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1 Introduction

Since the paper of Erd®s and Rényi [9] on random graphs in 1960, random
graphs have been widely studied. The idea is to draw a graph out of a
certain set of graphs according to some probability distribution, for example
a uniform distribution on the set of all graphs with a given number of vertices
and edges, and to study its typical properties, like for example connectivity
or the emergence of the giant component. Since the seminal work of Erd®s
and Rényi [9], it has been tried to get similar results for various random
graph models, for example planar graphs.

The classes of planar graphs and random planar graphs have recieved con-
siderable attention during the last decades. The �rst results on this topic were
asymptotic formulas on the number of such graphs which got increasingly
more exact. Let pl(n) be the number of planar graphs with n vertices. Then
McDiarmid, Steger, and Welsh [25] showed, that (pl(n)/n!)1/n converges to a
limit 0 < γ <∞ as n → ∞. A number of upper and lower bounds was given
for γ, for example by Osthus, Prömel, and Taraz [28] or Bender, Gao, and
Wormald [1], until Giménez and Noy [13] proved pl(n) ∼ cn−7/2γnn! with c
and γ analytically given with γ ∼ 27.2. At the second international seminar
on random graphs [19] the same question about pl(n,M), where M is the
number of edges, was asked. This question was answered in multiple steps. A
�rst observation showed that the typical random graph G(n, an) with a < 1

2

is planar [24]. Gerke et al. [11] proved that (pl(n, an)/n!)1/n converges to a
limit dependent only on a. This was further speci�ed by Gimenez and Noy
[14] that pl(n, an) = can

−4γnan!, if 1 < a < 3. Finally, Kang and �uczak [18]
proved the asymptotics of pl(n, an) in the case of 1

2
< a < 1. Similarly, the

number of forests F (n,M) with n vertices and M edges was given by Cayley
[7]. As for series-parallel graphs, there are not many results in this direction.

A graph is series-parallel, if it does not contain the graph K4 as a minor.
As K5 and K3,3 do contain K4 as a minor, all series-parallel graphs are planar
[20]. In contrast to that, all forests are series-parallel. Comparisons of these
graph classes will be made throughout this thesis. Let sp(n) be the number
of series-parallel graphs with n vertices. Bodirsky, Giménez, Kang, and Noy
[2] showed that sp(n) ≈ gn−5/2γnn!. Also, it was proven quite recently by
Uno, Uehara, and Nakano [32] that the number of series-parallel graphs with
M edges is bounded from above by 2d2.5285M−2e. About the number sp(n,M)
it is only known that, as above, the general random graph G(n, an) is series-
parallel, if a < 1

2
.

Another point of interest besides the asymptotic number of these graph
classes is its structure, and in particular the size of the largest component. It
follows from results of Erd®s and Rény [9], Bollobás [3], �uczak [21], �uczak,
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Pitel and Wierman [24], Janson et al. [16] and Janson [15] that in the case
of G(n,M), the giant component (which is the unique largest component)
suddenly emerges at M = n

2
+ O(n2/3). This phenomenon is called a phase

transition and will be de�ned more exactly in Chapter 2.3. Nowadays this
phenomenon is widely studied and similar results have been found for a couple
of graph classes, including planar graphs [18] and random forests [23]. In both
of these cases the giant component emerges at M = n

2
+ O(n2/3) with the

same size estimate, which does di�er from the estimates of G(n,M). Again
there are no such theorems for series-parallel graphs. Also, it was shown by
Kang and �uczak [18] that there is a second point, where the asymptotics of
the size estimates change, at M = n+O(n3/5). This second phase transition
exists neither for G(n,M) nor for F (n,M).

In this thesis, we will give asymptotic formulas for the number sp(n,M)
of series-parallel graphs. We will also show that the giant component will
emerge at M = n

2
+ O

(
n2/3

)
and the size estimates will be the same as for

planar graphs. Furthermore we will show that the second phase transition
of planar graphs does also exist for series-parallel graphs with the same size
estimates as in the planar case with a size of n−(2+o(1)) |t|, ifM = n+t and

t� −n3/5 and of size n−(α+o(1))
(
n
t

)3/2
forM = n+t and n3/5 � t� n2/3.

To do this, we will use a similar approach as in [18]. In Chapter 2, we
will establish some general de�nitions and formulas, which will be needed
throughout the thesis. Then we will give some general results abut series-
parallel graphs and random graphs. Furthermore we will state some prop-
erties of phase transition in random graphs. Additionally we will give some
explanations on the symbolic methods and on singularity analysis, as we will
need these techniques to �nd the number of series-parallel graphs. In Chap-
ter 3, we will calculate the number sp(n,M) for M = an with a ≤ 1. To
do this, we will �rst restate some results on trees and unicyclic components
in Chapter 3.1. Then we will count the number of 3-regular series-parallel
multigraphs in Chapter 3.2. We will then give a method to get an estimate
on the number of complex series-parallel graphs (graphs are complex, if they
have at least 2 cycles) in chapters 3.3 and 3.4. Finally, by merging these
results, we will get the number of series-parallel graphs sp(n,M) in Chapter
3.5. In Chapter 4.3, we will then calculate the size of the largest component
in the di�erent ranges. To do this, we will again use the structure we looked
at for calculating the number of series-parallel graphs. Thus we will not only
get the size of the largest component but also estimates for some other parts
of the graph emerging from the way of counting, the de�ciency and the excess
in Chapter 4.1 and kernel and core in Chapter 4.2. In the last chapter we
will summarize all results and compare them to other graph classes.
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2 Basics

In this chapter, we will �rst establish some basic de�nitions and formulas we
will need in this thesis. Then, in Section 2.2, we will provide an introduction
on series-parallel graphs and in Section 2.3 an introduction on random graphs
and exact de�nitions on phase transition. Finally, in Section 2.4 we will
describe the symbolic method and singularity analysis.

2.1 De�nitions and formulas

In this section, we will give some de�nitions and discuss some formulas oc-
curring frequently throughout this thesis.

At �rst, to discuss asymptotic formulas, we need the following notations.

De�nition 2.1. Let f, g : N → R be functions. Then we write

• f(n) = O(g(n)), if limn→∞
f(n)
g(n)

<∞.

• f(n) = o(g(n), if limn→∞
f(n)
g(n)

= 0.

• f(n) = Θ(g(n)), if limn→∞
f(n)
g(n)

= c for some constant 0 < c <∞.

• f(n)� g(n), if f(n) = o(g(n)) for f(n) and g(n) positive and g(n) =
o(f(n)) for f(n) and g(n) negative.

• f(n)� g(n), if g(n) = o(f(n)) for f(n) and g(n) positive and f(n) =
o(g(n)) for f(n) and g(n) negative.

• f(n) ≈ g(n), if f(n) = Θ(g(n)).

This notation will be used mainly for approximating error terms, for
example in the following theorems.

Theorem 2.1 (Stirling's Formula). For all n ∈ N we have:

n! =
√

2πnn+ 1
2 e−n

(
1 +O

(
1

n

))
. (1)

Theorem 2.2. Let x ∈ R. Then:

1 + x = exp

(
x− x2

2
+
x3

3
+O

(
x4
))

. (2)

From this, we get the following approximation for the falling factorial
(k)i, which is then used to give di�erent approximations for the binomial
coe�cient.
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Theorem 2.3. Let i, k ∈ N and i4

k3
= o(1). Then:

(k)i = ki exp

(
− i

2

2k
− i3

6k2
+O

(
i

k
+
i4

k3

))
. (3)

Proof. We have:

(k)i =
i−1∏
j=0

(k − j)

= ki
i−1∏
j=0

(
1 +

(
− j
k

))
(2)
= ki

i−1∏
j=0

exp

(
− j
k
− j2

2k2
− j3

3k3
+O

(
j4

k4

))

= ki exp

(
i−1∑
j=0

(
− j
k
− j2

2k2
− j3

3k3

)
+O

(
j4

k4

))
.

Concluding in the result described above, after using summation formulas
and collecting corresponding terms.

For binomial coe�cients we will need di�erent approximations depending
on the precision. A very rough approximation is the following:

Theorem 2.4. For all k ≤ n ∈ N we have:(n
k

)k
≤
(
n

k

)
≤ nk

k!
≤
(en
k

)k
.

Proof. We have: (
n

k

)
=

(n)k
k!

=
k−1∏
i=0

n− i
k − i

.

The middle inequality follows directly from the �rst equation with (n)k ≤
nk. The leftmost inequality follows from the last equation by noting that for
all 0 ≤ i ≤ k − 1: n−i

k−i ≥
n
k
. This is true because the following is valid.

n− i
k − i

≥ n

k

⇔ (n− i) k ≥ (k − i)n
⇔ ni ≥ ki
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The last part follows from Stirling's formula (1):

k! =
√

2πkk+ 1
2 e−k

(
1 +O

(
1

k

))
=

(
k

e

)k (√
2πk

(
1 +O

(
1

k

)))
≥
(
k

e

)k
.

By being more precise with (n)k and k!, using (1) and (3), we get the
following lemma.

Lemma 2.5. Let n, k ∈ N. Then we have:(
n

k

)
=

(
1 +O

(
1

k

))
nk√

2πkkk
exp

(
k − k2

2n
− k3

6n2
+O

(
k

n
+
k4

n3

))
.

Another approximation for the binomial coe�cient is the following.

Lemma 2.6. Let n, k ∈ N. Then the following equation holds:(
n

k

)
=

nn+ 1
2

√
2πkk+ 1

2 (n− k)n−k+ 1
2

(
1 +O

(
1

n

))
.

Proof. This formula is obtained immediately by using Stirling's formula three
times in

(
n
k

)
= n!

k!(n−k)!
.

From these approximations we get results for special binomial coe�cients
occurring throughout the thesis.

Corollary 2.7. Let n, k ∈ N. Then we have:((n
2

)
k

)
=

n2k

√
2πk (2k)k

exp

(
k − k

n
− k2

n2
+O

(
k

n2
+

1

k

))
. (4)

Proof. By using
(
n
2

)
= n(n−1)

2
in the previous lemma, we get:((n

2

)
k

)
=
(
1−O

(
k−1
)) nk (n− 1)k√

2πk (2k)k
exp

(
k − k2

n (n− 1)
+O

(
k

n (n− 1)

))
.
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Using

(n− 1)k = nk
(

1− 1

n

)k
= nk exp

(
k

(
− 1

n
+O

(
1

n2

)))
,

and

k2

n (n− 1)
=
k2

n2
+

k2

n2 (n− 1)

=
k2

n2
+O

(
k2

n3

)
,

yields the claimed result.

Another special case of a binomial coe�cient is the following.

Corollary 2.8. Let n ∈ N. Then we have:(
2n

n

)
=
(
1 +O

(
n−1
)) 4n√

πn
. (5)

Proof. Using Stirling's formula (1), we have:

(
2n

n

)
=

(2n)!

(n!)2

=

√
2π (2n)(2n)+ 1

2 e−2n (1 +O (n−1))(√
2πnn+ 1

2 e−n
)2

=
(
1 +O

(
n−1
)) 4n√

πn
.

2.2 Series-parallel graphs

In this section we will introduce series-parallel graphs, which will be our
main object of interest throughout this thesis. We will �rst give several ways
of de�ning series-parallel graphs. We will then de�ne some substructures of
series-parallel graphs which will play essential roles in counting series-parallel
graphs.

The �rst way of de�ning series-parallel graphs is as follows.
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De�nition 2.2. A terminated series-parallel graph is a graph with two special
vertices u and v, called terminals de�ned inductively as follows:

• ({u, v}, {(u, v)}) is a terminated series-parallel graph with terminals u,
v.

• If G1 = (V1 ∪ {u1, v1}, E1) with terminals u1, v1 and G2 = (V2 ∪
{u2, v2}, E2) with terminals u2, v2 are series-parallel graphs, then so
is S = (V1 ∪ V2 ∪ {u1, v1 = u2, v2}, E1 ∪ E2) with terminals u1, v2,
merging the two graphs on one of the terminals. (Series composition)

• If G1 = (V1 ∪ {u1, v1}, E1) with terminals u1, v1 and G2 = (V2 ∪
{u2, v2}, E2) with terminals u2, v2 are series-parallel graphs, then so
is P = (V1 ∪ V2 ∪ {u1 = v1, u2 = v2}, E1 ∪ E2) with terminals u1, u2,
merging the two graphs on both terminals. (Parallel composition)

• If G1 = (V1 ∪ {u1, v1}, E1) with terminals u1, v1 and G2 = (V2 ∪
{u2, v2}, E2) with terminals u2, v2 are series-parallel graphs, then so
is S = (V1 ∪ V2 ∪ {u1, v1 = u2, v2}, E1 ∪ E2) with terminals u1, u2,
merging the two graphs on one of the terminals. (Source merge)

A graph is series-parallel, if it is a terminated series parallel graph for
some two of its vertices as terminals.

This de�nition is also the reason for the name of this class of graphs. The
last property is needed, if one wants to include trees to this class. It is also
needed in the second characterization.

Theorem 2.9. A graph G is series-parallel i� G does not contain K4 as a
minor (e.g. by Oxley in [29]).

There is also a third way of de�ning series-parallel graphs, which gives a
good way of proving properties of series-parallel graphs inductively.

Theorem 2.10. A graph G is series-parallel i� starting from G, K2 can be
reached by iteratively applying one of the following three actions:

• replacing a multiple edge by a single edge between the same vertices,

• deleting a vertex of degree 2 with an edge connecting its two neighbours,

• deleting a vertex of degree 1.

This follows directly from the minor characterizations of this graph class.
As we have said before, our aim is to count series-parallel graphs with n

vertices and M edges, where M will be dependent on n. For this we will use
the following de�nitions.
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De�nition 2.3. Let G = (V,E) be a series-parallel graph. Let G′ = (V ′, E ′)
be a graph arising from G by recursively cutting away all vertices of degree
one and the corresponding edges. Then G′ is called the core of G, G′ = cr(G).

As can easily be seen, the minimum degree of the core is at least two.

De�nition 2.4. Let G = (V,E) be a series-parallel graph. Let G′ = (V ′, E ′)
be a multigraph arising from the core of G by replacing all vertices of degree
two and its adjacent edges by one edge connecting its neighbours. Then G′ is
called the kernel of G, G′ = ker(G).

Obviously the kernel can have loops and multiple edges and has a mini-
mum degree of at least three.

We will use this in the following way: At �rst we will calculate the number
of possible kernels. Then we will put some additional vertices on its edges to
get the core and �nally we will add a rooted forest to the vertices to get all
series-parallel graphs.

In order to get the number of kernels, we will need the following:

De�nition 2.5. Let G = (V,E) be a series-parallel graph with |V | = n,
|E| = M .

• If the kernel of G is 3-regular, G is called clean.

• The excess ex (G) is de�ned as ex (G) = M − n.

• Suppose the kernel of G has k vertices and l edges. Then the de�ciency
def (G) of G is de�ned as 2l − 3k.

The de�ciency is a measure of some sort of how far G is away from being
clean, as seen in the next lemma.

Lemma 2.11. Let G be as above. Then def (G) ≥ 0 and def (G) = 0 ⇔ G
is clean.

Proof. As the minimum degree in the kernel is 3, we have 2l =
∑

v d (v) ≥ 3k
with equality i� all vertices have degree 3 and hence G is clean.

The next lemma gives a reason, as to why the excess will be needed in
getting a connection between the kernel of a graph and the graph itself.

Lemma 2.12. Let G be as above a graph where all connected components
have positive excess. Then ex(G) = ex(ker(G)). Furthermore a connected
component with excess ≤ 0 has an empty kernel and as a consequence its
kernel has excess zero. Such components are either trees or unicyclic compo-
nents.
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Proof. Suppose a connected component has negative excess. Then it has
fewer edges than vertices and is therefore a tree. As such it has no kernel,
as iteratively deleting leaves results in an empty graph. If a connected com-
ponent has excess zero, it has exactly one circle. Iteratively deleting vertices
yields exactly this circle and again the kernel of this is the empty graph.

Let G be a connected graph with excess ≥ 1. Then G has at least two
circles and its kernel is not empty. Then ker(G) is constructed from G by
iteratively deleting vertices with degree one and its adjacent edge, which
does not change the excess, or by deleting a vertex with degree two, its two
neighbouring edges and inserting another edge instead. This does not change
the excess either. As a consequence the excess stays the same in all connected
components and therefore in the whole graph.

2.3 Random graphs

In this section we will introduce random graphs and some concepts and
properties occurring with random graphs. To do this we will �rst formally
de�ne random graphs and show some basic properties. After that we will
introduce the concept of phase transition in random graphs and will give
some examples. For a more detailed overview, see for example [4].

In recent history there have been two di�erent models of random graphs.
In this section we will see some basic properties of these graphs and look at
the di�erences in the concept. These models are:

• Suppose n,M ∈ N. Then G (n,M) is a graph with n vertices and M
edges chosen uniformly at random from the set of all graphs with n
vertices and M edges.

