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Abstract

Cardiovascular diseases are the leading cause of death in thewestern world, and an understand-

ing of the development, progression and effects of these diseases is of crucial importance for

their treatment. Pathologies such as atherosclerosis and aneurysms are, among other factors,

also related to biomechanics and mechanobiology since the microstructure and, therefore, the

mechanical properties of diseased tissues change. This calls for a structurally based constitutive

model of the mechanical behavior of cardiovascular tissue to gain more insight into physiolog-

ical and pathological processes of the tissue. To this end westrive for a model which accounts

for the structure and geometry of the cardiovascular system. Such a model has to incorporate

the orientation and dispersion of collagen fibers which are the mechanically most important

constituents in the passive arterial tissue. Since we want to account for the complex geometry

of blood vessels we utilize numerical methods which in turn call for an efficient mathematical

framework to solve the initial/boundary value problems.

A newly developed approach is based on experimental data of collagen fiber orientations

of human arteries, from which two parameters quantifying the in-plane (circumferential-axial

plane) and out-of-plane (radial-axial plane) dispersion of the fibers are extracted. Using these

dispersion measures, an average fiber stretch based on the fiber distribution and the macroscopic

kinematics is computed and incorporated in a hyperelastic,nonlinear and structurally motivated

anisotropic continuum mechanical framework. The necessary mathematical and mechanical

background is provided and the implementation of this modelfor the biaxial tension test, infla-

tion test, and in a finite element code is shown. Finally, results of mechanical tests of human

arteries are compared to the output of our model. In conclusion, a computationally efficient

model based on histological data and capable to reproduce experimental results is presented.
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Kurzfassung

Erkrankungen des Herz-Krauslaufsystems sind die führende Todesursache in der westlichen

Welt und f̈ur ihre Behandlung ist es von größter Bedeutung deren Entstehung, Verlauf und

Auswirkungen zu verstehen. Pathologien wie Atherosklerose und Aneurysmen sind stark mit

Biomechanik und Mechanobiologie verknüpft, da sich unter anderem die Mikrostruktur und

damit die mechanischen Eigenschaften des Gewebesändern. Deshalb streben wir nach einem

Modell des mechanischen Verhaltens von weichen biologischen Geweben, um Einblicke in die

physiologischen Prozesse und pathologischen Veränderungen zu bekommen. Dieses Modell

muss die Orientierung und Dispersion von Kollagenfasern, welche die wichtigste Rolle für das

passive Verhalten von arteriellem Gewebe spielen, berücksichtigen. Um die komplexe Geome-

trie von Blutgef̈aßen zu erfassen benötigen wir numerische Methoden wie die Finite Elemente

Methode und effiziente Verfahren, um die auftretenden Randwertprobleme zu l̈osen.

Der hier pr̈asentierte Ansatz basiert auf histologischen Daten der Kollagenfaserverteilung

in menschlichen Arterien, aus denen zwei Parameter, welchedie Streuung der Kollagenfasern

beschreiben, extrahiert werden. Mit diesen Parametern istes m̈oglich, die durchschnittliche

Dehnung der Fasern aufgrund der makroskopischen Verformung zu berechnen. Diese Dehnung

wird in einem hyperelastischen Modell verwendet, das die Nichtlineariẗat und Anisotropie

des Gewebes beschreiben kann. Die Implementierung des Modells für den biaxialen Zugver-

such, den Inflationstest und einen effizienten Finite-Elemente-Code und wird gezeigt und die

notwendigen mathematischen und mechanischen Grundlagen werden beschrieben. Außerdem

werden Ergebnisse von mechanischen Tests an menschlichen Arterien mit den Resultaten des

vorgestellten Modells verglichen. Zusammenfassend wird ein Modell, das auf histologischen

Daten basiert und experimentelle Ergebnisse reproduzieren kann, pr̈asentiert.
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‘And you will find someday that, after all, it isn’t as horrible as it looks.’

RICHARD P. FEYNMAN

.





1 Medical Background

‘Human subtlety will never devise an invention more beautiful, more simple or more direct

than does nature because in her inventions nothing is lacking, and nothing is superfluous.’

LEONARDO DA V INCI

Nature has been an inspiration for human mankind for ages, and even though painters, sculp-

tors, writers and other artists are the first who come into mind when talking about inspiration,

also engineers can benefit from looking at the structures andfunctions in living organisms which

perfected by evolution over millions of years. We cannot only learn from nature to improve en-

gineering applications (a discipline called biomimetics), but also intervene in biological systems

which are out of equilibrium, especially in the human body. Changes in our lifestyle (diet, less

exercise, ...) occur so fast that evolutionary processes cannot keep pace, leading to so called

lifestyle diseases (e.g., atherosclerosis, cancer, diabetes, stroke). In addition, a system so com-

plex as the human body is subjected to a lot of possible dysfunctions and injuries which cannot,

at least not in a satisfactory manner, be compensated by natural regulation mechanisms. Here

engineers can help to improve the medical treatment and diagnoses and use their skills and tools

to gain more insight into the development and progression ofdiseases. To this end we seek to

determine the structure and function of, e.g., nucleic acids, proteins, cells, tissues and organs,

and fortunately we do not have to loot graveyards like Leonardo1 to obtain specimens for our

experiments. Instead, we are able to look into the human bodywithout even touching it using

techniques like X-Ray, MRI, ultrasound and so on, we can use elaborate tools such as the finite

1Who was also a productive researcher in biomechanics.
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2 1 Medical Background

element method to solve complex mathematical problems, andwe can access a vast amount of

literature to guide and inspire us. The challenges we are facing are not abstract mathematical

problems, instead it is our goal to improve the overall stateof health.

Chapter one will give a brief overview of the underlying biological background and medical

pathologies which motivate our work, starting with a general description of the cardiovascular

system. Subsequently we will go to the tissue/molecular level and review the microstructure

of arteries, where we focus on collagen as the main contributor to the mechanical behavior of

soft tissue in general and blood vessels in particular. We choose atherosclerosis as an example

of pathological disorder in blood vessels which is of special interest in the context of biome-

chanics. Finally, we will see that biomechancis and mechanobiology are an important part in

understanding diseases and their treatment.

1.1 The Cardiovascular System

Already in a four week old fetus the cardiovascular system (CVS) starts to function, and it is

the last system to cease at the end of life. The main functionsof the CVS are(i) supplying

tissues with oxygen and nutrients,(ii) removing the waste products accumulated during cel-

lular metabolism2 and(iii) transporting hormones. To perform these tasks, the CVS consists

of a pump (the heart) and a conduit system (the blood vessels or circulatory system). The

low-pressure system of the CVS (the right side of the heart, the veins and the pulmonary cir-

culation) is pressurized with3 − 8 kPa and perfuses the lungs where oxygen (O2) is taken up

and carbondioxide (CO2), a waste product of cellular respiration, is released. With pressures

from 10− 16 kPa, the left ventricle of the heart and the systemic circulation form the high pres-

sure system. The aorta is the largest vessel of the systemic circulation and arches out of the

left ventricle of the heart, from where it extends into the abdomen, where it divides first into

the common iliac arteries and ultimately branches into thinwalled (one cell thick) capillaries

[Kowalak et al., 2001].

The walls of arteries are in general thicker than those of veins because they have to resist a

higher pressure, while veins are endowed with valves to prevent the backflow of blood. The

2The waste products are transported to the kidneys, liver andskin where they are excreted.
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thickness gradually decreases [Schriefl et al., 2012a] as the vessels become smaller, while the

wall to lumen ratio becomes bigger. Blood vessels are composed of three main constituents,

namely the endothelium, SMCs, and connective tissue containing elastic elements.

1.2 Microstructure of Cardiovascular Tissue

In continuum mechanics we assume that the mechanical properties are determined by the mi-

crostructure of the material. Hence, we will take a closer look at the microstructure of cardio-

vascular tissue which depends largely on the extracellularmatrix (ECM). It not only governs the

mechanical properties but also plays an important role in biological processes, e.g., cells migrate

through the ECM, adhere to it, and develop their phenotype depending on their environment;

proteins and small molecules, such as ions anchor to it; and nutrients and hormones diffuse

into the ECM which connects cells and the supplying capillarynetwork [Humphrey, 2002].

The ECM shows solid- and fluid-like behavior, where the fluid phase has dissolved chemical

species and consists mainly of water while the solid phase isconstituted of cells (mainly fibrob-

lasts and SMCs) and their products, namely collagen fibers, elastin (which is only synthesized

prenatally) and proteoglycans (PGs). Although the ECM contains various different constituents,

only collagen fibrils and PGs are present in all connective tissues [Ottani et al., 2001]. The large

interstitial PGs are believed to maintain the shape of the tissue and render the material incom-

pressible by binding water. A higher compressibility mightincrease the transmural transport

of atherogenic lipoproteins and therefore promote the development of atherosclerotic lesions

[Boutouyrie et al., 2001], see section 1.5. While the role of PGs in other tissues like cartilage or

the intervertebral disk is well understood, their functionin vascular mechanics is not clear. In a

recent contribution [Azeloglu et al., 2007], e.g., the authors hypothesize about the influence of

PGs on the residual stress regulation in the aorta.

The components of the ECM are in continuous interaction, for example fibroblasts and SMCs

produce collagen which in turn interacts with SMCs changing their phenotype and activity

(depending on the type of collagen, see 1.3 [Dı́ez, 2007]). In this thesis we do not account for

the active behavior of muscle cells but only account for the passive mechanical behavior of the

tissue which is mainly governed by elastin and collagen.
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Elastin. As the name suggests, the protein elastin endows tissues such has the lung, skin

and blood vessels with elasticity. Since elastin returns toits original configuration when the

load is removed (truly elastic material), it is believed that its primary role is to store and return

mechanical energy [Humphrey, 2002]. Elastin is the major component of elastic fibers in the

ECM and is synthesized in less than one day by fibroblasts and SMCs [Davidson et al., 1986].

It is the most biologically stable protein (in most organisms it has a half-life in the order of the

lifespan3) and also the most elastic one [Taylor and Humphrey, 2009]. Elastin fibers are from

0.2 to 5µm in diameter and can take up uniaxial extension of up to150% without breaking,

where collagen fails around10%. The precursors of elastin, tropoelastin molecules, are highly

connected by crosslinks [Labrosse, 2007], giving the elastic arteries near the heart the ability to

distend during systole and recoil during diastole.

Elastic Properties of Arteries. The artery is not only a conduit system for the blood flow,

but also serves as a reservoir for the blood pressure. The distensibility of the elastic arteries

(the arteries close to the heart) is one of the most importantproperties of the cardiovascular

system and arises from the microstructure of the extracellular matrix. It allows the aorta to

distend during systole (the phase in the cardiac cycle when the heart contracts) and therefore

to store some of the energy of the heart beat. Between the cardiac contractions, the elastic

recoil propels blood through the peripheral vascular system. This vital function is known as the

Windkessel effect which describes the capacitive behaviorof the arteries ‘smoothing’ the blood

flow and reducing the load on the heart [Wagenseil and Mecham,2009]. It was mathematically

quantified in1899 by Otto Frank [Frank, 1899/1990], a main contributor to arterial mechanics

after whom also the Frank-Starling law of the heart was named[Parker, 2009].

Arterial stiffening is one of the major effects of ageing andresults in a less compliant aorta,

meaning that the vessel less readily expands. This loss of elasticity is a major problem and it

is widely recognized that the (macro)molecules in the extracellular matrix are, together with

transmural pressure, the main factors in arterial stiffness [Dı́ez, 2007].

3Note that in humans the half-life of elastin is around40 years [Arribas et al., 2006].
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1.3 Collagen

With an ultimate tensile strength in the range of50 − 100MPa [Fung, 1993], collagen fibers

endow soft biological tissues with the ability to resist loads in the direction of the fibers. Due to

the gradual recruitment of collagen fibers upon deformation, they render the mechanical behav-

ior of soft biological tissues nonlinear, a phenomenon found in all vertebrae [Shadwick, 1999,

Fung, 1981]. Since collagen fibers are able to withstand hightensile stresses, they are essential

in tissues such as tendons and ligaments whose main functionis to transfer (tensile) forces in

one direction (between muscle/bone and bone/bone), where the collagen fibers are aligned to-

wards the same direction forming a ‘fiber family’. Also othertissues such as the arterial wall,

cartilage or the cornea are endorsed with collagen fibers, where the number, direction and dis-

persion of fiber families can vary from tissue to tissue and also depend on the location of the

tissue in the body (see, e.g., [Schriefl et al., 2012a] for orientation and dispersion of collagen

fibers along the aorta and the common iliac arteries).

In the human body there are28 known types of collagen, whereas in the human artery only

type I and III are abundant [Hulmes, 2008, Taylor and Humphrey, 2009]. They are synthe-

sized by fibroblasts and SMCs, while type IV collagen for example is deposited in the ECM

by endothelial cells. Depending on the type, it takes a cell10-60 min to synthesize a complete

intracellular collagen precursor, called procollagen (tripal-helical protein chains with a length

of about300 nm) [Nimni, 1992] which is then excreted to the extracellular space. In the ECM,

collagen molecules assemble themselves to groups of four orfive molecules, so called fibrils.

These molecules are ordered in parallel with a characteristic d-spacing, where the molecules

are shifted by67 nm inside the fibrils (see Fig. 1.1d). A fibril has a thickness in the range of50

to a few hundred nanometers and many fibrils form a collagen fascicle with a diameter of50 to

300µm [Humphrey, 2002]. Immediately after secretion, collagenfibrils have no tensile strength

but obtain their resistance to tension through subsequent formation of inter- and intramolecular

covalent crosslinks [Reiser et al., 1992]. Collagen fibers aresubdivided into multiple, parallel

threads of equivalent cross section, an arrangement which has two advantages: (i) the propaga-

tion of cracks is prohibited (Cock-Gordon effect) and (ii) the flexibility increases tremendously

(it is inversely proportional to the forth power of the radius of each thread) [Ottani et al., 2001].
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Figure 1.1: (a) Illustration of the hierarchical structure of a tendon whichis composed of fascicles con-

taining collagen fibrils (F), which in turn are made up of parallel collagen molecules (M).

(b) The tendon is a composite of collagen fibrils and a proteoglycan-rich matrix. (c) If the

tissue is subjected to the strainεt, some strain will be partly taken up by the proteoglycan

matrix and partly transmitted to the fibrils carrying the strainεF. (d) In the unloaded tissue,

the collagen molecules are staggered with an axial spacing of67nm while the lateral spacing

is around1.5nm [Fratzl and Weinkamer, 2007].

The half-life of collagen strongly depends on the location in the body, e.g., it is only a few

days in the periodontal ligament, weeks to months in the arterial wall, many months in ten-

dons and possibly years in bones. In comparison, mostintracellular proteins have a half-life of

hours or days [Alberts et al., 1994, Humphrey, 2002]. The turnover of collagen is believed to

be regulated by the local state of stress and/or strain [Humphrey, 2002].

Collagen Fiber Dispersion. In [Schriefl et al., 2012a], the three-dimensional orientation

of collagen fibers in the human aorta and common iliac arteries was quantified. The researchers

studied eleven healthy, non-atherosclerotic samples exploiting the birefringent properties of col-

lagen enhanced by picrosirius red staining. The lack of existing constitutive models to properly

represent the results of [Schriefl et al., 2012a], i.e., the dispersion of collagen fibers, are the

key motivation for this thesis. Other follow-up works, e.g.[Schriefl et al., 2012b,d], contin-

ued to investigate the dispersion of collagen fibers, and recently also the fiber dispersion in the

diseased artery was quantified [Schriefl et al., 2012a]. One of the key results is that in diseased

arteries, the out-of-plane dispersion is much higher than in healthy ones and cannot be neglected

[Schriefl et al., 2013a]. This topic will be discussed in moredetail in chapter 4 of this thesis.
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1.4 Structural Composition of Arteries

Based on their location in the human body, arteries can be classified into the elastic type (close

to the heart), muscular type (distributing the blood from elastic arteries to the periphery), and

arterioles (in the tissue, main contributors to the flow resistance). However, for our purposes it

is more interesting to take a look at the microstructure of the tissue. Even without a microscope

we can distinguish three concentric layers in arterial cross sections, namely the intima, media

and adventitia (from the lumen to the outer border, respectively, see Fig. 1.2). For a detailed

review of the structure of these layers, the reader is referred to the works of [Schoen, 1994,

Gottlieb, 2007, Holzapfel et al., 2000]. In this thesis we will give a very brief overview of the

main histological and mechanical properties of these layers. It should be noted that the structure

and composition of each layer depend on the location in the body, since the vessels have to meet

different requirements along the arterial tree [Schriefl etal., 2012a].

Intima. The intima is the innermost layer of the artery and in direct contact with the blood

stream. In the healthy artery of newborns it consists only ofa (mechanically negligible) suben-

dothelial layer covered with a monolayer of endothelial cells. Processes such as arteriosclerosis

(natural stiffening of the artery with age) and atherosclerosis (pathological deposition of various

substances in the intima, see section 1.5) can change the biochemical composition and mechan-

ical behavior of the intima [Holzapfel et al., 2005a], making it mechanically relevant. In the

capillaries at the end of the arterial tree where water, oxygen, nutrients, hormones and waste

products are exchanged between blood and the surrounding tissue, the intima consists only of

an endothelial lining to with a thickness of one layer to facilitate diffusion. In contrast to most

animals, the human intima also contains resident SMCs [Libbyet al., 2011].

Media. The media consists of a three-dimensional network of SMCs, elastin and collagen

fibers and is the mechanically most important layer in the healthy arterial wall. It endows the

artery with tensile strength in both the circumferential and axial direction because of collagen

fibers oriented in preferred directions (see section 1.3), so called fiber families [Holzapfel et al.,

2000]. The SMCs allow the media to adapt its diameter by narrowing (vasoconstriction) or

widening (vasodilatation) the lumen to regulate blood pressure and flow [Gottlieb, 2007].
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Figure 1.2: Schematic of a healthy elastic artery composed of three layers: intima (I), media (M) and ad-

ventitia (A). In a healthy elastic artery, the intima consists of a single layer of endothelial cells

which do not contribute to the mechanical behavior of the arterial wall. The subendothelial

layer is composed of SMCs and collagen fibrils and its thickness varies with location in the

body, age and disease. The media contains SMCs, elastic and collagenousfibrils organized

in layers. In the outermost layer, the adventitia, thick bundles of collagen fibrils are arranged

in helical structures which serve to protect the artery from overstretching [Holzapfel et al.,

2000].

Adventitia. The outermost layer is mainly composed of ground substance and thick bun-

dles of collagen fibers which are produced by fibroblast and fibrocytes. The collagen fibers are

arranged helically and give the adventitia its strength in the supra-physiological load domain,

where it serves as a preventive ‘jacket-like’ tube protecting the artery from rupturing [Burton,

1954]. In the physiological loading domain, however, the fibers are crimped and do not con-

tribute to the mechanical behavior. In cerebral arteries, the adventitia is completely absent, in

elastic arteries it makes up around10% of the wall thickness and in muscular arteries this ratio

is even higher [Labrosse, 2007]. Moreover, the adventitia is surrounded by loose connective
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tissue and contains the vasa vasorum4, i.e., vessels that perfuse the vascular wall since in large

arteries the supply of oxygen by diffusion from the lumen to the outermost layers of the media

and adventitia is not sufficient [Schoen, 1994]. This vasculature network makes the adventitia

a prominent site of vascular inflammation [Wagenseil and Mecham, 2009].

