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Abstract

The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) makes use of low-low

Satellite-to-Satellite Tracking (ll-SST) between the two spacecraft GRAIL-A and GRAIL-B to

determine a high-resolution gravity field solution of the Moon. The mission concept is inherited

from the GRACE project, a space-gravimetry mission mapping the terrestrial gravity field.

Since the Moon is in synchronous rotation with the Earth, direct tracking of satellites on the far-

side is impossible, but GRAIL provides global coverage of inter-satellite tracking data. Further-

more, ll-SST observations are much more sensitive to gravitational features than ground-based

orbit tracking. Therefore, compared to previous missions, GRAIL enables a more accurate es-

timation of the lunar gravity field. The accurate knowledge of the lunar nearside and farside

gravity is essential to improve the understanding of the Moon’s interior structure and its thermal

evolution.

Based on simulated orbit positions and ll-SST observations a series of sensitivity studies was

conducted. From the simulated observations the spherical harmonic coefficients, which repre-

sent the lunar gravity field, are estimated using an integral equation approach. This approach

is based on the solution of Newton’s equation of motion, formulated as a boundary value problem.

Furthermore, three months of real data are analyzed to derive a preliminary lunar gravity field

model from GRAIL ll-SST measurements. Since the real data analysis done in this work does

not include orbit determination, the GRAIL orbits provided by NASA’s PDS (Planetary Data

System) have been used.

The availability of global inter-satellite tracking data improves the spatial and spectral resolution

of both the lunar nearside and farside compared to the reference gravity field model JGL165P1.

Importantly, the GRAIL mission enables the estimation of a high-resolution gravity field model

without any regularization.

Observation simulation and parameter estimation is accomplished using the GROOPS (Gravity

Recovery Object Oriented Programming System) software package. Within the framework of

this thesis the software has been adapted for the purpose of simulating GRAIL observations and

processing GRAIL real data.
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Kurzfassung

GRAIL (Gravity Recovery and Interior Laboratory) ist eine Satellitenmission der NASA, beste-

hend aus den beiden Satelliten GRAIL-A und GRAIL-B, welche den Erdmond umkreisen. Ziel

der Mission ist die Bestimmung eines hochauflösenden lunaren Schwerefeldmodells aus den rel-

ativen Distanzänderungen zwischen den beiden Satelliten (low-low Satellite-to-Satellite Track-

ing (ll-SST) Prinzip). Das Missions-Konzept wurde von der GRACE-Mission, ein Projekt zur

genauen Bestimmung des Erdschwerefeldes, übernommen.

Aufgrund der gebundenen Rotation zwischen Erde und Mond können Satelliten, welche sich

auf der erdabgewandten Seite befinden, nicht direkt beobachtet werden. Mit Hilfe der ll-SST

Beobachtungen kann allerdings eine globale Datenabdeckung des Mondes erreicht werden. Des

Weiteren sind Relativmessungen weitaus sensitiver als erdgebundene Orbitbeobachtungen. Da-

her ermöglicht GRAIL im Vergleich zu bisherigen Mondmissionen die Schätzung eines räumlich

und spektral weitaus hochauflösenderen Schwerefeldes. Die genaue Kenntnis des lunaren Schw-

erefeldes soll Aufschlüsse über den inneren Aufbau des Mondes und dessen thermaler Evolution

geben.

Basierend auf simulierten Orbit und ll-SST Beobachtungen wurde eine Reihe von Sensitivitätsstu-

dien durchgeführt, um den Einfluss unterschiedlicher Parameter zu untersuchen.

Mit Hilfe der simulierten Daten können die Potentialkoeffizienten eines lunares Schwerefeldmod-

ells anhand des Integralgleichungsansatzes bestimmt werden. Dieser Ansatz basiert auf einer als

Randwertaufgabe formulierten Lösung der Newton-Euler Bewegungsgleichung.

Neben den Simulationsstudien wurden auch Realdaten über einen Zeitraum von drei Monaten

verwendet um ein Mondschwerefeldmodell zu schätzen. Da die Orbitbestimmung nicht Teil der

Realdatenanalyse dieser Arbeit ist, werden die vom NASA PDS (Planetary Data System) zur

Verfügung gestellten GRAIL Orbits verwendet.

Im Vergleich zu früheren Schwerefeldlösungen sind deutliche Verbesserungen sowohl auf der erd-

abgewandten, als auch auf der erdzugewandten Seite erkennbar. Diese Verbesserungen sind auf

die globale Abdeckung der ll-SST Beobachtungen zurückzuführen. Ein weiterer wesentlicher

Aspekt der globalen Datenverfügbarkeit besteht darin, dass für die Lösung des Ausgleichs keine

Regularisierung notwendig ist.

Die Simulation und Auswertung der Beobachtungsdaten erfolgt mit Hilfe des Softwarepakets

GROOPS (Gravity Recovery Object Oriented Programming System). Die Software wurde im

Rahmen dieser Masterarbeit entsprechend erweitert, um die Simulation und die Analyse von

GRAIL Daten zu ermöglichen.
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Chapter 1

Introduction

1.1 Motivation

During history, the Moon, our closest neighbour in the solar system, always fascinated people

and has been studied extensively. In 1609, Galileo Galilei drew one of the first pictures of the

Moon’s nearside using a telescope. He noted for the first time that the lunar surface was not

smooth, but has visible features like mountains and craters. Direct lunar exploration began in

1959 when the farside was observed for the first time by the unmanned Russian Luna 3 mission,

which orbited the Moon and took images of the lunar surface. The gravity field of the Moon was

fist investigated in 1966 by the Russian Luna 10 mission, which first orbited the Moon (Akim,

1966). The discovery of mass concentrations (mascons) 1 from the Lunar Orbiter Doppler data

was the first evidence of medium-wavelength gravity field variations on the Moon (Muller and

Sjogren, 1968). Mascons, which are mainly found on the nearside, are significant positive grav-

ity anomalies associated with areas of high density under rigid lowland maria 2. They contain

information about the impact processes leading to mascon formations and possibly contain in-

formation about the Moon’s early thermal history. Besides, they were of immense practical

importance during the Apollo missions.

On July 20, 1969 the NASA (National Aeronautics and Space Administration) mission Apollo 11

landed the first humans, the two astronauts Neil Armstrong and Edwin Aldrin, on the lunar

surface. During NASA’s Apollo program between 1969 and 1972 six manned landings on the

lunar surface succeeded.

Satellite techniques enable scientists to use measurements from satellites to recover the lunar

gravity field or to pursue other scientific purposes. Recent missions such as Lunar Prospec-

tor (LP), Chang’e 1 & 2 and Lunar Reconnaissance Orbiter (LRO) provide lunar gravity field

estimates with a relatively high resolution compared to previous models. But there is still room

for improvement; not only due to the lack of farside data, but also due to the sensitivity of orbit

tracking data.

1 A mass concentration (or mascon) describes a geologic structure that has a large positive gravitational

anomaly associated with a feature that would have been expected to have a negative anomaly.
2 The lunar maria (singular: mare) are large, dark, basaltic plains on the lunar surface formed by ancient

volcanic eruptions. The plains were named maria, derived from the Latin word for seas, by early astronomers who

mistook them for actual seas. The maria cover about 16 percent of the lunar surface and can be found mainly on

the nearside.
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1 INTRODUCTION

LP achieved an improvement of the nearside gravity field by using a circular polar orbit with

a low 100 km altitude (Konopliv et al., 1998). The Japanese Selenological and Engineering

Explorer (SELENE) mission improved the farside gravity field of the Moon by using a relay

subsatellite (Namiki et al., 2009). An extract of historic and recent lunar missions is listed in

Table 1.1.

The Moon is the only natural satellite of the Earth and is compared to the size of the Earth

the largest natural satellite in the solar system. To planetary science the Moon is significant,

because it keeps the historical record of the solar system due to the lack of geological activities

on the Moon.

As the Moon and the Earth are in a spin-orbit resonance, always the same side of the Moon

(nearside) faces the Earth. Due to the synchronous rotation the Earth-based tracking of satel-

lites orbiting the Moon is limited. Therefore, no direct radio tracking is possible if satellites

fly over the lunar farside and are not in view from Earth. The lack of direct farside tracking

makes the use of a-priori constraints (regularization) during the estimation process necessary.

Therefore, most lunar gravity field models use a scaled Kaula rule to fit the gravity field over

the farside (Floberghagen, 2002).

Now the following questions arise: How can the Gravity Recovery and Interior Laboratory

(GRAIL) mission improve the lunar gravity field? And how can studying the lunar gravity field

improve the knowledge about the Moon?

First of all, GRAIL provides global data coverage and improves the nearside and farside gravity

field solution by the availability of global low-low Satellite-to-Satellite tracking data (cf. Chap-

ter 8). For the first time ever (in planetary science) high-accurate and high-sensitive relative

measurements are provided compared to pure orbit tracking data. GRAIL enables the recovery

of the most accurate gravity field model of the Moon to date, which will improve the under-

standing of the Moon’s interior structure and thermal evolution.

The combination of the high-resolution lunar gravity field with a topographical map allows con-

clusions to be drawn about the interior structure and composition of the Moon. Besides, it

improves the understanding of the thermal evolution, the history of the Moon’s heating and

cooling, which gives insight into the Moon’s origin and development. Furthermore, the gained

knowledge could be extended to other rocky planets in the inner solar system: Mercury, Venus,

Earth and Mars. GRAIL will help to reconstruct their evolutionary history.

Moreover, the accurate knowledge of the lunar gravity field will be an invaluable navigational

aid for future lunar missions.

2



1 INTRODUCTION

Table 1.1: Overview of past and recent lunar missions

Year Mission Country Comment

1959 Luna 1 RUS first flyby

1959 Luna 3 RUS first pictures of the farside

1966 Luna 10 RUS first lunar orbiter

1968 Apollo 8 USA first manned lunar orbiter

1969 Apollo 11 USA first manned landing on the lunar surface

1971 Apollo 15 USA first manned lunar rover

1998 Lunar Prospector USA

2007 SELENE (Kaguya) Japan

2007 Chang’e 1 China

2009 LRO USA ongoing

2010 Chang’e 2 China

2011 GRAIL USA decommissioned

1.2 Concept of ll-SST

One of the measurement techniques used in satellite geodesy is the so-called “Satellite-to-Satellite

Tracking (SST)”, which is part of the Space-to-Space techniques. SST uses satellites to track

other satellites; basically two types of SST are distinguished (cf. Figure 1.1):

• High-low Satellite-to-Satellite Tracking (hl-SST)

• Low-low Satellite-to-Satellite Tracking (ll-SST)

mass anomaly

GNSS satellites

hl-SST ll-SST

mass anomaly

Figure 1.1: Concept of hl-SST and ll-SST

3
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High-low Satellite-to-Satellite Tracking

The orbit of a low altitude spacecraft is determined using several high altitude satellites with

accurately known orbits, such as GNSS (Global Navigation Satellite System) satellites, in case

of the Earth.

In planetary science the SELENE mission used a relay-satellite to determine the orbit of the

spacecraft on the lunar farside via Doppler tracking.

Low-low Satellite-to-Satellite Tracking

Two satellites are placed in the same orbit with a separation up to a few hundreds of kilometers.

The changes in the relative distance between the two spacecraft are caused by irregularities in

the gravity field and can be measured by an on-board ranging system.

The GRACE (Gravity Recovery And Climate Experiment) mission combines both techniques

to determine the Earth’s gravity field from continuous GPS (Global Positioning System) orbit

tracking data (hl-SST) and inter-satellite tracking data (range, range rates and range accelera-

tions; ll-SST). The successful GRACE concept can be transferred to GRAIL if some necessary

adjustments are made (cf. Table 1.2, for details on GRAIL refer to Chapter 2). Since there is

no GPS-tracking available, the spacecraft orbit on the nearside is determined using Earth-based

Doppler tracking via the Deep Space Network (DSN).

GRAIL is the first lunar mission using the ll-SST concept, hence some advantages to previous

missions (cf. Table 1.1) arise:

• Global data coverage (inter-satellite tracking data)

• More accurate Ka-band ranging measurements compared to ground-based orbit tracking

• Estimation of a high-resolution gravity field without regularization due to the availability

of farside data

4



1 INTRODUCTION

Table 1.2: Comparison - GRAIL vs. GRACE

GRAIL GRACE

Mission Overview

Operator NASA NASA, DLR

Launch 10-Sept-2011 17-March-2002

Launch site Cape Canaveral (USA) Plesetsk (RUS)

Mission status decommissioned active

Orbit characteristics

Orbital period 113 min 94.5 min

Altitude ∼55 km (± 35 km) 450-500 km

Inclination 89.9◦ w.r.t lunar equator 89◦

Separation distance 82-218 km ∼220 km

Payload

Microwave ranging system Ka-Band (32 GHz) K-Band (24 GHz) and

Ka-Band (32 GHz)

Orbit determination Doppler Tracking via Global Positioning System

the Deep Space Network (GPS)

(DSN)

Accelerometer — to measure

non-gravitational forces

Time Transfer System (TTS) to replace the GPS timing

functionality

—

5



Chapter 2

GRAIL

2.1 Mission overview

The NASA mission GRAIL makes use of low-low Satellite-to-Satellite Tracking between two

twin spacecraft to determine a high-resolution gravity field solution of the Moon. The two

spacecraft GRAIL-A (Ebb) and GRAIL-B (Flow) were launched from the Cape Canaveral Air

Force (CCAF) Station in Florida (USA) on 10th September 2011 on-board a Delta II launch

vehicle.

The mission concept is inherited from the GRACE project, a space gravimetry mission mapping

the terrestrial gravity field (cf. Table 1.2). The two spacecraft are placed into the same orbit

around the Moon and measure the changes in their relative motion very precisely. Since the

orbit is perturbed by the gravity field of the Moon, areas of greater and lesser density cause

variations in the relative distance and the spacecraft will move slightly toward and away from

each other. If one of the probes flies over an area of greater density, caused by surface features

such as mountains, mass concentrations (mascons) and craters or by masses hidden beneath the

lunar surface, the attraction increases and the relative distance changes accordingly.

Since the Moon is in synchronous rotation with the Earth, direct (radio) tracking of the satellites

on the farside is impossible, but GRAIL provides global coverage of inter-satellite tracking

data. Furthermore, ll-SST observations are much more sensitive to gravitational features than

ground-based orbit tracking. Therefore, compared to previous missions, GRAIL enables a more

accurate estimation of the lunar gravity field, with a much higher spectral and spatial resolution.

Figure 2.1: GRAIL satellite configuration and measurement principle (Source: NASA)

6
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2 GRAIL

2.1.1 Science objectives

The accurate knowledge of the lunar nearside and farside gravity is essential to improve the

understanding of the Moon’s interior structure and its thermal evolution.

“These objectives will be accomplished by implementing the following lunar science investiga-

tions:

1. Map the structure of the crust and lithosphere.

2. Understand the Moon’s asymmetric thermal evolution.

3. Determine the subsurface structure of impact basins and the origin of mascons.

4. Ascertain the temporal evolution of crustal brecciation and magmatism.

5. Constrain deep interior structure from tides.

6. Place limits on the size of the possible inner core.” (Zuber et al., 2008, p.1)

Furthermore, the knowledge gained on the internal structure and thermal evolution of the Moon

should be extended to other terrestrial planets in the inner solar system to improve the under-

standing of their evolution as well (Hoffman et al., 2010; Zuber et al., 2008).

2.2 Mission design

2.2.1 Spacecraft & payload

The two spacecraft GRAIL-A and GRAIL-B, named Ebb and Flow, are nearly identical. The

main structure and propulsion systems of the Lockheed-Martin built spacecraft are based on

the Experimental Small Satellite (XSS-11) bus. Other parts of the spacecraft are inherited from

the Mars Reconnaissance Orbiter (MRO). The GRAIL spacecraft have a rectangular structure

with a fully fuelled mass of about 307 kilograms. The spacecraft are shown in Figure 2.2.

