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Abstract

For current computer vision systems, object detection and tracking are challenging

tasks, whereas humans perform very well on both of them. This comes from the fact

that these systems have to cope with all variations and transformations that occur

in natural scenes, such as shape, appearance, different illuminations, and occlusions.

In general, machine learning algorithms learn hypotheses based on labeled training

data to separate correctly unseen test data according to their class, i.e., positive or

negative. In computer vision, this principle also holds for detection algorithms as well

as for tracking approaches that are based on classifiers. Indeed, the amount of labeled

training data available is often too small to capture all possible transformations and

intra-class variations of the target object, what makes generalization a hard task. In

contrast, unlabeled data exist in large amounts and are typically easy to collect. But

the extraction of useful information from unlabeled data is difficult in practice, as

they often stem from different distributions than the labeled data, i.e., they are only

weakly-related towards the target class.

In contrast to a heterogenous collection of single images, video sequences, as a source

of unlabeled data, comprise an underlying structure given by real-world constraints,

which is the space-time coherence of naturally moving objects. It is extremely unlikely

that moving objects, which are captured prominently in a video, vanish from one frame

to another. On the other hand, they are likely to show smooth local transformations

from frame to frame. Exploiting this fact, one can extract these local transformations

of moving objects in natural scenes and use them to improve a classifier. Furthermore,

local transformations can often be shared over different target-classes, which allows to

include only weakly-related data in the learning process.

The main intent of this Master’s Thesis is to present a transformation invariant

learning approach using unlabeled weakly-related videos and its embedding into a real-



world detection and tracking system including data acquisition. Based on a Random

Forest framework, we define an optimization problem, which also involves data contain-

ing local transformations of naturally moving objects extracted from video sequences.

We gathered real-world videos from the web and applied a dense optical flow in order

to extract useful motion information from video data. The evaluation of our methods

showed that we can improve the generalization performance in object detection and

tracking.

Keywords. Object detection, object tracking, video, Random Forest, cognitive sci-

ence, invariant object representations, optical flow.



Kurzfassung

Objektdetektion und -verfolgung sind für aktuelle Computer Vision Systeme

anspruchsvolle Aufgaben, für Menschen aber, sind sie einfach zu verrichten. Das hat

den Grund, dass diese System mit allen möglichen Variationen und Transformationen

zurecht kommen müssen, die in natürlichen Szenen auftreten, wie z.B. Forms-,

Erscheinungs-, Beleuchtungsänderungen oder teilweiser Bedeckungen. Im Allgemeinen

lernen Machine Learning Algorithmen Hypothesen, basierend auf annotierten

Trainingsdaten, um ungesehene Daten korrekt bezüglich ihrer Klassen, also positiv

oder negativ, zu trennen. In der Computer Vision gilt dieses Prinzip sowohl für

Detektions- als auch für Verfolgungsalgorithmen, die auf Klassifizierern basieren.

Jedoch ist die Anzahl der verfügbaren, annotierten Trainingsdaten oft zu klein um alle

möglichen Objekttransformationen und intra-class Variationen abzudecken, was die

Generalisierung zu einer schweren Aufgabe macht. Im Gegensatz dazu existieren nicht

annotierte Daten in großen Mengen und sind typischerweise auch einfach zu sammeln.

Aber der Gewinnn von sinnvollen Informationen aus nicht annotierten Daten ist in

der Praxis schwierig, da sie oft von einer unterschiedlichen Verteilung stammen, als

jene der annotierten Daten, d.h. sie hängen nur schwach mit der Zielklasse zusammen.

Im Gegensatz zu einer heterogenen Sammlung von Einzelbildern besitzen Videose-

quenzen, als Quelle von nicht annotierten Daten, eine von Natur gegebene, zugrun-

deliegende Struktur, und zwar den Raum-Zeit Zusammenhang von sich natürlich be-

wegten Objekten. Es ist höchst unwahrscheinlich, dass sich bewegte Objekte, die auf-

fallend im Video gezeigt werden, von einem Bild auf das nächste verschwinden. Ander-

erseits ist es wahrscheinlich, dass die Objekte leichten, lokalen Transformationen unter-

zogen wurden. Nützt man dieses Wissen aus, kann man diese lokalen Transformation

von bewegten Objekten extrahieren und weiterverwenden um einen Klassifizierer zu

verbessern. Außerdem können lokale Transformationen oft unter verschiedenen Zielk-



lassen geteilt werden, was es erlaubt, Daten in den Lernprozess miteinzubeziehen, die

nur schwachen Zusammenhang zur Zielklasse zeigen.

Der Hauptzweck dieser Masterarbeit ist es, nicht annotierte Videos, die nur schwach

mit der Zieklasse verwandt sind, in einen transformationsinvarianten Lernansatz zu

integrieren, und zu zeigen, wie dieser in einem vollständigen Detektions- und Verfol-

gungssystem verwendet werden kann. Basierend auf einem Random Forest - Gerüst,

definieren wir ein Optimierungsproblem, welches zusätzlich Daten miteinbezieht, die

lokale Transformationen von sich natürlich bewegten Objekten beinhaltet, und die aus

Videosequenzen extrahiert wurden. Wir sammelten natürliche Videosequenzen aus dem

Internet und errechneten einen dichten optischen Fluss, um sinnvolle Informationen aus

den Videodaten zu extrahieren. Die Evaluierung unserer Methoden zeigte, dass wir die

Generalisierungsleistung von Objektdetektion und -verfolgung verbessern können.

Schlüsselwörter. Objektdetektion, Objektverfolgung, Video, Random Forest, Kog-

nitionswissenschaft, invariante Objektrepräsentation, optischer Fluss
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Introduction
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1.1 Motivation

Computer vision is a strong and fast growing research area, which achieved loads of

impressive results and attracted wide interest in the last couple of years. But the per-

formance in several different tasks still lacks behind that of the human visual system.

Image segmentation, for instance, is an easy task for human beings, but is very de-

manding for a computer vision system. Many issues like illumination, pose, occlusion,

and so on have to be considered to achieve good results. While computer vision offers

a rich range of different tasks, in this thesis, we will focus on object detection and

tracking.

The goal in object detection is to predict the correct locations of target objects in

unseen static images. The first step in a common approach to object detection is to

collect a set of labeled, static training images from the target class, e.g., pedestrians

or cars, and a set of random negative images or background images. In a second step,

1



2 Chapter 1. Introduction

one tries to find a good image representation, i.e., extracting informative features from

training images. Third, a learning algorithm is provided with these features to find

a good hypothesis, separating target object features from background features. The

hypothesis is then evaluated on the feature vectors extracted from unseen test images.

Figure 1.1 illustrates this scenario.

Figure 1.1: This figure gives a schematic overview of a common approach
to object detection. It can be separated in two different phases, “Train”
and “Test”, where the first one learns a hypothesis based on image rep-
resentations of given labeled images. In the “Test” phase, the hypothesis
predicts target class instances in test images.

Prominent examples for such feature extraction methods are Histogram of Oriented

Gradients (HOGs) [24], Haar-Features [80], or Local Binary Patterns (LBPs) [1], which

all showed to perform well in object detection tasks. Boosting [32] or support vector

machines (SVM) [79] are good examples for well-known learning algorithms in com-

puter vision. They have been applied to many different tasks, like text-categorization

[40–42, 69], speaker identification, face detection or handwriting recognition [20]. A

current state-of-the-art object detection system, which is based on SVMs and HOGs,

is described in [29].

Figure 1.2 shows result images from a pedestrian detection system, where one clearly

sees that the system can correctly predict the location and size of a target-class object

in some images but totally fails on other ones, i.e., miss some pedestrians (Figure 1.2c)
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or predict some at wrong locations (Figure 1.2d).

(a) True positive (b) True positive

(c) False negative (d) False positive

Figure 1.2: Some result images from a pedestrian detection system. (a)
and (b) show two successful examples, i.e., true positives. In (c), a missed
detection (false negative) is illustrated and (d) shows a wrong prediction
(false positive).

One can also look up the current detection results (competition “comp3”) of the

tough VOC challenge ∗. The winning method for the category “person” achieves an

average precision (AP) value of 47.5%, meaning that not even half of the objects in the

testing images are detected correctly. Other categories show better results but many

are even worse. The best winning AP value found over all categories is 58.4% and the

worst is 13.0%. Although the VOC challenge is a very demanding object detection

task, human beings ought to achieve AP values above at least 90.0% in each of the

categories. Thus, there is enough space for improvement in object detection.

∗http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/results/index.html
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As mentioned above, this thesis will also focus on the task of object tracking. Con-

trary to the class-specific object detection task described in the previous paragraphs,

here we are confronted with an instance-specific problem. The goal in object tracking

is to find and track a specific instance of a class in a video sequence. Many different

approaches to object tracking have been proposed, just to mention a few, [18] describes

a mean shift based approach, [3] shows how to improve tracking using multiple-instance

learning (MIL) in combination with boosting, and in [66] a Random Forest (RF) based

method is presented. A good review of state-of-the-art tracking algorithms is given by

Yilmaz et al. in [92]. Modern tracking algorithms often use the “tracking-by-detection”

attempt, where one exploits an object detector for the tracking task. Some methods

pre-train a classifier on a specific target class and update the model to the current class

instance at the beginning of the video, with the argumentation that in many applica-

tions one has an a priori knowledge about the target object class [34]. Other methods

are able to track arbitrary objects, learned from the first frame of a video sequence, e.g.,

[3, 18, 66]. As an example, Figure 1.3 shows some frames of a good working tracking

video.

Figure 1.3: Some frames of a good working tracking algorithm which
follows a soft toy. The image content is taken from [3].

Most problems in object tracking occur when the target object undergoes small

local transformations due to articulation, pose or illumination changes. Another big

problem in object tracking is the correct handling of occlussions. Some frames of a

failing tracking task are shown in Figure 1.4, where one can clearly see that at some

point the tracking algorithm cannot follow the target object anymore.

Figure 1.4: Some frames of a failing tracking algorithm. The image
content is taken from [67].
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To sum up, one can say that object detectors and trackers have to cope with a lot of

tedious problems, which include, amongst others, intra-class variance, illumination, and

pose changes. Therefore, it would be desirable to build detectors and trackers, which

are insensitive to these effects. One source where we can find all of these effects was

barely used in the recent research, and this is video. Videos can capture moving objects

in real-world scenes, which actually perform natural pose and appearance changes.

This information can be used to build transformation invariant detection and tracking

algorithms.

1.2 Video

Video is a sequence of static images, which can capture motion from real-world scenes.

Each image in a video is called a frame. The time between two consecutive frames

is usually very short, e.g., around 30 ms. “Frames per second” (FPS) is a common

characteristic to describe this time interval. Due to this temporal coherence of the

frames in a video, some assumptions about the captured real-world scene can be made.

For instance, if an object is pictured prominently in frame t, it is very unlikely that the

same object vanishes in the following frame t+1. But on the other hand, we can assume

that it is very likely that the captured object has undergone some local transformations,

e.g., pose changes. Furthermore, considering the illumination in combination with these

local transformations, the object might appear slightly different from frame to frame,

especially in terms of color and intensity. For that reasons, video is a rich source of

information that can be exploited to make object detectors and trackers insensitive to

these transformations.

1.3 Learning from Video

In this thesis, we want to improve a learning algorithm for object detection and track-

ing tasks with the help of video data. As already mentioned above, video sequences

comprise transformations of natural objects. These transformations include pose, ap-

pearance, or illumination changes, which all are effects, object detectors and trackers

should be invariant to. Thus, it makes sense to extract these information from videos

and integrate them to the learning procedure. Another motivation for building trans-

formation invariant detectors and trackers by incorporating videos, which is detailed in



6 Chapter 1. Introduction

the following section, comes from the cognitive science research and the human visual

system.

It is important to note that we are solely interested in learning the transformations

of moving objects in a video, not the object itself. To this end, we do not need any class

labels like “person”, “dog”, or “car” in the video frames. This saves a lot of annotation

work, which is a further motivation for this thesis. Nevertheless, the existence of any

moving object in the video sequence is assumed. Some frames of reasonable video

sequences used in our framework are shown in Figure 1.5. Here one can see a koala

bear making a lot of local transformations by moving its body. When talking about

unlabeled videos, one important problem arises: how can we extract informative parts

from the video, i.e., the foreground? The solution to this problem is the motion itself,

as it separates the moving foreground from the static background. Of course, there

are further problems like multiple moving objects captured in the image sequence or

camera movement, but these problems can be handled and are discussed later in the

thesis.

Figure 1.5: Some frames of a video sequence capturing a koala bear
moving its body. The different parts of the body undergo several local
transformations.