(a) (b) (c)

(d)

(a)

(b)

(c)

(d)

A

M

I

A

M

I

A M I

A M I

Figure 1.3: Second harmonic generation images of a healthy, non-atherosclerotic human abdominal

aorta. In (a)-(c), the in-plane orientation of collagen fibers in the adventitia, media and intima

is shown, respectively. These images show the arrangement of collagenfibers, schematically

depicted in Fig. 1.2, i.e.; fiber bundles in the avdentitia, fiber families in the media and an

isotropic fiber network in the intima. In (d), a cross-section of the entire wallis shown,

where the adventitia is at the very left and the intima is located at the right of the image.

Therefore, the horizontal and vertical sides of the image correspond to the radial and axial

direction, respectively. The media clearly shows a high in-plane orientationof fibers in the

circumferential-axial plane. At the very right, the location of the respective images (a-d) of

the layers is depicted. Unpublished images, taken with permission from Andreas J. Schriefl.

4Latin for ‘the vessels of the vessels’.
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(a) (b) (c)

Figure 1.4: Image (a) shows the entire wall of a healthy human abdominal aorta, while (b) and (c) show

cross-sections of atherosclerotic wall tissue. In the healthy wall we can distinguish the three

layers, whereas in the diseased sample these layers merge into each other.Moreover, the

atherosclerotic arterial wall displays considerable out-of-plane dispersion and a very inho-

mogeneous structure which varies strongly between each specimen. Unpublished images,

taken with permission from Andreas J. Schriefl.

1.5 Pathologies of the Cardiovascular System

Due to the complexity of the CVS a variety of complicated pathological changes with poten-

tially dramatic consequences can occur. The importance of cardiovascular diseases (CVDs) is

also highlighted by the World Health Organization (WHO) in [WHO Media centre, 2012], from

where we cite four of the main key facts related to CVDs:

• CVDs are the number one cause of death globally: more people die annually from CVDs

than from any other cause.

• An estimated 17.3 million people died from CVDs in 2008, representing 30% of all global

deaths. Of these deaths, an estimated 7.3 million were due tocoronary heart disease and

6.2 million were due to stroke.

• Low- and middle-income countries are disproportionally affected: over 80% of CVD

deaths take place in low- and middle-income countries and occur almost equally in men

and women.

• By 2030, almost 25 million people will die from CVDs, mainly from heart disease and

stroke. These are projected to remain the single leading cause of death.
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One example of a CVD is the progressive narrowing of the vessellumen leading to ischemia of

the tissue perfused by that vessel, a problem especially in the heart. The effect of this narrow-

ing is immediately clear when considering Poiseuille’s lawwhich states that the flow through

a tube is inversely proportional to the forth power of the diameter. Although this law includes

some assumptions not valid for the artery (rigid vessel wall, developed flow,. . . ), it provides

an impression of the profound flow-limiting effects caused by a narrowed lumen. Other patho-

logical changes include intravascular thrombosis, causing acute obstruction and/or embolism

and weakening of the vessel walls, leading to dilatation (aneurysm formation) or rupture. In or-

der to understand and effectively treat these diseases, it is important to consider the underlying

structure of the vessel and the related biochemical and biomechanical changes [Schoen, 1994,

Humphrey, 2002].

Atherosclerosis. Probably the most important disease related to blood vessels is atheroscle-

rosis, which is characterized by intimal thickening and lipid deposition in the arterial wall and

is a form of arteriosclerosis, literally meaning hardeningof the arteries. Arteriosclerosis is a

group of diseases which is characterized by thickening and stiffening of the arteries and mani-

fests as two other morphologies besides of atherosclerosis, namely Monckbergs medial calcific

sclerosis (calcification of the media of muscular arteries)and arteriolosclerosis (proliferative

hyaline thickening of the walls of small arteries and arterioles) [Schoen, 1994]. Atherosclerosis

is the most common and important form of arteriosclerosis.

In Fig. 1.5, key steps in the development of an atherosclerotic lesion is shown. Due to irri-

tating stimuli (dyslipidaemia, hypertension, pro-inflammatory mediators), leukocytes from the

blood stream adhere to the activated endothelial monolayerand migrate into the intima. Most

of the leukocytes are monocytes which differentiate into macrophages and absorb lipids, which

turns them into foam cells. Subsequently SMCs migrating fromthe media into the intima and

resident SMCs in the intima proliferate, resulting in an increased production of ECM compo-

nents. As a consequence, inflammatory cells, SMCs, lipid and connective tissue progressively

aggregate in the intima of the large and medium-sized elastic and muscular arteries. Dying cells

in advancing lesions leave extracellular lipid and cellular debris behind which can accumulate

in the central region of the plaque [Libby et al., 2011]. In the classic case, the atherosclerotic

lesion is a fibroinflammator lipid plaque (atheroma) which spreads into the media of the arte-
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rial wall and into the lumen of the vessel, leading to a stenosis (narrowing) of the lumen. The

three main components of such a plaque are cells (SMCs, macrophages and other leukocytes),

connective tissue (collagen, elastin, proteoglycans) andlipid deposits (both intra- and extracel-

lular), mainly cholesterol which is derived from lipoproteins in the blood. Rupture of the fibrous

cap initiates blood coagulation and leads to thrombus formation, the ultimate complication of

atherosclerosis. A complicated atherosclerotic plaque isdescribed by the transformation of a

simple atheroma to a complicated lesion. It is characterized by calcification, i.e., mineral de-

position and resorption regulated by osteoblast-like and osteoclast-like cells in the vessel wall

[Schoen, 1994].

(a) (b)

(c) (d)

Figure 1.5: In (a), the three layers of the artery are shown, for details see section 1.4 and Fig. 1.2. Panel

(b) shows the initial stage of atherosclerosis where leukocytes migrate into the intima and

in (c) the SMCs migration and proliferation is shown. Finally, in (d) thrombus formation is

depicted. For details, see [Libby et al., 2011], from where the picture wastaken and modified.

The major causes of atherosclerosis are hyperlipidemia, hypertension, cigarette smoking and

diabetes. Other risk factors of atherosclerosis are obesity, physical inactivity, male gender, in-

creasing age, family history, stress, oral contraceptivesand high carbohydrate intake [Schoen,

1994]. There is no single hypothesis explaining the origin of atherosclerosis but several, not
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mutually exclusive mechanisms have been proposed (e.g., the insudation hypothesis, encrus-

tation hypothesis, reaction to injury hypothesis, monoclonal hypothesis). The trigger which

initiates the process is most controversial, but the focal nature of this disease suggests that

complex flow fields of the blood and therefore biomechanics and mechanical factors, e.g.,

low shear stresses, etc., play an important role. For further details, the reader is referred to

[Humphrey and Canham, 2000, Schoen, 1994, Gottlieb, 2007, Kowalak et al., 2001].

There are many potential complications arising from atherosclerosis, e.g., embolism or acute

occlusion caused by the rupture of an atherosclerotic plaque and subsequent flow with the blood

until it completely occludes the lumen of a muscular artery.This results in an infarction (is-

chemic necrosis) of the tissue which should otherwise receive blood supply by the obstructed

vessel, causing myocardial infarction (in the heart), stroke (in the brain) or gangrene (in the

intestine or lower extremities). Another pathology causedby atherosclerosis is the chronic nar-

rowing of the vessel lumen by the plaque. Due to the chronic shortage of blood, the organ

suffers of atrophy. A complicated lesion can also extend into the media of an elastic artery and

weaken the wall, promoting the development of an aneurysm. This typically happens in the

abdominal aorta (abdominal aortic aneurysm, AAA) and can lead to a vascular catastrophe in

case the aneurysm ruptures.

Any artery can be subjected to atherosclerosis, but the aorta, the coronary and the cerebral

systems are most likely to be affected. Therefore, aortic aneurysms, myocardial infarction and

cerebral infarction are the most common consequences of this abnormality of the arterial wall

[Schoen, 1994]. If the coronary arteries are affected by atherosclerosis, the diminished blood

flow can result in coronary artery disease (CAD). Also the ability of the vessel to dilate is

reduced, altogether leading to an insufficient supply of oxygen and nutrients to the myocardium

beyond the lesion. This results in local myocardial ischemia within 10 s after coronary artery

occlusion. Within several minutes, the lack of oxygen forces myocardiac cells to shift from

aerobic to anaerobic metabolism resulting in an accumulation of lactic acid and consequent

reduction of cellular pH. This combination of hypoxia, reduced energy availability and acidosis

results in abnormal shortening of muscle fibers which reduces the strength of contractions in

the affected region. As a consequence, less blood can be ejected from the heart with each

contraction [Kowalak et al., 2001].
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1.6 Medical Interventions

One of the most common medical interventions to treat the narrowed lumen of an artery is

percutaneous transluminal coronary angioplasty (PTCA), especially for the epicardial coronary

arteries. In this procedure, a balloon catheter is insertedin the coronary arteries where it is

inflated to push the plaque into the media and dilate the stenotic vessel. Although in most

cases the vessel lumen is satisfactorily dilated, the balloon causes endothelial damage. In30

to 40% of treatments, intimal hyperplasia due to smooth muscle cell proliferation and matrix

deposition leads to restenosis over a period of three to six months. Moreover, wall remodeling

also causes narrowing of the lumen through contraction of the vessel wall. Drug eluting stents

with anti-proliferative agents inhibit the growth of smooth muscle cells in the vessel wall by

blocking the cell cycle and thus reduce restenosis by a considerable amount [Gottlieb, 2007].

However, the detailed mechanical and biochemical processes and long term complications are

not fully understood yet, requiring more research including a reliable model of the growth,

remodeling and related arterial mechanics accounting for the finite deformations of the arterial

wall. The importance of biomechanics is illustrated in, e.g., [Holzapfel et al., 2005b] where

the researchers demonstrated that also the geometry and material properties of the stent are

important.
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‘To get into this question [of tissue elasticity] more closely, without the aid of mathematics, is

scarcely possible.’

C. S. ROY

As we have seen in the previous chapter, mechanics plays an important role in many physio-

logical and pathological processes in the human body. Medical interventions like PTCA as well

as diseases like aneurysms require a detailed knowledge of the stresses and strains in the tis-

sue to make predictions and guide medical doctors in the diagnosis and operations. Especially

the maximum stress in the arterial wall is of great interest to asses, e.g., the severeness of an

aneurysm and classify its rupture potential. To provide thenecessary mathematical and mechan-

ical background for this thesis, we will review some of the the basic concepts and methods in

continuum mechanics in this chapter. For a more detailed introduction to continuum mechanics

see, e.g., the books of [Ogden, 1997, Holzapfel, 2000] on which this chapter is largely based.

The overview presented here will introduce a central quantity in continuum mechanics, the

local deformation gradientF, which maps a vector from the undeformed (reference) config-

uration to the deformed (current) configuration1. With this quantity we define a measure of

deformation, the right Cauchy-Green tensorC, which is independent of rigid body motions

(translocations and rotations). This deformation measurecan be incorporated in an important

quantity in the context of hyperelasticity, namely the strain-energyΨ induced in the body by the

1The undeformed configuration is also called the material or Lagrangian configuration while the deformed con-

figuration is also referred to as the spatial or Eulerian configuration.

15
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deformation2. The strain-energy function (SEF) is used to derive the elasticity tensor and the

stress tensor required for the finite element implementation of the constitutive model. There-

fore, we will also discuss the elasticity tensor (in both theLagrangian and Eulerian setting), the

most important stress tensors, and the theory of anisotropyfor finite deformations.

2.1 Continuum Bodies and their Deformations

Although living tissues possess many properties which are unusual in engineering applications

(they grow, remodel, are mixtures of very different and inhomogeneous materials, ...), they still

obey the basic postulates of mechanics (e.g., the conservation laws)3. Also fundamental quanti-

ties such as stress, strain and entropy are convenient measures in the analysis of such materials.

Even though we might have to adapt the set of tools we use as engineers, we still can use familiar

concepts and seek to formulate constitutive relations and solve initial/boundary value problems

(I/BVP). We should be aware that constitutive equations do not describe the material, but rather

the behavior of the material under specific conditions. Nevertheless, the formulation of con-

stitutive equations helps us to gain insight into the function and structure of the material and

is essential to solve engineering problems. In this context, continuum mechanics provides us

with very useful theories to solve the resulting differential equations with their initial/boundary

values.

In continuum mechanics we describe a body, denotedB (see Fig. 2.1(a)), as a continuous

assembly of matter in space. With this fundamental assumption we ‘smear out’ details at the

molecular and atomic level and, therefore, lose a lot of information. Nevertheless this approach

is essential in engineering applications since it allows usto reduce the amount of information so

we can handle it in a computationally efficient way. Moreover, we do not seek to describe the

state of every single microscopic particle, but instead aimto represent the body in the macro-

scopic world, so it is important to determine the size of a finite volume element. On the one

hand, this finite element should be large enough to representthe contained particles in a proper

2Note that also other deformation measures such asF could be used in the SEF.
3Since tissues are able to grow, they are an open system where mass can be transported over the system bound-

aries.



2.1 Continuum Bodies and their Deformations 17

(b)(a)

Figure 2.1: In panel (a), the transformation of a body from the reference configurationΩ0 to the de-

formed configurationΩ by the mapχ(X, t) is displayed. The vectordX in the reference

stateΩ0 is transformed to the deformed vectordx into the spatial setting by the deformation

gradientF(X, t). Panel (b) shows the polar decomposition of the deformation gradientF

into a rotational partR and a stretching part, eitherU or v, the right and left stretch tensors,

respectively.

way, on the other hand it must be small enough to be treated analytically. Fung describes this as

‘The concept of a material as a continuum is a mathematical idealization of the real world and

applicable to problems in which the finite structure of matter can be ignored.’ [Fung, 1965].

Such a collection of particles forming the bodyB can be represented in an arbitrary coordi-

nate system. For our purpose, a set of orthonormal basis vectors {e1, e2, e3} is convenient to

describe a pointP ∈ B in 3D space. Since we are solely operating in a Cartesian coordinate

system, we will in the following not distinguish between co-and contravariant components of

tensors. The continuum bodyB can move and occupies a geometrical regionΩ0, ...,Ω at every

point of time t. For t = 0 we define a special regionΩ0, called the reference (undeformed)

configuration4.

Theoretically, the reference and the current configurationcould be defined in different coor-

dinate systems and hence we had to write5 X = XAEA in the Lagrangian setting andx = xaea
4We write quantities in the reference configuration in capital letters while quantities in the deformed configuration

are denoted by lower case symbols.
5We use Einstein summation convention where we sum over indices which appear twice.



18 2 Continuum Mechanical Framework

in the Eulerian configuration. In our analysis, however, thecoordinate systems for the ma-

terial and spatial configuration coincide (i.e., the material and the spatial reference frame are

collinear) and we denote the axis by the unit vectorsea and the coordinate axis byxa, XA.

The motionχ(X, t) transforms a body fromΩ0 to the current (deformed) configurationΩ by

x = χ(X, t). The inverse motion is denoted byχ−1(x, t) and maps a point from the current

configuration back to the reference configuration, i.e.,X = χ
−1(x, t). The mappingχ defines

a so called push-forward of quantities from the material configuration to the spatial configu-

ration, whereasχ−1 is called the pull back and maps a tensor from the Eulerian setting to the

Lagrangian configuration. Depending on whether this quantity is a co- or contravariant6 tensor,

these operations are different. The push-forward and pull-back of contravariant tensors (such as

the most common stress tensors) are defined as

χ∗(•)# = F(•)#FT, χ
−1
∗ (•)# = F−1(•)#F−T, (2.1)

respectively. Here we introduce the local deformation gradient

F = ∂χ(X, t)/∂X, (2.2)

which allows us to map a tangent vectordX from the reference configuration to the current

configuration bydx = F dX. F is in general non-symmetric and a two-point tensor, i.e., it

has coordinates in two different configurations, namely in both the reference and the current

configuration. This can also be seen when writing the transformation of a tangent vector in

index notation,dxa = FaAdXA. It is important to note thatF(X, t) is defined locally, i.e.,

it describes the motion in the neighborhood of a point. Moreover, the deformation gradient

links the material and spatial configuration via a linear transformation. This is very convenient

since it allows us to represent the deformation gradient tensor in a given coordinate system by

a matrix. The determinant ofF is denotedJ and is the ratio between the volume in the current

configuration and the reference configuration,J = detF = V/V0 > 0. For incompressible

materials we requireJ to be equal to unity. The existence of the inverse mappingF−1(x, t)

ensures that at a timet a particle cannot occupy two locations in space and that two particles

cannot occupy the same location.

6We denote contravariant tensors by a superscript#, whereas covariant tensors usually have a superscript♭.
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We can decompose the deformation gradient in two parts according to

F = RU = vR, (2.3)

whereR is a proper7 (detR = 1) orthogonal (RT = R−1) tensor andU andv are the right (ma-

terial) and left (spatial) stretch tensors, respectively.This multiplicative split of the deformation,

also called polar decomposition, is illustrated in Fig. 2.1(b) where we see how the tensors oper-

ate on a continuum body: if we apply the rotationR first, we have to use the left stretch tensor

v to deform the body and if we want to perform the deformation first, the right stretch tensorU

is required. Note that both decompositions involve the sameorthogonal rotation tensorR and

that the stretch tensors are symmetric (U = UT, v = vT).

Since we treat our material as incompressible, we face numerical problems such as ill-

conditioning in general and volumetric locking in particular. To avoid these problems, we

decouple the pressure field from the displacement field by applying the multiplicative decom-

position ofF into a spherical (dilatational, volume changing) partJ1/3I and a unimodular (dis-

tortional, volume preserving) part

F = J−1/3F, (2.4)

wheredetF = 1, see [Flory, 1961, Ogden, 1978]. In the following, we denotequantities related

to this distortional deformation with a bar or a tilde, depending on the context and operations

we perform.

2.2 Strain Measures

To solve the equations describing the deformation of a continuum body, we have to use a con-

stitutive law which provides a relation between stress and strain. But since strain is (as stress)

an abstract (arbitrary) quantity, we have to make meaningful definitions which allow us to set

up a consistent and physically reasonable framework. As shown in [Holzapfel, 2000], the right

Cauchy-Green tensorC = FTF is a (nonlinear) measure of deformation which is frequently

used in continuum mechanics. It is symmetric, positive definite8 and yields the square of the

7An improper orthogonal tensor is characterized bydetR = −1, which represents a reflection.
8Positive definite means thatu · Cu > 0,u 6= 0.
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stretchλ of a vectora0 in the reference configuration byλ2 = a ·a = (Fa0)
T · (Fa0) = a0 ·Ca0.

The diagonal components ofC are the square of the stretches in the respective direction while

the off-diagonal components are related to the shear deformations. Moreover, the eigenvalues

of C are the squares of the principal stretches of the continuum body. Note that sinceC does

not contain rigid body movements like translations or rotations, it is not useful in a constitutive

law since it is unity in the state of no deformation. Therefore we introduce the Green-Lagrange

strain tensorE = 1
2
(C − I), which is a ‘true’ strain measure since it equals the zero tensorO

if no deformation is applied to the body. The factor1/2 is introduced for consistency with the

linear theory9.

