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Abstract

Compressed Sensing is an alternative to Shannon-Nyquist sampling that pro-
vides techniques for sampling and reconstructing sparse signals at a rate far
below the Nyquist rate. We consider compressed sensing under the model-
assumption of block-sparsity, i.e., under the assumption that the nonzero
coefficients of sparse signals appear in clusters.

A sufficient condition for having unique block-sparse representations in
highly structured dictionaries, i.e., dictionaries that consist of the unions of
orthonormal bases, is derived. This condition can allow for higher block-
sparsities than conditions ignoring the dictionary structure.

For the same type of dictionaries we obtain a sufficient condition that
guarantees the successful recovery, i.e., the perfect reconstruction, of any
block k-sparse signal with a mixed ℓ2/ℓ1 optimization problem and with
Block Orthogonal Matching Pursuit (BOMP). This condition can guarantee
the exact recovery of signals with a higher block-sparsity than conditions
derived for arbitrary dictionaries.

We also justify the usage of BOMP as an approximation algorithm to
the block-sparse approximation problem in dictionaries with a small block
Babel function. From this we conclude that the usage of BOMP can be
advantageous over the usage of Orthogonal Matching Pursuit (OMP) if the
signals to approximate exhibit block-structure. As a demonstration we show
that BOMP can approximate signals that are block-sparse more accurate
than OMP if they are observed through noisy measurements.
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Zusammenfassung

Compressed Sensing ist eine Alternative zum Shannon-Nyquist-Sampling, die es er-
laubt Signale, die in einer gegeben Basis bzw. einem gegeben Dictionary (“übervoll-
ständige Basis”) eine spärliche Darstellung besitzen, weit unter ihrer Nyquist-
Frequenz abzutasten und dennoch exakt zu rekonstruieren. In dieser Arbeit wird
die Klasse von Signalen mit einer spärlichen bzw. näherungsweise spärlichen Dar-
stellung betrachtet, in der die von Null verschiedenen Koeffizienten in Clustern
bzw. Blöcken auftreten (Signale mit einer blockweise spärlichen Darstellung).

In Dictionaries ist die Darstellung eines Signals wegen der Übervollständigkeit
im Allgemeinen nicht eindeutig. Für hochstrukturierte Dictionaries, die aus der
Vereinigung mehrerer orthonormaler Basen bestehen, wird eine hinreichende Be-
dingung für eine eindeutige blockweise spärliche Signaldarstellung ermittelt. Diese
Bedingung kann die eindeutige Darstellung von einer größeren Anzahl an Signalen
gewährleisten als ähnliche Bedingungen für beliebige Dictionaries.

Für dieselben hochstrukturierten Dictionaries wird eine hinreichende Bedin-
gung für die perfekte Rekonstruktion der blockweise spärlichen Darstellung eines
Signals mittels Block Orthogonal Matching Pursuit (BOMP) und einem ℓ2/ℓ1-
Norm Optimierungsproblem bestimmt. Diese Bedingung kann die Rekonstruktion
der Darstellung von einer größeren Anzahl an Signalen gewährleisten als ähnliche
Bedingungen für beliebige Dictionaries.

Betrachtet man schließlich beliebige Signale in schwach strukturierten Dictio-

naries (die einzelnen Blöcke der Dictionaries sind orthonormal), so können diese

meist nicht exakt durch eine blockweise spärliche Darstellung (mit einer festgeleg-

ten maximalen Anzahl an von Null verschiedenen Blöcken) repräsentiert werden.

Es ist jedoch oft möglich, diese Signale durch eine blockweise spärliche Darstel-

lung gut zu approximieren. Es wird gezeigt, dass eine derartige Approximation

mittels BOMP ermittelt werden kann, wenn das betrachtete Dictionary eine lang-

sam wachsende Block-Babel-Funktion aufweist. Hieraus folgt, dass die Verwendung

von BOMP vorteilhaft gegenüber der Verwendung von Orthogonal Matching Pur-

suit (OMP) sein kann, wenn die Darstellung des zu approximierenden Signals eine

Block-Struktur aufweist. Zur Demonstration wird gezeigt, dass die Darstellung der-

artiger Signale aus verrauschten Messungen mittels BOMP exakter rekonstruiert

werden kann als mittels OMP.

ii



Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content from
the used sources.

March 18, 2010
Signature

iii



Acknowledgements

I would like to thank Patrick Kuppinger and Graeme Pope for supervising my
thesis at ETH and introducing me to the very interesting field of Compressed
Sensing. Furthermore, I would like to thank Christian Feldbauer for supervising
my thesis at TU-Graz. Moreover, I am very grateful to the Austrian scholarship
service as well as ETH for providing the funds for my stay in Zurich.

iv



Contents

Abstract i

Acknowledgements iv

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions and Main Results . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Block Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Norms and Mixed Norms . . . . . . . . . . . . . . . . . . . 5

2 Compressed Sensing 8

2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Sparse Representation . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Sparse Approximation . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Dictionary Characterization . . . . . . . . . . . . . . . . . . 12
2.1.4 Unique Sparse Representation . . . . . . . . . . . . . . . . . 13
2.1.5 Signal Recovery Methods . . . . . . . . . . . . . . . . . . . 14
2.1.6 Recovery Conditions . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 Sparse Approximation with OMP . . . . . . . . . . . . . . . 16

2.2 Block-Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Block-Sparse Representation . . . . . . . . . . . . . . . . . 17
2.2.2 Block-Sparse Approximation . . . . . . . . . . . . . . . . . 19
2.2.3 Dictionary Characterization . . . . . . . . . . . . . . . . . . 19
2.2.4 Unique Block-Sparse Representation . . . . . . . . . . . . . 20
2.2.5 Signal Recovery Methods . . . . . . . . . . . . . . . . . . . 21
2.2.6 Recovery Conditions . . . . . . . . . . . . . . . . . . . . . . 22

3 Refined Conditions 24

3.1 Sparsity in Unions of Orthonormal Bases . . . . . . . . . . . . . . 24
3.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3.1.2 Theoretical Discussion . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Signal Recovery through ℓ2/ℓ1 Optimization . . . . . . . . . . . . . 36
3.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Theoretical Discussion . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 39

4 Block-Sparse Approximation 43

4.1 BOMP as an Approximation Algorithm . . . . . . . . . . . . . . . 43
4.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2 Theoretical Discussion . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions 55

A Symbols Used 59

B Mathematical Background 61

B.1 Mixed Norm Properties . . . . . . . . . . . . . . . . . . . . . . . . 61
B.1.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.2 Gershgorin Disc Theorem . . . . . . . . . . . . . . . . . . . . . . . 63

C Block-Sparsity in Arbitrary Dictionaries 65

C.1 Block-Coherence Inequality . . . . . . . . . . . . . . . . . . . . . . 65
C.2 Proof of Proposition 2.5 . . . . . . . . . . . . . . . . . . . . . . . . 65
C.3 Proof of Proposition 2.6 . . . . . . . . . . . . . . . . . . . . . . . . 67

D Proof of Proposition 3.2 69

vi



Chapter 1

Introduction

1.1 Introduction

To perform discrete time signal processing we often need to sample data from the
“real world”. Following the classical Shannon-Nyquist sampling theorem, one has
to uniformly sample a signal at a rate of at least twice its bandwidth to be able
to recover it exactly [1], [2]. In many cases, the obtained signal is compressed
right after acquisition for efficient storage. This two step process is quite resource
intensive and wasteful in terms of necessary sensing resources, processing power
and interim storage needs. Think for example of digital cameras that acquire a
large set of pixels, typically in the millions, and then compress the image drastically
for storage reasons using some standard like JPEG2000 [3], [4].

For the class of sparse signals, we can combine the sampling and the compres-
sion process by applying the paradigm of compressed sensing. It suggests to take a
few linear measurements (samples)—far less samples than in the case of Shannon-
Nyquist sampling—of the signal of interest and recover it later by appropriate
nonlinear methods. This works because the linear measurements combine the in-
formation of the underlying signal into the individual samples [5]. In contrast,
when applying Shannon-Nyquist sampling on a sparse signal one measures lots of
zero samples. Hence, compressed sensing combines the processes of sampling and
compression, avoiding oversampling [6].

The paradigm of compressed sensing is applicable widely, since many natural
signals have an almost sparse (compressible) representation in appropriate dictio-
naries and can be sufficiently approximated by sparse signals [7]. These dictionaries
may be predetermined, e.g., the union of the spike- and discrete Fourier-basis, or
machine learned as in [8] for image compression.

The nonzero coefficients of signals of some classes exhibit further structure and
do not occur at arbitrary positions but according to some rule. Such a rule could
be, that the nonzero coefficients occur in clusters (blocks). This specific rule is
covered by the block-sparsity-model [9], [10].
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The block-sparsity model is not just a theoretical model as block-sparse vectors
appear naturally in multiple measurement vectors [11] or when dealing with multi-
band signals [12]. Because of the relevance of this model we investigated if, and
how, some results on unique sparse representation and signal recovery for highly
structured dictionaries carry over from the regular sparse case to the block-sparse
case [13], [14]. By highly structured dictionaries we mean dictionaries that consist
of orthonormal blocks or the unions of orthonormal bases.

We do not carry out a stochastic analysis as for example in [15]. Instead,
we make a deterministic investigation of the fundamental problem in compressed
sensing, that is, the recovery of an unknown vector from an under-determined
system of linear equations and derive our results from there.

1.2 Contributions and Main Results

This thesis contributes improved conditions for unique sparse representation and
exact signal recovery for highly structured dictionaries in compressed sensing un-
der the block-sparsity assumption. Furthermore, it justifies the usage of Block
Orthogonal Matching Pursuit (BOMP, [16]) as an approximation algorithm to the
block-sparse approximation problem. In particular the contributions of this thesis
include:

• A sufficient condition on the block-sparsity for unique block-sparse represen-
tations in dictionaries that are unions of orthonormal bases. This condition
can be advantageous to similar conditions obtained without taking the spe-
cial structure of the dictionary into account.

• A sufficient condition on the block-sparsity of signals in dictionaries com-
prised of orthonormal bases that ensures that they can be recovered by
mixed ℓ2/ℓ1-norm optimization (L-OPT) and BOMP. Again, an advantage
over similar conditions for arbitrary dictionaries is possible.

• A bound on the maximal approximation error of an approximation for an
arbitrary signal obtained by BOMP in k-steps in relation to the approxi-
mation error of an optimal k-block approximation. From this the usage of
BOMP as an approximation algorithm to the block-sparse approximation
problem in dictionaries with a small block Babel function is justified.

1.3 Thesis Overview

In Chapter 2 we give an overview of compressed sensing for the regular sparse case,
including conditions for unique sparse representations and signal recovery methods.
The same material is presented for compressed sensing in the block-sparse case.
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Chapter 3 covers the derivation of the mentioned improved conditions that
mainly carry over from the regular sparse case. For all derivations we provide
a theoretical discussion that emphasizes the advantage over the sparse case and
demonstrate it by simulations.

The justification for the usage of BOMP as an approximation algorithm to
the block-sparse approximation problem is covered in Chapter 4. Additionally, a
bound on the maximal approximation error is derived. We provide a theoretical
discussion and demonstrate the usage of BOMP as an approximation algorithm
by simulations.

Lemmas, Corollaries and Propositions stated without proof are taken from
the papers or books mentioned at the beginning of the statements. All other
statements are due to our own work. Statements that have the note “adopted
from ...” at their beginning, closely follow the mentioned reference but needed
some manipulation or enhanced arguments to carry over to the block-sparse case.

The discussions and simulations on our contributions are our own work, oth-
erwise this is mentioned explicitly.
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1.4 Notation

Throughout this thesis we use small bold face letters like x to denote vectors and
capital bold face letters like A to denote matrices. The ith element of a vector x

is xi and the (i, j)th element of a matrix A is denoted as Ai,j .
A comprehensive list of symbols and operators used throughout this thesis can

be found in the Appendix, Section A.

1.4.1 Matrices

The matrix IN is the identity matrix of size N × N . When there is no ambiguity
we often denote it simply as I.

The symbol 0N represents either the all zero matrix of size N × N or the all
zero vector of length N , depending on the context. If it is clear which value N
takes, we simply write 0.

The kernel ker(A) of a matrix A ∈ C
M×N is the set

ker(A) :=
{
x ∈ C

N : Ax = 0
}

. (1.1)

1.4.2 Block Indexing

Despite in Chapter 2.1 we assume the dimensions of vectors and matrices to be
integer multiples of some block-size d (which is also an integer). Then we index
parts of the considered vectors and matrices as described below.

Consider some vector x ∈ C
N , with N := Rd, where the number of blocks R

in the vector is an integer. This vector is partitioned in blocks as

x = [x1 . . . xd
︸ ︷︷ ︸

xT [1]

xd+1 . . . x2d
︸ ︷︷ ︸

xT [2]

. . . xN−d+1 . . . xN
︸ ︷︷ ︸

xT [R]

]T . (1.2)

That is, we denote the ith block of x as x[i].
Similarly, we partition some matrix A ∈ C

M×N , with M := Qd and N := Rd,
where both Q and R are integers and d is the block-size, as

A =








A[1, 1] A[1, 2] · · · A[1, R]
A[2, 1] A[2, 2] · · · A[2, R]

...
...

. . .
...

A[Q, 1] A[Q, 2] · · · A[Q, R]








, (1.3)

where

A[l, r] =








Al′,r′ Al′,r′+1 . . . Al′,r′+d−1

Al′+1,r′ Al′+1,r′+1 . . . Al′+1,r′+d−1
...

...
. . .

...
Al′+d−1,r′ Al′+d−1,r′+1 . . . Al′+d−1,r′+d−1








, (1.4)
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and l′ = (l − 1)d + 1 and r′ = (r − 1)d + 1.
In this partition A[l, r] ∈ C

d×d. We call A[l, r] the (l, r)th d × d submatrix of
A, or simply the (l, r)th submatrix of A if it is clear which block-size we refer to.

We also index a matrix A ∈ C
P×N , where N is as before, only by one index,

i.e., A[l]. Then, the matrix A is partitioned as

A =
[

A[1] A[2] · · · A[R]
]
, (1.5)

with A[l] ∈ C
P×d. We call A[l] the lth block of matrix A

1.4.3 Norms and Mixed Norms

We state the definition of the ℓp-norm of vectors and matrices [17] as a reference
for the mixed norms:

Definition 1.1 (Vector Norms). For p ≥ 1 the ℓp-norm of the vector x ∈ C
N is

‖x‖p :=

(
N∑

i=1

|xi|p
)1/p

. (1.6)

Definition 1.2 (Induced Matrix Norm). The induced matrix norm ‖A‖p is

‖A‖p := max
x,x 6=0

‖Ax‖p

‖x‖p
, (1.7)

with ‖z‖p being the ℓp-norm of the vector z.

By the above definition the induced ℓ1 matrix norm of a matrix A ∈ C
M×N

becomes

‖A‖1 = max
1≤j≤N

M∑

i=1

|Ai,j |, (1.8)

i.e., it is the maximum absolute column sum of A (see [17]). The induced ℓ∞
matrix norm of A can be calculated as

‖A‖∞ = max
1≤i≤M

N∑

j=1

|Ai,j |, (1.9)

i.e., it equals the maximum absolute row sum of A (see [17]).
Another matrix norm that we will use regularly is the spectral norm. For a

matrix A the spectral norm is denoted as ρ(A) and can be calculated as

ρ(A) =
√

σmax(AHA), (1.10)
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where σmax(B) denotes the largest eigenvalue of the positive-semidefinite matrix
B (see [17]).

We can carry the concept of norms over to account for the block-structure of
vectors and matrices used in most of our derivations by introducing the mixed
vector norms and the mixed matrix norms. For this we assume the integer d to be
the block-size.

Definition 1.3 (Mixed Vector Norm [16]). Let x ∈ C
N be a vector with N = Rd,

where R is an integer and d is the block-size. Define the mixed vector norm ‖x‖2,p

of x to be

‖x‖2,p := ‖v‖p, (1.11)

where vi := ‖x[i]‖2 for i = 1, . . . , R.

