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Abstract

Cardiovascular diseases are the leading cause of deathwe#tern world, and an understand-
ing of the development, progression and effects of thessades is of crucial importance for
their treatment. Pathologies such as atherosclerosis ragaysms are, among other factors,
also related to biomechanics and mechanobiology since itr@structure and, therefore, the
mechanical properties of diseased tissues change. Thisaah structurally based constitutive
model of the mechanical behavior of cardiovascular tissugatn more insight into physiolog-
ical and pathological processes of the tissue. To this enstive for a model which accounts
for the structure and geometry of the cardiovascular systench a model has to incorporate
the orientation and dispersion of collagen fibers which heerhechanically most important
constituents in the passive arterial tissue. Since we veaatt¢ount for the complex geometry
of blood vessels we utilize numerical methods which in tuat for an efficient mathematical
framework to solve the initial/boundary value problems.

A newly developed approach is based on experimental datallaigen fiber orientations
of human arteries, from which two parameters quantifyirgyitiplane (circumferential-axial
plane) and out-of-plane (radial-axial plane) dispersibthe fibers are extracted. Using these
dispersion measures, an average fiber stretch based onghei§itrsibution and the macroscopic
kinematics is computed and incorporated in a hyperelastialinear and structurally motivated
anisotropic continuum mechanical framework. The necgssathematical and mechanical
background is provided and the implementation of this méatahe biaxial tension test, infla-
tion test, and in a finite element code is shown. Finally, ltesaf mechanical tests of human
arteries are compared to the output of our model. In commhjsa computationally efficient

model based on histological data and capable to reprodymsFieental results is presented.






Kurzfassung

Erkrankungen des Herz-Krauslaufsystems sind diednde Todesursache in der westlichen
Welt und fir ihre Behandlung ist es von @ster Bedeutung deren Entstehung, Verlauf und
Auswirkungen zu verstehen. Pathologien wie Atheroskkerosd Aneurysmen sind stark mit
Biomechanik und Mechanobiologie veilqpit, da sich unter anderem die Mikrostruktur und
damit die mechanischen Eigenschaften des Gewabhasrn. Deshalb streben wir nach einem
Modell des mechanischen Verhaltens von weichen biologis¢eweben, um Einblicke in die
physiologischen Prozesse und pathologischerndgrungen zu bekommen. Dieses Modell
muss die Orientierung und Dispersion von Kollagenfasegiche die wichtigste Rollelfr das
passive Verhalten von arteriellem Gewebe spielerjdlesichtigen. Um die komplexe Geome-
trie von Blutge&l3en zu erfassen b&iigen wir numerische Methoden wie die Finite Elemente
Methode und effiziente Verfahren, um die auftretenden Rartgvableme zudsen.

Der hier pasentierte Ansatz basiert auf histologischen Daten delag@hfaserverteilung
in menschlichen Arterien, aus denen zwei Parameter, welieh8treuung der Kollagenfasern
beschreiben, extrahiert werden. Mit diesen Parameterasistoglich, die durchschnittliche
Dehnung der Fasern aufgrund der makroskopischen Verfaggrouiberechnen. Diese Dehnung
wird in einem hyperelastischen Modell verwendet, das diehilineariit und Anisotropie
des Gewebes beschreiben kann. Die Implementierung deslislddgieden biaxialen Zugver-
such, den Inflationstest und einen effizienten Finite-Elm€ode und wird gezeigt und die
notwendigen mathematischen und mechanischen Grundlagelemwbeschrieben. Aul3erdem
werden Ergebnisse von mechanischen Tests an menschlickeneA mit den Resultaten des
vorgestellten Modells verglichen. Zusammenfassend witdModell, das auf histologischen

Daten basiert und experimentelle Ergebnisse reprodurkenen, pasentiert.
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‘And you will find someday that, after all, it isn’t as horrible & looks:
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1 Medical Background

‘Human subtlety will never devise an invention more beautifigre simple or more direct

than does nature because in her inventions nothing is lagkind nothing is superfluous.

LEONARDO DA VINCI

Nature has been an inspiration for human mankind for agelseeen though painters, sculp-
tors, writers and other artists are the first who come intodmwhen talking about inspiration,
also engineers can benefit from looking at the structure$arations in living organisms which
perfected by evolution over millions of years. We cannotde&rn from nature to improve en-
gineering applications (a discipline called biomimetj¢gjt also intervene in biological systems
which are out of equilibrium, especially in the human bodya@dres in our lifestyle (diet, less
exercise, ...) occur so fast that evolutionary processesat&keep pace, leading to so called
lifestyle diseases (e.g., atherosclerosis, cancer, @igpstroke). In addition, a system so com-
plex as the human body is subjected to a lot of possible dgsfurs and injuries which cannot,
at least not in a satisfactory manner, be compensated byahadgulation mechanisms. Here
engineers can help to improve the medical treatment anddss and use their skills and tools
to gain more insight into the development and progressiatisgfases. To this end we seek to
determine the structure and function of, e.g., nucleicgqgidoteins, cells, tissues and organs,
and fortunately we do not have to loot graveyards like Led(ﬂato obtain specimens for our
experiments. Instead, we are able to look into the human haitiyput even touching it using

techniques like X-Ray, MRI, ultrasound and so on, we can usmedde tools such as the finite

Who was also a productive researcher in biomechanics.



2 1 Medical Background

element method to solve complex mathematical problemsywanchn access a vast amount of
literature to guide and inspire us. The challenges we aiadaare not abstract mathematical
problems, instead it is our goal to improve the overall sthteealth.

Chapter one will give a brief overview of the underlying bigical background and medical
pathologies which motivate our work, starting with a gehdescription of the cardiovascular
system. Subsequently we will go to the tissue/moleculagllend review the microstructure
of arteries, where we focus on collagen as the main contiitiotthe mechanical behavior of
soft tissue in general and blood vessels in particular. Vé®sh atherosclerosis as an example
of pathological disorder in blood vessels which is of speiaierest in the context of biome-
chanics. Finally, we will see that biomechancis and mechimhagy are an important part in

understanding diseases and their treatment.

1.1 The Cardiovascular System

Already in a four week old fetus the cardiovascular system{L3tarts to function, and it is
the last system to cease at the end of life. The main functibrise CVS are(i) supplying
tissues with oxygen and nutrients;) removing the waste products accumulated during cel-
lular metabolisE and (ii7) transporting hormones. To perform these tasks, the CVS sisnsi
of a pump (the heart) and a conduit system (the blood vessaigaulatory system). The
low-pressure system of the CVS (the right side of the heagty#ins and the pulmonary cir-
culation) is pressurized witB — 8 kPa and perfuses the lungs where oxygep) (© taken up
and carbondioxide (Cf), a waste product of cellular respiration, is released.h\Witessures
from 10 — 16 kPa, the left ventricle of the heart and the systemic citcaeform the high pres-
sure system. The aorta is the largest vessel of the systeroudation and arches out of the
left ventricle of the heart, from where it extends into the@tmen, where it divides first into
the common iliac arteries and ultimately branches into téfled (one cell thick) capillaries
[Kowalak et al.; 2001].

The walls of arteries are in general thicker than those ais/because they have to resist a

higher pressure, while veins are endowed with valves togmtethe backflow of blood. The

’The waste products are transported to the kidneys, liveskimiwhere they are excreted.
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thickness gradually decreases [Schriefl et al., 2012a]egdhsels become smaller, while the
wall to lumen ratio becomes bigger. Blood vessels are contpokéhree main constituents,

namely the endothelium, SMCs, and connective tissue conga@lastic elements.

1.2 Microstructure of Cardiovascular Tissue

In continuum mechanics we assume that the mechanical prepare determined by the mi-
crostructure of the material. Hence, we will take a closeklat the microstructure of cardio-
vascular tissue which depends largely on the extraceltédrix (ECM). It not only governs the
mechanical properties but also plays an important rolealogical processes, e.g., cells migrate
through the ECM, adhere to it, and develop their phenotypenldipg on their environment;
proteins and small molecules, such as ions anchor to it; atrients and hormones diffuse
into the ECM which connects cells and the supplying capillaeywork [Humphrey, 2002].
The ECM shows solid- and fluid-like behavior, where the fluidigd has dissolved chemical
species and consists mainly of water while the solid phaseristituted of cells (mainly fibrob-
lasts and SMCs) and their products, namely collagen fibastiel(which is only synthesized
prenatally) and proteoglycans (PGs). Although the ECM doastearious different constituents,
only collagen fibrils and PGs are present in all connectagues [Ottani et al., 2001]. The large
interstitial PGs are believed to maintain the shape of 8@ and render the material incom-
pressible by binding water. A higher compressibility mightrease the transmural transport
of atherogenic lipoproteins and therefore promote the Idpweent of atherosclerotic lesions
[Boutouyrie et al., 2001], see section]1.5. While the role o§ RGother tissues like cartilage or
the intervertebral disk is well understood, their functiovascular mechanics is not clear. In a
recent contribution [Azeloglu et al., 2007], e.g., the aushhypothesize about the influence of
PGs on the residual stress regulation in the aorta.

The components of the ECM are in continuous interaction,Xan®le fibroblasts and SMCs
produce collagen which in turn interacts with SMCs changimgirtphenotype and activity
(depending on the type of collagen, 1.3:() 2007]). In this thesis we do not account for
the active behavior of muscle cells but only account for thespre mechanical behavior of the

tissue which is mainly governed by elastin and collagen.
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Elastin.  As the name suggests, the protein elastin endows tissubdasdhe lung, skin
and blood vessels with elasticity. Since elastin returngstoriginal configuration when the
load is removed (truly elastic material), it is believedttits primary role is to store and return
mechanical energy [Humphrey, 2002]. Elastin is the majonponent of elastic fibers in the
ECM and is synthesized in less than one day by fibroblasts arfdsSMavidson et all, 1936].
It is the most biologically stable protein (in most organssitnhas a half-life in the order of the
IifespalH) and also the most elastic one [Taylor and Humphrey, 200Rjistis fibers are from
0.2 to 5 um in diameter and can take up uniaxial extension of up5@% without breaking,
where collagen fails arount) %. The precursors of elastin, tropoelastin molecules, igtayh
connected by crosslinks [Labrosse, 2007], giving the elasteries near the heart the ability to

distend during systole and recoil during diastole.

Elastic Properties of Arteries. The artery is not only a conduit system for the blood flow,
but also serves as a reservoir for the blood pressure. Thendibility of the elastic arteries
(the arteries close to the heart) is one of the most impogesyperties of the cardiovascular
system and arises from the microstructure of the extrdeellaatrix. It allows the aorta to
distend during systole (the phase in the cardiac cycle whernhéart contracts) and therefore
to store some of the energy of the heart beat. Between theacacdntractions, the elastic
recolil propels blood through the peripheral vascular sgstehis vital function is known as the
Windkessel effect which describes the capacitive behafitire arteries ‘smoothing’ the blood
flow and reducing the load on the heart [Wagenseil and MecBa09)]. It was mathematically
quantified in1899 by Otto Frank|[Frank, 1899/1990], a main contributor to @atenechanics

after whom also the Frank-Starling law of the heart was najiRacker; 2009].

Arterial stiffening is one of the major effects of ageing aedults in a less compliant aorta,
meaning that the vessel less readily expands. This lossasfigty is a major problem and it
is widely recognized that the (macro)molecules in the eslialar matrix are, together with

transmural pressure, the main factors in arterial stiriB$ez,2007].

3Note that in humans the half-life of elastin is arouttdyears [Arribas et al., 2006].
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1.3 Collagen

With an ultimate tensile strength in the range56f— 100 MPa [Fung, 1993], collagen fibers
endow soft biological tissues with the ability to resistdean the direction of the fibers. Due to
the gradual recruitment of collagen fibers upon deformatiogy render the mechanical behav-
ior of soft biological tissues nonlinear, a phenomenon tbimall vertebrae [Shadwick, 1999,
Fung,/1981]. Since collagen fibers are able to withstand tagkile stresses, they are essential
in tissues such as tendons and ligaments whose main funsttortransfer (tensile) forces in
one direction (between muscle/bone and bone/bone), wheredllagen fibers are aligned to-
wards the same direction forming a ‘fiber family’. Also othiesues such as the arterial wall,
cartilage or the cornea are endorsed with collagen fibersreihe number, direction and dis-
persion of fiber families can vary from tissue to tissue arsd alepend on the location of the
tissue in the body (see, e.g., [Schriefl etlal., 2012a] feerddtion and dispersion of collagen

fibers along the aorta and the common iliac arteries).

In the human body there a8 known types of collagen, whereas in the human artery only
type | and lll are abundant [Hulmes, 2008, Taylor and Humph2©09]. They are synthe-
sized by fibroblasts and SMCs, while type IV collagen for exemg deposited in the ECM
by endothelial cells. Depending on the type, it takes alteB0 min to synthesize a complete
intracellular collagen precursor, called procollageipéihelical protein chains with a length
of about300 nm) [Nimnl,11992] which is then excreted to the extracellidpace. In the ECM,
collagen molecules assemble themselves to groups of foiireomolecules, so called fibrils.
These molecules are ordered in parallel with a charadteristpacing, where the molecules
are shifted by67 nm inside the fibrils (see Fig._1.1d). A fibril has a thicknesthie range o0
to a few hundred nanometers and many fibrils form a collagseridke with a diameter a0 to
300 um [Humphrey, 2002]. Immediately after secretion, collafierils have no tensile strength
but obtain their resistance to tension through subseqoemiation of inter- and intramolecular
covalent crosslinks [Reiser et al., 1992]. Collagen fiberssat&livided into multiple, parallel
threads of equivalent cross section, an arrangement whstwo advantagesi)(the propaga-
tion of cracks is prohibited (Cock-Gordon effect) and the flexibility increases tremendously

(itis inversely proportional to the forth power of the raslof each thread) [Ottani etlal., 2001].



6 1 Medical Background

Diameter of

Collagen molecule
1.3 nm

Collagen fibril
50 - 500 nm

Fascicle
50 - 300 pm

Tendon fibre
100 - 500 ym

Figure 1.1: (a) lllustration of the hierarchical structure of a tendon wisicdlomposed of fascicles con-
taining collagen fibrils (F), which in turn are made up of parallel collagen nutgsc(M).
(b) The tendon is a composite of collagen fibrils and a proteoglycan-richixnét) If the
tissue is subjected to the straip some strain will be partly taken up by the proteoglycan
matrix and partly transmitted to the fibrils carrying the strain (d) In the unloaded tissue,
the collagen molecules are staggered with an axial spaciéigrah while the lateral spacing

is aroundl.5 nm [Fratzl and Weinkamelr, 2007].

The half-life of collagen strongly depends on the locatinrthe body, e.g., it is only a few
days in the periodontal ligament, weeks to months in therialtevall, many months in ten-
dons and possibly years in bones. In comparison, mastcellular proteins have a half-life of
hours or days [Alberts et al., 1994, Humphrey, 2002]. Thaduer of collagen is believed to
be regulated by the local state of stress and/or strain [Hweyp 2002].

Collagen Fiber Dispersion. In [Schriefl et al., 2012a], the three-dimensional origntat
of collagen fibers in the human aorta and common iliac agevies quantified. The researchers
studied eleven healthy, non-atherosclerotic sample®gy the birefringent properties of col-
lagen enhanced by picrosirius red staining. The lack oftiegjsonstitutive models to properly
represent the results of [Schriefl et al., 2012a], i.e., tispatsion of collagen fibers, are the
key motivation for this thesis. Other follow-up works, e fgchriefl et al.; 2012b,d], contin-
ued to investigate the dispersion of collagen fibers, anenthcalso the fiber dispersion in the
diseased artery was quantified [Schriefl et al., 2012a]. @iieedkey results is that in diseased
arteries, the out-of-plane dispersion is much higher thdmealthy ones and cannot be neglected

[Schriefl et al., 2013a]. This topic will be discussed in mdetail in chaptell4 of this thesis.
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1.4 Structural Composition of Arteries

Based on their location in the human body, arteries can bsifikabinto the elastic type (close
to the heart), muscular type (distributing the blood fromsét arteries to the periphery), and
arterioles (in the tissue, main contributors to the flowstsice). However, for our purposes it
is more interesting to take a look at the microstructure eftissue. Even without a microscope
we can distinguish three concentric layers in arterial £sEsctions, namely the intima, media
and adventitia (from the lumen to the outer border, respelgti see Figl 1)2). For a detailed
review of the structure of these layers, the reader is redeto the works ofl [Schoen, 1994,
Gottlieb,[ 2007, Holzapfel et al., 2000]. In this thesis wdl give a very brief overview of the
main histological and mechanical properties of these kyeshould be noted that the structure
and composition of each layer depend on the location in thlg,since the vessels have to meet

different requirements along the arterial tree [Schriellgi2012a].

Intima. The intima is the innermost layer of the artery and in directtact with the blood
stream. In the healthy artery of newborns it consists only @hechanically negligible) suben-
dothelial layer covered with a monolayer of endothelialcdProcesses such as arteriosclerosis
(natural stiffening of the artery with age) and atherosides (pathological deposition of various
substances in the intima, see seclion 1.5) can change ttledonical composition and mechan-
ical behavior of the intima [Holzapfel etlal., 2005a], makim mechanically relevant. In the
capillaries at the end of the arterial tree where water, erygutrients, hormones and waste
products are exchanged between blood and the surroundswgetithe intima consists only of
an endothelial lining to with a thickness of one layer to litatie diffusion. In contrast to most

animals, the human intima also contains resident SMCs [Léifal., 2011].

Media. The media consists of a three-dimensional network of SMG@stieland collagen
fibers and is the mechanically most important layer in thdthgarterial wall. 1t endows the
artery with tensile strength in both the circumferentiadl @xial direction because of collagen
fibers oriented in preferred directions (see sedtioh 1d3}adled fiber families [Holzapfel et al.,
2000]. The SMCs allow the media to adapt its diameter by nang\asoconstriction) or
widening (vasodilatation) the lumen to regulate blood gpues and flow [Gottlieh, 2007].
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Composite reinforced by
collagen fibers arranged
in helical structures

Helically arranged fiber-
reinforced medial layers

Bundles of collagen fibrils
External elastic lamina
Elastic lamina

Elastic fibrils

Collagen fibrils

Smooth muscle cell
Internal elastic lamina

Endothelial cell

Figure 1.2: Schematic of a healthy elastic artery composed of three laytrsa i), media (M) and ad-

ventitia (A). In a healthy elastic artery, the intima consists of a single layerduftarlial cells

which do not contribute to the mechanical behavior of the arterial wall. Tibersdothelial

layer is composed of SMCs and collagen fibrils and its thickness varies wikidadn the

body, age and disease. The media contains SMCs, elastic and colladieritaisrganized

in layers. In the outermost layer, the adventitia, thick bundles of collaggtls filve arranged

in helical structures which serve to protect the artery from overstregdh
2000].