2.3 Forces and Stresses

Stresses are the reaction of a body to externally applied forces. These external forces can either

be surface loads (friction, pressure, . . . ) or body loads (gravity, electromagnetic forces, . . . ). If

we cut a body which is under an external load in the current configuration (see Fig. 2.2, right

side) we obtain a surface on which we can define an infinitesimal area elementds with the

unit normal vectorn. As a reaction to the externally applied forces, the traction vectort acts

on the oriented surfaceds holding the body in equilibrium. This traction vectort has the unit

force per unit area and is called the Cauchy (or true) tractionvector since it is defined in the

current configuration. It is named after Augustin-Louis Cauchy (1789-1857) who postulated

1827 one of the most fundamental theorems of continuum mechanics; it introduces the Cauchy

stress tensorσ(x, t), a symmetric, second-order tensor field, which relates the normal vector

n(x, t) to the traction vectort(x, t, n) by t(x, t, n) = σ(x, t)n. The fundamental conclusion of

this theorem is the linear relationship between the traction vectort and the unit normal vector

n. Since we link two oriented quantities (traction and surface), stress is a tensor of second order

[Humphrey, 2002]. Note that the stress tensor is independent of the orientation of the surface

but can vary with the location in the body (this is also reflected in the arguments of the stress

tensor).

9Note that this factor only influences the resulting materialparameters. If we choose another factor (or omit it

completely), only the parameters determined by fitting the constitutive law would change
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The Cauchy stress is the most natural and physical measure of stress since it is defined com-

pletely in the deformed configuration and is mostly used in fluid mechanics where the problems

are formulated in the spatial setting. In solid mechanics, however, the geometry of the deformed

configuration is not known and, therefore, it facilitates the analysis to set up the governing equa-

tions of motion and equilibrium in the reference configuration. This leads to the introduction

of purely mathematical quantities but simplifies the formulation of equations and their numer-

ical treatment. Since we want to work in the reference configuration, we apply the concepts

Figure 2.2: A continuum body which is subjected to surface- and body loads. Upon cutting the body

open in the current configuration (right side) we can define an area elementds, represented

by a unit normal vectorn, on which the traction vectort acts as a reaction to the external

forces. The same can be done for the reference configuration (left side), where we define the

infinitesimal area elementdS with the normal vectorN and the traction vectort, mapped by

F−1 to the reference configuration yieldingT. Note thatT acts onΩ but is a function ofX

and the outward normalN to the boundary surfaceΩ0, which is indicated by the dashed line.

introduced above to the body inΩ0 as illustrated in Fig. 2.2 (left side). We map the current

traction vectort(x, t, n) from its point of applicationx back to the corresponding pointX in the

reference configuration and obtain the first Piola-Kirchhoff (nominal) traction vectorT(X, t,N)

which acts on the unit area elementdS and points in the same direction ast(x, t, n) in the
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current configuration. The first Piola-Kirchhoff traction vector has the physical interpretation

of current force per unit area in the reference configuration. It is related to the normal vector

defining its surface in a similar way as the Cauchy traction vector, namely by a linear mapping

T(X, t,N) = P(X, t)N, where we introduced the first Piola-Kirchhoff stress tensor P(X, t).

The introduced tensor fields, namelyσ(x, t) andP(X, t), perform the same operation, i.e.,

they establish a linear relation between a normal vector andthe related traction vector. Never-

theless, they live in different coordinate systems since both define a traction vector in the current

configuration but act on the unit vector in a different coordinate system. This can also be seen

when writing the mapping in index notation as

ta = σabnb and Ta = PaBNB, (2.5)

where we see thatP is, such asF, a two-point tensor living in both the reference and current

configuration since it relatesN (at t = 0) to the traction vectorT (at timet). AlthoughP has

a physical interpretation, it is not convenient to use since, in general, it is not symmetric. Note

that for infinitesimal deformations the first Piola-Kirchhoff stress tensor and the Cauchy stress

tensor are identical since in this case the change in cross-sectional area is (nearly) zero. Hence,

the first Piola-Kirchhoff stress is the3D generalization of the concept of1D engineering stress

where the change in cross-sectional area is neglected. Moreover, it is the work conjugate to the

deformation gradientF. Using Nanson’s formula, relating an infinitesimal area in the current

and reference configuration byds = J F−TdS, we can establish the relation between the first

Piola-Kirchhoff stress tensor and the Cauchy stress tensorσ = J−1PFT, which is called the

Piola transform.

The introduced stress measures are useful since the Cauchy stress represents the ‘actual

stress’ experienced by a body and the first Piola-Kirchhoff stress is convenient for experimen-

tal measurement. Nevertheless, we introduce two more stress measures: the Kirchhoff stress

tensorτ and the second Piola-Kirchhoff stress tensorS. The first one is required for the finite

element implementation of our material law in the software package FEAP and is defined by

the volume ratio times the Cauchy stress tensor,τ = Jσ. Note thatτ lives, like σ, solely

in the current configuration. The second Piola-Kirchhoff stress tensor, in contrast, lives in the

reference configuration and is given by the pull-back ofτ . Sinceτ is a contravariant tensor, the
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pull back is, as in eq. (2.1), given byS = χ
−1
∗ (τ ) = F−1

τF−T. Consequently, we obtain the

Cauchy stress tensor (i.e., the stress in the current configuration) from the (virtual) stress in the

reference configuration byσ = J−1FSFT. One can also think ofS as the relation between the

area in the reference configuration and a virtual ‘force’ in the reference configuratioñT which

is the pull back ofT by F−1. Hence, the second Piola-Kirchhoff tensor is a one-point tensor

defined byT̃(X, t) = SN [Humphrey, 2002].

Note that althoughS has no physical interpretation it is a very useful quantity in compu-

tational mechanics. It is symmetric and the energetic conjugate to the Green-Lagrange strain

tensorE, and can be obtained by the derivation of the strain-energy function with respect to

the right Cauchy-Green tensorC. The second Piola-Kirchhoff stress tensorS is a contravari-

ant material tensor field and parameterized by material coordinates. Therefore, it is useful in

computational mechanics and for the formulation of constitutive equations of solids. For a rigid

body motion we can writeF = R (according to eq. (2.3)), and, therefore,S = RT
σR. This

corresponds to a coordinate transformation, i.e., the components ofS coincide with the ones of

σ in the global Cartesian coordinate system rotated byR. Another useful property ofS is its

invariance to superimposed rotations in the current configuration [Humphrey, 2002].

2.4 Tensor Algebra

We provide a very brief overview over the required results and identities from tensor algebra.

For a more extensive and detailed introduction the reader isreferred to the standard works of

[Ogden, 1974, Holzapfel, 2000].

The Cayley-Hamilton Theorem. This theorem states that every square matrix satisfies

its own characteristic equation. To understand this very important theorem, we first have to

define the characteristic equation (polynomial) of a squarematrix [A] asp(λ) = det(A −λI) =

λ3 − IA1 λ
2 + IA2 λ − IA3 = 0, whereIA1 , I

A
2 , I

A
3 are the three principal invariants10 of A. From

the theorem of Cayley-Hamilton follows that

A3 − IA1 A2 + IA2 A − IA3 = O, (2.6)

10Sometimes these invariants are denoted asIA, IIA, IIIA.



24 2 Continuum Mechanical Framework

and we conclude that every power ofA higher than three can be represented by a combination

of A,A2 andA3. This property is very useful to determine the derivatives of the invariants of a

tensor and yields

∂IA1
∂A

= I ,
∂IA2
∂A

= IA1 I − AT. (2.7)

We will demonstrate how to derive the third invariant by multiplying eq. (2.6) withA−1, and

after rearranging the equation we obtain

A2 − IA1 A + IA2 = IA3 A−1. (2.8)

When we take the derivative of eq. (2.6) with respect toA and compare the result with eq. (2.8),

we see that

∂IA3
∂A

= IA3 A−1, (2.9)

where we used the results of eq. (2.7). The rules of differentiation for the double contraction

and a scalar multiplication are given by

∂(A : B)
∂C

= A :
∂B
∂C

+ B :
∂A
∂C

,
∂(αA)

∂C
= A ⊗ ∂α

∂C
+ α

∂A
∂C

, (2.10)

whereA, B andC are second-order tensors andα is a scalar. For the next step recall eq. (2.9)

and the fact that the determinant of the transpose of a matrixequals the determinant of the

original matrix, i.e.,J = detF = detFT. So the derivative ofJ andJ−2/3 with respect toC

are given by

∂J

∂C
=
∂I

1/2
3

∂C
=

1

2
I
−1/2
3

∂I3
∂C

=
J

2
C−1,

∂J−2/3

∂C
= −1

3
J−2/3C−1. (2.11)

using the chain rule and noting thatI3 = detC = detFTdetF = J2. The derivative of the

modified right Cauchy-Green tensor with respect to its normalcounterpart is given by

∂C
∂C

=
∂(J−2/3C)

∂C
= J−2/3∂C

∂C
+ C ⊗ ∂J−2/3

∂C
= J−2/3

I− C ⊗ 1

3
J−2/3C−1

= J−2/3(I− 1

3
C ⊗ C−1) = J−2/3

P
T, (2.12)

with the definition of the projection tensorP in the Lagrangian setting

P = I− 1

3
C−1 ⊗ C, (2.13)
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which provides the correct deviatoric projection in the Lagrangian setting, i.e.,[P : (•)] : C = 0.

Note thatP is the pull-back of the spatial deviatoric operator [Federico and Grillo, 2012] where

C operates as a metric tensor [Holzapfel, 1996]. Finally, we can also differentiateC with respect

to C finding that

∂C

∂C
= J2/3

I, (2.14)

whereI is a fourth-order identity tensor.

2.5 The Strain-Energy Function

We work in the context of finite hyperelasticity and, therefore, assume the existence of a scalar

strain-energy functionΨ from which we can derive the constitutive equation relatingstress and

strain. This strain-energy function depends on a measure ofdeformation, for exampleΨ =

Ψ(F). Note that we omitted the dependency on the position within the material, so we assume

a homogeneous material where the strain-energy is the same at every point. For a detailed

description of hyperelasticity and related topics such as (poly)convexity see e.g., [Holzapfel,

2000, Holzapfel et al., 2000, 2004].

The strain-energy function has to fulfill certain requirements to be physically meaningful.

For example, it is not allowed to compress the body to a point or extend it to infinite volume,

therefore the energy required to perform such operations should be infinite, i.e.

Ψ(F) → ∞ for detF → ∞,

Ψ(F) → ∞ for detF → +0. (2.15)

Moreover, the strain-energy in a state of no deformation should be zero,Ψ(I) = 0, and the

strain-energy should increase with deformation,Ψ(F) ≥ 0.

We can derive the constitutive equation for the stress by taking the derivative of the strain-

energy function with respect to the deformation gradient,

P =
∂Ψ(F)
∂F

, S= 2
∂Ψ(C)

∂C
. (2.16)

The strain-energy should not change upon a rigid body rotation applied after the deformation,

i.e.,Ψ(QF) = Ψ(F) whereQ is a proper orthogonal tensor. If we chooseQ = RT and use the
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polar decomposition ofF, i.e.

Ψ(RTF) = Ψ(RTRU) = Ψ(U). (2.17)

Hence, the strain-energy does only depend on the stretchingpart of F and is not affected by

any rigid body rotationRT. The specific choice of the strain-energy function determines the

constitutive material behavior and is, therefore, essential for a material model. In chapter 5, we

will present an anisotropic, nonlinear strain-energy function which includes fiber dispersion in

two planes and allows for an efficient finite element implementation.

Split of the Strain-Energy Function. We assume that it is possible to split the strain-

energy function in two parts like

Ψ = Ψvol(J) + Ψ̄(C), (2.18)

as shown in [Holzapfel, 2000]. Here,Ψvol(J) is a purely volumetric contribution whilēΨ(C)

represents the energy contribution of an isochoric (volumepreserving) deformation. As intro-

duced in eq. (2.16)2, the second Piola-Kirchhoff stress tensorS is the change of the strain-energy

function with respect to the right Cauchy-Green tensor,S= 2∂Ψ(C)/∂C, and using the decou-

pled form of the strain-energy functionΨ we identify two stress contributionsS= Svol +S. By

virtue of eq. (2.9) and the chain rule we find for the volumetric part

Svol = 2
∂Ψvol(J)

∂C
= 2

∂Ψvol(J)

∂J

∂J

∂C
= pJC−1, (2.19)

where the hydrostatic pressurep for incompressible materials is defined by

p =
∂Ψvol(J)

∂J
. (2.20)

Using eq. (2.12) we obtain for the isochoric part

S= 2
∂Ψ̄(C)

∂C
= 2

Ψ̄(C)

∂C
:
∂C
∂C

= S̃ : J−2/3(I− 1

3
C ⊗ C−1)

= J−2/3
P : S̃= J−2/3Dev S̃, (2.21)

whereS̃ is the fictitious second Piola-Kirchhoff stress tensor defined as

S̃= 2
∂Ψ̄(C)

∂C
. (2.22)
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We see that the isochoric stress is the deviator of the fictitious stress multiplied withJ−2/3 and

(I)ABCD = 1
2
(δACδBD + δADδBC) is a fourth-order identity tensor. Using the decompositionof

the deformation gradient given in eq. (2.4), we define the modified right Cauchy-Green tensor

asC = F
T
F.

To utilize the finite element method, we require the Kirchhoff stress tensorτ which is the

push-forward ofS, and hence given byτ = FSFT = τ vol + τ where we introduced

τ vol = pJ I , τ = dev τ̃ = P : τ̃ with P = I− 1

3
I ⊗ I , (2.23)

whereP is the Eulerian projection tensor and̃τ is the push forward of the fictitious second

Piola-Kirchhoff tensor given in eq. (2.22).

2.6 Elasticity Tensors

Since the relation between the stress tensorS and the tensorC will be nonlinear, a Newton-

Raphson-like iteration process is required to solve for an incremental displacement. Therefore,

we have to linearize eq. (2.16)2 where we introduced the Lagrangian elasticity tensorC using

the total differential of the second Piola-Kirchhoff stress tensorS, i.e.

dS= C :
1

2
dC, with C = 2

∂S
∂C

= 4
∂2Ψ(C)

∂C2
. (2.24)

Note that the matrix representation of the elasticity tensor in the respective coordinate system is

the tangent modulus required for the implementation of a nonlinear finite element code. Since

the differentiation in eq. (2.24)2 with respect toC has to fulfill Schwarz’s theorem,C features

major symmetries, i.e.,CABCD = CCDAB. Moreover,C is symmetric, also introducing minor

symmetries, i.e.,CABCD = CABDC = CBACD = CBADC . This allows to write the symmetric

forth-order elasticity tensor in matrix representation (thereby reducing its order) using Voigt

notation, so we can writeC as a symmetric6× 6 matrix. This can be imagined as a ‘mapping’

of indices as

{11} → {1}, {22} → {2}, {33} → {3}, {12, 21} → {4}, {23, 32} → {5}, {31, 13}.→ {6}.
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Hence, the tangent matrix (in Voigt notation) passed to FEAPlooks like this:

[CVoigt] =





























C1111 C1122 C1133 C1112 C1113 C1123

C2222 C2233 C2212 C2213 C2223

C3333 C3312 C3313 C3323

C1212 C1213 C1223

sym. C1313 C1323

C2323





























. (2.25)

With this representation of the indices, the second-order stress tensorσ can be written as a

column matrix

[σVoigt] = [σ11 σ22 σ33 σ12 σ23 σ31]
T, (2.26)

and similarly the second order strain tensorǫ as

[ǫVoigt] = [ǫ11 ǫ22 ǫ33 2ǫ12 2ǫ23 2ǫ31]
T. (2.27)

Note that the factor2 appears to make the shear componentsǫij the engineering strainsγij

[Taylor, 2000].

The Elasticity Tensor in the Lagrangian Description. We will derive a general ex-

pression for the elasticity tensor in the Lagrangian setting for a hyperelastic material. For this

purpose, we split the strain-energy function, according toeq. (2.18), into a volumetric and a de-

viatoric part and consequently use the volumetric and deviatoric second Piola-Kirchhoff stress

tensors.

Equipped with the definitions from section 2.4 we start with the split of the strain-energy

function eq. (2.18)), and hence the split of the elasticity tensor likeC = Cvol + C, where the

volumetric part is given by

Cvol = 4
∂2Ψvol

∂C2
= 2

∂Svol

∂C
= 2

(JpC−1)

∂C
= 2C−1 ⊗ ∂(Jp)

∂C
+ 2Jp

∂C−1

∂C

= 2C−1 ⊗
(

p
∂J

∂C
+ J

∂p

∂C

)

− 2JpC−1 ⊙ C−1 (2.28)

where we introduced a new tensor product

∂C−1

∂C
= −C−1 ⊙ C−1.
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which is defined as

− (C−1 ⊙ C−1)ABCD = −1

2
(C−1

ACC
−1
BD + C−1

ADC
−1
BC) =

∂C−1
AB

∂CCD

.

We can simplifyCvol further according to

Cvol = 2C−1 ⊗
[

p
∂J

∂C
+ J

∂p

∂J

∂J

∂C

]

− 2JpC−1 ⊙ C−1 (2.29)

= JC−1 ⊗
[

(

p+ J
∂p

∂J

)

C−1

]

− 2JpC−1 ⊙ C−1

= Jp̃C−1 ⊗ C−1 − 2JpC−1 ⊙ C−1, (2.30)

where we introduced the definitioñp = p + J∂p/∂J, where∂p/∂J = ∂
2
Ψvol/∂J2. For the isochoric

elasticity tensor we get

C = 2
∂S
∂C

= 2
∂J−2/3

P : S̃
∂C

= 2(P : S̃)⊗ ∂J−2/3

∂C
+ 2J−2/3∂(P : S̃)

∂C
, (2.31)

where we split the expression in two parts,C1 andC2. The first expression is given by

C1 = 2(P : S̃)⊗ ∂J−2/3

∂C
= −2

3
(J−2/3

P : S̃)⊗ C−1 = −2

3
S⊗ C−1, (2.32)

but the second term is a bit more complicated and reads as

C2 = 2J−2/3∂(P : S̃)
∂C

= 2J−2/3 ∂

∂C

(

S̃− 1

3
(C−1 ⊗ C) : S̃

)

= 2J−2/3

(

∂S̃

∂C
− 1

3

∂(C−1 ⊗ C) : S̃

∂C

)

:
∂C
∂C

= 2J−2/3

(

∂S̃

∂C
− 1

3

∂(S̃ : C)C−1

∂C

)

:
∂C
∂C

=

[

C̃− 1

3
(X+ Y)

]

: PT, (2.33)

which motivates the definition of the fictitious elasticity tensor in the material configuration

C̃ = 2J−4/3 ∂S

∂C
, (2.34)

and the introduction of two more terms,X andY, given by

X = 2J−4/3C−1 ⊗ ∂(S̃ : C)

∂C
= 2J−4/3C−1 ⊗

(

S̃ :
∂C

∂C
+ C :

∂S̃

∂C

)

= C−1 ⊗
(

C : C̃+ 2J−2/3S̃
)

= C−1 ⊗ C : C̃+ 2C−1 ⊗ J−2/3S̃. (2.35)



30 2 Continuum Mechanical Framework

For the second part we have

Y = 2J−2/3(S̃ : C)
∂C−1

∂C
J−2/3 = 2J−4/3(S̃ : C)J2/3∂C−1

∂C

= −2J−2/3(S̃ : C)C−1 ⊙ C−1. (2.36)

This allows us to finally write the second part of the isochoric elasticity tensor as

C2 = 2J−2/3∂(P : S̃)
∂C

=

(

I− 1

3
C−1 ⊗ C

)

: C̃ : PT−
2

3
C−1 ⊗ J−2/3S̃ : PT +

2

3
J−2/3(S : C)C−1 ⊙ C−1 : PT

= P : C̃ : PT − 2

3
C−1 ⊗ S+

2

3
Tr (J−2/3S̃)

(

C−1 ⊙ C−1 − 1

3
(C−1 ⊙ C−1) : (C ⊗ C−1)

)

= P : C̃ : PT − 2

3
C−1 ⊗ S+

2

3
Tr (J−2/3S̃) P̃, (2.37)

where we defined the trace in the material coordinates using the right Cauchy-Green tensor as

the metric tensor in the Lagrangian setting asTr (•) = (•) : C.