Figure 2.2: GRAIL spacecraft (top view and bottom view) from Spath (2012, p. 8)
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The payload on each spacecraft consists of

• the Lunar Gravity Ranging System (LGRS) and

• the Education and Public Outreach (E/PO) MoonKAM (Moon Knowledge Aquired by

Middle school students) System.

Lunar Gravity Ranging System

The science payload is the LGRS, which is derived from the GRACE mission. The instrument

consists of the following elements:

Ka-band (32 GHz) transmitter-receiver: dual-one-way ranging measurement to measure

the relative range differences between the two spacecraft.

S-Band (2 GHz) Time Transfer System (TTS): provides a two-way time-transfer link be-

tween the spacecraft to synchronize and measure the clock offset between the two LGRS clocks.

X-Band (8 GHz) Radio Science Beacon (RSB): provides a one-way signal to the ground

to determine the orbit via Doppler Tracking.

Ultra-Stable Oscillator (USO): provides a steady reference frequency, that is used by all of

the other instrument elements.

Education and Public Outreach Instrument - MoonKAM

The MoonKAM system consists of a digital video controller and a set of cameras to take images

or videos of the lunar surface. Middle school children are involved in the image collection by

operating the cameras (Hoffman et al., 2010; NASA Press Kit, 2011).

2.2.2 Mission phases

The GRAIL mission is subdivided into the following seven mission phases (cf. Figure 2.3):

Launch: initial spacecraft launch from the CCAF Station on 10th September 2011

Trans-Lunar Cruise (TLC): 4 month low energy trajectory via the Sun-Earth Lagrange point

to the Moon. On 31st December 2011 GRAIL-A and on 1st January 2012 GRAIL-B approach

the Moon under its south pole.

Lunar Orbit Insertion (LOI): both spacecraft are placed into near-polar, elliptical orbits

with an orbital period of 11.5 hours.

Orbit Period Reduction (OPR): a series of maneuvers is performed to reduce to near-polar,

near-circular orbits with a mean altitude of 55 kilometers and an orbital period of just under

two hours.
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Transition to Science Formation (TSF): a series of maneuvers is performed to achieve the

initial separation distance and to ensure that the satellites fly in formation, i.e. that GRAIL-B

is ahead of GRAIL-A.

Science Phase: is subdivided into Primary Mission (PM) and Extended Mission (EM). This

phase consists of the collection of gravity science data and imaging the lunar surface by the

MoonKAM system.

Primary Mission: during the 82-day Science Phase three 27.3-day mapping cycles (lunar side-

real period) are completed, therefore the Moon rotates three times underneath the GRAIL orbit.

The PM started on 1st March 2012 and lasted until 29th May 2012. During the PM the mean

orbit altitude is 55 km (± 35 km) and the separation distance varies between 82-218 km.

Extended Mission: the PM was planned to end on 4th June 2012, at the time of a partial lunar

eclipse. The EM started on 30th August 2012, therefore GRAIL collected another three months

of data at an even lower orbit altitude.

Decommissioning Phase: impact of the spacecraft on the lunar surface on 17th December

2012.

Further details on the GRAIL mission phases can be found in Hoffman et al. (2010) and NASA

Press Kit (2011).

Table 2.1: Overview of GRAIL mission phases

Mission phases

Launch 10-Sept-2011

Lunar Orbit Insertion 31-Dec-2011 (Ebb)

01-Jan-2012 (Flow)

Science Mission March-May 2012

Extended Mission Start 30-Aug-2012

Decommissioning 17-Dec-2012

Figure 2.3: Initial GRAIL mission design time line from Havens and Beerer (2012, p. 2)

9



2 GRAIL

2.3 Data levels

All available data products related to GRAIL are archived and distributed by the Geosciences

Node of NASA’s Planetary Data System (PDS).

The GRAIL Science Data System (SDS) uses NASA processing levels, which are defined in Ta-

ble 2.2. For the gravity field recovery calibrated data products (processing level 1B) are used.

The LGRS CDR (Calibrated Data Record) data set contains calibrated and resampled data

from the Lunar Gravity and Ranging System.

Table 2.2: Processing levels from Kahan (2012, p. 8)

NASA level Description

Level 0 Corrected for telemetry errors and split or decommutated

according to instrument. Sometimes called Experimental

Data Record (EDR). Data are also tagged with time and

location of acquisition.

Level 1a Edited data that are still in units produced by instrument,

but that have been corrected so that values are expressed in

or are proportional to some physical unit such as radiance.

No resampling, so original values can be recovered.

Level 1b Data that have been resampled in the time or space do-

mains in such a way that the original edited data cannot

be reconstructed. Could be calibrated in addition to being

resampled.

Level 2 Derived results, as maps, reports, graphics, etc.

10



Chapter 3

Synthesis - Orbit integration

In the case of simulation studies, orbit information and ll-SST measurements (ranges, range

rates, range accelerations) have to be simulated at first. From the simulated observations the

spherical harmonic coefficients, which represent the lunar gravity field, can be estimated in a

second step (cf. Chapter 5). The first step is denoted as synthesis and includes the orbit inte-

gration from an a-priori reference field.

The relation between the satellite motion and all perturbing forces acting on the satellites has

to be established. Therefore, a physical model, describing the orbital motion, is introduced.

Since the equation of motion depends on the forces acting on the satellite, this forces have to

be modeled in an accurate way.

The purpose of this chapter is to describe the modeling of the gravitational perturbing forces.

In particular, the accelerations due to the gravity field of the Moon and the accelerations due

to other celestial bodies, especially Earth and Sun, are described in more detail. Due to the

reason that for Moon-orbiting satellites non-gravitational forces have much less influence than

gravitational forces, they are not taken into account.

The equations of motion are only valid in a space-fixed, inertial reference system. Whereas, the

gravitational potential is defined with respect to a body-fixed system. A body-fixed system is

also required for the description of results derived from satellite geodesy (e.g. selenoid 1 heights)

(Seeber, 1989).

Therefore, the necessity of transformations between both systems arises. All required transfor-

mations are described in this chapter as well.

Observation simulation and parameter estimation is accomplished using the GROOPS (Gravity

Recovery Object Oriented Programming System) software package. An overview of the workflow

of the synthesis is given in Figure 3.1.

The simulation of ll-SST observations is described in Chapter 4.

1undulations referred to the Moon. The word “seleno” denotes the Moon and is derived from the Greek Deity

Selene.
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Figure 3.1: Workflow - Synthesis
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3.1 Physical model

According to Newton’s second law of motion

The rate of change of momentum of a body is proportional to the force impressed and is in the

direction in which the force acts,

the connection between the orbital motion of a satellite and all forces acting on it can be

established. The second law of motion is valid in an inertial system:

∂p(t)

∂t
= ṗ(t) = F(t, r, ṙ). (3.1)

The linear momentum is given by

p(t) = m(t)ṙ(t). (3.2)

Substituting (3.2) in (3.1) and differentiating (3.2) with respect to time yields

mr̈(t) + ṁṙ(t) = F(t, r, ṙ). (3.3)

In general the mass of the satellite can be subject to changes, but the mass changes due to fuel

consumption are negligibly small. Therefore, a constant mass ṁ = 0 is assumed. From this

Newton’s equation of motion becomes

mr̈(t) = F(t, r, ṙ). (3.4)

Introducing the specific force f := 1
mF, defined as the force per unit mass, gives

r̈(t) = f(t, r, ṙ). (3.5)

The satellite experiences mainly accelerations due to the gravity field of the Moon, which are

denoted as g. Additionally, the satellite experiences accelerations because of perturbing forces,

which are in particular:

• at: Accelerations due to other celestial bodies (Earth, Sun and planets)

• as: Accelerations due to the solid Moon tides

• asp: Accelerations due to solar radiation pressure

• aa: Accelerations due to the albedo

• further non-gravitational forces (cf. Park et al., 2012)

The perturbing forces at and as are gravitational in nature, whereas the remaining forces are

non-gravitational perturbations. Only the gravitational perturbations are modeled. Hence, the

equation of motion can be re-formulated to

r̈(t) = f(t, r, ṙ) = g + a = g + at + as. (3.6)
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3.2 Gravity field

The gravity field is a conservative vector field, i.e. it is a vector field which is the gradient

of a scalar function g = ∇V , known as the gravitational potential V . Conservative vector

fields have the property that the line integral from one point to another is path independent.

Additionally, conservative vector fields are irrotational, meaning that they have vanishing curl

and are source-free in the exterior. According to equation (3.7) the gravitational potential V in

the exterior of a celestial body satisfies Laplace’s equation

⟨∇,∇V ⟩ = ∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0, (3.7)

where the Cartesian coordinates are body-fixed and rotating along with the celestial body in

inertial space.

Functions satisfying Laplace’s equation are called harmonic functions. Hence, the gravitational

potential of the Moon, or selenopotential, is a harmonic function outside the celestial body and

can be expressed in spherical harmonics (Heiskanen and Moritz, 1967)

V (r, θ, λ) =
GM

R

∞
n=0


R

r

n+1 n
m=0

(c̄nmCnm(θ, λ) + s̄nmSnm(θ, λ)), (3.8)

where r, θ, λ are the selenocentric spherical coordinates radius, co-latitude and longitude. The

constants R and GM are the mean equatorial lunar radius and the gravitational parameter of

the Moon, consisting of the gravitational constant G times the Moon’s massM . The normalized

spherical harmonic coefficients of the expansion of degree n and order m are represented by c̄nm

and s̄nm. The normalized base functions Cnm and Snm are given by

Cnm(θ, λ) = cos(mλ)P̄nm(cos θ),

Snm(θ, λ) = sin(mλ)P̄nm(cos θ),
(3.9)

with the fully normalized associated Legendre functions of the first kind P̄nm(cos θ). The Leg-

endre functions and the base functions are orthonormal, this is achieved by normalizing the

orthogonal Legendre functions Pnm. The normalization is done according to Kaula (2000):

P̄nm =


(2− δ0m)(2n+ 1)(n−m)!

(n+m)!
Pnm. (3.10)

The Legendre functions are derived from the so-called Legendre polynomials, which may be

obtained by recursion formulae (Heiskanen and Moritz, 1967).

The relation between the selenopotential and the satellite motion is given by the acceleration

due to the gravitational attraction. The acceleration g due to the selenopotential is given by

the gradient of V :

g(λ, θ, r) = ∇V (λ, θ, r). (3.11)
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Usually, the field strength g is calculated by the partial derivatives of the base functions with

respect to the spherical coordinates. But it can also be expressed in Cartesian body-fixed

coordinates as a linear combination of the base functions (Ilk, 1983a), which then reads

g(λ, θ, r) = ∇V (λ, θ, r) =

∂V/∂x∂V/∂y

∂V/∂z



=
GM

2R2

∞
n=0


R

r

n+2


2n+ 1

2n+ 3

n
m=0

cnm
 C−

nm − C+
nm

−S−
nm − S+

nm

−2C0
nm

+ snm

S
−
nm − S+

nm

C−
nm + C+

nm

−2S0
nm




(3.12)

with

C−
nm = f−nmCn+1,m−1, C

0
nm = f0nmCn+1,m, C

+
nm = f+nmCn+1,m+1,

S−
nm = f−nmSn+1,m−1, S

0
nm = f0nmSn+1,m, S

+
nm = f+nmSn+1,m+1,

(3.13)

and the factors

f−nm = [(n−m+ 1)(n−m+ 2)(1 + δ1m)]1/2,

f0nm = [(n−m+ 1)(n+m+ 1)]1/2,

f+nm = [(n+m+ 1)(n+m+ 2)(1 + δ0m)]1/2,

with Cnm = 0 for m < 0 and Snm = 0 for m < 1.

(3.14)

The acceleration due to the selenopotential is given in a body-fixed system (cf. Section 3.5.2),

therefore a transformation from the body-fixed system to the inertial system (cf. Section 3.5.1)

is necessary:

xBF = R xI. (3.15)

The rotation matrix R relates the body-fixed coordinates subscripted by BF to the inertial

coordinates subscripted by I. Hence, the acceleration in the inertial frame, which is used for

force computation (cf. equation (3.6)) and orbit integration, is given by

gI = RT gBF. (3.16)

Details on the used reference systems and transformation can be found in Section 3.5.

3.2.1 Functionals of the gravitational potential

In practice the series expansion of the gravitational potential V in equation (3.8) has to be

limited to an upper maximum degree nmax. The connection between the maximum resolved

degree nmax and the spatial resolution D is

D =
πR

nmax
, (3.17)

where R is the mean equatorial lunar radius. The LP gravity field model JGL165P1 is complete

up to degree and order 165, which corresponds to a spatial resolution of about 33 km.
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Furthermore, the coefficients corresponding to degree n = 0, 1 are not assumed to be unknown.

The central term (n = 0) of the series expansion in equation (3.8) is GM
R and describes the

gravitational potential of a homogeneous sphere. Usually, the origin of the body-fixed coordinate

frame is chosen to coincide with the centre of mass. Consequently, the terms of degree n = 1

become zero.

The gravitational potential can be separated into the geometrically modeled normal potential U

and the disturbing potential T , which represents the variations of the true gravity field due to

the inhomogeneous mass distribution in the interior of the Moon:

V = U + T. (3.18)

According to Bruns’ formula, the selenoid heights N , representing the separation between the

selenoid and the reference surface (geometrical analogue to the disturbing potential), are ob-

tained by multiplying the disturbing potential by the reciprocal value of the normal gravity

(Heiskanen and Moritz, 1967):

N ≈ T

γ
. (3.19)

The normal gravity is expressed by its spherical approximation

γ ≈ GM

R2
. (3.20)

By differentiating the disturbing potential T (3.18) with respect to r once, one gets the gravity

anomalies and gravity disturbances

∆g = −∂T
∂r

− 2

r
T,

δg = −∂T
∂r
.

(3.21)

The second derivative with respect to r gives the radial gravitational gradient

Vrr =
∂2T

∂r2
. (3.22)

The radial derivations in equations (3.21) and (3.22), as well as a field continuation up to an

arbitrary height r = R+h can be described by introducing a factor depending on the degree n of

the spherical harmonic expansion. These factors are represented in the spectral Meissl-scheme

in Figure (3.2). The figure shows the disturbing potential along with its radial first and second

derivatives at satellite altitude and at surface-height. The arrows indicate attenuation and am-

plification, which corresponds to differentiation.

The upward continuation to an arbitrary height causes an attenuation (low-pass filter), whereas

the derivations can be interpreted as an amplification (high-pass filter) of the signal.

The decay of gravity fields depends on the distance from the source and the wavelength, i.e.

short-wavelength anomalies are attenuated stronger than long-wavelength anomalies.
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Figure 3.2: Meissl-scheme

3.2.2 Degree variances

In order to compare different gravity field solutions the variances of different functionals of the

disturbing potential (cf. Section 3.2.1) are determined.

According to the orthogonality relations of the spherical harmonics the Power Spectral Density

(PSD), which represents the energy content per degree of a gravity field (solution), can be

expressed by the degree variances

σ2n =

n
m=0

(c2nm + s2nm). (3.23)

To compare the gravity field solution with a reference field (crefnm, s
ref
nm) the so-called error degree

variances are used:

∆σ2n =
n

m=0

((cnm − crefnm)2 + (snm − srefnm)2). (3.24)

The error degree variances can be seen as a measure for the consistency of two solutions in the

spectral domain.

The mean value of the signal per degree can be expressed by the RMS (Root Mean Square) of

the degree-wise error variances

DE-RMSn =


1

2n+ 1
∆σ2n. (3.25)

The functional relation between gravity field parameters (cf. Section 3.2.1) enables also the

calculation of the RMS of the degree-wise error variances in selenoid heights:

DE-RMSn(N) = R


1

2n+ 1
∆σ2n. (3.26)

According to the Kaula-rule of thumb (Kaula, 2000), the degree variances of the Moon can be

approximated by

σ2n ≈

(2n+ 1)

2.5 · 10−4

n2
, (3.27)
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with the normalized coefficients having a zero mean value and the standard deviation corresponds

to the square of n.

