑
n

cnψn(t) : cn ∈ `2

}
(2.2)

In practice, x(t) is assumed to have finite energy, that is, it is part of a Hilbert space
x(t) ∈ L2. Furthermore, in order for the process to be stable, the basis functions ψn are
chosen to form a Riesz basis [7]. In this case, the coefficient sequence has finite energy as
well, that is, cn ∈ `2. With ψn = sinc(t− nTN ) and n ∈ Z, the vector space V describes
the class of bandlimited functions and we are back to (2.1). With (2.2) in mind, the
components of the sampling setup described in figure 1.1 can be interpreted as follows:

The anti-aliasing filter The goal of the anti-aliasing filter is to produce a bandlimited
function, that is, a function which can be described by the vector space spanned by (2.2).
Suppose x(t) ∈ L2 is not bandlimited (or the highest frequency component exceeds fN/2).
Then the anti-aliasing filter projects x(t) onto the subspace spanned by (2.2) such that
the projection yields a minimum-error approximation. The projection PV : L2 → V can
be written as [7]:
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PVx(t) =
∑
n

〈x(t), ψn(t)〉 · ψn(t) (2.3)

In this sense, the anti-aliasing filter acts as a projection operator. When the input
signal x(t) is already in the subspace V, the operator PV is without effect.

The ADC After the anti-aliasing filter, x(t) ∈ V and therefore the coefficients cn
uniquely describe x(t). When ignoring all non-ideal effects (such as the quantizer Q),
the sample sequences x[n] now uniquely describe the input signal x(t).

The DAC The act of the DAC can be interpreted as a reconstruction operator R which
converts the coefficients cn ∈ `2 back to L2: R : `2 → L2.

It is important to note that the whole sampling setup described so far is linear and
the symbol V denotes a linear signal subspace. Under certain practical assumptions, it is
possible to realize a sampling setup, as long as it keeps linear. An example for a sampling
setup consisting of multiple, shift invariant generators based on a multichannel setup is
given in [20].

2.1 From Nyquist to sub-Nyquist

Suppose the signal x(t) can be described in a finite dictionary consisting of N elements:

x(t) =
N∑
n=1

cnψn(t) (2.4)

In general, this corresponds to the setup described above which is linear. With N
elements, this is an N -dimensional subspace. Now assume that only K � N generators
ψn (or entries in the sequence cn) are active. To emphasize this setup, rewrite (2.4) as

x(t) =
∑
n∈Ω

cnψn(t), Ω ⊂ {1, . . . , N}, |Ω| = K (2.5)

where the set Ω contains the indexes of the K active coefficients. When the set Ω is
known, (2.5) consists of only K elements and therefore the subspace is only K-dimensional.
When it is only known that there are K active generators but the set Ω itself is unknown,
one option is still to describe the signal using N generators with (2.4). However, since
K � N , there is hope to sample such a signal with fewer requirements than predicted
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Figure 2.1: Example of a union of subspaces. In this example N = 3 and K = 2. The two-
dimensional planes form three possible (linear) subspaces in which the signals may
reside. For example, the red dot is the 2-sparse signal (−1, 0, 1). The union over these
subspaces forms a non-linear set in a three-dimensional space

by the WKS theorem. To describe this setup mathematically, denote one possible set Ω
with K entries as Ωk. The class of signals obeying the model K < N can be described in
a signal model X1 as follows:

X1 :=

x(t) =

(NK)⋃
k=1

∑
i∈Ωk

ciψi(t) : ci ∈ `2

 (2.6)

where k iterates over all possible permutations of K active entries in x(t). The signal
space defined by X1 perfectly describes all signals of the form (2.4) with only K non-zero
coefficients. The signals described by (2.6) lie in a K-dimensional, linear subspace. It is,
however, not known in advance, in which of the

(
N
K

)
subspaces it lies. The signal model

is thus called a union of subspaces. However, it is not linear any more: The definition of
X1 includes only signals with a maximum of K active coefficients. The summation of two
signals from X1 by contrast, may have 2K active coefficients and is thus not included in
X1. The signal model is visualized in figure 2.1. In the example, N = 3 and K = 2 so
that there are three possible linear, two-dimensional subspaces. The union over these
subspaces form a non-linear set in the three-dimensional space. The red dot corresponds
to a possible signal described by c0 = −1, c1 = 0 and c2 = 1.

Another example of a signal model consisting of a union of linear subspaces appears
when considering a signal x(t) consisting of K pulses with pulse shape h(t), weights ck
and time shifts tk:
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x(t) =

K∑
k=1

ckh(t− tk) (2.7)

When the time shifts tk are left constant, the signal model (2.7) defines a linear,
K-dimensional subspace with the coefficients ck. With arbitrary time shifts tk, a union
of all possible values of tk forms a non-linear signal model X2 (a similar model is true
when the signal x(t) is periodic with period T ). This time, define with Ωi ⊂ R, |Ωi| = K
one particular set of possible time delays tk in order to form the signal space:

X2 :=

x(t) =

∞⋃
i=1

∑
k∈Ωi

ckh(t− k) : ck ∈ `2

 (2.8)

The last important example covers multiband signals which consist of a maximum of
K bands. Suppose that the spectrum is divided into N equally spaced spectrum cells and
that the bands are positioned such that only K out of N cells contain signal energy. One
way is to sample in a linear subspace such as (2.1) at the Nyquist rate again. However, to
make use of the sparsity knowledge, the signals again define a union of linear subspaces
model which can be described as [20]:

X3 :=

x(t) =

(NK)⋃
k=1

∑
n∈Z

cn,kψk(t− nTN ) : cn,k ∈ `2

 (2.9)

In this configuration, the generators ψk(t) are weighted and modulated sinc functions.
To summarize, all the signal examples above are defined within a union of linear

subspaces [21]:

X :=
⋃
k∈Γ

Vk, Vk ∈ H (2.10)

A signal model described by a structure like (2.10) is non-linear. It can be regarded
as a generalization of (2.2). A novel theory which covers sampling systems in a union
of subspaces has been established [20, 21]. Using this theory, it has been shown, that
the sampling requirements in a union of subspaces indeed are lower in many cases than
predicted by the WKS theorem. It even makes it possible to determine stability bounds
or the existence of an invertible sampling operator [21]. However, a comprehensive theory
is still missing.
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In this thesis, a sampling system which supports to sample a signal below the Nyquist
rate (i.e., fs < fN ) is called sub-Nyquist sampling system. All sampling systems covered
by this thesis obey the union of subspaces model: The RD (chapter 4) model X1, the FRI
framework (chapter 5) model X2, and the MWC (chapter 6) model X3. The non-linearity
of those models is an inherent problem which requires, in contrast to the WKS theorem,
non-linear reconstruction methods and special preprocessing. In general, the methods
are complex and very specialized on a specific signal model.

For all methods covered by this thesis, the preprocessing is achieved by using additional
filters, chipping sequences, modulators and signal splitters and the reconstruction by a
non-linear algorithm which highly depends on the underlying signal model.

The rest of this chapter provides a short introduction on two important frameworks
which can be used to solve a sampling problem with signals lying in a union of subspaces,
in particular X1 to X3.

2.2 Compressive sampling

Suppose a discrete signal x[n] of length N . A typical strategy to sample such a signal is
to take pointwise samples at the Nyquist rate which corresponds to pick out each element
in x[n], resulting in the length-N sample sequence y[n] = x[n]. The signal x[n] as well as
the samples y[n] can be regarded as length-N vectors x and y. The sampling process
can be represented using a sampling matrix Φ:

y = Φ · x (2.11)

In the case described before, the matrix Φ corresponds to the identity matrix I. Now
suppose the vector x has only K � N active components. In this case, x is called a
K-sparse vector. Sampling this vector with the operator Φ = I results in a waste of
resources since most of the time, only zero values are being sampled. A generalization
of this approach is not just to pick single samples but rather linear combinations of the
input signal. In this case, the matrix Φ is not the identity matrix any more and it is
called the sensing matrix.

Since x contains only K non-zero values, one might ask if it is possible to use fewer
measurements than N , i.e., M < N linear measurements on x. In this case, the
measurements are termed compressed measurements. Indeed, removing the zero elements
from x, the sampling operator can be reduced to a M ×K matrix. If this matrix has
full rank (where M ≥ K is a necessary condition), it is invertible. This is explained in
figure 2.2. If it is known that x contains only K non-zero values, the sensing matrix x
can be designed so that each possible M ×K matrix is left invertible. However, this
strategy does not make sure that the measurements y are unique for one (and only
one) K-sparse vector x. Suppose a second K-sparse vector x′. The difference x− x′ is
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y yx xΦΦ

Figure 2.2: Sampling of a K-sparse vector x: The K-sparse vector can be collapsed to a linear
M ×K system which is invertible as long as M ≥ K. Additionally, when all M × 2K
submatrices of Φ are invertible, each measurement y is unique for any K-sparse vector
x

generally 2K-sparse, so to make sure that y is unique for x or x′, the matrix Φ intuitively
needs to be designed such that each M × 2K submatrix has full rank. Since under this
assumption each measurement y corresponds to a unique K-sparse x, this vector can be
found by iterating over all possible K-sparse vectors and seek for the one which explains
the measurements y. The `0 pseudo norm counts the number of non-zero entries in a
vector so that this problem formally may be written as:

min
x
‖x‖0 s.t. y = Φ · x (2.12)

The approach until now has two severe shortcomings: First, how to find a matrix Φ
(with M � N) where all possible

(
N
2K

)
submatrices have full rank? Second, solving (2.12)

requires iterating over all possible K-sparse vectors x which is known to be NP-hard.
Therefore it is not applicable to real-world applications.

2.2.1 The restricted isometry property (RIP)

To quantify the properties a matrix Φ needs to satisfy for stable and unique reconstruction
of a K-sparse vector, the RIP is introduced. The RIP is also known as the uniform
uncertainty principle (UUP).

Definition 1. For each integer K = 1, 2, . . . define the isometry constant δK of the
matrix Φ as the smallest number such that

(1− δK)‖x‖22 ≤ ‖Φ · x‖22 ≤ (1 + δK)‖x‖22 (2.13)

holds for all K-sparse vectors x [22].

Using definition 1, an important property of a matrix Φ, the RIP, can be defined as
follows:
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Definition 2. A matrix Φ is said to obey the RIP of order K when δK < 1, in particular,
when δK is not too close to 1 [23].

The interpretation of definition 1 and 2 is that a matrix Φ obeying the RIP of order
K preserves the Euclidean norm of any K-sparse vector. Alternatively: All subsets of
K columns taken from the matrix Φ are nearly orthogonal (they can not be exactly
orthogonal since the matrix has more columns than rows) [23].

Theorem 2. The measurements y are unique for a particular K-sparse vector x using
the measurements y = Φ · x if Φ obeys the RIP of order 2K. The solution may be found
via (2.12).

Proof. Suppose there would exist a different K-sparse vector x′ which additionally
explains the measurements y. The difference x − x′ is generally 2K-sparse and since
they correspond to the same measurements, they are in the null-space of Φ, that is

Φ · (x− x′) = 0

However, this contradicts the assumption that Φ obeys the RIP of order 2K because if
there exists a δ2K < 1, this can not be zero:

(1− δ2K)‖(x− x′)‖22 ≤ ‖Φ · (x− x′)‖22 ≤ (1 + δ2K)‖(x− x′)‖22

Therefore x is unique for the measurements y and may be found by exhaustive search
through (2.12).

However, a more important result of CS is that x can be found from y in polynomial
time if the following requirement is met:

Theorem 3. Assume that x is an arbitrary vector and xK the best K-sparse approxima-
tion to x. Assume that δ2K <

√
2− 1 and that y are the measurements for the signal x.

Then the solution x′ to the optimization problem

min
x′
‖x′‖1 s.t. y = Φ · x′ (2.14)

obeys

‖x′ − x‖1 ≤ c‖x− xK‖1
and

‖x′ − x‖2 ≤ cK−1/2‖x− xK‖2

for some constant c explicitly given in [22]. In particular, if x is K-sparse, the recovery
is exact.
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Proof. See the proof given in [22]

The implications of theorem 3 are two-fold. First, the most important one, if Φ obeys
the RIP with δ2K <

√
2− 1, then (2.12) is equivalent to (2.14). The latter can be solved

using polynomial time recovery algorithms. Second, theorem 3 guarantees that recovery
is exact for K-sparse signals. However, it does not apply only to K-sparse signals but to
any signal x. In this case, the K largest entries of x are recovered.

2.2.2 Random matrices

Until now, no concrete details on the structure of Φ have been given. In particular,
it is important how many rows M of Φ are enough for theorem 3, since this number
corresponds to the sampling rate. In practice, verification if a particular matrix Φ obeys
the RIP is infeasible since it requires to test (2.13) for all possible K-sparse vectors x.

The second important contribution of CS is that a wide set of random matrices have
been shown to obey the RIP (with δ2K <

√
2− 1). In particular, the following random

matrices obey the RIP with “overwhelming” probability provided that the number of
rows M follows

M ≥ cK log(N/K)� N (2.15)

with c being a small constant, depending on the specific setup [23]:

• the entries in Φ are drawn uniformly at random.

• the entries in Φ are drawn from a normal distribution.

• the entries in Φ are drawn from a Rademacher or Bernoulli distribution.

The sampling methods in this thesis especially make use of the latter one since these
matrices consist only of sign patterns ±1. These sign patterns easily can be generated in
hardware using linear feedback shift registers (LFSRs).

2.2.3 Sparsity and coherence

In general, the theory underlying CS is based on two main principles:

1. sparsity

2. coherence
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The discussion so far covered the former point: reconstruction of a K-sparse signal x.
However, what is the link to sub-Nyquist sampling? Consider again the analog signal
x(t) in (2.4). Suppose that this can be written in a discrete representation as follows:

x[n] =

N∑
i=1

ciψi[n] (2.16)

or using matrix-/vector notation:


x[1]
x[2]

...
x[N ]


︸ ︷︷ ︸

x

=


ψ1[1] ψ2[1] · · · ψN [1]
ψ1[2] ψ2[2] · · · ψN [2]

...
. . .

. . .
...

ψ1[N ] ψ2[N ] · · · ψN [N ]


︸ ︷︷ ︸

Ψ

·


c1

c2
...
cN


︸ ︷︷ ︸

s

(2.17)

When there are only K � N active coefficients in (2.17), the coefficient vector s is
K-sparse. While x is not sparse, it is said to be K-sparse with respect to the basis Ψ.
The matrix Ψ has the dimensions N ×N and acts as the sparsity-inducing matrix. It is
called representation matrix. With use of (2.17), (2.11) can be written as:

y = Φ · x = Φ ·Ψ · s (2.18)

This is where coherence enters the play. The coherence µ between two bases Φ and Ψ
is defined as [23]:

µ(Φ,Ψ) :=
√
N · max

1≤i,j≤N
|〈φi, ψj〉| , µ ∈

[
1,
√
N
]

(2.19)

Another prominent result of CS is that the sparse vector s in (2.18) can be recovered
as well using (2.14) [24]:

Theorem 4. Suppose x is K-sparse with respect to the basis Ψ and the measurements y
have been taken using y = Φ · x. The sparse coefficients s can be recovered using (2.14)
with probability greater than 1− δ if the number of measurements M obeys

M ≥ c · µ(Φ,Ψ)2 ·K · log(N/δ) (2.20)

with c > 0 being a specific constant.

Proof. See the original paper [24]
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Chapter 2 Theoretical background

Coherence measures the similarity or the correlation between the representation basis
Ψ and the sensing matrix Φ. Equation (2.20) shows that recovery performs better, as
the coherence decreases. The intuitive meaning behind the coherence is that the sensing
waveforms should be uncorrelated largely with the waveforms being sampled. While
the waveforms to be sampled are concentrated locally, the sensing waveforms should be
spread out globally (and the other way round). For example, suppose sampling a sparse
vector x. This can be regarded as a stream of Diracs. The usage of sensing waveforms
consisting of Diracs itself (such as in traditional, pointwise sampling) would require a
large amount of samples because the samples contain only information when a sampling
spike hits a signal spike. However, most of the samples will be zero. This conforms
with (2.19) which predicts the maximum coherence when the two bases are the same. On
the other hand, random waveforms have a small coherence with the Diracs. Since these
waveforms are global, each sample will pick up a little information about each Dirac
(encoded in its linear combination).

In general, it is possible to use theorem 4 directly. It has, however, some shortcomings
compared to theorem 3. First, it includes the probability of failure. Despite δ being
small, the number of samples in (2.20) directly depends on it. Theorem 3 by contrast
always works, once a matrix Φ satisfying the RIP has been set up. Second, theorem 3 is
able to deal with all signals x while theorem 4 only deals with K-sparse signals. And
finally, theorem 3 enables robust recovery from noisy measurements (see [23]).

With the M ×N matrix Θ = Φ ·Ψ, (2.18) can be written as

y = Θ · s (2.21)

Fortunately it has been shown that the multiplication of any fixed basis Ψ with a
random matrix Φ obeys the RIP as well. The random measurements are universal in
the sense that the sparsity inducing matrix Ψ is only needed in the recovery process [25].
For this reason, (2.21) can be solved directly using theorem 3.

2.2.4 Recovery methods

Nowadays, there exists a rich selection of solving methods for CS problems. Generally,
the solving methods can be split into two categories:

1. Methods based on optimization.

2. Methods based on greedy algorithms.

Usually the former class works better for arbitrary signals but the computational load
is higher. The latter class usually is faster and works better for ultra-sparse signals.
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Solvers based on optimization

The original work in CS covers reconstruction using the `1-norm via (2.14). This
reconstruction method is called basis pursuit (BP) and is of utmost importance because
on the one hand, it was a vital part of CS development to show the equivalence to the
`0-norm. On the other hand, `1 minimization can be recast as a linear program (LP)
which can be solved in polynomial time [11]:

min
x′

cTx′ s.t. Ax′ = b, x′ ≥ 0 (2.22)

A = (Φ,−Φ), b = y, c = (1; 1), x′ = (u; v), x = u− v (2.23)

Another option can deal with noise and can be recast as a second order cone program
(SOCP) [26]:

min
x
‖x‖1 s.t. ‖y −Φ · x‖2 ≤ ε (2.24)

Other examples include basis pursuit with denoising (BPDN), the Dantzig selector,
total variation methods [26] or iteratively reweighted least squares (iRWLS) [27]. The
CVX package [28] offers a convenient interface for those optimization problems.

Solvers based on greedy algorithms

The second class of solvers works in a greedy fashion. In oder to understand the principle
behind those algorithms, take a look at figure 2.2 again. For each measurement y and the
corresponding K-sparse x, there are only K columns of Φ involved. Greedy algorithms
iterate over all columns of Φ and multiply each column by the measurement vector y.
The column with the largest result contributes most to y and the corresponding entry in
x is added to the estimation. The whole procedure iterates until convergence. Popular
variations are the matching pursuit (MP), orthogonal matching pursuit (OMP), stagewise
orthogonal matching pursuit (StOMP), compressive sampling matching pursuit (CoSaMP)
and thresholding methods.

2.2.5 Summary

To summarize, CS is a powerful framework for sub-Nyquist sampling. The underlying
theory is based on sparsity (it is possible to represent data in an appropriate basis using
only K out of N coefficients) and coherence (the representation and the sensing bases
should be as less similar as possible). Randomness plays an important role because it is
difficult to prove the RIP for a given sensing matrix.
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Solving CS problems requires the sparse vector x to be restored fully. This might be a
problem if N is very large. It is mainly concerned with discrete signals where it proved
as a good tool for image acquisition. For example, a digital camera consisting of a single
pixel and making use of CS principles has been published [29]. An analog signal x(t) in
turn needs a discrete representation such as in (2.17) since an analog signal has infinite
cardinality.

2.3 The finite rate of innovation (FRI) framework

FRI is a framework which can be used to solve signals which live in a union of subspaces
as described by (2.8).

The name results from a key concept underlying the framework: It deals with signals
having a finite rate of information, either in a local or a global sense. For example, take
a look at (2.7). The signal x(t) consists of a finite sum. Assuming the pulse shape h(t) is
known, it is completely characterized by a set of 2K parameters: K weights ck and K
time shifts tk. Define signals with finite rate of innovation as follows [30]:

Definition 3. A signal with a finite rate of innovation is a signal which can be represented
in the parametric representation

x(t) =
∑
k∈Z

R∑
r=1

ck,rgr(t− tk) (2.25)

and has a finite value of ρ:

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
(2.26)

The functions gr(t) are known pulse shapes and the function Cx(a, b) counts the degrees
of freedom in the interval [a, b].

In the example (2.7), the rate of innovation is finite (since there are only K pulses)
and given by ρ = 2K/τ with τ such that it includes all time shifts tk.

Another interesting example appears when looking at the interpolation formula of the
WKS theorem in (2.1). The only degree of freedom are the coefficients ck. Since there
is only one coefficient in each sampling period TN , the rate of innovation is given by
ρ = 1/TN = fN and equal to the Nyquist rate. A possible interpretation is that the
WKS theorem works because the signal has a finite rate of innovation rather than it is
bandlimited [30].