Moreover, we simplify

(C−1 ⊙ C−1) : (C ⊗ C−1) = C−1 ⊗ C−1,

1

2
(C−1

ACC
−1
BD + C−1

ADC
−1
BC)ABCD(CCDC

−1
EF )CDEF =

1

2
(C−1

ACCCDC
−1
BDC

−1
EF + C−1

BCCCDC
−1
ADC

−1
EF ) = (C−1

ADC
−1
EF )ADEF , (2.38)

following from index notation and using eq. (2.29) and further used the modified fourth-order

projection tensor in the reference configuration given by

P̃ = C−1 ⊙ C−1 − 1

3
C−1 ⊗ C−1. (2.39)

By combining eqs. (2.31), (2.32), (2.37), we finally obtain the elasticity tensor in the Lagrangian

description according to

C = P : C̃ : PT +
2

3
Tr (J−2/3S̃) P̃− 2

3

(

C−1 ⊗ S+ S⊗ C−1
)

, (2.40)

where we used the fictitious elasticity tensorC̃ given in eq. (2.34).
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The Elasticity Tensor in the Eulerian Setting. After deriving the elasticity tensor in the

Lagrangian setting, we have to perform a push forward to obtain the Eulerian description of the

elasticity tensor by

C = (F ⊗ F) : C : (F ⊗ F)T,

Cijkl = FiIFjJFkKFlLCIJKL. (2.41)

When we perform the push-forward of eq. (2.40) we obtain the spatial elasticity tensor as

C = Cvol + C with

Cvol = J(p̃I ⊗ I − 2pI), C = P : C̃ : P +
2

3
tr (τ̃ )P − 2

3
(I ⊗ τ + τ ⊗ I), (2.42)

whereC̃ is the fictitious elasticity tensor in the Eulerian setting and given by the push-forward

of C̃.

2.7 Anisotropy for Finite Deformations

We know from histological experiments that the artery is a fiber reinforced material, and me-

chanical tests have shown that the collagen fibers play a dominant role in the mechanical be-

havior in the physiological and supra-physiological loading domain. Therefore, we seek to

model the artery as an anisotropic material, i.e., we have toaccount for the directional depen-

dence of the material behavior. There are two ways to do that,namely (i) restrict the way in

which the SEF depends on the deformation [Green and Adkins, 1970] or (ii) introduce a vector

field which represents the preferred direction of the material explicitly in the SEF [Simo et al.,

1985]. Since the first approach requires to perform the computations in the local coordinate

system aligned with the preferred direction, we use the second method to model anisotropy

[Weiss et al., 1996]. This is especially convenient since the fiber orientation might depend on

the position and we might encounter more than one fiber family, therefore it is advantageous

that the formulation does not depend on a particular choice of the coordinate system. In a pi-

oneering paper [Spencer, 1984], Spencer introduced five scalar invariants to model a material

reinforced with one perfectly aligned fiber family. In the following, we want to give a short

overview of his work.



32 2 Continuum Mechanical Framework

We define a unit vectorM representing the fiber direction in the undeformed configura-

tion enclosing an angleα with the 1-axis of our coordinate system. If the fibers are the only

quantities introducing anisotropy, the SEF must not changeif both the deformation fieldC

and the fibersM are rotated by an orthogonal rotation tensorQ, and we therefore require

Ψ(C,M) = Ψ(QCQT,QM). This states thatΨ is an isotropic invariant ofM andC. Since

the sense ofM is not important,Ψ must be an even function ofM , i.e.,Ψ(C,M) = Ψ(C,−M),

and henceΨ can be expressed as an isotropic invariant ofC andM ⊗ M . This leads to the

following set of invariants ofC andM :

IC1 = tr (C), IC2 = 1
2
[(tr (C))2 − tr (C2)], IC3 = detC,

IC,M
4 = M · CM = C : (M ⊗ M), IC,M

5 = M · C2M = C2 : (M ⊗ M), (2.43)

where the invariantsIC,M
4 andIC,M

5 are directional since they are related to the direction of the

fiber reinforcement. They are also called mixed invariants because they are defined by the tensor

fieldsC andM . For a more convenient notation, we drop the superscripts ofthe invariants for

the rest of this work since we will solely use the invariants defined byC andM .

It is not possible to distinguish the effects of the invariants I4 andI5, which is problematic

for the determination of material parameters. Therefore, we will drop the fifth invariantI5.

Experiments of [Schriefl et al., 2012d] have verified the assumption that there are two fiber

families in the aorta, and since our model aim to capture histological observations as good as

possible we have to introduce a second vector field,M ′, representing the second fiber family in

our model. Because we dropped the invariant quadratic inC for the first fiber family, we do the

same for the second fiber family and obtain two new invariants, namely

I6 = C : (M ′ ⊗ M ′), I8 = M · C2M ′ = C2 : (M ⊗ M ′), (2.44)

whereI6 corresponds toI4 andI8 is a new invariant accounting for the coupling between the

fiber families. We dropI8 for the same reasons as we neglectedI5 and finally obtain a set

of three isotropic invariants and two directional invariants for our two fiber family model. We

furthermore assume that the two fiber families feature the same mechanical properties and there-

fore the SEFΨ must be symmetric with respect to interchanges ofM andM ′.
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If a fiber-reinforced body undergoes a deformation described by the deformation gradientF,

the fibers, i.e., the field of unit vectorsM , are moved with the particles of the body. The fibers

in the deformed configuration are represented by the vector field

m = FM , (2.45)

where the square of the stretch of a fiber is given by

λ2f = mT · m = MFT · FM = M · CM = C : (M ⊗ M) = I4,

λ2f = mama = FabMbFacMc =MbCbcMc = CbcMbMc = I4, (2.46)

showing that the square root of the forth invariant is the fiber stretch, i.e.,
√
I4 = λf .





3 Existing Fiber Dispersion Models

‘Whenever a theory appears to you as the only possible one, take this as a sign that you have

neither understood the theory nor the problem which it was intended to solve.’

KARL POPPER

Modeling of fiber dispersion in soft biological tissues has been an active area of research in the

last three decades. To the knowledge of the author, Lanir wasthe first who considered fiber dis-

persion in the analysis of fibrous connective tissues [Lanir, 1983]. In this paper he incorporates

a probability density function (PDF, also called (fiber) dispersion function) in the strain-energy

function to describe the statistical distribution of fibers. Based on his pioneering work, other

researchers came up with many different forms for this function, e.g., some models use a dis-

crete approach while others use a continuous distribution.To account for the fiber dispersion

in a mechanical model, the PDF can either be (i) incorporated in the strain-energy function

(requiring the angular integration of the SEF) or (ii) be integrated separately (‘in advance’) to

obtain a generalized structure tensor representing the fiber dispersion. These two approaches,

which we will refer to as angular integration (AI) and generalized structure tensor (GST), are

not mutually exclusive since one model can be implemented inboth ways; e.g., [Cortes et al.,

2010] compared the two formulations for the well-known model proposed by [Gasser et al.,

2006]. In general, the GST models use average stretches rather than the actual stretch in the

fibers to compute the strain-energy and stress.

Dispersion models can also be classified according to the PDFrepresenting the fiber disper-

sion: (i) planar distributions with only one parameter can represent either a two-dimensional

35
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(planar) fiber distribution or represent a three-dimensional dispersion which is rotationally sym-

metric (transverse isotropy), whereas (ii) fully three dimensional fiber dispersion models use

PDFs with two or more dispersion parameters to represent an,e.g., orthotropic fiber dispersion.

In this section we review some of the most popular models which incorporate fiber dispersion

in soft biological tissues. Since this thesis is based on thepapers of [Holzapfel et al., 2000,

Gasser et al., 2006], we will discuss their approaches in more detail, and although the work by

Fung does not consider fiber dispersion, we will give a short overview of his model since it

inspired many subsequent researchers.

3.1 The Work of Fung

In his landmark paper [Fung, 1967], Fung showed the highly nonlinear stess-stretch behavior

of mesentary tissue in uniaxial tension tests by measuring the stretchλ1 and the corresponding

first Piola-Kirchhoff stressP11. When plotting the ‘stiffness’dP11/dλ1 againstP11, he found

a linear relationship, i.e.,dP11/dλ1 = c1P11 + c2, with c1 andc2 as material parameters. This

differential equation suggests an exponential relationship between stress and stretch, and has

the solution

P11 =
c2
c1

{

exp[c1(λ1 − 1)]− 1
}

, (3.1)

where a stress-free state for zero deformation, i.e.,P11 = 0 for λ1 = 1, was assumed. Although

this formulation is one-dimensional, it is of fundamental importance and leads to another pos-

tulate by Fung where he introduces a SEF which is exponentialin terms of the Green-Lagrange

strain tensor and reads in its general formulation as

Ψ = c[exp(Q(E))− 1], and hence S= c exp(Q(E))
∂Q(E)
∂E

, (3.2)

where he used eq. (2.16) andE instead ofC. Here, the form ofQ determines the material

behavior and can be taken as, for example, a polynomial function of the components of the

Green-Lagrange strain tensorE, whereQ = 1
2
cABCDEABECD. A quadratic form (as seen in

linearly elastic behavior1) was shown to be sufficient to describe a wide range of materials.

1Note that onlyQ is quadratic, but the strain-energy function is an exponential function withQ as the argument.
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Moreover, it is possible to include anisotropy in this framework as shown by [Holzapfel et al.,

2000, Humphrey, 2002].

3.2 Constitutive Model with Perfectly Aligned Fibers

The model of [Holzapfel et al., 2000] uses a strain-energy function which has been extended to

include fiber dispersion in various follow-up papers of the same group and other researchers. In

[Holzapfel et al., 2000], the authors model the isotropic non-collagenous groundmatrix with a

neo-Hookean potential given by

Ψ̄gm =
1

2
c(Ī1 − 3), (3.3)

whereĪ1 = trC it the first invariant of the modified right Cauchy-Green tensor. To represent the

collagen fibers, the researchers introduce an exponential function which accounts for the non-

linear stiffening of arteries at high loads. The strain-energy function for one perfectly aligned

collagen fiber family reads as

Ψ̄f =
k1
2k2

{

exp[k2(Īi − 1)2]− 1
}

, i = 4, 6, (3.4)

whereĪi is the modified fourth invariant ofC and the structure tensorHi (see eq. (2.43), where

M i ⊗M i = Hi), introducing the anisotropy. For each fiber familyi = 4, 6, this energy is added

to the neo-Hookean potential.

3.3 Fiber Model with Rotationally Symmetric Dispersion

In [Gasser et al., 2006], the authors assume a rotationally symmetric dispersion of fibers around

the main fiber direction using aπ-periodicvon Misesdistribution. Thevon Misesdistribution is

a function of the angleΘ and has, since it is a one-dimensional PDF, the concentration parameter

b as the only argument. Its normalized version reads as

ρ(Θ; b) =
1

2πI0(b)
exp(b cos 2Θ), (3.5)
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whereIn(b) is the modified Bessel function of the first kind of ordern defined as

In(x) =
1

π

π
∫

0

exp[x cos(α)] cos(nα) dα. (3.6)

In Fig. 3.1, this PDF is plotted for different values of the concentration parameterb, showing that

the distribution becomes narrower (higher concentration of fibers in the main fiber direction) for

larger values ofb.
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Figure 3.1: The standardvon Misesdistribution for five different concentration parametersb ∈
{0, 1, 3, 5,∞} and the location parameterµ = 0◦ for all five distributions. Forb = 0 we

obtain the uniform distribution (isotropic fiber dispersion) whileb → ∞ yields a Dirac delta

function atµ (perfect fiber alignment).

Since the material behavior does not depend on the sense ofM , the strain-energy only de-

pends onM through the tensor productM ⊗M (see section 2.7) or through a symmetric, second

order tensor given by

H =
1

4π

∫

S

ρ(M)M ⊗ M dS, (3.7)

which involves only the sines and cosines ofΘ and the PDFρ(M). We denote the components

of the structure tensor asH = Hij ei ⊗ ej and notice that due to the symmetries ofρ(M) all off-

diagonal components (Hij, i 6= j) vanish. By introducing the parameterκ, which is an integral
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measure of dispersion, the structure tensor can be written as

H = κI + (1− 3κ)M ⊗ M with κ =
1

4

π
∫

0

ρ(Θ) sin3 ΘdΘ. (3.8)

Finally, the structure tensorH is used to compute an average strain quantity

Ē = H : (C − I) = H : C − 1, (3.9)

becauseH : I = trH = 1. The authors use this strain quantity in the strain-energy function and

follow the approach of [Holzapfel et al., 2000] by using an exponential function to account for

the fiber recruitment according to

Ψ̄fi(C,Hi) =
k1
2k2

{

exp(k2Ē
2
i )− 1

}

, i = 4, 6, (3.10)

where the indexi represents the fiber family.

3.4 Other Frameworks Including Dispersion

Mathematically, incorporating a PDF into the constitutivemodel is not challenging, but the

resulting computational costs might be very high. For example, [Einstein, 2002] pointed out

that18 intervals of the PDF are required to capture the full range behavior of the mitral valve

for a2D case. This is mechanically equivalent to18 weighted fiber families in the plane; in a3D

setting, this requires two integrals to be evaluated for thestress and four for the tangent matrix.

In the framework of finite elements, these computations haveto be performed for every iteration,

for every time step, at every Gauss point for every finite element of the segmented geometry

[Freed et al., 2005]. Moreover, if the inhomogeneous material properties of a tissue should be

considered, the PDF can vary with the location and differ foreach finite element. Therefore it is

not only crucial to have a computationally efficient model but also to develop a robust method

to determine the dispersion from histology and incorporateit in the computational framework

in an efficient way.

In [Holzapfel et al., 2005a], the authors introduce a phenomenological scalar parameterρ ∈
[0, 1] which shifts the fiber dispersion from transversely isotropic to isotropic. Since it is intro-

duced in a phenomenological way, it cannot be determined by histology but only by fitting to

mechanical data.
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The approach of [Sacks, 2003] incorporates a two-dimensional angular fiber distribution into

the strain-energy function, considering only in-plane dispersion of fibers. The authors directly

use the a mean angular fiber distribution which was determined from scattered light experi-

ments. Therefore, the distribution function appears in theintegral for the stress requiring nu-

merical integration. To study perturbations of the distribution function, the beta distribution was

used to represent the fiber dispersion. Note that the authorsuse a Gamma distribution to account

for the gradual recruitment of fibers which are assumed to behave linearly elastic. Due to the

recruitment distribution (which should not be confused with the fiber dispersion distribution),

the final stress-strain relation is nonlinear.

[Driessen et al., 2005] studied the biaxial behavior of the arterial wall and the aortic valve,

where the artery is modeled as a thick walled cylinder (following [Holzapfel et al., 2000]), while

the aortic valve leaflet is simulated in the closed configuration using finite element analysis.

They use a neo-Hookean material law for the isotropic matrixand an effective stress-strain

relationship for the collagen fibers. A unimodular discretenormal probability density function

accounts for the fiber dispersion, limiting their model to a planar fiber distribution.

[Freed and Doehring, 2005] introduced an alternative pair of directional invariants (similar

to [Gasser et al., 2006]), based on2 I4 andI5, denotedI〈4〉 andI〈5〉 where the angle brackets

represent the dispersion invariant. To compute this dispersion invariant, they use a tensorK

which reduces toM ⊗ M in the absence of splay, leading toI〈4〉 = I4 andI〈5〉 = I5. Using

the set{I1, I2, I3, I〈4〉, I〈5〉} as integrity basis, the authors develop a constitutive equation for

the Kirchhoff stress tensor. To account for the anisotropy,the authors use the Gaussian distri-

bution to compute the splay invariants via an integral over the unit half-circle (in the2D case)

or the unit half-hemisphere (in the3D case), including the deformation tensorC for I〈4〉 and

C2 for I〈5〉, respectively. The integrals defining the stiffness tensorrelated to anisotropy can be

solved analytically, making their approach suitable for anefficient finite element implementa-

tion. Nevertheless, the analytical solution requires the complex error function to be evaluated

for the stiffness tensor and the fiber dispersion is restricted to the transverse isotropic case.

The model of [Caner et al., 2007] accounts for the fiber-matrixshear interaction by a sepa-

rate term in the strain-energy function and uses an (inverse) exponential distribution function

2We changed their notation to be consistent with our notation.
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to model the collagen fiber distribution, where the authors call this function ‘anisotropy func-

tion’. Since this anisotropy function depends only on one angle, also this model is limited to

two-dimensional (in-plane) fiber distributions (or, if generalized to3D, transversely isotropic

distributions).

In [Kroon and Holzapfel, 2008], the authors apply the model of [Holzapfel et al., 2000] to

model discrete tissue layers, where the fiber orientations vary with each layer and are uniformly

distributed over the azimuthal angle. The fiber stiffness ineach layer changes according to

a discrete, triangular stiffness distribution. This approach is only capable of modeling planar

distributions and it models a distribution of stiffnesses rather than fiber orientations. Hence, the

distribution parameters cannot be obtained from histological analysis and the authors fitted eight

stiffness parameters{k1, ...k8} to experimental data from mechanical tests. This corresponds to

eight layers, each reinforced with one collagen fiber familywith a stiffnesski. Note that only

one of the two material parameters from the model of [Holzapfel et al., 2000] is varied while

the other parameter (k2) is kept constant.

In [Ateshian et al., 2009], the material parametersαi(n) andζi(n), i = 1, 2, 3, in the strain-

energy function are functions of the direction vectorn. The authors chose an ellipsoidal dis-

tribution for this directional dependence, yielding six parameters for the fiber dispersion, and

apply a power-law SEF depending on the square of the fiber stretch to model the mechanical

behavior of cartilage. Their model accounts for the osmoticpressure and uses the discretization

of the unit sphere as a geodesic dome to solve the integrals for the Cauchy stress and the spatial

elasticity tensor. Due to the lack of experimental data, theauthors did not fit the fiber distribu-

tion to histological data but chose the dispersion parameters so the model fits data reported in

literature. Although their model proposes six material parameters for orthotropy, they only use

a transverse isotropic distribution forζ, i.e., ζ2 = ζ3, and an isotropic distribution forα, i.e.,

α1 = α2 = α3.