Another assumption, we make, is that local transformations of a specific object are

not restricted to solely help a detection system for the same target-object. In other
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words, this means that we can extract local transformations from moving objects which

are only weakly related towards the target class of the object detection or tracking task.

Weakly-related objects can be understood as objects, which actually stem from different

classes, but show some local appearances, which are similar. Figure 1.6 illustrates why

this assumption makes sense. Here, one can see that local transformations of any object

can also be associated with parts of any other object. This indicates that data, which

describes those local object transformations, can be shared over more than one target

class.

(a) Car (b) Bicycle (c) Motorbike

Figure 1.6: It is very likely that object parts that look similar, i.e., have
similar appearance, can undergo similar transformations. This knowledge
can then be transferred between unknown categories. The figures (taken
from [28]) show weakly-related objects, which all share a common part, the
wheels.

As these local object transformations can only be found at different parts of the

moving object, we require a part-based learning method. We cannot share the trans-

formations of the entire object over different target-objects, but parts of it. Another

reason why it is desirable to use a part-based approach is the problem of the aspect

ratio. Aspect ratios of objects in images or videos should be approximately equal to be

useful for a common object detection algorithm, but this is often not the case when talk-

ing about weakly-related objects. As an example, consider the aspect ratios of trucks

and motorbikes, which are obviously dissimilar, although the objects could share some

local transformations, e.g., the wheels.

Summing up, we present a part-based learning algorithm which incorporates local

transformations of moving objects to improve the generalization power for both, detec-

tion and tracking tasks. A schematic overview of the procedure is illustrated in Figure

1.7.
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Figure 1.7: A schematic illustration of the object detection and track-
ing procedures presented in this thesis. Both algorithms incorporate local
transformations extracted from video data.

1.4 Human perception

The idea of improving object detection and tracking tasks in computer vision systems by

incorporating the information extracted from moving objects in videos, is a very natural

one and inspired by the human visual system. Especially, when we think of how the

input data for newborns and children look like. They see an “endless live stream” that

contains unlabeled moving objects most of the time, and they can outperform current

state-of-the-art object detection and tracking systems after a short “training phase”.

Therefore, it seems to make sense to use unlabeled videos as auxiliary data in a learning

process to build transformation invariant detection and tracking systems.

Current research in cognitive science also investigates these problems and tries to

find out how human beings accomplish detection and tracking tasks, see [5, 35, 82] for

some examples. A more detailed discussion about the relation to the human visual

system follows later in the thesis.
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1.5 Organisation of the Master’s thesis

The intent of this thesis is to improve object detection and tracking tasks by incorporat-

ing motion data capturing weakly-related objects. In other words, the generalization

performance should be enhanced by learning local transformations of real-world ob-

jects, resulting in a transformation invariant object detector and tracker. Additionally,

we want to present a procedure, which can extract these motion data, capturing local

transformations, from unlabeled video sequences.

The remain of this thesis is organized as follows: Chapter 2 gives a short intro-

duction to statistical machine learning and reviews recent learning approaches that

include unlabeled and weakly-related data, see Sections 2.2, 2.3, and 2.4. In Section

2.5, we summarize some former works, which try to incorporate motion data from video

sequences and point out the differences to our approach. Furthermore, Section 2.5.1

depicts the relation of the proposed methods to the human visual system.

In Chapter 3, our new learning algorithm is introduced and discussed in detail.

Sections 3.3.2 and 3.3.3 show how it can be applied to learn an object detector and

tracker, respectively.

In Chapter 4, we outline the processing pipeline which completes our framework to

a real-world detection and tracking system. Furthermore, we introduce the notation of

the motion data and describe the extraction process including optical flow and motion-

based segmentation in Sections 4.2.1 and 4.2.2, respectively.

Chapter 5 illustrates the generated video database, the experimental setup, and the

evaluation process. Furthermore, we present the results on real-world data for object

detection and tracking tasks, respectively.

Finally, Chapter 6 summarizes the thesis and gives an outlook to future work.
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In many cases, object detection and tracking tasks can be reduced to a statistical

machine learning problem, where one tries to find hypotheses which separate the target

class from the background. Thus, we start this chapter by giving a short introduction

to statistical machine learning in Section 2.1.

Apart from the standard techniques, machine learning offers more recent approaches

that can improve the generalization performance with the help of auxiliary data. In

particular, these methods are Semi Supervised Learning (SSL) and Transfer Learning

(TL), which try to incorporate unlabeled or weakly-related data into the learning pro-

cedure. These methods and the differences to our approach are described in Sections

2.2 and 2.3, respectively. Some other approaches using weakly-related or video data are

summarized in Sections 2.4 and 2.5, respectively. Again, we point out the differences

to our method.

11
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As already mentioned, we desire a part-based framework for incorporating local

transformations from video data. Thus, we also describe some other object detection

and tracking systems using a part-based approach in Section 2.6.

2.1 Short introduction to Machine Learning

Machine learning has a broad spectrum of different settings and applications, which

is too large to be explained here in detail. As a starting point, we review the two

most important settings, unsupervised learning and supervised learning. Both settings

have to deal with input feature vectors drawn from a so-called feature space X , which

is a fact, they have in common. We review both settings in Sections 2.1.2 and 2.1.3,

respectively. More detailed discussions about this topic can be found in [16, 54, 97],

which also served as sources for the discussion in this thesis.

Before we review the learning methods, we give a deeper look on the feature space

X in Section 2.1.1. Furthermore, we show some common examples of feature extraction

methods in computer vision applications.

2.1.1 Feature space

A feature vector xi describes an instance of any object and consists of d feature values

xji ∈ R, each describing a property of the object. The d-dimensional space X , which is

spanned by the feature vectors, is called the feature space. Each feature vector can be

represented as a point in this space and can be illustrated in a so-called scatter plot. As

an example, let us consider the case of representing human beings in a 2-dimensional

feature space. We choose two properties, weight and height, and map them to the x-

and y-coordinates in a Cartesian coordinate system, respectively. Figure 2.1a illustrates

this mapping. All points (blue and green) correspond to different objects, i.e., human

beings. As can be seen easily, there are two different distributions, one with low height

and weight, and one with high height and weight.

To continue our example, we now consider the task of separating adults from chil-

dren according to these two properties (a common scenario in supervised learning).

Obviously, blue points in the scatter plot belong to adults and green points to children.

In Figure 2.1a, the data can be separated easily, as we just have to draw a line between
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the distributions.

Figure 2.1b also represents human beings, but now, the two properties mapped to

the coordinate system are eye color and hair color. These feature vectors are chosen

badly, as we cannot find a simple hypothesis which separates the two distributions, i.e.,

adults and children. Thus, there exist good and bad choices for feature vectors. The

quality of feature vectors is the ability to separate the distributions, they stem from,

easily. Features from the same distribution ought to have similar feature values and

vice-versa. Figure 2.1 illustrates this difference.

(a) Good features (b) Bad features

Figure 2.1: This figure shows an example of good and bad features. Blue
and green points correspond to different distributions and ought to be sep-
arated easily, which is the case in (a), but not in (b).

In computer vision, we have to extract d-dimensional feature vectors from static

images with the goal to find a representation of the target object, which has the ability

to be separated easily from feature vectors comprising background clutter. There was an

immense progress in feature extraction in the recent years and many different methods

have been proposed. A very simple one is to concatenate all grayscale values of the

defined target object. More mature methods also include some other image information,

like gradients. Prominent examples are the SIFT descriptor [52], HOGs [24], or LBP

patterns [1].

2.1.2 Unsupervised Learning

In unsupervised learning, one is given a dataset X containingN examples xi. In general,

it is assumed that all examples are drawn independently and identically distributed

(i.i.d.) from the space X . One example of such a dataset is illustrated in Figure 2.2a. In
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this scenario, there is no supervision from a teacher who tells how the examples should

be handled, hence the name unsupervised learning. This fact can also be noticed from

the figure, as all points have the same color. No further information is given, except

the feature values itself.

(a) Dataset X (b) Clustered Dataset

Figure 2.2: This figure describes a typical clustering task. In (a), one can
see the given dataset X, i.e., some point clouds in the feature space. In (b),
each of these feature vectors is assigned a cluster, indicated with the colors
red, green and black.

The main goal in unsupervised learning is to estimate the marginal probability p(x),

where x ∈ X . But this is a very hard task. However, many other, simpler problems

were investigated in the recent research. The most common tasks in unsupervised

learning are clustering, outlier detection, or dimensionality reduction. Clustering tries

to separate the data into different subsets, where each subset contains similar feature

vectors. The similarity measure is often different and task-specific. Figure 2.2 illustrates

an example of a clustering task. Well-known algorithms are k-means clustering [51] or

mean shift [17]. Outlier detection tries to find those feature vectors, which do not

belong to the majority of all other feature vectors in some sense [8]. The task of

dimensionality reduction tries to find those dimensions in the feature space which are

most informative. Subsequently, other dimensions can be neglected without significant

loss in information, which can reduce computational effort in many machine learning

applications. Principle Component Analysis (PCA) is the most prominent algorithm

[60].
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2.1.3 Supervised Learning

Supervised learning differs from unsupervised learning in the fact that, additionally

to the feature vectors xi, its corresponding labels yi are given. Thus, the learning

algorithm is supervised in a way that it is provided with training data {xi, yi}, where

x ∈ X and y ∈ Y. A standard requirement is that the training samples {xi, yi} are

drawn i.i.d. over X × Y.

The goal in supervised learning is to find a mapping from the input space X to the

output space Y, namely f : X → Y. X is the feature space described in Section 2.1.1.

Y can be a discrete space, in which case the task is called classification and the function

f is a classifier. Thus, the different values in Y are called classes. If Y is continuous, the

problem is called regression and f is a regression function. The quality of f can easily

be evaluated by its predictive power on test samples, which also stem from X × Y.

Supervised learning can be separated into two families, generative and discrimina-

tive approaches. Generative learning tries to estimate the probability p(x|y), i.e., it

wants to know how the feature vectors xi are generated. The second approach, dis-

criminative learning, is not interested in this probability. Instead, it just models p(y|x).

Thus, it simply tries to discriminate the feature vectors xi to its correct labels yi.

Figure 2.3a shows an example of a learned function f for a given training set. The

blue points belong to class 1 and the green points to class 2. This linear classifier

separates the training data well. In Figure 2.3b, one can see the evaluation on a test

set. Again, the classifier f can predict the classes of the given feature vectors with

just a small error. Certainly, the complexity of the classifier can be increased to e.g.,

non-linear, but for the purpose of explanation, we restrain the classifier to be linear.

2.2 Semi-Supervised Learning

Semi-Supervised learning (SSL) is somewhere midway between supervised and unsu-

pervised learning. In this case, the learning algorithm is given both, labeled and un-

labeled data. We define the labeled dataset as Xl which contains l labeled examples

{xi, yi} ∈ X ×Y. Additionally, the algorithm is given an unlabeled dataset Xu contain-

ing u feature vectors xi ∈ X . Thus, only a subset of all feature vectors has supervision

in form of labels yi.
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(a) Training data (b) Testing data

Figure 2.3: This figure illustrates the supervised learning task. In (a),
the training data is presented (blue points from class 1 and green points
from class 2) and the trained classifier f . (b) shows the evaluation of f on
the test dataset.

SSL offers many different tasks, amongst others, these are semi-supervised classi-

fication, constrained clustering, regression, or dimensionality reduction. But only the

first setting is the most suitable for this thesis and, thus, is discussed in more detail.

In Semi-supervised classification, SSL is considered as an extension to supervised

learning, where additional unlabeled data is available. Typically, it is assumed that

l � u, i.e., the amount of unlabeled data is much larger than that of labeled data.

Similar to supervised learning, the goal is to train a classifier f : X → Y, but now from

both, labeled and unlabeled data. Actually, in this scenario, one can differ between two

slightly different settings, inductive and transductive SSL. The goal in the first setting

is to achieve good generalization performance on future data, i.e., beyond Xl ∪ Xu.

The latter one tries to find that function f , which has good predictive power on the

unlabeled data Xu only. Of course, this setting is simpler, as f is just defined on the

given training set, i.e., f : X l+u → Y l+u.