The formal errors follow equation (3.23), but instead of the coefficients cnm, snm the variances

of the coefficients σ̂(cnm), σ̂(snm) are used:

σ̂2n =
n

m=0

(σ̂2(cnm) + σ̂2(snm)). (3.28)

3.3 3rd body forces

In addition to the gravity field of the Moon, other time varying effects, such as the tidal accel-

erations of celestial bodies (Earth, Sun and planets) and the solid Moon tides, should be taken

into account. In particular, the Earth because of its proximity to the Moon and the Sun due

to its large mass are causing perturbing accelerations to the spacecraft. Because of the great

distance the Earth, the Sun and other planets can be regarded as point masses.

According to Newton’s law of gravitation

r̈ = ∇GM

r
= −GM r

||r||3
, (3.29)

the acceleration of a spacecraft by the point mass of the Earth M⊕ is given by

r̈ = −GM⊕ · r− r⊕
||r− r⊕||3

= GM⊕ · r⊕ − r

||r⊕ − r||3
, (3.30)

where r⊕ is the position of the Earth and r is the position of the satellite with respect to the

inertial frame. The coordinates of the celestial bodies can be obtained from the ephemeris

JPL DE 421.

The value of r̈ in (3.30) refers to an inertial reference system with its origin at the center of the

Moon. But the Moon is not at rest, therefore the coordinate system is considered to be moving

in space with the Moon but not rotating with it (revolution without rotation). Therefore, it is

itself subject to an acceleration due to M⊕:

r̈ = GM⊕ · r⊕
||r⊕||3

. (3.31)

To obtain the tidal acceleration of the satellite’s Moon-centered position vector both values have

to be subtracted. The tidal acceleration due to the Earth (⊕) and the Sun (À) can be written

as

r̈ = GM⊕ ·


r⊕ − r

||r⊕ − r||3
− r⊕

||r⊕||3


,

r̈ = GMÀ ·


rÀ − r

||rÀ − r||3
− rÀ

||rÀ||3


.

(3.32)

In equation (3.32) the first part always depends on the position of the satellite, whereas the

second part is constant and refers to the Moon’s center (as shown in Figure 3.3).

The computation of the tidal accelerations are carried out separately for the individual two-body

systems (Moon-Earth, Moon-Sun, etc.), and the results are subsequently added:

at = a⊕ + aÀ + aplanets. (3.33)
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acceleration of the Moon’s center

acceleration of the satellite by the Earth

resulting tidal acceleration

Figure 3.3: Tidal acceleration due to the Earth’s gravitational pull

3.4 Lunar tides

Tidal accelerations influence not only the spacecraft, but also cause deformations and mass

variations of the solid Moon, i.e. the Moon responds to the gravitational attraction of the

Earth, the Sun and other planets. The lunar tides are the motions induced in the solid Moon

and the changes in its gravitational potential caused by the tidal forces from celestial bodies.

The changes in the gravitational potential have therefore also an indirect effect on satellite orbits.

The time-dependent changes of the gravitational potential due to the solid Moon tides can be

modeled as variations in the normalized potential coefficients c̄nm and s̄nm. The contributions

to the normalized potential coefficients ∆c̄nm and ∆s̄nm are expressed in terms of the Love

numbers knm.

The Moon is assumed to be elastic, because of that there is no phase lag in the deformational

response of the Moon to the tidal forces. In the case of anelasticity, the deformational response

is delayed and it causes the Love numbers to acquire small imaginary parts. The lunar tides are

modeled according to the IERS Conventions 2010 (Petit and Luzum, 2010, p. 82).

Usually, the contributions to the potential coefficients are calculated in 3 steps (for details on

the calculation refer to Petit and Luzum (2010)). Due to the assumed elasticity of the Moon, the

changes in c̄nm and s̄nm are computed using the frequency-independent nominal values of knm.

The Tide Generating Potential (TGP) can be expanded in spherical harmonics and therefore

the time-varying corrections ∆c̄nm and ∆s̄nm can be modeled by

∆c̄nm − i∆s̄nm =
knm

2n+ 1


j=⊕,À

GMj

GMÁ


RÁ

rj

n+1

P̄nm(sinΦj)e
imλj . (3.34)
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knm . . . frequency-independent Love number for degree n and order m

j . . . tidal disturbing bodies (Earth and Sun)

RÁ . . . equatorial Radius of the Moon

GMÁ . . . gravitational parameter of the Moon

GMj . . . gravitational parameter of the Earth (j = ⊕) and of the Sun (j = À)

rj . . . distance from the Moon-center to the Earth or Sun

Φj . . . body-fixed latitude of the Earth or Sun

λj . . . body-fixed longitude of the Earth or Sun

If only degree two and three coefficients are considered, the contributions to the potential coef-

ficients are given by:

∆c̄nm =


j=⊕,À

GMj

GMÁ

3
n=2

1

2n+ 1


RÁ

rj

n+1 n
m=0

P̄nm(sinΦj)

kRe
nm cos(mλj) + kImnm sin(mλj)


,

∆s̄nm =


j=⊕,À

GMj

GMÁ

3
n=2

1

2n+ 1


RÁ

rj

n+1 n
m=0

P̄nm(sinΦj)

kRe
nm sin(mλj) + kImnm cos(mλj)


.

(3.35)

In equation (3.35) only the zonal real or elastic parts kRe
n are considered. Therefore, the equations

simplify to

∆c̄nm =


j=⊕,À

GMj

GMÁ

3
n=2

1

2n+ 1


RÁ

rj

n+1

P̄nm(sinΦj)

kRe
n cos(mλj)


,

∆s̄nm =


j=⊕,À

GMj

GMÁ

3
n=2

1

2n+ 1


RÁ

rj

n+1

P̄nm(sinΦj)

kRe
n sin(mλj)


.

(3.36)

3.5 Reference systems

As mentioned before, the equations of motion, which describe the satellite motion, are only valid

in an inertial reference system. Whereas, the gravitational potential is defined with respect to

a body-fixed system.

Therefore, it is necessary to transform a set of coordinates from an inertial reference frame to a

rotating body-fixed frame and vice versa. To accomplish these coordinate transformations well

defined and reproducible inertial and body-fixed reference frames are required and a mutual

relation between both frames has to be established.

In this section an overview of all used inertial and body-fixed reference systems and their practi-

cal realizations, denoted as reference frames, is given. Additionally, the required transformations

are described in detail.
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3.5.1 Inertial reference systems

An inertial reference system is a nonaccelerated system at rest or in a state of uniform transla-

tional motion free of rotation, i.e. it moves with constant velocity. In such an inertial reference

system Newton’s laws of motion apply and it is needed to model the ephemeris of celestial bodies

and artificial satellites in space.

A quasi-inertial reference system also moves without rotational motion, but its origin is accel-

erated due to the fact that the system is orbiting the Sun, for example.

A space-fixed system (Celestial Reference System – CRS) is a quasi-inertial reference system;

it is distinguished between dynamical and kinematic CRS. A dynamical CRS is based on the

ephemeris of bodies of the solar system (planets, moon, and satellites). A kinematic CRS is de-

fined by the positions and motions of stars and very distant extragalactic radio sources (quasars).

An example for a kinematic CRS is the International Celestial Reference System (ICRS). The

coordinates of a CRS are usually defined by an equatorial system of spherical astronomy.

There are several types of quasi-inertial frames in use. Here, the systems and frames used with

respect to the satellite mission GRAIL are described. Details can be found in Olds (2009).

Earth-Centered Earth Mean Equator and Equinox of Epoch J2000 – EME2000

The Epoch J2000 corresponds to the Julian Date (JD) 2451545.0 or Modified Julian Date (MJD)

51544.5 or 1.5 January, 2000 Barycentric Dynamic Time (TDB). The axes of the EME2000

(cf. Figure 3.4) are defined as follows:

XEME. . . Parallel to the Vernal Equinox of the Earth Mean Heliocentric Orbit of Epoch

J2000,

ZEME. . .Mean Earth Equator normal of Epoch J2000,

YEME. . . completed to a right-handed system.

“Access to the EME2000 system is provided by the so called FK5 star catalogue, which provides

precise positions and proper motions of some 1 500 stars for the J2000 epoch and in the given

reference frame. More recently, based upon certain dynamical difficulties in the definition of the

ecliptic plane and the equinox, it has been decided to replace EME2000 with a new International

Celestial Reference System, or in short ICRS. The practical realisation of the ICRS is designated

the International Celestial Reference Frame (ICRF)” (Floberghagen, 2002, pp. 241).

EME2000 Lunar-Centered Solar System Barycentric Frame

This frame is used with respect to the Moon. It is the EME2000 inertial reference frame,

re-centered at the Moon using the DE421 planetary ephemeris.
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3 SYNTHESIS - ORBIT INTEGRATION

Figure 3.4: EME2000 from Roncoli (2005, p. 40)

3.5.2 Moonfixed reference systems

In contrast to an inertial reference system, a body-fixed system is rotating with its body, i.e.

planetocentric coordinates are expressed as right-handed coordinates with the origin at the

body’s center of mass. For the Moon two slightly different body-fixed reference systems exist.

Mean Earth/polar axis system (ME)

The body-fixed ME system, sometimes called mean Earth/polar axis system, defines the z-axis

along the Moon’s mean axis of rotation. The x-axis is defined towards the the prime meridian

(0◦ longitude), which is the mean direction to the Earth.

At the Moon’s “mean sub-Earth point” the lunar equator intersects the prime meridian. A mean

sub-Earth point is used to define the prime meridian, because it varies slightly due to orbital

eccentricity, inclination and other factors (LRO Project, 2008).

Principal axis system (PA)

The body-fixed PA system, sometimes called axis of figure system, is aligned with the principal

axes of inertia of the Moon.

The rotation axes of the PA and ME system do not coincide, because the Moon is not a syn-

chronously rotating ellipsoid. Therefore, the axes of the two body-fixed systems differ and cause

differences in the coordinates of a point on the lunar surface (Roncoli, 2005).

“The difference in the coordinates of a point on the surface of the Moon between these two

systems is approximately 860 m” (Archinal et al., 2011, p. 114). Both systems are in use, but

the ME system is recommended, because most cartographic products use the ME system. But

the PA system is typically used with respect to gravity field purposes. The PA system is used

for the GRAIL simulations and real data analysis.
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3 SYNTHESIS - ORBIT INTEGRATION

3.5.3 Transformations - Elementary rotations

A rotation-based transformation between two Cartesian frames with identical origins is given

by xp’yp’

zp’

 = R

xpyp
zp

 . (3.37)

The rotation matrix R realizes the coordinate transformation and rotates the vector xp into xp’.

Since the rotation matrix is orthogonal the inverse rotation is achieved by using the transposed

matrix RT . The orthogonality implies the following fundamental properties

RT = R−1 , RRT = RTR = I , ||det(R)|| = 1. (3.38)

The rotation of a Cartesian coordinate frame can be performed by three sequential rotations

about the x-, y-and z-axis by using elementary rotation matrices. The elementary rotation

matrices, which describe for a right-handed frame a counter-clockwise rotation, are given by

R1(α) =

1 0 0

0 cosα sinα

0 − sinα cosα

 ,

R2(β) =

cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 ,

R3(γ) =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 .

(3.39)

Any rotation in 3-dimensional space can be represented by three successive elementary rotations.

In case of a so-called Cartan rotation matrix the composed rotation matrix consists of a specific

sequence of rotations:

R = R3(α)R2(β)R1(γ) = Rc(α, β, γ). (3.40)

An alternative representation is the Euler rotation matrix :

R = R3(ψ)R1(θ)R3(φ) = Re(φ, θ, ψ). (3.41)

Instead of describing a rotation between two frames by three rotation angles, quaternions can

be used as well. The rotation matrix is expressed in terms of (normalized) parameters:

R =

q
2
1 − q22 − q23 + q20 2(q1q2 + q3q0) 2(q1q3 − q2q0)

2(q1q2 − q3q0) −q21 + q22 − q23 + q20 2(q2q3 + q1q0)

2(q1q3 + q2q0) 2(q2q3 − q1q0) −q21 − q22 + q23 + q20

 ,

q20 + q21 + q22 + q23 = 0.

(3.42)

This representation is called Hamilton parametrization; compared to the Euler or Cartan rep-

resentation it requires less arithmetic operations and is less susceptible to rounding errors.
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3 SYNTHESIS - ORBIT INTEGRATION

3.5.4 Transformations - Cartesian coordinates ⇔ spherical coordinates

A point in space can either be expressed by Cartesian coordinates x, y, z or by its spherical

coordinates, i.e. latitude ϕ , longitude λ and radius r.

The transformation of Cartesian coordinates to spherical coordinates can be done through

r =

x2 + y2 + z2,

ϕ = arctan


z

x2 + y2


,

λ = arctan(
y

z
).

(3.43)

The inverse formulas are:

x = r cosϕ cosλ,

y = r cosϕ sinλ,

z = r sinϕ.

(3.44)

3.5.5 Transformations - Lunar libration

The lunar libration is described by means of three Euler libration angles φ, θ and ψ, which

describe the rotation of the Moon between the ICRS and PA system (if derived from the JPL

ephemeris). The libration angles describe the total libration, i.e. they account for both optical

(geometrical) and physical librations.

Libration angles

The lunar libration angles describe the orientation of the PA system and are defined relative

to the ICRS Earth equator and equinox. Components of any vector in the PA system can be

rotated to the ICRS using the JPL libration angles. Using the inverse rotation any vector in

the ICRS can be converted to the PA system (Taylor et al., 2010).

The three libration angles shown in Figure 3.5 are:

φ : the angle along the ICRS equator, counted from the ICRS X-axis to the ascending node of

the lunar equator; nodal variations oscillating around 0◦

θ : the inclination of the lunar equator to the ICRS equator; 23.44◦ ± 1.54◦ with a period of

18.6 years

ψ : the angle along the lunar equator from the node to the lunar prime meridian (Archinal

et al., 2011)
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3 SYNTHESIS - ORBIT INTEGRATION

Figure 3.5: Euler libration angles φ, θ and ψ. The value of φ shown in this diagram is negative.

Source: Taylor et al. (2010, p. 6)

The first rotation R3(φ) is performed to align the ICRS equinox with the ascending node. The

second rotationR1(θ) aligns the ICRS equator with the lunar equator. Finally, the third rotation

R3(ψ) aligns the node with the prime meridian.

Hence, the composed rotation from the inertial system to the PA system becomes

xPA = R3(ψ)R1(θ)R3(φ)xICRS. (3.45)

The conversion between the two moon-fixed systems (ME and PA system), which is denoted as

frame bias, can be done using the following expression (Williams et al., 2008, p. 10)

xPA = R3(67
′′.92)R1(78

′′.56)R3(0
′′.30)xME. (3.46)

The numerical values used for the rotations are specific to DE421 and cannot be used for past

or future lunar ephemeris (Archinal et al., 2011).

JPL ephemeris

The Jet Propulsion Laboratory (JPL) provides a series of planetary and lunar ephemeris in the

form of Chebyshev approximations. The Development Ephemeris (DE) are publicly available as

ASCII file via FTP2.

Currently, the DE421 ephemeris are considered the best available lunar ephemeris (Folkner et al.,

2009b). The JPL ephemeris consist of past and future positions, velocities and accelerations of

the Sun, Moon, and nine planets tabulated at equally spaced intervals of time, covering a

specified span of years. In addition to planetary and lunar coordinates, the DE421 ephemeris

file also contains numerical coefficients for Chebyshev polynomials representing the Euler lunar

libration angles and the rates of the lunar libration angles in the PA system. An evaluation of

the polynomials yields Cartesian coordinates in AU (Astronomical Unit) for planets and lunar

libration angles in radians.

2ftp://ssd.jpl.nasa.gov/pub/eph/planets/
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3 SYNTHESIS - ORBIT INTEGRATION

A comparison of the lunar libration angles φ, θ, ψ calculated from the JPL DE405 and DE421

ephemeris can be found in A.3.

Approximation

Apart from lunar libration angles there also exist closed formulas for the rotation from the ICRS

to the ME system, but these formulas are approximated. Due to that reason they are only valid

to a ∼150m level of accuracy. Therefore, lunar ephemeris should be used to calculate the libra-

tion angles for the Moon (Archinal et al., 2011).