In [Raghupathy and Barocas, 2009], a closed form solution of a specialized constitutive

model based on the work of [Billiar and Sacks, 2000, Driessen et al., 2007] is derived. Al-

though this provides an enormous speedup compared to the integration of the stress over the

fiber distribution, it has two major disadvantages: first, itdoes not account for the different be-

havior of fibers in tension and compression and second, it is restricted to2D fiber dispersions.
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Also [Federico and Gasser, 2010] adopted the model of [Gasser et al., 2006] to include the

extremal case of an in-plane arrangement of fibers and followthe angular integration approach.

Their model uses a quadratic polynomial to account for the contribution of collagen fibers to the

SEF. This allows the authors to use a sphericalt-design to perform a rather complex integration

over a unit sphere and implement the model in a finite element framework which they use to

simulate cartilage in an unconfined compression and a contact problem in the hip joint. For

the simulations, the dispersion was varied linearly from a planar isotropic dispersion in the

superficial zone to a completely three-dimensional isotropic dispersion in the middle zone and

nearly aligned, transverse isotropic distribution in the deep zone. The material parameters were

chosen to qualitatively fit experimental data, which were not quantitatively compared with the

model output in this work.

In [Holzapfel and Ogden, 2010b] the authors discuss the model of [Gasser et al., 2006] for

the range ofκ ∈ [0, 1/2], with κ = 1/2 as the extreme case of a two-dimensional isotropic

distribution, where they show that the range between1/3 and 1/2 yields undesirable effects.

Moreover, the work shows the adaptation of the fiber dispersion model of [Gasser et al., 2006]

to a planar fiber distribution. We will see very similar results in the work we present here, as

the adopted model is a special case of the model presented in section 5.

All mentioned models based on the work of [Gasser et al., 2006] assume a rotationally sym-

metric distribution of collagen fibers around a preferred fiber direction, an assumption which as

been shown to be inappropriate for the arterial wall. For this reason, [Alastrúe et al., 2010] sug-

gest a truly three-dimensional PDF to account for the non-rotationally symmetric distribution.

Specifically, the Bingham distribution is applied to represent the collagen fiber dispersion, but

due to the lack of histological information the authors did not obtain the parameters of this PDF

from histology but from data fitting to uniaxial tensile tests. The researchers compare two dif-

ferent material models, namely the exponential model of [Holzapfel et al., 2000] and the eight-

chain model [Arruda and Boyce, 1993] for a transversely isotropic material [Kuhl et al., 2005,

Alastrúe et al., 2009a]. In order to obtain a high accuracy, the numerical integration requires a

high order of discretization to perform the integration. The authors state that non-linear trans-

formations might reduce the number of necessary integrations as proposed in [Alastrué et al.,

2009b].
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In the work of [Agianniotis et al., 2011], the fiber recruitment of collagen is modeled us-

ing a log/logistic probability function, whereas the fiber dispersion is represented by a two-

dimensionalvon Misesdistribution. This allows for a planar fiber distribution neglecting the

three-dimensional dispersion of collagen fibers. The valueof the concentration parameter of the

PDF is fitted to mechanical experimental data and not obtained from histological data. Elastin

is modeled as a transverse isotropic material, yielding an isotropic and an anisotropic material

parameter for the mechanical behavior of elastin.

In the work of [Gasser et al., 2012], the PDF of [Alastrué et al., 2010] is adopted and incorpo-

rated into two different models, a phenomenological one with an exponential SEF and a model

with a triangular PDF for the recruitment of collagen fibers leading to a piecewise stress-strain

relation. They apply their model to a AAA wall and obtain integral relations for the stress in

the circumferential and the axial direction. To solve for the Lagrangian multiplier, they use the

membrane approximation, i.e., they neglect the stress in radial direction (transmural stresses)

which are believed to be important from a clinical point of view.

In [Pandolfi and Vasta, 2012], the model of [Gasser et al., 2006] is extended by incorporating

a higher-order statistical measureκ̂ ∈ [0, 1/15] to reduce the differences between the GST and

AI formulation. To obtain this measurêκ, the approximation of the average anisotropic strain-

energy function contains also the quadratic term of the Taylor expansion around the mean value

of the fourth invariant̄I4. This requires a fourth-order tensorH = 〈H ⊗ H〉 whereH is3 the

original structure tensor from [Gasser et al., 2006], see eq. (3.7), and the angle brackets denote

the averaging over the unit sphere. By utilizing thevon Misesdistribution, the authors find

that the incorporation of̂κ reduces the difference to the AI formulation compared to theGST

approach for uniaxial, biaxial and shear deformation.

Note that some authors include a PDF to represent the engagement of collagen fibers and

some utilize two PDFs, one for the collagen fiber recruitmentand another to capture the fiber

dispersion. An overview of the discussed models is given in table 3.1.

3We changed the variable names to be consistent with our notation.
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3.5 Shortcomings of Existing Models

As we have seen in this chapter, most models do not use information from histological data

to obtain structural parameters describing the fiber dispersion. This is also owed to the fact

that the quantification of fiber orientation and dispersion from histological data is challenging

and requires a well defined experimental protocol. Since [Schriefl et al., 2013a] showed that

diseased arterial walls show also a significant out-of-plane dispersion, two-dimensional fiber

dispersion models might not be appropriate. Therefore, it is the aim of this work to develop a

straightforward and computationally efficient constitutive model which is based on experimen-

tal data and capable of describing the nonlinear behavior ofarterial wall tissue. Some existing

models are very sophisticated but computationally expensive, which is especially in the context

of finite elements and high mesh densities a problem and impedes a potential future application

in a clinical setting where high performance computers are not available.

Table 3.1: Overview of existing fiber dispersion models. The column ‘Formulation’ describes the ap-

proach originally presented in the cited paper, ‘Parameters’ refers onlyto parameters describ-

ing the fiber dispersion and does not list mechanical or any other parameters and the abbre-

viations ‘RS’, ‘OT’, ‘IP’ and ‘DD’ mean rotationally symmetric, orthotropic,in plane and

discrete distribution, respectively.

Reference Formulation PDF Parameters2D/3D Dispersion

[Holzapfel et al., 2005a] - - ρ 3D RS

[Gasser et al., 2006] GST von Mises κ 3D RS

[Pandolfi and Vasta, 2012] GST/AI von Mises κ, κ̂ 3D RS

[Federico and Gasser, 2010] AI von Mises b 2D/3D RS

[Alastrué et al., 2010] AI Bingham κ2, κ3 3D OT

[Gasser et al., 2012] AI Bingham κ1, κ2 3D OT

[Freed and Doehring, 2005] AI Gaussian σ 2D/3D RS

[Sacks, 2003] AI discrete/Beta γ, δ 2D IP

[Driessen et al., 2005] AI Gaussian σ 2D IP

[Ateshian et al., 2009] AI ellipsoidal ξ1, ξ2, ξ3,
α1, α2, α3

3D OT

[Agianniotis et al., 2011] AI von Mises b 2D IP

[Kroon and Holzapfel, 2008] discrete triangular E1, E2 2D/3D DD, IP

[Caner et al., 2007] AI exponential c1, c2 2D PD

this thesis GST bivariatevon Mises κip, κop 2D/3D OT
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‘ If you want to understand function, study structure.’

FRANCIS H. C. CRICK

This quote of F. Crick, a co-discoverer of the structure of theDNA molecule, is one of the

premises of biomechanics which states that function follows structure and mechanics1. As

we saw in section 1.3, collagen fibers are the main load bearing constituents at high strains and,

therefore, their structural arrangement is of crucial importance. Until the work of [Schriefl et al.,

2012a], in which the orientation and dispersion of collagenfibers in the human aorta was quan-

tified, no comparable data were available. Hence, also the models describing the mechanical

behavior of the arterial wall were not based on experimentally founded dispersion data of col-

lagen fibers.

In this chapter we first introduce the basics of probability theory and define a coordinate

system to describe the fiber dispersion. After that, we will discuss the results of [Schriefl et al.,

2012a] and motivate the use of the bivariatevon Misesdistribution to represent the dispersed

collagen fibers. To fit this probability density function (PDF) to experimental data we introduce

maximum likelihood estimation, well-suited method to determine parameters of distributions.

At the end of this chapter, we show results of fitting the PDF todispersion data obtained by

various experimental methods, see chapter 3.

1Mechanobiology states that structure follows function, what is not a contradiction to biomechanics but just a

different approach.
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4.1 Probability Density Functions

The concept of the probability density function (PDF) allows us to describe the probability

of finding a fiber in a certain direction in3D space. First, we will start with a very general

definition and then later in this chapter define a specific formof this PDF and show how to

ensure that a given PDF fulfills the necessary requirements.

The probability of a random variableX to be in the interval[a, b] ∈ X with X being the

sample space ofX is given by the PDFρ(x) defined as

P [a ≤ X ≤ b] =

b
∫

a

ρ(x) dx, (4.1)

and has to fulfill

ρ(x) ≥ 0 ∀ x ∈ X,

∫

X

ρ(x) dx = 1, (4.2)

where eqs. (4.2)1 and (4.2)2 are two requirements of every PDF, i.e., it has to be non-negative

and its integral over the whole domain has to be equal to one (normalization condition), respec-

tively. After defining the PDF, we can introduce the cumulative distribution function ofX, given

byCX(x) =
x
∫

−∞

ρ(α) dα, which describes the probability thatX will take a value less or equal

to x, i.e.,CX(x) = P [X ≤ x]. With this function, we can compute the probability ofX being

in the interval(a, b] by P [a < X ≤ b] = CX(b) − CX(a). Because of the non-negativity of

the PDF given in eq. (4.1)2, the CDF is (not necessarily strictly) monotonically increasing and

reaches the limiting valueslim
x→−∞

CX(x) = 0 and lim
x→∞

CX(x) = 1 [Montgomery and Runger,

2010].

Remark. Note that the boundaries in the latter two equations, i.e.,−∞ and∞, are actually

the boundaries of the sample spaceX and not necessarily infinite. Especially for periodic PDFs,

the boundaries could be, e.g.,−π andπ. We adopted the notation from the most common

textbooks and leave it to the reader to adjust these definitions to the specific problem.�

We can parameterize a PDF by defining a parameter vectorp = {p1, p2, . . . , pn} containing

unspecified parameterspi which, e.g., determine the shape and location of the PDF, andwrite

the resulting PDF asρ(x | p) [Lyons, 1989, Evans et al., 2000] .
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4.2 Coordinate System

We have to set up a suitable coordinate system to mathematically represent the structural data

we obtain from histology. Motivated by the experiments of [Schriefl et al., 2012a], we introduce

the coordinate system shown in Fig. 4.1 where the unit vectorM is expressed through the two

Eulerian anglesΦ andΘ by M(Φ,Θ) = cosΘ cosΦe1 + cosΘ sinΦe2 + sinΘ e3. Without

loss of generality, we align the preferred fiber direction with the1-direction and define a normal

direction which we align with the3-direction of the coordinate system.

Figure 4.1: Unit vectorM(Φ,Θ) defined by the Eulerian anglesΦ andΘ in the3D space. Since‖M‖ =

1, the differential surface of the unit sphere described byM is dS = cos dΦdΘ. We align the

1-direction with the preferred fiber direction and the3-direction (for symmetric out-of-plane

dispersion) with the radial direction, therefore we refer to the anglesΦ andΘ as the in-plane

and out-of-plane angles, respectively.

Although the coordinate system looks similar to the one presented in [Gasser et al., 2006],

there is a subtle but important difference: our approach does not involve an angle rotating around

the preferred direction (like the angleΦ in [Gasser et al., 2006]) since there is no experimental

evidence for a rotationally symmetric fiber dispersion in the arterial wall.
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Figure 4.2: In (a), the three-dimensional representation of the bivariatevon Misesdistribution in the

Φ,Θ-plane with two concentration parameters,bip = 2 andbop = 5, is shown. Panels (b)

and (c) display the two separate functionsρip(bip,Φ) andρop(bop,Θ) which are multiplied

to yield an orthotropic3D fiber dispersion function.

4.3 The Bivariate von Mises Distribution

The coordinate system defined in the previous section allowsus to introduce a probability den-

sity function ρ(M(Φ,Θ)) describing the fiber dispersion in the reference configuration as a

function of the unit vectorM(Φ,Θ) in 3d space. The PDF has to be normalized, c.f. eq. (4.2)2,

so the integration over the unit sphereS yields

1

4π

∫

S

ρ(Φ,Θ) dS = 1, (4.3)

wheredS = cosΘdΘdΦ and the factor1/(4π) normalizes the surface of the unit sphere to one.

After this very general introduction, we can specify the PDFbased on histological observations

in [Schriefl et al., 2012a,d] which yielded angular data of the in-plane collagen dispersion of the

intima, media and adventitia of the thoracic aorta, the abdominal aorta and the common iliac

arteries. In [Schriefl et al., 2012a], the out-of-plane angle has not been measured separately

for every layer because the distributions out-of-plane arevery similar at all anatomic locations

and layers. Moreover, the authors observed no correlation between the dispersion in-plane and
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out-of-plane, meaning that the fiber dispersions in these planes are independent of each other.

Note that in-plane corresponds to the1, 2-plane in Fig. 4.2 and out-of-plane is the dispersion in

the3-direction.

A PDF representing a fiber distribution has to fulfill the symmetry of a fiber,ρ(M) ≡ ρ(−M),

which is equivalent toρ(Φ,Θ) = ρ(Φ + π,−Θ). Based on the experimental results presented

in [Schriefl et al., 2012a,d], we identify two additional symmetries2 of our density function,

namely the symmetry in-planeρ(Φ,Θ) = ρ(−Φ,Θ) and the symmetry out-of-planeρ(Φ,Θ) =

ρ(Φ,−Θ). Moreover, the independence of the dispersion in-plane andout-of-plane allows us to

split the density function in a multiplicative way, i.e,ρ(Φ,Θ) = ρip(Φ)ρop(Θ). With this split,

the symmetry requirements read asρip(Φ) = ρip(−Φ) andρop(Θ) = ρop(−Θ).

Based on these observations we choose to represent the fiber dispersion with aπ-periodic

bivariatevon Misesdistribution [Mardia, 1975], a PDF which takes the azimuthal angleΦ and

the elevation angleΘ as arguments and features the symmetries discussed in the previous para-

graph. The bivariatevon Misesdistribution is a multiplication of twoπ-periodic von Mises

distributions given by

ρ(Φ,Θ) = Nc exp(bip cos 2Φ) exp(bop cos 2Θ) = Ncρ̄ip(bip,Φ)ρ̄op(bop,Θ), (4.4)

whereNc is a normalization constant depending onbip andbop. A plot of this3D distribution is

shown in Fig. 4.2.

The originalπ-periodic von Misesdistribution ρ̃(α) [Mardia and Jupp, 1999] was already

introduced in eq. (3.5), and is given by

ρ̃(α) =
exp[b cos(2(α− µ))]

2πI0(b)
, (4.5)

whereb > 0 is the concentration parameter andµ is the location parameter defining the shape

and the location of the distribution, respectively. The distribution is normalized byI0(b), where

In(b) is the modified Bessel function of the first kind of ordern defined as (c.f. eq. (3.6))

In(x) =
1

π

π
∫

0

exp[x cos(α)] cos(nα) dα. (4.6)

2Here, symmetry means a fiber dispersion symmetric around themain fiber orientation in the respective plane.
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A plot of this circular distribution for different concentration parameters is shown in Fig. 3.1,

where the location parameter is set toµ = 0◦ for all distributions. This form of thevon Mises

distribution isπ-periodic, a close approximation to the wrapped normal distribution, simple and

yet sufficient to describe experimental data very well as we will see in this chapter. We use

maximum likelihood estimation to obtain the parametersbip andbop of the PDFsρip(Φ) and

ρop(Θ), respectively, therefore we will introduce this method in the following.

4.4 Maximum Likelihood Estimation

In this section, we will give a short introduction on maximumlikelihood estimation (MLE)3

which will be used to obtain the parameters of the PDFρ(θ|p) since it has many optimal pa-

rameters in estimation: (i) sufficiency: the MLE estimator contains the complete information

about the parameter of interest; (ii) consistency: the true value for the parameter that generated

the data is recovered asymptotically; (iii) efficiency: the lowest possible variance of parameter

estimates is achieved asymptotically; (iv) parameterization invariance: the same MLE solu-

tion is obtained independently of the parameterization used. For proofs of these properties see

[Miura, 2011].

Remark. Very often least squares estimation (LSE) is used to determine parameters of dis-

tributions. It should be noted that LSE is not a method for parameter estimation but an approach

that is primarily used with linear regression models. Although it is possible to determine pa-

rameters of a PDF by minimizing the sum of squared errors (what is done in LSE), this method

has several disadvantages as we pointed out in [Schriefl et al., 2012c], hence we prefer the pa-

rameter identification via MLE. Nevertheless, in chapter 6 we use LSE to fit parameters of the

constitutive model to mechanical data, an application where LSE is widely accepted.�

From experiments, we obtain a data vectorθ = {θ1, θ2, . . . , θn} containing the measured

fiber angles. We define the number of angles in a certain interval from θi to θi+1 as yi =

{count (θ) ∀ θi ≤ θ < θi+1}. The collection of these numbers of angles in a certain, mostof the

times constant, interval, gives the ‘histogram’ vectory. The boundariesθi define the bin size of

3MLE was invented by R. Fisher, the father-in-law of G. E. P. Box who we get to know at the beginning of the

next chapter.
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the histogram, if, for example, the bin size is chosen to be5◦ and the range of admissible angles

is θ ∈ [−90, 90), we gety1 = {count(θ) ∀ − 90 ≤ θ ≤ −85} or y4 = {count(θ) ∀ − 75 ≤ θ <

−70}.

Note that when we use second harmonic generation (SHG) or multiphoton microscopy (MPM)

to determine the fiber orientation and dispersion, we directly obtain an intensity spectrum which

can be interpreted as a histogram vector.

The vectorθ can be seen as a random sample (i.e., a set of observations) from an unknown

population. This population is described by a probability density distributionρ(θ|p), andθ is a

realization ofρ for a specific choice of the parameter vectorp andn samples. If individual obser-

vationsθi are statistically independent of one another, the PDF for the dataθ = {θ1, θ2, . . . , θn}
can, given the parameter vectorp, be expressed as a multiplication of PDFs for individual ob-

servations,

ρ(θ = {θ1, θ2, . . . , θn} | p) = ρ(θ1 | p) ρ(θ2 | p) . . . ρ(θn | p) =
n
∏

i=1

ρ(θi | p). (4.7)

According to the PDF some set of data is, for given parameters, more probable than another set.

If we look at thevon Misesdistribution we see that for, e.g., a large concentration parameter

b, a ‘peaked’ distribution is more likely than an isotropic one. Since we already observed the

data, we are confronted with an inverse problem: we have the data and know the function which

generated them (at least we assume to know the underlying PDF), and now we have to find the

parameters of the PDF which are most likely to have generatedthe data. To solve this inverse

problem, we define the likelihood function by reversing the roles of the data vectorθ and the

parameter vectorp, i.e.