Unlabeled data can vastly improve the generalization performance of a classifier f , if

used correctly. Otherwise, a classifier including unlabeled data can yield worse results

than a classifier, which is trained solely on labeled data. The key to the success of

SSL are the assumptions one makes about the link between the marginal distribution

p(x) and the target label y. Many SSL settings have slightly different assumptions

about this link. A good summary can be found in [97], which also served as a base for

this discussion. The book from Chapelle et al. [16] also gives a good introduction to

Semi-supervised learning.
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As an example for semi-supervised classification, consider the scenario depicted

in Figure 2.4. The upper row of images illustrates the supervised learning scenario,

where only two datapoints are available for each class, respectively. A hypothesis is

found, which seems to separate the data well (see Figure 2.4b). In the lower row of

images, unlabeled data (red points) are added. In Figure 2.4c, one can easily see both

distributions of the two different classes and a low density region between them. Thus,

one can find a much better hypothesis by considering the unlabeled data points, which

is depicted in Figure 2.4d. This example demonstrates one problem of supervised

learning. The labeled training dataset does not always reflect the properties of the

distribution they stem from, especially, if the number of labeled examples is small.

(a) Labeled data only (b) Supervised hypothesis

(c) Labeled and unlabeled data (d) Semi-supervised hypothesis

Figure 2.4: This figure illustrates a simple SSL scenario. (a) and (b) show
the supervised case of learning a hypothesis from the given labeled dataset.
In (c), the dataset is extended with unlabeled data points and in (d), the
newly trained hypothesis is illustrated.
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SSL has a lot of different applications, where using unlabeled data helps to im-

prove the performance. Amongst others, these applications include speech recognition

[93], natural language processing [11, 44], spam filtering [9, 89], protein 3D structure

prediction [85, 86], or website classification [73, 96]. Thus, one can find many SSL al-

gorithms in the recent literature. For instance, the transductive SVM (TSVM) [41, 43]

extends the well-known SVM to incorporate unlabeled data. Similar, a semi-supervised

Random Forest was presented by Leistner et al. [49]. Apart from improving the per-

formance, SSL has another big advantage. A lot of time and cost can be saved for

annotating training data, as unlabeled data is often much easier to collect than labeled

data.

It is also worth noting that SSL makes a different assumption than we do in this

thesis. Although both approaches include unlabeled data, we do not make such a

strong assumption between the marginal distribution p(x) and the target label y. SSL

methods typically assume that all data points are drawn from the same distribution,

but we also try to learn from weakly-related data, i.e., data from different distributions.

2.3 Transfer Learning

Supervised and semi-supervised learning both assume that the training and test data

are drawn from the same distribution. Thus, a classifier has to be build from scratch

with newly collected training data, once the target domain of the task changes. This is

expensive and time consuming in most of the cases. It would be desirable to transfer

some knowledge from the old task to the new one, i.e., to reuse previously learned

knowledge. Transfer learning (TL) tackles this problem. As a practical example, con-

sider the case of learning to speak Spanish, which is often said to be easier, if you

already know how to speak Italien. A good summary about this learning principle can

be found in [59], which also served as a basis for this review here.

The research on transfer learning was fundamentally motivated by the works of

Schmidhuber [70] and Thrun & Mitchell [78]. TL can be applied to different machine

learning settings, e.g., classification, regression, or clustering. Figure 2.5 shows the

basic principle of transfer learning compared to traditional machine learning.

The notation in transfer learning defines a “domain” and a “task”, which is similar

to the ordinary machine learning notation. A domain D consists of a feature space
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(a) Traditional machine learning (b) Transfer learning

Figure 2.5: This figure from [59] illustrates the basic principle of trans-
fer learning. In (a), one sees the traditional machine learning approach.
Each task has its own learning system. (b) shows the approach of transfer
learning, where knowledge is shared over different tasks.

X and its marginal probability distribution p(xi), where xi is a feature vector in the

space. A task T consists of the label space Y and a predictive function f(·), which has

to be learned from the training data [59].

Transfer learning is categorized in three different settings: inductive, transductive

and unsupervised transfer learning. This division is based on the different relations

between source and target domain or source and target task. An overview is illustrated

in Figure 2.6. Inductive transfer learning assumes different source and target tasks,

independent from the domains, i.e., source and target domains can be equal or different.

In transductive transfer learning, source and target tasks are the same, but the domains

are different. That is, either the feature space or the marginal probability distribution

from source and target domains is different. Unsupervised transfer learning is similar

to the inductive transfer learning setting, in a sense that source and target tasks are

not the same, but they are related. However, this category concentrates on solving

unsupervised target tasks, like clustering or density estimation. No labeled data is

available at all.

A lot of different applications and algorithms have been proposed in the recent

years in the context of transfer learning. Dai et al. [23] present an extension to

the boosting framework, which can effectively transfer knowledge from old data to
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Figure 2.6: This figure gives a detailed overview of the different categories
of the transfer learning problem [59].

a new target domain. They also give a theoretical and empirical analysis to their

algorithm. Text classification is one of the applications, transfer learning has been

applied to successfully [21, 22, 64]. Furthermore, this learning principle has been used

in computer vision tasks. Stark et al. [74] present a shape-based model and show how

to transfer knowledge for other target-classes. Three different levels of knowledge are

transferable between object models [74]. These are the appearance of different parts of

the model, local symmetries, e.g., limbs of human beings, and the topology of parts.

In [37], Heitz et al. use a landmark-based model to transfer knowledge from cartoon

images to natural ones for object classification. An extended SVM-based framework

using auxiliary data is presented in [88] and applied to the task of image classification.

Although some aspects of transfer learning are similar to our approach, we differ

from this principle as we concentrate on learning motion transformations from video

sequences. That is, in our method, the unlabeled auxiliary data has a different form

than the labeled data.
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2.4 Learning from weakly-related data

This section reviews some works about learning from weakly-related data. Although

they have a strong relation to transfer learning, which was described in the previous

section, they do not explicitly exert this learning principle.

Self-taught learning, introduced by Raina et al. in [63], proposes a new learning

method, which uses the help of unlabeled data to improve a classifier. Crucial, the

unlabeled data may stem from a different distribution or domain than that of the

labeled data. The main idea in [63] is to use sparse coding methods to learn basis

features from the unlabeled, weakly-related dataset. Then, the labeled images (and

also the test images) are represented using a linear combination of these basis features.

Consequently, the linear combinations are assigned a label and can be forwarded to a

simple supervised learning algorithm, like an SVM or boosting.

Yang & Jin [90] propose an SSL approach to learn an SVM from both labeled and

unlabeled data, where the unlabeled dataset is only weakly-related to the labeled one,

i.e., the domains of the datasets are different. The main application in [90] is text-

categorization. This approach is similar to that of self-taught learning, but, in contrast

to Raina et al. [63], here the data representation is combined with the training of the

classifier. In particular, Yang & Jin [90] use both labeled and unlabeled data to find a

feature representation.

In contrast to these methods, where unlabeled, static images are used as auxiliary

data to increase the amount of available objects in the dataset, we learn from video

data and try to exploit the motion of objects.

In [46], attribute-based classification is introduced, which is a method that shows

how to learn a classifier without any training examples of the target class. Objects

are described with a high-level representation based on arbitrary semantic attributes,

like shape, color or, even geographic information. Thus, a classifier can be pre-trained

on a database that is unrelated to the current target class, and new classes can be

detected without another training phase. As an example, the attribute yellow-colored

corresponds to bees, tigers, canary birds, and many more. Thus, one can introduce an

intermediate layer, consisting of attributes, between low-level features and high-level

object classes. A classifier can be trained to extract object attributes from images,

and due to the attributes, one can detect new classes, e.g., an elephant, which could
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be described with the attributes: gray, big, long trunk, living in warm regions. A

disadvantage of this method is that one has to label the intermediate layer, i.e., the

attributes. In contrast, we do not need to label any attributes in the auxiliary data,

like “hand”, “head”, or “limb”. We do not even know the label of the weakly-related

objects.

2.5 Learning from video data

In this section, we provide a review of papers which use the help of sequential data

to receive transformation invariant representations of target objects. Many of the

presented methods explicitly try to learn motion invariant feature vectors while the

remain integrates the invariance in the learning phase of the classifier.

In [25], features are presented which combine HOGs with orientation histograms of

either optical flow or spatio-temporal derivatives. That is, these features are extracted

out of two successive frames taken from a video sequence. The evaluation of these

spatio-temporal features is done with an SVM on pair-wise test images.

Another object representation, which is based on a combination of static image fea-

tures and motion-based features, is shown in [81]. The system integrates intensity with

motion information. Viola et al. [81] propose an efficient method to extract motion

from two successive frames. The generated features are used to train an AdaBoost clas-

sifier and the framework is applied to the task of pedestrian detection. The evaluation

is done on pair-wise images extracted from video sequences.

LeCun et al. [77] describe a convolutional architecture based on Restricted Bolz-

mann Machines (RBM) to learn spatio-temporal features from successive frames in

video sequences. The extracted motion-sensitive features correspond to the transfor-

mations between the two frames. [77] show on synthetic data that their method can

represent flow-like features when the type of transformation is restricted. This approach

is also used to extract useful features for human activity recognition. Again, the testing

process is done on pair-wise data.

Slow feature analysis (SFA) is another method, introduced by Wiskott & Sejnowski

in [87], to learn invariant object representations for classification tasks in an unsuper-

vised fashion from temporal input sequences. Based on a nonlinear expansion of the

input signal and a principle component analysis (PCA), it learns a large number of
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decorrelated and invariant features. A hierarchical network of SFA modules can learn

translation, size, rotation, and contrast invariance for one-dimensional objects. How-

ever, the performance degrades if the network is trained to learn multiple invariances at

a time. The principle learning goal is to find a function g(·) which is applied on the se-

quential input signal x(t) and results in a slowly varying output function y(t) := g(x(t)).

Of course, the trivial constant output signal has to be avoided.

All works described in the previous few paragraphs try to construct motion-invariant

features to learn object representations, unlike our method, presented in this thesis.

We try to incorporate the motion data in the training phase of a classifier and use

ordinary object representations, like HOGs. Furthermore, despite SFA, all the methods

described above, can only be applied to sequential data during training and evaluation.

In contrast, our method is able to learn from motion data but is evaluated on single

images.

Stavens & Thrun [75] describe how to exploit unlabeled real-world sequential data

via optical flow to tune the parameters of prominent object representations, namely,

SIFTs and HOGs. The goal is to learn domain-optimized versions of SIFT and HOG

features in an unsupervised way. They also argue that optimizing the parameters

manually is too time consuming, and a more automated process, using warping images

to simulate motion, tends to be synthetic and does not include all variations from

the dataset. This argumentation is very similar to ours in this thesis, but we try

to improve the learning algorithm itself, via incorporating real-world videos, not the

feature representation. [75] estimate the correspondences between frames using Harris

corner features and an optical flow. Each corner feature is tracked and assumed to

capture naturally transformed salient points in the videos. In a second step, an efficient

and effective search procedure is used to find optimal values for the feature parameters

of SIFT and HOG. Of course, the goal is to tune the parameters in a sense that

the object representation shows similar values for the same real-world objects, but

distinctive values for different ones. As this method is completely unsupervised and,

although the performance is very good in the experiments, there is a limitation [75].

Due to multiple occurrences of the same object in the videos, the algorithm occasionally

tries to find distinctive representations for the same objects.

Continuous transformation (CT) learning is introduced in [76] and strongly moti-

vated by the human visual system. They use a neural network (NN) with some input
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and output cells. The goal is to train this network in a sense that tiny shifts or transfor-

mations of the input stimuli always yield the activation of the same output cells. This

procedure relies on the fact that shifted or transformed versions of the input stimuli

have a lot of overlapping input cells. In [61], this CT learning approach, based on

a hierarchical network model, is used to build translation invariant object representa-

tions. Again, they motivate their work by the human visual system, where many papers

show that neurons in the visual cortex respond to objects invariantly with respect to

translation, size, contrast, lighting, spatial frequency, and view.

Mobahi et al. [55] also exploit the temporal coherence in unlabeled video data to

improve a supervised object detection task, in a similar way to ours. Using a deep

architecture of convolutional networks, they try to become more invariant to object

transformations and to yield better results in detection tasks. They propose a training

objective, which is regularized, based on temporal coherence data terms. This is a very

similar approach to ours in the task of object detection, but they use a self-created

video database, which contains artificial 3D objects without any background clutter.

In contrast, we use real-world data and a more light-weight part-based approach, which

is more flexible for practical usage.

2.5.1 Human perception

As already mentioned in Section 1.4, we argue that there is a strong relation between

the human visual system and the proposed learning method in this thesis. We believe

that infants learn object representations in the first few months of life, supported by a

huge amount of unlabeled video sequences with a minimal amount of supervision. In

more detail, the motion itself or the temporal coherence of moving objects in the real

world gives the supervision needed to learn robust object representations, which are

very discriminative between different object classes, while being robust against intra-

class variations. In the recent years, the cognitive science research investigated a lot

of work in the question how infants are able to learn robust object representations in

such a short time, and also supports our reasoning.