• Suppose n ∈ N and 0 < p < 1. Then G (n, p) is a graph on n vertices,
such that for each pair u, v of vertices {u, v} is an edge with probability
p. These probabilities are independent for all possible edges.

The �rst of these was introduced by Erd®s and Rényi in their paper [9]
in 1960. The second is a well-known alternative model de�ned by Gilbert

[12]. If p ≈ M
(
n
2

)−1
, meaning that the expected number of edges in G (n, p)

is M , then these two classes are expected to have similar properties. The
exact result for this is for example given by Bollobás [4].

Theorem 2.13. Let P be a property such that for all A ⊂ B ⊂ C where A
and C have P also B has P . Let also p(1 − p)

(
n
2

)
→ ∞. Then then a.a.s.

every graph in G(n, p) has property P i� a.a.s. every graph in G(n,M) has

P where M = p
(
n
2

)
+ c
√
p(1− p)

(
n
2

)
with any �xed constant c.
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There are two di�erent kinds of questions one might ask for such graphs.
The �rst is about properties of G(n,M) or G(n, p) for �xed n and M or
p. Questions of this kind are: Given n and M what is the probability of
some property the graph might have, like the probability that the graph is
connected. The other type of question reverses the roles in these questions.
They are of the sort: Given some property and some value of n, what are
the values of M as a function of n such that almost all or almost no graph in
G(n,M(n)) do have this property as n tends to ∞? In this second category
are for example the questions about the giant component given in the intro-
duction to this thesis, as they are questions about the change of the largest
component, if one changes the value of M(n). Such questions lead to the
de�nition of phase transitions and threshold functions.

De�nition 2.6. Let ℘ be a property, f = f (n), M = M (n) some functions
of n and P (n) the probability that G (n,M (n)) satis�es ℘. Furthermore
suppose that the following two properties hold.

• If limn→∞
M(n)
f(n)

= 0, then limn→∞P (n) = 0.

• If limn→∞
M(n)
f(n)

=∞, then limn→∞P (n) = 1.

Then the function f is called a threshold function for property ℘.

There are many di�erent questions concerning threshold functions. Some
of them are shown for example in [31].

In this thesis we will work especially with phase transitions. The phase
transition is a phenomenon observed in many fundamental problems in graph
theory like, for example, graph coloring. The phase transition observed in
di�erent random graph models refers to a phenomenon that there is a critical
value of edge density such that adding a small number of edges around the
critical value results in a dramatic change in the size of the largest compo-
nents. Usually one measures the edge density as the asymptotics of M(n)
when changing the number of edges in dependance of the vertices.

Probably one of the most well known phase transitions on random graphs
is the occurance of the giant component. The exact result for this, as stated
below, follows from papers of Erd®s and Rény [9], Bollobás [3], �uczak [21],
�uczak, Pitel and Wierman [24], Janson et al. [16] and Janson [15]

Theorem 2.14. Let G(n,M) be the class of all graphs with n vertices and
M edges. If M = n

2
+ s with −n � s � −n2/3, then G(n,M) consists of

trees and unicyclic component with probability tending to 1 as n appraches

∞. The largest of these components is a tree of size (1 + o(1)) n
2

2s2
log

(
|s3|
n2

)
.
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In contrast, if n2/3 � s� n, then G(n,M) contains exactly one component
with more edges than vertices, which has a size of (4 + o(1))s. Furthermore
for such a value of s this is the unique component with this size and all other
components have a size of at most O(n2/3).

This is a prime example of a phase transition. For s � −n2/3 there
are many small components, all of which have at most one cycle and no
component is considerably bigger than the others. For s � O(n2/3) this
changes dramatically. After this point there is exactly one component which
is asymptotically bigger than all other components and it has more edges
than vertices. There have also been theorems about what happens for s =
cn2/3, especially by �uczak [21]. Such a region where the properties change
dramatically is called the critical phase or the critical point.

Similar results have been proven for a variety of graph classes. Kang and
�uczak [18] showed a similar result for planar graphs only di�ering in the
size of the largest component after the phase transition, which they showed
to be (2 + o(1))s. The same result as this has also been shown for random
forests by �uczak and Pittel [23]. In an other direction, Bollobás, Janson
and Riordan [5] showed that there does also exist such a phase transition for
inhmogenious graphs. Inhomogenious graphs are a class of random graphs
where the degree distribution of all vertices is not uniform, but follows a
power-law degree distribution. If one uses the model G(n, p) for these graphs,
one has to relax the condition of independence of edges. In this thesis, we
will add another graph class with similar properties to this list.

2.4 Applied methods

In this section we will discuss two di�erent methods used to get the number
of series-parallel graphs in this thesis. First we will describe the symbolic
method. This is a way to get algebraic equations for the number of combina-
torial objects. After that, we will use singularity analysis to get asymptotic
formulas for the combinatorial objects out of this algebraic equation.

The symbolic method is a way of �nding (systems of) equations for gen-
erating functions of combinatorial objects. To do this, the symbolic method
gives a set of rules, by which the combinatorial objects can be manipulated
and how this manipulation can be translated into equations. In this thesis
there will only be a short introduction to this method. For a more exact
approach, see for example [10].

To do this, we need the following:

De�nition 2.7. Suppose A is a class of labelled combinatorial objects and
s : A → Z≥0 is a function on these objects with ∀n ∈ Z≥0 : s−1(n) < ∞.
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Such a function is called a size function on A. Let an be the number of objects
of size n. Then

A (z) =
∑
n≥0

an
n!
zn

is the exponential generating function of A. Furthermore, let [zn]A(z) := an
n!

be the coe�cient of zn in A(z).

With this, we have the following concept.

De�nition 2.8. Let P ⊂ A be two combinatorial classes. Then P = A
asymptotically almost surely (a.a.s.), if limn→∞

pn
an

= 1.

This notion is also used in probability theory in the same way, as one can
interpret pn

an
as the probability that an object in A has property P .

Easy classes of combinatorial objects, are the following.

De�nition 2.9. Let E be a set with one element of size zero. Then E is a
combinatorial class called the neutral class. Let Z be a set with one element
of size one. Then E is a combinatorial class called the atomic class.

The symbolic method is a set of instructions of how to combine combi-
natorial classes and how the generating functions of such combinations look
like. The most important of those are the following.

De�nition 2.10. Let A and B be combinatorial classes. We have the fol-
lowing constructions:

• The disjoint union A+ B.

• The labelled product A ∗ B =
∑

α∈A,β∈B α ∗ β. For this, let α ∗ β be
the set of all pairs (α′, β′) where its atoms get distinct labels from 1 to
n = s (α) + s (β), such that the order of the labellings of α and β is
preserved.

• The sequence Seq (A) =
∑

k≥0 Seqk (A) of elements of A where
Seqk (A) = A ∗ · · · ∗ A is the labelled product of k copies of A.

• The set Set (A) = Seq (A) /R where R is the set of all permutations.
Therefore this is a collection of a �nite number of copies of A without
regarding any order.

For these we get the following equations:

15



Theorem 2.15. Let A, B and C be combinatorial classes. Then we have the
following rules.

1. If C = E, then C (z) = 1.

2. If C = Z, then C (z) = z.

3. If C = A+ B, then C (z) = A (z) +B (z).

4. If C = A ∗ B, then C (z) = A (z) ·B (z).

5. If C = Seq (A), then C (z) =
∑

n≥0A (z)n = 1
1−A(z)

.

6. If C = Set (A), then C (z) =
∑

n≥0
A(z)n

n!
= exp (A (z)).

There can be modi�ers for Set and Seq of the form SetRc, where R is
some order relation, usually �≤�, �≥�or �=�. These relate to a set of n copies
of the class, where nRc. These modi�ers translate directly to bounds of the
corresponding summation in the following form.

Corollary 2.16. With the same conditions as above, we have:

• If C = SeqRa (A), then C (z) =
∑

nRaA (z)n,

• if C = SetRa (A), then C (z) =
∑

nRa
A(z)n

n!
.

To show the use of this construction, consider the following example.
One wants to �nd the number of all labelled binary trees with exactly n

vertices. Let B be the combinatorial class and B (z) it's generating function.
A vertex can either be a binary tree in itself (the atomic class) or (disjoint
union) it has two sorted neighbours 'left' and 'right' (labelled product or
a sequence of exactly two elements) of binary trees. Using the symbolic
method, we get:

B = Z + Z ∗ B ∗ B.

So, for the generating function, we have:

B (z) = z + z ·B (z)2 . (6)

Now one can use the binomial theorem to get exact formulas for this
function. If the equation obtained from this method is not as easy as in this
case, one can use the method described in the next chapter to obtain at least
asymptotic bounds for the coe�cients of the generating function. Using this
we get an algebraic equation for the generating function. We want to �nd an
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asymptotic value of coe�cients for implicitly given functions. For this, we
can use singularity analysis.

Singularity analysis is a way to �nd the asymptotics of the coe�cients of
a power series s (z) =

∑∞
n=0

sn
n!
zn, if the power series is implicitly given. Here

it will be shown how an expression of the form sn = gγnnα (1 + o (1)) can be
derived given some polynomial p (z, s) in z and s (z) =

∑
n≥0

sn
n!
zn. We will

use this to get the asymptotics of B (z) from equation (6). To obtain the
desired results, we will follow the book Analytic Combinatorics from Flajolet
and Sedgewick [10] and in particular chapter VII.7.1. These calculations will
be done in di�erent phases. First we will determine the value of γ. From
this we will get some conditions for the value α and simultaneously get an
algebraic equation for g. As a last step, we will conduct some calculations
to derive the explicit values of α and g from these conditions. To get the
exponential factor γ for s (x), we will need the notion of an analytic function.

De�nition 2.11. Let s (z) be a function over a region Ω and z0 ∈ Ω. Then
s is called analytic in z0, if s (z) is representable by a convergent power series
expansion:

s (z) =
∑
n≥0

cn (z − z0)n .

If s (z) is analytic for all z ∈ Ω, s is called analytic.

With this, there is the following well known theorem [10]:

Theorem 2.17. Suppose f (z) is analytic at the origin and

R = sup{r ≥ 0 : f is analytic for |z| < r}. (7)

Then the coe�cients fn = [zn]f (z) of f satisfy fn = R−nθ (n), where

lim sup
n→∞

|θ|
1
n = 1. (8)

If in addition fn ≥ 0 for all n, then

R = sup{r ≥ 0 : f is analytic in [0, r)}. (9)

From this theorem we can conclude, that we have to �nd the smallest
positive value for which our function is not analytic. Such points are the
so-called singularities.
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Now we want to get all the singularities of the polynomial p (x, s). Sup-
pose the degree of p with respect to s is d. So:

p (z, s) =
d∑
i=0

sipi (z) ,

where pi (z) are polynomials in z.
In general p (z, s) has d di�erent values for some �xed z. Values for z

in which there are not d di�erent values of p (z, s) in C can give rise to
singularities. Consequently we have the following lemma.

Lemma 2.18. Suppose for some z0 that p (z0, s) = 0 has d di�erent solutions
(s1, . . . , sd). Then there exists some disc around (z0, si) in which p (z, s) is
analytic.

Proof. For this we use the following statement: Suppose q (y) is a polynomial
and y0 is a root. Then q′ (y) = 0, i� y0 is a root with multiplicity at least
2. From this statement and as the polynomial p (z0, s) has d di�erent roots,
we can conclude that ∂p

∂s
(z0, s) is not zero at s = si. Hence we can use the

implicit function theorem and get yi = yi (z) is an analytic function in some
neighbourhood of (z0, yi).

Let us consider the points where there are less than d roots. Such points
z0 satisfy one of the following two properties. There can be pd (z0) = 0. In
this case the degree of the polynomial would be reduced and we would have
fewer roots. The other possibility would be that two roots are the same,
therefore there is a root with multiplicity ≥ 2. In this case the derivative
of the polynomial at that point is also zero, as seen in the previous proof.
Accordingly, we have to look for points, where either pd (z) is zero or p (z, s)
and ∂p

∂s
(z, s) are zero simultaneously. Values of z satisfying at least one of

these conditions are exactly the zeros of the discriminant of p (z, s) as a
polynomial in s [10]. Such values are called exceptional points.

Proposition 2.19. The exceptional values for the polynomial (6) are z ∈
{0, 0.5,−0.5}.

Proof. The discriminant of the polynomial is equal to 1 − 4z2. The roots
of this polynomial are ±0.5. Additionally, the coe�cient of B2 is zero, if
z = 0.

The corresponding values of s are either points at in�nity, if pd (x) = 0
or else the value that is a root of multiplicity at least two of p (x0, s). By
construction such a value of s does exist.
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Proposition 2.20. The corresponding values for c to the values of z above
are {∞, 1,−1} respectively.

Proof. If z = 0 the corresponding polynomial is B resulting in the root zero.
As a consequence, we have just pd (z0, s) = 0 and the corresponding value of
B lies at in�nity. For the other values of z, the degree of the polynomial stays
two. Calculating all the solutions does yield one solution with multiplicity
two in each case with the values stated as above.

As was �rst discovered by Newton in his book �De Methodis Serierum et
Fluxionum�[26], and later further developed by Puiseux [30], a polynomial
at such a singular point does admit a series expansion of the following form.

Theorem 2.21 (Newton-Puiseux). Let p (x, s) be a polynomial and (0, 0) a
point as above. Then there exist some values κ ∈ Z+, k0 ∈ Z and ck ∈ C
such that

s (x) =
∑
k≥k0

ckx
k
κ , (10)

and s (0) = 0. This series expansion is locally convergent.

In this expansion κ is called the branching type. If the point of interest is
not (0, 0), one can use the translation z = Z + z0 and s = S + s0, if s0 <∞
or S = 1

s
, if s0 =∞. With this some arbitrary singularity z0, s0 translates to

the origin and the series expansion from above can also easily be transposed
back.

The next step is to �nd the Puiseux-series expansion in the origin. For
this we suppose s (z) = azα (1 + o (1)). This will correspond to the �rst term
in the Puiseux-expansion. Replacing this in the polynomial, we get some
set of exponents for z depending on α. As we are near the origin the main
contribution will be from terms with small exponents. Because all coe�cients
are not zero, we have to have cancellation. We want to �nd some value for
α such that any two of the exponents have the same value and all other
exponents are bigger or equal. Such a value can be found for example by
calculating α for each pair and then check which value yields the desired
result. Now the coe�cients of the terms where cancellation has to take place
have to add up to zero. This gives an algebraic equation for a. Each of the
di�erent solutions corresponds to a value s with p (0, s) = 0. Finally one can
subtract this leading term from s and iterate to obtain the next terms in the
expansion.

Proposition 2.22. At (0.5, 1) the Puiseux-expansion of the polynomial (6)

has a main term of ±2 (x− 0.5)
1
2 .
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We will later use the fact that c is the generating function of some combi-
natorial object and as such its coe�cients are positive to determine whether
the sign in this expression should be + or −.

Proof. At �rst, we have to transform the polynomial by setting B = B1 + 1
and z = Z + 0.5. From this we get the following polynomial:

p (Z,B1) =
B2

1

2
+ 2Z + 2B1Z +B2

1Z.

By replacing B1 by aZ
α, one can easily see that the main contribution is

set by the terms B2
1 and Z and we get α = 1

2
as branching type. Furthermore

for cancellation, we need that the two coe�cients sum up to zero, therefore
a2

2
− 2 = 0 or a = ±2.

In this thesis we will only work with power series emerging from gen-
erating functions of combinatorial objects. Hence we can use the following
theorem.

Theorem 2.23. If s is the generating function of some combinatorial ob-
jects, then the main contribution to the asymptotics of its coe�cients sn is
attained by the corresponding coe�cients from expanding the leading term of
the Puiseux-expansion around the smallest positive singularity.

Proof. As s is counting combinatorial objects, sn ≥ 0 for all n, we know from
Theorem 2.17 that

sn = R−nθ (n) ,

where R is the smallest positive singularity. The main term of θ (n) is ob-
tained at the main term of the Puiseux-expansion in this singularity.

From this we get:

Theorem 2.24. The coe�cient cn for c satisfying the polynomial (6) is

cn = aγnn−
3
2 (11)

where a = 0.434 and γ = 1
0.418

= 2.392.
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Proof. As we have stated in the previous theorem, we will get the main
contribution from the main term in the Puiseux-expansion at the smallest
positive singularity. We have seen that this singularity is at ρ = 0.5. At this

point, the main term of the Puiseux-expansion is ±2
√
ρ− z = ±2 (ρ− z)

1
2 .

From this, using the binomial theorem, we get:

[zn]B (z) = [zn]± 2
√
ρ− z

= [zn]± 2
∞∑
i=0

(
1
2

i

)
(−z)i (ρ)

1
2
−i

= ±2

(
1
2

n

)
(−1)n ρ

1
2
−n

= ±2 (−1)n+1 1

4n (2n− 1)

(
2n

n

)
(−1)n ρ

1
2
−n

= −± 2ρ
1
2

1

4n (2n− 1) ρn

(
2n

n

)
.