With the closed formulas the values for the direction of the north pole of rotation and the prime

meridian can be calculated. The formulas can be found in Archinal et al. (2011, p.108). The

direction of the north pole is specified by the value of its right ascension α0 and declination δ0.

The location of the prime meridian is specified by W . For the calculation the standard epoch

JD 2451545.0, i.e. 2000 January 1 12 hours TDB, is used:

α0 = 269◦.9949 + 0◦.0031T − 3◦.8787 sinE1− 0◦.1204 sinE2 + 0.0700 sinE3

− 0.0172 sinE4 + 0.0072 sinE6− 0.0052 sinE10 + 0.0043 sinE13,

δ0 = 66.5392 + 0.0130T + 1.5419 cosE1 + 0.0239 cosE2− 0.0278 cosE3 + 0.0068 cosE4

− 0.0029 cosE6 + 0.0009 cosE7 + 0.0008 cosE10− 0.0009 cosE13,

W = 38.3213 + 13.17635815d− 1.4× 10−12d2 + 3.5610 sinE1 + 0.1208 sinE2

− 0.0642 sinE3 + 0.0158 sinE4 + 0.0252 sinE5− 0.0066 sinE6− 0.0047 sinE7

− 0.0046 sinE8 + 0.0028 sinE9 + 0.0052 sinE10 + 0.0040 sinE11 + 0.0019 sinE12

− 0.0044 sinE13,

(3.47)

E1 = 125◦.045− 0◦.0529921d, E2 = 250◦.089− 0◦.1059842d,

E3 = 260◦.008 + 13◦.0120009d,E4 = 176.625 + 13.3407154d, E5 = 357.529 + 0.9856003d,

E6 = 311.589 + 26.4057084d, E7 = 134.963 + 13.0649930d, E8 = 276.617 + 0.3287146d,

E9 = 34.226 + 1.7484877d, E10 = 15.134− 0.1589763d, E11 = 119.743 + 0.0036096d,

E12 = 239.961 + 0.1643573d, E13 = 25.053 + 12.9590088d,

(3.48)

with

α0, δ0 . . . ICRF equatorial coordinates at epoch J2000,

T . . . interval in Julian centuries (of 36 525 days) from the standard epoch,

d . . . interval in days from the standard epoch.
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3 SYNTHESIS - ORBIT INTEGRATION

These lunar rotation angles in the ME system and in the standard α0, δ0, and W formulation

can be converted with

φ = α0 + 90◦,

θ = 90◦ − δ0,

ψ =W,

(3.49)

giving the Euler libration anlges.

3.6 Time systems

In this context, a uniform time scale is needed to model the motion of satellites. Additionally,

a time system is necessary to describe the relative motion of the Moon with respect to inertial

space and to date measurements and results.

To establish a time system a periodic process, a counter (to count the number of periods) and

an origin where the counting starts are required, the time scale should be as uniform and stable

as possible. In general there are three different groups of time systems in use

• Sidereal Time or Universal Time: a non-uniform time scale connected with the diurnal

rotation of the Earth with respect to the inertial space

• Ephemeris Time (ET), Dynamical Time (DT), Terrestrial Time (TT): a con-

ceptually uniform time scale based on the orbital motion of celestial bodies.

• Atomic Time (TAI): a practical realization of a uniform time scale, which is related to

phenomena in nuclear physics and is based on atomic clocks.

The Dynamical Time (DT) replaced the ET. Within the Dynamical Time (DT) a distinction is

made between:

• TDB: Barycentric Dynamical Time (orbital motions refer to the barycenter of the solar

system)

• TDT: Terrestrial Dynamical Time (orbital motions reffer to the geocenter)

The forerunner of the DT was the ET, it was replaced by the TDT and the TDT was redefined

as TT. TAI agrees with TT expect for a constant offset

TT ≡ TDT ≡ ET ≡ TAI + 32.184 s. (3.50)

TT and TDB mainly differ by periodic effects due to relativistic effects causing differences up

to a few milliseconds. Within the provided GRAIL datasets TDB is used.

3.6.1 Julian Date and Modified Julian Date

For scientific applications continuous counting is preferred compared to a time scale counting

with years, month and days with varying length (e.g. civilian calendar). Therefore, the Julian

Date (JD), a continuous day count, has been introduced with a Julian Century of 36 525 days.

The JD is the number of days since noon January 1, 4 713 BC. The counting started at noon
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for historical reasons.

The adopted reference date J2000 is given by

J2000 = January 1.5, 2000 = January 1, 2000 12h, (3.51)

which is equal to

JD 2 451 545.0. (3.52)

The Modified Julian Date (MJD) has been introduced, because Julian day numbers have become

quite large and counting is preferred to start at midnight. The MJD is defined as

MJD = JD− 2 400 000.5, (3.53)

which corresponds to the number of days since midnight November 17, 1858. There exist several

algorithms to transform the MJD to the Calendar date and vice versa (Montenbruck and Gill,

2001).

3.7 Orbit integration

For the computation of satellite orbits numerical methods for the solution of the equation of

motion are used. Analytical methods cannot be used due to the presence of perturbing forces.

A variety of methods has been developed for numerical integration, the method used in this

context is described in Section 3.7.1. More details on numerical integration methods can be

found in Montenbruck and Gill (2001).

The equation of motion (3.5) are second-order differential equations. If the perturbing forces

are taken into account, the acceleration of a satellite is given by equation (3.6). The solution of

the equation of motion corresponds to the 6-dimensional state vector y containing the position

r(t) and the velocity ṙ(t) of the satellite

y(t) =


r(t)

ṙ(t)


, (3.54)

which satisfies

ẏ(t) =
∂y(t)

∂t
= f(t,y(t)) =


ṙ(t)

a(t, r)


. (3.55)

Here, the system of three second-order differential equations (3.54) is transformed to a system

of six first-order differential equations (3.55).

The force function a(t, r) depends on the position r. Since non-gravitational forces are neglected

the force function is independent of the velocity of the satellite.

Starting with 6 initial values [r(t0), ṙ(t0)] the positions and velocities of the orbit are determined

with a constant sampling by numerical integration.
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3.7.1 Numerical integration - Algorithm

The orbit is integrated from a given force function. The force function is given in terms of per-

turbing accelerations caused by the gravity field (cf. Section 3.2), 3rd bodies and tides (cf. Sec-

tion 3.3 and 3.4):

r̈ = f(t, r) = g + a. (3.56)

The orbit is calculated in the inertial frame, whereas the perturbing accelerations are given in a

body-fixed frame. Therefore, a rotation is needed to transform the accelerations g and a from

a body-fixed frame to an inertial frame and vice versa.

The integration starts with initial values (position and velocity) at a given time t0. The orbit is

then integrated for a given time span with an equal sampling ∆t.

The algorithm uses a polynomial of a given degree M to integrate the force function and to

extrapolate the new position and velocity of the satellite. In the following section the individual

steps are described in detail.

First of all, the initial values are given as

• Keplerian elements [a(t0), e(t0), i(t0), ω(t0),Ω(t0), ν(t0)] or

• Initial state vector [r(t0), ṙ(t0)]

in an inertial frame. The formulas for the transformation between Keplerian elements and a

state vector can be found in Appendix B.

The algorithm for the orbit integration and extrapolation consists of four steps:

1. In the first step initial estimates for the positions and velocities are determined using

a Keplerian orbit. In total M + 1 initial estimates are necessary in order to enable a

polynomial interpolation of degree M .

• Transformation from initial state vector to Keplerian elements (cf. Appendix B)

• Determination of position vectors r(τ) and velocity vectors ṙ(τ) with

τ = tk + τj ,

τj = (3 + j −M)∆t,
(3.57)

using a Keplerian orbit (cf. Appendix B).

• Determination of acceleration vectors r̈(τ) with

r̈(τ) = RT [g(τ,Rr(τ)) + a(τ,Rr(τ))] , (3.58)

where the rotation matrix R describes the rotation from the inertial to the body-fixed

frame. The perturbing accelerations due to the gravity field g and the tides a are

calculated according to equations (3.12), (3.32) and (3.35).

29



3 SYNTHESIS - ORBIT INTEGRATION

2. First refinement: According to equation (3.66) the positions are numerically integrated

from the accelerations determined in step 1

r(τ) = r(tk) + ṙ(tk) · τj ,

r(τ) = r(τ) +
M
n=0

1

(n+ 1)(n+ 2)
τn+2

M
j=0

wnj r̈(tk + τj).
(3.59)

3. In the third step an improved value for the accelerations is calculated for the refined

positions of step 2 according to equation (3.58).

4. Orbit integration: The final step contains the numerical integration and extrapolation to

determine the orbit for the given time span (cf. Figure 3.6)

r(τ) = r(tk) + ṙ(tk) · τj ,

ṙ(τ) = ṙ(tk),

r(τ) = r(τ) +
M
n=0

1

(n+ 1)(n+ 2)
τn+2

M
j=0

wnj r̈(tk + τj),

ṙ(τ) = ṙ(τ) +
M
n=0

1

n+ 1
τn+1

M
j=0

wnj r̈(tk + τj),

with

τj = ∆t, 2∆t and 3∆t for the positions,

τj = ∆t for the velocities.

(3.60)

With equation (3.60) the position and velocity vector for τ = tk+∆t are determined. With

the extrapolated position and velcoity vector for τ = tk + 3∆t the piecewise polynomial

can be forwarded and evaluated for the next epoch (cf. Figure 3.6).

Steps 1-3 are needed to determine initial positions and velocities to enable the actual orbit

integration and extrapolation in Step 4. The piecewise polynomial is forwarded gradually

and Step 4 is repeated until the orbit is integrated over the whole time span.

Figure 3.6: Orbit Integration - Polynomial interpolation
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Numerical integration - Polynomial interpolation

The numerical integration of the accelerations r̈ is done by integrating a piecewise adjusted

polynomial (Mayer-Gürr, 2006). A polynomial of degree M is adjusted piecewise to the discrete

and equally sampled accelerations, i.e. for each integrated position/time a new interpolation

polynomial is adjusted:

r̈(τ) ≈
M
n=0

anτ
n. (3.61)

The interpolation polynomial of degree M is unique with a given set of M +1 data points. The

time variable τ is defined by the degree of the used polynomial and the sampling of the data

points, where tk represents the M − 3th data point. Hence, the coefficients an of the polynomial

for the data point tk can be determined by solving a system of linear equations. The system of

linear equations in matrix-vector form reads
r̈(tk + τ0)

...

r̈(tk + τM )

 =


1 τ0 τ20 . . . τM0
...

...
...

...

1 τM τ2M . . . τMM


  

W


a0
...

aM

 ,

with τj = (3 + j −M) ·∆t,

(3.62)

where ∆t corresponds to the sampling. The time is chosen in a way that τ = 0 corresponds to

the M − 3th data point r̈(tk).

The polynomial coefficients are determined by solving the linear equation in (3.62):
a0
...

aM

 = W−1


r̈(tk + τ0)

...

r̈(tk + τM )

 . (3.63)

The coefficients of the inverse matrix W−1 are denoted as wnj . Hence, the polynomial coeffi-

cients an can be expressed as a summation

an =

M
j=0

wnj r̈(tk + τj). (3.64)

Substituting equation (3.64) in equation (3.61) yields

r̈(τ) =
M
n=0

τn
M
j=0

wnj r̈(tk + τj). (3.65)

To obtain velocities from accelerations, the force function has to be integrated once. By inte-

grating the force function twice one gets the positions:

ṙ(τ) =
M
n=0

1

n+ 1
τn+1

M
j=0

wnj r̈(tk + τj),

r(τ) =
M
n=0

1

(n+ 1)(n+ 2)
τn+2

M
j=0

wnj r̈(tk + τj).

(3.66)
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Chapter 4

Synthesis - SST

In order to enable simulation studies, ll-SST observations have to be simulated as well as orbit

observations (cf. Chapter 3). These two steps are part of the synthesis.

The relation between the satellite orbits (positions, velocities and accelerations) and the Ka-band

observations (ranges, range rates, range accelerations) has to be established. In particular, the

simulated orbit data is used to derive ranges, range rates and range accelerations.

The purpose of this chapter is to describe the geometry of ll-SST observations in more detail.

4.0.2 Geometry of ll-SST

The position vectors of the two satellites A and B are represented by rA and rB, respectively.

Hence, the inter-satellite range vector ρ becomes

ρ(t) = ||rB(t)− rA(t)|| = eAB(t) · rAB, (4.1)

where rA and rB are expressed in inertial coordinates.

The Line-Of-Sight (LOS) unit vector eAB is defined by

eAB =
rAB

||rAB||
=

rAB

ρ
, (4.2)

with the position difference vector rAB in the same direction as the unit vector eAB.

The range rate ρ̇ is obtained by differentiation of the range observable. The first derivative of

equation (4.1) with respect to time gives

ρ̇ = eAB · ṙAB + ėAB · rAB  
0

= eAB · ṙAB, (4.3)

which represents a projection of the relative velocity vector ṙAB along the LOS (cf. Figure 4.1).

Since the relative position vector rAB is perpendicular to the rate of the LOS unit vector

change ėAB the second term ėAB · rAB equals zero. It should be noted that the obtained range

rate is not the same in magnitude as the relative velocity vector magnitude.
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The second derivative gives the range acceleration

ρ̈ = eAB · r̈AB + ėAB · ṙAB, (4.4)

where the first term represents the projection of the relative acceleration vector r̈AB along the

LOS, and the second term represents the scalar product of the rate of the LOS unit vector

change ėAB and the relative velocity vector ṙAB. To evaluate equation (4.4) the first derivative

of the LOS unit vector ėAB is required

ėAB =
∂

∂t


rAB

ρ


=

ṙAB

ρ
− ρ̇ · rAB

ρ2
=

1

ρ
(ṙAB − ρ̇ · eAB). (4.5)

Substituting equation (4.5) in equation (4.4) yields

ρ̈ = eAB · r̈AB +
1

ρ
(ṙ2AB − ρ̇2). (4.6)

ėAB

ϱ̇GRAIL-A GRAIL-B

ϱ

ẋB

ẋA

ẋBẋAB

xABeAB

ẋAB

Figure 4.1: Geometry of ll-SST
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Chapter 5

Analysis - Gravity field determination

The objective of this work is to estimate spherical harmonic coefficients, which represent the

lunar gravity field, based on simulated data and real data. This chapter contains the second

step, the so-called analysis, in which the contributions to the spherical harmonic coefficients of

a reference gravity field are estimated.

Several approaches can be used to estimate spherical harmonic coefficients from ll-SST observa-

tions. Details on the approaches can be found in Mayer-Gürr (2006).

Here, the integral equation approach is used (Section 5.1). The solution of the equation of

motion is formulated as a boundary value problem and the linearised observation equations for

positions and Ka-band observations are set up. Then, the system of normal equations can be

set up and solved in a Least Squares Adjustment (LSA) (Section 5.2).

Since the unknown parameter vector also contains arc-related unknowns, which are of no interest

for further results, the elimination of parameters is discussed in Section 5.3.

Furthermore, variance component estimation can be used to weight the observation groups with

respect to each other (Section 5.4).

The parameter estimation is accomplished using the GROOPS software package. An overview

of the workflow of the analysis is given in Figure 5.1.
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Figure 5.1: Workflow - Analysis
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5.1 Integral equation approach

The integral equation approach is based on the solution of a boundary value problem. The

solution of the Newton-Euler equation of motion formulated as a boundary value problem was

first introduced by Schneider (1968). Based upon this, the integral equation approach was

developed by Mayer-Gürr (2006) and was successfully utilized to derive gravity field models

(e.g. ITG-GRACE). The integral equation approach is also denoted as short-arc approach, be-

cause the observations are subdivided into arcs, which then yields a normal equation for each

arc (cf. Section 5.2).

The equations presented in this chapter are mainly taken from Mayer-Gürr (2006).

In a first step, the solution of the Newton-Euler equation of motion has to reformulated as a

boundary value problem (cf. Section 5.1.1). Afterwards, the linearised observation equations

can be formulated (cf. Section 5.1.2) and the system of normal equations can be established

(cf. Section 5.2).