Definition 1.4 (Mixed Matrix Norm [16]). The mixed matrix norm ‖A‖2,p of a
matrix A ∈ C

M×N , with M = Qd and N = Rd, where Q and R are both integers
and d is the block-size, is

‖A‖2,p := max
x,x 6=0

‖Ax‖2,p

‖x‖2,p
. (1.12)

To obtain similar results for mixed matrix norms as in (1.8) and (1.9), that
will appear in some derivations later, we introduce the quantities ρc(·) and ρr(·)
as follows:

Definition 1.5 (From [16], Lemma 1). Let A ∈ C
M,N be some matrix with M =

Qd and N = Rd, where Q, R, d are integers and d is the block-size. Define ρc(A)
and ρr(A) as

ρr(A) := max
l

∑

r

ρ(A[l, r]) , and (1.13)

ρc(A) := max
r

∑

l

ρ(A[l, r]) . (1.14)

With this we can relate the mixed matrix norms ‖A‖2,1 and ‖A‖2,∞ to ρc(A)
and ρr(A) as covered by the following lemma:

Lemma 1.1 (From [16], Lemma 1). Let A ∈ C
M×N be a matrix, with M = Qd

and N = Rd, where d is the block-size and d, Q, R are integers. Then,

‖A‖2,∞ ≤ ρr(A) , and (1.15)

‖A‖2,1 ≤ ρc(A) . (1.16)

For our derivations it is important to note that ρc(·) as defined above is a
matrix norm [16]. This is covered by the following lemma.

6



Lemma 1.2 (From [16], Lemma 2). ρc(A) as introduced in Definition 1.5 is a
matrix norm and as such satisfies the following properties: For any two matrices
A and B (of appropriate dimensions),

1. ρc(A) = 0 if and only if A = 0 (positive definiteness),

2. ρc(αA) = |α|ρc(A) for all α ∈ C (homogeneity),

3. ρc(A + B) ≤ ρc(A) + ρc(B) (triangle inequality), and

4. ρc(AB) ≤ ρc(A) ρc(B) (submultiplicity).

7



Chapter 2

Compressed Sensing

In this chapter we describe some fundamentals of compressed sensing. Further
we give an overview of some refinements resulting from incorporating the block-
sparsity model.

2.1 Fundamentals

Compressed sensing describes a mean of data acquisition for sparse signals. In
contrast to classical Shannon-Nyquist sampling one does not uniformly sample the
signal of interest at an appropriate rate, but takes only a few linear measurements.
Recovery can then be carried out by exploiting the signal structure, i.e., its sparsity.

From this, the underlying problem in compressed sensing is the recovery of an
unknown vector x, from a number of linear measurements y that is much smaller
than the dimension of x. Because of the linearity of the measurements, they can be
described by a measurement matrix D according to y = Dx. Hence, compressed
sensing resorts to solving an underdetermined system of linear equations. Later
we will refer to D as a dictionary.

If x is sufficiently sparse in a dictionary D, then this will allow us to recover
x exactly from the measurements y.

As a beginning we describe the sparse representation and sparse approximation
problem that build the foundation of compressed sensing. Then we dive into
dictionary characterization. This will give rise to properties like the coherence of
a dictionary—these properties will appear naturally in various estimates, as for
example conditions under which sparse representations are unique. Finally, we
consider the problem of recovering the unknown vector x from the measurements.
Again we will use dictionary properties to give a characterization of the recovery
algorithms.

8



2.1.1 Sparse Representation

The main idea behind compressed sensing is that many natural signals have sparse
representations in some basis, or, more generally, in some dictionary [18].

Definition 2.1 (Dictionary). A dictionary for the space C
M is a set of nonzero

vectors {di}, where i ∈ ∆ := {1, 2, . . . , N}, that span the space C
M . The vectors

di are also called atoms.
We usually consider the matrix version of the dictionary, i.e.,

D = [d1 d2 . . . dN ] ∈ C
M×N . (2.1)

Thus, a dictionary is, informally, the generalization of a basis of some space to
a possibly redundant description of the same space. Since the columns of D are
required to span C

M , we have N ≥ M .
We assume that all dictionaries have normalized atoms, i.e., ‖di‖2 = 1 for all i ∈

∆.
A representation of a signal y in a dictionary D is given by a vector x, so that

y = Dx. For a vector to be k-sparse it means, that is has at most k nonzero
coefficients.

Definition 2.2 (Sparsity). A vector x ∈ C
N is k-sparse, if

|supp(x)| ≤ k. (2.2)

We say that y is k-sparse in a dictionary D, if there exists a vector x such
that y = Dx, where x is k-sparse. For ease of notation we will write ‖x‖0 for
|supp(x)|.

Now we give an informal description of the sparse representation problem. We
consider a signal

y ∈ {Dx̂ : ‖x̂‖0 ≤ k}, (2.3)

where D is a fixed dictionary and k a fixed positive integer. The problem is to
find the sparsest representation x of y in the dictionary D. In general there is
no unique sparsest representation. However, if we limit the maximal sparsity k of
x̂ in (2.3) sufficiently, then the sparsest representation of any possible y becomes
unique—which we will clarify later.

Note that decreasing k in (2.3) can only decrease the number of possible signals
y.

Example 2.1. Consider the dictionary

D =





1 0 0 1/
√

3

0 1 0 1/
√

3

0 0 1 1/
√

3



 .

9



The signal

y1 = [1 1 0]T ∈ {Dx̂ : ‖x̂‖0 ≤ 2}

has no unique sparsest representation, as for example

x1 = [1 1 0 0]T , and

x′
1 =

[

0 0 − 1
√

3
]T

are sparsest representations.
In contrast, the signal

y2 = [1 0 0]T ∈ {Dx̂ : ‖x̂‖0 ≤ 1}

has the unique sparsest representation

x2 = [1 0 0 0]T .

Finally, we state the sparse representation problem formally.

Problem 2.1 (Sparse Representation). Given a dictionary D of size M×N , some
positive integer k and a vector

y ∈ {Dx̂ : ‖x̂‖0 ≤ k}, (2.4)

find the representation x ∈ C
N as the solution to the minimization problem

arg min
x∈CN

‖x‖0 s.t. y = Dx. (2.5)

At the end of this section, we want to emphasize that a well chosen dictio-
nary can allow for the sparse representation of certain classes of signals. This is
demonstrated in the following example.

Example 2.2 (Sparse Representation in Dictionaries). Consider the discrete sig-
nal y ∈ C

M given by

yi = sin

(
2π

M
(i − 1)

)

+ δ[i − 1], i = 1, . . . , M,

where δ[·] is the Kronecker delta and M = 32.
If we want to represent y in the dictionary D1 = IM , then the support of the

representation x1 ∈ C
M such that y = Dx1 has cardinality M − 1.

On the other hand, if we choose the dictionary to be D2 = F, where F denotes
the DFT matrix of size M × M , i.e., Fl,r = (1/

√
M) exp(i2πlr/M), then the

representation x2 ∈ C
M such that y = Dx2 has exactly M nonzero coefficients.

Finally, if we choose D to be D = [I F], then the sparsest representation
x ∈ C

2M such that y = Dx has only three nonzero coefficients.
This example is illustrated in Figure 2.1 for M = 32 and j = 1.

10
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(d) Representation x3

Figure 2.1: Illustration of Example 2.2. (a) Signal y. (b) Representation x1

of y in the D1 = I. (This plot equals the signal y itself.). (c) Representation
x2 of y in D2 = F (the coefficient magnitudes are shown). (d) Sparsest
representation x3 of y in D = [I F]. (the coefficient magnitudes are shown).
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2.1.2 Sparse Approximation

We again consider the problem of representing some signal y by a sparse vector
x in a dictionary D of size M × N . In contrast to before, we do not put any
constraints on the signal y. That is, y can be any element in the space C

M .
Whenever the sparsity level of x is less than the dimensionality M, we cannot

represent all vectors y exactly. We thus change our goal to find the best k-sparse
approximation. The quality of an approximation a is measured by the ℓ2-norm of
the difference of y and the approximation itself, i.e., by ‖y − a‖2. That is, the
quality measure is the energy of the approximation error (we simply refer to this as
the approximation error). The lower this approximation error is, the better is the
considered approximation. Thus, the sparse approximation problem is as follows.

Problem 2.2 (Sparse Approximation). Given a dictionary D of size M ×N and
a vector y ∈ C

M find the k-sparse vector xopt as the solution to the minimization
problem

arg min
x∈CN

‖y − Dx‖2 s.t. ‖x‖0 ≤ k. (2.6)

We call the approximation aopt = Dxopt an “optimal k-term approximation of y

in D”.

The solution to the previous problem is not necessarily unique. That is, there
may be distinct k-sparse vectors xopt that minimize the value of the objective
function in (2.6). If this is the case, we will be interested in finding any one of
these optimal approximations.

2.1.3 Dictionary Characterization

As mentioned before, we can make the solution to the sparse representation prob-
lem unique for all possible signals y by limiting the sparsity level k that is allowed
for x̂ in Equation (2.3). We call a limit on k that guarantees uniqueness of the
problem a sufficient uniqueness condition.

One generally wants that such a limit is as high as possible. The higher this
limit the more signals have a unique sparsest representation. The best limit on k
depends on the considered dictionary and is in general hard do determine. How-
ever, we can give estimates based on properties characterizing the dictionary.
These properties are the coherence and the Babel function, which we will now
introduce.

Definition 2.3 (Coherence). Let D be a dictionary consisting of N atoms di,
with i ∈ ∆. The coherence µ(D) of the dictionary is defined as

µ(D) := max
i,j∈∆
i6=j

|〈di,dj〉|. (2.7)
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In other words, the coherence measures how similar any two distinct atoms of
the dictionary are. We write µ instead of µ(D) when it is clear, which dictionary
is considered. By the above definition, the coherence of an orthogonal basis is 0.
Also note that because of the normalized atoms of the dictionary the coherence
obeys 0 ≤ µ ≤ 1.

A way to characterize a dictionary in more detail than by the coherence is the
Babel function, which we define as follows.

Definition 2.4 (Babel Function [19]). Let D be a dictionary as in Definition 2.3.
The Babel function µ1(D, k) of the dictionary is defined as

µ1(D, k) := max
|∆′|=k

max
i

∑

j∈∆′

|〈di,dj〉|, (2.8)

where ∆′ ⊂ ∆ and i ∈ (∆\∆′).

The Babel function measures the maximal sum of the absolute values of the
inner products between a fixed atom and k distinct atoms of the dictionary. When
there is no danger of confusion, we write µ1(k) instead of µ1(D, k).

Note the following facts about the Babel function: µ1(1) = µ, and µ1(k) ≤
k µ1(1) = k µ.

2.1.4 Unique Sparse Representation

We are now in the position to state conditions such that the sparse representation
problem has a unique solution.

Proposition 2.1 (From [14], Theorem 1 and Corollary 1). For arbitrary dictio-
naries D the solution to the sparse representation problem is unique, if

y ∈ {Dx̂ : ‖x̂‖0 ≤ k},

where k satisfies

k <
1

2

(

1 +
1

µ

)

. (2.9)

As a special case, for dictionaries D that are the unions of L orthonormal
bases, the sparse representation problem has a unique solution if

k <
1

2

(

1 +
1

L − 1

)
1

µ
. (2.10)

Furthermore, if y = Dx and ‖x‖0 ≤ k, for some k satisfying (2.9) (or (2.10)
if D is the union of L orthonormal bases), then x is the unique solution to the
sparse representation problem.
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Note that if the dictionary D in the above proposition consists of the union
of L orthonormal bases, then both bounds (2.9) and (2.10) are applicable. In this
case one could state the sufficient condition on k to guarantee uniqueness of the
sparse representation problem as

k < max

{
1

2

(

1 +
1

µ

)

,
1

2

(

1 +
1

L − 1

)
1

µ

}

.

2.1.5 Signal Recovery Methods

Consider the problem of actually solving the sparse representation problem. That
is, we want to recover the representation x from y = Dx, where x is as sparse as
possible. We assume to have full knowledge of D. The basic idea is to solve the
optimization problem

arg min
x∈CN

‖x‖0 s.t. y = Dx. (2.11)

This problem will always recover a vector x that has minimal sparsity. Further-
more, if the recovered vector has sparsity satisfying Proposition 2.1, the recov-
ered vector will be the unique sparsest representation of y. However, solving the
problem (2.11) resorts to a combinatorial search, which is in general an NP-hard
problem and thus not feasible.

To overcome this difficulty, recovery algorithms, with different complexity and
performance, have been invented. We only mention Basis Pursuit (BP) [20] and
Orthogonal Matching Pursuit (OMP) [21] here, since they will appear later in
several investigations.

Basis Pursuit

The underlying idea of BP is to find the solution to (2.11) by solving the mini-
mization problem

arg min
x∈CN

‖x‖1 s.t. y = Dx. (2.12)

For all signals that have a k-sparse representation in D the solutions to (2.11)
and (2.12) are guaranteed to be unique and to coincide, when k is sufficiently
small—conditions for this are summarized in Section 2.1.6. The advantage of
replacing problem (2.11) by (2.12), is that the minimization of the ℓ1-norm can
be solved by linear programming. Thus, the optimization problem can be solved
efficiently using interior point methods or methods that make use of the underlying
sparsity as in [22].

Orthogonal Matching Pursuit

OMP [21] is a greedy algorithm that tries to recover x from y = Dx. It works as
follows: Let rj be the residual and aj the approximation of y obtained by OMP
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after the jth step. The set I is a set of indices of atoms of the dictionary and xj

is a j-sparse vector created by OMP in the jth step.
OMP initializes I as the empty set and sets r0 = y.
In the jth step, OMP adds the index ij to the index set I, which is determined

by solving

ij = arg max
i

|〈di, rj−1〉|. (2.13)

In other words, ij is the index of the atom that best approximates the residual.
At this point I contains the indices of atoms chosen by OMP up to and including
step j. Then, xj is determined by solving the least squares problem

xj = arg min
xj

∥
∥
∥
∥
∥
y −

∑

i∈I

dixj,i

∥
∥
∥
∥
∥

2

, (2.14)

where xj,i is the ith coefficient of the vector xj and all xj,l = 0 for l /∈ I.
Then the approximation aj of y is calculated as

aj = Dxj . (2.15)

Finally, the residual is set to

rj = y − aj . (2.16)

Some conditions that guarantee that OMP recovers the representation x from
the signal y = Dx exactly are summarized in Section 2.1.6.

2.1.6 Recovery Conditions

Basis Pursuit and Orthogonal Matching Pursuit recover any vector x from y = Dx

and D exactly in k steps, if y is the linear combination of at most k atoms of the
dictionary and the Exact Recovery Condition is obeyed. This is captured by the
following proposition.

Lemma 2.1 (Exact Recovery Condition; from [19], Theorem 3.1). Let x ∈ C
N

be a k-sparse vector, D a dictionary of size M × N and y = Dx. A sufficient
condition for BP and OMP to recover x exactly in k steps is

‖D†
optDopt‖1 < 1, (2.17)

where Dopt is a matrix consisting of the atoms of the dictionary that correspond to
the nonzero coefficients of x and A† is the pseudoinverse of A. The matrix Dopt

is comprised of all atoms in D, that are not in Dopt.

In general one does not know in advance which atoms belong to the sparsest
representation of some signal y. However, there are sufficient conditions similar to
the bounds in Proposition 2.1 that guarantee that the Exact Recovery Condition
will hold.
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Proposition 2.2 (From [19], Theorem B). The Exact Recovery Condition in
Lemma 2.1 holds for every linear combination of k atoms from a dictionary D

with coherence µ and Babel function µ1(·), whenever

k <
1

2

(

1 +
1

µ

)

, (2.18)

or, whenever

µ1(k − 1) + µ1(k) < 1. (2.19)

As a special case, if D is comprised of L orthonormal bases and

k <

(√
2 − 1 +

1

2 (L − 1)

)
1

µ
, (2.20)

then the Exact Recovery Condition is obeyed.

2.1.7 Sparse Approximation with OMP

OMP is an interesting algorithm since it is easy to analyze and has provable approx-
imation error bounds for signals that are not sparse, as the following proposition
demonstrates.

Proposition 2.3 (From [19], Corollary 4.3). Let y ∈ C
M be an arbitrary signal

and D a dictionary of size M ×N with Babel function µ1(·). If µ1(k) < 1/2, then
OMP generates a k-term approximation ak ∈ C

M in k-steps, which satisfies

‖y − ak‖2 ≤
√

1 +
k [1 − µ1(k)]

[1 − 2 µ1(k)]2
‖y − aopt‖2, (2.21)

where aopt ∈ C
M is an optimal k-term approximation of y.

Hence, whenever the condition from the above proposition is satisfied, we are
guaranteed to obtain an approximation ak by OMP in k-steps that lies in a hy-
persphere around the vector y. The radius r of this hypersphere is at most the
ℓ2-distance between y and aopt multiplied by the factor

c =

√

1 +
k [1 − µ1(k)]

[1 − 2 µ1(k)]2
. (2.22)

This is illustrated for the two dimensional case in Figure 2.2.
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Figure 2.2: Illustration of Proposition 2.3 for the two dimensional case. The
optimal k-sparse approximation aopt of y in a dictionary D lies somewhere
on the inner circle, while the obtained approximation ak by OMP in k steps
lies in the gray shaded region. The radius r equals c r′, with c as in (2.22)
and r′ = ‖y − aopt‖2.