L(p |θ) = ρ(θ | p). (4.8)

Here,L(p |θ) represents the likelihood of the parameterp given the data observed inθ and is

therefore a function ofp. Since the functions are defined on different scales, they are not directly

comparable with each other. More specifically, the PDF is defined on the data scale since it is a

function of the data given a particular set of parameters. The likelihood function, in contrast, is

a function of the parameters given a particular set of data and is thus defined on the parameter

scale. We can interpret the likelihood function as the likelihood of a particular parameter value
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for a fixed data set, where the likelihood has the interpretation of an ‘unnormalized probability’.

For a model with one parameter, the plot of the likelihood function is a curve, whereas for e.g.,

two parameters the resulting visualization is a surface in the parameter space. Once we have a

set of data, we can find the most suited set of parameters for our given distribution. The method

of maximum likelihood estimation seeks to find the set of parameters which maximize the

likelihood function. Hence MLE seeks to find the parameters of the PDF making the observed

data most likely.

Since the logarithm of a function and the function itself have the same maximum, the compu-

tation of the MLE estimate uses the logarithm of the likelihood function, i.e.,lnL(p |θ), rather

thanL(p |θ). We want to maximize the function, therefore we look for the roots of the first

derivative of the likelihood function, and since the shape of the likelihood must be convex in

order to be a maximum and not a minimum, we require the second derivative to be negative for

all parameter estimatespi, i.e.,

∂ lnL(p |θ)
∂pi

= 0,
∂2 lnL(p |θ)

∂p2i
< 0. (4.9)

In general it is not possible to obtain the analytical solution of the MLE estimate, the MLE

estimate must therefore be found numerically using nonlinear optimization algorithms, e.g.,

with themle command in MATLAB .

4.5 Fitting of Arterial Collagen Dispersion Data

Fitting of Two Fiber Families. In [Schriefl et al., 2012c], we showed an automated method

to determine the orientation and dispersion of collagen fibers from2D images. Therein we used

thevon Misesdistribution and MLE to obtain the principal direction and dispersion values of

collagen fibers in a human intima.

Since the arterial wall is often reinforced with two dispersed fiber families, we might find an

overlapping region in the histogram of fiber angles, see, forexample, Fig. 4.3. In this case we

use a mixture (additive superposition) of twovon Misesdistributions, given by

ρmix(Φ) = ρ1(Φ) + ρ2(Φ) =
2
∑

i=1

exp[bi cos(2(Φ− µi))]

I0(bi)
, (4.10)
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Figure 4.3: Panel (a) shows an in-plane section of the intima of a thoracic aorta which was obtained

by polarized light microscopy and picrosirius red staining. The white dashed lines labeled

0◦ and90◦ represent the circumferential and axial direction of the vessel. In panel (b), the

angular fiber distribution of the image in panel (a) is shown. We used maximum likelihood

estimation of two superimposedvon Misesdistributions to determine the fitting parameters,

i.e.,b1 = 2.503, µ1 = 39.6◦, b2 = 2.149, µ2 = 39.4◦, clearly indicating two symmetric fiber

families [Schriefl et al., 2012b].

to fit the dispersion data and account for the superposition of two fiber families. Hence, the

concentration parametersb1 andb2 and the location parametersµ1 andµ2 of the two distribu-

tions are fitted. It is not required to normalize the mixture of the twovon Misesdistributions in

(4.10) since it is only used in the fitting process to determine the four fitting parameters and the

data is not normalized [Lyons, 1989]. If there is only one fiber family present as, e.g., for the

out-of-plane dispersion, only onevon Misesdistribution and two distribution parameters have

to be determined.

The result of the fitting procedure is shown in Fig. 4.3 where we see two peaks and a sub-

stantial amount of fiber dispersion. Moreover, the goodnessof fit measures (R2 andp-value)

indicate that two superimposedvon Misesdistributions are suitable to represent the fiber dis-

persion. Note that Fourier power spectrum analysis yields an intensity plot and cannot directly

be used for the parameter estimation using MLE. Instead, we use the histogram to infer the

underlying angles which ‘generated’ this intensity distribution required for the MLE procedure.

For details regarding the data analysis and parameter estimation see [Schriefl et al., 2012c].
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Figure 4.4: Collagen fiber dispersion taken from [Schriefl et al., 2012a]and fitted with avon Misesdis-

tribution, from which the location and concentration parameters were determined. Panel (a)

shows the in-plane dispersion of the media of the common iliac arteries, where one fiber

family is visible. In panel (b), we show the out-of-plane dispersion, where the angular distri-

bution was obtained from the whole arterial wall. The obtained parameters arebip = 2.84 and

bop = 25.3, with R2 values of0.974 and0.970, respectively. Note that for both distributions

the location parameterµ ∼ 0◦, i.e., the distribution is aligned circumferentially in-plane and

axially out-of-plane.

In Fig. 4.4(a), the result of fitting one fiber family is shown.Again, the highR2-value indi-

cates that thevon Misesdistribution is very suitable to fit dispersed collagen fibers.

Fitting out-of-plane Data. While in [Schriefl et al., 2012b] we show the applicability of

thevon Misesdistribution to represent the in-plane dispersion, also the out-of-plane dispersion

has to be considered. Therefore, we fitted the data of [Schriefl et al., 2012a] where also the

out-of-plane dispersion of the human aorta was assessed, see Fig. 4.4(b). Again, the good fit

suggests that thevon Misesdistribution is a good choice to represent the dispersion ofcollagen

fibers in human arteries. The work of [Schriefl et al., 2013a] also shows that thevon Mises

distribution is also applicable for diseased arteries which show a much higher out-of-plane

dispersion than healthy arteries.
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Fitting of Dispersion Data Throughout the Arterial Wall. While [Schriefl et al., 2012a]

were the first who quantified the collagen fiber dispersion in the human aortic wall, the method

to obtain the dispersion data is quite laborious since fiber angles had to be measured manually.

To overcome this problem, the same group presented an automated method to quantify the three

dimensional structure of collagen fibers using optical clearing and second-harmonic generation

imaging [Schriefl et al., 2012d].
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Figure 4.5: Result of the fitting procedure from data record#1 in Table 4.1. The top panel shows the

fitting results of the angleµ through the depth of the specimen, where at first two different

fiber families are visible. Around230nm, only one fiber family which is oriented circumfer-

entially can be seen. In the lower plot, the dispersion parameterb is plotted [Schriefl et al.,

2012d]. In the region from100 to 200nm (corresponding to the adventitia), two highly

aligned fiber families around±45◦ are visible. After that, the media is reinforced with two

fiber families which are oriented much closer to the circumferential direction and feature

much higher dispersion.

This approach yields three-dimensional image stacks, so called z-stacks, where each image

shows the in-plane distribution of collagen fibers. The researchers obtained the continuous

three-dimensional fiber distribution with a resolution of one degree to determine both the fiber

orientation and dispersion throughout the entire arterialwall using the methods we presented in

[Schriefl et al., 2012c]. We use their data to compute an averageb-value, i.e,, an average mea-
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sure of fiber dispersion of the whole arterial wall. In Fig. 4.5, one exemplary result of this fitting

procedure throughout the arterial wall is shown. We identified an inhomogeneous distribution

of fiber orientation and dispersion depending on the depth and related to the structure of the

wall. For example, in the adventitia (approximately the first 230 nm) the fibers are more aligned

and oriented more towards the axial direction compared to other regions.

It also should be noted that the histology varies strongly between each specimen, as it is the

case for every biological tissue. We nevertheless computedaverage values for the principal fiber

orientation and fiber dispersion and, therefore, homogenize the tissue. For the fiber angle we

take the mean value of all orientations in the wall, but for the dispersion the median is a more

appropriate measure since in a small region the values differ considerably from the others.

Table 4.1: Results of9 measurements of human aortas as described in [Schriefl et al., 2012d] andde-

scribed in the text. The data were obtained by maximum likelihood estimation and yielded a

list of principal orientationsµ andbip-values for each data set, from which we calculate the

mean and median. One exemplary dataset (#1) is shown in Fig. 4.5 where the fiber orientation

and dispersion through the thickness of the arterial wall are depicted.

Data record ±µ in◦ mean ofbip median ofbip

1 27 2.23 1.49

2 28 2.4 1.54

3 16 2.07 1.88

4 14 1.69 1.64

5 22 1.5 1.3

6 23 1.56 1.39

7 19 1.2 1.26

8 28 1.58 1.36

9 32 1.96 1.3

Mean 23.2 1.8 1.46

Variance 36.7 0.151 0.041

Standard Deviation 6.05 0.389 0.202



4.5 Fitting of Arterial Collagen Dispersion Data 57

In the end, we take the mean of these measures as the input variables for the constitutive

model. Note thatbip is a measure for the in-plane dispersion and is used in chapter 5 to com-

pute an integral measure of dispersion for the constitutivemodel. In chapter 6, we use these

histological parameters in the fitting procedure to determine the mechanical parameters of the

model. Since the interspecimen variability is that high andwe do not have the histological in-

formation of the specimens used for fitting the mechanical data in chapter 6, we do not restrict

the histological parameters completely. Instead, we allowthem to vary within the boundaries of

twice the standard deviation4, since the mean value± two times the standard deviation contains,

assuming a normal distribution, approximately95% of the data.

4The standard deviation is the square root of the variance, see Table 4.1.





5 Novel Constitutive Framework

Considering Fiber Dispersion

‘Essentially, all models are wrong, but some are useful.’

GEORGEE. P. BOX

As we have seen in chapter 3, there are quite a few constitutive models in the literature which

account for the fiber dispersion in soft biological tissue. We have also seen that a few of them

are capable to represent the ‘real’ distribution of collagen fibers in arterial tissue, and most of

them are computationally very expensive.

In this chapter we present a novel structural continuum mechanical framework which incor-

porates fiber dispersion and is at the same time computationally efficient. First, we introduce a

structure tensor to describe an orthotropic fiber dispersion without specifying a particular choice

for the PDF. Then, we use the bivariatevon Misesdistribution to represent the three-dimensional

fiber dispersion and show some special cases of fiber dispersion. Finally, we propose a SEF

which is the basis to derive the stress and elasticity tensors required for a finite element im-

plementation of the constitutive law. We will see that our proposed model is indeed useful in

chapter 6 .

59
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5.1 Structure Tensor for an Orthotropic Fiber Dispersion

We use a structure tensor to mathematically quantify the fiber dispersion, which in the end will

be incorporated in a strain-energy function (see section 2.5), describing the material behavior.

As shown in section 3.3, we can define a structure tensor according to

H =
1

4π

∫

S

ρ(M)M ⊗ M dS, (5.1)

which accounts for the fiber orientation throughM and fiber dispersion throughρ(M). Since

the dispersion function is orthotropic, all off-diagonal components vanish.

As shown in section 4.3, we decompose the PDFρ(Φ,Θ) into two density functions,ρip(Φ)

andρop(Θ), describing the in-plane and out-of-plane dispersion, respectively. Hence the prob-

ability of finding a fiber oriented withM(Φ,Θ) is given byρ(Φ,Θ) = ρip(Φ)ρop(Θ). Be-

cause the symmetry of the PDF still has to be fulfilled, we require ρip(Φ) = ρip(−Φ) and

ρop(Θ) = ρop(−Θ).

With this multiplicative split of the PDF we can easily verify that the off-diagonal components

of H vanish by examining at the properties of the two PDFs and the integration boundaries in

eq. (5.1). Upon rewriting the latter equation, we obtain

H =
1

4π

π
∫

Φ=−π

π/2
∫

Θ=−π/2

ρip(Φ)ρop(Θ)M ⊗ M cosΘdΘdΦ. (5.2)

When we take a look at the off-diagonal components ofM ⊗ M we find (i) cos3 ΘcosΦ sinΦ,

(ii) cos2 ΘcosΦ sinΘ and (iii) cos2 ΘsinΦ sinΘ. Remembering that bothρip(Φ) andρop(Θ)

are symmetric functions, we can conclude the following: in (i) the trigonometrical functions

in Φ are symmetric and asymmetric, hence the product is asymmetric and the integration from

−π to π with ρip(Φ), a symmetric function, yields zero. In (ii) and (iii) the functions ofΘ are

asymmetric, hence the integration of the product withρop(Θ), a symmetric function, vanishes.

With these properties, the structure tensorH represents an orthotropic fiber dispersion with

the components

H11 = κop(C − 3κip), H22 = 3κipκop, H33 = 1− Cκop. (5.3)
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In eq. (5.3) we introduced three abbreviations for the integrals constituting the main diagonal

of H, namely two dispersion measuresκip andκop describing the dispersion in-plane and out-

of-plane, given as

κip =
1

3π

π
∫

Φ=−π

ρip(Φ) sin
2 ΦdΦ, κop =

1

4

π/2
∫

Θ=−π/2

ρop(Θ) cos3 ΘdΘ, (5.4)

and a constant

C =
1

π

π
∫

Φ=−π

ρip(Φ) dΦ. (5.5)

In the next section we will construct the structure tensorH in a convenient notation with a

particular choice of the density functionρ(Φ,Θ).

5.2 Incorporating the Bivariate von Mises Distribution

In section 4.3 we demonstrated that the bivariatevon Misesdistribution is very suitable to repre-

sent the fiber dispersion in the arterial wall. The PDF has to fulfill the normalization condition,

given in eq. (4.3), which can be rewritten as

∫

S

ρ(Φ,Θ) dS = Nc(bip, bop)

π/2
∫

Θ=−π/2

ρ̄ip(Θ) cosΘdΘ

π
∫

Φ=−π

ρ̄op(Φ) dΦ = 4π. (5.6)

where the bar indicates that the PDF is not normalized yet, c.f. eq. (4.4). From eq. (5.6) we can

determine the normalization constant

Nc(bip, bop) =

√

bop
2π

4

I0(bip)erf(
√

2bop) exp(bop)
, (5.7)

whereerf(•) is the error function defined as

erf(x) =
2√
π

x
∫

0

exp(−ξ) dξ. (5.8)
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Figure 5.1: In this figure, the highly nonlinear relations between the concentration parametersbop, bip

and the corresponding dispersion measuresκop ∈ [1/3, 1/2] andκip ∈ [0, 1/3] are shown. For

isotropy, both concentration parameters are zero and the dispersion parameters areκop =

κip = 1/3. In the case of perfect alignment, on the other hand, the concentration parameters

go towards infinity and the dispersion measures areκop = 1/2, κip = 0.

It is arbitrary how we distribute the constantNc on the two PDFsρip(Φ) andρop(Θ) since the

PDFs have to fulfill the normalization condition together, i.e., their multiplication has to fulfill

eq. (4.3); therefore, we define the probability density functions as

ρip(Φ) =
1

I0(bip)
exp[a(cos 2Φ)], ρop(Θ) = 4

√

bop
2π

exp[bop(cos 2Θ− 1)]

erf(
√

2bop)
, (5.9)

for the in-plane and out-of-plane dispersion, respectively.

Although it is theoretically arbitrary how we distribute the normalization constant on the two

PDFs, it is convenient to separate the concentration parametersbip andbop so they are with the

respective PDF, i.e.,ρip(Φ) andρop(Θ). This enables us to fit the in-plane and out-of-plane

dispersion separately.
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Using the PDFs given in eq. (5.9), the constantC in eq. (5.5) is2 and the dispersion parame-

ters are given by

κop =
1

4

π/2
∫

Θ=−π/2

4

√

bop
2π

exp[bop(cos 2Θ− 1)]

erf(
√

2bop)
cos3 ΘdΘ, (5.10)

κip =
1

3π

π
∫

Φ=−π

1

I0(bip)
exp[bip(cos 2Φ)] sin

2 ΦdΦ. (5.11)

A closed form solution for the integrals in eqs. (5.10),(5.11) is given by

κop =
1

3

(

1− I1(bip)

I0(bip)

)

, κop =
1

4

(

2− 1

2bop
+

exp(−2bop)
√

2/π
√

bop erf(
√

2bop)

)

. (5.12)

These relations allow for the computation of the concentration parameters for given dispersion

valuesκip andκop using a nonlinear solver likeFindRoot in MATHEMATICA or fsolve in

MATLAB . In Fig. 5.1, the (nonlinear) relations between the concentration parameters and the

dispersion parameters are shown. We see that for the isotropic case both dispersion parameters

are1/3 while for perfect fiber alignmentκip = 0 andκop = 1/2. With the parametersκip andκop

we can construct the structure tensor

H = 3κipκopI + [2κop(1− 3κip)]M f ⊗ M f + [1− κop(2 + 3κip)]Mn ⊗ Mn, (5.13)

whereI is the second-order identity tensor andM f andMn are unit vectors oriented in the main

fiber direction and the direction perpendicular on the main plane of dispersion, respectively.

Note that these vectors coincide with the1- and3-direction of the coordinate system introduced

in Fig. 4.1. These vectors should not be confused withM(Φ,Θ) sinceM is an arbitrarily

oriented unit vector in space whileM f andMn are unit vectors oriented in a certain direction.

5.3 Special Cases of Fiber Dispersions

Our model includes several other existing dispersion models as special cases. In this section,

we will discuss some cases of fiber dispersions which are summarized in Table 5.1 and shown

in Fig. 5.2, whereρ(M)M is visualized.
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Table 5.1: Special cases of the proposed model. The abbreviations usedare PA: perfect alignment, PI:

planar isotropy, ID: isotropic distribution, PD: planar distribution and RS: rotationally sym-

metric distribution. The references are[1] [Holzapfel et al., 2000],[2] [Holzapfel and Ogden,

2010b],[3] [Federico and Gasser, 2010],[4] [Holzapfel et al., 2005a],[5] [Gasser et al., 2006].

Case Conc. parameters Dispersion parameters Structure tensor Ref.

PA bip → ∞, bop → ∞ κip → 0, κop → 1/2 H = M f ⊗ M f [1]

PD bop → ∞ κop → 1/2 H = 3/2κip[I − Mn ⊗ Mn] + (1− 3κip)M f ⊗ M f [2,3]

PI bip → 0, bop → ∞ κip → 1/3, κop → 1/2 H = 1/2(I − Mn ⊗ Mn) [2,3]

ID bip = 0, bop = 0 κip = 1/3, κop = 1/3 H = 1/3I [4,5]

RS - κop = 1/(3κip + 2) H = 3κipκopI + [2κop(1− 3κip)]M f ⊗ M f [3,5]

Isotropic Distribution. An isotropic fiber distribution is represented by a uniform dis-

tribution in both planes, meaning thatρ(Φ,Θ) = 4π and is independent ofΦ andΘ. This

distribution is characterized by(bip = 0, bop = 0) → (κip = 1/3, κop = 1/3) and the structure

tensor reads asH = 1/3I , featuring no preferred direction.

Planar Isotropic Distribution. If a distribution features perfectly out-of-plane alignment

(bop → ∞) and is fully dispersed in-plane (bip = 0), it is planar isotropic (2D isotropy). The

according dispersion parameters areκop = 1/2 andκip = 1/3. For this case, the structure tensor

is given byH = 1/2(I − Mn ⊗ Mn).

Planar Distribution. A distribution with all the fibers oriented in-plane, as presented in

[Holzapfel and Ogden, 2010b], has perfect alignment in thisplane, resulting in a zero out-of-

plane dispersion. Hence we get(bop → ∞) → (κop → 1/2) and the according structure tensor

is H = 3/2κip[I − Mn ⊗ Mn] + (1− 3κip)M f ⊗ M f .