5.1.1 Boundary value problem

The Newton-Euler equation of motion is given by

r̈(t) = f(t, r, ṙ). (5.1)

The differential equation in (5.1) is integrated twice and reformulated to form the equivalent

integral equation. Using partial integration the double integral can be replaced by a single

integral. The resulting integral equation is also referred to as Volterra integral equation

r(t) = rA + ṙA(t− tA) +

 t

tA

(t− t′)f(t′) dt′, (5.2)

where rA and ṙA represent the initial position and velocity. Therefore, equation (5.2) is denoted

as the solution of an initial value problem.

Introducing the normalized time

τ =
t− tA
T

, τ ∀ [0, 1]

with T = tB − tA

(5.3)

and substituting equation (5.3) in equation (5.2) yields

r(τ) = rA + ṙATτ + T 2

 τ

0
(τ − τ ′)f(τ ′) dτ ′. (5.4)

With the epoch τ = 1, the boundary value rB of one arc is found to be

rB = rA + ṙAT + T 2

 1

0
(1− τ ′)f(τ ′) dτ ′. (5.5)

By reformulating equation (5.5) to the initial velocity ṙA and substituting this in equation (5.4)
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one gets the solution of a boundary value problem

r(τ) = rA(1− τ) + rBτ + T 2

 τ

0
(τ − τ ′)f(τ ′) dτ ′ − T 2

 1

0
τ(1− τ ′)f(τ ′) dτ ′

= rA(1− τ) + rBτ − T 2

 τ

0
τ ′(1− τ)f(τ ′) dτ ′ − T 2

 1

τ
τ(1− τ ′)f(τ ′) dτ ′,

(5.6)

where the specific force function f(τ ′) acting on the satellite along the arc and the boundary

values rA and rB are unknown.

The two integrals in equation (5.6) can be summarized to

r(τ) = rA(1− τ) + rBτ + T 2

 1

0
K(τ, τ ′)f(τ ′) dτ ′, (5.7)

representing the solution of the Newton-Euler equation of motion formulated as a boundary

value problem. Equation (5.7) is also denoted as Fredholm integral equation of the second kind.

The integral kernel K is given by

K(τ, τ ′) =

τ ′(1− τ) for τ ′ ≤ τ

τ(1− τ ′) for τ ′ > τ
. (5.8)

5.1.2 Linearisation

Positions

According to equation (5.7), the relation between the position r and the unknown parameters is

non-linear. The position r depends on the boundary values rA, rB and on the force function f .

Therefore, the relation to the spherical harmonic coefficients x is not given explicitly, but im-

plicitly through the force function (using the chain rule of differentiation).

The parameter vector x summarizes the spherical harmonic coefficients up to the maximum

degree nmax

x = (c20, c21, s21, c22, s22, . . . , cnmaxnmax , snmaxnmax)
T . (5.9)

Hence, the length of the parameter vector u is defined by the maximum degree nmax:

u = (nmax + 1)2 − 4. (5.10)

The linearisation according to a first-order Taylor series approximation with respect to the

spherical harmonic coefficients x and the boundary values b = (rA, rB)
T is given by

r = r0 +
∂r

∂f

∂f

∂x
δx+

∂r

∂b
δb. (5.11)

Consequently, the representation of the linearised model of the satellite positions is given by

equation (5.11).
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Ka-band observations

To obtain the linearised model of the Ka-band observations, the relation between the Ka-band

observations and the unknown parameters has to be established first. According to Section 4.0.2,

the Ka-band observations are defined as

ρ = eAB · rAB,

ρ̇ = eAB · ṙAB,

ρ̈ = eAB · r̈AB +
1

ρ
(ṙ2AB − ρ̇2).

(5.12)

In equation (5.12) the relation to the unknown parameters is not given explicitly, but again

implicitly through the satellite positions, which again depend on the gravity field parameters x.

Therefore, the Ka-band observations in equation (5.12) are linearised. For linearisation the

partial derivatives with respect to the unknown parameters have to be build according to the

chain rule, i.e. the Ka-band observations are derived with respect to the positions r and the

positions are derived with respect to the unknown parameters x and b (cf. Equation (5.11)):

∂ρ

∂x
=

∂ρ

∂rAB


∂rB
∂x

− ∂rA
∂x


,

∂ρ̇

∂x
=

∂ρ̇

∂rAB


∂rB
∂x

− ∂rA
∂x


+

∂ρ̇

∂ṙAB


∂ṙB
∂x

− ∂ṙA
∂x


,

∂ρ̈

∂x
=

∂ρ̈

∂rAB


∂rB
∂x

− ∂rA
∂x


+

∂ρ̈

∂ṙAB


∂ṙB
∂x

− ∂ṙA
∂x


+

∂ρ̈

∂r̈AB


∂r̈B
∂x

− ∂r̈A
∂x


.

(5.13)

The linearised model of the Ka-band observations is given byρρ̇
ρ̈

 =

ρ0ρ̇0
ρ̈0

+P

δrAB

δṙAB

δr̈AB

 , (5.14)

with the matrix P containing the partial derivatives of equation (5.13)

P =


∂ρ

∂rAB
0 0

∂ρ̇
∂rAB

∂ρ̇
∂ṙAB

0
∂ρ̈

∂rAB

∂ρ̈
∂ṙAB

∂ρ̈
∂r̈AB

 . (5.15)

5.1.3 Observation equations

In this section, the formulation of the observation equations for positions and Ka-band observa-

tions is described.

Positions

The boundary value problem can be formulated according to equation (5.7) as

r(τ) = rA(1− τ) + rBτ − T 2

 1

0
K(τ, τ ′)f(τ ′) dτ ′  

h(τ)

, (5.16)

where h(τ) represents the integral.
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The partial derivatives of the integral with respect to the force function f is represented by the

matrix K, which contains a numerical integration (polynomial interpolation):

K =
∂h

∂f
=
∂r

∂f
. (5.17)

Equation (5.17) can be written as matrix-vector product

h = Kf . (5.18)

The matrix G represents the linear relation between the gravity field parameters x and the

specific force function f . According to Section 3.2 this can also be formulated as a matrix-vector

product

G =
∂f

∂x
,

f = Gx+ a,

(5.19)

where a represents the non-gravitational forces, tides and the reference field.

Hence, equation (5.11) can be reformulated to

r = r0 +KGx+Bb, (5.20)

with

B =
∂r

∂b
=


(1− τ1) τ1

...
...

(1− τN ) τN

 , b =


rA

rB


. (5.21)

The relation between the observations and the unknown parameters x and b is given by equa-

tion (5.11), which can be written as equation (5.20).

To avoid errors due to inaccurate and noisy positions, the contribution of the positions to the

gravity field and thus to the force function has to be taken into account. Due to the reason that

the force function is depending on the position and on the gravity field, equation (5.11) has to

be extended. Hence, the derivations with respect to the unknowns are given by

∂r

∂x
= K

∂f

∂r

∂r

∂x
+K

∂f

x
,

∂r

∂b
= Bb+K

∂f

∂r

∂r

∂b
.

(5.22)

The notation in equation (5.22) corresponds to the linearised variational equations. Reformu-

lating equation (5.22) yields

∂r

∂x
(I−K

∂f

∂r
) = K

∂f

∂x
,

∂r

∂b
(I−K

∂f

∂r
) = Bb.

(5.23)
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Introducing the gravitational gradient tensor

T =
∂f

∂r
=


∇f(τ1) 0

. . .

0 ∇f(τN )

 (5.24)

and substituting equation (5.24) in equation (5.23) yields

∂r

∂x
= (I−KT)−1KGx,

∂r

∂b
= (I−KT)−1Bb.

(5.25)

The gravitational gradient tensor T, which is often denoted as Marussi tensor, is comprised of

the second derivatives of the gravitational potential V , this corresponds to the derivation of the

force function f with respect to the position r. The gravitational gradients, representing the

elements of the symmetric tensor, are given by

T = ∇(∇V ) =

Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

 , (5.26)

where only five of the nine elements are mutually independent. The tensor has a vanishing trace

and therefore satisfies Laplace’s equation (according to equation (3.7)).

The position dependency of the observation equations is given by the gradient field.

With equation (5.25) the observation equations for the positions, velocities and accelerations of

the two satellites A and B are given byrA/B

ṙA/B

r̈A/B

 =

r
A/B
0

ṙ
A/B
0

r̈
A/B
0

+

RA/B

ṘA/B

R̈A/B

GA/Bx+


B̄A/B

˙̄B
A/B

¨̄B
A/B

b, (5.27)

with

RA/B :=
∂r

∂f

A/B

= (I−KTA/B)−1K and B̄A/B :=
∂r

∂b

A/B

= (I−KTA/B)−1B. (5.28)

Ka-band observations

Substituting equation (5.27) in equation (5.14) gives the observation equations of the Ka-band

observationsρρ̇
ρ̈

 =

ρ0ρ̇0
ρ̈0

+P

RB −RA

ṘB − ṘA

R̈B − R̈A

GB

GA


x+P


B̄B − B̄A

˙̄B
B
− ˙̄B

A

¨̄B
B
− ¨̄B

A



bB

bA


. (5.29)
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Observation equations - Positions & Ka-band observations

The observation equations for satellite positions and Ka-band observations are given by

l
A/B
POD = RA/BGA/Bx+ B̄A/BbA/B, (5.30)

and

lKBR = P

RB −RA

ṘB − ṘA

R̈B − R̈A

GB

GA


x+P


B̄B − B̄A

˙̄B
B
− ˙̄B

A

¨̄B
B
− ¨̄B

A



bB

bA


, (5.31)

with the reduced observations

l
A/B
POD = rA/B − r

A/B
0 ,

lKBR =

ρ− ρ0

ρ̇− ρ̇0

ρ̈− ρ̈0

 .
(5.32)

For details on the formulas and on the computation of the approximate values r
A/B
0 , ρ0, ρ̇0 and

ρ̈0 please refer to Mayer-Gürr (2006).

5.2 Normal equations

A system of linear equations can be established with the linearised observation equations given

in equations (5.30) and (5.31)

δli = Aiδx+Biδbi + ei, (5.33)

where x denotes the unknown spherical harmonic coefficients and b represents the boundary

values.

Equation (5.33) can be reformulated to

δli =

Ai Bi


  

Hi


δx

δbi


  

δz

+ei, (5.34)

with the vector of residual observations δli and the vector of residual parameters δz = z − z0

given by

δzi =


δx

δbi


,

δli = li − l0i ,

(5.35)

where the subscript i denotes one arc.

If the noise vector e is assumed to follow a Gaussian normal distribution with zero mean, the

overdetermined system of equations in (5.34) can be solved by a LSA:

eTPe → MIN!, (5.36)

41



5 ANALYSIS - GRAVITY FIELD DETERMINATION

with the inverse matrix of cofactors Qll used as weight matrix P for the observations. The

covariance matrix

Σ(l) = σ20Qll = σ20P
−1 (5.37)

is decomposed into the matrix of cofactors Qll and the scalar factor σ20, which is denoted as

variance of unit weight or a-priori variance factor.

Minimizing (5.36) yields the normal equations

Nδẑ = n with N = HTPH and n = HTPδl. (5.38)

Since the normal equation matrix N contains all observations of all arcs, it can be described by

a summation

N =
m
i=1

HT
i PiHi, (5.39)

with the total number of arcs m.

In analogy to equation (5.39), the right-hand side vector n becomes

n =
m
i=1

HT
i Piδli. (5.40)

It is assumed that observations of different arcs are uncorrelated, therefore the weight matrix P

has a block-diagonal structure:

P =


P1

P2

. . .

Pm

 . (5.41)

Finally, the estimated gravity field and arc-related parameters are given by

x̂ = δx̂+ x0,

b̂ = δb̂+ b0,
(5.42)

where x0 and b0 represent approximate values.

The estimate of the variance of unit weight, which is also called a-posteriori variance factor, is

obtained by evaluating

σ̂20 =
êTPê

r
, (5.43)

with

ê = Hδẑ− δl, (5.44)

where the redundancy r represents the number of degrees of freedom of the adjustment problem.
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5.3 Elimination of parameters

According to equation (5.34) the unknown parameters include the spherical harmonic coeffi-

cients x and the arc-related boundary values y. Therefore, there are six unknowns related to

the boundary values of one satellite for each arc. This leads to a large number of parameters,

more than unknown gravity field parameters. Since the numerical values of these boundary

elements are not of interest, the arc-related unknowns are eliminated from the system of normal

equations.

If ranges are used as ll-SST observations an unknown range bias (cf. Section 6.1) has to be

estimated, which can be eliminated subsequently.

The system of normal equations for one arc is given by
ATA ATB

BTA BTB


δx̂

δŷ


=


AT δl

BT δl


, (5.45)

with

N11 = ATA, N12 = ATB, N22 = BTB,

n1 = AT δl, n2 = BT δl.
(5.46)

The vector δx̂ should be estimated without solving the whole system. The reduced system of

normal equations is given by

N̄δx̂ = n̄ with N̄ = N11 −N12N
−1
22 N

T
12 and n̄ = n1 −N12N

−1
22 n2. (5.47)

Details on the elimination of parameters can be found in Kaula (2000) and in Section 5.3 in

Mayer-Gürr (2006).

In contrast to the parameter elimination, additional observation equations can be added to the

system of normal equation. Hence, additional parameters (e.g. Love numbers) can be estimated

(cf. Section 7.5).

5.4 Variance component estimation

In parameter estimation the a-posteriori variance factor (cf. equation (5.43)) is an estimator for

the common variance level of the observations. It can be used as a plausibility check for the

a-priori assumptions made. In the stochastic model in equation (5.37) it is assumed that the

relations of variance levels among the observations are known, since they are determined by

the cofactor matrix Qll. Here, observations with different accuracies (positions and Ka-band

observations) are used within the observation groups. Therefore, the relative weighting between

the observations is essential.

Variance component estimation (VCE) enables the estimation of different levels of accuracies

for multiple observation groups, which corresponds here to short arcs. Whereas, the internal
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relations (between orbit and Ka-band observations) of each arc must be fixed a-priori.

The estimated solution δx̂ of the combined observation equations is determined by the normal

equation system. The total system is accumulated by the weighted sum of the normal equations

of the individual arcs

Nδx̂ = n,

with N =

k

1

σ̂2k
Nk =


k

1

σ̂2k
AT

kPkAk and n =

k

1

σ̂2k
nk =


k

1

σ̂2k
AT

kPkδlk,
(5.48)

where the arc-dependent parameters y have been eliminated according to Section 5.3.

The weighting is determined by the reciprocal of the normal equation systems individual vari-

ances 1
σ̂2
k
. The variance σ̂2k is given by

σ̂2k =
Ωk

rk
, (5.49)

with the square sum of the residuals of the kth arc

Ωk = êTkPkêk = δx̂TNkδx̂− 2nT
k δx̂+ δlTkPkδlk, (5.50)

and the partial redundancy

rk = mk −
1

σ̂2k
trace(NkN

−1), (5.51)

where mk is the number of observations.

The total redundancy


k rk = m−n is equal to the sum of the partial redundancies. To deter-

mine the k variance components the solutions δx̂ and the variance components σ̂2k themselves

are needed. Therefore, the variance component estimation is done iteratively or an a-priori

solution is provided. In equation (5.50) and (5.51) the estimated solution and the variances of

the previous iteration step are used.

Details on the VCE can be found in Koch and Kusche (2001) and in Mayer-Gürr (2006).
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Chapter 6

Processing of real data

In this chapter the used data products and the preprocessing of the real data are described. The

available data products are described in Section 6.1. The preprocessing in Section 6.2 includes

the synchronization of the data products and the outlier detection within the Ka-band observa-

tions.

After preprocessing, the linearised observation equations (given in Section 5.1.3) can be used

to estimate the lunar gravity field from real data, i.e. the analysis described in Chapter 5 can

be done using the GROOPS software package. The results obtained by the analysis are the

spherical harmonic coefficients, which represent the lunar gravity field.

In a next step, the obtained results can be compared to previous lunar gravity field solutions

(cf. Section 8).