Adventitia.

The outermost layer is mainly composed of ground substamdehack bun-

dles of collagen fibers which are produced by fibroblast anmddyies. The collagen fibers are

arranged helically and give the adventitia its strengthh supra-physiological load domain,

where it serves as a preventive ‘jacket-like’ tube protegthe artery from rupturing [Burton,

1954]. In the physiological loading domain, however, theffthare crimped and do not con-

tribute to the mechanical behavior. In cerebral arteries,adventitia is completely absent, in

elastic arteries it makes up arouh@% of the wall thickness and in muscular arteries this ratio

is even higher

[Labross

L2

07]. Moreover, the adventtiaurrounded by loose connective
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tissue and contains the vasa vasch’m., vessels that perfuse the vascular wall since in large
arteries the supply of oxygen by diffusion from the lumenhe butermost layers of the media
and adventitia is not sufficient [Schoen, 1994]. This vasituke network makes the adventitia

a prominent site of vascular inflammation [Wagenseil and ez, 2009].

@ (o) ®

| (a)
———

(b)

Na)

©

h

(d)

Figure 1.3: Second harmonic generation images of a healthy, non-atleeotis human abdominal
aorta. In (a)-(c), the in-plane orientation of collagen fibers in the atti|srmedia and intima
is shown, respectively. These images show the arrangement of coliages) schematically
depicted in Fig[C1l12, i.e.; fiber bundles in the avdentitia, fiber families in the mediaman
isotropic fiber network in the intima. In (d), a cross-section of the entire isadhown,
where the adventitia is at the very left and the intima is located at the right of thgeeima
Therefore, the horizontal and vertical sides of the image correspone t@adal and axial
direction, respectively. The media clearly shows a high in-plane orientafiibers in the
circumferential-axial plane. At the very right, the location of the respedtiages (a-d) of

the layers is depicted. Unpublished images, taken with permission from @asdr&chriefl.

“4L_atin for ‘the vessels of the vessels'.
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Figure 1.4: Image (a) shows the entire wall of a healthy human abdominal adnile (b) and (c) show
cross-sections of atherosclerotic wall tissue. In the healthy wall weistinglish the three
layers, whereas in the diseased sample these layers merge into eachMvutheover, the
atherosclerotic arterial wall displays considerable out-of-plane digpeand a very inho-
mogeneous structure which varies strongly between each specimenblishpd images,

taken with permission from Andreas J. Schriefl.

1.5 Pathologies of the Cardiovascular System

Due to the complexity of the CVS a variety of complicated p&igal changes with poten-
tially dramatic consequences can occur. The importancarndi@vascular diseases (CVDs) is
also highlighted by the World Health Organization (WHO).in [\WH/edia centre, 2012], from

where we cite four of the main key facts related to CVDs:

e CVDs are the number one cause of death globally: more peopleniually from CVDs
than from any other cause.

e Anestimated 17.3 million people died from CVDs in 2008, repreing 30% of all global
deaths. Of these deaths, an estimated 7.3 million were dugrémary heart disease and
6.2 million were due to stroke.

e Low- and middle-income countries are disproportionallieeted: over 80% of CVD
deaths take place in low- and middle-income countries aedraamost equally in men
and women.

e By 2030, almost 25 million people will die from CVDs, mainly froheart disease and

stroke. These are projected to remain the single leadingpoaiudeath.
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One example of a CVD is the progressive narrowing of the végs®n leading to ischemia of
the tissue perfused by that vessel, a problem especialheihé¢art. The effect of this narrow-
ing is immediately clear when considering Poiseuille’s lahich states that the flow through
a tube is inversely proportional to the forth power of thenaigier. Although this law includes
some assumptions not valid for the artery (rigid vessel,vaedleloped flow, . .), it provides
an impression of the profound flow-limiting effects causgdamarrowed lumen. Other patho-
logical changes include intravascular thrombosis, cauatute obstruction and/or embolism
and weakening of the vessel walls, leading to dilatatioeaysm formation) or rupture. In or-
der to understand and effectively treat these diseasaspiipiortant to consider the underlying
structure of the vessel and the related biochemical anddmbanical changes [Schoen, 1994,
Humphrey| 2002].

Atherosclerosis. Probably the mostimportant disease related to blood vessatheroscle-
rosis, which is characterized by intimal thickening anddigeposition in the arterial wall and
is a form of arteriosclerosis, literally meaning hardengighe arteries. Arteriosclerosis is a
group of diseases which is characterized by thickening &fidrsng of the arteries and mani-
fests as two other morphologies besides of atherosclerasisely Monckbergs medial calcific
sclerosis (calcification of the media of muscular arterga®) arteriolosclerosis (proliferative
hyaline thickening of the walls of small arteries and adies) [Schoen, 1994]. Atherosclerosis

is the most common and important form of arteriosclerosis.

In Fig.[1.3, key steps in the development of an atherosdtelegion is shown. Due to irri-
tating stimuli (dyslipidaemia, hypertension, pro-inflaatiory mediators), leukocytes from the
blood stream adhere to the activated endothelial monokygmigrate into the intima. Most
of the leukocytes are monocytes which differentiate intermphages and absorb lipids, which
turns them into foam cells. Subsequently SMCs migrating ftloenmedia into the intima and
resident SMCs in the intima proliferate, resulting in an @aged production of ECM compo-
nents. As a consequence, inflammatory cells, SMCs, lipid andextive tissue progressively
aggregate in the intima of the large and medium-sized elasti muscular arteries. Dying cells
in advancing lesions leave extracellular lipid and cetldabris behind which can accumulate
in the central region of the plaque [Libby et al., 2011]. le tlassic case, the atherosclerotic

lesion is a fibroinflammator lipid plaque (atheroma) whichesyls into the media of the arte-
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rial wall and into the lumen of the vessel, leading to a sten@grrowing) of the lumen. The
three main components of such a plaque are cells (SMCs, mfegep and other leukocytes),
connective tissue (collagen, elastin, proteoglycans)igidideposits (both intra- and extracel-
lular), mainly cholesterol which is derived from lipoprote in the blood. Rupture of the fibrous
cap initiates blood coagulation and leads to thrombus foomathe ultimate complication of
atherosclerosis. A complicated atherosclerotic plaquescribed by the transformation of a
simple atheroma to a complicated lesion. It is charactdrigecalcification, i.e., mineral de-
position and resorption regulated by osteoblast-like astdaxlast-like cells in the vessel wall

[Schoen| 1994].
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Figure 1.5: In (a), the three layers of the artery are shown, for det@lsectio 114 and Fig.1.2. Panel
(b) shows the initial stage of atherosclerosis where leukocytes migrate fattima and

in (c) the SMCs migration and proliferation is shown. Finally, in (d) thrombumé&dion is

depicted. For details, see [Libby et al., 2011], from where the picturdakes and modified.

The major causes of atherosclerosis are hyperlipidemjzergnsion, cigarette smoking and

diabetes. Other risk factors of atherosclerosis are ohesiysical inactivity, male gender, in-

creasing age, family history, stress, oral contracepteshigh carbohydrate intake [Schoen,

1994]. There is no single hypothesis explaining the oridiatberosclerosis but several, not
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mutually exclusive mechanisms have been proposed (eqinsudation hypothesis, encrus-
tation hypothesis, reaction to injury hypothesis, monoalchypothesis). The trigger which
initiates the process is most controversial, but the foealire of this disease suggests that
complex flow fields of the blood and therefore biomechaniod mm@chanical factors, e.g.,
low shear stresses, etc., play an important role. For fudkeéails, the reader is referred to
[Humphrey and Canham, 2000, Schoen, 1994, Gatilieb, 200#akad et al., 2001].

There are many potential complications arising from atbeeoosis, e.g., embolism or acute
occlusion caused by the rupture of an atherosclerotic plagd subsequent flow with the blood
until it completely occludes the lumen of a muscular artéfizis results in an infarction (is-
chemic necrosis) of the tissue which should otherwise vedaliood supply by the obstructed
vessel, causing myocardial infarction (in the heart),ksr@n the brain) or gangrene (in the
intestine or lower extremities). Another pathology causgdtherosclerosis is the chronic nar-
rowing of the vessel lumen by the plaque. Due to the chronictage of blood, the organ
suffers of atrophy. A complicated lesion can also extend ihé media of an elastic artery and
weaken the wall, promoting the development of an aneuryshis fypically happens in the
abdominal aorta (abdominal aortic aneurysm, AAA) and cad ke a vascular catastrophe in

case the aneurysm ruptures.

Any artery can be subjected to atherosclerosis, but th@aibe coronary and the cerebral
systems are most likely to be affected. Therefore, aorsugrsms, myocardial infarction and
cerebral infarction are the most common consequencesabmormality of the arterial wall
[Schoen, 1994]. If the coronary arteries are affected bgrastlerosis, the diminished blood
flow can result in coronary artery disease (CAD). Also theigbdf the vessel to dilate is
reduced, altogether leading to an insufficient supply ofg@xyand nutrients to the myocardium
beyond the lesion. This results in local myocardial iscteewithin 10 s after coronary artery
occlusion. Within several minutes, the lack of oxygen ferogyocardiac cells to shift from
aerobic to anaerobic metabolism resulting in an accunmrdadf lactic acid and consequent
reduction of cellular pH. This combination of hypoxia, redd energy availability and acidosis
results in abnormal shortening of muscle fibers which resliloe strength of contractions in
the affected region. As a consequence, less blood can bejom the heart with each

contraction|[Kowalak et al., 2001].
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1.6 Medical Interventions

One of the most common medical interventions to treat theomaed lumen of an artery is
percutaneous transluminal coronary angioplasty (PTCAgg@ally for the epicardial coronary
arteries. In this procedure, a balloon catheter is insarteétle coronary arteries where it is
inflated to push the plaque into the media and dilate the stemessel. Although in most
cases the vessel lumen is satisfactorily dilated, the baltauses endothelial damage. 3[n
to 40 % of treatments, intimal hyperplasia due to smooth musdlegpcaliferation and matrix
deposition leads to restenosis over a period of three to entins. Moreover, wall remodeling
also causes narrowing of the lumen through contractionef/gssel wall. Drug eluting stents
with anti-proliferative agents inhibit the growth of smbanuscle cells in the vessel wall by
blocking the cell cycle and thus reduce restenosis by a derable amount [Gottlieh, 2007].
However, the detailed mechanical and biochemical prosemse long term complications are
not fully understood yet, requiring more research inclgdanreliable model of the growth,
remodeling and related arterial mechanics accounting®fitite deformations of the arterial
wall. The importance of biomechanics is illustrated in,. ejblolzapfel et al.| 2005b] where
the researchers demonstrated that also the geometry amdiah@aroperties of the stent are

important.



2 Continuum Mechanical Framework

‘To get into this question [of tissue elasticity] more clgs&lithout the aid of mathematics, is

scarcely possiblé.

C.S. Py

As we have seen in the previous chapter, mechanics playsportant role in many physio-
logical and pathological processes in the human body. NMéditerventions like PTCA as well
as diseases like aneurysms require a detailed knowledde afttesses and strains in the tis-
sue to make predictions and guide medical doctors in thendigig and operations. Especially
the maximum stress in the arterial wall is of great interesigses, e.g., the severeness of an
aneurysm and classify its rupture potential. To providenteessary mathematical and mechan-
ical background for this thesis, we will review some of the trasic concepts and methods in
continuum mechanics in this chapter. For a more detaileddnttion to continuum mechanics
see, e.g., the books of [Ogden, 1997, Holzapfel, 2000] owcchviiis chapter is largely based.

The overview presented here will introduce a central gtyairiicontinuum mechanics, the
local deformation gradierf, which maps a vector from the undeformed (reference) config-
uration to the deformed (current) configuraﬁorWith this quantity we define a measure of
deformation, the right Cauchy-Green tenghrwhich is independent of rigid body motions
(translocations and rotations). This deformation measarebe incorporated in an important

guantity in the context of hyperelasticity, namely theist@nergy¥ induced in the body by the

The undeformed configuration is also called the materialagrangian configuration while the deformed con-

figuration is also referred to as the spatial or Eulerian goméition.

15
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deformatioH. The strain-energy function (SEF) is used to derive thetielgstensor and the
stress tensor required for the finite element implementaticthe constitutive model. There-
fore, we will also discuss the elasticity tensor (in bothlthgrangian and Eulerian setting), the

most important stress tensors, and the theory of anisofardinite deformations.

2.1 Continuum Bodies and their Deformations

Although living tissues possess many properties which atswal in engineering applications
(they grow, remodel, are mixtures of very different and imogeneous materials, ...), they still
obey the basic postulates of mechanics (e.g., the congervaivs)l. Also fundamental quanti-
ties such as stress, strain and entropy are convenient nesasuhe analysis of such materials.
Even though we might have to adapt the set of tools we use assamg, we still can use familiar
concepts and seek to formulate constitutive relations ahe snitial/boundary value problems
(I/BVP). We should be aware that constitutive equations dalescribe the material, but rather
the behavior of the material under specific conditions. Néedess, the formulation of con-
stitutive equations helps us to gain insight into the fumti@nd structure of the material and
is essential to solve engineering problems. In this contatinuum mechanics provides us
with very useful theories to solve the resulting differah&quations with their initial/boundary
values.

In continuum mechanics we describe a body, denigdee Figl[ 21(a)), as a continuous
assembly of matter in space. With this fundamental assemptie ‘smear out’ details at the
molecular and atomic level and, therefore, lose a lot ofrimfation. Nevertheless this approach
is essential in engineering applications since it allowusduce the amount of information so
we can handle it in a computationally efficient way. Moreowveg do not seek to describe the
state of every single microscopic particle, but instead @mepresent the body in the macro-
scopic world, so it is important to determine the size of adimolume element. On the one

hand, this finite element should be large enough to repréisemontained particles in a proper

“Note that also other deformation measures sudhesuld be used in the SEF.
3Since tissues are able to grow, they are an open system wilaesegan be transported over the system bound-

aries.
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Figure 2.1: In panel (a), the transformation of a body from the retereonfiguratiort), to the de-
formed configuratiom? by the mapx (X, t) is displayed. The vectatX in the reference
state(), is transformed to the deformed vectbrt into the spatial setting by the deformation
gradientF(X,t). Panel (b) shows the polar decomposition of the deformation graBient
into a rotational parR and a stretching part, eith&ror v, the right and left stretch tensors,

respectively.

way, on the other hand it must be small enough to be treatdytimadly. Fung describes this as
‘The concept of a material as a continuum is a mathematieallizhtion of the real world and
applicable to problems in which the finite structure of ntatén be ignored. [Fung, 1965].

Such a collection of particles forming the boftycan be represented in an arbitrary coordi-
nate system. For our purpose, a set of orthonormal basisredd; , e,, ;} is convenient to
describe a poinf> € B in 3D space. Since we are solely operating in a Cartesian cotedina
system, we will in the following not distinguish between emd contravariant components of
tensors. The continuum body can move and occupies a geometrical redign..., €2 at every
point of timet. Fort = 0 we define a special regidn,, called the reference (undeformed)
configuratiof.

Theoretically, the reference and the current configuratauld be defined in different coor-

dinate systems and hence we had to \Hr)'(e: X 4E, inthe Lagrangian setting and= z,e,

“We write guantities in the reference configuration in cdpétéers while quantities in the deformed configuration

are denoted by lower case symbols.
®We use Einstein summation convention where we sum overdndidich appear twice.
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in the Eulerian configuration. In our analysis, however, ¢berdinate systems for the ma-
terial and spatial configuration coincide (i.e., the maieaind the spatial reference frame are
collinear) and we denote the axis by the unit vectgrand the coordinate axis by, X 4.
The motionyx (X, ¢) transforms a body frorfy, to the current (deformed) configuratiéhby

x = x(X,t). The inverse motion is denoted ky ' (x,) and maps a point from the current
configuration back to the reference configuration, Xe= x ' (x,t). The mappingy defines

a so called push-forward of quantities from the materialfigomation to the spatial configu-
ration, whereag "' is called the pull back and maps a tensor from the Euleriaimgeb the
Lagrangian configuration. Depending on whether this gtarstia co- or contravaria@?tensor,
these operations are different. The push-forward andi@adk of contravariant tensors (such as

the most common stress tensors) are defined as
X. ()7 =F(e)"F,  x.'(e)" =F !(e)F T, (2.1)
respectively. Here we introduce the local deformation gaid
F = dx(X,t)/0X, (2.2)

which allows us to map a tangent vectoX from the reference configuration to the current
configuration bydx = FdX. F is in general non-symmetric and a two-point tensor, i.e., it
has coordinates in two different configurations, namelyothiithe reference and the current
configuration. This can also be seen when writing the transdtion of a tangent vector in
index notation,dx, = F,,dX,. Itis important to note thak(X,¢) is defined locally, i.e.,

it describes the motion in the neighborhood of a point. Mweeeothe deformation gradient
links the material and spatial configuration via a lineansfarmation. This is very convenient
since it allows us to represent the deformation gradiergdem a given coordinate system by
a matrix. The determinant &f is denoted/ and is the ratio between the volume in the current
configuration and the reference configuration= detF = V/V; > 0. For incompressible
materials we require/ to be equal to unity. The existence of the inverse mappintx, t)
ensures that at a timea particle cannot occupy two locations in space and that @vbogbes

cannot occupy the same location.

®We denote contravariant tensors by a superséfipihereas covariant tensors usually have a superscript
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We can decompose the deformation gradient in two parts dicgpto
F=RU=VR, (2.3)

whereR is a proptﬁ (det R = 1) orthogonal R* = R™!) tensor andJ andv are the right (ma-
terial) and left (spatial) stretch tensors, respectivElys multiplicative split of the deformation,
also called polar decomposition, is illustrated in EiglB)where we see how the tensors oper-
ate on a continuum body: if we apply the rotati@rfirst, we have to use the left stretch tensor
v to deform the body and if we want to perform the deformatiost fihe right stretch tensat

is required. Note that both decompositions involve the sartteogonal rotation tensd® and
that the stretch tensors are symmettict U", v = v').