As this coe�cient has to be positive, we see that the sign of the main
term in the Puiseux-expansion has to be negative. Also, using equation (5)
for this binomial coe�cient, we get:

bn =
2√
2

1

4n (2n− 1) 2−n
4n√
πn

(1 + o (1))

=

√
2

π

1

2n
3
2

2n (1 + o (1))

=
1√
2π
n−

3
2 2n (1 + o (1)) .

3 Counting series-parallel graphs

In this chapter we will get the asymptotic number of series-parallel graphs.
To do this, we will use the structure we saw in Chapter 2.2. The following
steps will be made to get to the �nal result. First we will recall the number
of trees and unicyclic components in Section 3.1. Then we will count the
number of complex graphs. To do this, we will �rst count all 3-regular
graphs in Section 3.2. From them we will derive an estimate for the kernel
in Section 3.3. By using combinatorial arguments, we will derive the number
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C(n,M) of complex series-parallel graphs from this number in Section 3.4.
Finally we will calculate the asymptotics for sp(n,M) to get the following
result.

Theorem 3.1. Suppose n ∈ N, M = αn + s with α ≤ 1 and s � n. Then
the following holds.

• If α < 1
2
or if α = 1

2
and s� −n2/3, then

sp(n,M) = (1 + o(1))

((n
2

)
M

)
= (1 + o(1))

nn+2se
n−1
2

+s

√
π(n+ 2s)

n+1
2

+s
. (12)

• If α = 1
2
and s = cn2/3 for some constant c, then

sp(n,M) = (τ(c) + o(1))

((n
2

)
M

)
= (τ(c) + o(1))

nn+2se
n−1
2

+s

√
π(n+ 2s)

n+1
2

+s
,

(13)

where τ(c) is analytically given and can be explicitly calculated for any
given c.

• If α = 1
2
and s� n2/3, then

sp(n,M) = (1 + o (1)) 2−
5
2 3

3
2π−

1
2γ−2gInn+ 7

6 (n− 2s)−
n
2

+s s−
5
2

× exp

(
n

2
− s− 3

4
+ γ

4
3 sn−

2
3

)
, (14)

where γ, g and I are explicitly given constants.

• If 1
2
< α < 1, then

sp(n,M) = θ (1)nαn−
4
3

(
e

n (1− 2α)

)( 1
2
−α)n

exp
(
γ

4
3αn

1
3

)
. (15)

• If α = 1 and s� −n3/5, then

sp(n,M) = Cnn−
1
2

(2 (l0 − s))s−1/6

√
5l0 − 3s

l
−3/2
0 sl0 (l0 − s)−l0

× exp

(
5l0
2
− s− 3l20

n+ 2s
+B

√
l30

n− 2 (l0 − s)
+O

(
l20
n

))
,

(16)

where l0 = Dn+2s
s2/3

and B, C and D are given constants.
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• If α = 1 and s = cn3/5 for some constant c, then

sp (n,M) = C0n
n− 1

2 ss−11/6 exp

(
C1s− C2

s2

n
+B

√
s3

n
+O

(
n−1/5

))
,

(17)

for some values C0, C1 and C2 depending only on c and some constant
B.

• If α = 1 and n3/5 � s� n2/3, then

sp(n,M) = C0n
n− 1

2
(2z)s+1/6

√
5z + 2s

(z + s)−3/2 s3(z+s)/2 (z + s)−3(z+s)/2

× exp

(
5z + 3s

2
− 3 (z + s) z

n
+B

√
(z + s)3

n− 2z
+O

(
(z + s)2

n− 2z

))
,

(18)

where z = D
(
n
s

)3/2
and B, C0 and D are given constants.

For getting these results, we will consider the following graph classes.

De�nition 3.1. Let U be the class of graphs with at most one cycle and SP
the class of all series-parallel graphs. Let U (n,M) be the number of graphs in
U with exactly n vertices and M edges and sp(n,M) be the number of series-
parallel graphs with n vertices and M edges. Furthermore let C (n,M) be the
number of graphs in SP with n vertices and M edges, where no connected
component is in U . Such graphs are called complex.

These classes can be used to calculate the number sp(n,M) in the follow-
ing way.

Lemma 3.2. Let n,M ∈ N. Then:

sp (n,M) =
∑
k,l

(
n

k

)
C (k, k + l)U (n− k,M − k − l) . (19)

Proof. Suppose k vertices and k + l edges of a series-parallel graph are in
its complex components. As each complex component has at least 1 more
edges than vertices, l is positive. Furthermore, as the vertices are labelled,
we have to choose the k vertices in one of

(
n
k

)
ways. Furthermore, we get the

complex components in one of C (k, k + l) ways and the simple component
in S (n− k,M − k − l) ways, as all simple components are series-parallel.

Now summing up over all k and l yields the result.

23



In the next section we will state some results on the number U(n,M) and
in chapter 3.4 we will give the following estimate for C (k, k + l):

C (k, k + l) = 2−3gγ2ll−
5
2kk+ 3l−1

2 e
3l
2 exp

(
O

(
l2

k
+

1

l

))
× exp

(
β

√
l

k
+O

(
l2

k

))
.

3.1 Series-parallel graphs with at most one cycle

In this section, we will calculate the number U(n,M) as follows.

Theorem 3.3. [6] Let n,M ∈ N. Then:

U(n,M) =
ρ(n,M)n2M

√
2πM (2M)M

exp

(
M − M

n
− M2

n2
+O

(
M

n2
+

1

M

))
, (20)

where 0 < ρ(n,M) < 1 is an explicitly given function.

The number U (n,M) has been studied for example by Britikov in [6].
There he showed the following:

Theorem 3.4. Let ρ (n,M) be the probability that a random graph with n
vertices and M edges is simple and let M = n

2
+ s, then

• if s3n−2 → −∞, then ρ (n,M) = 1 +O (n2 |s−3|),

• if s3n−2 → c for some constant c ∈ R, then ρ (n,M) = (1 + o (1)) ν (c),

• if s3n−2 → ∞, then ρ (n,M) ≤ exp (−s3n−2),

where

ν (c) =

√
2

3π
e−

4
3
c

∞∑
r=0

(−9c)
r
3

r!
Γ

(
2r

3
+

1

2

)
cos

rπ

3
. (21)

This probability can also be written as

ρ (n,M) =
U (n,M)

G (n,M)
.

This is the number of simple graphs divided by the number of all graphs,

which is also given by
((n2)
M

)
, which is choosingM pairs from the possible

(
n
2

)
.

Then we can write
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U (n,M) = ρ (n,M)

((n
2

)
M

)
. (22)

By using equation (4), we get the result claimed in Theorem 3.3.
The important facts about the function (21) are the following.

Proposition 3.5. ν(c) is monotonously decreasing with limc→−∞ ν(c) = 1

and ν (c) ≤ exp
(
− (4+o(1))

3
c
)
.

This means, we have a phase transition at M = n
2

+ cn
2
3 , as for c → ∞

G (n,M) is almost surely simple and G (n,M) almost surely has a complex
component, if c → ∞. In the next sections we will see that this is also true
for series-parallel graphs.

3.2 3-regular series-parallel graphs

From now on we will try to count all complex series-parallel graphs. To this
end, we will follow the steps taken in [18] to count planar graphs. As a
�rst step we will count the number of 3-regular weighted complex labelled
series-parallel multigraphs with n vertices and M = 3

2
n edges. Based on the

de�nitions in the �rst chapter this is exactly the number of clean kernels.
Additionally we will have to use weights for the graphs. As we want to put
vertices on edges to obtain the core of a graph, we would have to distinguish
between all edges in the kernel. But as the kernel is a multigraph, we cannot
distinguish parallel edges or the direction of loops. To compensate this, we
have to give weights to such graphs.

De�nition 3.2. Suppose a clean kernel has f1 loops, f2 pairs of double edges
and f3 triple edges. Then the weight w of the graph is 2−f1−f26−f3.

These weights will exactly cancel out the di�erent possibilities to select
one edge or one direction for each of these cases. We will get the following
result.

Theorem 3.6. Let r(n) be the number of 3-regular weighted complex labelled
series-parallel multigraphs with n vertices. Then

r(n) = (1 +O(n−1))gn−
5
2γnn!,

where g and γ are analytically given. This asymptotics does also hold for rc,
the number of connected graphs with these properties for some other constant
gc.
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To compute the asymptotics of the number of weighted series-parallel
multigraphs, we will use the symbolic method for �nding a system of equa-
tions for the generating function. By solving this, we will get a polynomial
equation in the generating function, from which we will derive its asymp-
totics.

First we will look at the number of 3-regular connected, weighted, series-
parallel multigraphs.

De�nition 3.3. Let rc(n) be the number of 3-regular connected weighted
series-parallel multigraphs on n vertices and

Rc (z) =
∑
n≥0

rc(n)
xn

n!

its exponentially generating function (EGF).

As we want to use the symbolic method, we will count instead the fol-
lowing graphs.

De�nition 3.4. Let C be the class of all 3-regular rooted connected weighted
series-parallel multigraphs. Such a graph is a connected graph G = (V,E) as
above with one special directed edge (s, t) ∈ E. This edge is called the root of
the graph. Furthermore, the graph has weight w (G) = 2−f1−f26−f3, where f1

is the number of loops, f2 is the number of double edges and f3 is the number
of triple edges. Let C (z) =

∑
n≥0 c(n)x

n

n!
be their generating function.

As each edge can be the root and it can be directed in two directions,
we have c(n) = 23n

2
rc(n). From this, we have C (z) = 3xdRc

dz
(z). For using

symbolic method, we will distinguish what sort of edge will be the root.
Similar to [18] we will get four di�erent cases:

De�nition 3.5. Let e = (s, t) be the root of G = (V,E). Then we call the
graph a

(i) b-graph, if s = t,

(ii) d-graph, if G− e is not connected,

(iii) s-graph, if G− e is connected, but there exists another edge f ∈ E such
that G− {e, f} is not connected,

(iv) p-graph, if there is no cut edge in G − e, but (s, t) has another edge
connecting them or G− {s, t} is not connected.
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e is then called a b−, d−, s− or p−edge respectively. Also let B (x), D (x),
S (x) and P (x) be their generating functions and B, D, S and P the corre-
sponding graph classes respectively.

The last case of h−roots discussed in [18] cannot occur in series-parallel
graphs.

Lemma 3.7. Let e = (s, t) be the root of G = (V,E). Then e is in one of
the categories above.

Proof. Suppose e is an edge in G not contained in one of the categories above.
Then G− e is connected, there is no other edge f such that G−{e, f} is not
connected, and G− {s, t} is connected.

As there is no such f , one can conclude, that G − e remains 2-edge-
connected and as all vertices have degree at most 3, this implies that there
are two vertex-disjoint pathsW1 andW2 from s to t in G−e. Furthermore, as
e is a single edge (otherwise e would be a p1-edge), both paths have length
at least 2. As G − {s, t} is connected, there exists a connection between
the two paths. Let v1 ∈ W1 and v2 ∈ W2 be vertices such, that there is
a path between them edge-disjoint from W1 and W2. Using this, we have
edge-disjoint paths connecting s, t, v1 and v2. We found a K4-minor. This
is a contradiction to G being series-parallel. This proves that such an edge
cannot exist.

As we stay in the same connected component as at the beginning, this
only counts connected series-parallel multigraphs.

From all this, we can get the following equations in a similar way to [18]
and [27].

Theorem 3.8. The following equations hold.

C(z) = 3z
dRc

dz
(z) = B (z) +D (z) + S (z) + P (z)

B (z) = (D (z) + S (z) +B (z) + P (z))
z2

2
+
z2

2

D (z) =
B (z)2

z2

S (z) = (B (z) + S (z) + P (z)) (B (z) + P (z))

P (z) = z2 (B (z) + S (z) + P (z)) +
z2

2
(B (z) + S (z) + P (z))2 +

z2

2
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Proof. As we have seen, the Class C is given as the disjoint union over the
classes B, D, S and P , implying

C = B +D + S + P . (23)

Also, as there are 3
2

(2n) edges and each of them can be the root. We know
that the number of unrooted graphs is 3n times the number of rooted graphs.
As multiplication by n translates to taking the derivative and multiplying z,
we get the �rst equation.

Suppose the graph is in class B. Then the root e has exactly one neigh-
bouring point v0 ant this point has one other neighbour v1 which again has
two other exiting edges. There are the following cases. First these two edges
might be the same, meaning they are a loop at v1. Then this is the whole
graph and it builds the class Set=2(Z). Otherwise, we can replace these
edges by one new root edge between the other two neighbours of v1. From
this we get a labelled product of a set of two vertices and one arbitrary graph
in C. From this, we have:

B = Set=2(Z) + Set=2(Z) ∗ C.

This yields the second equation in the theorem by using equation (23).
Let us suppose we are in the class D. Then we can separate the root by

including two new vertices, connecting them with the two endpoints of e and
putting a loop as b−root on these vertices. Hence we have here:

Seq=2(Z) ∗ D = B.

Here we need a sequence as the root has a direction and therefore we can
distinguish the two new vertices. From this we get the third formula.

As a next step suppose e is an s−root. Then there exists some other
edge e′ such that G − {e, e′} is not connected. Let v, v′ be the endpoints
of e and e′ in one component respectively and w, w′ the endpoints in the
other component. Take then two new edges (v, v′) and (w,w′) as roots for
the two parts with this direction. As to make this decomposition unique,
take the �rst possible of these edges in direction of e. In this case one can
see that (v, v′) cannot be a new s−root. From this we can deduce a partition
(labelled product) of S as one part being either in B or in P and the other
being either in B, in P or in P . This yields the following:

S = (B + P) ∗ (B + P + S).

Finally, suppose e is a p−root. Then we have the following cases. Suppose
e is in a triple-edge. Then these two vertices is the whole graph and we have
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the class Set=2(Z). If e is a double edge (u, v), then u and v have another
neighbour u′ and v′ respectively. These two points can also be the same. As
a new root take a new edge from u′ to v′ and delete u and v. This edge can
be a b−, s− or p−root. Using the direction of the root, we have the class
Seq=2(Z) ∗ (B + P + S). Lastly, if e = (u, v) is a single edge, we have that
G − {u, v} has two connected components. The corresponding neighbours
of u are u′ and u′′ and of v are v′ and v′′. Take a new root edge in each of
the two components as (u′, v′) and (u′′, v′′) respectively. With this, we can
delete the vertices u and v. As both edges can be b−, s− or p−roots, we get
another part of Set=2(B+P +S). Combining these three as a disjoint union
yields:

P = Set=2(Z) + Seq=2(Z) ∗ (B + P + S) + Set=2(B + P + S)

and from this we get the last equation.

Let H (z) =
∑

n≥0
hn
n!
zn = B (z) +S (z) +P (z). From this and the above

system of equations one gets:

0 = 15H(z)4z4 + 6H(z)5z4 +H(z)6z4 +H(z)3z2
(
8 + 20z2

)
−H(z)

(
8− 24z2 − 6z4

)
−H(z)2

(
4− 24z2 − 15z4

)
+ z2

(
8 + z2

)
. (24)

Using singularity analysis on this equation, we will get:

hn
n!

= 0.434n−
3
2 2.392n (1 + o (1)) .

.

Theorem 3.9. The asymptotics of the coe�cient rc(n) of

Rc (z) =
∑
n≥0

rc(n)
zn

n!

is given by

rc(n)

n!
= αn−

5
2βn (1 + o (1)) ,

where β ≈ 2.392.
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Proof. To show this, we will start with H(z) and equation (24). The discrim-
inant of this Polynomial is equal to 65536(−256z12+7776z16+19683z20). The
roots of this polynomial are 0 with multiplicity twelve and {0.418,−0.418,
0.418i,−0.418i, 0.571+0.571i, 0.571−0.571i,−0.571+0.571i,−0.571−0.571i}
each with multiplicity one. The smallest positive value of these is z = 0.418,
resulting in a double root at H(0.418) = 0.612. By setting H := H + 0.612
and z := z + 0.418, we get the following polynomial.

p (z,H) = 5.856H2 + 3.958H3 + 1.191H4 + 0.296H5 + 0.031H6 − 33.141z

− 71.225Hz − 61.949H2z − 31.175H3z − 11.393H4z − 2.827H5z

− 0.292H6z + 51.896z2 + 130.823Hz2 + 144.881H2z2 + 95.846H3z2

+ 40.875H4z2 + 10.144H5z2 + 1.049H6z2 − 29.329z3 − 109.175Hz3

− 169.331H2z3 − 140.071H3z3 − 65.176H4z3 − 16.174H5z3

− 1.672H6z3 + 17.537z4 + 65.280Hz4 + 101.250H2z4 + 83.754H3z4

+ 38.971H4z4 + 9.671H5z4 +H6z4

By replacing H by azα, one can easily see that the main contribution is set
by the terms H2 and z and as a consequence we get α = 1

2
as branching

type. Furthermore for cancellation, we need that the two coe�cients sum up
to zero, so 5.856a2 − 33.141 = 0 or a = ±2.379.