Gerhardstein et al. [35] states that one source of the robustness and performance

of the human visual system is the prior, or top-down knowledge, which helps to better

understand the real-world. This statement is widely accepted in cognitive science and

easily comprehensible. But they further concentrate on the other source, which does not
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assume any prior experience. Crucial, they argue that motion cues play a very critical

and important role when no prior knowledge is available, e.g., for infants. Children

are attracted to motion, while in contrast, it is more difficult for them to use static

information, like color. Motion information is not as prone to ambiguous interpretation,

due to the temporal coherence in real world scenes.

Wallis & Bülthoff [82] support the argumentation that the temporal coherence of

moving objects is important to object recognition or to the task of finding good and

invariant object representations. Some experimental results in [82] suggest that spa-

tiotemporally smooth sequences improve the process of learning more invariant object

representations, which allow some intra-class variation.

Furthermore, Balas & Sinha [5] also describe that dynamic input for visual systems,

both computational and biological, shows a performance-enhancing impact. Assisted

by two different experiments, they show that temporal coherent input data increases

both the generalization of object identity and the sensitivity to appearance changes in

static images.

In [50], Li argues that the responses from the inferior temporal cortex (IT) are

discriminative to different objects but also very invariant to changes in object posi-

tion, scale, and pose. To learn these invariances in the object representation, they

propose a solution based on the temporal coherence of the visual experience of human

beings. Unsupervised temporal slowness learning (UTL) is presented, which could be

the mechanism how humans find tolerant object representations.

2.6 Part-based approaches

As we also make use of a part-based object detection and tracking approach, this

section reviews some recent works on this topic. Although many different part-based

approaches have been proposed [19, 26, 27], we limit ourself to review two works in

more detail.

Felzenszwalb et al. [29] present a deformable part-based model which rest upon

discriminatively trained support vector machines. The object model consists of a root

filter, i.e., an SVM trained on the representation of the whole target object, and several

part filters covering different parts of the objects. Quadratic cost functions score all

deformations of the model, which controls the flexibility of the part filter positions.
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This model from [29] achieved brilliant results on the PASCAL challenge [28] in the

recent years and outperformed many other participants.

Another part-based approach is presented by Wang et al. in [83]. A combination of

HOG and LBP features served as feature representation and the algorithm was applied

to the task of human detection. Additionally, the partial occlusion problem is handled

in this work. The method is based on separate detectors, a global and several part

detectors, which is similar to [29]. Wang et al. [83] use a scanning window approach

in the detection phase. Ambiguous windows are segmented, based on an occlusion

likelihood map, to separate occluded from non-occluded regions. The part detectors

are then applied to occlusion-free regions, yielding the final classifier.

Furthermore, the proposed method in this thesis also stems from a part-based object

detection framework, which is reviewed later in Section 3.3.1.

2.7 Chapter Summary

In this chapter, we reviewed the basic notation, settings, and problems in machine

learning and gave some examples. Then, we introduced some variations of the or-

dinary machine learning setting, which include auxiliary data in the learning process.

Namely, these are Semi-Supervised learning in Section 2.2 and Transfer learning in Sec-

tion 2.3. Furthermore, we reviewed some works in the recent research about learning

from weakly-related data and learning from video. In Section 2.5.1, we made a short

excursion to the human visual system and pointed out some similarities and relations

to our approach, presented in the thesis. Finally, we reviewed some former works on

part-based approaches.
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As already stated in the previous sections, to perform object detection and tracking

while incorporating motion data, we need a learning algorithm, which is able to handle

a part-based approach. In addition, we require the learning algorithm to be online,

which is necessary for object tracking. A current state-of-the-art detection system

using a part-based approach was introduced by Gall & Lempitsky in [33], the Hough

Forests. They have been shown to perform well in different object detection tasks.

Furthermore, [34] shows how this framework can be updated online and presents good

results in different tracking tasks. As the implementation is also publicly available,

this framework seemed very suitable as a base for adopting our methods, which are

presented in this chapter.

Random Forests [15] are the basis of the Hough Forest framework and will be sum-

marized in the following section and extended to learn from motion data in Section 3.2.

Afterwards, we show how we modified the Hough Forest framework to incorporate our

methods. In Section 3.3.2, we describe the integration of motion data via regulariza-

tion to accomplish the detection task and Section 3.3.3 shows the training of a general

codebook, which is used for object tracking.

27
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3.1 Random Forests

A Random Forest, introduced by Breiman [15], is an ensemble method and consists of

randomized decision trees, which operate independently during training and evaluation

time. For each tree a subset of the training data is generated by subsampling with

replacement from the original dataset, i.e., bagging. The remaining examples, which

are not included in the training subset, are called Out-of-bag (OOB) examples and can

be used to compute an Out-of-bag error (OOBE) [15].

We denote a tree in the RF as fi(x; Θ)) : X → Y, where i = 1 . . . T and T is

the number of trees. Θ describes the various stochastic properties of the tree, like the

random training subset or the splitting rules of each node, and x is a feature vector. The

whole random forest can be written as F = (f1, . . . , fT ). During training, each decision

node generates a predefined number of random tests and calculates response values for

each training example. There exist several possibilities to define such a random test,

the easiest one is to randomly choose one feature value of the d-dimensional feature

vector x and use this as response value. While extremely randomized forests [36] also

use a predefined number of random threshold values in a range corresponding to the

response values, conventional RFs sweep the threshold values in that range to split the

training data into two subsets. We denote such a splitting test as follows

ξ(x; Θ̂, τ) =

{
0, if x(Θ̂) < τ

1, otherwise
, (3.1)

where Θ̂ are the stochastic elements needed to calculate a response value from the

training data x in the current node and τ is a threshold value. Thus, a training example

x will be forwarded to the left or right child node of the current node, according to this

splitting rule 3.1. Over all these possible splits, the node chooses that combination of

Θ̂ and τ which optimizes the information gain

∆H = − |Il|
|Il|+ |Ir|

·H(Il)−
|Ir|

|Il|+ |Ir|
·H(Ir) , (3.2)

where Il and Ir are the subsets of training data, which are forwarded to the left or right

child node, respectively. The node score H(I) is often calculated using the entropy

H(I) = −
∑K

k=1 p
j
k · log(pjk) or the Gini Index H(I) = −

∑K
k=1 p

j
k · (1 − p

j
k), where K

is the number of classes. pjk defines the probability of node j belonging to class k. In



3.1. Random Forests 29

other words, pjk is the fraction of training examples belonging to class k which fall into

node j to all training examples falling in this node.

After this random test is fixed for the current node, the training examples are split

according to Equation 3.1 and forwarded to the left or right child nodes. Then, the

same procedure starts again for both child nodes. That is, the trees are grown in a

recursive manner. If a decision node is provided with too few or pure training data

(only training examples from one class are available), or the depth of the tree reached

its maximum, a leaf node is created. The training examples, which fall into this leaf,

are used to build the density function about the class labels, which is further used to

do prediction.

The prediction probability of class k in the RF can thus be computed as

p(k|x) =
1

T

T∑
t=1

pt(k|x) , (3.3)

where pt(k|x) is the estimate of class k in the leaf of the tth tree, where the data sample

x fell into. This structure of holding class probabilities in the leaf nodes makes the RF

inherently multi-class. Hence, according to Breiman [15], one can define a multi-class

decision function as

C(x) = arg max
k∈Y

p(k|x) , (3.4)

and, furthermore, a classification margin like

ml(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x) . (3.5)

Note, predicting the correct class label y for example x, requires the margin to be

bigger than zero. Therefore, one can define the generalization error like

GE = E(X ,Y)(ml(x, y) < 0) . (3.6)

Breiman [15] showed that the generalization error GE has an upper bound given by

GE ≤ ρ̄1− s2

s2
, (3.7)

where ρ̄ defines the mean correlation between two pairs of trees, i.e., ρ̄ measures the
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similarity between the predictions of two trees. The strength s of the set of trees is

defined as s = E(X ,Y)(ml(x, y)). That is, a high strength value and high independency

of the trees increase the generalization performance. Clearly, ρ̄ > 0 has to hold. A good

summary about ensemble methods and the Random Forest framework can be found in

[48], which also served as a template for this review.

Random Forests showed to perform better or at least equal to state-of-the-art meth-

ods in a various number of computer vision tasks. For instance, RFs are applied to

image classification [13] or clustering tasks [56]. Furthermore, they were also used in

the task of image segmentation [68, 71].

RFs have become very popular, not least because they own some advantages to

other classifiers, which are attractive for computer vision applications. Especially, both

training and prediction phases can be performed fast, as RFs are parallelized easily due

to the independence of the trees. Multi-Core CPU and GPU implementations [72] have

been shown to improve training as well as detection speed heavily. Another advantage

of RFs is its inherent capability of making multi-class predictions without having to

build several binary classifiers. Furthermore, [15] also states that RFs are more robust

to label noise than many other classifiers. This characteristic also suits very well for

our task, as we produce a certain amount of noise due to the unlabeled videos, where

we extract our motion data from.

3.2 Learning from motion data

In order to incorporate motion data in the Random Forest framework, we need a rep-

resentation for motion and a suitable splitting criterion. The goal is to train a Random

Forest based on motion data, while the evaluation phase handles non-sequential data.

We propose to represent the motion data in form of pairs Φj
i = (xt

i,x
t+∆
i , yi), where

xt
i is a feature vector at frame t and xt+∆

i at frame t+ ∆. Note, we do not consider the

part-based approach at this point, thus xt
i is a general feature vector describing a moving

object. ∆ is a parameter, which is used to tune the time (in # frames) between the two

extracted features and inherently the level of transformation of the moving object. The

training pairs are gathered over different video sequences Vj , j = 1 . . .# videos, and are

collected in a pool of pairs Φj
i , i = 1 . . .# pairs. yi ∈ {same, different} is the label of a

pair Φj
i and simply describes if both feature vectors are extracted from the same video
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sequence containing the same moving object (yi = same), or not (yi = different).

That is, “different” pairs are created artificially.

After describing the representation of the motion data, we need to define a splitting

criterion which is capable of handling motion data in form of pairs Φj
i . In fact, the

RF has to split the pairs based on their feature vectors xt
i, which is important for the

evaluation phase of non-sequential data. Thus, the actual splitting of feature vectors

into left and right child node remains equal to the standard Random Forest, but the

quality measure for these splits in the training phase is different, in a way that it also

integrates the pair-wise motion data.

As we want the RF to become invariant to local object transformations, we try to

find splits which keep “same” pairs together and split “different” pairs apart in each

node of the tree during training. To this end, we define a so-called pair error εpair

which can be written as

εpair =
1

2 · |Isame|
∑
Isame

I(ξ(xt
i; Θ̂, τ) 6= ξ(xt+∆

i ; Θ̂, τ))

+
1

2 · |Idifferent|
∑

Idifferent

I(ξ(xt
i; Θ̂, τ) = ξ(xt+∆

i ; Θ̂, τ)) ,
(3.8)

where I(·) is the indicator function and ξ denotes the random test for the current node,

as described in Section 3.1. Each node in the tree tries to find that random splitting

test, which minimizes Equation 3.8. Thus, the optimizer is penalized for (a) a random

test Θ̂ and threshold τ , which forwards the instances from a pair Φj
i which is labeled

as “same” to different child nodes, and (b) a random test Θ̂ and threshold τ , which

forwards both instances of a pair labeled as “different” to the same child node. Of

course, pairs that are split apart in any node of the tree have to be discarded from the

training set and cannot be forwarded to any child node, which is desirable in the case

of “different” pairs, but is penalized for “same” pairs.

Although we train the RF on pair-wise data Φj
i , prediction is done on single in-

stances xt
i. Despite the fact, that we do not have any class-specific information in the

leaves of the RF at this point, the classifier is now applicable for detection and tracking

tasks.
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Discussion: Till now, we briefly described the main properties of this splitting crite-

rion. The RF handles pair-wise motion data during training and non-sequential data

during evaluation. It tries to split “different” pairs apart and keeps “same” pairs to-

gether. Due to the fact that this rule tries to keep “same” pairs together, it learns a

more transformation insensitive representation of objects. In more detail, the algorithm

searches for a split, which chooses those features from the feature vectors that are most

invariant to local transformations, while still separating “different” pairs.

In contrast to the standard Random Forest, a split with one empty child node is a

reasonable solution and might even be the optimal one. The optimal solution of this

pair-wise splitting criterion simply is to keep all “same” pairs together and split all

“different” pairs apart, independent from the direction they are forwarded to. This can

end in one empty child node. The trivial solution, i.e., a threshold τ below or above all

responses, which would keep all “same” pairs together but also the “different” pairs, is

inherently prevented due to the error on the set of “different” pairs. Such a threshold τ

would forward all pairs to either the left or right child node and make a minimal error

on the “same” pairs but a maximal one on the “different” pairs. Thus, the combination

of the error on the set of “same” pairs and “different” pairs keeps the balance of the

splitting criterion.