2.2 Block-Sparsity

Block-sparsity is a model assumption on the class of sparse signals. In a block-
sparse signal, the nonzero coefficients do not occur at arbitrary positions, but in
clusters. This assumption is of practical relevance, since block-sparse vectors arise
naturally in multiple measurement vector (MMV) problems and when dealing with
multi-band signals [11], [12].

We give a precise description of block-sparsity and describe how to carry the
concepts of the earlier sections over to block-sparse signals. We put our focus on
unique signal representation and signal recovery methods.

2.2.1 Block-Sparse Representation

As in the sparse case, we consider a vector y and its representation x in a dictionary
D of size M ×N such that y = Dx. Here and in the rest of this thesis we assume
that N is an integer multiple of some fixed block-size d, that is N = Rd, where R
and d are integers.

In general there can be multiple representations of a signal y ∈ C
M . We want

to state conditions under which there is a unique block-sparsest representation—
details to come later.

Block-Sparsity

Consider the vector x ∈ C
N . We say, that the ith block of x is nonzero, if

‖x[i]‖2 > 0. The block-sparsity of a vector is the number of its nonzero blocks. To
state this formally we introduce the indicator function I(·).
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Definition 2.5 (Indicator Function, [16]). The indicator function I : R+ → {0, 1}
is

I(a) :=

{

0, if a = 0,

1, otherwise.
(2.23)

Definition 2.6 (Block-Sparsity, [16]). The block-sparsity of a vector x ∈ C
N ,

where N = Rd and d is the block-size, denoted ‖x‖2,0, is

‖x‖2,0 :=
R∑

l=1

I(‖x[l]‖2). (2.24)

We say that a vector x is block k-sparse if ‖x‖2,0 ≤ k.
Now we give the definitions of two sets that will be important in our consider-

ations and derivations.

Definition 2.7. For a given length N = Rd, where R and d are integers and d is
the block-size, define

Xk :=
{
x ∈ C

N : ‖x‖2,0 ≤ k
}

. (2.25)

In other words, the set Xk is the set of all block k-sparse vectors of length N .

Definition 2.8. For a given dictionary D of size M × N , define

Yk := DXk = {Dx : x ∈ Xk} . (2.26)

That is, Yk is the set of all signals that have a block k-sparse representation
in D.

Similar to before, we define the block-sparse representation problem.

Problem 2.3 (Block-Sparse Representation). Given a dictionary D of size M×N ,
a positive integer k and a vector y ∈ Yk, find the representation x as the solution
to the minimization problem

arg min
x∈CN

‖x‖2,0 s.t. y = Dx. (2.27)

For small enough k the block-sparse representation problem will yield a unique
solution for all possible signals y—details to come later.
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2.2.2 Block-Sparse Approximation

Assume that we want to represent some arbitrary vector y ∈ C
M by a block k-

sparse signal x in a dictionary D. As this is in general not possible, we want to
find the optimal k-block approximation of y. An approximation aopt = Dxopt is
optimal if ‖y−Dxopt‖2 achieves the minimum possible value of ‖y−Dx‖2, where
x is any block k-sparse vector. We define this to be the block-sparse approximation
problem:

Problem 2.4 (Block-Sparse Approximation). Given a dictionary D of size M×N
and an arbitrary vector y ∈ C

M find the block k-sparse representation xopt as the
solution to the minimization problem

arg min
x∈CN

‖y − Dx‖2 s.t. ‖x‖2,0 ≤ k. (2.28)

We call the approximation aopt = Dxopt “optimal k-block approximation of y in
D”.

2.2.3 Dictionary Characterization

As in the regular sparse case we want to find quantities with the same relevance,
as, for example, the coherence, that allow us to characterize the dictionary D.

First we extend the way in which we index parts of a dictionary D. In the
earlier sections we used the index set ∆ and its elements i ∈ ∆ to address individual
atoms di of the dictionary D. We now additionally make use of the index set
∆B := {1, . . . , R} to identify blocks of the dictionary.

We can now extend the concept of the coherence to the block case. That is,
we introduce the block-coherence of a dictionary [16].

Definition 2.9 (Block-Coherence [16]). Let D be a dictionary consisting of blocks
D[l], with l ∈ ∆B. The block-coherence µB(D) of the dictionary is defined as

µB(D) :=
1

d
max

i,j∈∆B

i6=j

ρ
(

D[i]H D[j]
)

. (2.29)

Note that the block-coherence µB reduces to the coherence µ of a dictionary
for the case d = 1.

We define the block Babel function in the same spirit as in the sparse case.

Definition 2.10 (Block Babel Function). Let D be a dictionary as in Defini-
tion 2.9. The block Babel function µB1(D, k) of the dictionary is defined as

µB1(D, k) :=
1

d
max

|∆′

B
|=k

max
i

∑

j∈∆′

B

ρ
(

D[i]H D[j]
)

, (2.30)

with ∆′
B ⊂ ∆B and i ∈ (∆B\∆′

B).
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Note the following facts about the block Babel function: µB1(1) = µB, and
µB1(k) ≤ k µB1(1) = k µB.

For ease of reading we say that a dictionary D consists of orthonormal blocks
if the blocks of the dictionary itself are orthonormal, i.e., if for all l ∈ ∆B, we have

D[l]H D[l] = Id.

In parts of this thesis we will consider dictionaries that are the union of L
orthonormal bases, where each basis is of size M × M . For these dictionaries we
assume the block-size d to divide the dimension of the bases M .

2.2.4 Unique Block-Sparse Representation

We continue our discussion on the uniqueness of the representation x of y in a
dictionary D. As mentioned, there are in general many representations of y in D.
However, we can guarantee that there is unique block-sparsest representation by
requiring y ∈ Yk, where k is sufficiently small.

The following two propositions state sufficient conditions on k to guarantee
this. Before stating them, there is one rather important fact about dictionaries to
mention. The definition of a dictionary allows for linearly dependent vectors to
occur within a single block. If this is the case, we cannot guarantee the unique
block-sparse representation of any signal y. To overcome this, we assume from
now on that all dictionaries that are considered in a block sense, consist of blocks
with linearly independent atoms.

Proposition 2.4 (Adopted from [14], Theorem 1, for a proof refer to the Ap-
pendix, Section C.3). Let D be a dictionary consisting of orthonormal blocks of
size d and with block-coherence µB. If y ∈ Yk and

k <
1

2

(

1 +
1

d µB

)

, (2.31)

then the block-sparse representation problem has a unique solution.
Furthermore, x is the unique solution to the block-sparse representation prob-

lem if y = Dx and ‖x‖2,0 ≤ k.

Proposition 2.5 (Adopted from [19], for a proof see Appendix C.2). Let D be a
dictionary comprised of orthonormal blocks of size d and with block Babel function
µB1(m). If y = Dx, where x is block k-sparse, and

k <
1

2
min{m : d µB1(m − 1) ≥ 1}, (2.32)

then x is the block-sparsest representation of y.
Consequently, for every y ∈ Yk with k < 1/2 min{m : d µB1(m − 1) ≥ 1}, the

block-sparse representation problem has a unique solution.
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2.2.5 Signal Recovery Methods

To solve the block-sparse representation problem for some vector y in D one could
try to evaluate the optimization problem

arg min
x∈CN

‖x‖2,0 s.t. y = Dx. (2.33)

However, solving this problem requires a combinatorial search and is thus infeasi-
ble.

To tackle this problem, we can use recovery algorithms such as L-OPT [11],
which is a mixed ℓ2/ℓ1-norm minimization, or Block Orthogonal Matching Pursuit
(BOMP) [16]. These algorithms reduce the complexity of the problem and guar-
antee recovery of the underlying representation under certain conditions—details
to come later. We will briefly describe these algorithms.

L-OPT [10]

L-OPT is the equivalent to Basis Pursuit for the block-sparse case. The idea behind
this algorithm is to replace the optimization problem (2.33) by the problem

arg min
x∈CN

‖x‖2,1 s.t. y = Dx. (2.34)

This new optimization problem can be cast as a second order cone program (SOCP)
and hence can be solved efficiently [23], [10]. To make use of this optimization
problem, we need to know under which conditions the solutions of (2.33) and (2.34)
are unique and coincide—see Section 2.2.6 for details.

A variation of L-OPT is L-OPT-O. This algorithm orthonormalizes the blocks
in the dictionary before solving (2.34). That is, it generates the dictionary D′ from
D such that

span
(
D′[l]

)
= span(D[l]) and

D′[l]H D′[l] = Id

for all l ∈ ∆B and then solves

arg min
x∈CN

‖x′‖2,1 s.t. y = D′x′.

From the solution x′ it finally calculates x by transforming the coordinates of
x′[l] in the coordinate system given by the columns of D′[l] to the corresponding
coordinates in the the coordinate system given by the columns of D[l] for all
l ∈ ∆B. This transformation is unique if and only if the atoms within each block
of the dictionary D are linearly independent—which holds for our dictionaries by
assumption.
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Block Orthogonal Matching Pursuit [16]

Block Orthogonal Matching Pursuit (BOMP) is the extension of OMP to the block-
sparse case and works as follows: Let rj be the residual and aj an approximation
obtained by BOMP after the jth step. Further, let I be a set of indices of blocks
of the dictionary selected by the algorithm. Initially set r0 = y and I to the empty
set.

In step j, BOMP selects the block from the dictionary best matched to the
residual rj , i.e., the block with index

ij = arg max
i

‖D[i]H rj−1‖2. (2.35)

This index is then added to the set I. Hence, at this point I contains the block-
indices chosen by BOMP up to and including step j.

Then, the vector xj is obtained as the solution to the least squares problem

arg min
xj

∥
∥
∥
∥
∥
y −

∑

i∈I

D[i]xj [i]

∥
∥
∥
∥
∥

2

, (2.36)

where xj [l] = 0 for all l /∈ I. From this, the approximation aj = Dxj and the
residual rj = y − aj are determined.

There are conditions that guarantee that BOMP will successfully recover the
representation x of y = Dx. See Section 2.2.6 for details.

A variation of BOMP is BOMP-O (it is a similar variation as L-OPT-O of
L-OPT, compare this to Section 2.2.5).

2.2.6 Recovery Conditions

Lemma 2.2 (From [16], Theorem 2, Exact Recovery Condition). Let D be a
dictionary and y = Dx, where x is block k-sparse. A sufficient condition for
L-OPT and BOMP to recover x exactly is that

ρc

(

D
†
optDopt

)

< 1, (2.37)

where Dopt is a matrix whose blocks correspond to the nonzero blocks of x in D

and Dopt consists of the blocks of D that are not in Dopt.

The condition in the above lemma is hard to evaluate since one does not know
in advance which blocks of x are nonzero. However, we can find conditions on the
block-sparsity k of x that ensure that Equation (2.37) holds, as in Proposition 2.6.

Proposition 2.6 (Adopted from [16], Theorem 1, for the proof see Appendix C.3).
Let D be a dictionary consisting of orthonormal blocks and y = Dx, where x is
block k-sparse. If

k <
1

2

(

1 +
1

d µB

)

, (2.38)
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then the Exact Recovery Condition is obeyed. Hence, x can be recovered by L-OPT
and BOMP.
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Chapter 3

Refined Conditions

3.1 Sparsity in Unions of Orthonormal Bases

Consider the block-sparse representation problem in the dictionary D, i.e., the
problem of finding the block-sparsest representation of some signal y ∈ Yk. It is
then important to know for which values of k the solution to the problem is unique
for all possible y.

An answer to this question for sparse signals and dictionaries that are unions
of orthonormal bases was derived in [14] and is summarized in Section 2.1.4. We
generalize their results to block-sparse vectors by incorporating the block-sparsity
assumption. In this way we obtain a sufficient condition on k that guarantees
the uniqueness of the block-sparse representation problem for a potentially higher
sparsity. This condition is our main result and summarized by the following propo-
sition:

Proposition 3.1 (Adopted from [14], Corollary 1). Let D be a dictionary con-
sisting of L orthonormal bases with block-size d and let y ∈ Yk. If

k <
1

2

(

1 +
1

L − 1

)
1

d µB
, (3.1)

then the block-sparse representation problem has a unique solution.
Furthermore, x is the unique solution to the block-sparse representation prob-

lem, if y = Dx and ‖x‖2,0 ≤ k.

3.1.1 Derivation

Note that the derivation closely follows the path taken in [14].
We start by defining some quantities for vectors and dictionaries in a block

sense.
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Definition 3.1 (Block-Support). The block-support of a vector x ∈ C
N with N =

Rd, where R and d are integers and d is the block-size, is

suppB(x) := {l : ‖x[l]‖2 > 0} . (3.2)

In other words, the block-support of a vector is the set of indices of the nonzero
blocks of x.

Definition 3.2 (Block-Spark). The block-spark of a dictionary D is

ZB(D) := min
z∈ker(D)

z 6=0

‖z‖2,0. (3.3)

That is, the block-spark is the smallest number of blocks of the dictionary such
that the vectors within these blocks are linearly dependent. Note that finding the
block-spark of a dictionary is a combinatorial problem and thus in general not fea-
sible. At this point we remind the reader of the assumption made in Section 2.2.4
that the atoms within each block of the dictionary are linearly independent.

We can now state a sufficient condition for the minimization problem

arg min
x∈CN

∑

l

I(‖x[l]‖2) s.t. y = Dx, (3.4)

to have a unique solution.
Note that the objective function of the above minimization problem equals

the block-sparsity of x. Hence, the solution to the problem minimizes the block-
sparsity of the vector x, under the constraint y = Dx, and in this way solves the
block-sparse representation problem.

Lemma 3.1 (Adopted from [14], Lemma 1). Let D be a dictionary consisting of
R blocks and S ⊂ ∆B = {1, . . . , R} be a set of block-indices. Define

PB,0(S,D) := max
z∈ker(D)

z 6=0

∑

l∈S

I(‖z[l]‖2)

∑

l

I(‖z[l]‖2)
. (3.5)

If PB,0(S,D) < 1/2, then, for all x such that y = Dx and suppB(x) ⊂ S, x is the
unique solution to the problem (3.4).

Proof. To show that the solution of the minimization problem (3.4) is unique under
the given assumptions with minimizer x, we have to prove that any vector x′ 6= x

with y = Dx′ results in a higher value of the objective function in (3.4) and is
thus not the solution to the problem. Note that we can express x′ as x′ = x + z′,
where z′ is in the kernel of D.

Let x be such that y = Dx and suppB(x) ⊂ S. Further, assume that
PB,0(S,D) < 1/2. Then, for any z ∈ ker(D), we have that

∑

l /∈S

I(‖z[l]‖2) −
∑

l∈S

I(‖z[l]‖2) > 0.
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Observe that the indicator function I(·) and the composed function I(‖·‖2)
obey the triangle inequality. Thus, I(‖·‖2) also obeys the reverse triangle inequal-
ity, i.e., I(‖a + b‖2) − I(‖a‖2) ≥ −I(‖b‖2). Hence, we get

∑

l /∈S

I(‖z[l]‖2) +
∑

l∈S

[I(‖x[l] + z[l]‖2) − I(‖x[l]‖2)] > 0.

The support of x is a subset of S by assumption. Hence, we can rewrite the
inequality as

∑

l

I(‖x[l] + z[l]‖2) >
∑

l

I(‖x[l]‖2).

The above inequality holds for any nonzero z ∈ ker(D). Therefore, x is the
unique minimizer of the problem (3.4).

The next lemma gives a sufficient condition on the cardinality of the set S in
Lemma 3.4 to ensure that PB,0(S,D) is less than 1/2.

Lemma 3.2 (Adopted from [14], Lemma 2). Let S and D be as before. If

|S| < ⌈ZB(D) /2⌉ , (3.6)

then PB,0(S,D) < 1/2.

Proof. Assume that |S| < ⌈ZB(D) /2⌉. We show that

∑

l∈S

I(‖z[l]‖2)

∑

l

I(‖z[l]‖2)
< 1/2 (3.7)

for any nonzero z ∈ ker(D).
To see this, note that the numerator of (3.7) is bounded above by |S|, and is

thus at most ⌈ZB(D) /2⌉ − 1 by assumption. On the other hand, the minimum
value the denominator can take is ZB(D) by the definition of the block-spark.
Thus we have

∑

l∈S

I(‖z[l]‖2)

∑

l

I(‖z[l]‖2)
≤ ⌈ZB(D) /2⌉ − 1

ZB(D)

<
ZB(D) /2

ZB(D)

=
1

2
.