Note that the PDF describing the in-plane dispersionρip(Φ) in eq. (5.9)1 is the same as

in [Holzapfel and Ogden, 2010b]. Nevertheless, the formulation for the structure tensor pre-

sented in this thesis looks different since the in-plane dispersion measureκip ∈ [0, 1/3] whereas

[Holzapfel and Ogden, 2010b] introduce a dispersion parameter κ2d ∈ [0, 1/2]. Also note that

any planar distribution represented by our model can be usedin a3D setting and is not restricted

to 2D problems.
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(a) (b) (c) (d) (e)

Figure 5.2: Visualization of the fiber distribution defined byρ(M)M where the distance from the center

to the surface represents the probability of finding a fiber in the accordingdirection. The

plots have been scaled differently and represent an (a)3D isotropic fiber distribution; (b)

2D (planar) isotropic fiber distribution; (c) a rotationally symmetric distribution; (d) a non-

rotationally symmetric distribution and (e) a perfectly aligned distribution. The associated

parameters and structure tensors are given in Table 5.1.

Rotationally Symmetric Distribution. A rotationally symmetric distribution features

only one preferred direction, meaning that two components of the structure tensor are equal

(transverse isotropy). This is achieved byκop = 1/(3κip + 2) and yieldsH = 3κipκopI +

[2κop(1− 3κip)]M f ⊗ M f .

Since we do not use a rotationally symmetric coordinate system but base our work on exper-

imental observations [Schriefl et al., 2012a,d], the case ofrotational symmetry looks different

than in [Gasser et al., 2006]. Nevertheless, the presented model is able to represent a rotation-

ally symmetric fiber distribution as a special case which might be appropriate for tissues such

as cartilage or the myocardium.

Perfect Alignment. If both concentration parametersbip andbop reach infinity, the disper-

sion in both planes becomes zero and we obtain the model proposed by [Holzapfel et al., 2000].

With (bip → ∞, bop → ∞) → (κip → 0, κop → 1/2) and the structure tensorH = M f ⊗ M f ,

hence all fibers are oriented in the direction ofM f .
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Table 5.2: Summary of the parameters of the proposed model. The vectorsM f andMn are defined in the

coordinate system shown in Fig. 4.1. The column ‘Exp. method’ refers to theway how the

parameter can be determined, i.e., the structural parameters can be determined by histological

methods while the mechanical parameters need to be fitted to mechanical tests, e.g., uniaxial

or biaxial tension).

Parameter Interpretation Range Exp. method

c [kPa] stiffness of isotropic ground matrix [0,∞) Mech. tests

k1 [kPa] stress-like parameter [0,∞) Mech. tests

k2 [-] dimensionless parameter [0,∞) Mech. tests

κip [-] dispersion in-plane [0, 1/3] Histology

κop [-] dispersion out-of-plane [1/3, 1/2] Histology

M f [-] preferred fiber direction hemisphere Histology

Mn [-] normal direction on the dispersion plane hemisphere Histology

5.4 Anisotropic Strain-Energy Function

Up to now we have only considered one fiber family with the direction vectorsM f andMn

defining the main fiber direction and normal direction, respectively. In order to generalize the

model to more than one fiber family we introduce the vectorsM fi andMni, where the indexi

denotes theith fiber family. Note that our approach follows the work of [Holzapfel et al., 2000]

where the volumetric part of the strain-energy is additively splitted in the isochoric contributions

of the ground matrix̄Ψg and the fibers̄Ψf .

In the following we include two fiber families which are oriented symmetrically and feature

the same material parameters and equal dispersion in both planes. Hence, the superposition of

energies reads as

Ψ̄ = Ψ̄g +
∑

i=4,6

Ψ̄fi(C,Hi(κip, κop,M fi,Mni)). (5.14)

Following [Holzapfel and Weizs̈acker, 1998] we model the groundmatrix with a neo-Hookean

materialΨg = c/2(Ī1−3), where the stress-like parameterc is the shear modulus in the reference

configuration.



5.4 Anisotropic Strain-Energy Function 67

For the fiber contribution, we adopt the phenomenological approach of [Gasser et al., 2006]

using an exponential function

Ψ̄fi(C,Hi) =
k1
2k2

[exp(k2Ē
2
i )− 1], i = 4, 6, (5.15)

wherek1 is a stress-like parameter andk2 is a dimensionless parameter describing the me-

chanical behavior of the collagen fibers, see [Holzapfel et al., 2000] and eq. (3.10). Here,

Ēi = Hi : (C − I) is a Green-Lagrange strain like quantity which can be interpreted as an

averaged or weighted fiber strain, depending on the fiber dispersion through the structure tensor

H and the (isochoric) macroscopic deformation throughC.

Sincetr (Hi) = 1, we can write the average fiber strain̄Ei = Hi : C − 1 and give an

interpretation of this quantity by

Ē =

∫

S

ρ(M)C : M ⊗ M dS − 1 =

∫

S

ρ(M)λ2 dS − 1 = 〈λ〉2 − 1, (5.16)

where〈λ〉2 is a weighted average ofλ2 and hencēE is a weighted strain [Cortes et al., 2010].

When we perform the double contraction ofHi with C we get

Ēi = 3κipκopĪ1 + [2κop(1− 3κip)]Ī4f + [1− κop(2 + 3κip)]Ī4n − 1, (5.17)

where we introduced the directionally dependent pseudo-invariants of the symmetric tensorsH

andC which are defined as

Īfi = C : M fi ⊗ M fi and Īni = C : Mni ⊗ Mni, i = 4, 6. (5.18)

These invariants are the square of the stretches of theith fiber family in the fiber directionM fi

and normal directionMni, respectively. An overview of the parameters is given in Table 5.2.

Following [Holzapfel et al., 2000, Holzapfel and Gasser, 2001], we make the common as-

sumption that the fibers do not resist any compression and areonly active in tension. The

invariant Īfi is used as a switch between fiber compression and tension where the anisotropic

part only contributes to the strain-energy ifĪfi > 1, which is the same approach as presented in

[Gasser et al., 2006].
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The strain-energy function used in the proposed model consequently reads as

Ψ̄ =























c

2
(Ī1 − 3) +

∑

i=4,6

k1
2k2

{

exp
[

k2Ē
2
i

]

− 1
}

if Īif > 1,

c

2
(Ī1 − 3) +

∑

i=4,6

k1
2k2

{

exp
[

k2(3κipκopĪ1 − 1)2
]

− 1
}

if Īif ≤ 1.

(5.19)

As pointed out in [Holzapfel et al., 2004], this is sufficientfor the convexity of the potential for

perfect fiber alignment, i.e.,κip = 0, κop = 1/2. The handling of fiber compression is also a

numerical issue which is extensively discussed in [Eriksson et al., submitted] where the authors

compare different ways to deal with compression for the model presented in [Gasser et al.,

2006].

(b)(a) circumferential

axial
M

f1

M
f2

Figure 5.3: Panel (a) illustrates the fiber dispersion of a single fiber family inits ‘local’ coordinate system

which corresponds to the one presented in 4.1. The1- and3-direction of this coordinate

system coincide with the preferred fiber directionM f and normal directionMn. Panel (b)

shows two symmetric fiber families where the main fiber direction is aligned in-planeand

makes an angleα with the circumferential direction.

5.5 Derivation of the Elasticity and Stress Tensors

In order to implement the model in a nonlinear finite element code, the tangent modulus, i.e.,

the elasticity tensor, is required. Since we want to use the software package FEAP, the spatial

elasticity tensor and also the Kirchhoff stress tensor needto be computed. Due to the incom-

pressibility of the material we focus on the isochoric contributions ofτ andC, as defined in

eq. (2.23)2 and eq. (2.42)2.
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To work with a convenient notation, we introduce the scalar stress function and the scalar

elasticity function as

ψ′
fi =

∂Ψ̄f

∂Ē
= k1Ēi exp(k2Ē

2
i ) and ψ′′

fi =
∂2Ψ̄f

∂Ē2
= k1(1 + 2k2Ē

2
i ) exp(k2Ē

2
i ), (5.20)

respectively. These functions are scalar measures of the stress/elastic response and are used in

the derivatives of the strain-energy function with respectto the modified right Cauchy-Green

tensor, which are given by

∂Ψ̄f

∂C
= ψ′

fiHi,
∂2Ψ̄f

∂C
2
= ψ′′

fiHi ⊗ Hi, (5.21)

where we used∂Ē/∂C = H and∂2Ē/∂C
2
= H ⊗H . In order to implement the finite element

method in an Eulerian setting, the push-forward of the stress tensor and the elasticity tensor are

required. These tensors can be expressed by the respective scalar stress/elasticity function and

the Eulerian structure tensor, and we introduce the push-forward of the Lagrangian structure

tensor via the unimodular part of the deformation gradienthi = FHiF
T
.

The Kirchhoff Stress Tensor. As in [Holzapfel, 2000], we split the contribution of the

ground matrix and the fibers to the fictitious stress according to

τ̃ = τ̃ g +
∑

i=4,6

τ̃ fi, (5.22)

wheren denotes the number of fiber families. We represent the non-collagenous isotropic

ground matrix by a neo-Hookean material, yielding the isochoric response of the Kirchhoff

stress according toτ g = dev τ̃ g = P : τ̃ g with τ̃ g = c b.

To obtain the stress contribution of theith fiber family, we perform the push-forward of

the second Piola-Kirchhoff stress tensor where we can use the scalar stress function defined in

eq. (5.20)1 as

τ̃ fi = 2F
∂Ψ̄

∂C
F
T
= 2ψ′

fihi. (5.23)

To finally obtain the Kirchhoff stress tensor, we have to project the fictitious Kirchhoff stress

tensor byτ = P : τ̃ .
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The Spatial Elasticity Tensor. Using the equations for the elasticity tensor in the Eulerian

setting, given in section 2.6, we deriveC for the specific choice of our strain-energy function

Ψ̄f(C,Hi). We obtain the first term of eq. (2.42)2 in the contribution of theith fiber family to

the isochoric elasticity tensor as

C1 = P : C̃fi : P = 4J−4/3ψ′′
fi(P : hi)⊗ (P : hi), (5.24)

where C̃fi = 4J−4/3ψ′′
fi hi ⊗ hi (see eq. (5.21)2 and (2.41)). Hence, the complete isochoric

elasticity tensor in the spatial configuration is given as

C = 4J−4/3
∑

i=4,6

ψ′′
fi(P : hi)⊗ (P : hi) +

2

3
tr (τ̃ )P − 2

3
(I ⊗ τ + τ ⊗ I). (5.25)

Considering the minor and major symmetries of the elasticitytensor, which arise from the

symmetry ofE and Schwarz’s theorem, we can utilize Voigt notation and implement an efficient

finite element code in the finite analysis program FEAP [Taylor, 2000].
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‘Computers are useless. They only give you answers.’

PABLO PICASSO

This quote of Picasso is not completely true since computersenable us to obtain answers

very fast, so they are certainly not useless. Still, it is more important to state the right questions

and set up a reasonable framework to address them (which we hope to have achieved in the

previous chapters). Now we have to solve nonlinear problems(e.g., using Newton-Raphson-

like algorithms) for complex geometries (where the finite element is an appropriate tool); all

methods which heavily rely on computational power.

Up to now we refined an existing constitutive model of the arterial wall considering new

experimental results regarding collagen fiber dispersion.After determining the dispersion pa-

rameters of the model in section 4.5, we will determine the mechanical parameters of our pro-

posed model in this chapter by fitting it to biaxial tension tests. Therefore, we will first derive

the analytical solution of this deformation and then show how to implement a nonlinear fitting

procedure. After that, we simulate the inflation of a thin walled tube, but since the artery is

thick walled and certainly not a simple tube, finite element analysis is required to perform more

realistic and patient-specific simulations. Hence, we conclude this chapter by a simple example

where we compare different fiber dispersion cases for the biaxial extension of a unit cube and

present the result using finite elements and the corresponding analytical solution. This serves

not only to validate the finite element implementation but also to demonstrate the influence of

fiber dispersion on the mechanical behavior.

71
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6.1 Biaxial Extension

We consider a sample with two symmetric fiber families, wherethe fibers make an angleα

with the circumferential axis, see Fig. 5.3(b). To obtain the second Piola-Kirchhoff stress ten-

sor S, we have to derive the strain-energy function with respect to the right Cauchy-Green

tensorC, c.f. eq. (2.16)2. Since the Cauchy stress tensor is the push-forward of the second

Piola-Kirchhoff stress tensor, it reads as

σ = 2F
∂Ψ̄

∂C
FT − pI = 2F

(

∑

i=1,4f,4n

∂Ψ̄

∂Ii

∂Ii
∂C

)

FT − pI ,

= 2F

(

∂Ψ̄

∂I1
I +

∂Ψ̄

∂I4f
M f ⊗ M f +

∂Ψ̄

∂I4n
Mn ⊗ Mn

)

FT − pI

= 2

(

∂Ψ̄

∂I1
b +

∂Ψ̄

∂I4f
mf ⊗ mf +

∂Ψ̄

∂I4n
mn ⊗ mn

)

− pI , (6.1)

where the Lagrange multiplierp enforces the incompressibility condition. The vectorsmf and

mn are the push-forward ofM f andMn, see eq. (2.45), andb = FFT is the left Cauchy-Green

tensor. For biaxial tension of an incompressible material the deformation is described by

[F] = diag [λ1, λ2, (λ1λ2)
−1], [C] = [F]T[F] = diag [λ21, λ

2
2, (λ1λ2)

−2]

and the unit vectors describing the fiber direction and normal direction in the reference state are

given by

M f = [sinα cosα 0]T, Mn = [0 0 1]T, (6.2)

which are used to compute the invariants

I1 = λ1 + λ2 + λ3 = λ1 + λ2 + (λ1λ2)
−2

I4f = C : (M f ⊗ M f) = λ21 sin
2 α + λ22 cos

2 α,

I4n = C : (Mn ⊗ Mn) = (λ1λ2)
−2. (6.3)

Using the average strain (eq. (5.17)), the scalar stress function (eq. (5.20)1), and the chain rule,

we obtain the derivatives of the strain-energy function as

∂Ψ̄

∂I1
=
c

2
+ 6κipκopψ

′
fi,

∂Ψ̄

∂I4f
= 4κop(1− 3κip)ψ

′
fi,

∂Ψ̄

∂I4n
= 2[1− κop(2 + 3κip)]ψ

′
fi,
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and finally get the Cauchy stress tensor

σ = cb + 4ψ′
fi

{

3κipκopb + 2κop(1− 3κip)mf ⊗ mf

+ [1− κop(2 + 3κip)]mn ⊗ mn

}

− pI . (6.4)

Since we implement this equation in a mathematical softwarepackage, we have to write it in

matrix notation

[σ] = c











λ21 0 0

0 λ22 0

0 0 λ23











+ 4ψ′
fi

(

3κipκop











λ21 0 0

0 λ22 0

0 0 λ23











+ 2κop(1− 3κip)











λ21s
2 λ21λ

2
2cs 0

λ21λ
2
2cs λ22c

2 0

0 0 0











+ [1− κop(2 + 3κip)]











0 0 0

0 0 0

0 0 1











)

− p











1 0 0

0 1 0

0 0 1











, (6.5)

where s and c are abbreviations forsinα and cosα. Note that the surface in3-direction is

load free (σ33 = 0) which enables us to determine the Lagrangian multiplierp = cλ23 +

4ψ′
fi[3κipκopλ

2
3 + 1 − κop(2 + 3κip)] in order to solve the system of equations forσ11 and

σ22 (of course we could also solve for three unknowns (σ11, σ22, p) and introduceσ33 = 0 as the

third equation).

6.2 Parameter Fitting to Experimental Data from

Mechanical Tests

In order to determine the mechanical material parameters ofour model, we use experimental

data from biaxial tension tests and minimize the so called objective function

e =
∑

d=1:1,
1:0,75,

...

n
∑

i=1

[(σmod,d
11,i − σexp,d

11,i )2 + (σmod,d
22,i − σexp,d

22,i )2], (6.6)

wheren is the number of data points andd is the data set, e.g., different ratios of a biaxial tension

test. This is equivalent to minimizing the sum of squared errors and also a well-accepted means

to determine material parameters.
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To quantify the goodness of the fit, we calculate theR2 value which is also known as the

coefficient of determination. It is calculated by

R2 = 1− SSerr

SStot

, (6.7)

whereSSerr andSStot are the sum of squares of the differences between model/experiment and

mean of experiment/experiment, respectively (for detailssee, e.g., [Montgomery and Runger,

2010]).

In the Figs. 6.1 and 6.2 the results of fitting the model to fourbiaxial tension tests of two

specimen are shown. The tests were performed with the same sample and different stretch

ratios, so the datasets in eq. (6.6) ared = 1 : 1, 1 : 0.75, 0.75 : 1 and0.5 : 1. Each dataset

contains3000 − 3500 data points, depending on the stretch ratio, and was smoothed with a

moving average filter with a span of10 (specimen #1) and20 (specimen #2) data points. After

that, we took50 datapoints from each experimental dataset (the circles andcrosses in Figs. 6.1

and 6.2) and fitted them to the model. Note that all datasets were fitted simultaneously, i.e., one

set of parameters is sufficient to obtain a good fit for all fourdatasets. Moreover we see the

great variability between specimen when looking at the magnitude of the stresses.

Table 6.1: Initial values and range for the parameters in the fitting procedure.

Parameter Initial value Range Result #1 Result #2 mean

c [kPa] 10 0− 1000 3.6 12.7 8.15

k1 [kPa] 30 0− 1000 38.7 16.13 27.6

k2 [-] 50 0− 1000 16.83 5.27 11.05

κip [-] 0.17 0.1− 0.18 0.178 0.16 0.169

κop [-] 0.49 0.48− 0.5 0.48 0.48 0.48

α [deg] 25 11− 35 32.51 25.46 28.88

Note that although we determined the values forκip, κop andα in chapter 4, we allow the fit-

ting algorithm to slightly vary these values, i.e., we definea small range (in section 4.5). To find

the minimum, we used the functionfsolve in MATLAB which uses atrust-region-dogleg

algorithm. It should also be mentioned that the parametersκip andα are not independent but

depend on the starting value, i.e., the same fit can be obtained with different values ofκip and
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α. This is only a problem since we allow these values to vary because we do not have specific

histologic information of the respective specimen. Usually, the parametersκip, κop andα can

be determined from distribution fitting, as described in section 4.5, and hence need not to be

varied in the fitting to mechanical tests.
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Figure 6.1: Fitting of the proposed model to the results of four biaxial tensiontests of specimen #1. The

plots show different stretch circumferential to axial stretch ratios of biaxial tests, i.e., (a)

1 : 1, (b) 1 : 0.75 , (c) 0.75 : 1 and (d)1 : 0.5. The results of the fit, the initial values and the

admissible ranges of the parameters are given in Table 6.1. The good qualityof the fit is also

reflected in the high coefficient of determination,R2 = 0.9828, which was calculated for all

four fits together.
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Axial Circumferential Axial CircumferentialSimulations Experiments
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Figure 6.2: Fitting of the proposed model to the results of four biaxial tensiontests of specimen #2.