3.3 Extending Hough Forests to learn from motion data

A Hough Forest, as introduced in [33], is based on the standard Random Forest frame-

work and uses a part-based approach. Hough Forests have been shown to perform

well in detection tasks and, furthermore, [34] described how to use them in the task of

tracking. These facts make them attractive for our purposes and, as the code is also

publicly available, we chose this framework as a basis for our ideas.

The following section summarizes the Hough Forest framework. Section 3.3.2 shows

how we can extend it to simultaneously learn from labeled data and unlabeled motion

data for detection. In Section 3.3.3, we review how the framework can be updated

online [34] and how we modified it to perform tracking with assistance of motion data.
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3.3.1 Hough Forests

Hough Forests [33] use a part-based approach to perform object detection. Therefore,

the training data consists of small 16x16 patches Pi = (Ii, yi,di), where Ii describes the

appearance of the patch, yi is the class label and di is a vector pointing to the center

of the target object. The appearance Ii of a patch Pi consists of C channels, each of

them itself a 16x16 image describing different properties of the extracted image, e.g.,

the gradients. Thus, the appearance of a patch can be written as Ii = (I1
i , . . . , I

C
i ). In

case of object detection, positive patches are collected from training images containing

the target class and negative patches from background images. For negative patches, di

is undefined. Figure 3.1 shows some training images from a pedestrian dataset, where

the red box denotes the bounding box of the target object. Patches Pi are extracted

at random locations within the bounding box and can be seen in Figure 3.1b. Before

the patches are extracted, the training images are resized to a suitable common size,

in a sense that 16x16 patches contain useful information.

In this framework, a binary test can be applied to the appearance Ii of a sample

and is defined by a channel a ∈ (1, ..., C), two locations (p, q) and (r, s) in the 16x16

image, and a threshold value τ . The binary test can be written as

ξ(I; a, p, q, r, s, τ) =

{
0, if Ia(p, q) < Ia(r, s) + τ

1, otherwise
. (3.9)

While training the Hough Forest, all nodes in each tree try to find the best binary test

among a random subset of all binary tests. The trees are growing by following the

same recursive procedure from the standard RF [15]. The main characteristic of Hough

Forests is the way the quality of the binary tests is evaluated. On the one hand, Gall

& Lempitsky [33] try to minimize the “class-label uncertainty”, which is the same as

in the standard Random Forest and follows equation 3.2. For purposes of notation, we

rewrite this equation to U1(Il, Ir) = −∆H. On the other hand, a node in the Hough

Forest also tries to minimize the “offset-uncertainty”, which corresponds to the variance

of the offset vectors di of positive patches and is defined as

U2(Il, Ir) =
∑
i:ci=1
i∈Il

(di − dIl)
2 +

∑
i:ci=1
i∈Ir

(di − dIr)2 , (3.10)

where dIl and dIr are the mean offset vectors in the subsets Il and Ir, respectively.
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(a) Labeled images

(b) Extracted patches

Figure 3.1: In (a), one can see some training images used in the Hough
Forest Framework. The red box is the bounding box of the target object,
in this case a pedestrian from the TUD-pedestrian dataset [2]. Within the
bounding box, small patches are extracted at random locations, which can
be seen from the blue squares. All patches from positive training examples
store an offset vector to the object centroid (green line). (b) shows the
extracted 16x16 patches.

The decision, whether to minimize the “class-label uncertainty” or the “offset uncer-

tainty”, is done randomly. The resulting optimization problem can be summarized to

the following:

argmin
k

U∗

({
pi|ξk(Ii) = 0

}
,
{
pi|ξk(Ii) = 1

})
, (3.11)

where * is either 1 or 2, according to the random choice.

If a tree in the Hough Forest reaches a maximum depth or the number of training

samples is too small, a leaf node is created, which stores the proportion of positive to

negative patches Pi reaching this node. Additionally, a list of all offset vectors di from

the positive patches is stored. Figure 3.2b illustrates the general training procedure.

Please note, that the scale information in the leaf nodes, depicted in this figure, is

not included in the Hough Forest framework. Scale information is introduced in the

detection phase with a sliding window approach.
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The detection procedure from [33] is based on the generalized hough transformation

from Ballard [6]. In the first step of this process, 16x16 pixel patches Ii are extracted at

each location y in the test image and provided to the Hough Forest, which returns leaf

node statistics about the class label probability CL and, in case CL > 0, some offset

vectors di stored in the current leaf node. These offset vectors point to possible object

centers x, relative to the current location y. In the so-called Hough image, which has

the same size as the test image, a score for the current patch Ii is added at location x.

The value of this score depends on the class label probability CL, higher probabilities

correspond to higher score values. In general one can say that each patch Ii casts a

probabilistic vote for some specific location in the Hough image, where possible object

centers can occur. These votes are accumulated and object centers can be estimated

using a maximum search in the Hough image. Bounding boxes are assumed to be

fixed in width W and height H. In practice, one can estimate the bounding box

size of objects by taking the mean over the training examples. Scale invariance is

introduced at prediction time by applying the trained classifier to scaled versions of the

test images, yielding several hough images, one for each scale. The maximum search is

then performed in the 3D-scale-space. Figure 3.2a illustrates such a 3D-scale-space of

the hough images and its corresponding scaled images.

(a) Labeled images (b) Extracted patches

Figure 3.2: A 3D-scale-space of Hough images and its corresponding test
images are shown in (a). An overview of the training procedure from [58]
is illustrated in (b).

A more detailed discussion about the Hough Forest framework including experi-

mental results can be found in the original paper from Gall & Lempitsky [33]. We have
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to mention, that there is a very similar work from Okada [58] which was simultaneously

published with [33]. One difference to the Hough Forest framework is the optimization

problem in a decision node. While Gall & Lempitsky [33] always minimize the “class-

label uncertainty” and the “offset uncertainty” in different nodes, Okada [58] merges

the optimization problems and steers the influence of the “offset uncertainty” with an

adaptive parameter depending on the current depth of the tree.

3.3.2 Hough Forest Regularization

In this section, we want to show how to incorporate the motion data in the Hough Forest

framework in order to perform object detection. As a first step, we have to provide

the motion data in form of patches to be suitable for the Hough Forest framework. We

denote a pair of patches as follows

Φi = (Iti, I
t+∆
i , yi) . (3.12)

Iti and It+∆
i are the appearances of the same part of a moving object at frame t and

t + ∆, respectively. Iti is defined in the same way as described in section 3.3.1. To

take advantage of the motion data, we regularize the standard Hough Forest optimiza-

tion problem, denoted in Equation 3.11, with the pair error εpair from Equation 3.8.

Note that we only consider the appearance of the motion data and, therefore, we only

regularize those nodes which optimize “class-label uncertainty”. The new “class-label

uncertainty” optimization problem is given by

argmin
k

U1

({
pi|ξk(Ii) = 0

}
,
{
pi|ξk(Ii) = 1

})
+ λ · εpair (3.13)

where εpair is the error on the pair-wise motion data as defined in Equation 3.8 and λ

is a parameter to control the influence of the motion data regularization.

To sum up, this regularization penalizes the randomly chosen binary test ξk in a

node of the Hough Forest, if it performs bad on the pair-wise motion data, i.e., if it

splits up “same” labeled pairs or keeps “different” labeled pairs together, as described in

Section 3.2. As a result, we expect better generalization performance in object detection

tasks, as we now inherently learn how to cope with local object transformations and

illumination changes.
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3.3.3 Training a Codebook

The previous section described how to regularize the Hough Forest for the object detec-

tion task. Now, we want to present our methods used for object tracking. As already

mentioned, Gall et al. [34] showed how to online update the Hough Forest, which is

necessary for tracking. The basic idea there is to train a codebook with a standard

Hough Forest on class-specific training data in an offline manner, i.e., in the same way

as it is done for the object detection task. Like shown in [34], one can calculate the

probability of an object from class c at position x, given the leaf statistics for a patch

extracted at location y in the image, with

p(E(x)|L(y)) =
1

|PL(y)|

 ∑
Pi∈PL(y)

p(c = 1|L(y)) · δdi
(y − x)

 . (3.14)

When it comes to the task of tracking a single instance of a class c, e.g., one specific

person from the class “pedestrian”, one is interested in the probability of the evidence

of a given instance I. This can be written as

p(EI(x)|L(y)) =

1

|PL(y)|

 ∑
Pi∈PL(y)

p(Pi ∈ I|c = 1, L(y)) · p(c = 1|L(y)) · δdi
(y − x)

 .
(3.15)

In order to make the codebook instance-specific, the probability p(Pi ∈ I|c = 1, L(y))

has to be estimated. This can be done by counting how often a patch Pi votes for the

target object
{
y|Pi ∈ I ∩ PL(y)

}
and how often for other objects

{
y|Pi /∈ I ∩ PL(y)

}
.

Based on a clustering of the Hough space, which finds confident regions for the target

object, the number of votes for and against the target object can be counted. In

other words, they search patches Pi voting for the target object and patches voting

for background. These patches are used for updating the codebook and estimating the

desired probability, given as

p(Pi ∈ I|c = 1, L(y)) =



0.5, if
∣∣{y|Pi ∈ I ∩ PL(y)

}∣∣+∣∣{y|Pi /∈ I ∩ PL(y)

}∣∣ = 0

|{y|Pi∈I∩PL(y)}|
|{y|Pi∈I∩PL(y)}|+|{y|Pi /∈I∩PL(y)}| , otherwise

. (3.16)
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If a patch Pi was never used for voting, the probability for the patch belonging to the

instance I is set to 0.5. Otherwise, it is the fraction between the number of votes for

the instance and all votes given by this patch. Note, this update procedure neither

adds new patches to the leaves of the trees, nor updates the offset votes d of the leaf

statistics. It just updates the weights of the votes for the instance I. A more detailed

discussion about this update process and state-of-the-art results are presented in [34].

Nevertheless, the pre-trained forest is limited to a specific object class, which might be

a problem in many applications.

To get rid of this limitation, we propose a new method by training a general, non-

class-specific codebook solely on motion data. This procedure is exactly adapted from

section 3.2 to the Hough Forest framework, where the only difference in notation is the

form of the input data, which is now patch-based. The reformulation was already stated

in the previous section. To review, we try to minimize the pair error εpair on the motion

data and leaves are created similar to RFs, i.e., if a maximum depth is reached or a

node is pure. Note that in this scenario, pure means that only pairs are left which are

labeled “same” or “different”, respectively. No leaf statistics about any target classes

are available after training the codebook, which makes our tracking approach capable

of tracking arbitrary objects in any given video sequences, as opposed to the tracking

framework presented in [34].

As we are lacking any leaf node statistics, we have to update the trees with instance-

specific information from the target object. To this end, we initialize the forest from the

first frame of a given tracking sequence with positive patches including offset vectors and

random negative patches. Additionally, we generate a set of virtually warped patches

to increase the amount of data from the first frame. These patches fall into leaves of the

general codebook, where we can build an instance-specific statistic and store the offset

vectors di. Note that this differs from [34], as we now have to update patches Pi and

offset object votes di. Furthermore, we do not need the update procedure to yield an

instance specific codebook, as described above (see Equation 3.16), because we do not

have to separate between the object class and the instance class. We do not assume any

prior object class and, thus, we are inherently instance-specific as soon as we update the

general codebook. During tracking, we further collect patches in frames with confident

predictions to update the trees for handling illumination and pose changes of the target

object.
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3.4 Chapter summary

In this chapter, we first reviewed the Random Forest framework from [15] as a base

to incorporate motion data for the tasks of object detection and tracking. In Section

3.2, we defined the pair error, which can measure the quality of a split in a node from

a Random Forest when it is given pair-wise motion data. Section 3.3 describes how

we can extend a state-of-the-art detection framework [33, 58] with our ideas. First, we

show how to regularize the “class-label uncertainty” optimization with pair-wise motion

data for object detection and, second, we depict how to train a general codebook for

object tracking solely on motion data.
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In the last chapter, we showed how we can use motion data to train a classifier, which

is more invariant to local object transformations and illumination changes. Therefore,

we used pair-wise motion data in form of patches that are suitable for the Hough Forest

framework [33, 58]. This chapter gives an overview of the whole detection and tracking

framework, including data acquisition, training a classifier, and evaluation phase, see

Section 4.1. Furthermore, we show how we extract the pair-wise motion data patches

from video sequences using optical flow and a motion-based segmentation in Section

4.2.