Hence, the statement follows.
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As a next step we give an estimate of the block-spark for dictionaries that are
comprised of orthonormal bases. Combined with Lemma 3.2 this allows us to state
a sufficient condition on the block-sparsity k in the block-sparse representation
problem that guarantees uniqueness of its solution.

Lemma 3.3 (Adopted from [14], Lemma 3). Let D be a dictionary with block-
coherence µB comprised of L orthonormal bases such that

D = [B1 B2 . . . BL] ,

where Bi ∈ C
M×M are orthonormal bases, M = Q′d, Q′ and d are integers, and d

is the block-size.
Then, the block-spark of the dictionary D satisfies

ZB(D) ≥
(

1 +
1

L − 1

)
1

d µB
. (3.8)

Proof. Assume that z ∈ ker(D). The vector z can be partitioned as

z =






z1
...

zL




 ,

with zl ∈ C
M and more refined

zl =






zl[1]
...

zl[Q
′]




 ,

where zl[i] ∈ C
d.

Since z ∈ ker(D), for every l we have Blzl = −∑l′ 6=l Bl′zl′ . We multiply this

from the left with BH
l to get

zl = −
∑

l′ 6=l

BH
l Bl′zl′ .

With Al,l′ := BH
l Bl′ the summands on the right side of the above equation

are of the form

BH
l Bl′zl′ =








Al,l′ [1, 1] zl′ [1] + . . . + Al,l′ [1, Q′] zl′ [Q
′]

Al,l′ [2, 1] zl′ [1] + . . . + Al,l′ [2, Q′] zl′ [Q
′]

...
Al,l′ [Q

′, 1] zl′ [1] + . . . + Al,l′ [Q
′, Q′] zl′ [Q

′]








, (3.9)
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where Al,l′ [i, j] = Bl[i]
H

Bl′ [j]. Hence all Al,l′ [i, j] obey ρ
(
Al,l′ [i, j]

)
≤ d µB due

to the definition of the block-coherence. That is, their spectral norm is bounded
above by d µB.

We compute the ℓ2-norm of the d-row blocks of (3.9) and make us of the sub-
multiplicity and the triangle inequality, of the matrix norm, as well as ρ

(
Al,l′ [i, j]

)
≤

d µB to get the elementwise inequality





‖zl[1]‖2
...

‖zl[Q
′]‖2




 ≤

∑

l′ 6=l






d µB I(‖zl[1]‖2) (‖zl′ [1]‖2 + . . . + ‖zl′ [Q
′]‖2)

...
d µB I(‖zl[Q

′]‖2) (‖zl′ [1]‖2 + . . . + ‖zl′ [Q
′]‖2)






= d µB

∑

l′ 6=l






I(‖zl[1]‖2) ‖zl′‖2,1
...

I(‖zl[Q
′]‖2) ‖zl′‖2,1




.

Note that we introduced the term I(‖zl[j]‖2) on the right hand side of the inequal-
ity to obtain a better estimate in the sequel (if an element of the left hand side of
the inequality is zero, we can also set the corresponding element on the right hand
side to zero).

Summing over all entries of the above vectors yields

‖zl‖2,1 ≤ d µB

Q′

∑

j=1

∑

l′ 6=l

I(‖zl[j]‖2) ‖zl′‖2,1

= d µB





Q′

∑

j=1

I(‖zl[j]‖2)








∑

l′ 6=l

‖zl′‖2,1





= d µB ‖zl‖2,0




∑

l′ 6=l

‖zl′‖2,1



 .

We add d µB ‖zl‖2,0‖zl‖2,1 to make the sum on the right run over all l, that is

(1 + d µB ‖zl‖2,0) ‖zl‖2,1 ≤ d µB ‖zl‖2,0

∑

l′

‖zl′‖2,1,

or equivalently

‖zl‖2,1 ≤ d µB ‖zl‖2,0

1 + d µB ‖zl‖2,0

∑

l′

‖zl′‖2,1

=
d µB ‖zl‖2,0

1 + d µB ‖zl‖2,0
‖z‖2,1.

Then we sum over all l to get

1 ≤
L∑

l=1

d µB ‖zl‖2,0

1 + d µB ‖zl‖2,0
.
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By adding
∑L

l=1
1

1+d µB ‖zl‖2,0
to both sides, we obtain

L∑

l=1

1

1 + d µB ‖zl‖2,0
≤ L − 1.

Note that the function f(a) := 1/(1 + d µB ‖a‖2,0) is convex in a. Thus

[
∑L

l=1 f(zl)]/L ≥ f(
∑L

l=1 zl/L) by Jensens’ inequality [24]. Therefore,

1

1 + d µB ‖z‖2,0/L
≤ L − 1

L
,

and finally

‖z‖2,0 ≥
(

1 +
1

L − 1

)
1

d µB
.

Proof of Proposition 3.1. Apply Lemma 3.2 to Lemma 3.3.

3.1.2 Theoretical Discussion

In this section we want to emphasize the possible advantage of the derived con-
dition in Proposition 3.1 over similar conditions for general dictionaries and cor-
responding results for the sparse case. For this assume D to be a dictionary
consisting of L orthonormal bases with coherence µ and block-coherence µB.

For ease of reading we restate the conditions that will be considered in this
discussion. A sufficient condition on k to guarantee uniqueness of the block-sparse
representation problem for all y ∈ Yk (derived without taking the special structure
of D into account) is

k <
1

2

(

1 +
1

d µB

)

, (3.10)

while the condition derived in this thesis under the assumption of a dictionary
consisting of L orthonormal bases is

k <
1

2

(

1 +
1

L − 1

)
1

d µB
. (3.11)

The corresponding equations for the regular sparse case are

k′ <
1

2

(

1 +
1

µ

)

, (3.12)

and

k′ <
1

2

(

1 +
1

L − 1

)
1

µ
, (3.13)
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respectively, where a k′ satisfying the condition ensures that the regular sparse rep-
resentation problem has a unique solution—note that this guarantees the unique-
ness of the block-sparse representation problem for k = ⌊k′/d⌋.

We are always only interested in the largest k and k′ allowed by the mentioned
conditions. Hence, when we refer to the block-sparsity (sparsity) allowed by some
condition we mean the largest k (k′) obeying this condition.

When we say that a condition on the block-sparsity allows for a higher sparsity
than some condition on the regular sparsity, we actually mean that the block-
sparsity allowed by the former condition multiplied by d is larger than the sparsity
allowed by the latter one (kd equals the number of coefficients in k blocks of
block-size d). We also say that the sparsity is potentially higher in this case.

Comparison to the Sparse Case

For a comparison of the previous mentioned conditions for the sparse case and the
block-sparse case we have to relate the coherence µ and the block-coherence µB of
a dictionary that consists of the union of L orthonormal bases. By Lemma C.1,
we have

µ

d
≤ µB ≤ µ. (3.14)

Condition (3.11) can be an improvement over the corresponding condition for
the sparse case (3.13). It allows for a sparsity of up to

k′ ≤ d k <
1

2

(

1 +
1

L − 1

)
1

µB
. (3.15)

By (3.14) we have µB ≤ µ. Therefore, Condition (3.11) allows for a potentially
higher sparsity than Condition (3.13).

From (3.14) we also have µ/d ≤ µB as a lower bound on the block-coherence.
Hence, Condition (3.11) can allow for a sparsity that is at most larger by a factor
of the block-size d over the sparsity allowed by the corresponding condition for the
sparse case.

The possible advantage of Condition (3.11) over Condition (3.13) for the sparse
case is illustrated in Figure 3.1.

Comparison to the Uniqueness Condition for General Dictionaries

We fix a dictionary that is comprised of the union of L orthonormal bases. Com-
paring the block-sparsity allowed by the Condition (3.11) for dictionaries that are
unions of orthonormal bases to the block-sparsity allowed by the Condition (3.10)
for general dictionaries, reveals that the former condition allows for a larger block-
sparsity, whenever L < [1/(d µB) + 1]. Since the considered dictionary has or-
thonormal blocks, the block-coherence obeys µB ≤ 1/d according to [16], Propo-
sition 3. Thus, if L = 2, then Condition (3.11) allows for at least the same
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Figure 3.1: Possible advantage of Condition (3.11) over the corresponding
Condition (3.13) for the sparse case. The lower curve in the plot shows the
sparsity allowed by (3.13) against the coherence. The potential sparsity of
a dictionary with a certain coherence µ′ allowed by Condition (3.11) can lie
somewhere in the blue region on the vertical line going through µ′ on the
x-axis (the position in the blue region on the line depends on the real block-
coherence µB of the dictionary). Each plot shows a different combination of
the block-size d and the number of dictionaries L. Not all pairs of µ and µB

may be possible.
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block-sparsity as the condition for general dictionaries for all possible values of the
block-coherence.

Uniqueness Versus Richness

In general, we have to make a trade-off between the number of orthonormal bases
L in a dictionary and the maximal block-sparsity k that guarantees uniqueness
of the block-sparse representation problem. While with an increasing number of
orthonormal bases we usually can make the representation of signals more efficient,
i.e., we need to use less nonzero blocks to represent a signal, due to the greater
number of different blocks available, the block-sparsity allowed by Condition (3.11)
typically decreases due to an increase of L and the block-coherence µB.

Figure 3.2 shows how the block-sparsity allowed by (3.11) and the number of
blocks in the dictionary develop with the number of orthonormal bases L. The left
y-axis is normalized by multiplication with d µB and the right y-axis by division
over the number of blocks per dictionary.

We observe that for classes of signals that require a large number of bases to
have an efficient representation in the dictionary, it may be a good choice to use a
large number of bases in the dictionary. In this way it may be possible to decrease
the block-sparsity necessary for the representation of the considered signals in the
dictionary while not paying a big price on the sparsity allowed by (3.11).

For low values of L the trade-off should be evaluated case-by-case.
Note that depending on the values of L and of the block-coherence µB, the

condition for general dictionaries may be better.
Furthermore, it may not be possible to create a dictionary with some specific

L and µB.

Dictionary Structure

Another interesting fact is that for some fixed number of orthonormal bases L ≥ 3
in the dictionary there is a point regarding the block-sparsity, starting from which
Condition (3.11) gets worse than the condition for general dictionaries (3.10).
This is illustrated in Figure 3.3. The crossover point up to which Condition (3.11)
is better than Condition (3.10) shifts to the left with an increasing number of
orthonormal bases L.

3.1.3 Simulation Results

The aim of this section is to demonstrate some of the results from the theoretical
discussion.

For this we created dictionaries consisting of the union of two orthonormal
bases ranging over a subset of the possible values of the block-coherence µB, namely
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Figure 3.2: Change of the block-sparsity allowed by (3.11) (solid line) and the
number of available blocks for signal representation (dashed line) against the
number of orthonormal bases L in the dictionary. The allowed block-sparsity
is normalized by multiplication with d µB and the number of available blocks
is normalized by division over the number of blocks per basis.

dictionaries with a block-coherence that satisfies

1√
Md

≤ µB ≤ 1

d
, (3.16)

where M is the dimension of the space spanned by the dictionary—the upper and
lower bound on the block-coherence µB are from [16].

For the created dictionaries we calculated the block-coherence µB, as well as
the coherence µ and compared the allowed sparsity by (3.13) and (3.12) to the
potential sparsity allowed by (3.10) and (3.11). For the created dictionaries we
varied the dimension M , as well as the block-size d.

Figure 3.4 shows two such comparisons. The upper two curves in the figure
are smooth because they depend on the block-coherence µB which we vary on the
x-axis, while the lower two curves depend on the coherence µ which is arbitrary
for the dictionaries we created (except for the rightmost point which corresponds
to a dictionary consisting of two times the same basis and thus the coherence is
clearly 1).

The potential sparsities allowed by the conditions for the block-sparse case (up-
per two curves) are significantly higher than the allowed sparsity by the conditions
for the general sparse case (lower two curves). Thus, taking the model-assumption
of block-sparsity into account can be advantageous.

Further, note that the potential sparsity allowed by the condition for dictionar-
ies consisting of the union of orthonormal bases lies above the potential sparsity
allowed by the condition for general dictionaries in the block-sparse case. At the

33



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

block−coherence (normalized)

bl
oc

k−
sp

ar
si

ty
(n

or
m

al
iz

ed
)

(a) L=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

block−coherence (normalized)

bl
oc

k−
sp

ar
si

ty
(n

or
m

al
iz

ed
)

(b) L=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

block−coherence (normalized)

bl
oc

k−
sp

ar
si

ty
(n

or
m

al
iz

ed
)

(c) L=6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

block−coherence (normalized)

bl
oc

k−
sp

ar
si

ty
(n

or
m

al
iz

ed
)

(d) L=16

Figure 3.3: Block-sparsity allowed by (3.10) (dashed line) and (3.11) (solid
line) against the block-coherence multiplied by the block-size d. The plots
compare the two conditions for dictionaries consisting of different numbers
L of orthonormal bases. The vertical solid line marks the crossover point
starting from which Condition (3.10) allows for a higher block-sparsity when
increasing the block-coherence. Note that for dictionaries consisting of or-
thonormal blocks the block-coherence obeys µB ≤ 1/d and hence the x-axis
goes only up to 1.
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Figure 3.4: Comparison of the potential sparsity allowed by (3.10) (red
dashed line), (3.11) (red solid line) and the sparsity allowed by (3.12) (blue
dashed line) and (3.13) (blue solid line) for dictionaries comprised of L = 2
orthonormal bases, varying dimension M , and with block-size d = 8.

right border of the figure, the two curves for the block-sparsity touch each other.
This point in the figure corresponds to a dictionary with block-coherence 1/d, for
which both conditions give the same limit on the block-sparsity for L = 2.
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3.2 Signal Recovery through ℓ2/ℓ1 Optimiza-

tion

In this section we consider the problem of recovering the representation x of a
vector y in a dictionary D that is comprised of L orthonormal bases, i.e., we want
to find the block-sparsest x such that y = Dx from y and D.

As mentioned in Chapter 2, the representation x is not necessarily unique for
a fixed y. That is, there can be vectors x′ 6= x such that y = Dx′. However, by
requiring y ∈ Yk, where k is small enough, we can guarantee that there is a unique
sparsest representation for all possible y.

If k is sufficiently small, we can furthermore ensure that the block-sparsest
representation of any y ∈ Yk satisfies the Exact Recovery Condition in Lemma 2.2.
Hence, in this case the block-sparsest representation of any possible y can be
recovered using L-OPT and BOMP.

Our contribution, which is summarized in Proposition 3.2, is a sufficient condi-
tion on k such that for all y ∈ Yk the corresponding block-sparsest representation
can be recovered by L-OPT and BOMP. We demonstrate by a theoretical dis-
cussion and simulation results that our sufficient condition can allow for a higher
block-sparsity than the condition in Proposition 2.6. Further, we show that our
condition is advantageous over the similar conditions (2.18) and (2.20) for the
regular sparse case if the block-sparsity assumption is applicable, as it guarantees
that representations with a higher sparsity can be recovered.

3.2.1 Main Results

Assume that y = Dx. As before, we denote by Dopt a matrix comprised of the
blocks of D that correspond to the nonzero blocks of x and by Dopt a matrix
that consists of the blocks of D that are not in Dopt. Then the Exact Recovery
Condition for the block-sparse case, i.e., the condition

ρc

(

D
†
optDopt

)

< 1,

is sufficient to guarantee that L-OPT and BOMP recover the representation x

from y exactly (see Section 2.2.5 for details) [16].
By following the path taken in [19], we derived the following proposition.

Proposition 3.2. Let the dictionary D consist of L orthonormal bases with block-
size d and let y ∈ Yk. If

k <

(√
2 − 1 +

1

2 (L − 1)

)
1

d µB
, (3.17)

then the block-sparsest representation of y can be recovered by L-OPT and BOMP.
Furthermore, if y = Dx, where ‖x‖2,0 ≤ k, then x is the unique block-sparsest

representation of y.
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Proof. See Appendix D.

3.2.2 Theoretical Discussion

In this section we consider under which conditions and up to which extend the
condition given by Proposition 3.2 can be advantageous over other known results.
For this we assume the dictionary D to consist of the union of L orthonormal
bases.

When we compare conditions and say that some condition is better than an-
other condition, we mean that the former condition allows for a higher block-
sparsity (sparsity) than the latter condition.

Advantage Over Sparse Case

We compare Condition (3.17) with the corresponding condition for the regular
sparse case (see Section 2.1.5 for details), i.e., with

k′ <

(√
2 − 1 +

1

2 (L − 1)

)
1

µ
, (3.18)

By Condition (3.18) a representation x such that y = Dx can be recovered from
y and D by BP and OMP if ‖x‖0 ≤ k′. Note that (3.17) guarantees recovery with
L-OPT and BOMP for a sparsity of up to

d ‖x‖2,0 <

(√
2 − 1 +

1

2 (L − 1)

)
1

µB
. (3.19)

Since µB ≤ µ it can be possible to recover signals with a higher sparsity by L-OPT
and BOMP than by BP and OMP if the block-sparsity assumption is applicable.