Since we treat our material as incompressible, we face ricatgeroblems such as ill-
conditioning in general and volumetric locking in partiaul To avoid these problems, we
decouple the pressure field from the displacement field blyaqgpthe multiplicative decom-
position ofF into a spherical (dilatational, volume changing) pait’l and a unimodular (dis-

tortional, volume preserving) part
E=J'3F (2.4)

wheredet F = 1, seel[Flory, 1961, Ogden, 1978]. In the following, we derptantities related
to this distortional deformation with a bar or a tilde, degieig on the context and operations

we perform.

2.2 Strain Measures

To solve the equations describing the deformation of a naotn body, we have to use a con-
stitutive law which provides a relation between stress dradrs But since strain is (as stress)
an abstract (arbitrary) quantity, we have to make meanirdgfinitions which allow us to set
up a consistent and physically reasonable framework. Aasio [Holzapfel| 2000], the right
Cauchy-Green tens®@ = F'F is a (nonlinear) measure of deformation which is frequently

used in continuum mechanics. It is symmetric, positive dte@rand yields the square of the

"An improper orthogonal tensor is characterizedlbyR = —1, which represents a reflection.
8positive definite means that Cu > 0, u # 0.
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stretch) of a vectora, in the reference configuration by = a-a = (Fa,)" - (Fa,) = a, - Ca,.
The diagonal components Gf are the square of the stretches in the respective directile w
the off-diagonal components are related to the shear detwns. Moreover, the eigenvalues
of C are the squares of the principal stretches of the continunchy.bNote that sinc€ does
not contain rigid body movements like translations or iotad, it is not useful in a constitutive
law since it is unity in the state of no deformation. Therefae introduce the Green-Lagrange
strain tensoE = 1(C — |), which is a ‘true’ strain measure since it equals the zerede®

if no deformation is applied to the body. The factaris introduced for consistency with the

linear theory.

2.3 Forces and Stresses

Stresses are the reaction of a body to externally applie@$oiThese external forces can either
be surface loads (friction, pressure, ...) or body loadavigy, electromagnetic forces, ...). If
we cut a body which is under an external load in the currenfigoration (see Fid. 212, right
side) we obtain a surface on which we can define an infinitdsamea elementls with the
unit normal vectom. As a reaction to the externally applied forces, the tractiectort acts

on the oriented surfaaés holding the body in equilibrium. This traction vectbhas the unit
force per unit area and is called the Cauchy (or true) tractemtor since it is defined in the
current configuration. It is named after Augustin-Louis Gau¢l789-1857) who postulated
1827 one of the most fundamental theorems of continuum mechahingroduces the Cauchy
stress tensos (X, t), a symmetric, second-order tensor field, which relates trmal vector
n(x, t) to the traction vectot(x, t,n) by t(x,¢,n) = o(x,¢)n. The fundamental conclusion of
this theorem is the linear relationship between the tractiectort and the unit normal vector
n. Since we link two oriented quantities (traction and sugjastress is a tensor of second order
[Humphrey| 2002]. Note that the stress tensor is indepdrafehe orientation of the surface
but can vary with the location in the body (this is also reftecin the arguments of the stress

tensor).

°Note that this factor only influences the resulting matgueiameters. If we choose another factor (or omit it

completely), only the parameters determined by fitting threstitutive law would change
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The Cauchy stress is the most natural and physical measutress since it is defined com-
pletely in the deformed configuration and is mostly used ilflaechanics where the problems
are formulated in the spatial setting. In solid mechaniogsdver, the geometry of the deformed
configuration is not known and, therefore, it facilitates #malysis to set up the governing equa-
tions of motion and equilibrium in the reference configwmati This leads to the introduction
of purely mathematical quantities but simplifies the foratian of equations and their numer-

ical treatment. Since we want to work in the reference condiion, we apply the concepts

time £t = 0 time ¢

O o
1, X1
€

x5, X3
Figure 2.2: A continuum body which is subjected to surface- and bodyslobighon cutting the body
open in the current configuration (right side) we can define an arezealels, represented
by a unit normal vecton, on which the traction vectdracts as a reaction to the external
forces. The same can be done for the reference configurationidejft shere we define the
infinitesimal area elemeniS with the normal vectoN and the traction vectdr, mapped by
F~! to the reference configuration yieldiffg Note thatT acts on2 but is a function ofX

and the outward normd to the boundary surfade,, which is indicated by the dashed line.

introduced above to the body in, as illustrated in Figl._2]2 (left side). We map the current
traction vectot(x, ¢, n) from its point of applicatiorx back to the corresponding poiXtin the
reference configuration and obtain the first Piola-Kircliledminal) traction vector (X, ¢, N)

which acts on the unit area elemeii and points in the same direction §%,¢,n) in the
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current configuration. The first Piola-Kirchhoff tractioector has the physical interpretation
of current force per unit area in the reference configuratiors related to the normal vector
defining its surface in a similar way as the Cauchy tractiotoreaamely by a linear mapping
T(X,t,N) = P(X, )N, where we introduced the first Piola-Kirchhoff stress te¥X, ¢).

The introduced tensor fields, nametyx, t) andP(X, ¢), perform the same operation, i.e.,
they establish a linear relation between a normal vectortla@delated traction vector. Never-
theless, they live in different coordinate systems singhk Hefine a traction vector in the current
configuration but act on the unit vector in a different conade system. This can also be seen

when writing the mapping in index notation as
ta = OapTp a.nd Ta = _PGJB]\/vB7 (25)

where we see thd is, such ag-, a two-point tensor living in both the reference and current
configuration since it related (att = 0) to the traction vectofl (at timet). AlthoughP has

a physical interpretation, it is not convenient to use siiicgeneral, it is not symmetric. Note
that for infinitesimal deformations the first Piola-KircHhstress tensor and the Cauchy stress
tensor are identical since in this case the change in cexd®nral area is (nearly) zero. Hence,
the first Piola-Kirchhoff stress is tr&D generalization of the concept ®D engineering stress
where the change in cross-sectional area is neglected.ovienét is the work conjugate to the
deformation gradienf. Using Nanson’s formula, relating an infinitesimal areaha turrent
and reference configuration by = JF~7dS, we can establish the relation between the first
Piola-Kirchhoff stress tensor and the Cauchy stress temser J'PF", which is called the
Piola transform.

The introduced stress measures are useful since the Cauelsg sepresents the ‘actual
stress’ experienced by a body and the first Piola-Kirchhio#fss is convenient for experimen-
tal measurement. Nevertheless, we introduce two moresstnessures: the Kirchhoff stress
tensorr and the second Piola-Kirchhoff stress tenSoiT he first one is required for the finite
element implementation of our material law in the softwasekage FEAP and is defined by
the volume ratio times the Cauchy stress tensor- Jo. Note thatr lives, like o, solely
in the current configuration. The second Piola-Kirchhatss tensor, in contrast, lives in the

reference configuration and is given by the pull-back oSincer is a contravariant tensor, the
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pull back is, as in eq[[(2.1), given &= x.' () = F~'+F~T. Consequently, we obtain the
Cauchy stress tensor (i.e., the stress in the current coafiga) from the (virtual) stress in the
reference configuration by = J 'FSF'. One can also think d8 as the relation between the
area in the reference configuration and a virtual ‘forceia teference configuratioh which

is the pull back ofT by F~'. Hence, the second Piola-Kirchhoff tensor is a one-poimsde
defined byT (X, ¢) = SN[Humphrey, 2002].

Note that althougls has no physical interpretation it is a very useful quantitycompu-
tational mechanics. It is symmetric and the energetic gatpito the Green-Lagrange strain
tensorE, and can be obtained by the derivation of the strain-enarggtion with respect to
the right Cauchy-Green tens@. The second Piola-Kirchhoff stress ten&is a contravari-
ant material tensor field and parameterized by materialdioates. Therefore, it is useful in
computational mechanics and for the formulation of const equations of solids. For a rigid
body motion we can writé = R (according to eq[{213)), and, therefo®= R*oR. This
corresponds to a coordinate transformation, i.e., the oompts ofS coincide with the ones of
o in the global Cartesian coordinate system rotatedRbyAnother useful property db is its

invariance to superimposed rotations in the current cordigan [Humphrey, 2002].

2.4 Tensor Algebra

We provide a very brief overview over the required resultd mentities from tensor algebra.
For a more extensive and detailed introduction the readefésred to the standard works of
[Ogden, 1974, Holzapiel, 2000].

The Cayley-Hamilton Theorem. This theorem states that every square matrix satisfies
its own characteristic equation. To understand this vermyoirtant theorem, we first have to
define the characteristic equation (polynomial) of a squaatix [A] asp(\) = det(A — \l) =
NI+ B — ' = 0, wherel;, I3, I3 are the three principal invaria@sof A. From

the theorem of Cayley-Hamilton follows that

AP —IA? + A — I = O, (2.6)

1%Sometimes these invariants are denotedad 1, 1774,
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and we conclude that every powerAfhigher than three can be represented by a combination
of A, A? andA®. This property is very useful to determine the derivativethe invariants of a
tensor and yields

or; o, -
a—A_I, a—A_m—A. (2.7)

We will demonstrate how to derive the third invariant by ripijting eq. [2.6) withA~', and

after rearranging the equation we obtain
A —TPA+ I =I8A (2.8)

When we take the derivative of e§. (P.6) with respedktand compare the result with eQ. (2.8),

we see that
=S A (2.9)

where we used the results of €lg. {(2.7). The rules of diffeagan for the double contraction
and a scalar multiplication are given by

OA:B) , OB ~O0A  0(aA) Ja O0A
5C —A.a—C+B.a—C, 9C _A®8_C+a8_C’ (2.10)

whereA, B andC are second-order tensors amds a scalar. For the next step recall €q.1(2.9)

and the fact that the determinant of the transpose of a metpipals the determinant of the

original matrix, i.e.,/ = det F = det F'. So the derivative off and J~%3 with respect taC
are given by
aJ 0L 1 0L, J__, 0T 1.
9P Zpels  C = ¢ 2.11
oc oc 2% oc 2 7 oC 5/ (2.11)

using the chain rule and noting that = det C = det F'det F = J*. The derivative of the

modified right Cauchy-Green tensor with respect to its nowoahterpart is given by

C —2/3¢ C —2/3 1
fo = el = T e e = e 1 e
1
— J—2/3(]I _ gC: ® C—l) — J_Q/S]P)T7 (2.12)

with the definition of the projection tensrin the Lagrangian setting

1
P=1-— gc*1 ® C, (2.13)
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which provides the correct deviatoric projection in the taamyian setting, i.e[lP : ()] : C = 0.
Note thatP is the pull-back of the spatial deviatoric operator [Feceand Grillo) 2012] where
C operates as a metric tensor [Holzapfel, 1996]. Finally, areaiso differentiat€ with respect
to C finding that

oc _ J¥3 (2.14)
aC

wherel is a fourth-order identity tensor.

2.5 The Strain-Energy Function

We work in the context of finite hyperelasticity and, therefaassume the existence of a scalar
strain-energy functiol from which we can derive the constitutive equation relastrgss and
strain. This strain-energy function depends on a measudefoirmation, for exampl&d =
U(F). Note that we omitted the dependency on the position withénnhaterial, so we assume
a homogeneous material where the strain-energy is the samey point. For a detailed
description of hyperelasticity and related topics suchpadyfconvexity see e.g., [Holzapfel,
2000, Holzapfel et al., 2000, 2004].

The strain-energy function has to fulfill certain requirentseto be physically meaningful.
For example, it is not allowed to compress the body to a paimixtend it to infinite volume,

therefore the energy required to perform such operatiooglgtbe infinite, i.e.

VU(F) - 00 for detF — oo,
U(F) - oo for detF — +0. (2.15)

Moreover, the strain-energy in a state of no deformatiorukhbe zero,¥(I) = 0, and the
strain-energy should increase with deformatibif) > 0.

We can derive the constitutive equation for the stress bingathe derivative of the strain-
energy function with respect to the deformation gradient,

_OU(F) _,0v(C)
P="0r’ S=2—-" (2.16)

The strain-energy should not change upon a rigid body wotapplied after the deformation,

i.e., U(QF) = ¥(F) whereQ is a proper orthogonal tensor. If we chod@e= R* and use the
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polar decomposition dfF, i.e.
U(R'F) = ¥(R'RU) = ¥(U). (2.17)

Hence, the strain-energy does only depend on the stretgairigof F and is not affected by
any rigid body rotatiorR™. The specific choice of the strain-energy function deteesitne
constitutive material behavior and is, therefore, esaéftr a material model. In chapter 5, we
will present an anisotropic, nonlinear strain-energy fiorcwhich includes fiber dispersion in
two planes and allows for an efficient finite element impletagon.

Split of the Strain-Energy Function.  We assume that it is possible to split the strain-

energy function in two parts like

U=V, (J)+9(C), (2.18)

as shown inl[Holzapfel, 2000]. Her#,,,(.J) is a purely volumetric contribution whilé (C)
represents the energy contribution of an isochoric (volpneserving) deformation. As intro-
duced in eq[(2.16) the second Piola-Kirchhoff stress tenSas the change of the strain-energy
function with respect to the right Cauchy-Green tenSet, 20¥(C)/0C, and using the decou-
pled form of the strain-energy functiolhwe identify two stress contributior®= S, + S. By

virtue of eq. [[2.9) and the chain rule we find for the voluneepart

a‘;[jvol(‘]) _ a‘;[jvol(‘]) aJ _ -1
L = g s = pJC, (2.19)

Svol:2

where the hydrostatic pressyrdéor incompressible materials is defined by

p= aqjg;}(‘]). (2.20)
Using eq.[(2.12) we obtain for the isochoric part
S= 28\1{;?) = 2\1’8(? : g—g =S:JP(I~ %C ®C™)
= J7BP:S= J **Dev§, (2.21)
whereSis the fictitious second Piola-Kirchhoff stress tensor dafias
S= 28‘1’@. (2.22)

oC
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2/3 and

We see that the isochoric stress is the deviator of the @aststress multiplied withi—
(Dagep = %(6A053D + dapdpc) is a fourth-order identity tensor. Using the decompositbn
the deformation gradient given in eQ.(2.4), we define theifiemtright Cauchy-Green tensor
asC =F'F.

To utilize the finite element method, we require the Kirclitstfess tensot- which is the

push-forward ofS, and hence given by = FSF" = r., + T where we introduced
_ - - . 1
T =pJl, T=devT=pr:7 with P:H—§|®|, (2.23)

wherer is the Eulerian projection tensor andis the push forward of the fictitious second
Piola-Kirchhoff tensor given in ed (2.R2).

2.6 Elasticity Tensors

Since the relation between the stress terand the tenso€ will be nonlinear, a Newton-
Raphson-like iteration process is required to solve for areimental displacement. Therefore,
we have to linearize ed._(216\vhere we introduced the Lagrangian elasticity terfSarsing

the total differential of the second Piola-Kirchhoff sgg¢ensolS, i.e.

1 _ oS 0°U(C)
dS=C:dC, with C=2-2 _4W

(2.24)
Note that the matrix representation of the elasticity tensthe respective coordinate system is
the tangent modulus required for the implementation of dinear finite element code. Since
the differentiation in eq(2.24)with respect taC has to fulfill Schwarz’s theoreng; features
major symmetries, i.eC zcp = Copan. Moreover,C is symmetric, also introducing minor
symmetries, i.e.Cipcp = Cappe = Cracp = Crapc- This allows to write the symmetric
forth-order elasticity tensor in matrix representatiome(eby reducing its order) using Voigt
notation, so we can writ€ as a symmetrié x 6 matrix. This can be imagined as a ‘mapping’

of indices as

{11} — {1}, {22} — {2}, {33} — {3}, {12,21} — {4},{23,32} — {5},{31,13}. — {6}.
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Hence, the tangent matrix (in Voigt notation) passed to FH#ORs like this:

Cllll C’1122 C’1133 C’1112 C11113 C11123

02222 C’2233 C’2212 C’2213 C(2223
[C\/oigt] _ C’3333 C’3312 CE’)Z’»13 CV3323 (2 25)
C’1212 C11213 C'1223

sym. Cis13 Cisas

| 02323_

With this representation of the indices, the second-orttess tensoe can be written as a

column matrix

Voigt]

T
[o =[o1 09 033 01 0O om], (2.26)

and similarly the second order strain tens@s

[‘EVOigt]:[Gn €99 €33 2619 2693 2631]T- (2-27)

Note that the factoR appears to make the shear componeptshe engineering straing;;
[Taylor,[2000].

The Elasticity Tensor in the Lagrangian Description.  We will derive a general ex-
pression for the elasticity tensor in the Lagrangian sgtom a hyperelastic material. For this
purpose, we split the strain-energy function, accordingatd2.18), into a volumetric and a de-
viatoric part and consequently use the volumetric and dencasecond Piola-Kirchhoff stress
tensors.

Equipped with the definitions from section 2.4 we start wik split of the strain-energy
function eq. [2.18)), and hence the split of the elastiatysor likeC = C,,, + C, where the

volumetric part is given by

82\'Ijvol aSvol (Jpc_l) -1 8(Jp) aC_l
CVO]_48C2 728C =2 3C =2C ®—8C +2Jp—ac
oJ 0
=2C'® (pa—c + Ja—g) —2JpCteoC™ (2.28)

where we introduced a new tensor product

oCc™!
oC

- -Clteoct
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which is defined as

_ _ IS o 9C 1
— (€' ©C N apop = —5(CacChp + CapCre) = 5
2 JCcp
We can simplifyC,, further according to
_ aJ Op 0J 1 -1
Cyo = 2C71 +J S| —2JpCteC 2.29
vel @ { Pac a7 ac} pe o (2.29)

=JC'® {(p + JSJ)C—I] —2JpCteocCc™!