The reason for introducing the definition of the innovation rate ρ is the hope being
able to sample signals, which have a finite rate of innovation, directly at their rate of
innovation. While this is possible for signals in a shift invariant structure such as (2.1),
there is no known way to reconstruct signals from a union of subspaces in general.
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Chapter 2 Theoretical background

However, Vetterli et al. showed that a limited selection of such functions can be
sampled and reconstructed perfectly at their rate of innovation [31, 30]. This functions
include periodic and aperiodic streams of Diracs and signals which can be reduced to a
stream of Diracs such as pulses, nonuniform splines or piecewise polynomials.

Since the sampling and reconstruction process of FRI signals highly depends on their
structure, the introduction to the working principle is given in chapter 5.
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Chapter 3

System model

All three sampling methods covered by this thesis consist of three basic blocks: The
preprocessing block, the sampling block and the reconstruction block. The block diagram
is shown in figure 3.1. The sampling setup of the Whittaker-Kotelnikov-Shannon (WKS)
theorem is shown in figure 1.1 and is taken as a reference. The most important difference
is that the sampling block in figure 1.1 samples at the Nyquist rate fN whereas the
sampling block in figure 3.1 samples with a total sampling rate ftot < fN .

x(t) y(t) y[n] x̂(t)
Preprocessing

Low-Rate
sampling

Non-linear
reconstruction

Figure 3.1: Block diagram of a sub-Nyquist sampling device

Input signal While the input signal x(t) in the WKS case belongs to a linear signal
subspace (2.1), the input signals for sub-Nyquist sampling systems belong to the non-linear
signal model (2.10). In particular, x(t) is one of the following three input signals:

1. A signal consisting of N total frequencies where only K � N are active. Usually,
N = fN . The signal can be regarded as frequency sparse.

2. A signal consisting of K Diracs, either finite-length or periodic with T . The signal
can be regarded as a signal which is sparse in time domain.

3. A multiband signal with K/2 transmissions of bandwidth B where each band is
simulated by modulating a sinc. All bands are within [−fN/2, fN/2]. This signal
can be regarded as a block-sparse signal in the frequency domain.

Preprocessing In the WKS case, the preprocessing consists of a simple low-pass filter
which forces the signal to belong to the signal model (2.1). This is similar for the finite
rate of innovation (FRI) framework. In case of periodic signals, a low-pass filter (ideal or
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Butterworth) projects the input signal to a low-pass approximation. Similar for finite
signals, the input signal is projected onto a spline space.

In the modulated wideband converter (MWC), first the signal is split into M channels.
The random demodulator (RD) and the MWC are based on the compressive sampling (CS)
framework, thus the input signal is first modulated by a random sign sequence p(t). In a
practical implementation, the source of those is a linear feedback shift register (LFSR).
In both cases, the modulator follows a low-pass filter which is an integrator in the RD
case and ideal in the MWC case.

The output of the preprocessing stage is the signal y(t) or M signals represented as
vector y(t).

Low-rate sampling The Nyquist rate is denoted as fN and the corresponding sampling
period by TN . The sampling rate of a single low-rate analog-to-digital converter (ADC)
is denoted by fs and the corresponding sampling period by Ts. The total sampling
rate of the sampling stage is given by the sum of all low-rate ADCs. The RD and FRI
sampling use only one ADC, therefore ftot = fs. The MWC has M channels, resulting
in ftot = M · fs. The goal of the sampling stage is to sample with a total sampling rate
ftot < fN .

In contrast to the setup in figure 1.1, the quantizer Q is omitted since quantization is
not covered by this thesis.

Reconstruction The main work in sub-Nyquist sampling is done in the reconstruction
stage where sampling at a low rate is traded for computational power. Since the underlying
signal models (2.10) are non-linear, the reconstruction is non-linear by definition. Because
of the three different types of sparsity, this block highly depends on the sampling device.

The RD reconstructs a length-N vector x which corresponds to the samples of x(t)
at the Nyquist rate (distorted by an integrator with cutoff at fN ). This is done by
solving a CS problem with dimensions fs × fN . The output is directly compared with
the Nyquist-rate representation of x(t).

The FRI framework reconstructs K weights and K time delays of a stream of Diracs.
This is achieved by matrix operations on the samples, followed by polynomial rooting or
a singular value decomposition (SVD). The output is compared with the parameters of
the original for the weights and the time shifts separately.

The MWC reconstructs the input signal as vector x the same way as in the RD case.
The output is directly compared with the Nyquist-rate representation of x(t).
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The random demodulator (RD)

The RD is a device which directly applies (discrete) compressive sampling (CS) principles
to analog signals. It first was presented in [32]. Apart from ideas of CS, the main working
principle is borrowed from telecommunications: Similar to spread spectrum technologies
like direct-sequence spread spectrum (DSSS) the input signal first is multiplied by a
pseudo-random chipping sequence. The purpose of this multiplication is to spread the
information content of a single frequency across the whole spectrum. Afterwards, this
sequence is filtered by an analog filter h(t) followed by low-rate sampling at rate fs. The
reconstruction stage recovers the signal x[n] at the Nyquist rate fN .

4.1 Working principle

4.1.1 The general model

Preprocessing Low-rate sampling

x(t)

pc(t)

t = mTs

y[m] x̂(t)Analog filter
h(t)

(non-linear)
reconstruction

Figure 4.1: The RD: The input signal first is multiplied by a random chipping sequence, afterwards
filtered with an analog filter and sampled at a low rate

The block diagram of the RD is shown in figure 4.1. The output signal y[m] of the
sampling process can be calculated as [33]:

y[m] =

∫ ∞
−∞

x(τ)pc(τ)h(t− τ) dt

∣∣∣∣
t=mTs

(4.1)

It is assumed that the input signal can be represented in a finite dictionary:
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x(t) =
N∑
n=1

cnψn(t) (4.2)

Each of the dictionary entries may have infinite bandwidth. However, the signal x(t)
itself has only N degrees of freedom. Using this signal model, (4.1) can be expressed as

y[m] =

∫ ∞
−∞

N∑
n=1

cnψn(τ)pc(τ)h(t− τ) dt

∣∣∣∣∣
t=mTs

=
N∑
n=1

cn

∫ ∞
−∞

ψn(τ)pc(τ)h(t− τ) dt

∣∣∣∣
t=mTs︸ ︷︷ ︸

θm,n

(4.3)

which can be expressed as a matrix-/vector multiplication with the M ×N matrix Θ
when using M samples:


y[1]
y[2]

...
y[M ]

 =


θ1,1 θ1,2 · · · θ1,N

θ2,1 θ2,2 · · · θ2,N
...

. . .
...

θM,1 θM,2 · · · θM,N

 ·


c1

c2

c3

c4
...
cN


(4.4)

or

y = Θ · c (4.5)

If the sum in (4.2) contains only K � N non-zero entries, the signal x(t) is K-sparse
with respect to the basis Ψ and therefore s is a K-sparse vector. If the number of samples
M < N , (4.5) is an underdetermined set of equations which can be solved using standard
tools from the CS framework. The solution vector c then fully specifies the input signal
in (4.2).

4.1.2 Using an integrator as analog filter

Solving the entries θm,n in (4.3) analytically is a hard task because pc(t) is a random
sequence. Calculating the entries numerically requires that ψn(t) or h(t) have finite
(short) support. Therefore the calculation might be difficult in practice. The first
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Low-rate sampling

x(t)

pc(t)

y[m]
t = mTs

xpc(t) y(t)
∫ t+Ts

t

(a)

x(t) xI(t)

pc[n]

x[n]

t = nTN

xpc[n] y[m]
∫ t+TN

t

∑
Ts/TN

(b)

Figure 4.2: (a) Block diagram of the RD when using an integrator. (b) Equivalent diagram,
sampling at Nyquist rate. Both versions are equivalent when TN divides Ts and pc(t)
alternates exactly at the Nyquist rate

practical implementation of the RD was presented in [34]. The block diagram is shown
in figure 4.2(a). This version uses an integrator as analog filter. The integrator acts
as a low-pass filter which has its cutoff frequency at a low-rate sampling rate fs. The
output samples of the RD coincide with the definition of CS where the sampling process
is thought as taking measurements as inner products instead of uniform samples:

y[m] = 〈x(t), φm(t)〉 =

∫ ∞
−∞

x(t) · φm(t) dt =

∫ t+Ts

t
x(t) · pc(t) dt

∣∣∣∣
t=mTs

(4.6)

In this architecture the input signal is assumed to be a discrete multitone signal which
is a special version of (4.2) where the dictionary entries are sinusoids:

x(t) =
N∑
n=1

cne
−j2πfnt (4.7)

with fk being the frequencies and ck their respective amplitudes. Define the set of
allowed analog frequencies as Ω. If the signal contains only integral frequencies between
−fN/2 and fN/2, this set is defined as:

fn ∈ Ω ⊂ {0,±1,±2, . . . ,±(fN/2− 1), fN/2} (4.8)
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Figure 4.3: Baseband of three different tones: All of the tones have distinct signatures which are
nearly orthogonal when the phases are taken into account [34] (code)

with |Ω| = N and the Nyquist rate of x(t) is fN . The chipping sequence must alternate
between −1 and 1 at (or above) the Nyquist rate fN :

pc(t) = αn, t ∈
[
n · TN , (n+ 1) · TN

]
, αn ∈ {−1, 1} (4.9)

Multiplying x(t) with the random chipping sequence pc(t) corresponds to a convolution
of the spectra X(f) and Pc(f). With the assumption of the model in (4.7), the convolution
corresponds to shifted versions of the Fourier transform of the chipping sequence. If there
are only K � N frequencies active, there is enough information in the frequency range
[0, fs] (baseband of the integrator) to recover the whole signal. Figure 4.3 shows the
baseband of the signal xpc(t) for three different tones. Although two of them have almost
the same frequency, all of them have distinct signatures. They are nearly orthogonal
when the phases are taken into account [34].

The mathematical formulation of the system is best explained by the equivalent
system [35] which is shown in figure 4.2(b). This system is equivalent to the system in
figure 4.2(a) if the following two requirements are met:

1. TN divides Ts. In this case it does not matter if the integration is done in analog
domain for Ts seconds or if Ts/TN consecutive pieces of TN -long integration are
summed up in digital domain. This is visualized in figure 4.4.
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xpc(t) = x(t) · pc(t)

t

1 · TN 2 · TN 3 · TN

TN∫
0

xpc(t) dt = x[1]

2TN∫
TN

xpc(t) dt = x[2]

t

1 · Ts

Ts∫
0

x̃(t) dt = x[1] + x[2]

Figure 4.4: Equivalence between figure 4.2(a) and 4.2(b): When TN divides Ts, Ts/TN consecutive
pieces of TN -long integration can be summed up in digital domain. In this example:
Ts = 2 · TN

2. pc(t) alternates exactly at the Nyquist rate fN . In this case pc(t) = const. for the
TN -long integration time and therefore this multiplication can be placed after the
integration in digital domain as pc[n].

Following the equivalent system, the signal xI(t) is obtained by:

xI(t) =

∫ t+TN

t
x(t) dt (4.10)

=

N∑
n=1

cn

∫ t+TN

t
e−j2πfnt dt (4.11)

=

N∑
n=1

cn
e−j2πfnTN − 1

−j2πfn︸ ︷︷ ︸
sn

·e−j2πfnt (4.12)

Since x(t) is assumed to be bandlimited to fN/2 according to the model in (4.7), the
samples x[n] directly correspond to xI(n · TN ):

x[n] = xI(t)|t=n·TN =

N−1∑
n=0

sne
−j2πfnnTN (4.13)
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which can be expressed as a matrix-/vector multiplication with N ×N matrix F:

x = F · s (4.14)

It is important to note that the vector s has the same sparsity as the vector c because
sn is zero when an is zero. After the integrator, the signal at the Nyquist rate is multiplied
with the chipping sequence at the Nyquist rate:

xpc[n] = x[n] · pc[n] (4.15)

which can be expressed as matrix multiplication with A = diag(α0, α1, . . . αN−1) with
the αn defined as in (4.9):

xpc = A · F · s (4.16)

The last step is to sum up Ts/TN consecutive pieces of xpc[n] (discrete dump & dump).
This can be expressed by multiplication with a M ×N matrix H:

H =



1 · · · 1
1 · · · 1

1 · · · 1
. . .

1 · · · 1︸ ︷︷ ︸
Ts/TN consecutive 1


(4.17)

So the whole system can be described as

y = HAF︸ ︷︷ ︸
Θ

·s (4.18)

where s has the same sparsity as the spectrum of the input signal. This means, if the
input signal is frequency sparse, (4.18) again can be solved using standard tools from
the CS framework. After obtaining the solution of (4.18), the samples of xI(t) at the
Nyquist rate can be obtained by:

xIrecon = <{F · s} (4.19)

The matrix F acts as the sparsity-inducing matrix Ψ. The matrix H ·A describes the
sampling system and corresponds to the CS sensing matrix Φ. The whole action of the
RD is described by Θ = Φ ·Ψ.
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Figure 4.5: Comparison of the sensing matrix Φ between standard CS and the RD (code)

4.1.3 Derivation of the minimum sampling rate

According to (4.18), this looks like a default CS setup. But as explained in section 2.2,
the sensing matrix Φ has to fulfill certain requirements where the restricted isometry
property (RIP) is a necessary condition. While it was possible to show that random
matrices obey the RIP, it is not so easy to show this for arbitrary matrices. Figure 4.5(a)
and 4.5(b) show a typical standard CS sensing matrix next to the Φ = H ·A matrix
of the RD where the entries have been drawn from a Gaussian distribution. The only
random part of the matrix in figure 4.5(b) is the diagonal matrix A which is scrambled
around the main diagonal by the sum and dump matrix H. Therefore the matrix is
sparse and not a typical CS matrix. However, the RD matrix fulfills the RIP except with
probability O

(
N−1

)
if

fs ≥ c ·K log5(N) (4.20)

with c being a specific value [34]. In order to provide a more detailed requirement for
the sampling rate, an empirical rule was derived by drawing data vectors and measurement
matrices randomly, and solving the system in (4.18) for different sampling rates fs. In
order to guarantee stable recovery the sampling rate should obey the following bound [34]:

fs ≥ 1.7K log(N/K + 1) (4.21)

Therefore the RD performs the same way as the standard CS algorithms do: The
sampling rate is proportional to the sparsity K and only logarithmically in the Nyquist
rate fN .

4.1.4 Generalization to arbitrary tone spacings

The derivation in section 4.1.2 applies to multitone signals with a tone spacing of 1 Hz
and therefore the observation window is 1 s. But it is easy to generalize the signal model
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Figure 4.6: SIMULINK model of the RD

in (4.7) to arbitrary tone spacings. When N harmonics are possible with a tone spacing
of ∆, the definition of the set Ω in (4.8) becomes [35]:

Ω ⊂ {0,±∆,±2∆, . . . ,±(N/2− 1)∆, N∆/2} (4.22)

On the one hand, with M samples and the assumption of fN = N∆, the sample vector
y has the dimensions M × 1 and the vector x and s the dimensions N × 1. Therefore the
RD matrix Θ has the dimensions M ×N . On the other hand, according to (4.17), the
matrix H has dimensions M ×MTs/TN (and therefore also Θ). Consequently, in order
to match the dimensions:

N = M
Ts
TN

= M
fN
fs

= M
N∆

fs
→ ∆ =

fs
M

(4.23)

This means that the tone spacing defines the sampling rate fs and the number of
samples M of the RD and the other way round. In the basic setting M = fs, ∆ = 1 and
fN = N .

4.2 Implementation

4.2.1 Framework

The RD first was built and analyzed by using the vector-/matrix calculations introduced
in section 4.1.2. But this requires that the original signal x(t) and pc(t) are available
exactly at the Nyquist rate. In order to evaluate the RD from a more realistic point of
view, an oversampled MATLAB version as well as a SIMULINK model of the RD was
built. In general, an oversampling factor from 100 to 1000 was used. Figure 4.6 shows
one of the SIMULINK models which were used for the experiments. It implements the
model in figure 4.2(a) as well as the equivalent model in figure 4.2(b).
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4.2.2 Reconstruction

The reconstruction stage of the RD produces samples of the input signal at the Nyquist
rate from the low-rate samples. This is done mainly by solving (4.18) which is a
fundamental part of the RD. There is a wide range of solvers available 1,2 where most
of them are based on convex optimization or greedy algorithms. However, the RD has
another requirement: The reconstruction algorithm needs to handle complex values
because the output vector s as well as the sensing matrix Φ is complex. Most of the
MATLAB implementations available are not suitable for complex problems. For this
reason the same algorithm was implemented which has been used by the authors of the
RD: The iteratively reweighted least squares (iRWLS) algorithm [36, 27, 173ff]. A second
reason was that the results from [34] should be reproducible. However, this algorithm
offers poor performance and is very slow (at least the own implementation). Another
option is the CVX toolbox [28] which offers a convenient way to solve optimization
problems in MATLAB. For this reason, this toolbox has been used from the beginning.

There is a trick which supports the extension to a broader range of recovery algorithms.
A closer look at (4.18) reveals that the only complex part in the RD matrix Θ is the
matrix F which is a permuted discrete Fourier transform (DFT) matrix. This matrix
corresponds to the sparsity-inducing matrix Ψ from CS literature which makes the vector
x K-sparse. It is now possible to choose a different basis which has real entries:

Freal =
[
<{FL} = {FR}

]
(4.24)

where FL is the left half and FR the right half of the matrix F [37]. This technique
supports to use a broader range of recovery algorithms. Unfortunately the sampling rate
fs has to be doubled in this case because the vector s is now 2K-sparse.

Table 4.1 gives an overview about different reconstruction algorithms and how they
work with the RD. They are separated into algorithms which can only deal with a real
matrix Θ and algorithms which work also for complex valued problems as required by
the RD. The experiments were done by using direct samples y = ΘF−1x, i.e., by solving

min ‖s‖1 s.t. F−1x = s (4.25)

In all experiments N = 1000 and K = 5 has been used. When using the real matrix,
the most suited algorithm is the orthogonal matching pursuit (OMP) algorithm which
is a greedy algorithm. It offers the best signal-to-noise ratio (SNR) and is almost the
fastest algorithm. The ordinary matching pursuit (MP) achieves a low SNR: The
algorithm recovers the frequency locations exactly, but not the amplitudes. When it

1http://sites.google.com/site/igorcarron2/cs#reconstruction
2http://dsp.rice.edu/cs
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Algorithm Sampling rate R F SNR [dB] Running time [s]

real only

l1magic1 100 real 133.6597 1.1886
l1magic bpdn1 100 real 133.8817 1.2065
lasso2 100 real 214.6952 1.4776
lars2 100 real 212.4155 0.83367
omp2 100 real 260.9824 0.9989
mp2 100 real 7.8805 4.2988

complex and real

cosamp3 50 complex 238.2762 5.7724
cosamp3 100 real 261.1256 1.6464
cvx (SeDuMi)4 50 complex 137.1817 6.5449
cvx (SeDuMi)4 100 real 211.8597 4.7027
cvx (sdpt3)4 50 complex 130.4159 7.1546
cvx (sdpt3)4 100 real 170.1535 16.8339
irls5 50 complex 24.0526 42.7856
irls5 100 real 128.4567 29.221

1 `1-magic toolbox http://www.acm.caltech.edu/l1magic/
2 SparseLab http://sparselab.stanford.edu/
3 http://igorcarron.googlepages.com/cosamp.m
4 CVX toolbox [28]
5 own implementation

Table 4.1: Performance and running time for different reconstruction algorithms applied to the
RD and if they can work with a complex matrix Θ. The CVX implementation offers
the best tradeoff and was used during the experiments (code)

comes to algorithms supporting complex problems, the compressive sampling matching
pursuit (CoSaMP) [38] algorithm performs the best. However, the algorithm has a serious
drawback: The sparsity K needs to be known. The iRWLS algorithm works but it is
rather slow and not very reliable. This may be an issue of my own implementation.

The CVX toolbox offers two different solvers where the default solver (self-dual-
minimization (SeDuMi)) performs better. Both solvers are able to handle complex
problems. The recovery SNR is at the average and knowing the sparsity K is not a
requirement. Therefore the best choice among all algorithms is the CVX toolbox with
the default solver. As CVX uses optimization techniques the running time is not as good
as with the greedy algorithms (MP, OMP, CoSaMP). This is the reason why most of
the experiments were made with N = 1000 and K = 5 (see section 4.3.3).
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4.3 Evaluation of the random demodulator

The architecture of the RD seems very simple and straightforward: It supports to
implement principles which are known from the CS framework directly. But this approach
requires a discretization of the input signal which in turn makes the device operating
in discrete domain rather than in analog domain. The device therefore becomes very
sensitive to model mismatch.

4.3.1 Signal model

Probably the most fundamental problem of the RD is the restriction to a very small
class of signals: Multitone signals which can be described by (4.7). Please note that this
signal model requires that x(t) has infinite extend. In this case the spectrum of x(t) has
the form

X(ω) =
N∑
n=1

cnδ(ω − 2πfn) (4.26)

and is therefore sparse. On the other hand, (4.18) requires a discrete signal x represented
by the DFT s. By contrast, the Fourier transform of analog signals consists of a continuous
spectrum and therefore an uncountable number of frequencies. This observation conforms
with the derivation in the last section: It requires the equivalence of the figures 4.2(a)
and 4.2(b) [35]. In order for the system to work, the input signal is discretized by
assumption. Afterwards, a completely discrete system is analyzed and derived.