Example 3.1. Consider the dictionary D = [I,F⊗Id] ∈ C
M×2M , where F denotes

the DFT-matrix of size (M/d)× (M/d) and ⊗ the Kronecker product. This dictio-
nary has block-coherence µB = 1/

√
Md and coherence µ = 1/

√
M . Hence, (3.17)

allows for a sparsity that is larger by a factor of
√

d than (3.18).

Advantage over Recovery Conditions for Arbitrary Dictionaries

Some similar comments as in this section were made in [14].
Comparing the Condition (3.17) to the condition for arbitrary dictionaries in

the block-sparse case (see Section C.3 in the Appendix), i.e., to

k <
1

2

(

1 +
1

d µB

)

, (3.20)

reveals that our condition is not better for all numbers of dictionaries L.
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Figure 3.5: Comparison of Condition (3.17) and (3.20). For a dictionary
consisting of L orthonormal bases with block-size d and block-coherence µB

the former condition, i.e., the condition derived for dictionaries consisting
of orthonormal bases, allows for a higher block-sparsity if the number of
orthonormal bases L in the dictionary is below the value corresponding to
the intersection of a vertical line drawn at d µB with the curve. For example,
for a dictionary with block-coherence µB and block-size d such that d µB =
0.2 Condition (3.17) is better if the number of orthonormal bases in the
dictionary is at most 3 (green lines in the plot).

gap
block-sparsity

recovery with
L-OPT/BOMP

unique sparsest
representation

Figure 3.6: Schematic sketch of the gap between the maximal block-sparsity
allowed by Condition (3.17) and Condition (3.11).

It is only better, whenever

L <
1

3 − 2
√

2 + d µB

+ 1. (3.21)

Since d µB is bounded below by 0, Condition (3.17) can only be better than Con-
dition (3.20) for L ≤ 6. This is illustrated in Figure 3.5.

Observe that there is a gap between the block-sparsity allowed by Condi-
tion (3.17) and Condition (3.11)—which both were derived taking the special
structure of a dictionary consisting of the union of L orthonormal bases into ac-
count. This means that there is a region of the block-sparsity k for which any
block k-sparse vector x is the unique block-sparsest representation of some signal
y = Dx but for which we have no guarantee that we can recover x by L-OPT
and BOMP. This is schematically shown in Figure 3.6. However, note that other
conditions, e.g., Condition (3.20), may guarantee successful recovery by L-OPT or
BOMP .
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3.2.3 Simulation Results

The presented simulations demonstrate some of the possible advantages discussed
in the previous section.

For our simulations we created random matrices A1,A2, . . . of size M × LM
with entries drawn from an i.i.d. Gaussian distribution. L is the number of or-
thonormal bases and M = Qd their dimension, where M, Q, d are integers and d
is the block-size. From each of these matrices Ai we created a random dictionary
Di as follows: For l = 1, . . . , L we set the lth M columns of Di to the orthonormal
basis created from the lth M columns of Ai by the MATLAB command orth.

For these dictionaries we compared the recovery success rate of L-OPT, BOMP
and BP. That is, we created block k-sparse vectors x1,x2, . . . of length LM , where
the k nonzero blocks were selected uniformly at random and the entries within
the blocks are i.i.d. Gaussian. For these vectors we calculated yi = Dixi. Then,
we provided Di and yi to L-OPT, BOMP and BP. All three algorithms produce
an estimate xi,est of the representation xi. The recovery was successful if ‖xi −
xi,est‖2 < ǫ, where ǫ = 10−6 is a small positive constant that allows for calculation
inaccuracies. For each considered value of the block-sparsity k we averaged over
100 pairs of realizations of the dictionary and the block-sparse vector. The success
rate is the number of successful recoveries out of 100.

The results of these simulations for a varying number of orthonormal bases L
and dictionary dimensions M are shown in Figure 3.7. The block-size d = 8 is
fixed. There are some observations to make:

• L-OPT clearly outperforms BP, which itself is outperformed by BOMP.

• For any of the plots: Let k′ be the minimal block-sparsity for which L-OPT
failed at least once in recovering the underlying representation and let k be
the maximum block-sparsity allowed by Condition (3.17) or (3.20) (rounded
down to the nearest integer). Then k′ is at least larger by two than k. That
is, we observed a 100 percent success rate in recovering the representations
with a block-sparsity of up to k′ − 1 by L-OPT. This implies that

– the highest possible block-sparsity k such that the block-sparsest rep-
resentation of any y ∈ Yk can be recovered by L-OPT is larger than
the block-sparsity allowed by the considered conditions, or

– that the equivalence of the ℓ2/ℓ0 and ℓ2/ℓ1 minimization problems holds
with high probability for the generated random signals even if their
block-sparsity is between k and k′.

Also a combination of the above implications is possible.

Maximum Block-Incoherent Dictionary. We repeated the previous ex-
periment but instead of the random dictionaries used the fixed dictionary D =
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(c) L = 2, M = 128, d = 8
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Figure 3.7: Comparison of the recovery success rate of BP, L-OPT and
BOMP in random dictionaries with block-size d consisting of the union
of L orthonormal bases against the block-sparsity of the representation to
recover. The vertical solid green line is the maximal sparsity allowed by
Condition (3.18) (guaranteed recovery with BP in arbitrary dictionaries),
the vertical dashed blue line shows the maximal block-sparsity allowed by
Condition (3.20) (guaranteed recovery with BOMP and L-OPT in arbitrary
dictionaries) and the vertical solid blue line is the maximal block-sparsity al-
lowed by Condition (3.17) (guaranteed recovery with BOMP and L-OPT in
dictionaries that are the unions of orthonormal bases)—these lines were ob-
tained through averaging. The vertical red line is the minimal block-sparsity
for which L-OPT failed at least once.
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[IM ,FM/d ⊗ Id]. In this case L = 2. This dictionary achieves the lowest possible
block-coherence for a dictionary consisting of two orthonormal bases, i.e., it has
block-coherence µB = 1/

√
M d (see [16]). For every considered value of the block-

sparsity we averaged over 100 realizations of the random block-sparse vector. The
results of this experiment are shown in figure 3.8. In contrast to before L-OPT
sometimes outperforms BOMP.
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(c) L = 2, M = 256, d = 8
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Figure 3.8: Comparison of the recovery success rate of BP, L-OPT and
BOMP in the dictionary D = [IM ,FM/d ⊗ Id] with block-size d against the
block-sparsity of the representation to recover. The vertical solid green line
is the maximal sparsity allowed by Condition (3.18) (guaranteed recovery
with BP in arbitrary dictionaries), the vertical dashed blue line shows the
maximal block-sparsity allowed by Condition (3.20) (guaranteed recovery
with BOMP and L-OPT in arbitrary dictionaries) and the vertical solid blue
line is the maximal block-sparsity allowed by Condition (3.17) (guaranteed
recovery with BOMP and L-OPT in dictionaries that are the unions of or-
thonormal bases)—these lines were obtained through averaging. The vertical
red line is the minimal block-sparsity for which L-OPT failed at least once.
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Chapter 4

Block-Sparse Approximation

Consider the problem of representing an arbitrary signal y ∈ C
M in a fixed dictio-

nary D by a block k-sparse vector x ∈ C
N such that y = Dx. This is in general

not possible because the atoms within any selection of k blocks from the dictionary
do not necessarily span the space C

M .
We are then interested in finding a k-block approximation a of y. The quality

of such an approximation is measured by an error criterion. We use the ℓ2-norm of
y− a, i.e., ‖y− a‖2, as the error criterion because it gives rise to simple algebraic
results. The lower the error criterion, the better is the approximation.

4.1 BOMP as an Approximation Algorithm

In this section we investigate the performance of BOMP as an approximation
algorithm. That is, how well the algorithm solves the block-sparse approximation
problem described in Section 2.2.2.

We briefly restate the problem: For an arbitrary signal y ∈ C
M , a dictionary

D of size M × N with block-size d, find a block k-sparse vector x as the solution
to the problem

arg min
x∈CN

‖y − Dx‖2 s.t.‖x‖2,0 ≤ k. (4.1)

We associate the approximation a(x′) = Dx′ with x′. An approximation a(x′)
is optimal if x′ is a solution to (4.1). The approximation error of a for y is
‖y − a‖2. Whenever it is clear which x′ we refer to, we write a instead of a(x′).
Note that the above minimization problem can in general have many solutions.
This is demonstrated by the following example.

Example 4.1 (Optimal k-Block Approximation). Let d = 2 be the block-size.
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Consider the dictionary

D =









1 0 0 0 0 1/
√

5

0 1 0 0 0 1/
√

5

0 0 1 0 0 1/
√

5

0 0 0 1 0 1/
√

5

0 0 0 0 1 1/
√

5









,

and the signal

y = [0, 1, 1, 0, 0]T .

The optimal 1-block approximations for y in D are

aopt1(x1) = [0, 1, 0, 0, 0]T with x1 = [0, 1, 0, 0, 0, 0]T ,

aopt2(x2) = [0, 0, 1, 0, 0]T with x2 = [0, 0, 1, 0, 0, 0]T , and

aopt3(x3) = [0.5, 0.5, 0.5, 0.5, 0]T with x3 =
[

0, 0, 0, 0,−0.5,
√

5/2
]T

.

Now fix an arbitrary signal y. For this signal we obtain a k-block approxi-
mation ak by BOMP in k-steps. To measure the approximation performance of
BOMP we compare the approximation error of ak for y to the approximation er-
ror of an optimal k-block approximation aopt for the same signal y. We relate the
approximation errors by

‖y − ak‖2 ≤ c ‖y − aopt‖2,

where c ≥ 1 is a real number. The smaller c is, the closer ak is to an optimal
k-block approximation and the better is the obtained approximation.

Our main result, that quantifies the quality of the approximation ak with
respect to the quality of an optimal approximation, is summarized in the following
Proposition:

Proposition 4.1 (Adopted from [19], Corollary 4.3). Let D be a dictionary of
size M × N with orthonormal blocks of block-size d and a block Babel function
such that d µB1(k) < 1/2, where k is a fixed positive integer, and let y ∈ C

M be a
completely arbitrary signal. BOMP will then recover a k-block approximation ak

of y in k-steps that satisfies

‖y − ak‖2 ≤
√

1 +
k [1 − d µB1(k)]

[1 − 2 d µB1(k)]2
‖y − aopt‖2, (4.2)

where aopt is an optimal k-block approximation of y.
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4.1.1 Derivation

We start our analysis by deriving a condition similar to the Exact Recovery Con-
dition given by Lemma 2.2 and later conclude how close we get to an optimal
approximation when using BOMP as an approximation algorithm.

Lemma 4.1 (General Recovery, adopted from [19], Theorem 4.2). Let D be a
dictionary of size M ×N with orthonormal blocks of block-size d and a block Babel
function such that d µB1(k) < 1/2, where k is a fixed positive integer. Further, let
y ∈ C

M be an arbitrary signal. Suppose that the approximation aj−1 consists only
of blocks from an optimal k-block approximation aopt. Then, at step j, BOMP will
recover another block from aopt, whenever

‖y − aj−1‖2 >

√

1 +
k [1 − d µB1(k)]

[1 − 2 d µB1(k)]2
‖y − aopt‖2. (4.3)

Proof. The proof follows the arguments in [19].
We associate to xopt the vector aopt = Dxopt. Let Dopt be a matrix that consists

of the blocks in D that correspond to the nonzero blocks of xopt. Furthermore,
Dopt consists of all blocks in D that do not participate in Dopt.

According to the description of BOMP in Section 2.2.5, the algorithm selects
another block from Dopt if

z(rj−1) :=
‖DH

optrj−1‖2,∞

‖DH
optrj−1‖2,∞

< 1. (4.4)

We now introduce the quantities aj−1 and aopt into the inequality above and
bound the ratio. Note, that the mixed ℓ2/ℓ∞ norm is a matrix norm according to
Lemma B.1. Thus,

z(rj−1) =
‖DH

optrj−1‖2,∞

‖DH
optrj−1‖2,∞

=
‖DH

opt(y − aj−1)‖2,∞

‖DH
opt(y − aj−1)‖2,∞

=
‖DH

opt(y − aopt) + D
H
opt(aopt − aj−1)‖2,∞

‖DH
opt(y − aopt) + DH

opt(aopt − aj−1)‖2,∞

≤
‖DH

opt(y − aopt)‖2,∞

‖DH
opt(aopt − aj−1)‖2,∞

︸ ︷︷ ︸

=:zerr(rj−1)

+
‖DH

opt(aopt − aj−1)‖2,∞

‖DH
opt(aopt − aj−1)‖2,∞

︸ ︷︷ ︸

=:zopt(rj−1)

, (4.5)

where DH
opt(y − aopt) disappeared from the denominator because y − aopt is or-

thogonal to the subspace spanned by the columns of Dopt.
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We continue by bounding zerr(rj−1):

zerr(rj−1) =
‖DH

opt(y − aopt)‖2,∞

‖DH
opt(aopt − aj−1)‖2,∞

=
maxi‖(Dopt[i])

H(y − aopt)‖2

‖DH
opt(aopt − aj−1)‖2,∞

≤ maxi‖(Dopt[i])
H‖2‖y − aopt‖2

‖DH
opt(aopt − aj−1)‖2,∞

=
‖y − aopt‖2

‖DH
opt(aopt − aj−1)‖2,∞

,

because all blocks of D are orthonormal by assumption. Then

zerr(rj−1) ≤
‖y − aopt‖2

‖DH
opt(aopt − aj−1)‖2,∞

≤
√

k ‖y − aopt‖2

‖DH
opt(aopt − aj−1)‖2

,

where the last inequality follows from Lemma B.3.
Continuing we find that

zerr(rj−1) ≤
√

k ‖y − aopt‖2

‖DH
opt(aopt − aj−1)‖2

≤
√

k ‖y − aopt‖2

σmin(Dopt) ‖aopt − aj−1‖2

≤
√

k ‖y − aopt‖2
√

1 − d µB1(k − 1) ‖aopt − aj−1‖2

, (4.6)

where σmin(Dopt) is the minimum singular value of Dopt and the last step is due
to Lemma B.4. Note that σmin(Dopt) is nonzero, since Dopt has full column rank.
This is the case due to the assumption d µB1(k) < 1/2. By the properties of the
Babel function we have d µB1(2k) < 1 and thus by Proposition 2.5 that the vectors
within any k-blocks of D are linearly independent–thus the columns in Dopt are
linearly independent.

We now derive an upper bound on the term zopt(rj−1) in (4.5). Observe that

(aopt −aj−1) ∈ span(Dopt) and Dopt(D
†
opt) is an orthogonal projector on the range
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of the columns of Dopt. Because Dopt(D
†
opt) is Hermitian, we get

zopt(rj−1) =
‖DH

opt(aopt − aj−1)‖2,∞

‖DH
opt(aopt − aj−1)‖2,∞

=
‖DH

opt(D
†
opt)

HDH
opt(aopt − aj−1)‖2,∞

‖DH
opt(aopt − aj−1)‖2,∞

≤
‖DH

opt(D
†
opt)

H‖2,∞‖DH
opt(aopt − aj−1)‖2,∞

‖DH
opt(aopt − aj−1)‖2,∞

= ‖DH
opt(D

†
opt)

H‖2,∞.

Now, we expand the pseudo inverse as D
†
opt = (DH

optDopt)
−1DH

opt, which is valid
since Dopt has full column rank because of the arguments from above. We get

zopt(rj−1) ≤ ‖DH
opt[(D

H
optDopt)

−1DH
opt]

H‖2,∞

= ‖DH
optDopt(D

H
optDopt)

−1‖2,∞

≤ ‖DH
optDopt‖2,∞

︸ ︷︷ ︸

=: zopt1(rj−1)

‖(DH
optDopt)

−1‖2,∞
︸ ︷︷ ︸

=: zopt2(rj−1)

. (4.7)

We can bound zopt1(rj−1) above by

zopt1(rj−1) = ‖DH
optDopt‖2,∞

≤ ρr

(

D
H
optDopt

)

= max
l

∑

r

ρ
(

Dopt[l]
H

Dopt[r]
)

≤ d µB1(k), (4.8)

where the first inequality is due to Lemma 1.1. The last step follows from the
definition of the block Babel function.