= JpC'wCct—2JpC o C!, (2.30)

where we introduced the definitigh= p + Jo/a, wheredr/a; = 9°¥.a /a2, For the isochoric

elasticity tensor we get

S _9JP:S o 9J 230(P: S)
C=2 2 2AP:S)® e +2J o

9C 5C (2.31)

where we split the expression in two parfs, andC,. The first expression is given by

sl & aJ_Q/g 2 -2/3 & -1 2= -1
C,=2(P:9® 9C z—g(J P:S5®C :—§S®C : (2.32)

but the second term is a bit more complicated and reads as

C, = 02308 S) g2 O (é— %(C‘l ®C) : s)

aC aC
g S 19(C'®C):S\ aC
B ac 3 oC e
_ oS 19(S:c)ct\ aC [~ 1
_ 2/3 [ Y2 YA\ M _ =
2.7 (aé TR ) o [@ 3(X+Y)} PT, (2.33)

which motivates the definition of the fictitious elasticignsor in the material configuration

,4/38_§

C=2J — (2.34)
aC

and the introduction of two more terms,andY, given by

ase1_ 0(S5:0) oC oS
X =2 C g 222/ _ 943! S:——~+C:
© oC © oC + ac

—Cclg <C .C+ 2J—2/3é> —CclgC:C+2C ' %8 (2.35)
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For the second part we have

- oct o, 5 = oc™!
_972/3(&. -2/3 _ o 7-4/3(&. 2/3
Y =2J (S.C)—aEJ 27138 )T
— —2J%S. c)cteoc (2.36)

This allows us to finally write the second part of the isocbetasticity tensor as

— _o30(P:9) 1 . -
=2y 2B T _(1--clgcC):C:P'-
C,=2J 7c ( ;Ce C
gc—l ® J738: Pt 4 §J_2/3(§: cc'lect:pt
:P:@:PT—§C_1®§+
. 1
;Tr (J723S) (c—l oC! - g(c—1 oChH:(Cw C‘l))

N 2 _ 2 .
=P:C:P" - gc—1 @S+ 2T (J23Y) P, (2.37)

where we defined the trace in the material coordinates ubmgight Cauchy-Green tensor as
the metric tensor in the Lagrangian settinglage) = (o) : C.

Moreover, we simplify

(c'eoch:(cech=Ccleoc
(CacCsb + CapCs8) aen(CepCri)oper =

(CatCepCspCrai + CutCopCiapCiur) = (CapCrpr) aper (2.38)

following from index notation and using ed. (2129) and fertiused the modified fourth-order

projection tensor in the reference configuration given by
~ 1
P=C'ocCc!- gc—1 ®C . (2.39)

By combining eqs[{2.31).(2.82), (2137), we finally obtaia élasticity tensor in the Lagrangian

description according to
_ . 2 .~ 2 _
C=P:C:P"+ ST (J23Q) P — 3 (C'®S+S®C™), (2.40)

where we used the fictitious elasticity tengbgiven in eq.[2.34).
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The Elasticity Tensor in the Eulerian Setting.  After deriving the elasticity tensor in the
Lagrangian setting, we have to perform a push forward toiolit@ Eulerian description of the

elasticity tensor by

c=(F®F):C:(FRF)T,
Cijit = FirF Py FiCrykr- (2.41)

When we perform the push-forward of el (2.40) we obtain thatiapelasticity tensor as

C = C,o + Cwith

N 2 2
Coo = J (Bl ® | — 2pl), Ezp:c:p+§tr(%)P—§(l RT+TRI), (2.42)

wherec is the fictitious elasticity tensor in the Eulerian settimglaiven by the push-forward
of C.

2.7 Anisotropy for Finite Deformations

We know from histological experiments that the artery is affieinforced material, and me-
chanical tests have shown that the collagen fibers play argorirole in the mechanical be-
havior in the physiological and supra-physiological lsegddomain. Therefore, we seek to
model the artery as an anisotropic material, i.e., we hawaetount for the directional depen-
dence of the material behavior. There are two ways to do tamely () restrict the way in

which the SEF depends on the deformation [Green and Adk&¥)]lor (:7) introduce a vector

field which represents the preferred direction of the makesiplicitly in the SEF|[Simo et al.,

1985]. Since the first approach requires to perform the coatipns in the local coordinate
system aligned with the preferred direction, we use thersmkeoethod to model anisotropy
[Weiss et al., 1996]. This is especially convenient sinaeftber orientation might depend on
the position and we might encounter more than one fiber fartgrefore it is advantageous
that the formulation does not depend on a particular chdi¢teeocoordinate system. In a pi-
oneering paper [Spencer, 1984], Spencer introduced fidarscaariants to model a material
reinforced with one perfectly aligned fiber family. In thdléaving, we want to give a short

overview of his work.
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We define a unit vectoM representing the fiber direction in the undeformed configura
tion enclosing an angle with the 1-axis of our coordinate system. If the fibers are the only
guantities introducing anisotropy, the SEF must not chahgeth the deformation fieldC
and the fiberavl are rotated by an orthogonal rotation ten§€arand we therefore require
VU(C,M) = \IJ(QCQT,QM). This states tha¥ is an isotropic invariant oM andC. Since
the sense df is not important¥ must be an even function ™, i.e.,¥(C,M) = ¥(C, —M),
and hencel can be expressed as an isotropic invarian€CadndM ® M. This leads to the

following set of invariants o€ andM:

If =tr(C), I =3[(tr(C))*—tr(C%)], Iy =detC,
IM=M.CM=C:(MaM), I =M-CM =C*: (M M), (2.43)

where the invariants. ' andI$"" are directional since they are related to the direction ef th
fiber reinforcement. They are also called mixed invariaptsalbise they are defined by the tensor
fieldsC andM. For a more convenient notation, we drop the superscriptiseoinvariants for
the rest of this work since we will solely use the invariarg§inked byC andM.

It is not possible to distinguish the effects of the invatsah and /5, which is problematic
for the determination of material parameters. Therefoeeywll drop the fifth invariants.

Experiments of [Schriefl et al., 2012d] have verified the ag#ion that there are two fiber
families in the aorta, and since our model aim to capturelugical observations as good as
possible we have to introduce a second vector fidld representing the second fiber family in
our model. Because we dropped the invariant quadratifior the first fiber family, we do the

same for the second fiber family and obtain two new invarjardmely
Ig=C:(M'@M'), I;=M-C*M' =C*:(MaM), (2.44)

wherel,; corresponds td, andl; is a new invariant accounting for the coupling between the
fiber families. We droplg for the same reasons as we neglecie@nd finally obtain a set
of three isotropic invariants and two directional invatgafor our two fiber family model. We
furthermore assume that the two fiber families feature theesaechanical properties and there-

fore the SERV must be symmetric with respect to interchangeMaindM’.
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If a fiber-reinforced body undergoes a deformation desdriipethe deformation gradief,
the fibers, i.e., the field of unit vectok4, are moved with the particles of the body. The fibers

in the deformed configuration are represented by the veetor fi
m=FM, (2.45)
where the square of the stretch of a fiber is given by

M=m"" m=MF".-FM=M.-CM =C: (M&aM) =1,
A? =mgMg = FabeFacMc = MbecMc = C’bc]\4b]\4c = [47 (246)

showing that the square root of the forth invariant is therfidteetch, i.e. /I, = ;.






3 Existing Fiber Dispersion Models

‘Whenever a theory appears to you as the only possible oresthiekas a sign that you have

neither understood the theory nor the problem which it wasidgel to solvé.

KARL POPPER

Modeling of fiber dispersion in soft biological tissues hagib an active area of research in the
last three decades. To the knowledge of the author, Lanitheafrst who considered fiber dis-
persion in the analysis of fibrous connective tissues [I,A8983]. In this paper he incorporates
a probability density function (PDF, also called (fiber)pdission function) in the strain-energy
function to describe the statistical distribution of fibeBased on his pioneering work, other
researchers came up with many different forms for this floncte.g., some models use a dis-
crete approach while others use a continuous distribuffenaccount for the fiber dispersion
in a mechanical model, the PDF can either Beirfcorporated in the strain-energy function
(requiring the angular integration of the SEF) @) pe integrated separately (‘in advance’) to
obtain a generalized structure tensor representing thedibpersion. These two approaches,
which we will refer to as angular integration (Al) and gerieged structure tensor (GST), are
not mutually exclusive since one model can be implementdabih ways; e.g., [Cortes et al.,
2010] compared the two formulations for the well-known mopi®posed by|[Gasser et al.,
2006]. In general, the GST models use average stretchex th#m the actual stretch in the
fibers to compute the strain-energy and stress.

Dispersion models can also be classified according to therepieésenting the fiber disper-

sion: () planar distributions with only one parameter can represéher a two-dimensional

35
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(planar) fiber distribution or represent a three-dimenralidispersion which is rotationally sym-
metric (transverse isotropy), whereas (ully three dimensional fiber dispersion models use
PDFs with two or more dispersion parameters to represemt.gn,orthotropic fiber dispersion.
In this section we review some of the most popular models vimicorporate fiber dispersion
in soft biological tissues. Since this thesis is based orptyeers of [Holzapfel et al., 2000,
Gasser et al., 2006], we will discuss their approaches irerdetail, and although the work by
Fung does not consider fiber dispersion, we will give a sheerndew of his model since it

inspired many subsequent researchers.

3.1 The Work of Fung

In his landmark paper [Fuhg, 1967], Fung showed the highhlinear stess-stretch behavior
of mesentary tissue in uniaxial tension tests by measunegtretch\, and the corresponding
first Piola-Kirchhoff stress?,;. When plotting the ‘stiffnessd P, /d\, againstP;;, he found

a linear relationship, i.edP,; /d\; = ¢, P;; + ¢y, With ¢; andc, as material parameters. This
differential equation suggests an exponential relatignbktween stress and stretch, and has
the solution

Py = 2{ expley (0 = 1)] — 1}, (3.1)

1
where a stress-free state for zero deformation,Pg.= 0 for \; = 1, was assumed. Although
this formulation is one-dimensional, it is of fundamentaportance and leads to another pos-
tulate by Fung where he introduces a SEF which is exponeantiaims of the Green-Lagrange
strain tensor and reads in its general formulation as

9Q(E)

U = clexp(Q(E)) — 1], andhence S= ceXp(Q(E))a—E,

(3.2)

where he used ed. (2]16) akdinstead ofC. Here, the form of) determines the material
behavior and can be taken as, for example, a polynomial ihmaf the components of the
Green-Lagrange strain tenser whereQ = JcapcpEapEep. A quadratic form (as seen in

linearly elastic behaviH) was shown to be sufficient to describe a wide range of maderia

!Note that onlyQ is quadratic, but the strain-energy function is an expdakfinction with as the argument.
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Moreover, it is possible to include anisotropy in this framoek as shown by [Holzapfel et al.,

2000, Humphrey, 2002].

3.2 Constitutive Model with Perfectly Aligned Fibers

The model of [Holzapfel et al., 2000] uses a strain-energgtion which has been extended to
include fiber dispersion in various follow-up papers of thme group and other researchers. In
[Holzapfel et al., 2000], the authors model the isotropio4gollagenous groundmatrix with a

neo-Hookean potential given by

_ 1 -
\Ilgm = ic(Il - 3)7 (33)
wherel, = tr C it the first invariant of the modified right Cauchy-Green tan3o represent the
collagen fibers, the researchers introduce an exponeutatiobn which accounts for the non-
linear stiffening of arteries at high loads. The strainrggdunction for one perfectly aligned

collagen fiber family reads as

= kl 7 2 s
\Df—%{exp[l@(li_l)]_l}’ i = 4,6, (3.4)

wherel, is the modified fourth invariant o and the structure tenset; (see eq.[{2.43), where
M; ® M, = H,), introducing the anisotropy. For each fiber famil 4, 6, this energy is added

to the neo-Hookean potential.

3.3 Fiber Model with Rotationally Symmetric Dispersion

In [Gasser et al., 2006], the authors assume a rotationatiyreetric dispersion of fibers around
the main fiber direction usingzaperiodicvon Misedistribution. Thevon Misedistribution is
a function of the angl® and has, since itis a one-dimensional PDF, the concentrpdéitameter

b as the only argument. Its normalized version reads as

p(6;b) = exp(bcos 20), (3.5)

271, (D)
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wherel, (b) is the modified Bessel function of the first kind of ordedefined as

I,(x)= %/exp[m cos(a)] cos(na) da. (3.6)

In Fig.[3.1, this PDF is plotted for different values of thencentration parametér showing that

the distribution becomes narrower (higher concentratfdibers in the main fiber direction) for

larger values 0b.

6

ot

W

probability density p (@)
[\ w

—_

P (deg)

Figure 3.1: The standardon Misesdistribution for five different concentration parametérs ¢
{0,1,3,5,00} and the location parametgr = 0° for all five distributions. Fob = 0 we
obtain the uniform distribution (isotropic fiber dispersion) while> oo yields a Dirac delta

function aty (perfect fiber alignment).

Since the material behavior does not depend on the serige thife strain-energy only de-
pends orM through the tensor produbt ® M (see section 21 7) or through a symmetric, second

order tensor given by
1
H:—/p(M)M®MdS, (3.7)
47
S
which involves only the sines and cosinesbénd the PD(M). We denote the components

of the structure tensor & = H,; e, ® €; and notice that due to the symmetries@#) all off-

diagonal componentdd;;,: # j) vanish. By introducing the parameterwhich is an integral
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measure of dispersion, the structure tensor can be wrigten a

™

. 1
H=xl+(1-3x)M®@M with k= Z/p(@) sin® © dO. (3.8)
0
Finally, the structure tensét is used to compute an average strain quantity

E=H:(C—-1)=H:C-1, (3.9)

becauséd : | = trH = 1. The authors use this strain quantity in the strain-enasggtion and
follow the approach of [Holzapfel et al., 2000] by using apemxential function to account for

the fiber recruitment according to

where the index represents the fiber family.

3.4 Other Frameworks Including Dispersion

Mathematically, incorporating a PDF into the constitutmedel is not challenging, but the
resulting computational costs might be very high. For eXam|iinstein, 2002] pointed out
that 18 intervals of the PDF are required to capture the full randeab®r of the mitral valve
for a2D case. This is mechanically equivalentitoweighted fiber families in the plane; ir®
setting, this requires two integrals to be evaluated foisthess and four for the tangent matrix.
In the framework of finite elements, these computations talse performed for every iteration,
for every time step, at every Gauss point for every finite elehof the segmented geometry
[Freed et al., 2005]. Moreover, if the inhomogeneous malt@roperties of a tissue should be
considered, the PDF can vary with the location and diffeefeh finite element. Therefore itis
not only crucial to have a computationally efficient model &iso to develop a robust method
to determine the dispersion from histology and incorpottaite the computational framework
in an efficient way.

In [Holzapfel et al., 2005a], the authors introduce a phesoiogical scalar parameterc
0, 1] which shifts the fiber dispersion from transversely isoizdp isotropic. Since it is intro-
duced in a phenomenological way, it cannot be determineddiglagy but only by fitting to

mechanical data.
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The approach of [Sacdks, 2003] incorporates a two-dimeaseamgular fiber distribution into
the strain-energy function, considering only in-plangdision of fibers. The authors directly
use the a mean angular fiber distribution which was detewinirem scattered light experi-
ments. Therefore, the distribution function appears initiegral for the stress requiring nu-
merical integration. To study perturbations of the disttibn function, the beta distribution was
used to represent the fiber dispersion. Note that the autisera Gamma distribution to account
for the gradual recruitment of fibers which are assumed tavehnearly elastic. Due to the
recruitment distribution (which should not be confusedhwiite fiber dispersion distribution),
the final stress-strain relation is nonlinear.

[Driessen et al., 2005] studied the biaxial behavior of thieral wall and the aortic valve,
where the artery is modeled as a thick walled cylinder (feif [Holzapfel et al., 2000]), while
the aortic valve leaflet is simulated in the closed configanatising finite element analysis.
They use a neo-Hookean material law for the isotropic matng an effective stress-strain
relationship for the collagen fibers. A unimodular discredemal probability density function
accounts for the fiber dispersion, limiting their model tdanar fiber distribution.

[Freed and Doehring, 2005] introduced an alternative pladir@ctional invariants (similar
to [Gasser et all, 2006]), baseoHoh and I, denoted/,,, and /5, where the angle brackets
represent the dispersion invariant. To compute this dssperinvariant, they use a tenskir
which reduces td ® M in the absence of splay, leading fg, = I, and 5, = I5. Using
the set{],, I, I5, I 4y, 5, } as integrity basis, the authors develop a constitutive taaudor
the Kirchhoff stress tensor. To account for the anisotrtipy,authors use the Gaussian distri-
bution to compute the splay invariants via an integral olerunit half-circle (in theD case)
or the unit half-hemisphere (in tt&D case), including the deformation tensorfor 7., and
C? for I 5, respectively. The integrals defining the stiffness temslated to anisotropy can be
solved analytically, making their approach suitable fore#ictient finite element implementa-
tion. Nevertheless, the analytical solution requires thmmex error function to be evaluated
for the stiffness tensor and the fiber dispersion is restlitd the transverse isotropic case.

The model of [Caner et al., 2007] accounts for the fiber-mathiear interaction by a sepa-

rate term in the strain-energy function and uses an (inyexggonential distribution function

2We changed their notation to be consistent with our notation
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to model the collagen fiber distribution, where the authaiktbis function ‘anisotropy func-
tion’. Since this anisotropy function depends only on ongl@nalso this model is limited to
two-dimensional (in-plane) fiber distributions (or, if galized to3D, transversely isotropic

distributions).

In [Kroon and Holzapfel, 2008], the authors apply the moddHnlzapfel et al.| 2000] to
model discrete tissue layers, where the fiber orientatiangwith each layer and are uniformly
distributed over the azimuthal angle. The fiber stiffnesgach layer changes according to
a discrete, triangular stiffness distribution. This agmiois only capable of modeling planar
distributions and it models a distribution of stiffnessather than fiber orientations. Hence, the
distribution parameters cannot be obtained from histollginalysis and the authors fitted eight
stiffness parameterg:,, ...k } to experimental data from mechanical tests. This corredptm
eight layers, each reinforced with one collagen fiber famiith a stiffnesst;. Note that only
one of the two material parameters from the model of [Holebef al.,l 2000] is varied while

the other parameteky) is kept constant.