For the DFT of x to be sparse, the periods of the frequencies fn have to be a multiple
of the observation window in order to fit the model; otherwise the spectrum is not sparse
any more because of the introduced leakage. It corresponds to a sparse signal convolved
with the sinc-signal introduced by the observation window. The reconstruction fails in
this case because of the slow decay of the sinc-function. If a signal

x(t) = cke
−j2πf ′kt/N , f ′k /∈ Z (4.27)

is approximated using K harmonic frequencies, the best approximation only satisfies

‖x− xK‖L2[0,1) ≤ K
−1/2 (4.28)

which is a painfully slow rate of decay [34]. Figure 4.7(a) shows that reconstructing
multitone signals works very good up to machine precision (with normalized mean
squared error (NMSE) of 9e-11). However, reconstruction of K = 5 arbitrary frequencies
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Figure 4.7: Reconstruction of non-multitone signals: (a) multitone signals are reconstructed
exactly up to machine precision (NMSE=9e-11) (b) reconstruction of arbitrary fre-
quencies fails (NMSE=1.17) (c) Hann window applied (NMSE=1.088) (code)
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Figure 4.8: Minimum sampling rate versus practical sampling rate: TN must divide Ts. This
requirement considerably lowers the practical achievable sampling rate (code)

completely fails (figure 4.7(b)) with NMSE of 1.17. The performance may be increased by
using windowing methods [34] but no concrete details were proposed. Figure 4.7(c) shows
reconstruction with a Hann window applied. With an NMSE of 1.088 the performance
does not really increase. One option is to increase the sampling rate fs considerably.

4.3.2 Sampling rate

According to the bound in (4.21) the minimum sampling rate is similar as in the
compressive sampling framework. However, it is a necessary condition that TN divides
Ts. In [34] an extension to the matrix (4.17) is proposed which supports two consecutive
samples to share contributions from the chipping sequence. For example, with fs = 3
and fN = 7:

H =

1 1
√

1/3

1 1
√

1/3

1 1
√

1/3

 (4.29)

Using this matrix it is not necessary that TN divides Ts. However, if this is not the
case then the equivalence between figure 4.2(a) and 4.2(b) is breached. Therefore in
practical implementations the minimum sampling rate fs according to (4.21) has to be
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rounded up to the next integer which divides fN [35]. Figure 4.8 shows the tradeoff in
the sampling rate. For example, when the Nyquist rate is fN = 10 kHz, then the RD
samples at the full Nyquist rate if the number of frequencies is greater than K = 1500.
This shows that the device is only practicable for a small amount of frequencies, in the
shown example for K < 100.

4.3.3 Reconstruction performance

In [10] Donoho asked:

Can we not just directly measure the part that will not end up being thrown
away?

which is a famous quote in CS literature. The RD tries to follow this spirit. However, in
contrast to images, which are often directly compressed with compression schemes like
JPEG, most electrical signals will be processed by a digital signal processor (DSP) and
not only stored in a compressed fashion. Although [39] established first steps towards
processing of signals with compressed measurements, usually it will be necessary to
reconstruct the uncompressed samples in order to process the data by a DSP. So in some
sense the RD could mimic a conventional analog-to-digital converter (ADC) by sampling
at a low-rate and afterwards recover the samples at the same rate as a conventional
ADC would do. The low-rate ADC could save space or power or could provide a better
resolution and therefore a better dynamic range than an ADC which would operate at
the Nyquist rate fN . However, as it can be seen easily from the derivation in section 4.1.2,
the complete reconstruction is expected to work at the Nyquist rate, rather than at the
information rate K. Even if x(t) would consist only of a few harmonics between 0 Hz
and 1 GHz, the whole reconstruction process would restore a 2 GHz signal. This requires
a lot of memory and computational resources. The reconstruction, however, is a costly
process for two reasons:

1. The dimensions of the CS matrix Θ and the vector s become very large.

2. The reconstruction process is highly non-linear and requires optimization algorithms
which makes the following issues even more relevant.

Memory requirements The most problematic point is the first one [35] which restricts
the usage of the RD to low frequency signals. For example, sampling a signal with
a bandwidth of 1 GHz at a resolution of 1 Hz would produce an output vector of size
10 · 109. With assumption of K = 10000 tones (only 0.001 % active tones) the matrix Θ
would have a dimension of 250 · 103 × 1 · 109. This would require a storage of 230 TB at
a resolution of only 8 bit. While this amount of storage might be available in future, it
should be noted that the reconstruction algorithms also require the whole data to be
accessed at least a few times.
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Figure 4.9: Running time of signal recovery of the RD. (a) standard algorithm of CVX optimiza-
tion toolbox (b) CoSaMP algorithm (code)

Computational complexity The authors of the RD argue that the computational cost
for the recovery is dominated by the length-N Fourier transform because modern recovery
algorithms repetitively apply the system matrix Θ which is a decomposition of constant
matrices A, H and a DFT matrix F [34]. But this only applies to greedy algorithms
like OMP or CoSaMP. However, even fast algorithms like the CoSaMP algorithm [38]
have a running time of O

(
N2
)

when the sparsity grows linearly with the Nyquist rate.
Figure 4.9 shows practical running times of an (unoptimized) MATLAB implementation
of an optimization algorithm (CVX toolbox) and the CoSaMP algorithm. For the
experiments the sparsity is constant with 0.5% of the Nyquist rate. Although running on
a high-speed simulation computer (4 AMD Opteron cores with 2.2 GHz and 16 GB RAM)
the practically usable Nyquist rate is below 10 kHz. Most experiments in this thesis were
made with a Nyquist rate of 1 kHz, otherwise the reconstruction took too much time.
Nevertheless, there may be room for optimizing the reconstruction algorithm.

Real-time processing The RD needs to collect a certain amount of data before it can
start the reconstruction process because reconstruction is done at once for a whole
observation window. For example, for a signal with fN = 1 kHz and a resolution of 1 Hz
the observation window is one sec. The following reconstruction takes additional time.
For this reason, the RD is not capable of doing real-time processing. Therefore, the usage
of the RD makes only sense in two situations:

1. When the Nyquist rate is very low.

2. When the purpose is data acquisition where the data should be stored rather then
being processed.
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Figure 4.10: Spectrum of original signal x(t), integrated signal xI(t) and reconstructed signal
y[m] (code)

However, especially in the low-rate segment there are cheap, low-power consuming
ADCs with a high dynamic range available [5].

4.3.4 The integrator as anti-aliasing filter

The integrator is an essential part of the RD: It supports the equivalence between
figure 4.2(a) and 4.2(b). For a theoretical evaluation it should be noted that the
reconstructed output x[n] of the RD must be compared with the samples xI(nTN ) rather
than with the samples of the original signal x(nTN ). It is easy to see this by comparing
figures 4.2(a) and 4.2(b). This means that the signal is altered in the signal-band even
when no frequencies higher than fN/2 are present. Figure 4.10 compares the spectrum
for an input signal with K = 10 sinusoids with amplitude 1. It is easy to see that the
RD recovers the spectrum of the signal xI(t) precisely whereas amplitude and phase of
the signal xI(t) were altered by the integrator with the transfer function

H(s) =
1

s

(
1− e−sTN

)
(4.30)

Figure 4.11 shows the amplitude response of such a filter H(s) with a cutoff frequency
at fs compared to a 1st and 2nd order Butterworth filter. The filter has a similar
attenuation as a Butterworth filter. The filter attenuates the input signal about Ts of
the amplitude over the whole frequency range. This attenuation is implicitly corrected
by the recovery algorithm.

Additionally the integrator acts as a low-pass filter in order to reject frequency compo-
nents higher than fs. The filter was never addressed by the authors and all experiments
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Figure 4.11: Transfer function of the integrator compared to 1st and 2nd order Butterworth filter
(code)

were made under the assumption that the vector s corresponds to the signal xI(t) instead
of x(t).

4.3.5 Chipping sequence

It is obvious that the chipping sequence must not be shifted because then the random
sequence is a different sequence. Since random CS measurements are democratic [40, 41]
in the sense that each measurement carries the same amount of information it is in
principle possible to allow damaged regions of pc(t).

Sharp transitions

Equations (4.9) and (4.15) require the chipping sequence to be a sign alternating sequence
which alternates exactly at the Nyquist rate. If this is not the case, the CS matrix Θ is not
constant anymore but will be dependent on the input signal. However, implementation
of sharp pulses is not easy in practice because real systems have a certain step response.
This is especially true for high-rate signals. Therefore a test with a chipping sequence
was made which was resampled from a low-rate version. The sequence was generated
using the MATLAB command resample and corresponds to low-pass filtering the input
signal. Figure 4.12 compares the ideal chipping sequence as required by the equations of
the RD versus the interpolated version from a low-rate sequence of signs. The result is
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Figure 4.13: Reconstruction using a resampled low-rate signal as chipping sequence instead of
the exact alternating version (see figure 4.12). The reconstruction achieves about
10 dB (code)
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shown in figure 4.13. The reconstruction achieves an SNR of about 10 dB which keeps
the RD working.

In [33], a HSPICE simulation of a prototype circuit was presented which implements
the modulator, the integrator and the chipping sequence generator. In the simulation, the
implementation worked at a rate of 2 GHz and was able to reconstruct a simple three-tone
AM signal with a frequency of 200 MHz. In [42], a hardware prototype was presented
which works for 1-3 sinusoids up to 600 kHz. However, no concrete implementation details
were given.

Clock jitter

Another experiment examined the sensitivity of the chipping sequence to clock jitter.
The clock jitter was modeled in two ways:

• Periodic jitter: In this case the sign alternations in (4.9) do not occur exactly
at t = nTN but at t = nTN + ∆t where ∆t varies periodically according to
∆t = AUI sin(2πft). AUI ∈ [0, TN ] is the jitter amplitude and f the jitter frequency.

• Random jitter: In this case, ∆t varies according to a normal distribution with
variance σ2: ∆t ∼ N (0, σ2).

The results were calculated in terms of the SNR. The following definition has been
used:

SNR := 10 log

(
‖x‖22

‖x− xrecon‖22

)
(4.31)

where x is the vector containing the samples of the original input signal xI(t) and
xrecon are the reconstructed samples.

Periodic jitter The result of the experiment is shown in figure 4.14. Figure 4.14(a)
shows the dependency of the SNR versus the jitter amplitude by fractions of a period of
the chipping sequence (UI). The experiment was conducted at different frequencies. The
chipping sequence is not very sensitive to the frequency of the jitter but to the amplitude:
Already small variations (< 0.1 ·UI) decrease the SNR level about two decades. A higher
level of jitter prevents the RD from working correctly.

Random jitter Figure 4.14(b) shows the dependency on the SNR in case of random
jitter. Already with a variance of 0.1 of the UI the SNR level drops below 10 dB. In
general, the RD is very sensitive to a jittered chipping sequence where random jitter has
the higher impact.
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(a) Periodic jitter (b) Random jitter

Figure 4.14: Jitter applied to the chipping sequence pc(t). (a) Periodic jitter at different frequen-
cies. The jitter frequency has few impact (code) (b) Random jitter has a bigger impact
on the performance (code)

4.3.6 Dependency on the signal model

In [35], it was pointed out that the RD is very sensitive to model mismatch because of
the high dependency of the signal model. As explained in section 4.1.4, the tone spacing
is related to the sampling rate fs and the number of samples M . This direct dependency
between the signal model and the parameters of the sampling system has the following
consequences:

• Given a specific tone spacing ∆, an appropriate RD device has to be built. Only
slight changes require a complete redesign of the device.

• If the input signal does not match the grid in (4.22) completely, heavy reconstruction
problems occur. Figure 4.15 shows a single sinusoid when there is only a slight
drift in the signal model (4.7), (4.22): The tone spacing ∆ drifts only about 0.5%
from its expected value. The result is that the frequency bin is not matched and
spurious tones occur. The signals in the time domain are shifted. The resulting
NMSE is 0.0234 which renders the reconstruction useless.

• The device becomes very sensitive to clock jitter. Usually, TN and Ts will be
synchronized by a clock circuit. Synchronization of the clock signals is not easy
because it is dependent on thermal noise. Even if the signal matches the signal
model exactly, only slight changes in the clock circuit produce similar results as in
the previous point.
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Figure 4.15: Slight drift from the signal model in (4.7) and (4.22) with a single sinusoid: ∆ drifts
only 0.5% from its expected value. The result is that the reconstruction fails to
reconstruct the exact frequency bin and spurious tones occur (code)
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multitone signals with amplitude 1 and the measurements are averaged over 30
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4.3.7 The integrator

The integrator is another source for model mismatch. When the integrator is not exact,
the CS matrix Θ again becomes signal dependent and the correspondence in figure 4.2 is
breached. A real integrator is either implemented actively using an operation amplifier, or
passively. In both cases a capacitor is the fundamental part which has non-idealities such
as serial resistivity and parallel permittivity [35]. As a simple test, a bias was added to
the integrator while the RD was reconstructing a sparse multitone signal with amplitude
1 and averaged over 30 trials. The result by means of SNR is shown in figure 4.16. It is
shown that a small bias is uncritical. This is shown in the first three values where other
effects dominate the SNR.

Furthermore saturation of the integrator is an issue if the integration time takes too
long: The input signal must follow a normal distribution around the DC value [42]. An
extension [41] describes how to handle saturated measurements by adding a saturation
constraint to the recovery algorithm.
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4.4 Spectral compressive sampling (SCS)

As discussed in section 4.3, one of the major drawbacks of the RD is the restriction to
signals of the form in (4.7). This makes the device almost useless for real systems because
the spectrum is only sparse if the tones have either infinite extend or if they are captured
such that the observation window is exactly a multiple of the tones’ periods. If the signal
model is not matched, the frequency bins have a slow rate of decay (see (4.28)), thus
making the signal not compressible.

4.4.1 Recovery and sparse approximation algorithm for SCS

One way to overcome this problem is to oversample the DFT, e.g., by using zero padding.
The higher the oversampling rate, the higher the compressibility and therefore better
recovery performance. Zero-padding of the signal is equivalent to introducing a redundant
DFT frame which changes the signal representation with the matrix Ψ. Redundant entries
in the matrix Ψ mean higher coherence in the CS matrix Θ and therefore resulting
in a worse recovery performance. So there is an inherent drawback in the recovery
performance using this method [43]. However, the same paper introduces a new technique
called spectral compressive sampling (SCS). The main idea is to change the basis to
an oversampled DFT frame Ψ(c) with c being the oversampling factor and at the same
time restricting the number of allowed K-sparse signals of length N with techniques
known from model-based compressed sensing [44, 45]. The result is a structured signal
model which restricts the number of those allowed subspaces with the maximum allowed
coherence µ ∈ [0, 1] between the entries in Ψ(c). First, let (4.13) be rewritten in matrix
notation:

x =

N∑
n=1

sne(fn) (4.32)

with the vector e(f) representing the samples of a single complex sinusoid with
frequency f :

e(f) =
[
1 ej2πf/N ej4πf/N · · · ej2πf(N−1)/N

]T
(4.33)

Using (4.33), the oversampled DFT matrix Ψ(c) may be written as:

Ψ(c) =
[
e(0) e(∆) e(2∆) · · · e(N −∆)

]T
(4.34)

where ∆ = 1/cN defines the interval between two consecutive frequencies. The ordinary
F in (4.14) corresponds to Ψ(1) [43]. Now, a signal modelMK,c,µ can be defined using a
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K-sparse version of (4.32) with the oversampled Ψ(c) from (4.34). This model depends
on the oversampling factor c of Ψ(c) and the maximum allowed coherence µ:

MK,c,µ =

{
K∑
k=1

ske(dk∆) s.t.

dk ∈ {0, . . . , cN − 1}, |〈e(dk∆), e(dl∆)〉| ≤ µ, 1 ≤ k, l ≤ K

}
(4.35)

Recovery from measurements y is performed by an adaption of a model-based iterative
hard thresholding (IHT) algorithm. However, any greedy algorithm like CoSaMP will
work as well. The difference between the ordinary IHT and the model-based IHT is
simple: The best K-term approximation is just replaced with the best K-term model
based approximation [44]. In the case of SCS, this is an algorithm which fits a signal x
into the model in (4.35). This sparse approximation algorithm can be implemented by
solving a least-squares program and is presented in [43] as well. The resulting recovery
algorithm is called spectral iterative hard thresholding (SIHT) via periodogram. The
number of required measurements M can be calculated by counting the number of
subspaces which define the signal model MK,c,µ. The resulting number is [43]:

M = O
(
K log

(
c(N −Kasinc(1/µ))

K

))
(4.36)

Compared to the bound in (4.21) (the sampling rate fs is directly related to the
number of measurements M as explained in section 4.1.4) there is a small reduction
of c · asinc(1/µ) and an increase by the factor c inside the logarithm. When ignoring
the (small) reduction, the number of required measurements corresponds to that of a
K-sparse signal under the model (4.7) composed out of cN frequencies.

4.4.2 SCS via spectral estimation

While the algorithm in the last section captures the intuition behind SCS, it suffers from
a limited resolution defined by the distance ∆ between two frequencies. Instead of using
a sparse approximation algorithm for the model in (4.35), the K frequencies can be
estimated directly. For this purpose, various spectral estimation methods exist such as
multiple signal classification (MUSIC) or estimation of signal parameters via rotational
invariant techniques (ESPRIT) [46]. These methods return an estimate of the set of K
most dominant frequencies. They do not rely on redundant frames and therefore no
control over coherence is required [43]. When using root MUSIC as spectral line estimation
algorithm, the new SCS algorithm is called SIHT via root MUSIC. Unfortunately until
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Figure 4.17: Required sampling rate for SIHT: (a) Constant sparsity K, varying Nyquist rate fs:
The sampling requirements are roughly doubled compared to the conventional RD
(and even increased fourfold when using a complex matrix F). SIHT via periodogram
is not included since it was not able to reconstruct the signals in most cases (code)

(b) constant Nyquist rate fN = 500 Hz any varying sparsity K. Similar as in the
first case, the sampling rate needs to be doubled. SIHT via periodogram provides
irregular results (code)

now, no derivation for the required number of samples has been found for this case.
However, the experiments in the same paper show that this method generally outperforms
SIHT via periodogram.

4.4.3 Evaluation of SCS with the random demodulator

The authors of the paper provide a collection of MATLAB functions which implement
SIHT via periodogram and SIHT via root MUSIC [37]. These functions have been
integrated in the own framework and used for the following experiments.

Reconstruction performance

Figure 4.17 compares the reconstruction performance of SCS with the performance of the
conventional RD. Figure 4.17(a) shows the required sampling rate for different Nyquist
rates and a fixed sparsity of K = 5. Due to the high computational load of the SIHT
reconstruction process, the experiments have been averaged over 10 trials only and the
set of the Nyquist rates was small (fs ∈ {128, 256, 512, 1024, 2048}). Therefore, the
results may not be perfectly accurate. The experiment for a specific sampling rate fs
was declared as success when 9 out of 10 trials reconstructed a signal with more than
20 dB. As discussed in section 4.2.2, it is possible to choose between a real (real matrix
F) and a complex (complex matrix F) signal representation. In case of a real matrix, the
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Figure 4.18: Computational load of SIHT: While the conventional RD using the CoSaMP algo-
rithm reconstructs the signals within a few milliseconds, SIHT takes a few seconds
and even minutes for the same configuration (code)

sparsity needs to be doubled. The SIHT implementation uses a real matrix F. For the
sake of comparability, the experiment for the conventional RD was done by using a real
matrix F as well. The reconstruction algorithm in this case was the CoSaMP algorithm.
In case of the conventional RD reconstruction, the K frequencies were multiple integers
of the Nyquist rate, whereas in the SIHT case, the frequencies were chosen uniformly
from [0, fN ].

As can be seen from figure 4.17, the requirement on the sampling rate is roughly
doubled in the SIHT case. If the conventional RD uses a complex matrix F, it even
is four times larger. Apart from this, the diagram lacks the results from SIHT via
periodogram. The reason is that SIHT via periodogram is often unable to determine a
solution at all.

Figure 4.17(b) shows an experiment with a constant Nyquist rate fN = 500 Hz but
varying sparsity K ∈ {1, 2, 3, 5, 6, 7, 9, 10}. Due to the high computational load, the
experiments were averaged over 10 trials only. It again shows that the required sampling
rate is roughly doubled for SIHT via root MUSIC. The requirements for SIHT via
periodogram are similar. However, the results are irregular compared to SIHT via root
MUSIC. Likewise, reconstruction completely fails with SIHT via periodogram in the
case K = {9, 10}.

In general, SIHT does not provide machine precision reconstruction any more. Fur-
thermore, SIHT via periodogram seems to be very error-prone and rather be usable for
for theoretical analysis.