Now, consider the term zopt2(rj−1). Define the partial Gram matrix Gopt :=
DH

optDopt. Due to orthonormality of the blocks in Dopt, it has the form

Gopt =











Id Gopt[1, 2] . . . . . . Gopt[1, k]
Gopt[2, 1] Id Gopt[2, 3] . . . Gopt[2, k]

... · · · . . . · · · ...

... · · · · · · . . .
...

Gopt[k, 1] . . . . . . Gopt[k, k − 1] Id











=: I + A,

with Gopt[l, r] = (Dopt[l])
HDopt[r].
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Whenever ‖A‖ < 1, where ‖·‖ is some matrix norm, the von Neumann series
∑∞

i=0(−A)i converges to the inverse of (I+A) [25]. In our case, consider the mixed
matrix norm ‖A‖2,∞ which is bounded above by d µB1(k − 1) ≤ d µB1(k) < 1/2.
Hence, the von Neumann series converges and we get

zopt2(rj−1) = ‖(DH
optDopt)

−1‖2,∞

= ‖
∞∑

i=0

(−A)i‖2,∞

≤
∞∑

i=0

‖Ai‖2,∞

≤ 1

1 − ‖A‖2,∞

≤ 1

1 − ρr(A)

≤ 1

1 − d µB1(k − 1)

≤ 1

1 − d µB1(k)
. (4.9)

Putting (4.8) and (4.9) together yields

zopt(rj−1) ≤ zopt1(rj−1) · zopt2(rj−1)

≤ d µB1(k)
1

1 − d µB1(k)

=
d µB1(k)

1 − d µB1(k)
. (4.10)

Thus by combining (4.6) and (4.10) we obtain

z(rj−1) ≤ zerr(rj−1) + zopt(rj−1)

≤
√

k ‖y − aopt‖2
√

1 − d µB1(k − 1) ‖aopt − aj−1‖2

+
d µB1(k)

1 − d µB1(k)

≤
√

k ‖y − aopt‖2
√

1 − d µB1(k) ‖aopt − aj−1‖2

+
d µB1(k)

1 − d µB1(k)
< 1. (4.11)

We manipulate this to get

√

k [1 − d µB1(k)]

1 − 2 d µB1(k)
‖y − aopt‖2 < ‖aopt − aj−1‖2.

Note that the vectors (y − aopt) ∈ ker(Dopt) and (aopt − aj−1) ∈ span(Dopt) are
orthogonal by definition. If they were not orthogonal, aopt would not be an optimal
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approximation. We can thus apply Pythagoras’ Theorem, that is

‖y − aj−1‖2 =
√

‖y − aopt‖2
2 + ‖aopt − aj−1‖2

2

>

√
√
√
√‖y − aopt‖2

2 +

(√

k [1 − d µB1(k)]

1 − 2 d µB1(k)

)2

‖y − aopt‖2
2

=

√

1 +
k [1 − d µB1(k)]

[1 − 2 d µB1(k)]2
‖y − aopt‖2, (4.12)

which is exactly the statement of the lemma.

Proof of Proposition 4.1. From Lemma 4.1 we know that BOMP will select an-
other block from an optimal k-block approximation, whenever d µB1(k) < 1/2
and (4.3) holds. Thus, in this case we get into the vicinity of an optimal k-block
approximation. That is, the obtained approximation by BOMP after k steps will
satisfy

‖y − ak‖2 ≤
√

1 +
k [1 − d µB1(k)]

[1 − 2 d µB1(k)]2
‖y − aopt‖2.

4.1.2 Theoretical Discussion

BOMP as an Approximation Algorithm

The main result of the previous section is that BOMP can be used as an approxi-
mation algorithm to the block-sparse approximation problem.

Let D be a dictionary with block-size d and block Babel function µB1(·). We
want to approximate the signal y = Dx by a block k-sparse vector xk in D.
Then, by Corollary 4.1, BOMP is an approximation algorithm to the block-sparse
approximation problem for block-sparsity k if d µB1(k) < 1/2 (compare this to the
results for OMP in [19]). Assume this condition to be in force. Then, BOMP will
always recover a block k-sparse vector xk such that the approximation error of the
corresponding approximation a(xk) for y is at most larger by a constant factor
than the approximation error of an optimal k-block approximation aopt(xopt) for
y. The actual value of this factor depends on the block-sparsity k and the block
Babel function of the dictionary.

As BOMP approximates y = Dx by a(xk) if the condition in Lemma 4.1 is
satisfied it also approximates x by xk.

To quantify the quality of this approximation note that for two vectors u,v ∈
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C
N we have

‖Du − Dv‖2
2 = ‖D(u − v)‖2

2

= (D(u − v))H (D(u − v))

= (u − v)HDHD(u − v), (4.13)

where the matrix DHD is positive semidefinite [17]. From (4.2) we get with the
above equation that

√

(x − xk)HDHD(x − xk) ≤ c
√

(x − xopt)HDHD(x − xopt), (4.14)

where

c =

√

1 +
k [1 − d µB1(k)]

[1 − 2 d µB1(k)]2
. (4.15)

Thus the vector xk recovered by BOMP will always be such that

√

(x − xk)HDHD(x − xk)

is at most larger by a constant factor c than

√

(x − xopt)HDHD(x − xopt).

Note however that the mapping f : C
N → R such that

f(z) 7→
√

zHDHDz

in general defines a semi-norm and a not a norm.

Comparison to the Sparse Case

In this section we make some comments on signal approximation with OMP and
BOMP and on the relation of Proposition 4.1 to the corresponding result for OMP
(see Section 2.1.5 for details, originally from [19]).

For this assume that we want to approximate some signal y by a k-block
approximation a(xBOMP) or a kd-term approximation a′(xOMP) in the dictionary
D with block-size d. The dictionary has Babel function µ1(·) and block Babel
function µB1(·).

We obtain the block k-sparse vector xBOMP by BOMP in k-steps and the kd-
sparse vector xOMP by OMP in kd-steps. It is then interesting to compare the
approximation errors of the approximations a(xBOMP) and a′(xOMP) for y. For
this we make use of Proposition 4.1 and 2.3. That is, we compare the equations

‖y − a(xBOMP)‖2 ≤ c ‖y − aopt‖2, (4.16)
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where

c =

√

1 +
k [1 − d µB1(k)]

[1 − 2 d µB1(k)]2
, (4.17)

and

‖y − a(xOMP)‖2 ≤ c′ ‖y − a′
opt‖2, (4.18)

where

c′ =

√

1 +
kd [1 − µ1(kd)]

[1 − 2 µ1(kd)]2
. (4.19)

An optimal k-block approximation of y is aopt, while a′
opt is an optimal kd-term

approximation of y. We say c and c′ are the approximation error constants for a
given dictionary D, block-size d and block-sparsity k.

There is no obvious way to relate (4.16) and (4.18). However, we can make
some comments:

• OMP does not approximate a solution to the block-sparse approximation
problem but it approximates a solution to the sparse approximation problem.

• Whenever there is no optimal kd-term approximation that exhibits a block
structure in the dictionary D, then the minimal approximation error ‖y −
a′

opt‖2 in the sparse case is smaller than the minimal approximation error
‖y − aopt‖2 in the block-sparse case, i.e., ‖y − a′

opt‖2 ≤ ‖y − aopt‖2.

Proof. Assume aopt is an optimal k-block approximation for y and a′
opt is an

optimal kd-term approximation for y. Further, assume that ‖y − a′
opt‖2 >

‖y − aopt‖2. But then a′
opt cannot be an optimal kd-term approximation

since aopt is also a kd-term approximation but has a smaller approximation
error. Hence, there is a contradiction.

• For a fixed number of blocks k, and the corresponding number of terms kd to
recover, the approximation error constant c can be smaller than c′ in some
cases. Assume now that c < c′. Then we are guaranteed to get within the
smaller factor, namely the factor c, to an optimal k-block approximation
when using BOMP to recover k blocks. On the other hand, when using
OMP to recover kd coefficients we are guaranteed to get within the factor
c′ to an optimal kd-term approximation.

Comparing the approximation error constants c and c′ resorts mainly to the
comparison of the Babel function and the block Babel function, respectively.
Unfortunately, there seems to be no obvious relation between the block Babel
function and the Babel function of a dictionary.
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Another fact to take into account when comparing the approximation error
constants for OMP and BOMP in the previous described environment is
the following: Despite the difference of the block Babel function and the
Babel function, the approximation error constants depend on k and kd,
respectively. But k < kd in our scenario, whenever d > 1.

4.1.3 Simulation Results

The aim of this section is to demonstrate that BOMP can be used as an ap-
proximation algorithm to the block-sparse approximation problem. We show that
signal approximation by BOMP can be advantageous over signal approximation
by OMP when the signal to recover exhibits block-structure and is observed by
noisy measurements.

Signal Recovery from Noisy Measurements

Consider the experiment of recovering an unknown block k-sparse vector x from
noisy measurements y in the dictionary D with block-size d. That is,

y = Dx + z,

where z is a noise vector. With BOMP we recover a block k-sparse representation
xBOMP in k-steps and with OMP we recover a kd-sparse representation xOMP in
kd-steps from y and D. To relate the quality of the obtained representations we
compare ‖x−xBOMP‖2 and ‖x−xOMP‖2, i.e., the mismatch energy of the obtained
representations and the real representation. For a fair comparison over multiple
experiments we normalized the mismatch energy by the energy of x, i.e., by ‖x‖2.

We carried out this experiment for fixed and random dictionaries of varying
dimensions and with a varying number of contained blocks. In all cases we chose
the block-sparsity k of x as the maximum possible value such that the condition
in Proposition 4.1 is satisfied. Then we created x by selecting k blocks uniformly
at random and drawing the coefficients within these blocks from an i.i.d. Gaussian
distribution. All other coefficients of the vector are set to zero.

The coefficients of the noise vector z are drawn from an i.i.d. Gaussian distri-
bution with zero mean. The variance of this noise vector is chosen such that the
Signal to Noise Ratio (SNR), given as

SNR :=
E(‖Dx‖2)

E(‖z‖2)
, (4.20)

where E(·) is the expectation operator, takes some specific value.
In the experiments performed with random dictionaries, we created the dic-

tionaries as described in Section 3.2.3 with a slight modification: The random
dictionary Di is created from the random matrix Ai by setting the lth block of
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Figure 4.1: Recovery performance of OMP and BOMP for signals embedded
in noise against the SNR. The plots show the normalized mismatch energy for
the fixed dictionary D = [IM ,FM/d⊗Id], where M = 1024 and the block-size
d = 8.

Di to the orthonormal block created from the lth block of Ai by the MATLAB
command orth, for l = 1, . . . , R.

For each considered value of the SNR we averaged the mismatch energy of the
obtained representations over 100 pairs of realizations of the random dictionary
(or fixed dictionary) and the unknown random vector.

The results of these experiments are shown in Figures 4.1 and 4.2. Observe
that BOMP obtains representations that are closer, in the ℓ2-norm, to the original
representation than the representations obtained by OMP.
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Figure 4.2: Recovery performance of OMP and BOMP for signals embedded
in noise against the SNR. The plots show the normalized mismatch energy
for random dictionaries of size M × N , where M = 1024, N = 2048 and the
block-size d = 8.
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Chapter 5

Conclusions

In this thesis we gave an overview of compressed sensing for the regular sparse
case and of compressed sensing under the block-sparsity model assumption. We
covered topics like dictionary analysis, unique sparse representation and recovery
methods.

As our contributions we generalized some results from the regular sparse case
to the block-sparse case and showed that we can achieve better results in this
way—in detail:

• Unique Block-Sparse Representation. We derived a sufficient condition
for unique block-sparse representation of signals in dictionaries comprised of
orthonormal bases. This condition can guarantee unique block-sparse rep-
resentation for higher block-sparsities than similar conditions for arbitrary
dictionaries. Furthermore, it is advantageous over similar conditions for the
regular sparse case if the block-sparsity model is applicable.

• Signal Recovery. In Section 3.2 we derived a sufficient condition for ex-
act signal recovery with L-OPT and BOMP in dictionaries comprised of
orthonormal bases. This condition can guarantee the recovery of signals
with a higher block-sparsity than ensured by similar conditions for arbitrary
dictionaries.

• Block-Sparse Approximation. We justified the usage of BOMP as an
approximation algorithm to the block-sparse approximation problem. Fur-
thermore, we showed by simulations that signal recovery with BOMP can
be advantageous over signal recovery with OMP if the nonzero coefficients
of the signal to be recovered occur in clusters (blocks) and the signal is
observed through noisy measurements.
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Appendix A

Symbols Used

For a list of symbols used throughout this thesis see Table A.1.

Symbol Description

C The set of complex numbers.
R The set of real numbers.

R+ The set of nonnegative real numbers.

Xk Set of block k-sparse vectors of given length N .
Yk Set of signals that have a block k-sparse representation

in a given dictionary D.
supp(x) Support of the vector x.

suppB(x) Block-support of the vector x.
δ[i] Kronecker Delta.
|a| Absolute value of a.
|S| Cardinality of the set S.
FN DFT-matrix of size N × N .
IN Identity matrix of size N × N .
0N All zero matrix of size N ×N or all zero vector of length

N .

Ĩk1d×k2d, Ĩkd For k, k1, k2, d integers with d the block-size, Ĩk1d×k2d de-
notes the matrix 




Id . . . Id
...

. . .
...

Id . . . Id






of size k1d × k2d. The matrix Ĩkd = Ĩkd×kd.

1̃kd For k, d integers with d the block-size, 1̃kd = Ĩkd×d.
span(A) Column space of the matrix A.
A ⊗ B Kronecker product of the matrices A and B.

Continued on next page
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Symbol Description

ρ(A) Spectral norm of the square matrix A.
〈x,y〉 Inner product of x and y.
‖x‖0 Number of nonzero coefficients of the vector x; sparsity

of the vector x.
‖x‖p ℓp-norm of the vector x.
‖x‖2,0 Block-sparsity of the vector x, i.e., the number of nonzero

blocks in x.
‖x‖2,p Mixed ℓ2/ℓp-norm of the vector x.
‖A‖p Induced ℓp-norm of the matrix A.
‖A‖2,p Mixed ℓ2/ℓp-norm of the matrix A.
‖A‖max Elementwise norm with p = ∞, i.e., ‖A‖max = max |Ai,j |.

xH Conjugate transpose of the vector x.
AH Conjugate transpose of the matrix A.
A† Pseudo-inverse of the matrix A.

ZB(A) Block-spark of the matrix A.
ker(A) Kernel of the matrix A.
µ(D), µ Coherence of the dictionary D.

µ1(D, m), µ1(m) Babel function of the dictionary D.
µB(D), µB Block-Coherence of the dictionary D.

µB1(D, m), µB1(m) Block Babel function of the dictionary D.

Table A.1: List of used symbols
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Appendix B

Mathematical Background

B.1 Mixed Norm Properties

Lemma B.1. The mixed norms for matrices, defined as

‖A‖2,p := max
x 6=0

‖Ax‖2,p

‖x‖2,p
,

are submultiplicative. That is, for any two matrices A and B (of appropriate
dimensions for matrix multiplication) we have

‖AB‖2,p ≤ ‖A‖2,p‖B‖2,p.

Proof. If AB = 0 the statement trivially follows. Hence, consider the case AB 6=
0. Then, submultiplicity follows from the following calculation:

‖AB‖2,p = max
x 6=0

‖ABx‖2,p

‖x‖2,p

= max
x 6=0,Bx 6=0

‖A(Bx)‖2,p ‖Bx‖2,p

‖x‖2,p ‖Bx‖2,p

≤ max
Bx 6=0

‖ABx‖2,p

‖Bx‖2,p

max
x 6=0

‖Bx‖2,p

‖x‖2,p

≤ max
y 6=0

‖Ay‖2,p

‖y‖2,p

max
x 6=0

‖Bx‖2,p

‖x‖2,p

= ‖A‖2,p ‖B‖2,p ,

where we used the substitution y := Bx in the second last step.
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B.1.1 Inequalities

Lemma B.2. Let A ∈ C
M×N be a matrix, where M = md, m, d and N are

integers. This matrix can be partitioned as

A =






A1
...

Am




 ,

where Ai ∈ C
d×N , i.e., Ai is the ith d-row block of matrix A. Then

‖A‖2,∞ ≥ ‖Ai‖2 for i = 1, . . . , m. (B.1)

Proof. By the definition of the mixed matrix norm we have

‖A‖2,∞ = max {‖Ax‖2,∞ : ‖x‖2,∞ ≤ 1}
= max {maxj‖Ajx‖2 : ‖x‖2,∞ ≤ 1}
≥ max {‖Aix‖2 : ‖x‖2,∞ ≤ 1} for i = 1, . . . , m,

≥ max {‖Aix‖2 : ‖x‖2 ≤ 1} for i = 1, . . . , m,

= ‖Ai‖2 for i = 1, . . . , m.