From this, using the binomial theorem and Theorem 2.21, we get:

[zn]H (z) = [zn]± 2.379
√
ρ− z

= [zn]± 2.379
∞∑
i=0

(
1
2

i

)
(−z)i (ρ)

1
2
−i

= ±2.379

(
1
2

n

)
(−1)n ρ

1
2
−n

= ±2.379 (−1)n+1 1

4n (2n− 1)

(
2n

n

)
(−1)n ρ

1
2
−n

= −± 2.379ρ
1
2

1

4n (2n− 1) ρn

(
2n

n

)
.

As this coe�cient has to be positive, we see that the sign of the main term in
the Puiseux-expansion has to be negative. Also, using equation (5) for this
binomial coe�cient, we get:
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hn
n!

= 1.538
1

4n (2n− 1) ρn
4n√
πn

(1 + o (1))

= 0.868
1

2n
3
2

ρ−n (1 + o (1))

= 0.434n−
3
2 2.379n (1 + o (1)) .

Using this, we can get similar formulas for sn, pn, bn and dn, only di�ering
in the constant factor. We can conclude, that:

[zn]C
(c)
3 (z) = [zn]

1

3z

∫
H (z) +D (z) dz

=
2

3 (n+ 1)
α′n−

3
2 2.392nn!

(
1 +O

(
n−1
))

= αn−
5
2 2.392nn!

(
1 +O

(
n−1
))
.

From this we can conclude that the number of weighted 3-regular con-
nected series-parallel multigraphs is rc (n) = αn−

5
2 2.392nn! (1 +O (n−1)) for

even n.
To get the number of all 3-regular series-parallel multigraphs, we see that

a general multigraph is a set of its connected components. We have then:

R = Set (Rc) ⇒ R(z) = exp (Rc(z)) .

From this we get the asymptotic formula:

r(n) = αun
− 5

2 2.392nn!
(
1 +O

(
n−1
))
, (25)

with αu = α exp (Rc (0.418)) = α exp (0.612).
Let for the rest of this thesis be g = α exp (0.612) and γ = 2.392 such

that r(n) = gγnn−
5
2n!(1 +O(n−1)).

3.3 Series-parallel graphs with minimum degree 3

In the last section, we looked at 3-regular graphs. As a next step we have
a look at graphs with more edges than that. For this, we will look at the
number of labelled weighted series-parallel multigraphs with n vertices, an
excess of d and minimum degree three.

31



De�nition 3.6. Let Q (n, d) be the set of all labelled weighted series-parallel
multigraphs with minimum degree at least 3, with n vertices and de�ciency
d. Also let q (n, d) = |Q (n, d)| be the number of such graphs.

As d = 2M − 3n, such graphs have exactly 3n+d
2

edges. For this to
be possible, we have to have that 3n + d is even. Let us assume this for
the rest of the chapter. Also Q (n, 0) is the set of all clean graphs and

q (n, 0) = gn−
5
2γnn! as seen in Section 3.2.

We want to put q (n, 0) and q (n, d) into some relation, as this is exactly
what we need. To do this, we will use the same method as in [18] to show
the following theorem.

Theorem 3.10. Let 1 ≤ d < n. Then:

q (n+ d, 0) 36−d ≤ d!q (n, d) ≤ q (n+ d, 0) 9d.

Also we get:

q (n, d) =
αd

d!
g(n+ d)−

5
2γ(n+ d)(n+ d)!,

where 1
36
≤ α ≤ 9 is some function depending on n and d.

Proof. To show this, consider the following.
Let G be a graph in Q (n+ d, 0). We choose for each of the vertices

with labels {n + 1, . . . , n + d} one of its neighbours. Now, starting from
vertex n + d working down, merge the vertex with the chosen neighbour, if
possible. This means, replacing the two vertices by one new vertex connected
to all neighbours of the original vertices, labelled with the smaller of the two
numbers. This procedure either stops at a graph in Q (n, d) or fails before
that, if one vertex nominated a neighbour with a higher label. Clearly, all
graphs in Q (n, d) can be reached in this way.

To see this we will expand a graph in Q (n, d) in a way that choosing
neighbours like above is possible. We can do this by replacing a vertex with
degree 3 + l by a tree of l + 1 vertices. Then there is at least one possibility
connecting all original neighbours with this tree such that each vertex has
degree 3 so that the graph remains series-parallel. This can easily be seen
inductively. At a vertex of degree 4 one has the following cases. If there is
one bridge connected to v, this bridge can be paired with an arbitrary other
edge to be neighbour of the new vertex. Otherwise, take two of the paths
joining again before joining with one of the other paths. These two paths
can be split to the new vertex. This also works recursively for vertices with
degree ≥ 4.
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From this, we have q (n, d) is smaller or equal than the number q(n+d, 0)
multiplied by the number of possible ways to do shrinking like above. First,
we have to choose neighbours for the vertices n + 1 to n + d. As each of
them has at most three neighbours, we have at most 3d possibilities to do
that. Furthermore, if a graph H in Q (n, d) is counted once for a graph G in
Q (n+ d, 0), then it is also counted for each other graph di�ering from G only
in the labelling of the vertices n+1 to n+d in the following way. Remove all
labels n+ 1 to n+ d from vertices in G to obtain G′. Let w be the label of a
vertex with degree more than 3 in H. This vertex has 1 ≤ i ≤ 3 unlabelled
vertices as neighbours in G′. As a consequence, there are at least d·...·(d−i+1)

2i

possible ways of doing this. Iterating this until all vertices are labelled, yields
at least d!2−d graphs for which H is counted. Finally the rise in the weight
by this operation is maximal, if one contracts a triple edge and replaces it
with one vertex with two loops, gaining 6

4
in weight. In all other cases the

weight is smaller in G than in H. Therefore we get an upper bound of

q (n, d) ≤ q (n+ d, 0) · 3d ·
(

3

2

)d
1

d!2−d

=
q (n+ d, 0) 9d

d!
.

Conversely, for the lower bound, we estimate the number q (n, d) by only
those graphs in this class with maximum degree 4. This number is clearly
smaller. Such a graph has exactly d vertices of degree 4 and n − d vertices
of degree 3. Each vertex of degree 4 can be split in two vertices of degree 3
leaving one of the new vertices unlabelled and labelling the other the same as
the original vertex. This can be done in at most six ways for each vertex. We
can identify each of the new vertices uniquely by the vertex it emerged from.
Correspondingly there are d! possibilities of labelling these vertices. Also the
weight increases by at most a factor of 6, by splitting up a quadruple edge
into two double edges. From this, we have a lower bound of

q (n, d) ≥ q (n+ d, 0) · 1

d!6d
1

6d

as claimed.
From this, we have:

q(n, d) =
αd

d!
g(n+ d)−

5
2γ(n+d) (n+ d)!

or, as we will need it:

q (2l − d, d) =
αd

d!
g (2l)−

5
2 γ(2l) (2l)! (1 + o (1)) , (26)
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where α = α (l, d) is some function with values in [ 1
36
, 9].

3.4 Complex graphs

From the last section we have q (2l − d, d) = gα
d

d!
p2l
d (2l)−

5
2 (2l)! (1 + o (1)).

Our �rst goal will be to �nd the number of all complex labelled series-parallel
graphs with n vertices, M edges and de�ciency d. To do this, let us de�ne
the following.

De�nition 3.7. Let Cd (n,M) be the number of labelled series-parallel graphs
with n vertices, M edges and de�ciency d where all connected components are
complex.

For counting this number we will use combinatorial arguments. From
these, we get:

Theorem 3.11. For the number Cd (k, k + l), where k is the number of ver-
tices and l is the excess with l� k, we have:

Cd (k, k + l) =
∑
i

(
k

i

)(
i

v

)
q (v, d) (i− v)!

(
i− v −ml + e− 1

e− 1

)
ikk−i−1,

(27)

where v is the number of vertices of the kernel, e is the number of edges
in the kernel and m is a constant with 0 ≤ m ≤ 6. Furthermore, in such a
graph v = 2l − d and e = 3l − d.

Proof. For counting these graphs, we will �rst count all kernels, then we will
expand these to cores by inserting vertices on all multiple edges and all loops.
Finally, we will add rooted forests to the core for getting all graphs. For
doing this, we have to select vertices (c1, . . . , ci) for the core and (k1, . . . , kv)
from them for the kernel. The possibilities for this are

(
k
i

)(
i
v

)
. We have

q (v, d) possibilities for choosing a kernel. Following this we have to put
the remaining core vertices on the edges in the kernel in such a way, that
on each multiple edge at most one edge remains without a vertex and on
each loop there are at least two vertices. For this, we have to choose one
direction in each loop and an order for all multiple edges. As we weighted
each loop with 1

2
and each multiple edge with 1

u!
, where u is the number

of edges. These weights guarantee that we don't count twice. This �xes
l ·m = 2f1 +

∑
j≥2 (j − 1) fj vertices on these edges, where f1 is the number

of loops and fj is the number of multiple edges with cardinality j. For this
we have to sort the vertices, giving (i− v)! possibilities and then placing
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i− v − lm not yet �xed vertices on e edges. As we can put multiple vertices
on the same edge, we get

(
(i−v−lm)+e−1

e−1

)
possibilities. Finally, we have to

put a rooted forest on this graph with exactly the core vertices as roots. By
Cayley's formula [7] this is possible in exactly ikk−i−1 ways. After multiplying
all this together and summing over all possible core-sizes, we get equation
(27). As we will see from now on, the numbers v and e are already �xed by
�xing k, l, and d. Only the size of the core is not �xed and as a consequence
we have to sum over all possible values of i Finally it remains to show that
0 ≤ m ≤ 6. As m = 1

l
(2f1 +

∑
(j − 1) fj), m is clearly positive. For the

upper bound, we have the following: d = 2M − 3n ≥ 0 ⇒ n ≤ 2
3
M .

From this we get l = M − n ≥ 1
3
M . Let f0 be the number of single edges.

Then M = f0 +
∑

j≥1 jfj, as this is counting all edges with their respective
multiplicity. Accordingly we have:

m =
1

l

(
2f1 +

∑
(j − 1) fj

)
≤ 3

M

(
M − f0 + f1 −

∑
j≥2

fj

)

≤ 3

M
(M − 0 +M − 0) = 6.

It remains to show the formulas for v and e. By de�nition of the de�ciency,
we have d = 2e − 3v. Furthermore, as by clipping away vertices of degree
one and replacing vertices of degree two by edges, the number of vertices and
edges both decrease by one, the excess of the graph is equal to the excess of
the kernel. Hence l = e − v. Solving these two equations for v and e yields
the desired result.

In the next part of this section we will simplify this formula to get:

Theorem 3.12. Let k, l and d be as above. Then:

Cd(k, k + l) = 2−3gγ2ll−
5
2αd
(

2l

d

)
kk+ 3l−d−1

2 e
3l−d

2 (3l − d)−
3l−d−1

2 (28)

× exp

((
− (m+ 1) l +

2

3
d

)√
3l − d
k

+O

(
l2

k
+

1

l

))
. (29)

Furthermore, the main contribution of the sum over all i occurs at i = i0 +
O(
√
i0) with i0 =

√
k(3l − d).
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Proof. For this we will use q (2l − d, d) = αd
(
1 + o

(
1
l

))
g (2l)−

5
2 γ2l (2l)! from

the last chapter, where 1
36
≤ α ≤ 9. Replacing v = 2l − d and e = 3l − d

from the previous theorem in formula (27) yields

Cd (k, k + l) =
∑
i

(
k

i

)(
i

2l − d

)
αd

d!

(
1 + o

(
1

l

))
g (2l)−

5
2 γ2l (2l)!

× (i− 2l + d)!

(
i+ l (1−m)− 1

3l − d− 1

)
ikk−i−1

=
αd

d!

(
1 + o

(
1

l

))
g (2l)−

5
2 γ2l (2l)!

∑
i

i!

(2l − d)! (i− 2l + d)!

× (k)i
i!

(i− 2l + d)!

(
i+ l (1−m)− 1

3l − d− 1

)
ikk−i−1

=
αd

d!

(
1 + o

(
1

l

))
g (2l)−

5
2 γ2l (2l)!

×
∑
i

(k)i
(2l − d)!

(
i+ l (1−m)− 1

3l − d− 1

)
ikk−i−1. (30)

Using equations (2) and (1) on
(
i+l(1−m)−1

3l−d−1

)
, we get:

(
i+ l (1−m)− 1

3l − d− 1

)
=

(i+ l (1−m)− 1)3l−d−1

(3l − d− 1)!

3l − d
3l − d

=
(3l − d) i3l−d−1

∏
j

(
1 + −(m−1)l−j

i

)
(
1 +O

(
1
l

))√
2π (3l − d)

(
3l−d
e

)3l−d

=
e3l−di3l−d−1

(3l − d)3l−d− 1
2
√

2π

×
∏
j

(
exp

(
− (m− 1) l − j

i
− 1

2

(
− (m− 1) l − j

i

)2

+O

((
− (m− 1) l − j

i

)3
)))

=
e3l−di3l−d−1 exp

(
− (3l−d)2

2i
+ 3l−d+(m−1)l

i
+ l

i
+ 1

l

)
(3l − d)3l−d− 1

2
√

2π

after summing in the exponent.
Using this and equation (3) on (k)i in equation (30), we get:

36



Cd (k, k + l) = αd
(

1 + o

(
1

l

))
g (2l)−

5
2 γ2l

× e3l−d (2l)!

(2l − d)!d! (3l − d)3l−d− 1
2
√

2π

∑
i

exp a (i), (31)

with

a (i) = (3l − d) log (i)− i2

2k
− (3l − d)2

2i
+

(3l − d) (1−m) l

i

+
1

l
+
l

i
+O

(
i

k
+
i3

k2

)
. (32)

In the next step, we want to calculate this sum. For this we will �rst look
where the main contribution is. Then the rest will be fairly easy to compute.
We get the main contribution for

∑
i exp (a (i)) at the point:

i0 =
√
k (3l − d) +O

(√
k
)
. (33)

To proof this, we will use the following. The main contribution to this
sum occurs in a neighbourhood of the maximum of a (i) in equation (32),
as exp is a monotonous function. One gets this maximum by making the
derivative 0.

This derivative is:

a′ (i) =
3l − d
i
− i

k
− i2

2k2
+

(3l − d)2

2i2
− (1−m) l (3l − d)

i2
− l

i2
. (34)

The main contribution to this is obtained from the �rst two terms. Setting
them 0 yields i0 =

√
k (3l − d). For this choice, we get:

a (i0) = (3l − d) log (i0)− k (3l − d)

2k
− (3l − d)2

2
√
k (3l − d)

+
(3l − d) (1−m) l√

3l − d

+
1

l
+

l√
k (3l − d)

+O

(√
kl

k
+

(kl)2

k3

)

= (3l − d) log (i0)− 3l − d
2
− α

√
l3

k
+

1

l
+O

(√
l

k
+
l2

k

)
.

for some α. As can be seen here, the �rst two terms give the main contribu-

tion, as
√

l3

k
� l for l� k.
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Suppose i = i0 + O (kα) for some α. We will show that by choosing
α = 1

2
, the error made in the sum is smaller than some of the other error

terms already existing. This results in the following sum:

∑
i

exp (a (i)) = exp (a (i0))
∑

i=i0+O(kα)

exp (a (i)− a (i0)) ,

with

exp (a (i0)) = (k (3l − d))(3l−d)/2 exp

(
−3l − d

2
− 3l − d

6

√
3l − d
k

−3l − d
2

√
3l − d
k

+ (1−m)

√
3l − d
k

+O

(
l2

k
+

1

l

))

= (k (3l − d))(3l−d)/2 exp

(
−3l − d

2

+

√
3l − d
k

(
(m+ 1) l +

2

3
d

)
+O

(
l2

k
+

1

l

))
.

Furthermore, we can use the following to calculate exp (a (i)− a (i0)).
By performing Taylor-expansion the term can be rewritten as log (i0 + δi) =

log (i0)+ ∆i
i0
− ∆i2

2i20
+O

(
∆i3

i30

)
. Also, we have a

i0+∆i
− a

i0
= −a∆i

i20

(
1 +O

(
a∆i

i0

))
.

Using this, we get:

∑
i=i0+O(

√
k)

e(a(i)−a(i0)) =
∑

∆i=O
(
k
1
2

) exp

(
−(∆i)2 − 2i0∆i

k
+O

(
∆i2l2

i30

))

=

∫ ∞
−∞

exp

−
(
xk

1
2

)2

k

 d
(
xk

1
2

)
exp

(
O

(
l

k

))

=
√
kπ exp

(
O

(
l

k

))
.