Computational load The computational load of SIHT generally is very high. For
example, an experiment determining the minimum required sampling rate for a Nyquist
rate of 500 Hz and different K takes about one hour on a typical PC for the conventional
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RD (using CoSaMP). The same experiment takes about one week with SIHT.
Figure 4.18 shows an example for the running times of the two SIHT algorithms

compared to the conventional RD. The experiments used a Nyquist rate of 500 Hz and
the sparsity K varied from 1 to 30. For the sake of comparability, the used sampling
rates fs were obtained from the experiment in figure 4.17(b). Specifically, the required
sampling rate for the conventional RD was doubled in the case of SIHT via root MUSIC
and multiplied by 2.3 in the case of SIHT via periodogram. Therefore the results resemble
the running time on a typical PC required to reconstruct K tones in a signal with Nyquist
rate fN = 500 Hz. Since the running times are fundamentally different, the results
are plotted logarithmically. While the conventional RD recovers the signals in a few
milliseconds, SIHT usually requires a few seconds and even minutes.

4.5 Conclusion

The RD is a proof of concept which shows how results from CS can be applied to
analog signals. In particular, it introduces an alternative sampling device to conventional
ADCs. Probably the most fundamental constraint is the signal model (4.7) which forces
equivalence to the DFT by allowing only integral frequencies which in turn assumes a
discrete model. The discussion shows that this assumption is breached easily. While this
issue can be weakened by SCS to some extend, the RD still has fundamental limitations.
Because of the high computational load and memory requirements, the RD as sampling
device is only reasonable for low-rate acquisition systems which mainly capture data. A
typical application might be power-constrained sensor networks. However, in general the
RD shows that principles from CS can not be applied to analog signals directly.
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Sampling at the rate of innovation

The Sampling at finite rate of innovation (FRI) framework is another approach to low-
rate sampling below the Nyquist rate. It first was developed in the Ph.D. thesis of Pina
Marzillano [13]. In contrast to compressive sampling (CS) approaches like the random
demodulator (RD), it is not based on solving a set of underdetermined equations. The
framework rather tries to relate parameters of the input signal to the samples analytically
by deriving a signal from the samples which contains signal innovations. Figure 5.1 shows
the sampling setup of the framework. The input signal is first filtered by an (appropriate)
analog filter and afterwards sampled at a low rate fs. The first stage of the reconstruction
estimates parameters of the input signal, for example, time delays of pulses. The second,
optional decoding stage may reconstruct the input signal in analog domain or provide
digital samples at an arbitrary rate. However, the strength of this method is that the
reconstruction algorithm directly provides the parameters of the input signal rather than
digital samples of the input signal.

Preprocessing Low-rate sampling

Signal parameters

Reconstruction

x(t)
t = mTs

y[m]

x̂(t)Analog filter
h(t)

Decoding
Non-linear
reconstr.

Figure 5.1: General sampling setup of FRI: The input signal first is filtered by an appropriate
analog filter and sampled at rate fs lower than the Nyquist rate. The non-linear
reconstruction stage estimates a set of parameters of the signal (e.g., time delays).
An optional decoding stage may reproduce the original analog signal

The most important differences compared to the CS framework are:

• The preprocessing and the actual sampling stage are the same as in traditional
sampling.

• It does not incorporate any randomness.
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• In contrast to the CS framework, it essentially considers analog signals rather than
discrete approximations or representations.

• The main work is done in the reconstruction stage which highly depends on the
signal.

• The output of the non-linear reconstruction stage are parameters of the input signal
rather than samples at a specific rate.

• For this reason, the method does not rely on the Whittaker-Kotelnikov-Shannon
(WKS) sampling theorem but rather offers a different view on sampling.

• It supports sampling of signals which have theoretically infinite bandwidth.

• The original signal or the samples of the original signal may be reconstructed by
using an optional decoding stage.

Until now neither a prototype nor any details for practical implementation have been
published and the publications about the FRI framework have a rather theoretic approach.
Therefore the FRI framework is fairly theoretic until now.

5.1 Main idea and working principle

The main idea behind the FRI framework is best explained by using a periodic stream of
Diracs as input signal. First, suppose the Fourier coefficients X[m] of the input signal
are known. Now consider a stream of Diracs with period T where each period consists of
K Diracs where the tk are the time shifts relative to the starting point of the period and
the ck their respective weights:

x(t) =
∑
n∈Z

K∑
k=1

ckδ(t− tk − nT ), 0 < tk ≤ T (5.1)

Since this signal is periodic with T it can be described using its Fourier series:

x(t) =

∞∑
m=−∞

X[m]ej
2π
T
mt (5.2)

The signal in (5.1) has infinite bandwidth, so theoretically it can not be sampled using
the WKS sampling theorem. However, the signal itself can be described using only 2K
parameters: K time delays tk and K weights ck. Therefore, the information rate (or the
rate of innovation) per period is given by
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ρ =
2K

T
(5.3)

A very important result of the FRI framework is that the signal x(t) is fully specified
by a small set of Fourier coefficients in (5.2). The number of required Fourier coefficients
is directly related to the number of Diracs (and therefore to the rate of innovation given
by (5.3)) and must contain at least MF consecutive Fourier coefficients:

MF ≥ 2K (5.4)

The Fourier coefficients in (5.2) are obtained with:

X[m] =
1

T

∫ T

0
x(t) · e−j

2π
T
mt dt

=
1

T

K∑
k=1

ck

∫ T

0
δ(t− tk)e−j

2π
T
mt dt

=
1

T

K∑
k=1

cke
−j 2π

T
mtk , m ∈ Z (5.5)

Please note that this is an infinite series in general. Now consider some causal filter
A(z):

A(z) =

K∑
m=0

a[m]z−m (5.6)

The goal is now to construct the filter A(z) in such a way that the Fourier coefficients
in (5.5) cancel out when convolved with the filter A(z):

(a ∗X)[m] =
K∑
i=0

a[i]X[m− i] !
= 0 (5.7)

This filter is not realized physically, that is, no signal is filtered by A(z). It only is
used as an analytical tool within the reconstruction process. A filter which satisfies (5.7)
is called annihilating filter because it annihilates the signal X[m]. The annihilation
property is fulfilled exactly when A(z) has K zeros at the locations zk := e−j2πtk/T :
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A(z) =

K∏
k=1

(1− e−j2πtk/T︸ ︷︷ ︸
zk

z−1) (5.8)

This can be shown by using the definition of the convolution operator and the definition
of (5.5). It follows that [47]:

(a ∗X)[m] =
K∑
i=0

a[i]X[m− i]

=
K∑
i=0

a[i]
1

T

K∑
k=1

cke
−j2π(m−i)tk/T

=
1

T

K∑
i=0

K∑
k=1

cka[i]zm−ik

=
1

T

K∑
k=1

ckz
m
k

K∑
i=0

a[i]z−ik︸ ︷︷ ︸
A(zk)=0 (cf. (5.8))

= 0 (5.9)

This means that (5.7) indeed is fulfilled when the filter has the zeros at zk. On the
other hand, a look at (5.8) reveals that the filter A(z) specifies the time delays tk of the
input signal x(t). This is the point: First, obtain enough Fourier coefficients X[m] for
solving (5.7). Second, design the filter A(z) with filter coefficients a[m] such that (5.7) is
satisfied. Finally, find the roots zk of this filter in order to express the filter using (5.8).
This is the one non-linear step in the reconstruction. Condition (5.7) ensures that the
zeros are equal to zk.

Solving (5.7) requires 2K Fourier coefficients (2K values of X[m] need to be accessed
in order to guarantee the annihilation requirement). This is the reason for (5.4). For
example, choose the set Ω = {−K, . . . ,K}, then (5.5) becomes:

X[m] =
1

T

K∑
k=1

cke
−j2πmtk/T =

1

T

K∑
k=1

ckz
m
k , m ∈ Ω (5.10)

Since X[m] and zk are known in (5.10), this defines a linear system of equations in ck.
Finally, the time delays tk can be found from the roots zk with the relation:

tk = <
{
T · log(zk)

−j2π

}
mod T (5.11)
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x(t) zk

tk

ck

extract innovation
(e.g. with FFT)

non-linear part
(e.g.

annihilation filter)

linear system
(Vandermonde)

tk = f(zk)

Figure 5.2: Basic principle of FRI reconstruction: Find a signal which encodes signal innovations.
Afterwards, solve a non-linear problem in order to find the time roots zk. The time
delays tk are related with the roots zk by a scalar relation. Solving a linear set of
equations finally reveals the weights ck which together with the time delays tk describe
the original input signal x(t) fully

The K time delays tk and weights ck fully specify the input signal x(t) (5.1) now.
Figure 5.2 shows a block diagram of the reconstruction. All methods within the FRI
framework are based on this concept:

1. Find an innovation signal which encodes the signal innovations. Usually this is a
sum of exponentials. In the previous example this signal are the Fourier coefficients
X[m].

2. From this signal, find the roots zk by solving a non-linear problem. In the previous
example this is done by solving (5.7) followed by polynomial rooting which is the
non-linear step.

3. Using the roots zk, solve a linear system of equations in order to obtain the weights
ck.

4. The time delays tk are related with the roots zk by a simple scalar relation, in the
previous example (5.11).

5.2 Why Diracs?

In general, the FRI framework deals with signals which can be represented by a finite
set of parameters. Unfortunately until now, only derivations for streams of Diracs could
be found. The reason for this is that time shifts correspond to modulation in Fourier
domain. In the case of Diracs this is nothing more than a sum of sinusoids which can be
estimated by the annihilating filter.

One may ask whether it makes sense to design a sampling system for such a specialized
class of signals. First, consider a stream of pulses x′(t) with shapes g(t) and with arbitrary
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shifts and scales. Such signals occur often in practice, for example in time estimation or
ultra-wide band (UWB) (for example [48, 49]). In fact, such a signal corresponds to a
stream of Diracs, convolved with the pulse shape g(t). If the pulse shape is known and
can be represented in Fourier domain, the Fourier coefficients of a stream of Diracs can
be obtained as:

X[m] = X ′[m]/G[m] (5.12)

Second, the authors show that a wide range of signals can be reduced to a stream
of Diracs as well. In particular, nonuniform splines and piecewise polynomials can be
reduced to a stream of Diracs [31]. However, both methods are based on derivatives
which easily lead to numerical problems [50].

This thesis covers only the case of Dirac streams. First, because the other FRI signals
may be reduced to a stream of Diracs and second, because the recovery of Dirac streams
has to work well in order for the other methods to work.

5.3 The basic case: Periodic stream of Diracs using the sinc
kernel

The most basic form of the FRI framework considers a periodic stream of K Diracs and
implements the sampling concept as described in section 5.1. It uses the sinc kernel (ideal
low-pass filter) as analog filter.

5.3.1 Implementation using the annihilating filter

The remaining question is how the MF Fourier coefficients can be obtained from the
samples y[m]. The output of the sampling system shown in figure 5.1 is given by [31]:

y[m] = 〈x(t), h(t−mTs)〉 =

∫ ∞
−∞

x(t)h(t−mTs) dt (5.13)

Using the signal definition of the Fourier coefficients in (5.2), the samples in (5.13)
become:

y[m] =

∫ ∞
−∞

∑
n∈Z

X[n]ej2πnt/Th(t−mTs) dt

=
∑
n∈Z

X[n]

∫ ∞
−∞

h(t−mTs)ej2πnt/T dt , 2πn/T = −ω
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=
∑
n∈Z

X[n]

∫ ∞
−∞

h(t)e−jωt dt e−jωmTs , (shift theorem)

=
∑
n∈Z

X[n]H

(
2π

T
n

)
ej

2π
T
nmTs (5.14)

Equation (5.14) is an infinite sum in general. However, choosing an appropriate filter
H only will leave a finite number of components. By choosing the ideal low-pass filter
with a bandwidth equal to the rate of innovation (5.3), this sum becomes:

y[m] =
K∑

n=−K
X[n]ej

2π
T
nmTs (5.15)

Under the assumption of M samples, this yields a system of M equations. When the
sampling period Ts is an integer multiple of the signal’s period T then the samples are
the inverse discrete-time Fourier transform (IDTFT) of X[n] [31]. Therefore, calculating
the discrete Fourier transform (DFT) of the samples y[m] provides the required M =
2K + 1 > MF = 2K Fourier coefficients:

X[n] =
M−1∑
m=0

y[m]e−j
2π
T
mnTs , −K ≤ n ≤ K (5.16)

From this point of view, now it is clear that the minimum number of required samples
must be at least M = 2K + 1 which is one sample larger than required by (5.4). The
required sampling rate is thus given by

fs =
M

T
=

2K + 1

T
(5.17)

Until now, the bandwidth of the analog filter was exactly the same as the rate of
innovation given by (5.3). In this case, the sampling rate is fs = (2K + 1)/T . Although
only 2K samples are required by the annihilating filter, the analog filter h(t) may have
an arbitrary bandwidth, as long as the bandwidth is higher than the rate of innovation
given by (5.3) [31]

B ≥ ρ (5.18)

In this case, the spectrum includes all frequency components in the baseband B of the
filter h(t) such that the sum in (5.15) becomes (M0 > K):
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Figure 5.3: Reconstruction performance when increasing the bandwidth B (a) In this case the
response of the sinc-filter was cut such that the length was 5T , yielding an imperfect
filter. As the filter bandwidth increases, the recovery performance becomes better
(code) (b) Recovery using a perfect sinc filter but using a noisy signal. The recovery
performance does not increase when increasing the filter bandwidth (code)

y[m] =

M0∑
n=−M0

X[n]ej
2π
T
nmTs (5.19)

and because M0 must be an integer:

M0 =

⌊
BT

2

⌋
(5.20)

The number of Fourier coefficients and therefore the number of samples M now is
given by:

M = 2M0 + 1 = 2

⌊
BT

2

⌋
+ 1 (5.21)

According to (5.17) this also automatically increases the sampling rate. The bandwidth
B can be used as a tuning parameter and forms the basis for more advanced recovery
strategies. Although only MF = 2K Fourier coefficients are being used by the annihilating
filter, the “quality” of the coefficients becomes better as the bandwidth of the filter
increases. The reason is (5.21): The higher the bandwidth, the higher the number of
samples. According to (5.16), each coefficient contains information from more samples
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Figure 5.4: (a) Sampling a signal consisting of two Diracs: The filter output is a sum of shifted
sinc functions and is sampled at a low rate, in this case fs = 9/T . (b) DFT of the
samples y[n]. This innovation signal contains enough information for recovering the
time delays and amplitudes, e.g., with the annihilating filter method (code)

than necessary. Increasing the bandwidth provides better recovery performance when
using non-ideal filters. However, it does not help when using noisy samples. This is
shown in figure 5.3: It shows the recovery performance of the locations tk using a finite
sinc filter of length 5T . Increasing B provides better results when estimating the Dirac
locations. An easy interpretation is: A higher bandwidth means a compacter extension in
time. Therefore the responses are more compact and more side lobes of the sinc function
are contained in the filter. Figure 5.3(b) shows the same diagram, except an ideal sinc
filter was used and 20 dB of noise was added to the samples. Increasing B does not
provide better results. The reason is that (5.7) still only uses 2K Fourier coefficients.

Figure 5.4 shows an example of sampling two Diracs with amplitude one for one period
with T = 1. The bandwidth of the filter was chosen to be B = 2ρ = 22K

T = 8. Each
Dirac has a shifted sinc-function as response. The sum of the responses for all Diracs
corresponds to the output y(t) of the analog filter. According to (5.21), the number of
samples is 9. The red squares show those samples. Figure 5.4(b) shows the obtained
Fourier coefficients X[m] which have been calculated using the DFT from the samples
y[m]. From this innovation signal, the time delays are estimated.

The second question is how to solve (5.7). This can be written in matrix form:
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−a[0]


X[1]
X[2]

...
X[K]


︸ ︷︷ ︸

w1

=


X[0] X[−1] · · · X[1−K]
X[1] X[0] · · · X[2−K]

...
...

. . .
...

X[K − 1] X[K − 2] · · · X[0]


︸ ︷︷ ︸

W2

·


a[1]
a[2]

...
a[K]


︸ ︷︷ ︸

a′

(5.22)

The matrix W2 is a square Toeplitz matrix with dimensions K ×K. When setting
a[0] = 1, the coefficients of the annihilating filter a[m] for m = 1, . . . ,K can be obtained
by solving a linear system:

a′ = W2
−1 ·w1 (5.23)

so that the annihilating filter coefficients are given by

a =
[
1 a′

]T
(5.24)

From the vector a the roots of the filter can be obtained by polynomial rooting, in order
to obtain the K zeros zk of (5.8). This is the only non-linear step in the reconstruction
stage. Afterwards, the K time delays are calculated using (5.11). The remaining K
amplitudes ck are calculated by using the zk in (5.10):

X[m] =
1

T

K∑
k=1

ckz
m
k (5.25)

This can be written again in matrix form:

T ·


X[0]
X[1]
X[2]

...
X[K − 1]


︸ ︷︷ ︸

v1

=


1 1 · · · 1
z1 z2 · · · zK
z2

1 z2
2 · · · z2

K
...

...
. . .

...

zK−1
1 zK−1

2 · · · zK−1
K


︸ ︷︷ ︸

V2

·


c1

c2

c3
...
cK


︸ ︷︷ ︸

c

(5.26)

The matrix V2 is a Vandermonde matrix which has full rank when the Dirac locations
are distinct. Therefore the unique solution can be calculated by

c = V2
−1 · v1 (5.27)
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Figure 5.5: Stability of the reconstruction process when the number of Diracs increases (a) a small
number of Diracs is always reconstructed up to machine precision (b) With a high
number of Diracs most of them are reconstructed successfully but some amplitudes
might not be exact and there are a few spurious Diracs (c) Zoom into a “problematic”
area: Some Dirac locations have not been reconstructed exactly but very precisely
(code)
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5.3.2 Stability of recovery algorithm

An important question is if the reconstruction system is stable when the number of
Diracs K increases. Figure 5.5 gives a qualitative answer to this question. Figure 5.5(a)
shows the original signal and the reconstructed signal. The reconstruction is exact up to
machine precision. Figure 5.5(b) shows a more intricate example with K = 100 Diracs.
Most of the Diracs are perfectly reconstructed, some of them have wrong amplitudes and
very few are spurious.

5.3.3 Error measures

Before continuing with a quantitative evaluation of the stability it is important to
define an error measure. Until now, the signal-to-noise ratio (SNR) has been used as
an error measure which is defined as in (4.31) in the previous chapter. However, this
definition is problematic in the case of Diracs as can be understood easily by looking at
figure 5.5(c). It shows a zoomed version of figure 5.5(b). Although the time delays have
been reconstructed relatively well, some of them do not match exactly. Calculating the
error of such a signal yields a huge error; in fact the absolute error is almost doubled
although the amplitudes might have been reconstructed very precisely. For this reason it
makes sense to calculate the error of the locations and the amplitudes separately. Define
the normalized mean squared error (NMSE) as:

NMSEloc :=

∑K
k=1 |tk − tk,recon|2∑K

k=1 |tk|
2

(5.28)

NMSEval :=

∑K
k=1 |ck − ck,recon|2∑K

k=1 |ck|
2

=
‖c− crecon‖22
‖c‖22

(5.29)

In order to define a single error measure it would make sense to compare the Euclidean
distance of the Diracs to the origin. This can be done by regarding pairs of (tk, ck) as
complex numbers:

NMSEboth :=

∑K
k=1 |(tk + jck)− (tk,recon + jck,recon)|2∑K

k=1 |tk + jck|2
(5.30)

Figure 5.6(a) shows the error of the Dirac locations according to (5.28) as the number
of Diracs K increases. After an initial increase of the error, the NMSE keeps at a constant
level as the number of Diracs increases. This promises a stable reconstruction process
even with a high number of Diracs.

The direct usage of (5.27) for reconstructing the amplitudes produces an extraordinary
high error. The reason is shown in figure 5.6(d). It shows the reconstruction of K = 100
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Figure 5.6: Stability of the recovery using the annihilating filter (a) The reconstruction of the
Dirac locations works quite well: As the number of Diracs increases, the NMSE keeps
nearly constant (code) (b) The reconstruction of the amplitudes is error-prone: As the
number of Diracs increases, the NMSE of the amplitudes becomes larger (code) (c) The
NMSE as defined by (5.30) is dominated by the worse recovery of the amplitudes
and therefore offers limited usage (code) (d) When using (5.27) directly to solve for
the amplitudes, the error becomes very huge. In this example, a single Dirac has an
amplitude which is 160 times larger than the original Dirac
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Figure 5.7: Number of failing amplitude recoveries input signals with K = 100 Diracs and a
maximum amplitude of 1. Using 1000 independent trials, in 40% of the trials, at least
one amplitude is above 1. In 2.5% of the trials at least one amplitude is above 100
(code)

Diracs. Although almost all locations and amplitudes could be reconstructed successfully,
there is a single amplitude which is 160 times larger than the remaining signal and
therefore, it produces a huge error. Figure 5.7 shows an experiment reconstructing
K = 100 Diracs and measuring the largest peak. The amplitudes of the original signal are
distributed equally between [−1, 1]. Already 40% of the trials reconstructed an amplitude
larger than 1, 2% reconstructed an amplitude larger than 100. Therefore reconstructing
the amplitudes according to (5.27) seems to be very error-prone. The reason is that the
matrix V2 in (5.27) is bad conditioned due to the Vandermonde structure. In order to
improve the results, a constraint was added such that the amplitudes do not exceed a
specific value, in this case one. Using (5.26) the vector c was sought such that:

v1 = V2 · c s.t. |ck| ≤ 1, ∀ k (5.31)

Using this strategy, the reconstruction performs better. Figure 5.6(b) shows the error
of the Dirac amplitudes. However, as the number K of Diracs increases, the NMSE
increases as well. The flattening is due to the constraint |ck| ≤ 1. In any case, there is
room for improving this issue.