The plots show different circumferential to axial stretch ratios of biaxial tests, i.e., (a)1 : 1,

(b) 1 : 0.75, (c) 0.75 : 1 and (d)0.5 : 1. The results of the fit, the initial values, and the

admissable ranges of the parameters are given in Table 6.1. Also this specimen yielded a

good fit (R2 = 0.990).

6.3 Inflation of a Thin Walled Tube

We consider the inflation of a thin walled tube which is reinforced by two mechanically equiva-

lent, symmetric fiber families dispersed in two planes. The main fiber direction lies in the plane

and makes an angleα with the circumferential direction. The material parameters are taken

from the previous chapter, see section 6.2 and Table 6.1.
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By invoking a membrane approximation, the equilibrium equations in the axial and circum-

ferential direction for a tube subjected to the internal pressurepi are given by

σz −
r2i
2hr

pi = 0, σθ −
ri
h
pi = 0, (6.8)

whereh, r andri are the height, the outer and inner radii in the current configuration, respec-

tively. For an incompressible material, i.e.,λzλθλr = 1, they are related to the respective

quantities in the reference configuration through

h =
H

λθλz
, r = λθR, ri = r − h

2
= λθR− H

2λzλθ
, (6.9)

see Fig. 6.3 where these quantities are depicted. Note that the tube is thin-walled, i.e.,H/R << 1,

and that the membrane theory does not account for the stress distribution through the thickness

of the wall (radial stresses are neglected).
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ppressure

i

z
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Figure 6.3: (a) Thin walled tube with radiusR and thicknessH in the reference configuration subjected

to the internal pressurepi. A local coordinate systemz, r, θ, oriented in the axial, radial and

circumferential direction, is used to define the angleα of two symmetrically dispersed fiber

families defined by the vectorsM fi; (b) closeup of the coordinate system where the normal

vectorsMni oriented in the radial direction are depicted. This means that the mean fiber

direction is in-plane, i.e., in thez, θ-plane.

As shown in [Holzapfel, 2000], the principal Cauchy stressesin the axial and circumferential

direction read as

σz = λz
∂Ψ̄(λz, λθ, γ)

∂λz
, σθ = λθ

∂Ψ̄(λz, λθ, γ)

∂λθ
, (6.10)
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and substituting into eq. (6.8) yields

λz
∂Ψ̄(λz, λθ, γ)

∂λz
− λz(λθR− (H/(2λθλz))

2

2HR
pi = 0,

λθ
∂Ψ̄(λz, λθ, γ)

∂λθ
−
(λ2θλzR

H
− 1

2

)

pi = 0. (6.11)

The equations in (6.11) form a set of nonlinear equations which can be solved with, e.g.,

thefsolve command in MATLAB . Since the fibers are arranged symmetrically, the principal

stretches coincide with the radial and circumferential stretches.

In eq. (6.11), the derivatives of the strain-energy function with respect to the stretchesλz and

λθ are required. Recall that we can write eq. (5.17) in terms of the invariants̄I1, Ī4f , andĪ4n and

use the same direction vectorsM f andMn as in the previous example, given in eq. (6.2).

In section 6.1 we showed how to derive the SEF directly with respect to the right Cauchy-

Green tensor. Now we apply the chain rule with respect to the average strainĒ. Using

eq. (5.18), we start with the invariants which are given by

Ī1 = λ2z + λ2θ + (λzλθ)
−2, Ī4f = λ2z sin

2 α + λ2θ cos
2 α, Ī4n = (λzλθ)

−2, (6.12)

and their derivatives with respect to the two independent principal stretches are

∂Ī1
∂λz

= 2λz − 2λ−3
z λ−2

θ ,
∂Ī4f
∂λz

= 2λz sin
2 α,

∂Ī4n
∂λz

= −2λ−3
z λ−2

θ , (6.13)

∂Ī1
∂λθ

= 2λθ − 2λ−3
θ λ−2

z ,
∂Ī4f
∂λθ

= 2λθ cos
2 α,

∂Ī4n
∂λθ

= −2λ−3
θ λ−2

z . (6.14)

Now we are able to compute the derivatives ofĒ with respect to the principal stretches using

eq. (5.17). Thus,

∂Ē

∂λi
= 3κipκop

∂Ī1
∂λi

+
[

2κop(1− 3κip)
]∂Ī4f
∂λi

+
[

1− κop(2 + 3κip)
]∂Ī4n
∂λi

, (6.15)

wherei = z, θ and the derivatives in eq. (6.14) were used. Using the chain rule, eq. (5.19) and

the scalar stress function in eq. (5.20)1, we finally obtain the derivatives of the strain-energy as

∂Ψ̄

∂λz
=
c

2

∂Ī1
∂λz

+ 2ψ′
fi

∂Ē

∂λz
,

∂Ψ̄

∂λθ
=
c

2

∂Ī1
∂λθ

+ 2ψ′
fi

∂Ē

∂λθ
, (6.16)

where the factor2 appears because both fiber families are symmetric, have the same mate-

rial/dispersion properties and undergo a symmetric deformation. With eq. (6.16) we can finally
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solve the nonlinear system of equations given in eq. (6.11) forλz, λθ when the pressurepi is pre-

scribed. In Fig. 6.4 we show the results of the simulation of the inflation test, where we compare

three different cases. For the first case (‘exp. dispersion’), we took the values obtained in sec-

tion 6.2 and summarized in Table 6.1 to perform the simulation (solid black curve in Fig. 6.4).

The red circles are experimental results of an inflation tests of a media-intima composite taken

from [Sommer et al., 2010] and are drawn in this plot but did not serve in any fitting procedure.

We see that, even though we fitted the material parameters to histology and biaxial tension tests,

the results of the simulation matches the experimental dataof the inflation test very well.

1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

In
te

rn
al

 p
re

ss
u

re
 p

i [
k

P
a]

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

5

10

15

20

In
te

rn
al

 p
re

ss
u

re
 p

i [
k

P
a]

Axial stretch z

(a)

(b)

Exp. dispersion Perf. alignment 3d isotropy

Circumferential stretch 

Figure 6.4: In (a) and (b), the results of an inflation test of a thin walled tubewith the internal pressure

pi over the axial stretchλz and the circumferential stretchλθ are shown, respectively. The

solid black curves are the result of the simulation with parameters taken from section 6.2,

whereas the blue dashed curves and the red dash-dotted curves havethe same parameters

except that the dispersion parameters are varied (see figure). The red circles are taken from

[Sommer et al., 2010] and represent the inflation test of an intima-media composite of a hu-

man internal coronary artery which are in the range of the simulation results.
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To see the influence of fiber dispersion on the mechanical behavior, we take the same me-

chanical parameters and change the fiber dispersion to completely isotropic (red dash-dotted

curve) and completely aligned (blue dashed curve). For perfect alignment, the tube is stiffer in

the circumferential direction and softer in the axial direction than in the case of experimental

fiber dispersion since the fibers are oriented more closely tothe circumferential direction and

not dispersed towards the axial direction. Therefore, no dispersed fibers reinforce the tube in

the axial direction, resulting in an unrealistically high stretch in the axial direction. In the3D

isotropic case, the material is softer in both directions because fibers are also dispersed in the

3-direction, i.e.,κop = 1/3.

6.4 Finite Element Implementation and Example

In this section we demonstrate the capabilities of our proposed model using a unit cube, rein-

forced with one fiber family which is aligned in the1-direction of the coordinate system (see

Fig. 6.5(a)). The cube is subjected to biaxial tension in the1, 2-plane and we investigate four

different cases of fiber dispersion: (I) high alignment out-of-plane and in plane; (II) high

alignment out-of-plane and less alignment in plane compared to case (I); (III) high alignment

out-of-plane and isotropy in plane (2D isotropy), and (IV ) isotropy in both planes (3D isotropy),

see Fig. 6.5(b) and (c) for details.
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Figure 6.5: (a) Biaxial tension of a cube in the1- and2-direction. The deformation is displacement-

controlled where the stretchesλ1 andλ2 are increased to1.2 and the3-direction contracts

due to incompressibility; (b) and (c) show polar plots of the dispersion cases I-IV for the

in-plane and out-of-plane dispersion, respectively.
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We use the results of section 5.5 to implement our model in thefinite element code FEAP

[Taylor, 2000]. The analytical solution and the finite element solution of the biaxial tension of

a cube, shown in Fig. 6.5, are depicted in Fig. 6.6. We used four different dispersion cases,

outlined in Table 6.2, for the single fiber family oriented inthe 1-direction of the coordinate

system.

Table 6.2: Four different fiber dispersions for the biaxial tension of a cube. Note that casesI, II andIII

feature the same (very small) out-of-plane dispersion.

Case Description Dispersion Parameters

I little dispersion in-plane κI

ip = 0.066, κI

op = 0.48

II larger dispersion in-plane than in caseI κII

ip = 0.166, κII

op = 0.48

III 2D-isotropy κIII

ip = 1/3, κIII

op = 0.48

IV 3D-isotropy κIV

ip = 1/3, κIV

op = 1/3

The maximum stretch in both the1- and2-direction is1.2, and the according stresses are

computed using the framework established in section 6.1. Todemonstrate the influence of fiber

dispersion, we compare four different fiber dispersions summarized in table 6.2. In the casesI-

III, the out-of-plane dispersion isκI−III
op = 0.48, i.e., a very small amount of fibers is oriented

out-of-plane. The in-plane dispersion increases fromκIip = 0.066, κIIip = 0.166 to κIIIip = 1/3.

Dispersion caseIV is a 3D-isotropic dispersion case where the dispersion in all directions is

equal, i.e.,κIVip = κIVop = 1/3.

Figure 6.6 shows a stress-stretch diagram of the stressesσ11 andσ22, where1 is the main

fiber direction and1, 2 is the main plane of dispersion. The stress in the1-direction decreases

from dispersion caseI-III since the dispersion in-plane is increased and more and morefibers

are dispersed in the2-direction (away from the1-direction). For caseIV , the out-of-plane

dispersion lowers the stress in both the1- and2-direction. In the2-direction, the stress increases

for caseI-III since the fibers are dispersed towards the2-direction. In caseIV , however, fibers

are turned towards the3-direction and henceσ22 also decreases. Note that for casesIII and

IV the stresses in1- and2-direction are equal, i.e.,σIII
11 = σIII

22 andσIV
11 = σIV

22 , since the

dispersion in-plane is isotropic (κIIIip = κIVip = 1/3).
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Figure 6.6: Panels (a) and (b) show the stress-stretch plots in the axial and circumferential direction,

respectively. The protocol is displacement-driven with a maximal stretch of1.2. The four

different cases of fiber dispersion are depicted in in Fig. 6.5 and Table 6.2. The red crosses

represent the solutions of the finite element analysis while the black curves are obtained from

the analytical solution of biaxial tension, see section 6.1.
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‘The first principle is that you must not fool yourself and you are the easiest person to fool.’

RICHARD P. FEYNMAN

As various previous approaches have shown, incorporating fiber dispersion into a continuum

mechanical framework is a challenging task. In the last chapter of this work, we want to address

the advantages and disadvantages of our presented model compared to other approaches in the

literature.

As discussed in chapter 3, most of the models in the literature do not account for the out-of-

plane dispersion of fibers or simply model the fiber dispersion as transversely isotropic. There

are some models considering an orthotropic fiber dispersion[Ateshian et al., 2009, Gasser et al.,

2012, Alastrúe et al., 2010], but they are computationally quite expensive. Moreover, they either

do not fit the fiber dispersion function to histological data or have a rather crude experimental

approach to determine the collagen fiber orientation.

The work presented in this thesis, in contrast, is based on careful experimental observa-

tions showing how to fit histological data from different experimental methods using an easy

to handle PDF and maximum likelihood estimation. Our model is fully 3D and based on

the GST approach which was introduced in [Gasser et al., 2006]. This method is computa-

tionally efficient and embedded in the well-known frameworkof [Holzapfel et al., 2000]. In

[Federico and Herzog, 2008], the authors derive the GST approach in detail and discussed its

validity for the arterial wall, where the fiber dispersion can be approximated with a Taylor series

and the fibers are loaded in tension.
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7.1 Fitting of Distribution Data from Human Arteries

One of our main goals is to account for the structure of biological tissues in our model and

to capture the physiological and pathological mechanisms in the arterial wall. This motivates

the use of the bivariatevon Misesdistribution to represent the collagen fiber dispersion, which

assumes that the dispersion in-plane and out-of-plane are independent [Schriefl et al., 2012a,d].

Multiple collagen fiber families including dispersion leadto overlapping regions which can-

not be fitted with a single PDF. To overcome this problem, we use a superposition of two

von Misesdistributions to fit the in-plane data, yielding good results since MLE is a powerful

tool to estimate distribution parameters. Even though least squares estimation is very often used

to fit distribution functions, we again emphasize that MLE isthe more appropriate and in most

cases the more efficient approach to determine the parameters of a PDF as we pointed out in

[Schriefl et al., 2012b].

We fitted the PDF to experimental data which were obtained with various methods, e.g., pi-

crosirius red staining and polarizing microscopy [Schrieflet al., 2012a], second harmonic image

generation [Schriefl et al., 2012d], or optical clearing andSHG [Schriefl et al., 2012d]. With the

latter method the authors obtained a series ofz-stacks which could be fitted with the methods

we outlined in [Schriefl et al., 2012d]. This yields a location and a concentration parameter for

each layer and theoretically enables us to consider the inhomogeneous structure of the tissue.

Nevertheless, we took the mean/median of the location and dispersion parameters and therefore

homogenized the tissue.

Although in healthy arterial walls collagen fibers are mainly oriented in-plane, the need for a

model considering the out-of-plane dispersion was emphasized by the results of [Schriefl et al.,

2012a], where the authors observed a considerable amount ofcollagen fibers oriented out-of-

plane. More data concerning the dispersion of collagen fibers not only of the arterial wall but of

all biological tissues is required, and multiphoton microscopy in combination with optical clear-

ing [Schriefl et al., 2012d] seems to be a powerful tool to obtain dispersion data from various

tissues.
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7.2 Novel Framework Considering Fiber Dispersion

The main goal of this work is the development of a new structurally motivated continuum me-

chanical model for the passive arterial wall which incorporates fiber dispersion. Using the

concentration parameters of two PDFs, we defined two dispersion measures to quantify the in-

plane and out-of-plane dispersion which are used to calculate an average strain quantity. This

average strain reduces the complex deformation patterns ofthe fibers to a scalar and is used in

the strain-energy function. From this function, we showed how to derive the stress and elasticity

tensors and outlined the necessary mathematical and mechanical background.

As we seek to represent the structure of the tissue, we have togeneralize our model to more

than one fiber family. There are several approaches to incorporate more fiber families in a con-

tinuum mechanical framework, e.g., [Flynn et al., 2011] usesix discrete fiber bundles and the

model proposed by [Baek et al., 2007] includes four fiber families. The work of [Schriefl et al.,

2012a,d] showed that the number of fiber families depends on the location of the artery and

the layer, where in most cases two fiber families are reported. Therefore, we extended the

formulation to two fiber families.

We also showed how to derive the equations for a biaxial tension test and an inflation test

using the proposed model and how to implement them in a numerical package, e.g., MATLAB.

After that, we fitted the model to datasets obtained from biaxial tension tests to determine

the associated material parameters. Since we do not have thehistological information of the

specimen we tested in the biaxial test, we allowed the structural parameters obtained from the

distribution fitting in section 4.5 to vary a certain range (± twice the standard deviation) during

the fitting procedure. The excellent fitting results indicate that the model is indeed suitable to

describe the mechanical behavior of the human abdominal aortic wall.

In section 6.3 we saw that, even though the parameters were obtained from biaxial tension

tests, the results for the inflation test are plausible and inthe range of reported values. Of course,

this is the result of fitting the parameters to only two biaxial tension tests and the inflation test

results are from a different specimen (for details see [Sommer et al., 2010]). Still, it shows that

the model is capable of reproducing experimental data even though the parameters were fitted

to parameters obtained from a different experimental method.
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It is also evident that fiber dispersion has a large influence on the mechanical behavior of

the tube, see Fig. 6.4. Also note the inversion of the axial stretch for very small pressures,

a phenomenon also observed in, e.g., [Holzapfel and Gasser,2001]. This is due to the high

resistance to axial stretch because of the fibers, and at verylow pressures its energetically more

favourable to contract in the axial direction. Fibers are a crucial means in the body to endow soft

tissue with tensile strength, and their orientation and dispersion strongly affect the mechanical

behavior. This can also be seen in section 6.4, where different dispersion cases are compared

(in the same example we validate the finite element implementation by comparing it to the

analytical solution of the biaxial tension test).

7.3 Limitations

One of the main simplifications of this model is the computation of an average stretch, and this

might not be appropriate for every tissue type and every loadcase. Nevertheless, our framework

yields good fits to biaxial tension data and is capable to reproduce results in the range of reported

values of inflation tests, so we assume that this simplification is justified to some extent.

It is also possible to implement this model using angular integration (AI) rather than the gen-

eralized structure tensor (GST), but since AI does not describe the fiber dispersion with integral

dispersion measures but requires an integration of infinitesimal fiber fractions, a large number

of calculations would have to be performed to evaluate the strains and stresses [Cortes et al.,

2010].

For the inflation test in section 6.3, we used the membrane theory for the sake of simplicity

and we neglect stresses in the radial direction. For saccular aneurysm or cerebral arteries this

assumption holds, but the aorta and the large blood vessels have to be treated as thick-walled

vessels.

The split of the strain-energy function for anisotropic, hyperelastic materials is also a topic

which is not completely understood yet for the compressiblecase, see [Sansour, 2007] and

[Helfenstein et al., 2010] for a discussion on this issue. Nevertheless we follow the work of

[Holzapfel et al., 2000] and decompose the SEF in a volumetric and a deviatoric part for the

numerical FE analysis. In most physiological and pathological cases we can neglect viscous ef-
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fects like stress relaxation and creep. Furthermore, we also neglect inertia forces and, therefore,

have to solve quasi-static initial-boundary value problems [Taylor and Humphrey, 2009].

Since a biological tissue is a very complex material, modeling the mechanical behavior of the

arterial wall requires a lot of assumptions. Even though most models describing fiber dispersion

make these assumptions, we want to briefly discuss the simplifications we make. Probably the

most profound assumption is that we neglect the active contribution of smooth muscle cells

and only consider the passive behavior of the artery. Residual stresses are another important

phenomenon in the arterial wall, which are believed to have agreat influence on the mechanics

of soft biological tissue [Holzapfel and Ogden, 2010a]. Also incompressibility and the isotropy

of the elastin network are assumptions, but there is evidence in the literature justifying this

assumptions, see, e.g., [Gundiah et al., 2007]. Our framework does not yet consider growth

and remodeling [Valentı́nn et al., 2013] and also works on quite a macroscopic level,although

especially the role of proteoglycans on the molecular levelmight be important [Azeloglu et al.,

2007, Schmidt et al., 2013].

Another limitation of this work is the lack of histological data which calls for more exper-

iments to obtain structural data of both healthy and diseased blood vessels. But one also has

to consider the highly inhomogeneous histology of soft biological tissue, in general, and the

extreme variation between specimens especially for diseased aortas in particular. These consid-

erable individual histological differences make it difficult to provide general statements about

the microstructure of blood vessels.
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