If ∆i = O
(√

i0
)
, then the additional order term is exp

(
O
(
l
k

))
which

is small enough to not give any additional order terms. Concluding this,
counting over ∆i = O

(√
i0
)
yields the main contribution. We can use this

and equation (1) in equation (31) to get
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Cd (k, k + l) = 2−3gγ2ll−
5
2αd
(

2l

d

)
kk+ 3l−d−1

2 e
3l−d

2 (3l − d)−
3l−d−1

2

× exp

((
− (m+ 1) l +

2

3
d

)√
3l − d
k

+O

(
l2

k
+

1

l

))
as claimed.

As a next step, we will sum over all possible de�ciencies to get a formula
on the number C(n,M) of all complex graphs. For this value, we have:

Theorem 3.13. Let k, l be as above. Then:

C(k, k + l) = 2−3gγ2ll−
5
2kk+ 3l−1

2 e
3l
2 (3l)(3l−1)/2 exp

(
O

(
1

l

))
× exp

(
β

√
l3

k
+O

(
l2

k

))
. (35)

Furthermore the main contribution to this value with respect to d is attained

at d0 = Θ

(√
l3

k

)
.

Proof. We are looking at:

C (k, k + l) =
∑
d

Cd (k, k + l)

= 2−3gγ2ll−
5
2kk+ 3l−1

2 e
3l
2 exp

(
O

(
l2

k
+

1

l

))
×
∑
d

αd
(

2l

d

)
k−

d
2 e−

d
2 (3l − d)−

3l−d−1
2 (36)

× exp

((
(1−m) l +

2

3
d

)√
3l − d
k

)
. (37)

In this sum, we can rewrite the following term with the help of equation (2):

(3l − d)−
3l−d−1

2 = (3l)
3l−d−1

2

(
1− d

3l

)− 3l−d−1
2

= (3l)
3l−d−1

2 exp

(
−3l − d− 1

2

(
− d

3l
+O

(
d2

l2

)))
= (3l)

3l−d−1
2 exp

(
d

2
+O

(
d2

l

))
.
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With this, one can write the factor (3l)
3l−1
2 in front of the sum (37) and

one has to look at:

∑
d

αd
(

2l

d

)
k−

d
2 (3l)

d
2 exp

((
(1−m) l +

2

3
d

)√
3l − d
k

)
. (38)

We want to get the main contribution to this sum. From equation (1) we

get the approximation
(

2l
d

)d ≤ (2l
d

)
≤
(

2le
d

)d
. Using this one can rewrite the

above equation as:∑
d

( c
d

)d
exp

((
(1−m) l +

2

3
d

)√
3l − d
k

)
,

with some constant c = c (k, l) = 6lrα
√

l3

k
and 1 ≤ r ≤ e. One gets the

main contribution to the sum as the main contribution of
(
c
d

)d
and this is at

d = c = Θ

(√
l3

k

)
. With this the sum transforms into:

∑
d

αd
(

2l

d

)
k−

d
2 (3l)

d
2 exp

((
(1−m) l +

2

3
d

)√
3l − d
k

)

=
∑
d

αd
(

2l

d

)
k−

d
2 (3l)

d
2 exp

((
(1−m) l + Θ (1)

√
l3

k

)√
3l

k

)

=

(
1 + α

√
3l

k

)2l

exp

(
(1−m) l

√
3l

k
+O

(√
l3

k

√
3l

k

))

= exp

(
2lα

√
3l

k
+ (1−m)

√
3l3

k
+O

(
l2

k

))

= exp

(
(2α−m+ 1)

√
3l3

k
+O

(
l2

k

))
.

As we know 1
36
≤ α ≤ 9 and 0 ≤ m ≤ 6, we get:

C (k, k + l) = 2−3gγ2ll−
5
2kk+ 3l−1

2 e
3l
2 (3l)(3l−1)/2 exp

(
O

(
1

l

))
× exp

(
β

√
l3

k
+O

(
l2

k

))
,
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with β = (2α−m+ 1)
√

3 ≤ (2 ∗ 9− 0 + 1)
√

3 = 19
√

3 < 33 and β ≥(
2
36
− 6 + 1

)√
3 > −9.

3.5 The asymptotic number of series-parallel graphs

In this section we will use the results of the previous sections to �nally prove
Theorem 3.1.

As we have seen in Chapter 3.1,

sp (n,M) =
∑
k,l

(
n

k

)
C (k, k + l)U (n− k,M − k − l) .

To start, we will rewrite the term for U(n− k,M − k− l) from Theorem 3.3
to get the following:

Lemma 3.14. Let n, l, n, M be as above. Then:

U (n− k,M − k − l) = ρ (n− k,M − k − l)
(

2 (M − k)

(n− k)2

)l

× (n− k)2(M−k) e
M−k+M−k−l

n−k +
(M−k−l)2

(n−k)2

(2 (M − k))M−k+ 1
2
√

2π

× exp

(
O

(
M − k − l
(n− k)2 +

1

M − k − l
+
l2

M
+

l3

M2

))
.

Proof. From Theorem 3.3, we have:

U (n− k,M − k − l) =
ρ (n− k,M − k − l) (n− k)2(M−k−l)√
2π (M − k − l) (2 (M − k − l))M−k−l

× exp

(
M − k − l − M − k − l

n− k
− (M − k − l)2

(n− k)2

)

exp

(
O

(
M − k − l
(n− k)2 +

1

M − k − l

))
.

We can rewrite the factor (2 (M − k − l))M−k−l+ 1
2 to get:

41



(2 (M − k − l))M−k−l+
1
2

= (2 (M − k))−l (2 (M − k))M−k+ 1
2

(
1− l

M − k

)M−k−l+ 1
2

= (2 (M − k))−l (2 (M − k))M−k+ 1
2

× exp

((
M − k − l +

1

2

)(
− l

M − k
+O

(
l2

(M − k)2

)))
= (2 (M − k))−l (2 (M − k))M−k+ 1

2

× exp

(
−l +O

(
l

M
+
l2

M
+

l3

M2

))
.

After cancelling out el and sorting all factors, one gets the desired result:

U (n− k,M − k − l) = ρ (n− k,M − k − l)
(

2 (M − k)

(n− k)2

)l

× (n− k)2(M−k) e
M−k+M−k−l

n−k +
(M−k−l)2

(n−k)2

(2 (M − k))M−k+ 1
2
√

2π

times all order terms above.

We can use this and Lemma 2.6 for approximating
(
n
k

)
to calculate sp (n,M).

From that we get:

sp (n,M) =
∑
k,l

(
n

k

)
Csp (k, k + l)S (n− k,M − k − l)

=
∑
k,l

(1 +O (k−1))nn+ 1
2

√
2π (n− k)n−k+ 1

2 kk+ 1
2

× 2−3gγ2ll−
5
2kk+(3l−1)/2e3l/2 (3l)(3l−1)/2 ρ (n− k,M − k − l)

×
(

2 (M − k)

(n− k)2

)l
(n− k)2(M−k) e

M−k+M−k−l
n−k +

(M−k−l)2

(n−k)2

(2 (M − k))M−k+ 1
2
√

2π

×
(
1 +O

(
n−1
))

exp

(
β

√
l3

k
+O

(
l

k
+
l2

k
+
l3

k2
+

1

l

))
.
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Collecting all terms and approximatingM−k−l byM−k in the exponent
(the error to do this is small enough to vanish in the other order terms), one
gets:

sp (n,M) =
(
1 +O

(
n−1
))
nn+ 1

2 2−
7
2 3−

1
2π−1geM

×
∑
k

(
1 +O

(
k−1 + kn−1

)) kk−
1
2 (n− k)2(M−k) e

−k+M−k
n−k +

(M−k)2

(n−k)2

(n− k)n−k+ 1
2 kk+ 1

2 (2 (M − k))M−k+ 1
2

×
∑
l

γ2ll−2k3l/2e3l/2 (3l)3l/2 ρ (n− k,M − k − l)
(

2 (M − k)

(n− k)2

)l
× exp

(
β

√
l3

k
+O

(
l

k
+
l2

k
+
l3

k2
+

1

l

))
=
(
1 +O

(
n−1
))
nn+ 1

2 2−
7
2 (3π)−

1
2 geM

×
∑
k

(
1 +O

(
k−1 + kn−1

)) (n− k)2(M−k) e
−k+M−k

n−k +
(M−k)2

(n−k)2

(n− k)n−k+ 1
2 k (2 (M − k))M−k+ 1

2

×
∑
l

ρ (n− k,M − k − l)
(
γ2e3/2k3/22 (M − k)

33/2 (n− k)2

)l
× exp

(
β

√
l3

k
+O

(
l

k
+
l2

k
+
l3

k2
+

1

l

))
. (39)

As a next step, we will distinguish the di�erent regions for M . As we
have seen in Chapter 3.1, M = n

2
+ s, s = o (n) is a point of change in the

behaviour of random graphs. So substituting this, we get:

e
M−k
n−k = e

1
2

+o(1)

and

e(
M−k
n−k )

2

= e
1
4

+o(1)

and from this
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sp
(
n,
n

2
+ s
)

=

(
1 +O

(
1

n

))
2−

7
2 gnn+ 1

2 e
n
2

+s− 3
4

√
3

π

×
∑
k

(n− k)2s−k− 1
2

k (n+ 2s− 2k)
n
2

+s−k+ 1
2

e−k

×
∑
l

(
γ2k

3
2 e

3
2

(3l)
3
2

)l

l−2

(
n+ 2s− 2k

(n− k)2

)l
× ρ

(
n− k, n

2
+ s− k − l

)
exp

(
βl

√
l

k
+O

(
l3

k2
+
l2

k

))
.

(40)

The main contribution to these sums depend on the value of s. We will
distinguish here the cases s � −n2/3, s = cn2/3 for some constant c and
n2/3 � s� n.

Firstly suppose s � −n 2
3 . In this case, G (n,M) is series-parallel a.a.s.

Then we are in case one of Theorem 3.1 and have

sp (n,M) = (1 + o (1))G (n,M) = (1 + o(1))
nn+2se

n−1
2

+s

√
π(n+ 2s)

n+1
2

+s
.

We use the following fact proven by �uczak [21, 22]and �uczak, Pittel and
Wierman [24] and also stated by Janson, �uczak, and Ruci«ski [17].

Theorem 3.15. If s3

n2 → −∞, then, a.a.s. G
(
n, n

2
+ s
)
is a collection of

trees and unicyclic components.

As such graphs are series-parallel, this part of the theorem follows.
Now suppose s = cn

2
3 for some constant c. Then Noy et al. [27] proved,

that in this case the probability that a random graph is series-parallel tends
to a limit depending only on c. If c = 0 this limit is approximately 0.98003.
Using this, we have:

sp (n,M) = Θ(1)G (n,M) = Θ(1)
nn+2se

n−1
2

+s

√
π(n+ 2s)

n+1
2

+s
.

Secondly let n
2
3 � s � n. We will look at equation (40). First,

we have to �nd the main contribution to the innermost sum over l. To
do this, we will �rst state that for k and l around the main contribution,
ρ
(
n− k, n

2
+ s− k − l

)
= ρ

(
n− k, n

2
+ s− k

)
.
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Proposition 3.16. Suppose k = 2s+ r for some r and l� r. Then:

ρ
(
n− k, n

2
+ s− k − l

)
= ρ

(
n− k, n

2
+ s− k

)
.

Proof. As we can distinguish ρ
(
N, N

2
+ S

)
with respect to S3

N2 , we take N =
n− k and

S =
n

2
+ s− k − l − N

2

=
n

2
+ s− 2s− r − l − n− 2s− r

2

= −r + 2l

2
.

If l� r, we have:

S3 = −
(
r + 2l

2

)3

= −(1 + o (1))

8
r3,

and this value does not depend on l. As the value of ρ does only depend on
the ratio S3

N2 as N tends to in�nity, this proves the claim.

From now on, we will replace ρ
(
n− k, n

2
+ s− k − l

)
with

ρ
(
n− k, n

2
+ s− k

)
. So for these calculations to be valid, we have to assert

that in the end the conditions of proposition 3.16 are valid. For the main
contribution with respect to l, we get the following estimations.

Lemma 3.17. Suppose

φ = φ (n, s, k) =
γ2k

3
2 e

3
2 (n+ 2s− 2k)

3
3
2 (n− k)2

. (41)

Then the main contribution to the sum in (40) with respect to l is at l =
l0 +O

(√
l0
)
where l0 = φ2/3e−1.

Proof. The sum concerning l in (40) can be written as
∑

l
φ
l3/2

l
l−2.

We are looking for the main contribution in this sum. For this, we have
to maximize the function

φ

l
3
2

l

l−2 = l−2 exp

(
l log φ− 3l

2
log l

)
.
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By making the derivative of this equal to 0, we get:

0 =

(
2l−3 − l−2

(
log φ− 3

2
(log (l) + 1)

))
exp

(
l log φ− 3l

2
log l

)
.

As 2l−3 = o
(
l−2
(
log φ− 3

2
(log (l) + 1)

))
, it is su�cient to �nd a value for

l such that the second term vanishes, as then the �rst term will automatically
converge to 0 as l → ∞. Hence we have to solve

0 =

(
log φ− 3

2
(log (l) + 1)

)
⇔ l =

φ
2
3

e
. (42)

From this we can conclude that l = l0 will give the main contribution.

Set l = l0 + ∆l and b (l) =
(

φ
l3/2

)l
l−2. Using also log (a+ b) = log (a) + b

a
−

b2

2a2
+O

(
b3

a3

)
, one gets:

∑
l

b (l) = b (l0)
∑

∆l=l−l0

exp (log (b (l))− log (b (l0)))

= b (l0)
∑
∆l

exp

(
(l − l0) log (φ)− 3

2
(l log (l)− l0 log (l0))

−2 (log (l)− log (l0)))

= b (l0)
∑
∆l

exp

(
∆l log (φ)− 3

2

(
∆l +

∆l2

2l0
+ ∆l log (l0)

)
− 2

∆l

l0

)
= b (l0)

∑
∆l

exp

(
−3∆l2

4l0
− 2∆l

l0
+O

(
∆l2

l20

))
.

If ∆l = O
(√

l0
)
, the error term is a exp

(
O
(

1
l0

))
which does already

exist. In this case, the error made in the summation is small enough to
not yield an additional error term. The sum itself can be estimated by an
integral. Taking ∆l = c

√
l0 with integrating over c

√
l0 from −∞ to ∞, we

get:

∑
∆l

=

∫ ∞
−∞

exp

(
−

3
(
c
√
l0 − l0

)2

4l0

)
dc
√
l0 =

√
4πl0

3
,

and the sum over l is then:
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∑
l

(
φ

l
3
2

)l
l−2 = (1 + o (1)) l−2

0

(
φ

l
3
2
0

)l0∑
∆l

b (l)

b (l0)

= (1 + o (1))
6
√
π (n− k)2

k
3
2γ2 (n+ 2s− 2k)

exp

(
γ

4
3k (n+ 2s− 2k)

2
3

2 (n− k)
4
3

)
.

From this we have:

l0 = O
(
φ

2
3

)
= O

(
kn

2
3

n
4
3

)
= O

(
kn−

2
3

)
.

We will need this again later for checking the conditions of proposition
3.17. From the sum, we get in (40):

sp
(
n,
n

2
+ s
)

=

(
1 +O

(
1

n

))
2−

7
2 gnn+ 1

2 e
n
2

+s− 3
4

√
3

π

×
∑
k

ρ
(
n− k, n

2
+ s− k

) (n− k)2s−k− 1
2

k (n+ 2s− 2k)
n
2

+s−k+ 1
2

e−k

× 6
√
π (n− k)2

k
3
2γ2 (n+ 2s− 2k)

exp

(
γ

4
3k (n+ 2s− 2k)

2
3

2 (n− k)
4
3

)

=

(
1 +O

(
1

n

))
2−

5
2γ−2gnn+ 1

2 e
n
2

+s− 3
4 3

3
2π−

1
2

×
∑
k

ρ
(
n− k, n

2
+ s− k

) (n− k)2s−k+ 3
2

k
5
2 (n+ 2s− 2k)

n
2

+s−k+ 3
2

e−k

× exp

(
γ

4
3k (n+ 2s− 2k)

2
3

2 (n− k)
4
3

)
.

In the next step, we have to evaluate the sum over k. To do this, we will
show the following result.

Lemma 3.18. Let k, n and s be as above. Then the main contribution for
k in the sum above is at

k = 2s+O
(
n2/3

)
. (43)
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To show this, we will use the substitution k = 2s + r. Substituting this,
we have to look at the sum

∑
r ρ
(
n− 2s− r, n

2
− s− r

)
ψ (r) where

ψ (r) =
(n− k)2s−k+ 3

2

k
5
2 (n+ 2s− 2k)

n
2

+s−k+ 3
2

e−k exp

(
γ

4
3k (n+ 2s− 2k)

2
3

2 (n− k)
4
3

)

=
(n− k)2s−k+ 3

2

(n+ 2s− 2k)
n
2

+s−k+ 3
2

(2s+ r)−
5
2

× exp

(
−2s− r +

γ
4
3 (2s+ r) (n− r)

2
3

2 (n− 2s+ r)
4
3

)
.