Figure 5.6(c) shows the error according to (5.30). It is dominated by the huge error of
the amplitude reconstruction. Therefore (5.30) has limited usage as an error measure.
Furthermore, the framework is more suited for problems where time shifts need to be
estimated rather than exact amplitude values.
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5.4 Other recovery strategies

The reconstruction using the annihilating filter presented so far has the following problems:

1. Equation (5.7) exactly needs 2K Fourier coefficients. It is not possible to provide
the recovery process with more samples.

2. The recovery requires the exact knowledge of the number of Diracs K.

3. The annihilating filter offers poor noise robustness [51, 47] because in the presence
of noise, (5.7) is not exactly fulfilled.

4. Reconstruction of the amplitudes is error-prone.

The authors proposed various alternative reconstruction strategies. Equation (5.10)
is nothing more than a sum of exponentials (and therefore sinusoids). That is, finding
the frequencies corresponds to spectral estimation. For example, the FRI toolbox [52]
implements the power method by estimating the power peak in the spectrum which works
very reliable even in the presence of high noise. Unfortunately this method only works
for a single Dirac. However, any spectrum estimation method like Pisarenko’s method,
multiple signal classification (MUSIC) or estimation of signal parameters via rotational
invariant techniques (ESPRIT) [46] is a good candidate for recovering FRI signals.

5.4.1 SVD approach

As a first step, the annihilating filter method can be extended by using a longer filter [47]:
a closer look at the derivation in (5.9) implies that the filter A(z) may be longer: The
annihilation property is satisfied as long as all zk are zeros of A(z). Define L ≥ K the
maximum number of allowed Diracs, then (5.7) becomes

L∑
i=0

a[i]X[m− i] = 0 (5.32)

which can again be written in matrix form as [47]:


X[−M0 + L] X[−M0 + L− 1] · · · X[−M0]

X[−M0 + L+ 1] X[−M0 + L] · · · X[−M0 + 1]
...

...
. . .

...
X[M0] X[M0 − 1] · · · X[M0 − L]


︸ ︷︷ ︸

W

·


a[0]
a[1]

...
a[L]


︸ ︷︷ ︸

a

= 0 (5.33)
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Figure 5.8: Estimating the number of Diracs K when K < L = 20 from (5.33): Estimation works
well for small values of K. However, already for K = 13 the probability of a wrong
estimate is larger. Therefore this method is not reliable in general (code)

The matrix W again is a Toeplitz matrix with dimensions (M − L)× (L+ 1). With
L > K there are L−K + 1 independent polynomials of degree L. Therefore, the rank
does not exceed K. This observation provides a first way to determine K if it is not
known a priori: For L′ = 1, . . . , L− 1, determine the smallest (M −L′)× (L′ + 1) matrix
W which is singular. Then K = L′ − 1 [47]. However, this method is not very reliable.
Figure 5.8 shows an experiment estimating different input signals using an FRI sampling
system with L = 20. The number of Diracs K was increased from 1 to 20 Diracs. The
following condition was used as a measure for the singularity of the matrix W:

W is singular ⇔ |det(WHW)| < ε (5.34)

The experiment was conducted 1000 times. Figure 5.8 shows that estimation works when
K � L but already at K = 13, the probability of wrong estimation is larger than the
probability of successful estimation.

As mentioned before, in the presence of noise the annihilation equation and there-
fore (5.33) is not fulfilled exactly any more. However, the minimization ‖W · a‖2 under
the constraint ‖a‖2 = 1 yields a good estimate of a. This task can be achieved by
performing a singular value decomposition (SVD) [53] on the matrix W: USVT = W.
The last column of the matrix V provides the annihilating filter coefficients [47]. This
SVD approach makes it possible to incorporate more than 2K Fourier coefficients to
the reconstruction process and thus achieves a better noise robustness when using more
samples. On the other hand, the computational cost is more expensive as it requires
performing an SVD on a matrix whose size depends on the number of samples M . Fur-
thermore, the authors propose an additional denoising step termed Cadzow denoising [54]
which is based on iteratively approximating a Toeplitz matrix by averaging over main
diagonals [47].
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5.4.2 Subspace approach

Another method termed subspace approach was presented in [51]. It was shown that the
filter length should be related to the size of the data set, rather than to the number
of signal components [50]. This fact imposes high requirements on the reconstruction
algorithm as it requires performing the SVD on large matrices and afterwards obtain the
time delays by polynomial rooting. The subspace approach directly obtains the roots
zk from a matrix decomposition. First, an M ′ ×N ′ Hankel matrix W is built from the
X[m]:

W =


X[−M0] X[−M0 + 1] · · · X[−M0 +N ′ − 1]

X[−M0 + 1] X[−M0 + 2] · · · X[−M0 +N ′]
...

...
. . .

...
X[−M0 +M ′ − 1] X[−M0 +M ′] · · · X[M0]

 (5.35)

where M ′, N ′ > K and N ′ = M −M ′. Second, an SVD is performed: W = U ·S ·VH .
Now the roots zk are obtained as the eigenvalues of the matrix Z:

Z = U]
S1
·US2 (5.36)

The matrix US1 contains the first K columns of U and has the last row omitted. The
matrix US2 is the same as US1 but has the first row omitted instead.

5.4.3 Evaluation

Now it is time to evaluate the stability of the SVD method and the subspace approach
compared to the annihilating filter method.

Stability Figure 5.9 shows the reconstruction stability for the locations as well as for
the amplitudes as K increases. The experiments were conducted at critical sampling
(B = ρ). Figure 5.9(a) shows the location NMSE. The SVD, as well as the subspace
approach have a nearly constant error as K increases. They even have a slightly better
performance than the annihilating filter method. However, the reconstruction of the
amplitudes via (5.27) does not improve as can be seen in figure 5.9(b). The reason is
that both, the SVD and the subspace approach, improve the recovery of the roots zk.
However, the Vandermonde system in (5.27) keeps the same.

Noise robustness Figure 5.10 shows the NMSE for different noise levels. In this
experiment, the samples y[n] for K = 5 Diracs have been buried in white noise in order
to yield a specific noise level. The experiment was averaged over 10000 trials and a slight,
constant oversampling factor of 5 was used (B = 5ρ). Figure 5.10(a) shows that the
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Figure 5.9: Stability of reconstruction as K increases for all presented methods (a) location error:
All reconstruction methods are stable as K increases. Furthermore, the SVD and
subspace approach provide slightly better results (b) amplitude error: The problem
recovering amplitudes described in the annihilating filter is not solved, though the
error improves slightly (code)
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Figure 5.10: Noise robustness of all discussed recovery methods. All experiments used a bandwidth
of B = 5ρ. (a) location error: The annihilating filter provides the worst results,
the subspace approach the best results. With no oversampling, all three methods
perform equal (b) The same tendency is true for the amplitude error (code)
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Figure 5.11: Empirical evaluation for required oversampling for a specific level of noise. While
oversampling is a good option for small levels of noise (down to 20 dB), the required
oversampling factor drastically increases for high levels of noise (code)

location error with the SVD and the subspace approach gracefully decreases. As shown
in figure 5.10(b), the same tendency is true for the amplitude reconstruction. A law
which describes the oversampling factor in relation to noise level is missing until now. A
simple empirical approach (using the subspace approach) is shown in figure 5.11. The
graph shows required oversampling factors for a specific average reconstruction error
(location NMSE). This works for noise levels down to 20 dB, afterwards the required
oversampling factor drastically increases. In general, the experiments show that the SVD
and the subspace approach indeed improve the reconstruction performance in the noisy
case.

Dirac estimation The number of Diracs K also can be estimated using the subspace
approach: The rank of the matrix W (5.35) provides a good estimate of the Diracs. In
contrast to the method presented with the SVD approach, this method works reliable.
This is shown in figure 5.12.

5.5 Closely spaced Diracs

Another question is how the reconstruction performs with closely spaced Diracs. For
this reason, an experiment consisting of two Diracs at t1 = 0.5 and at t2 = t1 + ∆ was
conducted. The Dirac spacing ∆ was decreased logarithmically. Figure 5.13 shows the
results of the experiment using the annihilating filter (figure 5.13(a)) and the subspace
approach (figure 5.13(b)). In both cases, at critical sampling (using a bandwidth of
B = ρ), the location error (NMSEloc) increases gracefully with decreasing ∆. Increasing
the bandwidth B (and therefore also the number of samples M) does not improve the
performance in the annihilating filter case. A similar result is true for the SVD approach.
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Figure 5.12: Estimating the number of Diracs K using the subspace approach: In contrast to the
SVD method (cf. figure 5.8), this method works reliable (code)
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Figure 5.13: Location error in case of closely spaced Diracs. The experiment used 2 Diracs spaced
∆ apart as input signal. Reconstruction was done using (a) the annihilating filter
and (b) the subspace approach. At critical sampling, the location error directly
increases by the spacing ∆ in both cases. Oversampling helps in case of the subspace
approach (code)

69

file://./MATLAB/FRI/test_find_K_state.m
file://./MATLAB/FRI/dirac_closely_spaced.m


Chapter 5 Sampling at the rate of innovation

0 5 10 15 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Oversampling factor

N
M

S
E

lo
c

 

 
K=5
K=10
K=20

(a)

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
Original
B=ρ
B=20 ρ

(b)

Figure 5.14: Reconstruction performance when using a Butterworth filter instead of an ideal
low-pass filter (a) While the location error is huge without oversampling, additional
oversampling achieves performance similar as in the idealized case (code) (b) A
quantitative example confirms the results of (a) (code)

However, using the subspace approach, the location error can be reduced significantly by
using a larger bandwidth. Therefore the subspace approach has better numerical stability
than polynomial rooting. This fact was also described in [50]. In general it is important
to avoid closely spaced Diracs because the location error is related to the Dirac spacing
∆ directly.

5.6 Butterworth filter

The FRI framework presented until now has limited practical usage because it requires an
ideal low-pass filter which in turn implies a sinc kernel of infinite extend. An important
question is if the Fourier coefficients can be acquired by non-ideal low-pass filters such as
the Butterworth filter. Figure 5.14 shows an experiment using a Butterworth low-pass
filter of order 5. The Dirac stream has been simulated using a high resolution digital
signal and filtered over 10 periods. The number of Diracs was chosen as K = {5, 10, 20}
and the filter bandwidth increased to a factor up to 20 from the minimum requirement.
Figure 5.14(a) shows the location error for different number of Diracs K in relation to
the oversampling factor. While the reconstruction error is large without oversampling,
the error undoubtedly decreases as the bandwidth increases. In order to give the results
a qualitative meaning, figure 5.14(b) shows a Dirac stream consisting of K = 5 Diracs
with no oversampling and the maximum oversampling factor used in figure 5.14(a). This
example suggests that a Butterworth filter can approximate the results of the sinc filter
closely, if an appropriate oversampling factor is used.
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On the other hand, the results are not perfectly consistent. While the tendency seems
to be correct, the lines are not smooth although they have been averaged over 500 trials.
Furthermore, there is no clear separation between different values of K. Another issue is
amplitude reconstruction. Using the Butterworth filter, the discussed problems about
amplitude reconstruction persist. Therefore, figure 5.14(b) uses only the time location
results; the amplitudes have been reset to ±1 in all cases.

5.7 Gauss kernels

While using Butterworth filters move one step closer towards a practical implementation
of the FRI framework, the system still suffers from a fundamental limitation: Until now,
the input signals had to be periodic. However, in practice mostly aperiodic and finite
signals occur. For communication systems like UWB, aperiodic signals are essential since
it is important to carry as much information as possible. By contrast, periodic signals
carry only the information which is confined in one signal period T .

The authors generalize the framework presented so far for aperiodic and finite sig-
nals [31]. However, their approach is problematic for two reasons: First, the method is
not based on estimating Fourier coefficients. Instead, finite differences are used in order
to annihilate a system of polynomials. The derivation is based on the strict equivalence
sinc(x) = sin(x)/x and therefore the kernel has infinite extend again. Second, the usage
of the finite differences lead numerical problems as discussed in [51]. Therefore this
approach is more of theoretical interest.

A better idea is to use kernels with finite support. The Gauss kernel h(t) = e−t
2/2σ2

for
example has an exponential rate of decay and therefore provides a quasi-local reconstruc-
tion. In the same paper [31] it was shown how to use the Gauss kernel for reconstructing
aperiodic streams of Diracs. The samples using the Gauss filter are given by:

y[m] = 〈h(t−mTs), x(t)〉 =
〈
e−(t−mTs)2/2σ2

, x(t)
〉

(5.37)

From (5.1), define a finite stream of Diracs as follows:

x(t) =
K∑
k=1

ckδ(t− tk) (5.38)

Inserting (5.38) into (5.37) becomes:

y[m] =

K∑
k=1

cke
−(t−mTs)2/2σ2
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Figure 5.15: Stability of reconstruction using the Gauss kernel. Because of the exponential nature
of the Gauss kernel the reconstruction is very unstable (code)

=

K∑
k=1

(
cke
−t2/2σ2

)
· emtk/(σ2fs) · e−m2/(2σ2f2s )

⇔ y[m]em
2/(2σ2f2s )︸ ︷︷ ︸
y′

=

K∑
k=1

cke
−t2/2σ2︸ ︷︷ ︸
c′k

· emtk/(σ2fs)︸ ︷︷ ︸
z′mk

(5.39)

This signal is a sum of exponentials and has the same form as (5.10). Therefore the
discussed recovery strategies can be used to reconstruct the signal.

Figure 5.15 shows the stability for the Gauss kernel. While the reconstruction works
for small values of K (K < 5), the location reconstruction error increases very fast.
The exponential function leads to a very high dynamic range between the samples and
therefore the matrix W. For K = 10 for example, the dynamic range is already 1060.
The consequence is a very unstable reconstruction. The variance σ2 has to be chosen
very carefully [31] but no concrete details have been published. Choosing a small σ2

provides a better recovery performance but quickly leads to infinite values. For example,
when σ2 < 1 the vector y′ contains infinite values. Choosing a large σ2 provides a stable
reconstruction process because the kernel support becomes larger but the reconstruction
error increases even faster.

5.8 Spline kernels

5.8.1 Polynomial reproducing kernels

In [30], the FRI framework was generalized to a wide range of kernels, namely kernels
which satisfy the Strang-Fix conditions [56]. The important fact about these kernels
is that they are able to reproduce polynomials. That means, a linear combination of
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shifted kernels is equal to a polynomial. An important class of functions having this
property are B-splines [57]. A B-spline βN (t) of order N can reproduce polynomials up
to degree N and has a support of S = N + 1 which is the smallest possible for this order
of approximation [30]:

∑
m∈Z

cm,nβN (t−m) = tn, n = 0, 1, . . . , N (5.40)

Figure A.1 in appendix A shows how this formula can reproduce polynomials. Fig-
ure 5.16(a) shows a family of B-splines for N = 0, . . . , 4. A B-spline of order N is obtained
as a repeated convolution with the box spline β0(t) [58]:

βN (t) = (β0 ∗ β0 ∗ · · · ∗ β0)︸ ︷︷ ︸
N+1

(t) (5.41)

Because of the compact support, a B-spline kernel is able to reconstruct a finite stream
of Diracs as defined by (5.38) and even an infinite stream of Diracs if there are no
more than K Diracs in an interval of size 2KSTs. It is also possible to reduce piecewise
polynomial signals to a stream of Diracs similar as for sinc kernels. The samples of an
FRI system using a B-spline h(t) = βN (t) are given by:

y[m] = 〈βN (t−mTs), x(t)〉 (5.42)

Figure 5.16 shows an example of sampling K = 4 Diracs with the kernel β5. The
reconstruction starts by multiplying each sample with the constants cm,n from (5.40)
and summing them up. This generates the innovation signal τ [n]. For simplicity, the
derivation uses fs = 1:

τ [n] =
∑
m

cm,n · y[m]

=
∑
m

cm,n 〈x(t), βN (t−m)〉 (from (5.42))

=

〈
x(t),

∑
m

cm,nβN (t−m)︸ ︷︷ ︸
tn

〉
(from (5.40))

=

〈
K∑
k=1

ckδ(t− tk), tn
〉

(from (5.38))
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Figure 5.16: Using B-splines as kernel (a) Family of B-splines for N = 0, . . . , 4. The maximum
support is S = N + 1 = 5 (code) (b) filtered signal y(t) with samples y[m] at rate
fs = 1 Hz (code)

=

∫ ∞
−∞

K∑
k=1

ckδ(t− tk)tn dt

=

K∑
k=1

ck · tnk︸︷︷︸
z′nk

(5.43)

The signal τ [n] consists solely of known components. Equation (5.43) is nothing more
than the n-th order moment of x(t). Since it has the same form as (5.10) again, the
discussed recovery methods can be used to recover the signal x(t). In order for the system
to work, the order of the B-spline has to satisfy N ≥ 2K − 1 where K is the number of
Diracs. An open question is how to obtain the coefficients cm,n. A derivation is presented
in appendix A.

Evaluation

Oversampling In contrast to the sinc filter case, oversampling is more difficult to realize.
One straight forward approach is to choose a maximum number of allowed Diracs L > K
which in turn generates a high order kernel and therefore a longer τ [n]. Figure 5.17
shows the result of an experiment recovering K = 2 Diracs with L varying from K to
10. The performance of the annihilating filter does not increase since it always uses
only 2K values of τ [n]. By contrast, the SVD and subspace approach use 2L values.
However, the performance becomes worse quickly because of the huge numbers involved.
A different method to incorporate more samples is suggested in [30]: Using polyphase
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Figure 5.17: The effect of oversampling using B-splines of higher order than required. In conse-
quence of the fast growth of the signal τ [n], the reconstruction becomes even worse
for the two recovery strategies making use of the additional degrees of freedom (SVD
and subspace approach) (code)

components, multiple equivalent expressions for τ [n] can be derived which are averaged
afterwards. However, this method only helps in the noisy case, as the noise is averaged
over all samples. Furthermore, although this estimator was shown to be asymptotically
unbiased, an example in [30] suggests that the decay is not very fast.

Stability Figure 5.18(a) shows the location NMSE as the number of Diracs K increases.
The experiment was conducted using K random Diracs between t = [0, 20) and for each
number of K, it was repeated 100 times. For the signals as well as for the kernel, a grid
of 1000 points per second was used. The reconstruction works up to machine precision for
K < 3 but afterwards the error quickly increases. The stability does not depend on the
reconstruction method. Reconstruction of the amplitudes is even more problematic than
in the sinc case. It works for K = {1, 2} but afterwards the reconstructed amplitudes
move towards infinity. This is because the matrix V1 in (5.27) tends to become singular
very quickly. In order to avoid problems with the sampling kernel, the innovation signal
τ [n] has been calculated directly from (5.43). The results are shown in figure 5.18(b).
Although the results are a little bit better than in figure 5.18(a), they clearly show that
using B-spline kernels is unstable by concept.

5.8.2 Exponential kernels

Even if polynomial splines would be stable there is one important question: Which real
devices form a filter with a B-spline as impulse response? The answer are exponential
splines. Recently it was shown that exponential splines (E-splines) can be used as basis
functions in signal processing [59, 60]. Furthermore, a FRI system using E-splines can
be linked to rational transfer functions using a digital filter [30]. Therefore any electrical
circuit having a rational transfer function can be used as sampling device. Figure 5.19
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Figure 5.18: (a) Stability of the FRI framework using B-spline kernels as K increases. The system
only works reliable for a very small number of K. Reconstructing the amplitudes is
even more problematic (b) (code) In order to avoid effects with the simulation of the
filter operation, the innovation signal was directly derived from (5.43). Even in this
case the reconstruction is very unstable (code)
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Figure 5.19: Possible usage of exponential splines: A simple RC circuit can sample a piecewise
constant signal x(t)
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shows an example of such a setup: An ordinary RC circuit is able to sample a piecewise
constant signal x(t). In Fourier domain, an exponential spline of order one is defined as:

Bα(ω) =
1− eα−jω

jω − α
(5.44)

The exponential spline is dependent on the parameter α. The polynomial B-spline is a
special case of the exponential spline with α = 1. E-splines of order N > 1 may have
different parameters for each “order”. Therefore E-splines of order N > 1 are described
using a vector a = {α0, α1, . . . , αN}:

Ba(ω) =
N∏
n=1

1− eαn−jω

jω − αn
(5.45)

The principle is similar as for the polynomial case. The kernel has to reproduce
exponentials of the form e(α0+nλ)t = eαnt for n = 0, 1 . . . N and the kernel must be of
order N ≥ 2K − 1:

∑
m∈Z

cm,nβa(t−m) = e(α0+nλ)t (5.46)

As for the polynomial case, the coefficients cm,n have to be found for a specific kernel.
A derivation for calculating these coefficients is given in appendix B. Using the same
derivation as for the polynomial case, an innovation signal s[n] is found:

s[n] =
∑
m∈Z

cm,ny[m] = · · · =
K∑
k=1

cke
α0tk︸ ︷︷ ︸
c′k

· e(λtk)n︸ ︷︷ ︸
z′nk

(5.47)

Evaluation

In general the discussion for the B-splines applies for the E-splines as well. Unfortunately
the FRI framework using E-splines is even more instable than with B-splines. Due to
the exponential nature of (5.47), the numbers become huge very quickly. Even in the
absence of any sampling, the reconstruction works only for K ≤ 3. The parameters λ
and a0 suggest a tuning parameter for the stability. However, the error does not decrease
perceptibly with any specific set of {λ, a0} and there is no noticeable pattern with which
the optimal parameters could be determined. In general a0 = 0 seems to be a good
choice. Furthermore, the framework is very sensitive to non-ideal kernels which is a big
problem when implementing real devices using rational transfer functions.
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5.9 Conclusion

Sampling at the rate of innovation is an interesting concept. First, because it deals
with real analog signals and second because it supports to sample at the minimum rate
(the information content). In [48], the FRI framework was applied to a UWB receiver.
However, the derivation uses the periodic stream of Diracs and an ideal low-pass filter
which is not a realistic assumption. Apart from the somehow unpractical assumption,
FRI using a periodic stream of Diracs works quite well. In the periodic case, the ideal
low-pass filter can be approximated by a Butterworth filter at the cost of oversampling.