4.1 Processing pipeline

In this section, we describe the framework for both detection and tracking tasks in

more detail. A pipeline starting from data acquisition and ending at the evaluation

process is illustrated in Figure 4.1. We used the publicly available code from [33] and

41



42 Chapter 4. Learning Framework and Motion Extraction

extended it to incorporate our methods. In the following, we detail our procedures for

both tasks.

Detection: For the task of object detection, we obviously need labeled training im-

ages, comprising labeled target-class objects, and background images. Additionally,

we now need pair-wise motion data extracted from video sequences to regularize the

Hough Forest framework, like described in Chapter 3. The acquisition of the motion

data is described exactly in Section 4.2. In a second step, the classifier can be trained

using all the training images, as described in Section 3.3.2. When training is finished,

the classifier is evaluated on test images, which are typically picked from the same

source as the labeled training data. We present the test images to our classifier and

evaluate the results. The evaluation process is described in more detail in Chapter 5.

An overview of the detection pipeline is illustrated in Figure 4.1a.

Tracking: For the tracking task, no labeled training data is required in the first place.

Our approach trains a general codebook solely on unlabeled motion data, as described

in Section 3.3.3. After training the codebook, which lacks any leaf statistics about a

target instance, it is updated online from a video sequence and evaluated at the same

time. In other words, the tracking algorithm is initialized with patches from the first

frame of the video sequence, containing the labeled target instance. Afterwards, the

classifier is updated online and evaluated with the ground truth during the tracking

phase. Figure 4.1b shows a simple overview of this procedure. Again, the evaluation

process is described in more detail in Chapter 5.

4.2 Extraction of motion data

In this section, we describe the process of extracting pair-wise motion data, which are

suitable for our framework, out of video sequences Vj . As already mentioned before,

the objects captured from the video sequences does not have to coincide with the target

class of the object detector or tracker, as we only extract parts of the moving objects,

which can be shared over different target classes. But in order to extract helpful

information from the sequences, we have to set a constraint that moving objects are

shown prominently in each frame of the sequences.
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(a) Detection (b) Tracking

Figure 4.1: This figure gives a rough overview of the processing pipelines
for both, detection (a) and tracking (b) tasks.

Videos, as a source for collecting object transformations without any annotation

work, have a very important advantage: the motion itself. Moving objects can be

separated from the static background due to the motion. Furthermore, we are only

interested in local transformations of natural objects, which can be found especially on

moving objects. Thus, extracting motion data from video sequences fits exactly our

needs.

In the following, we define the goal of this processing step in our framework, i.e.,

the extraction of motion data. Assume, we are given a set of N video sequences Vj ,
each consisting of Nj frames F t

j . Now, we have to build a database of pairs Φj
i contain-

ing two corresponding 16x16 image patch appearances Iti and It+∆
i , where each patch

appearance has the same dimension as the Hough Forest input data. Like described in

Section 3.2, a pair Φj
i is labeled as “same” if its two patches I

{t,t+∆}
i characterize the

same local area of a moving object in a video sequence Vj at different time instances t

and t+ ∆, respectively. Pairs labeled as “different” are build artificially by combining

two patches extracted from two video sequence Vk and Vl (k 6= l) containing different

objects. A subset of frames from two different video sequences is depicted in Figure

4.2, where each frame contains a patch describing the same local area of the moving

object (green square).
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(a) Train

(b) Monkey

Figure 4.2: Two different video sequences, (a) and (b), where one can
see a patch (blue square) describing the same local area of a moving object
over all frames.

Building such a database of pairs Φj
i requires to extract motion from the video

sequences Vj , which can be achieved using a dense optical flow, described in the fol-

lowing section. Furthermore, with a motion-based segmentation approach, we can find

the boundaries of the most prominent moving object in the video frames, see Section

4.2.2. An overview of the processing pipeline for extracting motion data is illustrated

in Figure 4.3.

4.2.1 Optical Flow

The first step for gathering useful information of moving objects from a video sequence

Vi, is to estimate the motion between two subsequent frames F t
i and F t+1

i . Note that

we do not have any a priori knowledge about the moving object, like location, pose, or

class label. Thus, we use a dense optical flow to extract the motion.

Optical flow estimation between two temporal coherent images is one of the key

problems in computer vision and was encouraged by two famous papers from Lucas &

Kanade [53] and Horn & Schunk [38]. There exist a vast amount of approaches to optical

flow estimation, including global and local methods, gradient-based, phase-based, or

energy-based methods. We refer to the surveys from [4, 7, 31] as a review of many

different approaches. We chose the anisotropic Huber-L1 optical flow from Werlberger

et al. [84], as the implementation is publicly available and the method gives good and

robust results. Furthermore, the performance in speed is also impressive as it is a GPU
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Figure 4.3: A schematic overview of the process of extracting pair-wise
motion data out of video sequences using optical flow and a motion-based
segmentation technique.

implementation. It takes about 4 sec to estimate the optical flow on a NVIDIA GeForce

320M mobile GPU. Please note, using a high-end GPU the time for calculation would

decrease vastly.

The optical flow from Werlberger et al. [84] is a global method and extends an

approach based on an L1-norm data term and an isotropic Total Variation (TV) regu-

larization, like described in [94]. Werlberger et al. [84] replace the TV-regularization

with an anisotropic (image-driven) Huber regularization, which can better cope with

the so-called “stair-casing” problem, i.e., sparsely textured areas yielding piecewise

constant solutions in the optical flow estimation.

Figure 4.4c shows an example of the optical flow between two consecutive frames.

The 2D-velocity vectors of the optical flow are color-coded, where the color itself de-

scribes the direction and the intensity the length of the vectors.

One problem, which often occurs in videos that capture moving objects, is the

camera movement. On the one hand it provides a good framing of the dominant
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object, but on the other hand, without treating this effect, the optical flow calculation

often fails. Figure 4.4c shows that the actual object, which should be extracted, shows

less motion than the background, as can be seen in the intensity of the colors. Thus,

one has to subtract the background motion, similar to [91]. The idea there is to use a

small border of the input frames (e.g., 10% of the image height and width, respectively)

to estimate the background motion and subtract it from the actual optical flow. These

border regions are highlighted green in Figures 4.4a and 4.4b. In contrast to [91] we

estimate a fully-affine camera model using a RANSAC approach, instead of reducing

the camera motion to translational movements. The resulting, background subtracted

optical flow is presented in Figure 4.4d, where one can clearly see that the moving

object has the largest motion, i.e., the highest intensity. Note, due to the background

motion subtraction, we added a further constraint on the video sequences Vi, and that

is the presence of a thin background border around the moving object in each frame.

4.2.2 Motion-based Segmentation

The optical flow image (including background motion subtraction) described in the last

section, see Figure 4.4d or 4.5a for an example, serves as the input for the next unit in

our processing pipeline, the motion-based segmentation of the moving object. A lot of

research was investigated in the task of segmenting moving objects in videos and a lot

of different methods were proposed. Zhang & Lu [95] give a good overview of several

existing approaches. More examples of motion-based segmentation can be found in [39]

or [45].

Our method first clusters a random subset of the optical flow field into 2 parts

using k-Means. The resulting cluster centers describe the two mean motion vectors in

the optical flow field, optimally corresponding to fore- and background motion. As a

preprocessing step, these mean motion vectors are subtracted from the input optical

flow field, yielding a better partitioning between fore- and background. An example

image after this preprocessing step is depicted in Figure 4.5b. Then, we applied a

simple Potts-based model [62] to the preprocessed optical flow in order to segment the

image. The Potts-model was introduced in computer vision tasks as a special case of

the Mumford-Shah model [57] with the goal to partition the image in N regions. An

energy functional, consisting of a regularization term and a data term, is minimized.

The regularization term is responsible for spatially coherent regions and the data term



4.2. Extraction of motion data 47

(a) Frame 1 (b) Frame 2

(c) Optical flow (d) Background subtracted optical flow

Figure 4.4: Here one can see some figures from the calculation of the op-
tical flow. (a) and (b) show two consecutive frames from a video sequence
including the border used for estimating the background motion. The op-
tical flow calculated with the Huber-L1 method [84] is illustrated in (c).
Furthermore, (d) shows the final background subtracted optical flow.

for data fidelity. The segmented optical flow image can then be thresholded yielding

a binary image, which contains a separation between fore- and background, see Figure

4.5c. The largest connected region in the image is assumed to be the moving object and

all other regions are neglected for further processing. Thus, one can draw a bounding

box around the moving object according to the largest region in the segmented binary

image. All segmentation steps are summarized in Figure 4.5.

After segmenting the moving object, we can extract small patches, appropriate for

the input format of our extended Hough Forest framework. Of course, all segmented

objects have to be resized to a common size which fits the framework, i.e., a common

height or width which is appropriate to extract useful 16x16 patches. Typically, we
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(a) (b)

(c) (d)

Figure 4.5: Motion-based segmentation pipeline: (a) shows a background
motion subtracted optical flow field, which serves as input for the segmen-
tation pipeline. The mean subtracted flow is illustrated in (b). (c) shows
the binary images after the segmentation using the Potts-model and (d)
illustrates the original input image (first frame) with the corresponding
bounding box around the moving object.

chose a height or width of 100 px for the objects. Thanks to the segmentation process,

we have the boundaries of the moving target object and, thus, we can locate all patches

exactly on the object, which reduces the amount of noise produced during this phase.

In order to build pairs of patches Φj
i , we have to track them from frame to frame using

the calculated optical flow. After t∆ frames we extract the corresponding second patch

of the pair at the tracked location. Figure 4.6 illustrates the extraction of some patches.
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(a) Binary image (b) Frame 1

(c) Frame 2

Figure 4.6: This figure illustrates the extraction of patches from two
successive frames. (a) shows the binary image after segmentation. Within
the white area, which describes the moving object, the patches can be
positioned. (b) and (c) show two successive frames with the corresponding
extracted patches. The little green squares denote the patches.

4.3 Chapter Summary

This chapter first summarizes our processing pipeline for a detection and tracking

framework in Section 4.1. Furthermore, Section 4.2 describes exactly how we extract

the pair-wise motion data used for the Hough Forest regularization and the training

of a general codebook. This procedure includes a dense optical flow, see Section 4.2.1,

and a motion-based segmentation method, which is reviewed in Section 4.2.2.
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In this chapter, we describe all experiments, which were done to evaluate the per-

formance of our proposed methods for both detection and tracking tasks. As already

explained in Chapter 3, we extended the Hough Forest framework for our purposes,

which is the reason we also used the publicly available code from [33] for implemen-

tation. As a first step in the experimental part of this thesis, we needed a database

of videos for extracting motion data. This collection is detailed in the following sec-

tion. Thereafter, we discuss the experimental setups and results of the detection task

in Section 5.2 and of the tracking task in Section 5.3, respectively.

5.1 Video database

For the purpose of learning transformation invariant object classifiers, we need a

database of video sequences containing moving objects, which show several natural

variations and transformations. Amongst others, these transformations may include

shape, appearance, or illumination changes. Unfortunately, we did not find a suitable

database satisfying all our requirements in the current literature. To this end, we used

51
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a web-based search engine to find publicly available video sequences to build our own

motion database. The video sequences contain a lot of different animals, e.g., panda

bears, tigers, or dogs. Furthermore, we collected video sequences capturing trains,

cars, and trucks. Figure 5.1 illustrates a subset of the database.

For the practical use in our framework, pair-wise motion patches, containing local

transformations of moving objects, had to be extracted from the sequences. This can

be achieved by using a segmentation technique in combination with optical flow, which

is described in Section 4.2. Remember, this procedure constrains the video sequences

in a way that they have to capture the moving object prominently, while still holding a

certain background clutter in the boundaries of all frames in the sequences. The frames

depicted in Figure 5.1, fulfill these two constraints.

(a) Lion sequence

(b) Panda bear sequence

(c) Train sequence

Figure 5.1: Here one can see several frames from the “moving-objects”-
database in 3 different sequences, which contain a lion (a), a panda bear
(b), and a train (c).
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5.2 Object Detection

To get experimental results in the task of object detection, we evaluated our methods

proposed in Chapter 3 on three different datasets, which are described in Section 5.2.1.

As a base object detector, we always used the standard Hough Forest framework [33]

and we tried to show improvements by incorporating motion data. The number of

trees in the forest was limited to 10 and the maximum depth of each tree was set to

15. We always used around 20000 labeled training patches, equally partitioned to the

positive and negative classes. To obtain a set of labeled patches with approximately the

same size for each dataset, the number of patches extracted from one training image

was chosen according to the number of available images in each dataset. The results

presented here are always an average over 5 independent runs per experiment.