Here we have factors e−2s and exp
(
γ4/3sn−2/3

)
not dependent on r which we

can move in front of the sum. To �nd the desired asymptotics of this formula,

in a next step we will simplify the factors (n−k)2s−k

(n+2s−2k)
n
2 +s−k and

(
(n−k)

(n+2s−2k)

) 3
2
.

For these, we get:

(n− k)2s−k

(n+ 2s− 2k)
n
2

+s−k =
(n− 2s− r)−r

(n− 2s− 2r)
n
2
−s−r

= (n− 2s)−
n
2

+s

(
n− 2s− r
n− 2s

)−r (
n− 2s− 2r

n− 2s

)r−n
2
−s

= (n− 2s)−
n
2

+s

(
1− r

n− 2s

)−r (
1− 2r

n− 2s

)r−n
2
−s

= (n− 2s)−
n
2

+s exp

(
r

(
r

n− 2s
+ . . .

)
−
(
r − n

2
− s
)( 2r

n− 2s
+ . . .

))
= (n− 2s)−

n
2

+s exp

(
r − r3

6 (n− 2s)2

)
× exp

(
O

(
r4

(n− 2s)3

))
,

giving a factor (n− 2s)−
n
2

+s not dependent on r and

(
(n− k)

(n+ 2s− 2k)

) 3
2

=

(
1− 2s− k

n+ 2s− 2k

) 3
2

= 1 +O
(
n−

3
2

)
.
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We have to �nd the main contribution of the sum

∑
r

ρ
(
n− 2s− r, n

2
− s− r

)(
s+

r

2

)− 5
2

× exp

(
γ

4
3 r

2 (n− 2s)
2
3

+
r3

6 (n− 2s)2 +O

(
r

n
+

r4

(n− 2s)3

))
.

For this, we will need some term, where ρ is not small. To get this we have
N = n−2s− r and S = n

2
− s− r− n−2s−r

2
= r

2
. Hence we get from Theorem

3.4 that ρ
(
n− 2s− r, n

2
− s− r

)
= ν

(
x
2

)
, if r

(n−2s−r)
2
3
→ x with x ∈ R, if

r = O
(
n

2
3

)
. As this is also the region in which the main contribution of the

exponential part is maximal, r = O
(
n

2
3

)
is the main contribution of this

sum. Also in this region we have
(
s+ r

2

)− 5
2 = s−

5
2 (1 + o (1)). Using this and

rewriting the sum again as integral with r = n2/3x, we have:

∑
k

= (1 + o (1))n2/3s−
5
2

∫ ∞
−∞

ν
(
−x

2

)
exp

(
−x3

6
+
γ

4
3x

2

)
dx.

This integral does not depend on n or s and so is a constant I. With this,
we have:

sp = (1 + o (1)) 2−
5
2γ−2gπ−

1
2 Inn+ 7

6 e
n
2
−s− 3

4 3
3
2

× exp
(
γ

4
3 sn−

2
3

)
(n− 2s)−

n
2

+s s−
5
2 .

Also, as r = O
(
n

2
3

)
= o (s), we have k = 2s+ r = 2s (1 + o (1)) and the

conditions in Lemma 3.17 are ful�lled, as l = O
(
kn−

1
3

)
= O

(
n

1
3

)
.

For the next case, suppose s = αn with 0 < α < 1
2
. For this calculation,

nearly all steps taken for M = n
2

+ s, n2/3 << s << n do also work. The
only point where we needed that s = o (n) was right in the beginning giving
new estimates for the following statements:

e
M−k
n−k = e

1
2

+α+o(1)
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and

e(
M−k
n−k )

2

= e(
1
2

+α)
2
+o(1).

This implies that the constant factor is changing, but the rest of the
calculations work the same way. So we have:

sp (n, αn) = θ (1)nn+ 7
6 e

n
2
−α(n)− 3

4 exp
(
γ

4
3αn

1
3

)
(n (1− 2α))−

n
2

+αn (αn)−
5
2 I

= θ (1)nn+ 7
6 e(

1
2
−α)n exp

(
γ

4
3αn

1
3

)
(n (1− 2α))(−

1
2

+α)n n−
5
2

= θ (1)nn(
1
2

+α)− 4
3

(
e

n (1− 2α)

)( 1
2
−α)n

exp
(
γ

4
3αn

1
3

)
.

Also, all main contributions will occur at the same values for l and r. This
method does not work anymore for s = n

2
+o (n), as in this case, n−2s = o (1)

in the denominator of some fractions and so the error terms occurring will
get uncontrollably high. Taking this into consideration we will look at this
case in a way a bit di�erent from this one.

Let us look at M = n + t with t = o(n). As was shown by Kang and
�uczak in [18], planar graphs have a second critical phase in this region. It is
also known that the general random graphG (n,M) does not have this second
critical phase. We will show here that series-parallel graphs do have the same
second critical phase as planar graphs with only some minor di�erences. For
this, we will again look at the number of series-parallel graphs in formula
(19). Taking M = n+ t with t = o (n), we get:
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sp (n, n+ t) =
∑
k,l

(
n

k

)
C (n− k, n− k + l)U (k, k + t− l)

=
∑
k,l

(
1 +O

(
1
k

))
nn−

1
2

√
2π (n− k)n−k−

1
2 kk+ 1

2

2−3gγ2ll−
5
2 (n− k)n−k+ 3l−1

2

× e
3l
2 (3l)−

3l+1
2 exp

(
β

√
l3

n− k
+O

(
l3

k2
+
l

k

))

× ρ (k, k + t− l) k2(k+t−l)

√
π (2 (k + t− l))k+t−l+ 1

2

× exp

(
k + t− l − k + t− l

k
+

(k + t− l)2

k2

)

× exp

(
O

(
1

k
+
k + t− l

k2

))
= (1 + o (1))

g
√

3

π24
nn−

1
2

∑
l

(
γ2e

3
2

3
3
2

)l

l−
3l
2
−2
∑
k

δ (k) , (44)

with

δ (k) = ρ (k, k + t− l) (k (k + t− l))−
1
2 (n− k)

3l
2
−1

× kk+2t−2l

(
e

2 (k + t− l)

)k+t−l

exp

(
−k + t− l

k
− (k + l − t)2

k2

)

× exp

(
β

√
l3

n− k
+O

(
1

k
+
l3

k2
+
l

k

))
. (45)

As a next step we want to get the main contribution for the sum
∑

k δ (k).

Lemma 3.19. The main contribution for the sum
∑

k δ (k) is attained at

k0 = 2 (l − t) +O
(

(2 (l − t))
2
3

)
.

Proof. To show this, we will transform this sum by replacing k = 2 (l − t)+x
and summing over x. Then it remains to show that the main contribution is
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made by x = O
(

(2 (l − t))
2
3

)
. Thus, the sum gets:∑

k

δ (k) =
∑
r

ρ (2 (l − t) + x, 2 (l − t) + x+ t− l)

× ((2 (l − t) + x) (2 (l − t) + x+ t− l))−
1
2 (n− 2 (l − t) + x)

3l
2
−1

× (2 (l − t) + x)2(l−t)+x+2t−2l

(
e

2 (2 (l − t) + x+ t− l)

)2(l−t)+x+t−l

× exp

(
−2 (l − t) + x+ t− l

k
− (2 (l − t) + x+ l − t)2

(2 (l − t) + x)2

)

× exp

(
β

√
l3

n− 2 (l − t) + x
+O

(
1 + l

2 (l − t)
+

l3

(2 (l − t))2

))
.

Using several times the exp-log-transformation (2) yield the following
terms dependent on x:

∑
x

τ (x) =
∑
x

ρ (2 (l − t) + x, l − t+ x) exp

(
x3

6 (2 (l − t))2

)
× exp

(
− 3xl

2 (n− 2 (l − t))
+O

(
x

l − t
+

x

n− 2(l − t)

))
.

For ρ we know from Theorem 3.4, that its value depends on the value of
limn→∞

s3

n2 where s = M − n
2
. For these values we have n = 2 (l − t) + x,

M = l − t+ x and so s = x
2
. We have then the following cases:

• limn→∞
s3

n2 = −∞. Here we have x� − (2 (l − t) + x)
2
3 . Also we have

ρ (2 (l − t) + x, l − t+ x) =
(

1 +O
(

(2(l−t)+x)2

|(x/2)|3

))
where the order term

is exactly the negative inverse from the condition, so it tends to zero
as n tends to in�nity. So ρ (2 (l − t) + x, l − t+ x) = 1 + o (1).

• limn→∞
s3

n2 =∞. Then we have:

ρ (2 (l − t) + x, l − t+ x) ≤ exp

(
− s

3

n2

)
.

In this case the summands tend to 0 exponentially fast and as such do
not have an additional input to the sum.

Using this, the main part of the sum attained for is x = O
(

(2 (l − t))
2
3

)
.
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Using this and approximating
∑

x=O
(

(2(l−t))
2
3

) by
∫∞
−∞ dc with x = c ·

(2 (l − t))
2
3 we get:

∑
x

τ (x) =

∫ ∞
−∞

ρ (2 (l − t) + x, l − t+ x)

× exp

(
x3

6 (2 (l − t))2 −
3xl

2 (n− 2 (l − t))

)
dc

=

∫ ∞
−∞

ρ
(

2 (l − t) + c (2 (l − t))
2
3 , l − t+ c (2 (l − t))

2
3

)

× exp


(
c (2 (l − t))

2
3

)3

6 (2 (l − t))2 − 3c (2 (l − t))
2
3 l

2 (n− 2 (l − t))

 dc.

Then we can use that by Theorem 3.4 ρ (2 (l − t) + x, l − t+ x) = ν
(
c
2

)
in this range, we get:

∑
x

τ (x) =

∫ ∞
−∞

ν
( c

2

)
exp

(
c3

6
− 3c (2 (l − t))

2
3 l

2 (n− 2 (l − t))

)
dc. (46)

For the last part in the integral, we look for the part where the main
contribution with respect to l is. This will be calculated in the next lemma.

Lemma 3.20. Let l = l0 +O (lα0 ) be the main contribution to the sum (44).
Then, for t �xed, l0 satis�es the equation:

l0 =
γ

4
3 (n− 2 (l0 − t))
3 (2 (l0 − t))

2
3

.

Proof. We have seen that:

∑
k

δ (k) = (1 + o (1)) e−3/4−t21/2 e
l (n− 2 (l − t))3l/2

(2 (l − t))l−t+1

×
∫ ∞
−∞

ν
( c

2

)
exp

(
c3

6
− 3c (2 (l − t))

2
3 l

2 (n− 2 (l − t))

)
dc.

As the integral depends only marginally on l, we can treat it as a constant
for calculating the main contribution of l. From this we have as additional
factor the fraction in this term.
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Let a (l) :=

(
γ2e

5
2 (n−2(l−t))3/2

3
3
2 (2(l−t))

)
. Then we have to �nd the main contribu-

tion of the sum : ∑
l

a(l)ll−
3
2
l−2 (l − t)t−1 . (47)

By utilizing monotony of the logarithm, we can also maximize the loga-
rithm of this sum. For this, we will take the derivative:

(log(a(l)ll−
3
2
l−2 (l − t)t−1))′

= log (a(l)) +
la′ (l)

a (l)
− 3

2
log (l)− 3

2
− 2

l
+
t− 1

l − t
!

= 0.

As l tends to in�nity with n, −2
l

+ t−1
l−t tends to zero. Also la′(l)

a(l)
=

l
(

1
(−l+t) −

3
(−2l+n+2t)

)
tends to 1

2
as l → ∞. More exactly it is 1

2
+ O

(
1
l

)
.

For getting the main contribution, we then have:

log (a(l))− 3

2
log (l) = 0 ⇔ l = a(l)

2
3 .

Concluding this, we have l0 = a (l0)
2
3 as claimed.

Using this in the integral, we get:

∑
x

τ (x) =

∫ ∞
−∞

ν
( c

2

)
exp

(
c3

6
− γ

4
3 c

2

)
dc.

As γ is constant, this integral is also a constant with value I.
Now using all of this, we can rewrite the number of series-parallel graphs

sp (n, n+ t) as:
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sp (n, n+ t) = (1 + o (1))
g
√

3

π24
nn−

1
2

∑
l

(
γ2e

3
2

3
3
2

)l

l−
3l
2
−2
∑
k

δ (k)

= (1 + o (1))
g
√

3

π24
Inn−

1
2

∑
l

(
γ2e

3
2

3
3
2

)l

l−
3l
2
−2

× (1 + o (1)) e−3/4−t21/2 e
l (n− 2 (l − t))3l/2

(2 (l − t))l−t+1

× exp

(
β

√
l30

n− 2 (l0 − t)
+O

(
l20

n− 2 (l0 − t)

))

= (1 + o (1))
g
√

3e−3/4−t

π27/2
Inn−

1
2D (n, t)

× exp

(
β

√
l30

n− 2 (l0 − t)
+O

(
l20

n− 2 (l0 − t)

))
, (48)

with

D (n, t) =
∑
l

(
γ2e

3
2

3
3
2

)l

l−
3l
2
−2 e

l (n− 2 (l − t))3l/2

(2 (l − t))l−t+1
.

As a next step we want to �nd the main contribution of D (n, t). We
know already from Lemma 3.20, that the main contribution to the sum is
achieved for l0 satisfying:

l0 =
γ

4
3 (n− 2 (l0 − t))
3 (2 (l0 − t))

2
3

.

At �rst suppose t to be constant. In this case, we have:

3l0 (2 (l0 − t))
2
3 = γ

4
3 (n− 2 (l0 − t)) ,

or l
5
3
0 = Θ (n+ l0) = Θ (n). As to derive the asymptotics of (l − t) in the

formula above, we will distinguish whether t� −n 3
5 , t = cn

3
5 or t� n

3
5 .

Secondly suppose t � −n 3
5 . Accordingly, we also have −t � l0. In this

case, we get:

l0 − t = −t
(

1 +
l0
−t

)
= −t (1 + o (1)) .
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From this we have the main contribution at

l0 =
γ

4
3 (n− 2 (l0 − t))
3 (2 (l0 − t))

2
3

=
γ

4
3 (n+ 2t)

3 (−2t)
2
3

. (49)

With this, we can calculate D (n, t). This can be done by rewriting the
sum as:

D (n, t) =
∑

l=l0+O(
√
l0)

exp (log (d (n, t, l)))

= d (n, t, l0)
∑

∆l∈O
√
l0

exp (log (d (n, t, l))− log (d (n, t, l0))) .

Using this we get:

d(n,t, l0) =

(
γ2e3/2

33/2

)l0
el0−t (n− (2 (l0 − t)))3l0/2

l
3l0/2+2
0 (2 (l0 − t))l0−t+1/3

= e5l0/2−t (2 (l0 − t))−l0 l−2
0 (2 (l0 − t))t−1/3

(
γ2 (n− 2 (l0 − t))3/2

(3l0)3/2

)l0

= e5l0/2−t (2 (l0 − t))−l0 l−2
0 (2 (l0 − t))t−1/3

(
2t

(
1− 2γ4/3

3t2/3

)3/2
)l0

= e5l0/2−t (l0 − t)−l0 l−2
0 (2 (l0 − t))t−1/3 tl0 exp

(
3

2
l0

(
2l0

3 (n+ 2t)

))
.

By using the fact that log (a+ b) = log (a) + b
a

+O
(
b2

a2

)
, we can rewrite

the rest of the sum as follows:

log (d (n, t, l))− log (d (n, t, l0)) = −∆l2
(

3

n+ 2t− 2l0
+

3

2l0
+

1

l0 − t

)
,

plus terms of lower order. Using that for ∆l ∈ O
(√

l0
)

3∆l2

n+ 2t− 2l0
= O

(
l0
n

)
= O

( n
tn

)
= o (1)

we can calculate the rest sum as:
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∑
∆l∈O

√
l0

exp(log (d (n, t, l))− log (d (n, t, l0)))

=
∑

∆l∈O
√
l0

exp

(
−∆l2

(
3

2l0
+

1

l0 − t

))
.

Substituting ∆l = x
√
l0 and integrating yields to:

∑
∆l∈O

√
l0

exp (log (d (n, t, l))− log (d (n, t, l0))) = (1 + o (1))

√
2l0π (l − t)
5l0 − 3t

.

Combining these results, one gets:

D (n, t) = (1 + o (1))
√

2π
(2 (l0 − t))t−1/3+1/2

√
5l0 − 3t

× l−3/2
0 tl0 (l0 − t)−l0 exp

(
5l0
2
− t− 3l20

n+ 2t

)
.