However, sampling non-periodic signals, either finite or infinite, is still an unresolved
issue. One way to overcome this problem is to use sampling kernels with compact support.
Unfortunately the Gaussian kernel as well as the moments-estimating methods are too
unstable for practical usage. This fact is especially sad for the E-splines since they would
enable building the sampling kernels in practice easily.

Another promising approach is presented in [61]. This approach tries to combine the
reconstruction stability using Fourier coefficients on the one hand and local reconstruction
using compact filters termed Sum-of-Sinc filters on the other hand. A multichannel
extension is presented in [62]. This approach directly obtains the Fourier coefficients
using analog integration. However, this requires at least 2K channels which limits the
practical usage.
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Chapter 6

The modulated wideband converter (MWC)

The MWC is the third sub-Nyquist sampling device covered by this thesis. It first was
presented in [63] as an extension to [64]. Figure 6.1 shows the principal setup. First the
input signal is split into M channels. Then each channel is modulated by a periodic
waveform pi(t) and afterwards filtered by an analog filter h(t) which is a low-pass filter
with cutoff fs/2. Afterwards each channel is sampled at rate fs, resulting in M sequences
y[n] denoted by the vector y[n].

h(t)

h(t)

h(t)

p1(t)

p2(t)

pM (t)

t = nTs

t = nTs

t = nTs

y[n]

y[n] = Θ · z[n]

x(t)

Preprocessing Low-rate sampling

x̂(t)
Digital

reconstr.
Analog

reconstr.

Figure 6.1: The MWC consists of M channels. Each channel first is multiplied by a periodic
mixing function p(t), filtered by a low-pass filter with cutoff at fs/2 and afterwards
sampled at a low rate fs. The output are M sequences y[n]

The preprocessing and sampling stage can be regarded as a generalization of the
random demodulator (RD) (see chapter 4) to M branches. In contrast to the RD, the
mixing functions are periodic with period Tp. In order to meet specific compressive
sampling (CS) requirements, each period additionally consists of a piecewise constant
random pattern. The principle of the RD is to spread the information content of each
frequency tone across the whole spectrum, whereas the MWC uses the multiplication
to alias specific frequency ranges to the baseband simultaneously. The multichannel
architecture suggests another principle of the MWC: The CS matrix is implemented in
hardware. The M channels can be regarded as the M CS measurements.

79



Chapter 6 The modulated wideband converter (MWC)

6.1 Working principle

6.1.1 Compressive sampling for analog signals

The major problem of the RD is the application of a discrete-time signal model to analog
signals. The vector s in (4.18) describes the spectrum of the analog signal as a finite,
discrete vector with cardinality fN (the Nyquist rate). Application of CS works by
assumption that s is sparse:

y = Θ · s ⇒ s = min
s
‖s‖1 s.t. y = Θ · s (6.1)

By contrast, analog signals have a continuous spectrum. Therefore it would be a
better idea to define the sparsity constraint across a continuous range of the spectrum
X(f) of the input signal x(t). While sparsity is defined in the discrete case (the number
of non-zeros of a finite vector) easily, it is difficult in the continuous case. Putting a
continuous Fourier spectrum into a vector would result in an infinite vector (with infinite
cardinality). One way to overcome this problem is to assume a continuous block sparsity.
In this case there are continuous non-zero blocks on the continuous spectrum. This is
also how analog multiband signals look like: Denote by K the number of non-zero blocks
on the continuous spectrum (number of bands), then there are K/2 transmissions (due
to the complex conjugate). Figure 6.2(a) shows the spectrum of a wideband multiband
signal with a single transmission and therefore K = 2. The Nyquist rate is fN = 10 GHz.
This spectrum can be represented in vector form by dividing it into N pieces. In the
remainder, N is assumed to be an odd number with N = 2N0 + 1 for simplicity. Using
this definition, the spectrum slices can be stacked together in order to form a finite vector
where the elements are functions of the continuous variable f :

z(f) =



z−N0(f)
z−N0+1(f)

...
z0(f)

...
zN0(f)


with zi(f) = X(f),

fN
N
i ≤ f < fN

N
(i+ 1) (6.2)

This is illustrated in figure 6.2. Call the bandwidth of an element in z(f) fs, in this
case fs = fN/N . For the remainder, define this frequency range as:

Fs :=

[
−fs

2
,
fs
2

]
(6.3)
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Figure 6.2: (a) Spectrum of a multiband signal. In this example, the signal contains a single
transmission (b) The spectrum can be represented as a vector z(f) by dividing the
frequency band into N slices and stacking them together. Each vector element zi(f)
is dependent on the continuous variable f and z(f) is K-sparse for every f

Now assume an M ×N sensing matrix Φ which takes the vector z(f) and assigns a
compressed output y(f) (M “measurements”):

y(f) = Φ · z(f) (6.4)

Usually such a setup is referred to as an infinite measurement vector (IMV) [65]. Näıve
application of CS knowledge in order to solve (6.4) results in the following optimization
problem:

min
z(f)
‖z(f)‖1 s.t. y(f) = Φ · z(f) (6.5)

While (6.1) can be solved easily using CS techniques, the problem in (6.4) depends on
the continuous variable f and would require to solve infinitely many CS problems jointly.
Therefore (6.4) can not be solved directly.

The authors proposed a different scheme for solving (6.5) consisting of a two-step flow
which they term continuous-to-finite converter (CTF) [65, 64]. First, denote with supp(a)
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of the vector a the support or the indexes which are non-zero. This is equivalent with
the sparsity pattern. The vector z(f) can be regarded as a collection of infinitely many
vectors (one for each value of f ∈ Fs), which jointly have the same sparsity pattern.
Therefore the support of z(f) can be defined as the union over all vectors for a all possible
values of f [64]:

S := supp(z(Fs)) =
⋃
f∈Fs

supp(z(f)) (6.6)

For example, in figure 6.2, the vector z(f) is 2-sparse for every value of f ∈ Fs. By
contrast, the union over the collection of all values f ∈ Fs is 4-sparse because the two
bands contribute to four spectrum slices.

Suppose that the support S is known, then (6.5) can be solved by noting that (6.4)
can be written as [64]:

y(f) = ΦS · zS(f) (6.7)

where the vector zS(f) contains only the non-zero elements of z(f) and ΦS contains
only those columns of Φ which contribute to y(f). The equivalence is true because the
elements consisting of zeros in z(f) do not contribute to the result in y(f). Given this
equivalence, (6.7) can be solved using the pseudo-inverse easily:

zS(f) = Φ]
S · y(f) (6.8)

Once zS(f) is found, z(f) can be obtained by filling all indexes which are not contained
in S with zeros. The remaining problem is how to obtain the support S. The solution is
to deduce a finite set of vectors which have the same column span as y(f) [65]. A matrix
V with these finite set of vectors as columns is called a frame for y(f). Since V is a
frame for y(f), there exists a finite collection of sparse vectors (represented as columns
of a matrix U), which have the same joint-sparsity as z(f):

V = Φ ·U (6.9)

The matrix V can be calculated using a matrix Q:

Q =

∫
f∈Fs

y(f) · yH(f) df (6.10)

From the matrix Q, the frame V can be found using an eigenvalue decomposition as:
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Figure 6.3: Equivalent diagram of the MWC: The vector z(f) is generated by aliasing the
N = 2N0 + 1 spectrum slices to the baseband by modulation. After sampling,
the discrete representation z[n] is obtained. The samples y[n] correspond to a
multiplication with a mixing matrix Φ

V ·VH = Q (6.11)

Since V is a (finite) frame for y(f), the finite set of vectors in U provides the same
joint-sparsity pattern as z(f). Thus, seeking for the sparsest collection of vectors U
in (6.9) provides their joint-sparsity which is the same as S for z(f).

Equation (6.9) is termed multiple measurement vector (MMV) [66, 67] and is a
generalization of a single measurement vector (SMV) as in (6.1) to more than a single
vector. An MMV system is a special case of a block-sparse SMV system [68]. Several
methods exist for solving MMV systems including methods based on convex relaxation [69]
and greedy algorithms [70]. Another method is the Reduce and Boost algorithm presented
in [65].

6.1.2 The equivalent diagram of the MWC

Using a continuous CS model like (6.4) is an interesting concept compared to the discrete
approach like (6.1). Until now, there are two open questions: First, which sampling
device can be used to obtain a model like (6.4). Second, a sampling device will produce
a finite, discrete sequence. The CS matrix Θ is a sampling operator which maps a
continuous function to a finite number of discrete sequences:

y[n] = Θ{x(t)} (6.12)

The answer to both questions is the MWC. The M CS measurement sequences are
implemented by the M sampling channels and the CS matrix is shifted to the analog
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domain. In order to understand the action of the MWC, it is instructive to look at
the equivalent system [35] and use time domain analysis to show the equivalence to
figure 6.1. The equivalent system is depicted in figure 6.3. Recall from section 6.1.1
that the spectrum is partitioned into N equally spaced spectrum slices. The equivalent
system has N channels. To obtain the vector z(f) in hardware, each channel is first
modulated by exp(−j2πlt/Tp) with l ∈ {−N0, . . . , N0}. This modulation shifts each of

the N spectrum slices to the baseband of the spectrum between
[
− 1

2Tp
, 1

2Tp

]
Hz. Call

this frequency range Fp. With fp = 1/Tp, the vector z(f) therefore is valid for f ∈ Fp
and the width of the spectrum slices is fp.

In order to leave the baseband (f ∈ Fp) only, a low-pass filter cuts at the frequency
fs/2 = fp/2. Since this signal is bandlimited now to fs/2, it can be sampled at a low
rate fs to obtain N sequences zl[n]:

zl[n] = (x(t)e−j2πlt/Tp) ∗ h(t)
∣∣∣
t=n·Ts

(6.13)

Note that these sequences represent the input signal x(t) in time domain for each
spectrum slice. The sequences are complex in general because of the complex modulation.
The resulting vector z[n] now fully describes the vector z(f) and the other way round.
They also share the same sparsity pattern. If the input signal x(t) is a sparse multiband
signal (i.e., there are only a few active bands), the spectrum X(f) is sparse. Therefore
most of the sequences zl[n] are equal to zero and therefore z is sparse. Finally, the sample
sequences yi[n] are given by applying the mixing matrix Φ:

yi[n] =

N0∑
l=−N0

φil · zl[n] =

N0∑
l=−N0

φil ·
(

(x(t)e−j2πlt/Tp) ∗ h(t)
∣∣∣
t=n·Ts

)
(6.14)

which can be written in vector-/matrix form using the M ×N matrix Φ:

y[n] = Φ · z[n] (6.15)

Back to the principal setup of the MWC, the mixing functions pi(t) in figure 6.1 are
periodic with period Tp [63]:

pi(t) =

∞∑
l=−∞

Pi[l]e
j 2π
Tp
lt

(6.16)

For this reason, they can be represented using their Fourier series:
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Pi[l] =
1

Tp

∫ Tp

0
pi(t)e

−j 2π
Tp
lt

dt (6.17)

According to figure 6.1, the output of a single channel is given by first multiplying x(t)
with the mixing function pi(t) and afterwards filtering with the filter h(t). Finally, the
signal is sampled at rate fs. Therefore the samples for one channel are given by:

yi[n] = (x(t) · pi(t)) ∗ h(t)|t=n·Ts (6.18)

Inserting (6.16) into (6.18) yields:

yi[n] =
∞∑

l=−∞
Pi[l]

(
(x(t) · ej

2π
Tp
lt

) ∗ h(t)
∣∣∣
t=n·Ts

)
(6.19)

This result is essentially the same as (6.14). The Fourier coefficients Pi[l] must match
the entries φil of the mixing matrix and pi(t) must be represented with about N Fourier
coefficients. This means that the representation of the mixing functions through the
Fourier series offer additional degrees of freedom in order for the equivalence to work.
The mixing functions pi(t) therefore implement the CS sensing matrix Φ in hardware.
Since z[n] has the same sparsity pattern as z(f), the sparsity inducing matrix Ψ is the
identity matrix: Ψ = I. Therefore, for the MWC, the CS matrix Θ is the same as the
sensing matrix Φ.

The idea of the sampling system is to alias certain band regions to the baseband in
order to obtain a vector z(f) as in figure 6.2(b). Therefore, the system is applicable to
multiband signals only.

6.1.3 Parameters of the sampling system

For the basic case, the period of the mixing functions Tp equals to the sampling period
Ts. In order for z(f) to be K-sparse for every f , the maximum bandwidth of a band
must not exceed fp. Since the pi(t) sequences correspond to the CS matrix, the sequences
must be chosen such that their Fourier coefficients provide specific CS properties: The
matrix Φ has the size M ×N . This means that the number of Fourier coefficients must
be about N and the rows of Φ must be linearly independent. In particular, this is true
for piecewise constant functions which alternate between ±1 at a high rate of at least
fpN [64]:

pi(t) = αik, t ∈
[
k · Tp

N
, (k + 1) · Tp

N

]
, αik ∈ {−1, 1}, 0 ≤ k ≤ N − 1 (6.20)
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The Fourier coefficients of the pi(t) in (6.20) can be found from (6.17) using the shift
theorem:

Pi[l] =
1

Tp

∫ Tp
N

0

N−1∑
k=0

αike
−j 2π

Tp
lk
Tp
N e
−j 2π

Tp
lt

dt

=
N−1∑
k=0

αike
−j 2π

N
lk 1

Tp

∫ Tp
N

0
e
−j 2π

Tp
lt

dt

=

N−1∑
k=0

αik · e−j
2π
N
lk · 1− e−j

2π
N
l

j2πl︸ ︷︷ ︸
dl

(6.21)

For a specific channel i, Pi[l] corresponds to the N -point discrete Fourier transform
(DFT) of the sequence αi[k] where each element is multiplied by dl. This can be written
in matrix form: pi = ai ·F · diag(dl) where F is the DFT matrix and contains the entries
exp(−j2πlk/N). For all M channels together, this can further be written as

P = AFD = Φ (6.22)

where D = diag(dl) is the diagonal matrix containing the last term in (6.21). The
last equivalence follows from the fact that Φ contains the Fourier coefficients Pi[l]
(cf. section 6.1.2).

The matrix A contains the sign patterns αik of the functions pi(t) and dictates the CS
properties of the CS matrix directly: A may be a random sign matrix, drawn from a
Gaussian distribution (cf. section 2.2). Thus, the sequences pi(t) can be implemented by
a shift register easily.

The number of channels also is dictated by CS properties, since it corresponds to the
number of measurements: It must be high enough such that the MMV system in (6.9)
can be solved. Similar to an SMV system, the number of channels must obey [63]:

M ≈ 4K log

(
N

2K

)
(6.23)

This result stems from the following observation: Solving (6.4) in polynomial time
for every f would require M = O (K log(N/K)) measurements. Since Φ requires every
2K columns to be linearly independent in order for z to be unique K-sparse, M must
be at least M ≥ 2K log(N/K). However, z(f) is jointly 2K-sparse and not K-sparse.
The CTF reduces z(f) to the finite U which is also jointly 2K-sparse. The reduction
to the MMV system only preserves the joint-sparsity, therefore U might contain entries
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which are jointly 2K-sparse. For this reason, the reduction by CTF deals with 2K-sparse
vectors and requires the number of channels to be doubled. Since the system consists of
M channels given by (6.23) and each channel samples at rate fs, the total sampling rate
is given by:

ftot = fs ·M ≈ fs4K log

(
N

2K

)
(6.24)

This number only depends on the number of transmissions (K/2) but not on the
Nyquist rate.

6.1.4 Reconstruction

The reconstruction consists of two parts: A digital part which involves finding the correct
support S and recovering z[n]. An optional analog part produces x̂(t) from z[n].

Digital reconstruction

The heart of the digital reconstruction is the CTF: It takes the M signal sequences y[n]
and first obtains a finite frame by using (6.10). In contrast to the continuous y(f), the
y[n] are discrete sequences. Therefore the integral can be replaced by a sum [64]:

Q =
∑
n

y[n] · yH [n] (6.25)

In theory, this involves an infinite number of samples. However, in practice, a set of
2K linearly independent vectors (and therefore samples in y[n]) suffices [64]. The reason
is that U in the MMV (6.9) is jointly 2K-sparse and therefore rank (V) ≤ 2K. Thus,
2K eigenvectors in the eigenvalue decomposition (6.11) are enough to construct V. The
matrix Q is quadratic by the number of channels and therefore typically small. For
the reason discussed above, the eigenvalue decomposition only keeps 2K eigenvectors,
therefore V is small as well: M × 2K.

In the next step, the MMV in (6.9) is solved in order to obtain S. This is the
only non-linear step in the reconstruction stage. Finally, zS [n] are found from the linear
system (6.8). Since z[n] fully describes z(f) and share the same sparsity, zS [n] is obtained
by

zS [n] = Φ]
S · y[n] (6.26)

Apart from matrix multiplications in the range 2K×M , this step only involves inverting
a matrix with dimensions 2K × 2K.

The digital reconstruction is summarized in figure 6.4.
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Figure 6.4: Digital reconstruction of the MWC: In general, the signal is reconstructed by solving
a linear system. The non-linear CTF part only is required for determining the support
of the input signal

Analog reconstruction

There are two ways for obtaining the analog x̂(t) [64]. The first option is to reconstruct
the signal at the Nyquist rate. Each of the samples in zS [n] is expanded and digitally
interpolated to the Nyquist rate fN . Afterwards, these samples are digitally modulated
to their respective locations. Finally, these samples are fed into a digital-to-analog
converter (DAC) at Nyquist rate. This option is reliable for small Nyquist rates only.

The second option is to shift the modulation to the analog domain: Each sequence zi[n]
is fed into a DAC at rate fp. K/2 modulators modulate the bands to their respective
locations in hardware:

x̂(t) =
∑

i∈S, i≥0

<{zi(t)} cos(2πifpt) + ={zi(t)} sin(2πifpt) (6.27)

With this approach, the sampling system does not need to operate at the Nyquist rate.
However, it requires N/2 modulators with non-constant frequencies at i · fp.

6.1.5 Reduction of channels

The MWC presented so far requires at least eight times as many channels as number of
transmissions (cf. (6.23)). In this case, the periods Tp of the modulation sequences pi(t)
equal to the sampling periods Ts of the low-rate analog-to-digital converter (ADC). The
authors presented an approach [64] which decreases the number of channels at the cost of
a higher sampling rate fs = q · fp (with odd q = 2q′ + 1) in each channel. This approach
is best understood in the frequency domain. Consider (6.14) in the frequency domain:
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Figure 6.5: The vector z′(f) when fs = 3fp. All bands must contribute to z′(f). Therefore
N ′ = N +(q−1) in this construction. The middle part is equal to z(f) in figure 6.2(b)
(except z±4(f) which are zero and not existent in figure 6.2(b))

yi(f) =

N0∑
l=−N0

φil · zl(f), f ∈ Fs (6.28)

As in section 6.1.1, this relation is valid in Fs. For the MWC implementation, this
corresponds to the range [−fs/2, fs/2] because each channel sequence is low-pass filtered
by a filter with cutoff at fs/2. According to (6.14) and figure 6.2, zl(f) corresponds to
fp-shifted spectrum slices X(f − lfp):

yi(f) =

N0∑
l=−N0

φil ·X(f − lfp), f ∈ Fs (6.29)

Until now, the spectrum was partitioned into N slices with bandwidth fp. When
fp > fs, the number of entries in z(f) becomes larger. Denote the vector with z′(f)
in this case and the output vector with y′(f). Figure 6.5 shows an example of z′(f)
with fs = 3fp (corresponding to the spectrum in figure 6.2(a)). The frequency range
contained in z′(f) now is three times larger than with fp = fs. Since this frequency range
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is determined by the low-pass filter with cutoff at fs/2 only, the middle part is equal to
figure 6.2(b). However, a necessary condition for uniqueness is that each band contributes
to z′(f). In the simple case fs = fp, this is ensured by setting N = 2N0 + 1 = fN/fp
(see figure 6.2(b)). In the case when fs = qfp, the size of z′(f) becomes:

N ′ = N + (q − 1) (6.30)

where N is the vector size for fs = fp. This stems from the fact that each band must
be included in z′(f).