The last inequality follows from the fact that the constraint ‖x‖2,∞ ≤ 1 is less
restrictive than the constraint ‖x‖2 ≤ 1, i.e.,

{Ax : ‖x‖2 ≤ 1} ⊆ {Ax : ‖x‖2,∞ ≤ 1} .

Lemma B.3. Let A ∈ C
M×N be a matrix, where M = md, m, d, and N are

integers. Then

‖A‖2,∞ ≥ 1√
m
‖A‖2. (B.2)

Proof. The matrix A can be partitioned as

A =






A1
...

Am




 ,

with Ai ∈ C
d×N for i = 1, . . . , m, i.e., Ai is the ith d-row block of A.

Then, there is some index j such that

α := ‖Aj‖2 ≥ ‖Ai‖2, for i = 1, . . . , m.
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Due to the definition of the induced matrix norm ‖·‖2, there is some x with ‖x‖2 =
1 such that ‖Ajx‖2 = α. We thus have

‖A‖2 = max
‖x′‖2=1

∥
∥
∥
∥
∥
∥
∥

A1x
′

...
Amx′

∥
∥
∥
∥
∥
∥
∥

2

≤

∥
∥
∥
∥
∥
∥
∥

α
...
α

∥
∥
∥
∥
∥
∥
∥

2

=
√

m α =
√

m ‖Aj‖2. (B.3)

On the other hand, consider the mixed ℓ2/ℓ∞-norm of A, that, by Lemma B.2,
bounds the ℓ2-norm of any d-row block Ai, i.e.,

‖A‖2,∞ ≥ α = ‖Aj‖2. (B.4)

Thus by combining inequality (B.3) and (B.4) we have

‖A‖2,∞ ≥ α ≥ 1√
m
‖A‖2 (B.5)

and the statement follows.

B.2 Gershgorin Disc Theorem

In this section we prove a block version of the Gershgorin disc theorem (compare
to [17] for the classical version of theorem).

Lemma B.4 (Adopted from [19], Lemma 2.3). Let D be a matrix consisting of m
orthonormal blocks of size d. Then, the singular values of D exceed [1−d µB1(m−
1)], where µB1(·) is the block Babel function of D.

Proof. This proof closelfy follows the proof of the Gershgorin Theorem in [17].
Consider the generalized gram matrix G = DHD. Then the eigenvalues of G are
the squared singular values of D.

Now, let λ be any of the eigenvalues of G and x 6= 0 the corresponding nor-
malized eigenvector. We then have Gx = λx and for each block (Gx)[j] = λx[j].

We choose i such that ‖x[i]‖2 ≥ ‖x[j]‖2 for any possible index j, i.e., i is the
index of the block of x with the largest ℓ2-norm. Then we rewrite (Gx)[i] = λx[i]
as

∑

j

G[i, j]x[j] = λx[i] ,

where G[i, j] = D[i]H D[j].
Then we subtract G[i, i]x[i] to get

∑

j 6=i

G[i, j]x[j] = λx[i] − G[i, i]x[i]

= (λI − G[i, i])x[i] .
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Now take the ℓ2-norm of both sides and divide by ‖x[i]‖2. This yields

‖
∑

j 6=i G[i, j]x[j]‖2

‖x[i]‖2
=

‖(λI − G[i, i])x[i]‖2

‖x[i]‖2
.

Applying the triangle inequality and the submultiplicity of the ℓ2-norm to the
left side of the above equation yields

‖(λI − G[i, i])x[i]‖2

‖x[i]‖2
≤
∑

j 6=i‖G[i, j]x[j]‖2

‖x[i]‖2

≤
∑

j 6=i‖G[i, j]‖2‖x[j]‖2

‖x[i]‖2

≤
∑

j 6=i

‖G[i, j]‖2

≤ d µB1(m − 1),

where the second last inequality is because of the selection of the index i.
Now consider the left hand side of the above inequality. Since the blocks of D

are orthonormal by assumption (see Section 2.1), G[i, i] is an identity matrix of size
d× d. Thus the expression ‖(λI−G[i, i])x[i]‖2 can be simplified as |λ− 1|‖x[i]‖2.
Hence the above equation can be rewritten as

|λ − 1| = |1 − λ| ≤ d µB1(m − 1)

and the statement follows.
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Appendix C

Block-Sparsity in Arbitrary
Dictionaries

C.1 Block-Coherence Inequality

Lemma C.1. Let D be a dictionary comprised of orthogonal blocks of size d with
coherence µ and block-coherence µB. The block-coherence then satisfies

µ

d
≤ µB ≤ µ. (C.1)

Proof. The upper bound is due to [16].
To derive the lower bound, consider the generalized gram matrix G = DHD.

There is a d× d submatrix G[l, r] = D[l]H D[r], with l 6= r, with an entry of abso-
lute value µ because of the orthogonal blocks in the dictionary and the definition
of the coherence.

By the matrix norm inequality

‖A‖max ≤ ρ(A),

where A is a square matrix and ‖A‖max is the maximum absolute value of any
matrix element of A [26], we thus have

‖G[l, r]‖max = µ ≤ ρ(G[l, r]) ≤ µB d.

Hence, µ/d ≤ µB.

C.2 Proof of Proposition 2.5

Before stating the proof of Proposition 2.5 we present the following helpful lemma.
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Lemma C.2 (Similar to Theorem 4 in [27]). Let D be a dictionary consisting of
orthonormal blocks of size d and with block Babel function µB1(m). A necessary
condition for some nonzero vector z with ‖z‖2,0 = m′ to be in the kernel of D is

m′ ≥ min{m : d µB1(m − 1) ≥ 1}. (C.2)

Consequently, the block-spark of D obeys

ZB(D) ≥ min{m : d µB1(m − 1) ≥ 1}.

Proof. Assume z ∈ ker(D)\{0} and ‖z‖2,0 = m′. Let I be the block-support of z,
i.e., I = suppB(z). Further, let i0 be any element of I and let J = I\{i0}. Then
|I| = m′ and |J | = m′ − 1.

Since z ∈ ker(D) we have 0 = Dz. Thus, we can rewrite this as

z[i0] = −
∑

i∈J

D[i0]
H

D[i] z[i].

Applying the ℓ2-norm, the triangle inequality and the submultiplicity yields

‖z[i0]‖2 ≤
∑

i∈J

‖D[i0]
H

D[i]‖2‖z[i]‖2.

We add ‖D[i0]
H

D[i0]‖2‖z[i0]‖2 = ‖z[i0]‖2 (as the blocks are orthonormal) to both
sides to get

2‖z[i0]‖2 ≤
∑

i∈I

‖D[i0]
H

D[i]‖2‖z[i]‖2.

Now, we sum over all possible i0 ∈ I, that is

2‖z‖2,1 ≤
∑

i0∈I

∑

i∈I

‖D[i0]
H

D[i]‖2‖z[i]‖2.

From this, we obtain

2‖z‖2,1 ≤
∑

i0∈I

∑

i∈I

‖D[i0]
H

D[i]‖2‖z[i]‖2

=
∑

i∈I

‖z[i]‖2

∑

i0∈I

‖D[i0]
H

D[i]‖2.

Bounding the right hand side of the above equation by the block Babel function
yields

2‖z‖2,1 ≤
∑

i∈I

‖z[i]‖2

∑

i0∈I

‖D[i0]
H

D[i]‖2

≤
∑

i∈I

‖z[i]‖2[d µB1(m
′ − 1) + 1]

= [d µB1(m
′ − 1) + 1]‖z‖2,1,
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where the term D[i0]
H

D[i0] is treated separately.
We simplify this to

1 ≤ d µB1(m
′ − 1).

Hence, any nonzero vector in the kernel of the dictionary must have at least
min{m : d µB1(m − 1) ≥ 1} nonzero blocks. That is, the block-spark of D obeys

ZB(D) ≥ min{m : d µB1(m − 1) ≥ 1}.

Proof of Proposition 2.5. Use Lemma C.2 and apply Lemma 3.2 to obtain the
statement.

C.3 Proof of Proposition 2.6

This proof closely follows the path taken in [14].
Before stating the proof, we need to extend parts of the program laid out in

Section 3.1. Therefore, we state a lemma similar to Lemma 3.1.

Lemma C.3 (Adopted from [14], Lemma 1). Let D be a dictionary and S ⊂
∆B = {1, . . . , R} be a set of block-indices. Define

PB,1(S,D) := max
z∈ker(D)

z 6=0

∑

l∈S

‖z[l]‖2

∑

l

‖z[l]‖2
. (C.3)

If PB,1(S,D) < 1/2, then, for all x such that y = Dx and suppB(x) ⊂ S, x is the
unique solution to the problem (2.34).

Proof. The proof is analogous to the proof of Lemma 3.1.

The next lemma will be helpful in proving Proposition 2.6.

Lemma C.4 (Adopted from [14], Lemma 2). If |S| < k is a sufficient condition
for PB,1(S,D) < 1/2, then it is also a sufficient condition for PB,0(S,D) < 1/2.

Proof. Refer to the proof of Lemma 2 in [14].

Now we have all prerequisites to prove Proposition 2.6.

Proof of Proposition 2.6. This proof closely follows the proof of Theorem 1 in [14].
We first show that |S| < 1/2 [1+1/(d µB)] is a sufficient condition for PB,1(S,D) <

1/2 and then conclude the statement by applying Lemma C.3 and Lemma C.4.

67



For any z ∈ ker(D) we have 0 = Dz. Hence, for some fixed l

D[l] z[l] = −
∑

k 6=l

D[k] z[k].

We multiply this from the left with D[l]H . Since the blocks of D are orthonormal
by assumption, we get

z[l] = −
∑

k 6=l

D[l]H D[k] z[k].

Taking the ℓ2-norm of both sides and applying the triangle inequality yields

‖z[l]‖2 ≤
∑

k 6=l

‖D[l]H D[k] z[k]‖2.

By using the submultiplicity of the ℓ2-norm and the fact that the spectral norm
of D[l]H D[k] is bounded above by d µB we obtain

‖z[l]‖2 ≤ d µB

∑

k 6=l

‖z[k]‖2.

It follows that

(1 + d µB) ‖z[l]‖2 ≤ d µB

∑

k

‖z[k]‖2.

Now we sum over all l ∈ S, where S is any set of block-indices, to get

(1 + d µB)
∑

l∈S

‖z[l]‖2 ≤ |S| d µB

∑

k

‖z[k]‖2.

Hence,

PB,1(S,D) ≤ |S| d µB

(1 + d µB)
.

We need the right hand side of above equation to be less than 1/2 to ensure that
PB,1(S,D) < 1/2. This is guaranteed if

|S| <
1

2

(

1 +
1

d µB

)

.

Hence, if we have some y = Dx with ‖x‖2,0 < 1/2 [1 + 1/(d µB)], then x uniquely
solves the minimization problem (2.34).

By Lemma C.4 and Lemma C.3 we know that ‖x‖2,0 < 1/2 [1 + 1/(d µB)] is
also sufficient for x to uniquely solve the problem (2.27).
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Appendix D

Proof of Proposition 3.2

The proof of Proposition 3.2 (or actually the proof of Lemma D.2 which we need
as an intermediate step) is long and cumbersome. Before stating the proof we will
derive two helpful lemmas.

Further, there is Lemma D.3 which we will need to guarantee the convergence
of some von Neumann series in our derivation. To not distract the reader too much
from our goal of proving Proposition 3.2 the lemma and its proof are postponed
to the end of this section.

At some points in the derivation we will require a matrix A of size Ed × Fd,
where E, F, d are integers and d is the block-size, to have the following form:

A =






αA
1,1Id . . . αA

1,F Id

...
. . .

...
αA

E,1Id . . . αA
E,F Id




 , (D.1)

with αA
l,r ∈ R.

We will also make use of the following Lemma:

Lemma D.1. Let A ∈ C
Ed×Kd and B ∈ C

Kd×Fd be arbitrary matrices, where
E, F, K, d are integers and d is the block-size. Then

ρ((AB)[l, r]) ≤ ρ
(
(A′B′)[l, r]

)
, (D.2)

for all 1 ≤ l ≤ E and 1 ≤ r ≤ F , where A′,B′ are of form (D.1), αA′

l,r ≥ ρ(A[l, r])

and αB′

l,r ≥ ρ(B[l, r]). Consequently,

ρc(AB) ≤ ρc

(
A′B′

)
. (D.3)

Proof. The (l, r)-th d × d submatrix of the matrix AB is given by

(AB)[l, r] =
K∑

k=1

A[l, k]B[k, r] .
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We can upper bound the spectral norm of each of this blocks by

ρ((AB)[l, r]) = ρ

(
K∑

k=1

A[l, k]B[k, r]

)

≤
K∑

k=1

ρ(A[l, k]) ρ(B[k, r]) ,

where we used the triangle inequality and submultiplicity of the spectral norm.
But

K∑

k=1

ρ(A[l, k]) ρ(B[k, r]) ≤
K∑

k=1

ρ
(
A′[l, k]

)
ρ
(
B′[k, r]

)
,

because of the construction of A′ and B′.
To conclude the proof observe that

K∑

k=1

ρ
(
A′[l, k]

)
ρ
(
B′[k, r]

)
=

K∑

k=1

ρ
(

αA′

l,kId

)

ρ
(

αB′

k,rId

)

= ρ

(
K∑

k=1

αA′

l,kIdα
B′

k,rId

)

= ρ

(
K∑

k=1

A′[l, k]B′[k, r]

)

= ρ
(
(A′B′)[l, r]

)
.

The following lemma generalizes a result from [19] (originally from [14]) to the
block-sparse case.

Lemma D.2 (Adopted from [19], Theorem 3.7). Let the dictionary D consist of
L ≥ 2 orthonormal bases and let d be the block-size. The dictionary has block-
coherence µB. Assume the signal y to have a unique block-sparsest representation
x with block-sparsity k = n1 + · · · + nL. The numbers nl denote the number of
blocks from basis l corresponding to the nonzero blocks in x. Assume them to be
ordered, that is 0 ≤ n1 ≤ . . . ≤ nL. If

L∑

l=2

d µB nl

1 + d µB nl
<

1

2 (1 + d µB n1)
, (D.4)

then the Exact Recovery Condition (2.37) is obeyed and x can be recovered by
L-OPT and BOMP.
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Proof of Lemma D.2. This proof closely follows the path taken in [19].
By assumption y = Dx, where x is block k-sparse. Let Dopt consist of the

blocks of D corresponding to the nonzero blocks of x, and let Dopt consist of the
blocks of D that are not in Dopt. Further, let the blocks within Dopt be arranged
such that Dopt = [Dopt1 . . . DoptL], where the nl blocks of the matrix Doptl are
from the lth basis. We develop an upper bound on the quantity

ρc

(

D
†
optDopt

)

occurring in the Exact Recovery Condition and then conclude the statement from
it.

We start by expanding the pseudo inverse of Dopt in the above expression, that
is

ρc

(

D
†
optDopt

)

= ρc

(
[DH

optDopt]
−1DH

optDopt

)

= max
l

ρc

(
[DH

optDopt]
−1DH

optDopt[l]
)

(D.5)

This expansion is valid since Dopt has full column rank—this is the case because
of x being the unique sparsest representation of y.

Now we construct a matrix E from G1 := DH
optDopt such that E−1 is of

form (D.1) and that

ρ
(
G−1

1 [l, r]
)
≤ ρ
(
E−1[l, r]

)
(D.6)

for all l, r. Further, we construct a matrix F from G2 := DH
optDopt[l] such that F

is of form (D.1) and such that

ρ(G2[l, r]) ≤ ρ(F[l, r]) (D.7)

for all l, r. Then, by Lemma D.1,

ρc

(
G−1

1 G2

)
≤ ρc

(
E−1F

)
.

Construction of E. The term G1 = DH
optDopt can be written as

G1 =








In1d −A1,2 . . . −A1,L

−A2,1 In2d . . . −A2,L
...

...
. . .

...
−AL,1 . . . −AL,L−1 InLd








=: Ikd − A,

with Ai,j = −Dopt
H
i Doptj ∈ C

nid×njd. In more detail, we have

Ai,j =






Ai,j [1, 1] . . . Ai,j [1, nj ]
...

. . .
...

Ai,j [ni, 1] . . . Ai,j [ni, nj ]




 ,
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where Ai,j [k, l] = −Dopt[(n1 + . . . + ni−1) + k]H Dopt[(n1 + . . . + nj−1) + l].
Every d × d submatrix Ai,j [k, l] of A has a spectral norm that is less than or

equal to d µB due to the definition of the block-coherence.
Now we define E := Ikd − A′, where

A′ =








0n1d A′
1,2 . . . A′

1,L

A′
2,1 0n2d . . . A′

2,L
...