6.1 Available data products

The LGRS CDR data set contains calibrated and re-sampled Level 1A and 1B science data from

each Lunar Gravity Ranging System. For the definitions of the NASA processing levels please

refer to Table 2.2 in Section 2.3.

The following Level 1B data products have been used for the real data analysis:

• Satellite orbit solutions in a Moon-centered inertial frame for GRAIL-A and GRAIL-B

(GNI1B)

• Ka-band ranging data (KBR1B)

Both data products are available for the duration of GRAIL’s PM (March-May 2012) and have

a sampling of 5 seconds, but they are not synchronous (cf. Section 6.2.1). The abbreviations of

the data products are according to Kahan (2012).

The LGRS CDR data set is available at the Geosciences Node of NASA’s PDS 1. The data set

is subdivided into directories by level and by date, i.e. one subdirectory contains all available

data products for one level and date.

1http://geo.pds.nasa.gov/missions/grail/default.htm
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6.1.1 Orbit

Since direct (radio) tracking of the satellites on the lunar farside is impossible, kinematic or-

bits can not be provided. Additionally, epoch-wise (kinematic) positioning is impossible from

non-synchronized observations. Therefore, the only available satellite orbit solutions are re-

duced-dynamic orbits.

Reduced-dynamic orbits depend to some extent on the gravity field model underlying the orbit

estimation. Hence, they are often considered as inappropriate for gravity field determination.

Here, the orbit is not directly used for lunar gravity field determination, but “only” for geo-lo-

cation (cf. Section 5.1).

The orbital solutions for the two spacecraft GRAIL-A and GRAIL-B are available in two different

frames:

1. EME2000 Lunar-centered solar system barycentric frame (GNI1B)

2. DE 421 Lunar body-fixed frame (GNV1B)

With the body-fixed coordinates contained in the daily GNV1B ASCII-files, the groundtracks of

the satellites can be calculated easily by transforming the given Cartesian coordinates to spher-

ical coordinates (cf. Section 3.5.4). The groundtrack of GRAIL-A for one day during the PM is

shown in Figure 6.1. During the 82-day Science Phase the Moon rotates three times underneath

the GRAIL orbit.

Figure 6.1: Groundtrack of the spacecraft GRAIL-A on 5th March 2012. The projection is a

cylindrical Plate Carrée projection, centered about 270◦ eastern longitude.
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Using the GRAIL orbit data for both spacecraft the separation distance and the orbital altitude

during the PM phase can be determined. The results are shown in Figure 6.2. During the three

27.3-day mapping cycles the separation distance is varying between 82-218 km and the mean

orbit altitude is about 55 km (± 35 km) (cf. Section 2.2.2).

(a) Orbital altitude

(b) Separation distance

Figure 6.2: Spacecraft separation distance and orbital altitude during GRAIL’s PM. Altitudes

are relative to the lunar mean radius of 1737.4 km.
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The varying separation distance (cf. Fig. 6.2) is optimal for recovering a global lunar gravity field.

The determination of local and regional spatial features is not that sensitive to the separation

distance, while the maximum separation is ideal for the determination of the long-wavelength

components of the gravity field, such as tides and the lunar core parameters. Aside from that, the

separation distances are designed to ensure that there is no degradation of the Ka-band signal

due to multipath from the lunar surface. Furthermore, a constant separation distance causes

a degradation of the gravity field for wavelength equal to the separation distance. Therefore,

the separation distance was chosen to vary between 80 km and 220 km. But nevertheless, the

spacecraft altitude has most influence on the resolution of the gravity field (Konopliv et al.,

2013).

6.1.2 Ka-band observations

The Ka-band data products (KBR1B) provide the biased Dual One Way Range (DOWR) be-

tween GRAIL-A and GRAIL-B, which corresponds to the true range plus an unknown bias.

The biased range is not corrected for the time of flight or antenna offset from the Center of

Mass (CoM). These corrections are contained in the file and have to be applied.

In addition, the ranging data also contains the first and second derivatives of the biased DOWR

and the associated time of flight and antenna offset corrections.

The biased DOWR ρDOWR is formed by

ρDOWR(t) = c · ΦAB(t) + ΦBA(t)

fA + fB
, (6.1)

with

c . . . speed of light,

ΦAB = ϕA − ϕB . . . differential phase measurement at GRAIL-A,

ΦBA = ϕB − ϕA . . . differential phase measurement at GRAIL-B,

ϕA/B . . . reference phase of spacecraft A/B,

ϕA/B . . . received phase transmitted by spacecraft A/B,

fA . . .Ka-band carrier frequency transmitted by GRAIL-A,

fB . . .Ka-band carrier frequency transmitted by GRAIL-B.

(6.2)

As mentioned before, the provided Ka-band observations have to be corrected. The corrected

range, range rate, and range acceleration are computed by adding the time of flight correction

and the antenna offset correction to the DOWR, range rate, or range acceleration observations:

corrected range = biased range + light time correction + antenna offset correction.

For the range rates and range accelerations, corresponding corrections are added accordingly.

Further details on the orbit and Ka-band observations can be found in Kahan (2012).
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6.2 Preprocessing

6.2.1 Synchronization - Polynomial interpolation

The orbit data and the Ka-band data have to be synchronized, since there is a time-shift of

one second between the data sets. The synchronization is achieved by using a interpolation

polynomial, i.e. the less accurate orbit data is interpolated to the epochs of the Ka-band data.

The new epoch is computed with a polynomial interpolation of degree M using the close-by

M + 1 equally sampled epochs. The interpolation point, representing the new data point,

should be nearly in the middle of the interval, because the polynomial is oscillating at the edges

of the interval. Here, a polynomial of degree 7 has been used for the interpolation.

The interpolation of the orbit data is done by evaluating a piecewise adjusted polynomial. Hence,

for each interpolated data point a new interpolation polynomial is used (cf. Section 3.7.1)

r(τ) ≈
M
n=0

anτ
n, (6.3)

where the polynomial coefficients are represented by an. The time variable τ = tk+τj is defined

by the degree of the used polynomial and the sampling ∆t of the data points.

The system of linear equations given in equation (6.3) can be written as matrix-vector product
r(tk + τ0)

...

r(tk + τM )

 =


1 τ0 τ20 . . . τM0
...

...
...

...

1 τM τ2M . . . τMM


  

W


a0
...

aM

 ,

with

τj = 1− (j − M + 1

2
) ·∆t if M = odd,

(6.4)

where τ = 0 corresponds to the interpolation point r(tk). The coefficients of the inverse ma-

trix W−1 are denoted as wnj .

The polynomial coefficients an are determined by solving the system of linear equations in (6.4).

The solution is given by

an =
M
j=0

wnjr(tk + τj). (6.5)

Substituting equation (6.5) in equation (6.3) gives

r(τ) =

M
n=0

τn
M
j=0

wnjr(tk + τj). (6.6)

Since the polynomial is only evaluated for τ = 0, equation (6.6) simplifies to

r(0) =

M
j=0

w0jr(tk + τj). (6.7)
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For each interpolated data point a new polynomial has to be determined, which is then evaluated

for τ = 0. The polynomial is shifted point-by-point over the equally sampled orbit data, therefore

the coefficients w0j have to be determined only once. The interpolation can only be done if

enough data points are close by, i.e. the interpolation is not possible at the edges and in the

case of data gaps.

QR decomposition

Within the GROOPS software package the system of linear equations is solved using the QR de-

composition (or QR factorization). Therefore, equation (6.3) is rewritten to

b = Ax. (6.8)

The real square matrix A can be decomposed as

A = QR, (6.9)

where Q is an orthogonal matrix. Due to the orthogonality (QTQ = QQT = I) the inverse

matrix Q−1 is equivalent to the transpose matrix QT . The matrix R is an upper triangle matrix.

Substituting equation (6.9) in equation (6.8) yields

QRx = b. (6.10)

Equation (6.10) can be reformulated to

Rx = QTb. (6.11)

With c := QTb equation (6.11) can be solved by back-substitution.

In general, the QR factorization is more expensive to compute, but it is less sensitive to ill-con-

ditioning than the LU factorization, i.e. it is numerically more stable.

Polynomial interpolation - Validation

For simulated data it can be shown that the polynomial interpolation can be done with sufficient

accuracy. Therefore, a simulated data set is reduced in sampling and shifted by one second and

then compared to the simulated solution calculated beforehand. The absolute value of the

differences between the interpolated positions and the reference orbit are shown in Figure 6.3.

The differences are less than 1mm, i.e. the differences are several magnitudes lower than the

orbit accuracy. Therefore, the polynomial interpolation can be used to synchronize the orbit

data.
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Figure 6.3: Simulated data set: residuals between interpolated and reference orbit

6.2.2 Outlier detection

The preprocessing also includes the detection of large outliers. The detection of blunders is done

empirically for the ranges, range rates and range acceleration contained in the Ka-band data

product. The comparison with SST-observations derived from the orbit is not reasonable, due

to the fact that the orbit is less accurate and may contain outliers as well.

For outlier detection two successive values of the Ka-band observations are compared and if the

difference between those values exceeds a certain threshold, the observation is classified as an

outlier and is deleted from the data set. The outlier detection is done separately for ranges,

range rates and range accelerations; but if a outlier is detected all observations of the corre-

sponding epoch are removed from the data set. It should be noted that two successive values

are only compared if the time difference between these values corresponds to the sampling of

5 seconds.

The empirical values for the outlier detection are chosen as follows:

• ranges: 80 [m]

• range rates: 0.5 [m/s]

• range accelerations: 0.0009 [m/s2]

The range observations may contain jumps due to phase breaks (cf. Section 6.1). Those jumps

should be detected, since most of the time outliers occur between those jumps.
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Figures 6.4 to 6.6 show the ranges, range rates and range accelerations before (red) and af-

ter (green) outlier detection. It is visible, that large blunders can be detected with this method.

But to ensure the elimination of all outliers a VCE is done, i.e. the arcs containing outliers are

down-weighted (cf. Section 5.4).

Figure 6.4: Outlier detection - Range

Figure 6.5: Outlier detection - Range rate
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Figure 6.6: Outlier detection - Range acceleration

In total, 120 outliers were detected. This corresponds to less than 0.01% of the total data.

After outlier detection, the observations were subdivided into arcs of a predefined length. If a

data gap occurs in one of the data sets a new arc starts after the data gap.

53



Chapter 7

Results - Simulation studies

The estimation of the spherical harmonic coefficients is based on the simulated orbit and Ka-band

observations. Details on the modeling parameters used for the observation simulation are given

in Section 7.1.

Several simulation scenarios have been evaluated and are presented in Section 7.2, 7.3 and 7.4.

The idea behind the closed-loop simulation scenarios is to prove the correct performance of

the algorithm, showing how well the gravity field can be recovered from simulated data. Fur-

thermore, the influence of individual parameters (used in the synthesis and/or analysis) on the

results is investigated using different simulation scenarios.

Finally, the lunar Love numbers used as input for the simulation of the lunar tides are consid-

ered, showing that the analysis works properly if additional parameters are estimated.

The purpose of the sensitivity studies is to validate the used method and to analyse the achieved

results. Besides, these simulations are meant to prepare for the use of real data.

7.1 Simulation - Modeling parameters

7.1.1 Simulated orbit and Ka-band observations

The simulated data set consists of orbit and ll-SST observations for a period of 30 days with a

sampling of 5 seconds (0.2 Hz). This corresponds to the first mapping cycle of the GRAIL PM.

In Table 7.1 the parameters used for the orbit integration of the two spacecraft GRAIL-A and

GRAIL-B are given. To be consistent with the real data, the initial state vectors are obtained

from the real orbit data.

The orbit is simulated based on the lunar gravity field model JGL165P1 1. The simulation is

complete to degree and order (d/o) 165. Therefore, the reference field JGL165P1 is regarded as

the “true” gravity field for all conducted simulation studies.

Using the simulated orbit data, the ll-SST observations can be derived (cf. Chapter 4). In a first

step, the simulated observations are noise-free.

1available online at http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
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Table 7.1: Orbital parameters

Gravitational parameter GM 0.4902801056 · 1013 m3 s−2

Lunar radius R 1 738 000m

Initial state vector retrieved from real data (GNI1B)

Reference field JGL165P1

Ephemeris file JPL DE421

Sampling 5 s

Simulation period 1 month (01-Mar-2012 to 31-Mar-2012)

Inclination 89.9◦ w.r.t lunar equator

Altitude ∼ 50 km (±35) km

Separation distance ∼ 80− 200 km

In a next step, white noise is added to the observations. In principle, all observations are in-

accurate due to some kind of stochastic error. Here, the errors are assumed to come from a

random process that causes noise in the data. Hence, the observations are contaminated with

white noise with zero mean, scaled by an appropriate standard deviation for the positions and

Ka-band observations, respectively. The observations are assumed to be uncorrelated.

Since there is no detailed information about the accuracies of the orbit and Ka-band observa-

tions available, the accuracies have to be assumed based on knowledge from other missions.

For the LRO mission the total position accuracy was found to be around 12m, using Doppler

tracking data, crossovers and SLR data (Mazarico et al., 2012). Therefore, white noise of 10m

is added to the orbit positions in each direction, i.e. the along-track, cross-track and radial ac-

curacies are assumed to have an equal noise level. Usually, the orbit accuracy in radial direction

is much better than the other two directions, but for simplification all directions are assumed

to have the same accuracy.

The Gaussian noise associated with the Ka-band observations is added to the simulated ll-SST

data; a constant noise of 1µm is applied for the ranges. For the range rates a white noise of

1µm/s is added, based on the knowledge from the GRACE mission.

An overview of the different noise levels added to the simulated observations can be found in

Table 7.2.

Table 7.2: Noise levels - Simulated observations

Observation Noise level

Orbit 10m in each direction

Ka-band (ranges) 1µm

Ka-band (range rates) 1µm/s
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7.2 Closed-loop scenario

The performance of the synthesis and analysis can be proven by closed-loop simulation sce-

narios (cf. Figure 7.1). The orbit is simulated based on a reference gravity field, which is a

known lunar gravity field model (JGL165P1). If no non-conservative forces are considered, the

orbit perturbations reflect the a-priori reference gravity field. Using the simulated positions

and the Ka-band observations between the two spacecraft, the spherical harmonic coefficients

of the lunar gravity field can be estimated. Comparing the recovered coefficients to the a-priori

chosen reference field shows the absolute accuracy of the used approach. Based on the spherical

harmonic coefficients further functionals of the gravitational potential (cf. Section 3.2.1), such

as selenoid heights or free-air anomalies, can be derived.

Figure 7.1: Closed-loop simulation scenario

7.2.1 Noise free

In this perfect simulation scenario, all simulated observations are noise free and the weight

matrix becomes a unit matrix. Hence, there is no inconsistency due to noise or spectral aliasing.

Therefore, noise free simulations are conducted to asses linearisation errors due to the first order

Taylor series approximation, which is used to linearize the observation equations.

In the case of noise free observations, the differences to the reference model are in the order of

about 10−13 to 10−16, which is in the order of numerical rounding errors.
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7.2.2 White noise

In this scenario, white noise is added to the simulated observations according to Table 7.2. Since

the a-priori unit weight factor is set to one and the errors are known, the arc-wise weight matrix

has a block-diagonal structure and can be set up using the equivalent values of the added white

noise (10 m for positions, 1µm for ranges).

Using the correct weight matrix, the obtained results should match perfectly to the a-priori

chosen reference gravity field.

In Figure 7.2 the degree variances of the reference gravity field JGL165P1 are given in black. The

black dashed line corresponds to the formal errors of the reference gravity field. Additionally,

the formal errors of the estimated solutions and the differences of both solutions to the reference

gravity field are shown. The estimated gravity field models are calculated from the simulated

range.

The expression “d/o 165 (165)” stands for the resolution of the analysis and the reference gravity

field. The resolution of the reference gravity field is indicated in brackets.
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Figure 7.2: DE-RMSn of closed-loop simulation scenarios - Noise free vs. white noise

In the noise free case, the a-priori reference gravity field JGL165P1 can be estimated with a

minimal difference of 10−16 per degree. These differences are due to numerical issues, orbit

characteristics or errors of numerical integration. Nevertheless, it is the best possible solution.