In [Ateshian et al., 2009], the material parameteys) and(;(n), : = 1,2, 3, in the strain-
energy function are functions of the direction veatorThe authors chose an ellipsoidal dis-
tribution for this directional dependence, yielding sixgraeters for the fiber dispersion, and
apply a power-law SEF depending on the square of the fibecktte model the mechanical
behavior of cartilage. Their model accounts for the osnyatassure and uses the discretization
of the unit sphere as a geodesic dome to solve the integralse@auchy stress and the spatial
elasticity tensor. Due to the lack of experimental dataatiiors did not fit the fiber distribu-
tion to histological data but chose the dispersion paramete the model fits data reported in
literature. Although their model proposes six materiabpagters for orthotropy, they only use
a transverse isotropic distribution fgr i.e., (, = (3, and an isotropic distribution fax, i.e.,

] = Qg = Q3.

In [Raghupathy and Barocas, 2009], a closed form solution gbexialized constitutive
model based on the work af [Billiar and Sacks, 2000, Driess@h 2007] is derived. Al-
though this provides an enormous speedup compared to #gramion of the stress over the
fiber distribution, it has two major disadvantages: firstiaes not account for the different be-

havior of fibers in tension and compression and second, assisicted ta@2D fiber dispersions.
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Also [Federico and Gasser, 2010] adopted the model of [Gassd. [ 2006] to include the
extremal case of an in-plane arrangement of fibers and fahevangular integration approach.
Their model uses a quadratic polynomial to account for tmrdmution of collagen fibers to the
SEF. This allows the authors to use a spherigdsign to perform a rather complex integration
over a unit sphere and implement the model in a finite elemanmdwork which they use to
simulate cartilage in an unconfined compression and a doptablem in the hip joint. For
the simulations, the dispersion was varied linearly fromlana@r isotropic dispersion in the
superficial zone to a completely three-dimensional isatrdspersion in the middle zone and
nearly aligned, transverse isotropic distribution in teep zone. The material parameters were
chosen to qualitatively fit experimental data, which werequantitatively compared with the

model output in this work.

In [Holzapfel and Ogden, 2010b] the authors discuss the hafd&asser et al., 2006] for
the range ofx € [0,1/2], with k = 1/2 as the extreme case of a two-dimensional isotropic
distribution, where they show that the range betwé&erand !/2 yields undesirable effects.
Moreover, the work shows the adaptation of the fiber disparsiodel of [Gasser et al., 2006]
to a planar fiber distribution. We will see very similar reésuh the work we present here, as

the adopted model is a special case of the model presentedtiorg5.

All mentioned models based on the work lof [Gasser et al., PA@8&ume a rotationally sym-
metric distribution of collagen fibers around a preferre@ffithrection, an assumption which as
been shown to be inappropriate for the arterial wall. F& thason, [Alastr@ et al., 2010] sug-
gest a truly three-dimensional PDF to account for the ndatianally symmetric distribution.
Specifically, the Bingham distribution is applied to reprage collagen fiber dispersion, but
due to the lack of histological information the authors dod obtain the parameters of this PDF
from histology but from data fitting to uniaxial tensile ®sfhe researchers compare two dif-
ferent material models, namely the exponential model ofZbiofel et al., 2000] and the eight-
chain modell[Arruda and Boyce, 1993] for a transversely ggotr material [Kuhl et al., 2005,
Alastrie et al., 2009a]. In order to obtain a high accuracy, the nioa@antegration requires a
high order of discretization to perform the integration.eTduthors state that non-linear trans-
formations might reduce the number of necessary integratas proposed in [Alastewet al.,
2009b].
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In the work of [Agianniotis et al., 2011], the fiber recruitmeof collagen is modeled us-
ing a log/logistic probability function, whereas the fibasgkrsion is represented by a two-
dimensionalvon Misesdistribution. This allows for a planar fiber distributiongtecting the
three-dimensional dispersion of collagen fibers. The vafulke concentration parameter of the
PDF is fitted to mechanical experimental data and not ohtdiroen histological data. Elastin
is modeled as a transverse isotropic material, yieldingsattaopic and an anisotropic material

parameter for the mechanical behavior of elastin.

In the work of [Gasser et al., 2012], the PDFlof [Alagtrt al., 2010] is adopted and incorpo-
rated into two different models, a phenomenological oné ait exponential SEF and a model
with a triangular PDF for the recruitment of collagen fibexading to a piecewise stress-strain
relation. They apply their model to a AAA wall and obtain igitel relations for the stress in
the circumferential and the axial direction. To solve fae ttagrangian multiplier, they use the
membrane approximation, i.e., they neglect the stressdialrdirection (transmural stresses)

which are believed to be important from a clinical point céwi

In [Pandolfi and Vasta, 2012], the modelof [Gasser et al.6PB0extended by incorporating
a higher-order statistical measutec [0, /15| to reduce the differences between the GST and
Al formulation. To obtain this measu¥g the approximation of the average anisotropic strain-
energy function contains also the quadratic term of thedFagipansion around the mean value
of the fourth invariantl,. This requires a fourth-order tensbir = (H ® H) whereH iJ% the
original structure tensor from [Gasser et al., 2006], se€®d), and the angle brackets denote
the averaging over the unit sphere. By utilizing then Misesdistribution, the authors find
that the incorporation of reduces the difference to the Al formulation compared toGISE

approach for uniaxial, biaxial and shear deformation.

Note that some authors include a PDF to represent the engagerhcollagen fibers and
some utilize two PDFs, one for the collagen fiber recruitmaamd another to capture the fiber

dispersion. An overview of the discussed models is givealief3.1.

*We changed the variable names to be consistent with ourioiotat
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3.5 Shortcomings of Existing Models

As we have seen in this chapter, most models do not use inflarmiom histological data
to obtain structural parameters describing the fiber dsper This is also owed to the fact
that the quantification of fiber orientation and dispersi@mnt histological data is challenging
and requires a well defined experimental protocol. Sincéigtt et al.,| 2013a] showed that
diseased arterial walls show also a significant out-of-ldispersion, two-dimensional fiber
dispersion models might not be appropriate. Therefors,tiié aim of this work to develop a
straightforward and computationally efficient constitatmodel which is based on experimen-
tal data and capable of describing the nonlinear behaviartefial wall tissue. Some existing
models are very sophisticated but computationally expensihich is especially in the context
of finite elements and high mesh densities a problem and iegpagotential future application

in a clinical setting where high performance computers ateawvailable.

Table 3.1: Overview of existing fiber dispersion models. The column ‘Fortiouladescribes the ap-
proach originally presented in the cited paper, ‘Parameters’ refers@plgrameters describ-
ing the fiber dispersion and does not list mechanical or any other paranaeig the abbre-
viations ‘RS’, ‘OT’, ‘IP’ and ‘DD’ mean rotationally symmetric, orthotropia) plane and

discrete distribution, respectively.

Reference Formulation PDF ParameteraD/3D  Dispersion
[Holzapfel et al., 2005a] - - p 3D RS
[Gasser et al., 2006] GST von Mises K 3D RS
[Pandolfi and Vasta, 2012] GST/AI von Mises Ky R 3D RS
[Federico and Gasser, 2010] Al von Mises b 2D/3D RS
[Alastrué et al., 2010] Al Bingham Ko, K3 3D oT
[Gasser et al., 2012] Al Bingham K1, Ko 3D oT
[Freed and Doehring, 2005] Al Gaussian o 2D/3D RS
[Sacks, 2003] Al discrete/Beta ~v,0 2D IP
[Driessen et al., 2005] Al Gaussian o 2D P
[Ateshian et al., 2009] Al ellipsoidal glf,%fa,g 3D oT
[Agianniotis et al., 2011] Al von Mises b 2D IP
[Kroon and Holzapfel, 2008] discrete triangular E,, E, 2D/3D DD, IP
[Caner et al., 2007] Al exponential C1y Co 2D PD
this thesis GST bivariateon Mises «;,, k, 2D/3D oT

ip» vop
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‘If you want to understand function, study structure.

FRANCISH. C. CrICK

This quote of F. Crick, a co-discoverer of the structure of A molecule, is one of the
premises of biomechanics which states that function f@dl®ivucture and mecharHcsAs
we saw in sectioh 113, collagen fibers are the main load bgadnstituents at high strains and,
therefore, their structural arrangement is of crucial intgpace. Until the work of [Schriefl et al.,
2012a], in which the orientation and dispersion of collafieers in the human aorta was quan-
tified, no comparable data were available. Hence, also treemalescribing the mechanical
behavior of the arterial wall were not based on experimgntalinded dispersion data of col-
lagen fibers.

In this chapter we first introduce the basics of probabilitgdry and define a coordinate
system to describe the fiber dispersion. After that, we viditdss the results of [Schriefl et al.,
2012a] and motivate the use of the bivarigten Misesdistribution to represent the dispersed
collagen fibers. To fit this probability density function (Pto experimental data we introduce
maximum likelihood estimation, well-suited method to detme parameters of distributions.
At the end of this chapter, we show results of fitting the PDHEigpersion data obtained by

various experimental methods, see chdpter 3.

'Mechanobiology states that structure follows functionatvs not a contradiction to biomechanics but just a

different approach.

45
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4.1 Probability Density Functions

The concept of the probability density function (PDF) akows to describe the probability
of finding a fiber in a certain direction iBD space. First, we will start with a very general
definition and then later in this chapter define a specific fofrthis PDF and show how to
ensure that a given PDF fulfills the necessary requirements.

The probability of a random variabl& to be in the intervala, b € X with X being the
sample space oX is given by the PDp(x) defined as

b
Pla<X <= /p(x) dz, (4.1)
and has to fulfill
p(x) > 0Vz e X, /p(a:) de =1, 4.2)
x

where eqs.[(4]2)and [4.2) are two requirements of every PDF, i.e., it has to be nonthega
and its integral over the whole domain has to be equal to coren@lization condition), respec-
tively. After defining the PDF, we can introduce the cumuwiatlistribution function ofX, given
by Cx(z) = f p(a) da, which describes the probability that will take a value less or equal
to x, i.e.,CXE;)) = P[X < x]. With this function, we can compute the probability ¥fbeing
in the interval(a, b] by Pla < X < b] = Cx(b) — Cx(a). Because of the non-negativity of
the PDF given in eq[(4.1)the CDF is (not necessarily strictly) monotonically in@ieg and
reaches the limiting valuc=,;s£i>r_r10o Cx(z) =0 a”d}LIEO Cx(z) = 1 [Montgomery and Runger,
2010].

Remark. Note that the boundaries in the latter two equations,+eq andoo, are actually
the boundaries of the sample spatand not necessarily infinite. Especially for periodic PDFs,
the boundaries could be, e.g-;r and 7. We adopted the notation from the most common
textbooks and leave it to the reader to adjust these defisito the specific problenil

We can parameterize a PDF by defining a parameter vectof p, p,, ..., p,} containing
unspecified parametegs which, e.g., determine the shape and location of the PDFwaite

the resulting PDF as(z | p) [Lyons,/ 1989, Evans et al., 2000] .
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4.2 Coordinate System

We have to set up a suitable coordinate system to matherhatiepresent the structural data
we obtain from histology. Motivated by the experiments aftiBefl et al.| 2012a], we introduce
the coordinate system shown in Hig.14.1 where the unit védtis expressed through the two
Eulerian angle® and® by M ($,0) = cos O cos P e, + cosOsin P e, + sin © e;. Without

loss of generality, we align the preferred fiber directiothvihe1-direction and define a normal

direction which we align with th8-direction of the coordinate system.

T3 rcos® dd
T2 P 3
o rd©
/// !
- |
o dO_~T1 ds
~ |
e3 //// /:\
€9 /// ////’// =) \\\
o -7 X\do N
= o
Z ) .

rcos ©

Figure 4.1: Unit vectoM (¢, ©) defined by the Eulerian anglésand®© in the3D space. SincéM|| =
1, the differential surface of the unit sphere described/big d.S = cos d®dO. We align the
1-direction with the preferred fiber direction and thelirection (for symmetric out-of-plane
dispersion) with the radial direction, therefore we refer to the anlasd© as the in-plane

and out-of-plane angles, respectively.

Although the coordinate system looks similar to the one gesd in [Gasser et al., 2006],
there is a subtle butimportant difference: our approacis doeinvolve an angle rotating around
the preferred direction (like the anglein [Gasser et all, 2006]) since there is no experimental

evidence for a rotationally symmetric fiber dispersion ia #nterial wall.
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Figure 4.2: In (a), the three-dimensional representation of the bivar@mteMisesdistribution in the
®, ©-plane with two concentration parameteg, = 2 andb,, = 5, is shown. Panels (b)

and (c) display the two separate functigng(b;,, ®) andp,, (b, ©) which are multiplied

op>

to yield an orthotropi@dD fiber dispersion function.

4.3 The Bivariate von Mises Distribution

The coordinate system defined in the previous section allmsis introduce a probability den-
sity function p(M (@, ©)) describing the fiber dispersion in the reference configomasis a
function of the unit vectoM (®, ©) in 3d space. The PDF has to be normalized, c.f.[eql {4.2)

so the integration over the unit sphefeields
1
—/,o(d),@) ds =1, (4.3)
4
S

wheredS = cos © dO© d® and the factot /(47) normalizes the surface of the unit sphere to one.
After this very general introduction, we can specify the RialBed on histological observations
in [Schriefl et al., 2012a,d] which yielded angular data efitirplane collagen dispersion of the
intima, media and adventitia of the thoracic aorta, the abdal aorta and the common iliac
arteries. In|[Schriefl et al., 2012a], the out-of-plane anghs not been measured separately
for every layer because the distributions out-of-planevarg similar at all anatomic locations

and layers. Moreover, the authors observed no correlagbmden the dispersion in-plane and
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out-of-plane, meaning that the fiber dispersions in theargd are independent of each other.
Note that in-plane corresponds to the-plane in Fig[ 4.2 and out-of-plane is the dispersion in
the 3-direction.

A PDF representing a fiber distribution has to fulfill the syetng of a fiberp(M) = p(—M),
which is equivalent (P, ©) = p(® + 7, —O). Based on the experimental results presented
in [Schriefl et al.| 2012a,d], we identify two additional srymtrieg of our density function,
namely the symmetry in-plang®, ©) = p(—®, ©) and the symmetry out-of-plang®, ©) =
p(®, —0). Moreover, the independence of the dispersion in-planeatdf-plane allows us to
split the density function in a multiplicative way, i.2(®,0) = p;,(®)p,,(©). With this split,
the symmetry requirements readgg®) = p;,(—®) andp,,(©) = p.,(—0O).

Based on these observations we choose to represent the fpersion with ar-periodic
bivariatevon Misedistribution [Mardia, 1975], a PDF which takes the azimutnagle® and
the elevation angl® as arguments and features the symmetries discussed iretheys para-

graph. The bivariateon Misesdistribution is a multiplication of twar-periodic von Mises

distributions given by

p(®,0) = N, exp(by, cos 2®) exp(byy, cos 20) = Npip (bips P) pop (bop, O), (4.4)

ip»

whereN, is a normalization constant dependingignandb,,,. A plot of this 3D distribution is
shown in Fig[4.R.
The original r-periodic von Misesdistribution p(«) [Mardia and Jupp, 1999] was already

introduced in eq[(3]5), and is given by

Sy plbeos(2(a — )]

27 1,(b) ’ (4.5)

whereb > 0 is the concentration parameter gmds the location parameter defining the shape
and the location of the distribution, respectively. Therdisition is normalized by, (b), where

I,,(b) is the modified Bessel function of the first kind of ordedefined as (c.f. eq.(3.6))

I,(x)= %/exp[w cos(a)] cos(na) da. (4.6)

0

’Here, symmetry means a fiber dispersion symmetric arounchéie fiber orientation in the respective plane.
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A plot of this circular distribution for different conceation parameters is shown in Fig. 3.1,
where the location parameter is sette= 0° for all distributions. This form of theon Mises
distribution isw-periodic, a close approximation to the wrapped normatidistion, simple and
yet sufficient to describe experimental data very well as Wesee in this chapter. We use
maximum likelihood estimation to obtain the parametgrsandb,, of the PDFsp,,(®) and

Pop(©), respectively, therefore we will introduce this methodkia tollowing.

4.4 Maximum Likelihood Estimation

In this section, we will give a short introduction on maximuikelihood estimation (MLEB
which will be used to obtain the parameters of the RID#|p) since it has many optimal pa-
rameters in estimationz)(sufficiency: the MLE estimator contains the complete infation
about the parameter of interesij)(consistency: the true value for the parameter that gegerat
the data is recovered asymptoticallyi;) efficiency: the lowest possible variance of parameter
estimates is achieved asymptoticallyy)(parameterization invariance: the same MLE solu-
tion is obtained independently of the parameterizatiomuger proofs of these properties see
[Miura, 2011].

Remark. Very often least squares estimation (LSE) is used to deterparameters of dis-
tributions. It should be noted that LSE is not a method foapseter estimation but an approach
that is primarily used with linear regression models. Altgb it is possible to determine pa-
rameters of a PDF by minimizing the sum of squared errors {y8tdone in LSE), this method
has several disadvantages as we pointed out in [Schriefl @0412¢], hence we prefer the pa-
rameter identification via MLE. Nevertheless, in chapteresuge LSE to fit parameters of the
constitutive model to mechanical data, an application @h&E is widely accepted

From experiments, we obtain a data vediore= {0,,0,,...,0,} containing the measured
fiber angles. We define the number of angles in a certain iatérom 6, to 6, , asy, =
{count () V6, < 6 < 6;,,}. The collection of these numbers of angles in a certain, widse

times constant, interval, gives the *histogram’ vegto he boundarie8,; define the bin size of

3MLE was invented by R. Fisher, the father-in-law of G. E. PxBdho we get to know at the beginning of the

next chapter.
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the histogram, if, for example, the bin size is chosen t6°bend the range of admissible angles
isf € [—90,90), we gety; = {count(d)V —90 <0 < -85} ory, = {count(d)V —75 <0 <
—70}.

Note that when we use second harmonic generation (SHG) diptmoion microscopy (MPM)
to determine the fiber orientation and dispersion, we dy@titain an intensity spectrum which
can be interpreted as a histogram vector.