Replacing this in the sum (48), we get the result stated in Theorem 3.1.
In this case, we have the main contribution with respect to k at k0 = 2 (l0 − t)
and with respect to l at l0 = γ

4
3 (n+2t)

3(−2t)
2
3
.

Thirdly suppose t = cn
3
5 for some constant c ∈ R. Let us also suppose:

l0 = bn
3
5 . (50)

Then:

l0 =
γ

4
3 (n− 2 (l0 − t))
3 (2 (l0 − t))

2
3

⇔ bn
3
5 =

γ
4
3

(
n− 2n

3
5 (b− c)

)
3
(

2n
3
5 (b− c)

) 2
3

⇔ bn
3
5 3
(

2n
3
5 (b− c)

) 2
3

= γ
4
3

(
n− 2n

3
5 (b− c)

)
⇔ 3 · 2

2
3nb (b− c)

2
3 = γ

4
3n
(

1− 2n
−2
5 (b− c)

)
⇔ 3 · 2

2
3nb (b− c)

2
3 = γ

4
3n (1 + o (1)) .
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To ful�l this, b has to be a solution of the equation 3·2 2
3 b (b− c)

2
3 = γ

4
3 . As

b (b− c)
2
3 is a strictly increasing function in the interval [c,∞) with values

from 0 to ∞ and negative values in the interval (0, c), there is a unique
positive solution b0 for this equation. We can again calculate D (n, t). For
this, using l0 = b

c
t = bn3/5, we have:

d (n, t, l0) =

(
γ2e3/2

33/2

)l0
el0−t (n− (2 (l0 − t)))3l0/2

l
3l0/2+2
0 (2 (l0 − t))l0−t+1/3

= e
5l0
2
−t

(
γ2
(
n− 2 (b− c)n3/5

)3/2

3
3
2 l

3/2
0 2 (l0 − t)

)
l−2
0 (2 (l0 − t))t−1/3

= e
5b
2c
t−t

((
n2/5 − 2 (b− c)

)3/2

n3/5

)l0

b−2c2t−2

(
2

(
b

c
t− t

))t−1/3

= e
5b
2c
t−t (1− 2 (b− c)n−2/5

)3l0/2
b−2c2t−2

(
2

(
b

c
t− t

))t−1/3

= exp

((
5b

2c
− 1

)
t− 3l0

2
2 (b− c)n−2/5

)
× b−2c2t−2−1/3tt

(
2

(
b

c
− 1

))t−1/3

= exp

((
5b

2c
− 1

)
t− 3

t2

n

b

c

(
b

c
− 1

))
× b−2c2t−2−1/3tt

(
2

(
b

c
− 1

))t−1/3

.

The rest of the sum yields exactly the same term as in the subcritical
phase:

∑
∆l∈O

√
l0

exp (log (d (n, t, l))− log (d (n, t, l0))) = (1 + o (1))

√
2l0π (l − t)
5l0 − 3t

= (1 + o (1))

√
2 b
c
tπ
(
b
c
− 1
)
t

(5b− 3c) t
c

.

Collecting these terms yields to:
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D (n, t) = (1 + o (1))
√

2π
c2
(
b
c
− 1
)1/6

t−11/6

b3/2
√

(5b− 3c)

(
2

(
b

c
− 1

)
t

)t
× exp

((
5b

2c
− 1

)
t− 3t2

n

b

c

(
b

c
− 1

))
.

Using this and (48), we get the result for this region of Theorem 3.1

Finally, assume t� n
3
5 . Suppose l0 = t+ x. Then we get:

l0 =
γ

4
3 (n− 2 (l0 − t))
3 (2 (l0 − t))

2
3

⇔ t+ x =
γ

4
3 (n− 2x)

3 (2x)
2
3

⇔ x
2
3 t =

γ
4
3n

2
2
3 3

(
1− 2x

n
− 2

2
3 3x

5
3

γ
4
3n

)
.

If here x = o
(
n

3
5

)
, then the last equation would be x

2
3 = γ

4
3 n

2
2
3 3t

(1 + o (1)).

In this case, we would have x = γ2n
3
2

2·3
3
2 t

3
2

(1 + o (1)). As t � n
3
5 , we have

x = o
(

n
3
2

n
3·3
5·2

)
= o

(
n

3
5

)
. Therefore the condition is ful�lled and this x is

indeed the solution. In this case, we get

d (n, t, l0) =

(
γ2e3/2

33/2

)l0
el0−t (n− (2 (l0 − t)))3l0/2

l
3l0/2+2
0 (2 (l0 − t))l0−t+1/3

= e
5l0
2
−t

(
γ2 (n− 2z)3/2

3
3
2 2z

)l0

l
−2− 3l0

2
0 (2 (l0 − t))t−1/3

= e
5z
2

+ 3
2
t

(
2zt3/2 (n− 2z)3/2

n
3
2 2z

)l0

(t+ z)−2− 3(t+z)
2 (2z)t−1/3

= e
5z
2

+ 3
2
t

(
1− 2z

n

)l0
t3l0/2l

−2− 3l0
2

0 (2z)t−1/3

= e
5z
2

+ 3
2
t exp

(
3l0z

n

)
t3(t+z)/2 (t+ z)−2− 3(t+z)

2 (2z)t−1/3 ,

and the rest of the sum is again:
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∑
∆l∈O

√
l0

exp (log (d (n, t, l))− log (d (n, t, l0))) = (1 + o (1))

√
2l0π (l − t)
5l0 − 3t

= (1 + o (1))

√
2 (z + t) πz

5 (z + t)− 3t
.

Combining these results, we have:

D (n, t) = (1 + o (1))
√

2π
(2z)t+1/6

√
5z + 2t

(z + t)−3/2 t3(z+t)/2

× (z + t)−3(z+t)/2 exp

(
5z

2
+

3t

2
− 3 (z + t) z

n

)
,

and substituting this again in equation (48), we also get the �nal result of
Theorem 3.1.

4 Properties of random series-parallel graphs

In this section we will study prperties of random series-parallel graph. These
results will again be split into di�erent ranges as seen in theorem 3.1.

4.1 De�ciency and excess

First, we will look at the de�ciency. As was de�ned in Chapter 2.2, the
de�ciency d of a graph G is equal to 2l − 3k where l is the number of edges
in the kernel of G and k is the number of vertices in the same kernel. In
Chapter 3.4, we de�ned Cd(n,M) as the number of complex graphs with n
vertices,M edges and de�ciency d. As trees and unicyclic graphs do not have
a kernel, they do not contribute to the value of d. Concluding this, we will
look at the main value of d contributing to sp(n,M) for the di�erent regions
of M , getting the following theorem.

Theorem 4.1. Suppose G is a random series-parallel graph with n vertices
and M edges. Then:

(i) if M = n
2
− s with s� n

2
3 , G has a.a.s. de�ciency d = 0,

(ii) if M = n
2

+ s with n� s� n
2
3 , the expected de�ciency is d = Θ

(
s
n

)
,

(iii) if M = αn with 1
2
< α < 1, the expected de�ciency is d = Θ(1),
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(iv) if M = n− s with s� n
3
5 , but s� n, then d = Θ

(
n
s

)
,

(v) if M = n+ s with s = cn
3
5 , then d = Θ(n2/5),

(vi) if M = n+ s with n� s� n
3
5 , then d = Θ

(
s3/2

n1/2

)
.

Proof. At �rst, note that trees and unicyclic graphs do not have a kernel.
From this, we can immediately conclude that forM = n

2
−s with s� n

2
3 , the

de�ciency is a.a.s. zero, as such graphs have a.a.s. only these components.
As a consequence the number of these graphs does not give a contribution
to the de�ciency. Furthermore, we have seen in formula (19), that

sp (n,M) =
∑
k,l

(
n

k

)
C (k, k + l)S (n− k,M − k − l) .

In order to get the expected de�ciency, we have to look at the main terms k0

for k and l0 for l in this sum. With these we can �nd the expected de�ciency

for C(k0, k0 + l0), which, as seen in Theorem 3.13, is equal to Θ

(√
l30
k0

)
.

IfM is as in 4.1, we saw in Lemma 3.17 that l0 = Θ(kn−2/3) and in Lemma
3.18 that k0 = Θ(s). From all these conditions we have d = Θ(sn−1). As the
above mentioned lemmas also hold for s = (α − 1

2
)n, we can conclude that

in this case, we have a de�ciency of Θ(1).
However, in the case of M = n+ s, we have

sp (n,M) =
∑
k,l

(
n

k

)
C (n− k, n− k + l)S (k, k + s− l) .

So, in order to �nd the de�ciency as above, we have to calculate
√

l30
n−k0 .

Throughout this part of the proof, we have k0 = Θ(l− s), as seen in Lemma
3.19. Additionally, we know from the derivations of Lemma 3.20, that for
s� −n3/5, l0 = Θ(ns−2/3) and thus we can conclude that d = Θ(n |s|−1) for
this region. If l = cs = cn3/5, we get by using the estimates from Lemma 3.20
a de�ciency of d = n2/5. Finally, for s� n3/5, we have l = Θ (s) resulting in

a de�ciency of d =
√

s3

n
.

So the behaviour of the de�ciency is as follows. For M = (1
2

+ o(1))n,
the de�ciency is very small tending to zero as n goes to in�nity. Accordingly,
in this case G has a clean kernel a.a.s. If M = αn with 1

2
< α < 1, the

de�ciency is Θ(1), and hence not dependent on the size n of the graph. And

61



�nally, if M = (1 + o(1))n, the de�ciency tends to in�nity as n tends to
in�nity resulting in kernels with a greater number of edges.

The expected excess can be obtained in a similar fashion. As the excess
is given by the di�erence of the number of vertices and edges, this number is
given in advance. Another, more interesting number would be exc, the excess
of the complex part of the graph. For this we have the following statement.

Theorem 4.2. Suppose G is a random series-parallel graph with n vertices
and M edges. Then:

(i) if M = n
2
− s with s � n

2
3 , G has a.a.s. no complex components, and

consequently exc = 0,

(ii) if M = n
2

+ s with n
2
3 � s, the excess is exc =

(
2γ4/3

3
+ o (1)

)
sn−2/3,

(iii) if M = n + s with −s � n
3
5 , but s so that n + s � n

2
+ n2/3, then

exc = γ4/3(n+2s)

3(2s)2/3
,

(iv) if M = n+ s with s = cn
3
5 , then ex = bn3/5 (1 + o (1)),

(v) if M = n+ s with n2/3 � s� n
3
5 , then ex = s

(
1 +O

(
n3/2s−5/2

))
.

Proof. At �rst, note that trees and unicyclic graphs do not have complex
components. From this, we can immediately conclude that forM = n

2
−s with

s � n
2
3 , exc = 0 a.a.s., as such graphs have a.a.s. only these components.

Therefore the number of these graphs does not give a contribution to exc.
Furthermore, we have seen in formula (19) that:

sp (n,M) =
∑
k,l

(
n

k

)
C (k, k + l)S (n− k,M − k − l) .

In order to get the expected de�ciency, we have to look at the main terms k0

for k and l0 for l in this sum. With these we can �nd the expected de�ciency
for C(k0, k0 + l0), which is by de�nition equal to (k0 + l0)− k0 = l0.

If M = n
2

+ s, we saw in Lemma 3.17 that l0 = γ4/3

3
kn−2/3(1 + o(1)) and

in Lemma 3.18 that k0 = 2s(1 + o(1)). Using these two conditions, we get

l0 = 2γ4/3

3
(sn−2/3) up until the point where s = (α − 1

2
)n, resulting in an

excess of exc = Θ(n1/3).
Similarly, in the case of M = n+ s, we have:

sp (n,M) =
∑
k,l

(
n

k

)
C (n− k, n− k + l)S (k, k + s− l) .
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From this we have again l as the value for exc. We know from Lemma 3.20
that

l0 =
γ

4
3 (n− 2 (l0 − t))
3 (2 (l0 − t))

2
3

.

Redoing the calculations after this lemma, we get exactly the results stated
in the theorem.

4.2 Kernel and core

In this section we will calculate the size of the average kernel and the average
core. To calculate the expected number of vertices v and edges e of the kernel,
note that by de�nition the de�ciency d = 2e− 3v and from Lemma 2.12 we
have exc = e−v. From these two equations, we can compute v = 2 exc−d and
e = 3 ex−d. Using the results of the previous section, we get the following
theorem:

Theorem 4.3. Suppose G is a random series-parallel graph with n vertices
and M edges. Then exc � d and the kernel has on average 2 exc(1 + o(1))
vertices and 3 exc(1 + o(1)) edges.

Proof. By comparing the results of theorems 4.1 and 4.2 we see that in all
regions for M , d is asymptotically smaller than exc. Now, as stated at the
beginning of this section, the kernel has 2 exc−d = 2 exc(1 + o(1)) vertices
and 3 exc(1 + (1)) edges.

Conversely, to calculate the number of vertices in the core, we use the
way we counted all complex planar graphs and in particular Theorem 3.11
to get the following result.

Theorem 4.4. Let S be a random series-parallel graph with n vertices and
M edges. Then the following holds:

(i) if M = n
2

+ s with n� s� n
2
3 , the core has O

(
sn−1/3

)
vertices,

(ii) if M = n+ s with −s� n
3
5 , if s = −αn+ s1 such that 0 ≤ α < 1

2
and

s1 � n, the core has O
(
ns−1/3

)
vertices. Especially, if α > 0, the core

has θ
(
n2/3

)
vertices,

(iii) if M = n+ s with s = cn
3
5 , the core has O

(
n4/5

)
vertices,

(iv) if M = n+ s with n� s� n
3
5 , the core has O (

√
ns) vertices.
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Proof. In the proof of Theorem 3.12, more exactly in (33), we have seen that
the expected number of vertices in the core is

√
k (3l − d). As in the previous

section, d� l in the whole region. Therefore we have to look at the number√
3kl.
Firstly, we know from the previous section that k = 2s + O

(
n2/3

)
and

l = 2γ4/3sn−2/3 (1 + o (1)). From this, we get:

√
3kl =

√
4γ4/3s2n−2/3 (1 + o (1))

= 2γ2/3sn−1/3 (1 + o (1)) .

Secondly, as in the previous section, we will again distinguish three cases.

First, let n3/5 � −s � n. Then l = γ4/3n

3(2s)2/3
(1 + o (1)) and n − k =

n (1 + o (1)). From this we get√
3l (n− k) =

√
3n

γ4/3n

3 (2s)2/3
(1 + o (1))

=
γ2/3

21/3
ns−1/3 (1 + o (1)) .

If s = −αn+ s1 with 0 < α < 1
2
and s1� n, we have:

l =
γ4/3n (1− 2α)

3 (2s)2/3
(1 + o (1))

and as a consequence of that:√
3l (n− k) =

γ2/3 (1− 2α)1/2

21/3
ns−1/3 (1 + o (1)) .

Also, if s = −n
2

+ s1, we get the same asymptotics as in the case for (ii).
Suppose s = cn3/5. Then l = bn3/5 (1 + o (1)) and we get:√

3l (n− k) =
√

3bn3/5n (1 + o (1))

=
√

3bn4/5 (1 + o (1)) .

Finally, for n� s� n
3
5 we have l = s (1 + o (1)) and hence we get:√

3l (n− k) =
√

3sn (1 + o (1)) .

In this case as well, we see two critical regions. In the �rst at M = n
2

+ s,
the size of the core changes from sn−1/3 to ns−1/3 and in the second atM = n,
the size changes from n |s|−1/3 to

√
n |s|.
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4.3 The largest component

In this section we will compute the size of the largest component L1(G) of
a random series-parallel graph, showing that there are indeed two critical
phases as claimed in the introduction. We will �rst give a result on the size
of the largest component in random 3-regular multigraphs. From this we
will conclude a statement of the size of L1(G) where G is a random complex
series-parallel graph satisfying certain conditions. This will be enough to
prove the �rst phase transition. Finally, to see the second phase transition,
we will have to count the number of vertices not in the largest component.

Starting with 3-regular multigraphs, we have the following lemma.

Lemma 4.5. Let G(n) be a random complex 3-regular series-parallel multi-
graph as in Section 3.2. Further suppose j ≤ n

2
. Then the probability that

the largest component L1(G) has exactly n− j vertices is:

P (L1(G) = n− j) =

(
1 +O

(
1

n

))
gc

(
j − j2

n

)−5/2

.

Proof. As n − j ≥ n
2
, we have gc (n− j) di�erent choices for the largest

component and g (j) di�erent choices for the rest, as in this rest there cannot
be a bigger component. Furthermore, one can choose the n − j vertices in(
n
j

)
di�erent ways. With this we have:

P (|L1| = n− j) =

(
n

j

)
gc (n− j) g (j)

g (n)
.

Using Theorem 3.6, we get:

P (|L1| = n− j) =
(
1 +O

(
n−1
)) n!gc (n− j)−5/2 γn−j (n− j)!gj−5/2γjj!

j! (n− j)!gn−5/2γnn!