We used the PASCAL overlap criteria [28] for measuring the performance of the

trained classifiers on the test images. All results are presented using a precision-recall

(PR) curve and the estimated average precision (AP) value. Each predicted bounding

box Bp is compared with the ground truth bounding boxes Bgt on the test dataset by

calculating the overlap ratio ao, which is given as

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
. (5.1)

If this overlap ratio ao exceeds a certain threshold, 0.5 in our case, the detected bounding

box is defined as true positive. Furthermore, false positive and false negative detections

are counted for the calculation of the precision and recall values, which are defined as

follows

precision =
|true positive|

|true positive|+ |false positive|
(5.2)

recall =
|true positive|

|true positive|+ |false negative|
. (5.3)

The AP value is calculated according to [28] and is given by

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r) , (5.4)

where pinterp(r) = max
r̃:r̃≥r

p(r̃) and p(r̃) is the measured precision at recall r̃.

In the following section, we describe the three datasets used for the evaluation and,
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thereafter, we present our results on various experiments in Sections 5.2.2 to 5.2.4.

5.2.1 Datasets

As mentioned above, for evaluating our methods we used three publicly available

datasets, a car dataset from [47], a pedestrian dataset from [2] and, finally, a horse

dataset from [12]. In the following, we briefly discuss these datasets.

ETHZ-cars: This multi-view car dataset from [47] contains images capturing cars

viewed from 7 different angles. The dataset was split up to build a training set of

700 cropped samples and 175 test samples. The image collection involves a lot of

illumination changes and slight occlusions.

TUD-pedestrian: The dataset consists of 400 positive labeled training images show-

ing pedestrians walking on the street from a side view. 250 test images are provided

showing pedestrians from almost side-views with a certain amount of background clut-

ter. The test images were cropped to reduce the time of the testing phase. But we left

enough background clutter, whereby the task of object detection, i.e., classification and

localization of objects, did not simply reduce to classification only. In Figure 5.2b, we

show some images of the original testset including the highlighted border, which was

cut away.

Weizmann-horses: This dataset contains 328 images from different types of horses,

all looking leftwards. In order to make the detection task a bit more difficult, we

randomly flipped some images, making the horses also look to the right. Furthermore,

we split up the dataset in a training set with 200 cropped images and a testset containing

the remaining 128 examples.

Figure 5.2 shows a collection of training and testing images from the three different

datasets.

5.2.2 Performance improvement

Before going into more detail about all different parameters in the framework and

the properties of the motion data, we want to show the general improvement on all
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(a) ETHZ-cars [47]

(b) TUD-pedestrian [2]

(c) Weizmann-horses [12]

Figure 5.2: Figures (a), (b), and (c) illustrate some train and test images
from the 3 datasets used for the object detection experiments. Training
images are depicted on the left side, testing images on the right. In (b) one
can see the reduced testing images from the TUD-pedestrian dataset.
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three datasets in this section. Thus, we compared the standard Hough Forest with our

proposed method. The number of motion pairs used and the parameter λ were set

differently for each dataset to yield good performances. Figure 5.3 shows the results on

all three datasets including the actual values of the parameters for each dataset, respec-

tively. The red curve shows the base approach, i.e., the standard Hough Forest, and

our proposed method is depicted with the green curve. As can be seen, we outperform

the standard Hough Forest in each of the datasets. Especially, the recall values can

be improved with our method, but also the AP values reflect the performance boost.

As motion data, we used sequences from animals for the TUD-pedestrian and the

Weizmann-horses datasets. Sequences capturing trains were used for the ETHZ-cars

datasets.
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Figure 5.3: PR curves for the three different datasets. The parameters
used in the experiments can be seen in the figures.
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5.2.3 Influence of parameters

In this section, we want to describe the influence of some parameters in our proposed

method. First of all, we explored the effect of the parameter λ, which steers the impor-

tance between labeled data and unlabeled, pair-wise motion data, see Equation 3.13.

Furthermore, we investigated the influence of different amounts of pair-wise motion

data. Finally, a third experiment examined the effect of the parameter t∆, which is the

number of frames between two patches in a pair of the motion database and inherently

controls the level of transformation or variation, a moving object has undergone.

For the first experiment, we evaluated our approach for 5 different values of λ ∈
{0.1, 0.25, 0.5, 0.75, 0.9} on the ETHZ-cars dataset. The results are depicted in Figure

5.5a. Again, the base approach is drawn with a red curve and the other colors cor-

respond to different values of λ. We regularized our forest with 1500 pairs extracted

from sequences containing trains. As can be seen in the figure, we receive higher recall

values if we put more emphasis on the motion data, i.e., for higher values of λ. On

the other hand, we can perceive a drop in precision at low recall values for a high λ

parameter. That is, when emphasizing the motion data in the regularization, we train

a more invariant classifier which can detect more cars in the test images. Thus, we

get high recall values. But this comes with the price of additional false positives with

high confidence, as we, apparently, confuse the classifier in a sense (drop in precision

at low recall values). This drop does not seem to influence the AP values, as they have

their maximum at the highest value of λ. But this stems from the calculation of the

AP, which tolerates such sinks, as it just takes the maximum value of the precision in

a given interval, see Equation 5.4.

In a second experiment, we showed the influence of the amount of pair-wise motion

data used for regularization. To this end, we took subsets of the motion data, i.e.,

#pairs ∈ {1500, 3000, 4000, 5000}, and regularized the Hough Forest. The resulting

curves are shown in Figure 5.5b. As can be seen, the amount of pair-wise motion data

has to be selected well. Too less or too much data is counterproductive.

The third experiment was about the influence of the parameter t∆, i.e., the number

of frames between two patches in a pair, or, in a more practical way, the level of

transformation between two corresponding patches. As an example, we depict some

pairs with different values of the parameter t∆ in Figure 5.4. For this experiment, we

used the Weizmann-horses dataset. Figure 5.5c illustrates the result, which indicates
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that the level of transformation of the pair-wise motion data has to be kept low. But

one has to keep in mind that this parameter does not exactly controls the level of

transformation uniformly over all moving objects. It just tells how many frames were

left out when extracting two corresponding patches in a video sequence. But videos

can have different FPS values and, especially, objects can move fast or slow.

(a) t∆ = 1 (b) t∆ = 2 (c) t∆ = 3

Figure 5.4: In this figure, the influence of the parameter t∆ is illustrated.
(a), (b), and (c) show the same three pairs, but with different values for
the parameter. That is, the first column is always the same, but the second
one illustrates the different levels of transformation.

5.2.4 Influence of motion data

In this section, we want to show some experiments about the content of the motion

data. First, we investigate the degree of weak-relation of the pair-wise motion data,

which can be used to regularize the Hough Forest. Then, we examine if the motion

data extracted from real-world videos can be replaced by virtually warped images, i.e.,

simulated motion. In a last experiment, we use the motion data as additional labeled

data and explore its influence on the results, especially, when using only weakly-related

data.

For the first experiment, we built three different sets of motion data. The first two

were extracted from videos capturing trains and animals, respectively. The third one

was created by using random, unlabeled background images, where we cropped some

16x16 patches and warped them slightly to simulate motion, i.e., a local transformation

to build “same” pairs. An example of such an unlabeled random image and its warped

version can be seen in Figures 5.6a and 5.6b. “Different” pairs were created by randomly

combining two patches. Using the ETHZ-cars dataset, we compared the standard
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Figure 5.5: Results on the ETHZ-cars dataset for different values of λ in
(a) and # pairs in (b). The influence of the parameter t∆ was evaluated
on the Weizmann-horses dataset (c).

Hough Forest with three version of our method, each regularized with one of these sets

of motion data. Of course, the parameters of the framework were fixed during all these

experiments. The resulting PR-curves are illustrated in Figure 5.7a. We simply used

a few motion pairs to speedup the training and testing phases, thus, the AP values do

not show a big improvement here. Nevertheless, one can clearly see that the content of

motion data matters when regularizing the Hough Forest. The more the motion data

is related to the target class, the better results can be achieved. Simulated random

motion even deteriorates the performance compared to the standard Hough Forest.

Another experiment showed the support from pair-wise motion data, when the la-

beled training dataset was increased by virtually warped positive labeled data. Figures
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5.6c and 5.6d show an example of a positive labeled image and its virtually warped

version. In this case, the classifier should yield better results, as we now use more

training data, which simulate motion in a way. Thus, the classifier gets more invariant

to local transformations due to the extended labeled dataset. For this experiment, we

also used the ETHZ-cars dataset. Now, we want to know if the additional regularization

with pair-wise motion data from natural objects (in this case trains) still supports the

classifier. To this end, we trained a standard Hough Forest with the increased training

set. Additionally, we provided the same extended labeled dataset to our method and

added some motion pairs from videos containing trains for regularization. The results

are depicted in Figure 5.7b and they show that we can still improve the generalization

power by adding motion data, although we already extended the labeled dataset by

virtually warped images.

(a) (b)

(c) (d)

Figure 5.6: Here one can see two examples of simulated motion by using
virtually warped versions of the original image.

Since we can estimate the bounding boxes around moving objects in the video

sequences, like described in Section 4.2.2, one can also ask why these objects are not

added to the labeled dataset. The reason is the weak relation to the target-class.
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(c) Labeled pairs

Figure 5.7: In (a), we show how different “degrees of weak-relation” of
the motion data influences the performance . The results from the “virtual-
samples” experiment are shown in (b). The motion data still supports the
classifier, although the labeled data already includes some simulated local
transformations. Figure (c) shows the results when extending the labeled
dataset with data from the video sequences.

To illustrate this problem, we made another experiment, where we incorporated the

patches extracted from different videos as labeled data to the framework. The red curve

in Figure 5.7c shows the result of the standard Hough Forest without any additional

labeled pairs on the ETHZ-cars dataset. Furthermore, we can see that the the PR curve

gets slightly worse, if we add additional labeled pairs extracted from videos capturing

cars (green curve). At first glance, this sounds controversial, but when we consider

two facts, this effect can be explained easily. First, the car videos and the ETHZ-cars

dataset do not stem from exactly the same data distribution and, second, we introduce
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a certain amount of label noise, as the additional labeled pairs are extracted from

unlabeled videos and, thus, contain some background clutter. But the quintessence of

this experiment can be seen in the blue PR curve. If we extend the labeled dataset with

weakly-related data from video sequences, in our case from videos containing animals,

the classifier gets confused and the generalization performance declines.

5.2.5 Discussion

The experiments about the object detection task all showed that we can improve the

generalization performance towards the standard Hough Forest with our method (de-

scribed in Section 3.3.2). We investigated the influence of the different parameters in

the framework and showed that one has to choose the weighting and the amount of

pair-wise motion data correctly to yield good results. Furthermore, we showed that the

parameter t∆ also influences the performance. But as already mentioned, this parame-

ter is kind of ambiguous, when we consider some properties of the video sequences itself

and its contents. Due to different FPS values and slow or fast moving objects, the level

of transformation is not constant over all different video contents. Thus, we produce a

certain amount of noise in the pair-wise motion data. A possibility to circumvent this

problem in future work could be the estimation of velocity out of the optical flow and

normalize it over the sequences. This would give a better control about the level of

transformation of the objects.

Furthermore, our experiments reveal that the content of the motion data is impor-

tant for the detection task. Of course, if the labeled dataset and the motion data are

similar, the algorithm can benefit from this relation, which can be seen in Figure 5.7a.

It also seems important to use motion data from naturally moving objects instead of

virtually warped images, which only simulate motion (see Figure 5.7b).

We have to mention that we also tried to compare our method with a Hough Forest,

which integrates the motion data as simple unlabeled data. That is, we adapted the

Hough Forest to apply SSL by using a deterministic annealing approach, similar to

Semi-Supervised Random Forests [49]. We actually had the intention to illustrate the

limitation of an SSL approach, which is the assumption that labeled and unlabeled

data have to be related, i.e., stem from the same class distribution, to yield good

performance. But as we could not improve the generalization performance with the

additional unlabeled, but related data with the SSL approach in the first place, we
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omitted this experiment. In contrast to SSL, our method does not make such an

assumption, as we can also improve the generalization performance with the use of

weakly-related data, which is confirmed by the experiments described in this section.

5.3 Tracking

In order to perform the object tracking task, we followed Section 3.3.3 for building

general codebooks, solely trained on pair-wise motion data. We always used 10000

pairs, 5000 labeled as “same” and 5000 labeled as “different”. We generated two

different codebooks, one trained on sequences capturing animals, and a second one

using the simulated motion pairs, described in Section 5.2.4, from random unlabeled

pictures. Both forests consist of 5 trees with a maximum depth of 8.