The vectorf can be seen as a random sample (i.e., a set of observationsafr unknown
population. This population is described by a probabilgysity distributiorp(€|p), andé is a
realization ofp for a specific choice of the parameter veg@ndn samples. If individual obser-
vations#; are statistically independent of one another, the PDF od#tad = {0,,0,,...,60,}
can, given the parameter vecimrbe expressed as a multiplication of PDFs for individual ob-

servations,

n

p(0 ={0,,0,,....0,}[p) = p(01]p) p(02|P)...p(0,|P) = Hp(ei ). (4.7)

=1

According to the PDF some set of data is, for given paramgatesse probable than another set.
If we look at thevon Miseddistribution we see that for, e.g., a large concentraticaupater

b, a ‘peaked’ distribution is more likely than an isotropiceorSince we already observed the
data, we are confronted with an inverse problem: we havedtseahd know the function which

generated them (at least we assume to know the underlying, RB& now we have to find the

parameters of the PDF which are most likely to have genethtedata. To solve this inverse
problem, we define the likelihood function by reversing tbkes of the data vectd and the

parameter vectap, i.e.

L(p|O) =p(@]p). (4.8)

Here,L(p | @) represents the likelihood of the paramateagiven the data observed éhand is
therefore a function gb. Since the functions are defined on different scales, tregatrdirectly
comparable with each other. More specifically, the PDF ieefion the data scale since itis a
function of the data given a particular set of parametere. liKelihood function, in contrast, is
a function of the parameters given a particular set of datisathus defined on the parameter

scale. We can interpret the likelihood function as the iil@bd of a particular parameter value
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for a fixed data set, where the likelihood has the interpi@tadf an ‘unnormalized probability’.
For a model with one parameter, the plot of the likelihoodction is a curve, whereas for e.g.,
two parameters the resulting visualization is a surfac@énparameter space. Once we have a
set of data, we can find the most suited set of parameters faiveen distribution. The method
of maximum likelihood estimation seeks to find the set of peters which maximize the
likelihood function. Hence MLE seeks to find the parametéthie PDF making the observed
data most likely.

Since the logarithm of a function and the function itselfé#ive same maximum, the compu-
tation of the MLE estimate uses the logarithm of the liketiddunction, i.e.Jn £L(p | ), rather
than£L(p|@). We want to maximize the function, therefore we look for tbets of the first
derivative of the likelihood function, and since the shap¢he likelihood must be convex in
order to be a maximum and not a minimum, we require the secenadive to be negative for

all parameter estimates, i.e.,

2
OmLlp|8) _, L6 (4.9)
op; p;

In general it is not possible to obtain the analytical solutof the MLE estimate, the MLE
estimate must therefore be found numerically using noaliraptimization algorithms, e.g.,

with themle command in M\TLAB.

4.5 Fitting of Arterial Collagen Dispersion Data

Fitting of Two Fiber Families.  In [Schriefl et al.| 2012c], we showed an automated method
to determine the orientation and dispersion of collagendiblem2D images. Therein we used
the von Miseddistribution and MLE to obtain the principal direction andpmersion values of
collagen fibers in a human intima.

Since the arterial wall is often reinforced with two disptdiber families, we might find an
overlapping region in the histogram of fiber angles, seeefample, Figl_4)3. In this case we
use a mixture (additive superposition) of twon Miseddistributions, given by

2

Prix(P) = p1(®) + po(®) = Z e CO;O((21)(»()I) — 'ui))],

(4.10)
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Figure 4.3: Panel (a) shows an in-plane section of the intima of a thoradiz which was obtained
by polarized light microscopy and picrosirius red staining. The white ahbhes labeled
0° and90° represent the circumferential and axial direction of the vessel. Inl glapehe
angular fiber distribution of the image in panel (a) is shown. We used maximeaiihtiod
estimation of two superimposean Miseddistributions to determine the fitting parameters,
i.e.,b; = 2.503, u; = 39.6°, by = 2.149, uy = 39.4°, clearly indicating two symmetric fiber
families [Schriefl et all, 2012b].

to fit the dispersion data and account for the superpositidwao fiber families. Hence, the
concentration parametebg andb, and the location parametens andu, of the two distribu-
tions are fitted. It is not required to normalize the mixtuf¢he twovon Misedlistributions in

(4.10) since itis only used in the fitting process to deteentire four fitting parameters and the

data is not normalize(L[gLoJ*ns. 1989]. If there is only one ffifzanily present as, e.g., for the

out-of-plane dispersion, only onen Misedistribution and two distribution parameters have

to be determined.

The result of the fitting procedure is shown in Hig.]4.3 wheeesge two peaks and a sub-
stantial amount of fiber dispersion. Moreover, the goodédis measures §* andp-value)
indicate that two superimpose@n Miseddistributions are suitable to represent the fiber dis-
persion. Note that Fourier power spectrum analysis yietdsiensity plot and cannot directly
be used for the parameter estimation using MLE. Instead, seetle histogram to infer the

underlying angles which ‘generated’ this intensity disition required for the MLE procedure.

For details regarding the data analysis and parameteragtimseel[Schriefl et al., 2012c].
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Figure 4.4: Collagen fiber dispersion taken from [Schriefl et al., 20a8d]fitted with avon Misedis-
tribution, from which the location and concentration parameters were detamitanel (a)
shows the in-plane dispersion of the media of the common iliac arteries, wheréber
family is visible. In panel (b), we show the out-of-plane dispersion, wliee angular distri-
bution was obtained from the whole arterial wall. The obtained parametgrg ar 2.84 and
bop = 25.3, with R? values 00.974 and0.970, respectively. Note that for both distributions
the location parameter ~ 0°, i.e., the distribution is aligned circumferentially in-plane and

axially out-of-plane.

In Fig.[4.4(a), the result of fitting one fiber family is showhgain, the highRk*-value indi-
cates that thgon Misedistribution is very suitable to fit dispersed collagen fiéber

Fitting out-of-plane Data. While in [Schriefl et al., 2012b] we show the applicability of
thevon Misedistribution to represent the in-plane dispersion, algoaiht-of-plane dispersion
has to be considered. Therefore, we fitted the data of [Sthtiel.,|2012a] where also the
out-of-plane dispersion of the human aorta was assessedigé4.4(b). Again, the good fit
suggests that theon Misedistribution is a good choice to represent the dispersiaotbdgen
fibers in human arteries. The work of [Schriefl et al., 20138 &hows that th@on Mises
distribution is also applicable for diseased arteries Wwhibhow a much higher out-of-plane

dispersion than healthy arteries.
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Fitting of Dispersion Data Throughout the Arterial Wall.  While [Schriefl et al., 2012a]
were the first who quantified the collagen fiber dispersiométtuman aortic wall, the method
to obtain the dispersion data is quite laborious since fibhgles had to be measured manually.
To overcome this problem, the same group presented an aigtdmathod to quantify the three
dimensional structure of collagen fibers using opticalrmhggand second-harmonic generation

imaging [Schriefl et all, 2012d].
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Figure 4.5: Result of the fitting procedure from data recgidin Table[4.1. The top panel shows the
fitting results of the angl@ through the depth of the specimen, where at first two different
fiber families are visible. Aroun?30 nm, only one fiber family which is oriented circumfer-
entially can be seen. In the lower plot, the dispersion parameteplotted [Schriefl et al.,
2012d]. In the region from 00 to 200 nm (corresponding to the adventitia), two highly
aligned fiber families around:45° are visible. After that, the media is reinforced with two
fiber families which are oriented much closer to the circumferential directionfeature

much higher dispersion.

This approach yields three-dimensional image stacks, ldcastacks, where each image
shows the in-plane distribution of collagen fibers. The aedeers obtained the continuous
three-dimensional fiber distribution with a resolution okadegree to determine both the fiber
orientation and dispersion throughout the entire arteval using the methods we presented in

[Schriefl et al.; 2012c]. We use their data to compute an gedraalue, i.e,, an average mea-
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sure of fiber dispersion of the whole arterial wall. In Eidd,4one exemplary result of this fitting
procedure throughout the arterial wall is shown. We idegdifan inhomogeneous distribution
of fiber orientation and dispersion depending on the depthralated to the structure of the
wall. For example, in the adventitia (approximately thet f#%) nm) the fibers are more aligned
and oriented more towards the axial direction comparedrteratgions.

It also should be noted that the histology varies strongtywben each specimen, as it is the
case for every biological tissue. We nevertheless comauexhge values for the principal fiber
orientation and fiber dispersion and, therefore, homogethe tissue. For the fiber angle we
take the mean value of all orientations in the wall, but fa tlispersion the median is a more

appropriate measure since in a small region the values diffesiderably from the others.

Table 4.1: Results o measurements of human aortas as described in [Schriefl et al.,| 2012dgand
scribed in the text. The data were obtained by maximum likelihood estimation anddyglde
list of principal orientationg: andb;,-values for each data set, from which we calculate the
mean and median. One exemplary datagdf) (s shown in Figl 4.5 where the fiber orientation

and dispersion through the thickness of the arterial wall are depicted.

Datarecord +xin° meanofb;, median oft;,

1 27 2.23 1.49
2 28 24 1.54
3 16 2.07 1.88
4 14 1.69 1.64
5 22 1.5 1.3
6 23 1.56 1.39
7 19 1.2 1.26
8 28 1.58 1.36
9 32 1.96 1.3
Mean 23.2 1.8 1.46
Variance 36.7 0.151 0.041

Standard Deviation 6.05 0.389 0.202
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In the end, we take the mean of these measures as the inpaiblearifor the constitutive
model. Note thab,, is a measure for the in-plane dispersion and is used in oh&gtecom-
pute an integral measure of dispersion for the constitutieglel. In chaptelr]6, we use these
histological parameters in the fitting procedure to deteenthe mechanical parameters of the
model. Since the interspecimen variability is that high amddo not have the histological in-
formation of the specimens used for fitting the mechanictd dachaptetr 6, we do not restrict
the histological parameters completely. Instead, we all@m to vary within the boundaries of
twice the standard deviatiB,nsince the mean value two times the standard deviation contains,

assuming a normal distribution, approximat@$26 of the data.

“The standard deviation is the square root of the varianecTaeld Z.11.






5 Novel Constitutive Framework

Considering Fiber Dispersion

‘Essentially, all models are wrong, but some are useful.

GEORGEE. P. Box

As we have seen in chaptér 3, there are quite a few consétatadels in the literature which
account for the fiber dispersion in soft biological tissuee Néve also seen that a few of them
are capable to represent the ‘real’ distribution of coltagbers in arterial tissue, and most of

them are computationally very expensive.

In this chapter we present a novel structural continuum raueicll framework which incor-
porates fiber dispersion and is at the same time comput#lyieificient. First, we introduce a
structure tensor to describe an orthotropic fiber dispamsithout specifying a particular choice
for the PDF. Then, we use the bivariaten Miseglistribution to represent the three-dimensional
fiber dispersion and show some special cases of fiber dispersiinally, we propose a SEF
which is the basis to derive the stress and elasticity tsnsguired for a finite element im-
plementation of the constitutive law. We will see that ourgwsed model is indeed useful in
chaptef® .

59



60 5 Novel Constitutive Framework Considering Fiber Dispersi

5.1 Structure Tensor for an Orthotropic Fiber Dispersion

We use a structure tensor to mathematically quantify the @tspersion, which in the end will
be incorporated in a strain-energy function (see settifjy describing the material behavior.

As shown in sectiop 33, we can define a structure tensor diogpio

H:i/p(M)M@@MdS, (5.1)
47
S

which accounts for the fiber orientation throulghand fiber dispersion through(M). Since
the dispersion function is orthotropic, all off-diagonahgponents vanish.

As shown in section 413, we decompose the RIDF, ©) into two density functionsp;,(P)
andp,,(©), describing the in-plane and out-of-plane dispersiorpeetvely. Hence the prob-
ability of finding a fiber oriented wittM (¢, ©) is given by p(®,0) = p;,(P)p.,(©). Be-
cause the symmetry of the PDF still has to be fulfilled, we egp,,(®) = p;,(—P) and
Pop(©) = pop(—0).

With this multiplicative split of the PDF we can easily vgrthat the off-diagonal components
of H vanish by examining at the properties of the two PDFs andritegration boundaries in

eg. [5.1). Upon rewriting the latter equation, we obtain

T 7'1'/2

1
H= - / / Pip () pop (©) M ® M cos © dO d . (5.2)
™

b=—7 O=—7/2

When we take a look at the off-diagonal componentMaf M we find () cos® © cos ® sin ®,

(i) cos® © cos P sin © and §4i) cos® © sin ® sin ©. Remembering that both,,(®) andp,,(©)

are symmetric functions, we can conclude the following: ijntlfe trigonometrical functions

in & are symmetric and asymmetric, hence the product is asyntnaein the integration from

—n to 7 with p;,(®), a symmetric function, yields zero. I and ¢i7) the functions oo are

asymmetric, hence the integration of the product wit{©), a symmetric function, vanishes.
With these properties, the structure tenslorepresents an orthotropic fiber dispersion with

the components

Hyy = Kop(C' = 3kyp),  Hoy = 3Rk Hys =1~ Chgp. (5.3)

op>
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In eq. [5.8) we introduced three abbreviations for the irgksgconstituting the main diagonal
of H, namely two dispersion measureg andx,,, describing the dispersion in-plane and out-

of-plane, given as

. w/2
1 1
Fip = 3 /pip(cb) sin’ @ d®, kg, = 1 /pop(@) cos’ ©dO, (5.4)
T
b=—7 O=—m/2
and a constant
1 T
C= = /pip(q)) dod. (5.5)
S=—7

In the next section we will construct the structure tendomn a convenient notation with a

particular choice of the density functigii®, ©).

5.2 Incorporating the Bivariate von Mises Distribution

In sectiori 4.B we demonstrated that the bivanae Misedistribution is very suitable to repre-
sent the fiber dispersion in the arterial wall. The PDF hasiffdlfthe normalization condition,

given in eq.[(4.8), which can be rewritten as

w/2 T
/(@ ©)dS = N.(byy, byy) / 71 (©) cos © dO / Fop(®) dP = 471, (5.6)
S O=—m/2 P=—17

where the bar indicates that the PDF is not normalized yeteg. (4.4). From eq[(5.6) we can

determine the normalization constant

bop 4
T Io(bp)erf(y/2b,p) €xp(byp) ’

whereerf(e) is the error function defined as

No(bip, bop) =

ip»

(5.7)

erf(x

§\w

0/ exp(— (5.8)
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Figure 5.1: In this figure, the highly nonlinear relations between the corateEm parameters,,, b;,
and the corresponding dispersion measugse [1/3,1/2] ands;, € [0, 1/3] are shown. For
isotropy, both concentration parameters are zero and the dispersameders are:,, =
ki, = 1/3. In the case of perfect alignment, on the other hand, the concentratiameirs

go towards infinity and the dispersion measuresgfe= 1/2, x;, = 0.

Itis arbitrary how we distribute the constaNit on the two PDFg;,(®) andp,,(©) since the
PDFs have to fulfill the normalization condition togetheg, itheir multiplication has to fulfill
eq. [4.3); therefore, we define the probability density fiors as

1 bop €xXP|[bop (€08 20 — 1)]
in(P) = 20 =44/ 2 = 5.9
Pip(®) Tt expla(cos 22)],  pop(0) = 44/ 5~ otV (5.9)

for the in-plane and out-of-plane dispersion, respeadtivel

Although it is theoretically arbitrary how we distributesthormalization constant on the two
PDFs, it is convenient to separate the concentration paeasig, andb,,, so they are with the
respective PDF, i.ep;,(®) andp,,(©). This enables us to fit the in-plane and out-of-plane

dispersion separately.
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Using the PDFs given in ed.(5.9), the constarh eq. [5.5) is2 and the dispersion parame-
ters are given by

/2

1 b b 20 — 1
Fop = / 44/ ﬁexp[ op (€05 ) cos® ©dO, (5.10)
4 27 erf(y/2b,,)
O=—m/2
1 r 1 .2
Kip = 3 To0) exp|by, (cos 2®)] sin” dP. (5.12)
S=—7

A closed form solution for the integrals in eds. (3.10).0H.5 given by

1<1_Il(bip)>7 - 1(2_ ! eXp(_zbOp)VQ/”)_ (5.12)

— — — +
IO(bip) 2b0p A/ bop erf<\ / 2bop)

fop = 3 1
These relations allow for the computation of the conceiatngbarameters for given dispersion
valuesk;, and s, using a nonlinear solver likBindRoot in MATHEMATICA or fsolve in
MATLAB. In Fig.[5.1, the (nonlinear) relations between the comedioh parameters and the
dispersion parameters are shown. We see that for the isotrape both dispersion parameters
are!/s while for perfect fiber alignment;, = 0 andx,, = /2. With the parameters;, andx,,,

we can construct the structure tensor
H = 3kiphopl + [20p(1 = 3K5,) My @ Mg + [1 — Ko (2 + 3K;,) M, @ My, (5.13)

wherel is the second-order identity tensor avigd andM ,, are unit vectors oriented in the main

fiber direction and the direction perpendicular on the mdam@ of dispersion, respectively.

Note that these vectors coincide with theand3-direction of the coordinate system introduced
in Fig.[4.1. These vectors should not be confused WMthb, ©) sinceM is an arbitrarily

oriented unit vector in space whiM; andM , are unit vectors oriented in a certain direction.

5.3 Special Cases of Fiber Dispersions

Our model includes several other existing dispersion nwdslIspecial cases. In this section,
we will discuss some cases of fiber dispersions which are sumed in Tablé 5]1 and shown

in Fig.[5.2, wherep(M )M s visualized.
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Table 5.1: Special cases of the proposed model. The abbreviationangsPé.: perfect alignment, PI:
planar isotropy, ID: isotropic distribution, PD: planar distribution and Rationally sym-
metric distribution. The references dié [Holzapfel et al., 2000][2] [Holzapfel and Ogden,

2010b],[3] [Federico and Gasser, 2010} [Holzapfel et al., 2005a]5] [Gasser et al., 2006].

Case Conc. parameters Dispersion parameters  Structsia ten Ref.
PA by, — 00,bop, = 00 Ky = 0, Ko — 12 H=M;®M; 1]
PD bop — 00 Kop — 1/2 H =32k, =M, @ M| + (1 = 3k;,)Me @ Mg [2,3]
PI bip = 0,05, — 00 Ky, = 13, ke, =12 H=12( =M, ®M,) [2,3]
ID bip = 0,0, =0 Kip = /3, Kop = 1/3 H =1/l [4,5]
RS - Kop = 1/(3kip +2) H = 3kiphopl + [260p(1 — 3K;p) M @ M [3,5]

Isotropic Distribution. An isotropic fiber distribution is represented by a uniforie-d
tribution in both planes, meaning that®,©®) = 4r and is independent cb and©. This
distribution is characterized by;, = 0,b,, = 0) — (k;, = 1/3,K,, = 1/3) and the structure
tensor reads ad = 1/sl, featuring no preferred direction.