A look at figure 6.5 suggests that fewer channels might be necessary in this case because
each z′i(f) contains more information for fs = qfp than for fs = fp. Indeed, this is the
case. The idea is to recover the vector y(f) which would have been obtained if z(f) with
fs = fp from figure 6.2(b) had been used. First note that the bandwidth of y′(f) equals
the bandwidth of z′(f). That is, the bandwidth of y′(f) is qfp (over Fs) as well. The
derivation starts from (6.29). Let f = f ′ + kfp where −q′ ≤ k ≤ q′ such that f ∈ Fs
and fs = (2q′ + 1)fp in order to alias all f ∈ Fs of y′(f) to f ∈ Fp. Inserting this f
into (6.29) yields:

y′i(f
′ + kfp) =

N0∑
l=−N0

φilX(f ′ + kfp − lfp)

=

N0∑
l=−N0

φilX(f ′ − (l − k)︸ ︷︷ ︸
l′

fp),

{
l′ = l − k
l = l′ + k

=

N0∑
l′+k=−N0

φi,(l′+k)X(f ′ − l′fp)

=

N0−k∑
l′=−N0−k

φi,(l′+k)X(f ′ − l′fp) (6.31)

X(f ′ − l′fp) corresponds to the spectrum slices with f ∈ Fp, that is, the middle of
figure 6.5. As can be seen from this figure, the middle part is always zero for the first q′

and the last q′ entries. Therefore (6.31) can be rewritten as:

y′i(f
′ + kfp) =

N0∑
l′=−N0

φi,(l′+k)X(f ′ − l′fp) (6.32)

For each channel, (6.32) provides q equations for z(f) over Fp. Thus, the whole system
has Mq equations for z(f). The set of Mq equations can be written in Matrix notation
with the (Mq ×N) matrix Φ as:
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

y′0(f − qfp)
...

y′0(f)
...

y′0(f + qfp)
...

y′M (f − qfp)
...

y′M (f + qfp)


︸ ︷︷ ︸

y(f)

=



φ0,−N0−q′ · · · φ0,N0−q′
...

. . .
...

φ0,−N0 · · · φ0,N0

...
. . .

...
φ0,−N0+q′ · · · φ0,N0+q′

...
. . .

...
φM,−N0−q′ · · · φM,N0−q′

...
. . .

...
φM,−N0+q′ · · · φM,N0+q′


︸ ︷︷ ︸

Φ

·

 |
z(f)
|

 , f ∈ Fp (6.33)

The number of required equations is given by equation (6.23) (and was set equally to
the number of channels previously because fs = fp). Therefore in the case of fs = qfp,
the number of channels can be reduced to:

M ≈ 4K

q
log

(
N

2K

)
(6.34)

In words, a q times higher sampling rate in each channel means a channel reduction by
the factor of q.

There is one issue left: (6.32) aliases all relevant information to Fp. However, everything
outside this frequency range needs to be set to zero the same way as explained for the
equivalent system. This can be done using a low-pass filter. Since the sampling device
captures M sequences y′[n] at rate fs, the qM rate fp sequences y[nq] of the left-hand side
of (6.33) can be obtained in digital domain directly. First, each sequence is multiplied by
exp(−j2πkfpnTs) in order to alias all information into Fp. Afterwards, these sequences
are filtered with a low-pass filter with cutoff at fp (this corresponds to π/q in digital
domain) in order to leave only the frequencies inside Fp. Finally, the sequences are
decimated by q in order to obtain the fp-rate sequences appearing in (6.33).

In principle, any M -channel MWC device can be collapsed to a device with only one
channel having fs = M · fp (M odd). However, as the authors note in [64], this approach
requires M digital filters and as q grows, the digital filter requires more taps. This
increases the computational load.

6.2 Evaluation of the MWC

The MWC is the only of the three presented sampling methods where a working prototype
was presented. The authors implemented the MWC for a wideband multiband signal
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with K = 6 bands with a maximum bandwidth of B = 19 MHz at the Nyquist rate
of 2.075 GHz [71]. The choice of fp = 19.212 MHz translates into N = 108 spectrum
slices. However, the number of channels has been reduced to M = 4 channels by using
the method described in section 6.1.5 with q = 3, requiring a sampling rate of at least
fs = 3fp = 57.64 MHz per channel. In the prototype 70 MHz ADCs have been used such
that the overall sampling rate is ftot = 4fs = 280 MHz instead of fN = 2.075 GHz. This
means a saving of a factor 7 compared to a conventional Nyquist ADC.

6.2.1 The MWC and Non-Blind sampling

Provided that S is known, the device works completely without any CS ingredients.
Given the sample sequences y[n], (6.26) can be solved easily with conventional technology
within the digital signal processor (DSP): It consists solely of linear matrix operations.
These operations only depend on the current sample (i.e., it is memory-less) and a small
size, constant matrix Φ. Thus, the signal can be acquired and processed in real time
in this case. This also is visualized in figure 6.4. The sampling device is based on
well established technology since it only requires demodulation of spectrum slices and
conventional ADCs.

Suppose a multiband signal with K transmissions where each band has a bandwidth
of B. With knowledge of the center frequencies fi, each band can be demodulated to
the baseband and sampled at rate B such that the overall sampling rate is given by
ftot = KB (other methods include non periodic nonuniform sampling, for example, [72]).
Landau showed that the minimum sampling rate in such a scenario is ftot = KB [73].
This is also true for the MWC with known S as long as M ≥ K because in this case (6.26)
is left invertible.

From this point of view, the MWC can be regarded as an extension where the center
frequencies fi are not known. The sampling device only needs an additional detector for
the fi which is nothing more than the CTF. For unknown spectral support, the minimum
sampling was shown to be ftot = 2KB [64]. In this case, z(f) is unique for every x(t)
and can be solved only theoretically with (6.5). The increased value of (6.24) stems from
the fact that the support must be found using a finite program. For this reason, the
action of the MWC can be reduced to the CTF: As soon as S is found it is clear that
the MWC will reconstruct the signal. Experiments have shown that the CTF always
reconstructs the spectral support successfully given that the discussed requirements on
A and M are met.

6.2.2 Number of channels

From an analytic point of view, the number of required channels is given by (6.23).
However, it is not as easy as for the RD to experimentally verify this due to the “real”
analog behavior of the MWC. In general, the experiment needs to place K bands into
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Figure 6.6: Required number of channels for a given number of bands K. The result is similar as
predicted by (6.23) and similar as for other methods involving CS such as the RD
in (4.21) (code)

N slices and determine the number of channels M for successful recovery of S. A first,
näıve approach places some compactly supported, discrete data into K spectrum slices.
However, this is not a realistic scenario. Therefore, the same approach as in [64] has
been used, where K bands were modulated onto their respective carrier frequencies fi by
using the formula

x(t) =

K/2∑
i=1

sinc(B(t− τi)) cos(2πfi(t− τi)) (6.35)

which in theory corresponds to rectangular bands of width B (the τi are optional time
shifts in order to visually separate the bands in time domain). However, due to the finite
representation of the sinc function, each band does not occupy 2K slices (at maximum)
but contains few energy in other slices as well. For small K this is not an issue, however,
for large K, the CTF recovers a larger support set.

The general approach is to draw the K/2 carrier frequencies within [0, fN/2] at random.
However, with B ≈ fp chances are high that two transmissions fall into the same spectrum
slice as K grows which distorts the result. Therefore, in order to get reproducible results,
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the carrier frequencies have been drawn from the following set, such that each possible fi
is centered in the corresponding spectrum slice:

fi ∈ {n · fp |n = 1, . . . , N0} (6.36)

The result of the experiment is shown in figure 6.6. For the experiment N = 195
spectrum slices and fN = 10 GHz have been used. The input signal was built according
to (6.35) with B = 0.9 · fp and the carriers have been drawn from (6.36). For each pair
of (N,K), the smallest number M was sought which reconstructed at least 95 out of 100
trials. The CTF was implemented using an MMV variant of the orthogonal matching
pursuit (OMP) algorithm obtained from [74]. The logarithmic fit shows a similar behavior
as the sampling rate of the RD (4.21) and coincide with (6.23). The missing factor of
2 in the denominator inside the logarithm stems from the fact that the model (6.36)
does not enable a band to share more than one spectrum slice. Although the experiment
confirms (6.23), only a real hardware implementation can prove the suitability.

While the number of channels might be reduced with the method described in sec-
tion 6.1.5, the hardware layout of the device still depends on the input signal (the number
of bands). However, in contrast to the finite rate of innovation (FRI) method it easily is
possible to design an MWC for a maximum of L transmissions which works happily for
any number of K < L transmissions.

6.2.3 Non-ideal low-pass filter

The role of the low-pass filter appears implicitly in (6.18). Its task is to leave the spectral
data for f ∈ Fs only. When h(t) is not an ideal rectangular filter, the vector z(f)
becomes distorted and x̂(t) from (6.27) will be distorted as well. Figure 6.7 shows an
experiment using a Butterworth filter with order 6 instead of an ideal low-pass filter. The
distortion is especially problematic when a band shares contributions in two spectrum
slices. Figure 6.7(b) shows that the first and the third transmission have high distortion in
the middle of the spectra. Depending on the modulation method of the transmission this
might not be a problem and data still might be recovered successfully. When one band
shares only a small part in a specific spectrum slice, the CTF recovers a different support
set. For example, the second band is distorted in such a way that the spectrum slice at
2.2 GHz is not regarded as part of the support set. There might be room for improvements
by choosing other filter types or by slight modification of the cutoff frequency.

Since the usage of non-ideal filters is an issue encountered in classic sampling theory, a
simple countermeasure is to oversample the input signal and append a digital low-pass
with a sharp transition. In [75], it was shown analytically that all filters satisfying
Nyquist’s inter symbol interference (ISI) criterion are able to recover a multiband signal
with the MWC perfectly. In particular, this includes Kaiser windows and filters which
are readily available in hardware such as raised-cosine filters. Additionally, it is even
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Figure 6.7: Effect of using non-ideal low-pass filters (a) ideal low-pass filter (b) Butterworth filter
of order 6. Distortion is especially problematic when a band shares contribution
within two spectrum slices (code)

possible to achieve almost perfect reconstruction by digital compensation. In [75], the
authors showed how to compensate a typical Butterworth filter successfully by using
slight oversampling and additional processing in digital domain.

The prototype board from [71] uses a 6-order elliptic filter and an oversampling factor
of 1.21 followed by this digital compensation.

6.2.4 Non-ideal modulation sequences

An important question is if the MWC can deal with non-ideal modulation sequences
pi(t). The fundamental property on pi(t) is the periodicity with fp since this supports the
required aliasing. Other properties are not so important, however, the Fourier coefficients
must at least resemble the coefficients in the matrix Φ. A first experiment tested whether
the MWC works with non-sharp transitions the same way as for the RD (cf. section 4.3.5)
or not. For the experiment a high resolution signal was created from low-rate sequences
pi[n] at Nyquist rate using the MATLAB command resample. The signal shape of pi(t)
looks the same as in figure 4.12. The MWC recovered the support as well as the signal
x̂(t) without any problems. While the pi(t) do not have any sharp transitions in this
configuration, the result is not surprising because the Fourier coefficients effectively stay
the same.

Another experiment observed the effect of random jitter (the same way as described in
section 4.3.5). Already small values of σ2 renders the output of the MWC useless: The
CTF as well as reconstruction via (6.26) fail because in this configuration the Fourier
coefficients of pi(t) do not resemble the entries in Φ anymore.
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However, the authors argue that this is not a major problem because the entries in
Φ can be calibrated after manufacturing [63]. In the prototype [71] the authors show
that this calibration indeed is possible. It shows a practical example of a sequence pi(t)
alternating at 2 GHz whose pulse shape is far from perfect: There are neither sharp
transitions nor alterations exactly at the Nyquist rate.

6.2.5 Sub-Nyquist processing

An important feature of a sub-Nyquist sampling system is the ability to process the
samples digitally at a rate below the Nyquist rate. In the absence of this feature, the
digital reconstruction needs to recover a digital equivalent x[n] of x(t) at the Nyquist
rate which might be problematic in terms of computational power or memory, especially
with high-rate signals. While the RD lacks this feature, the FRI framework offers this
feature by definition: It reconstructs time delays and amplitudes and therefore provides
encoded information directly.

For the MWC the information is contained within the K bands, it may be encoded
by arbitrary modulation. In the context of MWC, baseband processing means that it is
possible to obtain the low-rate samples of a single band without reconstructing x(t) at the
Nyquist rate. The MWC reconstructs zS [n] (6.26) where the DSP has direct access to
the samples of a specific spectrum slice containing some signal energy where the samples
are reconstructed at a low rate fp. However, there are two problems: First, the exact
carrier frequencies fi are not known (only the indexes of the spectrum slices containing
signal energy) and second, a band might share contributions over two spectrum slices.

In [76], the authors proposed an extension to the MWC which supports to recover the
samples of the bands at a low rate. The method assumes that each band band is modulated
using a general quadrature modulation, that is, x(t) consists of K/2 transmissions of the
form:

x(t) =

K/2∑
i=1

Ii(t) cos(2πfit) +Qi(t) sin(2πfit) (6.37)

The signals Ii(t) and Qi(t) directly encode the information. Additionally for the
method to work, the minimum width of a band and the minimum spacing between two
bands must be known.

6.2.6 Real-time processing

As discussed above, the MWC offers real-time processing once the support is given. The
reconstructed output of (6.26) is only dependent on the current input samples. In contrast
to the RD, reconstruction does not work block-wise but rather continuously. Only the
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Figure 6.8: Real-time capability of the MWC (a) Average number of samples required for the
CTF (i.e., for (6.25)) in order for the support recovery to succeed. This number is
dependent on the number of channels and is quasi-linear by the number of bands
K. In general, this number is very small (code) (b) The running time of the CTF
is dependent of the number of spectrum slices N and negligible small in a typical
scenario (code)

CTF introduces a certain delay: First a few samples have to be collected in order to obtain
S and second, the MMV system (6.9) needs to be solved which requires computation
time. As described in section 6.1.4, the number of required samples for the CTF is
theoretically small. Figure 6.8(a) shows an experiment how much samples are required
for (6.25) in order to obtain enough linearly independent vectors. In the experiment, a
multiband signal with fN = 10 GHz and different numbers of bands K = {2, 4, 6, 8, 10}
was created. The MWC used fp = fs = 51.3 MHz and the number of channels varied
with M = {30, 50, 70}. It was repeated for 100 trials and the average number of required
channels M in case of a successful support recovery was measured.

Figure 6.8(a) verifies that the number of required samples is typically small. For
example, a sampling device with M = 50 channels requires about 5 samples in each
channel only in order to detect the support of a multiband signal with K = 6 bands.
The number of required samples is quasi-linear in the number of bands K. Furthermore,
a sampling device with more channels requires fewer samples. This is intuitive since in
this case the vector y[n] contains more information for every n.

Figure 6.8(b) shows the computation time for the CTF on a typical desktop PC for a
constant sparsity of K = 6 and different sizes N of z(f). The important thing is that
the computation time is only dependent on the number N since this number defines the
size of the MMV system (6.9). A typical application partitions the spectrum only into a
few spectrum slices. For example, the prototype in [71] uses N = 108 spectrum slices.
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The computational load is negligible small in this case.
Another aspect is the change of the support. Under the assumption that the senders will

not change their carrier frequencies once chosen, the CTF only needs to find the support
at the beginning. However, it is possible without any problems that the transmission
continuously change their carrier frequencies. In this case an additional block might
observe the signal support and trigger the CTF when the support changes over a specific
threshold. When the MWC continuously buffers a certain amount of samples for the
MWC there is even no delay in this case. [63] offers a high level view on this method.

6.3 Conclusion

At the first glance, the MWC is the perfect sub-Nyquist sampling device. It avoids any
discretization of the signal model as with the RD and uses a real analog sparsity model.
It provides any properties which makes it possible to build the device in hardware: The
low-pass filters as well as the modulation sequences do not need to be perfect and can
be compensated in digital domain. The computational load is very light and suitable
for mobile applications. An optional extension provides direct access to the low-rate
sequences of the bands without needing to recover the input signal at the Nyquist rate.
According to [71], the current barrier are the high frequency modulators since current
high-frequency modulators only are suited for sinusoidal modulations. The chipping
sequences itself are not an issue: Binary pseudo random number generators alternating
at 80 GHz have been reported [77]. Additionally, a prototype shows the feasibility of the
system in practice. However, the behavior in real-world scenarios is not yet determined.

On closer examination it turns out that the MWC is merely a classical sampling
device which is extended by a spectral-support detector. It does not support to sample
real ultra-wide band (UWB) signals since those signals do not consist of separable,
narrow bands but rather of pulses compromising low-energy wide-bands. For proprietary
communication devices it might be easier to use a low-rate protocol distributing the
carrier frequencies used. When using the MWC together with other transmissions, each
band must be decoded in order to get access to the own data.

A typical application of the MWC is cognitive radio which is also mentioned by the
authors [78]. Another application directly related is spectral sensing where the MWC
can be used to detect free spectrum slices for own transmissions. However, in this
configuration it suffices to use only the CTF part, degrading the sampling device to a
spectrum sensing device.

A disadvantage about the MWC is that the hardware branches directly depend on the
number of transmissions and the complexity of the device quickly increases. Furthermore,
the allocation of the spectrum slices is rather static and given by the Nyquist rate and a
fixed number of cells N . This results in an inflexible signal model.

98



Chapter 7

Comparison and summary

Table 7.1 shows a table comparing the three sub-Nyquist sampling systems covered by
this thesis. Since the methods have different aims, they all use their own type of sparsity.
Therefore it is not easy to compare them since the only common goal is to sample below
the Nyquist rate. For this reason this chapter will focus on practicability and provides
examples for applications. The first section summarizes the most important properties
and the following section compares the methods based on the evaluation in this thesis.

7.1 Properties

This section summarizes the most important features of the three discussed techniques
given in the upper part of table 7.1.

Input signal and sparsity Each system uses a different type of input signal which defines
a different type of sparsity in its signal representation. The random demodulator (RD)
deals with signals consisting of pure sinusoids. The sparsity is defined as K out of N
possible frequencies.

The finite rate of innovation (FRI) framework published so far only deals with Diracs
(or signals which can be reduced to Diracs) where the number of Diracs defines the
sparsity. The underlying signal model is real analog.

The modulated wideband converter (MWC) deals with signals consisting of simulta-
neous transmissions on different carrier frequencies, also referred as multiband signals.
The sparsity is defined as the number K out of N possible bands. The MWC is able to
decode all K bands simultaneously without knowing their carrier frequencies.

Frameworks and randomness Currently there are two dominant sub-Nyquist sampling
frameworks: compressive sampling (CS) and the FRI framework. While some relations
between these two frameworks have been established [79], a unifying theory is still missing.

The RD and the MWC use the CS framework which is based on solving underdetermined
systems of equations. In both cases, the sampling rates are linear in the sparsity K and
include a logarithmic term. For practical implementations, CS requires random linear
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RD FRI MWC

input x(t) multitone pulses multiband
sparsity nr. of tones nr. of pulses nr. of bands
framework CS FRI classical + CS
randomness yes no yes
prototype partially no yes
sub-Nyquist proc. no yes yes
components LFSR,

modulator,
filter, ADC

filter, ADC LFSR, splitter,
M modulators
M filters,
M ADCs

comp. load very heavy light very light
mem. requirements very high low very low
typical bandwidth < 10 kHz up to ∞ < 80 GHz
real-time proc. no yes yes
stability good bad very good
applications single sinusoids UWB,

time delay est.
cognitive radio
spectrum sensing

component sensitivity high moderate low
practical efficiency low high moderate
barrier computation floating point

precision
modulator

practicability no no yes

Table 7.1: Comparison of the sub-Nyquist sampling system covered by this thesis

combinations of the measurements. Therefore, both the RD and the MWC use random
chipping sequences.

By contrast, the FRI framework analytically relates parameters of the input signal to
an innovation signal from which the parameters are estimated. The framework requires no
randomness. Theoretically the sampling rate is almost at the minimum (e.g., fs = 2K+ 1
for 2K degrees of freedom). In practice, it is still linear with a small factor in K.

Prototypes For FRI no prototype has been published. Several practical aspects for
the RD have been published [42, 33, 80] but no comprehensive prototype which targets
real-world applications. The MWC is the only device for which a prototype has been
published [71] and which works for real-world applications.
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Sub-Nyquist processing The term sub-Nyquist processing refers to the ability of the
sampling device to extract the encoded information directly at a low rate (at least below
the Nyquist rate). In absence of this feature, a digital signal representation at the Nyquist
rate has to be reconstructed. This might be problematic in terms of computational power
or memory requirements. The RD lacks this feature: The recovery stage requires to
reconstruct the signal first at Nyquist rate from which the information (e.g., included
frequencies) can be derived afterwards.

The FRI provides this feature by definition: The reconstruction process recovers time
delays and weights of pulses which directly provide the encoded information at the
information rate.