After training a class-invariant codebook, the forest totally lacks any leaf statistics.

Thus, we have to update the leaves from the annotated object in the first frame of

the tracking sequence. To increase the available amount of training data for the initial

update of the forest, we created 5 perspectively transformed images of the first frame.

Then, we cropped 100 positive and 500 negative patches from each virtual image and

used them to update the general codebook to an instance-specific one. To account for

illumination and pose changes over time, we updated the leaf statistics during tracking

in each frame with 10 positive and 50 negative patches, if the confidence of the current

tracked object is good. Otherwise no updates are done. The number of center votes

in each leaf is limited to 30, which forces the tracker to concentrate on up-to-date

information. This limitation was accomplished with a simple first-in-first-out (FIFO)

structure in the leaf nodes.

The evaluation process is similar to that in the object detection tasks. We used

the PASCAL overlap criterion [28], which was already reviewed in Section 5.2. In

each frame, the predicted bounding box Bp is compared with the ground truth Bgt,

yielding an overlap ratio ao. Now, there are two possibilities to measure the tracking

performance. First, one simply averages this overlap ratio ao over all frames. The other

way is to check if ao > 0.5 holds for each frame. If yes, the current frame is denoted as

“correct”, otherwise as “wrong”. Then, the percentage of correctly predicted frames can

be calculated. In the following, we always state, which method was used for comparison.

All results depicted in the following two sections are an average over three independent
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runs. As our tracking method does not consider scaling, we always resized the ground

truth to the initial bounding box from the first frame of the sequences.

Our main goal in these tracking experiments is to show that we can yield state-

of-the-art tracking results with the use of a motion-based class-invariant codebook. In

other words, we want to show that a codebook, which is trained on transformations of

moving objects, can exploit this knowledge especially in the task of object tracking to

compete with other algorithms. Furthermore, we want to show that we can circumvent

the limitation of the standard Hough Forest tracking framework [34], which is the class-

specific codebook. In Section 3.3.3, the training procedure of a general codebook with

the help of pair-wise motion data is described in detail.

We present two different tracking experiments in the following two sections. The

first experiment considers the case where one has an a priori knowledge about the

target object. This gives the standard Hough Forest tracking framework an advantage,

as the codebook can be trained on target-class data in advance. However, in the second

experiment, the task is to track arbitrary objects.

5.3.1 Class-specific tracking

In this section, we compare our tracking method with the online adaptable version of

the standard Hough Forest (oaHF) on a pedestrian tracking task. As already described

above, we used two different general codebooks, one trained with animal sequences

(aVHF) and the other with virtually warped random data (rVHF). The tracking se-

quences were taken from [14] and [30], where pedestrians are shown when walking on a

public place and in a subway station, respectively. Some frames from both sequences

are illustrated in Figure 5.8.

The results of the experiment are presented in Table 5.1, where the values of the

oaHF are adopted form [34]. In this experiment, we used the first evaluation method,

i.e., the mean over the overlap ratio ao without any thresholding, as the results from

[34] are also presented in this way. But we further provide the percentage of correctly

predicted frames in brackets for our methods. As can be seen from the table, aVHF can

compete with oaHF and even outperform it on two sequences. But on average, oaHF

gives better results, which can be explained with the fact that this method is already

pre-trained with pedestrian data. oaHF even yields reasonable results on the tough i-

Lids hard sequence. On the other hand, our methods are more flexible and adaptable,
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(a) i-Lids medium

(b) PETS09

Figure 5.8: Some frames of the sequences used for the class-specific track-
ing experiment. In both sequences, one has to track a pedestrian.

Sequence aVHF rVHF oaHF [34]

i-Lids easy 34.7± 34.0 (39.7) 50.3± 29.0 (62.4) 69.2

i-Lids medium 77.6± 27.0 (87.0) 49.3± 28.3 (57.5) 65.4

i-Lids hard 21.7± 32.4 (24.7) 41.8± 27.4 (50.3) 65.9

PETS09 70.7± 27.3 (87.3) 48.2± 32.4 (59.4) 60.3

Average 51.2 47.4 65.2

Table 5.1: The results on four pedestrian tracking sequences are presented
as the mean of ao. Additionally, for our proposed methods (aVHF & rVHF),
the standard deviation is given and the percentage of correctly predicted
frames is shown in brackets. Best performing methods are marked bold,
second best methods are underlined.

as we do not assume any prior knowledge. This gives an advantage on easier tracking

sequences, although aVHF yields bad results on the i-Lids easy sequence. But this

comes from the fact that there is a period in the video, when the person to be tracked

is partly occluded and covered in shadows. Thus, aVHF often totally loses the target

object.

The table also indicates that aVHF outperforms rVHF. That is, motion data ex-

tracted from sequences of animals suit better for the task of pedestrian tracking than

simulated motion data. On the other hand, rVHF seems to be more flexible and adapt-

able is it outperforms aVHF on the more difficult tracking sequences.
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5.3.2 Tracking of arbitrary objects

Now, we want to focus on tracking arbitrary objects, i.e., the target class to be tracked

is not known in advance. We used five different sequences from [67], [3], [10], and [65].

Figure 5.9 depicts a subset of these frames.

(a) david

(b) liquor

Figure 5.9: Again, we depict some frames of the used tracking sequences.
In (a), a face has to be tracked, and in (b), a bottle of liquor.

As the oaHF assumes a priori knowledge about the tracked object, we do not know

which dataset would suit best for the pre-training of the trees and, thus, yield good per-

formance in the tracking tasks. A comparison to oaHF would be inappropriate. Hence,

we compare our two pre-trained general codebooks (aVHF and rVHF) with three state-

of-the-art tracking algorithms, which do not require a priori knowledge about the target

object. Namely, these are On-line Random Forests (ORF) [66], Multiple-Instance-

Learning Boosting (MILB) [3], and PROST [67]. The results for all five different

sequences are listed in Table 5.2. As an evaluation measurement for this experiment,

we used the percentage of correctly predicted frames, i.e., the second method presented

above. For completeness, we also show the mean and standard deviation of the overlap

ratio a0 in brackets.

The resulting values in the table indicate, that our method can compete with the

other tracking algorithms and even outperform them on some sequences. Furthermore,

our method has the best resulting average value over all five sequences. That is, our

proposed general codebook constantly gives good results in all tracking sequences used
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Sequence aVHF rVHF
ORF MILB PROST

[66] [3] [67]

david 65.6 (60.4± 22.3) 91.8 (77.9± 23.1) 72.0 60.2 80.0

faceocc2 83.4 (75.9± 21.0) 87.9 (78.3± 19.9) 65.0 81.1 82.0

lemming 79.2 (65.8± 28.0) 79.5 (62.1± 27.3) 17.2 54.9 70.5

girl 63.0 (61.4± 22.8) 82.8 (70.6± 21.5) 96.0 56.6 89.0

liquor 86.7 (75.7± 28.9) 82.4 (70.9± 32.4) 53.6 20.1 85.4

Average 75.6 84.9 60.8 54.6 81.4

Table 5.2: This table presents the results on five different tracking se-
quences as the percentage of correctly predicted frames. Mean and stan-
dard deviation of the PASCAL score are depicted in brackets. Additionally,
the last row depicts the average values over all sequences. Again, best per-
forming methods are marked bold, second best methods are underlined.

in this experiment. Please note, that we could not show that motion data from naturally

moving objects outperform simulated motion from background images. Both, rVHF

and aVHF show nearly the same performance for the two sequences lemming and liquor.

Only these two sequences have color images, the other three have only grayscale images

in its sequences. This could be a possible reason for the loss in performance of the aVHF

method on these three videos. But of course, the different datasets used for pre-training

the general codebook sometimes suit better, sometimes worse for a given target object,

to be tracked. Nonetheless, both methods (rVHF and aVHF) can compete with other

state-of-the-art tracking methods.

5.3.3 Discussion

With two different tracking experiments, we showed that our proposed tracking method

can compete with other state-of-the-art algorithms. The first experiment about track-

ing class-specific objects, i.e., the target object is known in advance, demonstrated a

drawback of our method. If the target object is lost while tracking, and maybe another

object is even adapted, it is very hard to retrieve the actual target object. In contrast,

oaHF has the advantage of a class-specific pre-trained codebook. That is, if the tracked

object is lost at any time, the retrieval is much easier. Of course, this advantage comes

with the price of having less flexibility and adaptability.

The second experiment emphasized exactly these two properties of our proposed

methods (aVHF & rVHF). On five different tracking sequences, we showed that rVHF
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can outperform some of them and can even yield the best result on average. As already

mentioned above, the codebook trained with random simulated motion data shows bet-

ter results than that trained with sequences of animals. It seems that rVHF is more

adaptable than aVHF, which was already indicated in the first experiment. Further-

more, we assume that some datasets for pre-training the general codebook suit better,

some worse for the different tracking sequences.

5.4 Chapter Summary

In this chapter, we presented our video database, which was used to regularize the

Hough Forest for object detection tasks and to train a general codebook for tracking

tasks. Furthermore, we presented our experimental results.

In the task of object detection, we investigated the influence of different param-

eters of the framework on the generalization performance. We showed that we can

outperform the standard Hough Forest framework in three different datasets, when

incorporating motion data.

In the task of object tracking, we presented two different experiments. We showed

that we cannot outperform the standard Hough Forest tracking algorithm on the task

of pedestrian tracking, as our method does not assume any prior knowledge about the

target object. But we also showed that our method can yield state-of-the-art results on

tracking arbitrary objects and even outperforms the other methods on some sequences

and on average over all sequences.
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6.1 Conclusion

In this Master’s Thesis, we presented a learning approach, which incorporates motion-

based data from weakly-related moving objects with the goal to improve object de-

tection and tracking tasks. Chapter 1 motivates the topic of improving learning tasks

in computer vision with the help of unlabeled data, as it is much more practical and

cost-efficient as opposed to large amounts of labeled data. Especially, the use of videos,

as a source for unlabeled data, is very reasonable because they comprise an underlying

structure given by real-world constraints, which is the time-space coherence of naturally

moving objects. This fact is also exploited in this thesis to extract useful information

from unlabeled video sequences, which was described in Chapter 4.

In Chapter 2, we reviewed the task of machine learning with all its different settings,

like supervised, unsupervised or semi-supervised learning. Furthermore, we showed

some approaches proposed in the current literature, which are similar to ours. Addi-

tionally, we established a link to the human visual system as we argue that human

beings also learn object representations from unlabeled video data.

The learning approach, which integrates pair-wise motion data capturing local

69
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transformations from moving objects, was detailed in Chapter 3. As a foundation

for our ideas, we reviewed the Random Forest framework [15] and depicted an exten-

sion to learn from local transformations. Furthermore, this extension was transferred

to a state-of-the-art object detection and tracking framework, namely Hough Forests

[33, 34, 58]. In order to improve the object detection task, we regularized the op-

timization problem with unlabeled motion data. For the tracking task, we trained

a class-invariant codebook solely with motion data, which can be refined to track a

specific instance of any object.

In chapter 5, we presented the experimental results for several detection and track-

ing tasks on different datasets. We showed that detection and tracking algorithms can

be improved, when including local transformations of moving objects in the learning

process. That is, a learning system can become more insensitive to these variations and

transformations, which occur in natural scenes, by explicitly learning them. The exper-

imental results for both detection and tracking tasks also showed that learning these

transformations makes sense, as we can outperform the base approach and compete

with state-of-the-art algorithms. Furthermore, we investigated the influence of some

parameters in the framework and different content in the video sequences. Finally, we

discussed and justified the outcome of all experiments.

6.2 Outlook

Several parts of the presented framework in this Master’s Thesis offer space for im-

provements. First of all, one can investigate other forms of the splitting criterion for

pair-wise data to yield more balanced subsets of pairs for the child nodes.

Another item is the improvement of the patch extraction method, as it fails in

certain video sequences and does not handle some effects which often occur. One

example are suddenly appearing letterings, which confuse the optical flow estimation,

or more specifically, the subsequent segmentation procedure. Furthermore, the video

database described in Section 5.1 can be optimized in a sense that it only contains

video sequences which properly suit for the patch extraction process, in order to reduce

noise.

As this thesis presents a general learning method, i.e., learning local object transfor-

mations based on video data, it is not limited to a certain machine learning algorithm,
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like the Random Forests or Hough Forests, which are used here. Other algorithms could

be proposed using such a regularization method to improve generalization performance

in both detection and tracking tasks.

Finally, the influence of different image or patch representations can be explored,

as we use many different data sources. Other feature descriptors may be more powerful

for this task.
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