Adding white noise to the observations, leads to a decreased accuracy of the recovered gravity

field solution.

In both cases, the formal errors of the recovered gravity field solution agree with the empirical

errors, represented by the differences to the reference gravity field. Furthermore, the a-priori

and a-posteriori variance of unit weight are consistent, i.e. the stochastic model can be assumed

to be set up correctly. These results lead to the assumption that no model errors exist and that

the algorithm is working correctly.
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7.2.3 Range versus range rate

A closed-loop simulation scenario with white noise is chosen to compare different types of

Ka-band observations (ranges and range rates), where the noise level of the observations is

according to Table 7.2. The error degree variances of the estimated spherical harmonic co-

efficients with respect to the reference gravity field are shown in Figure 7.3. The red curve

represents the parameters estimated from ranges and the cyan curve represents the parameters

estimated from range rates.
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Figure 7.3: DE-RMSn of the closed-loop simulation scenario - Range vs. range rate

Comparing the two solutions, it should be emphasized, that the offset between the solutions

is caused by the incorrect weight factor used for the range rate observations. Since the noise

introduced to the range rates is only an assumption and is not gained by numerical differentia-

tion. The ranges are the direct observation from the Ka-band (cf. Section 6.1.2). Therefore, the

correct weight factor could be determined by introducing the noise for ranges and generating

the noise for the range rates by means of differentiation or error propagation. The noise of the

ranges is amplified when the range rates are processed by numerical differentiation.

If the variance-covariance matrix of the observations and consequently the weight matrix is set

up correctly, there should occur no differences between the solutions.

The ranges are considered as the direct Ka-band observations, due to that reason the intro-

duced noise corresponds to the weight factor and there is no necessity for an error propagation.

Therefore, ranges are used for all further simulation studies.
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7.3 Simulation scenario: up to d/o 165, with white noise

The variable input parameters for the analysis include not only the introduced white noise and

the type of SST observation used, but also the reference gravity field, the arc length and the

weight matrix. In this section the influence of these variable input parameters is examined.

In order to evaluate how sensitive the solution is to different parameters, some additional sim-

ulation scenarios have been conducted to analyse, how well the “true” gravity field JGL165P1

can be recovered with evenly distributed noisy orbit and tracking data using:

• different a-priori reference fields,

• different arc lengths (10/30/60/90 minutes) and

• different weighting factors

7.3.1 A-priori reference field

Reference gravity field - JGL165P1

The JGL165P1 lunar gravity field model, which has the highest resolution at present, is used

for the synthesis, i.e. the simulation of the orbit and Ka-band observations, up to degree and

order (d/o) 165.

For this model several input data sets were used, including the radio tracking of the Lunar

Orbiter 1 to 5, Apollo 15 and 16 subsatellites, Clementine, and all the data of the LP spacecraft.

“JGL165P1 model is one of the reliable models among the existing lunar gravity models at least

prior to degree 100, which can reveal the character of medium and long wavelength of lunar

external gravity field” (Yan et al., 2006, p. 253).

Reference gravity field - Clone

In the case of closed-loop simulations, the a-priori reference field JGL165P1 is used for both the

synthesis and analysis. Using real data, the a-priori reference field will show clear differences

to the recovered lunar gravity field solution (cf. Section 8.2.2). In contrast to GRAIL, previous

missions did not provide a global data set and required regularization methods to enable the

recovery of global gravity field models. For these reasons, previous lunar gravity field models

can be assumed do not perfectly represent the true signal. Therefore, a Clone of the gravity

field model JGL165P1 is used for the analysis instead.

To generate the coefficients of the JGL165P1 Clone the coefficients of the JGL165P1 gravity

field model model are deteriorated by their corresponding formal errors. The plus/minus sign

of the added formal error is determined according to a random process.

Both reference gravity field models are shown in Figure 7.4. As intended, the DE-RMSn of the

JGL165P1 Clone correspond to the formal errors of the JGL165P1 model.
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Figure 7.4: DE-RMSn of the reference gravity field JGL165P1 Clone

Formal versus empirical errors

The analysis up to d/o 165 shows that the solution is influenced by the used a-priori reference

gravity field (cf. Figure 7.5). The formal errors of the recovered gravity field solution should

agree with the empirical errors, the offset is due to linearisation errors, which in turn are caused

by the inaccurate a-priori reference gravity field. If the solution is iterated using the recovered

solution as a-priori reference field, the formal errors match the empirical errors (cf. Figure 7.6).
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Figure 7.5: DE-RMSn of the simulation scenario: up to d/o 165, with white noise - JGL165P1

vs. JGL165P1 Clone used as a-priori reference gravity field

All following simulation scenarios use the JGL165P1 Clone as a-priori reference field.
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(a) Reference gravity field: JGL165P1 Clone
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(b) Reference gravity field: JGL165P1 Clone - 1st Iteration

Figure 7.6: DE-RMSn of the simulation scenario: up to d/o 165, with white noise - Clone

7.3.2 Arc length

The results obtained by the analysis are influenced by the choice of the arc length. Previous

results of the satellite mission GRACE showed that a good choice for the arc length is between

1/3 and 1/2 of the satellite revolution time.
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If the arc length is chosen too short a large number of arc-related unknowns arise and long wave-

lengths might be distorted. On the other hand, if the arc length is chosen too long accumulated

effects may arise.

Here, short arcs are used, which have the advantage that non-modeled perturbations of the orbit

have less influence and the handling of data gaps is easier (cf. Chapter 6).
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Figure 7.7: DE-RMSn of the simulation scenario: up to d/o 165, with white noise - Arc length
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Figure 7.8: DE-RMSn of the simulation scenario: up to d/o 165, with white noise - Arc length
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The effects of different arc lengths are given in Figure 7.7. Here, a simulation scenario up to

d/o 165 is used, with the observations containing only white noise. The arc length is varying

between 10, 30, 60 and 90 minutes, which corresponds approximately to 1/10, 1/3, 1/2 and 4/5

of the revolution period.

For the sake of completeness, the solutions are iterated once due to the inaccurate a-priori refer-

ence gravity field. The results of the 1st iteration using different arc length are given in Figure 7.8.

According to the results, the best arc length for the GRAIL simulation studies is between 60

and 90 minutes.

7.3.3 Stochastic model

For the recovery of the spherical harmonic coefficients it is essential that the relative weighting

between the orbit and Ka-band observations is set up correctly (cf. Table 7.2).

If the weight matrix is chosen correctly, the relative weighting between the observations cor-

responds to 1:10 000 000. The influence of a wrong relative weighting by one or two orders of

magnitude is examined, i.e. the position accuracy is changed from 10m to 1m, for instance.

The difference between the results are the weight factors that are used for the two observations

types. In the following, several results with different weight factors and different noise levels are

presented.
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Figure 7.9: DE-RMSn of the simulation scenario: up to d/o 165, with white noise - Weight

factors

In one case, the weight factor for the positions is chosen too optimistic (1m and 10 cm). The

wrong relative weighting leads to an incorrect stochastic model causing differences mainly in the

higher degrees (cf. Figure 7.9). If the weight factor of the positions is wrong by one order of

magnitude (1m or 100m) the differences are very small.

Whereas, in the other case, the weight factor for the ranges is chosen too pessimistic (10µm) and

less emphasis is laid on these data. Hence, the differences to the reference gravity field increase.
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The effect from wrong orbit accuracies is relatively small compared to that from wrong Ka-band

accuracies. Consequently, the estimation is more sensitive to the Ka-band observations than to

the noisy orbit.

7.3.4 Noise level

In a next step, the noise levels of the simulated observations are changed and the weight factors

are chosen correctly in accordance with the noise levels. The results are given in Figure 7.10.
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Figure 7.10: DE-RMSn of the simulation scenario: up to d/o 165, with white noise - Noise levels

Figure 7.10 shows that the relatively low accuracy of the orbit is not the limiting factor. In

fact, the system itself is most sensitive to noisy Ka-band observations. Thus, the “bottleneck”

of this concept is obviously the accuracy of the Ka-band observations and not the accuracy of

the positions.

7.4 Truncated simulation scenario: up to d/o 100, with white noise

Gravity fields derived from real data have infinite resolution. Therefore there will be an omission

error due to the unresolved degrees. Besides, the calculation effort increases quadratically with

increasing degree and order.

The orbit and Ka-band observations are simulated with the reference gravity field JGL165P1

up to d/o 165, but within the analysis the spherical harmonic coefficients are only resolved up

to d/o 100.

The truncation of the spherical harmonic expansion at degree 100 leads to spectral aliasing,

which is also denoted as omission error, due to the neglected part of the gravity field. This

inconsistency of the simulation scenario is reflected in the DE-RMSn of the estimated signals.
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7.4.1 Arc length & reference field

As shown before (cf. Section 7.3.2), the choice of the arc length influences the error variances of

the recovered spherical harmonic coefficients (cf. Figure 7.11).

Here, the influence of the resolution of the a-priori reference field is analyzed. Therefore, the

a-priori reference field, used for the analysis, is limited to different degrees and orders. As men-

tioned before, the resolution of the reference gravity field used for the analysis up to d/o 100 is

indicated in brackets, i.e. “d/o 100 (100)” stands for a reference gravity field up to d/o 100.
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Figure 7.11: DE-RMSn of the truncated scenario: up to d/o 100, with white noise - Arc length

& reference gravity field

As shown in Figure 7.11, the omission error affects the whole spectrum. Comparing different

a-priori reference fields, it can be shown that the use of the reference field up to d/o 165 leads

to an reduction of the omission error over the whole spectrum.

7.4.2 Reference field & gradient field

If the reference gravity field and gradient field are not truncated, an improved gravity field

solution is gained. To asses the influence of the gradient field, several solutions using different

degrees of expansion for the gradient field are computed. The contribution of the truncated

gradient fields are shown in Figure 7.12. Here, the specifications in brackets stand for the

resolution of the gravity field and the gradient field, respectively.

The higher the maximum degree of the gradient field, the better the solution becomes. The

influence of the gradient field is probably due to the roughness of the lunar gravity field. The

use of a high resolution gravity and gradient field reduces the omission error and noise of the

estimated spherical harmonic coefficients.

This shows, that a high-resolution gradient field is important, but also extends the computation

time.
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Figure 7.12: DE-RMSn of the truncated scenario: up to d/o 100, with white noise - Reference

gravity field & gradient field

7.5 Estimation of Love numbers

The Moon’s response to the gravitational attraction of the Earth and Sun is described by Love

numbers (cf. Section 3.4). The strongest influence on the gravitational potential is caused by

the second degree tides and can be expressed by the Love number k2.

If the solid Moon tides are taken into account in the synthesis, i.e. the tidal accelerations are

simulated, the values of k2 and k3 can be re-estimated in the analysis. The a-priori value of the

Love number k2 is 0.0213, following Goossens and Matsumoto (2008). The a-priori value of the

Love number k3 is set to 0.0073. Since the size and the composition of the lunar core is not

clearly determined yet, the lunar Love number can help to improve models of the deep lunar

interior.

If the simulated observation data is containing white noise and the JGL165P1 model is used as

reference gravity field for the analysis, the estimated values for the Love numbers k2 and k3 and

their variances are given by:

• k2 = 0.02135± 0.000057

• k3 = 0.00735± 0.000397

7.5.1 Real data analysis

For the real data analysis the lunar Love numbers have not been successfully recovered yet. The

non-gravitational accelerations, such as lunar albedo, solar radiation pressure and spacecraft

thermal acceleration, are not modeled. Therefore, the lunar Love numbers may be drowned by

these non-gravitational accelerations and can not be recovered correctly.

According to (Park et al., 2012) the non-gravitational forces acting on the spacecraft should be

represented by models, since they are directly related to the formal uncertainties of the estimated

low degree coefficients.
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Chapter 8

Results - Real data

The gravity field solution from real data analysis is presented in this chapter. The recovered

lunar gravity field solution is compared to the reference gravity field JGL165P1, which has the

highest available resolution and accuracy at present.

A gravity field model up to degree and order 200 is estimated, which corresponds to a spatial

resolution of about 27 kilometers. Compared to previous models the higher spatial resolution

and the improved signal quality reveals many features previously not resolved.

8.1 Analysis parameters

The real data sets have been preprocessed, including the synchronization of the data sets and

the outlier detection, according to Chapter 6.

The parameters used for the real data analysis are given in Table 8.1. The orbit and Ka-band

observations are subdivided into short-arcs with a length of 60min. The arc length is chosen

according to the results of the simulation studies (cf. Section 7.3.2). The lunar gravity field

model JGL165P1 (cf. Section 7.3.1) is used as reference gravity and gradient field up to degree

and order 165. Moreover, the tidal accelerations of celestial bodies (Earth, Sun and planets)

and the solid Moon tides are modeled.

Since there is no exact information about the accuracies of the orbit and Ka-band observations

available, the relative weighting between the observations has to be done empirically. The posi-

tions are assumed to have an accuracy of 10m, whereas the range rates are assumed to have an

accuracy of 1µm/s. The comparably low accurate orbit observations are not a limiting factor

to the result, since they are down-weighted compared to the range rates and have therefore less

influence (cf. Section 7.3.3).

For the analysis, the whole three month of the GRAIL Science Mission are used, otherwise with

one month data the resolution up to d/o 200 would not be possible due to the data coverage.

As observation type range rates are used instead of ranges, since the noise behaviour of the

range rates is approximated better by white noise.
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Table 8.1: Analysis parameters

Gravitational parameter GM 0.4902801056 · 1013 m3 s−2

Lunar radius R 1 738 000m

Reference field JGL165P1 (up to d/o 165)

Ephemeris file JPL DE405 and JPL DE421

Sampling 5 s

Period 3 month (01-Mar-2012 to 29-May-2012)

Ka-band observation type range rates

Arc Length 60min

Position σr 10m

Range rate σρ̇ 1µm

Max. degree n 200

8.2 Results

8.2.1 Iterations

In a first step, a gravity field solution up to d/o 200 is recovered from the preprocessed 3 month

of real data with the JGL165P1 used as reference gravity field. As the data still contains outliers,

stripes are visible in the derived selenoid heights (not shown here). Therefore, the solution has

to be iterated using VCE (cf. Section 5.4). Here, the recovered gravity field solution serves as

input (= approximate solution) for the next iteration step. Within the VCE arcs containing

outliers are down-weighted appropriately.

Figure 8.1 shows the recovered spherical harmonic coefficients, as well as the corresponding for-

mal errors in comparison to the reference gravity field JGL165P1. After several iterations, the

signal follows rather the empirical power law than before. Moreover, the stripes vanish, since the

arcs containing the outliers are down-weighted and have less influence on the estimated solution

(not shown here).

Since the less accurate ephemeris file DE405 is used instead of DE421 (cf. Appendix A.3), the

analysis is repeated using the DE421 ephemeris file. The iterated gravity field solution serves

as a-priori reference gravity field for the analysis. The solution of the 2nd iteration is given in

cyan and the improved solution is given in red. Additionally, the scaled Kaula rule for the Moon

2.5 · 10−4n−2 is given in grey (cf. Figure 8.2).
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Figure 8.1: Recovered gravity field solution - Iterations
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Figure 8.2: Recovered gravity field solution - DE421
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8.2.2 Comparison to JGL165P1

Degree variances - DE-RMSn

Finally, the recovered gravity field solution, denoted as GRAIL d/o 200, is compared to the

gravity field solution JGL165P1. Therefore, the RMS of the degree-wise error variances in

selenoid heights is computed and presented in Figure 8.3.
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Figure 8.3: DE-RMSn of the recovered gravity field solution - GRAIL d/o 200

The error variances follow more or less the formal errors of the gravity field model JGL165P1.

Since the formal errors of the recovered solution do not intersect the signal curve, the maximum

potential has not been achieved yet.

Compared to the JGL165P1 model, GRAIL improves the gravity field solution by up to two

orders of magnitude. Hence, the GRAIL mission provides the best lunar gravity field up to date.