= gc

(
j (n− j)

n

)−5/2

.

Furthermore, using this we also get the following:

Lemma 4.6. There exist c, n0 constants such that for all n ≥ n0 and all j

P (|L1| ≤ n− j) ≤ Cj−
3
2 . (51)
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Proof. As we have seen in the previous lemma, we have for any �xed j ≤ i ≤
n
2

P (|L1| = n− i) = gc

(
i (n− i)

n

)−5/2

≤ C ′i−5/2

for some constant C ′, as 0 <
(

(n−i)
n

)−5/2

≤ 1. From this we get:

n
2∑
i=j

P (|L1| = n− i) = P
(n

2
≤ |L1| ≤ n− j

)
≤ C ′

n
2∑
i=j

i−5/2 ≤ C ′′j−
3
2 ,

as one can approximate the sum by the integral.
Thus one has to bind the term P

(
|L1| ≤ n

2

)
. To do this, we can observe

that in this case, there exists a partitioning of the vertex set in two sets V1,
V2 such that both have size in [n

3
, 2n

3
], |V1| + |V2| = n and there is no edge

between the sets. Using the number of possibilities for these sets gives an
upper bound on the number of graphs with largest component smaller than
n
2
. So

P
(
|L1| ≤

n

2

)
≤
∑n

2

i=n
3

(
n
i

)
g (i) g (n− i)
g (n)

=
(
1 +O

(
n−1
))
g

n
2∑

i=n
3

(
i (n− i)

n

)−5/2

≤ cn−3/2

for n big enough. Using these two estimates, we get the result.

With these two lemmas, we can move on to complex series-parallel graphs.

Lemma 4.7. Let C(k, k + l) be as in Section 3.1. If l = O
(
k1/3

)
, then the

size of the largest component L1 is k −O
(
k
l

)
.

Proof. From Lemma 4.6 for cubic graphs we have P (|L1| ≤ n− j) ≤ Cj−
3
2

for all j. From this, we have that this probability tends to 0, if j tends to
in�nity. The largest component has then a size of n−O (1). Furthermore, if
l = O

(
k1/3

)
, the exponential factor in formula (35) for C (k, k + l) is bound

by some constant. In this case we have C (k, k + l) = cγ2ll−
5
2kk+ 3l−1

2 e
3l
2 .

We can do the same thing as in Lemma 4.6 to get the size of the kernel of
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the biggest component to be 2l − O (1), as the total kernel size is 2l − d
with d = O

√
l3k−1 = O (1). The rest of the vertices are then added to the

kernel as trees. The expected size of such a tree on each vertex of the kernel
is k−2l+O(1)

2l−O1
and hence the size of the biggest component is expected to be

(2l −O (1)) k−2l+O(1)
2l−O1

= k −O (k/l).

Suppose we are before or in the �rst critical phase. Then the structure
of the biggest components is the same as in general random graphs, as a
general random graph is series-parallel with some �xed probability bounded
away from 0. In the subcritical phase the j−th largest component has Lj =(

1
2

+ o (1)
)
n2

s2
log

(
|s3|
n2

)
vertices for any �xed j and is a tree . In the critical

range, the j−th largest component has Lj = θ
(
n2/3

)
vertices and all complex

components (if any) have this size. For these statements see �uczak [21,
22]and �uczak, Pittel and Wierman [24]. For �nding the size of the biggest
component in the �rst supercritical range, we will use Lemma 4.7 which
states that the size of the biggest component is asymptotically k − O (k/l),
if l = O

(
k1/3

)
.

Theorem 4.8. Let S(n,M) be a random series-parallel graph with n vertices
and M = n

2
+ s edges, where n2/3 � s� n. Then its biggest component has

2s+O
(
n2/3

)
vertices. If M = αn for 1

2
< α < 1, then the largest component

has (2α− 1 + o (1))n vertices. Also, a.a.s. this component is complex.

Proof. In this region, we have k = 2s (1 + (1)) and l = O
(
k (n+2s−2k)2/3

(n−k)4/3

)
=

O
(
kn−2/3

)
= o

(
ss−2/3

)
= o

(
s1/3
)

= o
(
k1/3

)
. We can use Lemma 4.7 and

get in this case the following statement:

k −O
(
k

l

)
= 2s+O

(
n2/3

)
−O

( s

sn−2/3

)
= 2s+O

(
n2/3

)
vertices.

In the middle range for M = αn, 1
2
< α < 1, we have l = O

(
n1/3

)
and

k = n (2α− 1 + o (1)). Here we can again use Theorem 4.7 to get for the
size of the biggest component:
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L1 = k −O
(
k

l

)
= (2α− 1 + o (1))n−O

(
n

2
3

)
= (2α− 1 + o (1))n.

Concluding this, we have that at the point M = n
2

+ cn2/3 the size of the

largest component jumps from L1 =
(

1
2

+ o (1)
)
n2

s2
log

(
|s3|
n2

)
for s � −n2/3

as one of many of this size to a single largest component of size 2s+O
(
n2/3

)
for s � n2/3, the giant component. Nonetheless, the excess of the largest
component remains at O(n1/3) throughout the range M = αn, 1

2
< α < 1,

as seen in Theorem 4.2. This shows that, although complex, the largest
component does remain relatively sparse throughout this region. Suppose
M = αn for some α = 2 − ε. Then the graph is a.a.s. connected, as a
series-parallel graph has less than 2n edges. In this case, the excess of this
component is of order n. Therefore at some point this behaviour has to
change. We will show that this change does occur at M = n+ cn3/5.

As we have seen in Theorem 4.1, for M = n(1 + o(1)) the de�ciency is
asymptotically bigger than one and so Lemma 4.7 cannot be used. Kang
and �uczak proposed in [18] that one can expand the region as to where this
lemma holds, but were not able to prove it. One has to �nd another way of
calculating the largest component. Looking at the M = αn, 1

2
< α < 1, one

can conclude, that the size of the largest component is asymptotically the
same as the number of vertices in the complex component, as both have a
size of (2α− 1)n+O(n2/3), as seen in theorems 3.18 and 4.8. From this one
can conclude that also for M = (1 + o(1))n, the main terms of these will be
the same, as by adding more edges the size of the largest component will not
decrease. Using this, we get the following result.

Theorem 4.9. Let M = n+ s with −n� s� n2/3. Then at most O(l− s)
vertices are not in the complex component where l is the expected excess of
the complex part.

Proof. Like before, asymptotically almost all vertices of the complex part of
the graph are in the giant component. From this we have that the asymptotic
number of vertices not in the giant component is determined by the number
of vertices in all trees and unicyclic components. As we have seen in Lemma
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3.19 the number of vertices in these components is 2(l − s) + O((l − s)2/3)
where l is as described as above.

We can use this to get the results on the structure of L1.

Theorem 4.10. Let M = n + s and L1 be the size of the giant component.
Then the following holds.

(i) If −n � s � −n3/5, then the giant component has n − (2 + o(1)) |s|
vertices and an excess of

(
γ4/3

33/22
+ o(1)

)
ns−2/3.

(ii) If s = cn3/5 and b such that b3/2(b−c) = γ4/3

2·33/2 , then the giant component

has n− (2(b− c) + o(1))n3/5 vertices and an excess of (b+ o(1))n3/5.

(iii) If n3/5 � s � n2/3, then the expected number of vertices in the gi-

ant component is n −
(

γ2

33/2
+ o(1)

)
n3/2s−3/2 and it has an excess of

s
(
1 +O

(
n3/2s−5/2

))
.

Proof. In all three cases, the excess is an immediate consequence of Theorem
4.2 and the fact that the giant component is approximately the entire complex
part of the graph. As to obtain the size of the giant component, we use the
values for exc from the same theorem and the fact from the previous theorem
that L1 is approximately n− (2(exc−s) +O((exc−s)2/3)).

The reason for limiting s with s� n2/3 is due to the fact that for s bigger
than this value the error term for the size of the giant component is bigger
than O(

√
n) which is too big for exact structural properties. For the rest of

the region, we get a sudden increase in the density at this values of M from
exc = Θ(n1/3) at s → −n up to Θ(n2/3) for s = Θ(n2/3). Also this is the
right parameterisation of the region as at s = cn3/5 the asymptotics of the
excess changes from n

s2/3
to s.

5 Discussion

5.1 Outerplanar graphs

Outerplanar graphs is a class of graphs, which contains forests, but is con-
tained in the class of series-parallel graphs. They are de�ned as follows.

De�nition 5.1. A graph G is called outerplanar if there exists an embedding
in the plane such that there exists a face, which is adjacent to all vertices in
the graph.
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It has been shown that there is also a characterization for outerplanar
graphs in terms of forbidden minors (e.g. in [8]). This characterization states
clearly why in most cases series-parallel graphs and outerplanar graphs are
looked at simultaneously.

Theorem 5.1. A graph G is outerplanar i� G does not contain K4 and K2,3

as minor.

Taking this into consideration, one would think that the method stated in
this thesis would also yield similar results for the class of outerplanar graphs,
but there are some unexpected di�culties that arise if one tries the same way
to prove similar statements.

The �rst part, as seen in Section 3.2, works exactly the same with the
following changes.

Theorem 5.2. Let G (x), B (x), D (x), S (x) as in the case of series-parallel
graphs and let

• P1 (x) be the EGF of all graphs with root e such that e is a multiple
edge with f and G− {e, f} is connected.

• P2 (x) be the EGF of all graphs with root e such that e is a single edge
and G− {s, t} is not connected.

Then the system of equations for these generating functions is

3x
dR

dz
(z) = B (z) +D (z) + S (z) + P1 (z) + P2 (z) (52)

B (z) = (D (z) + S (z) +B (z) + P1 (z))
z2

2
+
z2

2
(53)

D (z) =
B (z)2

z2
(54)

S (z) = (B (z) + S (z) + P1 (z)) (B (z) + P1 (z)) (55)

P1 (z) = z2 (B (z) + S (z) + P1 (z)) +
z2

2
(56)

P2 (z) =
z2

2
(B (z) + S (z) + P1 (z))2 . (57)

Proof. The di�erence between outerplanar graphs and series-parallel graphs
is that K2,3 is not allowed as minor. One has to restrict the system for
series-parallel graphs in a way that a K2,3−minor cannot occur.

As P1 and P2 cover all graphs covered in P in de�nition 3.5, if one replaces
P1 by P1 + P2 on all right sides above (except the �rst), one gets the system
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for series-parallel graphs. Therefore one has to show that by generating a
P2-root, one would have a K2,3−minor and by all other constructions one
cannot get a K2,3−minor.

By replacing a b−, s−, p1− or p2−root, one replaces a path of at least
length 2 by a new root. In the case where this root is a p2−root, there are
at least two additional paths of length 2 from s to t. As a consequence we
would have had a K2,3−minor before the substitution.

If the root is a p2−root, the path deleted was only a path of length one,
as it can only be the �rst edge used as root and does not occur later in the
process. Hence it does not delete any K2,3.

Also, the substitution of b−, d−, s− and p1−roots cannot delete possible
K2,3−minors from G, as these replacements do a�ect at most one of the three
paths needed for a K2,3. Also, if the corresponding path shrinks to a path of
length one, this edge is the root in the next step and again only a b−, d−,
s− or p1−root. As such it does again only use one possible path.

It remains to show that these substitutions only a�ect one path. d−roots
do not a�ect K2,3−minors at all, as their substitution does not shorten any
paths possibly occurring in such a minor. Itself cannot be part of one also
as it is a bridge and as such cannot occur in a 2-connected component.

Similarly, b−roots a�ect only the length of one path from 2 to 1. The
third possible path from the deleted vertex is the one leading only to the
b−root. Therefore the deleted vertex cannot be one of the two vertices con-
nected by the three di�erent paths. Therefore only one path was a�ected.
A replacement of a p1−root deletes two vertices. But these were connected
by one non-root edge. This edge did not emerge by replacing more than one
edge. So also these two vertices cannot be one of the vertices connected by
three di�erent paths in K2,3.

Finally, the replacement of an s−root partitions the graph in two parts.
The two corresponding vertices have to be in the same part, as there were only
two connections between the parts. Consequently the cut o� part was only
on one path. A K2,3−minor occurring at the start would be also present
in the end, but the only graphs at the end are a graph with two vertices
with three edges between them and a graph with two vertices, one loop at
each end and one connection between them. Both of these do not contain a
K2,3−minor.

Again, using the same method as in the series-parallel case, let H (z) =
B (z) + S (z) + P1 (z). One then gets the equation

0 = 4H4z4 +H3z2
(
4 + 12z2

)
+H2

(
−4 + 20z2 + 13z4

)
+H

(
−8 + 24z2 + 6z4

)
+ z2

(
8 + z2

)
. (58)
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The discriminant of this polynomial is 1024(80z4−640z6 +1076z8 +504z10−
61z12 + 2z14) and rises the main singularity at z = 0.440 with the corre-
sponding value H = 0.787. Again the main terms cancelling in p(H +
0.787, z+0.440) are H2 and z. We get again H (z) = ±3.380(z−0.440)1/2(1+
o (1)). Analogously we get for Ropl, as in the series-parallel case, rn =
0.422n−5/2γno (1 + o (1)), where γo = 1

0.440
= 2.273. Comparing this with the

growth rate of series-parallel graphs, γ = 2.392, this is a believable di�erence,
as the class of series-parallel graphs is clearly bigger.

We will try to prove a statement similar to Theorem 3.11. This will
not work exactly the same, as one cannot put vertices on all the edges in
the kernel, because of the possibility of getting K2,3-minors. To do this, we
would have to replace the number of edges e in the kernel by the number of
edges e′ in the kernel on which one is allowed to put additional vertices. For
this number holds the following inequality.

Proposition 5.3. In the setting of Theorem 3.11 for outerplanar graphs one
has to replace e by e′ with e

3
≤ e′ ≤ e.

Proof. Obviously e′ ≤ e as the number of allowed edges is a subset of all
the edges. We want to �nd a lower bound on the number of allowed edges.
Suppose the kernel is partitioned in its 3-connected components and the
edges between them. Clearly all edges between such components are allowed,
as K2,3 is 2-connected. Now each 2-connected outerplanar multigraph has
a unique Hamiltonian cycle (up to multiple edges). This is true because
of the following observations. Each 2-connected outerplanar graph has a
Hamiltonian cycle, because all vertices have to lie at the outer face and the
border of this face is a Hamiltonian cycle. However, if there would be two
Hamiltonian cycles di�ering by a permutation of the vertices, then the edges
of these cycles would form a K4-minor. All the edges (one per multiple
edge) from this Hamiltonian cycle are allowed, and all the others are not.
This holds, because, a vertex on a diagonal would imply a K2,3-minor, as
would vertices on two edges in a multiple edge. Furthermore, after inserting
all vertices, the core is a graph without multiple edges or loops. Hence all
diagonals are single edges and all multiple edges on the Hamiltonian cycle
have at most two edges and therefore we have n allowed edges and at most
n+ (n− 3) forbidden edges per 2-connected component with n vertices. As
a consequence at least 1

3
of all edges are allowed.

The problem is that this factor of 1
3
≤ δ ≤ 1 does appear in the leading

terms of all subsequent calculations not only as a factor but actively changing
the asymptotics. Nonetheless it is strongly expected that nearly the same
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estimates as for series-parallel graphs do also hold in the case of outerplanar
graphs.

5.2 Comparisons to planar graphs

If one compares the results of this thesis with the results on planar graphs
given by Kang and �uczak in [18], one will �nd that the results do not
di�er by very much. The most notable di�erence is in at the beginning
of the counting for 3-regular graphs, where series-parallel graphs have an
asymptotic of g(n) = (1 + O(n−1))gn−5/2γnn! an planar graphs have an
asymptotic of g(n) = (1+O(n−1))gn−7/2γnn!. The di�erences in the number
of such graphs is as follows.

Let δ(n,M) := sp(n,M)
pl(n,M)

where pl(n,M) is the number of planar graphs
with n vertices and M edges. Then:

(i) δ(n, n
2

+ s) = 1 + o(1), if s� −n2/3,

(ii) δ(n, n
2

+ s) = Θ(1), if s = cn2/3,

(iii) δ(n, n
2

+ s) = Θ(1)n−2/3s exp(−1.88sn−2/3), if s� n2/3,

(iv) δ(n, αn) = Θ(1)n1/3 exp(−Cn1/3) for some positive value C dependent
only on α for 1

2
< α < 1.

Also in this region, the excess of the complex part and the size of the core
di�er by a factor of Θ(1). Furthermore if M = n(1 + o(1)) the excess of
the complex component and the core di�er again by a factor of Θ(1). As in
this case the values of pl(n,M) and sp(n,M) depend strongly on the value
of the excess, these values do strongly di�er in this region, although they are
structurally nearly the same. Finally, the number of vertices in the largest
component is a.a.s. the same in both graph models. These statements can
easily be seen by comparing the results from this thesis with [18].
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