Planar Isotropic Distribution.  If a distribution features perfectly out-of-plane alignmbhe
(bop — o0) and is fully dispersed in-planeé,( = 0), it is planar isotropicZD isotropy). The
according dispersion parameters agg = !/2 andx;, = /3. For this case, the structure tensor
is given byH =1/2(1 - M, @ M ).

Planar Distribution. A distribution with all the fibers oriented in-plane, as meted in
[Holzapfel and Ogden, 2010b], has perfect alignment in ptage, resulting in a zero out-of-
plane dispersion. Hence we d¢ét, — c0) — (., — !/2) and the according structure tensor
isH =3/2r,,[1 =M, ® M| + (1 — 3x;,)M¢ @ My.

Note that the PDF describing the in-plane dispersign®) in eq. [5.9) is the same as
in [Holzapfel and Ogden, 2010b]. Nevertheless, the fortutafor the structure tensor pre-
sented in this thesis looks different since the in-planpefision measure;, < [0, /3] whereas
[Holzapfel and Ogden, 2010b] introduce a dispersion patamsg, <€ [0,1/2]. Also note that
any planar distribution represented by our model can beins®8D setting and is not restricted

to 2D problems.
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(a) (b) ()

(d)

Figure 5.2: Visualization of the fiber distribution defined &) M where the distance from the center

(e)

to the surface represents the probability of finding a fiber in the accodiiegtion. The

plots have been scaled differently and represent ald@ajsotropic fiber distribution; (b)

2D (planar) isotropic fiber distribution; (c) a rotationally symmetric distributiat); g non-

rotationally symmetric distribution and (e) a perfectly aligned distribution. Thedated

parameters and structure tensors are given in Table 5.1.

Rotationally Symmetric Distribution. A rotationally symmetric distribution features

only one preferred direction, meaning that two componehth® structure tensor are equal

(transverse isotropy). This is achieved by, = 1/(3x;, + 2) and yieldsH = 3k, k| +

[2f€0p<1 - 3Hip>]Mf X Mf.

Since we do not use a rotationally symmetric coordinateesyiut base our work on exper-

imental observations [Schriefl et al., 201.2a,d], the cas®tational symmetry looks different

than in [Gasser et al., 2006]. Nevertheless, the presenteklns able to represent a rotation-

ally symmetric fiber distribution as a special case whichhmlge appropriate for tissues such

as cartilage or the myocardium.

Perfect Alignment. If both concentration parameteg andb,, reach infinity, the disper-

sion in both planes becomes zero and we obtain the model pedpxy

[Holzapfel et &

Al

20

0.

With (b;, — 00,b,, = 00) = (K, — 0, k., — 1/2) and the structure tensét = M; ® My,

hence all fibers are oriented in the directior\bf.
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Table 5.2: Summary of the parameters of the proposed model. The vigtarsdM ,, are defined in the
coordinate system shown in F[g. 4.1. The column ‘Exp. method’ refers tavélyehow the
parameter can be determined, i.e., the structural parameters can be detdayrtirstological
methods while the mechanical parameters need to be fitted to mechanical tests)iaxigl

or biaxial tension).

Parameter Interpretation Range Exp. method
c[kPa] stiffness of isotropic ground matrix [0, 00) Mech. tests
k,[kPa]  stress-like parameter [0, 00) Mech. tests

ko [-] dimensionless parameter [0, 00) Mech. tests
Kip [-] dispersion in-plane [0,1/3] Histology
Fop [] dispersion out-of-plane [1/3,1/2] Histology

M; [-] preferred fiber direction hemisphere Histology
M, [-] normal direction on the dispersion plane hemisphere  tdibgy

5.4 Anisotropic Strain-Energy Function

Up to now we have only considered one fiber family with the i vectorsM; andM
defining the main fiber direction and normal direction, resipely. In order to generalize the
model to more than one fiber family we introduce the vecMsandM ,;, where the index
denotes théth fiber family. Note that our approach follows the work of [Eapfel et al., 2000]
where the volumetric part of the strain-energy is addiyiagllitted in the isochoric contributions
of the ground matrix¥, and the fiberal;.

In the following we include two fiber families which are orted symmetrically and feature
the same material parameters and equal dispersion in bextleql Hence, the superposition of

energies reads as

\Ij - \Ijg—i_ Z \iji(E>Hi("iip7’%opaMfiaMni))' (514)
1=4,6

Following [Holzapfel and Weizicker, 1998] we model the groundmatrix with a neo-Hookean

materiall, = ¢/2(I, —3), where the stress-like parametés the shear modulus in the reference

configuration.
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For the fiber contribution, we adopt the phenomenologicptagch of [Gasser et al., 2006]
using an exponential function

Ty(C.H,) = plexp(huBY) — 1), i = 4,6 (5.15)

wherek, is a stress-like parameter aid is a dimensionless parameter describing the me-
chanical behavior of the collagen fibers, see [Holzapfel.e800] and eq.[(3.10). Here,
E; = H; : (C —1) is a Green-Lagrange strain like quantity which can be imttgal as an
averaged or weighted fiber strain, depending on the fibeediggn through the structure tensor
H and the (isochoric) macroscopic deformation throGgh

Sincetr (H;) = 1, we can write the average fiber straff)y = H, : C — 1 and give an

interpretation of this quantity by
E:/p(M)E:M®Md5’—1:/p(M))\2dS—1:()\>2—1, (5.16)
S S

where()\)? is a weighted average of and hence is a weighted strain [Cortes et al., 2010].

When we perform the double contractiontdf with C we get
E; = 3kipkoply + [260p(1 — 33,) s 4 [1 — Kop(2 + 3kip) [ I — 1, (5.17)

where we introduced the directionally dependent pseudariznts of the symmetric tensdts

andC which are defined as
TfizéiMfi(ngi and I_nizé:Mni(X)Mnia Z:476 (518)

These invariants are the square of the stretches ottiHéer family in the fiber directioM

and normal directioM ,;, respectively. An overview of the parameters is given inl@&b2.
Following [Holzapfel et al., 2000, Holzapfel and GasserQM0 we make the common as-

sumption that the fibers do not resist any compression anardyeactive in tension. The

invariant I;; is used as a switch between fiber compression and tensiore weanisotropic

part only contributes to the strain-energyif > 1, which is the same approach as presented in

[Gasser et al., 2006].
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The strain-energy function used in the proposed model cpesely reads as

_ k _ B
g(f1 -3+ Y j{ exp [/@Eﬂ _ 1} L1,
T={" e ’ ) ) (5.19)
5([1 — 3) + Z j{ exXp |:k2<3'%ip’%op[1 — 1)2] — 1} if [if S 1.
i=4,6 2

As pointed out in/[Holzapfel et al., 2004], this is sufficiéot the convexity of the potential for
perfect fiber alignment, i.es;, = 0,x,, = /2. The handling of fiber compression is also a
numerical issue which is extensively discussed in [Eriksstoal. | submitted] where the authors
compare different ways to deal with compression for the rmpdesented inl [Gasser et/al.,
2006].

(a)

(b) circumferential

Figure 5.3: Panel (a) illustrates the fiber dispersion of a single fiber fanitly flocal’ coordinate system
which corresponds to the one presente@in 4.1. Thand 3-direction of this coordinate
system coincide with the preferred fiber directigl and normal directio . Panel (b)
shows two symmetric fiber families where the main fiber direction is aligned in-@ade

makes an angle with the circumferential direction.

5.5 Derivation of the Elasticity and Stress Tensors

In order to implement the model in a nonlinear finite elemertte; the tangent modulus, i.e.,
the elasticity tensor, is required. Since we want to use diftevare package FEAP, the spatial
elasticity tensor and also the Kirchhoff stress tensor nedme computed. Due to the incom-

pressibility of the material we focus on the isochoric cimitions of 7 andc, as defined in

eq. [2.28) and eq.[(2.42)
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To work with a convenient notation, we introduce the scateess function and the scalar

elasticity function as

v _ _ 9?0 _ _
U= P8 Brexp(E?) and o = S0 — k(14 2, B2 exp(k, E),  (5.20)
1)) 3
respectively. These functions are scalar measures ofibgsgtlastic response and are used in
the derivatives of the strain-energy function with resgedhe modified right Cauchy-Green

tensor, which are given by
— =¢pH,, — = YiH; @ Hy, (5.21)
0

where we usedE/9C = H andd*E/9C" = H ® H . In order to implement the finite element
method in an Eulerian setting, the push-forward of the stteissor and the elasticity tensor are
required. These tensors can be expressed by the respextige stress/elasticity function and
the Eulerian structure tensor, and we introduce the puskaia of the Lagrangian structure
tensor via the unimodular part of the deformation gradient FH,F .

The Kirchhoff Stress Tensor.  As in [Holzapfel, 2000], we split the contribution of the

ground matrix and the fibers to the fictitious stress accgrtbn
T="T,+ T, (5.22)

wheren denotes the number of fiber families. We represent the ntagamous isotropic
ground matrix by a neo-Hookean material, yielding the isochresponse of the Kirchhoff
stress according t6, = dev T, =p: T, With 7, = ch.

To obtain the stress contribution of thth fiber family, we perform the push-forward of

the second Piola-Kirchhoff stress tensor where we can @ssdhlar stress function defined in
eq. [5.20) as

_OT_ _
P = QFg—CFT — 2R, (5.23)

To finally obtain the Kirchhoff stress tensor, we have to @cojhe fictitious Kirchhoff stress

tensorbyr =p: T.
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The Spatial Elasticity Tensor. Using the equations for the elasticity tensor in the Euteria
setting, given in section 2.6, we derigefor the specific choice of our strain-energy function
W:(C,H,). We obtain the first term of ed. (2}42) the contribution of theth fiber family to

the isochoric elasticity tensor as
Ci=P:Cqy:P= 4J74/3w§;(P h)®(P:h,), (5.24)

whered,; = 47 3y h, @ h; (see eq.[(5.23)and [Z.41)). Hence, the complete isochoric

elasticity tensor in the spatial configuration is given as

C=4"N yfe:h) @ (e:h)+ gtr (7)p — ;(I QT +TRI). (5.25)
i=4,6

Considering the minor and major symmetries of the elastigtysor, which arise from the
symmetry ofE and Schwarz’s theorem, we can utilize Voigt notation andément an efficient

finite element code in the finite analysis program FEAP [Tg\2600].
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‘Computers are useless. They only give you answers.

PABLO PICASSO

This quote of Picasso is not completely true since compugrable us to obtain answers
very fast, so they are certainly not useless. Still, it isenorportant to state the right questions
and set up a reasonable framework to address them (which pestbchave achieved in the
previous chapters). Now we have to solve nonlinear probl@nts, using Newton-Raphson-
like algorithms) for complex geometries (where the finiteneént is an appropriate tool); all
methods which heavily rely on computational power.

Up to now we refined an existing constitutive model of the raatevall considering new
experimental results regarding collagen fiber dispersiditer determining the dispersion pa-
rameters of the model in sectibn 4.5, we will determine thehlmaical parameters of our pro-
posed model in this chapter by fitting it to biaxial tensiost$se Therefore, we will first derive
the analytical solution of this deformation and then show i@ implement a nonlinear fitting
procedure. After that, we simulate the inflation of a thin le@ltube, but since the artery is
thick walled and certainly not a simple tube, finite elemeralgsis is required to perform more
realistic and patient-specific simulations. Hence, we katecthis chapter by a simple example
where we compare different fiber dispersion cases for thaddiaxtension of a unit cube and
present the result using finite elements and the correspgratialytical solution. This serves
not only to validate the finite element implementation bgbab demonstrate the influence of

fiber dispersion on the mechanical behavior.

71
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6.1 Biaxial Extension

We consider a sample with two symmetric fiber families, whiee fibers make an angle

with the circumferential axis, see Flg. b.3(b). To obtaie second Piola-Kirchhoff stress ten-
sor S, we have to derive the strain-energy function with respedhe right Cauchy-Green
tensorC, c.f. eq. [2.16). Since the Cauchy stress tensor is the push-forward of thendec

Piola-Kirchhoff stress tensor, it reads as

20 B W oI, \ _r
0_2F8—CF —p|—2F<‘ E)Iic‘)C)F —pl,
i=1,4f 4n
o o o T
=2%F| —I1 + —M M M M_|F —pl
(ah o @Mt o M@ ) P
o o o
=2 —b+ —m m —m m, | —pl 6.1

where the Lagrange multiplierenforces the incompressibility condition. The vectarsand
m, are the push-forward d¥l; andM , see eq.[(2.45), artd = FF" is the left Cauchy-Green

tensor. For biaxial tension of an incompressible matehialdeformation is described by
[F] = diag [\, As, (MA2) 7], [C] = [FI'[F] = diag [A], A3, (A A2) 7]

and the unit vectors describing the fiber direction and nodinaction in the reference state are

given by
M; = [sina cosa 0], M,=[0 0 1], (6.2)
which are used to compute the invariants

[1 — )\1 + )\2 ‘|‘ )\3 - Al ‘|‘ )\2 + ()\1)\2)_2
I =C: (M; ® M) = Aisin® o + A5 cos” a,
]4n = C : (Mn ® Mn) = ()‘1/\2)72' (63)

Using the average strain (ef.(5.17)), the scalar stressi@um(eq. [(5.2D)), and the chain rule,
we obtain the derivatives of the strain-energy function as

ov
aLln N

ou
0L

ovr ¢
= + 6/{ipliop¢)éi7

0_11 T2 2[1 - Fop(2 + Smip)]qu)gia

4/{op ( 1- 3/{ip)¢;i )
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and finally get the Cauchy stress tensor

o=cb+ 4@/J§i{3mip/{0pb + 2h0p (1 — 3K;,) M @ Mg
+ [1 = Kop(2 + 3r3p) M, @ m, b — pl. (6.4)

Since we implement this equation in a mathematical softywakage, we have to write it in

matrix notation

A0 0 A0 0 Ais® AfA3es 0
[gl=c|0 X\ 0| +4¢s (3/‘€ip/‘€0p 0 A5 0| +2r0p(1 = 3ky) [ATA3es Asc® 0
0 0 A3 0 0 A3 0 0 0
000 100
+[1 = Kop(2+3k)] [000] | —p|010], (6.5)
001 001

where s and c are abbreviations fon « and cos a. Note that the surface iB-direction is
load free ¢5; = 0) which enables us to determine the Lagrangian multiglier c\3 +
4¢§i[3/~@ipmop)\§ + 1 — Kep(2 + 3ky,)] in order to solve the system of equations fg; and
0499 (Of course we could also solve for three unknowngs (o4, p) and introducer;; = 0 as the

third equation).

6.2 Parameter Fitting to Experimental Data from

Mechanical Tests

In order to determine the mechanical material parametecaiomodel, we use experimental
data from biaxial tension tests and minimize the so callgdative function
mod,d __exp,d\2 mod,d exp,d
€= Z (011, 112 )"+ (090 — ‘7222 ) ], (6.6)

d=1:1, =1

1:0,75,
wheren is the number of data points ards the data set, e.g., different ratios of a biaxial tension
test. This is equivalent to minimizing the sum of squaredrsrand also a well-accepted means

to determine material parameters.



74 6 Simulations

To quantify the goodness of the fit, we calculate fifevalue which is also known as the

coefficient of determination. It is calculated by

SSerr

R*=1-—
SStot,

(6.7)

whereSS,,, andSS,,; are the sum of squares of the differences between modetimqrd and
mean of experiment/experiment, respectively (for detsas, e.g., [Montgomery and Runger,
2010)).

In the Figs[ 6.1l and 6.2 the results of fitting the model to folaxial tension tests of two
specimen are shown. The tests were performed with the samglesand different stretch
ratios, so the datasets in eg. (6.6) dre- 1 : 1,1 : 0.75,0.75 : 1 and0.5 : 1. Each dataset
contains3000 — 3500 data points, depending on the stretch ratio, and was snbaotith a
moving average filter with a span o (specimen #1) anf0 (specimen #2) data points. After
that, we took50 datapoints from each experimental dataset (the circlesasdes in Figs. 6.1
and 6.2) and fitted them to the model. Note that all datasets fitteed simultaneously, i.e., one
set of parameters is sufficient to obtain a good fit for all fdatasets. Moreover we see the

great variability between specimen when looking at the ntada of the stresses.

Table 6.1: Initial values and range for the parameters in the fitting proeedur

Parameter Initial value Range Result#1 Result#2 mean
c[kPa] 10 0—1000 3.6 12.7 8.15
ki [kPa] 30 0-—1000  38.7 16.13 27.6
ko [-] 50 0—1000 16.83 5.27 11.05
Kip [] 0.17 0.1-0.18 0.178 0.16 0.169
Kop [] 0.49 048 —-0.5 0.48 0.48 0.48
a[deg] 25 11-35 32.51 25.46 28.88

Note that although we determined the valuessgr ,, anda in chaptef 4, we allow the fit-
ting algorithm to slightly vary these values, i.e., we defirmmall range (in sectidn 4.5). To find
the minimum, we used the functidgolve in MATLAB which uses atrust-region-dogleg
algorithm. It should also be mentioned that the parametgrand« are not independent but

depend on the starting value, i.e., the same fit can be obitaite different values of;, and
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«. This is only a problem since we allow these values to varabse we do not have specific

histologic information of the respective specimen. Usyalie parameters,,, ., anda can

be determined from distribution fitting, as described intised4.5, and hence need not to be

varied in the fitting to mechanical tests.
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Figure 6.1: Fitting of the proposed model to the results of four biaxial teriegis of specimen #1. The

plots show different stretch circumferential to axial stretch ratios of bliaggts, i.e., (a)

1:1,(B)1:0.75,(c)0.75 : 1 and (d)1 : 0.5. The results of the fit, the initial values and the

admissible ranges of the parameters are given in Table 6.1. The good gfitigy/fit is also

reflected in the high coefficient of determinatid®? = 0.9828, which was calculated for all

four fits together.
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Figure 6.2: Fitting of the proposed model to the results of four biaxial tenssts of specimen #2.
The plots show different circumferential to axial stretch ratios of biaxgtkta.e., (all : 1,
(b) 1 :0.75, (c) 0.75 : 1 and (d)0.5 : 1. The results of the fit, the initial values, and the
admissable ranges of the parameters are given in Tallle 6.1. Also this spedeited a

good fit (R* = 0.990).