Moreover, the solution can be compared to the lunar gravity field recovered from the GRAIL

mission by the NASA. Unfortunately, the gravity field solutions from Zuber et al. (2013) and

Konopliv et al. (2013) are not available yet, as they have not been published officially. With the

availability of the NASA lunar gravity field, the solution can be validated externally.

In general, the signal curves seem to match quite good, as far as this can be said from the

published figures (cf. Zuber et al., 2013; Konopliv et al., 2013, p. 669 and p. 57, respectively).
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Spherical harmonic coefficients

The spherical harmonic coefficients of the recovered solution in Figure 8.4 show that the largest

uncertainties occur in the sectoral coefficients. This phenomenon can be explained from the

orbit design of the two twin satellites: the satellites orbit the Moon behind each other in near

polar orbits. Consequently, the best coverage is achieved for the zonal areas as the Moon rotates.

This may also lead to a North-South striping pattern.

Tthe spherical harmonic coefficients of the JGL165P1 show that the analysis was done stepwise.

(a) JGL165P1 - cnm, snm (b) JGL165P1 - σcnm , σsnm

(c) GRAIL d/o 200 - cnm, snm (d) GRAIL d/o 200 - σcnm , σsnm

Figure 8.4: Spherical harmonic coefficients - JGL165P1 vs. GRAIL d/o 200

Figure 8.5 shows the GRAIL-A groundtrack during the 3 month PM with a sampling of 5 sec-

onds for a limited area of 6◦ x 6◦. The projection is a Robinson projection centered around 270◦

eastern longitude.

As already mentioned, the recovered gravity field solution is resolved up to d/o 200, which corre-

sponds to a spatial resolution of 27 kilometers. Along the equator 1◦ corresponds to 30 kilometers

on the lunar surface. Due to the limited horizontal coverage, the formal errors of the sectoral

coefficients increase with increasing degree and order, starting from d/o 180 onwards. This

characteristic behaviour is highlighted by the grey boxes in Figure 8.4.
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Figure 8.5: GRAIL groundtrack during PM for a limited area of 6◦ x 6◦
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Selenoid heights

Figure 8.6 shows the selenoid heights from JGL165P1 and from the reconstructed gravity field

solution GRAIL d/o 200. The projection is a Mollweide projection centered around 270◦ eastern

longitude, leaving the nearside on the right and the farside on the left of the figure. A grid of

0.5◦ is used. The reference field consists of the central term of the selenopotential and has been

subtracted.

(a) JGL165P1

(b) GRAIL d/o 200

Figure 8.6: Selenoid heights from JGL165P1 and GRAIL d/o 200

Evidently, the availability of global ll-SST observations improves the spatial resolution of the lu-

nar nearside and farside compared to the reference gravity field model JGL165P1 (cf. Figure 8.7).

Compared to JGL165P1, the model displays features previously not resolved, as well as more pro-

nounced high-frequency variations. Both of these facts are attributed to the improved high-res-

olution gravity field model.

The largest differences between both models can be found on the lunar farside. However, there

also occur smaller differences on the nearside, revealing some North-South striping pattern. To

show more details, the colorbars in Figure 8.7 do not cover the full range of differences.
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(a)

(b)

Figure 8.7: Differences in selenoid heights: GRAIL d/o 200 - JGL165P1

Free-air anomalies

According to the Meissl-Scheme (cf. Figure 3.2, p. 17), the free-air anomalies show the high-fre-

quent part of the gravity field. Hence, more detailed short-wavelength structures on the lunar

surface become visible.

Figure 8.8 shows the free-air anomalies from JGL165P1 and from the reconstructed gravity field

solution GRAIL d/o 200. The projection is a Mollweide projection centered around 270◦ eastern

longitude, leaving the nearside on the right and the farside on the left of the figure. A grid of

0.5◦ is used. The reference field consists of the central term of the selenopotential and has been

subtracted.

By comparing lunar basins and mascons with the gravitational signature, a strong correlation

between the lunar gravity field and the topography is revealed (cf. Appendix A.2).
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(a) JGL165P1

(b) GRAIL d/o 200

(c) Differences

Figure 8.8: Free-air anomalies from JGL165P1 and GRAIL d/o 200
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8.3 Validation

To validate the achieved results, the recovered gravity field solution is used to simulate ll-SST

observations for the GRAIL PM. Therefore, the orbits of GRAIL-A and GRAIL-B are simulated

with the initial state vectors from the real data using the GRAIL d/o 200 model as reference

gravity field. In a next step, the simulated orbits are used to simulate the ll-SST observations

(according to Section 4). The differences between the simulated range rates based on the recov-

ered gravity field model and the real data are given by the residuals.

In addition, ll-SST observations are also simulated from the reference gravity field model JGL165P1.

For both models the obtained residuals to the real data are compared to validate the solution.

Figure 8.9 shows the residuals of the simulated range rates of both models (JGL165P1 and

GRAIL d/o 200) with respect to the real data over a period of 5 days. Comparing both models,

the recovered gravity field model clearly improves the simulated ll-SST observations and there-

fore reduces the residuals.
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Figure 8.9: Range rate residuals - JGL165P1 vs. GRAIL d/o 200
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Chapter 9

Conclusions & outlook

9.1 Conclusions

The prime objective of this work was to recover a global lunar gravity field from GRAIL real

data. To achieve this objective it is previously necessary to asses the performance of GRAIL by

means of various sensitivity studies.

In a first step, the synthesis, the orbit and Ka-band observations have to be simulated. In a

second step, the analysis, the mathematical model of the integral equation approach is set up

and the spherical harmonic coefficients, representing the lunar gravity field, are estimated.

The following conclusions can be drawn from the simulation studies and the real data analysis.

Compared to other approaches, the integral equation approach avoids combining the highly ac-

curate Ka-band observations with the comparably low accurate orbit. The only drawback is the

associated high computational effort.

The relative weight between the observations has a significant influence on the result. Although

the GRAIL mission has relatively low accurate orbits, the result is not limited significantly to

the accuracies of the orbit, but is limited to the accuracy of the more influential Ka-band ob-

servations. Nevertheless, an improvement of the orbit determination, especially for the farside,

would be preferable.

As shown in Chapter 8, the recovered gravity field model solution from GRAIL real data is

very promising. Compared to previous missions, GRAIL realized for the first time the ll-SST

principle for an artificial satellite orbiting the Moon. The availability of global inter-satellite

tracking data improves the spatial and spectral resolution on the lunar nearside and farside com-

pared to previous lunar gravity field models. The GRAIL PM, for which results are presented

here, dramatically improves the gravity field solution by up to two orders of magnitude. The

estimated model extends to degree and order 200, corresponding to a spatial resolution of about

27 kilometers on the lunar surface. Hence, the GRAIL mission provides the best lunar gravity

field up to date.
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Importantly, the GRAIL mission enables the estimation of a global high-resolution gravity field

model without any regularization.

This is a significant advantage compared to previous models, since the introduction of a-priori

information to the solution can be avoided. It also means that there is no need for a regularization

parameter, which greatly affects the solution.

9.2 Outlook

The work presented in this thesis has shown that the recovery of the lunar gravity field from

GRAIL real data using the integral equation approach is capable of extracting a global high-res-

olution gravity field model of the Moon, which contains the high-frequency gravity field signal

for the first time.

Due to the computational effort the estimation is limited to degree and order 200. Since the

formal errors do not intersect the signal curve, the solution could be still improved by estimating

up to a higher resolution.

Furthermore, the solution could be refined from a mathematical point of view. The stochastic

model could be improved by not assuming white noise and introducing more realistic weight

factors for the observations instead.

To improve the solution, the times of maneuvers (Angular Momentum Dumps (AMDs)), which

have a typical duration of 1-2minutes, should be considered when defining the time boundaries

of the short arcs. Otherwise, unmodeled accelerations from the AMDs may corrupt the gravity

field solution (Konopliv et al., 2013).

In future, additional 3 month of data from the extended mission phase with even lower orbit

altitudes will be available and should be used for the real data analysis as well.

Open issues include the setup of a validation scheme and the modeling of non-gravitational

accelerations such as solar radiation pressure and lunar albedo. These accelerations should be

taken into account, since an accurate modeling of the non-gravitational forces acting on the

spacecraft is necessary for an improvement of the solution.

Up to now, the real data analysis does not include orbit determination and the GRAIL orbits

provided by NASA’s PDS are used. Consequently, orbit determination can be considered as an

open issue too.
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List of abbreviations

AMDs Angular Momentum Dumps

CCAF Cape Canaveral Air Force Station

CDR Calibrated Data Record

CoM Center of Mass

CRS Celestial Reference System

DLR German Aerospace Center

d/o degree and order

DOWR Dual One Way Range

DSN Deep Space Network

DT Dynamical Time

EM Extended Mission

EME2000 Earth-Centered Earth Mean Equator and Equinox of Epoch J2000

E/PO Education and Public Outreach

ET Ephemeris Time

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRACE Gravity Recovery And Climate Experiment

GRAIL Gravity Recovery and Interior Laboratory

GROOPS Gravity Recovery Object Oriented Programming System

hl-SST High-Low Satellite-to-Satellite Tracking

ICRS International Celestial Reference System

JD Julian Date

JPL Jet Propulsion Laboratory

LGRS Lunar Gravity Ranging System
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LIST OF ABBREVIATIONS

ll-SST Low-Low Satellite-to-Satellite Tracking

LOI Lunar Orbit Insertion

LOS Line-Of-Sight

LP Lunar Prospector

LRO Lunar Reconnaissance Orbiter

LSA Least Squares Adjustment

MJD Modified Julian Date

MoonKAM Moon Knowledge Aquired by Middle school students

MRO Mars Reconnaissance Orbiter

NASA National Aeronautics and Space Administration

ORP Orbit Period Reduction

PDS Planetary Data System

PM Primary Mission

RMS Root Mean Square

RSB Radio Science Beacon

SDS Science Data System

SELENE Selenological and Engineering Explorer

TAI Atomic Time

TDB Barycentric Dynamic Time

TDT Terrestrial Dynamic Time

TGP Tide Generating Potential

TLC Trans-Lunar Cruise

TSF Transition to Science Formation

TT Terrestrial Time

TTS Time Transfer System

USO Ultra-Stable Oscillator
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Appendix A

The Moon

A.1 Bulk parameters - Moon/Earth comparison

The bulk parameters of the Moon and the Earth and the orbital parameters (for the orbit about

the Earth) are given in Table A.1.

The orbit of the Moon changes over the course of the year so the distance from the Moon to

Earth roughly ranges from 357 000 km to 407 000 km.
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Table A.1: Bulk & orbital parameters of the Moon

Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html

Bulk parameters

Moon Earth

Mass 0.07349 1024 kg 5.9736 1024 kg

Equatorial radius 1738.1 km 6378.1 km

Polar radius 1736.0 km 6356.8 km

Ellipticity (Flattening) 0.0012 0.0034

Mean density 3350 kg/m3 5515 kg/m3

Surface gravity 1.62 m/s2 9.80 m/s2

GM 0.0049 106 km3/s2 0.3986 106 km3/s2

J2 202.7 10−6 1082.63 10−6

Orbital parameters

Moon

Semimajor axis 0.3844 106 km

Mean perigee 0.3633 106 km

Mean apogee 0.4055 106 km

Revolution period 27.3217 days

Mean orbital velocity 1.023 km/s

Inclination to ecliptic 5.145◦

Inclination to equator 18.28◦ − 28.58◦

Orbit eccentricity 0.0549

Sidereal rotation period 655.728 hrs

Recession rate from Earth 3.8 cm/yr
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A THE MOON

A.2 Selenography

The topography of the Moon, which is also denoted as selenography, from the SELENE laser

altimeter is given in Figure A.1. The projections is a cylindrical projection centered around 0◦

longitude.

Figure A.1: Topographic map of the Moon from the Kaguya (SELENE) laser altimeter (online

available at http://www.mapaplanet.org/explorer/help/data set.html# moon kaguya lalt

A.2.1 Major basins

The locations of the major lunar basins are given in Figure A.2. The nearside is on the right

side of the figure and the farside on the left. Lightly shaded or hatched areas indicate basins,

whereas shaded areas indicate principal mascons. Unclassified areas are marked by dashed lines.

Figure A.2: Locations of the major lunar basins (Source: Namiki et al. (2009, p. 902))
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A THE MOON

A.3 Lunar librations - JPL DE421

The lunar libration angles calculated from the JPL DE421 ephemeris file are given in Figure A.3.

Since the DE421 ephemeris are considered the best available lunar ephemeris at present, the

differences to the previous ephemeris DE405 are given in Figure A.4.
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Figure A.3: JPL DE421: Lunar libration angles for a period of one year (01-Jan-2012 to 01-

Jan-2013)
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Figure A.4: JPL DE421 vs. JPL DE405: Differences in lunar libration angles for a period of

one year (01-Jan-2012 to 01-Jan-2013)
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Appendix B

Keplerian elements ⇔ state vector

In total a set of six independent parameters is needed to describe the motion of a satellite if

a unperturbed satellite orbit is assumed. This parameters can be either given as Keplerian

elements or as state vector. The transformations between those two representations are given

in the following sections.

B.1 Keplerian elements → state vector

The six Keplerian elements (cf. Figure B.1) are

• Semi-major axis a

• Eccentricity e

• Inclination i: angle of intersection between the orbital and equatorial plane

• Right ascension of the ascending node Ω: angle between the vernal equinox and the

direction of the ascending node

• Argument of perigee ω: angle between the direction of the ascending node and the

direction of the perigee

• True anomaly ν or mean anomaly M or eccentric anomaly E

The first two orbital elements a and e define the form of the orbit, the next three elements i,Ω

and ω describe the orientation of the orbit in space and finally the last element ν or M or E

defines the position of the satellite along the orbit.

From these elements the position vector r and the velocity vector ṙ can be calculated uniquely.

Vice versa there is one set of Keplerian elements that corresponds to an initial state vector y

with initial values for the position and velocity (cf. Section B.2).

The position vector r and the velocity vector ṙ in a body-fixed frame can be expressed by

r = a (cosE − e) P+ a


1− e2 sinE Q, (B.1)

ṙ =

√
GMa

r
(− sinE P+


1− e2 cosE Q), (B.2)
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with the unit vector P pointing towards the perigee and the perpendicular unit vector Q corre-

sponding to a true anomaly ν = 90◦.

P =

+cosω cosΩ− sinω cos i sinΩ

+cosω sinΩ + sinω cos i cosΩ

+ sinω sin i

 (B.3)

Q =

− sinω cosΩ− cosω cos i sinΩ

− sinω sinΩ + cosω cos i cosΩ

+cosω sin i

 (B.4)

Figure B.1: Keplerian elements w.r.t the Earth (Source: Casella and Lovera (2008, p. 1043))

B.2 State vector → Keplerian elements

The initial values of the position and velocity (in a body-fixed frame) are given by

r = {x, y, z}T , (B.5)

ṙ = {ẋ, ẏ, ż}T . (B.6)

First, the areal velocity vector can be calculated

h = r× ṙ = {h1, h2, h3}T , (B.7)

with its norm h =| h |
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With equation (B.7) the inclination i and the right ascension of the ascending node Ω are

obtained by

i = arctan


h21 + h22
h3


, (B.8)

Ω = arctan


h1
−h2


. (B.9)

The semi-major axis a and the eccentricity e are given by

a =


2

r
− v2

GM

−1

, (B.10)

e =


1− h2

GM a
, (B.11)

with r =| r | and v =| ṙ |. GM corresponds to the gravitational parameter.

The true anomaly ν can be calculated trough

ν = arctan


a(1− e2) r · ṙ
h[a(1− e2)− r]


. (B.12)

With equation (B.12) the eccentric anomaly E can be determined

E = arctan

√
1− e2 sin ν

cos ν + e


. (B.13)

The eccentric anomaly E can be used to obtain the mean anomaly M

M = E − e sinE. (B.14)

In order to determine the argument of the perigee ω the argument of latitude u has to be

determined first

u = arctan


z/ sin i

x cosΩ + y sinΩ


, (B.15)

this finally yields

ω = u− ν. (B.16)
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