...
. . .

...
A′

L,1 . . . A′
L,L−1 0nLd








with

A′
i,j = d µB Ĩnid×njd

and

Ĩnid×njd =






Id . . . Id
...

. . .
...

Id . . . Id




 ∈ C

nid×njd.

To see that by the above definition inequality (D.6) is obeyed and that E−1

is of form (D.1) we rewrite the inverses of G1 and E as von Neumann series [17].
This is valid since ρc(·) is a matrix norm, ρc(A) ≤ ρc(A

′) ≤ (k−n1) d µB ≤ k d µB

and by Lemma D.3. Hence,

G−1
1 = Ikd +

∞∑

i=1

Ai, and

E−1 = Ikd +
∞∑

i=1

A′i.

By this

ρ
(
G−1

1 [l, r]
)

= ρ

(

δ[l − r] Id +

(
∞∑

i=1

Ai

)

[l, r]

)

≤ ρ(δ[l − r] Id) + ρ

((
∞∑

i=1

Ai

)

[l, r]

)

≤ ρ(δ[l − r] Id) + ρ

((
∞∑

i=1

A′i

)

[l, r]

)

= ρ
(
(E−1)[l, r]

)
,

where the inequalities follow from the triangle inequality and the submultiplicity
of the spectral norm.
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We now evaluate E−1. For this, note that we can rewrite E = Ikd − A′ as

E = (Ikd + d µB B) − (A′ + d µB B),

where B is constructed as

B =








Ĩn1d 0 . . . 0

0 Ĩn2d . . . 0
...

...
. . .

...

0 . . . 0 ĨnLd







∈ C

kd×kd,

with the definition Ĩnid := Ĩnid×nid.
Note that A′ + d µB B = d µB Ĩkd. Hence,

E−1 =
(

(Ikd + d µB B) − d µB Ĩkd

)−1

=
(

Ikd − d µB (Ikd + d µB B)−1Ĩkd

)−1
(Ikd + d µB B)−1, (D.8)

where the last step is because (CD)−1 = D−1C−1 for invertible matrices C and
D.

We continue by working out the inverse of (Ikd + d µB B)−1 with the von
Neumann series—this is valid since ρc(d µB B) = d µB nL ≤ d µB k < 1 which
guarantees convergence of the series. In this way,

(Ikd + d µB B)−1 =








T1 0 . . . 0

0 T2 . . . 0
...

...
. . .

...
0 . . . 0 TL








,

where

Ti := Inid −
d µB

1 + d µB ni
Ĩnid for i = 1, . . . , L,
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because

Ti = Inid +
∞∑

i=1

(−d µB Ĩnid)
i

= Inid +
∞∑

i=1

(−d µB)i ni−1
i Ĩnid

= Inid + Ĩnid
1

ni

∞∑

i=1

(−d µB ni)
i

= Inid + Ĩnid
1

ni

∞∑

i=0

(−d µB ni)
i − 1

ni
Ĩnid

= Inid + Ĩnid
1

ni

(
1

1 + d µB ni
− 1 + d µB ni

1 + d µB ni

)

= Inid −
d µB

1 + d µB ni
Ĩnid.

We now investigate the first term in (D.8). Note that we can again rewrite this
as a von Neumann series, i.e.,

(

Ikd − d µB (Ikd + d µB B)−1 Ĩkd

)−1
=

Ikd +
∞∑

i=1

(

d µB (Ikd + d µB B)−1 Ĩkd

)i
. (D.9)

This is valid since

ρc

(

d µB (Ikd + d µB B)−1 Ĩkd

)

= d µB

[

nL

(

1 − d µB nL

1 + d µB nL

)]

= d µB nL − d2 µ2
B n2

L

1 + d µB nL

< 1.

Now we compute the term d µB (Ikd + d µB B)−1 Ĩkd in (D.9) with the von

74



Neumann series as

d µB (Ikd + d µB B)−1 Ĩkd = d µB






Ĩn1d×kd − d µB n1

1+d µB n1
Ĩn1d×kd

...

ĨnLd×kd − d µB nL

1+d µB nL
ĨnLd×kd






=






d µB

1+d µB n1
Ĩn1d×kd

...
d µB

1+d µB nL
ĨnLd×kd






=






d µB

1+d µB n1
1̃n1d

...
d µB

1+d µB nL
1̃nLd






[
1̃T

n1d . . . 1̃T
nLd

]

= v 1̃T
kd,

with

1̃T
jd = [ Id . . . Id ] ∈ C

d×jd.

Hence, (D.9) becomes

Ikd +

∞∑

i=1

(

d µB (Ikd + d µB B)−1 Ĩkd

)i

= Ikd +
∞∑

i=1

(
v 1̃T

kd

)i

= Ikd +
∞∑

i=1

v 1̃T
kd · · ·v 1̃T

kd
︸ ︷︷ ︸

i times

= Ikd +
∞∑

i=1

v
(
1̃T

kd v
)i−1

1̃T
kd

= Ikd +
∞∑

i=1

(
L∑

l=1

d µBnl

1 + d µB nl

)i−1

v Id 1̃T
kd

= Ikd +

(
∞∑

i=1

L∑

l=1

(
d µB nl

1 + d µB nl

)i−1
)

v 1̃T
kd

= Ikd +
1

1 −
L∑

l=1

(
d µB nl

1+d µB nl

)v 1̃T
kd,

where the fourth step is because

1̃T
kd v =

L∑

l=1

d µB nl

1 + d µB nl
Id.
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We have now evaluated both terms occurring in the inverse of the matrix E. By
this

E−1 =








Ikd +
1

1 −
L∑

l=1

(
d µB nl

1+d µB nl

) v 1̃T
kd








(Ikd + d µB B)−1 (D.10)

Construction of F. We construct the matrix F from the term G2 = DH
optDopt[l].

Assume that the block Dopt[l] is from basis z. Then

G2 =
[

(Dopt
H
1 Dopt[l])

T . . . 0T
nzd×d . . . (Dopt

H
L Dopt[l])

T
]T

,

because the block Dopt[l] is orthogonal to all other blocks of the same basis.
Define

F :=
[

d µB 1̃T
n1d . . . 0T

nzd×d . . . d µB 1̃T
nLd

]T
. (D.11)

With this F is of form (D.1) and

ρ(G2[l, r]) ≤ ρ(F[l, r])

for all l, r.

Putting things together. As mentioned before, for the matrices E and F we
have

ρc

(
G−1

1 G2

)
≤ ρc

(
E−1F

)
.

Now we investigate the product E−1F in detail.
From the last term of E−1 and F we get

(Ikd + d µB B)−1
[

d µB 1̃T
n1d . . . 0T

nzd×d . . . d µB 1̃T
nLd

]T

=
[

d µB

1+d µB n1
1̃T

n1d . . . 0T
nzd×d . . . d µB

1+d µB nL
1̃T

nLd

]T
. (D.12)

Hence,

E−1F =











d µB

1+d µB n1
1̃n1d

...
0nzd×d

...
d µB

1+d µB nL
1̃nLd











+

L∑

l=1,l 6=z

d µB nl

1+d µB nl

1 −
L∑

l=1

d µB nl

1+d µB nl












d µB

1+d µB n1
1̃n1d

...
d µB

1+d µB nz
1̃nzd

...
d µB

1+d µB nL
1̃nLd












.
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With this, we finally get

ρc

(

D
†
optDopt

)

≤ ρc

(
E−1F

)

=
L∑

l=1,l 6=z

d µB nl

1 + d µB nl








1 +

L∑

l=1,l 6=z

d µB nl

1+d µB nl

1 −
L∑

l=1

d µB nl

1+d µB nl








+
d µB nz

1 + d µB nz

L∑

l=1,l 6=z

d µB nl

1+d µB nl

1 −
L∑

l=1

d µB nl

1+d µB nl

=
L∑

l=1,l 6=z

d µB nl

1 + d µB nl








1

1 −
L∑

l=1

d µB nl

1+d µB nl

−
d µB nz

1+d µB nz

1 −
L∑

l=1

d µB nl

1+d µB nl








+
d µB nz

1 + d µB nz

L∑

l=1,l 6=z

d µB nl

1+d µB nl

1 −
L∑

l=1

d µB nl

1+d µB nl

=

L∑

l=1,l 6=z

d µB nl

1+d µB nl

1 −
L∑

l=1

d µB nl

1+d µB nl

.

The bound on ρc

(

D
†
optDopt

)

is weakest for z = 1, since the corresponding basis

contributes the fewest blocks to the optimal representation.
We derive the original statement of the proof since the Exact Recovery Con-

dition requires ρc

(

D
†
optDopt

)

< 1 and we just apply this bound to the above

inequality. Hence we end up with

L∑

l=2

d µB nl

1 + d µB nl
<

1

2 (1 + d µB n1)
(D.13)

as a sufficient condition for successful signal recovery with L-OPT and BOMP.

Proof of Proposition 3.2. Follow the arguments in [14].

Lemma D.3. Let D, L, n1, . . . , nL and k be as in Lemma D.2. If

L∑

l=2

d µB nl

1 + d µB nl
<

1

2 (1 + d µB n1)
, (D.14)
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then k d µB < 1.

Proof. We split this proof into two parts. First, we consider the case L ≥ 3 and
then the case L = 2.

More than two orthonormal bases (L ≥ 3). In this case we get the
statement directly from Condition (D.14). Rewrite the condition as

L∑

l=2

d µB nl

1 + d µB nl
− 1

2 (1 + d µB n1)
< 0,

and multiply it by (1 + d µB nL) to get

L∑

l=2

d µB nl(1 + d µB nL)

1 + d µB nl
− 1 + d µB nL

2 (1 + d µB n1)
< 0.

Observe that

L∑

l=2

d µB nl (1 + d µB nL)

1 + d µB nl
≥

L∑

l=2

d µB nl,

since nL ≥ nl for l = 1, . . . , L, to obtain

L∑

l=2

d µB nl −
1 + d µB nL

2 (1 + d µB n1)
< 0.

Now, multiply this with 2 (1 + d µB n1) to get

2
L∑

l=2

d µB nl + 2
L∑

l=2

(d µB)2 n1nl − 1 − d µB nL < 0.

Hence, by splitting the term d µB nL from the first sum and subtracting the positive
quantity

∑L
l=2(d µB)2 n1nl from the left hand side of the above inequality, we get

(
L∑

l=2

d µB nl +
L−1∑

l=2

d µB nl

)

+ (d µB nL − d µB nL) < 1,

and, finally, with
∑L−1

l=2 d µB nl ≥ d µB n1,

L∑

l=1

d µB nl < 1.

Hence, for L ≥ 3, Condition (D.14) implies that k d µB < 1.
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Two orthonormal bases (L = 2). We have to show that

d µB (n1 + n2) < 1.

For this, consider the following maximization problem:

max f(n1, n2) := d µB (n1 + n2) (D.15)

s.t. g1(n1, n2) :=
d µB n2

1 + d µB n2
− 1

2(1 + d µB n1)
+ s ≤ 0, (D.16)

g2(n1, n2) := n1 − n2 ≤ 0, (D.17)

g3(n1, n2) := −n1 ≤ 0, (D.18)

g4(n1, n2) := −n2 + 1 ≤ 0, (D.19)

where s > 0 is a positive constant, that allows us to restate the strict inequality
constraint (D.14) as an inequality. The second constraint ensures n1 ≤ n2, while
the third and fourth constraints guarantee n1 ≥ 0 and n2 ≥ 1. Note, we excluded
the trivial case n1, n2 = 0.

We now state the Lagrangian function corresponding to the above maximiza-
tion problem and the Karush-Kuhn-Tucker (KKT) conditions that are necessary
conditions for some pair of numbers n1 and n2 to be maximizers (local or global
ones) of the objective function [28]. The Lagrangian function is

L(n1, n2, α1, α2, α3, α4) :=f(n1, n2) +

4∑

i=1

αigi(n1, n2), (D.20)

where the αi are constants.
The necessary KKT conditions for the pair of numbers n̂1 and n̂2 to be local

maximizers of the objective function f(n1, n2) are:

• There exist αi, such that

∇f(n̂1, n̂2) +
4∑

i=1

αi∇gi(n̂1, n̂2) = 0, (D.21)

where ∇a(n1, n2) is the gradient of the function a with respect to n1 and
n2, i.e.,

∇a(n1, n2) =

[
∂a
∂n1

∂a
∂n2

]

.

• gi(n̂1, n̂2) ≤ 0 for i = 1, . . . , 4, i.e., the constraints of the maximization
problem are fulfilled.

• αigi(n̂1, n̂2) = 0 for i = 1, . . . , 4.

• αi ≤ 0, for i = 1, . . . , 4.
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By calculating the gradient of the Lagrangian function, (D.21) becomes

[
d µB

d µB

]

+ α1

[
d µB

2(1+d µB n1)2
d µB

(1+d µB n2)2

]

+ α2

[
1
−1

]

+ α3

[
−1
0

]

+ α4

[
0
−1

]

= 0.

(D.22)

We now search for all local maximizers of the maximization problem by identi-
fying points that satisfy the KKT conditions and show that the objective function
is smaller than 1. Thus, the global maximizer is also less than 1. For this we
consider the settings

n1 = 0, n2 ≥ 1, and

n1, n2 > 0,

that cover all possible values of n1 and n2, case by case.
Case 1: n1 = 0, n2 ≥ 1. In this case we do not need the KKT conditions.

Observe that (D.14) implies

d µB n2

1 + d µB n2
<

1

2 (1 + d µB n1)
.

Hence, with n1 = 0, we have

d µB n2

1 + d µB n2
<

1

2

Thus

d µB n2 <
1

2
+

1

2
d µB n2,

and hence

d µB n2 < 1.

This proves that for n1 = 0 the objective function d µB (n1 +n2) is bounded above
by 1.

Case 2: n1, n2 > 0. We immediately get α3 = 0 from α3g3(n̂1, n̂2) = 0 and
α4 = 0 or n̂2 = 1 from α4g4(n̂1, n̂2) = 0.

• α4 = 0. From α2g2(n̂1, n̂2) = 0 we get that either α2 = 0 or n̂1 = n̂2.

– α2 = 0. In this case Equation (D.22) becomes

[
d µB

d µB

]

+ α1

[
d µB

2 (1+d µB n1)2
d µB

(1+d µB n2)2

]

= 0.

This can not hold for any α1 and hence we cannot find a maximum
here.
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– n̂1 = n̂2 = n̂. From α1g1(n̂1, n̂2) = 0 we get

α1

(
d µB n̂

1 + d µB n̂
− 1

2 (1 + d µB n̂)
+ s

)

= 0 ⇐⇒

α1

(
2d µB n̂

2(1 + d µB n̂)
− 1

2 (1 + d µB n̂)
+ s

)

= 0 ⇐⇒

α1

(
2 d µB n̂ − 1 + s′

)
= 0,

where s′ = 2 s (1 + d µB n̂) and is thus positive.

We can deduce that either α1 = 0 or

n̂ =
1 − s′

2 d µB
.

In the case that α1 = 0, (D.22) becomes
[

d µB

d µB

]

+ α2

[
1
−1

]

= 0,

which cannot hold—hence in this case we will not find a maximum. In
the other case, i.e., n̂ = (1 − s′)/(2 d µB), we have

[
d µB

d µB

]

+ α1

[
d µB

2 (1+d µB n)2
d µB

(1+d µB n)2

]

+ α2

[
1
−1

]

= 0.

The above equation holds for

α1 = −4

3
(1 + d µB n)2, and

α2 = −1

3
d µB.

Observe that gi(n̂, n̂) = 0 for i = 1, . . . , 4, and thus all the necessary
KKT conditions for a local maximum are satisfied at the point given
by n̂1 = n̂2 = n̂. The objective value at this point is

f(n̂, n̂) = d µB

[

2
1 − s′

2 d µB

]

= 1 − s′

< 1.

• n̂2 = 1. We already considered the case n̂1 = 0 and n̂2 = 1 before, so we
now assume that n̂1 = 1. Consider the constraint g1(n̂1, n̂2) = g1(1, 1) < 0
and follow the calculation:

d µB

1 + d µB
− 1

2(1 + d µB)
+ s ≤ 0 ⇐⇒

2 d µB − 1 + s′ ≤ 0 ⇐⇒
2 d µB ≤ 1 − s′,
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where s′ = 2 s (1+d µB) is a positive number. Observe that the left hand side
of the above equation is the objective function for the setting n̂1 = n̂2 = 1.
Since s′ is positive we can only get f(1, 1) < 1.

We have shown that all maxima of the objective function in (D.15) are smaller
than 1. This implies k d µB < 1 for L = 2.
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