6.3 Inflation of a Thin Walled Tube

We consider the inflation of a thin walled tube which is renckxd by two mechanically equiva-
lent, symmetric fiber families dispersed in two planes. Tléfiber direction lies in the plane
and makes an angle with the circumferential direction. The material paramgtare taken

from the previous chapter, see secfiord 6.2 and Table 6.1.
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By invoking a membrane approximation, the equilibrium epprett in the axial and circum-
ferential direction for a tube subjected to the internakpugep; are given by

2
— =0 i =0 6.8
0, 2h7“p1 ) o hpl ) ( )

whereh, r andr; are the height, the outer and inner radii in the current caondigon, respec-
tively. For an incompressible material, i.e,,A\g\, = 1, they are related to the respective

quantities in the reference configuration through

H H
g (6.9)

hzm7 T:)\QR, T, =T — :)\QR—TZ)\Q,

see Figl_.6.B where these quantities are depicted. Noténehathe is thin-walled, i.eH/R << 1,
and that the membrane theory does not account for the stigggbution through the thickness

of the wall (radial stresses are neglected).

H
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el LR ™ |
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Figure 6.3: (a) Thin walled tube with radiug and thicknesd{ in the reference configuration subjected
to the internal pressune. A local coordinate system r, 8, oriented in the axial, radial and
circumferential direction, is used to define the anglef two symmetrically dispersed fiber
families defined by the vectoid;; (b) closeup of the coordinate system where the normal
vectorsM ,; oriented in the radial direction are depicted. This means that the mean fiber

direction is in-plane, i.e., in the, 8-plane.

As shown inl[Holzapfel, 2000], the principal Cauchy stresseke axial and circumferential

direction read as

OT(N,, Ao, ) IV(A., Ag,7)
_ o YA A7) _ )20 ) 6.10
2 a)\z s Og /] 8)\9 ) ( )
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and substituting into ed. (8.8) yields

AV, A7) AR — (H/(2X).))?

A - =0
oA, 2HR pi="5
a@(/\m)‘efy) /\gAzR 1 -
Nt - ( o 2)pi —0. (6.11)

The equations in[(6.11) form a set of nonlinear equationshvitan be solved with, e.g.,
the fsolve command in MATLAB. Since the fibers are arranged symmetrically, the principal
stretches coincide with the radial and circumferentiatstres.

In eq. [6.11), the derivatives of the strain-energy functioth respect to the stretchas and
)\ are required. Recall that we can write éq. (5.17) in termsefriiariants/,, I,;, andl,, and
use the same direction vectdvls andM,, as in the previous example, given in €q.(6.2).

In sectior( 6.l we showed how to derive the SEF directly wigpeet to the right Cauchy-
Green tensor. Now we apply the chain rule with respect to trezage strainf. Using

eq. [5.18), we start with the invariants which are given by
L=X4XN4+N)72 Ip=Msin®a+ Mcos’a, Iy =(M\A)77%, (6.12)

and their derivatives with respect to the two independentcjpral stretches are

ol 3 ol . oIy, 3.
a)\lz = 2)\2 - 2>\z 3/\0 27 a;: = QAZ SIDQ a, a)i = _2)‘2 3)\9 27 (613)
a]_1 —3\—2 a]_4f 2 aI_4n —3\—-2
— =2 — 20"\ — =2\ = =2);"\. " 6.14

Now we are able to compute the derivativesiofvith respect to the principal stretches using
eq. [5.1¥). Thus,

OF
N

Ol
o,

oy,
an,

oI
= Bhiphiop 5y + (26001 = Briip) | S [1 = rigp (24 B (6.15)

where: = z, 6 and the derivatives in ed. (6]14) were used. Using the chéén eq. [(5.19) and
the scalar stress function in ey._(5.20)e finally obtain the derivatives of the strain-energy as
a\I/ & 8j1

, OF
o, 2an, T Vigy

0Ny 20N

, OF
+ 2wfia—)\9, (6.16)

where the factoR appears because both fiber families are symmetric, haveathe sate-

rial/dispersion properties and undergo a symmetric dedition. With eq.[(6.16) we can finally
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solve the nonlinear system of equations given inleq. (6 drl) f A\, when the pressune is pre-
scribed. In Figl_6J4 we show the results of the simulatiorefibflation test, where we compare
three different cases. For the first case (‘exp. disperkiaré took the values obtained in sec-
tion[6.2 and summarized in Talile 6.1 to perform the simutagswlid black curve in Fid. 614).
The red circles are experimental results of an inflatiorsteba media-intima composite taken
from [Sommer et all, 2010] and are drawn in this plot but ditlsgwve in any fitting procedure.
We see that, even though we fitted the material parametersttddgy and biaxial tension tests,

the results of the simulation matches the experimental afatae inflation test very well.
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Figure 6.4: In (a) and (b), the results of an inflation test of a thin walled witiethe internal pressure
p; over the axial stretch, and the circumferential stretcky are shown, respectively. The
solid black curves are the result of the simulation with parameters taken &otiors6.2,
whereas the blue dashed curves and the red dash-dotted curvethdéazeme parameters
except that the dispersion parameters are varied (see figure). db&ales are taken from
[Sommer et al., 2010] and represent the inflation test of an intima-media caenpba hu-

man internal coronary artery which are in the range of the simulation results.
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To see the influence of fiber dispersion on the mechanicamMimhave take the same me-
chanical parameters and change the fiber dispersion to etshpisotropic (red dash-dotted
curve) and completely aligned (blue dashed curve). Foepedlignment, the tube is stiffer in
the circumferential direction and softer in the axial dif@e than in the case of experimental
fiber dispersion since the fibers are oriented more closelgegaircumferential direction and
not dispersed towards the axial direction. Therefore, spatised fibers reinforce the tube in
the axial direction, resulting in an unrealistically highetch in the axial direction. In thgD
isotropic case, the material is softer in both directionsase fibers are also dispersed in the

3-direction, i.e. s, = /5.

6.4 Finite Element Implementation and Example

In this section we demonstrate the capabilities of our psegdanodel using a unit cube, rein-
forced with one fiber family which is aligned in tHedirection of the coordinate system (see
Fig.[6.5(a)). The cube is subjected to biaxial tension inltfieplane and we investigate four
different cases of fiber dispersion?)(high alignment out-of-plane and in plane;/}§ high
alignment out-of-plane and less alignment in plane conmtperease {); (/1) high alignment
out-of-plane and isotropy in plangld isotropy), and {V') isotropy in both planes3D isotropy),
see Fig[ 65(b) and (c) for details.

(a) (b) e | Gt

————~— Case III, IV

T3

y _—
A

T2

T

b

Figure 6.5: (a) Biaxial tension of a cube in theand 2-direction. The deformation is displacement-
controlled where the stretches and \, are increased td.2 and the3-direction contracts
due to incompressibility; (b) and (c) show polar plots of the dispersionsdag®” for the

in-plane and out-of-plane dispersion, respectively.
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We use the results of sectibn b.5 to implement our model iffittie element code FEAP
[Taylor,'2000]. The analytical solution and the finite elerngolution of the biaxial tension of
a cube, shown in Fig. 8.5, are depicted in Figl 6.6. We useddiferent dispersion cases,
outlined in Tabld 612, for the single fiber family orientedtire 1-direction of the coordinate

system.

Table 6.2: Four different fiber dispersions for the biaxial tension efteec Note that casds Il andl 11

feature the same (very small) out-of-plane dispersion.

Case Description Dispersion Parameters
. . . . I I

1 little dispersion in-plane Kip = 0.066, ro, = 0.48

II  larger dispersion in-plane than in cake «i, = 0.166, x5, = 0.48

IIT  2D-isotropy milpfl = 1/3,/@;] =0.48

1V 3D-isotropy /—@ifpv =1/3 H({IY =1/3

The maximum stretch in both thie and 2-direction is1.2, and the according stresses are
computed using the framework established in se¢tign 6. Hefoonstrate the influence of fiber
dispersion, we compare four different fiber dispersionsreanized in tabl€ 612. In the casés
I11, the out-of-plane dispersionig /" = 0.48, i.e., a very small amount of fibers is oriented
out-of-plane. The in-plane dispersion increases frgm= 0.066, xiy = 0.166 t0 ki1’ = 1/s.
Dispersion caséV is a3D-isotropic dispersion case where the dispersion in adidions is
equal, i.e.xly = rly = 1/.

Figure[6.6 shows a stress-stretch diagram of the stressesnd o,,, Wherel is the main
fiber direction and, 2 is the main plane of dispersion. The stress inltdirection decreases
from dispersion casé-111 since the dispersion in-plane is increased and more andfibers
are dispersed in the-direction (away from the-direction). For casdV, the out-of-plane
dispersion lowers the stress in both thend2-direction. In the2-direction, the stress increases
for casel-111 since the fibers are dispersed towardstugrection. In casdV, however, fibers
are turned towards th&direction and hence,, also decreases. Note that for cagés and
IV the stresses iit- and 2-direction are equal, i.eqli’ = oi! andoi] = oly, since the

dispersion in-plane is isotropie{’ = x{)" = 1/3).
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Figure 6.6: Panels (a) and (b) show the stress-stretch plots in the adiairaamferential direction,
respectively. The protocol is displacement-driven with a maximal stretdn2ofThe four
different cases of fiber dispersion are depicted in in[Eid. 6.5 and TabBleTe red crosses
represent the solutions of the finite element analysis while the black cuevebtained from

the analytical solution of biaxial tension, see secfion 6.1.
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‘The first principle is that you must not fool yourself and yorithe easiest person to fool.

RICHARD P. FEYNMAN

As various previous approaches have shown, incorporatisy dispersion into a continuum
mechanical framework is a challenging task. In the last tdrayf this work, we want to address
the advantages and disadvantages of our presented modedichto other approaches in the
literature.

As discussed in chaptelr 3, most of the models in the liteeadornot account for the out-of-
plane dispersion of fibers or simply model the fiber dispersie transversely isotropic. There
are some models considering an orthotropic fiber dispefsi@shian et al!, 2009, Gasser et al.,
2012/ Alastré et al., 2010], but they are computationally quite expendiWoreover, they either
do not fit the fiber dispersion function to histological datehave a rather crude experimental
approach to determine the collagen fiber orientation.

The work presented in this thesis, in contrast, is based ogfudeexperimental observa-
tions showing how to fit histological data from different eximental methods using an easy
to handle PDF and maximum likelihood estimation. Our modefuily 3D and based on
the GST approach which was introduced lin_[Gasser|et al.,]]2006is method is computa-
tionally efficient and embedded in the well-known framewofl{Holzapfel et al.; 2000]. In
[Federico and Herzog, 2008], the authors derive the GSToagprin detail and discussed its
validity for the arterial wall, where the fiber dispersiomdze approximated with a Taylor series

and the fibers are loaded in tension.

83
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7.1 Fitting of Distribution Data from Human Arteries

One of our main goals is to account for the structure of biglalgtissues in our model and
to capture the physiological and pathological mechanisntee arterial wall. This motivates
the use of the bivariateon Misedistribution to represent the collagen fiber dispersionctvh
assumes that the dispersion in-plane and out-of-planedependent [Schriefl et al., 2012a,d].

Multiple collagen fiber families including dispersion ledoverlapping regions which can-
not be fitted with a single PDF. To overcome this problem, we assuperposition of two
von Misedistributions to fit the in-plane data, yielding good resuince MLE is a powerful
tool to estimate distribution parameters. Even though lE@sares estimation is very often used
to fit distribution functions, we again emphasize that MLEis more appropriate and in most
cases the more efficient approach to determine the parayadtarPDF as we pointed out in
[Schriefl et al., 2012b].

We fitted the PDF to experimental data which were obtained vatious methods, e.g., pi-
crosirius red staining and polarizing microscopy [Schee¢fl., 2012a], second harmonic image
generation/ [Schriefl et al., 2012d], or optical clearing &G [Schriefl et all, 2012d]. With the
latter method the authors obtained a series-sfacks which could be fitted with the methods
we outlined in|[Schriefl et al., 2012d]. This yields a locat&nd a concentration parameter for
each layer and theoretically enables us to consider themogeneous structure of the tissue.
Nevertheless, we took the mean/median of the location apebsion parameters and therefore
homogenized the tissue.

Although in healthy arterial walls collagen fibers are mamiliented in-plane, the need for a
model considering the out-of-plane dispersion was emphddiy the results of [Schriefl et/al.,
2012a], where the authors observed a considerable amouwnotlagen fibers oriented out-of-
plane. More data concerning the dispersion of collagendibet only of the arterial wall but of
all biological tissues is required, and multiphoton micasy in combination with optical clear-
ing [Schriefl et al., 2012d] seems to be a powerful tool to imbtkspersion data from various

tissues.



7.2 Novel Framework Considering Fiber Dispersion 85

7.2 Novel Framework Considering Fiber Dispersion

The main goal of this work is the development of a new stradlyimotivated continuum me-

chanical model for the passive arterial wall which incogies fiber dispersion. Using the
concentration parameters of two PDFs, we defined two digpenseasures to quantify the in-
plane and out-of-plane dispersion which are used to cakala average strain quantity. This
average strain reduces the complex deformation patteriedibers to a scalar and is used in
the strain-energy function. From this function, we showew ko derive the stress and elasticity

tensors and outlined the necessary mathematical and meahlbackground.

As we seek to represent the structure of the tissue, we hayeneralize our model to more
than one fiber family. There are several approaches to incatp more fiber families in a con-
tinuum mechanical framework, e.d., [Flynn et al., 2011] sixediscrete fiber bundles and the
model proposed by [Baek et/al., 2007] includes four fiber fea®ilThe work of/[Schriefl et al.,
2012&,d] showed that the number of fiber families depend$ieracation of the artery and
the layer, where in most cases two fiber families are reporiEuerefore, we extended the

formulation to two fiber families.

We also showed how to derive the equations for a biaxial tent@st and an inflation test
using the proposed model and how to implement them in a nealgrackage, e.g., MATLAB.
After that, we fitted the model to datasets obtained from iblabension tests to determine
the associated material parameters. Since we do not havestiséogical information of the
specimen we tested in the biaxial test, we allowed the stratparameters obtained from the
distribution fitting in sectiof 4]5 to vary a certain ranget(vice the standard deviation) during
the fitting procedure. The excellent fitting results indécttat the model is indeed suitable to

describe the mechanical behavior of the human abdomintt aell.

In sectior 6.B we saw that, even though the parameters wéaamet from biaxial tension
tests, the results for the inflation test are plausible aidggdmange of reported values. Of course,
this is the result of fitting the parameters to only two bidtgsasion tests and the inflation test
results are from a different specimen (for details see [Sen&hal.| 2010]). Still, it shows that
the model is capable of reproducing experimental data dwvangh the parameters were fitted

to parameters obtained from a different experimental ntetho
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It is also evident that fiber dispersion has a large influencéhe mechanical behavior of
the tube, see Fid. 6.4. Also note the inversion of the axiatach for very small pressures,
a phenomenon also observed in, e.g., [Holzapfel and Gé&8@1)]. This is due to the high
resistance to axial stretch because of the fibers, and atox@myressures its energetically more
favourable to contract in the axial direction. Fibers areugial means in the body to endow soft
tissue with tensile strength, and their orientation angelision strongly affect the mechanical
behavior. This can also be seen in seclion 6.4, where diffelispersion cases are compared
(in the same example we validate the finite element impleatiem by comparing it to the

analytical solution of the biaxial tension test).

7.3 Limitations

One of the main simplifications of this model is the compuiatf an average stretch, and this
might not be appropriate for every tissue type and every daae. Nevertheless, our framework
yields good fits to biaxial tension data and is capable taodyre results in the range of reported
values of inflation tests, so we assume that this simplibocas justified to some extent.

Itis also possible to implement this model using angula@gration (Al) rather than the gen-
eralized structure tensor (GST), but since Al does not destine fiber dispersion with integral
dispersion measures but requires an integration of infimital fiber fractions, a large number
of calculations would have to be performed to evaluate trerst and stresses [Cortes et al.,
2010].

For the inflation test in sectidn 6.3, we used the membrarayifer the sake of simplicity
and we neglect stresses in the radial direction. For sacaakurysm or cerebral arteries this
assumption holds, but the aorta and the large blood vesaeésth be treated as thick-walled
vessels.

The split of the strain-energy function for anisotropicphyelastic materials is also a topic
which is not completely understood yet for the compressilalee, see [Sansour, 2007] and
[Helfenstein et al., 2010] for a discussion on this issuevexteless we follow the work of
[Holzapfel et al.; 2000] and decompose the SEF in a volumeind a deviatoric part for the

numerical FE analysis. In most physiological and pathaalgtases we can neglect viscous ef-
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fects like stress relaxation and creep. Furthermore, veeradglect inertia forces and, therefore,
have to solve quasi-static initial-boundary value protdg¢iaylor and Humphrey, 2009].

Since a biological tissue is a very complex material, moggihe mechanical behavior of the
arterial wall requires a lot of assumptions. Even thoughtmaslels describing fiber dispersion
make these assumptions, we want to briefly discuss the $icagibns we make. Probably the
most profound assumption is that we neglect the active itbotieon of smooth muscle cells
and only consider the passive behavior of the artery. Relsgltesses are another important
phenomenon in the arterial wall, which are believed to hageeat influence on the mechanics
of soft biological tissue [Holzapfel and Ogden, 2010a].cAlscompressibility and the isotropy
of the elastin network are assumptions, but there is evelémc¢he literature justifying this
assumptions, see, e.d., [Gundiah etlal., 2007]. Our framedoes not yet consider growth
and remodeling [Valeimn et al.| 2013] and also works on quite a macroscopic |lelpough
especially the role of proteoglycans on the molecular lavight be important [Azeloglu et al.,
2007, Schmidt et al., 2013].

Another limitation of this work is the lack of histologicahth which calls for more exper-
iments to obtain structural data of both healthy and diskasmod vessels. But one also has
to consider the highly inhomogeneous histology of softdgatal tissue, in general, and the
extreme variation between specimens especially for diskagrtas in particular. These consid-
erable individual histological differences make it difficto provide general statements about

the microstructure of blood vessels.
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