For the MWC, an extension [76] provides samples (under certain assumptions) at the
rate of the bandwidth of the different bands. Although this method does not reach
the information rate, it is about N times lower than the Nyquist rate (e.g., N = 195
for a practical wideband scenario). This method works when the transmissions can be
represented in a general quadrature modulation form (6.37).

Components Certainly all methods require a (low-rate) analog-to-digital converter
(ADC) in order to convert the analog signal into a digital one. Additionally all methods
require preprocessing in terms of an analog filter which is a low-pass filter in most cases.
The methods relying on random sequences (RD and MWC) additionally require both a
signal generator (which can be a linear feedback shift register (LFSR) in both cases) and
a modulator or mixer (which mixes the input signal with the random sequences).

The MWC requires all components (except the splitter and the LFSR) M times (one
for each physical channel).

7.2 Summary

The lower part of table 7.1 summarizes the evaluation in this thesis.

Computational load The computational load for the RD is very heavy: Since the
reconstruction recovers the signal at the Nyquist rate, the optimization problem has
the cardinality of the Nyquist rate. When using spectral compressive sampling (SCS),
the computational load is even higher. This makes it impossible to use the RD for high
frequency or wideband signals.

In the absence of noise, the computational load for the FRI framework is directly related
to the number of pulses. In the presence of noise, the recovery process needs to perform a
singular value decomposition (SVD) on a matrix whose dimensions are approximately the
number of samples, followed by few matrix operations and an eigenvalue decomposition.
These operations are very fast on a modern computer (less than a second for a 1000×1000
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matrix). Depending on the method used, a fast Fourier transform (FFT) of the length of
the samples might be necessary. It also can be implemented very fast.

The computational load of the MWC is very light. Once the support is recovered, only
linear, low-dimensional (in the range of K and M) matrix operations are required. The
continuous-to-finite converter (CTF) is only needed when the signal support changes.
The complexity is defined by the number of channels M and the number of spectrum
slices N . The running time is negligible for a typical application.

Memory requirements The huge memory requirements are some of the fundamental
problems of the RD. For a GHz-signal the memory requirements are several hundred
TB. Since each entry has to be accessed at least a few times, the RD is not suitable for
high rates in the near future.

The matrix operations for the FRI reconstruction require memory which is quadratically
in the number of samples and typically low. Thus, the memory requirements for the FRI
framework are low.

The MWC has the least memory requirements: The CS matrix has only the dimensions
M × N and the matrices in the multiple measurement vector (MMV) setup (6.9) are
about M × 2K.

Typical bandwidth The high computational and memory requirements for the RD
restrict the usage to very low signals, for a typical PC even less than 10 kHz.

The FRI framework deals with signals which generally have a high bandwidth. In
theory, the bandwidth is even ∞ because Diracs (or piecewise polynomials) have an
infinite bandwidth. The trick is to project the signals to a finite-dimensional subspace
(e.g., with a low-pass filter to a low-pass approximation) which contains all information
of the input signal x(t).

The MWC samples classical multiband signals. The technological barrier is the
hardware. Under the assumption of a 80 GHz LFSR [77] the practically achievable
bandwidth is at least a few GHz.

Real-time processing Real-time processing means that the sampling device is able
to process data in real time while sampling. The RD needs to collect samples for a
specific amount of time (e.g., 1 s for a 1 kHz signal) prior to reconstruction. The digital
reconstruction takes additional time. Therefore the RD lacks this feature.

The FRI framework as well as the MWC provide real-time processing. With a small
support kernel in FRI it is possible to have quasi-local reconstruction.

The reconstructed output of the MWC only depends on the current input sample.
Therefore the MWC reconstructs in real time once the support is given. Even including
the CTF, the device operates in quasi real time because very few samples are required
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(in the region of 2K). This delay can be further decreased by buffering samples for the
CTF continuously.

Stability In this instance, stability means that the sampling device works properly when
the number K increases. This is true for the RD as well as for the MWC.

The FRI framework is stable when the innovation signal is the Fourier transform.
However, this only works reliable for periodic and therefore infinite signals. The FRI
framework based on local kernels is very unstable until now when used with more than
K ≈ 5 Diracs.

Applications A typical application for the RD is the sampling of signals consisting of
K pure, arbitrary sinusoids. It is important to note that the RD can not be used to
sample signals such as in orthogonal frequency-division multiplexing (OFDM) although
the signal definition looks similar as (4.7) [81]. The reason is that the RD requires the
spectrum to be sparse and therefore the sinusoids have a long extension in time. The
sinusoids in OFDM by contrast have a very short extension of 1/∆ (with ∆ being the
carrier spacing) resulting in a very dense spectrum. Due to the high computational load,
the RD can be used for low-rate signals only, for which cheap commercial ADCs exist [5].
For the reasons mentioned above, there is no real-world application for the RD.

A typical application for the FRI framework is ultra-wide band (UWB) and in particular
time-delay estimation of pulses. The time-delays can modulate information for UWB.
The big advantage is that an UWB receiver based on FRI could operate at the information
rate rather than at the high chip rate [48].

Applications for the MWC are cognitive radio and spectrum sensing.

Component sensitivity The term component sensitivity covers the question whether
all components are physically realizable and if yes, if the sampling system is sensitive to
slight deviations. A real ADC has an property termed analog input bandwidth [82] which
follows from the implicit assumption that the sampling obeys the Whittaker-Kotelnikov-
Shannon (WKS) theorem anyway. The meaning of this property is that the bandwidth of
the input signal y(t) for the low-rate ADCs should not exceed roughly twice the sampling
rate of the ADC. In particular, y(t) must not be at the Nyquist rate of x(t). In practice
this is avoided by an appropriate low-pass filter which matches the sampling rate of the
ADC. This is true for the RD since the analog filter h(t) is an integrator whose cutoff
frequency matches the sampling rate fs. Also the MWC and the FRI framework for
periodic signals use a low-pass filter matching the sampling rate. Only the polynomial
spline kernels produce an ADC input signal y(t) with a theoretically infinite bandwidth
which might cause aliasing in practice.

The RD uses an integrator which is easy to realize where a small bias is not an issue.
The MWC theoretically needs an ideal low-pass filter, however, physically realizable
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filters such as raised-cosine filters are possible. Furthermore, any real low-pass filter can
be compensated in digital domain. The FRI framework for periodic signals also requires
an ideal low-pass filter. However, with an oversampling factor higher than 20, ordinary
Butterworth filters work. While spline kernels might be difficult to realize, exponential
splines can be reduced to rational transfer functions which include Butterworth filters
by definition. However, since high-order filters are difficult to realize, this method is
restricted to small size kernels and therefore a small number of pulses. For example, a
9-th order Butterworth filter can sample about 4 Pulses only.

Chipping sequences are required by the RD and the MWC. For the RD, the chipping
sequences must alternate exactly at the Nyquist rate. In the presence of non-ideal
sequences, the performance of the RD decreases very fast. The MWC works as long
as the first N Fourier coefficients approximately match the entries in the CS matrix.
Therefore the edges do not need to be perfectly sharp. Clock jitter prevents the MWC
from working. However, since the only requirement is that the Fourier coefficients of the
chipping sequences match the entries in the CS matrix, the entries can be calibrated for
imperfect sequences.

Practical efficiency The quotient η = fN/ftot describes how efficient the sub-Nyquist
sampling system works in practice in terms of the sampling rate. This is an important
property for a sub-Nyquist sampling system. For the RD, ftot is theoretically linear in K
and logarithmically in the Nyquist rate. However, due to model assumptions, fs needs to
divide fN which provides good savings only for very small values of K. When using SCS,
η is decreased even further by at least at factor of 4. Assuming a constant sparsity K, η
increases as the Nyquist rate increases. For example, assume an input signal consisting of
only K = 5 frequencies and a Nyquist rate of 2048 Hz. This translates to an utilization
of 0.25% only. Using spectral iterative hard thresholding (SIHT) via root multiple signal
classification (MUSIC) requires a sampling rate of fs = 154 Hz where the next number
which divides 2048 is 256. This results in an efficiency of η = 8. However, due the high
computational requirements of the reconstruction algorithm, the Nyquist rate is limited
to a few kHz.

Since the bandwidth of FRI signals is theoretically infinite and the sampling rate
depends only on the degrees of freedom of the signal, the efficiency is very good and
tends to infinity: η →∞.

The total sampling rate of the MWC depends linearly on the maximum width of the
bands B, the number of bands K and logarithmically in the Nyquist rate. The efficiency
increases as the number of spectrum slices increases. However, the more spectrum slices,
the more channels are required. A reduction of channels in turn increases the total
sampling rate to the same factor as the number of channels. In practice, the sampling
rates must be increased in order for the digital compensations to work. For a practical
setup such as in the prototype of the MWC [71], the efficiency is only about η = 7.
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Technological barrier This point lists the most fundamental technological barriers for
each system. For the RD, the technological barriers undoubtedly are the high memory
and computational requirements which extend todays capabilities by magnitudes.

The most fundamental problem in the FRI framework is the inherent numerical
instability. The system works perfectly, if it is described in an analytical way only.
However, as soon as the actions of the framework need to be implemented using finite
precision, the reconstruction becomes instable quickly due to the high numbers involved.
The current FRI framework only works with the hypothetic assumption of infinite floating
point precision.

From a theoretic point of view, the MWC does not have any limitations. The techno-
logical barriers are given by the hardware, in particular by the sign alternating functions
and the modulators.

Practicability The practicability addresses the question whether the sampling devices
can be built in practice and if it makes sense to build them. The discussion so far gives
an answer to this question. While it is possible to build the RD in practice, it is very
sensitive to model mismatch. Since it does not provide notable advantages compared to
a Nyquist ADC, it does not make sense to use the RD in practice.

The FRI framework for periodic signals works well under certain assumptions. However,
since it only applies to periodic signals the practical usage is limited. With the usage
of compactly supported kernels, the FRI framework would be able to sample high-rate
UWB signals. However, the inherent stability problems limit the practical value.

The MWC is the one of the three presented sampling systems which works and can be
built in practice. However, this system has certain limitations which make it questionable
if the MWC is advantageous over conventional systems.
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Conclusion

This thesis studied three sub-Nyquist sampling methods: The random demodulator (RD),
the finite rate of innovation (FRI) framework and the modulated wideband converter
(MWC).

The RD directly applies knowledge from compressive sampling (CS) framework to
analog signals. This results in an easy implementation of CS but also implies some issues:
First, a discrete signal model which is very sensitive to model mismatch. Second, the CS
framework requires to reconstruct a full-size vector of a large, but sparse signal model
digitally rather than parts of it. For the RD, this size directly depends on the Nyquist
rate. Not least, this is the reason for the extraordinary high computational requirements.
To conclude, the RD shows that direct application of the discrete CS framework does
not work in practice. However, CS works well for discrete signals.

The FRI framework is the most interesting concept. The recovery procedure is light
and it directly reveals signal parameters. This avoids further complex processing steps
in many cases. A typical application which would instantly profit from a working FRI
framework is ultra-wide band (UWB). Unfortunately, the promising local reconstruction
method is too unstable and too sensitive for practical applications. An extension [61]
promises stable reconstruction for real-world finite signals. However, the capability of
application to real-world signals yet needs to be determined.

The MWC is a multichannel sampling device which is based on mirroring parts of the
spectrum to the baseband. Important concepts are based on well established methods
such as demodulation while borrowing a key-concept for reconstruction from the discrete
CS framework. The integral part, the continuous-to-finite converter (CTF), reduces a
real sparse, analog signal model to a finite dimensional problem which can be solved
easily. Additionally, a prototype shows that practical implementation is possible. The
main drawbacks about the MWC are the static allocation of spectrum cells and the
dependency of the hardware layout from signal parameters. Additionally, it is to be
determined yet how the MWC behaves in real-world scenarios.

While the well-established Whittaker-Kotelnikov-Shannon (WKS) theorem is linear,
the reconstruction of sparse analog signals is non-linear. For all of the three methods,
this inherent non-linearity is problematic since deviations caused by model mismatch or
non-ideal components lead to huge deviations of the reconstructed signal. By contrast,
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the WKS theorem is linear and simple. First, non-ideal components are not an issue:
Non-ideal low-pass filters such as Butterworth filters or track-and-hold instead of sample-
and-hold work well in practice. Second, model mismatch is not an issue: The anti-aliasing
filter forces the input signal into the required, linear signal model. Finally, low-pass
approximations of signals not fitting the signal model often are acceptable in practice.
Developing a sampling device which provides similar flexibility in practice is a challenging
task.

In general, the idea to trade sampling rate with additional computational power is not
yet achievable, where the MWC is the most likely of the three concepts to be able to
achieve this goal. In case of the RD, the computational requirements are too high, by
order of magnitudes, compared to the computational power which would be available
when using low-rate analog-to-digital converters (ADCs). Generally, the algorithms are
yet too immature. For the moment, digitally assisted ADCs seem to be the more apparent
solution to the ADC bottleneck. However, the research around sampling of sparse analog
signals below the Nyquist rate is very dynamic.

Further research The FRI framework provides the most interesting concept. However,
currently used methods either use too unrealistic assumptions or are too unstable.
Finding a method which combines the advantages of sampling of periodic Diracs with
local sampling would solve the issues with FRI.

Another interesting concept is the reduction of a real, analog sparse signal model to
a finite dimensional problem which can be tracked in practice. The MWC makes use
of this strategy. However, the underlying sparsity model is valid for multiband signals
only. A further step is to extend this method to more general types of sparsity. A first
framework termed CS for analog signals has been established [20, 83].

From a practical point of view, a further step is to evaluate the MWC in depth and
to determine the feasibility to real-world scenarios where the focus is cognitive radio.
For this evaluation, the device needs to be built in hardware and tested with real-world
communication signals. In particular, the robustness to noise, calibration with non-
ideal filters and chipping sequences need further investigation. A practical evaluation is
especially important for the baseband processing system since the function of this system
is an integral part for real-world scenarios where multiple (extrinsic) signals need to be
decoded simultaneously.
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Appendix A

Derivation of the coefficients in the
polynomial reproduction formula

The derivation starts with (5.40). For the derivation I set ϕ = βN . The coefficients cm,n
can be obtained using the dual of ϕ, ϕ̃ [30]:

cm,n =

∫ ∞
−∞

tnϕ̃(t−m) dt (A.1)

However, even if the dual would be known, solving the infinite integral only is feasible
when the dual has finite support. This is the case for the B-spline itself but not for its
dual. A closer look at (A.1) tells that this is nothing more than a convolution (under the
assumption that ϕ̃ is symmetric which is the case):

cm,n =

∫ ∞
−∞

tnϕ̃(−(m− t)) dt =

∫ ∞
−∞

tnϕ̃(m− t) dt = (tn ∗ ϕ̃)(m) (A.2)

Now, this can be transformed to Fourier domain:

(tn ∗ ϕ̃)(m) = F−1
{
F {tn} Φ̃(ω)

}
(A.3)

= F−1
{
jn
√

2πδ(m)(ω)Φ̃(ω)
}

(A.4)

= jn
√

2πF−1
{
δ(m)(ω)Φ̃(ω)

}
(A.5)

Writing the inverse of this expression yields:

jn
√

2π
1√
2π

∫ π

−π
δ(m)(ω)Φ̃(ω)ejωm dω = jn

∫ ∞
−∞

δ(m)(ω) Φ̃(ω)ejωm︸ ︷︷ ︸
f(ω)

dω (A.6)

It is known that [84]:
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∫ ∞
−∞

δ(n)(x)f(x) dx = (−1)nf (n)(0) (A.7)

so that (A.6) becomes

jn
∫ ∞
−∞

δ(m)(ω)f(ω) dω = jn(−1)n
∂n

∂ωn
f(ω)

∣∣∣∣
ω=0

(A.8)

Now the whole procedure has been reduced to calculate the derivative of f(ω) and
set the result to zero. An open question is how to obtain the dual of ϕ. Since the
reproduction formula spans a vector space, ϕ must be at least bi-orthogonal to ϕ̃. This
translates in Fourier domain to [85]:

Φ̃(ω) =
Φ(ω)∑

k∈Z |Φ(ω + 2πk)|2
(A.9)

The Fourier transform of a B-Spline of order N is [58]:

BN (ω) = Φ(ω) =

(
sin(ω/2)

ω/2

)N+1

= sincN+1(ω/2) (A.10)

The first step is to calculate the denominator of (A.9). The following derivation of
the sum is borrowed from [86]. In order for this derivation to work, I set L = N + 1
temporarily:

∑
k∈Z
|Φ(ω + 2πk)|2 =

∑
k∈Z

∣∣∣∣∣sinc

(
1

2
(ω + 2πk)

)L∣∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣sinc

(
1

2
(ω + 2πk)

)∣∣∣∣2L (A.11)

and because 2L is always even:

=
∑
k∈Z

sin2L(1
2(ω + 2πk))(

1
2(ω + 2πk)

)2L =
∑
k∈Z

sin2L(ω2 + πk))

(ω2 + πk)2L
(A.12)

Because of the periodicity it is known that

sin2L(x+ πk) = sin2L(x) (A.13)
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such that (A.12) becomes

= sin2L
(ω

2

)∑
k∈Z

1

(ω2 + πk)2L
(A.14)

And finally the following relation is used [87]:

∑
k∈Z

1

(x+ πk)2L
= − 1

(2L− 1)!

d2L−1

dx2L−1
cotx (A.15)

in order to obtain finally:

∑
k∈Z

∣∣∣∣∣sinc

(
1

2
(ω + 2πk)

)L∣∣∣∣∣
2

= − sin2L
(ω

2

) 1

(2L− 1)!

d2L−1

d
(
ω
2

)2L−1
cot
(ω

2

)
(A.16)

and again with L = N + 1, this becomes:

∑
k∈Z
|Φ(ω + 2πk)|2 = − sin2(N+1)

(ω
2

) 1

(2N + 1)!

d2N+1

d
(
ω
2

)2N+1
cot
(ω

2

)
(A.17)

Therefore, together with the definition of Φ(ω) from (A.10), (A.9) becomes:

Φ̃(ω) =
(2N + 1)!(

ω
2

)
sin
(
ω
2

)N+1 d2N+1

d(ω2 )
2N+1 cot

(
ω
2

) (A.18)

and finally substituting for f(ω):

f(ω) =
(2N + 1)!(

ω
2

)
sin
(
ω
2

)N+1 d2N+1

d(ω2 )
2N+1 cot

(
ω
2

)ejωm (A.19)

Since this function is not well defined it is better to use the limit:

cm,n = jn lim
ω→0

f(ω) (A.20)
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Figure A.1: Reproducing polynomials with B-splines in interval [0, 20) (a) reconstructing the
linear polynom (b) reconstructing a cubic polynom (code)

Examples for a cubic spline

Equation (A.20) provides closed-form expressions for the reproduction coefficients. For a
cubic spline (N = 3) the coefficients are given by:

cm,0 = 1
cm,1 = m
cm,2 = 1

3

(
−1 + 3m2

)
cm,3 = −m+m3

(A.21)

Figure A.1 shows how the functions f(t) = t and f(t) = t3 are reproduced using these
coefficients.

111

file://./MATLAB/FRI/poly_repro.m


Appendix B

Derivation of the coefficients in the
exponential reproduction formula

Calculating the coefficients cm,n is much more straight forward than for the polynomial
case. For the first order case, the coefficients trivially are found by [60]:

eαt =
∑
m∈Z

eαmβα(t−m) (B.1)

Starting from the reproduction formula in (5.46), the kernel βa must be able to
reproduce the polynomials e(α0+λd)t = eαnt with n = {0, 1, . . . , N}. From [60] it is known
that an arbitrary E-spline βa is produced by convolution of their single elements:

βa(t) = (βα0 ∗ βα1 ∗ · · · ∗ βαN )(t) (B.2)

Now, take an arbitrary αk = α0 + λk. Reproducing this polynomial is possible
with (B.1). However, it must be possible with the kernel defined in (B.2) also. Therefore,
define a kernel ϕ(t) as:

ϕ(t) = (βαe0 ∗ βαe1 ∗ · · · ∗ βαeN−1
)(t) ei ∈ {0, 2, . . . , N} \ {k} (B.3)

Now (B.1) is convolved with this kernel:

ϕ(t) ∗ eαkt = ϕ(t) ∗
∑
m∈Z

eαkmβαk(t−m) (B.4)

For the left side we have:

(ϕ ∗ eατ )(t) =

∫ ∞
−∞

ϕ(τ)eαk(t−τ) dτ = eαkt
∫ ∞
−∞

ϕ(τ)e−αkτ dτ (B.5)
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And for the right side we have simply

ϕ(t) ∗
∑
m∈Z

eαkmβαk(t−m) =
∑
m∈Z

eαkm (ϕ ∗ βαk)︸ ︷︷ ︸
βa

(t−m) (B.6)

because of the linearity of the convolution operator. Putting together (B.5) and (B.6)
yields

eαkt =
∑
m∈Z

eαkm∫∞
−∞ ϕ(τ)e−αkτ dτ︸ ︷︷ ︸

cm,k

βa(t−m) (B.7)

Since ϕ(t) is an E-spline by definition, it has finite support. Therefore the integral
in (B.7) can be solved easily numerically.

Examples
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Figure B.1: (a) Family of E-splines with αn = −0.2− 0.1n (b) Reproduction of the exponential
e−0.2t with E-spline of order N = 4
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